Introduction to
Fourier Analysis
and Wavelets

Mark A. Pinsky



This page intentionally left blank



Titles in This Series

102
101
100

99

98

97
96
95
94

93
92
91
90
89
88

87

86

85
84
83

82

81
80
79

78
77
76
75
74
73
72
71
70
69

Mark A. Pinsky, Introduction to Fourier analysis and wavelets, 2009
Ward Cheney and Will Light, A course in approximation theory, 2009
I. Martin Isaacs, Algebra: A graduate course, 2009

Gerald Teschl, Mathematical methods in quantum mechanics: With applications to
Schrodinger operators, 2009

Alexander I. Bobenko and Yuri B. Suris, Discrete differential geometry: Integrable
structure, 2008

David C. Ullrich, Complex made simple, 2008
N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008
Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008

James E. Humphreys, Representations of semisimple Lie algebras in the BGG category
O, 2008

Peter W. Michor, Topics in differential geometry, 2008

I. Martin Isaacs, Finite group theory, 2008

Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
Larry J. Gerstein, Basic quadratic forms, 2008

Anthony Bonato, A course on the web graph, 2008

Nathanial P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional
approximations, 2008

Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra
Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology,
2007

Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations,
2007

John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007

Wolfgang Ebeling, Functions of several complex variables and their singularities
(translated by Philip G. Spain), 2007

Serge Alinhac and Patrick Gérard, Pseudo-differential operators and the Nash—Moser
theorem (translated by Stephen S. Wilson), 2007

V. V. Prasolov, Elements of homology theory, 2007
Davar Khoshnevisan, Probability, 2007

William Stein, Modular forms, a computational approach (with an appendix by Paul E.
Gunnells), 2007

Harry Dym, Linear algebra in action, 2007

Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006

Michael E. Taylor, Measure theory and integration, 2006

Peter D. Miller, Applied asymptotic analysis, 2006

V. V. Prasolov, Elements of combinatorial and differential topology, 2006

Louis Halle Rowen, Graduate algebra: Commutative view. 2006

R. J. Williams, Introduction the the mathematics of finance, 2006

S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields. 2006
Sedn Dineen, Probability theory in finance. 2005

Sebastidn Montiel and Antonio Ros, Curves and surfaces. 2005

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/.


http://www.ams.org/bookstore/

This page intentionally left blank



Introduction to
Fourier Analysis
and VWavelets



This page intentionally left blank



Introduction to
Fourier Analysis
and Wavelets

Mark A. Pinsky

Graduate Studies
in Mathematics

Volume 102

% American Mathematical Society
/= Providence, Rhode Island
0} *




EDITORIAL COMMITTEE

David Cox (Chair)
Steven G. Krantz
Rafe Mazzeo
Martin Scharlemann

2000 Mathematics Subject Classification. Primary 42-02; Secondary 42C40.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-102

Library of Congress Cataloging-in-Publication Data

Pinsky, Mark A., 1940-
Introduction to fourier analysis and wavelets / Mark A. Pinsky.
p. cm. — (Graduate studies in mathematics ; v. 102)
Originally published: Pacific Grove, CA : Brooks/Cole, c2002.
Includes bibliographical references and index.
ISBN 978-0-8218-4797-8 (alk. paper)
1. Fourier analysis. 2. Wavelets (Mathematics) 1. Title.

QA403.5.P56 2009
515'.2433—dc22 2008047419

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2002 held by the American Mathematical Society, All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 14 13 12 11 10 09


http://www.ams.org/bookpages/gsm-102
mailto:reprint-permission@ams.org
http://www.ams.org/

To my parents,
Harry A. Pinsky and Helen M. Pinsky,
who led me to the path of learning



This page intentionally left blank



CONTENTS

1 FOURIER SERIES ON THE CIRCLE

1.1

1.2

1.3

Motivation and Heuristics

1.1.1

1.1.2
1.1.3
1.14
1.1.5
1.1.6

Motivation from Physics

1.1.1.1 The Vibrating String

1.1.1.2 Heat Flow in Solids

Absolutely Convergent Trigonometric Series
*Examples of Factorial and Bessel Functions
Poisson Kernel Example

*Proof of Laplace’s Method

*Nonabsolutely Convergent Trigonometric Series

Formulation of Fourier Series

1.2.1
1.2.2
123

1.2.4

1.2.5
1.2.6

1.2.7
1.2.8

Fourier Coefficients and Their Basic Properties
Fourier Series of Finite Measures

*Rates of Decay of Fourier Coefficients

1.2.3.1 Piecewise Smooth Functions

1.2.3.2 Fourier Characterization of Analytic Functions
Sine Integral

1.2.4.1 Other Proofs That Si(co) = 1

Pointwise Convergence Criteria

*Integration of Fourier Series

1.2.6.1 Convergence of Fourier Series of Measures
Riemann Localization Principle

Gibbs-Wilbraham Phenomenon

1.2.8.1 The General Case

Fourier Series in L2

1.3.1
1.3.2

Mean Square Approximation—Parseval’s Theorem
*Application to the Isoperimetric Inequality



X CONTENTS

1.3.3 *Rates of Convergence in L?
1.3.3.1 Application to Absolutely-Convergent Fourier
Series

1.4  Norm Convergence and Summability
1.4.1 Approximate Identities
1.4.1.1 Almost-Everywhere Convergence of the Abel
Means
1.4.2 Summability Matrices
1.4.3 Fejér Means of a Fourier Series
1.4.3.1 Wiener’s Closure Theorem on the Circle
1.4.4 *Equidistribution Modulo One
1.4.5 *Hardy’s Tauberian Theorem

1.5 Improved Trigonometric Approximation
1.5.1 Rates of Convergence in C(T)
1.5.2 Approximation with Fejér Means
1.5.3 *Jackson’s Theorem
1.5.4 *Higher-Order Approximation
1.5.5 *Converse Theorems of Bernstein

1.6  Divergence of Fourier Series
1.6.1 The Example of du Bois-Reymond
1.6.2 Analysis via Lebesgue Constants
1.6.3 Divergence in the Space L'

1.7  *Appendix: Complements on Laplace’s Method
1.7.0.1 First Variation on the Theme-Gaussian
Approximation
1.7.0.2 Second Variation on the Theme-Improved Error
Estimate
1.7.1 *Application to Bessel Functions
1.7.2  *The Local Limit Theorem of DeMoivre-Laplace

1.8  Appendix: Proof of the Uniform Boundedness Theorem
1.9  *Appendix: Higher-Order Bessel functions
1.10 Appendix: Cantor’s Uniqueness Theorem

2 FOURIER TRANSFORMS ON THE LINE AND SPACE

2.1  Motivation and Heuristics

2.2 Basic Properties of the Fourier Transform
2.2.1 Riemann-Lebesgue Lemma
2.2.2 Approximate Identities and Gaussian Summability
2.2.2.1 Improved Approximate Identities for Pointwise
Convergence
2.2.2.2 Application to the Fourier Transform
2.2.2.3 The n-Dimensional Poisson Kernel

39

43

45
45

49
51
54
57
57
59
61
61
62
65
66
70
73
74
75
78
80

80

80
81
82

84
85
86

89

89

91
94
97

100
102
106



2.3

24

2.5

2.6

2.7

223
224
225

Fourier Transforms of Tempered Distributions
*Characterization of the Gaussian Density
*Wiener’s Density Theorem

Fourier Inversion in One Dimension

231
232
233
234

235
2.3.6
2.3.7

2.3.8
2.3.9

Dirichlet Kernel and Symmetric Partial Sums
Example of the Indicator Function
Gibbs-Wilbraham Phenomenon

Dini Convergence Theorem

2.3.4.1 Extension to Fourier’s Single Integral

CONTENTS

Smoothing Operations in R'-Averaging and Summability

Averaging and Weak Convergence

Cesaro Summability

2.3.7.1 Approximation Properties of the Fejér Kernel
Bernstein’s Inequality

*QOne-Sided Fourier Integral Representation

2.3.9.1 Fourier Cosine Transform

2.3.9.2 Fourier Sine Transform

2.3.9.3 Generalized h-Transform

L? Theory in R”

24.1
24.2
243

244

Plancherel’s Theorem

*Bernstein’s Theorem for Fourier Transforms
The Uncertainty Principle

2.4.3.1 Uncertainty Principle on the Circle
Spectral Analysis of the Fourier Transform
2.4.4.1 Hermite Polynomials

2.4.4.2 Eigenfunction of the Fourier Transform
2.4.4.3 Orthogonality Properties

2.4.4.4 Completeness

Spherical Fourier Inversion in R”

2.5.1
252
253

254

Bochner’s Approach

Piecewise Smooth Viewpoint

Relations with the Wave Equation

2.5.3.1 The Method of Brandolini and Colzani

Bochner-Riesz Summability

2.5.4.1 A General Theorem on Almost-Everywhere
Summability

Bessel Functions

2.6.1
2.6.2

Fourier Transforms of Radial Functions
L?-Restriction Theorems for the Fourier Transform
2.6.2.1 An Improved Result

2.6.2.2 Limitations on the Range of p

The Method of Stationary Phase

271
272
273
274

Statement of the Result

Application to Bessel Functions

Proof of the Method of Stationary Phase
Abel’s Lemma

xi

108
109
110
112
112
114
115
115
117
117
118
119
121
122
124
124
125
125

128
128
129
131
133
134
134
136
137
138

139
139
145
146
149
152

153

154
157
158
159
161
162
163
164
165
167



xii CONTENTS

3 FOURIER ANALYSIS IN L” SPACES

3.1
32

33

3.4

35

3.6
3.7
3.8
3.9

Motivation and Heuristics

The M. Riesz-Thorin Interpolation Theorem
3.2.0.1 Generalized Young’s Inequality
3.2.0.2 The Hausdorff-Young Inequality

3.2.1 Stein’s Complex Interpolation Theorem

The Conjugate Function or Discrete Hilbert Transform

3.3.1 L? Theory of the Conjugate Function

3.3.2 L' Theory of the Conjugate Function
3.3.2.1 Identification as a Singular Integral

The Hilbert Transform on R

3.4.1 L? Theory of the Hilbert Transform

3.4.2 L’ Theory of the Hilbert Transform, 1 < p < co
3.4.2.1 Applications to Convergence of Fourier Integrals

3.4.3 L' Theory of the Hilbert Transform and Extensions
3.4.3.1 Kolmogorov’s Inequality for the Hilbert

Transform
3.4.4 Application to Singular Integrals with Odd Kernels

Hardy-Littlewood Maximal Function

3.5.1 Application to the Lebesgue Differentiation Theorem

3.5.2 Application to Radial Convolution Operators

3.5.3 Maximal Inequalities for Spherical Averages

The Marcinkiewicz Interpolation Theorem

Calder6én-Zygmund Decomposition

A Class of Singular Integrals

Properties of Harmonic Functions

3.9.1 General Properties

3.9.2 Representation Theorems in the Disk

3.9.3 Representation Theorems in the Upper Half-Plane

3.9.4 Herglotz/Bochner Theorems and Positive Definite
Functions

4 POISSON SUMMATION FORMULA AND
MULTIPLE FOURIER SERIES

4.1
4.2

4.3

Motivation and Heuristics

The Poisson Summation Formula in R!

4.2.1 Periodization of a Function

4.2.2 Statement and Proof

4.2.3 Shannon Sampling

Multiple Fourier Series

4.3.1 Basic L' Theory
4.3.1.1 Pointwise Convergence for Smooth Functions
4.3.1.2 Representation of Spherical Partial Sums

169

169

169
174
174
175

176
177
179
183
184
185
186
187
188

192
194
197
200
202
203
206
209
210

212
212
214
216

219

222

222

223
223
225
228

230
231
233
233



4.4

4.5

4.6

4.7

CONTENTS

4.3.2 Basic L? Theory
4.3.3 Restriction Theorems for Fourier Coefficients

Poisson Summation Formula in R?

4.4.1 *Simultaneous Nonlocalization

Application to Lattice Points

4.5.1 Kendall’s Mean Square Error

4.5.2 Landau’s Asymptotic Formula

4.5.3 Application to Multiple Fourier Series
4.5.3.1 Three-Dimensional Case
4.5.3.2 Higher-Dimensional Case

Schrodinger Equation and Gauss Sums
4.6.1 Distributions on the Circle
4.6.2 The Schrodinger Equation on the Circle

Recurrence of Random Walk

APPLICATIONS TO PROBABILITY THEORY

5.1
5.2

5.3

54

5.5

5.6

5.7

Motivation and Heuristics
Basic Definitions
5.2.1 The Central Limit Theorem
5.2.1.1 Restatement in Terms of Independent
Random Variables
Extension to Gap Series
5.3.1 Extension to Abel Sums
Weak Convergence of Measures
5.4.1 An Improved Continuity Theorem
5.4.1.1 Another Proof of Bochner’s Theorem
Convolution Semigroups
The Berry-Esséen Theorem
5.6.1 Extension to Different Distributions

The Law of the Iterated Logarithm

INTRODUCTION TO WAVELETS

6.1

6.2

6.3

Motivation and Heuristics
6.1.1 Heuristic Treatment of the Wavelet Transform

Wavelet Transform
6.2.0.1 Wavelet Characterization of Smoothness

Haar Wavelet Expansion

6.3.1 Haar Functions and Haar Series

6.3.2 Haar Sums and Dyadic Projections

6.3.3 Completeness of the Haar Functions
6.3.3.1 Haar Series in Cy and L, Spaces
6.3.3.2 Pointwise Convergence of Haar Series

xiii

235
236
238
239
241
241
243
244
245
247
247
248
250

252

256

256

256
260

261
262
266
268
269
270
272

276
279

280

284

284
285

286
290

291
291
292
295
296
298



XIV  CONTENTS

6.4  Multiresolution Analysis
6.4.1 Orthonormal Systems and Riesz Systems
6.4.2 Scaling Equations and Structure Constants
6.4.3 From Scaling Function to MRA
6.4.3.1 Additional Remarks
6.4.4 Meyer Wavelets
6.4.5 From Scaling Function to Orthonormal Wavelet
6.4.5.1 Direct Proof that V| © V, Is Spanned by
(W — ez
6.4.5.2 Null Integrability of Wavelets Without
Scaling Functions
6.5 Wavelets with Compact Support
6.5.1 From Scaling Filter to Scaling Function
6.5.2 Explicit Construction of Compact Wavelets
6.5.2.1 Daubechies Recipe
6.5.2.2 Hernandez-Weiss Recipe
6.5.3 Smoothness of Wavelets
6.5.3.1 A Negative Result
6.5.4 Cohen’s Extension of Theorem 6.5.1
6.6  Convergence Properties of Wavelet Expansions
6.6.1 Wavelet Series in L” Spaces
6.6.1.1 Large Scale Analysis
6.6.1.2  Almost-Everywhere Convergence
6.6.1.3 Convergence at a Preassigned Point
6.6.2 Jackson and Bernstein Approximation Theorems
6.7  Wavelets in Several Variables
6.7.1 Two Important Examples
6.7.1.1 Tensor Product of Wavelets
6.7.2 General Formulation of MRA and Wavelets in R?
6.7.2.1 Notations for Subgroups and Cosets
6.7.2.2 Riesz Systems and Orthonormal Systems in R?
6.7.2.3 Scaling Equation and Structure Constants
6.7.2.4 Existence of the Wavelet Set
6.7.2.5 Proof That the Wavelet Set Spans V|, © V)
6.7.2.6 Cohen’s Theorem in R?
6.7.3 Examples of Wavelets in R?
References
Notations

Index

6.3.4 *Construction of Standard Brownian Motion

6.3.5 *Haar Function Representation of Brownian Motion
6.3.6  *Proof of Continuity

6.3.7 *Lévy’s Modulus of Continuity

299
301
301
302
303
304
310
313
315
318
319

324

325
326
327
330
331
333
334
336
338
341
341
345
346
347
347
352
352
354
354
355
356
357
358
361
362
362

365
369
373



Figure 1.1.1
Figure 1.1.2
Figure 1.2.1
Figure 1.2.2

Figure 1.2.3
Figure 1.4.1

Figure 1.4.2
Figure 1.5.1
Figure 2.5.1

Figure 2.5.2
Figure 6.1.1
Figure 6.1.2

LIST OF
FIGURES

Poisson kernel P,(0) with r = 0.8 [Page 8]
Conjugate Poisson kernel Q,(6) with r = 0.8 [Page 9]
The Dirichlet kernel Dy (1) with N = 5 [Page 16]

Graphs of the partial sums Syf (x) for N = 1, 2, 3 of the Fourier series of
f(x) =x, —m < x < w [Page 16]

The Gibbs-Wilbraham phenomenon for the function f(x) = sgn(x)
[Page 35]

Relations between Abel and Cesaro summability. Stronger methods are
to the right of weaker methods [Page 53]

The Fejér kernel with N = 8 [Page 56]
The de la Vallée Poussin kernel with N = 8 [Page 69]

The spherical partial sum of the indicator function of the unit ball in R,
with M = 99/2n [Page 144]

Illustrating Huygens’ principle [Page 149]
Gaussian wavelet [Page 289]
Mexican hat wavelet [Page 289]

XV



This page intentionally left blank



PREFACE

This book provides a self-contained treatment of classical Fourier analysis at the upper
undergraduate or begining graduate level. I assume that the reader is familiar with the
rudiments of Lebesgue measure and integral on the real line. My viewpoint is mostly
classical and concrete, preferring explicit calculations to existential arguments. In some
cases, several different proofs are offered for a given proposition to compare different
methods.

The book contains more than 175 exercises that are an integral part of the text. It can
be expected that a careful reader will be able to complete all of these exercises. Starred
sections contain material that may be considered supplementary to the main themes of
Fourier analysis. In this connection, it is fitting to comment on the role of Fourier analysis,
which plays the dual role of queen and servant of mathematics. Fourier-analytic ideas
have an inner harmony and beauty quite apart from any applications to number theory,
approximation theory, partial differential equations, or probability theory. In writing this
book it has been difficult to resist the temptation to develop some of these applications as a
testimonial of the power and flexibility of the subject. The following list of “extra topics”
are included in the starred sections: Stirling’s formula, Laplace asymptotic method,
the isoperimetric inequality, equidistribution modulo one, Jackson/Bernstein theorems,
Wiener’s density theorem, one-sided heat equation with Robin boundary condition, the
uncertainty principle, Landau’s asymptotic lattice point formula, Gaussian sums and the
Schrodinger equation, the central limit theorem, the Berry-Esséen theorem and the law
of the iterated logarithm. While none of these topics is “mainstream Fourier anaysis,”
each of them has a definite relation to some part of the subject.

A word about the organization of the first two chapters, which are essentially inde-
pendent of one another. Readers with some sophistication but little previous knowledge
of Fourier series can begin with Chapter 2 and anticipate a self-contained treatment of
the n-dimensional Fourier transform and many of its applications. By contrast, readers
who wish an introductory treatment of Fourier series should begin with Chapter 1, which
provides a reasonably complete introduction to Fourier analysis on the circle. In both
cases I emphasize the Riesz-Fischer and Plancherel theorems, which demonstrate the

xvii
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natural harmony of Fourier analysis with the Hilbert spaces L>(T) and L?(R"). However
much of modern harmonic analysis is carried out in the L” spaces for p # 2, which is
the subject of Chapter 3. Here we find the interpolation theorems of Riesz-Thorin and
Marcinkiewicz, which are applied to discuss the boundedness of the Hilbert transform
and its application to the L” convergence of Fourier series and integrals. In Chapter 4
I merge the subjects of Fourier series and Fourier transforms by means of the Poisson
summation formula in one and several dimensions. This also has applications to number
theory and multiple Fourier series, as noted above.

Chapter 5 explores the application of Fourier methods to probability theory. Limit
theorems for sums of independent random variables are equivalent to the study of iterated
convolutions of a probability measure on the line, leading to the central limit theorem for
convergence and the Berry-Esséen theorems for error estimates. These are then applied
to prove the law of the iterated logarithm.

The final Chapter 6 deals with wavelets, which form a class of orthogonal expan-
sions that can be studied by means of Fourier analysis—specifically the Plancherel
theorem from Chapter 2. In contrast to Fourier series and integral expansions, which
require one parameter (the frequency), wavelet expansions involve two indices—the
scale and the location parameter. This allows additional freedom and leads to improved
convergence properties of wavelet expansions in contrast with Fourier expansions. I
include a brief application to Brownian motion, where the wavelet approach furnishes
an easy access to the precise modulus of continuity of the standard Brownian motion.

Many of the topics in this book have been “class-tested” to a group of graduate
students and faculty members at Northwestern University during the academic years
1998-2000. I am grateful to this audience for the opportunity to develop and improve
my original efforts.

I owe a debt of gratitude to Paul Sally, Jr., who encouraged this project from the
beginning. Gary Ostedt gave me full editorial support at the initial stages followed by Bob
Pirtle and his efficient staff. Further thanks are due to Robert Fefferman, whose lectures
provided much of the inspiration for the basic parts of the book. Further assistance and
feedback was provided by Marshall Ash, William Beckner, Miron Bekker, Leonardo
Colzani, Galia Dafni, George Gasper, Umberto Neri, Cora Sadosky, Aurel Stan, and
Michael Taylor. Needless to say, the writing of Chapter 1 was strongly influenced by
the classical treatise of Zygmund and the elegant text of Katznelson. The latter chapters
were influenced in many ways by the books of Stein and Stein/Weiss. The final chapter
on wavelets owes much to the texts of Hernandez/Weiss and Wojtaszczyk.

Mark A. Pinsky
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CHAPTER

1

FOURIER
SERIES
ON THE
CIRCLE

1.1 MOTIVATION AND HEURISTICS
1.1.1 Motivation from Physics

Two major sources of Fourier series are the mathematical models for (i) the vibrating
string and (ii) heat flow in solids.

1.1.1.1 The vibrating string

The first systematic use of trigonometric series can be found in the work of Daniel
Bernoulli (1753) on the vibrating string. A simple harmonic motion of a string of length
7 is defined by the formula

(1.1.1) f(x,t) = Asinnxcos(nt — «)

for suitable constants A, o, and n = 1,2,.... A is the amplitude, n is the angular
frequency, and « is the phase shift.

The simple harmonic motion is a solution of the differential equation f;; = f.,
which is supposed to describe the small transverse displacement f(x, t) of a tightly
stretched string whose ends are fixed at x = 0 and x = 7.

More complex, multiple harmonic motions are obtained by linear superposition

N
(1.12) f@. )= A,sinnxcos(nt — ).
n=1
Functions of this form can be used to satisfy a variety of initial conditions,
if we are given the values of f and the partial derivative df/d¢t when ¢ = 0. This
is possible whenever f(x,0) and 3f/dt(x,0) are expressed as finite linear com-
binations ZN a,sinnx. This may be less obvious in other cases; for example

n=1

1



2 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

fx,0 = sin’x = (3sinx — sin 3x) /4, whereas sin® x cannot be so expressed. In
order to work with these trigonometric sums, we note the property of orthogonality,
expressed as

m
(1.1.3) / sinmx sinnx dx = 0, m # n.
0

If a function has the form f(x) = ZkN:l aisinkx, then we must have
Jy f(x)sinnxdx =0 forn > N.

Exercise 1.1.1. Show that if N is odd, sin” x can be written as a finite sum of the
form Y"1, a sin kx.

Exercise 1.1.2. Suppose that we have a convergent series expansion of sin® x =
> o, ax sinkx on the interval 0 < x < 7. Prove that ay is nonzero for infinitely
many values of k.

Hint: Assume a finite expansion and use the orthogonality relation (1.1.3) to obtain a
contradiction.

Exercise 1.1.3. Generalize Exercise 1.1.2 to any even power of sinx, showing
the impossibility of an expansion sin”" x = Zszl ay sinkx for 0 < x < w where
n=4,6,....

Any multiple harmonic motion (1.1.2) is a 27 -periodic function of time: f (x, t +
2r) = f(x,¢) for all —0o < x,00, —00 < t < o0. It also is a 27 -periodic function
of x and is odd with respect to x = 0 and x = &, meaning that f(—x) = —f(x) and
f(@r +x) = —f(wr — x) for all x.

Exercise 1.1.4. Suppose that f (x), —00 < x < 00 is given. Show that any two of
the following properties imply the third: (i) f(x + 2m) = f(x), Vx; (ii) f(—x) =
—f(x), Vx; (iii) f(mr —x) = —f(r +x), ¥x.

1.1.1.2 Heat flow in solids

The vibrating string suggests the use of sine series, since the ends of the string are fixed.
More general trigonometric series are suggested by the study of heat flow in a circular
ring, assumed to have circumference 2. In this model it is natural to assume that the
temperature u(x, t) is a 2w-periodic function of x (but not periodic in time). Fourier
(1822) formulated the heat equation u, = u,, to describe the time evolution of the
temperature. It is satisfied by any function of the form (4, cos nx + B, sin nx)e"”z’ where
n=0,1,2,...,t > 0and —7 < x < m. Taking linear combinations of these, we arrive
at a “general solution”

N
(1.1.9) ulx, ) = Z(A,, cosnx + B, sin nx)e*”z’.

n=0



FOURIER SERIES ON THE CIRCLE 3

This will fit an initial temperature profile f(x) if and only if f is expressed as a finite
trigonometric sum

N
(1.1.5) f@) =) (A, cosnx + B, sinnx).
n=0

The coefficients A,, B, can be found by using the orthogonality relations

b1

(1.1.6) fsinmxsinnxdx:O m # n,
-7

(1.1.7) fcosmxcosnxdx:O m#n,
b4

(1.1.8) /sinmxcosnxdx:O all m, n,

together with the norms: [”_sinnxdx =7 = [ _cos?nxdx,n=1,2,... Thus

1 b3
(1.1.9) Ay = — f(x)dx,
2 J_,
1 b3
(1.1.10) A, = — f(x) cosnxdx n=1,2 ...,
T Jn
1 b3
(1.1.11) Bn=; f(x) sin mx dx n=1,2,...

-7

Fourier’s thesis is that (1.1.5) will also remain true for N = oo, if the coeffi-
cients A,, B, are defined by these formulas. This is most easily done in case the series
Y o2 o(IAs] + |By]) converges.

1.1.2 Absolutely Convergent Trigonometric Series

We begin the mathematics by considering functions defined by

o0
(1.1.12) £©®) = (A, cosnd + B, sinnd)
n=0

where Y 2 ((|A,| + |By|) < 00. The values of f are determined on any interval of length
2m. A standard choice is the interval T = (—m, 7], where we identify 27 -periodic
functions on R with functions on T. A function on T is considered continuous (resp.
differentiable) if the corresponding periodic function on R is continuous (resp. differen-
tiable). In concrete terms this means that f is continuous (resp. differentiable) on (—, 7]
with f(r — 0) = f(—n +0) (resp. f'(m — 0) = f'(—7 + 0)).
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In order to simplify the notations throughout, we recall the Euler formula for the

complex exponential function e? = cosf + isin @ and its consequences
Voo o : Lo o
(1.1.13) cos@:i(e + e "), sm@:?(e —e ).
i

This allows us to rewrite the trigonometric series (1.1.12) in the complex form

(1.1.14) £(6) = Z C,e"?

n=—oc

Complex notation is especially efficient when we multiply two such functions, the for-
mula ¢?e/® = ¢/®*9) being a streamlined expression of the addition formulas for both
the sine and cosine functions. Similar efficiency is realized in the integration formulas
[ e dx = a~'e¢** when a is anonzero complex number. The passage from real functions
to complex functions also suggests the natural definition of convergence of the series
(1.1.14), namely as the limit of the symmetric partial sums Z’X ~- We use throughout the
notation ), for this limiting process. If we try to consider more general definitions
of convergence, difficulties will arise.

