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PREFACE

This book provides a self-contained treatment of classical Fourier analysis at the upper 
undergraduate or begining graduate level. I assume that the reader is familiar with the 
rudiments of Lebesgue measure and integral on the real line. My viewpoint is mostly 
classical and concrete, preferring explicit calculations to existential arguments. In some 
cases, several different proofs are offered for a given proposition to compare different 
methods.

The book contains more than 175 exercises that are an integral part of the text. It can 
be expected that a careful reader will be able to complete all of these exercises. Starred 
sections contain material that may be considered supplementary to the main themes of 
Fourier analysis. In this connection, it is fitting to comment on the role of Fourier analysis, 
which plays the dual role of queen and servant of mathematics. Fourier-analytic ideas 
have an inner harmony and beauty quite apart from any applications to number theory, 
approximation theory, partial differential equations, or probability theory. In writing this 
book it has been difficult to resist the temptation to develop some of these applications as a 
testimonial of the power and flexibility of the subject. The following list of “extra topics” 
are included in the starred sections: Stirling’s formula, Laplace asymptotic method, 
the isoperimetric inequality, equidistribution modulo one, Jackson/Bemstein theorems, 
Wiener’s density theorem, one-sided heat equation with Robin boundary condition, the 
uncertainty principle, Landau’s asymptotic lattice point formula, Gaussian sums and the 
Schrodinger equation, the central limit theorem, the Berry-Esseen theorem and the law 
of the iterated logarithm. While none of these topics is “mainstream Fourier anaysis,” 
each of them has a definite relation to some part of the subject.

A word about the organization of the first two chapters, which are essentially inde
pendent of one another. Readers with some sophistication but little previous knowledge 
of Fourier series can begin with Chapter 2 and anticipate a self-contained treatment of 
the n-dimensional Fourier transform and many of its applications. By contrast, readers 
who wish an introductory treatment of Fourier series should begin with Chapter 1, which 
provides a reasonably complete introduction to Fourier analysis on the circle. In both 
cases I emphasize the Riesz-Fischer and Plancherel theorems, which demonstrate the

xvii
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natural harmony of Fourier analysis with the Hilbert spaces L2(T) and L2(Rn). However 
much of modern harmonic analysis is carried out in the Lp spaces for p 2, which is 
the subject of Chapter 3. Here we find the interpolation theorems of Riesz-Thorin and 
Marcinkiewicz, which are applied to discuss the boundedness of the Hilbert transform 
and its application to the Lp convergence of Fourier series and integrals. In Chapter 4 
I merge the subjects of Fourier series and Fourier transforms by means of the Poisson 
summation formula in one and several dimensions. This also has applications to number 
theory and multiple Fourier series, as noted above.

Chapter 5 explores the application of Fourier methods to probability theory. Limit 
theorems for sums of independent random variables are equivalent to the study of iterated 
convolutions of a probability measure on the line, leading to the central limit theorem for 
convergence and the Berry-Esseen theorems for error estimates. These are then applied 
to prove the law of the iterated logarithm.

The final Chapter 6 deals with wavelets, which form a class of orthogonal expan
sions that can be studied by means of Fourier analysis—specifically the Plancherel 
theorem from Chapter 2. In contrast to Fourier series and integral expansions, which 
require one parameter (the frequency), wavelet expansions involve two indices—the 
scale and the location parameter. This allows additional freedom and leads to improved 
convergence properties of wavelet expansions in contrast with Fourier expansions. I 
include a brief application to Brownian motion, where the wavelet approach furnishes 
an easy access to the precise modulus of continuity of the standard Brownian motion.

Many of the topics in this book have been “class-tested” to a group of graduate 
students and faculty members at Northwestern University during the academic years 
1998-2000. I am grateful to this audience for the opportunity to develop and improve 
my original efforts.

I owe a debt of gratitude to Paul Sally, Jr., who encouraged this project from the 
beginning. Gary Ostedt gave me full editorial support at the initial stages followed by Bob 
Pirtle and his efficient staff. Further thanks are due to Robert Fefferman, whose lectures 
provided much of the inspiration for the basic parts of the book. Further assistance and 
feedback was provided by Marshall Ash, William Beckner, Miron Bekker, Leonardo 
Colzani, Galia Dafni, George Gasper, Umberto Neri, Cora Sadosky, Aurel Stan, and 
Michael Taylor. Needless to say, the writing of Chapter 1 was strongly influenced by 
the classical treatise of Zygmund and the elegant text of Katznelson. The latter chapters 
were influenced in many ways by the books of Stein and Stein/Weiss. The final chapter 
on wavelets owes much to the texts of Hernandez/Weiss and Wojtaszczyk.

Mark A. Pinsky
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CHAPTER

1
FOURIER 

SERIES 
ON THE 
CIRCLE

1.1 MOTIVATION AND HEURISTICS

1.1.1 Motivation from Physics

Two major sources of Fourier series are the mathematical models for (i) the vibrating 
string and (ii) heat flow in solids.

7.7.7.7 The vibrating string
The first systematic use of trigonometric series can be found in the work of Daniel 
Bernoulli (1753) on the vibrating string. A simple harmonic motion of a string of length 
yr is defined by the formula

(1.1.1) f(x, t) = A sinnxcos(n7 — a)

for suitable constants A, a, and n = 1, 2,.... A is the amplitude, n is the angular 
frequency, and a is the phase shift.

The simple harmonic motion is a solution of the differential equation/^ = fxx, 
which is supposed to describe the small transverse displacement /(x, t) of a tightly 
stretched string whose ends are fixed at x = 0 and x = tt.

More complex, multiple harmonic motions are obtained by linear superposition

N
(1.1.2) f(x, t) = An sinnxcos(n7 — otn).

n=l

Functions of this form can be used to satisfy a variety of initial conditions, 
if we are given the values of f and the partial derivative df /dt when 7 = 0. This 
is possible whenever/(x, 0) and df/dt(x,0) are expressed as finite linear com
binations an sin nx. This may be less obvious in other cases; for example 

1



2 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

f(x, 0) = sin3x = (3sinx — sin3x)/4, whereas sin2x cannot be so expressed. In 
order to work with these trigonometric sums, we note the property of orthogonality, 
expressed as

(1.1.3) sin mx sin nx dx = 0, m / n.

If a function has the form f(x) = Ylk=i ak sin hr, then we must have 
/q f(x) sin nx dx = 0 for n > N.

Exercise 1.1.1. Show that ifN is odd, sin77 x can be written as a finite sum of the 
form J2k=\ ak s^n

Exercise 1.1.2. Suppose that we have a convergent series expansion of sin2 x = 
ak sin on the interval 0 < x < n. Prove that ak is nonzero for infinitely 

many values of k.

Hint: Assume a finite expansion and use the orthogonality relation (1.1.3) to obtain a 
contradiction.

Exercise 1.1.3. Generalize Exercise 1.1.2 to any even power of sin x, showing 
the impossibility of an expansion sin'1* = Ylk=\ ak sin kx for 0 < x < tt where 
n = 4, 6, ....

Any multiple harmonic motion (1.1.2) is a 2n-periodic function of time:/(x, t + 
2tt) = f(x, t) for all — oo < x, oo, — oo < t < oo. It also is a 2n-periodic function 
of x and is odd with respect to x = 0 and x = tt, meaning that/(—x) = —/(x) and 
f(tr + x) = —f(n — x) for all x.

Exercise 1.1.4. Suppose thatf(x), —oo < x < oo is given. Show that any two of 
the following properties imply the third: (i) f (x 4- 2tt) = /(x), Vx; (ii)f(— x) = 
—/(x), Vx; (iii)f(n — x) = -/(tt +x), Vx.

7. /. 1.2 Heat flow in solids
The vibrating string suggests the use of sine series, since the ends of the string are fixed. 
More general trigonometric series are suggested by the study of heat flow in a circular 
ring, assumed to have circumference 2tt . In this model it is natural to assume that the 
temperature w(x, t) is a 2tt-periodic function of x (but not periodic in time). Fourier 
(1822) formulated the heat equation ut = uxx to describe the time evolution of the 
temperature. It is satisfied by any function of the form (An cos nx + Bn sin nx)e~n 1 where 
n = 0, 1, 2,..., t > 0 and — n < x < tt. Taking linear combinations of these, we arrive 
at a “general solution”

(1.1.4)
N

u(x, t) = ^(An cos nx + Bn sin nx)e~n2f
n=0
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This will fit an initial temperature profile/(x) if and only if / is expressed as a finite 
trigonometric sum

(1.1.5)
/v

f(x) = y^(An cos nx + Bn sin nx).
n=0

The coefficients An, Bn can be found by using the orthogonality relations

(1.1.6) sin mx sin nx dx = 0 m / n,

(1.1.7) / cos mx cos nx dx = 0 m / n,
J — 7T

(1.1.8) 1 sin mx cos nx dx = 0 all m, n,
J — 71

together with the norms: sin2 nx dx = tt = cos2 nx dx, n = 1,2,... Thus

(1.1.9) = f^dx>
J-7T

1 r
(1.1.10) An = — / f(x)cosnxdx n=l,2,...,

J-77

1 f”
(1.1.11) Bn = — / f(x) sin mx dx n=l,2,....

J — 7T

Fourier’s thesis is that (1.1.5) will also remain true for N = oo, if the coeffi
cients An, Bn are defined by these formulas. This is most easily done in case the series 

I + lB«l) converges.

1.1.2 Absolutely Convergent Trigonometric Series

We begin the mathematics by considering functions defined by

(1.1.12)
OO

f(0) = y^(An cos n0 + Bn sin nO)
n=0

where 5ZXo(|An I + D < 00 • The values of/ are determined on any interval of length 
2tt. A standard choice is the interval T = (—tt, tt], where we identify 2tt-periodic 
functions on R with functions on T. A function on T is considered continuous (resp. 
differentiable) if the corresponding periodic function on R is continuous (resp. differen
tiable). In concrete terms this means that/ is continuous (resp. differentiable) on (—tt, tt] 
with/(;r - 0) =f(-TC + 0) (resp. /'(tt - 0) + 0)).
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In order to simplify the notations throughout, we recall the Euler formula for the 
complex exponential function eie = cos 0 + i sin 0 and its consequences

(1.1.13) cose = ~(eiff +e~ie), sin6* = -(eiff - e~i0).
2 2i

This allows us to rewrite the trigonometric series (1.1.12) in the complex form

(1.1.14)
oo

f(0) = £ CneM
n=—oc

Complex notation is especially efficient when we multiply two such functions, the for
mula el3el(i) = el(e+(/>) being a streamlined expression of the addition formulas for both 
the sine and cosine functions. Similar efficiency is realized in the integration formulas 
f eax dx = 1 eax when a is a nonzero complex number. The passage from real functions
to complex functions also suggests the natural definition of convergence of the series 
(1.1.14), namely as the limit of the symmetric partial sums ^N_N. Wc use throughout the 
notation for this limiting process. If we try to consider more general definitions 
of convergence, difficulties will arise.

Throughout the text we will systematically use the Lebesgue integral and its many 
properties. In some cases a more elementary definition of integration will suffice, but we 
prefer to systematically employ the Lebesgue theory—both for its increased generality 
and its ease with respect to passage to the limit.

Theorem 1.1.5. Suppose that \Cn| < oo. Thenf defined by (1.1,14) is a 
continuous function on T. The coefficients are obtained as

(1.1.15)
C„ - L T f(0)e-Mde, neZ. 

2” J-n

If g is any other L1 function on T, we have the Fourier reciprocity formula

(1.1.16)
1 fn— f{0)g{0)de = y^cnD.

27r ntfL

where Dn is the Fourier coefficient of g, defined by (1.1.15) withf replaced by g. 
In particular we have ParsevaTs identity

(1.1.17)

Proof, The uniform convergence of (1.1.14) follows from the Weierstrass M test, since 
| = |C„ |, the general term of a convergent numerical series, so that the limit function 

is continuous. This uniform convergence also holds for the series defined by e~lNef(0),
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which we may therefore integrate term-by-term. In the process we encounter the integral

(1.1.18) y e-iNeeM de = 0 (n / TV, n e Z, N e Z)

while the integral is 2n for n = N. Equation (1.1.18) is known as the complex orthogonality 
relation. This shows that

1(1.1.19) — / e-iNef(3)de = CN, (TV eZ)
J-„

which was to be proved. To prove (1.1.16), we multiply the series (1.1.14) by g(0). The 
partial sums are bounded by a multiple of the integrable function |g(0) |, hence we can apply 
Lebesgue’s dominated convergence and integrate term-by-term to obtain

If71 C Cn 1(1.1.20) — / /(0W)^ = y-2-/ f*gQ)d9=-ycj).n
J-* 2* J-n

which was to be proved. Taking g =f gives the Parseval identity (1.1.17). ■

Exercise 1.1.6. Suppose that |nCw| < oo. Prove that the series (1.1.14) 
defines a differentiable function withf' (0) = inCnein0 a continuous function.

Hint: Use the inequality \elh — 1| < \h\ to justify passage to the limit.

Exercise 1.1.7. Suppose that \nk^n\ < 00 for some k — 2, 3,.... Prove 
that the series (1.1.14) defines a k-times differentiable function with f^k\0) = 

Cnelne a continuous function.

The Fourier reciprocity formula (1.1.16) can be rewritten to obtain a useful rep
resentation of the convolution of an absolutely convergent trigonometric series with 
an arbitrary integrable function. Taking = g(</> — 0), we compute the Fourier 
coefficient by writing

( e-ineg^e)de= (^gWdilf=e-^ [g^dilr 
T JT JT

which, when substituted into (l.1.16), yields the following.

Corollary 1.1.8. The convolution of an absolutely convergent trigonometric 
series f with an arbitrary Lx function g has the representation

(1.1.21)
3- [ f(O)g(d> - 0) d0 = V CnDnein*.

2yr tei

A large source of examples of absolutely convergent trigonometric series is 
obtained from power series. Consider a general Laurent series

(1.1.22)
oo oo

/(z) = y anzn + '^bnz~n, 

n=0 n=i
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assumed to be absolutely convergent in an annular region r\ < |z| < r^. Then

co co
(1.1.23) f(.reie)^^anrneM+ ^bnr-ne~ine, n < r < r2

n=0 /?=!

is an absolutely convergent trigonometric series. In particular we will apply this to 
ez = 12Xo in next Section 1.1.3.

1.1.3 ^Examples of Factorial and Bessel Functions

We can generate many useful examples beginning with the power series of the exponential 
function.

Example 1.1.9. Let Cn = 0 for n<0 and Cn = rn/nl where r>0 and 
n = 1,2,.... Then F(0) = ere'G and the Fourier coefficient formula (1.1.15) and
Parseval identity (1.1.17) specialize to

(1.1.24)

(1.1.25)

- = — T ere"e~Md0, r > 0, n = 0, 1, 2,... 
n\ 2tt

/o(2r) : e2r cos 3 d3 r > 0.

Equation (1.1.25) gives an integral formula for the modified Bessel function Zo(2r) 
defined by the power series on the left side. In particular we will determine the asymptotic 
behavior of /o(2r) when r oo by analysis of the integral on the right side of (1.1.25). 
Meanwhile (1.1.24) gives a useful representation of the factorial function. We will use 
this to present a self-contained treatment of Stirling’s formula in the form

(1.1.26) lim n\/nn+^e n = VZzr. 
n->oo

To obtain this result we take r = n in (1.1.24), to obtain

(1.1.27)
nne n 

n\

where F(0) = el3 — 1 — iO. This is set up to apply the Laplace asymptotic method, whose 
proof will be given at the end of the section, and whose statement follows.

Proposition 1.1.10. Suppose that F(0), —tt < 0 < jt is a continuous complex
valued function so that RcF(0) has a unique maximum at 0 = 0 with F(0) = 0, 
lim^o F(0)/02 = —k with Re& > 0. Then

(1.1.28) n oo.

In the present case F(0) = el3 — 1 — iO, so the conditions are satisfied with ReF(0) = 
cosO - 1 < Oforyr > |0| > 0 and Zc = -F"(0)/2 = 1/2.
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Exercise 1.1.11. Prove that the factorial function satisfies the two-sided system 
of inequalities C\nne~n <n\< Cf(n+ l)n+l e-(n+l) for positive constants Ci, C2 
and n = 1, 2, ....

Hint: Compare ^=1 log£ with the integral of log* and then exponentiate.

As a second application of Laplace’s method, we take F(0) = cos 0 — 1 to deduce 
the asymptotic formula for the modified Bessel function defined by (1.1.25):

(1.1.29)
/0(2r) = e2rJ+ 0(1)), 

V 4jrr
r 00.

Returning to the theory, one can discuss further general properties of the class of 
absolutely convergent trigonometric series. They form an algebra of functions, meaning 
that the sum and product of two is again in the same class. In detail

(1.1.30)

(1.1.31)

+yy^8 = yyAn+Bn)eM, 
neZ neZ neZ

yyneM x yyneM = £ eM.
neZ neZ \£gZ /

We will prove later that the class of absolutely convergent trigonometric series 
contains the class of Holder continuous functions of exponents greater than |.

1.1.4 Poisson Kernel Example

A second useful example of an absolutely convergent trigonometric series is generated 
by the function/^) = 1/(1 — z), defined in the unit disc |z| < 1. Thus we obtain the 
absolutely convergent series

(1.1.32)
1 00

 = V rnein3
1 — reie “n=Q

0 < r < 1.

When we take the real and imaginary parts, we obtain the real series

1 — r cos 0
1 + r2 — 2r cos 0

00 11
= 1 + rn cos n0 = - + - r^eine

n=l 2 2

r sin#
1 + r2 — 2r cos 0

00 .
= rn sin n0 = — sgn(ri)ein3 > 

n=\ neZ

where the signum function sgn (ri) is defined by setting sgn (0) = 0, sgn (n) = 1 if n > 1 
and sgn (n) = — 1 if n < — 1. These can be rewritten as

(1.1.33)

(1.1.34) Qr(0) :=

_____ !___ _______= y^r^eine 
1 + r2 — 2r cos 0___“

2r sin 0
1 + r2 — 2r cos 0

= —i y^ sgn (ri)r^ein0. 
neZ

Pr(0) :=
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Pr is the Poisson kernel and Qr is the conjugate Poisson kernel. See Figures 1.1.1 
and 1.1.2. It is easily checked that both Pr and Qr are solutions of Laplace’s equation. 
Equations (1.1.15) and (1.1.17) yield

(1.1.35)

(1.1.36)

i p
2tt J-jt

1 p

2jr J-7T

e~MPr(e) de = r1”1, n € Z, 0 < r <

e~ln6Qr(0) d0 = — isgn (n)r|n|, n e Z,

1,

0 < r

(1.1.37)
1

2tt

f tt _0C- 1 I r2J Pr(0)2d0 = 1 +2^r2n = — 0 < r

(1.1.38)
2tt ,

/ Qr{0fd0 = 2 £>2n = ------- j, 0
J- 1 -r2

< r < 1

Setting n = 0 in (1.1.35) yields

(1.1.39) 1 =
1 r 1 — r2

— /  ------ 5—------- - de, 0 < r <
2tt 1 + r2 — 2r cos 0

1.

These integration formulas will be used frequently in dealing with the summability 
of Fourier series.

FIGURE 1.1.1
Poisson kernel Pr(0) with r = 0.8
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FIGURE 1.1.2
Conjugate Poisson kernel Qr(9) with r = 0.8

Exercise 1.1.12. Prove that Pr and Qr are both solutions of Laplace's equation 
uxx + uyy = 0 where x + iy = rel6.

Hint: Using (x + iy)n = rneine shows that each term in the series is a solution of Laplace’s 
equation. Another approach is to recall the form of Laplace’s equation in polar coordinates, 
namely urr + (l/r)wr + (f/r2)uee = 0.

1.1.5 *Proof of Laplace's Method

We formulate this in somewhat greater generality as follows: Let A(x), B(x) be con
tinuous functions defined on an interval a < x < b so that ReB(x) < ReB(xo) for 
x / xq G (fl, b). B satisfies the asymptotic relation (B(x) — B(xq))/(x — xq)2 ~k 
when x xq e (a, b) with Re(&) > 0. We will prove that when t oo

(1.1.40)

Proof. Without loss of generality we can assume that x0 = 0 and B(Q) = 0.
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Step 1. Localizing the range of integration: For any 8 > 0 the maximum of Re B(x) 
when |x| > 8 is negative so that we can write

C(r) = / A(x)e'BM dx + O(e“D')

for some D > 0.

Step 2, Replacing B by its quadratic approximation: Now we write the expansion of 
B(x) around x = 0:

B(x) = —kx2 + o(x2), k = kR + ikj.

For any two complex numbers z\ = x\ + iy\, z2 = x2 + zy2 we have the inequality

(1.1.41) |eZ1 - e"2| < |zj -z2|eZ3, z3 = max(X), x2).

Applying this with z\ = B(x), z2 = —kx2, we can take z3 < -kRx2/2 by taking 8 small 
enough. With this choice of 8 we can write

|e'flW - e~'kxl | < /C36x2e-rt«x2/2, |x| < 8.

The error in replacing the exponential by the purely quadratic exponential term is bounded by

rC3e f \x\2e~tkRx2/2 dx < tC^ f \x\2e~tkRx2/2 dx = 6 co”st
J\x\<8 J-oo V*

by making the substitution v = x^/t.

Step 3. Replacing A(x) by A(0): Since A is continuous, we can rechoose 8 > 0 so that 
|A(x) - A(0)| <6 when |x| < 8. The error made in replacing A(x) by A(0) is bounded by

6 f e~tkRx2/2 dx < 6 f e~tkRx2/2dx = 6 C0”St
J\x\<8 J — OQ y/t

also by making the substitution v = x^/t. From Steps 1, 2 and 3 we have

e~'kx2 dx + o| —p I.
i \Vt/

Step 4, Integral over the real line: Finally we replace the integral on —8 < x < 8 by the 
integral over — oo < x < oo with an exponential error, since

[ e~,kxl dx <| [ \x\e-'kl<x2 dx
J\x\>8 J\x\>8

= —e~'kl<s2.
8kRt

But the integral over — oo < x < oo is

If k is complex, we must take the square root with positive real part, since the integral 
clearly has this property. Combining these steps completes the proof. ■

Exercise 1.1.13. IfRek > 0, show that the real part of e~^2 dx is positive.
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Hint: First make the change of variable x2 = y to reduce consideration to 
f™ (e~ay /y{/2) cos (by) dy, which is an infinite sum of integrals over (kn/b, (k + 1)tt/Z?). Show 
that the first of these is positive and the remaining terms alternate in sign and decrease to zero. 
Alternatively, one may prove this by using complex analysis, considering the analytic function 
£ —> 0(fc) = /0°° e~kx2 dx, defined for Re k > 0. On the real axis (j>(k) agrees with the branch of 
the function k (n/k)^2, which is positive and real on the positive real axis. Hence these two 
analytic functions agree on the entire halfplane Re£ > 0.

Exercise 1.1.14. Suppose, in addition, that A(x) is Lipschitz continuous: 
|A(x) — A(y)| < K\x — y| and that the second derivative B"(x) exists and is also 
Lipschitz continuous. By going through the steps of the above proof, show that in 
this case the error term o(\/yft) in Laplace's method can be replaced by O(\/t).

Computation of (1.1.42). This is obtained by considering the square of 
I := e~kx2 dx in polar coordinates. Thus

1.1.6 *Nonabsolutely Convergent Trigonometric Series

It is possible to deal with trigonometric series with monotonically decreasing coefficients 
by the method of summation by parts to produce convergent series. Given any sequence 
of complex numbers an, n = 0, 1,2,..., define (Aa)n = an — an_\ for n > 1. The basic 
identity is that for any two sequences an, bn

N N

(1.1.43) aNbN - aMbM = ak(&b)k + bk~{(\a)k, M<N.
k=M+\ k=M+\

The proof is left as an exercise.

Exercise 1.1.15. Prove (1.1.43).

Hint: Write the left side as a telescoping sum and show that akbk — ak_\bk_\ = ak(£sb)k + 
hk-\(^a)k.

As a first application of summation-by-parts, we can deduce the convergence of 
certain trigonometric series.

Proposition 1.1.16. Suppose that An > 0 andAn > An+\ with limAn = 0. Then 
the trigonometric series An?inx is convergent for x 0.
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Proof. We apply (1.1.43) with an = An, bn = Bn(x) = ^'k=o e‘kA - This is a finite geometric 
sum with

(1.1.44)
J _ eHn+\)x

1 — elx
1

sin (x/2) ’
\Bn(x)\ =

Applying (1.1.43) shows that
N N

(1.1.45) ^2 a'<e'kX = aNBN(x)
k=M+\ k=M + \

The first two terms tend to zero when M,N oo. The sum is estimated by

(1.1.46)
N

k=M+\

1 N 1
- ■ - ■ ■■ 32 = (aM - aN) .

sin (x/2) sin (x/2)

which tends to zero when M,N oo.

Example 1.1.17. The trigonometric series ^n>2einx flvgn is convergent for 
x / 0. By taking the real and imaginary parts, we see that the series 

cosnx/logn is convergent for x ± 0 and the series J2/?>2 sinnx/logn is 
convergent for all x.

Exercise 1.1.18. Prove that we have uniform convergence of^n>2 einx/log n on 
any closed interval not containing x — 0.

In an appendix to this chapter we prove the basic Cantor uniqueness theorem, which 
allows one to identify the coefficients An from the sum of the (conditionally convergent) 
trigonometric series.

Summation by parts can also be used to estimate the modulus of continuity of an 
absolutely convergent trigonometric series in terms of the tail sum, defined as

oo
E„ := 22 (|A*| + |A_*|).

k=n+\

To do this, let h > 0 and write

f(x + h) -f(x) = y^Anein\einh - 1),

|/(x + h) -f(x)\ < £ \nhA„\ + 2 J2 |A„|. 
\n\<N \n\>N

The second sum is 2E^. The first sum is rewritten as

N N-\
\nhAn\ = —h^^n(&E)n = —hNEN 4- h En, 

|n|<N /?=() n=0

so that

(1 77-1 \
E^ + -V^ +2E/V-

/
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The first and third terms are balanced by taking hN = 1. The middle term is an average 
of the last term and can be estimated therefrom. Specific forms of the tail sum will lead 
to various concrete estimates.

Exercise 1.1.19. Suppose that the tail sum satisfies En < CrTa for some 
0 < a < 1. Prove thatf satisfies a Holder condition: \f(x 4-/i) — /(x)| < Cha for 
some constant C.

Exercise 1.1.20. Suppose that the tail sum satisfies En < Cn~[. Prove that 
f satisfies \f(x + h) — /(x)| < Ch log(l /h) for some constant C.

Exercise 1.1.21. Letf(x) = y^=Qan cos(ZAr) where 0 < a < 1, b e Z+. Find 
a modulus of continuity off. Consider separately the cases ab < 1, ab = 1 and 
ab > 1.

Exercise 1.1.22. Illustrate the results of the previous exercise in the following 
three cases:

oo oo oo
^■"cosO"*), J23“"cos(2"a:), J22“"cos(2"a:).
n=0 n=0 n=0

1.2 FORMULATION OF FOURIER SERIES

Armed with some motivation, we now begin the formal study of Fourier series.

1.2.1 Fourier Coefficients and Their Basic Properties

We begin with an integrable function/ on T = (—tt, tt ]. Any such function can naturally 
be identified with a 2tt-periodic function on the entire real line. This extension is helpful 
in many ways, especially in computing integrals since we may write fT f (x +6) dO = 
kfWdo.

The Fourier coefficients, or discrete Fourier transform, off e if (T) are defined 
by the formula

(1-2.1)
/(«) = ff f(O)e~inSdO. 

hi Jr

This is a linear transformation from the space L*(T) to the space /°°(Z) of bounded 
bilateral sequences. We formalize this as a proposition.

Proposition 1.2.1. The space of discrete Fourier transforms is an algebra, as 
expressed by

(1.2.2) /iW+/2W = (/iT/2)W

(1.2.3) /i(n)x/2(n) = (/1*/2)(n)
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where the convolution of two L1 functions is defined by

(/1 */2)(^) = f f - 0W

and where the integral is convergent for almost every 6. The convolution product 
is commutative and associative: f\ *f2 = /?*/, (/ *fi) *fi = f\ * (/2 */s). 
Furthermore the mapping f f is a contraction, meaning that

(1.2.4) |/(n)| < f [\f(0)\d9.

Lit Jt

Proof, The first formula is immediate from the linearity of the integral. To prove the 
second formula, we note that the convolution is well defined by the Fubini theorem, since

*/2 I (&) _ /T l/i(0) 11/2(0 — 0)1 d(f). The latter integral has a finite integral over T, 
since by Fubini and a change of variable we find that

(de [ i/i(0)||/2(0-0)|^0= [ [ i/(0)||/2(0)|6Z0^= [ i/(0)|6/0 [\f2(e)\de.
Jt Jt Jt Jt Jt Jt

Therefore the integral defining the convolution of |/| * |/2| is finite almost everywhere, 
and dominates the convolution/ * /. Having made these preparations, we can multiply 
the Fourier coefficients and transform by Fubini:

4tt2/i (n) xf2(n) = ((f2(.<t>)e~^ = [ - 0) d*
Jt Jt Jt Vt /

which was to be proved. The commutative and associative properties are most easily deduced 
from these properties of ordinary multiplication, once we have used Fubini to identify the 
convolution as the unique Ll function F with the property that for any bounded function h, 
fT fT h(x + y)/ (x)/2(y) dxdy = 2ti fT h(z)F(z) dz. The contraction property is immediate 
from (1.2.1). ■

Exercise 1.2.2. Let f,fi gL^T). Show that for any bounded measurable 
function h we have

[ [ h{x-\-y)f(x)f2(y) dxdy = 2n [ /i(z)(/i */2)(M 

Jt Jt Jt

One may be tempted to conclude that the convolution / */2 is represented by the 
Fourier series J2neZ/i (n)/2(n)e,n0. This cannot be literally true in general, because the 
latter series does not converge pointwise or in L1, for a general L1 function. Nevertheless 
the following special case of Fourier reciprocity is quite useful.

Proposition 1.2.3. Suppose that |A„| < oo and we have an absolutely 
convergent Fourier series K(6) = ^2ne^Anein6. Then for any f G L’(T) we 
have

(1.2.5) (/ * K)(0) = yynf(n)eM.
neZ

Proof, Begin with the identity

f(e - - <t».
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By hypothesis, this is a series of L1 functions that is convergent and bounded pointwise 
by the integrable function \ f\ x |AJ, so that by Lebesgue’s dominated convergence 
theorem we can integrate term-by-term to conclude

( f(0 - 0)^(0) d<f> = YA„ [ - 0) d<t>

Jt:

= ^A„ [ ein^fW)dt 

neZ •'T

= 2n ^A,hn)eM

which was to be proved. ■

This can be immediately applied to the Poisson kernel K(0)=Pr(fi) = 
• If £Lez/(n)^ is F°urier series of some L1 function/, we may 

now assert that

(f*Pr)(0) = ^f(n)rMeM.
neZ

Another example is obtained from the Dirichlet kernel, defined by the finite trigono
metric sum

N
(1.2.6) Dn{3) = £

n=—N

The Fourier partial sum operator

N
SNf = ^f(n)eine = £ k-N.N^)f(n)eM 

-N ne%

is equivalently obtained as the convolution

(1.2.7) sNf<e) = (DN*f)(e).

Here 1A is the indicator function, defined by U(h) = 1 if n e A and equals zero 
otherwise. From (1.2.6), it is clear that DN is an even function and that fTD^ = 2ti. 
See Figure 1.2.1 for the Dirichlet kernel and Figure 1.2.2 for the Fourier partial sums of 
/(*) = x, —71 < X < 71.

Exercise 1.2.4. Show that the Dirichlet kernel can be equivalently expressed as

(1.2.8)
sin (A + |)0

Av(O =----- . fl/2 / 0, ±2>r,...
sm0/2

by summing a finite geometric series.

Exercise 1.2.5. Suppose that K g L!(T) is an even function: K(—0) = —K(0). 
Prove that the convolution operator f K *f is self-adjoint, meaning that for 
any f e L1 (T) and any bounded function g we have fT(K *f)g = fTf(K * g).
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FIGURE 1.2.1
The Dirichlet kernel Dn(0) forN = 5.
From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications.
Reprinted by permission of The McGraw-Hill Companies.

FIGURE 1.2.2
The graphs of the partial sumsfy(0) for N = 1, 2, 3 of the Fourier series of/(0) = 0, —n < 0 < tt. 
From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications. 
Reprinted by permission of The McGraw-Hill Companies.

Exercise 1.2.6. Suppose that K G L!(T) is an odd function: K(—Q) = —K(0). 
Prove that the convolution operator is skew-adjoint, meaning that for any 
f G Lx (T) and any bounded function g we have fT(K *f)g = — JT/(X * g)-

At this point we can formulate the uniqueness of the Fourier coefficients, following 
an elementary argument of Lebesgue. The result will also be deduced as a corollary of 
the summability of one-dimensional Fourier series in Section 1.3.
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Proposition 1.2.7. Suppose thatf, g e L{ (T) have the property thatf(ri) = g(ri) 
for all n e Z. Then f = g a. e.

Proof. By the linearity of the map/ -> f it suffices to prove the result in case g = 0. We 
first prove the result in case/ is a continuous function. Writing/ = u + iv, we have for any 
n e Z,

0 = 2jrf(n) = f (u(x) + iv(x))e~inx dx
J—n

QTt /’7T
= I (u(x) cosnx + v(x) sin me) dx + i I (v(x) cosnx — u(x) sin nx) dx.

J — 71 J —71

For any m = 0, 1, 2,... we apply this to n = m and n = —m to conclude that

v(x) sin mxdx.

Therefore we are reduced to the case of a real-valued continuous function/ for which

(1.2.9) cos mx dx = sin mxdx, m = 0, 1,2,....

If / is not identically zero, there exists a point where /(x0) 0. Replacing / by
f(x + x0)//(x0), we may assume that/(x) > | in a closed interval I = [—5, 8], where 
0 < 8 < Jt. Let t(x) = 1 + cosx — cos8, Tn(x) = t(x)n. Clearly t(x) > 1 on I while 
|r(x)| < 1 on T, so that Tn(x) > 1 on I while Tn(x) 0 on Ic . Now Tn is a trigonometric 
polynomial of degree n, so that from the hypothesis (1.2.9)

0= ( f (x)Tn(x) dx = 0.

On the other hand, the dominated convergence theorem shows that lim„ ffC f(x)Tn(x) dx = 
0. Subtracting these, we conclude that lim/? fjf(x)Tn(x) dx = 0, which contradicts the fact 
that/(x)Tn(x) > | on I. Hence/(x) = 0. Applying this argument separately to/ = u and 
/ = v proves the result for any complex-valued/ e C(T).

Now if/ e L1 (T) satisfies f(n) = 0, let F(x) = dt, a continuous function. 
Interchanging the orders of integration shows further that for n = ±1, ±2,...

F(x)e~inx dx = dx

dt

Hence F(ri) = 0 for 0 / n e Z. Letting Ao = 1/2jt f^ F(x) dx, we can apply the proof 
in the previous paragraph to the continuous function x F(x) — Ao, to conclude that 
F(x) — Ao = 0. But from Lebesgue’s theorem on the differentiation of the integral, we have 
almost everywhere that/(x) = (d/dx)F(x) = 0, which completes the proof. ■
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The above properties of the mapping f f are algebraic in nature. The following 
fundamental property is analytic. It is valid for an arbitrary approach to infinity, not 
restricting n to be integer-valued. Here we note that the Fourier coefficients (1.2.1) are 
well defined for any n e R.

Theorem 1.2.8. Riemann-Lebesgue lemma: For any f g L1 (T), 
lim^i-^oo/Cn) = 0 and the convergence is uniform on compact subsets of L1 (T).

We will give two separate proofs of the first statement, then deal with the 
compactness.

First Proof. By making the change of variable 0 = 6 + n/n, the integral defining the 
Fourier coefficient is transformed into

27r/(n) = y + x/n)e-^’/"> d<t> = - j f(<j> + d</>.

Adding this to the definition of f(n), we obtain

W(n) = + 7r/n) -/(0)]e-"'0 d</>.

If / is a continuous function, the integrand tends to zero uniformly when \n\ oo, hence 
/(h) 0. In case/ is an arbitrary L1 function, we can find a continuous function g so that
||/-g||i < 6. Then

/(h) = g(ri) + (f - g) (ri).

The first term tends to zero when |h| —> oo whereas the second term is less than 6, by virtue 
of (1.2.4). Thus lim sup,, /(h) | <6, which was arbitrary, completing the proof. ■

Second proof. The result is clearly true for the indicator function of an interval (a, b), 
since for n / 0

rb _ e~‘na
(1.2.10) / e~M =------------------- ► 0, |n| -> oo.

Ja ~in

Hence it is also true for the indicator function of a finite union of intervals. Now if E is any 
measurable set, by the definition of outer measure, there exists a finite union of intervals 
E so that the symmetric difference EAE has measure less than 6. In terms of L1 norms 
/T | lE — 1^1 < 6. By linearity, we have

lHWI < lGWI + fW")|.

The first term tends to zero while the second term is less than 6. Now we can extend to 
simple functions/ = £ a^E, by linearity and finally to all L1 functions by appealing to the 
density of simple functions. For example fN = ^\k\<N2N ^~N h2-/v</-<(A-+i)2-/v is a simple 
function so that /T \f — fN | 0 when N oo.

To prove the uniform convergence, let K be a compact set in L1 (T). We first cover K 
by a union of balls: K C UB(/, e). By compactness, we can extract a finite set /,... ,fN 
so that K C UjL1B(/, e). For each 1 < i < N we can apply the Riemann-Lebesgue lemma 
to conclude |/(h)| < 6 for n > M and all z, 1 < i < N. Now any other member of 
K is included in one of the balls B,, so that by the contraction property, we must have 
lim sup,, /(h)| <6. This proves the uniform convergence. ■
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This property of uniform convergence is easily applied to show that if/ g L1 (T) 
and g is a bounded function, then

(1.2.11) ( g(O)f(,<t> + de 0

Jt

uniformly for 0i < 0 < 02 when |n| oo. To see this, note that for any f G L1 (T) the 
mapping x fx from T to L1 (T) is continuous. In detail

lim / |/(x + 6>) -/(x0 + 6>)|6?6> = 0.

Multiplication by the bounded function g preserves this continuity. The continuous image 
of a compact set is compact. Hence we can apply the uniform convergence on compacts 
to deduce that (1.2.11) holds uniformly on compact 0 intervals.

1.2.2 Fourier Series of Finite Measures

The concept of a Fourier series can be easily extended from the class of integrable 
functions to the class of finite signed measures. Recall that a signed measure on T is 
defined by a function of bounded variation, which can be represented as the differ
ence of two monotone functions. The sum of two signed measures is the setwise sum: 
(/Z] + p/f) (A) = /Z] (A) + /12(A). The convolution of two signed measures /zi, /z2 is, by 
definition, the signed measure /z with the property that for every continuous function 
h g C(T)

/ 7i(x + y) J/zj(x) J/z2(y) = 2tt / /z(z)d/z(z).
Jtxt Jt

The Fourier coefficients of a signed measure are defined by

M(«) = 2- [ e~m9 dn(3).

Proposition 1.2.1 carries over with no essential change.

Proposition 1.2.9. The space of discrete Fourier transforms is an algebra, as 
expressed by

(1-2.12) Mi(«) + M2(n) = (Mi + M2) («),

(1-2.13) Mi (n) x m2(«) - * M2) («)•

The convolution product is commutative and associative: pL\ * /z2 = M2 * Ml 
(Mi * M2) * M3 = Mi * (M2 * Ms)- Furthermore the mapping /z —> jlisa contraction, 
meaning that

(1-2.14) ImWI < t—Var(/z).
2tt

Exercise 1.2.10. Prove these statements.
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The Riemann-Lebesgue lemma is not true for signed measures. For example, the 
Dirac measure <50, for which <50(A) = 1 iff 0 e A, has <50(n) = 1 for all n. One might ask 
if the Riemann-Lebesgue lemma holds for measures that are continuous, but this is not 
true either. The Fourier coefficients of the Cantor measure do not tend to zero.

Exercise 1.2.11. Prove this statement

Hint: For the Cantor measure, jl(n) = cos (2tth/3*), with/2(3'") = /2(1) form = 1,2,.... 
For details, consult Zygmund, 1959, p. 196.

1.2.3 *Rates of Decay of Fourier Coefficients

The Riemann-Lebesgue lemma provides no further quantitative information about the 
speed of convergence to zero for an arbitrary L[ function. We can obtain a convenient 
upper bound from the representation

(1.2.15) f(n) = lff(6 + ^)-f(6)]e-‘"6d6.

Hence we have immediately Proposition 1.2.12.

Proposition 1.2.12. Suppose that f e C(T) has a modulus of continuity a> (5) := 
sup^_}1|<6 |/(x) -f(y)\. Then |/(n)| < |a>(?r/n). More generally, if 1 <p <00 
and Qp(<5) := sup|A) <8 \\ff —/Up is the Lp modulus of continuity off e LP(T), then 
|/(n)| < |Qp(7r/n).

For example, if / satisfies a Holder condition with exponent a e (0,1), we see 
that/(n) = O(n~a), |n| -> oo.

Exercise 1.2.13. Supppose that the Lp modulus of continuity satisfies £lp(h) < 
Cha for C > 0 and a > 1. Prove that f is a constant, a.e.

Hint: First show that Qp(/i + k) < then iterate this to obtain a contradiction.

If we want to obtain a more precise estimation, we can assume that/ is absolutely 
continuous and integrate by parts, as follows:

Proposition 1.2.14. Suppose that f e C(T) is absolutely continuous. Then 
f(n) = (l/in)f'(n); in particular f(n) = o(l/|n|), |n| -» oo. If in addition 
f ,f", ... ,ffk~^ are absolutely continuous, thenf(n) = (f / in)kffk\ri); in partic
ular f(n) = o(l/|n|*). Iff^ satisfies a Holder condition with exponent a, then 
/(n) = C>(l|n|t+“), |n| -> oo.

Exercise 1.2.15. Prove the above properties by integration by parts.

It is difficult to characterize differentiability of a fixed degree in terms of the 
behavior of the Fourier coefficients. In order to obtain some simple characterizations 
of smoothness, we consider functions that are infinitely differentiable. This means that 
for each m e Z+, the derivative/(w) exists and is a continuous function. Then we can
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integrate-by-parts for n ± 0 and write 2Ttf(n) = (l/m)w fT e dt, to conclude
that the Fourier coefficients satisfy a system of estimates of the form

(1.2.16) l/(«)l<7% 0/neZ, m = 0,1,....
\n\m

In other words/(n) tends to zero faster than any negative power when |n| -» oo. Con
versely, if the Fourier coefficients of/ e L1 (T) satisfy (1.2.16), then we can repeatedly 
differentiate the absolutely convergent Fourier series to conclude that/ is a.e. equal to 
an infinitely differentiable function. This is summarized as follows.

Proposition 1.2.16. / e L!(T) is a.e. equal to an infinitely differentiable function 
if and only if its Fourier coefficients are rapidly decreasing, according to (1.2.16).

1.2.3.1 Piecewise smooth functions
The correspondence between smoothness of a fixed degree and decay of the Fourier 
coefficients is not sharp in general. More precisely, the converse of Proposition 1.2.14 
is false: there exists a nonabsolutely continuous/ e L1 (T) for which nffi) -» 0 when 
|n| -> oo. In order to obtain sharp results, we consider functions that are piecewise 
smooth, described as follows. If there exists a subdivision — tc < < 0\ < • • • <
0K < n so that / is absolutely continuous on each subinterval with a simple jump at 
the endpoint, denoted <5/(0/) •= f(fij + 0) — f(9j — 0), then we say that/ is piecewise 
smooth of degree 0. In general we say that / is piecewise smooth of degree k if there 
exists such a subdivision so that / is absolutely continuous on T, together with its first 
k — 1 derivatives and that/(Z:) is piecewise absolutely continuous as above, with jumps 
denoted 8ffk\0j) := ffk\3j + 0) -f{k\9j - 0).

Proposition 1.2.17. Suppose thatf is piecewise smooth of degree k. Then the 
Fourier coefficients satisfy the identity

a 1 / 1 \/+1 l \ f(k+v>(ri\
<1.2.17) =

Furthermore the coefficient of 1 /nl+x tends to zero if and only if all of the jumps 
are zero, i.e.f^ is a continuous function.

Note that, in case = —tc, we interpret = f(—jf) —f(ff)-

Proof. In case k = 0 we do an integration by parts on each interval of continuity: 

/•fy+i re]¥\ /e~in3\ e~in3 3j+i Cdj+} e~ine
/ f de = I f(0)d — )=/(0) — -/ /'«?) — de.

JOj Jdj \ -in J -in JOj -in

When we sum the boundary terms and simplify, the sum is written in terms of the jumps 
and the Fourier coefficients of/', which proves the result for k = 0. If / has k — 1 
absolutely continuous derivatives, we can iterate this to obtain the k terms displayed, 
together with the Fourier coefficient of. In order to prove the sharpness, we prove 
a separate lemma.
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Lemma 1.2.18. Suppose that —tt < Oq < < - - - < 0K < n and that Cj are
complex numbers so that

K
lim V C.e'^ = 0.

n-+oc i—*' J 
7=0

Then Cj = 0 for all j.

Proof. We use the identity that for T 3 0 / 0

Y-l

n=0

1 - e'ww
1 - e'e '

Let f„ = Cje'nl>it so that T„ -> 0, by hypothesis. Then

= C„, + y Cje^-9^ 
j&n

1 y-1 1 „ 1 _ piN{ej-e,n)- y = c,„ +1 y q-—
N ‘—f. N ‘-r' 1 — s”''n=0 j^m

Taking N -> oo, both the left side and the sum on the right tend to zero, hence Cm = 0, as 
required proving the lemma and Proposition 1.2.17. ■

Corollary 1.2.19. Let f be piecewise smooth of degree k and let 0 < r < k. 
Then we have the asymptotic estimate f (n) = o(|n| ” r~1), |n| -» oo if and only if 
f e Cr(T), i.e.,f has r continuous derivatives.

Proof. The Riemann-Lebesgue lemma implies that the last term in (1.2.17) is o(|n|—1). 
Therefore the asymptotic behavior of/ (n) is equivalent to that of the finite sum. If/ 6 Cr (T), 
then all of the jump terms in (1.2.17) are zero for I < r, in particular this sum = c>(| az| 1). 
Conversely, iff(ri) = o(\n|“r~1), then the same is true of the finite sum. Applying Lemma 
1.2.18 repeatedly shows that = 0 for I < r, which proves that/ 6 Cr(T). ■

This corollary takes a particularly simple form in case k = oo, i.e.,/ is piecewise 
C°°. Within this class of functions we can simply state that f e Cr(T) if and only if 
f(n) = o(|n|-'-1), |n| -» oo.

1.2.3.2 Fourier characterization of analytic functions
The Fourier coefficients of an analytic function can be characterized in terms of the 
exponential decay of the Fourier coefficients. Recall that a function is said to be analytic 
if it possesses a power series expansion about each point: f(t) = Y^k=Qak(t — to)k, 
convergent in some interval \ t — to I < <$• From this, it is immediately concluded that/(r) 
is infinitely differentiable and that the successive derivatives are obtained as/(w)(?o) = 
m\am. Since the series converges at t = to, the terms of the series must tend to zero, and 
in particular are bounded, from which we conclude that

(1.2.18) l/(m)(0l <Mm\Rm, t = t0, n = 0,1/8. 
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Equation (1.2.18) is also valid in an open interval \t — fol < <5/3, by noting the following 
system of estimates:

oo
/(m)(0 = +!)•••(£ + m)ak(t - t0)k

k=0

(t - to)k

-fol*

C2’"Rm

1 - 27? |r - r0|

ml

ml

k=Q ' '
oo

< C^2k+mRk+m\t

valid for \t — fol < 1/37?, which provides the desired uniform estimate. By covering 
T by a finite number of these intervals, we may assume that R, M are independent of to. 
Conversely, if an infinitely differentiable function/(r), t e T satisfies (1.2.18), then the 
series — tofn/ml converges in the interval \t — fol < 1 /R and is therefore
an analytic function. Summarizing, we see that/ is analytic if and only if( 1.2.18) holds.

In order to characterize analyticity in terms of the Fourier coefficients, first suppose 
that/ is analytic on T. In particular / is infinitely differentiable and we can integrate- 
by-parts to write for n / 0,

2tt/(h)= [ e~intf(t)dt

/ i \m r
= - e-in,f(m\t)dt 

\mj h

I/O1) I < ~^-Mm\Rm.
\n\m

Since this is valid for all m, we choose the optimal value m = [n/7?] and apply Stirling’s 
formula to conclude that \f(ri)\ < Me~c^ for any c < 1/R.

Conversely, suppose that / is an infinitely differentiable function on T whose 
Fourier coefficients satisfy a system of inequalities of the form |/(n)| < Ae~c^ for 
some positive constants A, c. In particular, by modifying / on a null set, we have 
the convergent Fourier series/(r) = f(n)emt, which can be differentiated m 
times to obtain /(w)(r) = ^2nez^n>)mf(n^eint♦ Applying the hypothesis, we have 
|/(w) (Y) | < A \n\me~c\n\. Comparing this sum with the integral /0°° xme~cx dx shows
that the successive derivatives satisfy the estimates |/(w)(r)| < Aml/cm.

Hence we obtain the following Fourier-analytic characterization of analytic 
functions on the circle.

Proposition 1.2.20. / e L\T) is a.e. equal to an analytic function if and only 
if its Fourier coefficients satisfy the system of inequalities

(1.2.19) |/(n)| < Ae~c^ nel

for positive constants c, A.
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Exercise 1.2.21. Carry out the details of the replacement of the sum by the 
integral.

1.2.4 Sine Integral

In order to treat pointwise convergence of Fourier series and integrals in one dimension, 
a fundamental role is played by the function

(1.2.20)
2 f sin t

Si(x) = — I ------ dt, 0 < x < oo.
n Jo t

Its basic properties are listed as follows:

(i) Si(0) = 0,limx_ooSi(x) = l.
(ii) Si(x) < Si (tt) = 1.18... for all* > 0.

(iii) x -» Si(x) has relative maxima at the points tt, 3tt, 5tt, ... and relative minima at 
the points 2tt, 4tt, 6tt, ...

To prove these properties, we first note that Si ((n + 1)tt) — Si (htt) = 
2/tt /^+1)7r(sinr/r) dt and that these numbers alternate in sign and decrease to zero 

in absolute value. Hence the improper integral defining limx Si (x) exists. To compute 
its value, we note that by the Riemann-Lebesgue lemma,

But /TZ)n(0) d(j) = 2tt, which shows that 

or equivalently Si(n7T + j) 1 when n -» oo.

1.2.4.1 Other proofs that Si(oo) = 1
We offer two other proofs of this important improper integral.

Proof using complex analysis. Consider the integral of the analytic function elz/z on the 
(counterclockwise) contour defined by the two semicircular arcs z = eeie, 0 < 6 < tt; 
z = Re‘e, 0 < 0 < 7r; and the two segments of the real axis defined by e < |x| < R. By 
Cauchy’s theorem the total line integral is zero. When 7? —> oo, 6 —> 0, the integral on the 
large semicircle tends to zero, while the integral on the small semicircle is

—i f el€e'e d0 —in, 6 —> 0.

Hence we have
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from which we see that the improper integral /^(sinx/x) dx = tt, from which it follows 
that Si(oo) = 1. ■

Proof using real analysis. Define S(t) = (sin s)/s ds, assumed to converge to a limit 
S(oo). For* > 0, define

r00 sinr f00
G(x) = / e~xt-----dt= / e~xtdS(t), x > 0.

Jo t Jo

On the one hand we may differentiate under the integral for x > 0 to obtain

r°° 1
G'(x) = — I e xt sin tdt =--------- x > 0.

Jo 1 + x2

Hence G(x) = C — arctan x for some constant C. But the estimation |G(x)| < 1/x shows 
that 0 = G(oo) = C — tt/2, which shows that C = G(0) = tt/2. On the other hand we can 
transform the integral defining G(x) by a partial integration:

/• M pM
/ = «-•"£(?) i;:"+ / xe~x,S(t)dt

Jo Jo
71----- arctan x = G(x) = / xe~xtS(t) dt.
2 Jo

The latter integral tends to S(oo) when x 0. Hence Si(oo) = 2/tt S(oo) = 2/tt G(0) = 1.

1.2.5 Pointwise Convergence Criteria

We are now in a position to prove some criteria for the convergence of the partial sums of 
a Fourier series at a given point. All of the results described below will be in the form of 
sufficient conditions. It is not possible to formulate any effective necessary and sufficient 
conditions for the convergence, as we will discuss below.

The first step is to recall that the partial sum is expressed as a convolution with the 
Dirichlet kernel:

(1.2.21)
1 f sin (N + (0)

sNf(0) = (f *dn)(0) = — / —v. fee -<t>)d<t>.
2tc Jt sm (0/2)

This formula will be simplified in two ways. First, we will show that the factor sin (0/2) 
in the denominator can be replaced by the simpler function 0 -» 0/2. Secondly we 
will show that the integral over the circle T can be replaced by the integral over a small 
interval about 0 = 0. The details follow.

The Dirichlet kernel is an even function and satisfies the normalization

[ DN{3)de = \, 

lit Jt

so that we can write

(1.2.22)
1 f” sin (TV + I) (0)

SNf(0) = — / [f(0 + 0) +f(0 - </>)] v. 2’ 
Jo sm(</>/2)
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and hence for any constant S

1 r sin(7V + I) (0)
(1.2.23) SNf(0) -S= — I + </>) +f(0 -</>)- 25] \ 27 J0.

2tt Jo sm(0/2)

As a first reduction, we can replace the function 1/ sin (0/2) by the function 2/0 with 
an error that tends to zero, uniformly in 0. This comes from the fact that

1 2
0 -»--------------------

sin (0/2) 0

is bounded and continuous on the interval [—tt, tt]. The only possible difficulty is at 
0 = 0, where we can apply 1’Hospital’s rule to show that the difference tends to zero.

Exercise 1.2.22. Show that

1 1
sinx x

Hint: First show that |x — sinx| < |x|3/6 and then simplify the fractions.

For each 0, the function 

0-» F^(0) = . /
_sm (0/2)

2"

0_
(f(0+0)+/(0 "</>))

is an L1 function, and the map 0 -» Fe is continuous from (-tt, tt) to L^T). Hence 
by the Riemann-Lebesgue lemma the integral of F#(0) sin (N + 1/2)0 tends to zero 
uniformly in 0 when n -» oo.

Thus we have reduced the problem of pointwise convergence to proving that

f7r sin(2V+|)0
(1.2.24) lim / [f(0 + 0) +f(0 -(f))- 25]------------- d(/> = 0.

JO 0

For the second simplification, we consider the contribution to (1.2.24) from the interval 
<5 < 0 < yr. Noting that the function 0 -» [f(0 + 0) +f(0 - is integrable 
on the interval [<5, tt], therefore by the Riemann-Lebesgue lemma this contribution to 
(1.2.24) tends to zero when N -> oo. We summarize this as the following necessary and 
sufficient condition for the convergence of a Fourier series.

Theorem 1.2.23. Let f e ZJ(T). A necessary and sufficient condition that the 
partial sums S^f (0) converge to a HmitS when N -» oo is thatfor some 8 G (0, tt),

C8 sin(2V + |)0
(1.2.25) lim / [f(0 + 0) +/(0 - 0) - 25]--------- d(j> = 0.

N Jq <t>
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One may note that if (1.2.25) holds for some 8 e (0, ar), then it holds for every 
8 G (0, tt), since the difference of two such integrals is an integral over an interval 

< </> < <$2, which tends to zero by the Riemann-Lebesgue lemma.
We can now state and prove Dini’s theorem:

Theorem 1.2.24. Suppose thatf satisfies a Dini condition at 0, meaning that for 
some 8 > 0 and some real number S

fS l/(0+0) +/(0-0)-25|
I ---------------------------------------------- d(p < oo.

Jo 0

Then lim/y SNf(0) = S.

Proof. This is an immediate application of Theorem 1.2.23 and the Riemann-Lebesgue 
lemma. ■

Specific conditions that imply the Dini condition can be obtained from a symmetric 
form of the Holder condition, as follows:

Corollary 1.2.25. Suppose thatf satisfies a symmetric Holder condition at 0, in 
the form

1/(0+0) +/(0-0)-2/(0)| <C|<

forO < (j) < 8, where 0 < a < 1. Then lim/v S^f(0) = f(0).

Iff satisfies a Dini condition at 0 with S = f(0),we say that/ is normalized. The 
following exercise applies to functions defined on the entire real line, not necessarily 
periodic.

Exercise 1.2.26. Let f g ^^(R) satisfy a Dini condition at x = 0, ±2tt, ..., 
where it is normalized. Then ifM Z+,

| fM 
lim — / DN(x)f(x)dx= V /(2jr,n) 

7V-»OO 2tT J_m meZ,\m\<M

whereas for M G Z+ we must add ^f(2jrM) + ^/(—2nM) to the right side.

The next result is historically the first theorem on convergence of Fourier series, 
attributed to Dirichlet (1829) for monotone functions and to Jordan (1881) for the general 
case. We will use the properties of Si (x).

Theorem 1.2.27. Suppose thatf is of bounded variation on [0 — 8,0 + 8] for 
some 8 > 0. Then lim^ S^f(0) = [/(0 + 0) +/(0 — 0)].
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Proof. This is done by integration by parts: We write m = N + 1/2, F(0) = + 0) +
1/(0 — 0), S = F(0 + 0); from (1.2.24) and the remarks that follow, we have

SNf(0)-S =
2 fs (f(0 + 0) +/(0 - 0)
7T Jo \ 2 )sin nub , 

0

(1.2.26) = [ (F(0)-S)dSi(m0) + <>(l) 
Jo 

= [F(5 - 0) - 5]Si (m3) - [ Si (m0) dF(0) + o(l), 
Jo

where the final integration is with respect to the finite measure defined by this function of 
bounded variation. Now we apply the dominated convergence theorem and the properties 
of Si (x) to conclude that

lim[Syv/(6>) - 5] = [F(5 - 0) - 5] - [F(<5 - 0) - S] = 0,
N

which was to be proved.

Since every absolutely continuous function is of bounded variation, we obtain the 
following corollary.

Corollary 1.2.28. If f is absolutely continuous, then the Fourier series converges 
to f everywhere.

It should be noted that the Dini condition and the condition of bounded variation 
are not comparable with one another. For example, the function 0 -» 1/ log (1/0) is of 
bounded variation but does not satisfy a Dini condition. On the other hand, the function 
0 -» 0 sin (1/0) satisfies a Dini condition but is not of bounded variation. Finally we 
remark on the difficulty of finding necessary conditions. The formula (1.2.22) shows 
that the Fourier partial sum at 0 depends on the symmetrized function 0 -» f(0 + 0) + 
f(0 — 0). If this function is identically zero, then we have lim/y S^f(0) = 0 regardless 
of whatever other behavior is present. In particular any odd function (/(-x) = —/(x)) 
has a convergent Fourier series at 9 = 0.

The technique used in the proof of Theorem 1.2.27 can also be used to prove the 
uniform boundedness of the partial sums of the Fourier series of a function of bounded 
variation. To do this, write

r F 1
Jo Lsm(0/2)

sinm0 [/(0+0) +/(0-0)W

C* sin md>

Jo <P/?'

The first term is less than (jt3/ 12) max |/|, while the second term can be integrated by 
parts in terms of the Sine Integral:

2 /‘7r sinm0 f71- / -------—/(6» ± 0) <<70 =/(6> ± jr)Si (mjr) — / Si (m0) df(0 ± 0) def).
x Jo 0 Jo

The first term is bounded by Si(7t)max|/| and the second term is bounded by 
Si (tt) Varf. We summarize as follows:
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Proposition 1.2.29. Iff is of bounded variation on T, then the partial sums of 
the Fourier series are uniformly bounded, in the form

\Snf(0)\ ^CjmaxTl/l+GVar/

where C\, C2 are universal constants and Var f denotes the total variation of the 
signed measure defined by f.

Exercise 1.2.30. Find values for the constants Ci, C2.

Exercise 1.2.31. Suppose that f is of bounded variation and continuous in 
a neighborhood of 0. Prove that the partial sums converge uniformly in a closed 
interval containing 0.

Hint: Without loss of generality assume/ monotone increasing. Reconsider the representation 
(1.2.26) of the partial sums and break up the integral into f£ and f*. Apply the mean value theorem 
for integrals to each term and recall that Si (x) < Si (tt) for all x.

1.2.6 *lntegration of Fourier Series

In many applications of Fourier series, / represents the density of mass, charge, or 
probability. In such situations, the quantity of interest is the integral of/ over an interval. 
It is reassuring that, at this level, there are no obstructions to convergence.

Theorem 1.2.32. Suppose f e ZJ(T). Then for any interval (a, b) we have

pb pb
(1.2.27) lim / (Snffi0)d0= / f(0)d0.

n Ja Ja

Proof. The partial sum on the left is given by the convolution with the Dirichlet kernel, an 
even kernel that defines a self-adjoint operator. Thus

[\snf)(0)d0= [(snf)(0)iM(0)de= [ f(0)(snfa,h))(6)de.
Ja JT

Since l(Oi/?) is of bounded variation, Sn l(fltfc) converges boundedly to l(a>fo) except at the end
points x = a, b, which have Lebesgue measure zero. Applying the dominated convergence 
theorem completes the proof. ■

Theorem 1.2.32 can also be proved by considering the integral

F(0)= f(/(0)-/(O))J0.

J —TC

This function is absolutely continuous with F(—jt) = 0 = F(jt), F'(0) = f(0) — /(0), 
so that inF(n) = f(n) — 8ncf(fl)- Hence the Fourier coefficients of F are given 
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by F(n) = f(n)/in for n 0 and we have the everywhere convergent Fourier 
series

(1.2.28) F(6») = F(0)+ V
in0/neZ

In particular, for any (tz, b) C [—tt, n], we have

F(b) - F(a) = V ^-(e",h - e",a) 
in 0#hgZ

= y/(«) / eMd0

0#hgZ Ja

or equivalently

/ f(0)d0-(b-a)f(0)=\im /
Ja N Ja

which reduces to (1.2.27).
Another by-product of the integration identity (1.2.28) is the following necessary 

condition on the Fourier coefficients of an L1 function.

Corollary 1.2.33. For any f G L1 (T), the series f(n)/n converges.

This corollary can be used to manufacture trigonometric series that are not Fourier 
series.

Exercise 1.2.34. Prove that ^n>2 (sin n0/log n) is not the Fourier series of an Ll 
function.

Hint: Identify/(zi) as a suitable odd function.

Later we will prove that the series 22n>2(cos n0/log ri) is the Fourier series of an 
integrable function.

Exercise 1.2.35. Suppose that g is a function of bounded variation on T. Prove 
that for any f G L*(T),

lim [ g(0)SNf(0)d0 = [ g(0)f(0)d0.

1.2.6.1 Convergence of Fourier series of measures
The above ideas can also be used to give a quick treatment of the convergence of Fourier 
series of any finite signed measure on T. The partial sum of its Fourier series is written

n

SnfW) =
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Proposition 1.2.36. Suppose that pL is a finite signed measure on T. Then

fb 1 1
hm / SNpfO) de = p((a, b)) + -/z(W) + 

N J a 2 2

Proof, The partial sum on the left is written in terms of the convolution with the Dirichlet 
kernel. Thus

(sNpfiO)de = [ (sNp)(e)iM(e)de = [ (sa^W). 
Jt Jt

Since l(£/ /?) is of bounded variation, SNl(aj^ converges boundedly to 1^ ^ + |l{aj + |l{ftj.
Applying the dominated convergence theorem completes the proof. ■

1.2.7 Riemann Localization Principle

Fourier series in one dimension have the property that the limiting behavior of the partial 
sums at a point depends only on the values of the function in a neighborhood of the point, 
no matter how small. This is expressed as follows.

Proposition 1.2.37. Suppose thatf g L1 (T) is identically zero in an open interval 
(a, b). Then for any compact subinterval the Fourier partial sums tend uniformly 
to zero when n oo.

Proof From formula (1.2.24) we have

1 f* sin (N + 0(1.2.29) £„/((?)= o(l)+ - / [f(6 +0)+/(6-0)]—v 2>v d<f>.
™ Jo 0

If [«i, b\] is a subinterval of (a, b), let 28 = min(«i — a,b — b\). By hypothesis 
f(Q + 0) +/(0 — </>) = 0 if e G [«i, Z?i], 0 < 8. Hence the integrand is identically 
zero when 0 G [«i, b\], 0 < 8. On the other hand, the integral on [<5,7r] tends to zero 
uniformly when 0 G [a\, Z?|], by the Riemann-Lebesgue lemma. ■

The Riemann localization principle allows us to infer that if two functions agree on 
an interval, then the Fourier series are equiconvergent meaning that lim/2 (5zl/i — Snfz) = 0 
on that interval. This phenomenon is no longer present in higher dimensional Fourier 
analysis, as we shall see.

1.2.8 Gibbs-Wilbraham Phenomenon

In the neighborhood of a discontinuity one cannot expect uniform convergence of the 
Fourier partial sums. The specific form of nonuniform convergence is best illustrated by 
the example

f(x) = (jt — x)/2jT, 0 < X < 7T,
(1.2.30)

/(x) = — (jt + x)/27T, —71 < X < 0.
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This is the simplest function of bounded variation that has a single jump of unit size. 
Now/ is an odd function whose Fourier coefficients are

f(n) = J- [ j\x)e~inx dx 
h

—ifXjt—x.
= — I -------- sin nx dx

ti Jo 2ti

—i
2n7t

so that the partial sum of the Fourier series is

rt rz x 1 F • sinAfr'
SNf(x) = - sinxH-------- 1------— .

71 N

This may be written as a definite integral by first computing the derivative

GW/Cx) = — [cosx + • • • + cos Nx] 
71

= HZW)-1).
27T

Thus

(1.2.31) SNf(x) = J- + f
27r Jo 2ti 2ti Jo sin(7/2)

Defining g(t) = 1/ sin(7/2) — 2/t, we have by a single integration-by-parts,

y* g(t) sin(Af + ^)tdt = O > N oq

uniformly for 0 < x < tt, since g is a C1 function on the interval [0, 7t]. Thus

-x 1 Cx sin(7V + I)/- / 1 \
(1.2.32) SNf(x) = — + ~ —------- 2—dt + O - .

2n 7i Jq t \N/

If 0 < x < tt, we see clearly that

—x 1 f00 sinr —x 1 
hm SNf(x) = - + - dt = — + - =f(x).
N 271 7T Jo t 2t 2

To study the behavior when x —> 0, we note that on the one hand

sup |7v/(x) + 2-1 < | sup Si(x) + O ( 7 ) = lsi(?r) + O (2 ),

0<X<7T L ^71-1 2 0<x<oo \7v / 2 \N /

which gives an upper bound to the fluctuations of the partial sums. On the other hand, if 
x/v —> 0 so that A/x/v tt, then

1 Nn+y>xn sinz 1 
limS/v/(x/v) = lim — / ------dt = - Si(zr).

N N 7t Jq t 2

These computations are summarized as follows.
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Proposition 1.2.38. The set of accumulation points of the partial sums Suf(xif) 
when TV —> oo, x/v —> 0 with 0 < xN < n is described as follows:

(1.2.33) limsup5/v/(x/v) < ^Si (tt) = 0.59....
N

If xn —> 0 so that Nxn tt, then

(1.2.34) limSw/(xw) = |Si (%).

In particular, any point in the interval [0, ^Si(yr)] is an accumulation point of 
partial sums S^f(xN) when N oo, x/v 0.

Proof, We have shown the first two statements above. For the final statement, apply the 
intermediate value theorem to the continuous function Suf. ■

The number ^Si (tt) — - = .09... is called the overshoot of the partial sums in 
the right neighborhood of x = 0. We will show below that for any function of bounded 
variation with/(x + 0) > f(x — 0) we can discuss the overshoot in a right neighborhood 
of x, defined as lim sup^^,XN^X S^f(xN) — /(x + 0), which will be proportional to the 
jump/(x + 0) —/(x —0).

The numerical value of Si (tt) = 1.18 ... can be computed by expanding sinz/z 
in a Taylor series and integrating term-by-term. This is carried out in Section 2.3.3.

Exercise 1.2.39. Compute lim/v SNf(kn/N + ^)fork = 2, 3,...

Strichartz (2000) discovered a corresponding behavior with respect to the arc 
length of the curve {(x, S^fCx)), —tt < x < 7r}. The proof anticipates the behavior of 
the Lebesgue constants, to be studied in Section 1.5.

Proposition 1.2.40. Letf be defined by (1.2.30). Then when N —> oo we have 

r 71 + [(W)'«]2 dx = C, log# + 0(1),

J —7T

where C\ is a positive constant.

Proof, From the computations following (1.2.30) we have (SNf)f(x) = (l/2n)(DN(x) — 1), 
so that

yi + [(W)'(x)]2 - I(5w/)'(x)l = , „ \--------- -—
yi + [(sNfy(x)]2 +1 (sNf)' (x) ।

(1.2.35) < 1

so that the error term in (1.2.35) is 0(1), N oo. But Proposition 1.5.1 also shows that 
f*n | cosx H------- F cosATx| dx = Cj logN + 0(1) for a positive constant Cj. ■

Exercise 1.2.41. Suppose thatf(x), —n < x < n is a piecewise Cl function and 
thatf is continuous on T. Prove that when N oo we have

r yi+[(w)'(x)]2<&^ r Vi+tr (x^dx.

J—TT J—71
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1.2.8.1 The general case
For a general/ g L!(T), the Gibbs-Wilbraham phenomenon at a point </> g T 
describes the set of accumulation points of S/v/W>/v) when TV —> oo and </>/v —> </>. In 
the above example it is seen that the set of accumulation points consists of the interval 
(—0.59 ..., 0.59...), whereas if 0, then S^f f uniformly in a neighborhood of 
(/) and the set of accumulation points consists of the single point/(</>).

To study the Gibbs-Wilbraham phenomenon more generally, let / G L/T) be 
a function of bounded variation with discontinuities labeled 0i, 02,.... Let the jumps be 
denoted <5/(6>z) .-/(ft- + 0) -/(ft - 0). Let J(0) = (jr - 0)/2tf for 0 < 0 < tt and 
extended periodically to the entire line. Then J has a unit jump at 0 = 0, which will be 
used to study the general case. Form the function

oo oo
(1.2.36) /ump(0) := £(3/)(ft)7e,(0) := £(S/)(ftW - ft).

i—l i=l

The series (1.2.36) is uniformly convergent to a function of bounded variation whose 
discontinuitites are precisely the points {ft}. The function/ :=/ —/jump is a continuous 
function of bounded variation, since all of its jumps are zero. From Exercise 1.2.31, 
the Fourier series of / is uniformly convergent. Therefore the analysis of the Gibbs- 
Wilbraham phenomenon for/ is reduced to that of/ump. Given 6 > 0, let M be so large 
that l(<5/)(ft)||5'/V‘/0,||oo < which is possible since the sum ^2°^ |5/(ft)| < oo 
and the partial sums SN Je, uniformly bounded by a constant for all z, N. To study the 
Gibbs-Wilbraham phenomenon near 0i, let 5/(01) > 0 and write

M
SNfW) < (8f)(ei)SNJ8l (0) + J2(5/)(ft)SNA(^) + sNf(0) + e.

i=2

From Exercise 1.2.31, the finite sum is uniformly convergent in a closed interval about 
01. The Fourier series of/ is uniformly convergent. Therefore when </>/v 0i, we have

SNf(<M < (SfW^SNJe, (<M + [f(ft + 0) - | (8f) (ft)] + €.

Letting </>/v 0i, we have

limsupSNf(<M < |m(ft)Si (tt) + [/(ft + 0) - |(5/)(ft)J + e, 
N

liminf SNf(<M > [/(ft + 0) - |(3/)(ft)] - e. 
N z

But 6 was arbitrary. The same computation applies to any of the discontinuity points ft. 
We summarize as follows:

Proposition 1.2.42. Let f g ZJ(T) be a function of bounded variation with a 
simple discontinuity at (/) G (—tt, tt), where (5/ )(</>) > 0. The set of accumulation 
points of the partial sums S^f(x^') when N oo and xN <f> with (/> < xN < n 
is described as follows:

(1 -2.37) lim sup SNf(xN) < f(<j> + 0) + —- (3/) (</>).
N
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FIGURE 1.2.3
The Gibbs-Wilbraham phenomenon for the function f(0) = sgn(0).
From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications. Used 
by the permission of The McGraw-Hill Companies.

I/xn —> </> so that N(xn — 0) —> Jr, then

(1.2.38) lim SNf(xN) =f(J> + 0) + ^2—!.(5/)(0). 
/v 2

In particular, any point in the interval [5 (/(</> + 0) +/(</> — O)),/(0 + 0) + 
(Si (tt) — 1)12)(8f )(</>)] is an accumulation point of partial sums S^f(x^) for 
some sequence x^ when N —> 00, x^ —> 0 with x^ > (/).

1.3 FOURIER SERIES IN L2

1.3.1 Mean Square Approximation—Parseval's Theorem
Fourier series are well adapted to deal with the Euclidean geometry of the space Z?(T) 
where the inner product is defined by

(1.3.1) <f,g) = f [f(0)g(e)do.
kn: Jt

We can measure the degree of approximation by the mean square distance

\\f-g\\22 = (f-g,f-g)-

In particular, if g(0) = bnelne is a trigonometric polynomial then

11/ "^Il2 = II/II2 " (f,g> * W) + IWI2

= 11/112- Z
n=—N

N N
= 22 i^-/(«)i2 + n/ii2- 12 i/(«>i2- 

n=—N n=—N

\f(.n)bn +f(ri)bn - |fe„|2)
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This has the following consequences.

Proposition 1.3.1. Suppose that f g L2(T). Then the minimum mean square 

error is attained when bn is the Fourier coefficient bn = f(n). The mean square 
distance is given by

N

(1.3.2) ll/-gll^ = II/II2- 12
n=-N

In particular we have for each N e the inequality

N

221/wi2 n/n2
n=-N

and in particular Bessel's inequality:

22 iA«)i2<
The space L2(T) is distinguished in the theory of Fourier series because of this 

characterization of the Fourier partial sums. If we consider optimal trigonometric approx
imation in the space C(T) of continuous functions or the space Lp(T),p 2, then the 
Fourier partial sum no longer provides the best approximation in norm.

Fourier series in L2(T) have the remarkable property that Bessel’s inequality is in 
fact true with the sign of equality. This is Parseval’s identity, stated as a theorem.

Theorem 1.3.2. Parseval's theorem: For any f e L2(T), the Fourier series 
converges in L2(T) and we have Parseval's identity

(1.3.3) f- T |/(0)|2^ = 22l/^l2-
Proof. We first show that the partial sums converge in the norm of L2(T). We have

1 C N\\SNf - SMf\\2 = — / \SNf-SMf\2 = V |/(n)|2 —> 0 M,N^oo
271 M+i

by the Bessel inequality. But the space L2(T) is complete, hence there exists F = lim/v SNf 
in the metric of L2 (T). It remains to show that F =f a.e. To do this, we compute the Fourier 
coefficient by writing

2nF(n) = [ [F(0) - S^e^e^dO + [ SNf(6)e-ine dO.
Jt Jt

If N > |n|, then the last integral = 2nf(n). Applying Cauchy-Schwarz, we have

\F(ri)—f(n)\ < \\F-SNf\\2 (A > n).
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Letting N oo shows that F(n) = f(ri) for all n e Z. Hence F = f a.e. and we have 
proved that Snf f in the norm of L2 (T). In particular the L2 norms converge and we have

N

II/II2 =Hm ^2 l/WI2>
n=—N

which is the statement of Parseval’s equality. ■

Exercise 1.3.3. Suppose that f is absolutely continuous with f g L2(T). Use 
Parseval’s identity to prove that ||/'H2 = ^2l/(n)l2-

Exercise 1.3.4. Suppose that f is absolutely continuous with f g L2(T). Use 
Parseval’s identity to prove that the Fourier series converges absolutely: 
E„ezl/(«)l <

Hint: Apply the Cauchy-Schwarz inequality.

Theorem 1.3.2 shows that the mapping/ -> /, from L2(T) to L2(Z) preserves the 
respective L2 norms. The next proposition shows that the mapping/ —> / is onto the set 
of square-summable sequences. Put otherwise, we have an isomorphism between L2(T) 
and L2(Z), the set of square-summable sequences.

Theorem 1.3.5. Riesz-Fischer theorem: Suppose that {<?„}, n g Z is a bilat
eral sequence of complex numbers with En6z \cn |2 < oo. Then there is a unique 
f G L2(T) withf(n) = cn for all n G Z.

Proof. Let Tn(0) = '£fm=_ncme,me• Then *s a Cauchy sequence in L2(T) since for 
M <N, ||7^ - Tm\\2 = Em<|,h|</v \cm|2 -> 0 when M,N oo. By the completeness 
of L2(T), there exists an L2 limit/, where \\f — Tn\\2 0 when n —> oo. The Fourier
coefficients of / are obtained by writing

27T/(n) = ^f(0)e-int>d0

= (m - TN(ey\e-mede + [ TN(e)e~Md0. 
Jr Jr

The absolute value of the first term is less than or equal to \\f — TN ||2. The second term 
is 2tt x the Fourier coefficient of the trigonometric polynomial TN‘, if N > |n| this is equal 
to cn. Thus we conclude

l/W-cJ < \\f-TN\\2 for TV > \n\.

Taking N oo completes the proof of existence. The uniqueness of / follows from the 
uniqueness of Fourier coefficients in the space L1 (T). ■

Theorem 1.3.5 can be used to identify the smoothness of a function from the 
Fourier coefficients, as follows.

Proposition 1.3.6. Suppose thatf G L2(T) has Fourier coefficients that satisfy
Ehgz n2l/(n)l2 < Thenf is a.e. equal to an absolutely continuous function, 
withf G L2(T) with Fourier series f'(0) ~ Enez inf(n)eme.
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Proof. By Theorem 1.3.5, inf(n)eind is the Fourier series of an L2 function g. Further
more fT g(0)d& = 0. Let F(0) = f_n g^dfp. This is an absolutely continuous function 
on T with F' = g almost everywhere. Therefore the Fourier coefficients of F are obtained 
from g(n) = inF(n). But g(n) = inf(n), from which we conclude that F(n) = f(n) for 
n / 0. Hence F — f is a constant a.e. In particular/ is a.e. equal to an absolutely continuous 
with/'= #gL2(T). ■

Exercise 1.3.7. Suppose that f g L2(T) has Fourier coefficients that satisfy 
£neZH2*|/(n)|2 < oq for some integer k > 1. Thenf,f, ... ,/^-1) are absolutely 
continuous with f^ e L2(T).

1.3.2 * Application to the Isoperimetric Inequality

We now give an application of Parseval’s theorem to geometry. Suppose that we have 
a closed curve in the xy plane that encloses an area A and has perimeter P. We will 
prove that

P2 > 4tM,

with equality if and only if the curve is a circle.
To do this, suppose that the curve is described by parametric equations x = x(f), 

y = y(t) where — 7t < t < ti. The functions x(t), y(t) are supposed to be absolutely 
continuous with derivatives in the space L2 (T) and to satisfy the normalization conditions 
x(—tt) = x(tt), y(—tt) = since the curve is closed. From calculus, the perimeter 
and area are given by the formulas

A = f x(f)y'(f)dt, 

J —TT

where x' = dx/dt, y' = dy/dt. By reparametrizing the curve, we may suppose that 
x'(t)2 + y'(t)2 is constant; in fact it must be

P2 
x'(f)2+y'(f)2 = —. 

47T2

Since the functions are real-valued, we work with the original trigonometric form of 
Fourier series. Since the functions x(7), y(f) are supposed absolutely continuous, they 
are also of bounded variation, and we have the uniformly convergent Fourier series

oo
(1.3.4) x(r) = a0 + ^(an cos nt + bn sin nt), 

n=l
oo

(1.3.5) y(r)=Co + ^(c„ cos nt 4- dn sin nt), 
n=\

—71 <t<7T,

—71 < t <71.
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The Fourier series of the derivatives are not necessarily pointwise convergent, but they 
do converge in L2 and we can apply Parseval’s theorem. We have

oo
(1.3.6) x'(t) ~ ^n(— an sinnZ + bn cos nt), —7t<t<n,

n—l

oo
(1.3.7) y'(f) ~ y^n(—cn sin nt + dn cosnt), — n < t <jt.

n=l

Applying Parseval’s theorem, we have

p2 /»7T OO
5— = / + y'(f)2] dt = 7T ^2 +bn+Cn+ rf)

A = f x(t)y'(f)dt
J-TV

1 f71= 4 J {[x(0 + y(r)]2 - [X(O - y'(?)]2} dt

OO

= 7t n(andn bncn).
n—l

Performing the necessary algebraic steps, we have

p2 00
- ------ 2A = 7T ln(a" ~ dn)2 + n(h + cnf + «(« ~ 0(«n + &„ + Cn + d„)] ■
27r n=l

The right side is a sum of squares with nonnegative coefficients; thus P2/2tt — 2A > 0. 
If the sum is zero, then all of the terms are zero, in particular a2 + b2 + c2 + d2 = 0 for 
n > 1 and a\ — d\ = 0, b\ + c\ = 0. This means that

(1.3.8) x(t) = ctQ + a\ cos t — ci sin t, —x<t<7t,

(1.3.9) y(t) = cq + ci cost + a\ sinr, — tc < t < tt,

which is the equation of a circle of radius ^a2 + c2 with center at (a0, c0). The proof is 

complete.

Exercise 1.3.8. Show that ifx = x(t), y = y(t) describes a plane curve of finite 
length, then we can re-parametrize with t = t(s) so that (dx/ds)2 + (dy/ds)2 
is a constant.

1.3.3 *Rates of Convergence in L2

Parseval’s theorem allows one to reduce the study of rates of convergence to the estimation 
of series. The nth Fourier coefficient of Suf —f is zero for |n| < N, therefore from (1.3.3), 
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the mean square error is

(1-3.10) IIW-/111 = 12 l/(«)l2-
|n|>/V

This can be used to estimate the mean square error in terms of the smoothness of/. If, 
for example,/ e C/T), then/(n) = <9(|n|-7) and

IIW -/II2 < c £2 = O(Nl~y), N -+ oo
k>N

which gives an upper bound for the mean square error when TV —> oo.
In order to obtain more precise estimates, we introduce the L2-translation error, 

defined by

(1.3.11) \\fh-f\\22 = ^- [\f(x + h)-f(x)\2dx, h > Q, /€L2(T).

Jt

This can be expressed directly in terms of the Fourier coefficients by using Parseval’s 
identity to write

(1-3.12) II/, -/||2 = £ - !|2 lT(«)l2-

The next theorem describes equivalent norms to measure the smoothness of/.

Theorem 1.3.9. Suppose that/ e L2(T), 0 < a < 1. Then \\f — Sn/||2 < Cn~a 
if and only iff satisfies the L2 Holder condition \\fh —/|h < Kha for suitable 
constants C,K > 0.

Proof, From (1.3.12) we have for any M

11/* -ziil = (12 +12) |e'"" - n2,7(n)|2
\|n|<M \n\>M /

< £2 n2h2\f(n)f2+4 £2 l/(«)|2- 
|n|<M |n|>A/

If ||Snf —/|| < Cn~a, then the second sum is O(M~2a). To estimate the first sum, we sum 
by parts, writing E„ := £|t|s„ |/(fc)|2:

M
12 n2|/(n)|2 = M2(Em - Ex) + Jjln ~

\n\<M >i=\

By hypothesis Ex — En = O(n~2a), so that both of these terms are O(M2-2“), therefore

II/. -Zill < C2[h2M2-2a +4AT2“].

Choosing M = \/h completes the proof.
Conversely, if / satisfies an L2 Holder condition, we can write

2^211 -cos(n/0]|/(n)|2 = \\fh -/||2 < K2 h2“. 
neZ

Integrating this inequality over the interval [0, k] and dividing by k, we have 

r 1>o
“f nk 11G.Z •- -*
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The terms on the left side are nonnegative. Restricting the sum to indices n for which 
\n\k > 2, we have

Fi sin (nAr) "I - 2 1 - 2
cr > > 1-------- -— l/Wr > - > \f(n)\.• j wjz 2 *

ne%:\n\k>2 *- -« neZ:|n|A:>2

The proof is complete.

We can paraphrase Theorem 1.3.9 in terms of equivalent norms. On the one hand 
we have the L2 Holder norm

Na(f) :=sup \\fh-f\\2/\h\a.

On the other hand we have the normalized mean square error, defined by

Ra(f) :=supn<W-/ll2.
n>0

Theorem 1.3.9 asserts that for 0 < a < 1, there exists a constant C = Ca so that

C~'Na(f) < Ra(f) < CNa(f).

In case a = 1 one cannot expect the above equivalence to hold, as shown in the 
next example.

Example 1.3.10. Let f be defined by the absolutely convergent trigonometric 
series

Then
°O 1 i

k=n+\

On the other hand, from (1.3.12)
OO j

Wfh -f\\l = 4^2 -3 sin2W2) 
k=t k

> 4 V 73 sin2(7:/i/2)
k<7t/h

- 4 12
k<7T/h

4h2
> — log (jt/h), 

jt1
which shows thatf cannot satisfy an L2 Holder condition with a = 1.

Exercise 1.3.11. Suppose that f satsifies an L2 Holder condition with a = 1. 
Prove that \\f - SJh = 0(1/n).
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Hint: Go back through the steps of the second part of the proof of Theorem (1.3.9) with a = 1.

Exercise 1.3.12. Suppose thatf satisfies an L2 Holder condition with a = 1.
Prove that |n|2|/(n)|2 < oo.

Hint: Apply Fatou’s lemma to formula (1.3.12).

The relation between the L2 Holder condition and the pointwise Holder condi
tion is not symmetrical. Indeed, if |/(x + h) — f(x)\ < Cha for some 0 < a < 1, 
then clearly \\fh — /H2 < Cha. The converse is false, as shown by the following 
example.

Example 1.3.13. Letf(x) = \x\a for —it < x <jt, where 0 < a < 1.

We will show that the L2 Holder condition is a strict improvement of the pointwise 
Holder condition. To see this, we first compute the Fourier coefficients:

2jrf(n) = [ |x|a cos (nx) dx

J — TC

= 2 / xa cos (|n|x) dx
Jo

2a C71=------ I xa~] sin (|n|x) dx
l«l Jo

2a f|n|7r=------- ;— / ya sinydy.
|n|1+a/o

But the final integral converges to a constant when n 00 as shown by another partial 
integration. Therefore we have the asymptotic formula f(n) = C/\n\1+a(1 + tf(l)), 
|n| -> 00. Applying the formula (1.3.12), we have

IIA -/II2 = 12 \e>nh - 1I2IA«)I2

(1.3.13) < 12 («W(«)I2 + 4 12 l/(n)I2.
\n\<M \n\>M

We consider three cases.

Case I: a > The first sum in (1.3.13) is convergent when M -> 00, while the 
second sum is O(M~{~2a). Taking M = l//i, we see that \\fh — f\\2 < Ch2, hence the 
L2 modulus satisfies \\fh —/II2 < Ch, irrespective of a. Hence we have an improvement 
of the Holder exponent in the amount 1 — a.

Case II: a = In this case the first sum in (1.3.13) ~ h2 logM, whereas the second 
sum = 0(1/M2). Again taking M = l/h, we have \\fh — /||2 < C/i^/log (1/h), thus an 
improvement of the Holder exponent by nearly

Case III: 0 < a < |. In this case the first sum diverges, asymptotic to a multiple of 
M{~2a. Again taking M = l//i, the two terms are now balanced and both are asymptotic
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to a constant multiple of /i2a+1. Thus in this case we have \\fh —/Ih < Cha+\ an 
improvement of the Holder exponent by |.

These examples give a concrete indication of the disparity between the L2 Holder 
classes and the pointwise Holder classes. A more systematic approach is contained in 
the proof of Corollary 1.3.19 below.

The next two exercises give a relation between the mean square error and the 
fractional Sobolev classes on the circle.

Exercise 1.3.14. Suppose that f e L2(T) and that for some a > 0, 
Enez l«l2“l/(«)l2 < 00. Prove that ||5W/ - f ||2 = o(N~a), N oo.

Hin t: B egin with (1.3.10).

Exercise 1.3.15. Suppose that f e L2 (T) and thatfor some a > 0, ||S/v/— /II2 = 
O(N~a),N^ 00. Prove that fn^If (n)f2 < 00 for any f < a.

Hint: Apply summation-by-parts to the sum \n\2?\f(n)\2.

At the beginning of this section it was noted that if a function has additional 
smoothness, then we may expect that the mean square error decays more rapidly 
when TV —> 00. The following exercise gives an extension of Theorem 1.3.9 to higher 
derivatives.

Exercise 1.3.16. Let k e Z+ and 0 < a < 1. In order that the mean square error 
satisfy the estimate ||S/v/ — /II2 = O(N~^k+a>>), N 00, it is necessary and 
sufficient thatf,f', ... be absolutely continuous and thatf^ satisfy the L2 
Holder condition \\f^ —/(/c)||2 < Kha.

1.3.3.7 Application to absolutely convergent Fourier series
We can also use the L2 Holder condition to give a sufficient condition for f to be 
represented as an absolutely convergent Fourier series.

Theorem 1.3.17. Bernstein: Suppose that f satisfies an L2 Hdlder condi
tion with exponent a > |. Then the Fourier series is absolutely convergent: 

'LneZ l/(«)l <

Proof. We estimate dyadic blocks by the Cauchy-Schwarz inequality. Thus

(
\ 2

y IZ(n)l) <2m+l 52 |/(n)|2.
2"'<|n|<2"'+l y 2"' <|rt| <2"'+l

By Parseval’s identity, we have for any m

hgZ 2'” <|n|<2"'+l
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Writing \einh — 1|2 = 4 sin2 (nZz/2), we see that if h = |tt2 m, then \einh — 1| > 1 for 
2m < \n\ < 2m+1,sothat

\\fh-f\\}> E l/ooi2’ A = y2-m
2"'<|n|<2'”+l

Now we apply Cauchy-Schwarz to each dyadic block and sum to obtain

e i/(«)i=£ e i/wi
O/neZ in=0 2m <|n| <2"'+1

oo i

m=0

- C(“)° '^2m/12-ma 

m=Q

= cQ°£2¥(,-^<00, 

m=0

since a > |. ■

Exercise 1.3.18. Suppose that f satisfies an L2 Holder condition with exponent 
a > I- Prove that l«Pl/(«)l < oo for any fi < a -

If f is of bounded variation, then the absolute convergence of the Fourier series 
holds under any pointwise Holder condition, according to the next corollary.

Corollary 1.3.19. Zygmund: Suppose that f e BV(T) and that f satisfies a 
pointwise Holder condition: \f(x + y) — /(x)| < C|y|a for 0 < a < 1. Then 
UneZ l/(«>l <

Proof. Letting Vf denote the total variation of /, we can estimate the L2 modulus of 
continuity by writing

11-fl\ = p (‘+S) + I *

c

Therefore f satisfies the L2 Holder condition with exponent (1 + a)/2 > I, at least along 
the values h = n/3N. But this is sufficient to apply the proof of Bernstein’s theorem and 
thus conclude that 1/001 < oo. ■

If/ satisfies only a Holder condition with a < 1 /2, the Fourier series is not abso
lutely convergent in general. There exist many examples in the literature. An alternative 
treatment is to look at random Fourier series and to prove that almost every realization 



FOURIER SERIES ON THE CIRCLE 45

is not absolutely convergent, but satisfies a Holder condition with a < 1 /2 (see Kahane 
(1968)).

1.4 NORM CONVERGENCE AND SUMMABILITY

The tools introduced thus far do not permit us to deal with the norm convergence within a 
Banach space of functions. Indeed, the oscillatory properties of the Dirichlet kernel will 
allow us to show that there exists a continuous function whose Fourier series diverges 
at a point. Hence one cannot prove uniform convergence, for example, within the class 
of continuous functions. Furthermore, we would like to deal with convergence in the 
norm of Lp, where p > 1. This turns out to be impossible in the space L1, but can be 
dealt with nicely if p > 1. In order to launch a systematic theory, we consider the Cesaro 
averages of the Fourier partial sums. These are called the Fejer means and defined as the 
arithmetic means

(1.4.1) aNf(0) = —(S</(0) + • • • + SNf(0)), N = 0, 1, 2,...
N + 1

We also consider the Abel means
oo

(1.4.2) Ar/(0) = (1 - r) £r"V(0, 0 < r < 1.
n=0

The Abel means can be written as a Fourier series by proving the identity 
oo __

(1.4.3) (1 - r) = ^f(n)rweM, 0 < r < 1.
n=0 neZ

Exercise 1.4.1. Prove (1.4.3).