Throughout the text we will systematically use the Lebesgue integral and its many
properties. In some cases a more elementary definition of integration will suffice, but we
prefer to systematically employ the Lebesgue theory—both for its increased generality
and its ease with respect to passage to the limit.

Theorem 1.1.5. Suppose that Y, _; |C,| < 00. Then f defined by (1.1.14) is a
continuous function on T. The coefficients are obtained as

1 (7 ,
(1.1.15) Co=— [ f®e™dos, nel.
27 J_,

If g is any other L' function on T, we have the Fourier reciprocity formula

1 T
(1.1.16) o [ﬂf(Q)g(Q)d@ =Y CD.,

neZ

where D, is the Fourier coefficient of g, defined by (1.1.15) with f replaced by g.
In particular we have Parseval’s identity

1
(L.L.17) o lf(9)l do =) |Cil".

neZ

Proof. The uniform convergence of (1.1.14) follows from the Weierstrass M test, since
|C.e™| = |C,|, the general term of a convergent numerical series, so that the limit function
is continuous. This uniform convergence also holds for the series defined by e~?f(9),
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which we may therefore integrate term-by-term. In the process we encounter the integral
ks

(1.1.18) / e~ N0 (g = 0 (n#£N,neZ N e€Z)
-

while the integral is 27 for n = N. Equation (1.1.18) is known as the complex orthogonality
relation. This shows that

(1.1.19) % /” e NF(9)do = Cy, (N € Z)

which was to be proved. To prove (1.1.16), we multiply the series (1.1.14) by g(6). The
partial sums are bounded by a multiple of the integrable function |g(6)|, hence we can apply
Lebesgue’s dominated convergence and integrate term-by-term to obtain

1 [~ C. [T, 1
1.1.20 — 0)g(0)do = = " 0(0)do = — C.D_,
(1.1.20) ZH/ﬁf()g() ézﬂ[”e 8(®) 2n§
which was to be proved. Taking g = f gives the Parseval identity (1.1.17). |

Exercise 1.1.6. Suppose that ), , InC,| < 0o. Prove that the series (1.1.14)
defines a differentiable function withf'(0) = Y., inC,e™ a continuous function.

Use the inequality |¢? — 1| < |k] to justify passage to the limit.

Exercise 1.1.7. Suppose that Y, _; In*C,| < oo for some k = 2,3,.... Prove
that the series (1.1.14) defines a k-times differentiable function with f® () =
Znez(in)k C.e™ a continuous function.

The Fourier reciprocity formula (1.1.16) can be rewritten to obtain a useful rep-

resentation of the convolution of an absolutely convergent trigonometric series with
an arbitrary integrable function. Taking g,(0) = g(¢ — 0), we compute the Fourier
coefficient by writing

/ e Mgs(0)do = [ gy dy = e / g)e™ dy
T T T

which, when substituted into (1.1.16), yields the following.

Corollary 1.1.8. The convolution of an absolutely convergent trigonometric
series f with an arbitrary L' function g has the representation

1 _ ing
(1.1.21) E/Tf(G)g(gb—G)dG =Y CuDye™.

neZ

A large source of examples of absolutely convergent trigonometric series is

obtained from power series. Consider a general Laurent series

(1.1.22) fl@) = ianz” + ibnz_",

n=0 n=1
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assumed to be absolutely convergent in an annular region r; < |z| < r;. Then
(o] o0
(1.1.23) fre®y = E ayre™ + E byr e rp<r<rnr
n=1

n=0

is an absolutely convergent trigonometric series. In particular we will apply this to
et =Y 2, 7"/n!in the next Section 1.1.3.

1.1.3 *Examples of Factorial and Bessel Functions

We can generate many useful examples beginning with the power series of the exponential
function.

Example 1.1.9. Let C, =0 for n<0 and C,=r"/n! where r >0 and
n=1,2,... Then F(§) = e and the Fourier coefficient formula (1.1.15) and
Parseval identity (1.1.17) specialize to

n 1 T . .
(1.1.24) Do | ¢”c™dp,  r>0n=0,12,...
n! 2m J_,
oo h 2 1 T
(1.1.25) I@r) =) (7) =— | ¥t g, r>0.
—= \n! 2w J_.

Equation (1.1.25) gives an integral formula for the modified Bessel function I(2r)
defined by the power series on the left side. In particular we will determine the asymptotic
behavior of Iy(2r) when r — 0o by analysis of the integral on the right side of (1.1.25).
Meanwhile (1.1.24) gives a useful representation of the factorial function. We will use
this to present a self-contained treatment of Stirling’s formula in the form

(1.1.26) lim n!/n"ie™" = /27,

n— 00

To obtain this result we take r = n in (1.1.24), to obtain

n,—n

1 g
(1.1.27) re - f PO 4,
n! 2 J_,

where F(9) = e — 1 —if. This is set up to apply the Laplace asymptotic method, whose
proof will be given at the end of the section, and whose statement follows.

Proposition 1.1.10. Suppose that F(0), —w < 6 < m is a continuous complex-
valued function so that Re F (@) has a unique maximum at 8 = 0 with F(0) = 0,
limg_,o F(0)/6% = —k withRek > 0. Then

™ 1
128 FOge = | —). .
(1 ) /_ﬂe e +o0 G n— 00

In the present case F(0) = e — 1 — if, so the conditions are satisfied with Re F(§) =
cosf —1 <Oform > |0| >0and k = —F"(0)/2 =1/2.
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Exercise 1.1.11. Prove that the factorial function satisfies the two-sided system
of inequalities Cin"e™" < n! < Cy(n+ 1)"*'e="+D for positive constants Cy, C,
andn=1,2,....

Hint: Compare ),_, log k with the integral of log x and then exponentiate.

As a second application of Laplace’s method, we take F () = cos6 — 1 to deduce
the asymptotic formula for the modified Bessel function defined by (1.1.25):

(1.1.29) Io(2r) =e2’,/i(1 +o(1)), r — 00.
4mr

Returning to the theory, one can discuss further general properties of the class of
absolutely convergent trigonometric series. They form an algebra of functions, meaning
that the sum and product of two is again in the same class. In detail

(1.1.30) > A"+ B = Z(An + B,)e™"?,
nez neZ nez
(1.1.31) ZA,,e"”" x ZBnei"g = Z (ZAan_k> &
nez nez neZ \keZ

We will prove later that the class of absolutely convergent trigonometric series
contains the class of Holder continuous functions of exponents greater than %

1.1.4 Poisson Kernel Example

A second useful example of an absolutely convergent trigonometric series is generated
by the function f(z) = 1/(1 — z), defined in the unit disc |z| < 1. Thus we obtain the
absolutely convergent series

n mG
(1.1.32) l—re’9 Zr 0<r<l.
When we take the real and imaginary parts, we obtain the real series
1 —rcosf = 11 -
- 7" =1 "cosnh = — - |n| u‘u97
[+ 72— 2rcosf +§r " 2+2§r ¢

in 6
r sin _ Zr sinnd = —— Zr|n| Sgn(n)etr19

1472 —2rcosé 2 &

where the signum function sgn (n) is defined by setting sgn (0) = 0,sgn (n) = lifn > 1

and sgn (n) = —1 if n < —1. These can be rewritten as
(1.1.33) P.(6) := = er ino.
o T 14 r2 — 2rcosf —
2rsin @ .
1.1.34 " = = [nl m9'
( ) Q) 1+7r2—2rcosé znezzsgn(n)r ¢
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P, is the Poisson kernel and Q, is the conjugate Poisson kernel. See Figures 1.1.1
and 1.1.2. It is easily checked that both P, and Q, are solutions of Laplace’s equation.
Equations (1.1.15) and (1.1.17) yield

T

1 .
(1.1.35) o e ™p.6)do = r'", neZ, 0<r<l,
T

-

1 ("
(1.1.36) E/ e "0, (0)d0 = —isgn (n)r'™, neZ, 0<r<l,

-7

(1.1.37) ! HP(9)2d9—1+2i w_1¥r oy

1. . . = nzlr =17 <r<l,

(1.1.38) ! /ﬂg(e)zde 2i w_ 2 0<r<l

1. — , = rt = , < 1.
2 J_, p 1—r2 =7

Setting n = 0 in (1.1.35) yields

1 [" 1—r?

1.1.39 1=— _—
( ) 21 J_p 1+7r?—2rcosf

do, O<r<l.

These integration formulas will be used frequently in dealing with the summability
of Fourier series.

10+

-3 -2 -1 1 2 3

FIGURE 1.1.1
Poisson kernel P, () with r = 0.8
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FIGURE 1.1.2
Conjugate Poisson kernel Q,(9) with r = 0.8

Exercise 1.1.12. Prove that P, and Q, are both solutions of Laplace’s equation
Uy + Uy = 0 where x + iy = re'®.

Hint: Using (x + iy)" = r"e™ shows that each term in the series is a solution of Laplace’s
equation. Another approach is to recall the form of Laplace’s equation in polar coordinates,
namely u,, + (1/r)u, + (1/r*)uge = 0.

1.1.5 *Proof of Laplace’s Method

We formulate this in somewhat greater generality as follows: Let A(x), B(x) be con-
tinuous functions defined on an interval a < x < b so that Re B(x) < ReB(xy) for
x # X € (a, b). B satisfies the asymptotic relation (B(x) — B(xp))/(x — x0)> — —k
when x — xo € (a, b) with Re(k) > 0. We will prove that when t — oo

b
o B(x) 3. _ tB(x) s i
(1.1.40) Cc@) = /; Ax)e dx =¢ (A(xo)\/;-l- 0o («/E)) .

Proof. Without loss of generality we can assume that x, = 0 and B(0) = 0.
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Step 1. Localizing the range of integration: For any § > 0 the maximum of Re B(x)
when |x| > § is negative so that we can write

c@) = / AX)ePD dx + 0(e™)
x| <8
for some D > 0.
Step 2. Replacing B by its quadratic approximation: Now we write the expansion of
B(x) around x = 0:
B(x) = —k* + o(x*),  k=kg +ik.
For any two complex numbers z, = x; + iy,, 2o = x, + iy, we have the inequality
(1.1.41) e —e?| < |z; — 2]€7, 73 = max(x, xp).

Applying this with z; = B(x), zo = —kx?, we can take z; < —kzx?/2 by taking & small
enough. With this choice of § we can write

2 2
[€B®) — e~ | < (Ciex®e k¥ /2, fx] <.
The error inreplacing the exponential by the purely quadratic exponential term is bounded b
P g p y the purely q p y

const

N

o
2 )
tC3e/ |x|e~*r" /2 gx < tC36/ |x|2e”® k12 gx = €
x| <8 —00
by making the substitution v = x4/7.

Step 3. Replacing A(x) by A(0): Since A is continuous, we can rechoose § > 0 so that
|A(x) — A(0)] < € when [x| < §. The error made in replacing A(x) by A(0) is bounded by

o0
thox? 2 const
e/ e"""”zdx<e/ e 2 gy — €
|x|<8 —00 \/;

also by making the substitution v = x+/z. From Steps 1, 2 and 3 we have

8 2 1
C(@t) = A0 ~ dx + (—)
® ()/_ae x oﬁ

Step 4. Integral over the real line: Finally we replace the integral on —§ < x < § by the
integral over —0o < x < oo with an exponential error, since

—tha? 1 thox?
/ e ™ dx| < —/ [xle™™ " dx
Ix|>8 5 x}>8

— L eﬂkRaz
Skgt
But the integral over —oo < x < 00 is
o0
1.1.42 et gy = |2
(1142 [ .

If k is complex, we must take the square root with positive real part, since the integral
clearly has this property. Combining these steps completes the proof. |

Exercise 1.1.13. IfRe k > 0, show that the real part of f_°°oo e dx is positive.
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Hint:  First make the change of variable x*>=y to reduce -consideration to
J5 (e /y'1) cos (by) dy, which is an infinite sum of integrals over (km /b, (k + 1)7/b). Show
that the first of these is positive and the remaining terms alternate in sign and decrease to zero.
Alternatively, one may prove this by using complex analysis, considering the analytic function
k—> ¢k = [;° e~ dx, defined for Re k > 0. On the real axis ¢ (k) agrees with the branch of
the function k — (r/k)'/?, which is positive and real on the positive real axis. Hence these two
analytic functions agree on the entire halfplane Re k > 0.

Exercise 1.1.14. Suppose, in addition, that A(x) is Lipschitz continuous:
|A(x) — A(y)| < K|x — y| and that the second derivative B"(x) exists and is also
Lipschitz continuous. By going through the steps of the above proof, show that in
this case the error term o(1/+/t) in Laplace’s method can be replaced by O(1/t).

Computation of (1.1.42). This is obtained by considering the square of
I:= [ e dx in polar coordinates. Thus

I’= (/ ek dx) (/ e’ dy>
R R
=//e"k("2+y2)dxdy
R JR
T o0 2
=/ / e " rdrdd
-7 JO
1

=2 —.
Tk

1.1.6 *Nonabsolutely Convergent Trigonometric Series

Itis possible to deal with trigonometric series with monotonically decreasing coefficients
by the method of summation by parts to produce convergent series. Given any sequence
of complex numbers a,, n = 0, 1, 2, ..., define (Aa), = a, — a,_, forn > 1. The basic
identity is that for any two sequences ay, b,

N N
(1.143)  avby —ayby = Y a(Ab)+ Y bi(Aa), M <N.
k=M+1 k=M+1

The proof is left as an exercise.
Exercise 1.1.15. Prove (1.1.43).

Hint: Write the left side as a telescoping sum and show that ayby — ay_1b,_ = ar(Ab); +
by (Aa);.

As a first application of summation-by-parts, we can deduce the convergence of
certain trigonometric series.

Proposition 1.1.16. Suppose that A, > 0 and A, > Ap4 withlim A, = 0. Then
the trigonometric series Y .o, Ane™ is convergent for x # 0.
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Proof. We apply (1.1.43) witha, = A,, b, = B,(x) = ) _;_, ', This is a finite geometric

sum with
1 _ ei(n+l))x 1
1.1.44 B, = < — .
(1149 1B )] ‘ 1—e* |~ sin(x/2)
Applying (1.1.43) shows that
N ) N
(1.1.45) > @™ =ayBy(x) —auBu(x) = Y Bioi(x)(Aa).
k=M+1 k=M+1

The first two terms tend to zero when M, N — oo. The sum is estimated by

N N
1
(1.1.46) Bi_1()(Aa)| < |Aay| = (ay — ay) ——————
k:%;u (X/2) k;, sin (x/2)
which tends to zero when M, N — oo. |

Example 1.1.17. The trigonometric series Y., e" /logn is convergent for
x # 0. By taking the real and imaginary parts, we see that the series
anz cos nx/logn is convergent for x # 0 and the series anz sinnx/logn is
convergent for all x.

Exercise 1.1.18. Prove that we have uniform convergence of Y ., €™ /logn on
any closed interval not containing x = 0.

In an appendix to this chapter we prove the basic Cantor uniqueness theorem, which
allows one to identify the coefficients A,, from the sum of the (conditionally convergent)
trigonometric series.

Summation by parts can also be used to estimate the modulus of continuity of an
absolutely convergent trigonometric series in terms of the tail sum, defined as

= ) (Al +1ALD.

k=n+1

To do this, let 2 > 0 and write

f(X + h) _f(x) — ZAneinX(einh -1,

nez
IfG+h) —fE <) InhAd+2 ) Adl.
|n|<N |n|>N

The second sum is 2Ey. The first sum is rewritten as

> InhAy| = —h Z n(AE), = —hNEy + h ZE
Inl<N n=0
so that
N—1

1

n=0
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The first and third terms are balanced by taking AN = 1. The middle term is an average
of the last term and can be estimated therefrom. Specific forms of the tail sum will lead
to various concrete estimates.

Exercise 1.1.19. Suppose that the tail sum satisfies E, < Cn™® for some
0 < « < 1. Prove that f satisfies a Holder condition: |f (x +h) — f(x)| < Ch® for
some constant C.

Exercise 1.1.20. Suppose that the tail sum satisfies E, < Cn~'. Prove that
f satisfies | f (x + h) — f(x)| < Chlog(l/h) for some constant C.

Exercise 1.1.21. Let f(x) = Y .o, a" cos(b"x) where 0 < a < 1, b € Z*. Find
a modulus of continuity of f. Consider separately the cases ab < 1, ab = 1 and
ab > 1.

Exercise 1.1.22. [llustrate the results of the previous exercise in the following
three cases:

o0 oo o0
Z 27" cos(3"x), Z 37" cos(2"x), Z 27" cos(2"x).

n=0 n=0 n=0

1.2  FORMULATION OF FOURIER SERIES

Armed with some motivation, we now begin the formal study of Fourier series.

1.2.1 Fourier Coefficients and Their Basic Properties

We begin with an integrable function f on T = (—m, 7]. Any such function can naturally
be identified with a 277 -periodic function on the entire real line. This extension is helpful
in many ways, especially in computing integrals since we may write fT fx+6)do =
Jx f©6)d6.

The Fourier coefficients, or discrete Fourier transform, of f € L!(T) are defined
by the formula

A

1 .
(1.2.1) fn) = > /T f (@)™ d6.

This is a linear transformation from the space L'(T) to the space [*°(Z) of bounded
bilateral sequences. We formalize this as a proposition.

Proposition 1.2.1. The space of discrete Fourier transforms is an algebra, as
expressed by

(1.2.2) Ay +hHm) = A+ H) 0

(1.2.3) Ay xhHmn) = (fi % f) (n)
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where the convolution of two L' functions is defined by

1
(frep)O =5 /T fL @6 — $)do

and where the integral is convergent for almost every 6. The convolution product

is commutative and associative: fi x f» = f» * fi, (fi *xf2) x5 = fi * (H *f).
Furthermore the mapping f — f is a contraction, meaning that

A 1
(1.2.4) [f(m =< T /lf(é’)ld@-
T Jr

Proof. The first formula is immediate from the linearity of the integral. To prove the
second formula, we note that the convolution is well defined by the Fubini theorem, since
2| fi xf2](0) < f"m i@ /(6 — @) do. The latter integral has a finite integral over T,
since by Fubini and a change of variable we find that

/dt‘)/|fn(¢)|!fz(0—¢)|d¢=//|f1(0)!|fz(¢)|d¢d9=/|f1(0)|d9/!fz(9)!d9-
T T TJT T T

Therefore the integral defining the convolution of |fi| * |f5| is finite almost everywhere,
and dominates the convolution f, * f>. Having made these preparations, we can multiply
the Fourier coefficients and transform by Fubini:

4n?fi(n) x fo(n) = fT fi@®e fT L@ ™ = A e ( /T h (9)fz(¢r—9)d9> dyr

which was to be proved. The commutative and associative properties are most easily deduced
from these properties of ordinary multiplication, once we have used Fubini to identify the
convolution as the unique L' function F with the property that for any bounded function 4,
Sz Jphx +Y)fi(0)f2(y) dxdy = 27 [ h(z)F (z) dz. The contraction property is immediate
from (1.2.1). [ |

Exercise 1.2.2. Let fi,f» € L'(T). Show that for any bounded measurable
function h we have

/T /T h(x + )fi f0) drdy = 21 /T R % £)(@) dz.

One may be tempted to conclude that the convolution f; * f; is represented by the
Fourier series ), fi (n)f>(n)e™. This cannot be literally true in general, because the
latter series does not converge pointwise or in L', for a general L! function. Nevertheless
the following special case of Fourier reciprocity is quite useful.

Proposition 1.2.3. Suppose that ), ., |A,| < o0 and we have an absolutely
convergent Fourier series K(6) = ZnezAne’W. Then for any f € LY(T) we
have

(1.2.5) (f*K)O) =) A f(n)e™.

nez

Proof. Begin with the identity
FO— K@) =) A™f(6 — ).

nez
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By hypothesis, this is a series of L' functions that is convergent and bounded pointwise
by the integrable function |f| x Y_, ., |A,|, so that by Lebesgue’s dominated convergence
theorem we can integrate term-by-term to conclude

/T fE—)K@)dp = A, /T e"f (6 — ¢) d¢

nez

=Y 4, [ e rray

nez T
=2 ZA,f(n)e""g
nez

which was to be proved. n

This can be im;nediately applied to the Poisson kernel K(6) = P,(6) =
Yz e If Y, f(n)e is the Fourier series of some L' function f, we may
now assert that

(f*PY©O) =) flmyr'e™.

nez

Another example is obtained from the Dirichlet kernel, defined by the finite trigono-
metric sum
N

(1.2.6) Dn(6) = Z eme

n=—N

The Fourier partial sum operator

N
Suf = 3 fme™ = lnmmwf e
—N

neZ

is equivalently obtained as the convolution

1.2.7) Snf(©) = (Dy *£)(0).

Here 1, is the indicator function, defined by 14(n) = 1 if n € A and equals zero
otherwise. From (1.2.6), it is clear that Dy is an even function and that fT Dy = 2nm.
See Figure 1.2.1 for the Dirichlet kernel and Figure 1.2.2 for the Fourier partial sums of
fX)=x,-Tr<x<m.

Exercise 1.2.4. Show that the Dirichlet kernel can be equivalently expressed as

sin(V + 1)6

(1.2.8) Dn(8) = Snd)2

6 40, +2m, ...

by summing a finite geometric series.

Exercise 1.2.5. Suppose that K € L'(T) is an even function: K(—60) = —K ().
Prove that the convolution operator f — K * f is self-adjoint, meaning that for
any f € L'(T) and any bounded function g we have fT(K *xf)g = fT f(K *g).
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FIGURE 1.2.1

The Dirichlet kernel Dy (8) for N = 5.

From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications.
Reprinted by permission of The McGraw-Hill Companies.

y

FIGURE 1.2.2

The graphs of the partial sums fy () for N = 1, 2, 3 of the Fourier series of f(8) =6, -7 < 0 < .
From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications.
Reprinted by permission of The McGraw-Hill Companies.

Exercise 1.2.6. Suppose that K € L'(T) is an odd function: K(—6) = —K(®).
Prove that the comvolution operator is skew-adjoint, meaning that for any
f € L'(T) and any bounded function g we have [1.(K xf)g = — [+f (K * g).

At this point we can formulate the uniqueness of the Fourier coefficients, following
an elementary argument of Lebesgue. The result will also be deduced as a corollary of
the summability of one-dimensional Fourier series in Section 1.3.
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Proposition 1.2.7. Suppose thatf, g € L' (T) have the property that F(n) = 2(n)
foralln € Z. Thenf = g a.e.

Proof. By the linearity of the map f — f it suffices to prove the result in case g = 0. We
first prove the result in case f is a continuous function. Writing f = u + iv, we have for any
nez,

0 =2nf(n) = / " ) + iv(x))e™™ dx

= / (u(x) cos nx + v(x) sin nx) dx + i/ (v(x) cos nx — u(x) sin nx) dx.
Foranym =0, 1, 2, ... we apply this to n = m and n = —m to conclude that

/ u(x)cosmxdx =0 =/ u(x) sin mx dx,

4 -7

f v(x)cosmxdx =0 =/ v(x) sin mx dx.

s e

Therefore we are reduced to the case of a real-valued continuous function f for which

(1.2.9) / f(x)cosmxdx =0 = f(x) sinmx dx, m=0,1,2,....

-7

If f is not identically zero, there exists a point x, where f(xo) # 0. Replacing f by
fx +xp)/f (x9), we may assume that f(x) > % in a closed interval I = [—§, 8], where
0 <8 <m. Lett(x) = 1+ cosx —cosé, T,(x) = t(x)". Clearly #(x) > 1 on I while
|t(x)| < 1 onI¢, sothat T,,(x) > 1 on I while T,,(x) — 0 on I¢ . Now T, is a trigonometric

polynomial of degree n, so that from the hypothesis (1.2.9)
0= / f)T,(x)dx =0.

On the other hand, the dominated convergence theorem shows that lim, f,L fOOT,(x)dx =
0. Subtracting these, we conclude that lim,, f, fX)T,(x) dx = 0, which contradicts the fact
that f (x)T,(x) > % on /. Hence f (x) = 0. Applying this argument separately to f = u and
f = v proves the result for any complex-valued f € C(T).

Now if f € L!(T) satisfies f(n) = 0, let F(x) = J* . f(®) dt, a continuous function.
Interchanging the orders of integration shows further that forn = £1, £2, ...

/ " F(x)e ™ dx = / ) e ( f ) F@ dt) dx
= f”f(t) (/” e‘"”dx) dt
_ /nf(t) (e—mn _ e—mi) dt
_r —in

=0.

Hence F(n) = 0 for 0 # n € Z. Letting Ay = 1/27 ff” F(x) dx, we can apply the proof
in the previous paragraph to the continuous function x — F(x) — Ay, to conclude that
F(x) —Ap = 0. But from Lebesgue’s theorem on the differentiation of the integral, we have
almost everywhere that f (x) = (d/dx)F (x) = 0, which completes the proof. [ |
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The above properties of the mapping f — f are algebraic in nature. The following
fundamental property is analytic. It is valid for an arbitrary approach to infinity, not
restricting n to be integer-valued. Here we note that the Fourier coefficients (1.2.1) are
well defined for any n € R.

Theorem 1.2.8. Riemann-Lebesgue lemma: For any f € L'(T),
im0 J} (n) = 0 and the convergence is uniform on compact subsets of L' (T).

We will give two separate proofs of the first statement, then deal with the
compactness.

First Proof. By making the change of variable ¢ = 6 + 7/n, the integral defining the
Fourier coefficient is transformed into

2nf(n) = f F(@ +m/mye @I dp = — f F(@ +7/me™™ dg.
T T
Adding this to the definition of 7 (n), we obtain
4mf(n) = /M [f(p + m/n) — f(P)le ™ dop.

If f is a continuous function, the integrand tends to zero uniformly when |n| — 0o, hence
f(n) — 0.1In case f is an arbitrary L' function, we can find a continuous function g so that
IIf —glli < €. Then

F) =g + (F =) ).

The first term tends to zero when |n| — 0o whereas the second term is less than €, by virtue
of (1.2.4). Thus lim sup, |[f(n)| < €, which was arbitrary, completing the proof. [ |

Second proof. The result is clearly true for the indicator function of an interval (a, b),
since forn # 0

b e—inl) e—i:m
—inf
(1.2.10) / e =— -0, |n| — oo.
" —in

Hence it is also true for the indicator function of a finite union of intervals. Now if E is any
measurable set, by the definition of outer measure, there exists a finite union of intervals
E so that the symmetric difference EAE has measure less than €. In terms of L' norms
Jz 11 — 1¢] < €. By linearity, we have

1z < T30 + za)].

The first term tends to zero while the second term is less than €. Now we can extend to
simple functions f = Y a;1, by linearity and finally to all L' functions by appealing to the
density of simple functions. For example fy = E|k|5N2’V k27N 112-N <r<up1y2-w 18 @ simple
function so that [ |f — fy| — 0 when N — oo.

To prove the uniform convergence, let K be a compact set in L' (T). We first cover K
by a union of balls: K C UB(f, €). By compactness, we can extract a finite set f;, ..., fy
so that K C UY,B(f;, €). Foreach 1 < i < N we can apply the Riemann-Lebesgue lemma
to conclude | f‘,—(n)] < eforn > Mandalli,1 <i < N. Now any other member of
K is included in one of the balls B,, so that by the contraction property, we must have
lim sup,, |f (n)| < €. This proves the uniform convergence. ]
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This property of uniform convergence is easily applied to show that if f € L' (T)
and g is a bounded function, then

(1.2.11) /g(e)f(cp +60)e ™ do — 0
T

uniformly for ¢; < ¢ < ¢, when |n| — 00. To see this, note that for any f € L'(T) the
mapping x — f; from T to L' (T) is continuous. In detail

X—>X0

lim [ [f(x+6) —f(xo +6)|d6 = 0.
T

Multiplication by the bounded function g preserves this continuity. The continuous image
of a compact set is compact. Hence we can apply the uniform convergence on compacts
to deduce that (1.2.11) holds uniformly on compact ¢ intervals.

1.2.2 Fourier Series of Finite Measures

The concept of a Fourier series can be easily extended from the class of integrable
functions to the class of finite signed measures. Recall that a signed measure on T is
defined by a function of bounded variation, which can be represented as the differ-
ence of two monotone functions. The sum of two signed measures is the setwise sum:
(m1 + m2)(A) = 11 (A) + na(A). The convolution of two signed measures (1, i, is, by
definition, the signed measure p with the property that for every continuous function
he C(T)

/ h(x +y) du(x) dua(y) =27T/h(z)du(z).
TxT T

The Fourier coefficients of a signed measure are defined by

1 .
Mm=§—ffwdmm.
T JT

Proposition 1.2.1 carries over with no essential change.

Proposition 1.2.9. The space of discrete Fourier transforms is an algebra, as

expressed by
(1.2.12) i (n) + fa(n) = (w1 + w2) (),
(1.2.13) 1 (n) X Qa(n) = (w1 * u2) (n).

The convolution product is commutative and associative: L) * [Ly = o * W],
(M1 * o) * 3 = g * (o * U3). Furthermore the mapping u — (i is a contraction,
meaning that

. 1
(1.2.14) )| < 2—Var(u)-
T

Exercise 1.2.10. Prove these statements.
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The Riemann-Lebesgue lemma is not true for signed measures. For example, the
Dirac measure &, for which g(A) = 1iff 0 € A, has So (n) = 1 for all n. One might ask
if the Riemann-Lebesgue lemma holds for measures that are continuous, but this is not
true either. The Fourier coefficients of the Cantor measure do not tend to zero.

Exercise 1.2.11. Prove this statement

Hint: For the Cantor measure, f(n) = 12, cos (2mn/3%), with 4(3") = (1) form =1, 2, ....
For details, consult Zygmund, 1959, p. 196.

1.2.3 *Rates of Decay of Fourier Coefficients

The Riemann-Lebesgue lemma provides no further quantitative information about the
speed of convergence to zero for an arbitrary L' function. We can obtain a convenient
upper bound from the representation

2 1 7 —in
(1.2.15) ) = 4—/ [f (9 + —) —f(e)] e dp.
T JT n
Hence we have immediately Proposition 1.2.12.

Proposition 1.2.12. Suppose thatf € C(T) has a modulus of continuity w(8) :=

SUP |,y <5 [ (X) —F )| Then |f(n)| < %w(n/n). More generally, if1 <p < o0
and §2,(8) := supy, <5 || fo —f || is the LP modulus of continuity of f € LP(T), then

IF )] < 19,0e/n).

. For example, if f satisfies a Holder condition with exponent o € (0, 1), we see
that f(n) = O(n™%), |n| = oo.

Exercise 1.2.13. Supppose that the LP modulus of continuity satisfies Q2,(h) <
Ch” for C > 0 and a > 1. Prove that f is a constant, a.e.

Hint: First show that Q,(h + k) < ,(h) + 2, (k); then iterate this to obtain a contradiction.

If we want to obtain a more precise estimation, we can assume that f is absolutely
continuous and integrate by parts, as follows:

Proposition 1.2.14. Suppose that f € C(T) is absolutely continuous. Then
f‘(n) = (l/zn)f’(n) in particular f(n) = o(1/|nl), In| — oo. If in addition
o f& D are absolutely continuous, then f(n) = (1/in)*f® (n); in partic-
ular f (n) = o(1/|n|*). If f®© satisfies a Holder condition with exponent a, then
F) = 0In[*+*), |n| — oo.

Exercise 1.2.15. Prove the above properties by integration by parts.

It is difficult to characterize differentiability of a fixed degree in terms of the
behavior of the Fourier coefficients. In order to obtain some simple characterizations
of smoothness, we consider functions that are infinitely differentiable. This means that
for each m € Z*, the derivative ™ exists and is a continuous function. Then we can
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integrate-by-parts for n # 0 and write 27/ (n) = (1/in)™ Jr e ™f™ (1) dt, to conclude
that the Fourier coefficients satisfy a system of estimates of the form

(1.2.16) |f(n)|5|c% 0#£neZ, m=0,1,....
nm

In other words f“ (n) tends to zero faster than any negative power when |n| — oo. Con-
versely, if the Fourier coefficients of f € L'(T) satisfy (1.2.16), then we can repeatedly
differentiate the absolutely convergent Fourier series to conclude that f is a.e. equal to
an infinitely differentiable function. This is summarized as follows.

Proposition 1.2.16. f € L'(T) is a.e. equal to an infinitely differentiable function
if and only if its Fourier coefficients are rapidly decreasing, according to (1.2.16).

1.2.3.1 Piecewise smooth functions

The correspondence between smoothness of a fixed degree and decay of the Fourier
coefficients is not sharp in general. More precisely, the converse of Proposition 1.2.14
is false: there exists a nonabsolutely continuous f € L!(T) for which nf (n) = 0 when
|[n| — oo. In order to obtain sharp results, we consider functions that are piecewise
smooth, described as follows. If there exists a subdivision —7 < 6y < 6 < -+ <
Ok < 7 so that f is absolutely continuous on each subinterval with a simple jump at
the endpoint, denoted 8f(6;) := f(6; + 0) — f(6; — 0), then we say that f is piecewise
smooth of degree 0. In general we say that f is piecewise smooth of degree k if there
exists such a subdivision so that f is absolutely continuous on T, together with its first
k — 1 derivatives and that f® is piecewise absolutely continuous as above, with jumps
denoted 8f®(6,) := f®(6; +0) — FP(B; — 0).

Proposition 1.2.17. Suppose that f is piecewise smooth of degree k. Then the
Fourier coefficients satisfy the identity

R 1 & RGN e fc(k+l)(n)

=0 j=0

Furthermore the coefficient of 1/n'*! tends to zero if and only if all of the jumps
are zero, i.e. f© is a continuous function.

Note that, in case 6y = —m, we interpret 8f (6p) = f(—m) — f ().

Proof. In case k = 0 we do an integration by parts on each interval of continuity:

641 6j41 o=

- f®

6 —in

641 ) 041 e—me e~ir10
f(@)e " do = f(9)d< ) =f(9) i

6 6 —in

do.

b

When we sum the boundary terms and simplify, the sum is written in terms of the jumps
and the Fourier coefficients of f’, which proves the result for k = 0. If f has k — 1
absolutely continuous derivatives, we can iterate this to obtain the k terms displayed,
together with the Fourier coefficient of ). In order to prove the sharpness, we prove
a separate lemma.
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Lemma 1.2.18. Suppose that —w < 6y < 6; < --- < Ok < 7w and that C; are
complex numbers so that

K

lim Y Cie™ =0.
n— 00
=0

Then C; = 0 for all j.

Proof. We use the identity that for T > 6 # 0

N-] NG

inﬁ__l_e
E e = — .
1— e

n=l

LetT, = Zf:(, C;e™, so that ', — 0, by hypothesis. Then

L = G + 3 G-t

j#m
1 N-1 ) 1 1 — N G—=bm)
—inbm __ - .

Taking N — o0, both the left side and the sum on the right tend to zero, hence C,, = 0, as
required proving the lemma and Proposition 1.2.17. n

Corollary 1.2.19. Let f be piecewise smooth of degree k and let 0 < r < k.
Then we have the asymptotic estimate f(n) = o(jn|~"™"), |n| = o0 if and only if
f € C'(T), i.e., f has r continuous derivatives.

Proof. The Riemann-Lebesgue lemma implies that the last term in (1.2.17) is o(|n|~*~1).
Therefore the asymptotic behavior of f (n) is equivalent to that of the finite sum. If f € C"(T),
then all of the jump terms in (1.2.17) are zero for I < r, in particular this sum = o(|n|™""").
Conversely, if f (n) = o(Jn|~"""), then the same is true of the finite sum. Applying Lemma
1.2.18 repeatedly shows that 8f’(8;) = 0 for I < r, which proves thatf € C"(T). [ |

This corollary takes a particularly simple form in case k = 00, i.e., f is piecewise

C®°. Within this class of functions we can simply state that f € C"(T) if and only if

Fm) =o(n|"1), In] > 0.

1.2.3.2 Fourier characterization of analytic functions

The Fourier coefficients of an analytic function can be characterized in terms of the
exponential decay of the Fourier coefficients. Recall that a function is said to be analytic
if it possesses a power series expansion about each point: f(z) = Z,f’;o a(t — 1),
convergent in some interval |t — fg| < §. From this, it is immediately concluded that f (¢)
is infinitely differentiable and that the successive derivatives are obtained as f™ (t)) =
m!a,,. Since the series converges at t = fo, the terms of the series must tend to zero, and
in particular are bounded, from which we conclude that

(1.2.18) IF™ )| < MmIR™,  t=ty, n=0,1,...,R> 1/8.
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Equation (1.2.18) is also valid in an open interval |t — zy| < §/3, by noting the following
system of estimates:

FO@ =Y k4 1) (k+ma(t — 1)

k=0
f('") () < (k+m
— = Z Apym(t — t())k
m! = m
(m) t S
f '() 5C22k+mRk+m|t—to|k
m! =
_ C2™mR™
T 1 =2R|t — to]

valid for |t — #9| < 1/3R, which provides the desired uniform estimate. By covering
T by a finite number of these intervals, we may assume that R, M are independent of #;.
Conversely, if an infinitely differentiable function f(¢), ¢t € T satisfies (1.2.18), then the
series Y o o £ (to)(t — to)™ /m! converges in the interval |t — fo| < 1/R and is therefore
an analytic function. Summarizing, we see that f is analytic if and only if (1.2.18) holds.

In order to characterize analyticity in terms of the Fourier coefficients, first suppose
that f is analytic on T. In particular f is infinitely differentiable and we can integrate-
by-parts to write for n # 0,

21f(n) = / e ME@) dt
T

= (i) / e~ MFm (1) dt
mn T

)| < L v,
| nlm
Since this is valid for all m, we choose the optimal value m = [n/R] and apply Stirling’s
formula to conclude that |f (n)| < Me=<"l for any ¢ < 1/R.

Conversely, suppose that f is an infinitely differentiable function on T whose
Fourier coefficients satisfy a system of inequalities of the form | f (n)| < Ae=Ml for
some positive constants A, ¢. In particular, by modifying f on a null set, we have
the convergent Fourier series f(t) = ),z f (n)e™, which can be differentiated m
times to obtain f(t) = Znez(in)"’f (n)e™. Applying the hypothesis, we have
IF™ @) < AY,cq In|"e~". Comparing this sum with the integral [~ x"e~* dx shows
that the successive derivatives satisfy the estimates | f"™ (£)| < Am!/c™.

Hence we obtain the following Fourier-analytic characterization of analytic
functions on the circle.

Proposition 1.2.20. f € L'(T) is a.e. equal to an analytic function if and only
if its Fourier coefficients satisfy the system of inequalities

(1.2.19) 1fn) <Ae™ " neZ

for positive constants c, A.
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Exercise 1.2.21. Carry out the details of the replacement of the sum by the
integral.

1.2.4 Sine Integral

In order to treat pointwise convergence of Fourier series and integrals in one dimension,
a fundamental role is played by the function

2 [*sint
(1.2.20) smo:-/‘glm, 0<x < oo
wJo t

Its basic properties are listed as follows:

1) Si1(0) =0, lim,_, o Si(x) = 1.
(i) Si(x) <Si(r)=1.18... forallx > 0.
(iii) x — Si(x) has relative maxima at the points m, 37, 57, ... and relative minima at
the points 27, 47, 67, . ..

To prove these properties, we first note that Si((n+ 1)) — Si(nw) =

2/m n(]':ﬂ)" (sint/t) dt and that these numbers alternate in sign and decrease to zero

in absolute value. Hence the improper integral defining lim, Si (x) exists. To compute
its value, we note that by the Riemann-Lebesgue lemma,

. 1 27 . 1
i | [sin<¢/2> B 5] o (" " 5) Pd9=0.
But (1. D, (¢) dp = 27, which shows that
1im/ﬂﬂl.(—niﬁE
n Jo  sin(¢/2)

or equivalently Si(n7 + %) — 1 when n — oo.

dp=rn

1.2.4.1 Other proofs that Si(c0) = 1
We offer two other proofs of this important improper integral.

Proof using complex analysis. Consider the integral of the analytic function e?/z on the
(counterclockwise) contour defined by the two semicircular arcs z = €€, 0 < 6 < m;
z=Re®, 0 < 6 < m; and the two segments of the real axis defined by ¢ < |x| < R. By
Cauchy’s theorem the total line integral is zero. When R — oo, € — 0, the integral on the
large semicircle tends to zero, while the integral on the small semicircle is

n
. ice® .
—-z/ e df —» —im, € — 0.
0
Hence we have

lim / ¢ dx=im,

€e—>0,R—oc e<x|<R X
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from which we see that the improper integral ff‘;(sin x/x)dx = m, from which it follows
that Si(o0) = 1. |

Proof using real analysis. Define S(t) = fo' (sins)/s ds, assumed to converge to a limit
S(00). For x > 0, define
sin ¢

oo (o]
Gx) = / e —dt = / e™ds(r), x>0
0 t 0

On the one hand we may differentiate under the integral for x > 0 to obtain

o 1
G’(x):—/ e Msintdt = ——, x> 0.
0 1 + X2
Hence G(x) = C — arctan x for some constant C. But the estimation |G(x)| < 1/x shows
that 0 = G(o0) = C — 7/2, which shows that C = G(0) = 7 /2. On the other hand we can
transform the integral defining G(x) by a partial integration:

M

M
/ e ds(t) = e S()|'ZY + / xe ™™ S(t)dt
0

0

T (o]

5 arctanx = G(x) = / xe MS(t) dt.
0

The latter integral tends to .S (co) whenx — 0. Hence Si(oo) = 2/ S(00) = 2/m G(0) = 1.
||

1.2.5 Pointwise Convergence Criteria

We are now in a position to prove some criteria for the convergence of the partial sums of
a Fourier series at a given point. All of the results described below will be in the form of
sufficient conditions. It is not possible to formulate any effective necessary and sufficient
conditions for the convergence, as we will discuss below.

The first step is to recall that the partial sum is expressed as a convolution with the

Dirichlet kernel:

1
(1.2.21) &Jw)z(f*DNxm=:Z;/

sin (N + 3) (¢)
——— 2010 — ¢) do.
T sin(¢/2) 1@ -9do

This formula will be simplified in two ways. First, we will show that the factor sin (¢/2)
in the denominator can be replaced by the simpler function ¢ — ¢ /2. Secondly we
will show that the integral over the circle T can be replaced by the integral over a small
interval about ¢ = 0. The details follow.

The Dirichlet kernel is an even function and satisfies the normalization

1
—/DN(G)d9= 1,
21 T

so that we can write

sin(N + 3) ()

sing/2) 20

1 b4
(1222) S (0) = 5 / LF© + ) +£6 — #)]
T Jo
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and hence for any constant .S

sin(N + 1) (¢) p

sn@2) "

1 T
(1229 S\f@) -S= - /0 [F6 +¢) +£6 — ) — 28]

As a first reduction, we can replace the function 1/ sin(¢/2) by the function 2/¢ with
an error that tends to zero, uniformly in 6. This comes from the fact that

1 2
- =
sin(¢/2) ¢

is bounded and continuous on the interval [—, ]. The only possible difficulty is at
¢ = 0, where we can apply 1’Hospital’s rule to show that the difference tends to zero.

Exercise 1.2.22. Show that

N

1
sin x

=

/4
<x<=.
2

2/
ST

|-

Hint: First show that [x — sin x| < |x|>/6 and then simplify the fractions.

For each 6, the function

2
¢—>F9(¢)=[ 5] (FO+¢)+f(0—¢)

sin (¢/2)

is an L' function, and the map & — Fj is continuous from (-, 7) to L'(T). Hence
by the Riemann-Lebesgue lemma the integral of Fy(¢) sin (N + 1/2)¢ tends to zero
uniformly in & when n — o0.

Thus we have reduced the problem of pointwise convergence to proving that

sin (N + 3) ¢

(1.2.24) 111511/ [f6+ @) +f©O — ¢) — 28] d¢ = 0.
0

For the second simplification, we consider the contribution to (1.2.24) from the interval
8 < ¢ < m. Noting that the function ¢ — [f(0 + @) + f(6 — @)]/¢ is integrable
on the interval [8, 7], therefore by the Riemann-Lebesgue lemma this contribution to
(1.2.24) tends to zero when N — oo. We summarize this as the following necessary and
sufficient condition for the convergence of a Fourier series.

Theorem 1.2.23. Let f € L'(T). A necessary and sufficient condition that the
partial sums Syf (6) converge to a limit S when N — 00 is that for some § € (0, &),

sin(N + 1) ¢

8
(1.2.25) lig/n/ [f (0 + @) +£(6 — ¢) — 28] de = 0.
0
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One may note that if (1.2.25) holds for some § € (0, ), then it holds for every
8 € (0, ), since the difference of two such integrals is an integral over an interval
81 < ¢ < &,, which tends to zero by the Riemann-Lebesgue lemma.

We can now state and prove Dini’s theorem:

Theorem 1.2.24. Suppose that f satisfies a Dini condition at 6, meaning that for
some 8§ > 0 and some real number S

8 — ) —
/ lf(O+¢)+f(0—¢) 2S|d¢<oo
0

¢

Then limy Syf(6) = S.

Proof. This is an immediate application of Theorem 1.2.23 and the Riemann-Lebesgue
lemma. |

Specific conditions that imply the Dini condition can be obtained from a symmetric
form of the Holder condition, as follows:

Corollary 1.2.25. Suppose that f satisfies a symmetric Holder condition at 6, in
the form

If(0+¢)+f(0 —¢) —2f(0)] = Clo|*

for0 < ¢ <6, where 0 < a < 1. Then limy Syf(6) = f(6).

If f satisfies a Dini condition at 6 with S = f(8), we say that f is normalized. The
following exercise applies to functions defined on the entire real line, not necessarily
periodic.

Exercise 1.2.26. Let f € L\ _(R) satisfy a Dini condition at x = 0, +2m«,...,

loc

where it is normalized. Then if M ¢ 7,

M

lim % ., Dy)f(x)dx= Y f(2mm)

N—o0 meZ,\m|<M

whereas for M € Z% we must add %f(ZT[M) + %f(——ZﬂM) to the right side.

The next result is historically the first theorem on convergence of Fourier series,
attributed to Dirichlet (1829) for monotone functions and to Jordan (1881) for the general
case. We will use the properties of Si (x).

Theorem 1.2.27. Suppose that f is of bounded variation on [0 — 8,0 + 8] for
some § > 0. Then limy Syf(0) = %[f(@ +0)+f6 -0



28 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proof. This is done by integration by parts: We write m = N + 1/2, F(¢) = %f(e +¢)+
%f(e — @), S = F(0 + 0); from (1.2.24) and the remarks that follow, we have

) _ .
st(e)_S=3/ (f(9+¢)+f(9 ) _S) LY
T Jo 2 ¢

8
(1.2.26) = / (F(¢) — 8) dSi (m¢) + o(1)
0

§
= [F(§ — 0) — S1Si (mé) —/ Si (m@) dF (¢) + o(1),
0

where the final integration is with respect to the finite measure defined by this function of
bounded variation. Now we apply the dominated convergence theorem and the properties
of Si (x) to conclude that

Hm[Syf (@) ~ S1=[F(E = 0) -~ S1 - [F@E ~0) - S1=0,
which was to be proved. |

Since every absolutely continuous function is of bounded variation, we obtain the
following corollary.

Corollary 1.2.28. If f is absolutely continuous, then the Fourier series converges
to f everywhere.

It should be noted that the Dini condition and the condition of bounded variation
are not comparable with one another. For example, the function ¢ — 1/log (1/¢) is of
bounded variation but does not satisfy a Dini condition. On the other hand, the function
¢ — ¢ sin (1/¢) satisfies a Dini condition but is not of bounded variation. Finally we
remark on the difficulty of finding necessary conditions. The formula (1.2.22) shows
that the Fourier partial sum at  depends on the symmetrized function ¢ — f(6 + ¢) +
f(0 — ¢). If this function is identically zero, then we have limy Syf(8) = 0 regardless
of whatever other behavior is present. In particular any odd function (f(—x) = —f (x))
has a convergent Fourier series at 6 = 0.

The technique used in the proof of Theorem 1.2.27 can also be used to prove the
uniform boundedness of the partial sums of the Fourier series of a function of bounded
variation. To do this, write

T 1 2
21 Snf () = /0 [ —} sinm¢ [f(0 + ) +(6 — ¢)1do

sin(¢/2) ¢

T sin m¢

—[f® 6 — ¢)1do.
+ Y [f(6+¢)+f6—¢)ldo

The first term is less than (7r3/12) max | f|, while the second term can be integrated by
parts in terms of the Sine Integral:

T ¢
The first term is bounded by Si () max |f| and the second term is bounded by
Si () Var f. We summarize as follows:

2 [ S0500 + 9ya0 =0 = msinm) — [ 5o 40 5 91,
0
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Proposition 1.2.29. If f is of bounded variation on T, then the partial sums of
the Fourier series are uniformly bounded, in the form

ISof ()| = Cimaxy|f| + CyVarf

where C,, C, are universal constants and Var f denotes the total variation of the
signed measure defined by f.

Exercise 1.2.30. Find values for the constants Cy, C,.

Exercise 1.2.31. Suppose that f is of bounded variation and continuous in
a neighborhood of 6. Prove that the partial sums converge uniformly in a closed
interval containing 6.

Hint: Without loss of generality assume f monotone increasing. Reconsider the representation
(1.2.26) of the partial sums and break up the integral into f(f and f;". Apply the mean value theorem
for integrals to each term and recall that Si (x) < Si () for all x.

1.2.6 *Integration of Fourier Series

In many applications of Fourier series, f represents the density of mass, charge, or
probability. In such situations, the quantity of interest is the integral of f over an interval.
It is reassuring that, at this level, there are no obstructions to convergence.

Theorem 1.2.32. Suppose f € L'(T). Then for any interval (a, b) we have

b b
(1.2.27) lim / (S.f) () do = / £(6) db.

Proof. The partial sum on the left is given by the convolution with the Dirichlet kernel, an
even kernel that defines a self-adjoint operator. Thus

b
(Sf)(0)db = /(Snf)(H)l(a.b)(@) de = /f((?)(Snl(a.b))(@)d@’
a T T
Since 1, is of bounded variation, S, 1,5 converges boundedly to 1, 5 except at the end-

points x = a, b, which have Lebesgue measure zero. Applying the dominated convergence
theorem completes the proof. |

Theorem 1.2.32 can also be proved by considering the integral
9 ~
FO)= [ (f(@)—f0)de.

This functlon is absolutely contmuous with F(—n) = 0= F(n), F'(®) =) — f” ),
so that inF (n) = f (n) — Ban (0). Hence the Fourier coefficients of F are given
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by F n) = f (n)/in for n # 0 and we have the everywhere convergent Fourier
series
(1.2.28) FO)=FO) + > @eme,
in
0#neZ

In particular, for any (a, b) C [—n, n], we have

F(b) _F(a) = Z f%(einb _eina)

0#£neZ
A b .
= Y fm / e do
0#neZ a

or equivalently

b b
/ f(0)do — (b —a)f(0) = 11[511/ [Snf (6) — f(0)]d6

which reduces to (1.2.27).
Another by-product of the integration identity (1.2.28) is the following necessary
condition on the Fourier coefficients of an L' function.

Corollary 1.2.33. For any f € L'(T), the series 2 0snez. f(n)/n converges.

This corollary can be used to manufacture trigonometric series that are not Fourier
series.

Exercise 1.2.34. Prove that ), _,(sin nf /log n) is not the Fourier series of an L'
function.

Hint: ldentify f (n) as a suitable odd function.

Later we will prove that the series anz(cos né /log n) is the Fourier series of an
integrable function.

Exercise 1.2.35. Suppose that g is a function of bounded variation on T. Prove
that for any f € L'(T),

lim /g(9)SNf(9)d9 =fg(9)f(9)d9-
1.2.6.1 Convergence of Fourier series of measures

The above ideas can also be used to give a quick treatment of the convergence of Fourier
series of any finite signed measure on T. The partial sum of its Fourier series is written

Sut(8) = ) pk)e™.
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Proposition 1.2.36. Suppose that . is a finite signed measure on T. Then

b 1 1
lim / Sv(6)d6 = u((@ B) + u(lah) + SR(B).

Proof. The partial sum on the left is written in terms of the convolution with the Dirichlet
kernel. Thus

b
f (Swi)(©)d8 = / (Swit) )10y (8) d6 = / (S L) @)12(d6).
a T T

Since 1, 5 is of bounded variation, Sy 1, 5 converges boundedly to 1, + %1(,,, + %1(,,,.
Applying the dominated convergence theorem completes the proof. |

1.2.7 Riemann Localization Principle

Fourier series in one dimension have the property that the limiting behavior of the partial
sums at a point depends only on the values of the function in a neighborhood of the point,
no matter how small. This is expressed as follows.

Proposition 1.2.37. Supposethatf € L'(T) isidentically zero inan open interval
(a, b). Then for any compact subinterval the Fourier partial sums tend uniformly
to zero when n — o0.

Proof. From formula (1.2.24) we have

sin (N + 3) ¢
¢

If [a, b] is a subinterval of (a,b), let 26 = min(a, — a,b — b;). By hypothesis
fO+¢)+fO —¢) =0if 0 € [a),b1],¢ < 8. Hence the integrand is identically
zero when 0 € [a, by],¢ < é. On the other hand, the integral on [§, 7] tends to zero
uniformly when 6 € [a,, b], by the Riemann-Lebesgue lemma. |

1 e
(1.2.29) Snf(8) =o(1) + ;/ F6+¢)+f(O— )] do.
0

The Riemann localization principle allows us to infer that if two functions agree on
an interval, then the Fourier series are equiconvergent meaning thatlim, (S, fi —S, f2) = 0
on that interval. This phenomenon is no longer present in higher dimensional Fourier
analysis, as we shall see.

1.2.8 Gibbs-Wilbraham Phenomenon

In the neighborhood of a discontinuity one cannot expect uniform convergence of the
Fourier partial sums. The specific form of nonuniform convergence is best illustrated by
the example

f&x) = (7 —x)/2m, 0<x<m,

(1.2.30)
f(x) = —(r +x)/2m, - <x<0.
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This is the simplest function of bounded variation that has a single jump of unit size.
Now f is an odd function whose Fourier coefficients are

~ 1 .
Fon =5 / FOe ™ d
T JT

: g
—i T =X .
= — sin nx dx
m 0 4

—i

2nm

so that the partial sum of the Fourier series is

1 in N.
Snf(x) = |:smx + .4 o le .

N

This may be written as a definite integral by first computing the derivative

Snf) (x) = —[COSX + .-+ 4 cos Nx]

= Z(DN(X) - 1.