Exercise 1.4.2. Prove that if the Fourier partial sums converge pointwise, then the 
Fejer means converge pointwise. Prove that if the Fourier partial sums converge 
uniformly, then the Fejer means converge uniformly. Prove that if the Fourier 
partial sums converge in Lp,p > 1, then the Fejer means converge in Lp.

Hint: Use the triangle inequality and the fact that if a numerical sequence sn satisfies lim„ sn = s, 
then lim„(so +----- 1- sn)/n + 1 = s.

Exercise 1.4.3. Prove that if the Fourier partial sums converge pointwise, then 
the Abel means converge pointwise. Prove that if the Fourier partial sums converge 
uniformly, then the Abel means converge uniformly. Prove that if the Fourier partial 
sums converge in Lp,p > 1, then the Abel means converge in Lp.

Hint: First prove that if a numerical sequence sn satisfies lim„ sn = s, then 
(1 - r) r"s„ = s.

1.4.1 Approximate Identities

In order to deal systematically with these procedures, we define the general notion of 
approximate identity.
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Definition 1.4.4. An approximate identity on the circle T is a function k(r, 0) 
defined for 0 e T and r in some directed index set I, so that

(1.4.4)

(1.4.5)

(1.4.6)

lim [ k(r,0)d0 = l 
r In Jt

[ \k(r,0)\d0 <C, Yr el

lim [ \k(r,0)d0 =0, V8 > 0.

r J\e\>8

Here C is a constant independent of r. In case k(r,0) > 0, then (1.4.5) is 
superfluous and we can take C = 2tt.

By definition, a directed set is a set I together with a collection of subsets {A,} 
with the property that for each (i,j) there exists k with Ak C Az A Aj. In case I = [0, 1), 
the subsets can be taken in the form Ak = (1 — 1). A complex-valued function f on
a directed set has a limit L, by definition, if for each 6 > 0, there exists a subset Aj so 
that \f(x) — L\ < 6 for all x e Aj. With this definition it is immediate that limits obey 
the usual laws for sums, products, and composition of functions.

Remark. We choose the formulation with a general directed set in order to have 
maximum flexibility in the applications. For example, for the Fejer means we have 
the index set {1, 2,...} with n -> oo, whereas for the Poisson kernel associated with 
the Abel means we have the index set [0, 1) with r —> 1. In the first case we may take 
Ak = (k, k+1,...) whereas in the second case we take Ak as the open interval (1 — |, 1).

Example 1.4.5. The Poisson kernel Pr(0) is an approximate identity.

Indeed, we showed in (1.1.39) that fTPr(0)d0 = 2jt. Since Pr(0) > 0, the second 
property is automatically satisfied. To prove the third property, note that for |0| > 5 the 
denominator 1 + r2 — 2r cos 0 = (1 — r)2 + 2r(l — cos 0) > 2r(l — cos 8). Therefore in 
this interval we have Pr(0) < (1 — r2)/2r(l — cos 8), which tends to zero when r —> 1.

The fundamental use of approximate identities is described as follows:

Proposition 1.4.6. Suppose that k(r, 0) is an approximate identity.

• If e L°°(T) with lim^o 4>(0) = L, then

(1.4.7) lim[ k(r, 0)<t>(0) d0 = L.

r Jt

• If in addition, for each 8 > 0 sup)6>|>5 \k(r, 0)| —> 0, then (1.4.7) holds for all 
e L1 (T) with lim^o 4>(0) = L.

Proof. For any 8 > 0, we have

— [ k{r,e)^(e)de -l = 
2ji Jt

k(r,0)(Q(0) — L) de + o(\).
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The first integral tends to zero, for any 3 > 0. Given 6 > 0, the second integral can be made 
less than 6 by taking 8 sufficiently small, which proves the first statement. To prove the 
second statement, note that the first integral is bounded by sup^|>5 \k(r, 0)| x (L + ||4>||i), 
which tends to zero by hypothesis. The second integral is bounded by 6 x \k(r, 0)| d0, 
which completes the proof. ■

Exercise 1.4.7. Suppose that the approximate identity k(r, 0) has the additional 
property that k is even: k(r, 0) = k(r, —0) for all 0 e T. Suppose that <£> € L°°(T) 
with lim^^o[^(0) + <t> (—0)] = 2L, for some complex number L. Prove that 
formula (1.4.7) holds.

Exercise 1.4.8. Suppose that the approximate identity k(r, 0) is even and has the 
property that for each 8 > 0, sup^|>(5 \k(r, 0)| 0. Suppose that <£> € L’(T)
with lim^^o[<^>(0) + 4>(—0)] = 2L, for some complex number L. Prove that 
formula (1.4.7) holds.

In order to apply approximate identites to norm convergence, we recall the notation 
ftp for the translate of/ e L1 (T), defined by/^(0) = /(0 — 0). The following definition 
is essential.

Definition 1.4.9. A subspace B C L} (T) with norm || • ||# is called a homogeneous 
Banach subspace if we have \\f\\ ] < ||/||b, the mapf —> fo is B-norm preserving, 
and the map 0 fo is continuous in the B norm. In detail we require that \\fe ||fi = 
\\f\\Bforallf e B and all 0 e T, and that lim^o Wfe —/II# ~> 0 for allf e B.

Example 1.4.10. The space C(T) with the supremum norm is a homogeneous 
Banach subspace. The space Z/(T) for 1 < p < oo is also a homogeneous Banach 
subspace.

Exercise 1.4.11. Prove these properties. Then prove that L°°(T) with the 
supremum norm is not a homogeneous Banach space.

This notion is very effective for dealing with norm convergence, when we represent 
the convolution of two functions as a vector-valued integral. If K G L1 (T), we can write

(K*f)(0) = ^- [ K((/))f(0 — (/)) d(/) = ^- [ K^f^dcj). 
2n Jt 2n

The final integral is a vector-valued integral, defined as a limit in norm of Riemann sums. 
In particular, if/ e B, then K *f is an element of B and we can estimate the B-norm of 
the vector-valued integral by the inequality

[ KWfpdc/) < [ |K(0)l ll/0M0 < C\\f\\B, 

Jt b Jt

which follows from the triangle inequality for finite sums. Similarly

l|A */ - f Ils < / [ \K^\ X ||/0 -f\\B d<f>,

Jt
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which can be analyzed by the more elementary techniques of Proposition 1.4.6. We 
formalize this as follows.

Theorem 1.4.12. If B is a homogeneous Banach subspace and k(r,0) is an 
approximate identity, then

lim 
r
f f k(r,4>)f^d<t> -f

= 0.
B

Proof, The required norm is less than or equal to 

which tends to zero by Proposition 1.4.6.

The first application of approximate identities is to the sequence of Abel means of 
a Fourier series. To make the connection between Abel means and the Poisson kernel, 
we recall the basic identity of Fourier reciprocity, Proposition 1.2.3, which states in this 
case that for any f eL] (T)

3- [f(e~ WMM = yyn\f(n)e‘ne■

2jT

Theorem 1.4.13. Iff e C(T), then the Abel means converge uniformly to f. If 
f e LP(T), 1 < p < oo then the Abel means converge to f in the norm of Lp. If 
f € L1 (T) has right and left limits at 0 g T, then the Abel means converge to 
^[/(0 + O)+/(0-O)].

Proof We have shown that the Abel means are defined by the Poisson kernel, which satisfies 
the conditions of an approximate identity. Hence the first two statements follow immediately 
from Proposition 1.4.12. The third statement is a direct application of Proposition 1.4.6.

■
We will prove in the next section that the Fejer means are also represented by an 

approximate identity. This will allow us to prove the norm convergence properties for 
Fejer means also.

Theorem 1.4.12 admits a sort of converse, expressed as follows:

Proposition 1.4.14. Suppose that B is a homogeneous Banach subspace ofL1 (T) 
and k(r, 0) is an approximate identity with the property that for somef e L1 (T), 
k *f e B for all r e I and k*f converges in the B norm. Then f e B.

Proof Letting g = limr k *f (in the B norm), we must also have g = lim, k *f in the L1 
norm. But from Theorem 1.4.12,/ = limr k *f in the L1 norm. Hence f = g a.e. But the 
space B is a closed subspace of L] (T), therefore/ € B as required. ■

Applying this to the Poisson kernel, we have the following useful converse 
statements:

Corollary 1.4.15. (i) Suppose thatf e L’(T) is such that Prf converges in the 
norm of Lp(T) for some 1 < p < oo. Then f e Z/(T).
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(ii) Suppose that f e (T) is such that Prf converges uniformly. Thenf e 
C(T).

Proof. It suffices to remark that for any/ € L’(T), Prf is a continuous function, in 
particular a member of the space Z/(T). ■

We will see later that condition (i) can be weakened to boundedness in the Lp 
norm. However condition (ii) cannot be weakened to uniform boundedness; consider the 
example of the Poisson integral of a bounded but discontinuous function.

1.4.1.1 Almost everywhere convergence of the Abel means
We have shown that the Abel means of an L1 function converge at every point where the 
right and left limits exist. This condition can be weakened to the existence of the limits 
of the averages:

1 f3+e(1.4.8) L. = lim — / f(y)dy.
6^0 26 J$_€

From the fundamental theorem of calculus (Lebesgue’s differentiation theorem), it is 
known that these limits exists with L$ = f(0) except for a 0-set of measure zero.

The almost everywhere convergence of the Abel means will be deduced as a 
corollary of the following general theorem on a class of approximate identities on [0, tt]. 
The definition of the latter simply amounts to replacing T by [0, n] in the original 
definition of approximate identity.

Theorem 1.4.16. Suppose that k(r, 6) is an approximate identity on [0, zr ], with 
the property that k(r, 0) > 0 and 0 k(r, 0) is absolutely continuous with 
k'(r, 0) := (dk/d0) < 0 for 0 < 0 < n and all r e I. Suppose that f g L1 [0,7r] 
satisfies lim^o#-1 Jq f (0) d(j) = L. Then limr(l/7r) k(r, 0)f(0) d0 = L.

Proof We will show that 0 —0k'(r, 0) is an approximate identity on [0, tt]. To see this
we first note that, since k' < 0, we have for 0 < <51 < <S2 < tt,

(3, - 82)k(r, 82) < f k(r, 0)d0 0
•A,

which shows that limr k(r, 0) = 0 for 0 < 0 < tt. From the normalization of k, we have

1 r i r ,1 <----- I k(r, 0) d0 = k(r, tt)------- / 0k(r,0)d0
77 Jo 77 Jo

which shows that limr f* —0k'(r, 0)d0 = \. Furthermore, for any 8 e (0, tt), 

/»71 71 /»77

/ \0k'\d0 = - 0k'(r, 0) d0 = 8k(r, 8) - nk(r, n) + / k(r, 0)d0 0
Js Js Js

which shows that 0 —0k'(r, 0) is an approximate identity.



50 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Now define F(0) = f$ [/(0) — L] d(j), a bounded function on [0, tt] with 
lim^o F(0)/0 = 0. We integrate by parts, replacing k by crk with limr c,- = 1, thus

r>7t fir

/ k(r, — L\d0 = k(r, 7r)F(7r) - / F(0)k'(r, 0) d0
o Jo

C” F(0)
= oW+ ———[—0k'(r,0)]d0.

Jo V

The final integral tends to zero by Proposition 1.4.6. ■

Corollary 1.4.17. Fatou: The Abel means Prf(0) converge tof(0) when r —> 1 
whenever the limit (1.4.8) exists.

Proof, On the interval 0 < 0 < tt, the functions 2Pr(0) form an approximate identity and 
satisfy the conditions of Theorem 1.4.16. Now define/(0) = ||/(# + 0) +f(0 — </>)]. If 
0 G T satisfies (1.4.8), then lim^o F(0)/0 = 0, so that we may apply Theorem 1.4.16 
with L = f(0) to conclude that limr Prf(0) = f(0), as required. ■

Alternative (explicit) proof. One can avoid Theorem 1.4.16 and work directly as follows. 
Define F(4>) = f^(f(u + 0) —f(0)) du. Then the Poisson integral of / can be integrated 
by parts as follows:

1 C* 1 — r2Prf(0) -f(0) = — / --------(f(0 + 0) +f(0 - 0) - 2/(0) <Z0
2n Jo 1 + r2 — 2r cos 0

1 f” 1 - r2= ---  / ---------------------- <ZF(0)
2tt Jo 1 + r2 — 2r cos 0

1 1 — r
2ti 1 + rFM +

fn F(0)/ F,(0)^</0
Jo sin 0

where

(1 + r2 — 2r cos0)2

is an approximate identity on [0, zr ], since F,(0) > 0 and we have from (1.1.38)

1 f” (l-r2)sin2<? (l-r2)sin2<?
it Ja (1 + r2 - 2rcos0)2 ’ r™ «>? (1 + r2 — 2rcos0)2

Exercise 1.4.18. Show that Theorem 1.4.16 can be generalized as follows. Instead 
of assuming absolute continuity, simply assume that 0 k(r, 0) is monotone, 
decreasing for each r. By suitably applying integration-by-parts and suitably modi
fying the definition of approximate identity to include a sequence of measures, show 
that the conclusion holds exactly as stated.
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1.4.2 Summability Matrices

Closely related to the notion of approximate identity on T is the notion of a summability 
matrix, which is the discrete analogue for sequences of real or complex numbers. In this 
section we give the basic notions of summability, which includes the Abel and Fejer 
means of the Fourier series as special instances of this general notion.

Definition 1.4.19. A summability matrix is a doubly infinite array of real 
numbers amn defined for m, n > 0 with the following properties:

(i) lim^oo amn = Qfor each n = 0, 1,2,...
(ii) Y^=oamn = 1 for each m = 0, 1, 2, ...

(Hi) \amn\ _ C for some constant C and all m = 0, 1, 2, ....

A summability matrix defines a linear transformation on the space of bounded 
sequences

oo 
51 > A(a'), Am(s) = ' amnsn.

m=0

The basic property of consistency is expressed as follows:

Proposition 1.4.20. 7flimn^n = s, then limwAw(^) = s.

Proof. We use (ii) to write

Am (s) s — amn (sn s).
n=Q

Given e > 0, choose A = n(e) so that |s77 — s| < e for n > n(e). Then
oc / N \

|A777 (s) 51 < |amn | |s77 51 < I I fimni

n=0 \n=() n>N /

The last sum is less than Ce. Now we can let m —> oo and use (i) to conclude that

lim sup |Aw(s) — 51 < Ce. 
m

But 6 was arbitrary, which completes the proof. ■

Exercise 1.4.21. Prove that the conclusion of Proposition 1.4.20 still holds if 
condition (ii) is weakened to the relation that lim,^^ amn = 1.

Basic examples of summability matrices are provided by the Cesaro means and 
Abel means:

। m

f-'m (*0 = : r , *£/?, m — 0, 1,...
m + 1 “/?—0

Ar(s) = (1 — r) ^^rnsn, 0 < r < 1.
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In the first case we have amn = l/(m + 1) for n < m and zero otherwise. In the 
second case we pick a sequence of —> 1, for example rm = 1 — 1/m thus defining 

®mn ~ rm)'
In order to work with Abel means, it is useful to note the following transformation 

formula, proved by summation-by-parts for 0 < r < 1:

(1.4.9)
oo oo

(1 - r) rnsn = rna„
n=0 n=0

where sn = aQ-i------- 1- an for n = 0, 1, .... This identity allows one to go back and forth
between a sequence an and its partial sums. The sequence {sj is Abel-summable to L if 
and only if we have limr^ i JZXo a>^n — L.

Exercise 1.4.22. Prove (1.4.9).

The following concrete examples are useful for reference.

Example 1.4.23. The negative binomial series is 1/(1 + r)k = for
any 0 < r < 1 and k is any real number. Hence the numerical series (~„) ™ 
Abel-summable to the value 2~k for any real number k.

For example, with k = 0, 1, 2, we have

1 00 1
------- = 1 — r + r2 — r3 + ••• => Abel (— I)'7 = -
!+" £o 2

1 00 1= 1 - 2r + 3r2 - 4r3 + • • • => Abel V (n + l)(-l)n = -
U+r)2 4

= 1 - 3r + 6r2 - 10r3 + • • • Abel £

n=0 Z 0

On the other hand, the series (~n ) Cesaro-summable if k < 1 but not for k > 1.
To see that k > 2 does not yield a Cesaro-summable sequence, consider the 

following exercise.

Exercise 1.4.24. Suppose that the sequence sn is Cesaro-summable to s. Prove 
that sn = O(ri), n oo

Hint: Letting <jn = Cn(s), check that <j„ s implies that sn = (n + 1)<t/; — nan_\ = O(n). This 
is violated for the example in case k > 2.

It is natural to compare different methods of summability. We say that method A 
is stronger than method C if the matrix A can be factored in the form A = BC where 
B is another summability matrix. This ensures that any sequence that is C-summable is 
also A-summable.
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The previous examples suggest that Abel-summability is stronger than Cesaro- 
summability. Even more is true:

Proposition 1.4.25. For any k there exists a summability matrix Bk so that the 
Abel matrix can be factored as A = BkCk. Otherwise put, Abel is stronger than 
any power of Cesaro.

Proof. We factor the Abel matrix as follows:
oo

(1 - r) ^2 r"s„ = (1 - r) [<r0 + r(2ff| — cr0) H------- 1- r"((n + l)a„ - na„_t) 4----- ]
n=0

= (1 - r) [(1 - r)a0 4------- 1- (n 4- l)(r" - r"+1)<r„ 4----- ]
OO

n=0

so that the matrix Bx is defined by the coefficients (1 — r)2(n + l)r", which satisfy the 
conditions of a summability matrix. Continuing inductively, we write the second Cesaro 
means crj2) = (ao + • • ♦ + an)/(n + 1) and its “inverse” an = (n + 1)<t/7(2) — to obtain

oo oo
(1 - r) yjr"s„ = (1 - r)3 ^2<r,;2)(n 4- l)(n 4- 2)r"/2.

n=0 n=0

In general we show by induction that

00 00 /—k\

/i=0 n=0 \ /
which exhibits the matrix Bk explicitly. ■

Remark. The matrix Ck defines the fcth order Holder means. This summabillity 
method is distinct from the fcth order Cesaro means, usually denoted (C, k). For details 
see Hardy (1949), p. 94 ff.

Figure 1.4.1 shows the relation between Abel and Cesaro summability.

FIGURE 1.4.1
Relations between Abel- and Cesaro-summability. Stronger methods are to the right of weaker 
methods.
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Any theorem that affirms a method of summability is called an Abelian theorem. 
Theorems in the converse direction are called Tauberian theorems. The following is 
a simple Tauberian theorem.

Proposition 1.4.26. Suppose that an is Cesaro-summable to s and that the 
terms satisfy lim„ nan = 0. Then the series converges to the same sum s.

Proof. In terms of the original sequence we can write

Hence we have
1 n 

sn <yn = ■ - ' kak.
"+ 1

But this is the average of a sequence which tends to zero, hence also tends to zero, which 
completes the proof. ■

Exercise 1.4.27. Suppose that the terms satisfy k\ak\ < M for some constant M 
and k = 0, 1,2,.... Show that |or„ — sn | < M for all n = 1,2,....

Exercise 1.4.28. The Riemann means of a series an are defined by

where Q < h Q. Show that this is defined by a summability matrix that is not 
positive.

Hint: Write Rh(a) = — K((m + l)h)]sm where K(x) = (sinx/x)2; check that
7C(0) = 1,7C(oo) = 0 and \K(nh) ~ K^n + Wl < oo.

1.4.3 Fejer Means of a Fourier Series

The Fejer means are defined by

/n “•----------^$Nf
aN(f) :=----------------------- .J NA-1

Writing this out in detail, we see

(N+l)aNf = ft

n=Qk=—n

n r n= £ Ef^e‘ke

k=-N |_n=l*l

N
- y2w+l-\k\)f(k-)eike,

k=-N
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which gives the useful representation 

(1.4.10)

The Fejer kernel is

^(/) = £ 6 -
k=-N ' -r i/

KN(0) := £ (1------—
v 7 i—t \ N + 1 / k——N \ 2V -r 1 /

This is a finite Fourier series of a discrete convolution. To see this, define /M(j) = 1 if 
\j\ < M and zero otherwise. Then by counting points along the 45 degree lines in the 
square of side M, we see that (IM * = (2M + 1 - | j|)/2m+i O’) if I j\ < 2M and
zero otherwise. This will allow us to factor KN in case N is even. To deal with the case 
of N odd, define /^dd(j) = 1 if / = ±|,..., ±(Af — |) and zero otherwise. Again we 
count the points in the square to see that /^dd * /^dd = (2M — | In either case KN 
has been written as the Fourier series of a self-convolved sequence, hence it must be the 
square of the trigonometric sum obtained from the original sequence. In detail, we have

2M / M
(2M + 1)K2M(0) = £ (2M + 1 - \k\)/2M+l(k)e‘ke = I £ IM(k)eike 

k=-2M \k=-M

2M / M
2MK2M_t(0) = £ (2Af — \k\)I2M+i(k)eike = ( £ I°Mdd(k)eike

k=—2M \k——M

The trigonometric sum IM(k)elke was evaluated as the Dirichlet kernel 
sin[(M + | )#]/ sin (0/2), which gives a closed form for K2m. But can also be 
expressed in this form by doing a finite geometric sum:

(1.4.11) + ... + e.W-l/2) =
sin(r/2)

We conclude that for all N we have the formula

(1.4.12)
„ _ _ 1 /sin[(AT + 1)0/2] V

W 1V+1\ sin(0/2) )

Exercise 1.4.29. Prove the trigonometric identity (1.4.11).

Figure 1.4.2 shows the graph of the Fejer kernel with N = 8.
The above computations permit us to conclude

Proposition 1.4.30. Kn(0) is an approximate identity.

Proof. From the definition we see that ± /tKn = 1- From the formula (1.4.12) we see 
that Kn > 0, so that the L1 norms are bounded by 1. Finally, we see from (1.4.12) that for
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FIGURE 1.4.2
The Fejer kernel with N = 8

any 8 > 0, KN(6) < \/(N + 1) sin2 (5/2) whenever |0| > 5. Hence f^>s KN(0) dO -> 0 
when TV —> oo. ■

This leads us to a general statement of Fejer’s theorem.

Theorem 1.4.31. Iff e LP(T), 1 < p < oo, then the Fejer means converge in 
LP(T). Iff e C(T), then the Fejer means converge uniformly. Iff G L*(T) has 
right and left limits f (9 ± 0) at a point 9q, then (<Tn/)(0o) |[/(#o + 0) +
/(<90 — 0)] whenN oo. If in addition, f e L°°(T), then \crn(f)| < ||/||oo-

Proof. The first two statements follow immediately from the fact that KN is an approximate 
identity and that Z/(T) and C(T) are homogeneous Banach spaces. For the third statement, 
note that the kernel KN is even, so that we can write

E„(0O) ■= crN(fWo) - |[/(0O + 0) +f(60 - 0)] 

i r
= + 0) +/(0o - 0) -/(^0 + 0) —/(0O - 0)) KnW d(t>.

£71 JO

The convergence now follows by Proposition 1.4.6. Finally, if/ e L°°(T), then

a„(/) < [ K„(0) d0 =

which completes the proof. ■

Remark. The proof of pointwise convergence of the Fejer means only requires that 
the symmetrized function 0 f(9 + 0) +/(0 — 0) have a limit when 0 0. This
principle applies more generally to operations that are defined by an even kernel, thus 
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expressed in terms of the symmetrized function. Such extensions of the basic results are 
helpful and can be deduced when necessary.

Corollary 1.4.32. The space of trigonometric polynomials is dense in the spaces 
C(T) andLp(^)for 1 < p < oo.

Proof. The rath Fejer mean <t,2(/) is a trigonometric polynomial of degree n and converges 
to/ in the norm of C(T) and in the norm of LP(T). ■

This leads to a new proof of the uniqueness of the Fourier coefficients, as follows:

Corollary 1.4.33. Iff e Ll(T) has Fourier coefficients identically zero, thenf = 
0 a.e.

Proof. From formula (1.4.10) we see that <t22(/) = 0, hence/ = 0 a.e. from the previous 
corollary. ■

Exercise 1.4.34. Suppose thatf is bounded above and below: m < f(0) < M for 
all 0 G T. Prove that m < <Tn(/)(60 < M for all n = 1,2, ... ,0 e T.

Exercise 1.4.35. Suppose thatf is a continuous function with nonnegative Fourier 
coefficients: f (n) > 0, n G Z. Prove that ^2ne%f(n) < co.

Hint: Apply Fatou’s lemma to the Fejer means.

Exercise 1.4.36. Suppose thatf is continuous on a closed subinterval I. Prove 
that the Fejer means converge uniformly on I.

1.4.3.1 Wiener's closure theorem on the circle
Fejer’s theorem can be used to discuss the L1 closure of the set of translates of a given 
/ G L*(T). This is identical to the closure of

f4f:={f*g:geLl(T)}.

Proposition 1.4.37. M.f is dense on L] (T) if and only iff(ri) 0,Vn e Z.

Proof. If/(n0) = 0 then for any g e L*(T) we have (f *g)(«o) = 0. Therefore Mf 
lies in the proper closed subspace consisting of {F e L/T) : F(n0) = 0}- Conversely, if 
f(n) 0,V/z G Z, let F G L’(T) be given. By Fejer’s theorem, aN_i(F) —> F in Ll (T) 
when N -> oo. Let gN(0) = F(k)/f(k)(l — (\k\/N))eike G L’(T). Computing the
Fourier coefficients, we see that/ * gN = (F). Taking N —> oo completes the proof.

1.4.4 *Equidistribution Modulo One

The density of the trigonometric polynomials can be used to give a direct treatment of 
a simple model in ergodic theory. The integer part and fractional part of a real number 
x are denoted [x] and (x) respectively; thus x = [x] + (x) with [x] g Z and 0 < (x) < 1.
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If a G (0, 2tt) is a real number, we consider

Nn(a, b) = card{0 < k < n — 1 : (£a/27r) e (a, Z?)/2tt} 

where (a, b) C [0, 2tt]. We propose to show the following.

Proposition 1.4.38. Ifa/2n is an irrational number and 0 < a < b < 2tt, then 
Nn(a, b)/n (b — d))2n when n oo.

Proof. To do this, we first write the counting function as
n-l

N„(a, b) =
£=0

where/ is the 2tt-periodic extension of the indicator function l(aj?). This leads us to study 
the class of measurable functions/ for which

(1.4.13) lim - V/Cto) = [ f(9)d0.
n 2jr Ji

We will first prove (1.4.13) for trigonometric polynomials. If/(0) = e‘me, with m / 0, then

1 _  Jmna
,imka _----------------------------> 0 n —> oo

n(l -e'ma)

1 «-> 
- =

since the numerator is less than 2 and the denominator is a nonzero multiple of n. Now if 
/(#) = 22^ akelke is a trigonometric polynomial, we see immediately that

i n-l If
- V/(to) -> a0 = — / f(0) de =f(0), 
nk^ 271 Ji

Now let/ be any continuous function on T, extended 2tt-periodically to R. By the corol
lary to Fejer’s theorem there exists, for any e > 0, a trigonometric polynomial g so that 
1/ — g| < 6 on the real line. Therefore

। n—1 । n— 1 । n—1
- Sheika) - e < - V /(*«) < - y\g(ka)+e.

n k^o

Taking —> oo, the extreme members tend to g(0). Since this holds for any 6, we con
clude that lim^^ I Z^Zo/^a) =/(0) whenever/ is continuous and periodic. Finally, if 
/ = l(fl./>), there exists a sequence of continuous functions F± with trapezoidal profiles so 
that Fj~ < l^h) < Fy+ < 1, lim7 F/ = 1 (a.z?) and lim, Fy+ = lfai^ when j oo. For each j 
we have

1 «->

_Z2/77(*o!) -
• tN„(a,b)

F: (0) < hm inf----------
J n n

Nn(a,b) 1 .
< - >F;(ka) 

nT=^n

Nn(a,b) 
< hm sup----------

n n

Taking j -> oo we have

. Nn(a, b) Nn(a, b) b-a
hm inf----------  < hm sup----------  < ——

n n n n

which completes the proof.
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Corollary 1.4.39. Ifot/Zn is irrational, then the set {(ka/Zn) : k e Z} is dense 
in [0, 1],

Remark. It’s clear that this result is true only if a/27r is irrational. If a/2jr is rational, 
the set of {(ka/Zir) : k e Z} is a finite subset of (0, 1). In this case2V„(a, b) = 0 if (a, b) 
is in the complement of this finite set.

1.4.5 *Hardy's Tauberian Theorem

Having proved the convergence of the Fejer means, we can obtain results on the conver
gence of Sff by means of Tauberian techniques. We now prove the Tauberian theorem 
of Hardy, which applies to any sequence of complex numbers an with partial sums and 
Cesaro means denoted

n i n i n

7=0 1 7=0 1 7=0

Theorem 1.4.40. Suppose that {^}^>o is a sequence of complex numbers such 
that k\ak\ < M for some constant M. Then the convergence of the Cesaro means 
implies the convergence of the original sums: lim„(.y„ — crn) = 0. If a^ depends 
on a parameter x so that the convergence ofa^ is uniform in x and \ka^\ < M for 
all x, then sn converges uniformly.

Proof. For n < m we study the expression

in

(m + l)am - (n + l)a„ - (m + 1 -j)aj
j=n+1 

n n

= + 1 ~j)aj - + 1 -j)aj
j=o j=o

n

— (m — n) aj 
7=0

= (m — n)sn.

Subtracting (m — n)an from both sides and dividing by m — n, we have the useful identity

m + 1 m + 1 / j' \
(1.4.14) sn -an =------- (am - an)----------- > 1------- — aj.

m — n m — n — \ m + 1 Jn+l x 7

The first term tends to zero whenever m, w —> oo with (m + l)/(m — ri) bounded, for 
example if mln —> K > 1. To examine the second term, write

m / ; \
(1.4.15) (m + 1) V I 1----------- ) |a.-| < M \(m + 1) log (m/ri) — (m — n)l.fn'v W! + 1/
Now we let m, n -> oo so that m/n —> (1-1-5) and use the Taylor expansion of the 
logarithm; we see that the final term in (1.4.15) is less than (m + 1)52, so that when we
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divide by (m — n) the sum is eventually less than 28. Thus we have

limsup — <J„| < 28. 
n

But 8 was arbitrary, so that we conclude sn — an -> 0, as desired. ■

How did Hardy think of the representation (1.4.14) for sn in terms of cr„? Although 
we cannot say with certainty, we can surely provide a natural motivation in terms of the 
continuous-parameter analogue. Suppose that three functions a(0, s(f), a(t) are related 
by the formulas

f' 1 rt
s(t) = I a(x)dx, cr(t) = - / s(x)dx.

Jo t Jo

To study s(t) in terms of a(t), cr(t), we can use Taylor’s formula with remainder:

~ ^(n) = th ~ t\)s(t\) 4- / (tz — x)a(x)dx, tz>t\.
Jtt

Solving for s(ri), we obtain

,,, <7(r2)-<7(n) f^(t2-x)a(x)dx
s(?i) - a(n) = t2—-— ------------- !—-—----------- ,

which is the exact analogue of (1.4.14) in the continuous-parameter context.

Exercise 1.4.41. Suppose thatf(t), t > 0 is absolutely continuous with an abso
lutely continuous first derivative and that f"(t) = 0(1/0, f(f)/t —> 5 when 
t -> oo. Prove thatfr(t) -> 5 when t -> oo.

Hint: Take f(t) = ta(t) above.

We can now reap some consequences of Hardy’s theorem.

Corollary 1.4.42. Suppose thatf is continuous on T and that its Fourier coeffi
cients satisfy f(j) = O(l/|j|), \j\ -> oo. Then the Fourier series off converges 
uniformly on! to f

Proof. We letaQ = /(0) andak = f(k)eike + f(—k)e~ike fork = 1,2,.... TheFejer means 
converge uniformly, so that crn satisfies the hypotheses of Hardy’s theorem, together with 
a, = 0(1/1 j|) when j -> oo, uniformly in 0 G T. ■

In particular, Hardy’s theorem gives a new proof of the uniform convergence of 
the Fourier series of a continuous function of bounded variation.

Corollary 1.4.43. Suppose thatf is continuous and of bounded variation on T.
Then the Fourier series off converges uniformly on T tof.

Proof We need to check the Fourier coefficients. By partial integration, we have

/(«) = f[ f(6)e-'mede = ^- f e~Mdf(e) = <?(-)•
27T Jt 2imr JT \nJ

Here we used the fact that the Fourier coefficients of a finite measure are bounded. ■
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1.5 IMPROVED TRIGONOMETRIC APPROXIMATION

1.5.1 Rates of Convergence in C(T)

We now consider the Fourier approximation in the space C(T). In contrast with the 
space L2(T), the Fourier partial sum is not the closest trigonometric polynomial in this 
norm. In order to study the rate of convergence of the Fourier partial sum, we recall the 
representation of the Fourier partial sum in terms of the Dirichlet kernel:

(1.5.1) SNf = DN*f=^ \SNf(0)\ < ma*Tl/l x [ \Dn(4>)\dtp.

Zn Jt

Suppose that gN is another trigonometric polynomial of degree N. Then clearly 
gN = $NgN so that we have SNf - f = (SNf - SNgN) + (gN -/), from which we 
obtain

(1.5.2) \SNf(0) -f(0)| < maXT^ ~gjvl x f \DN(tp)\dtp + f — gN\.

Jt

Therefore the discrepancy \Snf — f\ is measured in terms of the best trigonometric 
approximation and the Ll norm of the Dirichlet kernel, which we now estimate. The 
Lebesgue constants are defined by the integrals

If 1 p | sin (n + |)r|
(1.5.3) Ln = — / |D„(0W = — / ----------. . dt.

2tt Jt 2tt J_^ sin (r/2)

The asymptotic behavior of the Lebesgue constants is provided as follows.

Proposition 1.5.1. Whenn -+ oo, Ln = (41ogn/jr2) + 0(1). FurthermoreLn < 
4 4- log nfor all n > 1.

Proof. Recall that on the interval (0,7r) the function

1 _ 2
sin (r/2) t

is bounded. Therefore we can write

C |sin(n+ l)f|
7T Jo sin (f/2)

7T Jo t

We are reduced to examining the integral of | sin v\/v on the interval 0 < v < (n + I)tt. 
This is the sum of the integrals on intervals over (kn, (k + 1)tt) for 0 < k < n plus a 
term over the last half interval, which tends to zero. The separate terms, apart from sign,
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are of the form

f(/:+1)7r sinv 1
I ------dv = I - d cos v
'kn V Jkn V

(-l)*+l (~l)*+l
irk n(k + 1)

k \k2 /

COS V ,
—7- dv

V2

so that
4 log rc -^-+0(1).

7T2

To obtain the upper bound, we underestimate the denominator of the integrand in (1.5.3), 
replacing sin (r/2) by t/jt and considering separately the integrals on 0 < v < 1 and 1 < 
v < mjr, m: = n + ■

Referring to formula (1.5.2), we obtain the following useful fact.

Proposition 1.5.2. Letf G C(T). Then the maximum discrepancy between f and 
its Nth Fourier partial sum is bounded by log2V times the best trigonometric 
approximation off by any trigonometric polynomial of degree N:

\f(x) - SNf(x)\ < [5 + logN] X inf^maxTl/ - g|

1.5.2 Approximation with Fejer Means

In parallel with the L2 theory developed in Section 1.3.3, we wish to develop correspond- 
ing results on the speed of trigonometric approximation in the supremum norm on the 
space C(T). The Fejer means are an efficient device for obtaining the first results of this 
type. In this section we will develop results for Lipschitz and Holder continuity. Higher 
order smoothness will be treated in the subsequent sections.

To begin, we write the Fejer approximation of order m — 1 (to simplify the 
formulas):

1 f7* /sinn?r/2\(^-J)(x) -/(X) = T— / ~\f(x + ?) ~f(x)]dt
2rtm J-n \ sinr/2 /

1 f71^ / sinnw\2
=----- / I --------- ) \f(x + 2u) —/(x)] du

Ttm J-^/2 \ sinw /

1 (sinnw\2
(1.5.4) =----- / ( —-----  I [f(x + 2u) +/(x — 2u) — 2f(x)]du.

Ttm Jq \ sin u J

Using this form of the approximation, we can now state and prove some properties of 
the Fejer approximation.

Theorem 1.5.3. Suppose thatf is Lipschitz continuous with constant K. Then 

lognIM/) -/lloo < C\K—^— 
n
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where C is an absolute constant. More generally, iff satisfies a Holder condition 
with exponent a < 1 and Holder constant Ka, then

\\<M-f\\oo < CaKan~a

where Ca depends only on a.

Proof. Beginning with formula (1.5.4), we integrate by parts, writing 4>(y) = 
/o +/(* — u) — 2f(x)\ du. From the hypothesis of Lipschitz continuity, we have
4>(y) < K\y2‘ Now the Fejer kernel is bounded everywhere by m and by 7r2/4mw2 on the 
interval u > 1/m. Therefore we can write

7r|awz_](/) -f \ < - 
m

fn/2\ / sin ma \2
+ / -------- d<b(u).

J Mm ) \ smu J

The first integral is estimated as

(1.5.5)

while the second integral is estimated by

(1.5.6)
r*/2 24>(w)

= (4/m7r2)4>(7r/2) — md>(l/m) + / ----- — du.
J\/m rmP

The first two of these terms is 0(1/m), m -> oo, and the last integral is O(logm/m), 
completing the first part. In case f is only Holder continuous, we have 4>(w) < Kau{+a. 
Appealing again to (1.5.5) and (1.5.6), we see that the desired conclusion holds. ■

Remark. One may inquire on the choice of the cutoff level 1 /m in the above proof. 
It can be checked that this is optimal in terms of balancing the size of the two error 
terms.

Exercise 1.5.4. Suppose that f satisfies the symmetric Holder condition 
\f(x + u) 4-/(x — u) — 2/(x)| < Ka\u\a for some K, where 0 < a < 1. Show that 
we still have ||crw (f) — fW^ < CaKan~a. Formulate the corresponding result for 
a = 1.

Exercise 1.5.5. Suppose that f satisfies the continuity condition \f(x 4- h) — 
/(x)| < C\/\og(f/h) for 0 < h < Prove that ||ct„(/) -/Hoc < C2/logM 
for n >2, for a suitable constant C2.

The above transformations can be used to prove a theorem of Lebesgue.

Theorem 1.5.6. Suppose thatf e if (T) satisfies the condition that

1 Ch
— I \f(x + w) +/(* — «) — 2S| du -> 0, h -> 0, 
h Jo

for some x G T, S G C. Then the Fejer means converge to S: limn crn(f)(x) = S.



64 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proof. Using the same notations as above, we let

4>(/z) = [ \f(x + 2u)+f(x — 2u) — 2S\du, 
Jo

so that 4>(/z) = o(h), h 0. Referring to (1.5.5) and (1.5.6) we have

1 fi/,n / sin ma \2 ,
(1.5.7) -/ —-----  d<t>(u) <m4>(l/m) < 6,

m Jq \ sin u )

(1.5.8)
4 24>(w)=---- -4>(tt/2) - m4>(l/m) + / ---- V du.

mu'

The first term is O(m 1) and the second term is <?(1). The final integral clearly tends to zero 
if we change the notation and write <t>(u)/u = e(l/v) -> 0, so that

pm
I e(1/v) dv -> 0.

Corollary 1.5.7. The Fejer means of an if function converge almost everywhere.

Proof The strong form of Lebesgue’s differentiation theorem states that for almost all 
x e T, lim/7^0(l/^) f$ |/(* + u) — f(x)\ du -> 0. Therefore on this set we can take 
5 = f(x) in the previous theorem. ■

Corollary 1.5.8. The Abel means of an L1 function converge almost everywhere.

Proof If a sequence {$„} is Cesaro-summable, then it is also Abel-summable to the same 
sum, from Proposition 1.4.25. Since cr,;(/) converges almost everywhere, the same is true 
of the Abel means Prf. ■

We close this section with a negative result, showing that the Fejer means have 
an inherent limitation in their ability to approximate functions to a higher order of 
approximation.

Proposition 1.5.9. Suppose that f G C(T) satisfies ||crn(/) —/lloo = o(l/ri), 
n —> oo. Thenf is a constant, almost everywhere.

Proof Recall that
^(/) = E (i - 

\ fl + 1 / — ,7 \ 1 /
Hence

= L [- ^f)]e-'ke de, |*| < n, 
n + 1 2tt

1*1 \f(k)I < ~ [ |/(0) - CT„(/)| de, |*| < n.
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For any fixed k, the right side tends to zero when |n| -> oo, hence f(k) = 0 for all k / 0. 
By the uniqueness of Fourier coefficients, we conclude that a.e./ = /(0). ■

Exercise 1.5.10. Suppose that /eL'(T) satisfies ||cr„(/) -/|h = o(l/n), 
n —> oo. Prove thatf is a constant, almost everywhere.

Finally, we note that the Fejer approximation holds with the rate for well- 
behaved functions.

Exercise 1.5.11. Suppose that the Fourier coefficients offeLl(T) satisfy 
22/ieZ lnll/(n)l < °°* Prove that ||crn(/) —/*||oo — C/n for some constant C.

Exercise 1.5.12. Suppose that the Fourier coefficients off e Ll(T) satisfy 
lnll/(n)l < °°- Prove that the uniform limit of n(crn(f) — f) exists and 

compute its Fourier series.

In the next two sections we introduce other approximate identities to obtain higher- 
order trigonometric polynomial approximations.

1.5.3 *Jackson's Theorem

Iff has additional smoothness properties, we can obtain quantitive estimates for/ — gN 
by working with the Jackson means.

The Jackson means of order four are defined by

1 /’7r^2 (sinNu\^ 
/ I —-) (/(x + 2u) +/(x - 2w)) du

2h^ Jq \ sinw /

where

, p/2 fsmNu\4 ,
Ai/v '.— I I ---------  ) du.

Jo \ SHIM /

By examining the transformations in (1.5.4), it is clear that J^f is the convolution of 
f with the square of the Fejer kernel, a trigonometric polynomial of degree 2N — 2. 
Therefore JNf is a trigonometric polynomial of degree 2N — 2.

Recall that/ satisfies a Lipschitz condition if there exists a constant K so that

\f(x)-f(y)\<K\x-y\.

Theorem 1.5.13. If f has Lipschitz constant K\, then

where Ci is a universal constant. If in addition, the derivative f' is Lipschitz 
continuous with Lipschitz constant K2, then

\JNf(x) <c2^,
No

where C2 is a universal constant.
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Proof. We write

1 /*7r/2 / gin \ 4
JnJ\x) -f(x) = ^~ I —-----) tf(x + 2u) +f(x - 2u) - 2f(x)} du

2hN Jo \ sinw /

1 f71-/2 / sin2Vw\4
l/v/U) -f(x)\ < —- / ( —-----) 4KMdu.

2hN Jo \ sin a /

The denominator is estimated by

To estimate the numerator, note that, on the interval [0, tt/2], sinw is bounded below by 
2u/n. Making the change of variable v = Nu, the integral is no more than

which proves the first statement and identifies the constant as

7T4 /0°°(sin v/v)4v dv 
1 32 (sin v/v)4 dv

If, in addition, f is Lipschitz, then the mean-value theorem provides the estimate 
\f(x + 2u) +/(% — 2u) — 2f(x)\ < 8K2|m|2, which gives the improved estimate

I z'tt/2 / Njj\4 \JNf(x)-f(x)\ < - / (------) 8K2|W|2JW.
hN Jo \ sin u J

Again we make the change of variable v = Nu and find the required estimate, with

7T4 /0°°(sin v/vfv1 dv 
2 2 f™ (sinv/v)4 dv

Exercise 1.5.14. Suppose thatf is Holder continuous with exponent a: \f(x) — 
f(y) | < K\x — y\a for some 0 < a < 1. Prove that \ JNf(x) — f(x)\ < CaKN~a for 
a universal constant Ca.

Exercise 1.5.15. Suppose thatf is absolutely continuous and thatf' is Holder 
continuous with exponent a, 0 < a < 1. Prove that \J^f(x) — f(x)\ < C'a KN~l~a 
for a universal constant C'a.

1.5.4 *Higher-Order Approximation

If r e Z+, the space Cr(T) consists of functions whose rth derivative/is a continuous 
function. If r G Z+ and 0 < a < 1, the space Cr,a(T) consists of functions/ G Cr(T) 
such that/(r) satisfies a Holder condition of order a. Since any differentiable function 
is Lipschitz continuous, we have the inclusion Cr+1(T) C C' J(T). If 0 < a < 1, we 
often write, by abuse of notation, Cr a(T) = C' +a(T).

It is natural to expect that if / G C(T) has derivatives of higher order, then we 
will obtain an improved rate of approximation by suitable trigonometric polynomials.
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To make this concrete, consider for any even integer 2k, the difference operator

2k
Mkf(x; u) - ^2

J=o

2k\

J /

(1.5.9)
,/2k\—f(x + ku) - 2kf(x + (k - 1)h) H--------F (-l)M , )/(%) H-----
\k /

— 2kf{x — (k — 1)m) +/(x — ku).

The coefficients are those that occur in the binomial expansion of (el° —1)2\ which 
vanishes to order 2k at 0 = 0. Hence if/ g C2*(T), the derivatives are

/ d V
— I A2A/(x; u)|m=0 = 0, 0 < j

\du J

d\2k
— I S2kf(x-,u)\u=0 = (2k)lf(2k\x), 
du /

so that we have the bound

|A2fcf(x; u)\<Cu2k.

More generally, we can apply Taylor’s theorem with remainder to prove that when u -> 0

f e C2\T) =* \2kf{x\ u) = O(u2k), u -+ 0

f e c2*“l a(T) => A2//(x; u) = O(u2k~l+a), u -> 0, 0 < a < 1

f e C2^'(T) => Mkf(x; u) = O(u2k~{), u0

f 6c2^2 "(T)=> A2kf(x- u) = O(u2k-2+a), m->0, 0 < a < 1.

In order to construct improved trigonometric approximations, we consider

/’7r/2 f sinmu\2k+2
E2k,mf(x) := / A2A/(x; u) —;----- du.

Jo \ SHIM /

Noting that (sin (mu)/sin u)2k+2 is a trigonometric polynomial of degree (m — 1) (A: -+-1), 
we see that the same is true for each term that figures in the definition of E^mf, save 
for the middle term with j = k. Iff g C2*(T), we have

(1.5.10) \E2k,mf{x)\ < C
C7r/2
/ U2k\
Jo

/ sin mu \ 2k+2

) du
\ sinw

(1.5.11) < c
r^/2 

/ 
Jo

/ sin mu \ 2k+2

I du
2u/ti

(1.5.12) < c
/

/ “2MJo \
sin mu\ 2k+2

du
2u/tt J

(1.5.13)
poo

= mC I v2k
Jo

/ sin w ,2k+2

) dv
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while

These two estimates are combined to prove the following.

Proposition 1.5.16. Suppose thatf G C2*(T). Then there exists a sequence of 
trigonometric polynomials fm of degree (m — V)(k + 1), so that

Proof. It suffices to set

(1.5.14)

(1.5.15)

r t . a x ^2k,mf (x) 
fn(x) =f(x)----------------------,

k'km

, JlkX r/2 fsinmu\2k+2 , z ,k(2k\
Dkm = (~1) I , ) I ( —:-----  I d.U = (—1) I ICfan.

\ k ) Jq \ sin u / \ k /

Note that fm is a trigonometric polynomial of degree (m — 1) (k+1). Then Dkm(f(x) —fm (x) = 
(E2k,mf)(x). Applying the above estimates gives the result. ■

In the general case of functions with a Holder continuous derivative, we have the 
following general result.

Theorem 1.5.17. Suppose that f g Cr,a(T). Then there exists a sequence of 
trigonometric polynomials fm of degree < m(r + 2) so that

\\f-fm\\oo<Cm-(r+a)\\f\\r,a

where the norm is defined as

ll/llr,a = SUp |/(x)| 4------- 1- \fr) (x) | + SUp -------------------------
xeT x/yeT I* ~ jl"

and the constant C depends only upon r and a.

Exercise 1.5.18. Prove the estimates (1.5.10).

Exercise 1.5.19. Complete the steps of the proof of Theorem 1.5.17.

It is often convenient to have a universal sequence of trigonometric polynomials, 
which can be used at every level of differentiablity. These are provided by the de la Vallee
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FIGURE 1.5.1
The de la Vallee Poussin kernel with N = 8

Poussin means (Figure 1.5.1), which are defined in terms of the Fejer means by

r„(x) = 2a2rt_i(x) - crZ7_i (x).

Let£n(/) = inf rep,. \\f-T\\ oo be the sup-norm distance between f and the trigonometric 
polynomials of degree n.

Theorem 1.5.20. The de la Vallee Poussin means satisfy the estimate

\\Tn~fWoo <4En(f).

Proof. The above infimum is attained by some (possibly nonunique) T* 6 P„. Indeed, any 
minimizing sequence pk must be uniformly bounded, in particular have uniformly bounded 
Fourier coefficients. But these reside in the finite dimensional space C2/J+1, where one can 
apply the Bolzano-Weierstrass theorem to obtain a convergent subsequence, for which the 
corresponding trigonometric polynomials are uniformly convergent to some T* 6 Pn. Now 
we write

fM = T„*(x) + R(x) where |/?(x)| < En(f).

The Fourier partial sum operators Sk and Fejer means are defined by

k k

Skf(x) = SkR(x) = Y WJX
j=~k j=-k

। k—1 । k—1
CTt-i/W = - YSjf (*)’ °k-lR(x) = ~YSkR(.x)-

K J=l> K j=0
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If k > n we have SkT* = T*, so that Stf = T* + SkR and hence

1 2/7—1 I 2/7—1

k=n k=n

which can be written in terms of the delayed Fejer means:

2or2n— 1/* — &n-\f — T* + 2a2n-\R — &n-\R-

But the Fejer kernel is a contraction in L°°(T), thus |a^(7?)| < ||R||< En(f). In particular 

|T„(x) - T»| = \2aln_f(x) - (Jn—\f(x) - T/(x)| < 2En(/) +E„(/) = 3E„(/)

so that

||T,-/Iloo< 11^7-^1100 + WK-fW™

<3En (/) + £„(/)

= 4E„(/),

and the proof is complete. ■

The de la Vallee Poussin approximation can be written in terms of the Fourier 
coefficients as follows:

= £/0XI + 2 £ (1 -

|j|<n-l n<|j|<2n ' n '

In terms of the Fejer kernel, we have

(t\ k (t\ 2 (^nnt V 2/sin«f/2Y2K2n-i (0 - An-1 (0 = — I — r - ■ I----- I I
2n \2sinf/2/ n \2sinf/2/

2 sin2 nt — 2 sin2(nf/2)

4n sin2 (7/2)

cos nt — cos 2nt 
4n sin2 (7/2)

Unlike the Fejer kernel, the kernel of de la Vallee Poussin is not positive. However it 
does satisfy the general properties of approximate identities.

Exercise 1.5.21. Prove directly that the de la Vallee Poussin kernel satisfies the 
three properties for an approximate identity.

1.5.5 *Converse Theorems of Bernstein

Bernstein showed that the rates of convergence of trigonometric approximation can be 
used to characterize the degree of smoothness of a function. The key to proving these 
converse theorems is the following inequality for trigonometric polynomials.
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Lemma 1.5.22. Bernstein: Iff (6) = Y^!k=-M akelke, then

(1.5.16) sup |/'(0)1 <2Mxsup|/(0)|.

Proof. Recall the Fejer kernel

This will allow us to represent f'(0) as an integral transform of f. We begin with the Fourier 
coefficients

1 r J 1 — |k|/M \k\<M•= 2^ ^=1 o \k\ > M •

Hence A(k — M) — A(k + M) = k/M for |k| < M. Thus

k 1 f*(1.5.17) — = — / /CM_i(0)e-^2isinM0t/0, \k\<M.
M In J_n

Multiply (1.5.17) by iMakelke and sum for — M < k < M:

M 
f'(e) = £ ‘kakeike 

k=-M

/^(^(^sinWW -0) d(f>

which is the desired representation. Hence

I/'(0)1 < f ( r 2KM_^d<p\ x sup|/(0)|,
Z7T V-tt / 0eT

= 2Msup |/(0) |
0eT

which completes the proof. ■

To prove converse theorems in the supremum norm, it is convenient to work with 
trigonometric sums of order 2k, known as dyadic sums. This subsequence is useful 
because of the following simple estimates that pertain to tail sums and finite sums:

QQ 9 — Na
a > 0 => V 2-ka =----------- = Ca2~Na,

1-2-“k—N

N-l _ 1
^>0^^ = 57TT -

k=0 Z 1

To study the approximation in detail, let/ g C(T) and Tn(x) be the trigonometric 
polynomial of degree n, which achieves the best approximation: En(f) = \\f — TJIoo.
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Theorem 1.5.23. If En(f) < Cn 01 for C > 0, 0 < a < 1, thenf satisfies a 
Holder condition: \f(x 4- h) — /(x)| < Kha.

Proof. We examine the limit in terms of dyadic sums. For any n0 6 Z+,
oo

f(x) = lim T2n(x) = T2«o(x) + 5^ 4>t-(x) 
n->oo '

f=no + l

where <5>z(x) = T2<(x) — T2,-i (x). From the triangle inequality we have |4>/(x)| < 3C2~a‘. 
Now define m = m(h) G Z+ by the inequalities 2W-1 < 1/h <2m. Then

PC oo

22 < 22 3C2-'“
i=m(h) i=m(h)

< Ca2~ma

< Caha.

For the remaining sum we use the mean value theorem and Bernstein’s lemma (1.5.16) to 
write

22 I*,(x + /|) - <I>,(x)| < h 22 sup|<i>'(x)|
/■=n0 + l /=ho + 1 A€T

<h^ C2‘2~ai 
i=nQ + \

< hCa2!"m^a}

< Caha.

Hence \f(x + h) —/(x)| < |T2«o (x + h) — T2«o (x) | 4- Caha as required. ■

Exercise 1.5.24. Use Theorem 1.5.23 and the proof of Theorem 1.5.3 to show 
that iff satisfies a symmetric Holder condition: |/(x 4- h) 4-/(x — h) — 2/(x)| < 
cha for some 0 < a < 1, thenf satisfies the usual one-sided Holder condition: 
|/(x 4- h) —/(x)| < Cha. (Fora = 1 this is false; see Zygmund (1959).)

If a = 1, the above estimates break down. Indeed, it is not generally true that 
En(f) < C/n implies that/ g Lip(T). The difficulty is in the estimate of

m(h) — 1 m(h)— 122 + h) - 0,(x)| < h 22 sup|0.(x)|
z=n()+l z=Ho + l

i=no + \

< hCm

< Chlog(l/h).

Thus we have the general implication

E„(f) If (x + h) -f(x)\ < Kh log (1/A).
n
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Bernstein’s inequality can also be used to characterize the differentiability of / in 
terms of rates of convergence of En(f). Indeed, suppose that En(f) < C/n? for some 
/ > 1. Then the triangle inequality gives |<J>/(t)| < 3C2“^Z and Bernstein’s inequality 
(1.5.16) shows that for r g Z+, r < /,

|4>^(x)| < 2(z+1)r3C2“^z = Cr2i{r~^.

Hence the series <£/(%) can be differentiated term-by-term, since the numerical 
series ^2^! 2z(r-/3) converges. We formalize this discussion as a theorem.

Theorem 1.5.25. Suppose that En(f) < C!nr+a where r g Z+ and 0 < a < 1. 
Thenf g Cr(T) andf^ satisfies a Holder condition of order a.

Proof. From the above discussion, we have the uniformly convergent series

(j \ r oo-H 7’„0(x)+ 52 
dX/ i=n(} + \

The first term is infinitely differentiable, hence Holder continuous. The second term is 
handled exactly as in the proof of Theorem 1.5.23, replacing <I>Z by to which the same 
estimates apply. ■

Exercise 1.5.26. Suppose that En(f) < Cn~r where r g Z+. Show that 
f e C^-'XT) and that + h) -f(r~l)(.x)\ < Khlog(l/h).

Exercise 1.5.27. Suppose thatEn(f) < C\/\ognfor alln > 2 for some constant 
C\. Prove thatf satisfies the continuity condition \f(x + h) — /(x)| <C^I log (1/Zi) 
for 0 < h < Compare with the result of Exercise 1.5.5 .

1.6 DIVERGENCE OF FOURIER SERIES

In this section we turn to some negative results, which have been instrumental in the 
development of harmonic analysis. In 1873 du Bois-Reymond showed that there exists 
a continuous function whose Fourier series diverges at a point. This was further developed 
to show that any preassigned set of Lebesgue measure zero can be the set of divergence of 
the Fourier series of a continuous function (Kahane and Katznelson, 1966). Meanwhile, 
in 1915 Lusin had posed the problem of proving the almost-every where convergence of 
the Fourier series of an arbitrary / g L2(T). This was proved by Carleson (1966) and 
extended by Hunt (1968) to the class Z/(T) for p > 1. Another proof of Carleson’s 
theorem by C. Fefferman (1973) has been useful in more recent developments of har
monic analysis. Many years earlier Kolmogorov (1926) had proved the existence of an 
L1 function whose Fourier series diverges at every point of T. These results and coun
terexamples are beyond the scope of this book. We will prove, by two different methods, 
the existence of continuous functions with Fourier partial sums unbounded at a point. 
We will also construct L1 functions whose Fourier series do not converge in the L1 norm. 
In Chapter 3 we will prove the theorem of M. Riesz (1927) that for any function in 
L/?(T), 1 < p < oo the Fourier series converges in the LP norm.

The upshot of these results and counterexamples is that LP,p > 1 is a good space 
for one-dimensional Fourier series, both in the a.e. sense and in the sense of norm 
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convergence. The space L1 is bad in both senses. The space of continuous functions 
is bad for norm convergence and for convergence at a preassigned point, but good for 
almost-everywhere convergence.

1.6.1 The Example of du Bois-Reymond
Proof. By suitable grouping of terms, we will construct a continuous function whose 
Fourier series diverges at a preassigned point. Without loss of generality, we will do this at 
0 = 0. The desired function will be sought in the form

oo o rm mk
(1.6.1) = where

h=1 j=~mk

and where the integers mk, Nk will be chosen. Bk(0) is the partial sum of a Fourier series 
of a function of bounded variation with a jump discontinuity at the point 0 = 0 and 
otherwise smooth. For example, one may take/(0) = n — 0 for 0 < 0 < tt, extended 
as an odd function. In this case ak = —i/k. Since / is of bounded variation, the partial 
sums are uniformly bounded: \Bk(0) | < M for a constant M, simultaneously for all 0 6 T, 
k = 1,2,.... Hence the series (1.6.1) is uniformly convergent to a continuous function, by 
the Weierstrass M test. In order that the different blocks Bk involve different frequencies, 
we will choose the integers mk, Nk so that

M + mk < Nk+i -mM.

Although (1.6.1) is not written as a Fourier series, we claim that the nth Fourier coefficient of 
/ is given by the coefficient of eme in the series. Indeed, since the series (1.6.1) is uniformly 
convergent, when we multiply by e~me we still obtain a uniformly convergent series that 
we can integrate term-by-term:

[ dO = V 2 [ BdOye^e-^dO.
Jr k2 JT

Since the terms of Bk contain different frequencies, all of the integrals will be zero, save 
for the value of k satisfying \n — Nk\ < mk, if there is one with an_Nk / 0. In that case 
the integral is and zero otherwise. Hence the nth Fourier coefficient is given by
an_Nk/k2 or zero, which completes the required identification.

Now we examine the partial sum at level Nk:

^=zB-f+2±aJ.

;=l J K

The first sum converges by the Weierstrass M test. The second sum can be evaluated exactly 
in the case ak = —i/k\

">k ।
^2 T = logmt + 0(1).
j=] J

We now choose mk so that (\ogmk)/k2 —> oo, for example mk = 2k~ will do. Having 
chosen mk, we choose the sequence Nk so that Nk+i — Nk > mk + mk+i which is possible, 
for example by taking A] = 1 and Nk+] = ^=0 tmj + mj+\ + 1) for = 1,2,.... The 
proof is complete. ■
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The example of du Bois-Reymond depends critically on the fact that the one-sided 
sums defined by ajeije are divergent when k oo, whereas the corresponding 
two sided sums defined by B*(0) are convergent when k oo.

Exercise 1.6.1. Suppose that f is a function of bounded variation that has a 
jump discontinuity at 6 = 0 and is otherwise of class C2 on the circle. Prove 
the asymptotic formula f (n) = C/n + Olf/n2) and identify C in terms of the 
jump.

1.6.2 Analysis via Lebesgue Constants

In this section we re-examine the questions of convergence and divergence in a more 
general setting. A Banach space is a complete normed linear space. For example C(T), 
LP(T) for/? > 1 are familiar Banach spaces. A mapping T . B\ Bz isa. bounded linear 
operator if it satisfies the conditions that

(1.6.2) T(/ 4- g) = Tf 4- 7g, W) = cT(/), \\Tf\\B2 < K||/||51

Here c is any complex number and K is a positive real number. For example, if B\ = 
B2 = LP(T) and g g L1 (T), the convolution Tf =f* g defines a bounded linear operator. 
This is immediate from the B-valued norm computation 

IIW2= f f(x-y)g(y)dy
= [ f(x- y)g(y) dy = f g(y)fy dy

«/ T Z?2 B\

< [ lg(y)IUh,<fy= ll/llfi, [ lg(y)l<fy=ll/IMsll
L'(T)-

The operator norm of a bounded linear operator is the smallest number K so that (1.6.2) 
holds. Equivalently,

\\T\\ = sup \\Tf\\B2.
Ilfll<i

If Tn is a sequence of bounded linear operators, the pointwise convergence to a limiting 
operator T is defined by the requirment that

lim ||TJ-T/||B2 =0 
n

for all/ e Bi. The following condition is clearly sufficient.

Proposition 1.6.2. Suppose that Tn is a sequence of bounded linear operators 
and T is a bounded linear operator so that

(i) For some dense set P, lim T„f = Tf for allf e T).
(ii) There exists a constant K so that || Tn || < K for all n and || T|| < K.

Then the sequence converges pointwise on all of B.
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Proof, If/ G B, there exists g e T) so that \\f — < 6. Now

T/ - Tf = (TJ - Tng) + (Tng - Tg) + (Tg - Tf), 

W - Tf\\B2 < ||TJ - Tng\\B2 + \\Tng - Tg\\B2 + \\Tg - Tf\\B1

< K\\f - g||B1 + \\T„g - Tg\\B2 + K\\f - g||Bl.

Hence lim sup„ \\T,f — Tf\\B2 < 2X"||/ - <2Ke. But e was arbitrary, completing the
proof. ■

This may be applied to give a new proof that the Abel and Cesaro means converge 
in Z/(T). In each case we can take K = 1 and note that we have convergence on the 
space of trigonometric polynomials, since in each case we have T„f = Tn(f for n > no, 
the degree of/.

It is surprising that the converse is true: If a sequence of linear operators converges 
pointwise, then the operator norms remain bounded. This is embodied in the uniform 
boundedness principle, stated as follows. The proof is given in an appendix to this 
chapter.

Theorem 1.6.3. Suppose that Tn is a sequence of bounded linear operators so 
that for eachf g B\, sup„ || Tlf\\B2 < oo. Then the sequence of operator norms 
remains bounded: supn ||Tn|| < oo.

This is applied to study the Fourier partial sum operators on C(T):

N 
f»SNf= f{n)eM

n=—N

= [ D^e-^f^d^.

The supremum norm is estimated by

IIWIloo < ll/lloo X f f |ZWW.

In fact this bound is sharp, since we can take the bounded function/o(</>) = sgn |Dn(0)| 
and achieve equality. This choice of /0 is not continuous, but can be approximated 
boundedly be a sequence of continuous functions, for example by using the Fejer means 
to definefn = KJo. Then 27r5w/„(0) = /T fnDN -> /T f0DN = /T \DN | when n oo.

We now recall the estimation of Proposition 1.5.1, which states that ||5/v|| ~ 
(4 log TV)/tt 2. This allows us to infer, without any computations, that there exists a con
tinuous function whose partial sums do not remain uniformly bounded, especially not 
uniformly convergent.

Proposition 1.6.4. There exists a continuous function whose Fourier partial sums 
do not remain uniformly bounded. For any 0 G T, there exists a continuous function 
whose Fourier partial sums are unbounded at 0.
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Proof, The first statement is evident from the previous discussion where we take 
B[ = B2 = C(T). For the second statement simply take 2/ = C(T) and B2 = C, the com
plex numbers. The operators/ -> Snf(0) are each bounded and linear from B\ to B2. The 
operator norms are computed exactly as above: ||Sn|| = Ln = (41ogn)/7r2 + O(l), n oo. 
Therefore, by the uniform boundedness principle, there exists a continuous function whose 
Fourier series is unbounded at 3. ■

The following exercise shows that the Lebesgue constants can be used to estimate 
the rate of divergence of the Fourier partial sums for a function that has a local average.

Exercise 1.6.5. Suppposethatf e L’(T) andfor some 6 eT, s := lim<^o|/(04-
0) +/(# — 0)]/2 exists. Prove that SNf(6) = 6>(log7V) when N oo.

Hint: Given e > 0, choose 8 > 0 so that \f(0 + 0) +/(# — 0) — 2s| < 2e for 0 < 0 < e. From 
the representation of partial sums we have

\SNf(0)—s\ = — [ — s) d(j)
* Jo

z*7r
<6/ |Z}v(0W + / DN(0)(fe(0)-5)J0

Jo Js

< € logN + (7(1).

For a general/ G L!(T), one can establish the above rate of divergence at 
almost every 0 g T. The proof is very similar to the proof of almost-everywhere 
Cesaro-summability in the space L1 (T).

Proposition 1.6.6. Let f G L^T). Then for almost every 6 g T, S^ftO) = 
o (log TV), N oo.

Proof. Let Fe (0) = f£ |/(0 + u) + f(0 — u) — 2f(0) | du. From Lebesgue’s differentiation 
theorem, we have for almost every 0 e T, Fe(u)/u 0 when w —> 0. Now we write 
s = 2f(0) and, as above,

। / ptt/v c7* \
W)-/(0)=~ / + / ^(0)(f0(0)-s)6?0=Zl+Z2.

71 \Jo Jn/N/

On the first integral we use the fact that \DN (0) | < 27V + 1, 0 < 0 < tt; thus

27V + 1
|Zi| < --------- Fe(7t/N) = o(l), TV oo.

7T

On the interval n/N < 0 < n we can write DN(d>) < tt2/24 4- 2/0, so that

2 r f'(0)
24 7T Jn/N 0

A partial integration shows further that

r F'w>I -----------atp = -----------
tc/N <t> 0 " + r F^+ / dd> 

n/N Jn/N <P
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The first term is bounded when TV —> oo. On the other hand we write e(0) := F^/cj), 
which tends to zero when 0 —> 0, so that

f F'^,u r n An MI --------d(j) = I ------- d(f) = o(\ogN), N —> oo.
Jtc/N <t> Jtt/N <t>

The proof is complete. ■

1.6.3 Divergence in the Space L1

The analysis of divergence in the space ZJ(T) is entirely parallel. First we outline a 
qualitative argument to prove the existence of an L1 divergent Fourier series, then we 
proceed to construct a class of examples.

In order to exploit the principle of uniform boundedness, we need to compute 
the norm of the operator 5/v, which maps L/T) to LJ(T). On the one hand, for any 
f g L/T), we have

IIWII1 = \\Dn */IIi < IIAvlli ll/lli,

so that the operator norm ||S/v || 1,1 is bounded by the Lebesgue constant L/v. On the other 
hand, if we take the Fejer kernel/ = Kn with n > N, then by the properties of the Fejer 
kernel

IIWill = ||Z>/V = MDN)h ||D/v||l, n^OO,

since for any fixed N, (rn(D^ converges boundedly to DN when n oo. Hence we 
conclude that the operator norm is given by

4
115/v lli.i = l|£Mi = L/v =—7 log TV + (2(1).

By the uniform boundedness theorem, we conclude that there exists/ e ZJ(T) such 
that ||SNf || i is unbounded when N oo. This completes the qualitative argument and 
proves the following proposition.

Proposition 1.6.7. There exists f G L/T) whose Fourier series diverges in the
L1 norm: sup^ ||5/v/||i = +oo.

We now use Lebesgue constants to construct explicit examples of functions in the 
space L/T) whose Fourier series do not converge in the L1 norm. We begin with a 
sequence {an} of positive real numbers tending to zero so that the second differences are 
nonnegative; in detail (A2tz)„ := an+\ + an-i — 2an > 0. Such a sequence is termed 
convex.

Lemma 1.6.8. For any convex sequence, we have limn n(an — an+\) = 0 and the 
series w(A2tf)n = aQ < oo.

Proof. Let bn = an — an+[. From the convexity condition we see that bn > bn+i for all n. 
Also bn —> 0, since a„ —> 0.

To prove that bn > 0 for all n, we assume that < 0 for some nQ. By convexity 
we have bn < for n > nQ. Then an — ano > (n0 — n)Z?„0, which implies a„ —> oo, 
a contradiction.



FOURIER SERIES ON THE CIRCLE 79

Given 6 > 0, there exists N(e) so that an < 6, bn < e for n > N. Thus 
6 > aN — an = bN+] + • • • 4- bn > (n — N)bn, which proves that lim supn nbn < 6, 
which was to be proved. To prove the convergence of the series of second differences, 
use summation by parts to write

N
n(A26z)„ = <20 — aN — NbN.

n=l

When TV —> oo, the right side tends to 6z0, as required. ■

We can use these techniques to construct trigonometric series in L1 (T). Let {<?„} 
be a convex sequence and consider the sequence of functions

N
sn(0) = ao 4- 2 an cos (n@).

n=l

Recall the Dirichlet kernel and Fejer kernels:

Do(6>) 4----- 4-0)Dn(6) = 14-2cos0 4---- + 2cos(n0), Kn(6) = UV 7------ -
n 4- 1

Inversely,

2cos (nO) = = A((n 4- l)AT)n(6>).

Using summation by parts we can write

TV— i
(1.6.3) sN(0) = ^n(A2a),X-i(0) - NKN^(0)(^a)N + aNDN(0).

n=\

For any 0^0, the last two terms tend to zero, while the first sum remains bounded in 
L1. We define/ e L1 (T) by the Ll convergent sum

co
(1-6.4) f(0) = ^n(A2a)„^_l(0).

n= 1

From the above lemma and the normalization of Kn we see that this series of nonnegative 
terms converges in L1, hence the sum is finite almost everywhere and defines an L[ 
function. It remains to compute the Fourier coefficients. To do this we multiply/^) by 
e~lm0 and integrate term-by-term, by dominated convergence. Thus we have

co
/(m) = ^2n(A2a)„A’„_|(m)

n=0

— TA2 \ fl _ lml\ _
— / w(A d)n 11 | —

n=0 \ n /

the last step being the result of summing by parts twice. Having established that 
a\m\ =f(iri), we can investigate the L1 norms.

Proposition 1.6.9. Suppose that {«„} is a convex sequence and letf be defined by 
(1.6.4). Then the partial sums s^ remain bounded in L1 if and only if{an log n} is a 
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bounded sequence. The partial sums are convergent in Lx if and only if an log n 
0 when n -> oo.

Proof. Returning to (1.6.3) we see that the first two terms are bounded in L1. Therefore 
if sN also remains bounded in L1 the same must be true of the final term anDN. But its 
L1 norm is asymptotic to (A/Tt2)aN log TV, which proves the first statement. To prove the 
second statement, write

oo

sW(0) -fW =
n=N

The first sum tends to zero in L1 when TV —> oo, as does the second term. Therefore the 
convergence to zero of ||sN —/’ll i is equivalent to the convergence to zero of || i,
which is equivalent to aN log TV —> 0, which completes the proof. ■

1.7 *APPENDIX: COMPLEMENTS ON LAPLACE'S METHOD
1.7.0.1 First variation on the theme-Gaussian approximation
The proof of Laplace’s method can be modified at no expense to handle integrals of the 
form

rb 
C(f) = / 

J a

Assume that A(p) and B'\p) are Lipschitz continuous. Without loss of generality, we 
may assume that the maximum of B is attained at p = 0 e (a, b) and that B(0) = 0. 
Thus we apply Steps 1, 2 and 3 of Section 1.1.5 to reduce to

C(t) = A(0) y d/z + 00) .

Applying Step 4 we replace the limits by — oo < p < oo and incur an exponential error 
so that

C(r) = A(0) I e~,klJ-2e^c d/z + 00) .

But this is the Fourier transform of the Gaussian density, hence we have the asymptotic 
formula

All of the error estimates are independent of c, so that this can be used in cases when 
c depends on t. Of course, to provide useful information, it is only interesting when c is 
restrained, for example c = O(y/fp if c is too large the exponential term will be smaller 
than the error term when t oo.

1.7.0.2 Second variation on the theme-improved error estimate
If we have additional information on the function B(pf we can refine the error estimate 
to O(l/n3/2), which comes up in many problems. Specifically, assume that A(p) = 1,
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and that B(/i) is four times differentiable with Bz(0) = 0, B,z(0) = —k < 0, = ib^
for some real. We begin with

C(r) = /
J a

Assuming that the maximum is attained at /z = 0 and that B(0) = 0 we immediately 
reduce to,

C(r) = I e,BW d/j. + O(e~Cl), C > 0.

Now we use the inequality (1.1.41) with zi = B(ji), Z2 = —k/i2 + z/z3/>3/3

|e-^(/z) _ e-r(W/2-/M3^3/6)| < tC^e~tk^/\ -8 <ii<8.

The integral of the remainder term is
p8 poo
I tC^e~tkpl,2> dii < / tC^e~tk^,2> d/i =
J-8 J-oo t 1

as required. Now we use the inequality \ela — 1 — ia\ < a2/2 for a real to write

|e_r(W/2_z>3Z73) _ ^_rW/2 _ /At3z?3e-rW/2| <

The integral of the cubic term is zero, since this is an odd function over a symmetric 
interval. The integral of the remainder term is

t2b2 [ |l(>e~tkpl,2 dii < ?Z?3 [ ii6e~tk^/2 dfi =
J-8 J-oo t 1

Finally we replace the integral over — 8 < /z < 8 by an integral over — oo < /z < oo 
with an exponential error. Thus we have shown that

I / 1 \
(1.7.1) C(t) = I-------------- + <? — , tOO.

\ —tB"(/io) V3/2 /
1.7.1 *Application to Bessel Functions

The modified Bessel functions Im(t) are obtained from the absolutely convergent 
trigonometric series

oo

m=—oo

or explicitly as the Fourier coefficients

1 c71= — / e~irneetC0fiede m = 0,1,2,....

Laplace’s method can be applied here with the choice A(0) = e~ime, which is Lipschitz 
continuous and B(0) = cos 0, which is twice differentiable with B" Lipschitz continuous.
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B has a unique maximum at 3 = 0 with B(0) = 1, B'(0) = 0, B"(0) — — 1, B"'(0) = 0.
Applying (1.7.1) gives the asymptotic result

ef
Im(t) = —= t —> oo.

1.7.2 *The Local Limit Theorem of DeMoivre-Laplace

Laplace’s method is naturally adopted to problems in the theory of probability. In the 
simplest probability model, one considers independent trials of an event whose proba
bility p of success is assumed known with 0 < p < 1. For example, if we have a fair 
coin it is natural to take p = 1/2. If we are rolling dice then it is natural to take p = 1/6, 
if success corresponds to a given face showing.

More general systems of probability distributions will be studied in Chapter 5, 
where we prove a more general form of the central limit theorem, generalizing the 
theorem of DeMoivre-Laplace.

Assuming n trials, this random experiment has 2n possible outcomes, consisting of 
strings of zeros and ones, where 1 corresponds to success and 0 corresponds to failure. 
The probability of a given string with k successes is defined to be //(I — p)n~k and 
the number of such strings is the binomial coefficient (") = n\/k\(n — k)\. This is 
summarized as the statement

a, 
p (1 — p)n .

When we try to compute Pk,nwe find that the maximum value occurs at the integer 
closest to np, and that this maximum tends to zero when n -> oo.

The local limit theorem of DeMoivre-Laplace is the following quantitative 
asymptotic statement:

Theorem 1.7.1. Letx = (k — np)/y/np(\ — p). Then for n oo, uniformly in 
0 < k < n

a
e~x2/2 / 1 \

This theorem shows that the individual probabilities tend to zero, while approxima
ting a bell-shaped curve. In particular if p = \/2 and x = 0, we see that the probability 
of an equal number of successes and failures is asymptotic to ^2/nit when n -> oo.

Proof. First we represent the binomial probability function as the Fourier coefficient of an 
elementary function. Writing q = 1 — p. we let/(0) = pe‘e + q. Then from the binomial 
theorem

(1.7.2) f{e)n = (peie+q)"

d.7.3) =i(f)Pk(l"~keM'
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from which we conclude

(1.7.4)

We cannot apply Laplace’s method directly, since the integrand is not presented as 
an exponential. To find an equivalent exponential form, we note first that for 0 / 0, f(0) 
lies on the segment joining two distinct points of the unit circle, hence \f(0) | < 1 for 
0 < |0| < 7T. Therefore, at the expense of an error which is exponentially small, we can 
restrict attention to the integral over (—5,5). The Taylor expansion of/(0) is

/(0) = 1 + ip0 - p02/2 - ip03/6 + O(04), 0^0.

Choosing 5 so that |1 —/(0)| < 1/2 for |0| < 5, we can define the logarithm 

iog/(0) = iPe - po2/2 - ip03/f> - (i/2)[iPe —p&2/2]2 + (i/3)[iP0 - p02/2]3 + o(e4) 

= ipd -pq02/2 - i(03/6)pq(q - p) + O(04).

The Fourier representation (1.7.4) gives, up to an exponentially small error

1 r8 ___
Pk,n = — I exp(n[ip0 - pq02/2 - i(03/G)pq(q - p) + O(04)] - i@(np + x^/npq)) dd 

£71 J-8
1 r8 ___

= — / exp [—npq02/2 — ix6^/npq — i(n@3/6)pq(q — p) + O(n04)] d0.
£71 J-8

We can apply the first variation of Laplace’s method to obtain the Gaussian approx
imation with c = x^/npq and obtain the required result with an error of O(l/n). To obtain 
the sharper error, we argue directly as follows:

If we ignore the error term in the exponent, we incur an error of at most

«04exp [—npq02/2\ d0 = O

To dispose of the cubic term we again employ the inequality \e,a — 1 — ia\ < a2/2 with 
a = 03/3. The integral involving 03 is zero and the new error term is at most

C5 / 1 \/ «206exp [—npqO2/2\ d0 = O I I.
J-8 \n3/2 J

Having done all this, we have

r8 ___ / 1 \
Pk<n = / exp [—npq02/2 - ixO^/npq] d0 + O\ ).

J-8 \n3/2)

Finally, we can replace the integral over (—5, 5) by an integral over (—oo, oo) at the expense 
of an error

f exp [—npqO2/2 — ixO^/npq] d0 = O (e nP<ie2\ 
J\e\>8 ' 7

From Chapter 2, Example 2.2.7, we borrow the Fourier transform of the Gaussian density:
/»0C /

/ exp [—npqO2/2 — ixOJnpq] d0 = ---- e~*2/2
J-oc \ npq

which completes the proof.
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Exercise 1.7.2. Show by direct calcuation that |/(0)| < l/?rO < |0| < 7t.

Exercise 1.7.3. Suppose thatx = (k — np)/ ^/npq —> oo, so thatx2/2 — logn 
—oo. Show that

p
k,n y/2nnpq

in the sense that the ratio tends to 1 when n -> oo.

1.8 APPENDIX: PROOF OF THE UNIFORM 
BOUNDEDNESS THEOREM

The norm of a linear operator L is defined as

(1.8.1) ||L|| := sup{|L/| : |/| = 1} = sup / o|.

An operator is bounded if ||L|| < oo. The uniform boundedness theorem is the following 
statement.

Theorem 1.8.1. Suppose that £ is a collection of bounded linear operators from 
a Banach space B to a normed linear space Y with the property that for each f G B

(1.8.2) sup{|L/| : L g C} < oo.

Then sup{ ||L|| : L g C} < oo.

To simplify the proof, we first prepare a lemma that will allow us to make a proof 
by contraposition. Specifically, we assume that

(1.8.3) sup{||L|| :Le£} = +oo.

Lemma 1.8.2. Suppose that formulas (1.8.2) and (1.8.3) both hold. Then for each 
n > 1 there exist Ln e T andf„ G B so that

(1.8.4) \fn\ = 4-n

(1.8.5) ILnfn\ > |||Lill I/.I

(1.8.6) |L„/t| >2(M„_i+n)

where Mq = 1 and for k > 1, = sup{|L(/ + • • • +/t)| : L G £}.

Proof. From (1.8.3), there exists L\ e £ with ||Z,i || > 24. From the definition (1.8.1), there 
exists f g B with \f | = 1 and \L\f | > | ULj ||. Setting/! =f\l^ shows that (1.8.4), (1.8.5) 
and (1.8.6) are all satisfied with n = 1. Assuming that/,...,/_], L\, ..., Ln_\, have been 
defined, choose Ln g £ so that \\Ln || > 3 • + n), which is possible by hypothesis
(1.8.3). With this choice of L,„ there exists/ g B so that |/„| = 1 and \Ltfn\ > |\\Ln||.
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Setting/, = fnj4n, we clearly have \fn\ =4 proving (1.8.4). Now

|L,/„| > |4-n||L|| > |4-" • 3 • 4'!(M„_1 + n) = 2(M„_I + n),

which proves (1.8.5) and (1.8.6) for the value n. This completes the proof of the lemma by 
mathematical induction.

To complete the proof of the theorem, we let/ = which is a well-defined
element in the Banach space B, by virtue of (1.8.4). We will show that sup„ \L„f\ = +oo. 
To do this, first note that

(
oo
E/*

k=n+l

oo
< HL II E

k=n+1
oo

= IILII E 4~k
k=n+]

= jllLII \f,I

so that by the triangle inequality we have

IL/I = (
n-1 oo

A + /n + fk

k— 1 k=n+ 1

> iw„| -

> |L^,| - M„_, - jULII I/, I

= {\Lnfn\-Mn-i

which proves that supn \Lnf\ = +oo, the desired contradiction.

1.9 *APPENDIX: HIGHER-ORDER BESSEL FUNCTIONS

Higher-order Bessel functions of integral order are easily constructed beginning with the 
series representation of /o(2r). Differentiating term-by-term, we find

d ^2nr2n~l 1 r(1.9.1) — /0(2r) = E-----75—~ ~ I cosde2 °d0.
dr n!2 n J_„

The right side can be integrated by parts to obtain the identity 
oo r2n 1 p?r
V-------------- = - / sin2 0 e2rco*ed0 :=
£^n!(n+l)! n

Proceeding inductively, we find for each m > 1 the identity 
oo v2n px

A (2r)

(1.9.2)
y----- ---------= / sin2"' 0e2r™ed0 := ^2
“n!(n + m)! 2tt rm

for a suitable choice of the constant Cm.
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Exercise 1.9.1. Prove that Co = 1, Cm+\/Cm = 2/(2m + 1) and conclude that 
Cm = m\22m/(2m)lfor m = 0, 1,....

Equation (1.9.2) provides a definition of the Bessel function Im for m = 0, 1,2,... 
as a power series convergent in the entire complex r-plane. If we interpret the factorial 
in terms of the gamma function, the definition can be extended to all complex values 
of m.

Exercise 1.9.2. Prove that for r > Owe have the inequality \Im(2r)\ < Cmrme2r.

The higher-order Bessel functions can be recognized from the trigonometric series 
for the even function f(0) = e2rcos&. We begin with the power series expansion

2rcos0 _ (2rcos£/

k=0

From the binomial theorem we have

(2cos0)* = £2 Q)(e'W“'V“7' - 22

leading to the absolutely convergent double series

0° k k OO k k
e2rcos0 _ y^ r y-' /K \ w-w _ y' y' r cK2j-k)e

fc=0 j=Q k=Q j=0

If m = 0, 1, 2,..., the coefficient of e~ime is obtained by summing over those indices 
(/, k) for which 2j — k = — m. This is a line of slope +2 in the (/, k) plane, written as 
k = 2j + m. Thus

rk °° r2j+m oo 2/
y — -------= y —-----------= rk y —----------= Im(2r) m = 0, 1,2,..

(j,k):2j—k=mJ v 77 j=0 7 v 7 j=0 J v 7

Noting that f is even, if m = —1, —2,... we obtain the same result with \m\ in place 
of m. Hence we obtain the absolutely convergent trigonometric series 

e2r“^=^/|m|(2r)e^ reC.
meZ

From Parseval’s identity we obtain the unexpected dividend that for r real

2?/|m|(2r)2 = 2. [ e4r^ed&=I0<Ar).
meZ 27Z ■'T

Bessel functions will be useful in Chapter 2 when we consider Fourier transforms in Rn.

1.10 APPENDIX: CANTOR'S UNIQUENESS THEOREM

Trigonometric series can be considered apart from the framework of Fourier series, as we 
have indicated in the opening section of this chapter. In most of our work we operate in 
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the framework of Fourier series. Nevertheless it is still useful and instructive to explore 
a larger context. The next result is a basic theorem in this direction.

Theorem 1.10.1. Suppose that we have two trigonometric series ^2nE%Aneinx 
and ^nE%Bneinx that converge to the same sum for every x e T. Then An = Bn 
for all n € Z.

By considering the difference, we can immediately reduce to the case Bn = 0. 
Thus we are given

N
(1.10.1) ^2 -> 0, N oo, xeT,

n=-N

and we must prove that An = 0.

Lemma 1.10.2. Cantor-Lebesgue theorem: If^nE%Aneinx converges for all 
x in a set E of positive measure, then lim^^co An = 0.

Proof. Since the series converges, we have lim^^ootA^e'^ + A-ne~inx] = 0. By taking the 
real and imaginary parts we obtain two terms that may be written in the form an cos (nx+</>„), 
for which we must prove that an 0. Assume not; then there exists 6 > 0 and infinitely 
many indices n\ < h2 < • • • so that | > 6. Dividing by |, we conclude that cos (nkx+ 
(j)nk) 0. Squaring this and using the double-angle formula, we have (1 + cos (2^x))
0 on E, with |E| >0. This is a sequence of uniformly bounded functions, which we can 
integrate and take the limit. But if we apply the Riemann-Lebesgue lemma to IE, we conclude 
that the second integral tends to zero, thus \E| = 0, a contradiction. ■

Riemann introduces the function

(1.10.2) F(x) = ^-£^e'”\

Since An -> 0, this is an absolutely and uniformly convergent trigonometric series, espe
cially a continuous function whose Fourier coefficients may be retrieved by integration. 
In order to implement the basic hypothesis of convergence, Riemann considers the second 
difference quotient

niira F(x + h) + F(x — h) — 2F(x) y, ./sinnA/2 V

From exercise (1.4.28), the right side defines a regular method of summability; given 
(1.10.1) we see that (1.10.3) tends to zero when h -> 0. To complete the proof we develop 
some ideas of convexity to prove the following lemma.

Lemma 1.10.3. Suppose that F is a continuous function defined on some inter
val so that lim^oC^C* + h) + F(x — h) — 2F(x))/27z2 = 0. Then F is a linear 
function: F(x) = ax + b for suitable constants a, b.
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Proof. Introduce Fe (x) = F(x) + ex2, a continuous function that satisfies

(1.10.4) lim[Ff(x + A) + Ff(x-A) -2F6(x)]/7z2 = 2e > 0.

We will prove that F( (x) is a convex function. Suppose not; then there is an interval (a, b) 
and a linear function g(x) = rx + s so that Ff (a) = g(a), Fe (b) = g(b) and Ff (x0) > g(x0) 
for some x0 G (a, b). The difference Ff (x) — g(x) has a positive maximum at some point 
xmax £ (a, Z?). At this point we must have the inequality Ff (x + h) + Ff (x — h) — 2F€ (x) < 0 
for small h. But this contradicts (1.10.4), so we have shown that Ff is a convex function. 
But F is the limit of the sequence of convex functions Fe, hence also convex. Applying 
the same reasoning to —F, we conclude that —F is also convex, hence F must be a linear 
function.

To complete the proof of the uniqueness theorem, from (1.10.3) for any h / 0, we 
may retrieve the Fourier coefficients as

/sin„ft/2\2 1 f F(x + h) + F(x — h) — 2F(x)
An —T7S- = ------------------e dx = ° (« / °)\ nh/2 / 2tt h2

whereas
A 1 /* F(x + /z) + F(x-/z)-2F(x)
Ao = — / --------------------------------------dx = 0.

2tt h2
The proof is complete. ■

Exercise 1.10.4. Suppose that ^ne%Aneinx converges to zero for all x e T\ 
{xi,..., Xt}. Modify the above proof to show that An = Ofor all n 6 Z.

Hint: F(x), defined by (1.10.2), will be piecewise linear.
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FOURIER 

TRANSFORMS 
ON THE LINE 

AND SPACE

2.1 MOTIVATION AND HEURISTICS

In parallel with Chapter 1, we can motivate the theory of the Fourier transform on the 
real line by considering an absolutely convergent trigonometric integral

(2.1.1) f(x) = [ C(&e^dt-, 

Jr
I iccni^ <oo.
R

where

In order to retrieve the coefficient function C(£) we multiply (2.1.1) by e "lx and integrate 
over x g [—7, 7];

e irixf(x) dx =
( C^)([ e^-^xdx\d^
R \J—T /

Jr ~

One cannot immediately take the limit 7->oo without further hypotheses. If, for exam
ple, C(£) satisfies a Dini condition, then one can show that the right side converges to 
2?rC(£) so that

(2.1.2)
C(|)= lim -L [Tf(x)e-^d^, 

t^-oq 2tt J_t

which can be used to motivate the definition of the Fourier transform. The following 
exercise shows that C(£) can be retrieved under the hypothesis of continuity.

89
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Exercise 2.1.1. Show that

fT (f‘ e-^fWdx) dt = 2[ 1 C0ST(\2 ^C^d^.

1 y 
Py(x) =------------ - y > 0, x e R,

} 7T y2 + x2

which has the properties of a positive approximate identity:

(2.1.3) Py(x)>0, I Py(x)dx=l, I Py(x)dx^Q (y 0).

Exercise 2.1.3. Use the previous example and formula (2.1.2) to compute

T Jo \J-t J A (£ - fr
Conclude that if C is continuous, then the right side converges to 2ttC(t/) when 
T oo.

Example 2.1.2. Let C(|) = e for y > 0, x e R. Then

I e~^e~^ 
o

1
= 2 Re--------

y + ix

2y

Apart from a constant, this is the Poisson kernel in the setting of the real line. The 
normalization is obtained from the elementary calculus integral for dx/(l +x2) = tt. 
Thus we have the normalized Poisson kernel

A more classical motivation, which goes back to Fourier, is to begin with a Fourier 
series on the interval [—L, L\ :

(2.1.4)
neZ

(2.1.5) Cn = L [L f{x)e-mxlL.

Z'L J-L

These formulas will now be rewritten in terms of the functions

Fl(jO = [ f(x)e~l>zx dx, F(/x) — ( f(x)e~!l,‘dx.

J —L JIR



FOURIER TRANSFORMS ON THE LINE AND SPACE 91

Letting /jLn = nit/L, we have (A/z)n = rt/L so that we can write (2.1.4) as a formal 
Riemann sum

(2.1.6) /(x) ~ L £
Z7T neX

Formally taking L oo, we find

f(x) ~ 2_ [ F(jx)e,ixx d/x, F(jx) = [ f(x)e~'IJX dx. 

Ln: Jr Jr

In order to have a more symmetrical theory, we let p, = in the first integral, to 
obtain

(2.1.7) /(x)~ / F(27r|)e2jr'^^, F(2tt|) = / f{x)e~2^xdx.
</R J R

This symmetrical form will be in force in the systematic approach beginning in 
Section 2.2. In case f is real-valued, (2.1.7) can also be written in terms of real-valued 
functions by writing F(/z) = |[A(/z) — ZB(/z)] to obtain

/>OC
(2.1.8) f(x)~ / [A(2tt£) cos(2tt£x) + B(2tt£) sin(27r£x)]6/£.

Jo
The above transformations are purely heuristic, with no pretense of rigor. We 

will show in the following sections that they can be systematically developed to obtain 
a powerful theory of Fourier analysis on the real line and in Euclidean space.

2.2 BASIC PROPERTIES OF THE FOURIER TRANSFORM

In order to formulate an unambiguous theory, we begin with a complex-valued, Lebesgue 
integrable function on Euclidean space, denoted by/(x), x e R”. The Fourier transform 
is the complex-valued function/(£),£ e R" defined by the integral

(2.2.1) /(?) = (J7)«) := [ f(x)e~2^xdx.

JR"

The Euclidean dot product is £ • x = Y^j=\ %jxj-
The basic elementary properties of the Fourier transform are summarized in the 

next statement.