Thus

1 [*sin(N + 1/2)¢
(1231)  Syf(x) = / [Dy (@) —1]dt = —+E T sin(t/2)

Defining g(t) = 1/ sin(t/2) — 2/t, we have by a single integration-by-parts,

u 1
/ g(t)sin(N+%)tdt=0(ﬁ), N — o0
0

uniformly for 0 < x < 7z, sincegisa C ! function on the interval [0, 7 ]. Thus

- 1 [*sin(N + 1)z 1
(12.32) SNf(x)=~x+—/ s+ o L)
2w Jp t N
If 0 < x < 7, we see clearly that
—-x 1 sin¢
lim S =—+ — M= X =
s =+ o [ a= 2= s,

To study the behavior when x — 0, we note that on the one hand
sup [S/0+ =] < 5 su sl()+0( ) Lsi )+0(1)
x) + — - X = =Si(x —),
Osxgt N 2 20<x<poo 2 N

which gives an upper bound to the fluctuations of the partial sums. On the other hand, if
xy — 0 sothat Nxy — m, then

. C 1 [WFDW ging 1.
ll]{IDSNf(xN) = h}{ln ;A Tdt = ESl(ﬂ’)

These computations are summarized as follows.
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Proposition 1.2.38. The set of accumulation points of the partial sums Syf (xy)
when N — 00, xy — 0with 0 < xy < m is described as follows:

(1.2.33) lim sup Syf (xv) < 2Si(7) =0.59....
N

If xy — 0 so that Nxy — 7, then
(1.2.34) lim Syf () = 18i (n).

In particular, any point in the interval [0, %Si(n)] is an accumulation point of
partial sums Syf (xy) when N — 00, xy — 0.

Proof, We have shown the first two statements above. For the final statement, apply the
intermediate value theorem to the continuous function Syf. [ |

The number %Si () — % = .09... is called the overshoot of the partial sums in
the right neighborhood of x = 0. We will show below that for any function of bounded
variation with f (x +0) > f(x — 0) we can discuss the overshoot in a right neighborhood
of x, defined as lim supy _, o5, ,, . SNf (n) — f (x + 0), which will be proportional to the
jump f (x +0) — £ (x — 0).

The numerical value of Si () = 1.18... can be computed by expanding sin#/¢
in a Taylor series and integrating term-by-term. This is carried out in Section 2.3.3.

Exercise 1.2.39. Compute limy Syf (kw /N + %)fork =2,3,...

Strichartz (2000) discovered a corresponding behavior with respect to the arc
length of the curve {(x, Sxf(x)), —m < x < m}. The proof anticipates the behavior of
the Lebesgue constants, to be studied in Section 1.5.

Proposition 1.2.40. Let f be defined by (1.2.30) . Then when N — 00 we have

/ VIF Sy DP dx = €y logN + O(1),

where C| is a positive constant.

Proof. From the computations following (1.2.30) we have (Syf)’ (x) = (1/27)(Dy(x)—1),

so that
1
JTF IO — 1Suf) ()] =
M M= TR IS M + 1Snf)y )]
(1.2.35) <1

so that the error term in (1.2.35) is O(1), N — oo. But Proposition 1.5.1 also shows that
ff” |cosx + - - -+ cos Nx| dx = C, log N 4+ O(1) for a positive constant C,. [ |

Exercise 1.2.41. Suppose that f(x), —m < x < 7 is a piecewise C' function and
that f is continuous on T. Prove that when N — oo we have

/ VIHISN)Y @FPdx - [ V1+[f (0] dx.
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1.2.8.1 The general case
For a general f € L'(T), the Gibbs-Wilbraham phenomenon at a point ¢ € T
describes the set of accumulation points of Syf(¢y) when N — oo and ¢y — ¢. In
the above example it is seen that the set of accumulation points consists of the interval
(—=0.59...,0.59...), whereas if ¢ # 0, then Syf — f uniformly in a neighborhood of
¢ and the set of accumulation points consists of the single point f (¢).

To study the Gibbs-Wilbraham phenomenon more generally, let f € L'(T) be
a function of bounded variation with discontinuities labeled 6y, 6, . . .. Let the jumps be
denoted §f (9;) :=f(6;, +0) —f(6; — 0). Let J(8) = (w — 6)/2n for0 < 6 < m and
extended periodically to the entire line. Then J has a unit jump at 8 = 0, which will be
used to study the general case. Form the function

o0 o0
(1236)  fump(®) = )6 6)T5,6) == Y ()OI (6 — ).

i=1 i=1
The series (1.2.36) is uniformly convergent to a function of bounded variation whose
discontinuitites are precisely the points {6;}. The function f= S — fiump 1s a continuous
function of bounded variation, since all of its jumps are zero. From Exercise 1.2.31,
the Fourier series of f is uniformly convergent. Therefore the analysis of the Gibbs-
Wilbraham phenomenon for f is reduced to that of fiyms. Given € > 0, let M be so large
that Y2, 1(8/) (0 ISnJs o < €, Which is possible since the sum Y o, |8 (8;)| < oo
and the partial sums SyJy, are uniformly bounded by a constant for all i, N. To study the
Gibbs-Wilbraham phenomenon near 6, let §f(6;) > ¢ and write

M

Snf(8) < (Bf)(01)SnJo, (0) + Y _(5)(B:)SnTo () + SnF(B) + €.
i=2

From Exercise 1.2.31, the finite sum is uniformly convergent in a closed interval about
0,. The Fourier series of f is uniformly convergent. Therefore when ¢y — 6;, we have

Snf (@) < (BF)(01)SnJa, (dn) + [f (61 + 0) — 5(8)(61)] + €.

Letting ¢y — 6;, we have

lim sup Syf (¢w) < 3(8N©B)Si (1) + [f (61 +0) — 3N ON] + e,
limNinf Snf(@n) = [f (61 +0) — S8 (6] — €.

But € was arbitrary. The same computation applies to any of the discontinuity points 6.
We summarize as follows:

Proposition 1.2.42. Let f € L' (T) be a function of bounded variation with a
simple discontinuity at ¢ € (—m, ), where (8f)(¢) > 0. The set of accumulation
points of the partial sums Syf (xy) when N — coand xy — ¢ withe¢ < xy < 7
is described as follows:

Si —1
(1237) lim sup S/ () <@ +0) + %(w @).
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FIGURE 1.2.3

The Gibbs-Wilbraham phenomenon for the function () = sgn(8).

From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications. Used
by the permission of The McGraw-Hill Companies.

If xy — ¢ so that N(xy — ¢) — 7, then

Si -1
(1.238) lim $1f (30 = £6 +0) + D=L 3.

In particular, any point in the interval [%(f(qb +0)+f(¢ —0),f(¢ +0) +
Si(m) — 1)/2)(8f)(@)] is an accumulation point of partial sums Syf (xy) for
some sequence xy when N — 00, xy — ¢ withxy > ¢.

1.3 FOURIER SERIES IN L?
1.3.1 Mean Square Approximation—Parseval’s Theorem

Fourier series are well adapted to deal with the Euclidean geometry of the space L2(T)
where the inner product is defined by

1 -
13.0 (o8 = 5 [ 136 ds.
T Jr
We can measure the degree of approximation by the mean square distance
If =gl ={f —8.f ~ 2
In particular, if g(0) = Y___, b,e™ is a trigonomefric polynomial then
If =gl = 112 = (£, 8) = (&.f) + llgll3

N

1F12 = 32 (Feby+Foob, — 1ba2)

n=—N

N N
Y b= fP I3 = D 1FmI

n=—N n=—N
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This has the following consequences.

Proposition 1.3.1. Suppose that f € L*(T). Then the minimum mean square

error is attained when by, is the Fourier coefficient b, = f(n). The mean square
distance is given by

N
(13.2) If =gl =1F5 - ) If P

n=~N

In particular we have for each N € Z™ the inequality

N A
D@ <13

n=-N

and in particular Bessel’s inequality:

S If eI < 1f13

nez

The space L2(T) is distinguished in the theory of Fourier series because of this
characterization of the Fourier partial sums. If we consider optimal trigonometric approx-
imation in the space C(T) of continuous functions or the space L”(T), p # 2, then the
Fourier partial sum no longer provides the best approximation in norm.

Fourier series in L?(T) have the remarkable property that Bessel’s inequality is in
fact true with the sign of equality. This is Parseval’s identity, stated as a theorem.

Theorem 1.3.2. Parseval’s theorem: For any f € L*(T), the Fourier series
converges in L*(T) and we have Parseval’s identity

1 [7 N
(13.3) — | 1FO®Fdo =) IfmP.

2r - neZ

Proof. We first show that the partial sums converge in the norm of L?(T). We have
1 N
ISvf — SufI” = 5— f ISwf = Suf P =Y _1f PP >0  M,N - oo
2 Jr M+1

by the Bessel inequality. But the space L?(T) is complete, hence there exists F = limy Syf
in the metric of L(T). It remains to show that F = f a.e. To do this, we compute the Fourier
coefficient by writing

277,'1:-(}1) = /[F(Q) _SNf(g)]e—iné?dg +/SNf(9)e—ilzﬁ do.
T T

If N > |n|, then the last integral = 2 f" (n). Applying Cauchy-Schwarz, we have

IEm) —fm)| < IF =Snfl. (N > n).
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Letting N — 0o shows that F(n) = f(n) for all n € Z. Hence F = f a.e. and we have
proved that S, f — f in the norm of L?(T). In particular the L? norms converge and we have

N
If15 =1im 3 If@)P,

n==N

which is the statement of Parseval’s equality. |

Exercise 1.3.3. Suppose that f is absolutely continuous with f' € L*(T). Use
Parseval’s identity to prove that || f'||3 = Y_,cz 2| f(n)|*.

Exercise 1.3.4. Suppose that f is absolutely continuous with f' € L*(T). Use
Parseval’s identity to prove that the Fourier series converges absolutely:

2 ez |f ()] < oo
Hint: Apply the Cauchy-Schwarz inequality.

Theorem 1.3.2 shows that the mapping f — £, from L?(T) to L2(Z) preserves the
respective L? norms. The next proposition shows that the mapping f — f is onto the set
of square-summable sequences. Put otherwise, we have an isomorphism between L?(T)
and L?(Z), the set of square-summable sequences.

Theorem 1.3.5. Riesz-Fischer theorem: Suppose that {c,},n € Z is a bilat-
eral sequence of complex numbers with Y, ., |ca|? < 00. Then there is a unique

f € L*(T) with f(n) = c, for all n € Z.

Proof, Let T,(6) = Y __ cne™. Then T, is a Cauchy sequence in L*(T) since for

m=—n

M < N, ITy — Tull3 = X4 <pm<n Icnl> = O when M, N — oo. By the completeness
of L*(T), there exists an L? limit f, where || f — T,|l» — O when n — oo. The Fourier
coefficients of f are obtained by writing

2nf(n) = / f®)e " dp
T

= /[f(o) - TN(G)]e—inﬁdg + / TN(Q)e_i"gdG,
T T

The absolute value of the first term is less than or equal to 27 || f — Ty||,. The second term
is 2 x the Fourier coefficient of the trigonometric polynomial Ty; if N > |n| this is equal
to ¢,. Thus we conclude

f —ca <1 =Tullz  for N > |nl.
Taking N — oo completes the proof of existence. The uniqueness of f follows from the

uniqueness of Fourier coefficients in the space L' (T). [ |

Theorem 1.3.5 can be used to identify the smoothness of a function from the
Fourier coefficients, as follows.

Proposition 1.3.6. Suppose that f € L*(T) has Fourier coefficients that satisfy
D onez n®|f(n)|* < oo. Thenf is a.e. equal to an absolutely continuous function,
with f' € L*(T) with Fourier series f'(6) ~ ¥, inf (n)e™.



38 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proof. By Theorem1.3.5,% ", ., inf (n)e™ is the Fourier series of an L2 function g. Further-
more [ g(9)d6 = 0. Let F(6) = f_en g(¢)d¢. This is an absolutely continuous function
on T with F’ = g almost everywhere. Therefore the Fourier coefficients of F are obtained
from g(n) = inF (n). But gn) = inf (n), from which we conclude that F(n) = f (n) for
n # 0. Hence F — f is a constant a.e. In particular f is a.e. equal to an absolutely continuous
with f’ = g € L*(T). ]

Exercise 1.3.7. Suppose that f € L*(T) has Fourier coefficients that satisfy
Znez nz"|f(n)|2 < ooforsomeintegerk > 1. Thenf,f’, ... ,f*D are absolutely
continuous with f® e L>(T).

1.3.2 *Application to the Isoperimetric Inequality

We now give an application of Parseval’s theorem to geometry. Suppose that we have
a closed curve in the xy plane that encloses an area A and has perimeter P. We will
prove that

P? > 47A,

with equality if and only if the curve is a circle.

To do this, suppose that the curve is described by parametric equations x = x(z),
y = y(t) where —m < t < m. The functions x(¢), y(¢) are supposed to be absolutely
continuous with derivatives in the space L (T) and to satisfy the normalization conditions
x(—m) = x(w), y(—m) = y(;r), since the curve is closed. From calculus, the perimeter
and area are given by the formulas

P= f i YO +y®id, A= / i x()y (1) dt,

/4

where x' = dx/dt, y = dy/dt. By reparametrizing the curve, we may suppose that
x' ()2 + y'(£)? is constant; in fact it must be

2 2_ P
Xt ') = —.
0 +5 (0 = —
Since the functions are real-valued, we work with the original trigonometric form of

Fourier series. Since the functions x(¢), y(¢) are supposed absolutely continuous, they
are also of bounded variation, and we have the uniformly convergent Fourier series

o0
(1.3.4) x(t) =ag+ Z(an cosnt + b, sinnt), —n<t<m,

n=1

o0
(1.3.5) y(t) =co + Z(c,, cosnt + dy sinnt), —r <t<m.

n=1
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The Fourier series of the derivatives are not necessarily pointwise convergent, but they
do converge in L? and we can apply Parseval’s theorem. We have

[oe]

(1.3.6) X (@) ~ Z n(—a, sinnt + b, cos nt), - <t<m,
n=1
o0

(1.3.7) Y () ~ Zn(—cn sinnt + d, cosnt), —-r <t<m.

n=1
Applying Parseval’s theorem, we have

P2 /4 00
== WO +yY®ONdt =7 Y n*(@l+b2+ci+dD)
v4 -

n=1

A= /n x(®)y'(t) dt

b4

1 V4
=7/ O +Y' OF = [x(t) =y ()1} dt

o0
=7 Zn(andn —b,cp,).
n=1

Performing the necessary algebraic steps, we have

p? =

— =2A=7) [n(a,—d,)* +n(by +c,)* + n(n — 1)(a? + b + c2 +d2)] .
2 —

The right side is a sum of squares with nonnegative coefficients; thus P?/2m — 2A > 0.
If the sum is zero, then all of the terms are zero, in particular aﬁ + b,z, + c,% + df = 0 for

n>landa, —d; =0, b, + c; =0. This means that

(1.3.8) x(t) = ag+ajcost —c;sint, t <

— 9

—7T S
(1.3.9) y(t) = co + cycost +a, sint, - <t<m,

which is the equation of a circle of radius 1/a% + cf with center at (ag, co). The proof is
complete.

Exercise 1.3.8. Show that if x = x(t),y = y(¢t) describes a plane curve of finite
length, then we can re-parametrize with t = t(s) so that (dx/ds)> + (dy/ds)?
is a constant.

1.3.3 *Rates of Convergence in L?

Parseval’s theorem allows one to reduce the study of rates of convergence to the estimation
of series. The nth Fourier coefficient of Sy f —f is zero for |n| < N, therefore from (1.3.3),



40 INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

the mean square error is
(13.10) ISuf —f13 =D IfF )P
|n|>N
This can be used to estimate the mean square error in terms of the smoothness of f. If,
for example, f € C/(T), then f(n) = O(|n| ™) and
ISwf —fI> <CY k¥ =0WN'"), N—>o
k>N

which gives an upper bound for the mean square error when N — oo.
In order to obtain more precise estimates, we introduce the L2-translation error,
defined by

1
(13.11)  fi—fl3= Z/TIf(erh) —f®Pdx, k>0, felL*.

This can be expressed directly in terms of the Fourier coefficients by using Parseval’s
identity to write
(13.12) I = f15 =D le™ = 1171 Fm) .

nez

The next theorem describes equivalent norms to measure the smoothness of f.

Theorem 1.3.9. Suppose that f € L*(T), 0 < o < 1. Then || f — S,fll» < Cn™®
if and only if f satisfies the L*> Holder condition || f, — fll, < Kh® for suitable
constants C, K > 0.

Proof. From (1.3.12) we have for any M

£ = f13 = (Z + Z) le™ — 112 | Fm)I®

lnl<M  |n|>M
< Y RRIFWIP+4 Y 1F P
In|<M In|>M

If ||S.f —fll < Cn™, then the sAecond sum is O(M ~2%). To estimate the first sum, we sum
by parts, writing E, 1= 3_ ., [f(k)[*:

M
Y I P = MX(Ey — Eoo) + Y (21— D(Eo — E, ).

|n|<M n=1
By hypothesis E,, — E, = O(n~2%), so that both of these terms are O(M?>~2%), therefore
Ifi —FI3 < C2l*M*™* + 4M ).

Choosing M = 1/h completes the proof.
Conversely, if f satisfies an L? Holder condition, we can write

2 11 —cos ()] |Fm)* = I1fi — £} < K2 .
nez
Integrating this inequality over the interval [0, k] and dividing by k, we have

3 [1 - Sin("k)] FwI> <Ck*, k>0

nez nk
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The terms on the left side are nonnegative. Restricting the sum to indices n for which
|nlk > 2, we have

crex 3 [1—Si“(”")]|f<n>|2z% Y Fmr.

neZ:|nlk>2 nk neZ:|nlk=2

The proof is complete. |

We can paraphrase Theorem 1.3.9 in terms of equivalent norms. On the one hand
we have the L? Holder norm

No (f) := sup |l fu — fll2/Ih]*.
h#0

On the other hand we have the normalized mean square error, defined by
Ry (f) = Sugn"llsnf —fl.

Theorem 1.3.9 asserts that for 0 < o < 1, there exists a constant C = C, so that

C7'Ny(f) < Ry(f) < CNL(f).

In case ¢ = 1 one cannot expect the above equivalence to hold, as shown in the
next example.

Example 1.3.10. Let f be defined by the absolutely convergent trigonometric

series
%o ke
fx) = ; o
Then
> 1 1
— S 2 = —_ << —,
If = Suf 13 k;] 5 <353

On the other hand, from (1.3.12)

1
Ifa = £1I5 = 5 sin?(kh/2)

%

h

4y
k=1
I .
4;; o sin®(kh/2)

1
>4 3 5kn/n)
k<m/h
2

4h
= ?log (7 /h),

which shows that f cannot satisfy an L* Holder condition with o = 1.

Exercise 1.3.11. Suppose that f satsifies an L*> Holder condition with o = 1.
Prove that || f — Suf |2 = O(1/n).
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Hint: Go back through the steps of the second part of the proof of Theorem (1.3.9) with & = 1.

Exercise 1.3.12. Suppose that f satisfies an L? Hoélder condition with o = 1.
Prove that Y, _, |n|*| f(n)|* < oc.

neZ
Hint: Apply Fatou’s lemma to formula (1.3.12).

The relation between the L> Hélder condition and the pointwise Holder condi-
tion is not symmetrical. Indeed, if |f(x + &) — f(x)| < Ch® for some 0 <o < 1,
then clearly || f, —fll < Ch*. The converse is false, as shown by the following
example.

Example 1.3.13. Let f(x) = |x|* for —m < x <7, where0 < a < 1.

We will show that the L? Hélder condition is a strict improvement of the pointwise
Holder condition. To see this, we first compute the Fourier coefficients:

b4

2nf(n)=/ x| cos (nx) dx

= 2/ x% cos (|n]x) dx
0

20 [T Ly .
=—-|;l—| x“7 " sin (|n|x) dx
0

2o Inlx
_ a—1 2
= e /0 y*~ sinydy.

But the final integral converges to a constant when n — 00 as shown by another partial
integration. Therefore we have the asymptotic formula f(n) = C/|n|'**(1 + o(1)),
|n| = oo. Applying the formula (1.3.12), we have

If = £13 =D le™ — 1171 f ()

nez
(1.3.13) < Y EIfWIP+4 ) IF I
|n|<M |n{>M

We consider three cases.

Case I: ¢ > % The first sum in (1.3.13) is convergent when M — oo, while the
second sum is O(M~'~2%). Taking M = 1/h, we see that || f, — f||> < Ch?, hence the
L? modulus satisfies || f;, — f|l> < Ch, irrespective of o. Hence we have an improvement
of the Holder exponent in the amount 1 — «.

Casell: o = % In this case the first sum in (1.3.13) ~ h? log M, whereas the second

sum = O(1/M?). Again taking M = 1/h, we have | f, — f|l» < Ch,/log (1/h), thus an
improvement of the Holder exponent by nearly %

Caselll: 0 < a < % In this case the first sum diverges, asymptotic to a multiple of
M'~2%_ Again taking M = 1/h, the two terms are now balanced and both are asymptotic



FOURIER SERIES ON THE CIRCLE 43

to a constant multiple of #/2**!, Thus in this case we have || f, — fll» < Ch"‘+%, an
improvement of the Holder exponent by %

These examples give a concrete indication of the disparity between the L?> Holder
classes and the pointwise Holder classes. A more systematic approach is contained in
the proof of Corollary 1.3.19 below.

The next two exercises give a relation between the mean square error and the
fractional Sobolev classes on the circle.

Exercise 1.3.14. Suppose that f € L*(T) and that for some « >0,
> ez In**1 f(m)|* < oco. Prove that ||Snf — fll2 = o(N"%), N — oo.

Hint: Begin with (1.3.10).

Exercise 1.3.15. Suppose that f € L*(T) qnd that for some a > 0, ||Snf —fll2 =
ON~),N — oo. Prove that)_,_, |n|?8| f(n)]? < oo forany B < a.

Hint: Apply summation-by-parts to the sum 3_,, ., [n|*| FfmP.

At the beginning of this section it was noted that if a function has additional
smoothness, then we may expect that the mean square error decays more rapidly
when N — o0. The following exercise gives an extension of Theorem 1.3.9 to higher
derivatives.

Exercise 1.3.16. Letk € Z* and 0 < a < 1. In order that the mean square error
satisfy the estimate ||Snf — fll2 = OWN~® ) N — oo, it is necessary and
sufficient that f, f', ..., f* =D be absolutely continuous and that f® satisfy the L*
Hélder condition || f© — f®|, < Kh®.

1.3.3.1 Application to absolutely convergent Fourier series
We can also use the L? Hoélder condition to give a sufficient condition for f to be
represented as an absolutely convergent Fourier series.

Theorem 1.3.17. Bernstein: Suppose that f satisfies an L* Holder condi-
tion with exponent o > % Then the Fourier series is absolutely convergent:

Yzl F )] < oo

Proof. We estimate dyadic blocks by the Cauchy-Schwarz inequality. Thus

2
Yoo Fmi) <2mt Y el
2”'5|n|<2’"+' 2m$|n|<2m+l

By Parseval’s identity, we have for any m

Ifi—fI3 =Y le"™ =121 fmPF = > " =171 f

nez 2m < [nj<2m+]
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Writing |e™ — 112 = 4sin® (nh/2), we see that if h = 127", then |¢™ — 1| > 1 for
2" < |n| < 2™*! so that

- T
Ihi=fE= 30 IfeP,  h=32
2’"5|n1<2'”+‘
Now we apply Cauchy-Schwarz to each dyadic block and sum to obtain

DoFmi=d" Y 1fml

0s£neZ m=0 2m <|p| <2m+!

< Zz(m+l)/2g2 (f ﬂz—m)

m=0

¢
1

m

) 227(1 2 _ o,
m=0

since o > 5. [ |

| /\

wlhl

Exermse 1.3.18. Suppose that f satisfies an L* Holder condition with exponent

a > 3. Prove that Y onez |n|’3|f(n)| < ooforany B <a — %

If f is of bounded variation, then the absolute convergence of the Fourier series

holds under any pointwise Holder condition, according to the next corollary.

Corollary 1.3.19. Zygmund: Suppose that f € BV(T) and that f satisfies a
pointwise Holder condition: |f(x +y) — f(x)| < Cly|* for 0<a <1 Then
> nez | f(m)] < oo

Proof. Letting V; denote the total variation of f, we can estimate the L?> modulus of

continuity by writing
k- D\ [
I fassn =I5 = x + ) T\t Sy dx

2N b4

Therefore f satisfies the L? Holder condition with exponent (1 + «)/2 > %, at least along
the values » = 7 /3N. But this is sufficient to apply the proof of Bernstein’s theorem and
thus conclude that _, _, | f(n)| < oo. [ |

If f satisfies only a Holder condition with & < 1/2, the Fourier series is not abso-

lutely convergent in general. There exist many examples in the literature. An alternative
treatment is to look at random Fourier series and to prove that almost every realization
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is not absolutely convergent, but satisfies a Holder condition with & < 1/2 (see Kahane
(1968)).

1.4 NORM CONVERGENCE AND SUMMABILITY

The tools introduced thus far do not permit us to deal with the norm convergence within a
Banach space of functions. Indeed, the oscillatory properties of the Dirichlet kernel will
allow us to show that there exists a continuous function whose Fourier series diverges
at a point. Hence one cannot prove uniform convergence, for example, within the class
of continuous functions. Furthermore, we would like to deal with convergence in the
norm of L”, where p > 1. This turns out to be impossible in the space L', but can be
dealt with nicely if p > 1. In order to launch a systematic theory, we consider the Cesaro
averages of the Fourier partial sums. These are called the Fejér means and defined as the
arithmetic means

14.1) oNf(9)=N;_’_I(Sof(9)+---+SNf(9)), N=0,1,2,...
We also consider the Abel means
1.4.2) AfB)=(1~-r) ir” JS(0), O<r<l.
n=0
The Abel means can be written as a Fourier series by proving the identity
(1.4.3) (1—r) ir”Snf(G) =Y Fmyre, 0<r<l.
n=0 neZ

Exercise 1.4.1. Prove (1.4.3).

Exercise 1.4.2. Provethat if the Fourier partial sums converge pointwise, then the
Fejér means converge pointwise. Prove that if the Fourier partial sums converge
uniformly, then the Fejér means converge uniformly. Prove that if the Fourier
partial sums converge in LP, p > 1, then the Fejér means converge in LP.

Hint: Use the triangle inequality and the fact that if a numerical sequence s, satisfies lim, s, = s,
then lim, (s + -+ -+ s,)/n+1=s.

Exercise 1.4.3. Prove that if the Fourier partial sums converge pointwise, then
the Abel means converge pointwise. Prove that if the Fourier partial sums converge
uniformly, then the Abel means converge uniformly. Prove that if the Fourier partial
sums converge in LP, p > 1, then the Abel means converge in LP.

Hint:  First prove that if a numerical sequence s, satisfies lim,s, =s, then

Hm, o (1= 1) Yopey 75y = 5.

1.4.1 Approximate Identities

In order to deal systematically with these procedures, we define the general notion of
approximate identity.
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Definition 1.4.4. An approximate identity on the circle T is a function k(r, 6)
defined for 6 € T and r in some directed index set I, so that

1
(1.4.4) lim — / k(r,0)do =1
ro 21 T
(1.4.5) / |k(r,0)|d6 < C, Vrel
T
(1.4.6) lim |k(r,8)do =0, Vé > 0.
AT TR

Here C is a constant independent of r. In case k(r,0) >0, then (1.4.5) is
superfluous and we can take C = 2.

By definition, a directed set is a set I together with a collection of subsets {A;}
with the property that for each (i, j) there exists k with Ay C A;NA;. Incase I = [0, 1),
the subsets can be taken in the form A, = (1 — %, 1). A complex-valued function f on
a directed set has a limit L, by definition, if for each € > 0, there exists a subset A; so
that | f(x) — L| < € for all x € A;. With this definition it is immediate that limits obey
the usual laws for sums, products, and composition of functions.