Proposition 2.2.1. Letf e Ll(Rn). Then

• Continuity: % i-> /(£) is a uniformly continuous function.
• Contraction: The mapping f f is norm-decreasing from Ll to L00, in the 

sense that

(2.2.2) \FfW\<! |/(x)|6?x:= H/lh.

Jr"
• Linearity: IfF\ is the Fourier transform off and Fz is the Fourier transform of 

fz, then a\F\ + azFz is the Fourier transform ofa\f + aifi, for any choice of 
the complex constants a\, az.
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• Translation and Phase Factor: If F is the Fourier transform of f, then 
e-'i7iia^pour[er transform off(x — a), and F(% + Z?) is the Fourier 
transform of e~27Zlb xf(x).

• Multiplication and Convolution: IfF\ is the Fourier transform of fa and Fz is the 
Fourier transform of fa, then F^Fi is the Fourier transform of (fa * fa), where 
the convolution of two functions is defined by the integral

(/1 * fl) W = [ ft (y)fi(x - y) dy.

• Differentiation and Multiplication: If the partial derivative (df /dxfa exists and 
is in L1 (Rn), then 27ri$jf(£) is the Fourier transform of (df /dxf).
If Xjf gL1 (Rn), then (df/d%fa(£) exists and is the Fourier transform of 
—2jrixjf(x).

• Fourier Transform of Radial Functions: If f(x) = <p(|x|) for some 
<p gL1 (R+; rn~xdr), then /(£) = ^(lll) for some if G C(R+). Restated, the 
Fourier transform of a radial function is again a radial function.

Proof. To prove the uniform continuity, we write

/(? + h) -fa) = [ - e~2^]f(x) dx
JRn

= f e~2”'* x[e~2”lh x — l]f(x) dx
JR1'

\fa + h) -fa)| < [ \e-Mhx - 1| |/(x)| dx
JR"

= (f +1
Given 6 > 0, the second integral can be made less than 6 by taking M sufficiently large. 
The first integral is majorized by

27r|/i| [ \x\\f(x)\dx.
J\x\<M

Therefore with the above choice of M, we have

limsup sup |/(? + h) -fa)\ < e.
A->() SeR"

But 6 was arbitrary, which proves the uniform continuity. The linearity and phase factor 
properties are direct computations. The existence of the convolution of two L1 functions 
is guaranteed by the Fubini theorem, when we consider the functionfa(z)fa(y) in R2" and 
make the substitution z = x — y:

oo / \fa(x-y)\dx]dy

/ \fa(x-y)fa(y)\dy]dx.> /
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The joint measurability of the product fAztfiiy) is established by writing f\(z) = 
lim/v k2~Nlk2-»<f<(k+iYi-N and similarly for /2(y)- The product is then written as 
a pointwise limit of simple functions, especially jointly measurable.

Therefore the convolution is finite almost everywhere and defines an L1 function 
with H/i *72II < ll/i ||i ||/2 Hi- Now we can compute

F2(?)A(?)= f e-^'^fAy^dzdy
Jr2"

= [ e~^f2 (y) ( [ (x - y) dx j dy
Jr" \Jr" /

= f e~2”^x ( f f}(x- y)f2(y) dy\ dx.
JR" \Jr" /

The differentiation and multiplication properties will be proved below in a more amplified 
context. Finally, if f is a radial function, then we consider a rotation 7Z in the £-space, 
making the change-of-variable y = 7Vx with |y| = \x\,dy = dx:

f(T^)= [ V(.\x\)e-2^X dx = [ <p(\x\)e-2^n'x dx
Jr" Jr"

= [ <p(\y\)e~2^y dy =fa), 
Jr"

which shows that f is invariant by rotations, hence a function of |£ |.

We will also need a form of the Fourier reciprocity formula.

Lemma 2.2.2. Suppose thatf e L1 (Rn) and i/r e L1 (RH) are integrable functions 
with Fourier transforms f and Then we have the identity

(2-2.3) [ ^(^f^)d^=[ f(x)^(x)dx.

JR" J^n

Proof. We use the Fubini theorem to write

[ ^f(.^d^=[ w([ f(.x)e-2”^xdx\d^ 
R" Jr" \Jr” /

which was to be proved.

This applies in particular to a convolution operator with respect to a kernel 
which is written as an L1 Fourier integral. In detail, if K(x) = fRn k(£)e2Tri^x d% with 
keL\Rnf then 

(2.2.4) <e2^xd^.
R'
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Exercise 2.2.3. If jjl is a finite Borel measure on R", its Fourier transform is 
defined as jl(fi) := fRn e~2jri^‘x p (fix). Prove that if /z, v are finite Borel measures on 
Rn, then we have the Fourier reciprocity formula f^n v(x) p, (fix) = fRn p(fi)v(fifi).

2.2.1 Riemann-Lebesgue Lemma

The most basic analytic fact about the Fourier transform is the Riemann-Lebesgue lemma, 
expressed as follows.

Theorem 2.2.4. For any f e lf(Rn)

lim /(£) = 0,
|£|—>oo

and the convergence is uniform on compact subsets of Ll (RH).

Proof. From inequality (2.2.2), we need only prove this for a dense set of functions in the 
L1 norm. From the dominated convergence theorem,

[ \f(x)\dx-+0, [ \f(x)\dx-+0
J\x\>M J [x:\j (x)\>M}

when M —> oo, so that we can approximate f in the L1 norm by a bounded measurable 
function/, which is supported on the cube [—M, M]n. By rescaling we may suppose that 
M = 1. Now/ can be uniformly approximated by the simple function

„ 2n
f= y? N 1)2-^ <f<k2~N}

k=-2N

so that ||/ —/||i < 2 x 2~N. Now we will prove that the theorem holds for any simple 
function,/ = ^k=i ck ^-Ek where Ek are measurable subsets of [—1, I]'7 and ck are arbitrary 
complex numbers.

In case of an indicator function/(x) = n"=1 l^fix), the Fourier transform is 
computed explicitly as

” rbj ,n _ _ p-27ii^aj

which clearly tends to zero if at least one of the coordinates —> oo. By Proposition 2.2.1,
the same is true if / is the indicator function of a finite union of intervals.

Now if E is any measurable subset of [— 1, 1 ]n, there exists a finite collection of open 
cubes {CJ with union U = UjCj so that the Lebesgue measure of the symmetric difference 
EAU is less than 6. In particular || 1^ — 1£|| i < 6 so that

|^(lt/)(?)-^(l£)(?)| < IHu-Mi <6.

Therefore, FlE(%) 0 when |£| -> oo. This extends immediately to finite sums/ = 
SLi c>: If, ar)d the proof is complete. To check the uniform convergence on compact subsets, 
follow the same reasoning as in the proof in Chapter 1. ■

For a general Ll function, there is no universal rate of decrease to zero. However, if we 
asssume some differentiability, we have the following fact.
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Proposition 2.2.5. If the partial derivative (df /dxj) exists and is in L1 (R'2), then 

2tti%j f (£) is the Fourier transform of (df /dxj)(x). In particular

lim !;/(!)= 0.

More generally if a = (ai, ..., an) is a multiindex, and the mixed partial derivative
IFf e C(R"), then

Proof. Without loss of generality suppose that j = 1. First, note that by Lebesgue theory, 
f(x, x2,..., xn) —f(y, x2,... ,xn) = fxfX} (z, x2,..., xn) dz, which shows that f must have 
a limit when Xi -> oo , which can only be zero, since f g L’(R'’). Now we apply partial 
integration for 0:

/(£) = [ f(x)e 2xl'x dx = lim [ f(x)e 2n'^ dx 
JR"

Integrating this over x2,...,xn proves the identity 2ni^f(^) = F(fX})(^). Repeat
ing this procedure and using mathematical induction shows that for any multiindex a, 
(2tt it; )af (£) = F(Daf) (£) from which the result follows by the Riemann-Lebesgue lemma.

A dual property is afforded by the next statement, where |a| := H----- + an.

Proposition 2.2.6. Suppose that \x\k\f(x)| dx < oo. Thenf is differentiable 
to order k and

fOQ
Daf($)= I (—27Tix)af(x)e~2Tri^xdx |a| < k.

J—co

Proof. To prove the formula for k = 1 we apply the dominated convergence theorem, using 
the inequality \eie — 11 < |01 for 0 real. The general result follows by mathematical induction.

■
Example 2.2.7. A basic example with n = 1 is provided by the Gaussian density 
function

f(x) = e~”x\

To see this, we differentiate the Fourier transform:

/'(?) = (—2rtix)e 27ri^xf(x) dx.
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But the Gaussian density satisfies the differential equation/' = —2tcx f(x), so that 
we may apply Proposition 2.2.5 and integrate by parts to obtain

/'(£) = [ (-2nix)e~2,ni>xf(x)dx

= i [ e~2ni^xfr(x)dx

A
= —2tt£ [ e~2Ttl^xf(x) dx

= -2tt?/(O.

The unique solution of this equation with the condition/(0) = 1 is/(£) = e , and 
the example is complete.

Exercise 2.2.8. Show thatf(0) = 1.

Hint: Do the double integral off(x)f(y) in polar coordinates.

This example may be immediately extended to to obtain the Fourier pair

(2.2.5) f(x) = e~^\ =

The Gaussian density provides a concrete example of Fourier inversion.

(2.2.6) [ fa)e2**xdl; =f(x)

JR"

Exercise 2.2.9. Check the previous statement from the formulas above.

The Gaussian density is a simple example of a rapidly decreasing function. To 
define this notion in general, introduce the seminorms

||/|k,m := sup(l + |x|)*|D“/(x)|
xeR"

where a = («i,..., an) is a multiindex, Da = (d/dxi)a' • ♦ • (d/dxn)an, andm = |a| := 
aid------- \-an. The Schwartz class S of rapidly decreasing functions is defined as the set
of complex-valued functions that are infinitely differentiable and for which ||/|k,Z71 < oo 
for all m, k. From Proposition 2.2.5 and Proposition 2.2.6, the following proposition is 
immediate.

Proposition 2.2.10. The Fourier transform maps the space S into itself.

In the next subsection we will show that this mapping is 1:1 onto the space S.
The Gaussian density example in n = 1 can be transformed into additional 

examples by successive differentiation of the Fourier transform.
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Thus

e-^e-2^x dx =

e 71x1 (—2rcix)e 2tii^x dx = (—2jr£)e ^2, 

e 71x1 (—2nix)2e 2Tri^x dx = [(—2tt§)2 - 2n]e ^2,

and so forth. This is closely related to the Hermite functions, which will be discussed in 
Section 2.4.5.

2.2.2 Approximate Identities and Gaussian Summability

On the circle we had the Abel and Cesaro means to regularize the convergence of Fourier 
series. Suitable analogues of these exist in the context of one-dimensional Fourier trans
forms, and will be treated. However there is a more natural and symmetrical approximate 
identity, the Gauss-Weierstrass kernel, which applies in higher dimensions as well as in 
one dimension. From the example of equation (2.2.5), we replace x by xl^/^t to obtain 
the identity

(2.2.7)
Ht(x) := f xdl- =

JR"

exp (—|x|2/4r) 

(47rr)n/2

This is also called the heat kernel, since it is a solution of the equation dH/dt = 
Y^j=[ d2H/dx2. It has the following three basic properties:

(2.2.8) Ht(x)>0, [ Ht(x)dx=l, / Ht(x)dx-+0 (t 0).
JR" t/|x|>5

Exercise 2.2.11. Prove that Ht(x), defined by the integral (2.2.7), satisfies the 
n-dimensional heat equation.

Exercise 2.2.12. Check the three properties (2.2.8).

Notation. We will use the notation Hfi for the convolution Ht * f. It will always 
be clear from context whether we are dealing with the kernel or with the convolution 
operator.

Applying the Fourier reciprocity formula (2.2.4) to (2.2.7) yields a useful identity 
for Hfi:

(2.2.9)
Htf(x)= f f (x — y)Ht(y) dy — [ e-4^'2f^)e2jri^
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Definition 2.2.13. An approximate identity in R" is a family of functions kt(y) 
defined for t in some directed index set, with the following three properties:

(2.2.10) sup [ \kt(y)\dy < oo

t Jw

(2.2.11) lim [ kt(y)dy=l

1 Jw

(2.2.12) lim / \kt(y)\dy = Q.

These properties are clearly satisfied by Ht, for example.

Exercise 2.2.14. Show that the Fejer kernel, which is defined on R by kT(x) = 
(1 — cos Tx)/ttTx2, is an approximate identity, where T G (0, oo) the limits are 
taken as T oo. Assume known that /K(l — cosx)/x2dx = yr.

Exercise 2.2.15. Show that the Poisson kernel, which is defined on R by ky(x) = 
y/[7t(y2 + x2)], is an approximate identity, where y G (0, oo) and the limits are 
taken as y 0. Assume known that 1/(1 + x2) dx = yr.

Exercise 2.2.16. Suppose that kt(x) is an approximate identity. Prove that iff is 
a bounded function with lirn^o/(x) = L, then limr fRll kt(x)f(x) dx = L.

The examples of Gauss, Poisson and Fejer can be abstracted as follows.

Exercise 2.2.17. Suppose that K G L{ (Rn) with K(x) > 0, K(x) dx = 1 and 
set kfx) = t~nK(x/t). Prove that kt is an approximate identity, where the limits 
are taken as t 0.

A homogeneous Banach space B is a Banach space of complex-valued functions 
on Rz? whose norm satisfies the properties

Wfyh = \\f\\B, Vy e R” and lim \\fy -f\\B = 0

where fy is the translation of f, defined as/v(x) =/(x — y).

The following examples of homogeneous Banach spaces occur frequently.

Example 2.2. 18. B = Z/(R"), 1 < p < oo is a homogeneous Banach space.

This follows from the translation invariance of the Lebesgue integral and a density 
argument, beginning with continuous functions with compact support.

Example 2.2. 19. B = Buc(f^), the space of bounded and uniformly continuous 
functions on Rz? with the supremum norm, is a homogeneous Banach space.

Clearly the norm is translation invariant. The continuity of y fy is equivalent to 
the definition of uniform continuity of f.
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Example 2.2. 20. B = Co(R'2), the space of continuous functions vanishing at 
infinity, is a homogeneous Banach space.

As a closed subspace of Buc(Rn), B is a homogeneous Banach space.

In the following theorem we will assume, without loss of generality, that the limit 
in the directed index set is taken as t 0.

Theorem 2.2. 21. Suppose that B is a homogeneous Banach space and 
kt is an approximate identity. Then fRll kt(y)fydy eB whenever feB and 
fRll kt(y)fy dy f in the norm of B when t —> 0.

Proof. fRII kt(y)fy dy can be computed as the limit of Riemann sums. But any finite sum 
is a linear combination of elements of B, hence in B. The B-norm of any finite Riemann 
sum is bounded by ||/||fi times the Riemann sum for fRtl |£,(y)| dy which is uniformly 
bounded. From this it follows that the Riemann sums converge in the B-norm. To study the 
convergence when t —> 0, we write

| ktlyYfy-frdy
R"

< [ kt(y)\\fy-f\\Bdy
B JRn

I +/ ]\kt(y)\\\fy-f\\Bdy.
(|y|<5} J{|y|>5}Z

The integral over |y| > 8 tends to zero for any 8 > 0. Given 6 > 0, we choose 8 > 0 so 
that \\fy — f\\B < 6 for |y| < 8. Then the first integral is less than Ce. With this choice of 5, 
we have

lim sup k.(y)(fy ~f)dy
R"o

< Ce
B

for any 6 > 0. The proof is complete.

Corollary 2.2.22. i): If f G Buc(Rn), then Hf converges uniformly to f: 
\\Htf —/loo -> 0 when t 0. ii): If f G L/7(R'2), 1 < p < oo, then Htf converges 
in U: \\Htf -f\\p -+ 0 when t -> 0.

Proof. These follow immediately from Theorem 2.2.21 when applied to the heat kernel on 
the spaces B = Buc(Rn) and B = Lp(Rn). ■

Corollary 2.2.23. If f e if (Rn) andf = 0, then f = 0 a.e.

Proof. By Fourier reciprocity, the heat kernel convolution operator can be written

(2.2.13) [ Hl(y)f(x-y)dy = ( e-4”2'™2f&e2’’** d$.
Jw Jr"

If/ = 0, then Hf = 0 and by Corollary 2.2.22 / = 0 a.e., which was to be proved. ■

Exercise 2.2.24. Let B be the space of complex-valued functions for which 
/R(|/WI)/(l + t2) dt < oo. Consider the Poisson kernel operator Py: f 
rc~i fRyf(t) dtjiy2 + (x — r)2). Show that Py maps B to B and that Pyf f 
when y 0.
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2.2.2.1 Improved approximate identities for pointwise convergence
In the case of one dimension, we can obtain pointwise convergence at additional points 
under additional conditions on the functions kt, assumed to be of the form t~xK(x/f). 
From Exercise 2.2.17 any such kernel is an approximate identity, hence we have con
vergence at points of continuity of a test function f. The following theorem formulates 
supplementary conditions for convergence at additional points.

Theorem 2.2.25. Suppose that K is absolutely continuous with K(x) > 0, 
K(x) dx = 1, K(—x) = K(x) and xK'(x) < 0. Then

• (i): x (—2x/t2)K'(x/t) is an approximate identity on [0, oo).
• (ii): limz^o t~x fRK(x/t)f(x) dx = L z/limv_>o(l/2x) f*x f(t) dt = L.

Proof By partial integration, for any M > 0 we have

(2.2AA) MK(M) = / K(x)dx + / xK'(x)dx.
Jo Jo

When M oo, the first term on the right tends to 1/2 and the second term has a limit 
G [—oo,0). But K(x) > 0, hence there exists C = limM-^oo MK(M) G [0, oo). Since 
f™ K(x)dx = 1/2 < oo, we must have C = 0. Taking M oo in (2.2.14) shows that 
/0°° xK'(x) dx = —1/2. Now for any 8 > 0,

-[ ^K'(^dx = -[ yKr(y)dy

which tends to zero when t 0. In addition,

- ( iiK' (~J)dx = ~ ( yK'wdy = 1 
JR t \t / Jr

which proves (i). To prove (ii), we define F(x) = fx_xf(u)du = fx \f(u)+f(—u)] du, which 
satisfies F(0) = 0, |F(x)| < 211/Hj and F(x)/x —> 2L when x —> 0. Partial integration 
yields

where we have used the bounds on F(x) and K(x) to discard the term at the limits. But 
F(x)/x —> 2L and (—2x/t1)K'(x/t) is an approximate identity on [0, oo), so that (ii) follows 
from the basic properties of approximate identities (Exercise 2.2.16). ■

Replacing/(•) by f(x + •), we obtain a more generally applicable form of the 
theorem.

Corollary 2.2.26. Under the above conditions on K, we have for any f g L1 (R),

limy f K(^)t(x + y)dy = limf- ( f(u)du 
t->Q t J^ \t / h-+0 2h Jx-h

wherever the latter limit exists, in particular for almost all x G R.
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Note that the set of admissible x is precisely the set of points where the funda
mental theorem of calculus applies, in the sense of the symmetrical limit. In general 
this is strictly larger than the Lebesgue set, defined as the set of points x where 
lim/,_>o(1/2/z) \f(u) —f(x)\du = 0.

Exercise 2.2.27. Show that the Poisson kernel, withK(x) = 1/tt (1 +x2) satisfies
the conditions of Theorem 2.2.25. In particular

1ft 1 fx+h
lim “ / TFTj--------w dy = dy
r-*o 7T J]r t2 + (x - y)2 /i-»o 2h Jx_h

wherever the latter limit exists, in particular almost everywhere.

Exercise 2.2.28. Prove that the one-dimensional Gauss kernel satisfies the condi
tions of Theorem 2.2.25, in particular

1 f 7 1 fx+hHm -= / e~(x~y) /4'f(y) dy = Jim — / f(y) dy 
y/4nt jjr 2h Jx_h

wherever the latter limit exists, in particular almost everywhere.

Exercise 2.2.29. Prove that the Fejer kernel does not satisfy the conditions of 
Theorem 2.2.25.

Theorem 2.2.25 does not apply directly to the Fejer kernel, where K(x) = 
(1 — cosx)/7rx2. In order to deal with this and other oscillatory kernels, we introduce 
the notion of monotone majorant. This is a function K G Lx (R), which satisfies

(2.2.15) |7C(x)| < K(x), K(—x) = K(xf xKf(x) < 0.

Note that we do not require that K(x)dx = 1, so that we cannot expect, for exam
ple, that t~xK(x/t) be an approximate identity. However we have the following useful 
replacement for Theorem 2.2.25.

Lemma 2.2.30. Suppose that K e L\R) satisfies (2.2.15). If |c(x)| < M for 
x > 0 with limA_^o g(x) = 0, then

f^° x - /x\lim / — Kf ( - ) c(x) dx = 0.
JQ t2 \tl

Proof. Following the steps of the proof of Theorem 2.2.25 with K replaced by K, we see 
that lim v_>oc xK(x) = 0, — f™ xK'(x) dx < C < oo. For any 8 > 0

Taking 6 = 0 shows that — f^(x/t2)Kr(x/t) dx < C. For any 8 > 0, both terms on the 
right side of (2.2.16) tend to zero when r —> 0. Therefore

/ r^'(j)w)dx < C sup |e (x) | + M
0<x<8

First take t —> oo and then 6 —> 0 to complete the proof.
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This allows us to reformulate and prove Theorem 2.2.25 as follows.

Theorem 2.2.31. Suppose that K defines an approximate identity with a mono
tone majorant satisfying (2.2.15). Then

(22AT) lim - [ K \f(x + y) dy = L
'-ot \t/

at every x for which lim/^o (1 /2/z) \f(x + y) — L\ dy = 0.

Proof, Without loss of generality, we take x = 0 in the proof. Since f^K(x) dx = 1, we can 
write

It remains to show that the last term tends to zero. For this purpose, define F(x) = 
flx \f(u) ~ L\ du, sothatF(O) = 0, F(x)/|x| Owhenx 0and|F(x)| < 2L\x\ + ||/|| ।. 
Then

| ( K (f (y) — L) dy < '- [ K F}\f(y) - L\dy
t JK X 1 7 t JR 7

where we have used the bounds on K(x), F(x) to discard the terms at the upper limit in the 
integration-by-parts. Now we use Lemma 2.2.30 with e(y) = F(y)/y:

completing the proof. ■

Exercise 2.2.32. Show that for the Fejer kernel, withK(x) = (1 — cosx)/7rx2 we 
may take K(x) = 1/(1 + x2) as a monotone majorant.

Hint: Check that 1 — cosx < ttx2/(1 +x2) for all x. Consider separately |x| < 1 and |x| > 1.

Corollary 2.2.33. If the approximate identity defined by K (x) has a monotone 
majorant, then for any f G L](R), andx g Leb(/)

iim| /* K^f^ + y^y^fM- 
'-0 t \t/

We now return to the development of the Fourier transform.

2.2.2.2 Application to the Fourier transform

Theorem 2.2.34. The Fourier transform is a 1:1 map from the space S onto itself.
In particular every f eS can be recovered from its Fourier transform as 

f(x)=[
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Proof. Since the Fourier transform is a linear map, it suffices to show that/ = 0 implies 
f = 0 a.e., which was just proved in Corollary 2.2.23. To prove the onto property, note that 
since/ g 5, in particular in L1, so that we can take the limit under the integral in (2.2.13) 
to obtain/(x) = fRnf(j;)e27Tl<^x> d%, which represents / as the Fourier transform of the 
reflected function x —> /(—x). This proves the onto property. ■

The almost everywhere convergence of the heat kernel transform cannot be 
proved from the abstract properties of approximate identities. The one-dimensional 
case is covered by Exercise 2.2.28. For the n-dimensional case the statement and proof 
follow:

Proposition 2.2.35. then lim^o///(x) =/(x) where lim^or n
\<r(f(y) dy = 0, in particular almost everywhere.

Proof. We let
<I>(r) := [ (f(y)~f(x))dy= [ [ (f(x + po)-f(x))pn 1 dp da),

J\y-x\<r J() JS"-'

a continuous function of bounded variation. Clearly |4>(r)| < fR„ \ f\ + Cnrn\f(x)\ and by 
hypothesis <t>(r)/rn 0 when r 0. Now we can write

r e-bl2/4/
-/(x) = / (/(x +y) -fW>~——B dy

JR" (47TZ) /-

z-oo —r2/4/
= / -------- n d^(r)

Jo (47rr)/,/2
/•OO re r2/4t

-J,
To prove that this tends to zero, let e(r) = <J> (r)/r/7, a bounded function that tends to zero 
when r -> 0. Then we make the change of variable r = stl/2 to obtain

re~r2/^

pOG —_S2/4

The integrand tends to zero and is bounded by an integrable function, completing the proof.

The Lebesgue set of a function f g L1 (Rn) is defined by

(2.2.18) Leb(/) = {x € r : lim r~n [ \f(y) -/(x)| dy = 0}.

z->0 J\y-x\<r

Clearly

x G Leb(/) lim r~n [ f(y) dy = C„f(x)

J\y-x\<r

where the dimension constant Cn is the volume of the unit ball in R'2. But the converse
is not true, in general. [Consider/(x) = l|-i,i] sgn (x)/VM at x = 0 in R.] In this 



104 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

terminology, Proposition 2.2.35 implies that H/(x) -> f(x) for all x e Leb(/). This 
example is an instance of the fact that many of the almost-every where results in harmonic 
analysis are proved on the Lebesgue set.

Exercise 2.2.36. Extend the result of Proposition 2.2.35 tof e Lp(Rn) where 1 < 
p < oo.

Hint: Use the Holder inequality to check the bound on 4>(r).

We can use Gaussian summability to extend Fourier inversion beyond the space S.

Proposition 2.2.37. (i) Suppose thatf G L1 (Rn) has an integrable Fourier trans
form: f e L^R"). Then f is almost everywhere equal to a continuous function, 
and we have

(2.2.19) f(x) = [ f(^e2^ xd^ a.e.

(ii) Conversely, suppose thatS(x) = lim^ f^^<Mf^)e2Tri^'xd^ exists. ThenS(x) = 
/W a.e.

Proof. From Fourier reciprocity, we have

Hf(x) = [ f^e~^2e2^xd^.
JR"

Appealing to Proposition 2.2.35 shows that the left side tends to/(x) almost everywhere, 
whereas the right side converges by the dominated convergence theorem.

For the converse, let Sr = f^^<rf^)e27ll^'x d^, the so-called spherical partial sum. 
Using So = 0 and Sx = S(x), we can write

H,f(x) = / e~47,V dS, 
Jo

= f 8tt2tre~^2"'2 Sr dr
Jo

fog
HJtx) - 5(x) = / 87r2?re-4’r2"'2[5,. -5(x)]dr.

Jo

It is easily checked that r kt(r) 87r2rre_47r2"2 has total integral 1 and that for any 
M > 0, limz^o f™ kt(r) dr = 0, from which the result follows immediately. ■

Proposition 2.2.38. Suppose that f e Z?(Rn) has a nonnegative Fourier trans
form: f(£) > 0 and 0 G Leb(/). Then f e L^R”), in particular f is a.e. equal to 
a continuous function.

Proof. Take x = 0 in (2.2.13) and apply Fatou’s lemma. ■

Warning. The alert reader may note the difference between the notion of 
“almost everywhere equal to a continuous function” and the weaker notion of “continu
ous almost everywhere.” For example, the indicator function of an interval is continuous 
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almost everywhere, but it is not a.e. equal to a continuous function. Continuity a.e. is a 
local notion, whereas the stronger concept is a global notion.

Exercise 2.2.39. Suppose that f eL[(Rn) has integrable partial derivatives of 
order n + 1: Daf eL’(T) for any multiindex with |a| < n + 1. Prove that 
f G L1 (Rn) and hence Proposition 2.2.37 applies to give Fourier inversion.

We will see in the next section that pointwise Fourier inversion holds with n/2 
derivatives instead of n + 1.

The heat kernel convolution operator, which was initally defined on the space 
Lx (Rn), can be naturally extended to functions satisfying either of the growth conditions

(2.2.20) |/(x)| <

or

(2.2.21) f \f(x)e~BM2dx < oo.

JiR"

Proposition 2.2.40. Suppose that f satisfies either (2.2.20) or (2.2.21). Then 
u = Htf is defined for 0 < t < B/4 and is a solution of the heat equation ut = uxx 
for which limr_^o Htf(x) = /(*) at every point of continuity off.

Exercise 2.2.41. Prove these statements, noting that one must work directly with 
the heat kernel transform, since the Fourier transform is not applicable to this 
class of functions.

The heat kernel can be used to prove that S is dense in each of the Lp spaces, 
1 < p < oo. First note that the set of IP functions with compact support is dense in Lp. 
Now if f has compact support, the Fourier transform / is infinitely differentiable with 
bounded derivatives. For such an/ and any multiindices a, f we can write

#/(*)= [ e2*ix*ftf)e-4*2,W2 di;

DaxHtj\x) = [ (Ini^e^^f^e-4”2'^2 d$
Jr"

&tix)liDaxHlf(x) = £ D? (e2jr“'9 [(27T/OWk“4’r2'l?|2]

Jr" /

which is a bounded function. This proves that Htf e S. But we proved that for any Lp 
function \\Htf — f\\p 0 when r -> 0. We summarize as follows.

Proposition 2.2.42. The space S is dense in each Lp space, 1 < p < oo.

Note that the case p = oo is excluded, because we cannot assert that HJ f for 
every f e L°°.
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Exercise 2.2.43. Letf = withn = 1. Show that ||H/—/||oo does not tend 
to zero when t —> 0

One should not get the impression from the above proof that the heat kernel operator 
maps Lp into 5. We expect that for small t the decay of Htf at infinity should mimick 
that of f.

Exercise 2.2.44. Letf be the Poisson kernel inn = l:/(x) = 1/tt(1+x2). Show 
that Htf (x) ~ Cjxf |x| -> oo, for a positive constant C.

Hint: Write

Hf(x) = [ = 2 [ e-^h^e-2^\ cos(2ttx£)
Jr Jo

Integrate by parts twice and identify the constant.

When we pass out of the space 5 the problem of pointwise Fourier inversion 
becomes nontrivial. In the next section we will treat the one-dimensional case, in parallel 
with the treatment of Fourier series in Chapter 1. We will return to the higher-dimensional 
case in a separate section.

2.2.2.3 The n-dimensional Poisson kernel
The n-dimensional Poisson kernel is defined as the absolutely convergent Fourier integral

(2.2.22) P(x,y) = / y > 0, x € K".
JiR"

By differentiation under the integral sign, it is immediate that u = P(x, y) is a solution 
of the Laplace equation uyy + n̂i=i uXiXi = 0 in the half space {(x, y) : x G R", y > 0}.

Exercise 2.2.45. Suppose that F e L°°(R"). Prove that 

u(x,y):= f
Jr"

is a solution of Laplace's equation uyy + ux,x, — 0 in the half space.

We have already shown, in case n = 1, that P(x, y) is an approximate identity, 
by an explicit computation. We now obtain an explicit formula for the n-dimensional 
case. The general idea is called Bochner's method of subordination, which allows us to 
obtain new kernels as suitable transforms of the heat kernel in the ^-variable. In terms 
of operational calculus, the heat kernel operator Ht is the exponential of t times the 
Laplace operator, whereas the Poisson kernel operator Py is the negative exponential 
of y times the square root of the negative of the Laplace operator. Since the exponential 
is a simple and basic function, it is natural to expect that other kernels can be obtained by 
suitably transforming the heat kernel. The method will also be applied in later sections to 
compute the Newtonian kernel associated with Laplace’s equation and the more general 
Riesz kernels.
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To compute the n-dimensional Poisson kernel, we begin with the Laplace transform 
of the one-dimensional heat kernel:

roo ^-|^|2/4r e-\^
(2.2.23) / .___ e~x> dt =------- -=^ X > 0, | € R.

Jo V4ttz 2VA,

This is proved by taking the one-dimensional Fourier transform of both sides, which is
justified by the Fubini theorem. Indeed, for the left side we have

z»0O
di- = / e~ue-^,xi dt = 

Jo

1
X + 4tt2x2 ’

whereas the Fourier transform of the right side is

/ —------ ( -----------------  | _|--------- ( -----------------
k 2VX 2a/X \a/X — 2nixJ 2a/A \Va + 2jrix

1

(2.2.24)

X + 4tt2x2 ’

which proves (2.2.23). Now we apply (2.2.23) with XI/2 = 2ny and £ e Rn to obtain

-|£|27ry /*oo .-|^|2/4r
---------- = / /___ e~4nytdt, y > 0, £ e R".
4jry Jo V47Z7

Finally, we compute the n-dimensional Fourier transform of both sides. In detail, we 
multiply (2.2.24) by e2jri^x and integrate over £ e W1. On the right side we recognize the 
n-dimensional Fourier transform of the heat kernel, corrected by the factor (4tz7)(z7-1)/2- 
Using the definition of the Gamma function, we obtain

f e"l^2/4z \
/ ----------- e27l*'xdt I dt
t (4tt01/2 J

1 f 2tt^-x

4jry J^

(n-l)/2^-47r2r|x|2^-47r2fy2

Jo
(47r)(n-1)/2r((n+ l)/2)

“ (47F2)^+I)/2[};2 + |x|2](h+1)/2-

Therefore we have the following explicit formula

(2.2.25) ( e~^ye2^xd^ =
K"

yf((n+l)/2)
T^n+V^y?. _p |%|2](n+l)/2 ’

Formula (2.2.25) shows that the functions x -+ P(x, y) define an approximate identity 
with y -> 0, since clearly P(x, y) > 0, fRl) P(x, y)dx = 1 and f^>8 P(x, y) -> 0 when 
y 0.

The method used to obtain (2.2.25) is a special case of Bochner's method of sub
ordination. In this case, we see that the Poisson kernel is subordinate to the heat kernel, 
since we can obtain one as an integral transform of the other. In the next section we 
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will see that the same idea can be used to obtain the Riesz potential kernel associated 
with fractional powers of the Laplacian, where the exponential in (2.2.23) is replaced by 
a suitable monomial.

2.2.3 Fourier Transforms of Tempered Distributions

The space 5 of rapidly decreasing functions is a linear metric space, when we define the 
metric by

OO J
dmk-.= sup 

m £—0 "T &mk xeR",|a|=£

A tempered distribution is a continuous linear functional L on the space 5. The collec
tion of all tempered distributions is denoted S'. The Fourier transform of a tempered 
distribution is defined by

(2.2.26) L(0) =L(0).

Clearly L is again a tempered distribution and the mapping L L is injective: if L(0) = 
0 for all 0 e 5, then the distribution L is identically zero. Convergence of tempered 
distributions is defined in the pointwise sense: Lk L if and only if L*(0) -> L(0) for 
each (/) e S.

Exercise 2.2.46. Show that S is a complete metric space with the metric d defined 
above.

Example 2.2.47. Any locally integrable function/ defines a tempered distribution 
by setting

W) = [ f(x)(Kx)dx.

JR"

A class of interesting examples is provided by the Riesz potentials, obtained as follows.

Example 2.2.48. Letf(x) = |x|“a where 0 < a < n.

Then f is locally integrable and the Fourier transform can be computed by 
beginning with the heat kernel applied to 0 e 5:

(2.2.27) f dy^ f e2^x^) d^.
JR" (4717) / JR"

We multiply each side of (2.2.27) by tk, integrate on [0, oo], and apply Fubini. The inner 
integral on the left converges if and only if k<(n — 2)/2 while the inner integral on the 
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right converges if and only if k > — 1. In detail, the inner integral on the left side of 
(2.2.27) is transformed with s = l/4r to obtain

/- exp(-|,|2/4r) 1 re-^sn/2-k-2ds

Jo (4^
1 ((n/2)-fc-2)!

j^n/2^k+l lyjn-2k-2 ’

while the inner integral on the right side of (2.2.27) is

Jo
which gives the result

(2.2.28)
((n/2)-k-2)l f </>(x-y) k\ f 

rW2 JR, I#-2*-2 y n2k+2 Js„ |£|2*+2
valid for all </>€<$. Taking x = 0, the right side of (2.2.28) expresses the definition of 
the Fourier transform of the tempered distribution defined by the function £ -> | £ | ~2k~2. 
The left side shows that this is equivalent to integration with a constant multiple of the 
locally integrable function y |ypfc+2-n identification becomes complete when 
we set a = 2k + 2, and the result is paraphrased in the statement

(2.2.29) The Fourier transform of |£| 01 is Cna\x\a ", where 0 < a < n.

Note that the case a = 2 corresponds to the Newtonian potential kernel associated to 
the Laplace operator of R" when n > 3. Then k = 0 and (2.2.28) takes the form

(2.2.30)
((n/2)-2)! r </>(x—y)

^n/2 Jr" m"-2
f . e2ni^x

Exercise 2.2.49. Show that the previous example can be generalized to complex 
numbers a satisfying 0 < Re (a) < n.

Exercise 2.2.50. Let 0 e 5(R") where n >3. Show that (2.2.30) is a solution of 
the equation /Su = —4tt20, where A denotes the n-dimensional Laplace operator.

2.2.4 *Characterization of the Gaussian Density

We can use the Fourier transform to prove J. C. Maxwell’s (1860) characterization of 
the Gauss density, as follows.

Proposition 2.2.51. Suppose that n >2 and that f(x), x e R" is an integrable 
function which has the properties that there exist fa,f\, ... ,fn so that

f(xi,...,xn) =f\(x\)---fn(xn) =foWx2\ H----- +xh x € R"-

Then f(x) = Ae~BM2 for some B > 0.
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Proof. From Fubini’s theorem we see that /• e Ll (R1) for 1 < i < n. Taking polar 
coordinates, we see that/0 g L!(R+; rn~] dr) and that the Fourier transform / can be 
expressed as a function g of the square of the Euclidean norm. Taking the Fourier transform, 
we see that

7(1., • • •, &) =7. (io ■ • ■T.te.) = gtf + ■■■+

If /(0) = 0 for some i, then we would have g(x) = 0 and we could take A = 0. Hence 
we can suppose that/(0) ± 0. Setting = 0 for j ± i shows that/(£) = czg(£2) for 
some constant c, / 0. Letting = 0 identifies the constant • • c,? = g(0)1-n. Setting 
G(x) = g(x)/g(0) we obtain the functional equation

(2.2.31) G(x + y) = G(x)G(y), G(0) = 1, x -> G(x) continuous.

Let 8 > 0 so that G(x) > 0 for 0 < x < 8. From this we can compute G on the rationals 
multiples of 8: G(8m/n) = G(8)m/" and by continuity this formula extends to all real 
numbers in [0,5] in the form G(x) = e~Bx,B := —5-1 log G(5). Now we can use the 
functional equation (2.2.31) to extend this to all x > 0. Since G is a bounded function, we 
must have B > 0, which completes the proof. ■

In Chapter 5 we will see that this characterization of the Gaussian density is true in 
the wider context of probability measures on R", not necessarily absolutely continuous 
with respect to Lebesgue measure.

Exercise 2.2.52. Suppose that G is a measurable and locally integrable function 
on R and satisfies the functional equation G(x + y) = G(x)G(y) a.e. Prove that 
either G(x) = 0 or G(x) = eax for some a G R.

Hint: First show that G is a continuous function.

2.2.5 *Wiener's Density Theorem

The Fourier transform in one dimension can be effectively used to study the L1 closure 
of the set of translates of a given L1 function

N
(2.2.32) ^akf(x-xk)

k=]

where a^ are complex numbers andx^ are real. A closely related set is formed by functions 
written as convolutions

(2.2.33) [ a(y)f(x-y)dy

JR

where a e L1 (R). From Lebesgue’s differentiation theorem it follows that any finite sum 
of the form (2.2.32) can be written as an L1 limit of functions of the form (2.2.33); 
conversely, any convolution can be written as the limit of Riemann sums. Hence we see 
that the L1 closure of (2.2.33) is identical to the L1 closure of (2.2.32). Wiener’s theorem 
characterizes this in terms of the Fourier transform. The following proof is adapted from 
Garding (1997).
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Theorem 2.2.53. Letf G L1 (R). Then the L1 closure of (2.2.33) is the full space 
L1 (R) if and only if the Fourier transform is never zero: f(£) / Ofor all | G R.

Proof. The necessity of the condition is immediate, since the Fourier transform of a * f 
is a(J;)f(j;). If/(£o) = 0, then the same is true for all convolutions and, by continuity, for 
all elements in the L1 closure. Therefore the L1 closure of {a *f : a G L1 (R)} is a proper 
subset of L1 (R). To prove the sufficiency, we first note that it’s enough to prove that there 
exists a dense subset of L1 (R), all of whose elements can be written a *f for some a G L1. 
We let

= {h G L1 (R) : h has compact support},

Bq = {h G Ao : h is piecewise C2}.

Clearly Ao is dense in L’(R) since Fejer’s theorem guarantees that we have the L1 
convergence

/ l£l\ h(x) = lim / h(£) 1 - — e2711^ dl=. ■
M J-m \ MJ

To proceed further, we introduce the notation A = (f : f G L1 (R)}, which consists of 
continuous functions vanishing at infinity, with the norm

\\f\\A‘= ll/lll.

We state and prove the following basic lemma.

Lemma 2.2.54. For any f gL!(R) andg eBq, letG = g, Gs(£) = G(£/<5). Then 
we have

lim||(?-/(0))G5|U = 0.
<5—>0

Proof. fG& is the Fourier transform of

t [ f(s)8g(8(t - s))ds,
J]R

whereas f(Q)G^ is the Fourier transform of

8g(8t)(ff(s)ds).

Therefore the required A norm is estimated as

II <f < / ( [ \f(s)(g(t - 8s) - g(0)| dt

where we have made the substitution t -> St. The final integral tends to zero by the 
dominated convergence theorem.

To complete the proof of the theorem, we let P be the piecewise linear function such 
that

P& =
1 if|?l<l
0 if|£|>2.
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Notice that P(£/<S) ± 0 implies that P(|/25) = 1, so that we can use the hypothesis 
/(£) 0 to write

/(?)

„ ■
/(0)+P(|/25)(f(|)-/(0))

From the lemma we see that for sufficiently small 5 > 0, the term P(£/2<S)(/(£)—/(0))//(0) 
has norm less than 1 /2, so that we can make the following convergent Taylor series expansion 
in the space A:

p OO .A=7^Ly2(-i)t(pM(f-7(O))/7(O)) . /(0) s v 7
We have proved that P8 = fQ$ where Qs e A. In the same manner we can apply this to 
any translate of P$ to obtain

=f^Q^b) 
\ 0 /

for some Qs e A. Note that P(£ + 3k) = 1 for ||| < 3N + 1. Hence for any h e Ao 
we can write

W) = A(|)1i_m.mi(I) =/(£)
\

which exhibits h as the convolution of f and an L1 function, which completes the proof of 
the theorem. ■

2.3 FOURIER INVERSION IN ONE DIMENSION

In this section we give a self-contained treatment of convergence theorems for the Fourier 
integral in one dimension. Readers who have followed the treatment of Fourier series in 
Chapter 1 may wish to omit much of the current section, since many of the theorems are 
direct analogues of the corresponding theorems for Fourier series. An exception is the 
discussion of one-sided Fourier representations in Section 2.3.9, but this is not used in 
the sequel.

2.3.1 Dirichlet Kernel and Symmetric Partial Sums

The partial sum operator applied to/ e L1 (R) is defined by

(2.3.1) SMf(x)-.=
J-M

We now rewrite the integral defining the partial sum so that it makes no reference to 
the Fourier transform. This is called the explicit representation via the Dirichlet kernel.
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In order to do this, we use Fubini to write

f(^e2^x d^ = / e~2^f(y) dy e2^ d$
-M J—M \J-oq /

\f(y)

sin27rM(x -y)
------- :--------------ftydy

n(x-y)

sm2n Mz
------------- f(x - z) dz, 

nz

the required formula. The previous computation is summarized by writing 

(2.3.2) 
sin27rMz r/
------------- f(x - z) dz

TtZ

or equivalently, since the kernel is an even function

f00 sin2jrMz ,WW= / \f(x + z) +f(x-z)\------------- dz.
Jo TtZ

The function z (sin 2nMz)/nz is called the Dirichlet kernel and the integral operator 
is a convolution with the Dirichlet kernel. We recognize the Dirichlet kernel as the Fourier 
transform of the indicator function of the interval [—M, M]. As a first application, we use 
the Gaussian identity (2.2.9) to compute the (improper) integral of the Dirichlet kernel. 
Applying (2.2.9) with* = 0 and/ = l[-i,i]

f°° sin27rf _47r2^2 .
hm / -----------e d$ = 1,

^0 J — OQ

or equivalently by changing variables to z = %4t, N = 1/^/twe have

sin27rAz _47r2? 
------------ e z dz= 1.

Jtz

This can be applied first to compute

f1 sin27rAz _4 2 2 j / f°° f \ sin 2jtNz _47f2 2
/ ------------ e dz. = \ I -I )------------- e ™ z dz.
J —1 Z \J—oQ J\z\>l / Tt Z

The first integral tends to 1, while the second integral tends to zero, by the Riemann- 
Lebesgue lemma. Now

sin27rAz f1 sin27rAz j . f sm2jtNz _47r2 2
------------ dz = / --------------(1 - e * Z}dz + / ------------- e ™ dz.

71Z J-\ JtZ J_\ JtZ

The first integral tends to zero by the Riemann-Lebesgue lemma and the final integral 
tends to 1, by the previous step. We have proved that 

lim —
N^-oo TC

p2Nji

J-2Ntt

sinr . f sin27rAz r
------dt = hm / --------------dz = 1.

t N^ooJ_{ Jtz
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This is the famous sine integral, which is often computed from Cauchy’s theorem on 
complex integration. In Chapter 1 this was computed from the properties of Fourier 
series. Now we have redone this using the Riemann-Lebesgue lemma and the explicit 
Gaussian example. It is customary to write

Si(x) =
2 fx sin t t 
— / ----- dt,
71 Jo t

so that lim^oo Si(x) = 1, lim^-oo Si(x) = — 1.

Exercise 2.3.1. Prove the inequality |1 — Si(x)| < (A/ttx) for all x > 0.

Hint: Integrate-by-parts /.M(sin t/t) dt and let M -> oo.

2.3.2 Example of the Indicator Function

We now consider in detail the case of the indicator function/(x) = 1 (x). The Fourier
transform is

pb p—27t%b   p—2?ri^a
f(JO = / e~17!lir>'dx =------ ——--------

J a

for £ 0 and/(0) = (b — a), by definition. Now we consider the nonsymmetric partial
sum

ZM / r® \= ( / +/
■N \J0 J-nJ

The first term is written

pM pM 2ni$(x—d)   p27ti$(x—b)/ ^7(1)^=/ -----—-------
Jo Jo 2tti^

while the second term has an identical structure. When we take the real and imaginary 
part, we see that the real part may be written in terms of the sine integral Si(x) = 
(2/jt) f* (sin t/1) dt, hence convergent. But the imaginary part is written in terms of 
integrals involving J0M[cos f (x — b) — cos f (x — a)]/| d%, which is convergent if x / a, 

x ^b, but otherwise diverges logarithmically. Therefore the nonsymmetric partial sum 
Sm,n/ does not converge in general. Put otherwise, the improper Riemann integral will 
not suffice for the Fourier inversion of this function.

This apparently anomalous behavior may be attributed to the generality of complex 
notation. Indeed, if we had begun with the basic trigonometric form of the Fourier integral 
(2.1.8) this would not occur, since the corresponding complex form will necessarily be 
the symmetric partial sum.

Exercise 2.3.2. Show that for the above example, So,Nf(a) C log N and identify
the constant C.
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We now show explicitly that the symmetric partial sums converge.

Z
M 

fa)e2”*xdl;
-M

= I [sinZjrf (x — b) — sinZjrf (x — €z)]/tt§ 
Jo

= |[Si(2M7r(fe - x)) - Si(2M?r(a - x))].

It is immediate that if a < x < b this converges to 1, while if x < a or x > b it 
converges to zero. At the endpoints x = a, x = b it converges to |. Furthermore these 
approximating functions are uniformly bounded by 3.

Exercise 2.3.3. Check these statements.

2.3.3 Gibbs-Wilbraham Phenomenon

The Fourier inversion of the indicator function provides the simplest occurence of the 
Gibbs-Wilbraham phenomenon. This is the detailed statement of nonuniform conver
gence that is present in the Fourier analysis of discontinuous functions. Indeed, if we 
had uniform convergence, then the above sequence of continuous functions would have 
a continuous limit. But the indicator fails to be continuous at its endpoints. In order to 
see this in more detail, we take the special case a = 0, b = 1. Applying the previous 
discussion, we see that

SMf(x) = |[Si(2M7r(l — x)) + Si(2M7rx)].

For any fixed xe(0, 1) this converges to 1, when M^oo. But if we take x = 
\/2M 0, then/^/(l/2Af) (1/2)[1 + Si(zr)], which is now shown to be larger
than 1. Indeed

2 / 7T3 7T5 7T7 \
= 7r\-18 + 600 - 35, 280/ +

7T2 7T4 7T6
= 2 — — 4~-----—------------+ * ■ *

9 300 17,640

= 2 — 1.11 +0.33 -0.04+ •• 

= 1.18 to two decimal places

so that to two decimal places, linu/ 5^/(1/2M) = 1.09, demonstrating the Gibbs 
overshoot.

2.3.4 Dini Convergence Theorem

Returning to the theory, we now develop a basic convergence theorem.



116 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Theorem 2.3.4. Suppose that f{x), —oo <x < oo is a complex-valued integra
ble function that satisfies a Dini condition at x: for some S € C, <5 > 0,

fS \f(x + t)+f(x-t)-2S\
(2.3.3) / ------------------------------------- dt < oo.

Jo t

Then

lim / = S.

{It is not asserted that S = fix)).

Proof. From the Dirichlet kernel representation, we have the Fourier partial sum

SMf(x) = i dg = [ sln2jrMzy(x + z) dz
J-M J-oo

Having proved Fourier inversion for the function e-7rv2, we can replace f{x) by f(x)—Se~nx2. 
The new choice off is also in L1 and satisfies the Dini condition with 5 = 0. The function 
z -> [fix + z) + f(x — z)]/z is integrable, since the Dini condition takes care of f^<§ 
whereas

f \f(x + z)+f(x — z)\ If
I --------------------------- dz < - I \f(x + z)+f(x-z)\dz < oo.

J|r|><5 Z d J|-|>5

Using the Riemann-Lebesgue lemma, it follows that the SMf{x) —> 0, as required. ■

Corollary 2.3.5. Suppose thatf satisfies a local Holder condition with exponent 
a > 0:

l/(x)-/(y)| <C|*-y|“, |y —jc|<<5.

Then Fourier inversion holds with S =f(x).

Proof. Taking S = /(x), we have for 0 < t < 8

\fix + r) +/(x - r) - 2/(x) | = |(f(x +t) -f(x)) + (fix -1) -/(%))| < 2Cta.

But the integral J()5 ta~[dt is convergent, hence the Dini condition is satisfied. ■

Corollary 2.3.6. Suppose that f has right and left limits fix ± 0) and satisfies 
a one-sided local Holder condition with exponent ot > 0:

l/(T)-/(x + 0)| <C|x-<, x<y <x + 8

\fiy) -fix - 0)| < C\x - y|", x - 8 < y < x.

Then Fourier inversion holds with S = \f(x + 0) +/(x — 0)]/2.

Proof. We have for 0 < t < 8

\f(x + r) +f(x -t)- 25| = \(f(x + r) -f(x + 0)) + (f(x - t) -f(x - 0))| < 2Ct“.

But the integral ta~]dt is convergent, hence the Dini condition is satisfied. ■
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The theorem of Dirichlet-Jordan also has a counterpart for Fourier transforms.

Theorem 2.3.7. Suppose thatf e L1 (R) is of finite total variation on the real line.
Then limM SMf(x) = |/(x + 0) + ±/(x - 0).

Proof. Letting F(u) = ||/(x + u) +f(x — «)], we have

For any K > 0, the contribution to the integral from u > K is bounded by \\f\\ । /K, which 
can be made small by taking K sufficiently large. On the interval (0, K) we can integrate 
by parts:

I F(u) dSi(27tMu) = F(K — 0) Si(27tMK) — / Si(27rMu) dF(u).
J (O.K)

The integrand is bounded and tends to 1, so that we can apply dominated convergence to 
conclude

lim / F(u) d Si(27rMw) = F(K - 0) - [F(K - 0) - F(0 + 0)] = F(0 + 0), 
M J (O.K)

completing the proof. ■

Exercise 2.3.8. Prove that iff is of finite total variation, then the partial sums 
Swf are uniformly bounded: supxeK M>{) |Swf (x)| < oo.

2.3.4.1 Extension to Fourier's single integral
We have proved the convergence of the Fourier inversion for functions in L1 (R), which 
satisfy a Dini condition or have finite total variation. The operator Swf can be extended 
to a wider class of functions, if we note that the formula (2.3.2) is well-defined under 
the sole condition that fR |/(x)|/(l 4- |x|)dx < oo. This extended operator is called 
Fourier's single integral by Zygmund (1959). If we use the extended definition of the 
operator/ S^f in formula (2.3.2), then we can extend each of the above theorems. 
We leave the details as exercises.

Exercise 2.3.9. Suppose that fR |/(x) |/(1 + |x|) dx < oo and thatf satisfies a Dini 
condition at x. Prove that lim^ Swf(x) = S.

Exercise 2.3.10. Suppose that fR |/(x) | / (1 + |x|) dx < oo and thatf is of bounded 
variation in a neighborhood ofx. Prove that lim/vy Swf(x) = |/(x+0) + |/(x — 0).

2.3.5 Smoothing Operations in R1-Averaging and Summability

The problem of pointwise convergence of Fourier series and integrals is beset with 
numerous pathologies, of which we recall two, in the context of Fourier series:

There exists a continuous function whose Fourier series diverges at a point. The 
first such example was found by du Bois-Reymond and later simplified by Fejer.
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By superposing these at different points, one can construct a continuous function 
whose Fourier series diverges at an infinite set of points.

• There exists an integrable function whose Fourier series diverges at every point. The 
first such example was found by Kolmogorov, thereby answering in the strongest 
negative sense the possibility of a general theorem on pointwise Fourier inversion for 
integrable functions.

These examples, which can be replicated in the context of Fourier transforms, 
suggest the difficulty of finding general sufficient conditions for convergence. In the other 
direction, it is impossible in general to obtain a necessary condition for convergence: if 
f is an odd function [/(—x) = —/(%)], its Fourier transform reduces to a sine transform: 
F(|) = f f(x) sin 2tt$x dx, which is also an odd function; hence Sm/(0) = 0 identically 
and lim/v/ 5^/(0) = 0 = /(0). Thus pointwise Fourier inversion holds at x = 0 without 
any further regularity conditions.

In a positive direction, it was proved by Carleson (1966) that for an L2 function, 
the Fourier series converges at almost every point. This was later generalized by Hunt 
(1968) to all of LP if p > 1.

The Carleson-Hunt result is deep and difficult, beyond the scope of this work. 
Instead we shall be content with theorems that replace pointwise convergence by a weaker 
notion. If the sequence of numbers fail to converge, it is natural to form averages
and hope that the averages behave better than the original sequence of partial sums. 
There are two possible ways to average:

• Average with respect to x\ for example, form l/(b — d) f^f(x) dx.

• Average with respect to M: for example, the arithmetic mean (1/M) Sfnf(x) dm. 
(Fejer mean). Another choice is the Abel mean c e~€mSinf(x) dm.

2.3.6 Averaging and Weak Convergence

These smoothing operations lead immediately to general convergence theorems without 
additional smoothness conditions.

Theorem 2.3.11. Suppose that f is any integrable function on R. Then for every 
a < b

rb rb
lim / Swf(x) dx = I /(x) dx.

M^Ja J a

Proof. To see this, we first recall that the Dirichlet kernel is even, hence the operator 
f —> SMf is self-adjoint, so that we can write

/ SMf(x)dx = / lMSMf(x)dx = f(x)SMlM)dx.
Ja Jr Jr

Since l(f,i/?) is of bounded variation, the partial sums converge boundedly so that 
we can write

/»b p pb
lim / SMf(x)dx = I l(llMf(x)dx = I f(x)dx. ■
M Ja Jr Ja
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This type of averaging is natural in applications, where f may represent a 
density function of mass, charge or probability. We are interested only in the 
mass/charge/probability of an interval, which is defined by the integral f^f(x)dx. 

The previous theorem states for any integrable function /, we can always recover the 
mass/charge/probability of an interval as the limit of the Fourier partial sums.

Exercise 2.3.12. Suppose that p is a finite Borel measure on the real line. Modify 
the above proof to show that SmP(£) d$ = /z((«, + +
where SMix(V) - f^M )e27’,2x dx.

We can use the above arguments to produce a continuous function vanishing at 
infinity, which is not the Fourier transform of any integrable function.1 Let

(2.3.4) F(f) =-------------- ----------------
(1 + |) log (2 + |f|)

Suppose that F =f for some/ G ZJ(R). Let g = l[0,u be the indicator function of the 
unit interval, with g(f) = (1 — e-27r^)/27rzf for f / 0. Since g is of bounded variation, 
the Fourier partial sums S^g converge boundedly to g and we can write

[ = [ fSMg = lim f gSMf = hm [ f(-V)g(V)d$.

Jr m Jr m Jr m J-m

But a direct calculation shows that the real part of the last integral is

1— C0s27T$
a + i£ i) log (2+iei)d|’ 

which diverges when M oo.

2.3.7 Cesaro Summability

We now turn to the question of Cesaro summability. To study this, we rewrite the Fejer 
mean in terms of the original/, as follows:

— / Smf(x)dm=-— / I / f^)e2n^xd^ ) dm
M Jo M Jo \J_M J

e2n'^x y'tfiy) dy I I dm

sva2mn(x — y) \
------- -------- ----- dm /(y) 

n(x-y) )

!°° 1 — cos(2A/7r(jc — y))
= / —2/—dy-

J-x, 2Mn2(x-yY

'igari, 1996, p. 172
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The Fejer kernel is defined by = M and

1 -COS(2A/7TX)

It has the properties of an approximate identity, expressed by

• For any 8 > 0, f^>8 Km(x) dx -» 0, when M -» oo.

The nonnegativity is obvious. The normalization can be found from Fourier inversion, 
as follows: The Fourier transform of (1 — |£ |) 1 [0,ij(|£ |) is (1 — cos27ry)/27r2y2, which 
is an L1 function. Therefore we can apply Fourier inversion at y — 0 to conclude that 
JK(1 — cos27ry)/27r2y2 dy = 1, which transforms into f^KM(x)dx = 1 when we let 
y = Mx.

To estimate the integral for |x| > 8, we replace the sine by 1, to obtain

f 1 f dx 2/ Km(x) dx < —— / — = —-» 0
J|x|><5 A/tt2 Jw>5 x1 M8n2

when M oo.
In order to minimize the new notation, we write

/
OO /»OO

KM(y)f(x-y)dy = / KM(y)f(x+y)dy.
-oo J-oo

It will always be clear from context whether we are operating on a function or simply 
considering the kernel.

Theorem 2.3.13. The Fejer means have the following properties:

• Iff is integrable on R. and continuous at x, then the Fejer means converge to 
f(x): KMf(x) -+ f(x) when M -» oo.

• Iff is integrable on R then the Fejer means converge in if: \\K^f — f\\ j -» 0, 
when M —> oo.

• Iff is bounded and uniformly continuous on R, then the Fejer means converge 
uniformly tof: supxeK — /(x)| -» 0 when M -» oo.

Proof. Since fRKM = 1, we can write

Z
oo

^(y)[/(x+y)-/(x)]dy, 
-oo

I KMf(x) -f(x)\<( [ + [ }KM(y)[f(x + y)-f(x)]dy.

If/ is continuous at x, then given e > 0 we can choose 8 > 0 so that \f(x + y) —f(x) | < 6 
for |y| < 8. Therefore the first integral is bounded by 6. On the other hand, the second term 
is less than 2 supK |/| J^|>5 KM(y) dy, which tends to zero, proving the first statement.
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To estimate the L[ norm, we write

Z
OO z»OO / Z»OO \

\KMf(x)-f(x)\dx< / / KM(y)\f(X + y)-f(X)\dy\dx
•oo J-oo \J-oo /

l/(x + y) -/(x)|dx 1 dy

^(y)llfy-flhdy.

But we can apply the reasoning of the previous step with x = 0, and/ replaced by \\fy — f\\ j, 
which is bounded by 2||/|| i and which is continuous at y = 0.

Now if / is bounded and uniformly continuous, we can choose 8 > 0 so that 
\f(x + ?) —/Wl < £ simultaneously for all x, when |y| < 8. Thus

\KMfM-f(x)\ <6 + 2sup|/| [ KM(y)dy.
R /y|><5

Hence lim supM supxeR \KMf(x) — f(x)\ < 6 for any 6, which completes the proof. ■

We used above, without proof, the fact that \\fy — /||i -» 0 when y -» 0. This 
can be proved in the same spirit as the Riemann-Lebesgue lemma. First prove it for 
indicator functions of an interval («, £>), then extend to finite linear combinations, and 
then to bounded measurable functions with compact support. But any L1 function can 
be approximated in L1 by a bounded measurable function with compact support.

Exercise 2.3.14. Carry out the details of the proof that \\fy — f\\ i —> 0.

2.3.7.1 Approximation properties of the Fejer kernel
As with Fourier series, we can find a universal bound for the accuracy of the Fejer 
approximation, as follows.

Theorem 2.3.15. Letf G Lx (IR) have the property that \\K^f — /Hi = o(\/M\
M -» oo. Thenf = 0 a.e.

Proof. The Fejer means are represented as

(2.3.6) KMf(x) = [M (1 - e2^f^)d^
J-m\ MJ

(2.3.7) ^Tf(-X~y)dy-
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In particular KMf e L’(M) and its Fourier transform is (1 — |£|/M)/(£)1[_m,m](£)- Hence 
for any M > |£ | we have

1 ~ 77 W) = I e-u'-r(KMf)(x)dx
M ) JR

^/«) = [ e-Z!!^'[f(x)~(K.,f)(x)]dx
M Jr

IW)I<M [\f(x) — (KMf)(x)\dx
Jr

= M\\f -Will-

Letting M -> oo gives the conclusion that/(£) = 0 for £ 0. But / is a continuous
function, hence/(£) = 0, which implies that/ = 0 a.e. ■

If / has some additional regularity properties, one may obtain the first term in the 
asymptotic expansion of K^f when M -» oo.

Exercise 2.3.16. Suppose thatf e L] (R) and thatf e L!(R), £/ G ZJ(R). Then

(2.3.8) lim M[/(x)~WWl = f \^\e2^xf(^^.

Jr

Hint: Begin with the Fourier representation (2.3.6) of KMf, noting that/(x) = e27T,^xf(^)
and estimate each of the integral terms f^>M and f^<M separately.

2.3.8 Bernstein's Inequality

The Fejer means can be used to give a proof of an important inequality in approximation 
theory, originally due to Serge N. Bernstein (1912). Suppose that a function is represented 
in the form

(2.3.9) /
M

-M

where p is a finite measure supported by the interval [—M, M]. This includes a finite 
trigonometric sum when we specialize p to be a discrete measure on an arithmetic 
sequence with 2jrt = 0, ±1, ±2,.... In general,/ is an infinitely differentiable function 
whose derivatives are bounded. Bernstein’s inequality gives an upper bound for these 
derivatives in terms of the upper bound of/.

Theorem 2.3.17. Under the above conditions, we have for all x el

(2.3.10) l/'WI < 4ttM sup |/(x)|.
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Proof. It is no loss of generality to prove the inequality at = 0, since we can change the 
measure /z by replacing it by e2nitX{} p(dt). We begin with the Fejer kernel

1= f (M - |t|)e2’r'“ dt := f AM(t)e2,riu dt 
ZtvW J_m J_x

where Am(0 is the triangular function defined by A^(r) = M — |r| if |r| < M and zero 
otherwise. From this it follows that

f°° 1 — cos2Mttx
e17X ixt dx = &M(t)

2ti2x2

1 — cos 2Mtix

2jt2x2
e2”'x' dx = + M) - - M)].

2i

The right side is equal to — t on the interval [—M, M] . Integrating both sides with respect 
to the measure p(dt) on the interval [-M, M] and applying Fubini, we obtain from (2.3.9) 

f00 1-COS2M7TX 1 fM /'(0)/ sm 2Mtix---- ——------f(x) dx= — -tp (dt) = ——.
J-oo 2ti2x2 2i J_M 47F

Therefore
I/'(0)1 r 1-COS2M7TX
—----  < sup |/(x)| X / -----—------- dx = M sup |/(x)|,

47F -oocxcoo J-oo * -oc<x<oo

completing the proof.

By applying this repeatedly, we obtain estimates for the higher derivatives.

Corollary 2.3.18. Under the above conditions, we have for all x e R and any 
£=1,2,...

|/w(x)| < (4ttA/)^ sup |/(x)|.

Bernstein’s inequality can be used to characterize the smoothness of functions on 
the real line in terms of the speed of convergence of their approximation by Fourier 
integrals on finite intervals. In complex analysis, it is shown that these approximants are 
entire functions of exponential type. The following proposition is an immediate corollary 
of Bernstein’s inequality.

Proposition 2.3.19. Suppose that f eC(IR) is a bounded continuous function 
with the property that there exist approximants of the form

(2.3.11)
fr(x)=f e2Tnx( ixT(df). with \\fT -/||oo = O , T -> 00.

\Tk+l J

Thenf e C*(R).

Proof. For any N e Z+ we can write

f =f2N + ^2(/2/+> “A)-
j=N
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Clearly f2N is differentiable to any order. Now note that

A+1 ~flJ — (/2/+1 ~ f) + (f ~f2l)

But/^+i —fy is of the form (2.3.9) with M = 27+1. Therefore by Bernstein’s inequality, we 
have for any n

KM -A)("’(x)| < [47r2'+,J" sup |M, (x) -Mx)| 
xgR

/ s~< \ k+1 
< [4tt2j+1]" x I -]

which is the general term of a convergent geometric series provided that n < k. Hence the 
differentiated series 52; (/2/+' —/2/)(n) are convergent for n = 1, 2,..., k, which proves that 
the limit function/ is fc-times differentiable. ■

In closing, we remark that in the best known version of Bernstein’s inequality, the 
constant is replaced by 2ttM and that this is sharp. Indeed, by considering the 
example/(x) = e27r/Mr, we see that |/'(x)| — 2jtM|/(x)|. For details, consult Zygmund 
(1959), vol. 2, p. 276.

2.3.9 *One-Sided Fourier Integral Representation

Sometimes we have to deal with functions that are defined on the half line 0 < x < 00. We 
can obtain several inequivalent representations by trigonometric integrals by extending 
the function to the entire real line — 00 < x < 00 in different ways.

2.3.9.1 Fourier cosine transform

We can extend/ as an even function by setting/even CO =/C0 for x > 0 and/evenC0 = 
/(—x) for x < 0. If/ e £’(0, 00), then/even € L1^). In order to have a symmetrical 
theory we define the Fourier cosine transform as

/•OO

Fc^)= f(x)cos(jt^x/2)dx.
Jo

The Fourier transform of /even CO is computed as

/oo />oc
ZevenM*"2^ dx = 2 f(x) COS(2tt£x) dx = 2Fc(4l-).

-oo «/0
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If in addition f satisfies a Dini condition at x, with S = f(x), then we have the Fourier 
inversion as the improper integral

Zoo
^(/evenKO^^

-oo
/•OO

= 2 / 2Fc(4£)cos(27r£x)d£
Jo
/•oo

= / Fc(v) cos(ttvx/2) dv, x > 0.
Jo

The partial sums of the Fourier cosine transform satisfy (Sw/evenY (0) = 0, which suggests 
the relation to the “boundary condition” /'(0) = 0.

2.3.9.2 Fourier sine transform

We can extend/ as an odd function by setting /odd (*) = f(x) for x > 0 and/Odd(*) = 
-/(—x) for x < 0. If/ e L1 (0, oo), then/Odd F1 (K). In order to have a symmetrical 
theory, we define the Fourier sine transform

poo
Fs^)= /(x) sin(7r^/2)Jx.

Jo

The Fourier transform of/Odd(x) is an odd function, written
/•OO

JVodd) = 2i / f(x) sin(27r£x)dx = 2zFs(4£).
Jo

If/ satisfies a Dini condition at S = /(x), then we have the Fourier inversion in the form
/•OO

/(x) = / Fv(?) sin(7r£x/2)d£, x > 0.
Jo

Exercise 2.3.20. Check this directly from the Fourier inversion theorem.

The partial sums of the Fourier sine transform satisfy — 0, which
suggests the relation to the “boundary condition”/(0) = 0.

2.3.9.3 Generalized h-transform
It is also natural to consider Fourier integral representation for functions that satisfy 
a boundary condition of the form

/'(0) = /i/(0).

The case h — 0 corresponds to the cosine transform, while the limiting case h -» oo 
corresponds to the sine transform.

In order to motivate the proper integral transform, we look for the combinations 
of sin £x, cos $x that satisfy the boundary conditions. It is immediately verified that the 
function/(x) = £ cos $x + h sin $x satisfies the boundary condition. This function also 
has the property that hf — f = (£2 + h2) sin£x, an odd function. This immediately 
suggests a new recipe for extension of an arbitrary / to the half line x < 0, namely 
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to require that f'(x) — hf(x) be an odd function. This leads to a first order differential 
equation, which is solved in detail by writing

(2.3.12) fix) =f(-x) — 2hf eh(y+x)f(y)dy, x < 0, 
Jo

while f(x) = f(x) for x > 0. To proceed further we consider separately two cases.

Case 1. h > 0 : In this case we verify directly that if/ g Lx (0, oo) then/ e Lx (R). 
The first term of (2.3.12) is clearly integrable, while for the second term we have

Z0 z*0 / /»—x \
\f(x)\dx<2h 1/ eh<v+x>\f(y)\dy\dx

-oo J-oo \Jo /
/•oo / p-y \

= 2h lf(y)H eh(x+y)dx\dy
Jo \J-oo /

poo
= 2 \f(y)\dy <co. 

Jo

Therefore/ is integrable. To compute the Fourier transform, we write

/W =/evenW - 2h(f ■ l(0,oo)) * {e~h' l(0,oo))(-*), -OO < X < OO.

The Fourier transform of the convolution is the product of the Fourier transforms while 
the Fourier transform commutes with the reflection x —> — x. For the individual terms, 
we have

J**(/even) = 2FC(4£),

poo
2F(f ■ 1(0,oo)) = / f(x)e-2”*xdx = Fc(4£) - iFs(4^), 

Jo
poo

l(0,oo))= / e-^e-^dx 
Jo

1
h + 2ni^

Therefore

vJcWO + iF'W) .hFs(^) + 2^Fci^) 
F(f) = 2FC(4$) - 2h------------—-------= ~2i

h — 2n It; h — 2tti£

This is the h-transform of the given function/(x), 0 < x < oo:

(2.3.13)
hFA^) + 27tl;FcW;)

Fh^) = -2i
h — 2jti^

The numerator is an odd function. In case h = 0 the h transform is twice the Fourier 
cosine transform, whereas in the case h -+ oo it reduces to (—2z)x the Fourier sine 
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transform. The Fourier inversion formula gives the improper integral 

(2.3.14)

/oo
e2n*xFh(&dl-

-oo

Zoo e27Ti^X
——-(hF.,(.^ + 27r£Fc.(4£)) d$

.ooh — 2ni^

= 4 /,s..(2^J) + 2^ eos<2^J)()|fj(4?) + (4|))^
Jo h2 + 47T2£2

f00/isin(7rvx/2) + (7rv/2)cos(7rvx/2)
= / --------------- ,2 , , 2 2//n--------------- (7zFv(v) + (ttv/2)Fc(v))Jv.

Jo h2 + (tt2v2/4)

In this form we see more clearly the limiting cases /z —> 0 and h -» oo. The results are 
summarized as follows.

Proposition 2.3.21. Suppose that f eL/O, oo) with h > 0. Thenf, defined by 
(2.3.12) is integrable on R Iff satisfies a Dini condition at x, then f may be 
recovered from its h-transform, defined by formula (2.3.13) and (2.3.14).

Case 2. h < 0 : In this case we have the additional complication of a nonzero 
integrable function whose h transform is identically zero. The function/(x) = ehx is 
directly computed to have Fh(£) = 0, hence/ cannot be recovered from its /z-transform. 
This is the only obstruction, however.

Proposition 2.3.22. Suppose thatf e L/0, oo) with

/•OO
(2.3.15) / f(x)ehxdx = 0.

Jo

Thenf defined by (2.3.12) is in L/R) and the Fourier inversion holds at every 
point where the Dini condition is satisfied.

Proof. If we combine (2.3.15) with (2.3.12), we can write

Z
oo 

eh^f(y)dy.

Now we can estimate the Ll norm as before:
/»0 / /»OO \ Z’OO/Z’0 \

hj U e',(>+X>^ldy)dx = j (J We''(r+»dx}lf(y)ldy

= r[l-eh']\f(y)\dy < cc
Jo

since h < 0. Therefore we can apply the Fourier inversion theorem to/. ■

The new behavior for h < 0 is related to the existence of a point spectrum in the 
Laplace operator with these boundary conditions. The function/(x) = ehx satisfies the 
differential equation f" = /z2/ and also satisfies the boundary condition/z(0) = /z/(0).
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If h > 0 this function is not in L1 and hence does not figure in the Fourier analysis. But 
when h < 0 it is integrable and must be dealt with.

In case/ does not satisfy the orthogonality condition, we simply subtract a multiple 
of ehx and then apply Proposition 2.3.22. The function/(x) + hehx f£°f(y)ehydy will 
satisfy the orthogonality condition, leading to the representation

/
oo

Fh^)e2^xd^
-oo

/•OO
C= / ftyyhe^dy. 

Jo

This illustrates the role of the point spectrum in the Fourier analysis.

2.4 L2 THEORY IN

The Fourier transform is well-adapted to the space of square-integrable functions, 
denoted L2(Rn). Since L1 and L2 are not properly contained in one another, we first 
restrict to the common dense subspace S and extend by continuity.

2.4.1 Plancherel's Theorem

The Plancherel theorem serves as a replacement for the Riesz-Fischer theorem that 
appeared in the L2 theory of Fourier series in Chapter 1. In contrast with the theory of 
L2 (T), in the present context we have an isometric bijective correspondence on the space 
L2(Rn). The precise statement follows.

Theorem 2.4 .1. Plancherel: The Fourier transform can be extended to the 
entire space L2(Rn) so that the mapf -+ Ff preserves the L2 norm. Furthermore 
the extended mapping is 1:1 onto all ofL2(Rn).

The key to the proof is to establish the isometry of the Fourier transform on the 
space 5, as follows.

Theorem 2.4 .2. Parseval: For any f e S, we have

(2.4.1)

Proof. This depends on three simple facts, valid for u, v eS:

(2.4.2)

(2.4.3)

(2.4.4)

u(x) = u(—x) := 

u(x) = u(—x).

Formula (2.4.2) is a restatement of the Fourier reciprocity lemma, (2.4.3) is an expression 
of Fourier inversion for Schwartz functions, and (2.4.4) is from the definition of the Fourier
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transform. Letting u = f,v = f,we have v = f and

I ff = I uv = I uv = I uu, 
jRn Jr” Jr”

which was to be proved. ■

Proof of Plancherel's Theorem. By Proposition 2.2.42, any/eL2(R'J) can be approx
imated in the L2 norm by a sequence / e 5. Having done this, we apply Parseval to 
obtain

f \fi-fk\2(x)dx = [ \fj-fk\2(l-)dl-.
Jr"

By hypothesis the left side tends to zero when j, k -> oo, hence f is a Cauchy sequence. 
By the completeness of the space L2, there is a well-defined limit ^(Z) in the L2 norm so 
that H^C/) — fj\\2 -> 0, which defines the required extension f -> J7/. In particular,

11^/112 = lim ||/||2 = lim ||/J ||2 = II/II2. J n

Clearly this definition is independent of the approximating sequence, since if gj is another 
approximating sequence, another application of Parseval shows that ||g7 —/II2 0.

To prove the onto property, we first note the properties of the reflection operator 7£, 
defined by 7£/(x) = /(—%). Applied to the Fourier transform, we have for any/ e 5,

W)=/' e2™(f(x)dx= ( e-2^f(-x)dx = (1lf)(!■).
Jr"

Clearly ||^/||2 = ||/||2 for all/ e L2(R'J).
Now if x/f e L2(R"), we approximate by V<7 e 5. From (2.4.3)

yfrj = = (7^) = 4>j

where 07 = T^-. When j -> 00 we have 07 -> Hence

1/ = lim V<7 = lim 07 = ^(T^J7^), 
j J

which proves that the operator J7 is onto all of L2(R"). ■

Exercise 2.4.3. Prove that the Fourier-Plancherel transform on L2(Rn) satisfies 
the properties of linearity, translation, and phase factor that were proved for the 
Fourier transform on Lx (Rn), described in Proposition 2.2.1.

2.4.2 *Bernstein's Theorem for Fourier Transforms
In Chapter 1 we proved that any Holder continuous function with exponent a > | has 
an absolutely convergent Fourier series. Here is the corresponding result for Fourier 
transforms.

Proposition 2.4.4. Suppose thatf e L2(R) satisfies

f \f(x~h)—f(x)\2dx<C2h2a

Jr

for some C > 0, a > | and all h sufficiently small. Thenf = IFf e L1 (R).



130 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proof. The Fourier-Plancherel transform of the translate/* satisfies/, (£) = e 27r,/V (£) so 
that from the Parseval relation, we have

(W > [ \f(x - h) -f(x)\2dx = ( \e~2^h - 1|W)|2^- 
JiR Jr

Taking// = (1/6) 2 ~k, we estimate the Ll norm of/ for |£| e [2*, 2*+1] by Cauchy-Schwarz, 
noting that in this range |e-27r'^ — 1| > 1:

(( mi#) <2k+i [
\J2k<\t\<2k+' / J2k<\t\<2k^

<2k+' [ K2**" -1|2[/-(|)|2^
J2*<|£|<2*+l

< 2/:+l(C2/36)2-2te

= (C2/18)2wl"2a).

Therefore if a > |

OO /» oo
y / mi < c y 2*(i-2")/2 < oo, 
k=0 hk<\^<2k^ k=Q

and the proof is complete. ■

In parallel with the theory of Fourier series, one can characterize the L2 smoothness 
of a function in terms of the speed of L2 convergence of the Fourier transform. These 
are listed in the following exercises.

Exercise 2.4.5. Suppose that for some 0 < a < 1 and some C > 0, we have 
11/ —/1II2 < Cha for all h> 0. Prove that f^>M /(|)|2^ < CxM~2a for all 
M > 0 and some C\ > 0.

Hint: Mimick the proof of Theorem 1.3.3.

Exercise 2.4.6. Suppose that for some 0 < a < 1 and some C\ > 0, we have 
f^>M /o2^ < for all M > 0. Prove that \\f -/,||2 < Cha for all 
h > 0 and some C > 0.

Hint: Mimick the proof of Theorem 1.3.3.

Exercise 2.4.7. Suppose thatfor some C\ > Owe have f^>M /(£)l2^£ <C\M~2

for all M > 0. Prove that \\f—fh || 2 < Ch log f[/h)forO <h< for some constant
C > 0.

Exercise 2.4.8. Suppose that for some k e Z+ and for some 0 < a < 1, C > 0 
we have f^>M t?(£)|2d£ < C\M~2k~2a. Prove thatf, ... ,/(/c-1) are absolutely 

continuous withf G L2(R), ... ,f^ e L2(R) and that \\f^ —/(/:)||2 S Ch01 for 
all h > 0, for some C > 0.
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2.4.3 The Uncertainty Principle
The L2 theory of the Fourier transform can be used to discuss the Heisenberg uncertainty 
principle, as follows. We restrict attention to the case of one dimension.

If/ e L2(R), a quantitative measure of the spread about x = 0 is given by the 
dispersion about zero and defined by the formula

=
^x2\f{x)\2dx

This is defined whenever the relevant integrals are finite. The name is justified by
Chebyshev’s inequality, namely for any M > 0

The fraction of the L2 norm due to |x| > M is controlled by

Exercise 2.4.9. Suppose that f is a Gaussian density function:

fix') = f=e~x'^'with /«) = e-4n2'^.

Check that = t and D^(f) = 1/(16tt20 .

In this example the product is Z>o(/)^o(f) = 1/16tt2. This can be paraphrased as 
the statement that if a Gaussian density function is highly concentrated about its midpoint, 
then the Fourier transform will be widely spread about its midpoint. A remarkable 
statement holds in the general case, where we have the following inequality:

Proposition 2.4.10. Uncertainty principle: Letf e L2(R), be a complex-valued 
function that is absolutely continuous and for which x f e L2(R) andf' G L2(R). 
Then we have the inequality

(2.4.5) D0(f)D0(f) >
16tt2

Equality holds if and only if f is a Gaussian density function centered at x = 0; 
in detail, f(x) = C\e~x /(T ,/(£) = C^71 G for suitable constants C\, C2, a2.

Remark. The term “uncertainty principle” comes from the interpretation that we 
cannot localize both/(x) and/(£) in their respective spaces. If /(x) is localized about 
x = 0, then D$(J) will be small; the uncertainty principle then asserts that Do(f) will be 
correspondingly large, indicating a lack of localization about £ = 0.

Proof. For notational clarity, write F =f. Unless otherwise noted, all integrals are taken 
over the entire real line. First we apply the Cauchy-Schwarz inequality to |/(x)| = 
^(l + x2)|/(x)| x A/l/(l + x2) to conclude that / eL1, similarly F =f gL1, hence they 
are Fourier transforms of one another, and in particular both/ and F are equal a.e. to con
tinuous functions vanishing at infinity. In addition, F' exists as an L2 function, since its
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Fourier transform is assumed to be L2. Both the numerator and denominator of the expres
sions defining £>0(/) and £>0(F) will be transformed by Parseval’s theorem. In this way one 
is led to examine a corresponding integral involving F'(£). Writing F = f, we write the 
real part of the integral of $FF' in two different ways. On the one hand,

2Re j t-FF'di- = y $(F'F+ FF')d$ = j t(FF)'di- = j |(|F|2)' d$ = -j \F\2 dl-

where we have integrated by parts in the last step. To justify discarding the term at the 
limits, note that since all of the integrals are absolutely convergent, they are also convergent 
improper Riemann integrals, so that M\F(M)\2 and N|F(—2V) |2 tend to limits when either 
M,N oo in any order. If either limit is nonzero, then F(£) ~ const/\$\[/2, which 
contradicts the L2 integrability of F. Now on the other hand,

(2.4.6)

-Re / $FF' dl= < I SFG)F\l-)dl-
1/2 / f \ 1/2

/ |F'(|)|2^

where we have applied the Schwarz inequality to the functions F'(j-) and £F(£). Now 
we apply Parseval’s theorem twice, recalling that the Fourier transform of xf(x) is 
F(|)/(-27n):

f |F(|)|2d| = j \f(x)\2dx, I \F'^)\2d^=4n2 jx2\f(x)\2dx.

Squaring both sides of (2.4.6) and making these substitutions gives the desired result, in the 
form (1/ 16tt2) f \f\2 f |F|2 < f \xf\2 f |£F|2.

In case equality occurs in (2.4.6), we obtain two conditions: (i) Schwarz’s inequal
ity implies that F'(£) and £F(£) must be proportional a.e. thus F must satisfy a.e. the 
differential equation F'(£) = —A£F(£) for some complex constant A; (ii) the imaginary 
part of f $FF'd$ must be zero. From (i) it follows that the derivative of the function 
G(£) = F(£)e^ /2 is zero a.e., hence G(£) = C a.e. for some complex constant C, which 
proves that F(£) = Ce~A^ /2 a.e. But we noted above that F is continuous, hence the 
equality holds everywhere.

This function will yield a finite value of Dq(F) if and only if Re A > 0. To show that 
Im A = 0, we write A = a + and compute F'(£) = —CA£ e~Ai^12, p(gj — Ce~A^/2\

I t-F$)F(i-)dt- = |C|2 A

The imaginary part of the integral is zero if and only if fl = Im A = 0, which was to be 
proved. The constants can be identified by setting A = 2ji2a2. ■

In order to have a more flexible form of the uncertainty principle, we define the 
dispersion about a of a complex valued function f by

n (f. f^(x - a)2\f(x)\2dx 
f ■

This can be reduced to the above case by defining

fa,b(x) = e2nib*f(x - a), Fb,_a(l-) = e~2^F^ - b).
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It is immediately verified that the Fourier transform of fa,b is e2niahF_b,a and that 
Da(J) = D$(fa,bF Db(F) = D^F-^a). Applying the uncertainty principle we see 
that £>„(/) A? (^) > 1/16tf2 withequality if and only if/(x) = Ce2nibxe~^x~a^/2(72 some 
complex number C.

Exercise 2.4.11. Show that the uncertainty principle can be generalized to IR" in 
the form

- n2

with equality if and only iff(x) = Ce~^2^2, F(£) — C2e~7T2^^rj2 for suitable 
constants C|, C2, <r2. Here we use the notation

irtfi _ |x|2^a)|2^
0 /r» l/OOl2^

Hint: Apply the proof of Proposition 2.4.10 in each coordinate and then apply the Cauchy-Schwarz 
inequality.

2.4.3.1 Uncertainty principle on the circle
Heisenberg’s inequality has no direct analogue for Fourier series on the circle. This is 
related to the fact that there is no direct counterpart of the Gaussian density on the circle. 
The following modified form of Heisenberg’s inequality was discovered by Grunbaum 
(1990).

Proposition 2.4.12. Suppose that 0 f e L2(T) is absolutely continuous with 
f g L2(T) andf(xf) = 0 for some xq g T. Then

Unet l»l2l/(rc)l2 /TU -x0)2|/(x)|2^ > |
E„eZl/(n)l2 h\f{xf?dx > 4

Proof. By changing x to x — x0> we may suppose that xQ = tc, so that/(7r) =f(—n) = 0. 
Then

2 Re (J” xff^ = f xCff' +f'f)

= f x(|/|2)'
J — 71

=-fyff

so that we can apply the Cauchy-Schwarz inequality to obtain

1 f77 f77 I C77 I f77- j \f\2 = -Re y xff <lj x2|/|2 Iy |/'|2-

Now square both sides and use the Parseval identity for/ and/' to obtain

i [ i/i2
4 /7GZ neZ
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which proves the inequality with >. If equality holds, then we must have f' = Axf for 
some A and alsoy(jr) = 0, which implies that/ is identically zero, a contradiction. ■

2.4.4 Spectral Analysis of the Fourier Transform

In this section we show that the Fourier transform on has a complete orthonormal 
system of eigenfunctions. To get started, we note that the Gaussian density function with 
o'2 = 1 /2tt is its own Fourier transform, since

/»OO
/ e~nx2 e~ln*x dx = .

J -oo

If we differentiate both the sides of this identity, we see that the Fourier transform of 
xe~nxl is

2.4.4.1 Hermite polynomials
To proceed more generally, we introduce the generating function

2 f2(2.4.7) e,x~‘ /2 = Yj —Hk(x) = H0(x) + tH} (x) + -//2(x) + • • • .

This power series converges for all r, real and complex; the coefficients Z7^(x) are the 
Hermite polynomials. Since the generating function is a Taylor series in the variable t, 
the coefficients can be obtained by successive diffferentiation as

(2.4.8)
/ d\k 2

Hk(x)=\ — \ (e'X-'/2)b=o 
\at /

^ = 0, 1,2, ...

Equivalently, we can write

e~x^Hk(x) = I = (-1/ (1Y (e-2/2).

\dt J \ /l/=o \dx J

The first few are written as follows:

Hq(x) = 1

H\ (x) = x

H2(x) = x2 - 1

Z/3 (x) = x3 — 3x

H$(x) = x4 — 6x2 + 3.

From the generating function, it follows that H2k_ j (0) = 0 and that H2k (0) = (2k)\/k\2k 
for k = 1,2,....



FOURIER TRANSFORMS ON THE LINE AND SPACE 135

Lemma 2.4.13. H'k(x) = kHk[(x).

Proof. From (2.4.8), we write the derivatives and use Leibnitz’s rule to write

fd\k
H'k(x)=\ — \ (te'x ' /2)|,=0 

ydt)

= t(^} (e““'2/2)lr=o + k (^) (e“-'2/2)|,=0
ydt / ydt /

= ^-l(x).

Lemma 2.4.14. Forx > 0

Proof. Let y = x + t. Then
pOO poo
j e~y2/2 dy = e~x2/2 J e-'xe-'2'2dt

<e~x2!2 [°°e-‘2'2dt 
Jo

Lemma 2.4.15. ForO < a < 'lyj'lfn
/’OO 

Ak ;= / < 3a/2^2**!.
J —OO

Proof. We have for x > 0

Hk(ax) = Hk(0) + ak [ Hk_x(ay)dy, 
Jo

\Hk(ax)\ < |H*(0)| + ak [ \Hk^(ay)\dy. 
Jo

Therefore
f°° FtF f°° / z*00 \y e~x2/2\Hk(ax)\dx < J-\Hk(O)\ +akJ^ \Hk-i(ay)\ \J e~x2/2dxjdy

< y||H*(0)| +^^11°° \Hk_day)\e-i2/2dy.

We perform the corresponding computation for x < 0. Combining the two, we see that the 
sequence Ak satisfies the system of inequalities.

Ak < V2T|7yA(0)|+2fc4*_, fc>l

At ^1^(0)! , Ak-t -----  < V 2tc   
2kk'. ~ 2kk\------ (k-\)\2k~'

At Ak.x 1^(0)!
2kk\ 2k-'(k-\y.~ 2kk\
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which telescopes to

< 3V2tt, 

which was to be proved. ■

Exercise 2.4.16. Prove that |H^(x)| < q(1 + |x|)\ q := \x\ke~x2dx/.

Hint: Use mathematical induction, applied to H'k = kHk_\.

2.4.4.2 Eigenfunctions of the Fourier transform
With this preparation, we can now list the eigenfunctions of the Fourier transform.

Proposition 2.4.17.

(2.4.9)

1—= e~x2/2Hk(xV2)e-^x dx = (-i)k e~e,2Hk(l;V2), k = 0,1,2,....
s/'Zu J—oo

Proof. To prove (2.4.9), we can use the generating function (2.4.7) with t real and x replaced 
by xVl to write

OC fk
—7/^(xV2)e_%2/2e-'^ = /W2-r2/2-^x-.r2/2. 

< lr1
k=()

We apply Lemma 2.4.15 with a = V2, to see that the series

OC .k poo
e-x2/2\Hk(xj2)\dx

k=Q k-

converges for |r| < 1/2. Hence we can integrate term-by-term to find that
oo tk poo poo

—I Hk(xV2)e~x2/2e~'^x dx = I erx^2~r2/2e~'^xe~x2/2 dx.
k=0 J—oo

This integral can be evaluated by completing the square in the exponent and making the 
substitution y = x — t*j2 to obtain

z«oo ____
^2/2 / e--y2/2e~^(y+tV2) dy _ e~&I1 ^212.

J-oo

When we compare this with the original generating function, we see that the only difference 
is the replacement of t by — it. But the series defining the generating function converges for 
all complex t, from which we conclude that for |r| < |,

oo tk z«oo oo (tfXkE H / Hk(xJl)e-x2/2e~*x dx = ^ {—^Hk^Vi)e-^12.
k=ok'-J-°° w k-

Identifying the coefficients of tk completes the proof. ■
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If we make the substitution x = yVln, % = vv^r, this can be written in terms 
of the usual notations as

(2.4.10)

Z
oo

e-^y2e-^^Hk(2y^)dy = (-i)kHk(2v^e~1,v2, k = 0, 1,2,....
-00

One can reinterpret the above result as providing a basis of functions in which 
the Fourier transform has a simple structure. For example, if a function is written as a 
finite sum:

N 
/(*) = Hk(2xjn),

k=0

then the Fourier transform is

N

k=Q

2.4.43 Orthogonality properties
The orthogonality properties of the Hermite functions are obtained from a second-order 
differential equation which will be proved. Computing as above, we find

/d\k
Hk{x) = ( -T ) (te,x ’ /2)lz=0

\dt /

= (r2ete-,2/2)|,=o
\dt /

/ d\k
xH'k(x) = ( — ) (xte““'2/2)|(=0

\dt J

/ d\k 2
Hk(x) - xHk(x) = I — ) (t(t - x)e,x~‘ /2)|,=0

\dt /

= (-)(
y dt J y dt J i_ q

/ j \ ^4-1 / j \ k

\dt / \dt /

= kHk{x).

We now prove the orthogonality of these functions with respect to the measure with 
density e~x /2. To do this we introduce the differential operator

Lf - V'(^) = ^2/2[/'(^)e-r2/2]'.
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Thus if/, g are polynomials, we can integrate by parts as follows:

f g(x)Lf(x)e~x2/2 dx = [ g(x)[f'e~x2/2]' dx

J R J R

= - [ g'(x)[f'e~x2/2]' dx

JR

= + f f(x)[g'e~x2/2]'dx

Jr

= [ f(x)Lg(x)e~x2/2 dx.