Remark. We choose the formulation with a general directed set in order to have
maximum flexibility in the applications. For example, for the Fejér means we have
the index set {1,2, ...} with n — oo, whereas for the Poisson kernel associated with
the Abel means we have the index set [0, 1) with r — 1. In the first case we may take
Ay = (k,k+1,...) whereas in the second case we take A, as the open interval (1 — %, 1).

Example 1.4.5. The Poisson kernel P,(0) is an approximate identity.

Indeed, we showed in (1.1.39) that fT P.(6)d6 = 2. Since P,(0) > 0, the second
property is automatically satisfied. To prove the third property, note that for |#| > § the
denominator 1+ r% —2rcosf = (1 —r)2 +2r(1 —cos @) > 2r(1 — cos 8). Therefore in
this interval we have P,(9) < (1 — r?)/2r(1 — cos 8), which tends to zero when r — 1.

The fundamental use of approximate identities is described as follows:

Proposition 1.4.6. Suppose that k(r, ) is an approximate identity.
o Ifd € L(T) with limy_,o ®(0) = L, then
1
(1.4.7) lim — / k(r,0)®(0)d6 = L.
ro 2w T

e If, in addition, for each § > 0 supgs |k(r, 8)| — O, then (1.4.7) holds for all
& e L'(T) with limg_.o (0) = L.

Proof. For any § > 0, we have

1 f k(r,0)®©)do — L = 1 </ +/ )k(r, 6)(@(©) — L)do + o(1).
27 Jr 2t \Jigi>s  Jioi<s
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The first integral tends to zero, for any § > 0. Given € > 0, the second integral can be made
less than € by taking § sufficiently small, which proves the first statement. To prove the
second statement, note that the first integral is bounded by sup ;.5 |k(r, 8)| x (L + [[®]]1),
which tends to zero by hypothesis. The second integral is bounded by € x fT |k(r, 0)|do,
which completes the proof. |

Exercise 1.4.7. Suppose that the approximate identity k(r, 6) has the additional
property that k is even: k(r, 0) = k(r, —0) forall 6 € T. Suppose that ® € L>(T)
with limg_,o[® () + ®(—0)] = 2L, for some complex number L. Prove that
formula (1.4.7) holds.

Exercise 1.4.8. Suppose that the approximate identity k(r, 0) is even and has the
property that for each § > 0, supjy 5, [k(r,0)| — 0. Suppose that & € L'(T)
with limg_,o[®(0) + ©(—60)] = 2L, for some complex number L. Prove that
Jformula (1.4.7) holds.

In order to apply approximate identites to norm convergence, we recall the notation
f» for the translate of f € L'(T), defined by £, (9) = f(6 — ¢). The following definition
is essential.

Definition 1.4.9. A subspace B C L'(T) withnorm |- ||g is called a homogeneous
Banach subspace if we have || f|[y < || ||, the map f — fy is B-norm preserving,
and the map 60 — fy is continuous in the B norm. In detail we require that || f || p =
I fllgforallf € Bandall® € T, and that limg_o || fo —fllg = O forallf € B.

Example 1.4.10. The space C(T) with the supremum norm is a homogeneous
Banach subspace. The space LP (T) for 1 < p < oo is also a homogeneous Banach
subspace.

Exercise 1.4.11. Prove these properties. Then prove that L®(T) with the
supremum norm is not a homogeneous Banach space.

This notion is very effective for dealing with norm convergence, when we represent
the convolution of two functions as a vector-valued integral. If K € L'(T), we can write

1 1
K )@ = 5 /T K@) — ¢)dp = — /T K@), (©9) do.

2
The final integral is a vector-valued integral, defined as a limit in norm of Riemann sums.
In particular, if f € B, then K * f is an element of B and we can estimate the B-norm of
the vector-valued integral by the inequality

“fK(¢)f¢d¢ S/IK(cb)l Ifollede < Cliflls,
T B T

which follows from the triangle inequality for finite sums. Similarly

1
IK *f —flls < 2—/ IK(®)| x I fo —flizde,
T JT
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which can be analyzed by the more elementary techniques of Proposition 1.4.6. We
formalize this as follows.

Theorem 1.4.12, If B is a homogeneous Banach subspace and k(r,9) is an
approximate identity, then

1
lim “— / k(r,p)fpdp —f| =0.
r 21 T B
Proof. The required norm is less than or equal to
1
3= [k @15 ~Flndo,
which tends to zero by Proposition 1.4.6. |

The first application of approximate identities is to the sequence of Abel means of
a Fourier series. To make the connection between Abel means and the Poisson kernel,
we recall the basic identity of Fourier reciprocity, Proposition 1.2.3, which states in this
case that for any f € L'(T)

1 n|p in
o fT f©6 —)P.($)dp = r"f(n)e™.

neZ

Theorem 1.4.13. Iff € C(T), then the Abel means converge uniformly to f. If
feLP(T), 1 <p < oo then the Abel means converge to f in the norm of L”. If
f € L'(T) has right and left limits at & € T, then the Abel means converge to

Lf6+0)+£© —0)l.

Proof. We have shown that the Abel means are defined by the Poisson kernel, which satisfies
the conditions of an approximate identity. Hence the first two statements follow immediately
from Proposition 1.4.12. The third statement is a direct application of Proposition 1.4.6.

|

We will prove in the next section that the Fejér means are also represented by an
approximate identity. This will allow us to prove the norm convergence properties for
Fejér means also.

Theorem 1.4.12 admits a sort of converse, expressed as follows:

Proposition 1.4.14. Suppose that B is a homogeneous Banach subspace of L' (T)
and k(r, 8) is an approximate identity with the property that for some f € L'(T),
kxf € Bforallr € I and k x f converges in the B norm. Then f € B.

Proof. Letting g = lim, k * f (in the B norm), we must also have g = lim, k * f in the L'
norm. But from Theorem 1.4.12, f = lim, k * f in the L' norm. Hence f = g a.e. But the
space B is a closed subspace of L' (T), therefore f € B as required. |

Applying this to the Poisson kernel, we have the following useful converse
statements:

Corollary 1.4.15. (i) Suppose that f € L'(T) is such that P,f converges in the
norm of L (T) for some 1 < p < oo. Then f € L’(T).
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(ii) Suppose that f € L' (T) is such that P, f converges uniformly. Then f €
c(D).

Proof. 1t suffices to remark that for any f € L'(T), P.f is a continuous function, in
particular a member of the space L”(T). |

We will see later that condition (i) can be weakened to boundedness in the L’
norm. However condition (ii) cannot be weakened to uniform boundedness; consider the
example of the Poisson integral of a bounded but discontinuous function.

1.4.1.1 Almost everywhere convergence of the Abel means

We have shown that the Abel means of an L' function converge at every point where the
right and left limits exist. This condition can be weakened to the existence of the limits
of the averages:

O+e

1
(1.4.8) Ly = lim — () dy.
e—0 2€ 6—¢

From the fundamental theorem of calculus (Lebesgue’s differentiation theorem), it is
known that these limits exists with Ly = f(0) except for a #-set of measure zero.

The almost everywhere convergence of the Abel means will be deduced as a
corollary of the following general theorem on a class of approximate identities on [0, ].
The definition of the latter simply amounts to replacing T by [0, 7] in the original
definition of approximate identity.

Theorem 1.4.16. Suppose that k(r, 6) is an approximate identity on [0, 7], with
the property that k(r,0) > 0 and 6 — k(r,0) is absolutely continuous with
k'(r,0) := (dk/d6) < 0 for0 < 6 < and all r € 1. Suppose that f € L'[0, 7]
satisfies limg_,o 6~ f09 f(@)d¢ = L. Then lim,(1/7) [ k(r, 0)f(0)d6 = L.

Proof. We will show that § — —8k’(r, 9) is an approximate identity on [0, 7]. To see this
we first note that, since k¥’ < 0, we have for0 < §; < 6, <,

82
1 — 8k(r, 8) < / K(r.6)do — 0
3

which shows that lim, k(r, 8) = 0 for 0 < 6 < 7. From the normalization of k, we have

1 [~ 1 /"
1 « — k(r,0)d0 = k(r,m) — —/ 0k’ (r,0)do
T Jo T Jo

which shows that lim, f(f —0k'(r, 0) d® = 1. Furthermore, for any § € (0, ),

T

fﬂ |0k'|dO = — /” Ok'(r,0)d0 = 8k(r, 8) — wk(r, ) + / k(r,0)do — 0
s

8 §

which shows that 8 — —0k'(r, 0) is an approximate identity.
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Now define F(0) = f(f [f(d)) — Lld¢, a bounded function on [0, 7] with
limy_, o F(0)/0 = 0. We integrate by parts, replacing k by ¢,k with lim, ¢, = 1, thus

/” k(r,0)[f(8) — L1d6 = k(r, m)F(r) — fﬂ F(0)K'(r,0)do
0 0

=o(1>+/ Q[ oK (r, 6)] do.
0

The final integral tends to zero by Proposition 1.4.6. |

Corollary 1.4.17. Fatou: The Abel means P, f () converge tof (§) whenr — 1
whenever the limit (1.4.8) exists.

Proof. On the interval 0 < 6 < 7, the functions 2P, (9) form an approximate identity and
satisfy the conditions of Theorem 1.4.16. Now deﬁnef(¢) = %[f(f) +¢)+f0 —@)]. If
0 € T satisfies (1.4.8), then limy_.o F(¢)/¢ = 0, so that we may apply Theorem 1.4.16
with L = £(0) to conclude that lim, P, f(8) = f(0), as required. |

Alternative (explicit) proof. One can avoid Theorem 1.4.16 and work directly as follows.

Define F(¢) = fip(f(u + 6) — f(6)) du. Then the Poisson integral of f can be integrated
by parts as follows:

1 4 1—r?
P.f(0)-f(©0) = EA m(f(f)‘f“ﬁ)"‘f(@—‘ﬁ)—zf(@dfp

1 [7 1—r
= — ——dF
271_/0 1+r2—2rcos¢ @)

11— 1 [7 F(¢)
=% itr ()+—f0 ,(¢) ¢¢

where

(1 —r®) sin’ ¢
(1 + 2 — 2rcos ¢)?

K. (¢) =

is an approximate identity on [0, 7], since K, (¢) > 0 and we have from (1.1.38)

1 /" (1 —r?)sin*6 J6— 1 i (1 —r?)sin® 0
— =1, im su =
w Jo (1472 —2rcosf)? r—1 9>§ (1472 —2rcosf)?

Exercise 1.4.18. Show that Theorem 1.4.16 can be generalized as follows. Instead
of assuming absolute continuity, simply assume that & — k(r, 0) is monotone,
decreasing for each r. By suitably applying integration-by-parts and suitably modi-
fying the definition of approximate identity to include a sequence of measures, show
that the conclusion holds exactly as stated.
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1.4.2 Summability Matrices

Closely related to the notion of approximate identity on T is the notion of a summability
matrix, which is the discrete analogue for sequences of real or complex numbers. In this
section we give the basic notions of summability, which includes the Abel and Fejér
means of the Fourier series as special instances of this general notion.

Definition 1.4.19. A summability matrix is a doubly infinite array of real
numbers a,,, defined for m, n > 0 with the following properties:

(i) imy, 00 apy =0 foreachn=0,1,2,...
(ii) 302 amn = 1 foreachm =0,1,2, ...
(iii) Zzio |amn| < C for some constant C andallm =0,1,2,....

A summability matrix defines a linear transformation on the space of bounded
sequences

o0
s — A(s), An(s) = Zamnsn-
m=0
The basic property of consistency is expressed as follows:

Proposition 1.4.20. Iflim, s, = s, then lim,, A, (s) = s.

Proof. We use (ii) to write

A,,,(S) — 5= Zamn(sn - S)'

n=0

Given € > 0, choose N = n(¢) so that |s, — s| < € forn > n(¢). Then

oC N
IA,,,(S) - Sl = Z Iamnl lsn - Sl = (Z+Z) |amn| |S,, - Sl.

n=0 n=0 n>N

The last sum is less than Ce. Now we can let m — oo and use (i) to conclude that

lim sup |A,, (s) — 5| < Ce.
But € was arbitrary, which completes the proof. |

Exercise 1.4.21. Prove that the conclusion of Proposition 1.4.20 still holds if
condition (ii) is weakened to the relation that lim,,_, Z:io amn = 1.

Basic examples of summability matrices are provided by the Cesaro means and
Abel means:

1 m
Cp(s) = m—HZs m=0,1,...
n=0

oC
A =(1=1)Y r"s,, 0<r<l.

n=0
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In the first case we have a,,, = 1/(m + 1) for n < m and zero otherwise. In the
second case we pick a sequence of r,, — 1, for example r,, = 1 — 1/m thus defining
Amn = r,r;l(l = I'm).

In order to work with Abel means, it is useful to note the following transformation
formula, proved by summation-by-parts for 0 < r < 1:

o0 o0
(1.4.9) Q=1 Fs=) ra,
n=0 n=0
where s, = ag+---+a, forn =0, 1, .... This identity allows one to go back and forth

between a sequence a,, and its partial sums. The sequence {s,} is Abel-summable to L if
and only if we have lim, Z;ﬁo a,r" = L.

Exercise 1.4.22. Prove (1.4.9).
The following concrete examples are useful for reference.

Example 1.4.23. The negative binomial series is 1/(1 + r)* =Y o2 (7, “)e for
any 0 < r < 1 and k is any real number. Hence the numerical series Y oo (" k) is
Abel-summable to the value 27 for any real number k.

For example, with k = 0, 1, 2, we have

1 _ 2 3 - n 1
1_'_r_l—r+r —r +-~-=>Abelngzo(—1) =3
1 o0
- =1-=2 2_4r3 ... —)'==
L r+3rt —4r’ + =>Abe1;)(n+1)( D=
1 1 2
m=1—3r+67’2—107’3+ ﬁAbl 'Mj_—)‘( 1)":—
’ 2:

On the other hand, the series Y 7o (7 ) is Cesaro-summable if £ < 1 but not for k > 1.
To see that k > 2 does not y1e1d a Cesaro-summable sequence, consider the
following exercise.

Exercise 1.4.24. Suppose that the sequence s, is Cesaro-summable to s. Prove
that s, = O(n),n — o0

Hint: Letting o, = C,(s), check that o, — s implies that s, = (n + 1)o, — no,_; = O(n). This
is violated for the example in case k > 2.

It is natural to compare different methods of summability. We say that method A
is stronger than method C if the matrix A can be factored in the form A = BC where
B is another summability matrix. This ensures that any sequence that is C-summable is
also A-summable.
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The previous examples suggest that Abel-summability is stronger than Cesaro-
summability. Even more is true:

Proposition 1.4.25. For any k there exists a summability matrix By so that the
Abel matrix can be factored as A = B,C*. Otherwise put, Abel is stronger than
any power of Cesaro.

Proof. We factor the Abel matrix as follows:
A=Y rsi = =r[o0+ Q01 —00) + -+ 1"((n+ Doy — noyi) + -]

n=0

=(1-r[d=-no+ -+ @E+ D" =r*hHo, +---]

=(1=n*) (n+ Do,

n=0

so that the matrix B, is defined by the coefficients (1 — r)?(n 4+ 1)r", which satisfy the
conditions of a summability matrix. Continuing inductively, we write the second Cesaro
means 0@ = (0p + - - - +0,,)/(n + 1) and its “inverse” 6, = (n+ 1)a,? — o>, to obtain

A=Y Fs=0=r"Y oP@n+Dn+2r/2.
n=0

n=0
In general we show by induction that
oc o0 ""k
A=) rs,=0-r* < )(—1)”0,,("‘1)#’,

which exhibits the matrix By explicitly. |

Remark. The matrix C* defines the kth order Hilder means. This summabillity
method is distinct from the kth order Cesaro means, usually denoted (C, k). For details
see Hardy (1949), p. 94 ff.

Figure 1.4.1 shows the relation between Abel and Cesaro summability.

(s,)

C,"(S) =Ssgt - t+sy,
m+1

(2
Cs) = Cy(s) + o+ C (5) .
v — AS)=(01- r)zo"r”s”

FIGURE 1.4.1
Relations between Abel- and Cesaro-summability. Stronger methods are to the right of weaker
methods.
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Any theorem that affirms a method of summability is called an Abelian theorem.
Theorems in the converse direction are called Tauberian theorems. The following is
a simple Tauberian theorem.

Proposition 1.4.26. Suppose that y . a, is Cesaro-summable to s and that the
terms satisfy lim, na, = 0. Then the series converges to the same sum s.

Proof, In terms of the original sequence we can write

Sso+ -+ s ( k )
Oy = ———F—— = 1- s
n+1

Hence we have

1
n— Op = "7~ kay.
Sn @ n+lzak

But this is the average of a sequence which tends to zero, hence also tends to zero, which
completes the proof. |

Exercise 1.4.27. Suppose that the terms satisfy k|a,| < M for some constant M
andk =0,1,2,.... Show that |o, — s,| <M foralln=1,2,....

Exercise 1.4.28. The Riemann means of a series y .., a are defined by

>, /sinmh\*
Rh<a>=2< — ) A,

m=0

where 0 < h — 0. Show that this is defined by a summability matrix that is not
positive.

Hint: Write Ry(a) = Y o [K(mh) — K((m + 1)h)]s,, where K(x) = (sinx/x)?; check that

m=

K(©)=1,K(0c0) =0and Y oo/ |K(nh) — K((n + 1)h)| < oo.

n=

1.4.3 Fejér Means of a Fourier Series

The Fejér means are defined by

I

on(f): N1

Writing this out in detail, we see

N
N+ Donf =Y Y fkye
n=0

(k)eik0:|
n=|k|

N
DN+ 1— lkDF e,

k=—N

Il
M=
t?)z
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which gives the useful representation

N
kl N\ e
(1.4.10) on(f) = (1 - —)f(k)e’
N k;N N+1

The Fejér kernel is

Ku®) = 3 (1 - ) o
Py N+1
This is a finite Fourier series of a discrete convolution. To see this, define Iy, (j) = 1 if
|jl < M and zero otherwise. Then by counting points along the 45 degree lines in the
square of side M, we see that (Iy; x Ij;)(j) = @M + 1 — | j) oy +1(j) if | j| < 2M and
zero otherwise. This will allow us to factor K in case N is even. To deal with the case
of N odd, define /5(j) = 1ifj = +3,..., =(M — 1) and zero otherwise. Again we
count the points in the square to see that IS¢ 199 = (2M — | j|) Loy . In either case Ky
has been written as the Fourier series of a self-convolved sequence, hence it must be the
square of the trigonometric sum obtained from the original sequence. In detail, we have

2M M 2
QM+ 1) Kom(0) = Y M + 1 — k41 (k)e*” = (Z IM(k)e'W) ,
k=-2M k=—-M

oM M 2
2M K1 0) = ) M — kD Dawss1 (R)e™ = (Z Iﬁfd(k)el“) :

k=—2M k=—M
The trigonometric sum ¥, Iy (k)e*® was evaluated as the Dirichlet kernel
sin[(M + %)9]/ sin (6/2), which gives a closed form for K>y,. But K, can also be
expressed in this form by doing a finite geometric sum:

) . in Mt

1.4.11 SiM=3) Ly Gi—t/2) o ST

(14.11) ¢ tooete sin(t/2)

We conclude that for all N we have the formula

1 2
(1.4.12) Kn(9) = 1 (sm[(N+1)9/2]>'

N+1 sin(8/2)

Exercise 1.4.29. Prove the trigonometric identity (1.4.11).

Figure 1.4.2 shows the graph of the Fejér kernel with N = 8.
The above computations permit us to conclude

Proposition 1.4.30. Ky (9) is an approximate identity.

Proof. From the definition we see that 7‘; f11' Ky = 1. From the formula (1.4.12) we see
that Ky > 0, so that the L' norms are bounded by 1. Finally, we see from (1.4.12) that for
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-3 -2 -1 1 2 3

FIGURE 1.4.2
The Fejér kernel with N = 8

any 6 > 0, Ky(@) < 1/(N + 1)sin2(5/2) whenever |6| > 6. Hence f|91>5 Ky(@©)do — 0
when N — oo. n

This leads us to a general statement of Fejér’s theorem.

Theorem 1.4.31. Iff € L’(T), 1 < p < 00, then the Fejér means converge in
LP(T). If f € C(T), then the Fejér means converge uniformly. If f € L'(T) has
right and left limits f(6 £ 0) at a point 6y, then (o,f)(6)) — %[f(@o + 0) +
f(6y — 0)] when N — oo. If, in addition, f € L*(T), then |6,(f)] < || floo-

Proof, The first two statements follow immediately from the fact that K is an approximate
identity and that L”(T) and C(T) are homogeneous Banach spaces. For the third statement,
note that the kernel Ky is even, so that we can write

E, (60) :=0on () (80) — 3£ (60 + 0) + £ (6o — 0)]
1 T
=§;£ (B0 + @) +f B — d) —f (B0 + 0) — £ (8 — 0)) Kn(¢) d.

The convergence now follows by Proposition 1.4.6. Finally, if f € L*(T), then

11l B
wWSiFAM®M—WM

which completes the proof. |

Remark. The proof of pointwise convergence of the Fejér means only requires that
the symmetrized function ¢ — f(0 + ¢) + f(6 — ¢) have a limit when ¢ — 0. This
principle applies more generally to operations that are defined by an even kernel, thus
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expressed in terms of the symmetrized function. Such extensions of the basic results are
helpful and can be deduced when necessary.

Corollary 1.4.32. The space of trigonometric polynomials is dense in the spaces
C(T) and LP(T) for 1 < p < oc.

Proof. The nth Fejér mean o, (f) is a trigonometric polynomial of degree n and converges
to f in the norm of C(T) and in the norm of L”(T). ]

This leads to a new proof of the uniqueness of the Fourier coefficients, as follows:

Corollary 1.4.33. Iff € L'(T) has Fourier coefficients identically zero, thenf =
Oae.

Proof. From formula (1.4.10) we see that 0,,(f) = 0, hence f = 0 a.e. from the previous
corollary. u

Exercise 1.4.34. Suppose that f is bounded above and below: m < f(6) < M for
all 9 € T. Prove that m < a,(f)(0) <M foralln=1,2,...,0 € T.

Exercise 1 -4.35. Suppose thatf is a continuous function with nonnegative Fourier
coefficients: f (n) > 0, n € Z. Prove that Y ez fn) < oo.

Hint: Apply Fatou’s lemma to the Fejér means.

Exercise 1.4.36. Suppose that f is continuous on a closed subinterval I. Prove
that the Fejér means converge uniformly on I.

1.4.3.1 Wiener’s closure theorem on the circle
Fejér’s theorem can be used to discuss the L' closure of the set of translates of a given
f € L'(T). This is identical to the closure of

M;:={fxg:ge L (D).
Proposition 1.4.37. M; is dense on L' (T) if and only if f (n) # 0, Vn € Z.

Proof. Iff(no) = 0 then for any g € L'(T) we have (f * g)(no) = 0. Therefore M;
lles in the proper closed subspace consisting of {F € L'(T) : F (ng) = 0}. Conversely, if
f(n) #0,¥n € Z, let F € L'(T) be given. By Fejér’s theorem, oy_,(F) — F in L'(T)
when N — oo. Let gn(0) = 3", F(k)/f(k)(1 — (|k|/N))e*® e L'(T). Computing the
Fourier coefficients, we see that f * gy = oy_; (F). Taking N — oo completes the proof.

|

1.4.4 *Equidistribution Modulo One

The density of the trigonometric polynomials can be used to give a direct treatment of
a simple model in ergodic theory. The integer part and fractional part of a real number
x are denoted [x] and (x) respectively; thus x = [x] + (x) with [x] € Zand 0 < (x) < 1.
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If @ € (0, 27) is a real number, we consider

Ny(a,b) =card{0 <k <n—1: (ka/2m) € (a, b)/21}

where (a, b) C [0, 27]. We propose to show the following.

Proposition 1.4.38. If o/2x is an irrational number and 0 < a < b < 2m, then
Ny(a,b)/n — (b — a)/2x whenn — o0.

Proof. To do this, we first write the counting function as

n—1
Nu(a,b) =y _f(ka)
k=0

where f is the 27 -periodic extension of the indicator function 1, ;. This leads us to study
the class of measurable functions f for which

n—00 1

n—1
(1.4.13) lim — Zf(ka) ]n/f(f))de.
T

We will first prove (1.4.13) for trigonometric polynomials. If f (§) = e™?, with m # 0, then

n—| n—1 1 — eimne

=Y flka)= ek = — = 0, n— 00
Z Z(; n(l — em)

since the numerator is less than 2 and the denominator is a nonzero multiple of #. Now if
f©) =", axe™ is a trigonometric polynomial, we see immediately that

n—1
1 Y flka) > ag = 1 /f(f))df) =£0), n-— oo.
n =0 2n T

Now let f be any continuous function on T, extended 27 -periodically to R. By the corol-
lary to Fejér’s theorem there exists, for any € > 0, a trigonometric polynomial g so that
|f — g| < € on the real line. Therefore

ln—l 1r1~l 1r1~l
- ka) —e < — ka) < — k .
n;g( @) —€ < nk;f( @) < nk;g( @) +e€

Taking n — 00, the extreme members tend to g(0). Since this holds for any €, we con-
clude that lim,,_, o, 1 ZZ (l) flka) = f (0) whenever f is continuous and periodic. Finally, if
f = L), there ex1sts a sequence of continuous functions F/i with trapezoidal profiles so
that F;” < 1 < Fj < 1, lim; F{ = 1 and hijj = 1j4,5) when j — oo. For each j
we have

n—1

1 n—1 Mr ,
=N F (k) < N@b 125*(1«0
= n i

N N,, N b . Nﬂ ) ol
F~(0) < liminf N5 i sup M@ D) Er o).
n n n

Taking j — oo we have

b" n\t, .
524 imint V9D gy YD) b4
27 W n " n 2n

which completes the proof. |
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Corollary 1.4.39. If «/27 is irrational, then the set {(ka/2m) : k € Z} is dense
in [0, 1],

Remark. 1t’s clear that this result is true only if o /27 is irrational. If /27 is rational,
the set of {(ka/2m) : k € Z} is a finite subset of (0, 1). In this case N, (a, b) = 0if (a, b)
is in the complement of this finite set.

1.4.5 *Hardy’s Tauberian Theorem

Having proved the convergence of the Fejér means, we can obtain results on the conver-
gence of S,f by means of Tauberian techniques. We now prove the Tauberian theorem
of Hardy, which applies to any sequence of complex numbers a, with partial sums and
Cesaro means denoted

n

n 1 n 1 .
Sn :=;aj, 0, = o ;sj = mZ(n-i- 1 —)a;.

Theorem 1.4.40. Suppose that {a;}r>0 is a sequence of complex numbers such
that k|lay| < M for some constant M. Then the convergence of the Cesaro means
implies the convergence of the original sums: lim,(s, — 0,) = 0. If a;, depends
on a parameter x so that the convergence of oy, is uniform in x and |kay| < M for
all x, then s, converges uniformly.

Proof. For n < m we study the expression

(m+ 1oy, — (n+ Do, — Y (m+1-j)g
Jj=n+1

n

=Z(m+1—j)aj——2(n+1—j)aj
=0

=0
n
= (m—n) Z a;
Jj=0

= (m — n)sy.