Jr

Applying this with/ = Hm, g = Hm, we see that

(n — m) f f(x)g(x)e~x2/1 dx = 0, 
Jr

which proves the orthogonality. To obtain the normalization, we write

I H„(x)2e-x2/2 dx=(-T)n I Hn(x)D"(e~x2/2)dx
J r Jr

= (-l)"-1 [ DxH„(x)D"~'(e~x2/2)dx
Jr

= n(-l)"-' f Hn^(x)Dn-'(e-x212)

Jr

= n f Hn_[(x)2e~x2/2 dx.
Jr

Proceeding inductively, we see that Hn(x)2e~x2fl dx = n\ e~x2^2 = n\yf2jt.

The orthogonality properties may be concisely written

(2.4.11)

We also introduce the normalized Hermite functions

hk(x) = (27r)-'/4^e-^4, 

s/k\
k = 0, 1,2...

which satisfy

hk (x) hj (x) dx 1 k = j
0 k^j ’

2.4.4.4 Completeness
Finally we discuss the question of completeness of the Hermite functions. We want to 
show that the closed linear span of finite linear combinations of the Hermite functions 
is the entire space L2(R). If not, there would exist / e L2 (R) which is orthogonal to 
all of the eigenfunctions: fRf(x)hk(x) dx = 0 for k = 0, 1, 2,.... Since the Hermite
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polynomial = xn + lower-order terms, we conclude that fRf(x)xne x2/4 dx = 0 for 
n = 0, 1, 2, .... Now we can compute the Fourier transform off(x)e~x2/4 by integrating 
term-by-term:

rf^e-^dx = £ (-2^X)n r x»f(x)e-^dx = 0

— OO n—Q fl' J — OQ

where the interchange of sum and integral is justified by noting that the modulus of the 
integrand is bounded by

oo |27r^|”^_x2/4 _ e^x\e-x2/4^ 

n\

which is an integrable function, for any £. Hence the Fourier transform of f(x)e~x2^ is 
zero, therefore/(x) = 0 a.e.

This immediately shows that any L2 function has an L2 convergent Hermite series. 
Indeed, we define the Fourier-Hermite coefficients of f e L2(R) by

Zoo
f(x)hk(x)dx.

-oo

Any finite linear combination fN = 52^=0 ak^k is orthogonal to/ — fy, thus

N
ll/ll2 = 11/ -/vlll + ll/vlll > ll/vlll = E lQl2 

k=0

which proves Bessel’s inequality: XX=o IqI2 - II/Ilf-In particular/ := J2^10^/z^isan 
L2 convergent series and the difference/ —/ is orthogonal to /z^(x), for k = 0, 1,2,..., 
hence by the above argument/ —/ = 0 a.e. thus/ = akhk, in the sense of L2.

2.5 SPHERICAL FOURIER INVERSION IN R"

Bochner (1931) studied the pointwise convergence of the spherical partial sums of the 
Fourier integral in Euclidean space. The purpose of this work is to determine the minimal 
smoothness assumptions necessary for pointwise Fourier inversion in R'7. In this section 
we will give an up-to-date treatment of this material, based on Pinsky (1994) and Pinsky 
and Taylor (1997).

2.5.1 Bochner's Approach

The spherical partial sums are defined by 

(2.5.1) dt-.
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This integral may be rewritten as an integral transform on/ by applying Fubini as follows:

WW = f ( [ f(y)e~2*^ dy\ e2™* di- 

J\$\<M WK" /

= [ f(y)( [ e~2ni(x-y^ dy

Jr" \J\^\<m /

= f DnM(x — y)f(y) dy

JR"
= ( D^z)f(x-z)dz 

JR"
where the n-dimensional spherical Dirichlet kernel is defined by

(2.5.2)
DnM(z)= f e~2^ d^ = DnM(\z\)

J\$\<M

where we abuse the notation and identify a radial function on with a function on the 
positive real line. Noting that DnM is a radial function, we may further reduce 5^/ in 
terms of the spherical mean value, defined by an integral over the surface of the unit 
sphere:

(2.5.3)

resulting in

AW := —[ f(x + ra>) dSM 

&>n-\ JS"-'

(2.5.4)

Lemma 2.5.1. The spherical Dirichlet kernel may be computed in terms of Bessel 
functions according to

(2.5.5)
\ ^nA/2(27rMr)

Dm (r) = M—-------- - —.m 7 (Mr)"/2

Proof. Taking a system of spherical polar coordinates with |i = p cos 0, we have

DnM(r) = C„ / n"-1 (sin 0)"-2 dp.de.
Jo Jo

From equation (2.6.6) in the appendix to this chapter, the 0 integral is recognized as the 
Bessel function (r/z)(2-n)/2J(„_2)/2(27rr/z). When we perform the r-integration and use the 
differentation formula (2.6.2) for Bessel functions, we find the Bessel function J„/2 as 
written. The dimensional constant can be identified by setting r = 0. Thus £>^(0) = 
vol(£ e Rn : |£| < M) = (7rM2)"/2/(n/2)! ■

The useful properties of DnM are summarized as follows, where Cn denotes a 
dimension constant.

dp.de
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Proposition 2.5.2.

(7tM2>n/2
n-x

(ii) D^ir) = (cos(2nMr - 0„) + 0 (^)) , n > 1, r > 0, M -» <x>

C Mn
(iii) |ZW < aT^(n+1^, n > 1, r > 0

-i a o(iv)DnM(r) = -—— DnM\r), n>3,r>0.
zjtr or

Example 2.5.3. Ifn = 1 we have the one-dimensional Dirichlet kernel

! sin(2jrMr)D"(r) =

Example 2.5.4. Ifn = 2 we have the two-dimensional Dirichlet kernel

2 Mf(2itMr) 
=-- -------- •

The higher-dimensional Dirichlet kernels can be obtained by differentiation, using 
the recurrence formula (iv) from Proposition 2.5.2.

Theorem 2.5.5. Suppose that f elf (Rn) where n = 2k + 1 and the spherical 
mean r —> fx(r) is absolutely continuous, together with its derivatives of order 
k — 1 and that r^~x \fx\ dr < oo for j = 1,..., k. Then the spherical partial 

sum converges: lim^ Swf(x) = fx(® + 0).

Proof. Let r}M(r) be a C°° function with 0 < 7]M(r) < 1, r}M(r) = 1 for r < M, r}M(r) = 0 
for r > M + 1, and \rj^(r)| < Cj for j = 1,..., k. We write (2.5.4) as SMf(x) = 
I mW + where

Z»OO
7m(x)=o>„_| I T)M(r)fx(r)D"M(r)r"~'dr 

Jo
= o>„-i [ (1 - VM(r))fAr)D"M(.r)r'-' dr.

Jo

The second term can be estimated by

HmW < a>n_x r \fx(r)DnM(r)\rn~[ dr 
Jm

f°° - Mn

< T r’'-'£(r)\dr = o(f-)

where we have used the fact that /0°° rn~x fx(r)\dr < oo. The term Im(x) is estimated by 
repeated integration-by-parts, where we exploit the fact that the integrand has compact
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support to write

—1 d/ ’lM(.r)fx(r)D"M(r)r"-' dr = / zjwWr^'ACr)-—— D"M1 2(r)dr

1 / a2 — r2 — |x|2 \
— — I -------------------- “I” 1 I2 \ 2r|x| )

= a2 ~(r- |x|)2

4r|x|

Jo Jo 27rr dr
d= j( -^r 2wdr-

We repeat the partial integration k times to obtain

a>„_| f00 /l^Vr„-2 , ,-f , ,1 sin(2nMr)
IM=WJ0 r\rZr) [r

Writing out the derivative by Leibnitz, we find that

(1 j \ k k / j \j

7 dr) = 12 Cikri \^r) ^M^fAry]

for suitable constants Cj*. For each j > 1 we have (d/dr)j[r]M(r)fx(r)] -> (d/dr)jfx(r) in 
ZJ(O, oo) when M —> oo. Therefore by the one-dimensional Riemann-Lebesgue lemma 
we have for M oo

f00 sin(2yrAfr) . / d \/ —---------Mr)fx(r)]dr^Q j=l,...,L
Jo nr \drj

For j = 0 we have the one-dimensional Fourier inversion of the absolutely continuous 
function t]M(r)fx(r) at r = 0, which gives

lira IM(x) = ^CoJx(O + O). 
a/->oo \^n)k

The constant is identified by choosing a function for which we have already proved the
Fourier inversion, e.g./(x) = e-7r|x| . ■

The sharpness of the conditions is revealed by the following basic example in three 
dimensions.

Example 2.5.6. Let n = 3 and let f(x) = 1 for 0 < |x| < a and f(x) = 0 
otherwise.

To compute the spherical mean value, we note that ffr) is the fractional area of 
the sphere S(x\ r) which is contained in the ball B(0; a). This is zero if r > a + |x| and 
is one if r < a — |x|. Otherwise it is computed as

fx(r) = -L [ da>

J {a):|x+ra)|<a}

= - [ sin#d6
2 »/{|x|2-|-2r|x| cos#+r2<a2}
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Therefore if 0 < |x| < a, the spherical mean value fx(r) is

1
a2 - (r - |x|)2

4r|x|
0

/x(r) =

if 0 < r < a — |x|

if a — |x| < r < a + |x| 

if r > a + |x|.

The function r fx(r) is Lipschitz continuous, in particular absolutely continuous, 
hence Theorem 2.5.5 applies to prove convergence at x. However if x = 0 we have 
fx(r) = 1 for r < a and zero otherwise, a discontinuous function. The Fourier inversion 
fails in a very simple way in this case, since we can use (2.5.4) to write

W(0)=47r/’ Dl(r)r2dr

Jo 
fa d = -2l rdrD'^dr 

= -2aD[M(a) + 2 f° D'M(r) dr 

JO
2 . x . fa sin(2jrMr) J =-----sin(2Mjta) + 2 / --------------- - dr.
7T JO ™r

The second term tends to 1 when M —> oo, whereas the first term oscillates between 
±2/tt; in detail

2 2
lim inf SMf(0) = 1------ , lim sup 5^/(0) = 1 H----- .

M M

This example provides a concrete illustration of the nonlocal dependence of Fourier 
inversion in three dimensions. The function is smooth in a neighborhood of x = 0 but 
has a jump at |x| = a. The jump effects the impossibility of Fourier inversion at x = 0. 
Figure 2.5.1 gives the profile of the spherical partial sum for this example.

Kahane (1995) generalized this example to the setting of a bounded region in 
M3 bounded by a smooth surface. If the surface is analytic and if the spherical Fourier 
inversion fails at a single point, then the surface must be a sphere and the point must be 
the center. For more general smooth surfaces, one may have divergence of the spherical 
Fourier partial sum at any preassigned finite set of points.

This example can be modified to provide a concrete example of nonlocalization.

Example 2.5.7. Letf(x) = 1 for 0 < a < |x| < b and zero otherwise. Then by 
applying the previous example twice and subtracting, we have

2
SMf(Q) = -[sin(2M7Tfl) - sin(2A/7rZ?)] + o(l).

7T

Clearly f(x) = Ofor |x| < a, but lim^ S/wf^ fails to exist.

Exercise 2.5.8. Let n = 2 and letf(x) = 1 for 0 < |x| < a andf(x) = 0 other
wise. Prove that if x 0, then r -» /A (r) is absolutely continuous and Holder 
continuous with exponent but that ifx = 0, r fx(r) is discontinuous.
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FIGURE 2.5.1
The spherical partial sum of the indicator function of the unit ball in M3 with M = 99/2tt.

Theorem 2.5.5 can also be formulated in the case of even dimensions. The basic 
case of two dimensions is dealt with as follows.

Proposition 2.5.9. Suppose that f G ZJ(R2) and that the spherical mean value 
r fx(r) is absolutely continuous with [/^(r) | dr < oo. Then lim^ S^f{x) =

/x(0 + 0).

Proof. Appealing to (2.5.4) and (2.5.5) and the identity (d/dr)Jn = —J\, we have

SM(x) = 2ti [ MJi(2Mjrr)fx(r)dr

fx(r)^-J0(2irMr)dr 
dr

f00 d -= A (0) + / Jo (2?r Mr) -A (r) dr.
Jo dr

The final integral tends to zero by the dominated convergence theorem.

Exercise 2.5.10. Show that the conclusion of Proposition 2.5.9 holds true iff has 
compact support and the spherical mean r fx(r) is assumed to be piecewise 
absolutely continuous. In particular for f = 1 [o,a] (l-*l), ™e have spherical Fourier 
inversion at x = 0.

Now we can formulate Theorem 2.5.5 in even dimensions.

Theorem 2.5.11. Suppose that n = 2k and the spherical mean r fx(r) is 
absolutely continuous, together with its derivatives of order j = 1,... ,k — 1 and 
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that r7 1 \fx\r)\dr < co for j = !,...,£. Then the spherical partial sum 

converges: lim/vy Swf(x) = fx<fi + 0).

Exercise 2.5.12. Complete the details of the proof of Theorem 2.5.11, following 
the corresponding reduction in the odd-dimensional case.

2.5.2 Piecewise Smooth Viewpoint

As in the case of one-dimensional Fourier inversion, it is not possible to obtain any 
necessary conditions for spherical Fourier inversion in . However we can isolate a class 
of functions for which we can obtain some simple necessary and sufficient conditions 
for convergence of SMf(x), M oo. The original reference is Pinsky (1994).

Definition 2.5.13. f e L'(IR”) is piecewise smooth of degree k with respect to 
x G if there exists a subdivision 0 = ao < a\ < • • • < ok such that r fx(r)
is absolutely continuous on each subinterval, together with its derivatives of order 
k — 1 and that rJ~l |/c(,)(r)| dr < oo for 0 < j < k. At each subdivision point 

we asssume that there exist the one-sided limits fx^ ± 0) for 0 < j < k. The 
jumps are denoted 8fx\ai) =fx\at + 0) —fx\at — 0).

Theorem 2.5.14. Suppose that n = 2k + 1 and that f e L*(IR/2) is piecewise 
smooth of degree k with respect to x e M". Then lim^ Swf(x) exists if and only if 
r fx(r) is of class Ck~l; in detail 8fx\ai) = 0 for l<i<K,0<j<k — 1.

Proof. The computations in the previous section can be repeated in this context on each 
subinterval («,_i, af). Each time we integrate by parts on («,_i, a,), we obtain a contribution 
from the endpoints. When these are summed, the resultant contribution can be expressed 
in terms of the jumps. In detail, we have,

k K / i y
(2.5.6) IMf(x) = (o,^i EE( a" 21 r)M(ai)D"M2t'\ai)

<»„_i f00 /1 d \k r „_2 - i sin(27rMr)
+ / r “T Jr ^(r)Z(r)J--------------dr.(27T)k Jq \r dr/ J nr

If each of the jump terms is zero, then we obtain the desired convergence: limM SMf(x) = 
fx(0 + 0). Conversely, suppose that lim^ SMf(x) exists. Then it must be equal to/JO + 0), 
by Gaussian summability. The final integral also converges to/JO+O), by one-dimensional 
Fourier inversion. Therefore the sum involving the jump terms must converge to zero. If 
we now divide by M(n-3)/2 and apply the asymptotic formula for DnM(r), only the term with 
j = 1 survives and we obtain

K
lim &fx(Pi) cos(Afa,- — 6n) = 0. ■

/=!

To complete the proof, we state and prove a lemma on finite trigonometric sums.

Lemma 2.5.15. If {C/jjLj are complex numbers and is such that 

lirn^oo Ci cos(azzz — 6) = 0, then Ci = 0.



146 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proof. Multiply the sum by cos(x6zy — 0), integrate over [0, M] and divide by M. Each term 
in the sum tends to zero, save for the jth term, which tends to |C; , which proves the result.

Applying this lemma we first see that <%(a,) = 0 for i = 1,..., K. Now we return 
to (2.5.6) and divide by 7?(n-5)/2 to obtain

K

lim 5/(1)(6i,) cos(Afa, — ^_2) = 0.
M—>oo */=!

Applying the lemma once more we see that 5/.(I)x(tz,) = 0 for i = 1, ..., K. Continuing 
inductively proves the result. ■

The results of this section can be reformulated in terms of the smoothness index, 
which is defined as follows: If the spherical mean value r -» fx (r) is discontinuous, we set 
J(/; x) = —1. Otherwise r -» fx(r) is continuous with a certain number of continuous 
derivatives, denoted J(/; x). The convergence theorem for piecewise smooth functions 
can be rephrased as follows, where [ ] denotes the integral part.

Theorem 2.5.16. Suppose thatf e L'(IR") is piecewise smooth with respect to 
x e with smoothness index J(f\x). Then the spherical partial sum Swf(x) 
converges when M oo if and only if J(f', x) > [(n — 3)/2], in which case the 
limit is fx(0 + 0). IfJ(f\ x) < [(n — 3)/2], then we have

-oo< liminf M k(SMf(x) ~fx(fi + 0))< lim sup A/ k{SMf(x)-fx(fl + 0))<oo 
M M

where k = (n — 5 — 2J(f\ x))/2 > 0

2.5.3 Relations with the Wave Equation

We have already seen the close relation between Fourier analysis and the partial differ
ential equation of heat flow, whose steady-state limit is the Laplace equation. In each 
case the solution is defined by integration of an approximate identity applied to the 
initial-boundary data, as we have seen in detail.

When we come to the wave equation the situation is different, since the solution is 
no longer expressed as an integral with respect to a positive kernel, but rather a Schwartz 
distribution on the surface or interior of a sphere. To see this in detail, consider the 
initial-value problem for the wave equation

(2.5.8) M(x;0)=/(x), —(x;0) = 0
ot

where/ G S is a rapidly decreasing function.
This initial-value problem can be solved in terms of the Fourier transform/ by the 

formula

(2.5.9) f) = / cos(27rf|£|)/(£)e2’'^ <Z£.
JlR"
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It is immediately verified that u solves the wave equation with the given initial conditions, 
in the sense that limr_>o w(x; t) = f(x) and limr_>o 9w/3r(x; r) = 0. A corresponding 
formula can also be developed for the more general initial conditions, which is left as an 
exercise.

In order to proceed further, we write (2.5.9) as
/»OO

u(x\ t) = I cos(2jt(/z) dp, 
Jo

where

S(M) = SJ{x) := [ e2^xf^(d^,

where is the surface measure on the indicated sphere. Since/ g 5 it follows that 
f G S and that both /z —> S'(p) and t -» w(x, t) are rapidly decreasing functions. Hence 
we can apply one-dimensional Fourier inversion to obtain

/»OO
S"(/z) = / cos(27rr/z)w(x; t) dt.

Jo

Integrating once more on [0, M] and applying Fubini, we obtain the following 
proposition.

Proposition 2.5.17. Suppose that f eS and that u(x; t) is the solution of the 
initial-value problem (2.5.7) and (2.5.8) for the wave equation. Then the Fourier 
partial sum can be retrieved through the formula

(2.5.10)
x f°° sin(27rMr) z x , $Mf(x) = I ---------------u(x\t)dt.

Jo

Formula (2.5.10) was developed and applied by Pinsky and Taylor (1997) to study 
pointwise Fourier inversion on Euclidean space and other classical spaces on which the 
wave equation has a known solution.

Proposition 2.5.17 will now be used to find an explicit representation for u(x‘, tf 
not involving the Fourier transform. To do this, recall the representation of SMf(x) in 
terms of the Dirichlet kernel

z»OO

SMf(.x)=<an_l DnM(r)fx(r)rn~i dr.
Jo

Since/ e S, the function r —> fx(r) is also smooth and rapidly decreasing, so that we 
can integrate-by-parts and use the properties of the Dirichlet kernel to write DnM(r) = 
— (I/litr)(d/dr)Dff2(r) and obtain if n = 2k 4- 1

SMf(x) =
a>n_i f°° sin2?rAfr / d \ ,

7^—r / ------------- H -v Ir fx(r)]dr.
(27t)k Jq nr \rdr J

But Proposition 2.5.17 also provides a representation in terms of the same one
dimensional Dirichlet kernel. Therefore we obtain the following proposition.
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Proposition 2.5.18. The solution of the initial-value problem (2.5.7) and (2.5.8) 
is given by the explicit formula

(2.5.11) M(X; = [t" 2^W]'(27t)K \tdt /

Example 2.5.19. Ifn = 3, then the solution is u(x\ t) = (d/dt)[tfx(t)] = tf^t) 4- 
fx(t). The second term corresponds to a measure on the sphere {y: |y—x| = t}, while 
the first term corresponds to a (dipole) distribution, which is the first derivative of 
a measure—in the sense of Schwartz distributions.

The representation formula (2.5.11) can be used to exhibit the finite speed of propa
gation of the wave equation, as contrasted with the “instantaneous speed of propagation” 
of the heat equation.

Proposition 2.5.20. Suppose thatf(y) = 0 in a ball of radius a centered at x.
Then u(x\ t) = Ofor t < a.

Proof. If f = 0 in the ball, then f(t) = O for t<a, likewise for all higher time 
derivatives. ■

The odd-dimensional wave equation also exhibits Huygens’ principle, stated as 
follows.

Proposition 2.5.21. Suppose that f is supported in a ball of radius R centered at 
x. Then u(x\ f) = Ofor t > R.

Proof. In this case the surface integral f (t) =0 for t > R, likewise for the higher time 
derivatives. ■

The wave equation in even-dimensional space can be solved by the method of 
descent, which we illustrate in the three-dimensional case. If f e 5(K2), we define 
F(x,y, z) = f(x,y). If we parametrize the upper and lower halves of the sphere by 
writing W3 = t2 — w2{ — w\, the surface integral over the sphere of radius t in three 
dimensions is transformed into the two-dimensional integral

z? 1 f + + w2)
WO = — / —r................  ■=- dw\ dw2.

27tt yjt2 - W2 - w\

From this formula we see that the finite speed of propagation still holds: if/ = 0 in 
a disk of radius a centered at x g U&2, then u(x; t) = 0 for t < a. However Huygens’ 
principle is not valid in two dimensions, since if/ is supported in a ball of radius R, the 
solution u(x\ t) is written as an integral over the interior of the disc of radius t about x, 
hence will be nonzero for all t.

Figure 2.5.2 illustrates Huygens’ principle; / = 0 outside the sphere of radius R 
about (0, 0, 0). If ct > R 4- |x|, then/ = 0 on the surface of outer sphere (labelled III) 
where the integration is performed.
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FIGURE 2.5.2
Illustrating Huygen's Principle.
From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications. Used 
by permission of The McGraw-Hill Companies.

2.5.3.1 The method of Brandolini and Colzani
The wave equation can be effectively used to study pointwise Fourier inversion and 
localization. In this section we treat the case of the Fourier integral. Brandolini and 
Colzani (1999) have also treated the corresponding problem for multiple Fourier series.

We begin with the spherical partial sum operator

SMf(x)= [ f(g)e2n*xdi-

= f l|oWIW(Oe2’r*''^-

JR"

Let i/r e CN (R) for some N > n/2 be a nonnegative even function with i/r = 1 and 

= 0 for |/| > 6, for some 6 > 0. For example we can take an iterated Fejer kernel 

/1 — cos 2jr8t\N
(2.5.12) ^t) = cN8( z ,

\ (tT(H)2 /

where cN is a positive constant. Explicit computation shows that i/r(z) = 0 for |r| > N8, 
so that we can take 8 = e/N. Without loss of generality, we take 8 = 1 in what follows.
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Now 1 [o,m] is the restriction to the positive real axis of the even function 1 [~m,m] • Writing 
* ^ + (1L-~ * Js), we have

SMf(x) = S'Mf(x)+S2Mf(x)

where

S'Mf(x) •• = [

JR"

JR"

The success of the method depends on two fundamental points: (i) S[Mf(x) depends only 
on the values of f in a ball of radius 6 about x. (ii) S2Mf(x) is essentially bounded by a 

constant multiple of /(£)| To see this, first write the convolution

Ui-m.mj * = / e27r,s,i[-MtM](s)^(s)ds
Jr

f°° sin 2nMs ~
= 2 1 cos (2zr st)------------- x/s (s) ds

Jo ns

= 2 [ ^(■?)-S1—— ( f f(\$\)e2^xcos(27ts\$\)dt;) ds

Jo ns \JRn /

sin 2tc Ms 
x/s(s)------------- u(s, x) ds

7CS

where u is the solution of the wave equation utt = Aw with u(0, x) =/(x), wf(0, x) = 0. 
Indeed, this equivalence has been demonstrated for the class 5, and the solution formula 
(2.5.11) easily extends to/ e L1 + Z,2. This formula shows two important properties.

• If/ = 0 in a ball of radius 6 about x, then S'Mf(x) = 0.
• If s —> u(s, x) satisfies a Dini condition at s = 0, then lim^ S[Mf(x) =f(x).

To estimate 5^/(x), we note that * ^(0 — ft-M dy. Assuming the 
iterated Fejer kernel (2.5.12) with 8 = 1, we see that for M > 1 

\Js<J)\dt
Cn

M > 1

which can be combined into the overall bound

^(0 dt < 0 < M
(1 +M)2A'-’ ’

oo.
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We use this to estimate the difference * Vr)(0 — separately for |r| >
M and |r| < M. In the first case 1(0 = 0 and we have

rt+M /»oo
= / ^(y)dy< I i/r(y)dy<

Jt—M Jt—M

_______ Gv_______
(1 + - M|)2/v-1 ’

while in the second case 1[-m,m](0 = 1 so that

rt+M /»
- 1 = / ty(y)dy- I ir(y)dy

J t—M J iR

0/»oo
+ I ) 'kty'idy 

t+M J—oo /

< Cyv
- (i + \t-M\yN~{'

Proposition 2.5.22. Iff G L1 (R/?) + L2(R"), and the Fourier transform satisfies 
the Tauberian condition

lim [
M JM<27r|£|<M+l

then S^f(x) —> 0; if in addition s —> u(s\ x) satisfies a Dini condition at s = 0, 
then we have pointwise Fourier inversion: lim^ Swf(x) = f(xf

Proof, From the above computations,

Jr"

C4.<l + IISHM|>»-'tol‘'5'

If/ G L2(R") this can be estimated by Cauchy-Schwarz and applying the dominated con
vergence theorem, whereas for/ e Ll (Rn) it can be estimated by removing the supremum 
of/(£) and applying the dominated convergence theorem. ■

Example 2.5.23. Suppose that f g Z?(R2) is defined by a smooth function on 
the interior of a convex region with a smooth boundary with nonzero curvature, 
and defined to be zero outside. Then the Fourier transform satisfies the asymptotic 
estimate |/(£)| < C/|£|3/2. Hence

( <-£-m = o(-^=
M<\2n^\<M+\ M 1 \4M

M OO.

This example satisfies the Tauberian condition, hence we have Fourier inversion 
and localization at every point.
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2.5.4 Bochner-Riesz Summability

Closely related to the techniques of spherical Fourier inversion is the notion of Bochner- 
Riesz summability of the Fourier integral. This is a natural substitute for the Fejer means, 
which have no direct counterpart in M'7 if n > 1.

The Bochner-Riesz means of order a > 0 are defined by

(2.5.13) /(x) = / 1-772 di-.

By Fourier reciprocity, this operator can also be represented as the convolution with 
the inverse Fourier transform of the function £ -> (1 — |£|2/A/2)q;1(o,m)(|£|)- In detail, 
the Bochner-Riesz kernel is

f / l£l2\aW = / 1-^ di-

Jo \ M2 J (2n/jLxyn~2^2

= 2Tt\x\~(n~2)/2 [ (1 - s2)aJ(n_2)/2(2Tt\x\s)sn/2 ds.

Jo
This integral is evaluated in the appendix to this chapter, with the result

(2.5.14) K“(x) = ^A+»/2(WI)
v ' M 7r“ |A/x|“+"/2

Proposition 2.5.24. If a > (n — l)/2, then is an approximate identity. In 
particular for every f G Z/(M'7), 1 < p < oo, \\BaMf — f\\p —> 0 whenM —> oo.

Proof. From the properties of Bessel functions, we have the bound

< C"“ (1 + Mr)a+(„+l)/2 •

Therefore
/» z»CC „n-l

(1+^(n+1)/2<00,

which proves that the L1 norms remain bounded when M -> oo. In particular the integral 
of Km can be computed from the Fourier inversion at £ = 0:

1= f K^(x)dx.
Jw

Finally for any 8 > 0

[ ]K°M(x)| dx = [ K“(y) dy 0, M oo,

which proves that is an approximate identity. ■
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One can also prove a.e. summability, as follows.

Proposition 2.5.25. If a > (n — l)/2 andf e Lp(Rn) with 1 < p < oo, then 
for every Lebesgue point, lim^ BaMf(x) =f(x). In particular this holds at almost 
every x G R".

Proof. Without loss of generality we can suppose that x = 0. Furthermore we may replace 
f by f(x) —/(0)e_|x|2 to reduce to the case/(0) = 0. Define

<P(r) :=f \f(y)\dy, e(r) :=

From the hypothesis of Lebesgue point we have e(r) —> Owhenr —> 0. Nowif 1 < p < oo, 
for large r we can use Holder’s inequality to write

4>(r) < C„,p e(r) < p'=p/(p-l)

so that € is a bounded function. In case p = oo it is immediate that € is a bounded function. 
Now we can write

M ln (I +a/r)«+<*-+d/;

°°
(1 + s)*+(«+3)/2 5

s"€(s/M) 
-------------------ds[1 + 5)a+(>7+3)/2

where we have integrated-by-parts and used <I> (0) = 0 in the fourth line. The final integrand 
tends to zero when M —> oo and is dominated by an integable function since a > (n — l)/2 
and € is a bounded function. Hence /(0) —> 0 when M —> oo, which was to be proved.

2.5.4.1 A general theorem on almost-everywhere summability
It is possible to abstract the features of the Bochner-Riesz kernel to prove a general 
theorem on almost-everywhere summability, originally due to Calderon and Zygmund 
(1952).

Theorem 2.5.26. Suppose that 1<.t(x),T —> oo is an approximate identity on M" 
which is majorized in the form

\kT(x)\ < TnK(T\x\\ xeV\T > 0

where K : [0, oo) —> [0, oo) is a decreasing function with K(0) < oo, ||AT|| i := 
fRn X'(lxl) dx < oo. Suppose thatf G L1 (HF) and that 0 is a Lebesgue point off.
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Then

lim [ kT(x)f(x)dx =/(0).
JRn

Proof. The approximate identity can be applied directly to the bounded continuous function 
x e_|A| ; hence we may replace f by the integrable function f(x) —/(0)e-|v| , and reduce 
attention to the case/(0) = 0. Having done this, we let

f 4>(r)<*>(r) := / \f(x)\dx, e(r)

Clearly 4>(r) < ||/||i and, since 0 is a Lebesgue point, 6 is a bounded function with 
lim^o c(r) = 0- Now we write

( kTWf(x)dx < [ TnK(T\x\)\f(x)\dx— f TnK(Tr) d<b(r).
Jr" Jr" JO

This will be integrated-by-parts, following the remarks that (i) since ||A|| i < oo, we must 
have lim^oo K(r) = 0 and (ii) since 4>(0) = 0 and is bounded, both terms at the limits 
vanish and we can write

z»CC z»OO
/ T"K(Tr)dQ(r) = - Tn<b(r) dK(Tr)

Jo Jo

= - [ (Tr)ne(r) dK(Tr) 
Jo

But another partial integration shows that

- / s"dK(s) = -smK(M) + / K(s)s"-'ds < C||X'|h < oo 
Jo Jo

so that sndK(s) is a finite measure on [0, oo). Meanwhile, the function e(s/T) is uniformly 
bounded and tends to zero when T —> oo. Therefore by the Lebesgue dominated con
vergence theorem, the last integral tends to zero when T —> oo, completing the proof.

■
Exercise 2.5.27. Extend the previous result to f G Lp(Rn), 1 < p < oo with a 
Lebesgue point at x = 0.

2.6 BESSEL FUNCTIONS

Here we give a self-contained development of the necessary facts about Bessel functions. 
In Chapter 1 we encountered the so-called modified Bessel function defined by a 
power series with positive coefficients. The standard Bessel function Jm(t) is defined by 

(2.6.1)
(X)

7=0

(7/2)2>+m

;!(/ + «)!
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This power series converges in the entire complex plane. If m is not an integer, we define 
the factorial as the Gamma function

z»OO

m\ = I tme~ldt = T(m + 1).
Jo

Proposition 2.6.1. Ifm, v > 0, the Bessel functions satisfy the relations

(2.6.2) (0 t > 0
at

(2.6.3) ^-[rmjm(r)] = -rmjm+l(r) t>0
at

(2.6.4)
// 1 / t (f d\

+ 7^(0 + 1 - 7T = 0 =77 ' > 0
t \ P / \ at /

(2.6.5) jf ‘ Jm(W",+ ' (1 ~ ^2)v ds = 2vv\Jm+^fR} R>(i

(2.6.6) e^(l - ?)—/2 ds = (m + 0 T Q) .

;m+l(l — s2)vds
0

The first three are obtained by termwise differentiation of the power series. For the 
fourth, we substitute the definition of Jm into the integral and integrate term-by-term:

Jo +

= ^(_iyw^f'rm+J(l_rydr 
2£f J'dj + my Jo 
2vv! ^2,

= — > c-iy
/?v+1 j\(m + v+j + 1)!

_ Tv\
— ^v+i^m+v+l W

The final integral formula is obtained by making the substitution s= sin 0 and recog
nizing the power series coefficients from Chapter 1.

(7?/2)m+v+1+2y

Exercise 2.6.2. Prove (2.6.2) by termwise differentiation of the power series 
definition (2.6.1).

Exercise 2.6.3. Prove (2.6.3) by termwise differentiation of the power series 
definition (2.6.1).

Exercise 2.6.4. Prove (2.6.4) by termwise differentiation of the power series 
definition (2.6.1).

Exercise 2.6.5. Complete the details of the proof of (2.6.6).
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The asymptotic behavior of Jm(f),t-+ oo is most efficiently deduced from 
a differential equation. Let y(t) = y/tJm(t). From (2.6.4), we have by successive 
differentiation

(2.6.7) y" + y = 0 < £ < oo, C := m2 — -.

This implies that y and y' remain bounded when r -> oo, since

~r(y ) = 2yy + 2yy = —— < — (y +y ).
at P

Hence for t > t$,

(
r t ds \

\c\ — I < [y(?o)2 + y Oo)]e|C|/'°,
JtQ s /

which proves the required boundedness. From this we have the representation

f°° Cy(s)
(2.6.8) y(t) = J sin(r — s)—— ds + Ai cost + Az sinr

Indeed, the first term on the right of (2.6.8) is a solution of the differential equation 
(2.6.7), so that it differs fromy(r) by a solution of the homogeneous equation z" + z = 0, 
whose general solution is Ai cos t + A2 sin t.

From this follows an asymptotic formula for y(t), since the integral term is bounded 
in the form

J sm(t — s)—— ds < J ------—ds = 01 - 1 , r —> 00.

We summarize the above work as follows.

Proposition 2.6.6. The Bessel function Jm(f) satisfies the asymptotic relation 

jijm(t) = Ai cosr + A2 sin t + , t oq

for suitable constants A[, Az. Equivalently, we may write

A / 1 \
Jm(t) = — cos(t - 0) + O[ — ), t 00

V? V3/2/

for suitable constants A, 0.

The constants A, 0 can be explicitly identified in the case of integer m by the 
method of stationary phase, described in the next section. In the case of half integer m, 
it is often possible to identify the constants from elementary formulas, beginning with 
J\/2(x) = a/2/ttx sin x.

Exercise 2.6.7. Prove that the derivative of the Bessel function satisfies the 
asymptotic formula (d/dt)(y/tJm(tY) = — Ai sinr + A2 cosr + Of[/t), t 00.

Hint: Compute y'(t) from (2.6.8).
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2.6.1 Fourier Transforms of Radial Functions

If/ G lJ(M/7), the Fourier transform / is a continuous function vanishing at infinity, 
whereas if/ G L2(R"), we can only say that/ G L2(R"), in general. In Chapter 3 we will 
prove that the Fourier transform can be extended as a bounded operator from Lp(Rn) 
to Lp>(M'7) if 1 < p < 2. However, if / depends only on r = |x|, then / will also be 
continuous and will vanish at infinity when/ G Lp(Rn) for restricted values of p.

We proved in Section 2.1 that the Fourier transform of a radial function is again 
a radial function. By writing this explicitly in terms of a suitable kernel, we can establish 
useful properties of the Fourier transforms of radial functions. Specifically, we have the 
following.

Proposition 2.6.8. Ifcp G 5(0, oo), and we set f(x) = ^(|x|), then

(2.6.9) 'o (rlW^2 dr.

Iff e LP(W), 1 < p < 2, then this integral is interpreted as a limit in Lp (Rn) of 
fM when A/ -> oo.

This follows from the representation of Bessel functions, specifically (2.6.6) with 
m = (n/2) — 1, t = 7rr|£|. For details, see Stein and Weiss, 1971, p. 154.

We can use the representation (2.6.9) to prove additional properties of Fourier 
transforms of radial functions for restricted values of p e (1,2).

Proposition 2.6.9. Suppose that 1 < p < 2n/(n+l). Then the Fourier transform
(2.6.9) is a continuous function for £ 0, which vanishes at infinity and satisfies

\f&\p < Cnp F \<p(r')\prn~l dr = C'np [ \f(x)\pdx. 

Jo Jr"

Proof. Recalling the bounds on the Bessel function and applying Holder’s inequality, we 
have

/(n-2)/2(2^r|^|) 
(r|?l)<"-2)/2

dr
|^(r)|r" 1 

-------------------- dr
(1 +

|(p(r)|r<',-|)/p

f rn 1 dr
(1 + r\$ D^-Dp')/2

r(7J-l)/// 

(1 + r|£|)(/’~1)/2

The final integral converges when M -> oo if and only if (n — 1) — pf(n — l)/2 < — 1, 
which is equivalent to l/pf < (n — l)/2n or 1/p > (n + l)/2n. The continuity for £ / 0 
now follows from the dominated convergence theorem. To prove that/ vanishes at infinity,
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we write for any 6 > 0,

/«) =
, J(„-2)/2(2nr|£|) 

IrlV-- f dr

fe . J(„2)/2(2^r|?|) , <C. f IcMIr-'*
Jo

= C„[ |^(r)|r<"-1,/pr<',"1)/p' dr
Jo

[°° . J(„-2)/2(27rr|?|) . f°° |?(r)|
/, y(r) ’ drsC-J. dr 

c f°° 
|e|(„-l>/2 J( ”

where q = n — 1 — p'(n — l)/2. Taking e = 1 shows that /(£)|/? < Cnp f™ \(p(r)\prn~x dr 
provided that p’ > 2n/(n — 1). On the other hand, for this same range of p we have for any 
6 > 0,

O
pf \ !/p'

1 l<fi(r)l'’r”-ldr] 
0 /

Taking € —> 0 shows that the limit is zero, as required.
To see that this range of p is sharp, let

, . „J„/2(2^ra)
(ra)"/2

which is the Fourier transform of the indicator function of a ball of radius a. From the 
asymptotics of Bessel functions, we have 9?(r) = [C + O(l/r)]cos(r — ^)/r(rt+1)/2 when 
r —> oo so that <p(| • |) g Lp(Rrt) if and only if oo > r(«-1)-p(«+i)/2jr, which happens if
and only if p > 2n/(n +1). But/ is discontinuous at the sphere of radius a, which provides 
the required counterexample. ■

The above results can be extended, in a suitable form, to nonradial functions by 
means of the restriction theorems, described below. These results depend in part on the 
complex interpolation method, to be developed in Chapter 3.

2.6.2 ^-Restriction Theorems for the Fourier Transform

The Fourier transform of f G L1 (Rn) is a continuous function that satisfies the pointwise 
bound /(£)l < ll/lli- However iff G LP(Rn) withp > 1 we cannot expect any such 
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pointwise bound in general. However if f is a radial function, we have shown in the 
previous subsection that |/(£)| < Cnp\\f\\p for 1 < p < 2n/(n + 1), hence this same 
estimate applies to the average over a sphere. The restriction theorems generalize this, 
by bounding the L2 norm of the Fourier transform on a sphere in terms of suitable LP 
norms. We have the following proposition, attributed to Tomas (1975).

Proposition 2.6.10. Let a>(d6) be the uniform surface measure on the unit sphere. 
Letf e S, and 1 < p < An/(3n +1). Then for some constant A = Ap, we have

Of \1/2

5"-' /

Proof. The Fourier transform of the surface measure is given by

\ f -2nix-E 7(/?_2)/2(27T |x|)"w = L' ‘"(<'0 = c-

and satisfies <£>(%) = O(|x|(1-n)/2), |x| —> oo. Hence d) e Lq(Rn), provided that q > 
2n/(n — 1). Now by Fourier reciprocity, Holder’s inequality and the Young convolution 
estimate, we have

( [ (f*f)(x)&(x)dx

< ll/ll>lk

where (2/p) = 14- 1/q'. But q > 2n/(n — 1) implies that 1/q' > (n 4- l)/2n so that 
2/p > (3n 4- l)/2n, which was to be proved. ■

2.6.2.7 An improved result
We can extend the range of p-values in the previous result by the use of Stein’s complex 
interpolation method, which will be developed in Chapter 3. In this method, we imbed the 
given problem in a one-parameter family of operators. A family of convolution operators 
is defined by the kernels

(2.6.11) KzW = Cz
J(n-2)/2 + Z(2zr |£|) 

|£|(n-2)/2+z
1 — n

2
< Re z < 1.

At the endpoints we have 

1 — n
Zo = —^—,Kz(x) - cos(2tt|x|),

A/2(27r|ei)
|£|„/2

Zi = 1,^(X) =

a bounded function,

with a bounded F.T., K\ = l|o,ij(|x|).

Therefore Kz„ maps Ll —> L°°, and Kz, maps L2 L2, so we can use the complex 
interpolation method with

Po = 1, ?o = oo, Zo -

Pi = 2, q\ = 2, Z1 = 1.
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Thus

1 1 — t t t
p = nr + 2= _ 2’

1 1 — t t t
— =-------- n n ’q oo 2 2

1 — n 
z = (1 - t) —----- \-t.

In particular p and q are conjugate exponents, \/p + X/q = 1. In order to have z = 0 
we must take t = (n — 1)/(h + 1), hence X/p = 1 — (r/2) = (n + 3)/(2n + 2), 
p = (2n + 2)/(n + 3). We now apply this to the Fourier reciprocity formula and apply 
Holder’s inequality to write

JS"-' JR"

< 11/IM/*<-

The Fourier transform of co is given by co = Ko. Each member of the one-parameter 
family maps the Lebesgue space into its dual, in particular

ll/*<'<C||/||P,

from which we conclude the following theorem.

Theorem 2.6.11. Let co(df)) be the uniform surface measure on the unit sphere. 
Letf e S, and 1 < p < (2n + 2)/(n + 3). Then for some constant A = Ap, we 
have

O
C \ 1/2
’ lf(0)|W0) <C||/||p.
S"-> /

In Chapter 3 it will be proved that the Fourier transform can be extended as a 
bounded operator from Lp(Rn) to Z/(Rn) if 1 < p < 2. In this setting the restriction 
theorem is also valid, by taking limits in the space 8. Many of the properties of the 
Fourier transform on L^R") have counterparts in this wider setting. In particular, the 
restriction theorem may be used to prove the following result on the average decay of 
the Fourier transform of a function in Lp for a suitable range of exponents.

Proposition 2.6.12. Suppose thatf e Z/(R") where 1 < p < (2n + 2)/(n + 3).
Then J\^=[ /(r£)|2co(W£) 0 when r oo.

Proof. Define/. (*) = r~nf(x/r) for r > 0, x e R'2. Then

/(?) = <" ( e-2™*f(x/r)dx= f e-M^f(y)dy=f(r^
JR" JR"

\\fr\\pp= ( \r~nf(y/r)\pdy = r~np ( \f(y/r)\pdy = rn~np\\f\\p
Jr" Jr"
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Applying the L2 restriction theorem, we have

[ < Qu/-ii2 = -> o
Jl£l=l

since p > 1. ■

Corollary 2.6.13. Suppose thatf e LP(V) where 1 < p < (2n + 2)/(n + 3).
Then f^^f(r^)co(d^) 0 when r oo.

One may note that the results on radial transforms are valid on a wider set of LP 
spaces than the L2-restriction theorem, since

In + 2 2n 
n > 1 => -------— < ------

n + 3 n + 1

Thus we may extend the previous corollary, as follows:

Exercise 2.6.14. Suppose that f e LP(Kn) with 1 < p < 2n/(n + 1). Show that 
f\^\=\f 0 when r oo.

Hint: Interchange the orders of integration to reduce to the case of a radial function.

2.6.2.2 Limitations on the range of p
The sufficient conditions on the range of p-values for the restriction theorem are also 
necessary, as revealed by the following example.

Example 2.6.15. Letf be the Fourier transform of the indicator function of the 
rectangular region R defined by the inequalities

1 — 6 < X\ < 1, 2 < j < n

where 0 < e < 1.

In detail

l/WI =
sin IrtXjyfe 

7tXj

To compute the Lp norm, we note that by direct computation

sin 7t xc

JtX

p r
dx = €p~x I 

Jr

sin Tty
Tty

P dy = Cpep~l.
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Applying this to both factors above yields

||/||P = Cpe'’-' V7(,,-1)^-|) = C/>e(P-<)(n+D/2t

||/||„ = Cp€("+'W.

On the other hand, the L2-norm of the Fourier transform on the unit circle is

f [fO Wl) - ( =cn( ~ C/,e(-D/2.
111=1 J |Ay|<V?,xf + ---+x2=l J\Xj\<y/€ \/X\

Hence

If the restriction theorem (2.6.12) were valid, then we would have

£(n-l)/4 < ^e(n+l)/2/7

This can be true for all c > 0 if and only if we have (n + l)/2// < (n — l)/4, or 
equivalently

n— i > 1 _ i 1 1 > m + 3
2(h + 1) ~ pr p p ~ In + 2 ’

which is precisely the range of admissible exponents in the L2-restriction theorem 
(2.6.12).

2.7 THE METHOD OF STATIONARY PHASE

Often we have occasion to make an asymptotic evaluation of a one-dimensional Fourier 
transform, when |£ | oo. This can often be done by a simple integration-by-parts, for 
example if/ e L1 [a, b] is absolutely continuous with/' e Ll [a, b\, we can write

/(I) = I” f(x)e~2^xdx

J a
e-2ni^x

—2tt^

f(b)e-2^h —f(a)e~2n$a + /= [ f\x)e 2niixdx.
JCl

The new integral is <?(l/£) when |£ | —> oo and we have obtained an asymptotic formula. 
If / has higher derivatives in L1, then this may be iterated to obtain an asymptotic 
expansion.
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In many problems of interest, we encounter Fourier transforms when/' L1, for 
example the Bessel function

1 f1 eltx 
= - z o dx.

n J-\ Vl — x2

If we make the change of variable x = cos 6, 0 < 6 < tt , we obtain the formula

Jo(r) = 1 r e'lcose de, 

TT JO
which looks less forbidding, however it is no longer written as a Fourier integral. If we 
try to integrate-by-parts, we find that the contribution to the integral from any interior 
interval tends to zero like 1 /t, but this analysis no longer applies near the endpoints 
0 = 0,0 = 7T.

To handle this and more general “oscillatory integrals,” we develop the method of 
stationary phase. Specifically, we consider complex-valued functions of the form

rb
(2.7.1) /(?)= / e^Mg(x)dx,

J a
where is a real-valued function called the phase function. The function g(x) may 
be either real- or complex-valued. If cp'fx) 0, then we may integrate-by-parts and 
conclude that/(r) = O(l/r), t -> oo. However, if (p'(x) = 0 for some x, then this 
conclusion is no longer valid. In order to find the correct result, we focus attention upon 
those points x7 where cp'fx) = 0, the so-called stationary points.

2.7.1 Statement of the Result

The complete statement of the result is given as follows:

Theorem 2.7 .1. The method of stationary phase: Suppose that g(x),<p(x) 
have two continuous derivatives for a < x < b, that <p(x) is real-valued, and 
that(p'(x) 0 except for a finite number of stationary points Xj, where cp" (x7) 0. 
Let these be labeled so that (p"(xf) > 0 for 1 < j < K and <p"(xf) < 0 for 
AT + 1 <j<K + L. Then when t -> oo,

(2.7.2)

where

(2.7.3)

e^gix) dx = I+(t) + I~(f) + O

(2.7.4)



164 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

If either of the endpoints x = a, x = b are also stationary points, then they 
contribute to (2.7.3) and (2.7.4) with a factor of

A simple tool to remember this complicated formula is to observe that the result 
is identical to what is obtained by replacing <p(x) by its two-term Taylor expansion and 
replacing g(x) by its value at each stationary point, then doing the resultant integrals 
(one for each stationary point), and then summing the results.

We illustrate with a typical example.

Example 2.7 .2. Apply the method of stationary phase to find an asymptotic 
formula for the integral

rn/2
/ (2x + 3)e“'7cosxdx.
J-ji/2

In this case we have g(x) = 2x + 3, <p(x) = — cosx, (p'(x) = sinx, (p"(x) = cosx. 
The only stationary point is x = 0, where (p"(fi) = +1, g(0) = 3. Applying (2.7.2), we 
have

p/2 e-it™*dx=+o Qy t oo

2.7.2 Application to Bessel Functions

As a primary application of the method of stationary phase, we propose to identify the 
constants in the asymptotic behavior when r —> oo of the Bessel function Jm(t), which 
is represented by the integral

(2.7.5)
—m ptt

Jm(t) = — j eif cose e~im3d0 m = 0,1,2,....

Proposition 2.7.3. The Bessel function has the asymptotic behavior

(2.7.6) cos (t — tt/4 — mjt/2) + O

Proof. From the integral representation (2.7.5) we have (2.7.1), where <p(x) = cosx, g(x) = 
(l/27r)e~mv:e~mm/2. Since <p'(x) = — sinx, <p”(x) = — cosx, there are three stationary 
points: x = 0, x = jt, x = —jt, with <p"(0) = — 1, = 1 = also g(0) =
(\/27i)e~imn/2,g(7i) = (l/27r)e-3z"OT/2 = g(—7r). We apply the method of stationary phase,
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noting that the endpoints contribute with a factor of |. Hence

p-im7i/2
--------------

2jt

2t7 p-im7i/2
—------
t 2jt

fi-?>unTt/2 / i

---------  +O| -
2tt \ t

^TV JmTi/2 / i

-e^'e^------ + O ( -
t 2ji \t

— / 1 fei(t-7r/4-m7r/2) | e-i(j-7T/4-m7r/2)\ , q ( £
V iiitv 7 v

AT zi
= J — cos(7 — tt/4 — mjr/2) + O ( - 

V Tit \t

2.7.3 Proof of the Method of Stationary Phase

We now outline the steps used to prove (2.7.2). The idea is to reduce the study to each 
stationary point, where we can approximate using with the Taylor expansions with an 
error of 0(1/0-

Step 7. If the interval c < x < d does not contain any stationary points, then

Proof. We multiply and divide by <p'(x) and integrate-by-parts as follows:

[ g(x)e‘"fMdx = [ -^Ld(e“vM)dx
Jc Jc

= gW _ 1 /’+w)£ ( \ ,
itcp'ix) 'x-c it Jc dx \ <//(*) /

Both terms are O(l/r), t oq, and can therefore be included in the remainder term.
Therefore we can restrict attention to contributions from intervals containing the 

stationary points. Assume that jq is a stationary point for which (p"(xi) > 0, and let 8 > 0 
be chosen so that tp(x) — <p(xi) > 0 in the interval jq — 8 < x < x{ + 8. We introduce a 
new variable of integration v through the equation

v = (x - X{) —--------X]—0<X<X~ l+o.
V (*-*,)

The function x -> v(x) vanishes at x = x,, with v'(X|) = Vv’"(xi)/2 > 0. Therefore there 
exists an inverse function x = X(v) with X(0) = x,, X'(0) = v/2/^''(xi). ■

Step 2.

rx\+8 /*52
/ g(x)eil,fiMdx = _ G(y)eitv dv

Jx\—8 J—8\

where S2 = v(xi + 8), -8X = v(x, - 8) and G(v) = g(X(v))/v'(X(v)), G(0) = 
g(xi)V2/<p"(xi).
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Proof. We make these substitutions in the integral and change variables to obtain the result.

Step 3.

^82

J-8}

p 82
G{v)eitv2dv = G(0) / eitv2dv + 0(1/0, 

J-5,
t -> OO.

Proof. We write G(v) = G(0) + vh(v), which defines the differentiable function h(v). The 
second term contributes to the integral

f 2 vh(y)e',v2dv = — / ' h(y)d (e"b'2
-j, 2/7 J_s, V

as required.

Step 4.

t 00.

Proof. This is the Fresnel integral. Readers familiar with complex-variable methods will 
find this a one-liner: apply Cauchy’s theorem to the function/(z) = e>: on the crescent
shaped contour formed by the ray z = rel7l/4, 0 < r < R, the arc of the circle |z| = R, and 
the real axis from (0, 0) to (R, 0), when R -> 00. We now outline a proof that does not use 
complex-variable methods.

The qualitative fact of convergence of the improper integral is established by the 
following partial integration:

The final integral is less than or equal to 1 /N, so that the right side tends to zero when 
M,N -> 00. This proves that the improper integral elx dx is convergent. Letting N -> 
00 shows furthermore that

■ »^2 -2

Both terms on the right are O( 1 /M), so that we have the required speed of convergence:
M

e1*2dx = I elxldx + 0(1/A/), A/ —> 00.
Jo

[ eix2dx = -
Jm

eiivi । r e
2iM + 2z JM x2
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It remains to compute the numerical value of the improper integral. To do this, we let p > 0 
and examine the double integral

PCX) POC
Jp = / e-^^e^^dxdy.

Jo Jo
On the one hand, we can take polar coordinates x = r cos 0, y = r sin 0 and compute

POO ptt/2
Jp = / e-',r2eir2rdrde

Jo Jo
POC

= — I re~r2^~l)dr
2 Jo
IT 1

= 2 2(p - i) ■

On the other hand, the double integral is the square of a single integral:

«
oo \ 2

e-^e^dx] .

Letting I = f™ elxl dx, we conclude that

O 7TZ
Z2 = lim Jp — —.

p->o 4

But the complex number I has both positive real and imaginary parts, so that the appropriate 
square root is

To apply this to Step 4, write

p<5 1 1 F / 1 \
/ e‘,v2dv = — / eix2dx =-= I + O I
'() Vt Jo y/t L \Vt/

oo.t

The equality of the two limits follows from Abel’s lemma (see below), which completes 
the proof. ■

2.7.4 Abel's Lemma

We give two forms of Abel’s lemma for integrals, the second of which is applied above.

Proposition 2.7.4.

• Suppose thatf(tf t > 0, is a locally integrable function and limz_>oc/(r) = L. 
Then lim/40 /0°° f (0pe~p'dt = L.

• Suppose that g(sf s > 0 is a locally integrable function and that the improper 
integral g(s) ds converges to some L. Then

poc
lim / g(s)e~psds = L.
/40 Jo
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Proof. The proof consists of writing
OO z*00

f(t)pe~pt dt — L = I (f(t) - L)pe~p1 dt.
Jo

Given e > 0, we split the region of integration into the two regions 0 < t < T and 
T < t < oo, where T is chosen such that \f(t) — L\ < 6 for r > T, so that the second 
integral is less than 6. The first integral is less than p \f(t) — L\ dt which tends to zero 
when p J, 0 and the first statement follows.

To prove the second statement, we set/(f) = g(s) ds. By hypothesis/(r) —> L 
when t -> oo. Interchanging the orders of integration yields

dt
'o

pe pt dt I ds

'o
Applying the first statement gives the result: if lim^oo /J g(s) ds = L, then 
lim,4o /0°° g(s)e~’Kds = L. ■



CHAPTER

3
FOURIER 

ANALYSIS 
IN LP 

SPACES

3.1 MOTIVATION AND HEURISTICS

Much of modem Fourier analysis is concerned with bounded linear operators on the 
Lebesgue spaces L/?(T) and LP(Rn). This chapter is devoted to the development of 
systematic methods for proving the boundedness of relevant operators by the method 
of interpolation. Following M. Riesz, if we can first prove that an operator is bounded 
on two different pairs of Lebesgue spaces, then we can often deduce boundedness on 
the intermediate spaces. A more general concept, that of weak boundedness, can often 
be used in place of strict boundedness, following the work of Marcinkiewicz. These 
techniques are applied to prove the Lp boundedness of the classical Hilbert transform, 
both on the circle and on the real line. This yields the M. Riesz theorem on Lp convergence 
of Fourier series and integrals in one dimension. This chapter also includes the Hardy- 
Littlewood maximal inequality, which proves the weak L1 -boundedness of a fundamental 
operator that underlies the Lebesgue differentiation theorem and many other almost- 
everywhere convergence results in Fourier analysis.

3.2 THE M. RIESZ-THORIN INTERPOLATION THEOREM

In order to introduce the ideas, we first develop some elementary properties of Lp spaces.

Lemma 3.2.1. Suppose thatf e Lp"(Rn) A L°°(Rn). Thenf e Lp'(Rn) for any 
P\ > Po-

Proof. Letting M = ||/||oo, we write

I \f(x)\p> dx < I \f(x)\p"dx<oo. ■
Jr« Jr«

169
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We say that/ lives on a set of finite measure if |{x :/(%) / 0} | <00.

Lemma 3.2.2. Suppose that f e LP] (Rn) lives on a set B of finite measure \B\.
Thenf e LP(} (W) for any p^ < p\.

Proof. From Holder’s inequality we can write
/» /» / r \/W/’l

/ i/(x)i"»dx= / i/(x)|™is(x)&< / i/(x)r& (lBi)(p|_/’°>//’1 <00.
Jr" Jr" \Jr" /

Lemma 3.2.3. Let 0 < p\ < p < p\ and suppose thatf e LPo(Rn) A LPl(Rn). 
Thenf e LP(R").

Proof. We write/ =/l{|/|<i} +/1{|/|>1} = fa +fi’ Both/ and/2 are dominated by/, in 
particular/ e Lp{} and/2 e LP}. But/ is bounded and/2 lives on a set of finite measure, 
since

\{x :/(%) + 0}| = |{x : |/(x)| > 1}| < [ \f(x)\p° dx < 00.
Jr"

Therefore by the preceding lemmas,/ e Lp(Rn) and/2 e Lp(Rn). But L/?(R") is a linear 
space, hence/ e Lp(Rn). ■

Lemma 3.2.3 has a sort of converse, as follows.

Lemma 3.2.4. Let 0 < po < p < p\ and suppose thatf e Lp(Rn). Then there 
exist fo e LPl} and fa e LPl such thatf = /o +/].

Proof. It suffices to take/=/I|Z|<। and/ =/l|/|>1. ■

The last two lemmas can be restated as follows: if po < p < p\, then

(3.2.1) LPQ(Rn) ALPl(R”) C Lp(Rn) C LP()(R") + (Rn).

The above lemmas show that for any measurable function/, the set {p : || / ||p < 00} 
is a connected subset of the real line. The theory of M. Riesz-Thorin quantifies this by 
showing, for example, that the mapping p —> log \\f\\p is a convexfunction of 1 /p. At the 
same time we deal with linear operators that are simultaneously defined on two different 
Lp spaces, developing the interpolation properties of these linear operators.

Exercise 3.2.5. Use Holder’s inequality to show directly that if \ < po < p\ <00 
and 0 < a < 1, then

f / C \a / C \ 1— a
I |/|a^l+(1-a^() < ( / |/|Pl | | I \f\Pl} | 

Jw \Jw / /

Conclude thatp —> log \\f\\p is a convexfunction.

The basic convexity result of M. Riesz will be developed in the following general 
setting. Suppose we have two measure spaces (M, p) , (A, v) and two pairs of indices
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(po, <7o), (pi, <7i) where 1 < p0,pi, go, q\ < oo with p0 0 Pi, go 0 <71- Further we 
assume given linear operators Ao : LPQ(M) —> Lq{} (N) and A i : LP'(M) —> (N) so that
Ao = Aj on the common domain LP{}(M) A LPl (M). Let k[ = ||A||/Wz be the respective 
operator norms, i = 1, 2. An interpolation is defined by a real number re (0, 1) giving 
rise to indices (pt,qt) defined by the convex combinations

1 t 1-t 1 t 1-t
— —----- 1--------- , — —----- 1--------- .
Pt Pi Po qt q\ qo

Theorem 3.2 .6. M, Riesz-Thorin: Under the above hypotheses there exists a 
linear operator At : LPl (A) -> Lq' (A) that coincides with At on LP{} (Af) A Z+ (Af) 
and whose operator norm satisfies

KIU,

The M. Riesz-Thorin theorem can be applied to prove the Hausdorff-Young 
inequalities for Fourier series in one dimension. This is illustrated in the following 
two examples.

Example 3.2 .7. Suppose that M = T with Lebesgue measure and that N = Z 
with counting measure. LetAf(n) = 1/2tt Jt f(0)e~med0 be the discrete Fourier 
transform. Letting (po, go) = (1, oo) we see from the contraction property that 
Ao is bounded with k$ = 1. Letting (p\,q\) = (2, 2), we see from the Parseval 
identity that A \ is bounded with k\ = 1. Applying the theorem, we take \/pt = 
t + (1 — r)/2 = (1 + 0/2 and \/qt = (1 — t)/2. These are conjugate exponents, 
satisfying l/pt + \/qt = 1. Since LP(T) C L’(T) the operator A must agree 
with the discrete Fourier transform, so that we conclude for any 1 < p < 2 
A : Z7(T) —> Lp'(Z) where \/p + \/p' = 1. Equivalently

\'/p' /1 f \l/p
Yi/w' < L- / m

The roles of T and Z can be reversed to obtain another example.

Example 3.2 .8. Suppose that M =. Z with counting measure and that N = T 
with Lebesgue measure. For a bilateral sequence {cn}, n e Z, define Af(9) = 

cn^ln3• From the first properties of absolutely convergent series, this is 
bounded from Z1 (Z) to L°°(T); also from the basic properties ofL2 it is also 
bounded from l2(7L) to L2(T). Therefore we can take po = 1, go = oo, Pi = 2, 
gi = 2 to obtain the same conjugate exponents \/pt = (1+0/2, l/qt = (1 — 0/2 
and the conclusion that for 1 < p < 2

The next exercise treats the convexity of the p norm by M. Riesz-Thorin.
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Exercise 3.2.9. Let f e L?(E), where E is a measurable subset of and 
1 < p < oo, with ll/ll,, := (fE\f\p)'/p.

(i) Prove that ||jf||/? = sup||011i,£l fE \f<t>\, where p' =p/(p - 1).

(ii) Use the M. Riesz-Thorin theorem to prove that iff G LP(fE) A LP1 (E) with 
1 < Po < Pi < 00, then ||/||p, < 11/11^'11/11^, where 1/p, = (1 - ?)/ 
Po + t/pi-

(Hi) Conclude that the mapping p —> log \\f\\ yp is a convex function.

To prove the theorem, we first prove the maximum-modulus theorem.

Lemma 3.2.10. Suppose thatf(z) is an analytic function in an open connected 
subset S of the complex plane. This means that about every point zo there is 
a disk |z — Zol < r so that f is the sum of a convergent power series f(z) = 
52^0 an(z ~ £o)w- Then f cannot have a local maximum at any interior point 
unless f is constant. In particular, | f (z) | attains its maximum on the boundary.

Proof. If f is nonconstant, then there is a smallest value of n > 1 so that an / 0. By 
translation, we may suppose that zo = 0. Near z = 0, f(z) = + anzn + O(zn+1), 
\f(reie)\2 = |<2012 + 2|a0an\rn cos (n6> - 0) + O(r"+1) . Clearly |/(z)|2 -/(zo)2 takes both 
positive and negative values in any neighborhood of r = 0, which is a contradiction. ■

Now we can prove the three lines theorem.

Lemma 3.2.11. Suppose that F is an analytic function defined in the strip S = 
{z : 0 < Re(z) < 1} and such that | F(iy)\ < mo, | F(1 + iy)\ < m\ for —oo < 
y < oo where mo > 0, m\ > 0. Then | F(x + iy)\ < mf~xm\for 0 < x < 1, 
—oo < y < oo.

Proof. Let F}(z) = F(z)/m]Q~'m\, which is an analytic function with |F(fy)| < 1, 
|F( 1 + ry)| < 1, so that we can assume mQ — m\ = 1. First we prove the lemma under the 
added condition that F(x + iy) 0 uniformly when |y| -> oo, 0 < x < 1. Then we must 
have \F(x ± iM)\ < | for M large enough. Therefore by the maximum principle, we must 
have |F(x + iy)| < 1 for 0 < x < 1, — M < y < M. But M was arbitrary, so the inequality 
holds in the entire strip 0 < x < 1, —oo < y < oo.

In the general case, we let Fn(z) = F(z)e(?2-1)/'7. Then

|F(x + ry)| < \F(z)\e-r2/,,e(x2-,)/'' < e~y2/",

which tends to zero when |y| -> oo. Hence we can apply the previous paragraph to conclude 
that |F„(x + ry)| < 1 in the entire strip. But |F(z)| = lim,7 \Fn(z) | < lim sup 1 = 1, which 
completes the proof. ■

Proof of the theorem. Having made the necessary preparations, we first note that for 
any measure space (M, /z), A can be defined on the spaces LP'(M), since we can write 
/=/w +/l|yi>i. By Holder’s inequality, this is the sum of an LPQ function and an Lp' 
function, for which A is defined. Now the Lq norm can be computed as

\\h\\q = sup / hgdv, 
llg||f/<i Jn
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where the supremum is taken over all simple functions, i.e., finite linear combinations of 
indicator functions of sets of finite measure. At the same time we have

11^11^= sup [ (Af)gdv.
11/11,,=1,11^11^=1 Jn

We extend the interpolated exponents to the complex plane by defining

1 z 1 — z 1 z 1 — z
—T = - +------ > ^7V = - + —, 0 < Re(z) < 1.
Pfe) P\ PQ q(z) q0

It is sufficient to prove the theorem for simple functions: f = ajeiaj lAj, g =
^je^J where Aj, Bj are measurable sets, a,, bj > 0, and a,, fy e (0, 2tt], The 

functions/, g are extended to the strip in the complex plane by first defining p = pt, q' = q't 
and setting

00, z)
j=i j=i

0(-,z) := ^bq>/q^e^lBj =

j=i j=i

where we have set

®j = eia^Aj, *j = el^\Bj.

It is immediate that </>(-, z) e ty(-,z) G Lqj(N), in particular A0(-, z) G Lq’(N). 
Therefore the integral

(3.2.2) F(z) = f A<K; z)^(-. z) dv = V d^b^ [ (A©,)*t dv 
Jn jtk=i Jn

is a finite sum of exponential functions, in particular an analytic function in the open strip 
0 < Re(z) < 1 and is bounded and continuous on the closed strip 0 < Re(z) < 1. On the 
boundary we have by direct computation

Il0(-Jy)llp„ = II IjT/P0IIA) = ll/lir- =

^(•j+^iip, = n i/r"1 ib, = u/c = 1.

ll^(-Jy)U = ll lgr7,»lh- = llgll,?’= 1,

lliK-.i + dOlhi = II Igl^lL, = hllj/1 = 1-

By the definition of F(z) above and Holder’s inequality, we have from (3.2.2)

\F(iy)\ < \\A(p(-, iy)\\qo ||0(Zy)||^ < kQ

|F(1 + iy)\ < ||A0C, 1 + iy)\\q] ||0(-, 1 + iy)\\q' <

On the other hand, for t e (0, 1), 0(x, t) =f(x), ty(y,t) = g(y), so that F(r) = fNAfgdv.
Applying Lemma 3.2.11, we conclude \F(t)| < which completes the proof. ■

Now we examine some important applications of the M. Riesz-Thorin interpolation 
theorem.
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3.2.0.1 Generalized Young's inequality
The interpolation theorem of M. Riesz-Thorin can be used to prove the generalized 
Young’s inequality for convolutions:

(3.2.3) \\f^g\\r<\\f\\P\\g\\q
1 

+
r

—I—
p q

where 1 < p < oo, 1 < # < oo with \/p + \/q > 1. Here/, g are measurable functions 
on BF and the integrals are taken over all of BF.

Proof. To prove (3.2.3), we begin with the elementary estimates from Lebesgue integration 
theory:

11/* glli <11/11 dlglh feL',geL'

ll/*glloo< ll/lloollglll /6£“.?6t'

This shows that, for a fixed g e L1, the map/ -> / * g defines a bounded operator on L1 
and L°°, with norm less than or equal to one. Therefore, by the M. Riesz-Thorin theorem, 
this map can be extended to Lp, with the same operator norm, to yield

(3.2.4) ll/*g||P< ll/ILIIglli feL", geL'.

In other words, the map g -> / * g is bounded from L1 to Lp. On the other hand, by Holder’s 
inequality, if/ e L/?, g G Lp,

(3.2.5) ll/*£lloo<||/WW P=P/(P-1).

Therefore the map g f * g is bounded from Lp' to L°°. Hence we can apply the M. Riesz- 
Thorin theorem withp0 = q^ = p,p\ = p',q\ = oo. In detail,

(3.2.6)

(3.2.7)

1 1 1-t t
~ — — —j-----H ~
q Pt i p'
1 1 1 -t
— — — —-------- F 0.
r qt P

Solving (3.2.6) for t e [0, 1], we have t = p/q', which is possible sincep < q'. Finally, we 
have

1 1 1-t 1 1 11— — — — ------ —--------- - — —|-------1,
r qt P P q' P q

which proves (3.2.3).

Beckner (1975) has shown that the value of the “best constant” in the generalized 
Young’s inequality (3.2.3) has the precise value Mpq = (p^p/q^y1^. The proof is 
beyond the scope of this book.

3.2.0.2 The Hausdorff- Young inequality
The M. Riesz-Thorin theorem can be immediately applied to the setting of Fourier 
transforms on BF. Let M = N = BF with Lebesgue measure and p0 = 1, qQ = oo. The 
Fourier transform/ —> / is a bounded operator from L1 (M) to with norm 1. Also 
from the Plancherel theorem the Fourier transform is a bounded operator from L2 (M) to



FOURIER ANALYSIS IN If SPACES 175

L2 (N) with norm 1. Therefore we conclude that

Theorem 3.2.12. Hausdorff-Young: If 1 < p < 2, the Fourier transform is 
defined and is a bounded operator from Lp(Rn) to U' (Rz/) where p' — p/(p — 1) 
is the conjugate exponent.

Beckner (1975) has shown that the best constant in the Hausdorff-Young inequality 
has the value (p}fp/qx/q)n/2 where q = p’.

Exercise 3.2.13. Letf (x) = e^2, so thatf(^) = e-71^. Show that \\f\\q/\\f\\p 
attains the Beckner bound, where 1 < p < 2.

3.2.1 Stein's Complex Interpolation Theorem

The M. Riesz-Thorin theorem deals with a single operator A, initially defined and 
bounded on Lp" Cl LP} and subsequently extended to Lp,p$ < p < p\. E.M. Stein 
discovered a remarkable extension to a family of operators Az which depend analytically 
on a complex parameter z, where 0 < Re(z) < 1. For the complete theory, see Stein and 
Weiss (1971), Chapter 4. The following is a special case of the general theory.

Theorem 3.2.14. Let (M, pC) and (N, v) be measure spaces with a family of linear 
operators Az defined on the class of simple functions S (Af) so thatz —> fN (Azf)gdv 
is analytic and bounded for 0 < Re(z) < 1 whenever f e S(M) and g e S(N). 
Furthermore suppose that for some 1 < po, qo,p\, q\ < oo we have

\\Aiyf\\q. <M0\\f\\P{} y eR

\\Ai+iyf\\q] <M\Wf\\Pi feS(Mf yeR.

Then for all t e (0, 1)

where

1 1 -t t
- =-------+ —
Pt Pq Po

1 1 -t t
— —--------- 1----- .
Qt qo q\

Proof. We can follow the steps of the proof of the M. Riesz-Thorin theorem, defining 
</>(-, z), Vr(-, z) as above. Then for/ e 5(M), g G 5(Y) with \\f\\P(} = 1, ||g||^ = 1 we set

F(z) = [ (A:<t)(',z)PH‘,z)dv, 
Jn

which is an analytic function in the strip {0 < Re(z) < 1} and for which \F(iy)| < Mo, 
|F(1 + iy)| < M\. Hence by Lemma 3.2.11, |F(r)| < for 0 < t < 1, which
completes the proof. ■
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3.3 THE CONJUGATE FUNCTION OR DISCRETE
HILBERT TRANSFORM

We now pass to a particular operator of central importance in harmonic analysis, the 
so-called Hilbert transform. In the setting of Fourier series this is defined on the set P 
of trigonometric polynomials by the formula

(3.3.1) H\y^cneine\=-i^cneM+iY,cneM.

/ n>\ n<— 1

This gives a convenient way of expressing the projection operator

f = ^cneM ^CneM =Pf
hgZ n>l

by writing

f + iHf = c0 + 2 ^2 cneM =/(0) + 2Pf.
n> 1

If we restrict to the subspace of functions with /T f = 0, then we can write 2Pf = 
f + iHf. The operator H is more convenient to work with, since it is invertible on this 
subspace: H2 = —

Exercise 3.3.1. Show that the Hilbert transform is skew-adjoint, in the sense that 
for any trigonometric polynomials f,g, we have the identity

( Hf(O)g(O)do = - [ f(e)Hg(0)de.

Jt Jt

Now we will show that the Fourier partial sum can also be expressed in terms of 
H by writing for any trigonometric polynomial f

eiN6H(e~iN6f) = -i 52 cneM + i 52 cneM, 
n>N n<N

e-‘NeH(e‘Nef ') = -i 52 c„eM +i 52 c„eine. 
n>—N n<—N

When we subtract, we obtain

v
/TV# zj/z,-iNO f\ X A inO • • —iNOe tl(e j) — e ri\e j) = Zz f cne — ic^e — ic-^e

n=—N

This allows us to represent the partial sums S^f in terms of the norm-preserving operators 
f —> e±lNef and the fixed operator H.

(3.3.2)

W) = 2 {e’NeH{e~iNef) - e-iNeH(eiNef)) + |/(^V)e'we + ^f(-N)e~'Ne 
2i 2 2

The last two terms tend to zero when N -+ oo and are bounded by the Lp norm of/ for 
any p > 1.
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The representation (3.3.2) shows that H cannot be bounded on L1 (T).

Proposition 3.3.2.

(3.3.3)
\\Hf\h 
\\f\\

= +oo

where the supremum is taken over all trigonometric polynomials f 0.

Proof. Suppose not; then we would have the estimate \\Hf\\ j < C||/||i for some constant 
C and all trigonometric polynomials/. Referring to (3.3.2), this implies that ||5/v/||i < 
(1 + Oil/111, which implies that the (1,1) operator norm of Sn is bounded by a constant, 
independent of N. But we showed in Section 1.6.3 of Chapter 1 that ||S/vlli,i = O ~ 
(4 log N)/tt2 when N -> oo. Thus we have a contradiction, which proves that the supremum 
in (3.3.3) is infinite. ■

3.3.1 L.P Theory of the Conjugate Function

In order to prove uniform boundedness of Sn on the space Z/(T) for 1 < p < oo, it 
suffices to prove that the operator H can be extended to a bounded operator on the space 
Z/(T). This will be accomplished by interpolation, as follows:

Lemma 3.3.3. The operator H is bounded on L2(T).

Proof. From Parseval’s identity, for any trigonometric polynomial/

I|H/Il2= E lc«l2<I>"l2 = llM ■
0//?eZ neZ

This allows us to extend the definition of H to the space L2 (T) as a bounded operator 
with norm at most 1. But this bound is attained, since ||//(e^)||2 = ||ez0||2 = 1- Since 
Z/(T) C L2(T) for p > 2, we also obtain the existence of Hf when/ E Z/(T), p > 2. 
We will now show by several steps that H is a bounded operator on any LP space for 
P > 2.

We first prove that H is bounded on Z/(T) if p = 2k is an even integer. The 
following lemma is attributed to M. Riesz (1927).

Lemma 3.3.4. For any £ = 2, 3,... there exists a constant Cik, so that iff is any 
trigonometric polynomial, ||77/* ||2* <

Proof. It suffices to first prove this for real-valued functions. If/ is real-valued (/(—n) = 
f(n)), then so is Hf and we have Pf = | (/ + iHf). Expanding this by the binomial theorem 
we note that (Pf)k has no constant term, so that

o = firee = E (2/) ^fJ(wn2k-j.

Taking the real part and writing j = 2r we have

jj2r(Hf)2k~2r
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We isolate the term with r = 0 and apply Holder’s inequality to the remaining terms:

Dividing both sides by ||/|||^, we have the polynomial inequality

where

„.= iiH/ih = 
■ ii/ih \ v2* J

If X < 1 there is nothing to prove. If X > 1, then each term in (3.3.4) is bounded by 
(2k\) x2k~2, so that the sum is bounded by2ry

k /"lk\
X2k < X2k~2 y ( ) = X2k~2(22k - 1)

zf V2''/

equivalently X2 < 22k — 1. The lemma is proved with C2t = V22* — 1. ■

Since the space of trigonometric polynomials is dense in LP(T), we immediately 
obtain the extension of H as follows.

Corollary 3.3.5. The map f —> Hf is a bounded operator on Llk(T) for any 
fc = 2,3,....

Proof, In order to prove the boundedness of H on the intermediate IP spaces, we can apply 
the M. Riesz-Thorin theorem to conclude that H can be extended to a bounded operator 
from Z/(T) to Z/(T) for any 1 < p < 2k. But k was arbitrary, so we conclude boundedness 
for any p > 2. In order to prove boundedness for 1 < p < 2 we use the duality of the 
norms, namely

\\Hf\\p = sup
0/geL/’'(T)

/T
IlgIL

where the supremum is taken over all trigonometric polynomials. We can apply Holder’s 
inequality and the boundedness result on Lp', p' > 2 to see that the numerator is bounded 
by

11/llpllW < Qii/HpiigV
and thus conclude that 

l|W/||p<Q||/||p /€l/(T), 1 <p<2

which completes the proof.

We list the result as follows.
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Proposition 3.3.6. The mapping f -+ Hf is a bounded operator on LP(T) 
whenever 1 < p < oo.

This is now used to deduce the following result on Lp convergence of one
dimensional Fourier series.

Theorem 3.3.7. M Riesz: Suppose that 1 < p < oo andf e LP(T). Then the 
Fourier series of f converges in the norm ofLp(T): lim/v 11/ — Suf\\p = 0.

Proof. It suffices to note that we have convergence on the (dense) set P of trigonometric 
polynomials and that the partial sum operators have uniformly bounded norms. But from 
(3.3.2), we have sup/v>1 HS/v/ll^ < 1 + C/? < oo . Therefore we have norm convergence 
on the entire space Z/(T). ■

Exercise 3.3.8. Let Qr be the conjugate Poisson kernel, defined on trigonometric 
polynomials by

(3.3.5) Qrf(0) = ~i 52 sgn(n)/(n)rl"le'^.

Prove thatfor any k e Z+, there exists a constant C^k such that || Qrf || 2k < GH/k 
for allf G P and 0 < r < 1.

Hint: Prf + iQrf = 2^2n>\f(jT)r^e'ne. Now copy the proof of Lemma 3.3.4 and use the Lp 
boundedness of the Poisson kernel from Chapter 1.

Exercise 3.3.9. Prove that for any 1 < p < oo there exists a constant Cp so that 
WQrfWp < Cp\\f\\p for allf ePandO < r < 1.

Hint: Use the result of exercise 3.3.8 and the M. Riesz-Thorin theorem for 2 < p < oo. The 
duality argument takes care of 1 < p < 2.

3.3.2 L1 Theory of the Conjugate Function

An alternative method for proving Z7’ boundedness of the conjugate function is to first 
prove the following inequality of Kolmogorov:

(3.3.6) |{0 : |W)I > «)l <

This is then combined with the Marcinkiewicz interpolation theorem, to be proved later 
in this chapter. For this purpose, we need to define the conjugate function Hf when 
f g L1 (T). In order to develop these ideas, we begin with the Poisson integral Pr and its 
harmonic conjugate Qr :

Qrf(0) = -i 52 sgn (n)rMf(n)eme.



180 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Exercise 3.3.10. Prove that both Prf(9) and Qrf(9) are harmonic functions and 
that Prf + iQrf is an analytic function of z = reie.

Note that, if / is a trigonometric polynomial, then limr^i Qrf(0) = Hf(9), as 
defined in (3.3.1). The next theorem extends this definition to any/ G L1 (T). The proof, 
which is adapted from Katznelson (1976), uses the properties of harmonic functions, 
which are developed in an appendix to this chapter.

Theorem 3.3.11. Letf G L’(T). ThenHf(Q) := limr^i Qrf(0) exists for almost 
every 0 e T. For any a > 0 the weak (fl) inequality (3.3.6) holds.

Proof. Since any L] function can be written in terms of four nonnegative functions, we 
first assume that/ > 0. In particular

pr/(0) =/(0) = / [f^wfWi.
In Jy

It is readily verified that

W) + iQ,f(d) =/(0) + 2 J r"f(n)e"’<>, 

n=\

which is a holomorphic function of z = rel°. By the Abel summability of L1 functions, 
we see that lim^i Prf(0) = f(0) for almost all 0. Now define G(z) = e~p,f~tQrf a 
holomorphic function in D. Since/ > 0, then |G(z)| < 1 and we can assert the existence 
of a radial limit g(0) = limr_>i G(re‘e) with |g(0)| = e~^e) > 0 a.e. since/ is finite a.e. 
If Qrf(Q) were unbounded when r -> 1, then the set of accumulation points of
would fill out an interval, which contradicts the convergence of G(z), hence Qrf(0) remains 
bounded—in particular has at least one point of accumulation when r —> 1. If Qrf(0) 
had two different accumulation points when r -> 1, then the set of accumulation points 
of would fill out an interval, which contradicts the existence of the radial limit of 
G(z). From this it follows that there exists a radial limit of Qrf(0) for a.e. 0. A general 
/ e L1 (T) can be written/ =/ —/2 + if — if where f if (T) is nonnegative. We define 
Hf = Hf — Hf + iHf — iHf, which completes the proof of the a.e. existence of Hf (0). 
Note that the exceptional set, which comes from the Fatou theorem, may be different from 
the set where Prf fails to converge when r -> 1.

To prove the weak (1,1) inequality (3.3.6), we first suppose that/ > 0 and set

F(reig) = P, /«?), Fire'9) = Q,f(0).

Then we have a holomorphic function z —> w = F(z) + iF(z) which maps the disk D to 
the right half plane Re w > 0. For any A > 0, consider the harmonic function Hf, which 
equals 0 on the segment of the imaginary axis from — iX to z'A and equals 1 on the two 
complementary rays. Equivalently

where <t> is the angle that the point w makes with the points ±z'A. Note that H, has 
the constant value of | on the half circle w = Xe'f —tt/2 < </? < tt/2 and outside 
of this circle is strictly larger than |. At any point w of the positive real axis we have
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//x(w) = (2/tt) arctan(w/A) < 2w/ttA. The composed mapping z Hx(F + iF) is a har
monic function in the disk D. From the mean-value property of harmonic functions, we have

/ [ Hi(F(reie) + iF(re's))d0 = HJF(O)] = Wx(||/||i) < 2221.
2tT 7rA

On the other hand,

2- / HA(F(re's) + zF(re"’))^ > 2- f H, ((F(re,fl) + iF(re:")\ dO
Jt 2?r J|fl:|f+,T|>M

>2-|{(?: |F(re«) + (T(re"')| >X}I
47T

> 2-|{0 : 1^)1 > Z}|, 
47T

from which we conclude that

|{0 : |/W’)| >MI <
A

But Hf(0) = lim,^! F(re'°) exists a.e. Therefore we have

|{0 ■ IW)I > A}| < ^221,
A

which proves (3.3.6) in case f > 0. A general/ e L} (T) is written/ = f\ — f2 + if — ij\, 
for which Hf = Hf - Hf2 + iHf - iHf. Then

|{0:|W)l>MI < y p:IW)l>^}

to which (3.3.6) is applied four times to obtain the result in general. ■

Theorem 3.3.11 provides an extension of the Hilbert transform to the entire space 
LJ(T). If, in addition, / e L/?(T) for some 1 < p < oo, then we can also compute 
Hf as the Lp limit of trigonometric polynomials, from Proposition 3.3.6. By taking 
subsequences, we see that the two definitions of Hf agree for/ G L/?(T), 1 < p < oo.

The discrete Hilbert transform is integrable under a slight additional condition, 
where we use the notation log+ x = max{0, log*} for x > 0.

Theorem 3.3.12. Z//log+ |/| e L’CT), thenHf e L‘(T).

Proof. To prove this result, we introduce the distribution function of a nonnegative 
measurable function/, defined by

(3.3.7) kj(a) = \{9 : f(9) > a}\.
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The map a Ay-(a) is decreasing and can be used to express the Lp norm (0 < p < oo) as 
follows:

We also use the observation that

f < /. +/2 => Ay(a) < Ay,(a/2) + A^a/2).

Having made these preparations, we make the a-dependent decomposition f = fa + f01, 
where

Since H is a linear operator we have

\Hf\<\Hfa\ + \Hfa\,

The L1 norm of HF is expressed in terms of the distribution function as

[ \Hf\ — f X\Hf\(a) da < X|h/|(0) + f ^Hf\(a)da. 
T JO J1

It remains to estimate the last integral in terms of the distribution functions of \Hfa\ and 
\Hfa |. Since T has finite measure and/a is bounded, it follows that/a e L2(T). From this it 
follows that Hfa e L2(T) with \\Hfa ||2 < \\fa ||2• Now we transform by the Fubini theorem 
as follows:

4 7
A|HA|(a/2) < -II/JI 

O'2

dO
i/w

< 00.
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Similarly, from (3.3.6) and the Fubini theorem, we have

^((a/2) < -nrih 
a

imiA! da

= c [ |/(0)|log+ |/(0)|<Z0 
Jr

OO.

The proof is complete.

Exercise 3.3.13. Iff e L'(T), prove thatHf € U\T)for 0 < p < 1.

Hint: Begin with the representation 
/»OO z»OO

\\Hf\\p=Pj ap-'kHf(a)da <2n J pal’-'XHf(a)da

and follow the steps of the proof of Theorem 3.3.12.

3.3.2.1 Identification as a singular integral
We close this section by proving the a.e. representation.

(3.3.8) W) = ^-lim/' /(0 - 0) 1-Sin--A d<t>, /gL‘(T).
2?r >0 J|0|>6 1 - COS 0

Proof To do this, we take r = 1 — 6 and write

am= 2tT J|0|>6 1—COS0 271

where 

f 2r sin 0/i := / [f(0 - 0)-f(0)] * M
J|0I<6 1 + r2 - 2rcos0

f / 2r sin 0 sin 0 \ ,z2 := / If (0 ~ </>) -f(W ~ ■ ■■ . - df
J\(l)\>€ \ 1 + r2 — 2rcos0 1—cos0/

where we have used the oddness of 0 —> sin 0. To estimate h, we write 1+ r2 — 2r cos 0 = 
(1 — r)2 + 2r(l — cos0) > (1 — r)2, so that

\h\<( /«?-</>)
J|0I<6 (1 - ry

<-( \f(e-f)-f(e)\d<t>,

which tends to zero for almost every 0 e T, when 6^0.
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To estimate I2, we use the inequality 1 — cos</> > 02/tt2 for |0| < 7r to write

Z2 = -(1 - r)2 [
J|0|>6

sin (b
(1 + r2 — 2rcos0)(l — cos0)

\hI < (1 - r)2 [ zl|Sln0LuU(^ - 0) ~f(d))d<t>
Jm>< 2r(l -cos0)2

< Jr (1 - r) / --------- nr,--------- d<t>
J\</>\>€ 101

dF{^ 
I0I3

where we have set F(0) = f£ \f(0 — u) — f(0)\ du. Integration-by-parts shows that

|/2| <7T4(l-r)2 |F(0)| 
I0I3

But F(0)/</> := 0 a.e. when 0 —> 0 and 1 — r = 6 shows that the first term tends
to zero. Similarly, the second term = f'£ urj(u) du = o(e~2) when 6 —> 0, which shows 
that I2 0. Recalling that Hf(9) = limr^i Qrf(0) a.e. completes the proof of (3.3.8). ■

Exercise 3.3.14. Prove that 1 — cos</> > 02/?r2 for |0| < n.

Exercise 3.3.15. Let rj e L^0C(R) with t](x) 0 when x oo. Prove that
lirn^oo x-2 Jq ur](u) du 0 when x oc.

3.4 THE HILBERT TRANSFORM ON R

On the circle we developed the conjugate function beginning with its Fourier represen
tation Hf(n) = —i sgn(n)/(n) for trigonometric polynomials/, eventually leading to 
the singular integral representation (3.3.8). When we pass to the corresponding problem 
on the real line, the relevant operator is the Hilbert transform, defined formally as the 
singular integral

(3.4.1) — — lim / ------------dy.
n Je<M<M y

Proposition 3.4.1. Iff e S, the limit (3.4.1) exists.

Proof. Denoting the integral in (3.4.1) as M we have for/ 6 S

„ f / a f A* - y) ,nHeMf(x) = / ---------- dy
Je<\y\<M y 

[ f(x + y) 
= ~ / ---------- dy

Je<\y\<M y 

. /■ f(x-y)-f(x+y)
2yrHe,Mf(x)= ------------------------- dy.

Je<\y\<M y
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If/ e 5, this family of integrals converge when 6 —> 0, M -> oo and we have

Example 3.4.2. Let f = Then Hf(x) = (l/jr)log(|x - a\/\x - b\) for 
x / a,b.

Exercise 3.4.3. Prove this.

Explicit calculation reveals that in this example Hf(x) ~ (l/jr)(Z? — a)/x when 
x oo, showing that Hf L’CR). The same behavior is generically true whenever 
Jr/ 7^ 0-

Exercise 3.4.4. Suppose thatf e <S(R). Prove that xHf (x) = 1/tt fRf.

Exercise 3.4.5. Suppose that |/(x)|/(l + \x\)dx < oo and that f satisfies a 
Dini condition at x. Prove that the integral in (3.4.2) is absolutely convergent.

3.4.1 L2 Theory of the Hilbert Transform

In order to define H on L2(R), we let K€>m(x) = (1/ttjc) le<|x|<A/• Then H^Mf = 
f *K^m L2 whenever/ € L2, since Ke € Lx. We now study the Fourier transform. 
Clearly = 0. The Fourier transform for £ 0 is computed as

- f e-2ni^x
K€,m&)= ----------dx

Je<\x\<M ^X

fM sin2?rx£
= — 2i I ------------ dx

J6 nx

= -z(Si(27rMf) - Si(27rc|)).

From the properties of the Si function, we have

\K€jw(g)\ < 2Si(jr), lim K^M(g) = -in sgn(|).
e-^0,M-^oo

We can use this to define H on the space L2(R) as follows.

Proposition 3.4.6. Forf e L2(R) there exists the L2 limit

Hf= lim lim ( d^.
6—>0,M—>OO 6^0,A7^OO

Proof, For any 0 < e < M < oo

H^Mf^) = k^)f^\

and by the dominated convergence theorem for any / e L2,

+ i sgn(Of (?)II2 0, e -+ 0, M oo.
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Therefore the L2 limit of H€^f exists, especially H€wf is a Cauchy sequence. By 
Plancherel’s formula it follows that H^Mf must also be a Cauchy sequence in L2. Hence 
there exists g e L2, g = lime^o5A/-^oo H^Mf, which was to be proved. ■

Proposition 3.4.6 can be paraphrased as the representation formula

Hf(x) = -i [ sgnOdk2"'^

Jr

valid for/ G L2(R). This shows, in particular, that H is norm-preserving: ||Hf||2 = II/II2 
and that H(Hf) = —/ whenever/ e L2(R).

3.4.2 Lp Theory of the Hilbert Transform, 1 < p < 00

We now develop the tools to prove the Lp boundedness of the Hilbert transform. For any 
6 > 0, let

S€ = {f eS:/(|) = 0for|||<e}

and = U6>0Se. A typical element of So is written

fAx)= f f&e^dl;,

Jisi>e

and the Hilbert transform

Z
-€ POO

f(^e2^ d^-i f^e2^x dl; e So-
-OO J6

Proposition 3.4.7. For any p >2, So dense in LP(R).

Proof, Since S is dense in LP, it suffices to prove that So is dense in S in the Lp norm. For 
p = 2 this follows immediately from the Plancherel formula, since

ll/-/Jll = £

which can be made arbitrarily small with e. For any p > 2, we can write

l/(x)-/t(x)| <1 \f(l-)\dt;<Ce,

which proves that So is dense in the supremum norm, hence also in the LP norm on compact 
sets. But if p > 2 we can write

|/(x) -/f(x)|" < e"-2|/(x) -/(x)|2

\\f -/II',’ < (Ce"-2)||/-/J|2 -> 0,

which completes the proof.
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To prove LP boundedness, we can follow the proof in the case of the circle. For 
f e So, we write

poo pO
/«=/ f^)e2^xd^

JO J-oo
poo pO

Hf(x) = -i / /(£) d^ + i /(|) e2^x dl-, 
Jo J—oo

so that
POO 

f + iHf = 2 f(^e2^xd^.
Jo

Now if p = 2k is any even integer, we can write

</ + iff/)” = 2“ l°° (f * • • ■ ./) (He2"" df.

The right side is the partial Fourier inversion at £ = 0 of a smooth function that vanishes 
for small £, hence lim^oo f^T(f + iHf}2k dx = 0. On the other hand this integral is 

absolutely convergent, since/ G So and Hf G Sq. Expanding by the binomial theorem 
we have

0 - £ H f ^fy(f)2k-p

J Jr

Iff is real, then Hf is also real, so that we can restrict attention to the even powers and 
write

f (Hf)2k = £ f (ffk-y(Hf)2j.

IR j—0 ' *7 J ” ®

Applying the Cauchy-Schwarz inequality as before, we can estimate (Hf)2k in terms of 
fRf2k. This completes the proof that the Hilbert transform is bounded on the space L2k (R) 
for any k = 1,2,.... As before, we can apply the M. Riesz-Thorin interpolation theorem 
to conclude that f Hf is bounded on any intermediate space Lp for 2 < p < 2k. But 
k was arbitrary. So we conclude boundedness on Lp for any p > 2. By duality, it also 
follows, as before, that/ -> Hf is bounded on Lp for any 1 < p < 2. We have proved 
the following theorem.

Theorem 3.4.8. For any 1 < p < oo, the Hilbert transform can be extended from 
the space Sq to LP(R) as a bounded operator

3.4.2.7 Applications to convergence of Fourier integrals
In parallel with the case of the circle, the Hilbert transform on R can be used to study the 
convergence of the partial sums of the Fourier integral in the space LP(R), 1 < p < oo. 
This development is described in the following exercises.
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Exercise 3.4.9. Letf G 5(R) and let M > 0. Prove the identity

SMf(x) = - (e2xiMxH(e-2,tiMxf) - .
2i v

Exercise 3.4.10. Prove that for any f e 5(R), we have the bound ||Sm/||p < 
C||/||p/or 1 < p < oo, where C = Cp. In particular the operator Sy has a unique 
extension as a bounded operator on Lp (R), with operator norm independent ofM.

Exercise 3.4.11. If2 < p < oo andf e S(R), prove that \\SMf — f\\p —> 0 when 
M oo.

Hint: Use the Hausdorff-Young Theorem 3.2.12 to estimate ||Sm/ — f lip in terms of its Fourier 
transform.

Exercise 3.4.12. Combine the previous exercises to show that for anyf € Z/(R), 
2 < p < oo, we have ||Sm/ — f\\p —> 0 when M oo.

Exercise 3.4.13. Use the duality ofLp and Lp> to prove that for any f e LP(R.), 
1 < p < 2, we have ||Sm/ —/lip 0 when M oo.

3.4.3 L1 Theory of the Hilbert Transform and Extensions

It remains to discuss the Hilbert transform in casep = 1. At the same time we will identify 
the Hilbert transform with the limit of the conjugate Poisson kernel, equivalently as the 
imaginary part of the boundary value of an analytic function in the upper half plane. This 
extension will be carried out in the Banach space 

(3.4.3)

which contains all of the Lebesgue spaces LP(R), 1 < p < oo. To do this, we begin with 
the absolutely convergent Fourier integrals:

------ = / e^^xe-2jry\^\> o x G R 
7r(x2+y2)

. *—z- = -i [ e27Vl^x sgn(|)e-27ryl^ d^ y > 0, x e R.
7r(x2+y2)

For/ e L1 (R), the Poisson integral and conjugate Poisson integral are written

Pyf(x) :=- ( fix - dt= [ f^)e2^xe-2^'^,

Qyfw :=- [ fix - dt = f f^2^xe~2^ dif
n Jr t2+y2
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The defining equations for Pyf, Qyf are also meaningful for/ e . It is immediate that

-i f A") ;
+ lQvJ = I ----------- dt = i I --------------- du.Jr y — it J^x + iy- 

which is an analytic function of the complex variable z = x + iy for y > 0; hence 
the name conjugate Poisson kernel. In particular, the defining integrals are absolutely 
convergent and can be differentiated repeatedly to show that Py and Qy are both harmonic 
functions for y > 0, x G R. In case / € LP(R), the harmonic property follows from 
repeated differentiation of the Fourier integral representation.

In order to study the conjugate Poisson kernel, we first develop the necessary 
properties of the operator

(3.4.4) PyfW = - 
7T

yf(* -1) 
t1 +y2

dt.

This operator is defined on the Banach space 

(3.4.5)
l/WI , 
z------ y dx1 -L 1-2

Clearly L1 (R) C B\ C B2. The Poisson kernel has the following properties.

Proposition 3.4.14. Suppose that f G B2. Then ||Py/||52 < 2\\f\\g2 for 0 < 
y < 1 and for any f G B2, limv_o II Pyf — /||z?2 = 0- Furthermore iff G B\, then 
limv^o Pyf(x) = f (x) for almost every x G R.

Proof, We have

\\Pyf\\B2 <
±/([
x2 Jr \Jr y2 + (x-1)2 /

dx
1 + x2

— / 1/(01 I / -2- / ";\2 7V~7 
n2 Jr Mr y2 + (x- t)2 1 + x2

= 2II/U,

where we have used the semigroup property of the Poisson kernel in the form Py * P\ = 
P\+y. To prove the norm convergence, we first note that if/ = 1^^, then 7iPyf(x) = 
arctan [(x — b)/y\ — arctan [(x — a)/y\, which is bounded by 2 and tends pointwise to 
Ifa.jhi except at the endpoints x = a, b. By the dominated convergence theorem, we have 
\\Pyf — /1|b2 -> 0 when y -> 0. Similarly for a finite linear combination/ = XJ/lj Cj\[ajybj} 
we have \\Pyf —/IIbj 0. But these functions are dense in the space B\, and we already 
have proved that the operator norms ||PJ|b2 are uniformly bounded for 0 < y < 1, hence
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the result. To prove the almost-everywhere convergence, we write

1 C°° yPyfto ~f(x) = - / [f(X + t) + /(% - t) - 2/(x)]-4-y dt,
X Jo t2+y2

\Pyf(x) -/(x)| < r -j2—d<px(t)
Jo '2+y2

4>A W : = - [ |/(x + u) +/(x - u) - 2/(x)| du.
n Jo

From Lebesgue’s theorem, we have for almost every x, <i>x(t)/t —> 0 when r —> 0. On the 
other hand,/ g B\ implies that <PA(r) < Ct for all t > 0. Now we integrate-by-parts:

2ty\Pyf(x) -/O)l < / ,2 ?2*At)dt,
Jo {t2+y2r

where the estimate |4>A(r)| < Ct allows one to discard the term at the limits. Setting t = yz 
in the integration gives

l^y/w -/Wl < / 77—-------- dz.
Jo (1+z2)2 y

But the integrand is bounded by an L1 function and tends to zero pointwise when y -> 0, 
hence Pyf(x) —> /O) as required. ■

We now introduce a norm on the space B\, by defining

(3.4.6) dx.II/IIb. = - / 
77 Jir

Theorem 3.4.15. Suppose that f e B\. Then Qyf(x) converges when y 4 0 
almost everywhere to a limiting function f (x) and we have for almost every x G R, 

(3.4.7) /(x) = Hf(x) := 1 lim f f(x~y) dy.
* ^%i>6 y

Proof. Any complex-valued function can be written as/ = / — f2 + z(/3 —/4) where 
f > 0. We begin with the conjugate Poisson kernel operator

(3.4.8) Qyf(x) = - [ dt, y>0, xe R.
Jr Jr l2 + r

Clearly |etf(O)| < ||/||B,. Then

(3.4.9) Pyf(x) + iQvf(x) = - ( {(t) dt.
n Jr x + ly - t

For any / e B}, (3.4.9) defines an analytic function in the upper half plane y > 0. The 
mapping

(3.4.10) (x, y) exp [-(Pyf(x) + iQyfM)]

is a bounded analytic function in the upper half plane. By the Fatou theorem, it possesses 
a.e. limits when y 4 0. But Pyf(x) converges to a finite limit a.e. whenever/ G B} c B2. 
Hence we deduce the existence of the a.e. limit of exp [—iQyf(x)] when y 4 0. From this it 
follows that Qyf(x) can have only one accumlation point when y 4 0, hence the existence 
of Hf(x) = limno 2v/U). ■
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It remains to identify the Hilbert transform as defined in (3.4.7), with the boundary 
values of Qyf, namely to show that for a.e. x e R,

1 f tf(x - t)(3.4.11) Qyf(x) = - -J±—>-dt^Hf(xf y^O.
* Jr tz + yz

Lemma 3.4.16. Suppose thatf e B\. Then

r / f tf(x -t) [ fix -1) \
hm / —------ — at — I ----------- at — 0
y^o\JR t2 + y2 J|,|>y t J

for almost every x G R.

Proof. We write the above difference as I\ + /2 where

Il = [

7—i - ^-]f(x-t)dt.
Fy2 t /

The function t —> t/(t2 + y2) is odd and increasing for |r| < y, so that we can write 

h=f ^^[f(x-t)-f(x)]dt

|/il < - / |/(x-t)-/(x)|Jt^0
2y J|/|<v

at every Lebesgue point off, especially almost everywhere.
To estimate /2 we note that its kernel is odd, hence for any 8 > 0 and y < <5,

-h~L -,wwi‘"

\I1\<( ^\f(.X-t)-f(x)\dt
J\t\>y ur
2 f dF(t)

where F(t) = f^ \f(x — s) — f(x)\ds. Clearly F(t)/t -> 0 at every Lebesgue point when 
t —> 0, whereas F(t) < Ct when for all t. Therefore we can integrate-by-parts to obtain

f dF(t) F(y) f F(t)
J\'\>y Id3 lyP J\t\>y F

The term at the limits is clearly o(y~2) when y 0. To analyze the new integral, write 
F(t)/t = T](f), v = 1/t to obtain

vr](l/v) dv = o(y 2), y 0,

which completes the proof that /2 -> 0 when y -> 0 for almost every x e R.

As a special case, we can deduce the properties of the Hilbert transform on 
L^(R), 1 <p < 00.
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Corollary 3.4.17. Suppose thatf e LP(R), 1 < p < oo. Then Pyf(x) f for 
almost every x e R and the convergence takes place in Lp (R). Furthermore Qyf(x) 
converges almost everywhere to a limiting functionf (x) and the convergence takes 
place in LP if p > 1.

The convergence properties of Py f follow from the properties of the Poisson kernel: 
It is readily verified that t -> t/(t2 +y2) satisfies the properties of an approximate 
identity. Therefore if B is any homogeneous Banach space, we have Pyf f in the B- 
norm when y —> 0. The almost-everywhere convergence of Qyf follows from Theorem 
3.4.15. ■

3.4.3.1 Kolmogorov's inequality for the Hilbert transform
Following the discussion of the conjugate function on the circle, we can establish a 
corresponding inequality for the distribution function of the Hilbert transform whenever 
f e L\ (R). This takes the form

(3.4.12)
|{x: \Hf(x)\ >a}| < - f \f(x)\dx 

a Jk

where C is an absolute constant. This will be deduced as a limiting case of a corresponding 
inequality for functions in the space B[. Define a weighted measure by

1 f dx
(3.4.13) = -

7t J A 1 +

Theorem 3.4.18. Suppose thatf e B\. Iff > 0, then we have the weak inequality

(3.4.14)
M{x : \Hf(x)\ >a}<- ( 

Jr \a - ll/ll

ll/k \ 
a + 11/IM’

«> ll/lli-

For any complex-valued f e B\, (3.4.14) holds with four terms on the right side 
and with a replaced by a/4.

Proof. We consider the harmonic function Ja(w), defined for Re(vv) > 0 as the harmonic 
measure of the two rays {w = iv, v > a} and {w = iv, v < —a}. This is the harmonic 
function that takes the value 1 on these rays and takes the value zero on the segment {w = 
iv, —a < v < a}. Equivalently, it can be obtained as the imaginary part of (1 /ji) log [(w — 
ia)/(w + zof)] for a suitable branch of the logarithm. The set {w : Ja (w) > |} is the exterior 
of the semicircle described by {w : Re(w) > 0, |w| = a}. On the strip |Im(w)| < a, we 
have

(3.4.15) Ja(u + iv) = u > 0, |v| < a.

We now consider the harmonic function

Ua(x,y)=Ja[Pyf(x)FiQyf(x)].

We first recall a basic fact on harmonic functions.
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Lemma 3.4.19. If U (x, y) is any bounded harmonic function in y > 0, then for any 
yi, y2 > 0, we have

(3.4.16) U(x,y{ +y2) = - / ------- 2 dt.
n h(x- tf + yl

Applying (3.4.16) with* = 0, y2 = 1, U = Ua, we have

(3.4.17) Ja (P1+y/(0) + iQ, +,y(0)) = 1 dt.

The right side of (3.4.17) is underestimated by

tt Jr 1 + t2 2tt J|z:|2v/(z)|>a) 1 + t2

Using the inequality |arctan(x)| < |x|, applied to (3.4.15), we can overestimate the left side 
of (3.4.17) by writing

4(pl+?/(0) + <el+>/(0)) < i Pl+r/(0) Pi+/(0) \
«-iei+y/(0)i a + iel+/(0)J-

Therefore we have

MU : ICy/W| > a) = - [ ‘f , 

J1 "b X

< 2 / P,+y/(0) Pl+>/(0) \
- rr (a - ie1+?/(0)| a + |2l+,/(0)| )

Recall that Hf(x) = lim,._,o Qyf(x) a.e., in particular we have convergence in measure. 
Now from (3.4.6), |<2i/(0)| < ll/lls,,Pi/(0) = Iiyils2 and the right side of (3.4.18) is only 
increased when we replace <2i/(0) by its upper bound \\f ||g|. Hence

< IIWZ >1 -- > 2 ( II/IIS2
n{x : |H/(x)| > a) < - ------—

n \a - ||/||
ll/k \

«4- ii/Hb, 7

which proves the result in case/ > 0. In the general case, we write

4

H{x : \Hf(x)\ >«}<£>{*: ITOI > a/4)
>1

and apply the result for nonnegative functions to each of the terms on the right.

The upper bound assumes a more familiar form in case/ is even, as follows.

Corollary 3.4.20. Suppose thatO <f e B\ iseven:f(—x) =f(x), Vx e R. Then 
for any a > 0 we have

IX{X : \Hf (x)| > a) <
JTOt

Proof. In this case we have 2y/(0) = 0 for all y > 0. Thus the right side of (3.4.18) 
becomes (4/7t)Pl+yf (0) 4||/||b2/tt wheny 0.

The inequality (3.4.14) contains the classical Kolmogorov inequality (3.4.12) as a 
limiting case, when we introduce a scaling parameter Y.
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In detail, define

(3.4.19)

Then we have the following scaled replacement for (3.4.14) when a > |2y/(0)|:

nmm , . 2/ A/(0) Pyf(O) \
(3.4.20) MrU: |W/(x)| > a) < - ------—777 + , n ■

it \a - 2r/(0) a + fir/(0) /
Now multiply (3.4.20) by Y and take Y oo. For the left side, we note that for any Borel 
set of finite Lebesgue measure we have from the dominated convergence theorem

lim T/Zy(A) = — |A|. 7T
For the right side, we see that when Y —> oo, the dominated convergence theorem shows 
that for any/ eL’(R)

lim W(0) = - I f(x)dx
7T JR

whereas
12x7(0)1 < ||/||Li(«> X sup -f— -+ 0, Y -+ oo

Hence when we multiply (3.4.20) by Y and take Y oo, we obtain (3.4.12), the original
form of Kolmogorov’s inequality. ■

3.4.4 Application to Singular Integrals with Odd Kernels

The theory of the Hilbert transform can be transplanted to study n-dimensional singular 
integrals of the form

(3-4.21) K€,Mf(x) [ k(y)f(x - y) dy.

Je<\y\<M

Here k is supposed to be an odd function that is homogeneous of degree — n and satisfies 
/|X|=i I^WI dx < oo. We write k(x) = |x|“nQ (x) where Q is odd and homogeneous of 
degree zero. This can be reduced to the Hilbert transform by the method of rotations, 
developed by Calderon, as follows: We take spherical polar coordinates y = ra>, with 
dy = rn~l dr do). Then

I k(y)f(x-y)dy = / r~n 
6<|y|<M Je

Q(cd)/(x — ra))rn 1 dr ) do)

f ( fM f(x - roj) \
= / Q(cd) / -- ----------- dr do)

Js"-> \Je r J

1
2

1
2

f(x - ro)) -f(x + ro)) \ 
------------------------------- dr do)

Oz f /(X-^) \
S2 (a)) I / ------------- dr I do)

\J€<\r\<M r /

where we have used the oddness of Q in the last step. Now if/ e S, the inner integral 
is the truncated Hilbert transform of the function r Fz>a)(r) =f(z + ra)), where we 



FOURIER ANALYSIS IN If SPACES 195

make the ^-dependent decomposition of s x = z + sa> where — oo < s < oo and 
z is in the hyperplane defined by z • oo = 0. In detail, s = x • a> and z = x — (x • o))a>. 
Taking 6 -> 0, M —> oo, we have

= f a^)HFz^s)da>.
2 Js,^

We estimate the n-dimensional Lp norm by using Minkowski’s integral inequality and 
writing dx = dsdz' as follows:

If (( \xlp
K/lhw < o / da>

JS"-[ \JR" /

<CP / |Q(co)| / / \f(z + a>s)\pdsdz) doo
Js"-[ \Jr"-[ Jr /

= C/JI/llz/(K") [ 1^(&>)l da>.
Js"-'

We summarize the above computations as a theorem.

Theorem 3.4.21. There exists an absolute constant Cp such that for eachf G S 
and 1 < p < oo, we have the estimate

II^,m/IIz/(1R'') < QII/IIl^R") f |Q(cc>)| da).
Js"~1

Using the oddness of the kernel, we can also write

K^Mf(x) = | [ k(y)[f (x — y) — f (x + y)]dy, feS.
2 Je<\y\<M

Taking limits, we have the absolutely convergent representation of the operator:

Kf(x) = | [ k(y)[f(x - y) -f(x + y)] dy, f e S.

£ JiR"

Example 3.4.22. The Riesz kernels are defined by kfix) = cnXj/\x\n+x for 1 < 
j < n where cn is a constant. Clearly they satisfy all of the above conditions of 
oddness, homogeneity, and integrability.

The associated singular integral operator is denoted Rj. From Theorem 3.4.21 we 
have the estimate ||7?/||p < Cp\\f ||p for/ e S.

We now show that, to within a constant, the Riesz kernels can be regarded as the 
formal first partial derivatives of the operator/ -> fRnf(x — y)/|y|M“1 dy.

To see this we use the method of subordination. We begin with the heat kernel 
transform of/ e 5:

r e-lyl2/4r r ./ tXnndy^ / e2^ x d^.
Jr>< (4jrt) / J^n
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Taking the partial derivative with respect to , we have for 1 < j < n,

JR" (47Tf) / J^n

Multiply both sides by t 1/2 and integrate over 0 < t < oo. We recognize the elementary 
integrals

Fo
r(i/2)

(4tt2|^|2)1/2 ’

r3/2-H/2e-M2/4r^ = r
(n+l)/2

Therefore

2"r
\ 2 / Jw |y| +

r(i/2)
2tt

dt,

which displays the Fourier transform of the kernel. We choose the constant cn in the 
definition so that the Fourier transform is as simple as possible, thus we define the Riesz 
transform by

(3.4.22)
Rjf(x) '■= f 1 <J < n, f e S.

JlR" I? I

This leads to a famous application of Calderon and Zygmund, as follows:

Proposition 3.4.23. Suppose thatf e then we have the a priori bound

(3.4.23)
a2/ 

dxj dxk
1 < J, k <n

where A = Y^j=\ 92/3x2 is the n-dimensional Laplace operator.

Proof. We first prove the identity

32/
(3.4.24) = —RjRk/\f.

OXj oxk

The Fourier transform of the left side is -47r2^^/(|), while the Fourier transform of the 
right side is

which proves (3.4.24). The proof is completed by applying the Lp boundedness of the 
operators Rj. ■

< A/9|| A/||^(Ri),
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3.5 HARDY-LITTLEWOOD MAXIMAL FUNCTION

A powerful tool in harmonic analysis is the concept of a maximalfunction. Strictly speak
ing, one should speak of a maximal operator, transforming a function into a supremum 
over an appropriate indexed family of sets.

If/ is a locally integrable function on RM, the Hardy-Littlewood maximal function 
is defined by

f I fl
(3.5.1) Mf(x) := sup

where the supremum is taken over all balls containing the point x e R". The balls need 
not be centered at x. The operator M is sublinear, in the sense that for any two locally 
integrable functions/, g we have M(f + g)(x) < Mf(x) + Mg(x). It is also clear that 
Mf(x) = M(|/|)(x), so that we can always assume that/ is positive when studying Mf.

To see that Mf is a measurable function, note that both numerator and denominator 
of (3.5.1) are continuous functions of the radius and center of the ball B. Hence if we 
restrict the supremum to balls with rational centers and rational radii, the supremum will 
be unchanged. But for any fixed ball B, the average in (3.5.1) is a two-valued, hence 
measurable function of x.

It is obvious from the definition (3.5.1) that M is bounded on L°°(Rrt): \\Mf < 
||/||oo- The following theorem describes the boundedness properties on the other Lp 
spaces.

Theorem 3.5.1. Hardy-Littlewood: (i) There exists a positive constant C, 
depending only on n such that for each a > 0, f e L[ (Rrt)

\{x : Mf (x) > a}\ < — f |/|.

& ./R"

In particular Mf is finite almost everywhere.
(ii)If\ < p < oo, there exists a positive constant Cp,n so that for f e Lp(Rn)

f \Mf\” < cp.n [ i/r

Jr" Jr«

(Hi) Iff lives on a set B of finite measure and \ f\ log+ |/| e L[(B), then 
fBMf < oo.

Proof. We begin by studying the set Ea = {x : Mf(x) > a}. If x e Ea, then there is a 
ball Bx 3 x so that fB |/| > a\BX|. Thus we have a covering: Ea C UxeEuBx. Since R" has 
a countable dense subset (of points with rational coordinates), we can choose a countable 
subcollection xk so that Ea C U^=iBXk. Calling these Bk, we must show that a | (U£ijBk) | < 
C||/||i. From the countable additivity of Lebesgue measure, | Bk\ = lim^ uMi. 
so it’s enough to show that for any N

(3.5.2)
N

k=l

< Cll/lli.a
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If the balls were pairwise disjoint we would be done, since for each k, fBk |/j > a \Bk |, and 
summing on k we would have

N

Ik
A-l

To complete the proof, it suffices to find a subcollection of balls that are pairwise disjoint 
and whose union covers at least a fixed fraction of Ea. ■

Lemma 3.5.2. Wiener covering lemma: Given any finite collection of balls
Bk : 1 < k < N in R", there exists a subcollection If : 1 < i < p so that

(0 > 3“'*

(z7) {B|}'?=1 are pairwise disjoint.

Proof. We order the balls in order of decreasing radii, renaming them B,, B2,.... Let 
B\ = B]. Assuming that B}, ..., Bm have been chosen, choose Bm+\ = Bk where k is the 
smallest index so that Bk A Bj = 0 for j = 1,..., m. If no such index exists then the process 
terminates. We now check condition (i): if Bk is a ball that was discarded, then by definition 
there is a ball Bt = Bj such that j < k and BkHBj ± <p. Since the radii are ordered, we have 
r, = rj > rk. We claim that Bk C 3B,. Indeed, there is some z e Bk A Bt. Now if x is any 
point of Bk, we can use the triangle inequality to estimate the distance from x to the center 
of Bt as

|x| = |(x - z) + z\ < |x - z\ + kl < 2rk + r, < 3rt.

Hence Bk C 3B,, which proves that G^=xBk C Uf=13B,-. But the measure of a disjoint union 
is the sum of the measures, and for any B, the n-dimensional measure of 3B is 3” times the 
measure of B. The proof is complete. ■

Having proved the covering lemma, part (i) of the Hardy-Littlewood maximal 
theorem is complete, since

ll/lli> [ . 1/1 > « F l^'-l = 01
i=\

Ik
1=1

> a3~n

This proves (3.5.2) and hence part (i). Taking a —> oo shows that Mf < oo a.e.

Proof, To prove part (ii), we introduce the distribution function

(3.5.3) kf(a) := |{x : |/(x)| > a}| = f l(a>oc)(|/(x)|)dx.

The Lp norm can be written in terms of the distribution function by writing 

p\.f\ r<x>
l/lp = / pup~'du= / pu''“ll((Mn)(M)du 

Jo Jo
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and applying Fubini’s theorem to obtain

[ \f(x)\pdx = [ (f Pm'’“i1(o,i/W|)(m)) dx
JR" JR" \J() /

= [ Pu'’~' ( [ Ifx.oo) (/■(*))<&) du
Jo Vr" /
/»OO

= I pup~l Xj (u) du.
Jo

We will apply this identity to estimate ||Mf\\p.
To do this, we first decompose/ into a bounded part and an unbounded part (without 

loss of generality, we can assume that/ > 0).

(3.5.4) /=/!/<«+/l/>a :=/«+/“

Since the operator M is sublinear, we have

M/(x) < MfM + Mf (x) < a + Mf (x).

Hence if Mf > 2a, then Mfa > a. In terms of the distribution function, we have

XMr(2a) = |{x : M/(x) > 2a} | < |{x : Mfa(x) > a}|.

But/" lives on a set of finite measure, since

|{x :/“(%) > 0)1 = |{x :/(x) > a)| <

while |/a| < a + |/| so that/a e L/?(R”) to which we can apply the Hardy-Littlewood 
maximal inequality; we change a to 2a and write

(2a)p-'j.MI{2a)d(2a) 
o

I fa(x)dx\da
R" /

( / /W l(a,oo)(f(x))dx ) da 
\JR" /

’/U‘) \
ap~2da )/(x) dx

= —~ [ f(xy 'f(x)dx
P - 1 Jr-

p - 1117

which was to be proved.
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Proof. To deal with (iii), we write

B Jb Jb

/»OO
< 2|B| + / AM/-(max(a, 2)) da 

Jo

= 2|B| + 2kMf(2) + j kMf(a)da.

The last term is estimated from the Hardy-Littlewood maximal inequality and the decom
position/ = fa +fa 

z»OO
2 j kMf (2a) da < 2C / fa(x)dx ) da

= 2C / f(x)l(a^(f(x))dx\da 
/

= 2C f(x)dx

= 2C [ f(x)\og+f(x)dx
Jr"

= 2C||/log+/||i,

which completes the proof.

Remark. It is important to note that Mf e L1 (Rn) if and only if / = 0. To see this, 
let/ e L1 (Rn) and choose a (large) ball B centered at 0, so that fB \ f\ > 11|/|| i. Then 
for any x B, we have

\ ^(0;2|x|) 1^1 fB \f\ . Il/lll
Mf(x) > ------- —-----> ------- ----------> const--------

|B(0;2|x|)| - |B(0;2|x|)| “ |x|”

where the constant is half the reciprocal of the volume of the ball B(0; 2) in Rn. Hence 
Mf(x) > C/\x\n for large x, which contradicts \Mf\ < oo.

The upshot of this last remark is that no matter what decay condition we impose 
on/, it is never possible to achieve Mf G L1 (Rn).

3.5.1 Application to the Lebesgue Differentiation Theorem

The Hardy-Littlewood maximal inequality can be used to give an efficient proof of the 
differentiability of the integral, as follows:

Proposition 3.5.3. If f is a locally integrable function, then for almost every 
x e

(3.5.5) lim
-o \B(x; r)|

=/(*)•

Here B(x; r) is the ball of radius r centered at x e ]R".
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Proof. To apply the Hardy-Littlewood weak (1, 1) estimate, we need to replace / by an 
integrable function. This is easily accomplished by writing the exceptional set in (3.5.5) as 
the union of the exceptional sets SM in the ball = 1, 2,.... On each SM we
can replace the locally integrable function/ by the integrable function/(x) Z[o,m+i](M),t0 
which Hardy-Littlewood can be applied.

To prove (3.5.5), we first note that if g is a continuous function, then the indicated 
limit exists and = g(x) for every x e R". For an arbitrary/, define

r /
fr(x) := idT '1 \I ’ ;= limsuP/' W - liminf/.(x).

|B(x; r)| r—>o

Given e > 0, there exists a continuous function g such that ||/ — glh < Writing 
/ = g + h with ||A|| i < e, we have

lim sup/(x) = g(x) + lim sup hr(x), 
r—>0 r->()

lim inf/r(x) = g(x) + lim inf hr(x), /•—>0 r—>0

Q/(x) = Q/z(x) < 2 sup \h,.(x)\ < 2M\h\(x).
r>0

Therefore for any 8 > 0,
2e

|{x : Q/(x) > 5}| < |{x : M\h\(x) > <5/2}| < -.
o

But the left side does not depend on e, hence we conclude that for every 8 > 0, 

\{x : £2f (x) > 8}\ = 0

which means that Q/(x) = 0 almost everywhere, which was to be proved.

The above reasoning can be strenthened and clarified in terms of the Lebesgue set 
of the locally integrable function/. This is defined as

Proposition 3.5.4. For any locally integrable f, \(Leb(f))c\ = 0.

(3.5.6) Leb(/) = x e R : hm ——---------------------------- = 01.
r—>o |B(x; r)| 1

Proof. For each real number c we apply the previous proof to the function \f — c|. Thus 
we obtain for almost every x e R”,

(3.5.7)
l/W - C\m(dy) 

lim----------------------------
r-0 |B(x;r)| = I/O) - c|-

If Cj is an enumeration of the rational numbers, we obtain a countable collection of excep
tional sets Ej. Then E := UjEj also has Lebesgue measure zero. But the right side and left 
side of (3.5.7) are continuous functions of c; the right side is obvious, but so is the left since 
the triangle inequality gives ||/(y) — cj | — I/O) — c2|| < |cj — c2|. Hence if x £ E we let 
Cj /(x) to conclude that

hm ——------------------------- x £ E,

which was to be proved.
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The Hardy-Littlewood maximal function can also be used to investigate certain 
questions of nontangential convergence. Normally this is considered in the framework 
of convergence in the unit disk or a higher-dimensional space. But the basic ideas are 
already present in the above framework, in the context of convergence of the type

lim — f (x) whenx,„ x.

We do not expect that this will be true unrestrictedly, since x f\/m (x) is a continuous 
function whereas the limit f is not continuous in general—hence we cannot expect 
uniform convergence. Nevertheless we have the following proposition.

Proposition 3.5.5. Suppose that xm x so that \xm — x| < X/m. Then for any 
f e Ll(R"), lirnm f\/m(Xm) = /(x) at almost every x.

Proof. Repeating the above steps, we write/ = g + h where g is continuous and ||A|| i <6. 
Define

Q/(x) := lim sup //„;(*,„) - liminf //,„(*„,) < 2sup/ii/7n(x,„). 
m m tn

But

hym(.xm) =
cnm~n

The hypothesis |x — x,„| < \/m ensures that* e {y : |y — xm| < 1 Im}, hence

< Mh(x), Q/(x) < 2Mh(x)

from which the proof can be completed as above:

28
|{x : Q/(x) > 5}| < |{x : Mh(x) > 8/2}\ < -.

But the left side does not depend on e, hence we conclude that for every 8 > 0,

\{x : £2f(x) > 8}\ = 0. ■

3.5.2 Application to Radial Convolution Operators

The Hardy-Littlewood maximal function can be used to estimate more general convolu
tion operators of the form

(3.5.8) (kt */)(x) = [ kt(y)f(x - y) dy,

where the radial kernel kt e L1 (IR'7) is obtained from a monotone decreasing nonnegative 
function K : IR+ -> IR+ by setting kt(y) = t~nK(y/t). The example of the Hardy- 
Littlewood operator is obtained when we set K(x) = l(o,i](W), the indicator function 
of the closed unit ball.

The following lemma shows that the Hardy-Littlewood maximal function can be 
used as a universal bound for any radial convolution. The original form is attributed to 
K.T. Smith (1956), and appears in Stein (1970). The proof below is attributed to S. Saeki, 
reproduced by Banuelos and Moore (1999).
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Lemma 3.5.6. For any radial kernel, we have the estimate

Proof. Let px be the measure defined by px(A) = fA \f(x — y)\dy, for any Borel set A. In 
particular if A is a ball, we have /ir(A) < | A | (Afjf) (x). Applying this to the ball defined by 
Bx = {y e IR" : kt(y) > A}, we have

\(kt */)(x)| < [ kt(y)\f(x - y)| dy
JlR"

= [ kt(y)px(dy)
Jr"

z»OO
= /

Jo ' 
/»OO 

<(Mf)(x) / 
Jo

= (M/)(x)||^||1,

where we have used the definition of Mf and twice used the representation of the L’-norm 
as the integral of the distribution function. ■

A typical application is to the n-dimensional heat kernel, where K(x) = 
e-\x\ /4 Lemma 3.5.6 can then be combined with the Hardy-Littlewood maxi
mal inequality to give a new proof of Proposition 2.2.35, that for any f e L[ (IRJ1), and 
for almost every x e (kt * f)(x) f(x) when t 0.

Exercise 3.5.7. Complete the details of this argument.

Hint: Define Q/(x) = lim supz^0(Z:z *f)(x) — lim inf z>0 (£z *f)(x) and argue as in the proof of 
the Lebesgue differentiation theorem to prove that limz^0(Zcz */)(%) exists a.e. Then identify the 
limit by a density argument.

As a second application of Lemma 3.5.6, consider the case of the n-dimensional 
Poisson kernel—K(x) = Cn/(1 + |x|2)(n+1)/2, from (2.2.25). Following the steps of the 
proof of the Lebesgue differentiation theorem, we can prove that for any f e L1 (IR"), 
limz^o(^ * f)(x) = f(x) for almost every x G M/7.

Exercise 3.5.8. Complete the details of this argument.

3.5.3 Maximal Inequalities for Spherical Averages

Stein (1976) has shown that there exist Lp maximal inequalities for the spherical maximal 
function

(3.5.9) A*/(x) = sup [ f(x - ty)dco(y)

t>0 J|j-|=I

where da> is the normalized surface measure on the sphere S'7-1 C IRn. Results of this type 
can be used to prove Fatou-type theorems for solutions of the wave equation utt = Asu 
for suitable values of n,p. In the treatment below we restrict attention to the simplest 
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case, where p = 2, n > 4. A complete account of the subject for more general values of 
n, p can be found in Stein (1993), Chapter XI.

We begin with the spherical averaging opeator

f (Af)(x) := [ f(x - ty) da)(y) = (f * da>t)(x).
J|y|=l

We will also make use of the square function, defined by

(3.5.10) Sfix) :=
dt

which is well-defined whenever f e C1 has compact support.

Lemma 3.5.9. For any f e C1 (Rn) with compact support, we have

\Atf(x)\ < (Mf)(x) +
Sfjx) 
V2n

where Mf is the Hardy-Littlewood maximal function.

Proof. We write

Atf(x) = t~n(tnA'f(x))

= t~“ [ ^-(s"A.J(X)) ds 
Jo ds

— It + h

where

f ns"'1 (Asf)(x) ds
Jo

h = s" (AJ)(x)ds. 
ds

L is majorized by the Hardy-Littlewood maximal function, since for any t > 0,

h = ^l f(y)dy<(Mf)(x).

Meanwhile, Z2 is estimated in terms of Sf by using Cauchy-Schwarz:

|Z2| = t" [' s"-''/2'V~s^-(AJ)(x) ds 
Jo ds

' ra 12 \l/2
s -r(Asf)(x) rfsj 

ds /

which completes the proof.
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Lemma 3.5.10. Ifn > 4 and f is C1 with compact support, then

l|5/||2 < Cn\\f\\2

where the L2 norm is taken over all ofV and the constant Cn depends only upon 
the dimension.

Proof. The Fourier representation of the spherical average is

A,f(x)=f
Jr"

where d)(£) = cnJ(,l-2)/2(l£ I)/l?l(”-2)/2 is the Fourier transform of the normalized measure 
a). Now by the chain rule

ajw = (
dt Jw' \jz\ /

(3.5.11) = f
Jr" t

where we have set

” dd)

Now from the asymptotic behavior of the Bessel function, we have

a>(|) = O(l5l(|-")/2), =O(|?|(3-">/2), |£| -+ 00.

On the other hand, when |£| 0, we have ddt/dfy = O(|£|). Combining these estimates,
we can write

(3.5.12) |/z(5)| < C„min{|5|, |5|<3"")/2}.

Applying Plancherel’s theorem to (3.5.11), we have

/ -r(Asf)(x) dx = / I/O---- -—d%.
Jw ds Jr" sz

Integrating both sides with respect to the measure s ds and applying Fubini, we have

(3.5.13) f \Sf(x)\2dx=i I/O2 ( f°° lM(^)|2 .
JR" JR" \J0 5 /

But the inner integral can be estimated using (3.5.12). For any M, we have

f00 ids ( f°°\ , ds/ |/z(*5)l2 - = / + / Im(*5)I2 -
Jo s \j0 / s

CM f™ ds
<C„\^\2 sds + C„\^3-" —

Jo Jm sn~2
|£|3-»

= C„|5|2M2 + C„---- --------151 (n — 2)A/"-3
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The two terms are comparable to one another by taking M = 1/|£ |, leading to the estimate

|/zW)l2 - < c„ 6 + —l—) =
Jo -5 \ n - 2 / n — 2

Referring to (3.5.13) and applying Plancherel’s theorem once again, the proof is complete.
■

Combining Lemmas 3.5.9 and 3.5.10, with the L2 bound for the Hardy-Littlewood 
maximal function, we have proved the following result.

Theorem 3.5.11. Suppose that n > 4. Then we have the following estimate for 
any f G Cl (IRn) with compact support:

(3.5.14) ||sup(A/)(x)||2 <C||/||2
r>0

where the constant depends only on the dimension.

The estimate (3.5.14) can be extended to any/ e L2(JRn) by noting that the set of C1 
functions with compact support is dense in L2.

Example 3.5.12. Taking n= 1 and f an unbounded function shows that 
supz Atf(x) = -Foo for every x e IR1, hence the estimate (3.5.14) cannot hold 
for general f e L2(IR).

Example 3.5.13. To obtain an example in higher dimensions, take f(x) = 
|x|,-n[log (l/|x|)]-1 l[o,i](|^|), which fails to be in L2(IRn) and for which it is 
verified that supr Af(x) = 4-oofor every x e

3.6 THE MARCINKIEWICZ INTERPOLATION THEOREM

In this section we develop the notion of weakly bounded operators and apply it to prove 
the theorem of Marcinkiewicz. To orient the thinking, we first define the notion of weak 
Lebesgue space.

Definition 3.6.1.

wkLp(^n) := {/ : |{x : \f(x)\ > a}| < CcTp}

for some C > 0, where 1 < p < oo. In case p = oo, we setwkL°°(Rn) = L00^").

This definition can be rewritten in terms of the distribution function in the form

Ay(a) < Ca~p.

Clearly Lp(IRn) c wkLp(^n) since iff e Lp(Rn), then by Chebyshev’s inequality we 
have for any a > 0

\\f\\P= I m*)\pdx>f \f(x)\adx>ap\{x-. \f(x)>a}\.
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But the converse is not true. For example f(x) = 1/(1 + |x|) is wklf(W) but is not 
integrable.

In parallel with the discussion preceding the M. Riesz-Thorin theorem at the 
beginning of this chapter, we have the following elementary properties.

Lemma 3.6.2. Suppose that f G wkLP(}(Rn) and that \ f\ < M for some M. Then 
f e LP] (Rn) for any px > pQ.

Proof, In terms of the distribution functions, we can write

I l/(x)|/?1 dx = pi / a/?l-1Az(a)t/a < Cp\ I ap'~'~p"kj(a) da < oo.
Jk" Jo Jo

■
Lemma 3.6.3. Suppose that f G wkLp' (Rn) lives on a set of finite measure B. 
Then f e LPo(Rn) for any po < p\.

Proof, If pi < oo, we write

[ \f(x)\P0dx = p0[ a'’0-1 Xf(a)da
Jr" Jo

/»OO
<W + Cp0 J ap"~p'~'da < <x>.

In pi = oo, then the result is immediate, since on a space of finite measure, any bounded 
function is in Lpo for any p0. ■

Lemma 3.6.4. Suppose that f e wkLP(}(W) and f e wkLp' (Rrt) where pQ < p < 
pi. Thenf e Lp(Rn).

Proof. We write/ = /l{ip<i} + /l{iri>i} = / + /• Both f and/2 are dominated by/. 
In particular/i G wkLPQ and/2 G wkLP]. But/ is bounded and/2 lives on a set of finite 
measure, since

|{x :/2(x) + 0}| = |{x : |/(x)| > 1}| < C < oo.

Therefore by the preceding lemmas,/ G LP(R") and/2 G Lp(Rn). But LZ?(R") is a linear 
space, hence/ g Lp. ■

These lemmas will be applied in many ways. As an elementary instance, we note 
that the Hardy-Littlewood maximal function is in the space wklftW) and also in the 
space L°°(Rrt). Therefore we may conclude that Mf G Z/(R'7) for any 1 < p < oo.

In order to include the Hardy-Littlewood maximal function and related operators, 
we first formulate the general notion of sublinear operator as follows.

Definition 3.6.5. An operator T is said to be sublinear if whenever Tf and Tfz 
are defined, and c is any complex number, then

\T\f\ +/2)| < \Tf\ + |T/2|, |T(c/)| < c|/|.

We also need the notion of type (p,q).
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Definition 3.6.6. Let (M, /jl) and (N, v) be measure spaces with a sublinear 
operator T : Lp (M, /z) —> Lq (N, v). We say that T is of type (p,q) if there exists 
a positive constant C so that for every f e LP(M, pC),

(3.6.1) \\Tf\\q < C\\f\\p.

As a consequence, it follows from Chebyshev’s inequality that for each a > 0,

(3.6.2) aqpL{x^.\Tf(x)\>a}<Cp\\f\\pp.

The converse is not true. This leads us to the notion of weak type (p,q).

Definition 3.6.7. An operator for which (3.6.2) holds is said to be of weak type 
(p, q)-

For example, the Hardy-Littlewood maximal operator is of weak type (1,1) but does 
not satisfy (3.6.1) with (p, q) = (1, 1). In case q = oo, condition (3.6.2) implies that 
Tf G L°° so that the definition can be taken in the strong sense.

Theorem 3.6.8. LetT be a sublinear operator that is defined on the space LP(} +LP' 
so that it is weakly bounded of type (po,po) and weakly bounded of type (p\, p\), 
where 1 < po < P\ < oo. Then for any po < p < p\, T is defined on Lp and T is 
of type (p,p).

Proof. Any f e LP can be written as/ = /l|/|<i + /l|/i>i» where the first term is in 77’1 
and the second term is in LP(}. Hence Lp c LP(} + LP[. We first prove the theorem in case 
p\ = +oo. Dividing T by a constant, we may assume that || Tf || < ||/||oo. Now we make 
the a-dependent decomposition

f =fo + f\

where

f =f^[\f\<a/2}, fi) =/l{|/|>a/2}.

Now | Tf | < |7/o| + 17/i |, so that the distribution functions satisfy

< kTfa(a/T) + kTf\ (a/2).

But |/i | < a/2 and IITIIoo.oo < 1 so that the second term is zero. Now from the weak 
(po,Po) hypothesis,

(2 \ po-) H/oiis;

and

11/611™ = ( \f(t)\p^[]n>a/2]p(dt).
Jm
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To compute the norm of Tf, we write

/ kTf(a)ap 1 da
'o

fP 1 da
'o

<p a"-'-”n
Jo
f / pil/WI

= P / / a1’-1’”-'da 1/(01'’° lAdt)

p2p-p<> f
= -------/ 1/(01™ 1/(0 lA WO

P~Po Jm

p2P-P0
= -—ll/ll'.p-po '

This completes the proof that ||7/||p < C(p, pQ)||/||p in case p\ = oo. To discuss the case 
Pi < oo, we make the same decomposition of/ =fo +/:

/ kTf(a)ap 1 da 
o

r()
da + kTf} (a/2)ap 1 da

The term involving/) can be estimated in precisely the same fashion as above. For the term 
involving/i, we use the weak (p\,pi) hypothesis to write

/»OO /»OO
/ XTfl (a/Dpa”-' da < C I (2/a)”< II/! ||'"pa"-' da

Jo Jo

and hence

a
o

</ pa'’-1-'" / l(i/-(z)l<a/2||/(0l'’1 p(dt) ]da
Jo \Jm /

= [ ( f pa'’’1-'’1 aa)|/(0l;’W0
Jm \J2|/(z)| /

2P~Pi
= —ii/ii;;-

p\ -p 1

3.7 CALDERON-ZYGMUND DECOMPOSITION

In previous sections we had to decompose a function into a bounded part and an 
unbounded part. This suffices to prove the Marcinkiewicz interpolation theorem, for 
example. In other problems one needs a more sophisticated decomposition of an inte
grable function, due to Alberto Calderon and Antoni Zygmund in their seminal work on 
singular integral operators.
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Proposition 3.7.1. Let f e L’CR") be nonnegative and let a > 0. Then there 
exist disjoint subsets F, Q so that

(i) l/(x)| < aforx e F.
(ii) Q = UkQk , where Qk are cubes with disjoint interiors so that

a < ------ [ f(x) dx < 2na.

(Hi) R” = QUF,|Q| < H/lh/a.

Proof. We begin by decomposing R" into cubes Q whose sides are parallel to the coordinate 
axes with |g| > ll/lli/a. Clearly this is possible since ||/||i < oo. In particular, we have

<371>

For each of these cubes, subdivide into 2" congruent cubes Q'. For each of these cubes, it’s 
clear that

(3-72)

for otherwise we would violate (3.7.1). These cubes are of two types:

Type©■ ( f <et,
12 I Jq>

Type©): T- f f > a.
W\ Jq1

If Q is of type (ii), then one does not subdivide further and it is added to the list of 
cubes Qk. If Q is of type (i), then we subdivide it into 2” congruent cubes whose sides are 
parallel to the axes and repeat the decision process. As before, the discarded cubes satisfy 
(3.7.2). Continuing inductively defines the cubes Qk, we let Q := F := R"\Q. 
If x e F, then every cube containing x is of type (i). By the corollary to the Lebesgue 
differentiation theorem we have for almost every x,

/(x) = lim — [ f < a, x e F.
7 Q 121 J J

Finally we note that since a|Qk\ < fQ^f for each cube Qk, we can sum these over k to 
obtain the estimate that a|Q| < fQ f < \\f\\ j, which was to be proved. ■

This can be restated as a decomposition of the function

f = g + b

where the goodpartg(x) —f{x) forx e F and g(x) — f/\Qj\ forx e int(27). Hence 
the bad part b must satisfy b(x) — 0 for x e F and fQ b — Q for each cube Qj.

3.8 A CLASS OF SINGULAR INTEGRALS

The Calderon-Zygmund decomposition can be used to treat a class of singular convo
lution operators that generalize the odd kernels which were discussed in Section 3.4.4.
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We will only state the results, referring to Stein (1970) for a complete treatment of the 
details.

We begin with a real function K(x),x e R'7\{0}, which satisfies the following 
growth, smoothness, and cancellation properties:

(3.8.1) |K(x)|<-^ 0/xeK",
|x|'!

(3.8.2) |V/C«| < -0/xeK",
|x|'2+1

(3.8.3) / K(x) dx = Q 0 < < Z?2 < oo.
Jr\<\x\<R2

A truncated convolution operator is defined by setting

(3.8.4) T/(x) = [ K(y)f(x - y) dy.

J\y\>€

Iff e Lp(Rn) for 1 < p < oo, then this integral is well-defined by Holder’s inequality, in 
light of (3.8.1). If/ e L1 (R77), then T*f is defined almost everywhere as the convolution 
with a function of class L2 (R77). However the naive bounds in these estimates depend on 6, 
when 6 —> 0. It is remarkable that, under hypotheses (3.8.1) through (3.8.3) the operators 

have uniformly bounded operator norms and are convergent in Lp for 1 < p < oo.

Theorem 3.8.1. Suppose that the kernel K(x) satisfies (3.8.1) through (3.8.3). 
Then for each p e (1, oo), there exists Ap < oo such that for eachf e LP(W),

(3.8.5) \\TJ\\P <^11/11^.

In addition, there exists the Lp limit Tf = lime^o Tef and the operator T also 
satisfies the inequality (3.8.5).

The conditions (3.8.1) through (3.8.3) are by no means necessary. In fact, (3.8.2) 
can be replaced by the weaker Hormander condition:

(3.8.6) / \K(x — y) — K(x)\dx < C, O^yeW.
J\x\>2\y\

Exercise 3.8.2. Prove that (3.8.2) implies (3.8.6).

Hint: Apply the mean-value theorem to the integrand in (3.8.6), noting that the segment from 
x to x — y is outside of a sphere of radius |x|/2.

We now discuss some of the broad outlines of the proof of Theorem 3.8.1. The 
basic strategy is to apply the Marcinkiewicz interpolation theorem, first proving the 
boundedness on Z?(R72) and the weak boundedness on ZJ(R77). The first of these is 
proved by showing that the truncated Fourier transforms

K^) '= K(x)e 27ll^'x dx 
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remain uniformly bounded: |£e(£)| < M, Vc > 0, £ e R'7. This is proved in Lemma 
3.3 of Stein (1970), pp. 36-37. The weak L1 boundedness is proved by applying the 
Calderon-Zygmund decomposition at level or. f = ga + ba and doing each term 
separately. We have

|{x : |T/(x)| > a}| < |[x : \Tga(x)| > a/2}| + |{x : \Tba(x)\ > a/2}|.

We outline the treatment of the first term. From the properties of the Calderon-Zygmund 
decomposition, we can write

Ilgall2= [
JlR"

= / |ga(x)|2<Zx + / IfoWI2^
Jf Jq

<a l?\f(x)\dx + 22na2\Q\

< all/Hi + 22'’a||/||l

= a(l + 22”)||/||1.

IIW

IlgJIl

(1 + 22,’)|| f||i,

This is combined with Chebyshev’s inequality and the L2-boundedness to write 

|{x: |7fo(x)| >«/2}| < -3_ 
(a/2)2

M2 

~ (a/2)2 

M2 

~ (a/2)2

which proves the weak Z,1 bound for ga. A more lengthy argument using the 
Marcinkiewicz integrals shows that the corresponding estimate holds for Tbe and allows 
one to complete the proof of boundedness for 1 < p < 2. Then a duality argument is 
applied to prove the boundedness in case 2 < p < oo. For details see Stein (1970), 
pp. 30-33.

3.9 PROPERTIES OF HARMONIC FUNCTIONS

For completeness we state and prove the basic properties of harmonic functions in 
the disk.

3.9.1 General Properties

A twice differentiable function w(x, y) is called harmonic in an open set D if it satisfies 
Laplace’s equation uxx + uyx = 0 for every (x, y) e D. The prototype examples of 
harmonic functions are the real and imaginary parts of/(x, y) = (x + zy)'7. It is clear 
that f satisfies Laplace’s equation, hence each of the real and imaginary parts do also. 
These are abbreviated in the polar form un = rn cos nO and vn = rn sin nO. Taking the 
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derivatives of / and forming the real and imaginary parts shows that \Dxun\ < nrn~l, 
\Dx2un\ <n(n—V)rn~2 and similarly for vn. Hence we can form more general harmonic 
functions by the series u(x, y) = 52«>o anUn(x, y). If |azl| < A/and/? < 1, then this series 
converges uniformly in the closed disk x2 + y2 < R2 together with the differentiated 
series, thus defining a harmonic function in the open disk x2 + y2 < 1.

In particular, a useful class of harmonic functions are provided by the Poisson 
integrals of integrable functions (or more generally of finite measures):

i /» d2 _  „2 _  / „ \ |rt|
(3.9.1) u(x,y) = — ——------- -- ——/■(</>)</</> = £2 (-) f(n)eM.

2n JT R~ + r2 — 2rR cos (0 — 0) “ \R/

Proposition 3.9.1. Suppose thatf g L[ (T) and w(x, y) is defined by (3.9.1). Then 
u is a harmonic function in the disk x2 + y2 < R2 and limr^K u(rel3) = f(0)for 
almost every 0 G T. Iff G C(T), the convergence is uniform in T. Iff G Z/(T), 
1 < p < oo, then the convergence is in the norm ofLp(^).

Proof. We simply note that \f(k) | < ||/|| i so that we can infer that the sum of the series in 
(3.9.1) is a harmonic function. The convergence to the boundary values was already proved 
in Chapter 1 as part of the Abel summability of Fourier series in the spaces L1 (T), C(T), 
andZ/(T). ■

Exercise 3.9.2. Suppose thatf g L°°(T) and that u is defined by (3.9.1). Prove 
that \u(x, y)| < ||/||oo diskx2 + y2 < R2.

Exercise 3.9.3. Suppose that m(d0) is a finite Borel measure on T. Defining

If R2 -r2
u(x,y):=—~ / ■---- —--------- ---- —m(J0),

2tt Jy R~ + r2 — 2rR cos (0 — 0)

show that u is a harmonic function in the diskx2 +y2 < R2. Show by example that 
u is not necessarily a bounded function.

Hint: First show that u(x, y) = ^2neZ(r/R)^mne,n0 for a bounded sequence mn. If m is a point 
measure, then u is unbounded near that point.

We now turn the picture around, assuming only that u is a given harmonic function 
in the disk. The first problem is to prove the uniqueness of harmonic functions with given 
boundary values.

Proposition 3.9.4. Suppose that D is a bounded and connected region with a 
piecewise smooth boundary. Suppose that v, w are twice differentiable in D and 
the first derivatives have continuous extensions to D. If v,w are harmonic in D 
and satisfy v = w on the boundary. Then v = w in D.

Proof. Let u = v — w, so that u is harmonic in D with u = 0 on the boundary. We will 
apply Green’s theorem to the vector identity

div(ugradu) = u(uxx + uy}) + (u2 + u20.
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The first term on the right is zero since u is harmonic. Applying Green’s theorem transforms 
the double integral of the divergence into a line integral on the boundary. Thus

u gradu dS = I (u2 + uj) dx dy.
JD

But the left side is also zero, since u is zero on the boundary. Hence we conclude that the 
continuous function u2 + uj = 0 in D, meaning that u is constant on D. But the boundary 
value is zero, hence u = 0 in D. ■

Corollary 3.9.5. Any harmonic function in the disk x2 + y2 < 1 can be rep
resented on the closed disk x2 + y2 < R2 < 1 by a Poisson integral, in the 
form

(3.9.2)
1 /» _  ^2

u(x, y) = — ——--------——uiRe'^dft), x2+y2<R2<l.
2tt Jt Rz + rz — 2rR cos (0 — 0)

Proof. From the above discussion, the right side of (3.9.2) is a harmonic function in the 
disk x2 + y2 < R2 and has the same boundary values as u. Hence by Proposition 3.9.4 the 
equality (3.9.2) follows. ■

Corollary 3.9.6. Any harmonic function in the disk x2 + y2 < 1 has the mean 
value property:

(3.9.3) u(O) = — [ u(Rei0)d6, R < 1.
2tt Jt

Proof. It suffices to take (%, y) = (0, 0) in (3.9.2).

3.9.2 Representation Theorems in the Disk

The Poisson integral can be characterized in each of the spaces L°°(T), L/?(T), (1 < 
p < oo) and the space of nonnegative measures. We enumerate these results separately, 
beginning with the classical Fatou theorem for bounded harmonic functions.

Theorem 3.9.7. Fatou: Suppose that u is a harmonic function that is bounded in 
the unit diskx2+y2 < 1: |w(x,y)| < M for some M. Then there exists u{ e L°°(T) 
so that

If 1 - r2 9 9
(3.9.4) u(x,y) = — ———---------- -- ——H|(</>)</0, x2+y2<l.

2tt Jt 1 + rz — 2r cos (0 — 0)

In particular we have limr^ i u(rel°) = u\(0) for almost every 0 e T.

Proof. We will make a compactness argument based on duality of L’(T) and L°°(T). 
Consider the linear functionals on L* (T) defined by

(3.9.5) LRf = J- [ f(eWReie)de, 0 < R < 1.
Jj

Clearly |Lk/| < Af ||/|| i, so that this family of linear functionals is a bounded subset of the 
ball ||L || < M in the dual space of L* (T), namely LOC(T). But this ball is compact in the 
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weak* topology, which can be seen directly by taking a countable dense subset of L1 (T) 
and applying Cantor’s diagonal argument. Thus we obtain a weak* convergent subsequence 
LR with Rj -> 1 with a weak* limit, call it u\ with the property that for every f e L1 (T), 
lim7 LRjf = E. /T f(0)ui (0) dd. We apply this to the Poisson integral representation of u:

(3.9.6)
1 c R2 — r2

u(x,y) — — I —5----- ----- ---------------------u(R;el<t>>) d(p, x2 + y2 < R2 < 1.7 2tt A R2 + r2 - 2rRj cos (0 - 0) 7 “ 7

For any fixed (x, y) the Poisson kernels PR converge uniformly on T when Rj -> 1 to the 
Poisson kernel P|; this follows from the series representation

1 _  D/1
\Pdr,e)-PR(r,e)\ = 2 — cos(n0)

n>l K

provided that R > (1 + r)/2. For any fixed r < 1 the last sum is finite, which proves 
the uniform convergence of the Poisson kernel. Hence we have established (3.9.4). The 
convergence of u(rel°) follows from the almost-every where Abel summability of the Fourier 
series. ■

The next result concerns representation of nonnegative harmonic functions.

Theorem 3.9.8. Suppose that u is a nonnegative harmonic function in the disk 
x2 + y2 < 1. Then there exists a nonnegative Borel measure m on T so that 

(3.9.7) u(x,y) = ff v—i—~~7n—x2 +/ < 1.
2n JT 1 + r2 — 2r cos (0 — 0)

For any f e C(T), we have

(3.9.8) lim [ u(re,f>)f(9)d9 = / f(0)m(dG).
r~+1 Jt Jt

Proof. Again we consider the linear functional (3.9.5), now defined on the space C(T) 
whose dual space is the set of finite Borel measures on T. We have

IWI < ll/lloo/- [ u(re'e)de.
Tn Jit

But from the Poisson integral representation of u in the disk x2 + y2 < R2, we have 
u(0) = 1/2tt fTu(re‘e) d0, hence \Lff\ < «(0)||/‘||oc- Applying the weak compactness 
argument once again yields a measure m on T and a weak* convergent subsequence LRj 
so that LRjf -> fTf(0)m(d0). As in the previous proof we have (3.9.6) on which we 
can take the limit Rj 1 to conclude (3.9.7). To prove the convergence, we multiply 
(3.9.7) by a continuous f(0) and integrate on the circle of radius r. The left side is Lrf = 
f7u(re'e)f(0) d0. The right side can be written as fT Prf(0)m(d0). But Prf converges 
uniformly to/, so that the right side converges to fTf(0)m(d0), from which it follows that 
limr_> i L,f exists and is given by (3.9.8). ■
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To complete the picture, we state and prove the theorem on Lp boundedness.

Theorem 3.9.9. Suppose that u is a harmonic function in the disk x2 + y2 < 1 
with the property that

sup I \u(rel6)\p dO < M < oo

0<r<l Jt

where 1 < p < oo. Then there exists u\ e Z/(T) so that

(3.9.9) u(x,y)=f[ —————-——«,(</>)</</>, x2+y2<l.
2tt Jt 1 + rz — 2r cos (0 — 0)

In particular

lim [ \u(reif>-) - ut(e)\pdff = 0

and\mr^\ u(rel°) = u\(0) for a.e. 0 e T.

Proof. Again we consider the linear functional (3.9.5), now defined on the space Z/(T) 
which is the dual space of L/?(T) wherep' = p/(p — 1). We have for any/ e Lp'(T),

IWI < M\\f\\p/

so that the linear functionals LR have bounded norms. Applying the weak compactness 
argument once again yields an Lp function/ on T and a weak* convergent subsequence LRj 
so that LR/f fTf(0)u\ (6) dO. As in the previous proof we have (3.9.6) to which we can 
apply take the limit Rj -> 1 to conclude (3.9.9). The convergence follows from the Lp and 
a.e. Abel summability of the Fourier series proved in Chapter 1. ■

3.9.3 Representation Theorems in the Upper Half Plane

The results in the previous section can be transformed to obtain representation theorems 
for harmonic functions in the upper half plane R2+ = {(x, y) : —oo < x < oo, y > 0}. 

To see this, we write z = x + iy and introduce the fractional linear transformation

(3.9.10)
z - i x + i(y - 1) 

w =------ =-------------------
z + i x + z(y+l)

which maps i to 0 and maps the real axis —oo < x < oo to the unit circle |w| = 1, 
deleted by the point w = 1, which corresponds to the point z = oo. The upper half plane 
M2+ is mapped 1:1 conformally onto the unit disk D — {w : |w| < 1}.

If U(z) is a harmonic function defined for z = x + iy e M2+, we obtain a harmonic 

function on D by setting u(w) = U(z). This can be seen directly by computing the partial 
derivatives by the chain rule or by observing that u is the real part of the holomorphic 
function obtained by composition of a holomorphic function with the fractional linear 
transformation (3.9.10). If U is a bounded harmonic function on R2+, then u is a bounded 
harmonic function in D. If U is a nonnegative harmonic function in M2+, then u is 
a nonnegative harmonic function in D. We state and prove the corresponding Fatou 
theorems.
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Theorem 3.9.10. Suppose that U is a bounded harmonic function in R2+. Then 
there exists U\ e L°°(R) so that

(3.9.11) L7(x,y) = - 
7t

f Udt)
» (f - X)2 + y2

dt.

Proof. From the Fatou theorem in the disk, we set w = re'3 and

(3.9.12)
|/» 1—^2 Ifl _  I Wl2

u(w) = — / —--2----- ------- ———Ml(</>)rf0 = — / —----- —u^dtp.
2ji Jy 1 + r2 — 2r cos (0 — (j>) 2n Jy \el<t> — w|2

It remains to transform this to the z = x + iy coordinates. Direct computation shows that 
the numerator of the Poisson kernel is computed from

The denominator is computed by writing el<t) = (t — i) /(t + if w = (z — i) /(z + i) to obtain

t + i z + i
_ 2y + 2i(t - x)

(tx - y - 1) + i(ty + x + t)’

- w\2 = _____ 4y2+4(,~X)2______
(tx - y - I)2 + (ty + x + t)2

_ 4 y2 + (t - x)2
1 +r2 x2 + (y + I)2’

resulting in the identity

1 - W2 _ y(i +12) 
|e/0 — y2 _|_ '

It remains to compute the Jacobian of the mapping t -> 0. This is computed directly by 
writing iel<t> d(p = 2idt/(t + if2 from which d(j) = 2dt/(\ + t2f Substituting this into 
(3.9.12), we conclude the representation formula (3.9.11), where U\ (f) = u\(0). ■

The representation theorem for nonnegative harmonic functions contains a new 
term, which was not present in the disk.

Theorem 3.9.11. Suppose that U is a nonnegative harmonic function in R2+. 
Then there exists a nonnegative finite Borel measure M on R and a nonnegative 
constant c so that

1
(3.9.13) u (*, y) = cy + —

7T r (t - x)2 + y2
M(dt).

Proof. Again setting u(w) = U(z), we apply Theorem 3.9.8 to obtain

\ r j ^-2 Ifl I wl2
(3.9.14) u(w)=— / -— -------- --—— m(d<p) = — / —------ ^m(d<p).

2ji Jy 1 + r2 — 2r cos (6 — 0) 2tt — w|2
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If the measure m attributes no mass to the point 0 = 0, then we can transform this integral 
exactly as we did in the proof of the previous theorem, by setting M(A) = m(A) if the Borel 
set A is the image of the Borel set A under the mapping (3.9.10). If m({0}) > 0, we must 
compute the contribution as the Poisson kernel corresponding to t = oo:

1 - M2 _ 4y x2 + (y + l)2 _
|1 — w|2 x2 + (y+l)2 4 ■y’

which gives the additional term in (3.9.13), where c = m({0}). ■

The Fatou theorem for the Lp norm is also different from the case of the disk. 
To see this, we first note that the image of a horizontal line y = const, under the map 
z (z — z)/(z + 0 is a circle whose center is on the line Re w = 0 and which passes 
through the point w = 1. When y 0 this circle tends to the circle |w| = 1. In detail, 
we write

x + iy — i y 1 x — z(y + l)
x + iy + i y + 1 + y + 1 x + i(y + 1)

so that the center is at y/(y + 1) and the radius = l/(y + 1). We parametrize the circle 
by writing 

from which we compute d^ = 2(y + l)/(x2 + (y + l)2) dx. Therefore the Lp norms 
transform according to

(3.9.15) T |M(W)I" dV = 2(y + 1) [ \U(x, y)|'2 2 n2 <&•
J-jr Jr x2 + (y4-l)2

Theorem 3.9.12. Suppose that U is a harmonic function in R2+ such that for 
each Y > 0,

f \U(x,y)\p , sup / ----------— dt < M < oo.
y>y>0 A 1 + X

Then there exists U\ e LP(R; dt/(\ + r2)) so that

(3.9.16) L7(x, y) = - f ----------------- ------U\ (Z) dt.
n Jr (t- x)2 + y2

Proof. We have t2 + (y + I)2 > 1 + t2, thus

1 1
t2 + (y + l)2 < z2 +1

so that

2(y+l) f Mt.ytf 
z2 + (y+l)2

rfz<2(y+l) [
Jr

|t/(z,y)|'’ 
Z2 + l

dt < 4M(Y + 1).

Transforming the integrals as in (3.9.15),
p

d4> < oo.
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Now we can apply the compactness argument from the previous section, defining a sequence 
of linear functionals on Lp> (T) by

W = r
J-n v + i y + i 7

We see that their norms are uniformly bounded, hence we can choose a weak* convergent 
subsequence Lyj where y7 -> 0 and Lyj -> u\ e Z/(T). Writing the Poisson integral 
representation of u with respect to a fixed but arbitrary point in the interior of the circle 
Cyj, we note that the Poisson kernels converge uniformly in e (—tt, tt) so that we can 
take the limit y7 -> 0 and conclude that u(w) is represented by the Poisson integral of u\ 
as in (3.9.9). Finally we transform this into the (x, y) variables, exactly as in the proof of 
Theorem 3.9.9. ■

3.9.4 Herglotz/Bochner Theorems and Positive Definite Functions

We can use the representation theorem for positive harmonic functions to characterize 
the Fourier coefficients of a nonnegative measure on the circle. A bilateral sequence of 
complex numbers is called positive definite if for every finite set of complex 
numbers {cn}„=_N, we have 

(3.9.17)

Exercise 3.9.13. Prove that a positive definite sequence {un} satisfies uq > 0 and 
\un\ < uofor ne Z.

Hint: Apply the definition with cQ = 1, cn = re‘° and otherwise ck = 0. By suitable choice of 
0, first prove that un is hermitian symmetric: un = u_n. Then minimize a quadratic polynomial to 
obtain the inequality.

Theorem 3.9.14. Herglotz: A sequence of complex numbers {wn}nez w positive 
definite if and only if there exists a nonnegative Borel measure M on T such that

(3.9.18) u„= I e~in0M(dO), n e Z.
Jt

Proof. If (3.9.18) holds, then we have for any finite set of complex numbers {cn}^=_/v
2

M(d0)

Conversely, suppose that (3.9.17) holds. Let cn = rne"ie for n > 0 and cn = 0 for n < 0, 
where 0 < r < 1 and set

F(r,&) := um-nrmeimer"e-m(>.
m,n>0

The double sum is majorized by w0 2Ln n>0 rn+m = uq/(1 — r)2 < oo. It is also the (N oo) 
limit of the finite sum for 0 < m, n < N, hence F(r, 0) > 0 by (3.9.17). We can rewrite
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F(r, 0) as a sum along 45 degree lines in the first quadrant:

0 < F(r, 6) = £ X um-nrmeimer"e-int) 
jeZ m,n>0,m—n=j

= ^2Ujeije r"'+"-
jeZ, m,n>Q,m-n=j

If m — n = 0 the inner sum is r2m = V(1 — f2)- Otherwise we have m — n = j / 0 
and we can remove the common factor r^1 from the inner sum to obtain

F(r, 6) = -2— V u.r^e'J9 > 0, 
1 — r2 " jeZ

which proves that the harmonic function w(r, 0) := Ujr^eije is nonnegative in the unit
disk. Hence by Theorem 3.9.8 there exists a nonnegative Borel measure M on T so that

C 1 — r2(3.9.19) YujW = / — ------- ——-M(d<t>).
A 1 + r2 — 2r cos (0 - 0)

Now we multiply both sides of (3.9.19) by e~lNe and integrate over T to conclude that 
uN = e~lNeM(d0) for any N G Z, which was to be proved. ■

One can also consider positive definite functions/(f) on the real line. These are 
defined by the statement that for every finite set of real numbers f i,..., f/v and every 
finite set of complex numbers {cn}„= j we have

N

(3.9.20) 22 ~
m,n=\

Again it follows that/(0) > 0 and that |/(f )| </(0).

Exercise 3.9.15. Prove this.

Theorem 3.9.16. Bochner: A continuous function /(f) is positive definite if 
and only if there exists a nonnegative Borel measure M on R such that

(3.9.21) /(£) = M(£) := / e~*xM(dx), ?eR.
A

Proof. Suppose that/(f) is defined by (3.9.21). Then for any finite sets (f„) and (cn) we 
have

cmc,f^m -&) = /
Jr

2
M(dx)

> 0.

Conversely, suppose that (3.9.20) holds. Now for any x g R, y > 0, define

n
oo 

/($ - dr).

This double integral is majorized by the convergent double integral
/(0) /0°° /0°° e~^ye~riy drj =/(0)/y2. It is also the limit of finite Riemann sums of the 



FOURIER ANALYSIS IN Lp SPACES 221

form nf($m — $n)e ^»yel^xe ^ye which are nonnegative, by hypothesis. Hence 
F(x, y) > 0. On the other hand we can write

0 < F(x, y) = f(u)eiux ( / e~y^+ri) drj) du

= — ( f(u)etu'e-^ du, 
2y JrJ

which proves that 2yF(x, y) is a nonnegative harmonic function in the upper half plane. 
Hence by Theorem 3.9.11 there exists a nonnegative finite Borel measure M on R and a 
nonnegative number c such that

(3.9.22) cy + 2 [ -T~/----- -M(dt) = [ eiuxf(u)e~>'“' du.
Jr y2 + (.t- X)2 Jr

However both integrals are bounded functions of y when y —> oo. Hence the constant term 
must be c = 0. To complete the identification, we recall the representation of the Poisson 
kernel:

----- -= f e^e-^'e-^d^.
y2 + (f - JR

Integrate both sides with respect to M(dt) over R to obtain

[ f (u)e'iue~yM du = f M^e^e-^'d^
Jr Jr

from which we conclude, by the uniqueness of Fourier transforms, that for all £ g R, y > 0, 
we havehence/(£) = M(£), as required. ■
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4
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AND 
MULTIPLE 
FOURIER 

SERIES

4.1 MOTIVATION AND HEURISTICS

Up until now we have treated Fourier series and Fourier integrals independently of 
one another. Given the strong parallels between the one-dimensional theories, we may 
ask if there is a systematic link for passing back and forth. This is supplied by the 
notion of periodization and the closely related Poisson summation formula. For the 
sake of clarity, we will first pursue these ideas in one dimension where the formu
las are simpler. As applications, we will obtain the Shannon sampling formula for 
band-limited signals and the transformation formulas for Gaussian sums from number 
theory using these ideas. The higher-dimensional Poisson summation formula allows us 
to study multiple Fourier series. As a by-product we can derive the famous Landau 
asymptotic formula for the number of lattice points in a large sphere in Euclidean 
space.

In order to simplify the notations, we will consider Fourier series for functions 
of period 1; these are defined by their restriction to the interval (0, 1). In this setting a 
Fourier series is written

~ V fWe2™*, fW ■■= ['f(x)e~2™* dx,

222
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and the Dirichlet kernel of Fourier series is written

nFS(r. _ V _ sin((2M + l)nx) 
- sin7rx

k=-M

4.2 THE POISSON SUMMATION FORMULA IN R1

4.2.1 Periodization of a Function

Given a function on the line, one can construct a periodic function by summing over the 
integer translates, defining

(4.2.1) A* + «)
neZ

where the series is supposed to converge in the sense of symmetric partial sums. This is 
called the periodization of f.

Example 4.2 .1. Iffe ZJ(O, 1) and is defined to be zero elsewhere, then f is 
simply the periodic extension of f to the entire real line.

Example 4.2 .2. Iff is the heat kernel, defined by f(x) = (4nt) 1/2e x‘/4z for 
t > 0, x e R, thenf(x) = (4nt)~[/2 e~^x+n^/4t is the periodic heat kernel.

Example 4.2 .3. Let f be the Dirichlet kernel relative to the Fourier transform, 
studied in Chapter 2:

f(x) = Dfmt (x) :=
sin(2A/7rx)

JtX

In this case the series defining f is not absolutely convergent, but we can compute the 
periodization f directly as follows:

(4.2.2)

We apply the pointwise inversion of Fourier series on each interval (k — 1/2, k + 1 /2), 
each time obtaining a contribution from the center. If M Z, we obtain

sin27rM(x + n) 44 2 sin((2[M] + 1)ttx)
lim > ---------------------- = > e =----------------------------

zv-^oo ' jt(x + n) . smnxn=-N v 7 k=-[M]
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Furthermore the partial sums (4.2.2) converge boundedly for each M < oo, since the 
right side consists of a finite number of Fourier partial sums for the function £ -> 
atf = 0, ±1, ...,±[M].

We have shown that the periodization of the Dirichlet kernel DFJ is the periodic 
Dirichlet kernel DF^.

Exercise 4.2.4. IfM G Z, show that we must add an additional term of cos 2Mjtx 
to the right side of (4.2.3).

We can further exploit the bounded convergence to represent the Fourier partial 
sum of an arbitrary f g Z? (0, 1): 

( f(x += f f(x + t) ^2 Smdt^ f f(x + t)D^}(t)dt.
-n Jo n(t + n) Jo

When N -> oo, the left side converges to the Cauchy principal value, or symmetric 
improper integral, which can be summarized by writing

PV [ f(x + t)D% (r) dt= [ f(x + t)D^(t) dt, M^l. 

Jk Jo

As a final example of periodization, we consider the kernel of the Hilbert transform, 
which was studied in Chapter 3.

Example 4.2.5. Letf(x) = \/x for x / 0.

The periodization is determined from the identity

(4.2.4) V —-— = jt cot nx, 
~ x — ft

x Z.

This can be proved by residue calculus, which the reader is invited to supply. We offer 
a Fourier-analytic proof as follows:

Proof. Let/(x) = l/(x — n) — n cotyrx for x £ Z. Then x f(x) is an odd 
function of period 1. It is also a continuous function, since l/(x — n) converges 
uniformly for — 1/2 < x < 1/2, [since |l/(x2 — m2)| < 4/(4n2 — 1)], hence to a continuous 
function. On the other hand the function x ti cot jix — 1 /x can be defined by continuity 
at x = 0 and thus is a continuous function for — 1 /2 < x < 1 /2. To prove that f = 0, we 
note that its Fourier cosine coefficients are all zero; it remains to show that its Fourier sine 
coefficients also vanish, i.e., f^22 f(x) sin 2jiMx dx = 0 for M = 1,2,.... Now the series 

sin(27rAfx)/(x — ri) converges uniformly in —1/2 < x < 1/2, so we can integrate 
term-by-term: On the one hand,

f1/2 / Ji. 1 \ rN+\/2 ain27lMx(4.2.5) lim / sin(27rMx) (z ------I dx = lim I 71—- dx = ti.
N J-1/2 XZ^x-nl n J_N_i/2 x
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On the other hand

s r,/2 , f1/2 sin(27rMx)
(4.2.6) / sin(27rMx)7r cotjrxdx = / ---- :---------ji cos Jixdx.

J—\/2 J—\/2 SIUTTZ

But elementary trigonometric identities reveal that 52^! cos (2& — V)nx = sin(2M7rx)/ 
2 sin 7rx, so that by orthogonality

z.l/2 z.1/2
(4.2.7) / sin(27rMx)7r cot7rx dx = I 2ji cos2 jix dx = ji.

J-l/2 J —1/2.

Therefore f^/2/2 f(x) sin(27rMx) dx = 0 for M = 1,2,..., hence f(x) = 0 almost every
where. But we already noted that/ is continuous, and a continuous function that is zero a.e. 
must be zero everywhere, which completes the proof of the required identity. ■

Additional examples of periodization are obtained from the Fejer kernel and the 
Poisson kernel.

Exercise 4.2.6. Consider the Fejer kernel on the line, Kt{x) = (1 — cos2ttTx)/ 
2n2Tx2 for x / 0. Show that ifT g Z+, the periodization of Kt is the Fejer kernel 
of Fourier series: KT-\(x) = sin2(Tjrx)/T sin2 (yr x).

Hint: Begin with the representation of KT as a Fourier integral: KT (x) = f[T e2n,x^ (1 — |£ |/T) d%.

Exercise 4.2.7. Consider the Poisson kernel on the line, Py(x) = y/[yr(x2 + y2)] 
where y > 0, x G R. Show that the periodization of Py is the Poisson kernel of 
Fourier series.

Hint: Begin with the representation of Py as a Fourier integral: PY(x) = fR d^.

4.2.2 Statement and Proof

The Poisson summation formula allows us to compute the Fourier series of/ in terms of 
the Fourier transform of/ at the integers.

Theorem 4.2.8. Suppose that f G L^R). Then f(x) is finite a.e., satisfies 
f(x + 1) = f(x) a.e. and is an integrable function on any period, e.g., [0, 1]. 
The Fourier coefficient is obtained as

f(x)e~21zimx dx =f(m) = I f(x)e~21zimxdx, m G Z.
J—oo

If in addition J2X-oo l/(n)l < ^en Fourier series off converges and we 
have the a.e. equality

(4.2.8) 22 f{x + n) =f(x) = 22 
neZ meZ
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In particular/ is a.e. equal to a continuous function onT = R/Z. Redefining f if 
necessary, then the equality holds everywhere and we have the Poisson identity

(4.2.9)

Proof. We have
/»1 / OO \ oo /»/?+! poo/ (12 +«)i)dx = E / i/wi^= / i/o)i<fr<oo,

*10 \rt= —oo / n=—oc *1n J—oo

which shows that/ is finite almost everywhere and integrable on [0, 1 ]. The same calculation 
applied to f(x)e~2ni,nx allows us to integrate term-by-term:

f1 f1 / \
/ f(x)e~2’'imxdx = / y'f(x + n> ]e~2,ri",xdx

Jo Jo \„=-x /

= £2 f f(x + n)e-2,,imx dx
n=—oo

oo p/j+1= E / f(y)e~2’r'm(>'~")dy
n= — oo 11

= f^f^e-^dy

= f(mf

which proves the first statement. Now if the series |/(m) | converges, then the Fourier 
series of / converges uniformly and in L1, in particular the Cesaro means converge to the 
same limit. But the Cesaro means converge in L1 to/. Therefore / is almost everywhere 
equal to the sum of its Fourier series. In particular, for a dense set S. Finally if/ is continuous, 
we let y —> x through the set 5 to conclude that/(x) = f(ri)e2ntnx. Finally, set x = 0 
to obtain the Poisson identity (4.2.9). ■

Exercise 4.2.9. Suppose that f e Ll (R), that f has finite total variation on R and 
is normalized so that 2f(x) = f(x + 0) + /(x — 0). Prove the Poisson identity 
(4.2.9).

Hint: Show that / satisfies the hypotheses of Dirichlet’s convergence theorem from Chapter 1. 
Check first the uniform convergence of the series (4.2.1).

Example 4.2.10. Iff(x) = (4nt) Xlle %2/4/, then all of the conditions are satis

fied and we havef(n) = e~4n tn~ and thus the identity

\ ' £ _  \ x 2ti inx-4/r2 tn2

This example shows that the periodic heat kernel has a natural Fourier series 
representation in terms of separated solutions of the heat equation.
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Remark. It is clear that some continuity restriction is necessary to obtain the Poisson 
summation formula. Indeed, if f(x) = 0 for x = 0, ±1, ±2,... and/(x) = e-7r%2 
otherwise, then the left side of Poisson’s identity (4.2.9) is zero, but the right side is 
obtained as e~nn , from the above example.

Closely related to the Poisson summation formula is a bilinear identity similar to 
the Fourier reciprocity studied previously.

Proposition 4.2.11. Suppose that either

(a) f e L°°(T) andK g L/R ) or1
(b) f eV (T) and ^2ne%K(x + n) converges boundedly on T.

I f(PK)dx= I (p*f)Kdx, K eZ,'(T), /eL°°(T), 
Jt Jr

which shows that the adjoint of the periodization operator V is the operator that forms 
the periodic extension of f G L°°(T) to L°°(R).

These ideas can be applied to “lift” computations from the circle to the real line 
where the formulas may be simpler. For example, if /gZJ(T) is extended periodi
cally to R and Km is the Fejer kernel with Km(J) = (sin2 Mnt)/(nMt2), then from 
Exercise 4.2.6, its periodization is the Fejer kernel for Fourier series, defined by 
ArM_1(z) = (sin2 Mnt)/(M sin2 nt) so that we can transform the Fejer mean of the

Then

(4.2.10) [ f(x)K(x)dx = [ f(x)K(x)dx.
Jo Jr

Proof. In case (a) we appeal to Theorem (4.2.8) to obtain the a.e. convergent series

K(x) = ^2^(x + n) x G (0, 1), 
neZ

f(x)K(x) = £2 f(x)K(x + n) x e (0, 1).

The right side is dominated by the integrable function 11/*|loo l^(* + n)\ so that we
can integrate term-by-term to obtain

['f(x)K(x)dx = ^ f f MK(x + n) dx
J® nE% ™

pn+\
= £ /

neZ J"

= [ f(x)K(x)dx.
Jr

The proof in case (b) is another application of the dominated convergence theorem. ■

The previous proposition can be paraphrased in terms of adjoint operators. Let V 
be the operator that transforms/ G L) (R) into its periodizationf = Pf G Ll (T). In each 
case the dual space is and (4.2.10) becomes the identity
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Fourier series as follows:

f1 sin2(M7rr) , f -
/ + 0 ■ 2—-dt= I f(x + t)
o Msinz7rr Jir

sin2(M7rr) 

n2Mt2

In the same fashion, the Poisson integral is transformed according to the identity

[ f(x + 0------- --------------------dt = [ f(x + t)------—— dt
Jo J 1 + r2 - 2rcos27TZ JK J 7r(F+y2)

(r = e 2ny).

4.2.3 Shannon Sampling

As a first application of the Poisson summation formula, we consider the problem of 
reconstructing a band-limited signal from its values on the integers. By definition, these 
are functions of the form

(4.2.11)

where F e L[(—X, X) and where we set F(£) = 0 for |£| > X. The number X is the 
bandwidth. The Shannon sampling formula is the following identity:

Esin7r(f- n) _/(h) ' reR
-n>

where the series is taken as the limit of the symmetric partial sums and where the fraction 
is set equal to 1 when n = t.

The following example shows that one cannot expect (4.2.12) to hold for an arbi
trary bandwidth.

Example 4.2.12.

(• . \ 2 n ]
= [ (l-\^\)e2^d^

jrt / J-i
is a band-limited signal with A = 1. Clearly f is zero on the integers, so that we 
cannot retrieve f from {f(n)},n G Z.

The following general theorem gives sufficient conditions for the validity of 
(4.2.12).

Theorem 4.2.13. Whittaker, Shannon, Boas. Suppose that F eL[ (—A, A) 
defines a band-limited signal with A < |. Then the Shannon sampling formula 
(4.2.12) holds. More generally, ifk > | we have the estimate

(4.2.13)
“ 7t(t — n)

<1( \F(^\d^.
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Proof. Let F(£) = F($ + n) be the periodization of F g L1 (R). The Fourier trans
form of F is x f(—x) so that by the Poisson summation formula, we have the Fourier 
series

(4.2.14) F(?) ~ ^f(-n)e2”^ =Y/fMe~2^. 
n 6 Z

From the results of Chapter 1, any L1 Fourier series may be integrated term-by-term after 
multiplication by a function g of bounded variation. Applying this with g(£) = e2n,t^, 
we have

r1/2 _ , r1/2( F(^)e2nit^ = V f(n) / e2jli^-n)

E
 sin7r(r-M)

v 7

If X < |, then F is the periodic extension of F to R, so that F(£) = F(£) for |£| < and 
the left side reduces to /_^/2 F(^)e2jri^ = f(t), which proves (4.2.12).

Otherwise, we can rewrite the left side as 

f1/2 - . f1/2/ F^e2”^ = Y F(£ + n)e2^ d$
J-\/2 ne% J —1/2

z»/7+1/2
= 22 / F(M)e2'r"<"-") du

pn+l/2
= 22^"’'/ F(u)e2!r"“ du; but

neZ Jn—l/2

pn+\/2
f(t) = / F(u)e2jr,tu du\ thus

neZ Jn-\/2

^\I2
f(t) - / F^e2*'* dt-

J—\/2

j*n+\/2
22(1 - e“2™') / F(u)e2”ir“ du
n^O Jn—\/2

rn+\/2<222 /
Jn-\/2

= 2 I \F(u)\du,

which completes the proof.

Band-limited signals have the further property that the total signal strength 
f(t) dt can be computed by sampling at the integers.

Proposition 4.2.14. Suppose that X < | and that F g L1 (—X, X) satisfies a Dini 
condition at % = 0 with value S. Then the series f(n) converges and we 
have the identity

(4.2.15)
lim [ f(t) dt = S = Y' ft”)-
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Proof. From (4.2.11), the left side of (4.2.15) is computed as

[ f{t)dt = [ F(^)Sln2^r^, 
J—T J-X

which converges to S by one-dimensional Fourier inversion. The convergence of the series 
on the right side of (4.2.15) can be seen directly by computing from (4.2.11):

A.z. CF^Sin(2;V+1)7rG!:
>/(«)=/ F($)-------:---- -------d£.

L, sinir?

Since X < j, this is an integral on a single copy of the basic period interval (—|, |) and 
converges to S by applying one-dimensional Fourier inversion. ■

Exercise 4.2.15. Suppose that f(f) = e2nit^ p\d%), where /z is a finite Borel 

measure and A < Prove the identity

\ fT \ N
(4.2.16) lim — / fit) dt = lim---------- V fin).

T^oo 2T J-T ' N 2N + 1 n^fNJ

Hint: Suitably apply the dominated convergence theorem and identify both sides with /z({0}).

Remark. The formula (4.2.12) for a band-limited signal with A < | is not canon
ical. If instead we integrate (4.2.14) on the interval [—A, A], we obtain the alternative 
representation

(4.2.17) reR.

Equivalent formulas can be obtained for any v e [X, |],

Exercise 4.2.16. Suppose that fit) is any band-limited signal. Show that we can 
reconstruct f from its values at the points n/2k, n G Z by means of the formula

" \2A/ Jt(2kt — n)

Hint: Apply the Shannon sampling formula to Fx(£) := F(2A|).

4.3 MULTIPLE FOURIER SERIES
Multiple Fourier series are naturally associated with functions on the torus TJ = 
(0, 1/ = RJ/Z^. There is a natural 1:1 correspondence between functions on and 
functions on R^, which are periodic in each coordinate: f(x\,..., + 1, ..., jq) =
f(x\, ..., Xi, ..., Xd) for 1 < i < d, (jq,..., Xd) € R^.

We begin with an integrable function on the ^-dimensional torus Tz = (0, 1/. 
The L[ norm is denoted ||/||i = fy(1\f(x)\dx and the Fourier coefficients of



POISSON SUMMATION FORMULA AND MULTIPLE FOURIER SERIES 231

f e L‘(TJ) are

f(n) := f f(x)e~2jrmxdx, 
Jv<i

and the Fourier series is written

(4.3.1) f(x) ~ £ f(n)e2™\

4.3.1 Basic L1 Theory

The elementary properties of multiple Fourier series may be obtained from the peri
odic heat kernel. We first develop the lemma of Fourier reciprocity in the following 
form.

Proposition 4.3.1. Suppose that K(x) := K(n)e2nin'x is an absolutely
convergent trigonometric series: Y^nezy l^(n)l < V f e then

(4.3.2) f f(y)K(x-y)dy=X2K(n)f(n)e2jtin\

Proof. Multiply the defining equation for K(x — y) by/(y) and integrate term-by-term. ■

We apply this to the periodic heat kernel

___ e-|-r-”|2/4/

} K,(x),S(47rf)n/2 ’
The Fourier representation of Kt(x) is obtained by repeated application of the 

one-dimensional Poisson summation formula to obtain

(4.3.4) K,(x) = £2 e2’r'''xe-4’r2,l'!l2,

since both (4.3.3) and (4.3.4) are absolutely convergent sums, and can be evaluated by 
multiplication of the corresponding one-dimensional sums. Applying Fourier reciprocity, 
we obtain

This can also be written in terms of f, the periodic extension of f to as

(4.3.5)
[ f(y)Kt(x — y)dy — y^f(n)e2^nxe- 2̂ f e C (Trf).

•/t" ,.6»'

(4.3.6)
[ f(y)

Jwi

e-\x-y\2/4t 

(47Tt)n/2
dy = ^f(ri)e2”inxe-^2lW1 t > 0, x e Rrf.
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Exercise 4.3.2. Prove that the series fw\f(y)\e |x y n^4t dy converges 
whenever f 6 L1 (T*) and use this to show that the left side of (4.3.5) is equal to 
the left side of (4.3.6).

From this we conclude the following.

Proposition 4.3.3.

(i) tff(n) = 0, then f = 0 a.e.
(H) V 'LneW \f(ri)\<<x>, then the Fourier series (4.3.1) converges to a 

continuous function and we have almost everywhere

/(x) =

Proof. Both statements are direct consequences of the pointwise almost everywhere 
summability associated with the Gauss kernel, proved in Chapter 2. ■

The periodic heat kernel is a nonnegative approximate identity, meaning that

(4.3.7) £,(%)> 0, [ Kt(x)dx=l, lim [ Kt(x)dx = Q, V<5 > 0.
JT1 t^°J\x\>8

Exercise 4.3.4. Prove the three properties (4.3.7) ofKt.

A multiple Fourier series is said to be Gauss-summable if (4.3.5) converges to/ 
when r -> 0. Since the periodic heat kernel is an approximate identity, we immediately 
obtain the following properties of Gauss summability.

Proposition 4.3.5. Suppose thatf e Ll(Td). Then the Fourier series is Gauss- 
summable ini) (T*) tof. If in addition, f is continuous atx G Td, then the Fourier 
series is Gauss-summable to f(x).

The Gauss-summability of Fourier series has the further consequence that the set 
of trigonometric polynomials is dense in L’(T^). A direct proof can be obtained by 
applying properties of one-dimensional Fourier series, as follows.

Lemma 4.3.6. The trigonometric polynomials ane27nn'x are dense in 
l)(Td).

Proof. From Chapter 1, we know that the Fourier series of an indicator function converges 
boundedly and in the L1 norm. Now if we have a product of indicator functions 1 («„£>,) each 
approximated by a Fourier partial sum S‘M, then we can write

d d d

i=\ /=] z = l
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where C, contains i — 1 factors of SJM and d — i factors of l^). But these are uniformly 
bounded, so that we can write

fl^ - fl ||s^- l(a„M||1 -0, M-> oo.

z=l /=! III i=\

But finite sums of indicators of rectangles are dense in L1 (TJ), which completes the proof.
■

4.3.1.7 Pointwise convergence for smooth functions

The condition of absolute convergence: ^meZd |/(m)| < oo can be verified in case/ 
is sufficiently smooth. To see this, we compute the Fourier coefficients of any mixed 
partial derivative corresponding to a multiindex a = (ot[, ..., cq), obtaining

(2nim)af(m) = [ Daf(x)e-2nimxdx.
Jt(I

Applying this twice to each of the coordinate derivatives and summing, we obtain

(1 + \27rm\2)f(m) = f [1 - A]/(x)<r27r'm*dx,

Jt1

where A = ^j=\ /^xj *s the Laplace operator. Applying this k times we obtain

(1 + |27rm|2//(m) = [ [1 -/S]kf(x)e~2nim x dx.
Jt1

If f e C2k(Tdf the right side is the Fourier coefficient of a continuous function, hence 
the estimate

In particular, if 2k > d, then the series ^2me%d |/(m) | converges and we have absolute 
and uniform convergence of the Fourier series. This is summarized as follows:

Proposition 4.3.7. Suppose that f e C2k(Td) with 2k > d. Then the Fourier 
series converges absolutely and uniformly to f.