Subtracting (m — n)o, from both sides and dividing by m — n, we have the useful identity

m+1 mt1 & j
(1.4.14) Sy — O = (O — On) — > (1 ) a;.

m—n m—n m+1

The first term tends to zero whenever m,n — oo with (m + 1)/(m — n) bounded, for
example if m/n — K > 1. To examine the second term, write

(1.4.15) (m+1) Z <1 - ﬁ) laj] <M [(m + 1)log (m/n) — (m — n)].

n+1

Now we let m,n — oo so that m/n — (1 + §) and use the Taylor expansion of the
logarithm; we see that the final term in (1.4.15) is less than (m + 1)82, so that when we
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divide by (m — n) the sum is eventually less than 28. Thus we have

limsup s, — g, < 24.

n

But § was arbitrary, so that we conclude s, — 0, — 0, as desired. |

How did Hardy think of the representation (1.4.14) for s, in terms of 6,7 Although
we cannot say with certainty, we can surely provide a natural motivation in terms of the
continuous-parameter analogue. Suppose that three functions a(r), s(¢), o (¢) are related
by the formulas

t 1 t
s(0) =—‘f a(x) dx, o(t) = —/ s(x) dx.
0 tJo
To study s(¢) in terms of a(t), o (¢), we can use Taylor’s formula with remainder:
4]
1o () — 1o (f)) = (2 — t)s(t)) +f (t2 — x)a(x) dx, th > 1.
1]

Solving for s(¢,), we obtain

o) —o(n) [, (h—xa) dx
h—1 H—t ’
which is the exact analogue of (1.4.14) in the continuous-parameter context.

sth)y—o)=~n

Exercise 1.4.41. Suppose that f(t), t > 0 is absolutely continuous with an abso-
lutely continuous first derivative and that f'(t) = O(1/t), f(t)/t — s when
t — 00. Prove that f'(t) — s whent — oo.

Hint: Take f(f) = to (¢) above.

‘We can now reap some consequences of Hardy’s theorem.

Corollary 1.4.42. Suppose that f is continuous on T and that its Fourier coeffi-
cients satisfy f(j) = O(1/|j1), |j| = oo. Then the Fourier series of f converges
uniformly on T to f.

Proof. Weletay = f(0) anda, = f(k)e*® + f(—k)e~*® fork = 1,2, . ... The Fejér means
converge uniformly, so that o, satisfies the hypotheses of Hardy’s theorem, together with

a; = O(1/|j}) when j — oo, uniformly in 6 € T. ]

In particular, Hardy’s theorem gives a new proof of the uniform convergence of
the Fourier series of a continuous function of bounded variation.

Corollary 1.4.43. Suppose that f is continuous and of bounded variation on T.
Then the Fourier series of f converges uniformly onT to f.

Proof. We need to check the Fourier coefficients. By partial integration, we have

z — L —inf _ L —inf _ l
fn) = T /Tf(O)e do = i '/;re af @) = 0<n).

Here we used the fact that the Fourier coefficients of a finite measure are bounded. |
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1.5 IMPROVED TRIGONOMETRIC APPROXIMATION
1.5.1 Rates of Convergence in C(T)

We now consider the Fourier approximation in the space C(T). In contrast with the
space L2(T), the Fourier partial sum is not the closest trigonometric polynomial in this
norm. In order to study the rate of convergence of the Fourier partial sum, we recall the
representation of the Fourier partial sum in terms of the Dirichlet kernel:

(151)  Suf =Dy xf = ISuf(®)] < %’%ﬁ x /T Dy ()] dg.

Suppose that gy is another trigonometric polynomial of degree N. Then clearly
gv = Sngn so that we have Syf —f = (Snf — Svgnv) + (gv — f), from which we
obtain

maxr|f — gnl

(1.52)  ISnf(6) —f(O)] = e

< fT|DN<¢>|d¢+maxT|f—gN|.

Therefore the discrepancy |Syf — f| is measured in terms of the best trigonometric
approximation and the L' norm of the Dirichlet kernel, which we now estimate. The
Lebesgue constants are defined by the integrals

1 (7 Isin(n+ 1)

1
(1.5.3) L,= EA|Dn(¢)|d¢ = o _/_ﬂ sin (t/2)

The asymptotic behavior of the Lebesgue constants is provided as follows.

Proposition 1.5.1. Whenn — oo, L, = (4logn/n?) + O(1). Furthermore L, <
4 4 logn foralln > 1.

Proof. Recall that on the interval (0, 7) the function

1 2
—_ — -
sin (¢/2) ¢t

is bounded. Therefore we can write

L _1/" I'sin (n + $)1|
")y sin(t/2)
2 (7 |si 1yt
- __/ Mdt—f-O(l)
T Jo t
2 (n+%)n .
= —/ Isinvl 1+ oqy.
T Jo v

We are reduced to examining the integral of | sin v|/v on the interval 0 < v < (n + %)n.
This is the sum of the integrals on intervals over (km, (k + 1)) for 0 < k < nplus a
term over the last half interval, which tends to zero. The separate terms, apart from sign,
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are of the form

k+D)m s k+Dm
sin v 1
- / —dv = / ~dcosv
km v km v

_ (_1)k+l (_1)k+1 +/(k+l)rt cos v

nk + wk+1)

2(_1)k+l 1
T nk +0 k)

_2 & 2 5\ _ 4logn
L"_nZ< + 0k ))— +0(1).

— \mk n?
To obtain the upper bound, we underestimate the denominator of the integrand in (1.5.3),
replacing sin (¢/2) by t/m and considering separately the integralson 0 <v < land 1 <
vgmn,m:=n+%. | ]

v
kn v?

so that

Referring to formula (1.5.2), we obtain the following useful fact.

Proposition 1.5.2. Letf € C(T). Then the maximum discrepancy between f and
its Nth Fourier partial sum is bounded by log N times the best trigonometric
approximation of f by any trigonometric polynomial of degree N:

[f(x) = Snf(x)| <[5+ logN] x infgep, maxy|f — gl

1.5.2 Approximation with Fejér Means

In parallel with the L? theory developed in Section 1.3.3, we wish to develop correspond-
ing results on the speed of trigonometric approximation in the supremum norm on the
space C(T). The Fejér means are an efficient device for obtaining the first results of this
type. In this section we will develop results for Lipschitz and Holder continuity. Higher
order smoothness will be treated in the subsequent sections.

To begin, we write the Fejér approximation of order m — 1 (to simplify the
formulas):

2
) e+ —fx)]dt

L [T /sinme/2
(O ) (x) = f(x) = — (smmt/

sint/2

-7

/2 : 2
-1 ( s m") [f (x + 2u) — £ ()] du
mm —n/2 sSinu
1 /2 (sinmu\ 2
(1.54) = — ( - ) [f O+ 2u) + f(x — 2u) — 2f (x)] du.
am Jo sin u

Using this form of the approximation, we can now state and prove some properties of
the Fejér approximation.
Theorem 1.5.3. Suppose that f is Lipschitz continuous with constant K. Then

logn
lo2(f) = flloo < CIK%



FOURIER SERIES ON THE CIRCLE 63

where C is an absolute constant. More generally, if f satisfies a Holder condition
with exponent o < 1 and Holder constant K,,, then

llon(f) = flloo < CaKan™

where C, depends only on «.

Proof. Beginning with formula (1.5.4), we integrate by parts, writing ®(y) =
Jo 1fx + u) + f(x — u) — 2f (x)| du. From the hypothesis of Lipschitz continuity, we have
®(y) < K,y*. Now the Fejér kernel is bounded everywhere by m and by 72 /4mu? on the
interval u > 1/m. Therefore we can write

1/m s : 2
lomr(f) —f1 < ~ (f +/ ) (S”.”"”) ().
m 0 1/m smu

The first integral is estimated as
=md{—)=<—,
m m

Um  sin mu'\*
/ L) 4 (u)
0 sinu

while the second integral is estimated by

(1.5.5) %

/2 : 2 /2
iz / (su.lmu) A () 5/ decp(u)
mm 1/m smu I/m MU
/2
(15.6) - (4/m712)d>(7t/2)—md>(1/m)+/ 2}:}5?) du.
1/m s

The first two of these terms is O(1/m), m — oo, and the last integral is O(logm/m),
completing the first part. In case f is only Holder continuous, we have ®(u) < K,u'*®.
Appealing again to (1.5.5) and (1.5.6), we see that the desired conclusion holds. [ ]

Remark. One may inquire on the choice of the cutoff level 1/m in the above proof.
It can be checked that this is optimal in terms of balancing the size of the two error
terms.

Exercise 1.5.4. Suppose that f satisfies the symmetric Holder condition
|fx4+u)+fx —u) —2f(x)] < Ky|ul|® for some K, where 0 < a < 1. Show that
we still have ||6,(f) — flloo < CuKon™®. Formulate the corresponding result for
a=1

Exercise 1.5.5. Suppose that f satisfies the continuity condition |f(x + h) —
f@)] < Ci/log(1/h) for 0 < h < % Prove that |0,(f) — fllec < C2/logn
for n > 2, for a suitable constant C,.

The above transformations can be used to prove a theorem of Lebesgue.
Theorem 1.5.6. Suppose that f € L'(T) satisfies the condition that
1 h
Z/ [fCx+u)+f(x —u)—2S|du — 0, h— 0,
0

for some x € T, S € C. Then the Fejér means converge to S: lim,, o,(f)(x) = S.
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Proof. Using the same notations as above, we let

h
®(h) = f Lf (x + 2u) +f (x — 2u) — 28| du,
0

so that & (h) = o(h), h — 0. Referring to (1.5.5) and (1.5.6) we have

1 I/m : 2
(1.5.7) —f <S".”””) dd(u) < md(1/m) < e,
m Jy sin u
4 /2 . 2 /2 1
= f S""””‘) do®w)| < f — dd ()
mm? L/m simu 1/m u2
4 /2 2P (u)
(1.5.8) = —2r1>(7r/2) —md>(1/m)+/ > du
mm 1/m mu-

The first term is O(m~') and the second term is o(1). The final integral clearly tends to zero
if we change the notation and write ® (u)/u = €(1/v) — 0, so that

/2 o m
/ @) du = ! / e(l/v)dv — 0. |
| 2/

> = —
m MU m

Corollary 1.5.7. The Fejér means of an L' function converge almost everywhere.

Proof. The strong form of Lebesgue’s differentiation theorem states that for almost all
x € T, lim,_o(1/h) foh |f(x + u) — f(x)|du — 0. Therefore on this set we can take
S = f(x) in the previous theorem. ]

Corollary 1.5.8. The Abel means of an L' function converge almost everywhere.
Proof. If a sequence {s,} is Cesaro-summable, then it is also Abel-summable to the same
sum, from Proposition 1.4.25. Since o, (f) converges almost everywhere, the same is true

of the Abel means P, f. |

We close this section with a negative result, showing that the Fejér means have

an inherent limitation in their ability to approximate functions to a higher order of
approximation.

Proposition 1.5.9. Suppose that f € C(T) satisfies |0,(f) — flloo = 0(1/n),
n — 00. Then f is a constant, almost everywhere.

Proof. Recall that
n k . )
U’l(f) = Z (1 - n_l;_[—l‘>f(k)e’k9.

-n

Hence

k| f (k 1 :
lnli(l) =5 fT[ﬂe) —oi(Nledo, Ikl <n,

N 1
1 = S /T F©O) —a(PIdo, Ikl <n,
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For any fixed k, the right side tends to zero when |n| — 00, hence f‘ (Ak) = 0 for all £ # 0.
By the uniqueness of Fourier coefficients, we conclude that a.e. f = f(0). ]

Exercise 1.5.10. Suppose that f € L'(T) satisfies |o.(f) —fl = o(1/n),
n — 00. Prove that f is a constant, almost everywhere.

Finally, we note that the Fejér approximation holds with the rate O(n~") for well-
behaved functions.

Exercise 1.5.11. Suppose that the Fourier coefficients of f € LY(T) satisfy
Y nez Inllf ()| < oo. Prove that ||6,(f) — flleo < C/n for some constant C.

Exercise 1.5.12. Suppose that the Fourier coefficients of f € LY(T) satisfy
ZneZ [nl| f(n)] < o0o. Prove that the uniform limit of n(c,(f) — f) exists and
compute its Fourier series.

In the next two sections we introduce other approximate identities to obtain higher-
order trigonometric polynomial approximations.

1.5.3 *Jackson’s Theorem

If f has additional smoothness properties, we can obtain quantitive estimates for f — gy
by working with the Jackson means.
The Jackson means of order four are defined by
/2 (sin Nu
sinu

1
Inf(x) = 2 ),

L /”/2 sin Nu\* J
= u.
N 0 sin u

By examining the transformations in (1.5.4), it is clear that Jyf is the convolution of
f with the square of the Fejér kernel, a trigonometric polynomial of degree 2N — 2.
Therefore Jyf is a trigonometric polynomial of degree 2N — 2.

Recall that f satisfies a Lipschitz condition if there exists a constant K so that

If@) —fO) < Klx —yl.

Theorem 1.5.13. If f has Lipschitz constant K1, then

4
) (fx+2u) + f(x — 2u)) du

where

K
UM@—ﬂMsaﬁn

where C| is a universal constant. If, in addition, the derivative f' is Lipschitz
continuous with Lipschitz constant K, then

K

nf ) = f @ < Car,

where C, is a universal constant.
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Proof, We write

2 f 4
I —f() = —— (S".IN ”) [F (x + 2u) + £ (x — 2) — 26 (0)] du
2hy Jo sin u
72 /e 4
Unf ) — @) < — (S".’ N") 4K, |ul du.
2hy Jo sin u

The denominator is estimated by

/2 ( sin Nu'\* NT/2 fsinv\*
hy = / ( ) du =N3/ (—) dv ~ const N°.
0 u 0 v

To estimate the numerator, note that, on the interval [0, /2], sin u is bounded below by
2u/m. Making the change of variable v = Nu, the integral is no more than

74K, /”/2 sin Nu 4udu___rr4K1N2/N”/2 sinv 4vdv,
16 0 u 16 0 v

which proves the first statement and identifies the constant as

c = Ei o (sinv/v)*v dv.
32 [°(sinv/v)*dv

If, in addition, f' is Lipschitz, then the mean-value theorem provides the estimate
| £ 4 2u) + £ (x — 2u) — 2f (x)| < 8K,|u|?, which gives the improved estimate

1 /2 4
[Inf () —f()| < . / ) 8K;|u|? du.
N

0

sin Nu
sin u

Again we make the change of variable v = Nu and find the required estimate, with

Co— 7 [ (sinv/v)*v? dv =
= e
2 [(sinv/v)*dv

Exercise 1.5.14. Suppose that f is Holder continuous with exponent o.: | f(x) —
fO)| < Kl|x —y|* for some 0 < o < 1. Prove that |Iyf (x) —f(x)| < Co,KN~* for
a universal constant C,,.

Exercise 1.5.15. Suppose that f is absolutely continuous and that f' is Holder
continuous with exponent a, 0 < a < 1. Prove that |Jyf (x) —f(x)| < C, KN~'=
for a universal constant C,.

1.5.4 *Higher-Order Approximation

If r € Z7, the space C"(T) consists of functions whose rth derivative f " is a continuous
function. If r € Z* and 0 < & < 1, the space C"*(T) consists of functions f € C"(T)
such that £ satisfies a Holder condition of order «. Since any differentiable function
is Lipschitz continuous, we have the inclusion C"*!(T) ¢ C"!(T). If 0 < o < 1, we
often write, by abuse of notation, C"%(T) = C"t%(T).

It is natural to expect that if f € C(T) has derivatives of higher order, then we
will obtain an improved rate of approximation by suitable trigonometric polynomials.
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To make this concrete, consider for any even integer 2k, the difference operator

2k

2 .
Auf () =) ( jk>(—1Yf(x +uk = )

=0

=f(x+ku) — 2kf(x + (k — Du) + - - - + (-—l)k<2kk)f(x) +--
— 2kf(x — (k — Du) + f(x — ku).

(1.5.9)

The coefficients are those that occur in the binomial expansion of (¢?® — 1), which
vanishes to order 2k at § = 0. Hence if f € C?(T), the derivatives are

d\’
u

d 2k
(a) Aopf (x5 u)|y=o = (2k) !f(2k)(x),

so that we have the bound
| Aouf (x; )| < Cu™.
More generally, we can apply Taylor’s theorem with remainder to prove that when u — 0
feC*T) = Auf(x;u) = 0w™), u—0
f e C* 1Ty = Apf(x; u) = O+, u—0, O<ac<l
fe D) = Aufx;w) = 06™),  u—0
f e C¥ 2Ty = Ayf(x;u) = OWH2+9), u—0 O<ac<l.

In order to construct improved trigonometric approximations, we consider

/2 : 2k+2
Ennf (x) = fo Azkf(xm)(smmu> du.

sin u

Noting that (sin (mu)/ sin u)***+2 is a trigonometric polynomial of degree (m — 1)(k+1),
we see that the same is true for each term that figures in the definition of Ey ,, f, save
for the middle term with j = k. If f € C?%*(T), we have

/2 . 2k+2
(1.5.10) \Exemf ()] < cf w2 (M> du
0 sin u
. 2k+2
(1.5.11) <Cfﬂ/2u2k sinmu\
- 0 2M/7T
o0 sin mu\ 42
1.5.12 <C = d
(1>12) = ./0 g (2u/n> "

00 . 2k+2
(15.13) = mC/ V2 (im—”> dv,
0 2M/7T
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while

Cka

. k
/2 sinmu\ 2
- du
0 sinu
/2 sinmu\ 2
> du
0 u
mm /2 . 2k+2
sin v
— m2k+l - dv.
0 1%

These two estimates are combined to prove the following.

Proposition 1.5.16. Suppose that f € C*(T). Then there exists a sequence of
trigonometric polynomials f,, of degree (m — 1)(k + 1), so that

If = fulloo < Cem™ )1 £ oo

Proof. It suffices to set

Esm
(15.14) ful) = o) — 2n 0
ka

26\ [ (s 42 2k
(1.5.15) Do = (~1)* / ) au= 047 ) o

k/) Jo sinu k
Note thatf,, is a trigonometric polynomial of degree (m— 1) (k+1). Then Dy, (f (x) —fn(x) =
(Esmf)(x). Applying the above estimates gives the result. n

In the general case of functions with a Holder continuous derivative, we have the
following general result.

Theorem 1.5.17. Suppose that f € C"*(T). Then there exists a sequence of
trigonometric polynomials f,, of degree < m(r + 2) so that

1f = Fulloo < Cm™ "+ fll 0

where the norm is defined as

(r —_ fn
1l = SUp 1@ + -+ 17O @) + sup LD =T O
xeT x#yeT Ix—yl

and the constant C depends only upon r and «.
Exercise 1.5.18. Prove the estimates (1.5.10).
Exercise 1.5.19. Complete the steps of the proof of Theorem 1.5.17.

It is often convenient to have a universal sequence of trigonometric polynomials,
which can be used at every level of differentiablity. These are provided by the de 1a Vallée
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-2 7] \/0 v i 2

FIGURE 1.5.1
The de la Vallée Poussin kernel with N = 8

Poussin means (Figure 1.5.1), which are defined in terms of the Fejér means by
Ty (x) = 20271 (x) — 01 (x).

LetE,(f) = infrep, || f —T |l be the sup-norm distance between f and the trigonometric
polynomials of degree n.

Theorem 1.5.20. The de la Vallée Poussin means satisfy the estimate

ITn = flloo < 4E,(f).

Proof. The above infimum is attained by some (possibly nonunique) T* € P,. Indeed, any
minimizing sequence p;, must be uniformly bounded, in particular have uniformly bounded
Fourier coefficients. But these reside in the finite dimensional space C***!, where one can
apply the Bolzano-Weierstrass theorem to obtain a convergent subsequence, for which the
corresponding trigonometric polynomials are uniformly convergent to some T, € P,. Now
we write

f)=T;(x)+R(x)  where |[R()| =< E,(f).
The Fourier partial sum operators S; and Fejér means oy, are defined by

k k
SF0) =Y F(re,  SRE) =D RG)e”

j=—k j=—k

= 1 k!
o 1f (x) = Z ZSJ(X), g 1R(x) = z ZSkR(x).
=0

=0
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If k > n we have S; T = T, so that Syf = T,; 4+ SR and hence
2n 2n
- Z Sf =T+ - Z SiR,
which can be written in terms of the delayed Fejér means:
202"-1f - Jll—lf = T,T + zazn_lR - Un—lR-
But the Fejér kernel is a contraction in L*(T), thus |0} (R)| < ||R|le < E,(f). In particular

172 (x) — T, ()| = 120201 (¥) = 0= f(X) = T; (0)| < 2E,(f) + E.(f) = 3E,(f)

so that
ITn = Flloo < llTn = T lloo + 17, = Flloo
< 3E,(f) + E.(f)
=4E,(f),
and the proof is complete. |

The de la Vallée Poussin approximation can be written in terms of the Fourier
coefficients as follows:

L@=2 Yy ( "')f()'” Z(l—m>f()"”

[j1=2n—1 |j1<n

2o i |J| ijx
Y Fper 42 Y ( Flie.
|jl<n—1 n<ljl<2n

In terms of the Fejér kernel, we have

2Ky 1 (£) — ) = sinnt \* 2 sinnt/2 2
=1 (1) = Ko 2sint/2 n \ 2sint/2

_ 2sin® nt — 2sin’(nt/2)
B 4n'sin’(t/2)
__cosnt — cos 2nt

" 4nsin®(t/2)

Unlike the Fejér kernel, the kernel of de la Vallée Poussin is not positive. However it
does satisfy the general properties of approximate identities.

Exercise 1.5.21. Prove directly that the de la Vallée Poussin kernel satisfies the
three properties for an approximate identity.

1.5.5 *Converse Theorems of Bernstein

Bernstein showed that the rates of convergence of trigonometric approximation can be
used to characterize the degree of smoothness of a function. The key to proving these
converse theorems is the following inequality for trigonometric polynomials.
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Lemma 1.5.22. Bernstein: Iff(0) = Y1 _,; axe?, then

(1.5.16) sup |f(0)] < 2M x sup |f(6)].
0eT

Proof. Recall the Fejér kernel
1 [sinM6/2\* & k|
Ky_10)=—=————) = 1—-—
u-106) M(sin9/2> _XM:( M)

This will allow us to represent f’(8) as an integral transform of /. We begin with the Fourier
coefficients

R —ikg 3. ) L—I1klI/M |kl <M
A(k) = Z/: Ky_1(@)e"? do = { 0 k| > M

n

Hence A(k — M) — A(k + M) = k/M for |k| < M. Thus

k 1 [~ .
(1.5.17) Z = _/ Ky_1(@®)e *2isinMpdp, |kl <M.
M 2r ),

Multiply (1.5.17) by iMa,e™*® and sum for —M < k < M:

M

£©) =" ikae
k=—M
iM
= ’2_71 ] KM | ($)2i sin Mo (k;Ma etk® ¢>) do

M [T .
=5 | Ko@) -25in Mo 0 - 9)ds
which is the desired representation. Hence
M T
76 < o ( | K@ d¢) x sup £ ()],
T \J-n ¢eT
= 2M sup | f(®)]
PeT
which completes the proof. ]
To prove converse theorems in the supremum norm, it is convenient to work with

trigonometric sums of order 2%, known as dyadic sums. This subsequence is useful
because of the following simple estimates that pertain to tail sums and finite sums:

00 2—-Not
431>O=>Z:2_’“"=1 7= = C,27N,
k=N -
2NB 1
/3>0=>szﬂ— - < 2P,

To study the approximation in detail, let f € C(T) and T, (x) be the trigonometric
polynomial of degree n, which achieves the best approximation: E,(f) = || f — Tlloc-
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Theorem 1.5.23. IfE,(f) < Cn™® for C > 0, 0 < a < 1, then f satisfies a
Holder condition: | f(x + h) — f(x)| < Kh*.

Proof. We examine the limit in terms of dyadic sums. For any ny € Z*,

o0

f@) = lim Ty () = Too () + ) &)

i=np+1

where ®;(x) = T (x) — To-1(x). From the triangle inequality we have |®;(x)| < 3C27%.
Now define m = m(h) € Z* by the inequalities 2"~ < 1/h < 2. Then

oc o0
Y e < Y 3c2
i=m(h) i=m(h)
S ng_mu
< Cyh*.

For the remaining sum we use the mean value theorem and Bernstein’s lemma (1.5.16) to
write
m(hy—1 m(h)—1

DI+ — DI <h Y sup| P

i=ng+1 i=ng+1 xeT

m(h)—1
<h Y c22

i=ng+1
< hcazm(h)(l—a)
< C h".
Hence | f(x + h) — f(x)] < |Tan0 (x + h) — Tyno (x)| + Coh* as required. |
Exercise 1.5.24. Use Theorem 1.5.23 and the proof of Theorem 1.5.3 to show
that if f satisfies a symmetric Holder condition: |f(x +h) +f(x — h) — 2f (x)| <

ch® for some 0 < o < 1, then f satisfies the usual one-sided Hélder condition:
|f(x+h) — f(x)| < Ch®. (For o = 1 this is false; see Zygmund (1959).)

If « = 1, the above estimates break down. Indeed, it is not generally true that
E,(f) < C/nimplies that f € Lip(T). The difficulty is in the estimate of

m(h)—1 m(h)—1

D B +h) - D@ <h Y sup|®x)l

i=ng+1 i=ng+1 X€T

m(h)—1

<h Z Cc2i27"

i=np+1
< hCm
< Chlog(1/h).

Thus we have the general implication

C
E(f) = — = |fx+h) —fx)| < Kh log (1/h).
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Bernstein’s inequality can also be used to characterize the differentiability of f in
terms of rates of convergence of E,(f). Indeed, suppose that E,(f) < C/n? for some
B > 1. Then the triangle inequality gives |®;(x)| < 3C2~#" and Bernstein’s inequality
(1.5.16) shows that forr € Z*, r < B,

|0 (x)| < 20+Dr3c27F = C,210P).

Hence the series Z}ﬁnn +1 Pi(x) can be differentiated term-by-term, since the numerical

series Y 0| 2/"=A) converges. We formalize this discussion as a theorem.

Theorem 1.5.25. Suppose that E,(f) < C/n"*® wherer € Z* and 0 < a < 1.
Thenf € C'(T) and f satisfies a Holder condition of order a.

Proof. From the above discussion, we have the uniformly convergent series

o0

[P = (%) T () + Y & (x).

i=np+1
The first term is infinitely differentiable, hence Holder continuous. The second term is

handled exactly as in the proof of Theorem 1.5.23, replacing ®; by &, to which the same
estimates apply. ]

Exercise 1.5.26. Suppose that E,(f) < Cn~" where r € Z*. Show that
f € CrD(T) and that | f~V (x + h) — F*V(x)| < Khlog (1/h).

Exercise 1.5.27. Suppose that E,(f) < C1/logn for all n > 2 for some constant
C|. Prove that f satisfies the continuity condition | f (x+h) —f (x)| < Cy/log (1/h)
for0 < h < % Compare with the result of Exercise 1.5.5 .

1.6 DIVERGENCE OF FOURIER SERIES

In this section we turn to some negative results, which have been instrumental in the
development of harmonic analysis. In 1873 du Bois-Reymond showed that there exists
acontinuous function whose Fourier series diverges at a point. This was further developed
to show that any preassigned set of Lebesgue measure zero can be the set of divergence of
the Fourier series of a continuous function (Kahane and Katznelson, 1966). Meanwhile,
in 1915 Lusin had posed the problem of proving the almost-everywhere convergence of
the Fourier series of an arbitrary f € L?(T). This was proved by Carleson (1966) and
extended by Hunt (1968) to the class L”(T) for p > 1. Another proof of Carleson’s
theorem by C. Fefferman (1973) has been useful in more recent developments of har-
monic analysis. Many years earlier Kolmogorov (1926) had proved the existence of an
L' function whose Fourier series diverges at every point of T. These results and coun-
terexamples are beyond the scope of this book. We will prove, by two different methods,
the existence of continuous functions with Fourier partial sums unbounded at a point.
We will also construct L' functions whose Fourier series do not converge in the L' norm.
In Chapter 3 we will prove the theorem of M. Riesz (1927) that for any function in
L(T), 1 < p < oo the Fourier series converges in the L” norm.