In particular, the Fourier series of an infinitely differentiable function on Tz is 
uniformly convergent. If/ has fewer than d/2 derivatives, examples show that one may 
have Fourier series that are divergent at a point. This will be discussed in Section 4.5.3 
in the context of radial functions.

4.3.1.2 Representation of spherical partial sums
The partial sum of a one-dimensional Fourier series can be written in terms of a cor
responding partial Fourier integral. Restricting attention to 0 = 0 and/ e ZJ(T),
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we can write

M

SMf(0) := 22 =
k=-M

r sin(2M+i)-%)^
J-l/2 SHUT 6*

fl/2 sin(2A/+ 1)tt6> /7T0/(0)\ d&

J_]/2 719 \ sinjr0 /

The last integral is a Fourier partial integral of the associated function 0
sin n0] 1 (_ i /2, i /2) (0) • This allows convergence questions for Fourier series to be reduced 
to corresponding convergence questions for Fourier integrals.

In higher dimensions the spherical partial sum of a multiple Fourier series bears 
no simple relation to the spherical partial sum of the corresponding Fourier integral, as 
it does in the case of one dimension. To obtain a suitable substitute for the latter, we 
consider the quasispherical partial sum of the Fourier integral, defined for/ G L[ (R^) as 

(4.3.8) ~SMf(x) := [ f^)e2^xd^

J bm

where BM is the set of cubes Sk of side 1, centered at the integer points k with |£| < M. In 
one dimension BM is the interval [—M — |, Af + |] if Af = 1,2,.... The corresponding 
quasispherical Dirichlet kernel is

DM(x) := [ e27t*'xd$.

J bm

Clearly we have the representation formula that for any f e L1 (R^)

(4.3.9) SMf(x)= [ bM(x-y)f(y)dy.

This is to be compared with the spherical Dirichlet kernel of Fourier series, defined as 

bM(x) := 22 e2”ik'x.
\k\ <M

To compute DM in general, we first compute the integral

keZd.
j= J J

Summing these for \k\ <M, we have 

Sin TTXj

71X;

^2nik-x

and the formula

Dm(x) - ( n ---- ) DM(x).\ 1 f SinTTX, / 
\J=1 J/
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The spherical Dirichlet kernel of Fourier series differs from the quasispherical Dirichlet 
kernel by a factor which is smooth and bounded above and below over the basic cube 
[-1. If-

This can be immediately applied to write the spherical partial sum of the Fourier 
series.

WU) = E
\k\<M

= ( / WE dy
\\k\<M /

= [ DM(z)f(x + z)dz

Jt1

= [ ( fl ' ) DM(z)f(x + z)dz. 
Jr1 \ sin nzj /

At x = 0 this is the quasispherical partial sum of the Fourier integral for the associated 
function defined by/ofe) = n^=1 (nzj/ sin(7rz/))/(z)lp/. From (4.3.8) and (4.3.9) it 
follows that

SMf(O)=f DM(z)fQWdz= [ M^d^.

JW Jbm

Proposition 4.3.8. Suppose that f G L’(T^) satisfies the condition that for 
the associated function fo, lim^^ f{M-Jd<\$\<M+Vd} IMM = 0. Then the 
spherical partial sum of the Fourier series is equiconvergent with the spherical 
partial sum of the corresponding Fourier integral.

Proof, From the above computations, we have

W(0)- [ f^)dl= < [
J\l=\<M J{M-Vd<\^\<M+Vd}

This can be applied to certain two-dimensional Fourier series where the Fourier 
coefficients satisfy l/(n)l 0 when M oc but not the stronger

condition that |/(n)| < oo.

Exercise 4.3.9. Letd = 2andf(x) = l[o,«](|x|). Show that |/(n)| = +oo 
but Em<i„i<m+i IZOD I 0 when M oo.

4.3.2 Basic L2 Theory

As in the case of the circle, multiple Fourier series have a very satisfactory theory in 
the space L2(T^). For any finite set of complex numbers c\,... ,cn, and multiindices
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mi, , m/y, we have

/V /V

= E’cv-/u)i2 + ii/ii2-E|/^i2-
>1 >1

Thus we see, as in the one-dimensional case, that the Fourier coefficients minimize the 
mean-square distance between / and the finite dimensional set spanned by e2nimj’x. In 
particular we have Bessel’s inequality |/(j)|2 < ll/ll2.

Proposition 4.3.10. Iff e L2(Td), then the Fourier series converges to f in 
L2(T^) and we have the Parseval equality

22 i/o2 = n/nl-
Proof. From Bessel’s inequality, the series |/(n)|2 converges. Let F = 
^nezdf^F)e2nm x^ an L2 convergent series. The function f — F has all Fourier coefficients 
equal to zero, hence f — F = 0 a.e. Since 22,76Z// f(n)e2lt,n'x converges to/ in L2(T^), the 
L2 norms also converge, which yields Parseval’s equality. ■

4.3.3 Restriction Theorems for Fourier Coefficients

Zygmund (1974) discovered a universal bound for the L2 norm of the Fourier coefficients 
of two-dimensional Fourier series in terms of the LP norm of the original function, for 
some p < 2. This is closely related to the restriction theorems for Fourier transforms, 
which were treated in Chapter 2. To formulate the result, we begin with/ G L1 (T*) and 
its Fourier coefficients

(4.3.10)
/(?) = I f(x)e~2^xdx.

Jr2

For any given r > 0, the set {£ G Z2 : || | = r} is a (possibly empty) finite collection of 
lattice points on the circle of radius r. Then we have the following theorem.

Theorem 4.3.11. For anyf G L4/3(T2) and any r > 0, we have the bound

(4.3.11)
>«eZ2:|£|=r

\ V2
I/O2) < 5i/4||/||4/3.

Proof. If the left side of (4.3.11) is zero, then there is nothing to prove. Otherwise, let 
c(?) =/($)/-/L|?i=r I/O2- Then £|f|=r |cO2 = 1 and we have



POISSON SUMMATION FORMULA AND MULTIPLE FOURIER SERIES 237

I/O2 =/(?)/(?)

=/($)c($) Y, l^)l2 y lll=r

12 i/o2 = (72a^c^>) fc i^i2
iei=r \l$l=/' / y lll=r

72 i/o2 = 72/^>c^> lll=r Kl=r
= I f(x)(Yc^)e-2^Adx.

A2 \iei=r /
We now apply Holder’s inequality with p = |, p' = 4, to obtain

Therefore we need to show that if 0(x) = 22|^=r c(^)e27r'^x is a trigonometric sum with 
22|^i=r lc(£)l2 = 1, ^en II0IU < 51/4. To do this, we define

(4.3.13) T(x) := |0(x)|2 = c(/z)c(v)e2*'(M"v)’A
M,v

= 72 y(p')e2”if’x
peZ2

where y(p): = c(/i)c(v),
M-v=p

and where the final sum is over those pairs (/z, v) with \p\ = |v| = r and p — v = p. From 
the complex orthonormality of {e27r,p x }, we have

110111= [ I0(x)l4&= [ |r(x)|2<Zx=72lHP)l2.
Jt2 Jt2 p6Z2

The nonzero terms in this sum are of three types: (i) p = 0, (ii) \p\ = 2r and 
(iii) 0 < |p | < 2r. The contribution of the terms of type (i) is given by

y(0) = 72 l</M)l2 = L

For the terms of type (ii), the pairs (p, v), which enter into the defining sum, are antipodal 
points (p = — v) of the circle ||| = r, one for each admissible value of p. Therefore the 
sum of these pairs contributes

72 iy(p)i2 = 72 k(M)i2ic(-M)i2-
lpl=2r lMl=r

To study the terms of type (iii), note that for a given value of p G Z2 with 0 < |p| < 2r, 
we can have at most two pairs (/z, v) and (p', v'), corresponding to two nondiametrical
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chords of the circle with diametrically opposite endpoints; in detail, either /z + = 0 or
/z + v' = 0. Thus, if 0 < |p| < 2r, we have

y(p) = c(/z)c(v) + c(ji')c(v')

\y(p)|2 < 2|c(m)|2|c(v)I2 + 2|c(p.')|2|c(v')|2.

The sum of these pairs contributes at most

E l/(P)l2<2 E k(Ai)|2|c(v)|2 + 2 £ |c(M')|2|c(v')|2
0<|p|<2r fj.,v:0<\p.-v\<2r g/,v/:0<|g'-v/|<2r

= 4 22 kVOI2k(v)|2.
/z,v:0<|/z-v|<2r

On the other hand, we have from the normalization

(\ 2
Ero2) =Emi2mi2.
Ifl=r /

Therefore, the sum of terms of type (ii), (iii) can be bounded by

4 E Ic(A0I2Ic(v)I2 < 4, 
/z,v:0<|/z-v|<2r

leading to the final estimate

/ |r(x)|2<&< 1+4 = 5,
Jt2

which was to be proved. ■

4.4 POISSON SUMMATION FORMULA IN

The Poisson summation formula in is entirely similar to the one-dimensional case. 
The periodization off e L1 (Rrf) is defined by

/(*) = ^f(x + ri).

This is a periodic function, whose Fourier coefficients are computed as

f f(x)e 27r lk'x dx = f [y^f(x-\-n)\e 17Tlk‘x dx

= [ f(x + ri)e~27nk'x dx

n^d JTd

= y,[ f(y)e~M^dy

= f f(y)e~2,tiky

JK1

=f(k),
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leading to the formal identity

(4-4.1) := ^2 f(x + n) ~ 22 f(k)eM x.

Without any additional conditions on/, we can only interpret this as a formal computa
tion. In order to obtain a pointwise identity, we assume that/ and its Fourier transform 
satisfy the decay estimates 

(4.4.2) 
c2

for positive constants Cj, C2, c. Then both sides of (4.4.1) converge absolutely and 
uniformly on Tz. This is seen from writing the sum as a Steiltjes integral with respect 
to the lattice point counting function N(R) = Y^\k\<R which satisfies N(R) < CdRd. 
Hence

22 IA*)I < l/(0)| + G / \x\-d~(dN(x) 
\k\<R

fR
= |/(0)| +R-‘l~(N(R) + (J + e) J \x\-‘‘-(~'N(x)dx.

The term at the limits tends to zero and the final integral is absolutely convergent, proving 
that the right side of (4.4.1) is absolutely convergent.

Exercise 4.4.1. Place a cube of unit side with center at the lattice point k e 
to prove that the lattice point counting function satisfies the two-sided estimate

cd (r - < N(R) <cd(R+

where Cd is the volume of the unit ball in Rd.

We can summarize the above discussion as follows:

Theorem 4.4.2. Suppose thatf e L[ (IRt6/). Then the Fourier series of the period
ization f is given by

(4.4.3) 7w ~ 22 /O1)*2™
If in addition we have the decay estimates (4.4.2), then both sides of (4.4.3) con
verge absolutely and uniformly on and we have equality in (4.4.3) almost 
everywhere.

4.4.1 ^Simultaneous Nonlocalization

When we discussed the uncertainty principle in Chapter 2, we remarked that one can 
prove that a function and its Fourier transform cannot both be nonzero on a bounded 
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set. We now use the Poisson summation formula to prove a stronger proposition on 
simultaneous nonlocalization due to Benedicks (1985). The statement and proof are 
carried out in the ^-dimensional setting, as follows:

Proposition 4.4.3. Suppose that feLl(Rd) is supported by a set of finite 
measure:

(4.4.4) A:={x:/(x)^0}, \A\ < oo

and the same for the Fourier transform:

(4.4.5) :/(!)/0}, \B\ < oo.

Thenf = 0 almost everywhere.

Proof, By a scaling transformation x -> ax, we may assume that |A| < 1. Consider the 
periodization of the indicator function of B:

£ - k) > 0.
ke%d

Since lfl G L1 (Rrf), it follows that except for a set U of measure zero, this sum is finite for 
all £ e But the terms are natural numbers, therefore

£ U implies card{A: G : 1#(£ — k) / 0} < oo.

But the Fourier transform/(£) is nonzero iff £ e B, therefore

(4.4.6) £ U implies card{fc g Zd :f(g - k) / 0} < oo.

Now let fi= (x) = e27tlx ifi(x) and let/^ be its periodization. The Fourier transform of/^ is 
/(• — £) so that the Poisson summation formula gives

(4.4.7) 4(x) = £ e^-^fix - v) ~ £ f^k)e2^ = '£lf(k~
ve%d keZd keZd

Now since |/f (x)| = |/(x)| for* € Rrf, (x)| < £„€Z<Z IA* “ v)l so that

{x e T' :/t(x) / 0} c J {x e T' :\f(x + v)| / 0}
veZd

|{x e T" (x) / 0)1 < £ |{x e T" : |/(x + v)| # 0}| 
ve%d

= £|{yGv + T':|/(y)|/0}| 
veZd

= |A| < 1

so that

(4.4.8) f.eL'tT1), |{x e T' (x) / 0)| < 1.

Property (4.4.6) implies that for £ U, fi is a trigonometric polynomial. But property 
(4.4.8) implies that this polynomial is zero on a set of positive measure. Hence we must 
have fi = 0 almost everywhere for £ U; furthermore (4.4.7) shows that the Fourier 
transform f(k - £) = 0 for £ U, k G Z. But the set of translates {k - U\k G has 
measure zero. Hence we conclude that f = 0 almost everywhere, hence f = 0 almost 
everywhere, which completes the proof. ■
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4.5 APPLICATION TO LATTICE POINTS

The number of integer lattice points in a ball centered at x e is defined by

N(x; 7?) = ^l(0,«](|x-n|).

This is the periodization of the function x 1 [o,(MX hence the Fourier series is found 
from the Poisson summation formula as

(4.5.1) N(x; R) ~ FR{k)e17,ik x
keZ‘‘

where F^k) is the Fourier transform of x 1 (M):

FR(k) = f e~2nikxdx
J\x\<R

= RdJd/2(2n\k\R) 
(\k\Ry1^2 ’

For each R > 0, x N(x; R) is a bounded function, in particular in L2(T^), so that 
the Fourier series (4.5.1) is convergent in L2(TJ). But the series is divergent at x = 0 if 
d > 2, as we shall show below. We first do the L2 theory of lattice points, due to Kendall 
(1948).

4.5.1 Kendall's Mean Square Error

The Fourier transform of 1 at k = 0 is the volume of the ball, whereas the Fourier 
transform has slower growth for k / 0; in detail

(ttT?2)^/2 Rd
WO) ‘ (t*a>

from the asymptotic behavior of Bessel functions. This sequence is square-summable 
and we can apply Parseval’s theorem to N(x; R) — (nR2yi/2/(d/2)\ to obtain

f N(x; R) - (7tR ) ' dx = y\ l^?(*)l2
Jv (d/2)l fa1

/ Rd \

/•oc d-i
= Rd I ---------- r— ds

JR (l + ^+l

= O(Rd~') R^oo.

We can summarize the result as follows.
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Proposition 4.5.1. The L2 norm of the error term is bounded in the form

(4.5.2) #(•; R) - < CdR(d~"/2.
(«/2)! 2

This L2 estimate can be transformed into an almost-everywhere result by using the
Chebyshev inequality: for any 8 > 0

N(x; R)
(jiR2^2 

W2)!

2
dx > 82 x x e : N(x; R)

(jtR2^2 

(d/2)\
> 8

If we let R oo along integer values we can take 8 = R^d^+€ and obtain a convergent 
series:

OO (
E
/?=! t

N(x; R)
(7tR2)d/2 

(d/2)\
< Q R~d~2eRd~' < oo.X e T' : > j^(^/2)+e

Therefore the set of points in infinitely many of these sets has measure zero. We 
summarize this as follows:

Proposition 4.5.2. For each c > 0 and for almost every x e TJ, the number of 
integer lattice points in a ball centered at x satisfies the estimate

N(x; R)
(jtR2)df2 

(d/2f.
<rW+‘, Z+sR^oo.

Exercise 4.5.3. Show that ifR —>■ oo along the sequence of squares R = j2, then 
we have the improved estimate: Ve > 0 and almost every x e T<;,

N(x; R)
(7tR2)d'2 

(d/2f.
R = j2 -+ oo.< jj(d/2)-(l/4)4-e

Generalize to any power law R = ja with a > 0.

Kendall also obtained a formula for the limiting average variance, defined as

(4.5.3)
a2 = lim — [ dR [ Rl d

T^oo T Ji JTd
N(x\ R)

^R2)d'2

(d/2)l

2

dx.

In case d = 2, this can be computed from the asymptotic expansion of the Bessel function

FrW = ~T7v2 7r|n|3/2

/ 3?r\ /I
cosl 2n\n\R------- I + (?( —

\ 4 /



POISSON SUMMATION FORMULA AND MULTIPLE FOURIER SERIES 243

Thus

\N(x;R) — tt/?2!2 

R

dR + O

The average value of the trigonometric term is leading to the evaluation

2 = 1 J_

1 + 1*17

2^2 |n|3’

which can be expressed in terms of the Riemann zeta function and Dirichlet’s L function 
(see Kendall, 1948).

Exercise 4.5.4. Obtain a formula for the limiting average variance a2 in the 
general case d >3.

4.5.2 Landau's Asymptotic Formula

A more specific result is obtained if we fix attention on a single point, which we take to 
be the origin. This leads to the famous Landau estimate, as follows.

Proposition 4.5.5. The lattice-point counting function satisfies the asymptotic 
estimate

(4.5.4) W(0; = + °(2?J"2+2/W+l))> 7? oo.

Proof, For d = 1 the estimate is exact, so we assume that d > 1. The lattice point counting 
function can be represented as

MO; R) =
ve%d

where fR(x) = l|o,/?](l*|) with Fourier transform FR(k) = RdJci/2(2jiR\k\)/(R\k\)d/2. How
ever we cannot apply the pointwise form of the Poisson summation formula directly. Instead 
we will apply the pointwise form of the Poisson summation formula to the regularized func
tion//? * Pf where p€(x) — e~dp(x/e) and p is a nonnegative C00 function supported in the 
ball |x| < 1 and of total integral 1. Both p€ and its Fourier transform are rapidly decreasing, 
so that we can apply the pointwise form of Poisson’s formula to obtain

(4.5.5) N((R) := £(/« * pe)(v) = £ FR(k)pf(k) = £ FM)p(d).
vt=Zd ke%d ke%d

On the other hand, the smoothing density can be chosen so that for any desired integer 
N > (J+ l)/2,

|p(^)l < 1 \w
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for a constant Cd,N. The term of the series (4.5.5) with k = 0 is simply the volume 
7id/2Rd/(J/2)!. Subtracting this, we estimate the remainder as

|7W) - (7rT?2)'//2/(rf/2)!| = ^FR(k)p(ek~) 
kjkO

(4.5.6)

< Cd.\!Rd \ 1 / 1 \
- fltf+D/2 A/ ^(rf+n/2 (1 +e|fc| )

< Cd.NRd f 1 / 1 \"
~ /^I/2 ?«'+D/2 5

f Ad+vp-l / i
r pW-o/2 / 2_________ I I c-dAv- d-N Wl)/2 V + ly 1/

Z^\((/-l)/2

= CdtN I — I
\ 6 /

On the other hand, since is supported in the ball of radius 6, we have

(4.5.7) (A-f * p«)(v) </r(v) < (A+f * p€)(v), V € R<

This follows from the fact that the middle term is either zero or one; in the first case | v | > R 
and the ball {|z — v| < e) does not intersect the ball {|z| < R - e}. In the second case 
|p| < R and the ball {|z — v| < e} is contained in the ball {|z| < R + e}.

Summing (4.5.7) over v G Ze/, we obtain

<7V(0; R) <2W + <0-

Applying the estimate (4.5.6) gives the upper and lower bounds

(4.5.8)

(4.5.9)

, - //? + 6\W-|,/2
N(0; R) < cd(R + e)" + Cd.N -------

\ 6 /

_ /R-e^-w
N(0; R) > cd(R - e)d - Cd.N -------

\ € J

The two error terms are balanced when we choose 6 = 7?(1 e/)/(I+J). Making the necessary 
substitutions produces the stated result. ■

4.5.3 Application to Multiple Fourier Series

We can use the Landau lattice-point formula to estimate the partial sums of multiple 
Fourier series of radial functions at the center of the torus. We begin with a function F 
on the real line, which is supported in the interval [0, a], obtaining a radial function on 
R<z through the formula f(x) = F(|x|).

The Fourier transform is again a radial function: /(£) = A(|£|), where A is the 
Hankel transform

Adil) =/(<) = f F(.\x\)e~2’Tlix dx = Cd [“ J(d^/^dP-F^r‘l~' dr-

J\x\<a Jo (nr)(a 2,/z
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We now consider the Fourier series of the periodized function

(4.5.10) 7(X) = 22 - nl) ~ E A(|m|)e27r"”
neZ(l me’L1’

The partial sum of the Fourier series at x = 0 is written as a Steiltjes integral:

rM
sMf(0) = 22A(n>=+ / A^dN^- 

\n\<M

4.5.3.1 Three-dimensional case
We can obtain a simple necessary and sufficient condition for the convergence of the 
spherical partial sums of a periodized radial function in three dimensions, as follows. 
The case a < | was treated in Pinsky, Stanton, and Trapa (1993).

Proposition 4.5.6. Suppose thatd = 3 and that F is a C2 function on the interval 
[0, a} for some a > 0. Then the spherical partial sums of the Fourier series (4.5.10) 
converge at x = 0 if and only ifF(a) = 0.

This will be proved by developing an asymptotic expansion for the Fourier 
transform.

Lemma 4.5.7. We have the asymptotic estimates when p oo

acos2nap sin2n pa d / 1 \A(p) =------------ rJ±F(a) + ^--(rF(r))(a _ o) + O — ,
npz 27t1pi dr \P /

, 2a2 sin2nap f 1 \
Af(p) =---------------- —F(a) + O — .

M2 \M3/

Proof. We have A(p) =f(£) where p = |£| and

।, x2, xf)e 27r/(^'r|

/»2>t

/ sin 3 dr d0 d<[>
'()

/ 2 sin 27T ra
/ rF(r)------------ dr

rp

2 r rv d rcos(277-Mr)’| .
- / rF(r) — -------------- dr
p Jo dr 2np J

2 f aF(a) cos(2jrap) fa cos(2ttpr) d \
—---------------------------/---------------------(rF(r)) dr .
p \ (2np) Jo 2jt p dr J

The final integral can be integrated by parts once again to obtain the indicated form, with the 
indicated remainder term for A(p). Finally the last formula can be differentiated to obtain 
the asymptotic formula for A' (p). ■
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Now we use the Landau formula (4.5.4). We must compare a sum of the form

I A(/j2) dN(/j2) with / A(r)4nr2dr.
Jo Jo

To do this we integrate both by parts:

/ A(/zW(/z) = A(M)N(M) - / A'(^N(ii) dfi,
Jo Jo

rM 4tiM3 fM 4tiuFI A(/j.)47tp.2 d/i=A(M)— -------I A'(p.)—— du.
JO J Jo J

Now we subtract these two expressions and analyze the two terms separately.
If F(a) = 0, then we have the asymptotic forms

iz x sin <2/1 / 1 \ . x a cos a/j, / 1 \
A(/z) = C2---- ----- F Ol — I , A (/z) = C2-------------F Ol — I .

M3 \M4/ M3 \M4/

Therefore the product A(M)(N(M) — 4jtM3/3) = O(M3/2 x M~3) = O(M~3/2). Similarly 
the integral is estimated by r3/2r~3 dr, an absolutely convergent integral. Therefore the 
difference

I A(/z)d2V(/z) — I 4tt /z2A(/z) dfjL
Jo Jo

has a limit when M —> oo. But the integral is easily seen to be convergent from the form 
of A(r).

To treat the case F(a) / 0, we examine the sum Z2Aa<|/I|<Mjt+1 A(|n|) for large k, 
where /ik = (2k + 1 )/4a. If the series f(n) converges, this sum must tend to zero when 
k —> oo. But the above analysis allows one to compare this with the corresponding integral, 
with a smaller error. Thus

£ A(|n|)
IAk<\n\<iJ.k+i

CP-k+\
4nr2A(r) dr = I A(/F)d 

Jp-k
W -

When we integrate-by-parts, we find that the terms at the limits yield

Ai.p-0 N(fJ-k) ~ = O(k~2 x kV2) = O(k~>/2)

while the new integral is

47T/Z3
W) - A'(p,)dn = Oik212 x k~2) = O(k~l/2).

Thus
__ riJ-k+\

/J A(|n|) — / 4tt/z2A(/z)dfjL = O(k~l/2) k —> oo.
vk<\"\<vk+] Jllk

On the other hand, the explicit form of A(/z) with F (a) 0 shows that the integral has the
explicit asymptotic expression

rr-k+\ rp-k+\ Zl\
I 4tt/z2A(/F) = 4nF(a) I cos 2naiidfi + (91 - )

J/ik \k /

= 2F(a)(-l/ + <?f|),
/

which fails to tend to zero when k oo, completing the proof. ■



POISSON SUMMATION FORMULA AND MULTIPLE FOURIER SERIES 247

4.5.3.2 Higher-dimensional case

In higher dimensions, we can use the above method to prove that the Fourier series of 
the periodized indicator function of a ball diverges at x = 0.

Proposition 4.5.8. Suppose that d > 3. Then the spherical partial sums

E
kJd/2(2jt\k\a) 
a —-i-----

\k\<M \^a\2

are unbounded when M oo, where f(x) = l[o,n)(|x|).

Proof, We can repeat the asymptotic analysis done above in case d = 3. The Bessel 
function A(p) = ad(Jdpa))/(ap)d/2 has the asymptotic behavior

/ (J-3)7r\ ^/1\1
cos 2tt ap---------------- I + O — ,

V 4 / \M/_
. / (d — 3)7r \ / 1 V

sin I 27tap---------------- I + CH — I .
V 4 / \M/_

A ~ „W+D/2

. — 2naCdA^=I;

Letting pk be the consecutive zeros of the above cosine function, we estimate as before:
____ /*MA+1 fPk+\

dcafi^'A^dfi = I A(n)d[N(n) - cdp.d],
J PkmaMA<I«I<MA+1

When we integrate-by-parts, we find that the terms at the limits yield 

[wo - cdpd] = 0{k-{d+^2 x kd~2+2'^) =

while the new integral is
/*ma+i

- = O(k~^/2 X kd~2+2/^) =
J p-k

Thus we have when k —> oo,
_t r^k+\

A(|n|) — I dcdpd~lA(p) dp = O(k~('d+V}/2 x /xz-2+W+>)) _ q^l/-3)/2-^/-d/(j+1)^ 
ma<I«I<ma+i ^k

On the other hand, the explicit form of A(/z) shows that the integral has the explicit 
asymptotic expression

/*MA+1/ nk-'
Jp-k

/*ma+i
\ /V-3)/2
ma

’ L d — 3\ /IV 
cos 27tap — 7T------ +0 “

\ 4 / \k J
dp

= const k{d 3)/2(—1)J 1 + 0

which is unbounded, and of larger order than the error term, completing the proof.

4.6 SCHRODINGER EQUATION AND GAUSS SUMS

In this section we will use the Poisson summation formula to evaluate some finite sums 
that occur in number theory. In order to explain the setting, we first formulate the notion 
of Fourier series of Schwartz distributions on the circle. This will be applied to the
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fundamental solution of the Schrodinger equation, which is a finite linear combination of 
8-distributions at equally spaced points whenever 2n t is a rational number. The treatment 
follows Taylor (1999).

4.6.1 Distributions on the Circle

C°°(T) is the space of infinitely differentiable functions on R that are periodic with 
period 1. Convergence is defined by requiring that all derivatives converge uniformly on 
any period interval. This can be defined by the metric

OO j
i/r) = 2~" 1 " J , dn-.= sup \<t>W(x) - Vf(,!)WI-

“ 0<x<l

A periodic distribution is a continuous linear functional L on the space C°°(T). The 
Fourier coefficients of a periodic distribution are defined by

(4.6.1) Lfri) = L(e~2nifl)

and the Fourier series is written L ~ L(n)e27lmx.

Example 4.6 .1. The linear functional = 0(0) is the Dirac mass at zero,
written L = 8q. Its Fourier coefficients are given by L(ri) = 1 so that we have the 
Fourier series

~ 5Z/27r"“-

Example 4.6 .2. Any f e L*(T) becomes a periodic distribution by setting 
Lf ((/>) = f(x)<f>(x) dx. The Fourier coefficients are given by the usual integrals

L/(n)= [ f(x)e~27tinx dx=f(n).

Jt

The Fourier representation of a periodic distribution is obtained from the Fourier series 
of 0 e C°°(T), which has the convergent Fourier series

so that we can apply L to both sides to obtain the Fourier representation

(4.6.2) L(0) = ^0(n)£(-n).

This allows us to identify a distribution in terms of its Fourier series, as follows.

Proposition 4.6.3. If L\,Lz are periodic distributions with the same Fourier 
series, then L\ =

Proof. Applying (4.6.2) to L = L\ - L2 shows that L(0) = 0, V0 e C°°(T), hence L is 
identically zero. ■

The Fourier representation can also be used to define new distributions.
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Exercise 4.6.4. Suppose that Ln is a bilateral sequence of complex numbers of 
polynomial growth: \Ln\ < C(1 + \n\)N for some C > 0, N > 0. Prove that there 
exists a periodic distribution L such that L(n) = Lnfor every n G Z.

Hint: For every 0 G C°°(T), and every k > 0, there exists Q/? > 0 so that |0(n)| < Qrt(l + |n|)“* 
for every n e Z.

Exercise 4.6.5. Define the convolution of a periodic distribution L with </> G 
C°°(T) by L * </>(%) = L((p(x — •)). Show that L * (p e C°°(T) and that we 
have the convergent Fourier series

L * </>(%) = L (n) 0 (n) e171 ,nx.

An important class of distributions are those that are sums of a finite number of 
delta measures at equally spaced points; in detail we write L = JSjLV)1 Cj$j/N where

/V-! / • x
U4>)=^)-

>o /

The Fourier coefficients are

L(k) = 22 Cje~2nikjlN.
J=o

This sequence is periodic with period N, since

L(k + N) = ^Cje-2”i{k+N)ilN = 'f\je~27likilN = L(k). 

j=o j=o

Conversely, suppose that we are given a bilateral sequence Lk with the property that for 
some N G Z+, Lk+u = Lk for all k e Z. The smallest such value N is called the period. 
Then we can uniquely solve the system of linear equations

Lk = 22 Cje-2niik/N 0<k<N—l

in the form

c, = 2 E Lke2jtijk/N

N 0</</V-l

to obtain a periodic distribution L = ^^=0 cA/n and conclude the following.

Proposition 4.6.6. Every periodic sequence is the set of Fourier coefficients of 
a unique distribution that is obtained as a finite sum of delta measures: L = 

Cj^j/N where N is the period of the sequence.

Example 4.6.7. Let L — N 52/=o fy/w- The Fourier coefficients are given by 
Un) = e 'imnj/N> which is one if n = 0, ±7V, ±2?/, ... , and zero
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otherwise. Therefore we have the Fourier series

-E 
j=0 ke%

4.6.2 The Schrodinger Equation on the Circle

The initial-value problem for the one-dimensional Schrodinger equation on the circle is 
to find u(x,f) defined for x G T, t > 0 so that

.du d2u 

dt dx2

u(x,0) =</>(x) G C°°(T).

Separation of variables produces the factored solutions u = e2^mxe-^2ltn2 and the Fourier 
series

u(x, t) = ^2^(n)e27rmxe-47r2zm2. 
neZ

It is immediately verified that for </> g C°° (T) this series converges in C°° (T) and that 
limz^o u(x, t) = </>(%). The fundamental solution is the distribution with Fourier series

Lt ~ ^2 e^inxe-A7l2i,n2, Lt (n) = e~4'™2. 
neZ

From the definition of convolution, we have u =

Proposition 4.6.8. Assume that 2jtt = M/N for some M.N G Z+. Then Lt is 
periodic with period N and Lt is a finite sum of delta measures at the equally 
spaced points 0, 1/2V,..., (N — 1 )/N where the measure ofj/N is

N-\
Cj = CMN (j/N), CMN (%):=£ e^irxe~MllN 

r=0

for j = 0,..., (2V - I)/2V.

Proof. It is immediate that if 2nt = M/N, then

Lt(k +N)= e-^2^+N)2M/2Nn

_ e-27Ti(/V2+2/V/<U2)(M//V)

_ e-2jiik2(M/N)

which proves the periodicity of the sequence. In order to obtain an explicit evaluation, we 
write the Fourier series at 2nt = M/N\ Lt = lim,,^^ in the sense that for
each 0 G C°°(T), we obtain L,(0) by integrating and taking the limit of the partial sums. 
This limit can be computed by writing k = Nj + r and considering an arithmetic sequence
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of sums as follows:
/V(n+1)-1

' ^Inikx ^—2nik2(M/N)

k=-Nn

e2ji i(Nj+r)x e-2ji KNj+r)2 (M/N)

j=-n r=0

n N-\

^2tt i(Nj+r)x ^—2tt ir2 (M/N)

n N-l
__ y ' ^.TTiNjx y ^2jtirx^-27iir2(M/N) 

j=-n r=0

= CMN(x) y e2^.
j=~n

When n —> oo, the last sum converges to the distribution which completes the
proof. ■

We now look for another formula for Lt, by means of the Poisson summation 
formula. The solution of the Schrodinger equation on the real line can be obtained from 
the Fourier transform as

u(x, t)= [ dt;
Jr

wheref eS. Clearly u(-, t)eS for each t > 0. This can be represented as an integral 
in x if we identify

e~4jT = / e27Ti^—==dx
Jr V4tt it

where the integral is taken as a Cauchy principal value and the square root is taken with 
positive real part. This gives the explicit representation

r e~^x~y^f4ti 
u(x,f)= / —__ f(y)dy.

JR

Applying the Poisson summation formula leads to the representation

^2f(n)e2jrinxe 4jr2ltn2 = — V) j)

This allows us to represent the distribution Lt as

-(x-k)2/4it n (x_k)2/4it
Lt=Y —7=^ =iim y — 

V^Tt n^k^n

Taking 2nt = M/N, we have

1 _ Nn i _ N
4it 2Mi" 4jtit 2Mi
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The sum is evaluated by letting k = 2Mj + r, leading to

(x-k)2/4it _  ^—(x-2Mj—r')2(N7i/2Mi)

_  e—(x2+r2—2rx—4Mjx)(N7r/2Mi)

_  /2Mig—^Mjx^N7t/2Mi) ^iNTirx/M^ir2N7i/2M

Therefore

where we have set

2A/-1
DMN(x) = ^2 eiN”rxlMe-rlN”'1Mi.

r=0

The last sum converges to a sum of unit delta measures at the points 0, 1/2V,..., 
(N — 1)/2V. Equating the two forms of the distribution, we obtain the identity

CMN(x) = \[^r-e~Nrnx2/2MDmn(x) x = 0, ~,..., 1-
V 2Mi N N

In detail,

/V-l r-7T- 2A/-1
(4 6 3) \ A e^ir(k/N)e—27tir2(M/N)   / ~zv ^—i7ik2/2MN X 5 ^inrk/M^ir2Nji/2M

h £o

for each N = 1,2,... and each k e {0, 1,..., N — 1}. In particular for k = 0 we have

Specializing this to the case M = 1 yields the most classical Gauss sum:

r=0

4.7 RECURRENCE OF RANDOM WALK

The formalism of multiple Fourier series can be combined with Laplace’s asymptotic 
method to study the recurrent behavior of a simple random walk on the integer lattice.

The integer lattice is the set of all d-dimensional vectors whose coordinates 
are integers: = {(k\,..., kj) : kj = 0, ±1, ±2,...}. The simple random walk begins 
at the origin and moves with equal probability 1 /2d to one of its neighbors, with the 
successive steps being independent of one another. In detail, denoting the coordinate 
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vectors by e7,

Prob[S„+i — Sn = ±e7] = 1 /2d 1 < j < d, n = 0, 1,2, ....

Fourier series are introduced through the characteristic function

fn(t) = E[e*•s")] = e'<a)Prob[S„ = *]
keZd

where (,) denotes the standard inner product of The hypothesis of independence 
allows us to write

fn(t)=E
7=1

But

elt[ + e~lt{ H----- + eltd + e~ltd cos t\ H-------+ cos
'{t) = 2d = d

The recurrent behavior is determined by Prob[S„ = 0], as follows.

Proposition 4.7.1.

• Ifn is odd, then Prob[S„ = 0] = 0.
• If n = 2m is even, then

lim An£//2Prob[S2w = 0] = 2x~ddd/27t~d/2. 
m

Proof. A return to zero occurs at time n if and only if in each coordinate the number of 
positive and negative steps are equal, hence the total number of steps in each coordinate 
must be even, in particular the total number of steps (in all coordinates) must be even. 
We have

/W" = 22 ^'‘’ProbtS,, = £].
kEZ(l

From the formulas for multiple Fourier series,

Prob[5„ = *] = —!— [ dt.

In particular

Prob[S2„, = 0] = —?— [ f(t)2"1 dt.
(27iy

This can be further simplified by noting that/ is 2tt-periodic in each variable and satisfies 
the oddness property/(fj + 7T,..., td + tt) = —f(t{,... ,td). The periodicity allows us to 
write

[ f(f)2'"dt= [ f(t)2mdt.
J (—7t,n)d J (—7t/2,3h’/2)^

The oddness property further allows us to write f^<sf(t)2ni dt = f\t_^<sf(t)2,n dt. Now we 
can apply the asymptotic method of Laplace. On the cube (—tt/2, 3tt/2)j, \f(f) | < 1 with
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global maxima assumed at = 0, and tj = tt where |/(0)| = 1, |/(7r) | = 1. On the sets 
|r| > <5, |r — 7r| > 8 we have |/(r)| < 1 — < 1 so that

[ f(t)2mdt<(2x)d(l-rh)2m.
J\t\>8,\t—jr\>8

Thus

m“/2 [ f(t)2m dt = 2md/2 f f(t)2m dt + O(mdl\\ - ^)2m) 
J{-Tt/2T>Tl/2)d J\t\<8

= 11 f(s/Jm)2m ds + o(\).
J |.y| <8m */2

In order to apply the dominated convergence theorem, we first note that the integrand is 
bounded by the integrable function /3J. To find the limit, we use the Taylor series 
expansion and the inequality \A2m — B2m\ <2m\A — B\ to write

Irl2/(r) = 1 - U- + O(|f|4), t 0

(1 \= CH — I m oo 
\m /

from which we conclude that

lim md/2 [ f(tfm dt = 2 f e~'s'2/d ds = 2(nd)d/2, 
m^°° J {-ti/2,3ti/2)d JRd

which gives the required result.

This can be used to estimate the mean occupation time of the origin, defined by

oo
Mean occupation time = ^Prob[S„ = 0], 

n—Q

If the dimension d = 1, resp. d = 2, then the 2fnth term of this series is asymptotic to 
the general term of a divergent series (1 /resp. 1/m), thus we have an infinite mean 
occupation time. However if J > 3, then the general term of the series is asymptotic to 
the general term of a convergent series (1/m^2), thus a finite mean occupation time. In 
this sense we say that symmetric random walk is recurrent in one and two dimensions 
and transient in dimensions three and greater.

Exercise 4.7.2. Suppose that a one-dimensional random walk is defined by 
independent steps with

Prob[S„ — Sn_\ = 1] =p, Prob[S„ - Sn-i = 1] = 1 -p 
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where 1/2. Show that Problem = 0] = (2™)pm(l — p)m. Find an asymptotic 
formula for Problem = 0] and conclude the transient behavior.

Exercise 4.7.3. Suppose that a one-dimensional random walk is defined by inde
pendent steps with

Prob[Sn — Sn-\ = k] = pk k — 0, ±1, ±2,...

where ^k^Pk = ^^kez^Pk = 0> ^2kez^2Pk = er2 < oo. Find an asymptotic 
formula for Prob[Sn = 0] and conclude the recurrent behavior.



CHAPTER

5
APPLICATIONS 

TO PROBABILITY 
THEORY

5.1 MOTIVATION AND HEURISTICS

The previous chapters have dealt with the Fourier analysis of functions in one and 
several dimensions. While this is sufficient for many applications, it does not fully cover 
problems from probability theory, where we must deal with measures that do not have a 
density with respect to Lebesgue measure. Unlike the L2 theory of the Fourier transform 
from Chapter 2, this theory is inherently nonsymmetric: The Fourier transform of a finite 
measure is a continuous function rather than another measure. For this reason we change 
slightly the definition of the Fourier transform for notational convenience.

5.2 BASIC DEFINITIONS

Let m be a finite Borel measure on This is a nonnegative, countably additive set 
function defined on the Borel sets of with m(R.d) < oo. The Euclidean inner product 
is denoted £ • x = &xi' The Fourier transform of the measure m is the function

(5.2.1) ) = / e*xm(dx). 
Jw1

Note the change in the sign convention and the omission of the factor 2n in the definition. 
These adjustments are made in order to conform with the conventions of the theory of 
probability. If m is a probability measure (m(Rd) = 1), we refer to m as the characteristic 
function of the measure m. The properties are listed below.

Proposition 5.2.1. The Fourier transform has the following properties:

1. m is a continuous function with m(0) = m(Rd).

256
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2. m is a positive definite function, meaning that for every set of complex numbers 
(cj)i<j<n tmd vectors (fij)\<j<n

n
22 CjCkm^j - > 0.

j,k=\

3. If m\,mz are two measures, the Fourier transform of the convolution is the 
product of their Fourier transforms, where the convolution is defined by

(m\ = I m\(dx)m2(dyf
J {(x,y):x+yeB]

Equivalently, for any bounded continuous function g

/ g(z)(m1*m2)(<fc)= / g(x +y)ml(dx)m2(dy).

Proof. The continuity of in follows from the dominated convergence theorem: If 
then the complex-valued functions e^n'x are bounded by 1, and converge to e* x when 
n —> oo. The positive definite property is a direct computation:

n n />22 “ &) = 22 c^k I e'^ xe~ik Xm(.dx)
j,k=\ j,k=\

2

m(dx)

> 0.

To prove the convolution property, multiply the two transforms to obtain

= /* el^x+y)mi(dx)m2(dy) = I *m2)(Jz),
JR2<I Jr(I

which was to be proved.

Example 5.2 .2. The centered Gaussian distribution with variance parameter 
a > 0 is the measure with density e~^ ^2(J . Its Fourier transform can be computed 
in terms of a product of one-dimensional transforms as

m(f) = f el^'xe-|x|2dx
Jnd

FT (e^e-^2°2dx}

= FJ ( [ e*jXje x2/2aldXj 

Ur

= ]""[ (V27r<T2e-^2or2) 

7=1

= (27to2)d/2e-^/2.
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Example 5.2 .3. The Fourier transform of the uniform measure on the rectangle 
ny=1 (fly, bj) is computed as

r J rh/ JL.. e^jbj _ e^jai
m($)= e'ixdx = Y[l e'$x'dxj = Jl----------------- , / 0.

•TI^A) ;=i %

If = 0 for some j, then the corresponding factor is replaced by bj — a,.

We now prove that the mapping m -> m is 1: 1.

Proposition 5.2.4. The measure m can be retrieved from its Fourier transform by 
the inversion formula

n^’i=nm / w(i)e_<T m /2 n —t
y=I / J=1 -l^j

provided that the m-measure of the boundary of this rectangle is zero. In particular, 
m is uniquely determined by m.

Proof. Multiply the defining equation (5.2.1) by e-°2\^2/2e-^-y to obtain

e-^2/2e-^m^) = [ e'^e-^2/2m(dx).
Jw1

If we integrate this with respect to | and use the Gaussian Example 5.2.2, we obtain

r 7 r ^-k-yl2/2cr2
/ e~° d^ = (2jr)f/ / —f ---- m(dx).
k' Jr« (V2^)^/2

Now we integrate with respect to y over nfaJy bj) to obtain

The integrand on the right side is bounded by 1; it tends to 1 if x e njz=1 (a,, bj) and tends 
to zero if x £ The boundary of this rectangle is supposed to have m-measure
zero. The conclusion now follows from the dominated convergence theorem. ■

If the Fourier transform of a finite measure is integrable, then the measure has a 
density that can be recovered by Fourier inversion, as follows.

Corollary 5.2.5. If in g L1 (R^) then the measure m has a density, given by

dm 1 f vTT = / e K m^d^-
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Proof. With this extra hypothesis, we can take the limit under the integral in Proposition 
5.2.4 to obtain

\Jw>
e I dy,

which displays the measure of the rectangle as the integral of the required density 
function. ■

These ideas allow us to generalize Maxwell’s characterization of the Gaussian 
density in Chapter 2, Proposition 2.2.51, from density functions to the larger class of 
finite measures on The precise statement is the following.

Proposition 5.2.6. Suppose that m is a finite measure onld,d > 2 with the 
following two properties:

(5.2.3) m(dx\ • • • dxf) = m\(dx\) • • ♦ mdidxf)

where m\, ... ,md are finite measures on R.
For any orthogonal transformation T ofW1,

(5.2.4) I f(Tx)m(dx) = [ f(x)m(dx), V/ g C(Rd).

Then either m = A8q or m(dx) = Ae B|x|2 dx where A > 0, B > 0.

Proof. The Fourier transform = fRd el^'xm(dx) satisfies the corresponding factori
zation

(5.2.5) m(£i, ... , £/) = mi(^i) • • • md(fid).

Taking/(x) = e~‘^'x, (5.2.4) shows that m(T£) = hence m(fi) = G(|£|2) for some 
continuous function G. Now we can follow the steps of the proof of Proposition 2.2.51 in 
Chapter 2 to conclude that, since G is bounded, G(x) = Ae~Bx, where B > 0. If B = 0, 
then m is a multiple of 50; otherwise B > 0, which completes the proof. ■

Remark. We can render more transparent the computations in Proposition 5.2.4 and 
Corollary 5.2.5 following by using the notations of Chapter 2, beginning with the Fourier 
representation of the heat kernel Ht, a bounded function with Ht e L1 (RJ):

Ht(x-y) = [



260 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Multiply both sides by lA(y)m(dx) and integrate over IR^ x IR^: 

f (Ht * lA)(x)m(dx) = f m(-i=)iA&Hfl=)dl=

hd
m(A) = lim [

'-►0 Jw
= [

= f ( f e27ti^xm^) dx
J A \Jr<‘ /

if m(dA) = 0

if m eLl(Rd)

by Fubini.

The above methods can also be used to prove the following continuity theorem for 
Fourier transforms of measures.

Proposition 5.2.7. Suppose that mn,n = 0,1,2,... is a sequence of finite 
measures whose Fourier transforms converge:

n

Then the measures converge on every rectangle whose boundary has mo measure 
zero.

Proof. For any </> g S, let so that </> = ^. Then by Fourier reciprocity we
have

[ ^(f)mn(f)d$ = [ (/>(x)mn(dx). 
Jr" Jr"

Letting n -> oo, the dominated convergence theorem implies that

lim [ (j>(x)mn(dx) = lim [ J/(f)mn(f)d^ = [ Js(f)mQ(f)d$ = [ (/>(x)m0(dx).
n JR" n J1R" JR" Jr"

If R = nj=1 (cij, bj) is any rectangle, let e 5so that </>“ < 1/? < <p+. Thus

lim sup mn (JR) < lim sup / (f>+(x)mn(dx) = I (f>+(x)mo(dx) 
n n JR" JR"

lim inf mn(JR) > liminf / </>~ (x)mn(dx) = I <f>~(x)mo(dx).
11 11 JR" Jr"

Now let </>+ 1/?, <j>~ f 1/? to conclude that

mo(JR°) < lim inf (ft) < limsupm/7(^) <
11 n

If = 0, then the extreme values are equal, so that the limit exists as required. ■

5.2.1 The Central Limit Theorem

Fourier analysis of measures is particularly well suited to study the convolutions of a 
single probability measure. In the case of the measure p81 + (1 — p) <50 this was effectively 
studied in Chapter 1 in connection with the DeMoivre-Laplace local limit theorem. The 
central limit theorem extends this to an arbitrary probability measure with a finite second 
moment, which we now describe.
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Theorem 5.2.8. Suppose that m is a probability measure on the real line with

I xm(dx) = 0 / x2 m(dx) — or2 < oo.
JR JR

Then for any interval A,

lim(m *m * • - - * m)(AJn) = , [ e dx.
n Sliter'1 J a

Proof. From Proposition 5.2.7 it suffices to compute the Fourier transform of the indicated 
convolution. This is [rnff/^/n)]”. The Taylor expansion at £ = 0 is

m(?) = l-^2a2/2 + o(?2).

The characteristic function of the Gaussian measure with mean zero and variance a2 has 
the same Taylor expansion. Now we can write

where we have used the fact that if a, b are complex numbers with |#| < 1, |Z?| < 1, then 
la” _ < n\a _ But from the Taylor expansions,

m(-^)-e-(2/2,m2 /n),
\n'/2 J

which proves that lim/2 m(£/rc1/2)" = e“^2/2a2. The conclusion now follows from the 
continuity theorem proved above. ■

Exercise 5.2.9. Central limit theorem for Abel sums. Suppose that m is a 
probability measure on the real line with

I xmfdx) =0, / x2 mfdx) = 1.
J R JR

For 0 < r < 1 and n = 1,2, ..., let mrn(A) = m(A/(rny/\ — r2)). Prove that for 
any interval A

lim(m| * mj> * • • • )(A) = I e x~12 dx. 
V2tt J a

Hint: It suffices to show that the Fourier transform satisfies the limiting relation 
lim^i m(trn>/1 — r2) = e~'2/2. Use the fact thatm(£) = e-^2/2(1+"(D) when £ -> 0.

5.2.1.1 Restatement in terms of independent random variables
The central limit theorem is presented as a result on the convolution powers of a single 
probability measure. This can also be recast as a result about the measure induced by a 
sum of independent random variables, as follows:

Definition 5.2.10. A set of real-valued functions X\(f),... , Xn(f) on a proba
bility measure space (£2, p) is mutually independent if for every choice of real 
numbers x\, ..., xn, we have

MU : Xi(0 < xi, ... ,Xn(t) < xn] = p{t : Xx(f) < xj} • • • p{t : Xn(t) < xn}.
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Let mz be the distribution of X, namely the measure induced on IR by the equation 
mz(A) = /z{r : X(0 € A}. Then the distribution of the sum Xff) + • • • + Xn(t) is 
the convolution * • • • * mn, so that (m * • • • * m)(Ay/n) is the distribution of the 
sum (Xi(r) + • • • + Xn(t))/^/n. In probability theory, the term “random variable” is 
synonymous with “real-valued measurable function.” The central limit theorem can now 
be recast as follows:

Theorem 5.2.11. Suppose that {Xn(f) }n= i,2,... is a sequence of mutually indepen
dent random variables with distribution m, where x m(dx) = 0, x2 m(dx) = 
a2 < oo. Then the distribution of the normalized sum [X (r) 4---------F Xn(t)}/cr Jn
converges to a standard normal distribution when n -> oo.

Independent random variables may be constructed on the unit interval Q = [0, 1] 
as follows. Let </> : N -> N2 be a bijective mapping. For example, this may be constructed 
by listing all of the integers in a doubly infinite array as follows:

1 3 6 10 15 21...

2 5 9 14 20...

4 8 13 19...

7 12 18...

11 17...

16

In this example we have, for example </>(8) = (2, 3), </>(18) = (3,4) and so forth. Now 
we expand t — $2^ and define

oox(,) = y^w =^ + ^ + ^ + ...
^2" 2 4 8
n=l
oo

v Ct>2 <1>5 , <i>9 ,
x’<') = Zf“ = T + T + T + '--

n=l
oo

v “fyan) w4 0)8 a>!3
+ t +v + '"n=l

and so forth. Then for every n, {Xft), Xz(t), ..., Xn(f)} are independent random 
variables, each of which is distributed according to Lebesgue measure on [0, 1]. To 
achieve more general distributions, it suffices to form Borel functions in the form 
yz(r) = 0z(X(r))forZ=l,2,....

5.3 EXTENSION TO GAP SERIES

The asymptotic normal distribution is not restricted to sums of independent random 
variables. In this section we consider a class of trigonometric series that are asymptoti
cally normal. More general results are found in the book of Zygmund (1959, Volume 2,
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Chapter XVI). Here we consider sums of the form

k

(5.3.1) Sk(t) = cij cos njt
J=i

where (tzy) are real numbers and n\ < < • • • are integers which satisfy

(5.3.2) nk+l>qnk (£=1,2,...)

for some q > 1. The growth of the sum is measured by the L2 norm, which is

/1 k \1/2
(5.3.3)

where we assume that

(5.3.4) Ak -> oo, — -+ 0 (k -+ oo).
Ak

As preparation for the theorem, we first prove a simple lemma.

Lemma 5.3.1. Under the conditions (5.3.4), we have

max \a;\ -> 0 (k -> oo).
Ak \<j<k

Proof. Given 6 > 0, let K( be such that \ak\/Ak < 6 for k > K^. On the one hand, since 
(Ak) is increasing, we have for k > K(

1 1
— max la, I < —e max LA, I = 6,Ak Kc<j<k 71 “ Ak Kf<j<k' J'

while

— max la,I 0 (k -> oo).
Ak \<j<Kc

Hence lim sup/,_>oc(l /\Ak |) maX|<;<A |a,| <6. But e was arbitrary, so the proof is complete.

This lemma allows one to conclude, for example, that for any p > 2

E 
\<i<k

\ai\P 0
—< 2 max 
A”k ~ .</<*

M1’-2

Ap~2 Ak
-> 0.

Theorem 5.3.2. Suppose that the integers (nk) and the real numbers (af) satisfy 
(5.3.2) and (5.3.4) with q > 3. Then we have for k -> oo

(5.3.5)
1

2?r
Sk(t) 

Ak
__  f e u2!2du.

'\/ 2jt Jy ]
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Proof. We compute the Fourier transform, defining

4>*(S) = — [ dt

It suffices to prove that <^(£) -> e ^2/2 when k -> oo. From the power series of the 
exponential function, we have for small |z|,

(1 + z)e~z = (1 + z) 1 - z + - + O(|z|3)

2 '' '
_ e-z2/2+O(\z\3)

so that

ez = (1 + z)ez2/2+O(iz'3) (z-> 0)

and we can write

**(?) = 2- [ ]"[ (1 + i? 7- cosnA exp -|2
277 ‘'TJ=1 X

where the o(l) term is uniform in t G T. Now we write

k st2 1 k st2
3^ cos2 rijt =1 + - V cos IrijtL^i 42 J ' 7 Z—/ 42 J
>1 ;=i

:=1 + T,(r)

noting that

1 /* 1 k a4
— Tk(t)2dt=-Y^-+O (k^
2?r A 8 A4

in particular 7^(0 —> 0 in measure. Meanwhile

[cos2 rijt + o(l)] dt

00),

k / n( 

;=1 v

so that we can write

^(?) = i / 
2?r

= 0(1) +

\ 2 k I ^2a2\
L + cos rijt) < PI ( 1 + —y- ) < e2^2

^k j=i \ &k /

T~i ( aj \ \ X2 1
1 + cosMjf) exP - —(1+^(r)+ o(l)) dt

• 7 \ &k / 2y=l X K / L J

e~x2/i f A A ■ aJ A
—— / 11+ ix— cosn;t I dt.

Jt j=f \ Ak J
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It remains to analyze the final integral. For this purpose we expand the cosine prod
ucts using repeatedly the identity 2 cos a cos b = cos (a + b) + cos (a — b) to obtain a 
finite sum

k / a \ n\+---+nk

(5.3.6) PJ I 1 + it; — cos rijt I = ^vcosvr
>1 V Ak J

where the sum is over those indices of the form v = nl{ ± ni2 ± • • • with ni{ > ni2 > • • •.

Lemma 5.3.3. Suppose that n^+i > qnk with q > 3. Suppose that an integer v is 
represented in two (possibly) different ways

nh ± ni2 ± • • - = v = nji ±nj2± - - -

where i\ > h > ■ ■ ■, j\ > h > ■ ■ ■. Then z, = ji, z2 =j3,....

Proof. If all of the subscripts are equal, there is nothing to prove. Otherwise there is a 
first subscript that differs in the two representations. By relabeling the subscripts, we may 
assume without loss of generality that i\ > j\. By a further relabeling and moving all of the 
terms to one side, we may write

= a\nk[ + a2nkl H-----

where the coefficients cij G {0, ±1, ±2} and i\ > k\ > k2 > • • •. Hence

ni} < 2 (nh + nk2 H----- )

/Il \
< 2 I nkl + -nk\ + — nkl + • • • I

< 3^,,

which is a contradiction.
To complete the proof of the theorem, we note that in the product (5.3.6) the only 

contribution to the term a() occurs when all of the frequencies are zero, hence a0 = 1. 
Applying the orthogonality of cos vt, we conclude that

1 z» k / & \

/ np+'V cos”'f)dt=
which completes the proof of the theorem. ■

Exercise 5.3.4. Suppose that the coefficients (an) satisfy (5.3.4). Prove that 
n~~l log |an| -> 0 when n -> oo.

Hint: Write a2/A2 = en -> 0 and solve for a2 = a2N(en/eN)WN+{ (1/(1 - ek)) for n > N, where 
6/v > 0 and ek < e for n > N.

Exercise 5.3.5. Suppose that the coefficients (an) satisfy (5.3.4) and the inte
gers (nk) satisfy (5.3.2). Let Sk(t) = 52/= i fl/cos(n/ — Of) where 0j G IR. Prove 
that (5.3.5) holds for this wider class of series.
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5.3.1 Extension to Abel Sums

The central limit theorem for gap series can naturally be extended to obtain the limiting 
distribution of the harmonic function

oo
(5.3.7) w(r, t) = ^^ajrn' cosrijt

;=•

under the same conditions as in Theorem 5.3.2.
We define

1 r | 00
(5.3.8) A(r)2 ■=— u(r, t)2dt = - Vajr2"'.

2?r Jt 2

Then Exercise 5.3.5 implies that A(r) < oo for 0 < r < 1.
The following result was first proved by Kac (1939) and later extended by Salem 

and Zygmund (1948).

Theorem 5.3.6. Suppose that the integers (n^) and the real numbers (af) satisfy
(5.3.2) and (5.3.4) with q >3. Then for any interval C C T, we have for r -> 1

u(r, t) 1 /*
(5.3.9) dy.

A(r) J Jc V2tt

We first develop the Abelian counterpart of Lemma 5.3.1.

Lemma 5.3.7. Let bk > ft for k > 1 and set = 0, Bn = b\ + • • • + bn for 
n > 1. Suppose that Bn —> oo and bn/Bn —> 0 when n —> oo. Furthermore let 
B(r) = b„rnfor0 < r < 1. Then

1
— suP^r' 
B(r) £>|

when r -> 1.

Proof. We sete/? = bn/Bn fan > 
and e„ < 1 for all n. Then Bn_\/B,

Bn =

bn — <

2. Without loss of generality we may assume that b\ = 1
j = 1 — en, so that we can write for n > 2

/ 1 \ / 1 \
\ 1 - e2 ' \ 1 - e„ J

/ 1 \ / 1 \
-/I 1 1 ) I 1 ) ■

\ 1 ^2 / \ 1 /
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Since Bn —> oo, we have B(r) —> oo when r —> 1. On the other hand we can write for any 
N e Z+,

n=\

N
>^^(B,.~B„_])r"

n=\

N
= rNBN + (l-r)^rnB„

n=\

> rNBN

=r»(_L\.(_L\
yl — £2/ \ 1 — £/V /

Given 6 > 0, let Ke be such that ek < e for £ > Kf. If sup^, bkrk is attained at some k > K^, 
then

If
1 Ckr

bkr = ------- 7----- ---------7 < ekB(r) < eB(r).
(1 — e2) • • • (1 — ek)

On the other hand, if the supremum is attained at some k < K€, then

bkrk < maxi<t<K< bkrk <
B(r) ~ B(r)

But 6 was arbitrary, which completes the proof. ■

We can apply this lemma by taking bnk = and bn = 0 if n {nk[, nk2,...}, to 
conclude that rnkaiJA(r) -> 0 when r -> 1, uniformly in k G Z+.

Proof of the Theorem. We compute the Fourier transform

<!>,.(£) = — / expl ----- Va;rnj cos nJ I dt.
2n h V\A(r)^1 J)

We proceed as in the proof of Theorem 5.3.2, beginning with the estimate = 
(1 + z)exp[z2/2 + <9(|z|3)] applied to Zj = IA(r))ajrnJ cos rijt, noting that Zj -> 0 
when r -> 1, uniformly in j. Then

4>r(?) = / n I 1 + ~-:akr"k cosnkt) expl — k [cos2(n*r + o(l)]) dt.
A Li V / V 2A(r)2 V

Write
। 00 1 1 00

JW S5‘r"‘ "s’ -2 + iw p*'* c“2"*'

:=j+ *.«>.
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The L2 norm of 4^ is estimated as before

1 r i 00— / U'AO2 dt = ------- -  V r4'M -> 0, r 1
2?r A ‘

where we have used Lemma 5.3.7 to replace one factor by the supremum, the remaining 
sum being equal to 1. Meanwhile, we have the uniform bound

oo 2 00/ p2z,2\

LI /

so that we can apply the dominated convergence theorem to conclude that

£2/2 c oc / \
<M£) = o(l) + —— / n ( 1 + • V; cos nkt) dt.

2jr A Li V A(r) /

But this infinite product can be expanded as a sum:

/ i^akrnk \
I I I 1 H----------- cos nkt 1 = y av(r) cos vt.
Li V A(r) / Zo

From Lemma 5.3.3 and the condition (5.3.4) we have a0(O = 0(1), so that we conclude

which completes the proof.

5.4 WEAK CONVERGENCE OF MEASURES

To probe the deeper aspects of the convergence question, we develop the following notion 
of weak convergence of measures.

Definition 5.4.1. A sequence of finite Borel measures (mn) is said to converge 
weakly to a limit measure m if for every bounded continuous function g

lim / g(x)mn(dx) = I g(x)m(dx).
n Jw1 J^d

If A is any set in ]Rr/, the interior A° is the set of points xeA such that A contains an 
open ball about x. The closure A is the complement of the interior of the complement; in 
symbols (A)c = (Ac)° and we have A° C A C A. The boundary is defined as dA = A\A°.

The portmanteau theorem gives equivalent conditions for weak convergence.

Theorem 5.4.2. The following conditions are equivalent

1. mn converges weakly to m.
2. For every closed set A, lim supn mn(A) < m(A).
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3. For every open set A, lim inf„ mn(A) > m(A).
4. For every Borel set A with m(3A) = 0, lim„ mn(A) = m(A).

The proof of this theorem, which has nothing to do with Fourier analysis, can be 
found in Billingsley (1999).

It is also helpful to develop the appropriate notions of compactness in the context 
of weak convergence of measures. In this setting we refer to a tight family of measures, 
formalized as follows:

Definition 5.4.3. A sequence of finite measures (mn) is tight if

lim supnmn({x : |x| > A}) = 0.
A-^-oo

Theorem 5.4.4. Suppose that mn is a tight sequence of finite measures with 
sup„mn(Rd) < oo. Then there exists a weakly convergent subsequence.

Again we refer to Billingsley (1999) for the details.

Exercise 5.4.5. Prove that any weakly convergent sequence of finite Borel mea
sures is tight.

Example 5.4.6. With d = 1, let mn = 8n, a point mass at the point n. Then mn is 
not a tight sequence, since for any n, mn{x : |x| > n/2} = 1.

5.4.1 An Improved Continuity Theorem

The theory of tightness can be used to formulate an improved version of the continuity 
theorem for sequences of characteristic functions of probability measures. In the previous 
version, Proposition 5.2.7, we required that the Fourier transforms mn(g) converge to a 
limit Af (|), which is assumed to be a characteristic function. We now have the following 
improved version.

Theorem 5.4.7. Suppose that mn is a sequence of probability measures on IR€/ 
with Fourier transforms mn(^)t with the property that there exists

(5.4.1) W) = limm,a)
n

and that M is continuous at % = 0. Then there exists a probability measure m so 
that mn converges weakly to m and m(£) = Af(|).

Proof. From the hypotheses, we can write

1 - m„($) = [ (1 - m„(dx).
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This equation is integrated over the cube Ca = njLj {|£/| < a} to obtain

/* ~ /* I z/ i—r 2 sin ctx; \
/ [1 - = I (2a) - fl---- ) m„(dx)
Jca Jr" \ Xj /

If f / A sin ax; \
—— / [1 -mn(l-))dl- = / 1-n——)»»„(<&)
(2ay JCa Jr" \ )=f axj )

f /, A sin ax A 

U axi /

since the integrand on the right side is nonnegative. If (jq,..., jq) lies outside the cube 
C2a-1, then the indicated product contains at least one factor that is less than |, the remaining 
factors are less than 1. Hence

-2— f [1 | f m„(dx).
(2a)d Jc. 2Ac2<,.,)‘

From the dominated convergence theorem we conclude that

limsup f m„(dx) < -f— [ [1 - M(|)] 
n j(c2:rly (2a)d Jc<l

From the continuity of M, the right side can be made arbitrarily small by taking a sufficiently 
small. This proves that the measures mn are tight, hence we can extract a weakly convergent 
subsequence. If we had two different subsequential limits and n0, then both of these 
measures must have the same characteristic function, hence they must be the same measure 
by the uniqueness of Fourier transforms, Proposition 5.2.4. Hence every subsequence has 
a subsubsequence that converges weakly to the same measure m0. From this it follows that 
the original sequence converges weakly to m0. ■

Exercise 5.4.8. Show that the hypothesis of continuity at = 0 in Theorem 5.4.7 
can be weakened to the hypothesis that $ = 0 is a Lebesgue point for M, in the 
sense that lim^o a~d fc 11 — A/($) | = 0.

5.4.1.1 Another proof of Bochner's theorem
In Chapter 3 we introduced the concept of positive-definite function and used a Fatou 
theorem for harmonic functions in the upper half plane to prove Bochner’s theorem, 
which affirms that any continuous positive-definite function on R is the Fourier transform 
of a nonnegative measure. In this section we will give an independent proof of Bochner’s 
theorem using the theory of weak convergence applied to a Gaussian convolution.

Proof. We begin with/(f), a complex-valued positive-definite function that is assumed to 
be continuous. Define

(5.4.2) m€(x) = — [ e~lx“e~*u2f(u) du.
J®.

By hypothesis, we have for every e L1 (R),

J J®?
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Taking the choice ) = e,x*e ^2/2 we infer that

0<yy /(£ -ri)elx^e- l̂2e-^l2d^ dr]

I f(U)eixue-e(u+'))2/2e-(,,2/2 du dr)

f(u)eixue-(u2/idu

= const, x we/4(x),

which proves that m((x) > 0. We claim that m( e L[ (R) and that the Fourier transform of 
the nonnegative function m€ is precisely e~(u f(g). To see this, we use Fubini to establish 
the following identity where 8 > 0

(5.4.3)

f m€(x)e*xe 6xl/2dx = [ [ e'x(^ e €u2f{u)dxdu
R 27T Jr

C e-(^-u)2/28
= / ----=^-f{u)e-eu du.

Jr \J1ti8

Taking f = 0 and using Fatou’s lemma and the continuity at u = 0 shows that

I m€(x)dx < liminf^o / m€(x)e 6x1/2 dx = /(0) < oo. 
Jr Jr

Hence m€ e L’(R) and ||me||Li(K) < /(0) < oo. Now we use (5.4.3) and the dominated 
convergence theorem to compute the Fourier transform with 6 > 0 fixed:

I m€(x)e^x dx
R
im [ m^x)e'^xe~8x1/2 dx
~>()Jr

f e-^-u)2/28 ?
im / — f(u)e~€ir du

=f&e~^

where we have used the continuity of / in the last line. Hence the product/(f)e 6^ is the 
Fourier transform of the function me. Taking 6^0 and using Theorem 5.4.7, we see that 
/ is the Fourier transform of a nonnegative finite measure, which was to be proved. ■

Exercise 5.4.9. Show that the hypothesis of continuity in Bochner's theorem can 
be weakened to the hypothesis that % = 0 is a Lebesgue point for f, in the sense 
that lim„^o a 1 |/(0) -/(£) | dt- = 0.

Exercise 5.4.10. Show that the above argument can be generalized to R^, to 
obtain a characterization of the Fourier transform of a finite nonnegative measure 
as a positive definite function on R‘z.
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5.5 CONVOLUTION SEMIGROUPS

Fourier analysis is particularly well suited to deal with one-parameter families of proba
bility distributions that are closed under convolution.

Example 5.5.1. Let Pt be the probability distribution on IR1 with density 
e~x2l2tI V27rr. Then by direct computation, Pt * Ps has the density e~xl/^t+s> / 
y/2jt(t + s), so that Pt * Ps = Pt+s.

Definition 5.5.2. A convolution semigroup of probability measures is a family 
(Pt)t>o with the properties

(5.5.1)

(5.5.2)

Ps * Pf --  Ps+ti

Pt <5o when t 0,

in the sense of weak convergence.

The Fourier transform of the convolution semigroup is defined by

(5.5.3)
fiG) = A(£) = f e*xPt(dx).

This has the following properties.

Proposition 5.5.3.
• I /r(|) continuous and bounded by 1.
• ft<Jf) 1 uniformly on compact %-sets when t 0.
• t ft (£) is continuous for t > 0.
• t ft(ff) is differentiable for t > 0 and •= limr_>o //(£) exists.

• /r(|) satisfies the identity fit^) = 1 + ) /o ds’ andf'& =

Proof. The first property follows immediately from the definition (5.5.3). To prove the 
second, we have for any 8 > 0

!/,(£)-1| = [?*'•- 1 ]/>,(<&)
R

\$zx\Pt(dx)+2Pt({x : \x\ > 8})

where the second term tends to zero when r —> 0. On any compact interval |£| < M, the 
first term is less than M8. Therefore

limsup sup |/(f) - 1| < M8.
/->0 \1-\<M

But 8 > 0 is arbitrary, hence the limsup is zero, proving the uniform convergence. From 
(5.5.1) and (5.5.2) we have

(5.5.4)
r—>0

Letting 5 0, we see that/ is right continuous at each t > 0. But for small 5 > 0 we can
write

ZCO 
fM) 
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so that we can take s —> 0 and conclude that t —> ft is left continuous. In particular 
t ft is bounded and measurable, so that we may integrate (5.5.4) on an interval [0, <5] to 
obtain

(5.5.5)
t+<5 /»<5

f^)dS=f^) h ff&ds

where 5 > 0 is chosen so that |/(£) — 11 < 1/2 for 0 < 5 < 8.
The formula (5.5.5) displays/ as a differentiable function of t with a continuous 

derivative. Taking the derivative for t > 0 we obtain

/,+«(<) -/,(?) =/,'(!) [Sf^)ds. 

Jo

Hence there exists

■4(g) ~ 1

which displays / as a continuous function with t/(0) = 0. Computing the derivative 
from (5.5.4), we obtain the differential equation_/j'(g) = ^ (£)//(£)• The unique solution 
satisfying///) = 1 is

f& = e'^.

The next goal is to prepare the proof of the following theorem of Levy and Khintchine.

Theorem 5.5.4. Suppose that (Pt)t>o is a convolution semigroup of probability 
measures on IFL Then there exists a unique Borel measure M and real numbers 
pt, cr, so that the Fourier transform has the representation

fM) = [ e^xPt(dx) = e^

Jr

where

and

/ ------- -M(dx) < oo.
JrI+x2

To prepare the proof, we define Fn = P\/n and Gn — nx2/(l + x2)Fn.

Lemma 5.5.5. The total mass ofGn is uniformly bounded, specifically

f FIX2
SUP / T7—xFn(dx) < oo.

n JlR 1 + ■*
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Proof. We begin with the basic relation 1 — ft(£) = /K[l — e‘^]Pt(dx) that is integrated 
on the interval [—1, 1] to yield

(5.5.6) =

When we divide by t, the integrand on the left side tends boundedly to ). On the right 
side, we use the inequality

sinx 1 x2 
x ~ 7 1 + x2 ’

Dividing both sides by t = 1/nwe obtain

f nx2 7 f ilimsup / —F„(Jx) < - / x^d^. ■
n J1r1+X2 2J-!

Lemma 5.5.6. F(A) := supwnFn(|x| > A) < oo for each A > 0 and F(A) tends 
to zero when A co.

Proof. We first prove this for the symmetrized distribution F^(dx) = Fn(dx) * Fn(—dx), 
whose characteristic function is

/*„(£)=e-<^w).

We apply the technique of (5.5.6) with the interval [—1, 1] replaced by the interval 
[—2/A, 2/A] and use the inequality 1 — e~y < y to write

fMi>a)<2a [ (i-y*„(O)^

4A f< — / |Re^(£)|J£.
n 7|£|<2//i

Therefore

sup nf#(|x| > A) < 4A [ |Re W)\ 
n J|£|<2/A

But is continuous at f = 0, hence the right side of the final inequality tends to zero when
A oo.

To handle the general (nonsymmetric) case, note the following “symmetrization 
inequality” for any two independent random variables X, Y:

F[|X-y|>A]>F[|X|>2A]F[|y|<A]

(draw the picture). Applying this to X, Y distributed as Fn, we obtain

F„(|x| > 2A) <
F*(|x| >A)
Ftl(\x\ <A)'

But the denominator tends to 1 when n oo, from the basic hypothesis that Pt <50,
so that

lim sup nF„(|x| > 2A) < lim supnF*(|x| > A) < 4A I |Re i/r(£)|
« n J\$\<2/A

which tends to zero when A oo. ■
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Having done this, we now turn to

Lemma 5.5.7. The measures Gn are tight: in detail

f nx2
limsupsup / ------- -Fn(dx) = 0.

A—>oo n J\x\>A 1 + X

Proof. We write

f nx2
/ —-iF„(dx) <nF„(\x\ >A)
Jm>a 1 +x2

and we have shown above that the supremum over n tends to zero when A —> oo. ■

Proof of Theorem 5.5.4. Now we prove the representation theorem. From the definition

= hm----- ------
r-*0 t

= lim [ (elx^ — l)nF„(dx). 
n Jr

For any n we can write

C ■ f — 1 — i£ sin x(5.5.7) (e'*( - V)nF„(dx) = /  ----------- (1 + x2) G„(dx) +
Jr Jr x

where sinxFn(dx). The integrand in (5.5.7) is defined by continuity atx = 0. Note 
that G„({0}) = 0 for all n. From Lemma 5.5.5, we may take a subsequence for which the 
total masses G„(R) converge to a limit. Since the measures Gn are tight from Lemma 5.5.7, 
we may take a further subsequence that converges weakly to a limit measure G. All of the 
limits below will be taken through this new subsequence. The integral term on the right side 
of (5.5.7) converges to

f elx^ — 1 — zf sin x ~/ ----------- -----------(1+x2)G(J%)
Jr X2

while the left side converges to V^(^). Letting £ = 1 and taking the imaginary part shows 
that converges to Imi/r(l). We have obtained the Levy-Khintchine representation in 
Feller’s form:

(5.5.8) V'J?) = f --- Smx(l +%2)G(dx) +<X-
Jr x2

It remains to discuss the uniqueness of the pair (/z, G). The number /x is uniquely determined 
by /x = Im i/r(l). To identify G, we form the convolution of with the kernel whose 
Fourier transform is 1/(1 + x2). This results in the identity

“iKO + z f = [ e'^G(dx),
2 Jr Jr

which shows that uniquely determines the characteristic function of the finite measure G. 
But the uniqueness theorem for characteristic functions shows that G is thereby uniquely 
determined from its characteristic function, which completes the proof. ■
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5.6 THE BERRY-ESSEEN THEOREM

Fourier analysis is extremely effective in obtaining sharp estimates on the rate of con
vergence in the central limit theorem. The following discussion is presented for the case 
of convolution powers of a single probability distribution, but it can be easily extended 
to the case of different distributions, under suitable hypotheses.

Let m be a probability measure on R with

(5.6.1) / x dm = 0, / x2dm =1, / |x|3 dm = m3 < 00.
J K J R J K

From the central limit theorem, we know that the normalized convolution of the distri
bution function F converges to the normal distribution

f* e-u2/2
(5.6.2) lim(F * F * • • • * F)(xVn) = $ W = / —7= du.

n J-00 V27T

The Berry-Esseen theorem gives the rate of convergence.

Theorem 5.6.1. We have uniformly for —00 < x < 00

r~ Cm3(5.6.3) |(F * F * • • • * F)(xaA) - <F(x)| < —7=-
sjn

where C is a universal constant.

The idea of the proof is to regularize the given distribution by convolution with 
a smooth density. Then we can apply the inversion formula directly to the regularized 
convolution, whose Fourier transform is the product of the given Fourier transform with 
the smoothing factor. For the smoothing density we choose the Fejer kernel

1 — cos Tx - ( I \
(5.6.4) Fr(x) =- --- , with Fr($) = 1 - l[0^(|§|).

nTx2 \ T J

Lemma 5.6.2. Let G be a probability measure on R and set

(5.6.5) A(x) := G(x) - 0(x), t] = sup |A(x)|, r]T = sup |(A * Fr)(x)|.

Then
24m , 1

77 < lr]T 4-------- , where m = sup 0 (x) = .
nT x V2tt

Proof. Since A(x) vanishes at ±00, the supremum occurs at some point x0 where we have 
A(xo ±0) = ±T]. If A(x0 ± 0) = +77, we propose to estimate the convolution

(A*F7-)(x0 + 8) = ([ +[ \^xQ + 8-x)KTMdx 
\J-8 J\x\>8/

where 8 is to be chosen. If — 8 < x < 8, then

A(x() + 8 - x) = G(x() + 8 - x) - d>(x0 + 8 - x)

> G(x0 ± 0) — [<t>(x()) + m(8 — x)]

= 77 + m(x — 8).
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We use the estimate on the Fejer kernel

[ Kt(x) dx < [ % dx = —

JM>s Jw>s nTx

and the fact that xKr(x) dx = 0; thus

f6 / 4 \/ A(x0 + S - x)Kt(x) dx > (t? - m3) ( 1---- — I
J-t \ nTbJ

On the interval |x| > S we use the bound A(x) > — r/ to write

I k(x)KT(x)dx > -r) I KT(x)dx > -z?-L
J|x|><5 J|.v|><5 m 0

Adding the two, we obtain

(A*tfr)(x() + <5) = A(x() + 8 — x)KT(x) dx

( 4 \ 4
> (n - m3) 1----- — -

\ 7118 J 7118

The proof is completed by choosing 8 = 7]/2m to obtain (A * Kt)(xq) > ri/2 — 12m/tiT, 
which immediately gives the required result. If A(x0 ±0) = —t], then we apply the above 
argument to - A (x). ■

Proof of the Theorem. LetG(x) = Fn(x) = (F*- • *F)(xV^)> whose Fourier transform 
is F(^/y/n)n. The Fourier transform of Fn * KT is obtained by taking the product with 
(1 — |£ |/T) l[o,n(l? I), in particular the product is absolutely integrable on R. Hence we can 
apply the inversion formula to write

1 fT e~'*x — e~'^a(Fn * KT)([a, x]) = — / -------- - -----
2?r J_t -d=

Applying the inversion formula to <t> * KT and subtracting, we have

(Fn*KT-**KT)([a,x\)

For each fixed T > 0, n < oo the integrand is an integrable function, so that we can apply 
the Riemann-Lebesgue lemma to let a — oo and obtain

(5.6.6)
1 fT e~*x / l£l\ A / £ V 7 \(F„*KT= — I 1-lfl F ± -e^/2]d^.

J-r ~i$ \ T J \ \y/nj J

It remains to estimate the integrand and apply Lemma 5.6.2. From the definition of the 
Fourier transform,

f2
F(O - 1 + y — 1 — z£x H—— j F(dx)

Jr 0
l£|3 

= —— .
O
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We apply the same estimates to e ^,2 and use Holder’s inequality to obtain

|e-^2-l+m<^ f \x\3e-^-^= 

o Jr V2tt

_ 2|g|3 
3j2n

< 2m3\^l3

~ 3V2T
< l?|3 

-m3~ •

Thus

|r(?)-e-*2/2| <m3|||3.

Furthermore

F I —- < 1 - — H------- 5-
\ 6m -

^■44 *'4

= 151 —
3n m3

<e-f2/3" l?l<—•

m3

We now estimate the integrand in (5.6.6) by the telescoping sum

Applying Lemma 5.6.2 with T = A/n/4m3, we have

2w|F„(xVn) - *WI < 2 (1 - ^^e-«2/3^ + -3L
J-T\ T J ly/n Tn2'2

[ |f|V«2/3J| + 4^4
which is of the required form with 2tiC = (3/2)3/2/a/2tt + 1 2/tt3/2.

Remark. We can obtain a lower bound on the best possible constant by recalling the 
DeMoivre-Laplace limit theorem from Chapter 1: In this case the explicit asymptotic 
analysis shows that F„(0 + 0) - Fn(0 - 0) ~ 1/Vmr = 1/V2n. Since = 1,
we see that the best constant in (5.6.3) satisfies C > ~ .79.
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5.6.1 Ext ension to Different Distributions

The Berry-Esseen theorem extends naturally to a sequence of probability measures (F^) 
that satisfy

(5.6.7) I xdFk = 0, I x2 dFk = a2 < oo, / |x|3 dFk = mk < oo
JIR JIR JIR

and the additional conditions that

(5.6.8) A2k := a2 H------------------------------- F a2k -» oo

^0
Ak

mk < ka2

for some X > 0. Under these hypotheses we claim that

(5.6.9) |(Fj * • • • * Fn)(xAn) - 0(x)| <
An

for a suitable constant C.
To prove (5.6.9), we apply Lemma (5.6.2) with G = F\ * - - - * Fn. The Fourier 

transform of the left side of (5.6.9) is Fj (|/An) • - - F\(£/An) — Now if <!>(£) = 
e~% /2 is the Fourier transform of the standard normal distribution, we can write <!>($) = 
&i(£/An) • • • fani^/An) where <X>7(§) = e~^ aj/2 is the Fourier transform of a normal 
distribution with mean zero and variance a2, so that we can write

F^/An) . . •Fn^/An) - *^/An) . . . *ntt/An)

=y (F^/An) - n 4>,(?m„) n /An).
./=! i<j i>j

Arguing as before, we have for sufficiently large n,

< exp [-a2f2/3A2], |<t>7(£M„)| < exp [-a2£2/3A2],

so that

n
\F^/An) ■ ■■Fn^/An) - e~^2\ < e~^l2 \F^/An) - *tf/An)\.

J=1

Now

I" 9 ?l f ^2X2\ |£|3^/

- 1 +1 w,’| = k -1 - x + y W
|4>7(|/A„)-1+|2/2A2| < 4|^|3a/ < 2|^|3m7

V^Fa3 - A3
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so that

- 22 2 3|£|3m, 3|£|3Atz2
\F^/An) -exp[-|2a2/2A2]| <

A ’ 7 7 7 3|||3X
£ \Fj^/An) - exp [—$2a2/2A2]\ <
j=\

Applying Lemma (5.6.2) we have

sup |G(x) - <J>(x)| < -L f (1 - |£|2e“*2/3

xeR J—T \ 1 / 1

Choosing T = An balances the two error terms and leads to the desired result.

5.7 THE LAW OF THE ITERATED LOGARITHM

The central limit theorem, which gives the limiting distribution of normalized sums of 
independent random variables, has an almost-everywhere counterpart, as follows:

Sk(t)
(5.7.1) limsup ■■■■ = +1 a.e. t.

y/2A2k log log Ak

The proof of (5.7.1) depends on careful bounds for the distribution of Sk(t)/Ak and a 
simple estimate for the distribution of the maximum of 5i (r),..., Sk(tf We will prove 
the following result:

Theorem 5.7.1. Suppose that {Xk(t)}ke%+ are independent functions on T = 
[0, 1] with fTXk(t)dt = 0, fTXk(f)2 dt = a2, /T \Xk(t)\2 dt < oo and that the 
conditions (5.6.8) are satisfied. Suppose further that for each x € R and k e Z+

(5.7.2) |{r: Xk(t) < -x}| = \{t : Xk(t) > x}|.

Then (5.7.1) holds.

The distribution of the maximum is estimated as follows.

Lemma 5.7.2. LetS^(t) = max{Si(r),..., Sk(t)} where (5.7.2) is satisfied. Then

(5.7.3) |{r: S*k(t) > x}| < 2|{?: Sk(t) > x}|.

Proof. Let Aj = {t : Sj (r) < x,..., Sj-i (r) < x, Sj(t) > x}. Then the event {t: S%(f) > x} 
is written as the disjoint union U*=1A7. From the symmetry hypothesis (5.7.2) we have for 
any nt < n2, |{Z : X;(z) > 0}| > |. Now

Sj(t) > x,Xj+l(t) + • • • +X*W > 0 => Sk(t) > x

hence Aj Cl {X7+i +-----\-Xk > 0} C A7 Cl {5^ > x}.
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Then
k

|{z: Sk(t) > x}| > £ |A,- D (z : Sk(t) > x}|
J=1

k

> £ |A n (z: xj+l (z) + • • • + X*(z) > 0} I
J=1

k

= £|aj|{z:x,+i(z) + ---+x,(z)>0}|
J=1

J=1

= l|{z:S;(z) >x}|.

Lemma 5.7.3. Ifxk oo so that x2/2 — logA^ —> — oo, then

t. A(0 > x _ exp j_x2q + 0(i))j.

Proof. From (5.6.9) we have

f I
{t :------  > x} -(l-0(x))

Ak

where C is a constant. When x —> oo we have 1 — <E>(x) = exp [—x2/2(l + o( 1))]. The 
hypothesis on xk is equivalent to \/Ak = <?(e-x*/2) and therefore the error term can be 
absorbed into the Gaussian term when this is satisfied. ■

We also need the first and second Borel-Cantelli lemmas, as follows.

Lemma 5.7.4. Suppose that (B*) are measurable sets withJ^kLi \Bk\ < oo. Then

oo
t: ^2 M) < 00

k=l
= 1.

Proof. The assertion is that, almost surely, only a finite number of the events Bk occur. The 
proof comes from applying the monotone convergence theorem to write

P oo oo
/ £lB1.(z)rfz = £|Bd <oo. 

k=\ k=\

Hence , lBi (r) < oo for almost all t. ■

Lemma 5.7.5. Suppose that (Bk) are measurable sets with XXLi \&k\ = oo and 
that (Bk) are mutually independent: | n*=1 B±\ = n*=1 \B±\for any choice of±, 
where B+ = B and B~ = Bc. Then

oo
t: ^21b4(0 = +oo

k=l
= 1.
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Proof. The assertion is that, almost surely, infinitely many of the events occur. To prove 
this, use the monotone convergence theorem with a = log 2 to write

y exp ^-<2^2 dt=y

oo / \=n(i-2^i)

oo / 1 \
< riexp(^2,B‘7

= 0.

Thus exp(-a£Xj 1^ (r)) = 0 for a.e. r, hence |{r: ^*=1 hA(r) < oo}| = 0. ■

Proof of (5.7.1). Given 0 > 1, define a sequence of integers (nk) by the recipe that

nk = max{n : An < 0k}.

Thus Ank < 0k < Ank^ and it follows that Ank ~ 0k ax\dAnk+JAnk 0 when £ —> oo. 
Now from Lemma 5.7.3 we have for any 8 > 0,

|{r : S„Jt) > (l+SM^loglogAJI = exp[—(1 +6)2loglogA„,(l +o(l))]
/ । \ (1+<5)2(1+o(D)

\logA„A. /
/ । \ (l+<5)2(!+<;(D)

\logA,?A7

Since 8 > 0, this is the general term of a convergent series, so that by the first Borel-Cantelli 
Lemma 5.7.4, for a.e. t only a finite number of these events occur. Thus for k > k(t) we have

(5.7.4) S„k(t) < (1 + 8)A„t ^2 log log A,,,.

Now by Lemma 5.7.2, given 8 > 0, choose 6 > 1 so that 82/(6 — 1) > 1. Then the last 
series of terms converges and the first Borel-Cantelli Lemma 5.7.4 shows that for a.e. t we 
have for k > k(t)

(5.7.5) max (5/t) - S„t (t)) < (1 + 5)^72 log log
iik <i<"k+i

Adding (5.7.4) and (5.7.5) we have for k > k(t) and nk <j < nk+i

< M„4721oglogA„t + (1 + 8)A„ty/2log,log,A„t

< (1 + 28)Aj/21oglogAr

Thus lim supz Sj/A^l log logA7 < (1+25). But 8 > 0 was arbitrary therefore the limsup 
in equation (5.7.1) is less than or equal to 1. Applying the same reasoning to the sequence 
—Sj shows that the liminf is greater than or equal to — 1.
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To prove the lower bound, we consider the independent events

Bk := {< : S„t(Z) - S„k_i (r) > (1 - S)Ank y21oglogA„J.

Then

= exp (-(1 - 3)2---- —-----loglogA„4(l + o(l))
\ nt-n4-i )

x (1-<5)20a/(0*-0*-')(H-o(1))

k log 0 )

/ 1 X (l-<5)2/(l-0-')(l+r>(l))

(5.7.6) =
\ k log 0 /

Given 8 > 0, we choose 0 > 1 so large that 1 — 0~l > (1 — <5)2. Then the last term in (5.7.6) 
is the general term of a divergent series, to which we can apply the second Borel-Cantelli 
Lemma 5.7.5 to conclude that for infinitely many indices £ —> oo

(5.7.7) S„t (t) - S„t_, (t) > (1 - S)A„k ^loglogA,,,.

But since we have shown in the first part that the liminf is greater than —1, we have for all 
sufficiently large k,

(5.7.8) > -2A„>_1V/21oglogA„>.

Adding (5.7.7) and (5.7.8) and dividing by the right side, we have

r • f Snk(f) /iliminf------ . = > (1 — 8)-----
k Ank y/2 log log VO

Now we rechoose 0 so that 1 — 8 — 2/VO > 1—28. This proves that for any 8 > 0 there is 
a subsequence j —> oo so that Sj(r)/Aj^2 log log A, > (1—28). Hence the limsup of this 
ratio is greater than or equal to 1, which was to be proved. ■



CHAPTER

6
INTRODUCTION 

TO WAVELETS

6.1 MOTIVATION AND HEURISTICS

Classical Fourier analysis may be viewed as the problem of reconstructing a func
tion f from dilations of a fixed sinusoidal function x e27tlx by writing f(x) = 
fRe27ri^xf^) d%. The Fourier transform/(£) may be thought of as the amount of the 
sinusoidal oscillation e2ni^x present in the function/. The Fourier representation is 
instrumental in analyzing translation-invariant operators such as convolution operators 
and linear differential operators with constant coefficients, where we can write

[ f(x — y)K(y)dy = [ K^)e2^xf^)d^

«/ R «/ R

p(^\f<x) = f P&ni&e2n*xf(£)dl-.

\dxj JK

However classical Fourier analysis suffers from the defect of nonlocality: The behavior 
of a function in an open set, no matter how small, influences the global behavior of 
the Fourier transform. We have also remarked on the simultaneous nonlocalizability in 
connection with the uncertainty principle.

The theory of wavelets is concerned with the representation of a function in terms 
of a two-parameter family of dilates and translates of a fixed function that, in general, is 
not sinusoidal, for example:

f i (x — b\
f(x) = I |tz| 2^ |-------  j W^f(a,b) dadb

«/r2 \ a /

where W^f is a suitably defined transform of/.
Alternatively one may envision a series expansion

f(x) = ^cj,k2P2^aJx-k)

j.k

284
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where we sum over the dilates in geometric progression. The factors of and 2y/2 
are inserted to preserve the L2-norm of the basic wavelet i/a.

In this chapter we will describe the properties of wavelets in one dimension, making 
full use of the tools of Fourier analysis.

6.1.1 Heuristic Treatment of the Wavelet Transform

The wavelet transform of/ with respect to x/j is defined by the integral 

f - f y — b\ dy
W^f(a,b) =

Jr \ « / #1
It is straightforward to compute this transform and the inverse transform on the Fourier 
exponentials/(x) = e27rz^x; from the definition of the Fourier transform, we have

W^a, b)= f e2n*y$ (—)

Jr \ a ) V|a|
— [ e2n^(h+az)^f{z)dz

Jr

= y/\a\e2ni^ir(a^).

Now we form the adjoint operator 

. f / x — b\ db= / (w^/)(«, b^ — 
Jr \ a J VW

= f-—- j -^=
Jr \ a ) vl«l

= [ e2ni^x~m}ylf{z)dz

Jr

= |fl| |Vr(<3§-)|2e27r^x
[ W;w,f(x)~ = e2”'^ f ^^da.

Jr * a2 Jr l«l
The final integral is independent of |, which is seen by making the substitution v = a%, 
from which we obtain the inversion formula

jR^W,f/a2)da^ 

fK I(v)|2/|v|dv

This leads us to impose the normalization /R |^(v)|2/1v| dv = 1, in order to obtain the 
wavelet representation

f= [ 
Jr «

valid when f(x) = e27Tl^x. It now remains to investigate this inversion procedure for 
arbitrary / e L2(R).