The upshot of these results and counterexamples is that L”, p > 1 is a good space
for one-dimensional Fourier series, both in the a.e. sense and in the sense of norm
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convergence. The space L' is bad in both senses. The space of continuous functions
is bad for norm convergence and for convergence at a preassigned point, but good for
almost-everywhere convergence.

1.6.1 The Example of du Bois-Reymond

Proof. By suitable grouping of terms, we will construct a continuous function whose
Fourier series diverges at a preassigned point. Without loss of generality, we will do this at
6 = 0. The desired function will be sought in the form

my

(1.6.1) Ff) = e’N"gw where  Bi(9) = a;e”
K2 !

n=1 J=—ny

and where the integers m,, N, will be chosen. B, (9) is the partial sum of a Fourier series
of a function of bounded variation with a jump discontinuity at the point 6 = 0 and
otherwise smooth. For example, one may take f(8) = m — 6 for 0 < 6 < 7, extended
as an odd function. In this case a, = —i/k. Since f is of bounded variation, the partial
sums are uniformly bounded: |B(6)| < M for a constant M, simultaneously for all 9 € T,
k=1,2,.... Hence the series (1.6.1) is uniformly convergent to a continuous function, by
the Weierstrass M test. In order that the different blocks B, involve different frequencies,
we will choose the integers m;, Nj so that

Ni +my < Neyy — myyy.

Although (1.6.1) is not written as a Fourier series, we claim that the nth Fourier coefficient of

f is given by the coefficient of ¢” in the series. Indeed, since the series (1.6.1) is uniformly
convergent, when we multiply by e~™ we still obtain a uniformly convergent series that
we can integrate term-by-term:

f@do =) 5 | Bu@)e™ e dp.
k2
T k=1 T

Since the terms of B, contain different frequencies, all of the integrals will be zero, save
for the value of k satisfying |[n — Ni| < my, if there is one with a,_y, # 0. In that case
the integral is 2ma,_y, and zero otherwise. Hence the nth Fourier coefficient is given by
ay_n, /k? or zero, which completes the required identification.

Now we examine the partial sum at level N;:

Ni—y my
B;(0) 1
SNkf(O):Z sz +pzaj~
j=1

=1

The first sum converges by the Weierstrass M test. The second sum can be evaluated exactly
in the case @, = —i/k:
ny

1
> ;= log my 4 0(1).

=1
We now choose my; so that (logmy)/k?> — oo, for example m; = 2" will do. Having
chosen my, we choose the sequence N, so that Ny, — N; > my + my, which is possible,
for example by taking Ny, = 1 and Nyy; = Z,/:o] (mj +mj + 1) fork =1,2,.... The
proof is complete. |
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The example of du Bois-Reymond depends critically on the fact that the one-sided
sums defined by Zf:o aje’® are divergent when k — o0, whereas the corresponding
two sided sums defined by By (6) are convergent when k — .

Exercise 1.6.1. Suppose that f is a function of bounded variation that has a
Jump discontinuity at 6 = 0 and is otherwise of class C? on the circle. Prove
the asymptotic formula f(n) = C/n + O(1/n?) and identify C in terms of the
Jjump.

1.6.2 Analysis via Lebesgue Constants

In this section we re-examine the questions of convergence and divergence in a more
general setting. A Banach space is a complete normed linear space. For example C(T),
LP(T) forp > 1 are familiar Banach spaces. A mapping T : B; — B; is a bounded linear
operator if it satisfies the conditions that

(1.6.2) T(f+9=1If +Tg, T(cf) = cT(f), I7flls, < Kl flls,

Here c is any complex number and K is a positive real number. For example, if B; =
B, = L’(T) and g € L'(T), the convolution Tf = f * g defines a bounded linear operator.
This is immediate from the B-valued norm computation

nﬁmb=HAfu—ymonw Ag@%@y

B ‘ B,

Sleg(y)IIIfyllB. dy = IIfIIB[fTIg(y)Idy= IF N8, lIgll L (-

The operator norm of a bounded linear operator is the smallest number K so that (1.6.2)
holds. Equivalently,

1T = sup [ITfll5,-
If1=<1

If T, is a sequence of bounded linear operators, the pointwise convergence to a limiting
operator T is defined by the requirment that

lim || T, — Tf 15, = 0
for all f € B,. The following condition is clearly sufficient.

Proposition 1.6.2. Suppose that T, is a sequence of bounded linear operators
and T is a bounded linear operator so that

(i) For some dense set D,lim T,f = Tf forallf € D.
(ii) There exists a constant K so that |T,|| < K forallnand |T| < K.

Then the sequence converges pointwise on all of B.
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Proof. If f € B, there exists g € D so that || f — g|lp, < €. Now

T.f —Tf = (Tf —T.8) + (T.g — Tg) + (Tg - If),
WTof — T lls, < ITof — Tuglls, + I1Tug — T8 lls, + T8 — Tf |5,
<K|f—gls + IT.g — Tglls, + K|l f — gll3, -

Hence lim sup,, || T.f — Iflls, < 2K||f — glls, < 2Ke. But € was arbitrary, completing the
proof. |

This may be applied to give a new proof that the Abel and Cesaro means converge
in LP(T). In each case we can take K = 1 and note that we have convergence on the
space of trigonometric polynomials, since in each case we have T,f = T, f for n > ny,
the degree of f.

It is surprising that the converse is true: If a sequence of linear operators converges
pointwise, then the operator norms remain bounded. This is embodied in the uniform
boundedness principle, stated as follows. The proof is given in an appendix to this
chapter.

Theorem 1.6.3. Suppose that T, is a sequence of bounded linear operators so
that for each f € By, sup,, ||T,flls, < 00. Then the sequence of operator norms
remains bounded: sup, ||T,|| < oo.

This is applied to study the Fourier partial sum operators on C(T):

N
frSuf =Y fme™

n=—N

1
_ Z_fDN(e — ) (@) do.
T JT

The supremum norm is estimated by

1
ISnflloo < 1l flloo X o f |Dn(@)| de.
T Jr

In fact this bound is sharp, since we can take the bounded function f(¢) = sgn |D,(¢)|
and achieve equality. This choice of f; is not continuous, but can be approximated
boundedly be a sequence of continuous functions, for example by using the Fejér means
to define f, = K,fo. Then 27 Syf,,(0) = [ fuDy — [ foDy = J;|Dy| whenn — oco.

We now recall the estimation of Proposition 1.5.1, which states that ||Sy| ~
(4log N)/m? . This allows us to infer, without any computations, that there exists a con-
tinuous function whose partial sums do not remain uniformly bounded, especially not
uniformly convergent.

Proposition 1.6.4. There exists a continuous function whose Fourier partial sums
do not remain uniformly bounded. Forany 6 € T, there exists a continuous function
whose Fourier partial sums are unbounded at 6.
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Proof. The first statement is evident from the previous discussion where we take
B, = B, = C(T). For the second statement simply take B, = C(T) and B, = C, the com-
plex numbers. The operators f — S, f(6) are each bounded and linear from B, to B,. The

operator norms are computed exactly as above: ||S, || = L, = (4logn)/m2+0(1),n — 0.
Therefore, by the uniform boundedness principle, there exists a continuous function whose
Fourier series is unbounded at 6. ]

The following exercise shows that the Lebesgue constants can be used to estimate
the rate of divergence of the Fourier partial sums for a function that has a local average.

Exercise 1.6.5. Supppose thatf € L'(T) andforsome 6 € T, s := limy_o[f (6 +
@) + (0 — ¢)1/2 exists. Prove that Syf(8) = o(log N) when N — o0.

Hint: Given € > 0, choose § > 0 so that | f(6 + ¢) + (6 — ¢) — 2s| < 2¢ for0 < ¢ < €. From
the representation of partial sums we have

I -
ISnf (@) — sl = — ’/O Dy (#)(fo(#) —S)dd)\

8 4

< e/ \Dx(9)] dgs + M Dy (&) (s (@) — 5) d¢’
0

< e€logN + o(1).

For a general f € L'(T), one can establish the above rate of divergence at
almost every 6 € T. The proof is very similar to the proof of almost-everywhere
Cesaro-summability in the space L! (T).

Proposition 1.6.6. Let f € L'(T). Then for almost every 6 € T, Syf(6) =
o(logN), N — oo.

Proof, Let Fy(¢) = fo¢ |f (0 +u)+f(0 —u) —2f(6)| du. From Lebesgue’s differentiation
theorem, we have for almost every 6 € T, Fy(u)/u — 0 when u — 0. Now we write
s = 2f(#) and, as above,

1 /N 4 _
Snf(@) —f(0) = = + Dy (9)(fo(¢) —s)dp =1, + L.
T 0 /N

On the first integral we use the fact that [Dy(¢)| < 2N + 1,0 < ¢ < m; thus

N +1
T

< 2 e Ny o)), N> oo

On the interval m/N < ¢ < m we can write Dy (¢) < w2/24 + 2/¢, so that

T 2 (T F(9)
|12|S'2z+;/ﬂm—¢ do.

A partial integration shows further that

/" F@ 4 F@)
n/N ¢ ¢

" " F(¢)
+ de.
/N /;/N ¢2 ¢
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The first term is bounded when N — 00. On the other hand we write €(¢) := F(¢)/¢,
which tends to zero when ¢ — 0, so that

he F/ b4
/ @) dop = 5@ d¢ = o(logN), N — 0.
n/N ¢ n/N ¢
The proof is complete. |

1.6.3 Divergence in the Space L!

The analysis of divergence in the space L'(T) is entirely parallel. First we outline a
qualitative argument to prove the existence of an L' divergent Fourier series, then we
proceed to construct a class of examples.

In order to exploit the principle of uniform boundedness, we need to compute
the norm of the operator Sy, which maps L'(T) to L'(T). On the one hand, for any
f € L'(T), we have

ISnAlle = IDn * fllv < IDv I I1Lf 1

so that the operator norm ||Sy||;.; is bounded by the Lebesgue constant Ly. On the other
hand, if we take the Fejér kernel f = K, with n > N, then by the properties of the Fejér
kernel

ISnfllv = IIDN % Kulli = llow(Dn) 1l = IIDw I, n— oo,

since for any fixed N, o,,(Dy) converges boundedly to Dy when n — oo. Hence we
conclude that the operator norm is given by

4
ISvllt.i = IIDnlli = Ly = FIOgN-i-O(l).

By the uniform boundedness theorem, we conclude that there exists f € L'(T) such
that ||Syf |1 is unbounded when N — oo. This completes the qualitative argument and
proves the following proposition.

Proposition 1.6.7. There exists f € L'(T) whose Fourier series diverges in the
L' norm: supy, |Snflli = +o0.

We now use Lebesgue constants to construct explicit examples of functions in the
space L!(T) whose Fourier series do not converge in the L' norm. We begin with a
sequence {a,} of positive real numbers tending to zero so that the second differences are
nonnegative; in detail (A%a), := @, + a,_, — 2a, > 0. Such a sequence is termed
convex.

Lemma 1.6.8. For any convex sequence, we have lim, n(a, — an+1) = 0 and the
series Y oo o n(A%a), = ag < 0o.

Proof. Let b, = a, — a,. From the convexity condition we see that b, > b, for all n.
Also b, — 0, since a, — 0.

To prove that b, > 0 for all n, we assume that b,, < 0 for some ny. By convexity
we have b, < b, for n > ny. Then a, — a,, > (ny — n)by,,, which implies a, — oo,
a contradiction.
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Given € > 0, there exists N(e) so that a, <€, b, <€ for n>N. Thus
€>ay—a,=byy + -+ b, = (n— N)b,, which proves that limsup, nb, < e,
which was to be proved. To prove the convergence of the series of second differences,
use summation by parts to write

N
Zn(Aza)n =ay — ay — Nby.

n=1

When N — 00, the right side tends to ay, as required. ]

We can use these techniques to construct trigonometric series in L!(T). Let {a,}
be a convex sequence and consider the sequence of functions

N
sv(0) =ao+2)_ aycos (nf).

n=1

Recall the Dirichlet kernel and Fejér kernels:

Dy(0) + -+ - + D, (6)

D,6) =1+42cosf + -+ 2cos (nd), K,(0) =
n+1

Inversely,
2cos (n8) = (AD)A(6), D, (0) = A((n+ 1K) (6).

Using summation by parts we can write
N-1
(1.6.3) sv(8) = ) n(A%a),K,-1(6) — NKy_1(6)(Aa)y + ayDy (8).
n=1
For any 6 # 0, the last two terms tend to zero, while the first sum remains bounded in
L'. We define f € L'(T) by the L' convergent sum

oG

(1.6.4) FO) = n(A%a),K,-1 ().

n=1
From the above lemma and the normalization of K,, we see that this series of nonnegative
terms converges in L', hence the sum is finite almost everywhere and defines an L'
function. It remains to compute the Fourier coefficients. To do this we multiply £ (9) by
e~ and integrate term-by-term, by dominated convergence. Thus we have

o0

Fm) =" n(A’a)K, -1 (m)

n=0

& m
= E n(Aza)n (1 - | |) = Qn|,
n
n=0

the last step being the result of surnming by parts twice. Having established that
aym = f(m), we can investigate the L' norms.

Proposition 1.6.9. Suppose that {a,} is a convex sequence and let f be defined by
(1.6.4). Then the partial sums sy remain bounded in L' if and only if {a, logn} is a
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bounded sequence. The partial sums are convergent in L' if and only if a,logn —
0 when n — oo.

Proof. Returning to (1.6.3) we see that the first two terms are bounded in L'. Therefore
if sy also remains bounded in L! the same must be true of the final term a,Dy. But its
L' norm is asymptotic to (4/m2)ay log N, which proves the first statement. To prove the
second statement, write

sw(®) —£(6) = Y n(A%a),K,-1(6) — NKx_1(8)(Aa)y + ayDy(®).
n=N

The first sum tends to zero in L' when N — o0, as does the second term. Therefore the
convergence to zero of |lsy — f||; is equivalent to the convergence to zero of ||ayDy |,
which is equivalent to ay log N — 0, which completes the proof. ]

1.7 *APPENDIX: COMPLEMENTS ON LAPLACE’'S METHOD

1.7.0.1 First variation on the theme-Gaussian approximation
The proof of Laplace’s method can be modified at no expense to handle integrals of the
form

b
Cit= f A(p)e®Were dyy.
a

Assume that A(u) and B”(u) are Lipschitz continuous. Without loss of generality, we
may assume that the maximum of B is attained at & = 0 € (a, b) and that B(0) = 0.
Thus we apply Steps 1, 2 and 3 of Section 1.1.5 to reduce to

8 _— 1
() = A©) f o gi gy, 4 0<?> .
-5

Applying Step 4 we replace the limits by —oo < . < oo and incur an exponential error
so that

% : 1
C() =A(O)/ e ke e”“du—i-O(;).

But this is the Fourier transform of the Gaussian density, hence we have the asymptotic

formula
v 2 1
Ct) =A@0),/—e /™ 0o =).
® () at + (t)

All of the error estimates are independent of ¢, so that this can be used in cases when
¢ depends on ¢. Of course, to provide useful information, it is only interesting when c is
restrained, for example ¢ = O(+/1); if c is too large the exponential term will be smaller
than the error term when ¢t — oo.

1.7.0.2 Second variation on the theme-improved error estimate
If we have additional information on the function B(u), we can refine the error estimate
to O(1/n/?), which comes up in many problems. Specifically, assume that A(u) = 1,
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and that B(y) is four times differentiable with B'(0) = 0, B"(0) = —k < 0, B”(0) = ibs
for some b3 real. We begin with

b
C(t)=f eBWdy.

Assuming that the maximum is attained at 4 = 0 and that B(0) = 0 we immediately
reduce to,

5
c@) = / eBW dy + 0(e™ ), C>0.
-5
Now we use the inequality (1.1.41) with 7, = B(u), 20 = —ku? + in’bs/3
Ie—tB(u) _ e—f(kuz/2—i#3ba/6)| < tC4/,L4e_’k”z/3, —8 < p<8.

The integral of the remainder term is
? 4 —tkpu?/3 oo 4 _—thu?/3 Cs
tCyu e ™ P du < tCap e " P du = 372
_s —50 3/
as required. Now we use the inequality |e® — 1 — ia| < a?/2 for a real to write
le—t(kﬂz/z—iﬂ3b3) _ e—rkuz/Z _ i/,L3b3e_'k"2/2| < tz,lLGbge_'k”'z/Z.

The integral of the cubic term is zero, since this is an odd function over a symmetric
interval. The integral of the remainder term is

5
const
t2b§/ uSe= w12 gy < t2b§/ uSe™ w12 gy = R
_5 —00

Finally we replace the integral over —§ < @ < § by an integral over —0o0 < p < 00
with an exponential error. Thus we have shown that

2 1
17.1) @) = /T’Z/LO)+0<I37), t = oo.

1.7.1 *Application to Bessel Functions

The modified Bessel functions I, (f) are obtained from the absolutely convergent
trigonometric series

ICOGQ Z eln191|m| (t)

m=—00
or explicitly as the Fourier coefficients
| O
L,(t) = —f e M0 de m=0,1,2,....
2n J_,

Laplace’s method can be applied here with the choice A(8) = e~?, which is Lipschitz
continuous and B(8) = cos 6, which is twice differentiable with B” Lipschitz continuous.
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B has a unique maximum at & = 0 with B(0) = 1, B'(0) =0, B"(0) = —1,B”(0) = 0.
Applying (1.7.1) gives the asymptotic result

L,(@t) = \/;W [1+0<;)], t — 00.

1.7.2 *The Local Limit Theorem of DeMoivre-Laplace

Laplace’s method is naturally adopted to problems in the theory of probability. In the
simplest probability model, one considers independent trials of an event whose proba-
bility p of success is assumed known with 0 < p < 1. For example, if we have a fair
coin it is natural to take p = 1/2. If we are rolling dice then it is natural to take p = 1/6,
if success corresponds to a given face showing.

More general systems of probability distributions will be studied in Chapter 5,
where we prove a more general form of the central limit theorem, generalizing the
theorem of DeMoivre-Laplace.

Assuming # trials, this random experiment has 2" possible outcomes, consisting of
strings of zeros and ones, where 1 corresponds to success and 0 corresponds to failure.
The probability of a given string with k successes is defined to be p*(1 — p)"~* and
the number of such strings is the binomial coefficient (2’) = n!/k!(n — k)!. This is
summarized as the statement

o . . . n _
The probability of k successes in » trials is Py, := (k) Pk —p) k.
When we try to compute Py, we find that the maximum value occurs at the integer
closest to np, and that this maximum tends to zero when n — oc.
The local limit theorem of DeMoivre-Laplace is the following quantitative
asymptotic statement:

Theorem 1.7.1. Let x = (k —np)//np(1 — p). Then for n — oo, uniformly in
0<k=<n

n\ 4 ‘ e/ 1
l—p)"™ = —m—7mF704————+ 0| — ).
(k)p N ) <n3/2)
This theorem shows that the individual probabilities tend to zero, while approxima-

ting a bell-shaped curve. In particular if p = 1/2 and x = 0, we see that the probability
of an equal number of successes and failures is asymptotic to /2 /nw when n — oc.

Proof. First we represent the binomial probability function as the Fourier coefficient of an
elementary function. Writing g = 1 — p. we let f(8) = pe®® + g. Then from the binomial
theorem

(172 f©O" = (pe” +q)"

(1.7.3) = Z (Z) e

k=0
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from which we conclude

1 [ _
(1.7.4) Pin = n pkqn—k — __/ e F©0Y df.
k 2 J_,

We cannot apply Laplace’s method directly, since the integrand is not presented as
an exponential. To find an equivalent exponential form, we note first that for 0 # 0, f(0)
lies on the segment joining two distinct points of the unit circle, hence |f(8)| < 1 for
0 < |8] < m. Therefore, at the expense of an error which is exponentially small, we can
restrict attention to the integral over (—8, §). The Taylor expansion of f (6) is

f(6) =1+ ipd — p6?/2 — ip8*/6 + 06, 6 — 0.
Choosing 8 so that |1 — f(8)| < 1/2 for |6| < &, we can define the logarithm
logf(0) = ipd — p6*/2 — ip6*/6 — (1/2)lipd — p6*/2T + (1/3)[ip6 — p6* /2T + 0(6*)
= ip6 — pgb*/2 — (67 /6)pg(q — p) + O(F*).

The Fourier representation (1.7.4) gives, up to an exponentially small error

1 8
Pin =5 f exp(nlipd — pgb?/2 — i(9*/6)pa(q — p) + OO — i0(np + x/npg)) dO
-5

1 8
=5y / exp [—npqb? /2 — ixf /npq — i(n6> /6)pq(q — p) + O(nd*)1d8.
-8

We can apply the first variation of Laplace’s method to obtain the Gaussian approx-
imation with ¢ = x,/npq and obtain the required result with an error of O(1/n). To obtain
the sharper error, we argue directly as follows:

If we ignore the error term in the exponent, we incur an error of at most

g 1
f nd*exp [—npq6?/21do = O (T) .
-8 l’l‘/z

To dispose of the cubic term we again employ the inequality | — 1 — ia| < a?/2 with
a = 63/3. The integral involving 6° is zero and the new error term is at most

s 1
296 2 -
./_ n“6%exp [—npqf~/2]1d6 = 0<n3/2>'

8

Having done all this, we have

J 1
Pin= / exp [—npg6?/2 — ix0 \/npgl db + O (W)

8

Finally, we can replace the integral over (—4§, &) by an integral over (—o0, 00) at the expense
of an error

/ exp [—npg?/2 — ix6./npgl do = O (e"""ﬁz).
161=8

From Chapter 2, Example 2.2.7, we borrow the Fourier transform of the Gaussian density:

oc
2
/ exp [—npq6® /2 — ix0 /npql do = /—”e"‘z/z
o0 npq

which completes the proof. n
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Exercise 1.7.2. Show by direct calcuation that | f(0)| < 1 for 0 < |6| < x.

Exercise 1.7.3. Suppose that x = (k — np)/./apqg — oo, so that x* /2 —logn —
—o0. Show that
e—x2/2

2mnpq

in the sense that the ratio tends to 1 when n — o0.

Prn~

1.8 APPENDIX: PROOF OF THE UNIFORM
BOUNDEDNESS THEOREM

The norm of a linear operator L is defined as

(1.8.1) IL| = sup{lLf|1|f|=1}=SuP{% f# ]

An operator is bounded if ||L|| < oo. The uniform boundedness theorem is the following
statement.

Theorem 1.8.1. Suppose that L is a collection of bounded linear operators from
a Banach space B to a normed linear space Y with the property that for each f € B

(1.8.2) sup{|Lf|: L € L} < o0
Then sup{||L|| : L € L} < oo.

To simplify the proof, we first prepare a lemma that will allow us to make a proof
by contraposition. Specifically, we assume that

(1.8.3) sup{|IL|| : L € L} =

Lemma 1.8.2. Suppose that formulas (1.8.2) and (1.8.3) both hold. Then for each
n > 1 there exist L, € L and f,, € B so that

(1.8.4) |ful =477
(1.8.5) \Lnfal > ZILa1 1l
(186) |Ln nI > 2(Mn—] +n)

where My = 1 and for k > 1, My, = sup{|L(fy +---+fi)| : L € L}.

Proof. From (1.8.3), there exists L, € £ with ||L,|| > 24. From the definition (1.8.1), there
existsf; € Bwith |fi| = 1and |L, fi| > 2||L,. Setting f; = f,/4 shows that (1.8.4), (1.8.5)
and (1.8.6) are all satisfied with n = 1. Assuming thatfi, ..., f,—1, Ly, ..., L,_y, have been
defined, choose L, € L so that ||L,|| > 3 - 4" ‘(M- + 1), which is possxble by hypothesm
(1.8.3). With this choice of L,, there exists f,, € B so that [f,1| =1 and |L,f,,| > |L,,||
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Setting f, =f,,/4", we clearly have | f,| = 47", proving (1.8.4). Now
ILiful > 347" L)l > 347" -3 - 4"(M,—y 4+ n) = 2(M,—y + 1),

which proves (1.8.5) and (1.8.6) for the value n. This completes the proof of the lemma by
mathematical induction.

To complete the proof of the theorem, we let f = ) -, f,, which is a well-defined
element in the Banach space B, by virtue of (1.8.4). We will show that sup, |L, f| = +oo.

To do this, first note that
” ( Z ﬂ)
k=n+1

< Ll Z il

k=n+1

= Ll Z 47t
k=n+1
= (L, n
3|| (NA

so that by the triangle inequality we have

L, (ka +h+ Z ﬂ)

k=n+1

n—1i 00
Ln (Z fk) - Ln ( Z ﬁ)
k=1 k=n+1

|Lnf;r| M, — %”Ln” |f;1|
= |Lnﬁr n 1= %anﬁrl
= 2|Lnﬁ1| M,

zn,

ILnf1 =

> |Lr n| -

which proves that sup,, |L,f| = +o0, the desired contradiction. n

1.9 *APPENDIX: HIGHER-ORDER BESSEL FUNCTIONS
Higher-order Bessel functions of integral order are easily constructed beginning with the

series representation of Iy (2r). Differentiating term-by-term, we find
n—1 b4

d c 2}17‘2 1 2rcos @
(19.1) E10(2r)=;=1: T = | coseerrds.

The right side can be integrated by parts to obtain the identity

= 2 1 (7 L2
Z—r——— = —/ sin® 6 ¢> °%0dg = 1 r)

—nln+ 1) /), r

Proceeding inductively, we find for each m > 1 the identity

0 2n Cn I
(1.9.2) Z r— ¢ / n2m 9 e2roost gg . — (2r)

= nl(n+m)! 2 rm

for a suitable choice of the constant C,,,.
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Exercise 1.9.1. Prove that Cy = 1, Cyy i1 /C = 2/(2m + 1) and conclude that
C, =m2""/2m)! form =0,1,....

Equation (1.9.2) provides a definition of the Bessel function I, form =0, 1, 2, ...
as a power series convergent in the entire complex r-plane. If we interpret the factorial
in terms of the gamma function, the definition can be extended to all complex values
of m.

Exercise 1.9.2. Prove that for r > 0 we have the inequality |I,,(2r)| < Cr™e? .

The higher-order Bessel functions can be recognized from the trigonometric series
for the even function f(§) = e °*. We begin with the power series expansion

00 k
2rcosf _ (2r cos 8)
‘ B ,Z; ko
From the binomial theorem we have
kRN o o S K
(2cosO) = Z (.)(e’e)/(e—’e)k—l = Z (l)et(ZJ—k)B
Jj=0 J j=0 J

leading to the absolutely convergent double series

oo k
2rcos€ i(2j—k)6 __ 1(2j—k)9
e .
3 (e -2y e

=0 j=0

If m=0,1,2,..., the coefficient of e~ is obtained by summing over those indices
(, k) for which 2j — k = —m. This is a line of slope +2 in the (j, k) plane, written as
k = 2j + m. Thus

r%+m

o0
S
. = I, (2r) m=0,12,...
G2 —k=m I (k ! J;(, '(1+m)' Z(;j'(]—i-m)' m

Notinig that f is even, if m = —1, —2, ... we obtain the same result with |m]| in place
of m. Hence we obtain the absolutely convergent trigonometric series

g2reos? ZI| ](2r)e”’9 r e C.

meZ
From Parseval’s identity we obtain the unexpected dividend that for r real

1
> hw@r) = — f eV %0 dg = Iy(4r).
2 T

meZ

Bessel functions will be useful in Chapter 2 when we consider Fourier transforms in R".