286 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

6.2 WAVELET TRANSFORM
Let g L2(R). The dilated-translated function is defined by

(6.2.1) ^ab(.x) = \a\-'/24r (^—\, O/oeR^eR.
\ a /

This function is obtained from by first dilating by the factor a and then translating 
by b. Clearly ||^||2 = IWh-

Definition 6.2.1. i/j e L2(R) is a continuum wavelet if

(6.2.2) W,^w:= f IVW < oo.

Jr I? I

The wavelet transform off e L2 (R) by i/f is defined by

(6.2.3)

From the Cauchy-Schwarz inequality, we see that W^f is a bounded function with 
\W^f(a, b)\ < ||II2II/II2- The intuitive meaning of W^f(a, b) is the amount of the 
dilated-translated waveform that is present in the function/.

Remark. If, in addition, e ZJ(R), then the integrability condition (6.2.2) implies 
that i/(x) dx = 0. Indeed, 1/ is continuous at £ = 0 with i/r(0) = If this is 
nonzero, then the integral (6.2.2) is divergent.

The following is a form of Parseval’s theorem for the wavelet transform:

Proposition 6.2.2. Suppose that is a continuum wavelet with (^r, = 1.
Then for any f, g e L2(R), we have

(6.2.4)
f f f - dadb| f(x)g(x)dx = / / W^f^tyW^gta, b)—— .
r Jr Jr <2

Proof. Let yr(x) = ^(—x). Then W^f(a,b) is the convolution of / with V^)0, whose 
Fourier transform is . Hence the Fourier transform of W^f is/(^)vWV^(^),
and similarly for W^g. Therefore from Parseval’s theorem for the Fourier transform we 
have

(6.2.5) f Wtf(a,b)Wi,g(a,b)db= ( d^.
Jr Jr

We integrate both sides with respect to da/\a\2, apply the Fubini theorem to the right side, 
and use the definition of (^r, /k to remove this constant factor. The remaining integral is 
transformed by another application of Parseval’s theorem in the form /R fg = fg, which 
completes the proof. ■
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This proposition can be interpreted as the statement that/ —> W^f is an isometry 
from L2(R; dx) to L2(R2; dadb/\a\2), where the inner product is defined as

f - dadb((F,G)y.= / F(a,b)G(a,b) —— .
JiR2 a2

Theorem 6.2.3. Suppose that is a continuum wavelet with ^}w = 1. Then 
for any f e L2(R), we have the L2 inversion formula

(6.2.6)

f dadb
f(x)= W^f(atb)^h(x)^

Jr2 a2

f da db= lim /
€-+0,A,B-^>oo J6<|u|<a,\b\<B a

Proof. Writing 5(e, A, B)f for the integral in (6.2.6), we note that this integral is absolutely 
convergent for each 0 < A < B and 6 > 0, since each factor is in L2(R2; dadb/a2). To 
prove the required convergence, we first note that

||/-S(e,A,B)/||2 = sup |(/-5(6,A,B)/,g)|.
Ilgll2 = l

Applying Fubini’s theorem, we see that

f / f dadb\(S(e, A, B)f, g) = / g(x) / w^(a,bWaJAx)—r )dx

f -dadb= / W^a,b)W^a,b) —-
Jt <.\a\<A,\b\<B a

so that by (6.2.4) and Cauchy-Schwarz,

\tf-S(e,A,B)f,g)\ = [ da db
W^f(a,b)W^g(a,b)^—— 

a~

7dadb\l/2 / f 
\W,,f(a,b)\-—r] I 

a / w
7

az /

? dadb\1/2
\W^f^b)\2—r\ ||g||2

a1 J

When 6 —> 0 and A, B —> oo the region of integration decreases to the empty set, hence 
the integral tends to zero by the dominated convergence theorem. This completes the proof 
that ||5(e, A, B)/—/||20. ■

We now give some examples of continuum wavelets.

Example 6.2 .4. The standard Haar function is defined by ^(x) = +1 for 0 < 
x < 1/2, i/r(x) = — 1 for 1/2 < x < 1 and i/r(x) = 0 otherwise.
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The Fourier transform is computed as

r1/2 r1xjrtx) = / e~27Tl^x dx — I e 21Z*X dx
Jo J\/2

e~i^ _ i e~2ni^ _ e-i^

1 _ 2e~^ + e~21z* 

2ni^

_ (1 -e~^)2 

2jri^

Clearly the integrability condition (6.2.2) is satisfied, so that f is a continuum wavelet.
In the next example, we specify the continuum wavelet in terms of its Fourier 

transform.

Example 6.2 .5. Let^<£) =

Clearly the integrability condition (6.2.2) is satisfied. The continuum wavelet is

ri/2 r-i/4
x/r(x) = / e1™* di- + / d$

J\/4 J—1/2

einx   ei7tx/2 e~i7tx/2 _ e~inx
=------- —:---------- 1---------- z—:-----------

2tiix 2mx
sinjrx sinjrx/2

7ix nx

However this continuum wavelet is not integrable, since |^f(x)|dx = +oo.
The following two examples include the normalization (^r, xlf}w = 1.

Example 6.2 .6. A Gaussian wavelet is defined by ^(x) = Cxe~nxl.

The Fourier transform is computed as i^(£) = —iC^e~n^\ Clearly the integra
bility condition (6.2.2) is satisfied. The normalization is computed from the integral 
/R I^(l)l7lll di- = 2C2 |e-2^2 = C2/2tt, thus C =

Example 6.2 .7. The Mexican hat wavelet is defined through its Fourier transform 
by iA(|) =

The continuum wavelet f can be computed directly as the derivative of the previous 
example. Thus f(x) = C(1/2tt — x2)e-7rA . The normalization is obtained by noting 
that |iAO2/I£I = 2C2 ^e~2^d^ = C2/4ji\ thus C = 2tt.
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Figures 6.1.1 and 6.1.2 illustrate Examples 6.2.6 and 6.2.7.

FIGURE 6.1.1
Gaussian wavelet.

FIGURE 6.1.2
Mexican hat wavelet.

It is instructive to examine the inverse wavelet transform in the particular case of the 
Gaussian example, where \/s(x) = s/2jTxe~nx . Define the partial inverse transform by

(6.2.7)
S€f(x)= [ [ W^f(aib)Mx)^-.

«/R «/ |«|>6
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This can be computed through the Fourier transform by writing

S~f(£) = / S(f(x)e-^xdx
Jr

OC da - o \ -— |a||$-(a£)| da \f(g)
|a|>6 /

= 27T^2 \a\e 2”2a^ da] f(£)

= e 2̂fa-).

But this is the Fourier transform of the convolution/* g€, where g€ is the Gaussian density 
g€ (%) = e-^2/2e21 v/2c2, which is an approximate identity in the sense of Chapter 2, from 
which we conclude that for any homogeneous Banach space B, we have S€f -> f in norm. 
In particular, if/ is bounded and uniformly continuous we have \\S€f — /||oo -> 0 when 
6 -> O.If/ G 1 <p < oo, then \\S€f-f\\p -> Owhenc -> 0and5e/(x) ->/(x) 
for almost every x g R. This follows from the results on Gaussian summability in 
Chapter 2. These desirable properties are not shared by the partial inversion of the 
Fourier transform, for example.

Exercise 6.2.8. For the Mexican hat wavelet, define the partial inversion by 
(6.2.7) and explicitly compute S€f as the convolution with an integrable func
tion, in particular verify that \\S€f — f\\p —> 0 in case off G ^(R), 1 < p < oo 
orf G BMC(R) in case p = oo.

Exercise 6.2.9. Formulate the wavelet transform in n dimensions, beginning 
with G L2(R") satisfying fRn \^(^)\2d^/\^\n < oo and defining tya,b(x) = 
^((x — b) / a) / \a\nf2 for b G 1" and 0 ± a G R.

6.2.0.7 Wavelet characterization of smoothness
We can use the wavelet transform to characterize the smoothness of / G L2(R) as 
measured by the Sobolev norm

Jr

Exercise 6.2.10. 7/||/||2.5 < oo, prove thatf has k continuous derivatives, where 
k < 5 —

Hint: Apply Cauchy-Schwarz to the Fourier integral representation of/(Z:).

The next proposition applies to continuum wavelets that possess a certain number of 
vanishing moments: fRxkf(x) dx = 0. The result states that for this class of wavelet 
expansions, the Sobolev norm is equivalent to a weighted L2 norm of the wavelet 
transform.
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Proposition 6.2.11. Suppose that is a continuum wavelet with {y/r, i/f}w = 1 
and

C^s := f iM)i2 ,fc < oo

for some s > 0. Then 

da db Q
l^/(a,fe)| 2—^ = C^ff2s. 

, |a|2+2J

Proof. Returning to (6.2.5) with/ = g, we divide both sides by \a|2+2’ and integrate with 
respect to a € R. Thus

W2+25 Jr Jr W1+2i

= [ \f(t)\2([ i?iM
Jr \Jr |v|,+2j )

= crs [ |?|2W)I2^
Jr

which completes the proof. ■

6.3 HAAR WAVELET EXPANSION

In this section we develop the properties of the Haar wavelet expansion, which is the 
oldest and most basic example of an orthonormal wavelet (to be defined in the next 
section).

The Haar series expansion can be naturally motivated by the search for an orthog
onal series representation of Lebesgue’s differentiation theorem for a locally integrable 
function/ e L^oc:

1 fb
f{x)= hm - ------ / f(y)dy a.e. x g R.

b—>x,a—O — a Ja

We will systematically describe this connection in the following subsections.

6.3.1 Haar Functions and Haar Series

We begin with the basic Haar function

l/r(x) = 1 ifO<x<|, ^(x) = — 1 if|<x<l, 

and

V^(x) = 0 otherwise.

Clearly ^(x) dx = 0 and ^(x)2 dx = 1.
A doubly indexed family of Haar functions is defined by writing

(6.3.1) ^(x) = 2//V(2/x - k), j, k = 0, ±1, ±2, ....

We will prove that {^};,^z2 form an orthonormal basis of L2(R).



292 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proof, The first task is to prove orthonormality, namely

f , z w z w fo if(M)/(/,*') 
/ tjk(xWrk\x)dx =

Jn 1 if (7, k) - (f, k).

A direct proof of orthogonality if j = j' is seen from the fact that if k ± k',

f ^(2jx — k)^(2Jx — k') dx = 2“; f ^(y)^(y + k — k') dy = 0
J R J R

since the integrand is identically zero. Otherwise we can assume that j < jf, and write

I (2Jx — k)i/s (27 x — k') dx = f ^(y)^(2j ~’y + 2J ~jk — k') dy 
v R JiR

fl/2 , r1= / \jf(2J ~Jy + k") dy — / \)/(2j ~jy + k") dy.
JQ J1/2

But both of these integrals are zero, since /()* = 0. Finally the normalization in case
(/ &) = (/, k') is established by computing

I fjk(x)2 dx = 2j f ^(2ix — k)2dx = f ^(y)2 dy = 1. ■
JIR JIR JIR

The Fourier/Haar coefficients of/ e L2(IR) are defined by

(6.3.2) cjk = Cjk(f) := [ f(x)^jk(x)dx,

Jr

leading to the Haar series

(6.3.3) f(x) ~ y2cjk^jk(x).

7^

From the orthonormality of {^} and Bessel’s inequality, we conclude that ^jk \Cjk\7 < 
00. The completeness of L2(IR) further assures that the series (6.3.3) converges in L2(IR). 
It now remains to identify the sum of the series with the given function/ e A2 (IR.).

6.3.2 Haar Sums and Dyadic Projections

In order to identify the sum of the Haar series, we introduce the dyadic projec
tion operator Pn as follows. Consider the dyadic partition 3^, consisting of the sets 
Ikn := ((£ - l)/2\ £/2"], where n = 0, ±1, ±2, ... and k = 0, ±1, ±2,.... Pn is the 
projection of/ e L2(IR) onto the space L2(R, 7^, dx), which consists of L2 functions 
that are constant on each of the intervals Ikn. In detail, we have

(6.3.4) Pnf(x) = 2n f f(y) dy if x G Ikn.
JIkn

Formula (6.3.4) can be written explicitly in terms of the scaling function

(6.3.5) </>(%) = 1 if 0 < x < 1 and </>(%) = 0 otherwise

(6.3.6) P„f(x) = 2nY( [ <K2ny - k)f(y)dy\ (f)(2nx - k).

k^Z J
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Indeed, the function x (p(2nx — k) = 0 unless x e (kJT1, (k + l)/2"]. To be more 
succinct, we have

(6.3.7)

where

(6.3.8)

Pnf(x)= [ Kn(x,y)f (y) dy

Kn(x, y) = 2” 0(2'’x - k^y - k)
ke%

2n if x,y e Ikn for some k
0 otherwise.

The projection operators are (i) increasing and (ii) converge to the identity:

• • • < P-1 < P0 < P\ < • • < Pn < Pn+\ -+ I OO)

in the sense that (i) Pnf = f implies Pn+\f = f and (ii) lim^oo Pnf = /, a.e. and in 
L2(R) (to be proved in the next subsection).

We now seek a representation of the operator Pn+[ — Pn, which is the projection 
onto the orthogonal complement ^(T^+i) © L2(Fn). To do this, note that any square 
of the form {(k — l)/2", k/2n] x {{k — l)/2", k/2n] (where Kn = 2n) is decomposed 
into four smaller squares; on these smaller squares we have Kn+\ (x, y) = 2"+1 on each 
of the smaller squares {(k - l)/2", (k - l/2)/2"] x ((k - l)/2", (k - l/2)/2"] and 
((£ - \/2)/2n,k/2n] x ((£ - l/2)/2",£/2"] whereas 7C„+i(x,y) = 0 on the smaller 
squares ((£ - l)/2", (k - l/2)/2"] x ((£ - l/2)/2", k/2n] and ((A: - l/2)/2", k/2n] x 
((A: - l)/2", (k - l/2)/2"]. Hence

Ln(x, y) := Kn+[ (x, y) - Kn(x, y) 
= 2"+I - 2n on ( k—1 A:—1/2"

2n ' 2n

= 2n+{ - 2n

= 0-2"

= 0-2"

on

k- 1 k— 1/21 /k- 1/2 k “
2" ’ 2" \ 2" ’ 2"

k- 1/2 k 1 /k-1 k-l/2~
-------------- , — x -----------,---------------

2n 2n \ 2n 2n

This can be conveniently represented in terms of the Haar function by writing

= J22'V(2nx - k)ir(2ny - k).
ke^

Thus

(6.3.9) Ln(x, y) = y2 ^nk(x)^nk(y)-

keZ

For a fixed value of n, the functions {^nk}kez f°rm an orthonormal basis of the space 
L2(7>+i) © L2(717). For each x e R, the series (6.3.9) contains exactly one nonzero 
term, hence convergence is trivial.
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This provides the desired representation of Pn+\ — Pn in terms of orthogonal 
functions, namely

(6.3.10) Pn+\f ~ Pnf = V ^”k W ( / f(yWnk(y) dy 
keZ

Hence we can write the original projection operator in the form

Pn+J = POf + - W
.7=0

n____ / /» \
= Pof + ^2 Z2 (/ ftypkjkty)dy) w 

j=0 keZ /

n /  \
= w+ EE ifjk 0 'kjk I/, 

,/=0 \keZ /

and thus the one-sided Haar series representation

(6.3.11)
/=() kgZ

In the following sections, we will abstract this to a more general setting, noting that the 
subspaces Vn := L2(R, yFn, dx) have the following properties:

(i) U£L0Vn is dense in L2(R)

(ii) f g Vn if and only iff(2~n•) g Vo
(iii) {0(x — k)}^ is an orthonormal basis of Vo.

This can also be extended to a bilateral family of subspaces by considering Vn for n < 0, 
namely larger and larger dyadic intervals. As above, the orthogonal projection on the 
subspace L2(R, T^+i, dx) G L2(IR, 25?, dx) continues to be represented by the formula 
(6.3.10), and the above nesting properties of the subspaces can be modified to

oo
(/') Vn is dense in L2 (R),

n=—oo
n ={0}.

n=—oo

The latter property is evident from the fact that iff G Vn for all n < 0, then/ is constant 
on each interval [0, 2|n|), hence must be identically constant for x > 0; but/ g L2(R) 
means that the constant must be zero.

Before passing on to more general wavelet expansions, we note that the Haar 
function and the scaling function 0 are related by the identity

(6.3.12) 0(x) = 0(2x) -0(2x- 1),
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whereas 0 satisfies the identity

(6.3.13) 0(x) = 0(2x) + 0(2x - 1).

Much of the challenge of constructing more general wavelets will reduce to the suitable 
generalization of these simple relations.

6.3.3 Completeness of the Haar Functions

To prove the validity of the two-sided Haar representation (6.3.3), we go back to (6.3.10) 
and write

(6.3.14)
n

P,i+\f(x) - P-,nf(x) = EE Cjki'jki.x). 
j=—m keZ

It remains to prove that P_mf -> 0 and Pn+\f —> f when m, n -> 00. First we prove 
that the operators Pn have uniformly bounded operator norms.

Lemma 6.3.1. For any f G L2(R) andn G Z, we have ||P/7/||2 < ll/lh-

Proof. From the definition of Pnf, we apply Cauchy-Schwarz:

X e 4, \P„f(x)\2 < 2" [ \f(y)I2 dy

( \P„f(x)\2dx< [ \f(x)\2dx

Jib, Jib,
( \P„f(x)\2dx< [ \f(x)\2dx. ■

Jk Jr

We use the notation Cq(R) to denote continuous functions vanishing at infinity 
and Coo (R) to denote continuous functions of compact support.

Lemma 6.3.2.

(i) If g G Co(R), we have HP-^gHoo —» 0 when m —> 00. 
(ii) Iff G L2(R), we have ||P_nf\\^ —> 0 when m -> 00.

Proof. If g G Coo(R) has support in [—K, we can write

0 < x < 2"' => |P_,„g(x)| = 2- [K |g| 0,

Jo

and similarly for — 2"’ < x < 0. Hence ||P_/ng||oo 0- But these functions are dense in
Co(R); given/ G C0(R) and c > 0, there exists g G COo(R), h g Co(R) so that f — g + h 
with IIAHoo < 6. Then limsup,,,^ HP.^/Hoo < limsup„,_>oc ||P_„,/z||oc < which proves 
the required convergence.
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If/ G L2 (IR), for any e > 0,/ = g + h, where g is continuous and has support in 
[—X\ X'] for some K > 0, and ||/z||2 < 6. Then for 2'" > K, we have

-2m < x < 2™ =► |P_mg(x)| = 2-” / |g| < 2-mV2K\\g\\2
J-K

||P_mg||2 < V4^2-'"/2||g||2

IIWII2 < l|P-mg||2 + P-WA||2

< l|P-mgll2 + e

lim sup ||P_,„/||2 < €
m—>00

where we have used Lemma 6.3.1 in the last line, in the form ||P-mh\\2 < ||/z||2. Since this 
holds for every 6 > 0, we conclude that P_mf 0 when m 00. ■

The above proof contains the following general principle: If a sequence of bounded 
linear operators has uniformly bounded operator norms and converges to a bounded 
operator on a dense subset of a Banach space, then it converges on the entire space.

To prove that Pnf f when n —> 00, we first prove that this holds on the dense 
set of continuous functions with compact support.

Lemma 6.3.3. Iff e Coo(K), then Pnf -^f uniformly and in L2(IRL), when n —> 
00.

Proof. Let/ be supported in [—X', X'], where we may suppose that K > 1. Given e > 0, 
from the uniform continuity of/, there exists 5 > 0 so that |/(y) — f(x)\ < e/K whenever 
|x — y| < 5. If 2~n < 8, we have |P„/(x) — /(x)| < ejs/lK < c for all x, which proves the 
uniform convergence. Integrating over the support of/, we have

[ \P„f(x)-f(x)\2dx< r e2/2K<e2, 

JR J-K

which proves that \\Pnf -/||2 0 when n 00. ■

We have thus proved the following theorem.

Theorem 6.3.4. The normalized Haar functions {^jk}j,k^form an orthonormal 
basis o/L2(IR), in particular we have the L2 convergent expansion

(6.3.15)

6.3.3.7 Haar series in Co and Lp spaces
The Haar series is well defined for any locally integrable function, hence it makes sense 
to study the convergence in other spaces of functions. We have treated the L2 convergence 
of the Haar series by relating the partial sum to the fundamental theorem of calculus. 
These ideas can also be used to discuss the uniform convergence of the Haar series in 
spaces of continuous functions, as well as the norm convergence in Z/(R), 1 < p < 00.
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We first treat the convergence in the space Co(R), consisting of continuous func
tions with lim^oo/fx) = 0. This Banach space contains as a dense subspace the set of 
continuous functions with compact support, on which we have proved Lemma 6.3.3. It 
remains to prove that the operators Pn are uniformly bounded. We prove a more general 
estimate on the (larger) space of bounded continuous functions.

Lemma 6.3.5. For any f e BC(R), we have \Pnf(x)| < ||/||oo-

Proof.

x e Ikn =} \Pnf(x)\ < 2” [ \f(y)\dy< ||/|U ■
Jlkn

From Lemma 6.3.2, we have for any continuous function g with compact support, 
||P-mg\\ 0 when m —> oo. Since these are dense in Cq(R), from the uniform bound
edness of \\Pn|| we obtain ||P_m/||oc 0 when m -> oo. Meanwhile, Lemmas 6.3.3
and 6.3.5 show that Pnf -> f in the supremum norm when n —> oo. This leads to the 
following general proposition on uniform convergence.

Proposition 6.3.6. If f e Cq(R), then the Haar series (6.3.15) converges uni
formly on the entire real line.

If f is merely bounded and uniformly continuous, we cannot expect a uniformly 
convergent expansion on the entire real line, as shown by the following.

Exercise 6.3.7. Let f(x) = 1. Prove that the Haar series expansion (6.3.15) is 
identically zero, especially not convergent to f.

Exercise 6.3.8. Suppose that f e BWC(R), the space of bounded and uniformly 
continuous functions. Prove directly that the one-sided Haar series (6.3.11) 
converges uniformly to f.

To treat convergence in L/?(R), we first prove uniform boundedness.

Lemma 6.3.9. Letf e L/?(R), 1 < p < oo. Then ||Pn/||p < \\f\\pfor all n e Z.

Proof. Setp' = p/(p — 1) if p > 1. Then Holder’s inequality gives

X e Ikn => |P„/(x)| < 2" |/(y)r dy)

< 2'"’ QT |/(y)dy) 2-"’/'/

[ \P„f(x)|p dx < 2-'’2""2-""/'’' [ |/(y)I" dy
Lkn Jikn

= [ \f(y)\pdy.

Lkn

Summing on k G Z gives the result. This proof also applies in case p = 1, by setting 
1 /oq = 0 whenever p' appears. ■
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To prove Lp convergence, we must check that Pnf -> f and -> 0.

Lemma 6.3.10. Let 1 < p < oo. Then \\Pnf — f\\p -> 0 when n -> oo.

Proof. The space of continuous functions with compact support is dense in LP(R). From 
Lemma 6.3.3 we have uniform convergence on this space. In particular if/ is supported in 
[—AT, K], then for n > 7V(e)

[ \Pnf(x)-fto\pdx<2K<=p, 
Jr

which shows that ||P/7/ — f\\p < e(2K)i/p. ■

It remains to consider P_mf, m -> oo. This puts a new restriction on p.

Lemma 6.3.11. Let 1 < p < oo. Then ||/LW/||P -> 0 when m -> oo.

Proof. It suffices to check this for g continuous with compact support in [—AT, AT]. If 
2m > K, then P_mg is constant on (—2m,0), (0,2'”) and zero elsewhere, so that from 
Holder’s equality,

0 < x < 2'” => |P_,„g(x)| = 2-'”| [K g(y) dy\ 

Jo

|P_,„g(x)|" = 2~'"p T \g(y)\/’dy(2K)^'

Jo
/»oo /»K
/ |P_„,g(x)I" dx = 2m2-"“’I / |g(y)|" dy\ (W"', 

Jo J — K

which tends to zero when m oo. The contribution from the negative axis is estimated in 
the same fashion. ■

Hence we conclude the following.

Proposition 6.3.12. Leti < p < oo. For any f e LP(R), the Haar series (6.3.15) 
converges in the norm ofLp(W).

In the case p = 1 there is a simple example to show that this proposition is sharp.

Exercise 6.3.13. Letf = 1 |o, i ]. Prove that the Haar series (6.3.15) is not conver
gent in L1 (R).

However this anomaly is not present for the one-sided Haar series.

Exercise 6.3.14. Let 1 < p < oo and let f e L/?(R). Prove that the one-sided 
Haar series (6.3.11) converges in the norm ofLp(W).

6.3.3.2 Pointwise convergence of Haar series
Since the projection operator Pn agrees with the average over dyadic intervals, it follows 
from Lebesgue’s theorem that Pnf(t) -> f(t) for almost every t e R. In particular if/ is 
continuous at t, then we have lim,^^ Pnf(t) = f(t). If/ has a jump discontinuity at a
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dyadic rational t, then we note that Kn(t, y) = 0 for y < t and sufficiently large n. Then 
we can write

/OO
\f(y)-f{t + 0)}Kn{t,y)dy^0, n -+ <x>

to conclude that

Pnf(t) f(t + 0) t = k/lN, n-> oo.

One can also confirm the absence of a possible Gibbs phenomenon for Haar series. 
Indeed, the kernel Kn(x,y) > 0 with Kn(x, y) dy = 1. Therefore if/ e L°°(R)

-ll/lloo <Pk/(x) < ll/lloo,

which implies that for any sequence xn -> x, we must have

-ll/lloo < liminf Pnf(xn) < limsupPn/(xn) < ||/||oo- 
" n

Exercise 6.3.15. Suppose thatf(t) = \for$ < t < 1/3 and thatf(t) = Ofor 
1/3 < t < 1. Show that we have lim infn Pnf (1/3) < lim supn Pn/(l/3), so that 
the Haar series diverges at t = 1 /3.

6.3.4 *Construction of Standard Brownian Motion

The Haar wavelet expansion can be used to make an effective construction of the standard 
Brownian motion process. By definition, this is an indexed family of real-valued functions 
Xt(co) where 0 < t < 1 and co e Q, where (Q, T7, P) is a measure space of total 
measure 1. In this context, the functions co —» Xt (co) are called random variables. They 
are assumed to have the following properties:

1. For each 0 < 5 < t < 1, Xt — Xs has a normal distribution with mean zero and 
variance t — 5: in detail

1 Cy 2: %,(«) - X(«) < y] = . - / e~u du.
V27r(r - 5) J-oo

2. For any subdivision 0 = < h < • • • < ^ < 1, the random variables Xt{ —
Xt(}, ..., XtN — XtN_\ are independent.

3. For a.e. co, the function t -> Xt(co) is continuous, with Xq = 0.

From properties (1), (2), it follows that the random variables Xt}, ..., Xtn have 
a joint normal distribution with mean values zero and covariance matrix defined by 
EKXJ = mint/, tj).

Exercise 6.3.16. Prove this.

The Haar functions are not continuous, so we would not expect to be able to 
construct the Brownian motion as a Haar series. But the functions t -> /J ipjk(s) ds are 
continuous and can be used to construct the Brownian motion. In order to prove the 
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distributional properties (1) and (2), we will first consider a general orthonormal basis 
of the space L2[0, 1].

The Brownian motion will be constructed as the infinite series

00 ft
(6.3.16) Xf(a)) = £zn(W) </>n(s)ds.

n=0

Here (0n) is an orthonormal basis of the space L2[0, 1] and (Zn) is a sequence of inde
pendent standard normal random variables; in detail

1 fyP[Zn<y] = -—l e~u/2du yeK n = 0,1,2,....
V 2jT J—co

Lemma 6.3.17. Suppose that (cj)n) is an orthonormal basis o/L2[0, 1] and (Zn) 
is a sequence of independent standard normal random variables. Then (6.3.16) 
converges in L2(f2) to a limit Xt(co), which satisfies properties (1) and (2).

Proof. Let the inner product in the space L2[0, 1] be denoted by (,) and let lfM1 be the 
indicator function of the interval [5, r]. With these notations, we can write f ' (f)n(u) du = 
<l[.yj], so that we can compute the variance of the sum (6.3.16) as

[ (X, - X,)2 dP = yf [ <t>n(u) du)
Jo. n=o \Js /

= J(lr,,b0„)2 

rt=0

= I|1[M1H2

= t — s

where we have used Parseval’s identity for the orthonormal basis (0„). This proves that the 
series (6.3.16) converges in L2(Q); the partial sums of the series are normally distributed 
with mean zero, so that the limit is also a normally distributed random with mean zero 
and the asserted variance, proving (1). To prove (2), we note that the partial sums of the 
series define a Gaussian distribution on so that the independence can be inferred from 
the covariance function by showing that the increments are orthogonal in pairs. Now if 
s < t < u < v, we have

r _oc r1 rv
/ (X„ - X„)(X, - Xs) dP=J2 I M dw / 0„(w) dw
J Q „_() Js J u

— ^2(l[.s.f]’ 0/7) (1|m,u]> 0/7)
/7=0

= <l[.s,/J, l[M,v])

= 0

where we have used the bilinear version of Parseval’s identity and the disjointness of the 
interval [5, r] from the interval [u, v]. This proves the pairwise orthogonality. Since the 
vector is multivariate normal, the independence is thereby proved. ■
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6.3.5 *Haar Function Representation of Brownian Motion

The normalized Haar functions tyjk(t) together with the constant function provide a con
venient orthonormal basis of the Hilbert space L2(0, 1). We find it convenient to relabel 
them as follows:

= 1, 0<r<l.

If n > 1, then we can write n = 2/’ + for j = 0, 1,2,... and k = 0, 1, ..., 2/: — 1 and 
we set

M) = ^jk(t) = - k).

From the one-sided Haar series representation (6.3.11), we see that is an
orthonormal basis of L2(0, 1).

To display the Haar series representation of Brownian motion, we introduce a se
quence of independent standard normal random variables Zn, n > 0 with

1(6.3.17) P[Z„ <x] = —= / e^du.
-\/^TC J—co

These may be defined on a probability space, denoted (Q, T7, P). The Brownian motion 
is sought in the form

(6.3.18)

It is immediate from the orthonormal basis properties of that for each t e [0, 1], 
the series (6.3.18) converges in L2(£2, P). From this it is immediate from the
proofs of (1), (2) above that Xt has the required distributional properties of Brownian 
motion.

6.3.6 *Proof of Continuity

We will now prove property (3) of Brownian motion, by showing that the series (6.3.18) 
converges uniformly for almost all co e Q.

Lemma 6.3.18. There exists M = M(co) < oo so that

|Zn(<z>)|
P co : sup - ——- < M\co) — 1. 

n y/ log n

Proof. From the normal distribution (6.3.17), we have the bound

P[\Z„\ > x] < n = 0, 1, 2,..., x > 0.

Setting x = 2,/logn, we have the bound /’[|Z„| > 2,/log n] < n~2, which is the gen- 
eral term of a convergent series. Therefore by the first Borel-Cantelli lemma there exists 
no(a>) < oo a.e. so that n > n^co) implies |Z„(<u)| < 2^/logn. Hence we can set 
M(tu) = max{2, (|Zn(<u)|)A/logn, n < n0 (*>)}• ■
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Lemma 6.3.19.

2'-l /.f
'+*(*>) / ^2J+k(s)ds 

k=0 Jo
< Ml (a>)y/j2~j/2, Ml (ct>) := 2M(w)v/21og2.

Proof. For fixed j, the functions S,k (t) : = /J (s) ds are polygonal functions supported on 
disjoint intervals of length 2~7 withO < Sjk(f) < 2~J x 2J/2. Hence 520<jt<2J_, Sy*(0 < 2_j/2 
and L<t<2M IM') - MOI < I' - s|2"'2. Thus

2J — \ ot
/ ikv+ktsyds <

k=o

max |Z2,+(i(<w)| V Sjk(t)
0<k<2J-\

~ ~ 0<k<2J-\

< JjMi(o>)2~//2

as required.

From this it follows that the jth dyadic block of the series (6.3.18) is bounded 
by a constant multiple of A/72-7’/2, the general term of a convergent numerical series. 
Therefore by the Weierstrass M test, this series of dyadic blocks converges uniformly 
to a continuous function, denoted t —> Xr(<z>). This proves property (3), hence we have 
proved the existence of the Brownian motion process. ■

6.3.7 *Levy's Modulus of Continuity

The method used to prove continuity can be easily extended to obtain a modulus of 
continuity, first established by Paul Levy (1948). This is encapsulated in the following 
theorem.

Theorem 6.3.20. There exists M\ = M\ (<z>) so that if \t — s\ < 8 < then

\Xt(a)) — Xs(a>)\ J <5 log

Furthermore there exist intervals (sn, tn) with tn — sn —> 0 such that [X6| — Xy„]/ 
y/(tn — sn) log(l /(tn — sn)) is bounded below by a positive constant.

Proof. We write the increment of (6.3.18) in two parts:

(
L oo \ 2-/-l ptE+E E ^J+kt0)) I ^2J+k(U)du

j=0 j=L+\J k=0 *1*

where L will be chosen in terms of 8. Now

L 2J-i ot LEE Z2i+k(a>~) I fo+lW du\ < I5 - (w) E sFjV12,
j=0 A-=0 j=0

oo 27-l pt oo^2 E22^*^ / 'ky+kWdu <Mi(a>) £
j=L+\ k=0 J* j=L+\
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The two sums are estimated by the elementary inequalities

L oo
(6.3.19) v^2'72 < ci VZ2//2, V;2-y/2 < C2VL2-l/2

>0 j=L+\

so that if |r — s| < 5, then

|X, - XJ < |Zo(<o)|S + M2(<w)(<sVl2l/2 + Vl2-l/2).

The final two terms are balanced by taking 82L ~ 1, or specifically, L = [log2 (1 /<$)], with 
the result

|X,(*>) -X,(*>)| < Ym(a>)8 + 2M2 log2(l/5),

which completes the proof of the upper bound, since 8 < V8 for 0 < 8 < 1.
To prove the second statement, we consider the independent events

A" = : Xk2-„ - X(*_l)2, 1 < k < 2",

where c is to be chosen. We use independence, the tail of the normal distribution, and the 
elementary inequality 1 — x < e~x to write

’ 2"
P

2"
FT /1 _ e-nc2/2(l+<;(!))

< exp(—2"e-"‘2/2(l +o(l)))

= exp(—(2e-c2/2)"(l + <?(!))).

It suffices to choose 0 < c < ^2 log 2 so that 2e c‘2/2 > 1, and we have the general term 
of a convergent series, and by the first Borel-Cantelli lemma the series ^n2" < 00
for almost all cd. Therefore for n sufficiently large Cf'=xAnk fails to occur, in particular for 
some k, Xk/2" — X^-iyv > c*Jnl2n, which proves that the Levy modulus is a sharp lower 
bound also. ■

Exercise 6.3.21. Prove that the elementary estimates (6.3.19) hold with the con- 
stantCf =C2 = 1/(1 — 2_|/2).

Hint: Compare a sum with an integral, which can be estimated by partial integration.

6.4 MULTIRESOLUTION ANALYSIS

In this section we return to the construction of general wavelets. The main features of 
the Haar wavelet expansion can be abstracted as follows.

Definition 6.4.1. An orthonormal wavelet is a function e L2 (IK) such that the
doubly indexed set {2,/24>(277 — fc)}7x€z is an orthonormal basis o/L2(IK).
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We have already seen that the Haar function provides an example of an orthonor
mal wavelet. To develop a systematic method for producing orthonormal wavelets, we 
introduce another notion, which generalizes the Haar construction.

Definition 6.4.2. A multiresolution analysis (MRA) is an increasing sequence of 
subspaces {V„} C L2(IK) defined for n e Z with

• • • C V-1 C Vo c V1 c • • •

together with a function e L2(IK) such that

(i) u^-ooK dense in L2(R), Vn = {0}

(ii) feVn if and only if/(2-”-) e Vo
(Hi) {<t>(jr — k)}kE% is an orthonormal basis of Vo-

is called the scaling function of the MRA.

Clearly Vo is uniquely defined by through (iii), and Vn is further uniquely 
determined through (ii). However we do not require that be unique; a given family 
{V/?} may have several different possible choices of <t>.

The job of the theory is to show that there exist other nontrivial examples of 
multiresolution analyses, to construct the corresponding orthonormal wavelet bases and 
to discuss their properties.

Example 6.4 .3. Let Vn be the set off G L2(IK), which are constant on the dyadic 
intervals Ikn = [(k - l)/2", k/2n).

Clearly all of the properties are satisfied, with the Haar scaling function (x) = 
1 io, i)W •

Example 6.4 .4. Let Vn be the set off e L2(B), which are continuous and linear 
on each dyadic interval Ikn.

It is straightforward to see that properties (i) and (ii) of Definition 6.4.2 are satis
fied. The choice of a scaling function is less obvious and will be obtained in this section. 
This example is related to piecewise linear spline approximation.

In order to develop scaling functions for more general MRA systems, we first 
develop the necessary properties of orthonormal systems and Riesz systems.

6.4.1 Orthonormal Systems and Riesz Systems

Let H be a Hilbert space with inner product (,). A set of vectors (x„) is an orthonormal 
system, by definition, if (xn, xm) = 8mn.
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Lemma 6.4.5. The set (xn) is orthonormal if and only if for every finite set of 
complex numbers (an), we have

(6.4.1) II Z2a,,%n||

n n

Proof. If (xn) is orthonormal, then the left side of (6.4.1) is the finite sum

(xm, xJ — an an — | an | .
m,n n n

Conversely, if (6.4.1) holds, first we choose an = 8nN to obtain (xN, xN) = 1. Then choosing 
an = 8nM — 8nN withM M gives 2 = ||x/y — Xa/II2 = 2 — (xN, xM) — (xM,xN) hence 
0 = (x/y, xM) + (xM, x/y). Replacing xM by ixM we obtain 0 = (xNtxM) — (xm,xn), from 
which the result follows. ■

This leads us to formulate a more general concept.

Definition 6.4.6. LetH be a Hilbert space. A set of vectors (x„) is, by definition, 
a Riesz system, if there exist constants 0 < c < C < oo such that for any finite set 
of complex numbers (an)

(6.4.2) C£|a„|2<|£>„x„|| <C^2|an|2.

n n n

Clearly any orthonormal system is a Riesz system, where c = C = 1. If (xn) is 
a Riesz system, then the vectors (xrt) are linearly independent: anxn = 0, implies 
that an = 0 for all n.

Example 6.4.7. LetH = L2(IR) andxn(t) = A(t—ri) where A is the tent function

Aw^a-i'Dinu^).

To verify the Riesz property, we note that the linear combination A(t) := 
an A(t — ri) is piecewise linear with A(n) = an for all n. Hence

/* _  rn+1
I \A(t)\2dt = I \(n + I — t)an + (t — ri)an+\\2 dt 

ne%

= — ^(|6zn| + 1^4-11 H- Re anan+1).
ne'Z

We use the Cauchy inequality |2tzZ?| < |tz|2 + |b|2 to obtain the upper bound

[ \A(t)\2dt< |^2(|a„|24-|an+i|2) = ^2|a„|2

2 neZ neZ

and the lower bound

f |A(Z)|2dt > I V(|a„|2 + |a„+i |2) = | Y'|a,1|2.
4R 6 neZ 3 neZ

Therefore (6.4.2) is satisfied with c = C = 1.
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The next proposition characterizes Riesz systems and orthonormal systems in 
terms of the Fourier transform.

Proposition 6.4.8. Let 0 e L2(R) and 0 < c < C < oo. The following two 
conditions are equivalent.

(i) The periodized square of the Fourier transform satisfies the double inequality

(6.4.3) c< !<!>(£+/)|2 <c a.e. £ e R 
/gZ

(ii) {<!>(? — m)} is a Riesz system with constants (c, C).

Recalling that orthonormality is characterized by c — C = 1, we obtain the foll
owing useful characterization.

Corollary 6.4.9. The translates {0(r — m)}me^ of<be L2(R) are orthonormal if 
and only if^iez + ^)|2 = ^for almost every | e R.

The sum in (6.4.3) is well defined a.e., since we may compute the integral over the 
unit interval as

pi p/+1 p
/ V|<i>(£ + /)|2^ = £ / l^)l2^= /

Jo /gZ Ji Jr

hence the integrand is finite a.e. and defines a 1-periodic function.
Before giving the proof of Proposition 6.4.8, we give some examples of the compu

tational power of these relations.

Example 6.4. 10. Haar scaling function: Let 0(0 = l(0, i)(0-

Clearly the translates <b(t — m) are orthonormal, hence c = C = 1. The Fourier trans
form is computed explicitly as 0(£) = 2-Z7r^sin(7r£)/7r£, so that (ii) gives for a.e. £

sin2 tt£

which is equivalent to the partial fraction expansion of the function esc2 Noting that 
the series on the right converges uniformly on each finite interval, we infer that the series 
defines a continuous function, hence the equality holds for every

Example 6.4. 11. Shannon scaling function: Let <b(t) = sin(Tct)/Ttt for t / 0, 
with 0(0) = 1.

The Fourier transform is 0(£) = 1(_ ।ti](|), thus we have 1^(1 + Ol2 = 1 a e-’ 
since for £ Z, all terms in the series are zero except for one which = 1. Hence 
{0(r — n)}nE% is an orthonormal system in L2(R). This is the orthonormal system that 
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occurs in the Shannon sampling formula, studied in Chapter 4 and to be redone in the 
context of wavelets.

Proof of Proposition 6.4.8. We first establish an identity for the Riesz sum in terms of 
the Fourier transform. The Fourier transform of 4>(r — ri) is e~2n,n* <£(£), so that the Fourier 
transform of an<b(t — n) is A (£)$(£) where A is the 1-periodic function

A(|) = J>„e~2™?.
neZ

From Parseval’s identity for Fourier series, we have |A(|)|2 |fl„|2. From
Parseval’s identity for Fourier transforms, it follows that

(6.4.4) | £«,<>(/-n)||2 = [ |A(|)|2|«>(|)|2^

= E f+'

/gZ

= E /"|AOW+Z)|2^

/gZ

= /’liA(i)i2(yi$(i+z)i2)d?. 

\lez ■ /

To prove that (i) implies (ii) in Proposition 6.4.8, we simply note that the integrand in 
parentheses in (6.4.4) is bounded above by C and thus the integral is bounded above by 
C |A(|)|2 = C |tfj2, similarly for the lower bound, which proves (ii). To prove that 
(ii) implies (i), we use the above transformations to rewrite the Riesz condition (6.4.2) in 
the form

(6.4.5)
fo |A(?)|2(Z/sZ|4>«+Z)l2)^ 

fo |A(|)|2d?

This holds for every trigonometric polynomial A(|). Taking a sequence AN that converges 
boundedly to the indicator function of the interval [a, b] c (0, 1) (the partial sums of the 
Fourier series of 1 will suffice for this purpose), we obtain

c< f— f (F ws+oi2U <c. 
b -a J« \i^ /

This holds for every interval («, b). Taking a sequence with («, b) —> {%} and applying
Lebesgue’s differentiation theorem, we obtain (i). ■

Example 6.4. 12. Returning to the tent function A(f), we have



308 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

This sum can be evaluated by repeated differentiation of the series from Example 
6.4.10, namely

to obtain the identity

which again reaffirms that c = 1/3, C = 1 for this Riesz system.

Exercise 6.4.13. Check the details of this computation.

We can use Corollary 6.4.9 to estimate the support of the Fourier transform of 
a scaling function.

Corollary 6.4.14. Suppose that 0 e L2(IK) and that — k)}^ is an ortho
normal set. Then |supp C>| > 1, with equality if and only if |4>| = Ik for some 
measurable set K with |AT| = 1.

Proof. From Corollary 6.4.9 we have |4>(| + Z)|2 = 1 a.e., hence |4>(|)| < 1 a.e. 
From Parseval’s identity

Isupp 4>| = ( di; > [ |4>(?)|2rf? = 1,
Jsupp Jsupp <t>

which proves that |supp 4>| > 1. If equality holds, then the middle terms give

0= [ (1-|$(?)|2)d?-
J supp«t>

But the integrand is nonnegative a.e., hence 1 — |<J>(£)|2 = 0 a.e. on the support of <i>, which 
means that |4>| = \K a.e., where |XJ = |supp 4>| = 1. ■

Proposition 6.4.8 allows us to obtain the following orthogonalization procedure to 
generate scaling functions from a Riesz sequence.

Proposition 6.4.15. Let <S>gL2(IK) be such that — m)}m^ is a Riesz 
sequence. Then there exist complex numbers bn with |bj2 < oo such that 

— m)}me% is an orthonormal sequence, where Cq (t) := — n)-
Furthermore, the span of{<$\(t — n)}ne% equals the span of{<b(t — n)}ne^.

Proof. From Proposition 6.4.8, it suffices to find bn such that |4>i(| + Z)|2 = 1 a.e. 
From the definition of 4>i, we have



INTRODUCTION TO WAVELETS 309

<M) =^b„e-2^^) 
nul

£!<!>!(£+/)|2 = -H/) |21 <S> (£ +/)|2
/gZ /gZ

= ifi(i)i2j2i$d+/)i2.
/gZ

Therefore we must choose the constants bn so that

|B(?)|2 := I =--------J--------- .
1 E/ezl^^ + OI2

Clearly there are many possible solutions. The simplest one is to take the positive square 
root, leading to

(6.4.6) <M£) = =.
VE/sZl^ + 0l2

This is clearly the Fourier transform of an L2 function, since the denominator is bounded 
above and below by the Riesz condition. To prove the last statement, we need to study the 
equation

(6.4.7) y~'a„4>(f-n) = E^ifr ~ ")
hgZ /igZ

and to show that, given (an) e l2(%), we can solve for (c„) c Z2(Z) and conversely. In terms 
of Fourier transforms, this is written

)4>(|) = (E^-2™*)
\/igZ / \/igZ /

Recalling the relation between <£> i and 0 is a special case, with an = bn, cn = 8n0. Making 
this substitution we see that (6.4.7) is implied by the identity

(6.4.8) 4(|) := E V'2’,”£ = ( E bne~M,i I ( E ) •
hgZ \/jgZ / \z7GZ /

:=B(£)C(£).

But we have shown above that C-1 < | bne~2nin* | < c-1 from the Riesz property. 
Hence, given (an) e Z2(Z), we may solve (6.4.8) uniquely by taking cn as the Fourier 
coefficients of the 1-periodic function A(£)/#(£). Conversely, given cn, one simply refers 
to (6.4.8) and chooses an as the Fourier coefficients of the right side. ■

The above proof shows that the set of functions described by the left side of 
(6.4.7) when (an) e l2(%) is identical to the set of functions described by the right side 
when (c„) e Z2(Z). But the set on the right is a closed subspace of L2(IR), from the 
orthonormality of {<t>i(r — n)}nE%. Hence the set on the left is also a closed subspace, 
which is the closed linear span of {<t>(z — n)}nez-
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Example 6.4.16. In the case of the tent function 0 = A, the orthogonalized 
Fourier transform is obtained as

^(1 + 2cos2tt£)/3

This corresponds to the MRA of Example 6.4.4, where the functions are continuous and 
piecewise linear on each dyadic interval. We write 0i (t) = bnK(t — n), which is 
clearly a piecewise linear continuous function with C>i(n) = bn. The coefficients are 
obtained from the Fourier expansion

(6.4.9) , . 1 ....= = V bne2nin^.
V(l+2cos2^)/3

Since the left side is a real analytic function, the Fourier coefficients have an exponential 
decay.

Exercise 6.4.17. Show that there exist constants K > 0, f > 0 so that \bn\ < 
Ke~^ and obtain an estimate for f.

6.4.2 Scal ing Equations and Structure Constants

The axioms describing an MRA system are not completely independent of one another, 
as we will show. First we note a simple consequence of properties (ii) and (iii) from 
Definition 6.4.2.

Proposition 6.4.18. For each j e Z, {27/20(277 — k)}kez is an orthonormal 
basis of Vj.

Proof. From property (ii), Vj and Vo are isomorphic by virtue of the map x —> 2-7x. The 
indicated functions are clearly orthonormal. Now we pull back to Vo and use property (iii).

In order to proceed further, we discuss the consequences of the inclusion Vo C Vi.
Since Vj is spanned by translates of {<b(2t — n)}ne%, we have the L2 convergent 

sum 

(6.4.10) <I>(0 = ^T^an<b(2t — ri)

where the structure constants satisfy KJ2 < oo. Relation (6.4.10) is called the 
scaling equation and will be instrumental in the sequel.

Example 6.4.19. If 0(0 = l[o, i)(0> clearly 0(0 = 0(20 4- 0(2r — 1)
is the scaling equation, with structure constants a$ = \,a\ = 1 and an = 0 
otherwise.

Exercise 6.4.20. Suppose that 0 e ZJ(R) A L2(R) satisfies the equation <&(t) = 
0(20 + 0(2r — 1). Prove that for some c, 0(0 = cl[o, i) (0 a*e.
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Hint: Take the Fourier transform of both sides and iterate to solve for 0.

The next exercise shows that a similar two-scale difference equation can have 
radically different solution behavior.

Exercise 6.4.21. Suppose that 0 e L](R) satisfies the functional equation 
20(f) = 3<D(3O + 30(3r - 1). Prove that 0(f) = 0.

Hint: Show that 0^0 must agree with the Fourier transform of the Cantor measure.

The next example shows that the existence of a scaling equation does not follow 
from the orthogonality properties.

Example 6.4.22. Let<b(t) = lf_| ,i](0- We suppose that (6.4.10) holds for some 
(an) e I2(Z) and obtain a contradiction.

To see this, we have from the orthogonality of {0(2f —

an=2 0(f)0(2f — n) df. 
Jr

But this integral is nonzero unless n = 0, ±1, in which case we obtain a^ = 1, a±i = 
But this leads to a contradiction on the interval | < t < where the left side of (6.4.10) 
is zero but the right side is nonzero.

We record some properties of the structure constants.

Proposition 6.4.23. The structure constants obey the following properties:

(6.4.11) ak = 2 [ <&(t)Q(2t-k)dt, ke%
Jr

(6.4.12) £>*|2 = 2
keZ

(6.4.13) = ^ko (Kronecker delta).
k'eZ

If also 0 e L1 (R), 0 0 and (6.4.10) converges in L1 (R), then

(6.4.14) ^ak = 2.
keZ

Proof. Since akl*f2 are the Fourier coefficients of 0 e Vj with respect to the orthonormal 
basis V20(2f — k), we have ak)42 = fR 0(f)V20(2f — k)dt, as required. Parseval’s 
theorem gives |a/-|2/2 = ||0||2 = 1. Toprove (6.4.13), we begin with (iii) of definition
6.4.2, in the form

[ <b(t-k)*(t)dt = 80k.

Jr
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Substitute (6.4.10) and use Parseval’s identity and orthogonality to write

J <&(2t — 2k — k')<i>(2t — k") dt 
k’.k"

= - ak,ak„, 
2 2k+k'=k"

which is the same as (6.4.13). In particular, taking k = 0 we retrieve a new proof of (6.4.12).
If, in addition, we have e L1 with fR <P / 0, then we integrate (6.4.10) term-by- 

term to obtain

I <&(t)dt = ^fik I <&(2t — k)dt
Jr kei Jr

= 122ak f2 k<=Z

which we divide by <I> to obtain (6.4.14). ■

It is often useful to work with (6.4.10) in the Fourier domain. The Fourier transform 
of <I>(2r — ri) is easily obtained:

&(2t — ri)e dt —2jti% du

so that (6.4.10) is written

(6.4.15)

where the scaling filter is defined by

(6.4.16)
2 neZ

The existence of a scaling equation can be formulated in the Fourier domain as follows 
where L2(R/Z) denotes 1-periodic functions that are square-integrable on any period.

Proposition 6.4.24. <3> e L2(R) satisfies a scaling equation (6.4.10) with (an) e 
I2 (Z) if and only if there exists m$ e L2(R/Z) so that (6.4.15) holds, in which case 
(6.4.16) holds. In particular an = 2 m^)e27Zin^ d%.

Proof. If satisfies (6.4.10), then we can take the Fourier transform of both sides 
to obtain (6.4.15). Conversely, if (6.4.15) holds with m0 g L2(R/Z), we define 
an = 2 f]_/[2/2mQ(fi)e27Tin^ d$, so that (6.4.16) holds. The Plancherel theorem ensures that 
the map <f> —> <X> is bijective. Since the right side of (6.4.15) is the Fourier transform of 

an$>(2t — n), it follows that 4>(/) = an<b(2t — n), which was to be proved. ■
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Example 6.4.25. The Shannon scaling function is

The scaling equation can be obtained at the level of Fourier transforms by solving 
(6.4.15) as follows:

Therefore we need to choose the coefficients so that mo (|) = 1 for 111 < | and mo (|) = 0 
for | < HI < The structure constants are obtained from (6.4.10) as the Fourier 
coefficients

an = 2 [ e~2^d^

Thus ao = 1 andfln = (—2/n7r)sin(n7r/2).

Exercise 6.4.26. Consider the spline function A(0 = (1 — |r|) 1[_ij](r) with 
0(|) = (sin7r|/7r|)2. Show that A satisfies a scaling equation (6.4.10) and 
exhibit the scaling filter mo(|). Use this to infer that its orthogonalization, defined 

by <£(1) = A(|)/|A(| + Z)|2, also satisfies a scaling equation (6.4.10).

6.4.3 From Scaling Function to MRA

We now prove an important theorem, showing the existence of MRA systems under 
useful hypotheses.

Theorem 6.4.27. Suppose that 0 e L2(R) is such that

(i) The translates {<&(t — m)}me% are orthonormal.
(ii) 0(0 = an<b(2t — ri), an L1-convergent sum, with |tfn|2 < oo. 

(Hi) The Fourier transform 0(|) is continuous at % = 0 with |4>(0)| = 1.

Define Vj = span {0(2y7 — k)}kez- Then {Vj} defines an MRA.

Proof. The scaling equation (ii) implies that Vj G Vj+i. Now let 07*(O = 2j/2<i>(2jt — k) 
and let Pj be the orthogonal projection on the space Vj. In detail

Pjf =

These projection operators satisfy the bounds ||P7/|| < \\f\\. To prove the MRA property, 
it suffices to show that lim^oo Pjf = f and lim^-oo Pjf = 0 for all f g L2(R). This is 
done in two separate lemmas.

Lemma 6.4.28. For anyf g L2(R), lim^-^ Pjf = 0.
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Proof. Since ||P7|| = 1, it suffices to prove the result on a dense set, e.g., L2 functions with 
compact support. If / has support in [—7?, 7?], then

IIA/H2 = E I^A Ml2
keZ

= E Ml2
keZ

= ll/ll2E24/' l*(2Ji MMkeZ \J-R

f—k+2JR= ll/ll2E / \*(u)\2du.
keZ J-k-VR

If 277? < then these integrals are over disjoint intervals whose union is written Uj = 
Vkez(—k — 2jR, —k + 277?), with d7t/7 = Z, which has Lebesgue measure zero. Therefore

IIA/H2 < H/ll2 [ \*(u)\2du 0, j^-oo

by Lebesgue’s dominated convergence theorem. ■

To proceed further, we now turn to the Fourier domain and prove a useful identity.

Lemma 6.4.29. Let f e L2(R) with a Fourier transform/ that is bounded and 
supported in [—7?, 7?] for some R > 0. Then for 27-1 > R we have

(6.4.17)
fR .

\\Pjf\\2= mi2i<i>(2-^)i2^.
J-R

Proof. We use Parseval’s identity to write

IIA/II2 = E l(/V’ Ml2
= E k/’ mi2

fR ~ 2

= E /keZ J~R

fR - 2

= E /keZ J-R

where we have used the fact that the Fourier transform of the function <&jk is explicitly 
written 2-7/2e-27r'^2 7<J>(2-7/). Now if 2/-1 > 7?, the last integral is equal to the integral 
on the interval [—27-1,27-1], where the functions {2~j/2e27Tlk^2 J}kez form an orthonormal 
basis. Moreover, £ —> /(f)<J>(2-7/) e L2(—27-1,27-1), so that by Parseval’s theorem for
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Fourier series, we have for 27 1 > R

r2J~[ .
\\pjf\\2= imW)i2^

= r |/(|)|2|O(2->|)|2^, 

J-R

which completes the proof. ■

Corollary 6.4.30. Suppose that the scaling function satisfies the additional 
condition that <£(£) is continuous at % = 0 with |4>(0)| = 1. Then for any 
f e L2(R), \\Pjf -/|| 0 whenj oo.

Proof. Since Pj is a contraction, it suffices to prove this on the dense set of f whose 
Fourier transforms have compact support and are bounded. Furthermore, from the projection 
property, we have ||/’//||2 = ||/||2 - ||/ - P,/||2, so we must show that ||P,/|| ||/||.
Using the hypothesis, we see that |4>(2-7£ )| converges uniformly to 1 on compact sets, so 
that (6.4.17) gives for 27-1 > R

ll/z/ll2 = r |/(?)O(2-^)|2^

J-R

-> f i/oM 
J-R

= ll/ll2,

which completes the proof. ■

Combining the above lemmas and corollaries completes the proof of the theorem. 
The following exercise provides a one-parameter generalization of the Shannon 

wavelet.

Exercise 6.4.31. Let K = [a — 1, a] where 0 < a < 1 and set <I> = 1^. Prove 
that <I> is the scaling function of an MRA.

Hint: First check that has orthonormal translates. To find the scaling relation, it suffices to find 
m0 G L2(R/Z), by solving <I>(2£) = m0(f

Example 6.4.32. One should not infer from the continuity at % = 0 that <i> is 
continuous elsewhere, much less that <I> 6 L^R). Consider the Shannon scaling 
function, where <f> = 1[_ i ,1], which is continuous at % = 0 but is discontinuous at 

^ = ±1.

6.4.3.1 Additional remarks
We note some additional relations between the above notions.

• If we have an MRA, the condition | <t>(0) | = 1 actually follows from the apparently 
weaker condition that <!>(£) is continuous at £ = 0. To see this, apply Lemma 6.4.29 
to a function/ whose Fourier transform is bounded with compact support. Since we 
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assume an MRA, it follows that Pjf -> f when j -> oo. Taking limits in (6.4.17), we 
have for 27 > R,

rR .H/ll2 = |<D(0)|2 / |/(|)|2^ = |0(O)|2||/||2
J-R

by Parseval’s identity. Hence 10(0)1 = 1, as promised.
• Theorem 6.4.27 remains true if one weakens the condition |O(0)| = 1 to <i>(0) / 0.

To see this, suppose that/ is orthogonal to U/ezY/. Then Pjf = 0 for all j e Z. Given 
c > 0, there exists g whose Fourier transform is bounded and supported in [—7?, 7?] for 
some R > 0 and so that \\f - g|| < 6. Hence \\Pjg\\ = \\Pj(g -f)\\ < 6. Applying 
Lemma 6.4.29 yields the estimate

fRe2 > IIP^II2 - / |^)|2|<I>(2-^)|2 
J-R

|4>(0)|2||<?||2

> l<i>(0)|2(||/|| -e)2.

This holds for every c > 0, which is a contradiction if 6 is sufficiently small.

• The continuity condition (iii) in Theorem 6.4.27 can be weakened to 

lim |<J>(2“^)| = 1 a.e. £ e R,

and this condition is also necessary.

Indeed, the sufficiency is apparent from application of Lemma 6.4.29 to/, whose 
Fourier transform is bounded with compact support. To see the necessity, we anticipate 
a result from the next section, that |mo(|)| < 1 a.e. From this it follows that

In addition 1 = + Z)|2 > |<i>(£)|2, so that we have the existence of the limit

g(f) = lim^oo |<I)(2“^)| andg(£) < 1. Applying Lemma 6.4.29 to/with/= l[-i.i], 
we see that

2= lim [ |<I>O2^= [ g&dt-,

where we have applied the Lebesgue dominated convergence theorem, thanks to the 
bound |g(|)| < 1. Hence (1 ~ l#(l)l)^£ = 0 where the integrand is nonnegative, 
hence g(|) = 1 a.e.

• If the scaling function <t> g L1 (R) D L2(R), then the conditions of Theorem 6.4.27 are 
necessary as well as sufficient.

To see this, note that <I> e L1 (R) implies that 0 is continuous, especially at 
£ = 0. If <I> generates an MRA, then we can apply Lemma 6.4.29 to/ 0 whose 
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Fourier transform is bounded with compact support. Taking j —> oo in (6.4.17), we 
obtain \\f\\ = | <J>(0) 1||/||, hence | <X>(0) | — 1, as promised.
If the scaling function <I> gL1 (R) AL2(R), then <5>(Z)=0 for 0/Z eZ and 
E,GZd>a-£) = <i)(0)a.e.

Indeed, from the orthonormality relation, we have a.e. 1 > |<J>(£)|2 + |4>(| + Z)|2. 
But is continuous, hence we can take £ —> 0 avoiding the exceptional set to obtain 
| <I>(Z) | < 0, which was to be proved. From this it also follows from the Poisson sum
mation formula that the periodized scaling function — (0) a.e., since
its Fourier coefficients are all zero except for one term.
If the scaling function has compact support with <3>(x) dx= 1, then the Fourier 
transform argument of Lemma 6.4.29 can be avoided. This is formulated as follows.

Proposition 6.4.33. Suppose that C> is the scaling function for a compact MRA 
with fR<b(x)dx = 1. Then is dense in L2(R).

Proof, The orthogonal projection Pj onto Vj is given by

Pjf = 2> V 4>(2A - y) ( [/(y)<I>(2<y - y)dy) 

yez VK /

and satisfies

(6.4.18) [ (f - PjfyPjf = 0, ll/ll2 = 11/ - Py/||2 + ||P,/||2.

Therefore, to show that Pjf —> / in L2, it suffices to prove that

(6.4.19) \\Pjf || ||/||.

Since the operators Pj have norm 1, it suffices to prove (6.4.19) on a dense set, e.g., linear 
combinations of/ = IA, where A = [a, b]. If supp G [—M, M]

In the first term the integral is one, while in the second term the integral is zero. In the third 
term the integral is less than || 4>|| i and the number of such terms is less than 4Af. Thus

Of \ 2' <P(x — y)dxj =2~J £2 1 + 0(2”')
2M ' 2Ja+M<y<2Jb-M

= (b - a) +

Hence ||Pj L ||| —> b — a = || 1A |||, which completes the proof. ■
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6.4.4 Meyer Wavelets

The previous examples of scaling functions include the Haar wavelet—where the scaling 
function d> has compact support but is not smooth. At the other extreme we have the 
Shannon wavelet, where the scaling function is infinitely differentiable but has slow decay 
at infinity. Theorem 6.4.27 allows one to construct a large class of new scaling functions, 
including the Meyer wavelets, where the scaling function is infinitely differentiable and 
rapidly decreasing (Schwartz class 5). This general class also includes the Shannon 
scaling function from Example 6.4.25 as an extreme case.

We begin with a function ®(|) defined on the interval 0 < | < 1 satisfying the 
following properties:

(6.4.20) 0 < ®(|) < 1,

(6.4.21) 0(?) + 0(i_O = ij

(6.4.22) | -> ®(|) is monotone decreasing,

(6.4.23) ®(O = 1 0<|<|.

The symmetry condition (6.4.21) implies that ®(|) = 0 for | < | < 1, ®(|) = 
while the monotonicity condition (6.4.22) shows that ®(|) > | for 0 < | < We 
extend® to the real line by setting ®(|) = ®(—|)for-l < | < 0 and setting ®(|) = 0 
for || | > 1. The resulting function is even on the entire axis and satisfies 0 < ® (|) < 1. 
Now we define

(6.4.24) = f y/®^-)e2ni^ d$, t e R.

Proposition 6.4.34. 4>(r) is the scaling function of an MRA system satisfying the 
conditions of Theorem 6.4.27 and is of class C°° with all derivatives bounded: 
|0(/)(O| < Cl. If in addition, $ -> vW) ™ of class Ck, then \tk&l\t)\ < Ckl 
for all real t and I e In particular if % -> V®(£) of class C°°, then <X> G S.

Proof. We first check the conditions of Theorem 6.4.27. Since ® is supported in an interval 
of length 2, the sum |4>(| + l)\2 = YIigz ®(£ + 0 consists of at most two nonzero 
terms, of the form

®(|) + ®(| + 1) = ®(-|) + ®(1 +1) = 1,

which proves the orthonormality of {<5> (r — To prove the scaling equation, define

m0(l) = V®(2|) III < |

and extend m0 to the real line as a 1-periodic function: m0(| + 1) = m0(|), especially 
mo g L2(R/Z). In addition ®(|) = 1 whenever ®(2|) / 0, so that the equation <J>(2£) = 
mQ(£)<!>(£) holds for ||| < |. In addition w0(|) is zero for | < | < |, so that we have 
the scaling equation 4>(2|) = mo (£)<!> (|) for all | g R, since both 4>(|) and 4>(2|) are 
zero when ||| > while mo is zero when | < ||| < j. Finally, the condition (6.4.23) 
guarantees that is continuous at | = 0 with 14>(0) | = 1. Hence by Theorem 6.4.27 there 
exists an MRA corresponding to 4>. Since has compact support, is of class C00 and we 
have the bounds |4>(/)(/)| < |2:t£|/|<£(£)| < oo. If in addition we have k continuous
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derivatives, we can write

[(2tt^)' <J>(|)]d£,

which completes the proof.

Example 6.4.35. If<S>(&) = lfor-± <£ < then ©(|) = Ofor ||| > ± with 
@(±|) — |. This gives the Shannon scaling function <t> (t) = (sin Tit)/Tit.

6.4.5 Fro m Scaling Function to Orthonormal Wavelet

Once we have a scaling function satisfying the hypotheses of Theorem 6.4.27, it is 
relatively straightforward to construct a corresponding orthonormal wavelet, namely a 
function 4* e L2(R) so that {2//24/(277 — k)}^ is an orthonormal basis of the orthogonal 
complement V,+i G V7-. This general construction will specialize to yield the Haar function 
in case d> =

To describe the defining equations on 4*, it suffices to take j = 0. Since g V|, 
which is spanned by {<$>(2t — n)}n€z, there exists an L2-convergent expansion

(6.4.25) 4/ (r) = ^2 $ (2t - n).
neZ

But 4* must be orthogonal to Vo, namely

(6.4.26) / <b(t -kfV(t)dt = 0 Vke%.

These are translated into the Fourier domain as follows:

(6.4.27) ^|4'(/ + §)|2 = 1,
/eZ

(6.4.28) =

(6.4.29) / dl; = 0 Vfc e Z,

(6.4.30)
2 /7GZ

The 1-periodic function m\ is called the wavelet filter. It allows us to pass directly 
from the scaling function to the wavelet via (6.4.25).

It remains to periodize these relations. At the same time we formulate the peri- 
odized version of (6.4.15) from the previous discussion. The idea is that the scaling 
equations allow us to rewrite the orthogonality relations as identities on the circle R/Z 
in terms of the scaling filter and wavelet filter.

Proposition 6.4.36. Suppose that d> is a scaling function of an MRA with scaling 
filter my defined by (6.4.16). Then mo(fi) satisfies (6.4.31) a.e.
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(i) If W is an orthonormal wavelet with respect to <I>, then the 1-periodic 
functions mo(|), mi(|) satisfy the relations (6.4.32)-(6.4.33), a.e.

(6.4.31) |mo(l)l2 + 1^0 (e + DI2 = L

(6.4.32) ImjCI-)!2 4-|m, (£ 4-1)|2 = 1,

(6.4.33) m0(^)mi (I) + m0 (| + |) m, « + |) = 0.

(ii) Conversely, given m\ e L2 (IR/Z) satisfying (6.4.32) and (6.4.33), if we define 
by (6.4.28), then {<P(2J7 — k)}kez is an orthonormal system in Vj © Vq.

The equations (6.4.31) and (6.4.32) suggest the term quadrature mirror filter for 
the functions mo(£), m\ (£), since the point £ + | is the mirror image of § in the circle of 
unit circumference, with respect to which the quadratic functional equations are satisfied.

Proof. We apply Corollary 6.4.9 to formula (6.4.15) summing separately over the odd and 
even I e Z.

1 = ^|4>«+/)|2
leZ

= i4>(?+w+£+2k+di2 
keZ keZ

where we have applied Corollary 6.4.9 twice in the last line, thus proving (6.4.31). To 
prove (6.4.32), we replace 0 by on the left and m0 by the 1-periodic function mi on 
the right. Applying (6.4.27) and (6.4.28), we see that with these replacements, all of the 
above computations apply and we obtain (6.4.32). To prove (6.4.33), we periodize (6.4.29) 
by writing

/»/+! _

°=L/ZgZ J1

= 52 f di-
lei

e-27ri^ dl=.
The Fourier coefficients of the indicated 1-periodic function are all zero, hence

(6.4.34) ^4>(|+Z)'i'(|+/)=0 a.e.
ZgZ
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Now we can apply the same transformations that were used to prove (6.4.31) above: in 
detail

o = J24>(i + /)4'(i + z)
/gZ

= 22 4>(£ + 2fc)4*(^ + 2k) + 22 + D'i'tf + 2k + 1)
keZ keZ

which completes the direct proof. Conversely, if (6.4.32) and (6.4.33) hold, then we can 
compute |0(£ + Z)|2 following the proof of (6.4.32) above, using the orthonormality 

of 0(r — m). Similarly, the proof of (6.4.33) demonstrates that 22/gz 0(£ + O0(£ + Z) = 0.

This lemma may be paraphrased by the statement that the matrix

,, /mo^) wo(l + |)\M = I I

is unitary.

Example 6.4.37. Haar wavelets
We illustrate the above formulation in the case of the Haar wavelet, where 

0(0 = 1, 0 < t < 1

, z, (1 0 < t < I*(') = Li H,<r

The structure constants are obtained from the scaling relations

0(0 = 0(20 + 0(2r - 1), 0(0 = 0(20 - 0(2r - 1).

Hence a0 = 1, a\ = 1, b0 = 1, b\ — and otherwise aj = bj = 0. The scaling filter 
and wavelet filters are given by (6.4.16) and (6.4.30):

^o(l) = |[1 +e-^], nt!(I) = 1[1 - e~2”*l
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The Fourier transform of the scaling function and wavelet are

e-2jri,? dt
1 ~ e = c-inj sin7r£ 

7t£

/ - / e~2^ dt = 2% +e-------

2 /7GZ

= ^-ai_m(-])me~2^

2 mez

Jo Ji / 2?rz?

= ic-i^ sin2(7r|/2)

(7rf/2)

Equivalently 

w0(|) — = e_,7r?cos(7r^),
0(1) 

vp(2^) . .
mi(§) = —------ = le $ sin7T^.

(1 - e"/7r02

2jti^

Returning to the theory, we now solve for the wavelet by means of the function 
m\. We give the first row of the matrix M and must find the second row. The orthogonality 
condition (6.4.33) requires that we have

(mi(0,^i (£ + I)) = a(0 (m0 (? + |)’ -^o(O)

for some 1-periodic complex-valued function a(|). The normalizations (6.4.31) and 
(6.4.32) further require that |a(|)| = 1. Finally, the substitution £ | shows that
a must satisfy the half period condition a(| + |) = — a(|). Thus we find the general 
solution

(6.4.35) mi(£) = m0 (£ + i)a(£), where a + |) = -a(£), |a(|)| = 1.

It is immediately verified that this choice of mi satisfies the conditions of Proposition 
6.4.36. Therefore the wavelet can be obtained through its Fourier transform as

(6.4.36) vp(£) = m\ ( - | <!>( - | = mo( - H— | | <!>( - | .
S \2 ) \2J \2 2/ \2J \2J

Clearly we have infinitely many choices for a. A unique choice is dictated by the 
normalization that the Haar scaling function 0 = 1 [o, i) give the standard Haar function 
xff. Thus we choose a (£) = — e~27Tl^, which satisfies all of the conditions. Computing in 
detail, we have

Mi(t) = -e 27ri?mo (? + 0

= _le-2^ ^^e2^+,/2)
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Referring to (6.4.25), we have the explicit representation of 'l'(r) in terms of 
n)}„sZ, namely

(6.4.37) 4>(r) = J2(-1)',a1_„4>(2t-n).

This explicit formula displays the orthonormal wavelet in terms of the scaling function 
and the structure constants. In case of the Haar scaling function (a0 = 1, a\ = 1) we 
obtain the standard Haar function <P(z) = — 1). In the Fourier domain
(6.4.37) is written

(6.4.38)

Finally, we prove that the spaces V/+i © Vj are spanned by the set consisting of 
{<P(27r — k)}kez- By scaling, it suffices to prove this in case j = 0.

Proposition 6.4.38. Anyf e Vi © Vo can be represented by its Fourier transform 
as

f^) = m0 ^ + 0v(|)4>^0

where v e L2(IR/Z) satisfies v(£ + |) = — v(|). In particular, we can write

(6.4.39) /(r) = ^c„4>(f-n)

w/iere £„eZ |c„|2 < oo.

Proof. Since f e VH we have/(r) = an$(2t - n) for some a e /2(Z). The orthog
onality to Vo further requires fRf(t)<i>(t — k)dt = 0 for all k e Z. In terms of Fourier 
transforms, we have

7(0 = \ ) := c(|) *(() >

0 = [ f(£)^)e~2nM; dq VA e Z.
Jr

Now we can apply the same computations as those following (6.4.34) to conclude that

w0(l)C(|) + m0 C = 0.

But we have already seen from the proof of Proposition 6.4.36 that the general solution of 
this equation is obtained as (6.4.35). Finally, this can be written as a multiple of <X>(£/2) 
defined in (6.4.38), expressed as

/(I) = mQ v(O4>(|) = -atfk2’"^),

which translates into the t domain as (6.4.39). ■

In conclusion, we note some other basic properties of the scaling filter m$.
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Proposition 6.4.39. If mo is the scaling filter for an MRA, then |m0(|)| < 1 and 
mo(O) = 1, mQ (|) = 0.

Proof, This follows from (6.4.31) and then setting £ = 0 in the scaling equation in the
Fourier domain (6.4.15). ■

6.4.5.1 Direct proof that Vi e Vo is spanned by{^(t- k)}ke%

Proposition 6.4.40. Any f e Vi is equal to its projection on the set of functions 
spanned by {4>(Z - k)}k^, {<P(r - k)}keZ-

Proof. Since Vi is spanned by {4>(2r — Z)}/Gz, it suffices to prove that for each I e Z,

<t>(2r - I) = - k) + yykW(t - k)
keZ keZ

where ck, dk are the generalized Fourier coefficients of (2t — I) with respect to the 
orthogonal system {4>(r — k)}ke%, {^(r — k)}ke%. Computing directly, we have

ck= 4>(2r -Z)4>(r -k)dt
Jr

= - [ 4> ( -) e-i^'^>^)e-2n^ di-

= - Z 4> (-) e-^'4> -) e-2’"'** d£
2 JR \2/ \2/ \2/

= [ |<^)iWlk’2n,w+M
Jr

= [ m0(^e~2!!^2k+l) di-,
Jo

where we have changed £ 2£ in the next-to-last line and used periodization in the last
line. Similarly

dk = / mdl-ye-2*^2^ dl;
Jo

— (_i)1-/-2* f m0(??)e_27riZ/(2Z:+/~1) J77.
Jo

Thus q is the 2k + Zth Fourier coefficient of m0 and dk is ± the 2k +1 — 1th Fourier 
coefficient of m0. Hence by Parseval,

^2fel2 + l<4l2) = [ l"’o(’7)l2^ = |- 
keZ 2

On the other hand,

f |<t>(2f - Z)|2 dt = | f \<t>(y)\2dy=^-, 
r Jr

which completes the proof.
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6.4.5.2 Null integrability of wavelets without scaling functions
Any wavelet may be expected to have integral zero. Indeed, (6.4.38) shows that 'i'(O) = 
mQ (|) <I>(0) = 0, by Proposition 6.4.39. In particular, if e Lx (R), then we must have 

(0) = 0. Yet this may not be strictly true if the scaling function does not 
belong to the space L1 (R). For example, the Shannon wavelet has 4>(r) = (sinjrOM^ 
which fails to be integrable, from which it follows that the associated wavelet defined 
by (6.4.38) also fails to be integrable.

The following proposition generalizes the property of null integrability in two 
directions: (i) to wavelets that do not necessarily belong to an MR A and (ii) to higher 
dimensions. The proof assumes only orthonormality. We use the notation Sj for the cube 
of lattice points k defined by the inequalities -2>-‘ < kt < 2J~l for i = 1,..., d. Thus 
card(5;) = 2jd.

Proposition 6.4.41. Suppose that 'I'gL1®'1) AZ.2(R'!) has the property 
that {4'#} := {2^/24'(2>r - fc)}, <i<N,keZ(l is an orthonormal set and that 
Q D [— 1, 1]J is a cube centered at 0 with fQC |4>| < 4>| > 0. Then

s/N < 2V|2(2|/| fRd 4>|. In particular, if {4^}^+ is an orthonormal set, 
then fKl = 0.

Proof. Let fRd 4> = Reie with R > 0. Replacing 4> by we preserve the orthonor
mality of tyjk while achieving fR(t 4> = R > 0. Now let Q D [—1, 1]J be a cube centered 
at 0 so that \fQ( 4>| < R/2. Then for any set A with Q c A, we have | fAC 4>| < R/2 and 
|Re fA - Re fR(l 4> | < R/2, so that Re fA 4> > R - R/2 = R/2. Now let

(6.4.40) T- := £4'(2<r - k) ==> ||T,||2 = £2-' = L

On the other hand,

Tj = V^[ V(2jx-k)dx 
20 J2Q

= H2~jd f V(u)du.
J^Q-k

But if Q = [—M, M]d and x e Q and j > 0, then |(x,+ kj)/2j+l | < M, so that 
Q c 27+1 Q — k for k e Sj and x e Q. This means that

(6.4.41)

On the other hand, the orthonormality of 4^ implies that {YJ is an orthonormal sequence, 
so that for any TV > 1 we have

(6.4.42)

On the other hand, (6.4.41) shows that

(6.4.43)
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We combine these and apply the Cauchy-Schwarz inequality in the last line:

from which the first statement follows. To prove the second, we take V/V > 2S/\2Q\/R to 
obtain a contradiction, hence R = 0. ■

6.5 WAVELETS WITH COMPACT SUPPORT

In this section we develop the tools to construct MRA wavelets whose scaling functions 
are differentiable and vanish outside of a finite interval. This will be done by a passage 
from the scaling filter to the scaling function.

Clearly, a necessary condition for a compactly supported scaling function is that 
the scaling filter be a trigonometric polynomial. This is also sufficient, formalized as 
follows.

Proposition 6.5.1. Let <I> be the scaling function of an MRA satisfying the 
hypotheses of Theorem 6.4.27.

(i) If <Z>(7) = 0 for |r| > M, then the structure constants satisfy an = 0 for 
|n| > 3M. In particular the scaling filter is a trigonometric polynomial:

(6.5.1) zn0(?) = | E ake~2n^-

(ii) Conversely, suppose that the scaling filter is a trigonometric polynomial 
(6.5.1). Then the scaling function can be obtained from the infinite product

(6.5.2)
oo

*(<)=
7=1

and <I> has compact support.

Proof. From orthogonality, we have an = 2 fMM <t> (r) (2r — n) dt. If |n| > 3M then the 
support of 4>(2r — n) is disjoint from [—M, M] and the integrand is identically zero, hence 
an = 0 for |n| > 3M. Conversely, suppose that m0 is a trigonometric polynomial. Since 
m()(0) = 1, the infinite product (6.5.2) converges and we have for any N

where the last factor tends to 1 when N -> oo, hence (6.5.2) holds.
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From the construction, <!>(£) = lim/v n^d), where FI^(|) '■= FI^j mo(£/2z). Now 
Fl/v (£) is a finite linear combination of terms of the form

where |r7 | < M. This is the Fourier transform of a linear combination of <5-measures 
concentrated at the points x =. ^'rj e [~M, M]. Hence the scaling function is the 
weak limit of measures concentrated on [—M, M], in particular of compact support. ■

6.5.1 From Scaling Filter to Scaling Function

Having obtained some conditions in terms of the Fourier transform of the scaling function 
and its scaling filter, we now attempt to go in the other direction. Beginning with the 
scaling filter mo(|) we attempt to construct the scaling function. The next theorem does 
not assume that mQ is a trigonometric polynomial.

Theorem 6.5.2. Suppose that mo(|) is a 1-periodic function on the line that sat
isfies the following conditions:

(6.5.3)

(6.5.4)

(6.5.5)

m0(0) = l,|m0(OI>

ImoO2 +

c>0 for HI <

/ 1\2

C 1
log2(l/|||) 111 " 2’

Then the infinite product /2*) converges and defines an ^function & for
which {<!> (t — k)}/^ is orthonormal and <£> is the scaling function of an MRA.

We remark that although condition (6.5.3) can be weakened, it cannot be dispensed 
with entirely, as shown by the next example.

Example 6.5.3. Letm^) = ±(1 -W"6**).

Computing the infinite product explicitly, we find that for $(£) = 
(1 — e~h7ll^/6Tti%, which is the Fourier transform of d> = |l[o.3b whose translates do 
not form an orthonormal sequence.

Exercise 6.5.4. (a) Check this calculation, (b) Check that ||0||2 < 1. (c) Show 
that {4>(f — k)}k^ does not form a Riesz sequence.

We will see below that the lower bound in (6.5.3) can be replaced by a weaker condition, 
which is in fact necessary.

Proof of the Theorem. We will break the proof into four distinct steps, which will reveal 
the points where the different assumptions are invoked. The first step is a general statement
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about L2 functions. If 0 e L2(R), let

M :={0 eL2(R) : ||0||2 = 1 and / — k) dt = 0, VfceZ\{0}}.
Jr

Step 1. M is a closed subset of L2(R).
To see this, we let 07 e M with 07-> 0 e L2(R). Using the notation Lk<i>(t) = 

0(r — k), a norm-preserving operator, we have

(0, L,0) - (0„ Lk<t>j) = (0 - 0„ Lk<i>) + (0y, LkQ - Lk<i>j)

1(0, Lk<$>) - (0„ Lk*j)\ < ||0 - 0y||2||^0||2 + ||0y||2||L^0 - Lk<Pj||2

= ||0 - 0;||2||0||2 + ||0;||2||0 - 0,112

-+ 0.

Taking k = 0 shows that ||01|2 = 1. Taking k / 0 proves that (0, Lk<i>) = 0, i.e., 0 e M.

Step 2. We define an inductive process beginning with the Shannon wavelet. Let 0O (t) = 
(sin TrO/yrr, with 0O(?) = lr_ i and define for j > 1.

*/($) = '"of f)

We claim that 0, e M for all j > 0.
To see this, we will use mathematical induction to prove that {07(f — k)}kez is ortho

normal. For j = 0 we have |0o(£ + Ol2 = 1, so that 0o(f — k)ke% is an orthonormal 
set, i.e., 0o e AL

Assuming that 0y-_ i € M we write 0, (£) = mo(£/2)0,-i (£/2) and compute

The first sum can be written |0,_i (£/2 + Z)|2, which equals 1 by the induction hy
pothesis. The second sum can be written I^j-i ((£ + l)/2 + Z)|2, which also equals 1 
by the induction hypothesis. Hence (6.5.4) shows that we have orthonormality for all j, in 
particular fR |0,|2 = 1, completing Step 2.

Step 3, The infinite product (6.5.2) converges uniformly on compact sets to 0 e L2(R) 
with || 01|2 < 1 and lim^_>o 0(£) = 1-
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It suffices to prove uniform convergence on the interval |£| < M with M > 1. This 
follows from the estimates

m0 T- 
\2J

C
~ log2 (M2--') ’

||| >M- 1

_________ C
(log A/ — Jlog2)2

C
- (J log 2)2’

which is the general term of a convergent numerical series. To prove that <i> e L2(R), we 
use Fatou’s lemma:

||0||2 = || lim0y||2<liminf ||^||2 = 1, 
J J

which completes Step 3.
We define as the L2 function such that = 4>. It remains to prove that g M.

Step 4. ||4>j - 0||2 -> 0 when j -> co.
To see this we will first prove that for some Ci > 0, | <!>/(£ )| < Ci <!>(£) for all £ e R 

and all sufficiently large j. From Step 3, the infinite product is uniformly convergent on
|], hence for some M we have fI7>M|m0(£2~j)I > | for all |£| _ Hence

1 M i i
|4>(l)l > FI > -cM, HI <-

J=1

where c = inf^|<i/4 |m0(^)|. Hence inf|^<i/214>(£)| > C > 0. From the definition of 
in Step 2, we see that on the interval |£ | > 27-1, is zero, whereas on |£ | < 27"1 we have 
<£>(£) = <X>7 (§)<I>(§/27). We can solve this to write for all j,

(6.5.6) |^(|) | = <c-'|*«)|i[-2(->.2/-li(?)<c-1ia>(|)i

where C = infr_j/2i i/2] | <!>(£) |, so we have proved the stated domination. Thus |<!>/(£) — 
<J>(£) | tends to zero and is bounded by an L2 function, which shows that || <5,■ — <t> ||2 0, by
the dominated convergence theorem. Parseval’s identity shows further that || 4>y- — 4> ||2 -> 0 
which completes Step 4.

Combining these results, we see that e A4, namely the integer translates of 
form an orthonormal sequence. The uniform convergence from Step 2 shows that <I> is 
continuous at £ = 0 with 4>(0) = 1, while the scaling identity follows from the definition 
of <I>:

00 / £ \ / £ \ ~ / £ \ = FIM 2? ) = OT°( 2/ \2/ 
j=\ \ / \ / \ /

Applying Theorem 6.4.27 completes the proof.

Exercise 6.5.5. Suppose that the 1-periodic function satisfies (6.5.4) and 
(6.5.5).

Define an operator P on nonnegative measurable functions by

Pf& =
n

2/
1
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(i) Check that Pl = 1.
(ii) If g satisfies the equation g(£) = mo(£/2)g(£/2), define e(£) = 

+ Ol2 an^Prove that ?e — e-

(Hi) Define <$>(£) : = , mo (£/27). Assuming that the unique solution ofPf = f
isf = const, prove that {<£(7 — &)}z:Gz is an orthogonal sequence.

Hint: For part (ii), copy Step 2 of the above proof.

6.5.2 Explicit Construction of Compact Wavelets

In order to construct wavelets with compact support, it remains to exhibit trigonometric 
polynomials with the properties (6.5.3) and (6.5.4), since (6.5.5) is automatically satisfied 
for any trigonometric polynomial. We begin with a trigonometric polynomial C(£), 
which satisfies the following conditions

(6.5.7)
C(l) >0,C(|) >0for 1^1 < 1, C(0) = l, C(|) + C^ + 0 = 1.

For example C(£) = cos2 satisfies these conditions.

Exercise 6.5.6. Show that any trigonometric polynomial that satisfies (6.5.7) is 
of the form

1 N
(6.5.8) C(|) = - + cos(2& + 1)2k| + bk sin(2fc + 1)2tt|)

2 k=\

for some N and suitable values of the real constants a^,

Once we have found a solution of (6.5.7), we need to find the scaling filter mo 
as a suitable square root. This is accomplished by applying the following lemma on 
factorization of trigonometric polynomials.

Lemma 6.5.7. Fejerand Riesz: Suppose that t(x) = ^_n ck£lkx Is a nonnegative 
trigonometric polynomial. Then there exists a trigonometric polynomial q(x) so 
that t(x) = q(x)q(x) for all x e R.

Proof. We first prove the lemma in case t(x) > 0 for all x. Since t(x) is real, the coefficients 
must be Hermitian-symmetric: c_A = ck for — n < k < n. Define a polynomial in the 
complex plane:

P(z) ■■= c_„ H------- 1- c„z2" = c„ H------- 1- c_„z2n.

Clearly we have

f(x) = e""P(e"), z2l‘P ( - | = P(z).
\z /

This implies that, whenever a is a zero of P in the exterior of the unit circle, then 1 /a is 
a zero in the interior of the unit circle, of the same multiplicity. Furthermore, there are no
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zeros on the unit circle, since t(x) > 0. Factoring out the zeros and simplifying, we have

P(z) = Czm T[(z - ak) (z - 4-)

t(x) = e~"'xP(eix) = Ce‘,,x Fl ( 
t \ ak J

for suitable integers m,p. Since t(x) > 0, we must have p = 0 and C/n^a* > 0. This 
leads us to choose

q(x) = clW - ak\ c := — 
y Hkak

which completes the proof in case t(x) > 0. In the general case when r(x) > 0, we apply 
the above construction to the trigonometric polynomial 6 + t(x), to obtain a trigonometric 
polynomial ge(x), which depends continuously on 6. In particular, we can take ^o(x) = 
lime q€ (x) to obtain the required trigonometric polynomial. ■

We present several concrete formulas for generating the required trigonometric 
polynomials

6.5.2.1 Daubechies recipe
This begins with the identity cos2 tt£ + sin2 tt£ = 1, which is raised to an odd power:

/O NT | 1 \
1 = (cos27t£ + sin27r£)2yv+1 = , ) sin2\7r£) cos4yv+2-2\7r£).

k=o V k '

This sum has an even number of terms. We take the first half of the terms and define

(6.5.9) C(|) := V sin2*(7r£) cos4yv+2-2/:(7r£).
k /

When we replace £ by £ + | the sines turn into cosines and the cosines turn into sines, 
yielding the remaining terms in the binomial expansion; thus C(£) + C(£ + |) = l,as 
required. Clearly C(0) = 1 and C(£) > 0 for all so that the conditions (6.5.7) are 
satisfied.

It is also useful to write this in the factored form

_N _ /O NT I 1 \
(6.5.10) C(|) = (cos2 nl-)N+l ( ) sin2*(7r|) cos2;v“2\7r£)

k=o \ k '

= (cos27r|)w+1[(cos2 7T^)W H-------- 1- ^(sin2 tt£)w].

The second factor can be rewritten as a polynomial in sin2 tt£ with positive coefficients, 
which will be shown below. Therefore the maximum of the second factor is attained 
when sin2 tt£ = 1, cos2 tt£ = 0, and we obtain the useful bound

C(|) < (cos27T^a'+i
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The last factor is the middle term of the binomial expansion of (1 + l)2/v+1 and can be 
conveniently expressed by Laplace’s method as asymptotic to 22/v+1 .

Exercise 6.5.8. Show that (6.5.9) can be written as a trigonometric sum in the 
form

C(|) = - + ^ak cos(2fc + 1)2tt| 
2 k=i

for suitable values of the constants a^

Exercise 6.5.9. Use Laplace’s method for integrals to show that

(2N + 22/v+1/Va^t N -> oo.
\ N ) 1

2X+1 /? v 4- 1 \
4-^+' £2 ( Jy^-'Cl-y)2/v+1^ 

jt=/V+l x /

= (1 -y^'P^y) +yN+'PN(l -y).

In particular (1 — y)/v+1P/v(y) = 1 + O(yN+]), y —> 0. Now let

JL /v _i_ k\e/v(y) = £( , )y‘ = (l-y)-<N+l> + O(yw+l), y0, 
k=0 X k /

which is the first N + 1 terms of power series expansion of (1 — y)_(/v+1). Thus

(1 -y)N+'QN<y) = 1 + O(yw+I), y -> 0

hence the difference polynomial satisfies

(l-y/+l[Pw(y)-ew(y)] = O(yN+l), y 0.

Hint: Begin with the integral representation

We still need to show that the Daubechies recipe can represented as a polynomial 
with positive coefficients. In fact

Lemma 6.5.10. Let PN(y) = ZLo ~y)N~kfor^ < y < I- Then

Pn(y) = iXo Ctk)yk- fnparticular PN(y) < PN(1) = (XT

Proof. From the binomial theorem, we have

1 = (y + (l -y))2N+l

4^' /2Af + 1\ k CIN+i-k
= L( z. )/(i -yr 

k=0 X k '

= (1 - y)w+l ^2 P\+ ')/(! - /W"‘
A=() X K ' 2
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In particular, the first N derivatives of the polynomial PN — QN evaluated at y — 0 are all 
zero, hence the polynomial is identically zero, and we have proved that P/v(y) — <2/v(y) = 
0, as required. Since the coefficients of QN are positive, it follows immediately that for 
0<y<l,Pw(y)</\(l) = (2"+l). ■

Exercise 6.5.11. Show that we have the following values ofPN(y).

Pl(y) = l+2y, />,(!) = 3 = (?)

P2(/ = l + 3y + 6/, P2(l) = 10 = (f)

P3(/ = l+4y+10/+20/, P3(l) = 35 = Q

P4(y) = 1 + 5y + 15/ + 35/ + 70/, P4(l) = 126 = Q

P5(y) = 1 + 6y + 21/ + 56/ + 126/ + 252/, P5(l) = 462 = ('5')

P6(y) = 1 + ly + 28/ + 84/ + 210/ + 462/ + 924/, P6(l) = 1716 = Q

In the above Daubechies recipe, we used an odd exponent in the binomial theorem 
so that we could conveniently group the terms into two separate groups. The following 
exercise shows that one can make a parallel computation for even exponents also.

Exercise 6.5.12. ForN > 2, define

Ri^y) = PfVo ~y)N-
/ 2\N >

Show that 1 = (1 — yfRuty) + yNRN<f- —y) and deduce thatR^ is a polynomial 
of degree N — 1, specifically, Ruty) = PN-\(y), defined above, for N > 2.

6.5.2.2 Hernandez-Weiss recipe

This begins with the function

f/ sin2m+1 (2jtf) dt
(6.5.11) gfn& = 1 - ------------------ —

ff sin2m+1(27rr) dt

defined for — | | and extended periodically. Clearly 0 < gm(£) < 1 with
gw(0) = 1, gm (|) = 0 and gm(lf) > 0 for 0 < |£| < |. A direct computation shows 
further that

gm(£) +

2 ff sin2/77+1 (2jrt) dt — sin2m+1 (2jrt) dt — /q+2 sin2w+1 (2jrt) dt 

ff sin2w+1(27i7) dt

ff sin2/n+1 (2jrt) dt — sin2m+1 (2jrt) dt - ff+2 sin2m+1 (2jtt) dt

ff sin2w+1 (2jtt) dt

= 1

since the integrand is odd about t = |. Thus the conditions (6.5.7) are satisfied.
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Exercise 6.5.13. Show that (6.5.11) can be written as a trigonometric sum in the 
form

। m
gmtf) = X + ^ak COS(2£ + 1)2tt£

2 *=1

for suitable values of the constants a^.

6.5.3 Smoothness of Wavelets

We now investigate the smoothness properties of the compact wavelets, which are con
structed in terms of the scaling function The estimates obtained below, although not 
optimal, do show that one can obtain compactly supported wavelets of any degree of 
smoothness, beginning with a suitable trigonometric polynomial mo(|).

We begin with the function C(£) = |^o(^)|2, which satisfies the properties (6.5.7).
Following the Daubechies example from (6.5.10) we can write

C(£) = (cos2 7T^)yV+1P/v(sin2 7T§),

where PN is a polynomial of degree N that satisfies a bound |P/v(y)| < KN for some 
constant KN.

The scaling function satisfies the relation

i4>(Di2=nc i).

A pointwise estimate is obtained by using the identity sin# = 2 sin(0/2) cos(#/2) to 
write

Tri:
cos —•••COS—I Kjn

< \ 2(W+I)
Sln7r£ \ K/+1

2/+' sin (2£)

Now restrict £ to lie in the dyadic shell defined by the inequalities 2/-1 < |£ | < 27 . With 
this restriction, we have 7r£/27+1 < tt/2 and we can use the inequality sin 9 >29/jr to 
underestimate the denominator. At the same time we use the upper bound | sin 91 < 1 in 
the numerator. Combining these with the bound for KN we have

/ i \ (/v+i)
1*0 < T- ^'+l)/2, 2>-' < |£| < 2>

\ J
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Therefore

f . / 2//2 \ / 2N+1/2 \A-'<KI<2, - ((WTrp'J \(W7T)1/4/

/ 2l/2 y / 27V+l/2 \
= \ (TVtt)1/4) \(Ntt)'/4J

= C2~'a, a:=log2^-2
4

To complete the proof of smoothness, it remains to prove the following proposition 
from classical harmonic analysis, related to the Littlewood-Paley method.

Proposition 6.5.14. Suppose thatf e L2(R) and that for some ot > 0, C > 0, 
we have the system of inequalities

(6.5.12) [ |/O<^ < C2~af j = 0,1,2....

J2'-'<|£|<2-/

Then

(i) IfO < ot < 1, thenf satisfies a Holder condition with exponent a.
(ii) If K < ot < K + 1 for some K G Z4, thenf has K continuous derivatives 

andf{K} satisfies a Holder condition with exponent a — K.

Proof. The hypothesis (6.5.12) shows that/ € L1 (R), since

iy^)i^ + cV2-“' < oo.
Jr J|$i<i 7>i

In particular/ is a.e. equal to a continuous function. To prove the Holder continuity, first 
suppose that 0 < a < 1. Define the index j = j(h) so that (1/2)/+1 < \h\ < 1/2’. 
From (6.5.12) we see that/ e L1 (R) so that we can write the absolutely convergent 
integral

f(x + h) -f(x) = [ (e2^ - l)/(f) d$
J1R

= I + II + III

where

I=[ e2”'xi (e2nihi-l)fa)d$ 

l< 2
II = [ e2”'x( (e2’"* -

III = [ e2™4 (e2^ -
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It suffices to prove the Holder condition when \h\ < 1. Making use of the inequality 
\eld — 1| < 0, we have

|/| <7T|/z| [ <7r\h\a\\f\\i

\ii\<27t\h\Y [ i^ii/o^
k=0 J2k

j 
<C\h\Y^ 2~ak 

k=Q
J

= C\h\^2k('-a} 
k=0

= C(a)|/i| (2(-'+l)(|-") - 1)

< C(a)|h|a

where we have used the definition of j = j(h) in the last line. Finally, we have

OO /»
\III\<2yl \fa)\d$

k=j+\J^ 1 <I5I<2‘

< 2C 2“te 
k=j+\

= 2C(a)2-7“

< 2C(a)|Zi|“,

which completes the proof in case 0 < a < 1. Now if a > 1 we see immediately that 
/R l£ll/O < oo so that we have the absolutely convergent integral

/'(*) = [ 2nix^f(^d^
JR

from which we can repeat the above reasoning to show that/' satisfies the appropriate 
Holder condition. The higher derivatives are handled in the same manner. ■

We can summarize the above results in the following form.

Theorem 6.5.15. For any preassigned integer s, there exists a compactly sup
ported scaling function with continuous derivatives up to order s, so that the 
corresponding MRA generates a wavelet 4^ of compact support with continuous 
derivatives of order s.

6.5.3.1 A negative result
It is interesting to note the impossibility of constructing wavelets that are simultaneously 
infinitely differentiable and of compact support. The following discussion includes the 
case of MRA wavelets, but also applies to wavelets which may be constructed by other 
means.
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Proposition 6.5.16. Suppose that iff e L2(R) has the property that 
— k)}j,kE% is an orthogonal set.

(i) Ifi]/ e L1 ClL°° Cl C, then = 0.
(ii) If for some m G Z+, <5 > 0, we have i/s, , i/r(zn) g L1 Cl L00 Cl C with

= O((jji)'”+1+i), |x| -+ co, then 0 = - fKxi/r = ••• =

Proof, Letting a = k/2j e Q2 be an arbitrary dyadic rational number, we have from the 
definition of orthogonality

0=1 ^(x^^x: — k)dx 
Jr

= f Vr(x)l/r(2y(x — a)) dx
Jr

0= [ ^(a + y2~J)\jf(y)dy
Jr

where we have made a change of variable in the integral. Letting J -> 00 with k = a2j 
(a fixed), we use the dominated convergence theorem to conclude that 0 = (a) fR^(y) dy. 
If f^\p / 0, then ^(a) = 0, Va G Q2 hence x/s = 0, a contradiction, proving part (i).

To prove part (ii), let

9i(x) = j ^{y)dy,02{x) = j 0t(y)dy,... ,0m(x) =f 0m^(y)dy.

Clearly 0}(x) = <9(l/|x|)'"+s,x —> —00. But since we have proved in (i) that f^xjr = 0, 
we can write 6\(x) = — xf/^y^dy, showing also that 6\(x) = <9(l/|x|)"l+5, x —> +00. 
Hence we can integrate by parts and write

I x^(x) dx = I x6'x (x) dx = — / 6\ (x) dx.
J R Jr Jr

Now we use orthogonality and partial integration to write

0= [ ^(a + y2~Jpjr(y)dy 
Jr

= [ ty(a + y2~J)(fx(y)dy
Jr

= - [ \lf\a + y2~J)ex(y)dy.
Jr

Letting J —> 00 with a G Q2 fixed, we have 0 = (y) dy = /R xty(x) dx.
If /R xVr(x) dx / 0, we conclude that = 0, Va g Q2, which proves that ft is a linear 
function, a contradiction. Proceeding inductively, suppose that we have shown that

0= [ 0dy)dy = --- = [ 6m_l(y)dy. 
Jr Jr

From the hypothesis on x/r, we obtain the bounds

(|\m+5 /1\1+5
-I ,..., efn(y) = o( - ) , |y|->00.
y) \y)
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Partial integration shows that

I dx = — m I xm~l0](x) dx = (—l)mml ] Om(x)dx.
Jr J ir J ir

From the orthogonality relation we have for any a e Qi, J' e Z

0= ( ^(a + y2~J)t(y)dy = (-l)m [ ^m\a+y2~^m(y)dy.
J R J R

Letting; —> 00 with a fixed and using the hypothesis on Vr(/n) proves that

$ = [ em(y)dy=^ [ ym^Ky)dy,
Jr ml JK

from which it follows that if fRytn^ / 0, then i/r is a polynomial, a contradiction. ■

Corollary 6.5.17. Ifijr e and {27/2i/r (27x — k)}j^eZ is an orthogonal set, then 
i/r(x) = 0.

Proof. From the previous proposition, we have fR xm^(x) dx = 0 for all m e Z+. Since 
has compact support, we can find a sequence of polynomials pn (x) that converge uniformly 
to fr(x) on the bounded interval of support. From this it follows that fR \^(x)\2dx = 0, 
which shows that = 0, as required. ■

We can obtain the same conclusion if we have a suitable decay rate.

Corollary 6.5.18. Suppose that i/f e S and that for each A > 0

Am flim 777 / = 0.
M^oq Ml

7/*{27/2i/r(27x — is an orthogonal set, then i/r(x) = 0.

Proof. From the hypotheses we can apply the previous proposition to conclude that 
f^xn^(x)dx = 0 for all n. Now we can estimate by applying Taylor’s theorem with 
remainder to the complex exponential function. Thus

y~' (-2k^x)" < (2?r£x)" 
€ nl TV!

n=0

Multiplying by and integrating, we obtain

l^(?)l < ... / |xNH^(x)|dx.
Nl Jr

Applying the hypothesis shows that the right side tends to zero, hence = 0, so that 
the result follows from the uniqueness of the Fourier transform. ■

6.5.4 Cohen's Extension of Theorem 6.5.1

We have seen by an example that the positivity condition on the scaling filter in (6.5.3) 
cannot be totally omitted. Nevertheless it can be relaxed to a condition that is both 
necessary and sufficient for the existence of a scaling function of an MRA system.
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To motivate Cohen’s condition, note that the set A? = [—1, 1] has the following 
properties:

oo
(6.5.13) ^J2"A? = R

n=\

(6.5.14) J2k(| + /) = 1 a.e.
ZgZ

Furthermore if (6.5.3) holds, then

(6.5.15) j>l,^eK.

Condition (6.5.14) was instrumental in proving that the sequence of approximants 
satisfies the orthonormality condition for each j, while (6.5.13) was necessary to identify 
lim7 <&j with the infinite product <S> on the entire real line. Condition (6.5.14) states that 
K is congruent to [—|], modulo 1. More precisely, for a.e. £ G R, there is precisely 
one I e Z so that £ + I g K. As a simple example, consider K = [0, |] U [|, 2]. This 
can be transformed into [— |, |] by translating the second interval by 2 to the left. More 
general examples can be obtained by further cutting and pasting.

Now suppose that mo is one-periodic and satisfies (6.5.4) and (6.5.5) of The
orem 6.5.2. Then the infinite product (6.5.2) converges uniformly on compact sets. 
Further, suppose that K C R is a compact set that satisfies the three conditions (6.5.13)- 
(6.5.15). Defining so that <5>o = 1/c, we see that d>o has orthonormal translates, since 
52/ez l^o(I + Ol2 = 52/ez !*(£ + 0 — 1 a-e- Hence we can begin the inductive pro
cess of Theorem 6.5.2 and define <I>j(£) = <^o(|2“-/’)mo(|/2) • • •mo(§/2/), which also 
satisfies the orthonormality condition. The limit function <I> G L2(R) by Fatou’s lemma. 
If £2_/ K then <£/(£) = 0. Otherwise we may solve for <J>7(£) = <S>(^)/<S>(^2—7) and 
copy the argument in the proof of Theorem 6.5.2 to conclude that we have an estimate 
on the real line: |<i>/ (£)| < C| <£(£) |, from which we can apply dominated convergence 
to deduce that || ||2 = 1, and that has orthonormal translates. Thus we have proved 
half of the following theorem.

Theorem 6.5.19. Suppose that mo is 1-periodic and satisfies (6.5.4) and (6.5.5). 
Suppose further that there exists a compact set K C R such that (6.5.13)-(6.5.15) 
hold. Then <£, defined by the infinite product (6.5.2), defines the scaling function 
of an MRA.

Conversely, suppose that g ZJ(R) Cl L2(R) is the scaling function of an 
MRA for which YlieZ + Ol2 — L G R, and that the scaling filter mo 
satisfies (6.5.5). Then there exists a set K C R, which is a finite union of closed 
intervals such that (6.5.13)-(6.5.15) hold.

Proof. The direct assertion has been proved in the above discussion. To prove the converse, 
we begin with the orthonormality condition of <I>:

2214>(£ + Z)|2 = i, ?gr.
/eZ
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In particular, for each | e there exists k = k(f) e Z so that |4>(| + k)\ > 0.
But O e Ll (R) implies that 0 is continuous. Hence there exists 8 = 8$ > 0 so that 
10(1' + k)\ > C(|) > 0 for ||z - || < 8. Since |0(O)| = 1, we can take k(0) = 0. 
From the Heine-Borel theorem, we can extract a finite system of these open intervals which 
covers [-|, |]. Now we form a finite union U]i0V,- that covers [-|, |], beginning with 
Vo = [-60, 60]; replacing V,-by Vye(VoU-•-UVy_i)n[-|, |], we may assume that int Vj are 
disjoint. Now define K := UjLQ(Vj + fcdy))- Since 0 e Vo C K, we see that Vf£_{2nK = R, 
as required. Since {V,-} is a finite partition of [— |, |], we have ly, (£) = 1 a-e- on 

|]. Then we compute the 1-periodic function

(
Nr +1)

j=®

= r (y^ +1)
j=0 \ /gZ

N
= Em?)

;=0

= 1 a.e. £e[—

where we have used the fact that | + I e V, + fcdy) precisely once, when I = k(fj) 
(otherwise we would contradict Vj C [-|, |]). But this sum is 1-periodic, so that it is 
1 almost everywhere on R. Finally to prove (6.5.15) we note that from the above con
struction |<5(|)| > Cj when | e Vj, hence for all | e K, we have |0(| + |j)| > C = 
min{Co, ..., CN}. Referring to (6.5.2), we see that for any J e Z+, | e K, 0 < C < 
10(|)| < njL1m0d2-7), so that we must have modi-7) 0 for all | e K and j > 1, 
completing the proof. ■

Remark. Thesum]T/GZ |0(| + /)|2 = 1 under mild additional conditions, especially 
whenever this series is uniformly convergent on compact sets. This will hold if, for 
example, we have an estimate of the form 0(|) = 0(|||-/3), ||| -> oo, with/? > |.This 
will be satisfied whenever 0' g L^R). Cohen’s theorem yields an important corollary 
that gives an optimal estimate for the interval on which mo must remain positive.

Corollary 6.5.20. Suppose that mo satisfies (6.5.4) and (6.5.5).

(i) If\mo<fi)\ > c > Ofar ||| < then the infinite product (6.5.2) generates 
an MRA.

(ii) There exists mo for which |mo(|) | > 0 for || I < | far which (6.5.2) does not 
generate an MRA.

Proof. It suffices to apply Cohen’s theorem to the set AT = [—|, |]. Clearly (6.5.13) 
and (6.5.15) are satisfied so that the direct part of the theorem applies. To see that this is 
optimal, consider the example m0(|) = (1 +e-67ri^)/2. From Exercise 6.5.4 we see that the 
infinite product (6.5.2) is the Fourier transform of 1 [o,3i/3, which does not have orthonormal 
translates. ■
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6.6 CONVERGENCE PROPERTIES OF WAVELET EXPANSIONS

If the scaling function satisfies additional regularity properties, we can expect that the 
series expansion/(r) = Cj^jkif) will converge uniformly when/ is continuous or 
in Z/(R) when/ g Z/(R), 1 < p < oo. Indeed, this has already been demonstrated in 
detail for the Haar series expansion in Section 6.3. In the present section we will describe 
a class of scaling functions for which one has these extended convergence properties, as 
well as the properties of a.e. convergence.

Going beyond the qualitative fact of convergence, one can also discuss the speed 
of convergence, when / has additional regularity. Indeed, in the case of Fourier series 
in Chapter 1, we saw that the L2-Holder continuity of / is equivalent to a rate of con
vergence result in the L2 norm. The corresponding results for continuous functions in 
the supremum norm are attributed to Jackson and Bernstein in the case of trigonometric 
series. We will see below that corresponding results apply to a class of MRA systems 
associated with a suitably regular scaling function <t>.

6.6.1 Wavelet Series in Lp Spaces

We begin with a scaling function that satisfies the estimate

(6.6.1) |<h(r)| <K(2\t\),

where K : [0, oo) -> R is a monotone decreasing integrable function. In particular, 
G ZJ(R) and \f^<b(t) dt\ = 1, by the remarks following the proof of Theorem

6.4.27. The projection operator Pj is represented by the series

(6.6.2) pif^ = E'W (/ f^ik^ds\ 
ksZ Wr /

= 2' V 4>(2Jr - k) [ f(s)Q(2's - k) ds

keZ

= 2j I i>(2't,2's)f(s)ds 
Jr

where the wavelet kernel

(6.6.3) <&(t, s) := E ^0 - k^(s ~ *)•

Proposition 6.6.1. The wavelet kernel <t>(r, 5) enjoys the following properties:

(6.6.4) 4> e C(R2)-

(6.6.5) <t>(t,s) = 4>(s,t),

(6.6.6) I |d>(r, s)\ds < C < 00 and [ <b(t,s)ds=l, 
Jr Jr

(6.6.7) |<D(r,s)| < CK(\t — s\).
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Proof. From (6.6.3), we have

|<F(t, 5)1 < ^2|O(/-^)||<I>(5-Z)| < 00,
kJ

where the right side is the product of two periodic, locally integrable functions, which 
proves (6.6.4). From the definition (6.6.3), (6.6.5) is immediate. Now

[ 1$(t, 5)1 ds < £2 !<!>(? - fc)l [ M ds = noil , |4>(t - k)| < C

ke% keZ

and

/* s) ds = ( J O ) 0(r — k).
Jr \Jr / AgZ

But <5(Z) = 0 for I e Z, so that the Poisson summation formula shows that the last sum 
has the constant value <J>(0) — fR <I>, which proves (6.6.6). To prove (6.6.7) we write

4>(Z, 5)<( Z + Z )^(2|f-Z|W|5-Z|)

\/:|/-r|>|.s-r|/2 l:\l-s\>\.s-t\/2/

< K(\s - r|) ZC(2|5 - Z|) + K(|5 - t|) £2 ^(2|r - Z|)

<CK(\t — s\),

which completes the proof. ■

The main purpose of this section is to prove that Pjf f when j‘ oo and
Pjf 0 when j —oo. We can reduce this to the study of Pq by introducing the 
dilation operator Jr, defined by

(6.6.8) Jrf(t) = /(2rt), r e Z.

Proposition 6.6.2. We have the following properties:

(i) For any r e Z, we have the commutation relation PjJr = JrPj-r and the 
norm relation ||J7/||/7 = 2~ilp\\f\\p, 1 < p < oo.

(ii) There exists a constant Cp such that for each j e Z and for each f e 
Lp(K), 1 < p < oo,

mi < c„\\fwP.

Proof. From (6.6.2), we make the substitution 2‘s = u to obtain

Pjf(t)= / 4>(2^,«)/(«2-j)JM 
Jr

= P0(J-y/)(2Jr)

= JjPvJ-jfttf
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which is equivalent to the stated commutation relation. The norm relation follows from the 
identity

IW= ( \f&t)\pdt = 2-j [ 
«/IR J R

To prove (ii), we first do the case j = 0. Then

IA/WI = I <P(t,s)f(s)ds
R

<C ( K(\t- s\)\f(s)\ds < C||A'||, H/lloo
Jtt

where we have used Young’s inequality for convolutions. To treat the case j / 0, we use 
part (i) to write

= 2-^||P0J_y/||p

= C|l*lh ||/||p.

These bounds allow us to formulate and prove a general theorem on the conver
gence of the small-scale projection operators.

Theorem 6.6.3. Suppose that is the scaling function of an MRA and satisfies 
the bound (6.6.1).

(i) Iff e then \\Pjf -/||oo -> 0 whenj oo.
(ii) Iff G Lp(R)for 1 < p < oo, then \\Pjf — f\\p 0 when j oo.

Proof. First we note that Pjl = 1, which follows from fR<b(t, s) ds = 1. This allows one 
to write f(f) — Pjf(f) = 2j fR <P(2Jt, 2Js)[f(t) —f(s)] ds. Since f is uniformly continuous, 
given 6 > 0, let 8 > 0 be chosen so that \f(t) —f(s)\ < e)2C for |s — r| < 8. We write

f(t) - Pjf(t) = 2j( [ + f ) \f(t) -f(s)]^(2jt, 2js) ds.

\J\s—t\<8 J\s—t\>8/

We apply the bound JR | <t> (r, 5) | ds < C in the first integral to conclude that this term is less 
than e/2, for all j. To estimate the second integral, we use the boundedness to obtain the 
upper bound

211/Hoo ( 2j\<&(2jt,2js)\ds
J\s—t\>8

< CH/lloo [ 2jK(2j\s-t\)ds
J\s-t\>8

^Cll/lloo [ K(\u-2f\)du
J\u-2Jt\>2J8

^CH/lloo [ K(y)dv,
J\v\>2J8

which tends to zero when j -> 00, by the dominated convergence theorem. This is a uniform 
bound, independent of t g R, from which we obtain the asserted uniform convergence.



344 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

To prove the Lp convergence, we first discuss the case p = 1. From the uniform 
boundedness || Pjf || i < C||/|| i, it suffices to prove the L1 convergence on the dense set of 
continuous functions with compact support in [—7?, /?]. For such an/, we have

\\f-pjf\h = f ( \Pjfw\dt.
J\t\<2R J\t\>2R

The first integral tends to zero by virtue of the uniform convergence already proved. To 
estimate the second integral, we write

f \Pjf(t)\dt < ll/lloo f ( [ y^(2k,2JS)\ds)dt
|r|>2R J|r|>2R \J|s|</? /

< C I I 2jK(2J\s — t\) dt ds 
J\s\<R J\t\>2R

< C I I 2jK(2j\s-t\)dtds 
J\s\<R J\t-s\>R

< C I I 2JK(2J\u\) duds 
J\s\<R J\u\>R

< 2CR I K(v) dv -> 0 j -> oo, 
J|v)>2>3

which completes the proof of L1 convergence.
To treat the case 1 < p < oo, it again suffices to deal with continuous functions with 

compact support. In this case we have the bounds

1/(0 - < 11/ - Woo-1 i/w - WI

f \f(t) - Pjf(t)\p < ii/ - /’,/n^1 [ \fw - Pjf(.t)\dt
r Jr

= ii/-^/ii^1ii/-/’j/iii>
which tends to zero, by the convergence in case p = 1, already proved. This proves 
the theorem. ■

Remark. An alternative approach to the proof of Theorem 6.6.3 is to utilize theorems 
on approximate identities, which were proved in Chapter 2. We begin with the bounds

< CX [ \f(t) — f (s)\K(2P\t — s[)\ ds,

Jr

which shows that the left side is majorized by Kj *f —f where Kj is a family of kernels 
defined by Kj(s) = 2jK(2js), to which we can apply Theorem 2.2.21 from Chapter 2.

It is interesting to compare the relative simplicity of the above proofs of LP con
vergence with the difficulty in proving LP convergence of trigonometric series. For 
trigonometric series we have two main obstacles: (i) convergence does not hold in case 
p = 1 and (ii) it is nontrivial to prove uniform LP boundedness of the operators Pj. In the 
case of MRA wavelets, the basic hypothesis (6.6.1) on the decay of the scaling function 
easily provides the necessary uniform bounds, as we have seen.
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6.6.1.1 Large scale analysis
To complete the analysis of Lp convergence of general wavelet series, it remains to prove 
that Pjf 0 when j — oo. As in the case of Haar series, we expect only that this 
will take place for LP(R), 1 < p < oo and in the space Co(R).

Proposition 6.6.4. (i) Iff G C0(R), then ||P//||oo 0 when ] -oo. (ii) If
f G Z/(R), 1 < p < oo, then ||P//||p 0 when j —oo.

Proof. We begin with f e Coo(R). If/(7) = 0 for |r| > R, we can write

(6.6.9) R.mf(t) = 2~mC [R f(s)<&(2~mt, 2~ms) ds

J-R

<2 mC [ \f (s)\K(2~m\t — s\)\ds

J-R
< 2~mC\\f\\oo2RK(fi) -> 0, m -> oo.

But Coo(fft) is dense in Co(R) where we have the estimate ||Pj/||oo _ CH/lloo-
To prove the Lp convergence, it suffices to take/ e Cqo(R). For |r| < R the estimate 

(6.6.9) shows that f^R \P_mf(t)\p dt -> 0. Forr > R we make the substitution v = 2~m(t-s) 
to write

< ll/lloo / |K(V)I</V

< ||/||0O2-"'^(2-m(r - R))
poo POO
/ dt < ||/||?o2-m'’ / \K(2~m(t-Rf^dt
Jr Jr

= (°° |R(5)|" ds

Jo
= H/11^2'"*1-'” iikii; -+ 0

with a similar estimate for t < — R. ■

In exact parallel with the case of Haar series, the large scale projection operators 
to do not behave well on L1 (R).

Exercise 6.6.5. Letf G L1 (R). Prove that Pjf(t) f(t) dt when j oo.

This means that we must restrict the range of p when formulating a general Lp 
convergence theorem for wavelet series. Similarly, we must restrict to Co(R), since the 
identity P71 = 1 shows that Pjf —> 0 is false in general when/ G BWC(R) for j —oo.

Combining Proposition 6.6.4 with Theorem 6.6.3, gives a complete picture of 
the convergence of one-dimensional wavelet series in the spaces C0(R) and LP(R), 
1 < p < oo. This can be restated as a separate theorem.

Theorem 6.6.6. Suppose that the scaling function 4> satisfies (6.6.1).

(i) Iff e C0(R), then the sum YJj=-m Hkei ‘MO ds converges
uniformly to f when m,n oo.
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(ii) Iff e L'f'Rf 1 < p < oo, then the sunTfy^-m E^z ds
converges to f in LP(JL) when m,n oo.

6.6.1.2 Almost-everywhere convergence
We can prove that the projection operators Pjf converge almost everywhere when j 
oo, by using the techniques appropriate to monotone kernels from Chapter 2.

Theorem 6.6.7. Suppose that the scaling function <t> satisfies (6.6.1) and letf g 
L/R). Then Pjftf) f(t) for every t in the Lebesgue set off, in particular 
almost everywhere.

Recall that the Lebesgue set of/, Leb (/), is the set of t for which lim6Z_^o a 1 fla 1/(0 — 
/(r + u)\du = 0.

Proof. From the previous computations, we write

\f(t)-Pjf(t)\ <2j f \f(t)—f(s)\K(2j\t — s\)ds 
JR

/ pee /*0 \
= / + / ]\f(t)-f(t + 2-jv)\K(v)dv.

To treat the first integral, we define

(6.6.10)

G(u) := / |/(r) -f(t + w)| dw.
Jo

If t G Leb (/), then G(u)/u -> 0 when u -> 0 and we have the bound \G(u)| < C|w| for 
all u. Then we can set e = 2~j and obtain

r K(v)\f(t) -f(t + 6V)| dv = r K(v)G'(ev) dv

Jo Jo

€ /

G(6V)
--------dv.

ev

o

Jo

The monotonicity of K implies that vK(v) -> 0 and a partial integration shows that

oo— I vaK(v) dv = I 
Jo Jo

so that we can apply the dominated convergence theorem to conclude that (6.6.10) tends 
to zero with 6. A similar analysis applied to the integral for — oo < v < 0 proves that 
Pjftf) f(f) when t -> oo. ■

Corollary 6.6.8. Suppose that f g L’(R) and that f is continuous at t. Then 
Pjftf) f(t) when t oo.

Indeed, if / is a continuity point, then it is also a Lebesgue point of/.

Exercise 6.6.9. Extend Theorem 6.6.3 tof G LP, 1 < p < oo.
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We also note that if/ g L1 (R), then Pjf(t) 0 when j —oo. This follows 
from the estimate

\Pjf(t)\<2J [ K(2-i\s — t\)\f (s)\ds 

Jr

<2W)ll/lli

-+ 0 j —oo.

This observation can be combined with Theorem 6.6.3 to obtain a statement on the 
almost-everywhere convergence of the bilateral wavelet series.

Corollary 6.6.10. Suppose that the scaling function <t> satisfies (6.6.1). Then for 
any f G ZJ(R), the wavelet sum cjk^jk(t) converges for a.e. t, when
m,n oo.

6.6.1.3 Convergence at a preassigned point
It is natural to expect that the wavelet series will converge to the normalized value of/ 
in case / has a simple discontinuity. In the case of Fourier series one needs additional 
regularity conditions in order to ensure this convergence. In the case of MRA wavelets 
it is sufficient that the wavelet kernel satisfy the mild normalization condition

(6.6.11) f <&(t,s)ds=-= f <&(t,s)ds.
Jt 2 J-oo

Proposition 6.6.11. Suppose that the scaling function 4> satisfies (6.6.1) and that 
the wavelet kernel satisfies (6.6.11). Suppose thatf G Z/(R) for some 1 < p < oo 
and that there exist the one-sided limits f(t + 0) = lim^/fy) and f(t — 0) = 
lim5tf/(s). Then

lim^/w^it/a + o+za-o)].
j-^oo • 2

Proof. Using (6.6.11), we can write

+ 0) +f(t - 0)] - Pjf(t) = 2> If <t>(2Jt, + 0) -/(s)] ds

+ 2' J <t>(2Jt, 2Js)\f(t + 0) -/(s)] ds.

From the proof of Theorem 6.6.3 we see that both of these integrals tend to zero when 
j -> co. ■

6.6.2 Jackson and Bernstein Approximation Theorems

In this subsection we formulate results that relate the speed of convergence of wavelet 
series to the smoothness of/. We focus attention on the rate of decay of \\Pjf — f\\p.
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In order to measure the smoothness of a function, we introduce the Lp modulus of 
continuity:

(6.6.12) a>p(/;5):= sup ||/(-) -/(• - A)||p.
Q<h<8

This is certainly defined if/ 6 LP(R), but may also be defined more generally, e.g., if 
f = 1. The elementary properties are detailed as follows:

Proposition 6.6.12. The Lp modulus of continuity satisfies the following condi
tions:

(i) 8 &>p(f\ 8) is monotone increasing.
(ii) Iff e LP(W), then a>p(f', 6) —> 0 when 6 —> 0.

(Hi) o)p(f', + 62) < (Optf-, 61) + ct>p(f; 82)
(iv) a>p(fi +/2; 6) < ; 6) + a)p(f2', 8)
(v) Mp(Jaf- 8) = 2~a/pa)p(f; 2a8)

Proof. Property (i) comes directly from the definition. Property (ii) is immediate for con
tinuous functions with compact support, which are dense in LP(R), hence the general case. 
Properties (iii) and (iv) follow from the triangle inequality for the Lp norm. Property (v) is 
a direct computation when we recall the defining properties of Jaf from (6.6.8). ■

We define the space

(6.6.13) MCP(W) := {/ : cup(/; 6) < 00 for all 8 > 0}

Exercise 6.6.13. Iff g MCp(R), prove that \f\p g ^(R).

In order to prove suitable approximation theorems, we need to consider a smaller 
class of scaling functions, defined by an estimate of the form

C
(6.6.14) |<D(r)| < ----------------B > 2.

“ (1 + \t\)B

Lemma 6.6.14. If satisfies (6.6.14), then the kernel function 4>(r, 5) satisfies 
the estimate

(6.6.15) |<l>(z,5)| <----------- ---------1 (1 + |r - 5|)«

Proof. The proof is identical to the proof of (6.6.7) in Proposition 6.6.1. ■

The direct approximation (Jackson’s estimate) is the following statement.

Theorem 6.6.15. Suppose that the scaling function satisfies (6.6.14). Then there 
exists C = Cp such that for all f G MCP(W)

(6.6.16) \\f-Pjf\\p<Ca>p(f-2-J).
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Corollary 6.6.16. Ifa>p(f\ 8) < C8a for some a with 0 < a < 1, then \\Pjf — 
f\\p < C2~ja.

This is a direct counterpart of the corresponding result for trigonometric approximation, 
proved in Chapter 1 in case p = 2 or p = oo.

Proof of the theorem. First we do the case j = 0. We pick a > 0, b > 0 so that B = 
a + b and ap > p + 1, bp' > 1. Applying (6.6.15), Holder’s inequality, and the Fubini 
theorem, we obtain

\\f-P.f\\Pp< f ( f 1/(0 -/(5)||0(r, 5)1 dt 

Jr \Jr /
|/(r)-/(r + a)| 

(1 + M)B

du
\f(t)-f(t + u)\p 

(1 + |w|)^

dt

du . \p'p’. 
------------—du dt(1 + \u\f>p' J

c [ <oP(f; \u\y 
k (i + \u\yp du.

On the interval |w| < 1 we apply the monotonicity of cop to majorize this contribution to 
the integral by Co>p(l). On the interval |w| > 1 we apply the subadditivity property (iii) 
to write cop(f; u) < 2\u\cop(f; 1), hence this contribution to the integral is majorized by 
Co)p(f; 1) \u\p/( 1 + \u\)apdu < oo, since ap > p + 1.

To prove the estimate for j > 1, we use the scaling properties of Jj.

Pjf-f = JfPQ-I)J-jf

< C1i,pa>p(J_jf-, 1)

= Co>„(/; 2’0,

where we have used the scaling property (v) in the last line. The proof is complete.

Remark. This proof can be rendered more transparent by replacing the Holder 
inequality with Minkowski’s integral estimate: beginning with

|Po/(O-/(OI< f \f{t + u)-f{t)\K{u)du^

Jr

we have

\\Pvf-f\\p< f a>p(f, u)K(u) du 

Jr

<a>p(f;l) K(u)du-{-2a)p(f;l) I \u\K(u)du,
J\u\<l J\u\>l

which provides the required bound.

This result can be reformulated in terms of an estimate of the best approximation 
by elements in the space Vj. Let Sj(f) = infgGVj 11/ — #||p, which is the distance from 
/ to the subspace Vj. If p = 2, then Pjf provides the best approximation, so that
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= 11/ - Pjf II2- In general, we have \\f - Pjf\\p > Sj(f). On the other hand, given 
c > 0, let g e Vj so that ||g — f\\p < Sj(f) + 6. Then we can write

f-Pjf=(f-g) + (g-Pjf)

= (f-g)+Pj(g~f)

\\f-Pjf\\P < \\f-g\\P + \\Pj\\PjA\g-f\\P

<C\\g-f\\p

where we have used the uniform Lp boundedness of the projection operators Pj. But 
c > 0 was arbitrary so that we have the two-sided bound

\\f-Pjf\\P<CSj(f)

leading to the following restatement of Theorem 6.6.15.

Corollary 6.6.17. Suppose that the scaling function <£> satisfies the estimate 
(6.6.14). Then the distance from f e MCP(R) to the subspace Vj satisfies the 
bound

sfif) < 2’0.

We now formulate the Bernstein inequality, for which we impose a condition of 
smoothness, namely that the scaling function have a continuous derivative 4>z(r) which 
satisfies an estimate

(6.6.17) 1^(01 <C|4)(0|

for some C > 0. From this it follows that the wavelet kernel is estimated by

|3>(r + h,s) - &(t,s)\ = £2(O>(7 + h - I) - 0>(7 - iy)Q(s - I) 
left

< C\h\K(\t — s\).

Theorem 6.6.18. Suppose that the scaling function satisfies (6.6.1) and (6.6.17). 
Then there exists a constant Cp so that for any f e Vj A LP, we have

(6.6.18) *>,(/; <5) < C/?min(2'<5, l)\\f\\p.

Proof. First we do the case j = 0. Then/ = Pof G Vo and we can write

f(t + h)-f(t) = [ [4>(r + M)-<l>(r,
Jr

|/(r + /i)-y(r)| < \h\ [ K(\t — s\)\f(s)\ds = \h\K *\f\
Jr

(^|/(f+ /,)-/«*) < |/j|||K||l||/||p, 
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which proves the result in case |h| < 1. If \h\ > 1, then cup(y; h) < 2||/||p, which completes 
the proof in case j = 0.

If j z/z 0, then/ g Vj iff G Vo and we can use the scaling properties of a>p to 
write for f g V,

*>„(/; 8) = 2*8)

< C2-j/l,mm(2J8,1) ||J_jf\\p 

= Cmin(2A5, 1)11/11,,.

The Bernstein inequality (6.6.18) can be combined with the Jackson inequality to 
obtain a characterization of the LP Holder continuity in terms of the speed of conver
gence to zero of ||P7/ — f\\p. The method follows closely the corresponding proofs in 
Chapter 1.

Proposition 6.6.19. Suppose that the scaling function satisfies (6.6.1) and 
(6.6.17). Thenf g Z/(R) satisfies \\Pjf — f\\p < C2~ja for some 0 < a < 1, 
if and only iff satisfies the Lp Holder condition cop(f; 8) < C8a.

Proof. The direct statement that \\Pjf — f\\p < C2~ja is an immediate consequence of 
Jackson’s estimate, as previously noted. To prove the converse, we define Qjf = Pj+i —Pjf, 
hence \\Qjf\\p < C2~ja. Given h > 0, let m = m(h) be defined by the inequalities 
2W-1 < iih <2m. Then we write

m— 1 oc

/(0 = Po/(O + E + E
J=O j=m

m-1

f(t + h) -f(t) = Pof(t + h) - Paf(t) + + h) - QjfW
j=0

+ Yt[Qjf(t + h)-QJfit)l 
j=m

The first term is Lipschitz continuous, from (6.6.17). To estimate the first sum we have from
(6.6.18)

m—1 m— 1

E W(- + *) - QjfWp < E2JW/Hp
j=0 j=0

m-1

< c/152272^ 
j=o

< C/i2'"(1*“)

= Cha.
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To estimate the second sum we write

E lie, fit + h) - Qjfit) ||p < 2 E llOy/llp 
j=/n j=m

< C^2~ia 

j=m

= C2~ma

= Cha, 

which completes the proof. ■

The alert reader will note that the converse Proposition 6.6.19 has been stated only 
for 0 < a < 1, whereas the direct result following Jackson’s inequality is valid for 
0 < a < 1. Indeed, we see that the proof of the converse proposition breaks down if 
a = 1.

Exercise 6.6.20. Suppose that \\Pjf — f\\p < C2~f Prove that a>p(f; 8) < 
C8 \og(l/8) for 0 <h<{.

6.7 WAVELETS IN SEVERAL VARIABLES

We conclude this introduction to wavelets with a glimpse of the multidimensional theory. 
The one major change in passing from one to several variables is the need for a system 
of wavelets, in contrast with the single wavelet which suffices in the one-dimensional 
case. In order to motivate this, we consider two important generalizations of the one- 
dimensional Haar expansion.

6.7.1 Two Important Examples

Without leaving the one-dimensional setting, we can already see the need for several 
wavelets when we try to generalize the Haar expansion to describe an orthogonal expan
sion associated with a Z?-adic subdivision of the real line, where b e {2, 3,...}. Consider 
the projection operator

Pjf(x):=bH f(y)dy,
J k/tv

k k+ 1 
bi~X< bJ

and the limit relation lim^^ Pjf(x) =f(x) a.e. where/ e L2(R). In order to transform 
this into a wavelet framework, we begin with the Haar scaling function <£> (7) = l[o,i)(O 
in the context of the scaling equation

<D(0 = <&(bt) + Q(bt -!) + ••• + <&(bt -fb- 1)).

Defining Vj = Pj(L?(R)), Wj = Vj+\ © Vj, we need to exhibit a basis of the space Wj, the 
orthogonal complement of Vj in VJ’+i • It is clear that on any interval [k/bj, (k +1)/bJ) the 
space Wj has dimension b— 1. Beginning with any basis, we can apply the Gram-Schmidt 
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procedure to obtain an orthonormal basis. For example, in case b = 3, we define

1
-1

0

VP2(O =

if 0 < t < |
if 1 < t < 2 
11 3 - 3
if | < t < 1

1
—2

ifO < t < 
if j < f <

2
3
1 ‘

It is clear that fQl $(tp\P(t)dt = 0 = fQl <P(t)'I'2(t) dt and that fQl dt = 0.

Therefore we have an orthogonal basis of Vj © Vo on [0, 1]. Normalizing these functions 
we obtain an orthonormal basis off2(R) by - £)}7€z,fc€z» {vI/2(377 - fc)}7-ez,£ez- 
This demonstrates the necessity of two different wavelets.

In general, we will need b — 1 different wavelets in order to generate L2(R). 
These can be obtained by applying the Gram-Schmidt orthogonalization to the Haar 
functions {H(bt — For example in case b = 3 we can take = H(3f/2),
vp2(0 = 2H[(3r - l)/2] +H[(30/2].

As a second example, we consider the problem of generalizing the Haar series to 
L2(R2). We begin with the projection operator

r(^+l)/2^ z»(/+l)/27 rk fcii\ rj 7 _i_ 1 \Pjf(x,y) :=22j / f(s,t)dsdt, (x,y) e — —— \ x ———\
Jk/U JI/2J L27 27 / L27 27 /

and the limit relation lim^^ Pjf(x, y) = /(x,y), a.e. (x,y) e R2. As above, we let 
Vj = Pj(L2(R)) and Wj = Vj+\ © V7. The associated scaling function is <£>(7i, =
l[0, i) (^i) l[0, i) (ti) with scaling equation

= 4>(2Zi, 2r2) + ^(2^i - 1, 2h) + 4>(2Zi, 2r2 - 1) + <S>(2t{ - 1, 2r2 - 1).

Letting H(t) be the standard Haar function, we consider the products

4/l0(r,,r2) =H(tl )l[0,i)(?2)

'Pll(r1,r2)=//(nW2).

It is clear that these functions are orthonormal and orthogonal to the scaling function 
^)- We obtain an orthonormal basis of L2(R2) by considering the three sets of 

functions

{* 10(27r - k)}jeZ_keZ2, {V0i(2Jt - k)}jeZJce22, {4'"(2'7 - k)}jeZMZ2.

This is the two-dimensional Haar wavelet basis, which is constructed in a canonical 
manner beginning with the one-dimensional Haar wavelet basis. If we perform the cor
responding construction in RJ, we would need a system of 2d — 1 basic products. This 
general construction is described in the following subsection.
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6.7.1.7 Tensor product of wavelets
In order to generalize the previous example, we let (ci,..., be a multiindex, where 
c e {0, 1}. If {<£, 4*} is an MRA wavelet, the symbol is interpreted as <£> for 6 = 0 
and is interpreted as is e = 1.

Proposition 6.7.1. Let {Oa, 4^} i <<*<</ be a set of one-dimensional MRA wavelet 
systems. Let Vj be the span of (2-77j — y) <$>2(2^2 — /) • • • <I>j(2-7ij — y) where 
y e ZJ and j e Z.

Then Wj := V/+i G Vj is spanned by

-/)••• ^(2^-/)}

where (cj, ..., q) ranges overall Tl — 1 multiindices with 0 < cH------- 1- Cd < d.

6.7.2 General Formulation of MRA and Wavelets in

We now abstract these examples to formulate the MRA concept in R6/.

Definition 6.7.2. A d x d matrix A is called a dilation matrix if it has integer 
entries with eigenvalues larger than 1 in absolute value.

In case d = 1, a dilation matrix is defined by an integer b e {2,3,..,}- The 
two-dimensional Haar system is associated to the dilation matrix

Definition 6.7.3. A wavelet set with respect to a dilation matrix A is a set 
elV) so that

(I det(A'x -

is an orthonormal basis ofL2(Rd).

Note that the factor of | det A|//2 is inserted in order to preserve the norm of the 
functions 4'r.

Definition 6.7.4. A d-dimensional MRA with respect to a dilation matrix A is an 
increasing sequence of subspaces {Vj} C L2(R) defined for j e Z with

••• C V-1 C Vo c V1 c •••

together with a scaling function <£> e L2(IR) such that

(i) U^-^V; is dense in L2(IH), Vz- = {0}.

(ii) f e Vj if and only if/(A-7-) e Vq.
(Hi) {4>(x — y)}v^i is an orthonormal basis of Vq.

In the previous section we have exhibited two examples of such MRA systems.
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6.7.2.1 Notations for subgroups and cosets
If A is a dilation matrix, the image of Z6/ under A is an additive subgroup of ZJ, denoted 
A(ZJ). The quotient group Z^/A(ZJ) is obtained by applying the equivalence relation: 
v = wiffv — we A(ZJ) to the points of Z6/ to obtain a collection of cosets. These cosets 
may be labelled by coset representatives k],... ,km e %d with k[ = 0. Thus we have 
the disjoint union 

m m
(6.7.1) Zd = |J(^+A(Zd)) = |J (J(fc,+A(y)).

Z=1 /=!

Note that A maps Z^ to a proper subset of ZJ, but A is invertible on R^, since q := 
| det A | > 1. In particular, for any two sets C\, C2 C RJ,

A(C1 UC2) =A(C1)UA(C2), A(C1 nc2) =A(Ci)nA(C2),
A-1(Cj uc2) =a-,(Ci)ua-1(C2), a-1(Ci nc2) = a-‘(Ci)nA"1^).

Proposition 6.7.5. The number of elements in the quotient group Z£//A(ZJ) is 
equal to | detA|.

This will be proved using the following simple lemma on sets whose integer 
translates cover R6/.

Lemma 6.7.6. Suppose that Q C R^ has integer translates that cover R^: 
Uyezd(Q + y) = R^- Then \Q\ > 1 with equality iff these integer translates 
are a.e. disjoint:

121-1 iff 12 n (2 + y)l = o, Vy e Zd, y^O.

Proof. Let Qo := [0, l]d,f(x) := IgO — y), an integer-valued periodic function 
on with/(x) > 1, by hypothesis. Clearly

(6.7.2) |2I = [ le(x)dx= Y [ \Q(x)dx= [ f(x)dx>l.

J y e %<i JQo+y J Co

If \Q\ = 1, then (6.7.2) shows that (/(x) — 1) dx = 0, hencef(x) = 1 a.e. x e RJ, hence 
for a.e. x g the series defining/fx) contains only one nonzero term, in particular for any 
y ^Owe have a.e. 1 = f(x) > 1q(x) + lQ(x — y), which proves that |2 Cl (Q + y)| = 0. 
Conversely, if \Q P (Q + y)| = 0 for all y / 0, then the series defining/Cx) contains a.e. 
at most one nonzero term, since x — y\ g Q and x — y2 Q contradicts the hypothesis with 
y = — y2 and x replaced by x — yi. Thus f(x) < 1 a.e., which implies that/(x) = 1 a.e.,
hence (6.7.2) implies that |g| = 1. ■

Proof of Proposition 6.7.5. Using the disjoint union (6.7.1), we can write as the a.e. 
disjoint union:

m

= U (2o + V) = U U <2° + ki +A(Y^ ■

veZf/ '=1
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Let Q be the a.e. disjoint union Q '.= !(2o + &<•), a set of measure \Q\ =
m |det(A~1) | = m/q. Then for y e we can write

m

Q + y = (jA-'(<2o + fc,+A(y))
Z=1

m

U(C + y)= U IjA-'ceo + ^+W)) 
ysZ/ Z=1

(
tn \

u U<2° + A' +A(’/) 
yeZJ '=1 /

= A“'(R‘/)

= Rd

so that the integer translates of Q cover Rd. But |<2 Cl (Q + y)| = 0 for y / 0, since

|a (eP|(2 + y))| = ^(2)0(2) +A(y))| 

m m

= \J«2o + k-)nU<2o + fei+A(y)) 
1=1 t=l

= 0.

Therefore we can apply Lemma 6.7.6 to conclude that 1 = |Q| = m/q, which was to be 
proved. ■

6.7.2.2 Riesz systems and orthonormal systems in
It is straightforward to generalize the notion of Riesz system to

Definition 6.7.7. A set of functions {4\} G L2(RJ) is a Riesz system iff there 
exist constants 0 < c < C < oo such that for any finite set of complex numbers 
(ak)

c^M2< |£^|2<C^|«d2. 

k k k

In particular we have an orthonormal sequence if and only if c = C = 1.

Proposition 6.7.8. LetF e L2(IRJ).

• {F(x — y)}Y^d is a Riesz system iff c < \F(fi - Z)|2 < C a.e. £ e
• The sequence is orthonormal iff^i^d |F(£ — /)|2 = 1 a.e.
• If G e L2(Rd), then the set of translates {G(x — /)}xgr</ is orthogonal to F if 

and only if^zd ~ - /) = 0 a.e. ? e
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Proof. The Fourier transform of ^kakF(x - k) is ^kake 2nik'*F($) := X(f)F(f). 
Therefore from the Plancherel theorem and periodization, we have

|| ^akF(x - fc)||2 = £ |.A(£)|2|FO2^
= E( i>uoiW + /)i2^

iez“ J^“

= ( MO2IEl^ + Z)l2)AmF \leZd /

If c < l^(£ + Z)l2 < C, then Parseval’s theorem for Fourier series yields

Y\\akF(x - k)\\2 < C [ \A^)\2d^ = cY\ak\2
k ’'[0.1F ke%d

and

E - fc)||2 > c [ \A(l-)\2 di- = c E \akI2,
k ’'[OjF ke%d

which proves the Riesz property. On the other hand, if {F(x — k)}keZd is a Riesz system, 
then for any trigonometric polynomial A, we have

/[O,1W I^)l2(s,ezd^(f+Z)l2)^
C ~ /[(W\A(^)\2d^ - C'

First we take a sequence of trigonometric polynomials that converge boundedly to the 
indicator function nf=1 l[fl, ./>,], then we let bi -> to conclude that for a.e. £ g c < 
^ieZd |F(f + Z)|2 < C. The orthogonality statement is proved by writing

|| E a*F(x)G(x - k) |2 = Ai^F^G^ - Z) dt-

= YI[ A(^h)G^-l)d^ 

leZd

= [ A^[yw-D]dl.
’/[OJF \leZd /

The inner sum is a.e. zero if and only if all inner products on the left are zero. ■

6.7.2.3 Scaling equation and structure constants
Since Vi is spanned by translates of {<P(Ax — y)}yEzd> there exist constants ay so that 
we have the L2 convergent sum 

(6.7.3) ‘t’W = E av^^Ax - r)

where the structure constants satisfy \ay I2 < oo. Relation (6.7.3) is the scaling 

equation for wavelets in and plays the same role here as for d = 1. The scaling filter
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is defined by

(6.7.4)

The Fourier transformed equation, proved below, is written

(6.7.5) $(O = m0((A-')^)<i((A-,)*e).

Then we have the counterpart of Theorem 6.4.27.

Theorem 6.7.9. Suppose that <$> e L2(IR) is such that

(i) The translates {4>(x — y)}yEzd are orthonormal.
(ii) 4>(x) = ay<&(Ax — y), an L2-convergent sum.

(Hi) The Fourier transform <!>(£) is continuous at % = Qwith |<I>(0)| = 1. Define 
Vj = span {0(A7x — y)}xez<*. Then {Vj} defines an MRA system with respect 
to the dilation matrix A.

The proof follows the one-dimensional development and is left to the follow
ing exercises. As before, the MRA property reduces to the behavior of the projection 
operators Pj, which satisfy the uniform boundedness property in L2 : \\Pj ||2,2 = 1-

Exercise 6.7.10. For any f e L2(R), lim^-oo Pjf = 0.

Hint: First prove this on the dense set of continuous function with compact support.

Exercise 6.7.11. Let f e L2(R^) with a Fourier transform f that is bounded 
and supported in [—R, R\d for some R > 0. Then for all j sufficiently large, we 
have

(6.7.6) \\Pjf\\2=f i/o2i<i>(a-W^-

Hint: Imitate the proof of Lemma 6.4.29.

When we combine the continuity hypothesis (iii) with the identity in Exercise 
6.7.11, we see that for a dense class of/ e L2(R^), lirn^oc ||P7/||2 = II/II2, which 
implies that Pjf f for all/ e L2(IR/).

6.7.2.4 Existence of the wavelet set
It now remains to construct the wavelet system {'P1,..., 'I'5} as previously announced. 
To do this, we first need to describe the orthogonal complement W\ = 1/ © Vo.
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Lemma 6.7.12. Suppose that <£> is the scaling function of an MRA with respect 
to the dilation matrix A. Letf eV]. Then the Fourier transform satisfies

(6.7.7)

where m,f e L2(Rd/Zd) with

(6.7.8) f '
Jio.ii" ' |detA| |detA|2

Proof. Any/ e V| has the L2 convergent expansion

(6.7.9) /(x) = ^,ay<t>(Ax-y).
ye%d

We must compute the Fourier transform of 4>(Ax — y). We make the change of variable 
y = Ax — y to write

f <D(Ax - y)e~2^A dx = ——- f 3>(y)e-2’r't'/r'tv+>'> dy
Jw1 | det A | JR<i

J&d
= e-2ni^A

We define

<«>»> E
1 1 ye%d

Taking the Fourier transform of (6.7.9), we have

(6.7.11) /(?) =m/((A-|)*O<I>((A-|)*O.

Letting £ = A*rj, we obtain (6.7.7) as written.
Now we compute the L2 norm in two different ways. From (6.7.9) we have

[ |/(x)|2dr = V |ay|2 [ |<b(Ax - y)|2dx
Jr<' ysZ<z Jr-'

= I -. ; - . V = ldetAl [ \m/(£)\2d$.
|detA|^' Ln"

On the other hand, from (6.7.11), we have

[ \f(A^)\2d^=[ |m/a)|2|<i>(f)|2d?
Jw1 Jw1

= E I l™/OW + y)l2^ 
yeZd 7io. i H

= [ \mf^)\2d^
fo.iy1
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where we have used the orthonormality of {4>(x — y)} in the last step. Combining these 
two calculations, we have

[ \mf^)\2d^=[ \f(A*t)\2d$
J[0,l]d JlRd

| det A |

_ lay |2 —

| detA|2

The orthonormality properties of and the wavelet basis are translated into unitary 
properties of the functions mf, as follows. We rewrite the scaling equation (6.7.5) as

(6.7.12) =

We denote by Ti,..., a set of representatives for A*(ZJ) and their antecedents by 
k\, ..., kq, defined by A*(^) = T/. The following identity is useful for dealing with 
orthogonality.

Lemma 6.7.13. Let be the scaling function of an MRA, with scaling filter m$.
Letf, g e Vi withf(A*l=) = i(A*£) = ^(|)0(|). Then

q
(6.7.13) + 0 = £ mf^ + k‘^ + *>)•

leZd i=l

Proof. We break up the sum (6.7.13) according to the cosets defined by A*(ZJ). Each point 
of ZJ is uniquely represented as I = A*y + T,-, where 1 < i < q and y G ZJ. Thus

f(A*l- + A*y + r,)f(4*S + A-y + T,) = mf(i- + y+ k^m^ + y + *,) 14>(£ + y + fc,)|2 

= mf^ + k^m^ + *,)| 4>a + y + *,) |2

+1) = e E + y+fc-)i2
leZd i=l yeZd

= E mf^+k‘^+E + y+*->i2
<=1 ye%d

<7
= Em/(?++*>)

i=l

where we have used the orthonormality of (x — k) in the last step. ■

This identity is used repeatedly in what follows.

Proposition 6.7.14. Let be the scaling function of an MRA with scaling filter 
mo- Then the scaling filter satisfies the condition that for a.e. % € we have

^-i
(6.7.14) El^+^I2 = L

r=0
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If mi, ..., mq-\ correspond to the wavelet basis ..., then the row 
vectors (mf^ + &i),..., mf£ + kq)) are mutually orthogonal unit vectors in Cq 
for i = 1, ..., q — 1 and are orthogonal to the vector (mo(% + k\),..., mo(f + 
kq}). Conversely, if we have 1-periodic functions mj(f), ..., mq_\($) with the 
aforementioned orthogonality properties, then defining f,... ,/^_i by (6.7.7), we 
obtain a wavelet set.

Hence a ^-dimensional wavelet is described by a q x q unitary matrix just as in the 
one-dimensional case, where q = 2.

Proof. We take/ = g = <3> in (6.7.13), noting that the left side is a.e. equal to 1, by 
orthonormality, hence (6.7.14) follows. Now if we have a wavelet set vp1,..., then 
we take/ = <P', g = <3> to deduce the orthogonality of the first row with the other row 
vectors. Taking/ = <P', g = <P7 proves the mutual orthonormality of the remaining row 
vectors.

Conversely, if we are given 1-periodic functions mx,..., mq_\ with the aforemen
tioned orthogonality properties, we apply (6.7.13) repeatedly to deduce that the functions 
{/ (x — k)} j <j<q_ j ke^i constitute an orthonormal family. ■

Remark. It is noteworthy that the number of wavelets is equal to q = | det A|, inde
pendent of any details of the scaling equation.

6.7.2.5 Proof that the wavelet set spans Vj © Vo
Proof. It remains to prove that any/ g Vj © Vo is an L2 convergent sum of linear combi
nations of integer translates of 'I'1,..., <Pt/_|. Since V] is spanned by {<P(Ax — y)}y€z</, it 
is sufficient to prove that functions of this form are equal to their projection on the integer 
translates of <P, <P1,..., <Pt/-1. The following computation is carried out in the case y = 0.

Using the notation B = A*, the projection of <P(Ax) is written

£2 ck<t>(X - k)+£2 -*)+•••+12 - *)•
keZ‘l ke%‘l ke%(l

Applying Parseval’s identity, the scaling equation and periodization, we obtain

q = [ <P(Ax)<P(x — k) dx
JRd

q Jr(I

= - f t di;
q jRd

= ( m0^(r))\2e2”lk B’’dr]

Jr(I

= f m0(rl)e2’,M’1 dt]
J[(), 1 l<z

= - [ k di-.
Q J B\0,V\d
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But B[0, 1]J is the disjoint union of q sets each of which is congruent to [0, 1]J. Hence we 
can write

(6.7.15) Ck = - [ ( +L) )
? mii" \^o /

so that by Parseval’s identity we have

(6.7.16) ElQl2 = 4
q2 .Ao. 11"

9-1

+L)
<7=0

2

We compute the other sums in the same fashion, replacing m0 by m^, 1 < /3 < q — 1, thus 
obtaining

2

(6.7.17) E^fi2 =
9~1

<7=0
1 <£<?-!.

When we add the terms of (6.7.16) to those of (6.7.17) and apply the unitary properties of 
the matrix m^(£ + ka), we find q terms, each equal to l/<y2, hence the sum is 1/q. On the 
other hand, fRd | <t>(Ax) |2dx = 1 /q, and the proof is complete. ■

Exercise 6.7.15. Carry out the computaton for <£(Ax — y) with y 0.

6.Z.2.6 Cohen's theorem in
In order to construct a scaling function <$> from the scaling filter mo, we formulate the 
extension of Cohen’s Theorem 6.5.19 to the multidimensional case. As before, the main 
task is to prove that the infinite product n?21mo((A*)_,,'£) has orthonormal translates. We 
restrict attention to the case of trigonometric polynomials, which is equivalent to scaling 
functions of compact support.

Theorem 6.7.16. Let A be a dilation matrix and suppose that mo is a trigono
metric polynomial that satisfies mo(O) = 1 and^^v lmo(f + &r)|2 — 1- Suppose 
that there exists a set K C with the properties that K contains a neighborhood 
of®, + y) = 1 a.e. and rnMA*)~ty / Oforj = 1,2,.... Define
<t>0(£) = \K (|) and = mo ((A*)-1 §)<!>;_ i ((A*)-1f). Then converges in
L2(Rd) to d>, which is the scaling function of an MRA.

The proof follows exactly the steps 1 through 4 in the proof of Theorem 6.5.2, as 
modified in the proof of Cohen’s theorem in one dimension. The details are left to the 
reader.

Exercise 6.7.17. Prove that the scaling function has compact support if and 
only if the scaling filter mo is a trigonometric polynomial.

6.73 Examples of Wavelets in

We can construct an interesting class of d-dimensional wavelets by considering scaling 
functions that are the indicator functions of suitable measurable sets. If <3> = Iq is a 
scaling function, then orthonormality requires that (i) the integer translates of Q be a.e.
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disjoint, and (ii) |2| = 1. These imply that/e(x) := 1q(x + /) = 1 a.e., since 
(i) implies that/^Cx) < 1 a.e. and (ii) implies that 1 — |2I = f[Q X]dfQ(x)dx. Hence 
0 = /[0 1]f/(l — fQ(x))dx, which proves that/g(x) = 1 a.e. Now the scaling relation is 
written

(6.7.18) le(x)= J2arlG(Ax-y).

Conversely, if we are given a set Q for which 1q(x + y) = 1 a.e. and which 
satisfies a scaling relation (6.7.18), then we obtain an MRA wavelet, since Iq e L1 (RJ) 
implies that is continuous at | = 0 with <i>(0) = 1.

Exercise 6.7.18. If<& = Iq is a scaling function, prove thatay = 0 for all except 
a finite number, where ay = 1. Hence the set Q is identical to a finite sum of 
translates of an A-similar copy of itself

A large class of sets Q satisfying (6.7.18) are generated in the following manner: 
Given a dilation matrix A, let S = {F i, ..., be a set of representatives of the cosets 
f / + A(ZJ), 1 < i < q. The set Q is defined by

(6.7.19)
(X)

x e R^ : x = A~7'(57-)
j=i

where s, e S. The series is clearly convergent, since we have the estimate |A_/x| < 
Ca~j\x\ for any dilation matrix, where 0 < a < 1 and C > 0. Furthermore Q satisfies 
a scaling equation, since for any x e Q

oo
X = A-1(S1) + A-1 J2a_j(57+1) = A"'(S|) + A“'y

7=1

with y e Q. This means that x e Q if and only if for some z, we have Ax — Tz e 2 for 
some i = 1,..., q. Thus 1q(x) = 1q(Ax — Tz). The scaling relation (6.7.18) is 
satisfied with ay = 1 if y = Tz for some i and ay = 0 otherwise.

In order to prove the orthonormality, we appeal to Theorem 6.7.16. This requires 
that we study the properties of the scaling filter

1 q
(6.7.20) m0^) =

If we can find a set K to satisfy the conditions of Theorem 6.7.16, then we can assert that 
Iq is the scaling function of an MRA wavelet. The details will depend on the choice of 
the representatives k\, ... ,kq.

Example 6.7.19. If

2
0

A =
0\

27
we choose k\ = (0, 0), kz = (1, 0), £3 = (0, 1), £4(1, 1) as a set ofrepresentatives.
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Then

mo(f) = mo(fi, I2) 

= ^(l+e-2^ +

= 1(1 +e-2jr'^)(l + e“2jnH

If we choose = [—|, |]2, thenmo(f) / OonAf, so that the conditions of Theorem 6.7.2 
are satisfied. The set Q is simply the set of binary expansions of pairs of real numbers in 
[0, 1], hence Q = [0, I]2, so that we obtain the two-dimensional Haar wavelet, discussed 
previously.

Example 6.7.20. With the same choice of A, let k\ = (0, 0), = (1, 1), k3 =
(0, 1),^ = d,2).

In this case the scaling filter is

m0(|) = 1(1 + + + e-2ni(^+k)y

Letting K = [—|, |]2, we again infer that the mo(f) / 0 on K. In this case the set Q is 
the rhombus obtained as the convex hull of the four points k\, k3, k3, k^.
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NOTATIONS

A \ B is the difference of the two sets, defined as {x e A : x B}

A/±B is the symmetric difference of the two sets, defined as (A \ B) U (B \ A)

U is the indicator function of the set A, defined by lA(n) = 1 if n e A and lA(n) = 0 if 
n £ A

“iff” means “if and only if”

IK = {x : —oo < x < oo}, the real number system

IK+ = {x e IK : 0 < x < oo}, the nonnegative real numbers

IK" = {(xj, ..., xn) : x, e IK for 1 < i < n}, the n-dimensional Euclidean space

Z = {0, ±1, ±2,...}, the integers

Z+ = {0, 1, 2,...}, the nonnegative integers

ZZnez an is the symmetric infinite sum, defined as lim/v^oo an

T = JK/2ttZ, the circle, identified with (—tt, tt]

C(T) = the space of complex-valued continuous functions on T, identified with 
continuous 2?r-periodic functions on IK

Z/(T) is the space of complex-valued measurable functions on T with ||/||/? := 
((2tt)-1 Jt |/(0)|pd0)Xfp < oo, where 1 < p < oo

L°°(T) is the space of complex-valued measurable functions on T with ||/||oo := 
esssup0GT|/(0)| < oo

L[oc (IK) is the space of complex-valued measurable functions on IK with |/(x)| dx < 
oo for each M > 0

Var(/) is the total variation of the complex-valued measurable function/ on T, defined 
as the supremum of |/(xf+i) — /(xj| taken over all finite partitions of T

fh is the translate of/ e A1 (T), defined by/i(0) =f(0 — h)

(f * g)(#) = (1/2tt) - <i>) d<f>, the convolution off, g e Ll (T)
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(/, g) = 2? de’the inner product of/, g e L' (T).

1 — r2 
Pr(0) =------- z--------------- , the Poisson kernel, defined for 0 < r < 1,0 g T

l+r2-2rcos6»
2r sin 0

Qr(0) = ------- -—- --------- , the conjugate Poisson kernel, defined for 0 < r < 1,0 g T
1 + r2 — 2r cos 0

a>(f’, h) = sup0eT \f(0 + y) — f(0)\ is the modulus of continuity of/ g C(T)

Qp(/; h) = sup|},|</? /T |/(6* + y) —f(0)\pd0y/p, the Lp modulus of continuity of 

/ e Z/(T)

f(n) = — Lf(0)e~m6 dO is the «th Fourier coefficient of/ g L1 (T).
2jt

sin(7V + ±)0
Dn(0) =---------- — is the Dirichlet kernel, defined for N g Z+ and 0 ± 0 G T

sin

Ln = JT |Dn(0)| d(j) is the nth Lebesgue constant

Si(x) = 2. J* sin tit dt is the Sine Integral function, defined for x g R+

Suf(0) = Y^n=_Nf(n)eine Nth symmetric partial sum of the Fourier series of 
/eL'(T)
&Nf(0) = 1/(N + 1) — H/(N + \))f(n)eine is the 7Vth Fejer mean of the
Fourier series of/ g L1 (T)

xn(0) = 2a2n-i(0) — an-i(0), the de la Vallee Poussin mean of order n
Prf(0) = r^f(n)eine is the Abel mean of the Fourier series of/ g L1 (T)

[x] is the integer part of x g R

(x) = x — [x] is the fractional part of x g R

card(A) is the number of elements in the set A

| A | is the Lebesgue measure of the set A

PN is the space of trigonometric polynomials of degree V, functions of the form/(0) = 
ci,eikeZ^k=-N cke

is the set of Holder continuous functions, with <z>(/; h) < Ch01 for some C > 0, 
0 < ot < 1 for all h > 0

A* is the Zygmund class, {/ G C(T) : |/(0 + h) +f(0 - h) - 2/(0) I < Ch, V/z >
0, 0 g T}
/v/(x) = (1/2/z/v) /^(sin Aw/sin z/)4[/(x + 2u) + /(x — 2u)] du, the Jackson mean of 

order 4 at level N, where hN = )4 du.

/(r)(x) is the rth derivative of the function/, where r g Z+

Cr(T) = {/ g C(T) :/(r) g C(T)}

C(^)(T) = {/ g Cr(T) :/(r) g AJ

(Aa)rt = an — an-\, the first difference of the sequence {an}

Im(t) = 2^ f-n e~im6etcosed0, the mth modified Bessel function, defined for m g Z+ 
and t g R
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/(r) = <?(g(r))> f -> oo means that there exists M > 0 such that |/(7) I < for 
t > M 

/(O = t oo means that lim^oo/CO/gCO = 0
/(£) = (T7/)^) is the Fourier transform of/ € L1 (Rrt), defined by ^nf(x)e~2n*‘x dx 

(f * g)(x) = f^„f(y)g(x - y) dy is the convolution off, g e L' (K") 

a = («i,..., an) is a multiindex, where a, € Z+

|a| = -J- • • • + an is the norm of the multiindex 

£>V(x) = ay
dx"1 . . . dXn"

is the mixed partial derivative of/

ll/IL,m — SUPi-e]R'',|a|<m (1 + |x|)WWI

S = (f: < oo.VU z+, rn e Z+}
e-M2/4r

Ht(x) = —--------- is the heat kernel of Rn
(4tt0'1/2
1 — cos Tx 

kT(x) =--------- -— is the Fejer kernel of R
71 Tx2 

y 
PY(x) =----- ------- — is the Poisson kernel of R

} 7r(x2+y2)

Buc(Rn) is the space of complex-valued bounded and uniformly continuous functions on 
R"

C0(R”) = {/ € Buc(Rn) : lim|xHoo/(x) = 0}

Coo(Rn) is the set of continuous functions on Rn with compact support

Bk is the Banach space of complex-valued functions/ on R with fRf (x)/(1 + \x\k)dx < 
oo

L/7(Rn) is the space of complex-valued measurable functions on R,? with 
\\f\\P=(k..\f(x)\<’dx)i/p <oo

Leb(/) is the Lebesgue set of/ € L^0C(Rn), defined as those x € R" for which 
limr^o r~n \f(y) -/W| dy = 0

P(x, y) is the n-dimensional Poisson kernel, defined by P(x, y) = e2n,x^e~2ny^ d%

Dm(x) is the Dirichlet kernel of R, defined by DM(x) = for M > 0, 0 ± x g R

is the two-sided Fourier partial sum of/ g L1 (R), defined by f^Mf^)e27rix^ d% 

Sn/(x) = S-n,n/(x) is the symmetric Fourier partial sum of/ g L1 (R) 

Fc(£) = /0°°/(x) cos(tt§x/2) dx is the Fourier cosine transform of/ g L1 (R+) 

F/|) = /0°°/(x) sin(7T§x/2) dx is the Fourier sine transform of/ g L1 (R+) 

D$(J) = /irx2|/(x)|2 dx/ |/(x)|2 dx is the dispersion about zero of/ G L2(R) 

H^(x) = e(rx-z2/2)|r=o is the kth Hermite polynomial

Rjf(x) = f^n i$j/\$\e2n*'xf(£) d% is the/h Riesz transform of/ g L2(R")
S/(f(x) is the spherical partial sum of the Fourier integral of/ g ZJ(R'7), defined by 
fw<d<^xdii
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/(x) is the periodization of/ g L1 (Rrf), defined by/(x) = 22rteZ<//(x “ n)
Km a is the Bochner-Riesz kernel, defined as the Fourier transform of (1 — 
I$I2/W1[o,m](I?I).
^a,h(x) is the rescaled function defined by |«|“1/2Vr((x — b)/a).
W^f(a, b) is the wavelet transform of/ e L2 (R), defined as the convolution of/ with 
the rescaled function

is the dyadic partition of R, consisting of the intervals ((£ — l)/2n, k/T1]^
Vn is the rcth space in a multiresolution analysis
Pnf is the orthogonal projection of/ onto the space Vn
0 (r) is the scaling function for a multiresolution analysis

(r) is the orthonormal wavelet associated with the scaling function 0
mod) is the scaling filter associated with the scaling function 0
mi (£) is the wavelet filter associated to the wavelet



INDEX

A

Abel means, 45, 64, 261, 266
Abel sums, 49
Abel’s lemma, 167
Abelian theorem, 54
Absolutely continuous functions, 21
Absolutely convergent trigonometric series,

3,43
Almost-every where convergence, 20, 28, 49,

153, 346
Analytic function, 22, 172
Approximate identitites, 45, 97
Averaging, 118

B

Banach space, 75
Banuelos, R., 202
Beckner, W., 174, 175
Benedicks, M., 240
Bernoulli, D., 1
Bernstein’s inequality, 122
Bernstein’s theorem, 43, 70, 129, 350
Berry-Esseen theorem, 276
Bessel functions, 6, 81, 140, 154, 164
Bessel’s inequality, 36
Boas, R. R, 228
Bochner, S., 139
Bochner’s method of subordination, 106
Bochner’s theorem on positive-definite

functions, 220, 270
Bochner-Riesz summability, 152

Bounded linear operator, 75
Bounded variation, 27, 60
Borel-Cantelli lemmas, 281
Brandolini, L., 149
Brownian motion, 299

C

Calderon, A. R, 194, 196, 209
Calderon-Zygmund decomposition, 209
Calderon-Zygmund theorem, 211
Cantor measure, 20
Cantor-Lebesgue theorem, 87
Cantor’s uniqueness theorem, 86
Carleson, L., 73, 118
Central limit theorem, 260
Cesaro average, 119
Cohen’s theorem, 338, 262
Colzani, L., 149
Compactly supported wavelets, 326
Completeness of the Haar functions, 295
Completeness of the Hermite functions, 138
Conjugate function, 176
Conjugate Poisson kernel, 8, 179
Continuity theorem, 269
Continuum wavelet, 286
Contraction operator, 14
Convergence of wavelet expansions, 341
Convex function, 170
Convex sequence, 96
Convolution, 5, 14, 19, 92
Convolution semigroups, 272

373



374 INDEX

D

Daubechies’ formula, 331
de-Moivre Laplace theorem, 100
Dilation matrix, 354
Dini condition, 27, 89
Dini’s theorem, 115
Dirac measure, 20
Directed set, 46
Dirichlet, P. G., 27
Dirichlet kernel, 15, 25, 112, 140, 223
Dirichlet-Jordan theorem, 27, 117
Distribution function, 181
Divergence of Fourier series, 73
Du Bois-Reymond, 73, 117
Dyadic projections, 292

E

Equidistribution mod 1, 57
Euler formula, 4
Exponential function, 6

F

Factorial function, 6
Fatou’s theorem, 50, 214
Fefferman, C., 73
Fejer means, 45, 54, 62, 98, 120
Fejer-Riesz lemma, 330
Finite measures, 19, 119, 256, 273
Fourier, J. B., 2
Fourier coefficient, 4, 13, 19
Fourier cosine transform, 124
Fourier reciprocity formula, 4, 14, 93, 97,

231
Fourier sine transform, 125
Fourier transforms, 89, 102, 256, 323

G

Gap series, 262
Gaussian approximation, 80
Gaussian density function, 95, 257
Gaussian summability, 104, 232
Gaussian wavelet, 288
Gauss-Weierstrass kernel, 97
Generalized /i-transform, 125
Gibbs-Wilbraham phenomenon, 31, 115
Grunbaum, A., 133

H

Haar function, 387, 306
Haar series, 291, 296
Haar wavelet, 291, 321
Hardy, G. H., 59
Hardy-Littlewood maximal function, 197
Hardy’s Tauberian theorem, 59
Harmonic functions, 212
Hausdorff-Young inequality, 174
Heat flow, 2
Heat kernel, 97, 203, 223
Herglotz theorem, 215
Hermite polynomials, 134
Hernandez-Weiss formula, 333
Higher-order approximation in C(T), 66
Hilbert transform on IR, 184, 224
Hilbert transform on T, 176, 224
Holder condition, 13, 40, 63, 116
Holder means, 53
Holder’s inequality, 170
Homogeneous Banach space, 47, 98
Hormander condition, 211
Hunt, R., 73, 118
Huygens’ principle, 148

I

Independent random variables, 261
Infinitely differentiable function, 21
Integration of Fourier series, 29
Isoperimetric inequality, 38

J

Jackson’s theorem, 65, 348
Jordan, C., 27

K

Kac, M., 266
Kahane, J. P., 45, 73, 143
Katznelson, L, 73, 180
Kendall’s theorem, 241
Kolmogorov, A. N„ 73, 118, 179
Kolmogorov’s inequality, 192

L

Landau’s asymptotic formula, 243
Laplace asymptotic method, 6, 9, 80



INDEX 375

Laplace’s equation, 9, 106, 212
Large scale analysis, 345
Lattice points, 241
Laurent series, 5
Law of the iterated logarithm, 280
Lebesgue constants, 61, 75
Lebesgue differentiation theorem, 200
Lebesgue set, 124
Levy modulus of continuity, 302
Levy-Khintchine theorem, 273
Lipschitz continuity, 62
Lusin, N., 73

M

Marcinkiewicz, J., 169, 179
Marcinkiewicz interpolation theorem, 206
Maxwell’s theorem, 109, 259
Mexican hat wavelet, 288
Meyer wavelets, 318
Modified Bessel function, 6, 81, 85
Modulus of continuity, 12, 20
Moore, C., 202
Multiple Fourier series, 230, 244
Multiple harmonic motion, 1
Multi-resolution analysis, 303

N

Negative binomial series, 52
Newtonian potential kernel, 109
Non-tangential convergence, 202
Null-integrability, 325

O

One-sided Fourier representation, 124
Orthogonality, 2, 137
Orthonormal wavelet, 319

P

Parseval’s identity, 35
Periodic function, 13
Periodization, 223
Piecewise smooth function, 21, 145
Pinsky, M., 139, 145, 147
Plancherel’s theorem, 128
Pointwise convergence criteria, 25, 115, 139,

233, 298, 347
Poisson kernel, 7, 15, 46, 90, 106, 189
Poisson summation formula on 1R1,225

Poisson summation formula on 238
Positive-definite function, 257

Q

Quotient groups, 355

R

Radial functions, 92, 157, 202, 245
Random walk, 252
Rapidly decreasing function, 96
Rates of convergence in C(T), 61
Rates of convergence in L2(T), 39
Restriction theorem, 158
Riemann-Lebesgue lemma, 18, 94
Riemann localization, 31
Riemann means, 64
Riesz, M„ 73
Riesz-Fischer theorem, 37
Riesz kernels, 195
Riesz potential kernel, 107
Riesz systems, 304, 356
Riesz-Thorin interpolation theorem, 169
Rotations, 194

S

Salem, R., 266
Scaling equation, 310, 357
Scaling filter, 312
Scaling functions, 304, 319
Schrodinger equation and Gauss sums, 247
Schwartz class, 96
Schwartz distribution, 146
Self-adjoint operator, 15
Shannon sampling theorem, 228
Shannon scaling function, 306
Simple harmonic motion, 1
Simultaneous non-localization, 240
Sine integral, 24, 114, 185
Singular integrals, 183, 194, 210
Skew-adjoint operator, 16, 176
Smith, K. T., 202
Sobolev norm, 43, 290
Spherical Fourier inversion, 139
Spherical maximal function, 203
Spherical mean value, 140
Spherical partial sum, 139, 233
Stationary phase method, 162
Stein, E. M„ 157, 159, 175, 202, 204, 211
Stein’s complex interpolation method, 159,

175



376 INDEX

Stirling’s formula, 6
Strichartz, R., 33
Stronger summability method, 52
Structure constants, 310, 357
Sublinear operator, 197, 207
Summability matrix, 51
Summation by parts, 11, 79
Symmetric partial sum, 4, 112
Systems of wavelets, 352
Smoothness of wavelets, 334
Subgroups, 354

T

Tail sum, 12
Tauberian theorem, 54
Taylor, M. E., 139, 147, 248
Tempered distribution, 108, 129
Three-lines theorem, 172
Tomas, P., 159
Translation error, 40

U

Uncertainty principle, 134
Uniform boundedness principle, 76, 84
Uniform continuity, 98
Uniform convergence, 4

Uniqueness of Fourier coefficients, 17
Upper half plane, 216

V

Vibrating string, 1
de la Vallee Poussin means, 68

W

Wave equation, 171
Wavelets, 284
Wavelet transform, 285
Weak convergence of measures, 268, 327
Weierstrass M-test, 4
Weiss, G., 157
Whittaker, E. T., 228
Wiener’s theorem, 57, 110
Wiener covering lemma, 198

Y

Young’s inequality for convolutions, 174

Z

Zygmund, A., 20, 44, 72, 209, 236, 262, 266
Zygmund’s theorem, 44, 209


	Introduction to Fourier Analysis and Wavelets

	Mark A. Pinsky

	CONTENTS

	LIST OF

	FIGURES

	PREFACE

	1

	1.1.1 Motivation from Physics

	1.1.2 Absolutely Convergent Trigonometric Series

	1.1.3 ^Examples of Factorial and Bessel Functions

	1.1.5 *Proof of Laplace's Method

	1.1.6 *Nonabsolutely Convergent Trigonometric Series

	1.2 FORMULATION OF FOURIER SERIES

	1.2.1 Fourier Coefficients and Their Basic Properties

	lHWI < lGWI + fW")|.

	1.2.2 Fourier Series of Finite Measures

	1.2.3 *Rates of Decay of Fourier Coefficients

	1.2.4 Sine Integral

	1.2.5 Pointwise Convergence Criteria

	1.2.6 *lntegration of Fourier Series

	1.2.7 Riemann Localization Principle

	1.2.8 Gibbs-Wilbraham Phenomenon

	1.3.1 Mean Square Approximation—Parseval's Theorem


	(1.3.2)	ll/-gll^ = II/II2- 12

	221/wi2 n/n2

	22 iA«)i2<

	II/II2 =Hm ^2 l/WI2>

	1.3.2 * Application to the Isoperimetric Inequality

	1.3.3 *Rates of Convergence in L2



	-	4 12

	e i/(«)i=£ e i/wi

	1.4 NORM CONVERGENCE AND SUMMABILITY

	1.4.1 Approximate Identities

	1.4.2 Summability Matrices

	1.4.3 Fejer Means of a Fourier Series

	1.4.4 *Equidistribution Modulo One

	1.4.5 *Hardy's Tauberian Theorem


	fn'v W! + 1/

	1.5.1 Rates of Convergence in C(T)

	1.5.2 Approximation with Fejer Means

	1.5.3 *Jackson's Theorem

	1.5.4 *Higher-Order Approximation


	(t\ k (t\ 2 (^nnt V 2/sin«f/2Y

	1.5.5 *Converse Theorems of Bernstein

	•= 2^	^=1 o \k\ > M •

	1.6 DIVERGENCE OF FOURIER SERIES

	1.6.1 The Example of du Bois-Reymond

	1.6.2 Analysis via Lebesgue Constants

	1.6.3 Divergence in the Space L1

	1.7 *APPENDIX: COMPLEMENTS ON LAPLACE'S METHOD

	1.7.1 *Application to Bessel Functions

	1.7.2 *The Local Limit Theorem of DeMoivre-Laplace

	1.8 APPENDIX: PROOF OF THE UNIFORM BOUNDEDNESS THEOREM

	1.9 *APPENDIX: HIGHER-ORDER BESSEL FUNCTIONS

	1.10 APPENDIX: CANTOR'S UNIQUENESS THEOREM




	2

	2.1 MOTIVATION AND HEURISTICS

	2.2	BASIC PROPERTIES OF THE FOURIER TRANSFORM

	= (f +1

	> /

	2.2.1 Riemann-Lebesgue Lemma

	2.2.2 Approximate Identities and Gaussian Summability



	-J,

	2.2.3 Fourier Transforms of Tempered Distributions

	2.2.4 *Characterization of the Gaussian Density

	2.2.5 *Wiener's Density Theorem

	2.3 FOURIER INVERSION IN ONE DIMENSION

	2.3.1 Dirichlet Kernel and Symmetric Partial Sums

	2.3.2 Example of the Indicator Function

	= ( / +/

	/ ^7(1)^=/ 	—-	

	2.3.3 Gibbs-Wilbraham Phenomenon

	2.3.4 Dini Convergence Theorem

	2.3.5 Smoothing Operations in R1-Averaging and Summability

	2.3.6 Averaging and Weak Convergence

	2.3.7 Cesaro Summability

	2.3.8 Bernstein's Inequality

	2.3.9 *One-Sided Fourier Integral Representation

	2.4 L2 THEORY IN

	2.4.1 Plancherel's Theorem

	2.4.2 *Bernstein's Theorem for Fourier Transforms

	2.4.3 The Uncertainty Principle

	2.4.4 Spectral Analysis of the Fourier Transform

	ll/ll2 = 11/ -/vlll + ll/vlll > ll/vlll = E lQl2 k=0

	2.5 SPHERICAL FOURIER INVERSION IN R"

	2.5.1 Bochner's Approach

	2.5.2 Piecewise Smooth Viewpoint

	2.5.3 Relations with the Wave Equation



	M(X; = [t" 2^W]'

	C4.<l + IISHM|>»-'tol‘'5'

	2.5.4 Bochner-Riesz Summability

	2.6 BESSEL FUNCTIONS

	2.6.1 Fourier Transforms of Radial Functions

	2.6.2 ^-Restriction Theorems for the Fourier Transform

	2.7 THE METHOD OF STATIONARY PHASE

	2.7.1 Statement of the Result

	2.7.2 Application to Bessel Functions

	2.7.4 Abel's Lemma





	3

	3.1 MOTIVATION AND HEURISTICS

	3.2 THE M. RIESZ-THORIN INTERPOLATION THEOREM

	Il0(-Jy)llp„ = II IjT/P0IIA) = ll/lir- =

	^(•j+^iip, = n i/r"1 ib, = u/c = 1.

	ll^(-Jy)U = ll lgr7,»lh- = llgll,?’= 1,

	lliK-.i + dOlhi = II Igl^lL, = hllj/1 = 1-

	11/* glli <11/11 dlglh feL',geL'

	ll/*glloo< ll/lloollglll /6£“.?6t'

	(3.2.4)	ll/*g||P< ll/ILIIglli feL", geL'.

	3.2.1 Stein's Complex Interpolation Theorem

	3.3 THE CONJUGATE FUNCTION OR DISCRETE

	HILBERT TRANSFORM

	3.3.1 L.P Theory of the Conjugate Function


	„.= iiH/ih = ■ ii/ih \ v2* J

	11/llpllW < Qii/HpiigV

	3.3.2 L1 Theory of the Conjugate Function


	y p:IW)l>^}

	3.4.1 L2 Theory of the Hilbert Transform

	3.4.2 Lp Theory of the Hilbert Transform, 1 < p < 00

	ll/-/Jll = £

	\\f -/II',’ < (Ce"-2)||/-/J|2 -> 0,

	3.4.3 L1 Theory of the Hilbert Transform and Extensions

	3.4.4 Application to Singular Integrals with Odd Kernels

	3.5 HARDY-LITTLEWOOD MAXIMAL FUNCTION


	ll/lli> [ . 1/1 > « F l^'-l = 01

	3.5.1 Application to the Lebesgue Differentiation Theorem

	3.5.2 Application to Radial Convolution Operators

	3.5.3 Maximal Inequalities for Spherical Averages

	3.6 THE MARCINKIEWICZ INTERPOLATION THEOREM


	-) H/oiis;

	f / pil/WI

	= -—ll/ll'.

	3.7 CALDERON-ZYGMUND DECOMPOSITION

	3.8 A CLASS OF SINGULAR INTEGRALS

	3.9 PROPERTIES OF HARMONIC FUNCTIONS

	3.9.1 General Properties

	3.9.2 Representation Theorems in the Disk

	3.9.3 Representation Theorems in the Upper Half Plane

	3.9.4 Herglotz/Bochner Theorems and Positive Definite Functions




	4

	4.1	MOTIVATION AND HEURISTICS

	4.2.1 Periodization of a Function

	4.2.2 Statement and Proof

	4.2.3 Shannon Sampling

	<222 /

	4.3 MULTIPLE FOURIER SERIES

	4.3.1 Basic L1 Theory


	WU) = E

	= ( / WE	dy

	4.3.2 Basic L2 Theory


	22 i/o2 = n/nl-

	4.3.3 Restriction Theorems for Fourier Coefficients


	\ V2

	=/($)c($) Y, l^)l2 y lll=r

	72 i/o2 = 72/^>c^> lll=r	Kl=r

	A2 \iei=r	/

	110111= [ I0(x)l4&= [ |r(x)|2<Zx=72lHP)l2.

	y(0) = 72 l</M)l2 = L

	72 iy(p)i2 = 72 k(M)i2ic(-M)i2-


	Ero2) =Emi2mi2.

	4.4 POISSON SUMMATION FORMULA IN


	7w ~ 22 /O1)*2™

	4.4.1 ^Simultaneous Nonlocalization

	4.5 APPLICATION TO LATTICE POINTS

	4.5.1 Kendall's Mean Square Error

	4.5.2 Landau's Asymptotic Formula

	|p(^)l <

	4.5.3 Application to Multiple Fourier Series



	7(X) = 22	- nl) ~ E A(|m|)e27r"”

	sMf(0) = 22A(n>=+ / A^dN^- \n\<M

	4.6 SCHRODINGER EQUATION AND GAUSS SUMS

	4.6.1 Distributions on the Circle

	4.6.2 The Schrodinger Equation on the Circle

	4.7 RECURRENCE OF RANDOM WALK

	CHAPTER



	5

	APPLICATIONS TO PROBABILITY THEORY

	5.1	MOTIVATION AND HEURISTICS

	5.2	BASIC DEFINITIONS


	•TI^A)	;=i	%

	n^’i=nm / w(i)e_<T m /2 n —t

	5.2.1 The Central Limit Theorem

	x(,) = y^w =^ + ^ + ^ + ...

	x’<') = Zf“ = T + T + T + '--

	+ t +v + '"

	5.3 EXTENSION TO GAP SERIES

	5.3.1 Extension to Abel Sums

	5.4 WEAK CONVERGENCE OF MEASURES

	5.4.1 An Improved Continuity Theorem

	5.5 CONVOLUTION SEMIGROUPS


	■4(g) ~ 1

	5.6 THE BERRY-ESSEEN THEOREM


	~ 3V2T

	|r(?)-e-*2/2| <m3|||3.

	[ |f|V«2/3J| + 4^4

	5.6.1 Ext	ension to Different Distributions


	- 1 +1 w,’| = k -1 - x + y W

	5.7 THE LAW OF THE ITERATED LOGARITHM



	CHAPTER


	6

	INTRODUCTION TO WAVELETS

	6.1 MOTIVATION AND HEURISTICS

	6.1.1 Heuristic Treatment of the Wavelet Transform

	Jr \ « / #1

	=	f-—- j -^=

	= |fl| |Vr(<3§-)|2e27r^x

	Jr * a2 Jr l«l

	6.2 WAVELET TRANSFORM


	f iM)i2 ,fc

	6.3 HAAR WAVELET EXPANSION

	6.3.1 Haar Functions and Haar Series

	6.3.2 Haar Sums and Dyadic Projections

	6.3.3 Completeness of the Haar Functions

	6.3.4 *Construction of Standard Brownian Motion

	6.3.5 *Haar Function Representation of Brownian Motion

	6.3.6 *Proof of Continuity

	6.4 MULTIRESOLUTION ANALYSIS

	6.4.1 Orthonormal Systems and Riesz Systems

	6.4.2 Scal	ing Equations and Structure Constants

	6.4.3 From Scaling Function to MRA



	IIA/H2 = E I^A Ml2

	= E Ml2

	= ll/ll2E24/' l*(2Ji MM

	= ll/ll2E /	\*(u)\2du.

	IIA/II2 = E l(/V’ Ml2

	= E /

	= E /

	6.4.4 Meyer Wavelets

	6.4.5 Fro	m Scaling Function to Orthonormal Wavelet


	°=L/

	e-27ri^ dl=.

	o = J24>(i + /)4'(i + z)

	6.5 WAVELETS WITH COMPACT SUPPORT

	6.5.1 From Scaling Filter to Scaling Function

	-+ 0.

	*/($) = '"of f)

	6.5.2 Explicit Construction of Compact Wavelets



	= (1 - y)w+l ^2 P\+ ')/(! - /W"‘

	6.5.3 Smoothness of Wavelets

	i4>(Di2=nc

	iy^)i^ + cV2-“' < oo.

	6.5.4 Cohen's Extension of Theorem 6.5.1




	= r (y^	+1)

	6.6 CONVERGENCE PROPERTIES OF WAVELET EXPANSIONS

	6.6.1 Wavelet Series in Lp Spaces

	<&(t, s) := E ^0 - k^(s ~ *)•

	= C|l*lh ||/||p.

	<	ll/lloo /	|K(V)I</V

	6.6.2 Jackson and Bernstein Approximation Theorems

	6.7 WAVELETS IN SEVERAL VARIABLES

	6.7.1 Two Important Examples

	6.7.2 General Formulation of MRA and Wavelets in



	A(C1 UC2) =A(C1)UA(C2), A(C1 nc2) =A(Ci)nA(C2),

	= E I l™/OW + y)l2^ yeZd 7io. i H

	£2 ck<t>(X - k)+£2	-*)+•••+12	- *)•


	E^fi2 =

	6.73 Examples of Wavelets in

	27


	REFERENCES

	NOTATIONS

	ay


	INDEX