1.10 APPENDIX: CANTOR’S UNIQUENESS THEOREM

Trigonometric series can be considered apart from the framework of Fourier series, as we
have indicated in the opening section of this chapter. In most of our work we operate in
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the framework of Fourier series. Nevertheless it is still useful and instructive to explore
a larger context. The next result is a basic theorem in this direction.

Theorem 1.10.1. Suppose that we have two trigonometric series Y, , Ane™
and Y, , B,e™ that converge to the same sum for every x € T. Then A, = B,
foralln € Z.

By considering the difference, we can immediately reduce to the case B, = 0.
Thus we are given

N
(1.10.1) DA™ >0, N-o>oo xeT,

n=—N
and we must prove that A, = 0.

Lemma 1.10.2. Cantor-Lebesgue theorem: If ), _, A,e™ converges for all
x in a set E of positive measure, then lim,_,0c A, = 0.

Proof. Since the series converges, we have lim,,_, . [A,e™ + A_,e~™] = 0. By taking the
real and imaginary parts we obtain two terms that may be written in the form a,, cos (nx+¢,),
for which we must prove that a, — 0. Assume not; then there exists € > 0 and infinitely
many indicesn; < n; < --- sothat|a, | > €. Dividing by |a,, |, we conclude that cos (n.x+
¢»,) — 0. Squaring this and using the double-angle formula, we have %(1 + cos (2nx)) —
0 on E, with |[E| > 0. This is a sequence of uniformly bounded functions, which we can
integrate and take the limit. But if we apply the Riemann-Lebesgue lemma to I, we conclude
that the second integral tends to zero, thus |E| = 0, a contradiction. ]

Riemann introduces the function

(1.10.2) Fx) = — — ) —e™,

Since A, — 0, this is an absolutely and uniformly convergent trigonometric series, espe-
cially a continuous function whose Fourier coefficients may be retrieved by integration.
In order to implement the basic hypothesis of convergence, Riemann considers the second
difference quotient

Fath+Fa—h—-20F@ _, T a6 (sinnh/2>2

(1.10.3) = Y

n#0

From exercise (1.4.28), the right side defines a regular method of summability; given
(1.10.1) we see that (1.10.3) tends to zero when 4 — 0. To complete the proof we develop
some ideas of convexity to prove the following lemma.

Lemma 1.10.3. Suppose that F is a continuous function defined on some inter-
val so that limy_,o(F (x + h) + F(x — h) — 2F (x))/2h*> = 0. Then F is a linear
function: F(x) = ax + b for suitable constants a, b.

"
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Proof. Introduce F. (x) = F(x) + €x?, a continuous function that satisfies

(1.10.4) lirr(l)[FE (x+h) + Fo(x — h) — 2F.(x)]/h* = 2¢ > 0.

We will prove that F(x) is a convex function. Suppose not; then there is an interval (a, b)
and a linear function g(x) = rx + s so that F(a) = g(a), F.(b) = g(b) and F,(xp) > g(xo)
for some xy € (a, b). The difference F(x) — g(x) has a positive maximum at some point
Xmax € (a, b). At this point we must have the inequality F (x+h) + Fe(x —h) —2F.(x) <0
for small A. But this contradicts (1.10.4), so we have shown that F, is a convex function.
But F is the limit of the sequence of convex functions F, hence also convex. Applying
the same reasoning to —F, we conclude that —F is also convex, hence F must be a linear
function.

To complete the proof of the uniqueness theorem, from (1.10.3) for any & # 0, we
may retrieve the Fourier coefficients as

sinnh/2\’ 1 Fx+h) +F(x—h)—2F(x) _,
" [ mxdx — O
( nh)2 ) 27 )y 12 ¢ 0 =0
whereas ) F W F W —2F
a o L [Fa+m+Fa—h—2F0)
2 T h2
The proof is complete. ]

Exercise 1.10.4. Suppose that Y, , Ane™ converges to zero for all x € T\
{x\, ..., x;}. Modify the above proof to show that A, = 0 for all n € Z.

Hint: F(x), defined by (1.10.2), will be piecewise linear.



CHAPTER

2

FOURIER
TRANSFORMS
ON THE LINE
AND SPACE

2.1 MOTIVATION AND HEURISTICS

In parallel with Chapter 1, we can motivate the theory of the Fourier transform on the
real line by considering an absolutely convergent trigonometric integral

(2.1.1) fx) = /R C(£)e*de,  where fR IC(&)|dE < 0.

In order to retrieve the coefficient function C (£) we multiply (2.1.1) by e~7* and integrate
overx € [-T,Tl;

T T
/ e "f (x) dx = f C®) ( f e’“_”)"dx) dg
-T R =T

sinT(§ —n)
=2 [ ce»r22 T e
fR(@ L

One cannot immediately take the limit 7— oo without further hypotheses. If, for exam-
ple, C (&) satisfies a Dini condition, then one can show that the right side converges to
2nC (&) so that

1 (7 .
(212) C(E) = Tll,n;o E /Tf(x)e—tXE df,

which can be used to motivate the definition of the Fourier transform. The following
exercise shows that C(¢) can be retrieved under the hypothesis of continuity.

89
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Exercise 2.1.1. Show that

1 T/ 1 —cosT(€E —n)
— Wexydx ) dt =2 | ——————2C(§) dE.
Tfo (f_e 7@ ) t /R E—np O

Conclude that if C is continuous, then the right side converges to 2wC(n) when
T — oo.

Example 2.1.2. Let C(§) = e %! fory > 0, x € R. Then
Fo) = / £El ikt g
R

o0
= 2Re/ e e
0

1
y+ix
2y
=x2+y2'

=2Re

Apart from a constant, this is the Poisson kernel in the setting of the real line. The
normalization is obtained from the elementary calculus integral for fR dx/(1+x*) =m.
Thus we have the normalized Poisson kernel

1y
Py(x) = —

T >0, x e R,
T y? + x? Y

which has the properties of a positive approximate identity:
(2.1.3) Py(x) = 0, / Py(x)dx =1, / Py(x)dx -0 (y{0).
R |x|>68
Exercise 2.1.3. Use the previous example and formula (2.1.2) to compute

|
—ixt dx R.
/Re 1+x2 s

A more classical motivation, which goes back to Fourier, is to begin with a Fourier
series on the interval [—L, L]:

(2.1.4) )~ Ce™ It

nez

1 [t .
(2.1.5) @zizﬁf“”wmw

These formulas will now be rewritten in terms of the functions

L
Fu(w) = f fEe™dx,  F(p) = /R F@)e ™ dx.
-L
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Letting , = nw/L, we have (Au), = /L so that we can write (2.1.4) as a formal
Riemann sum

1 .
(2.1.6) FO) ~ 5= 3 Fulune™ (A
T nez

Formally taking L — oo, we find

1 . A
f(x) ~ 2— / F(M)el“"' d,bL, F(p) = /f(x)e~zux dx.
T Jr R

In order to have a more symmetrical theory, we let & = 27§ in the first integral, to
obtain

(2.1.7) flx) ~ / FQ2ng)e™™ % dg, FQrg) = / fx)e X gy,
R R

This symmetrical form will be in force in the systematic approach beginning in
Section 2.2. In case f is real-valued, (2.1.7) can also be written in terms of real-valued
functions by writing F(u) = %[A(M) — iB(u)] to obtain

(2.1.8) fx) ~ /OO[A(ZNS) cos(2méx) + BQ2n&) sin(2réx)] dE.
0

The above transformations are purely heuristic, with no pretense of rigor. We
will show in the following sections that they can be systematically developed to obtain
a powerful theory of Fourier analysis on the real line and in Euclidean space.

2.2 BASIC PROPERTIES OF THE FOURIER TRANSFORM

In order to formulate an unambiguous theory, we begin with a complex-valued, Lebesgue
integrable function on Euclidean space, denoted by f(x), x € R". The Fourier transform
is the complex-valued function f (£), £ € R" defined by the integral

@21 7© = Fne) = [ rwe e

The Euclidean dot product is & - x = } 7, &x;.
The basic elementary properties of the Fourier transform are summarized in the
next statement.

Proposition 2.2.1. Letf € L'(R"). Then

o Continuity: & — f (&) is a uniformly continuous function.
o Contraction: The mapping f — f is norm-decreasing from L' to L™, in the
sense that

222 F7©1< [ 17wl = 10

o Linearity: If F| is the Fourier transform of f| and F, is the Fourier transform of
fo, then a|F) + ayF, is the Fourier transform of a\ f| + ay f», for any choice of
the complex constants a,, a,.
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e Translation and Phase Factor: If F is the Fourier transform of f, then
e 2"t F(£) is the Fourier transform of f (x — a), and F (€ + b) is the Fourier
transform of e~ f (x).

o Multiplication and Convolution: If F is the Fourier transform of f| and F, is the
Fourier transform of f,, then F|F, is the Fourier transform of (fi * f,), where
the convolution of two functions is defined by the integral

i % £)(x) = /R OV =) dy.

o Differentiation and Multiplication: If the partial derivative (9f /0x;) exists and
is in L' (R"), then ZNiEjf(fg) is the Fourier transform of (9f /0x;).
If x;f €eL'(R"), then (af/agj)(g) exists and is the Fourier transform of
—2mix; f (x).

e Fourier Transform of Radial Functions: If f(x)=¢(|x|) for some
@ e L'R*; rYdr), then ]A‘(fg) = (|&]) for some € C(RY). Restated, the
Fourier transform of a radial function is again a radial function.

Proof. To prove the uniform continuity, we write
FE+h—F&) = f [e72m M — e=2ME X £(x) dx
RII
— / e—ZniE»X[e—Znih-x _ l]f(x)dx

7 +h) —FE)l < / e _ 1)1 £ )| dx
]R”

:(f + / )Ie‘z”"h""—lllf(x)ldx-
lx|<M Ix|>M

Given € > 0, the second integral can be made less than € by taking M sufficiently large.
The first integral is majorized by

27 |h| x| 1f ()] dx.

lxl<M

Therefore with the above choice of M, we have

lim sup sup | f(¢ + h) —f(&)| <e.
h—0 EcR?

But € was arbitrary, which proves the uniform continuity. The linearity and phase factor
properties are direct computations. The existence of the convolution of two L' functions
is guaranteed by the Fubini theorem, when we consider the function f; (z)/ () in R*" and
make the substitutionz = x — y:

00> fR A @) dedy = fR A (fR e —y)ldx) dy

- / ( B |f‘("—Y)fz(y)Idy> dx.
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The joint measurability of the product f(z)f>2(y) is established by writing fi(z) =
limy Y, ez k27N 115w s g4 1y2-v and similarly for £,(y). The product is then written as
a pointwise limit of simple functions, especially jointly measurable.

Therefore the convolution is finite almost everywhere and defines an L' function
with || fi * 2l < [lfillil 2111 Now we can compute

F(§)F\(§) = / e T EEI L (WA (@) dzdy

R21

= f e EYf () ( / e‘z""f‘“*”f.(x—y)dx) dy
n RH

= / e ( f fu(x—y)fz(v)dy> dx.
n ]Rn

The differentiation and multiplication properties will be proved below in a more amplified
context. Finally, if f is a radial function, then we consider a rotation R in the &-space,
making the change-of-variable y = R'x with |y| = |x|, dy = dx:

F(RE) = / (e RET dy = / o(x])e=mE RS gy
R R

= f (lyDe" > dy = f (),
R
which shows that f‘ is invariant by rotations, hence a function of |£|. |
We will also need a form of the Fourier reciprocity formula.

Lemma 2.2.2. Suppose thatf € L'(R") and € L' (R") are integrable functions
with Fourier transforms f and . Then we have the identity

(22.3) /R VEF©dE = [ foiedr

R?

Proof. We use the Fubini theorem to write
/ Y (EF () dt =/ ¥ () (/ f(x)e‘z"iE’de> dt
R? R? R"

= f £ ( / w(zs)e-“"f*ds) dx
Y R

= [ FOv () dx,
]RII
which was to be proved. |

This applies in particular to a convolution operator with respect to a kernel

which is written as an L' Fourier integral. In detail, if K (x) = [p, k(§)e*™** d& with
ke L'(R"), then

2.2.4) fx =Ky dy = /R ” k(&) (£)e™ - d.

Rn
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Exercise 2.2.3. If p is a finite Borel measure on R", its Fourier transform is
definedas L(€) = g, e~ u(dx). Provethatif u, v arefinite Borel measures on
R”, then we have the Fourier reciprocity formula fR,, D(x) u(dx) = [p. L(E)v(dE).

2.2.1 Riemann-Lebesgue Lemma

The most basic analytic fact about the Fourier transform is the Riemann-Lebesgue lemma,
expressed as follows.

Theorem 2.2.4. Foranyf € L'(R")
lim f(&) =0,

[€]—>o00

and the convergence is uniform on compact subsets of L' (R").

Proof. From inequality (2.2.2), we need only prove this for a dense set of functions in the
L' norm. From the dominated convergence theorem,

/ 1 ()l dx — 0, / ()] dr = 0
Ix|>M {x:lf ()]>M)

when M — 00, so that we can approximate f in the L' norm by a bounded measurable
function f, which is supported on the cube [-M, M]". By rescaling we may suppose that
M = 1. Now f can be uniformly approximated by the simple function

Z -N
f= Z k2 1{(k—1)2‘N<f'51<2"N)

so that || f‘ - f Il <2 x27V. Now we will prove that the theorem holds for any simple
function, f = 22':, ¢k 1g, where Ey are measurable subsets of [—1, 1]" and ¢, are arbitrary
complex numbers.

In case of an indicator function f(x) = IT}_,1, 5, (x), the Fourier transform is
computed explicitly as

e—Zm’Sij _ e—ZHiEJuJ

n n bj n
= =2mig gy, — - - )
fo =11 f =[] g0
which clearly tends to zero if at least one of the coordinates & — 0o. By Proposition 2.2.1,
the same is true if f is the indicator function of a finite union of intervals.

Now if E is any measurable subset of [—1, 1]", there exists a finite collection of open
cubes {C;} with union U = U;C; so that the Lebesgue measure of the symmetric difference
EAU is less than €. In particular |1, — 1g]|; < € so that

IF(Ay)E) = FAp)E)] < Iy — 1elh < e

Therefore, F1£(§) — 0 when |§| — oo. This extends immediately to finite sums f =
ZQ’:] ¢; 1, and the proof is complete. To check the uniform convergence on compact subsets,
follow the same reasoning as in the proof in Chapter 1. |

For a general L! function, there is no universal rate of decrease to zero. However, if we
asssume some differentiability, we have the following fact.
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Proposition 2.2.5. Ifthe partial derivative (3f /3x;) exists and is in L' (R"), then
27ti§,~f‘(5) is the Fourier transform of (9f /9x;) (x). In particular

|sl|lm &f(€) =0.

More generally ifa = («y, . .., «y,) is a multiindex, and the mixed partial derivative

Df € L'(R"), then (27i§)*f () = F (D) (€).

Proof. Without loss of generality suppose that j = 1. First, note that by Lebesgue theory,
fex2, . x) =0, %2 ., %) = [ £ (2, %2, .. ., X,) dz, which shows that f must have
a limit when x; — oo, which can only be zero, since f € L'(R"). Now we apply partial
integration for &, # 0:

f(&) / F)e 7 gy = 11m F0)e mE dy

lxy|=M
e 2miEx o2k M —27:5:
/ f(X)d‘.< E) =fx) e / fa@ S e Su

—27r1$A
=

Integrating this over x,,...,x, proves the identity 2mi§, f &) = F(.,)&). Repeat-
ing this procedure and using mathematical induction shows that for any multiindex «,
Qmi&)*f (&) = F(D*f) (&) from which the result follows by the Riemann-Lebesgue lemma.

[ ]

A dual property is afforded by the next statement, where || := &) + -+ - + .

Proposition 2.2.6. Suppose that [, |x[¥|.f (x)| dx < oo0. Thenf is differentiable
to order k and

Df(§) = /oo(—2ﬂiX)“f(X)e_2”iE'x dx  |a| <k

Proof. To prove the formula for k = 1 we apply the dominated convergence theorem, using
the inequality | —1| < || for 6 real. The general result follows by mathematical induction.
|

Example 2.2.7. A basic example with n = 1 is provided by the Gaussian density
function

fw=em,  fe =

To see this, we differentiate the Fourier transform:

e = / oo(—zmxn‘z”'f*f(x) dx.
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But the Gaussian density satisfies the differential equation f’ = —2mx f(x), so that
we may apply Proposition 2.2.5 and integrate by parts to obtain

7@ = f (=27 ix)e 2" (x) dx
R
— l/ e—27TiEXf/(x)dx
R
= —27& f e () dx
R

= 27 f(&).

The unique solution of this equation with the condition f 0)=1is f (&) = e ™ * and
the example is complete.

Exercise 2.2.8. Show that f(0) = 1.

Hint: Do the double integral of f(x) f(y) in polar coordinates.

This example may be immediately extended to R", to obtain the Fourier pair

(2.2.5) foy=em T, fE) =eE

The Gaussian density provides a concrete example of Fourier inversion.

(2.2.6) FEEEde = f(x)

R

Exercise 2.2.9. Check the previous statement from the formulas above.

The Gaussian density is a simple example of a rapidly decreasing function. To
define this notion in general, introduce the seminorms

I fllkm = sup (1 + |xD*|D*f (x)]

xeR"

where o = («y, ..., @) is a multiindex, D* = (3/9x,)*" --- (8/3x,)*,and m = || :=
aj + - - - +ay,. The Schwartz class S of rapidly decreasing functions is defined as the set
of complex-valued functions that are infinitely differentiable and for which || f ||y » < 00
for all m, k. From Proposition 2.2.5 and Proposition 2.2.6, the following proposition is
immediate.

Proposition 2.2.10. The Fourier transform maps the space S into itself.

In the next subsection we will show that this mapping is 1:1 onto the space S.
The Gaussian density example in n=1 can be transformed into additional
examples by successive differentiation of the Fourier transform.
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Thus
/ e—n’xze—2ni5x dx = e—nfz’
R
/ e (=2mix)e Y gy = (—2mE)e ™,
R
/ e (=2mix)2e " TVE gy = [(—27E)? — 2m]e ¢,
R

and so forth. This is closely related to the Hermite functions, which will be discussed in
Section 2.4.5.

2.2.2 Approximate Identities and Gaussian Summability

On the circle we had the Abel and Cesaro means to regularize the convergence of Fourier
series. Suitable analogues of these exist in the context of one-dimensional Fourier trans-
forms, and will be treated. However there is a more natural and symmetrical approximate
identity, the Gauss-Weierstrass kernel, which applies in higher dimensions as well as in
one dimension. From the example of equation (2.2.5), we replace x by x/+/47t to obtain
the identity

exp (=|x*/41)

- —4m 2|2 2miEx g&
2.2.7) H,(x) := / e e dé = @nny2

This is also called the heat kernel, since it is a solution of the equation 0H /3t =
> i—1 8°H/dx?. It has the following three basic properties:

2.2.8) H,(x) >0, Hx)dx =1, Hx)dx —- 0 (t— 0).
R |x|>8

Exercise 2.2.11. Prove that H,(x), defined by the integral (2.2.7), satisfies the
n-dimensional heat equation.

Exercise 2.2.12. Check the three properties (2.2.8).

Notation. We will use the notation H,f for the convolution H, x f. It will always
be clear from context whether we are dealing with the kernel or with the convolution
operator.

Applying the Fourier reciprocity formula (2.2.4) to (2.2.7) yields a useful identity
for Hf:

(2.29) | Hf(x) = f F&x = YH () dy = / e ) B g | f e L'(RY).
R” R"
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Definition 2.2.13. An approximate identity in R" is a family of functions k,(y)
defined for t in some directed index set, with the following three properties:

2.2.10) sup k,(¥)| dy < o0
r JRr
(2.2.11) li}n k(y)dy=1
Rn
(2.2.12) lim Ik, (y)|dy = 0.
" Jiyl>8)

These properties are clearly satisfied by H,, for example.

Exercise 2.2.14. Show that the Fejér kernel, which is defined on R by kr(x) =
(1 — cos Tx) /n Tx?, is an approximate identity, where T € (0, 00) the limits are
taken as T — 00. Assume known that fR(l — cosx)/x’dx = .

Exercise 2.2.15. Show that the Poisson kernel, which is defined on R by k,(x) =
y/[m(y?* + x%)), is an approximate identity, where y € (0, 00) and the limits are
taken as y — 0. Assume known that fR 1/(0+x*)dx =m.

Exercise 2.2.16. Suppose that k,(x) is an approximate identity. Prove that if f is
a bounded function with lim,_,o f (x) = L, then lim, fR,, k:(x)f(x)dx = L.

The examples of Gauss, Poisson and Fejér can be abstracted as follows.

Exercise 2.2.17. Suppose that K € L' (R") with K(x) > 0, fR,, K(x)dx =1and
set k,(x) = t7"K(x/t). Prove that k, is an approximate identity, where the limits
are taken as t — 0.

A homogeneous Banach space B is a Banach space of complex-valued functions
on R" whose norm satisfies the properties

IAls =1fllz, VyeR®  and )1135 1Ay —flls=0
where f;, is the translation of f, defined as f,(x) = f(x — y).
The following examples of homogeneous Banach spaces occur frequently.
Example 2.2.18. B = L’(R"), 1 < p < o0 is a homogeneous Banach space.

This follows from the translation invariance of the Lebesgue integral and a density
argument, beginning with continuous functions with compact support.

Example 2.2.19. B = B,.(R"), the space of bounded and uniformly continuous
functions on R" with the supremum norm, is a homogeneous Banach space.

Clearly the norm is translation invariant. The continuity of y — f; is equivalent to
the definition of uniform continuity of f.
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Example 2.2.20. B = Cy(R"), the space of continuous functions vanishing at
infinity, is a homogeneous Banach space.

As a closed subspace of B,.(R"), B is a homogeneous Banach space.

In the following theorem we will assume, without loss of generality, that the limit
in the directed index set is taken as t — 0.

Theorem 2.2.21. Suppose that B is a homogeneous Banach space and
k; is an approximate identity. Then fR,, k:(y)f,dy € B whenever f €B and
Sz k@) fy dy — f in the norm of B when t — 0.

Proof. f] . k/(y) f; dy can be computed as the limit of Riemann sums. But any finite sum
is a linear combination of elements of B, hence in B. The B-norm of any finite Riemann
sum is bounded by || f|ls times the Riemann sum for fR,, |k, (y)| dy which is uniformly
bounded. From this it follows that the Riemann sums converge in the B-norm. To study the
convergence when ¢t — 0, we write

HLﬁwm—ﬂ@

kOIS —Flls d
< [ KOIA~Tlndy

= (/ +/ )lk,(y)l Ify —Flls dy.
(=8 JUyi>8)

The integral over |y| > § tends to zero for any § > 0. Given € > 0, we choose § > 0 so
that || f, — fllz < € for |y| < &. Then the first integral is less than Ce. With this choice of §,
we have

B

lim sup
=0

[ k06 -na

< Ce
B
for any € > 0. The proof is complete. |

Corollary 2.2.22. i): If f € B,.(R"), then H,f converges uniformly tof:
|Hf —flloo = Owhent — 0.ii): If f € LP(R"), 1 < p < o0, then H,f converges
inLP: |Hf —fll, = Owhent — 0.

Proof. These follow immediately from Theorem 2.2.21 when applied to the heat kernel on
the spaces B = B,.(R") and B = L”(R"). |

Corollary 2.2.23. If f € L'(R") andf = 0, thenf =0 a.e.

Proof. By Fourier reciprocity, the heat kernel convolution operator can be written
(2.2.13) /R” Hy)f(x—y)dy= fR e ()0 .

If f’ =0, then Hf = 0 and by Corollary 2.2.22 f = 0 a.e., which was to be proved. |

Exercise 2.2.24. Let B be the space of complex-valued functions for which
fR(]f(t)l)/(l + t2) dt < oo. Consider the Poisson kernel operator Py: f —
x! fRyf(t) dt/(y* + (x — t)?). Show that Py, maps B to B and that P,f — f
wheny — 0.
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2.2.2.1 Improved approximate identities for pointwise convergence

In the case of one dimension, we can obtain pointwise convergence at additional points
under additional conditions on the functions k,, assumed to be of the form t~' K (x/z).
From Exercise 2.2.17 any such kernel is an approximate identity, hence we have con-
vergence at points of continuity of a test function f. The following theorem formulates
supplementary conditions for convergence at additional points.

Theorem 2.2.25. Suppose that K is absolutely continuous with K(x) > 0,
Jr K@) dx =1, K(—x) = K(x) and xK'(x) < 0. Then

o (i): x — (—2x/t>)K'(x/t) is an approximate identity on [0, 00).
o (ii): lim_ ot~ fR K(x/t)f(x)dx = L if lim,_,¢(1/2x) ffx f@)dt = L.

Proof. By partial integration, for any M > 0 we have

M M
(2.2.14) MKM) = / K(x)dx + / xK'(x) dx.
0 0

When M — o0, the first term on the right tends to 1/2 and the second term has a limit
€ [—00,0). But K(x) > 0, hence there exists C = limy_,. MK(M) € [0, o0). Since
f0°° Kx)dx = 1/2 < oo, we must have C = 0. Taking M — o0 in (2.2.14) shows that
Jo7 %K' (x) dx = —1/2. Now for any § > 0,

x x
- ZK' (= dx:—/ yK'(y) dy
/|;1za £ (f) Iyl=8/t

which tends to zero when ¢t — 0. In addition,

X X
— | ZK(Z)dx = — K'(y)dy =1
/th (t) /Ry () dy

which proves (i). To prove (ii), we define F (x) = f:x fw)du= f(;v [f w)+f (—u)] du, which
satisfies F(0) = 0, |F(x)| < 2||f|l; and F(x)/x — 2L when x — 0. Partial integration

yields
/R;K (%c)f(x)d.x = /Om ;K(;)dF(x)

®x_,/x\ F(x)
i (2 g
0 t t X
where we have used the bounds on F(x) and K (x) to discard the term at the limits. But

F(x)/x — 2L and (—2x/¢*)K’(x/t) is an approximate identity on [0, c0), so that (ii) follows
from the basic properties of approximate identities (Exercise 2.2.16). |

Replacing f(-) by f(x + -), we obtain a more generally applicable form of the
theorem.

Corollary 2.2.26. Under the above conditions on K, we have for any f € L' (R),
tim? [ & (2)sa+na=tin L [ rwa
- =) f(x = lim — u) du
=0t Jr t ey h—02h J,._,

wherever the latter limit exists, in particular for almost all x € R.
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Note that the set of admissible x is precisely the set of points where the funda-
mental theorem of calculus applies, in the sense of the symmetrical limit. In general
this is strictly larger than the Lebesgue set, defined as the set of points x where

limy,o(1/2h) ;5 | f (4) — ()] due = 0.

Exercise 2.2.27. Show that the Poisson kernel, with K (x) = 1/m(1+x?) satisfies
the conditions of Theorem 2.2.25. In particular

I 1/ L ryay=tim~ [ poa
1im — —_— = 11im —
=07 Jr 24+ (x— y)2 4 h—02h J._p 4

wherever the latter limit exists, in particular almost everywhere.

Exercise 2.2.28. Prove that the one-dimensional Gauss kernel satisfies the condi-
tions of Theorem 2.2.25, in particular

x+h

1 1
; e~ )2 /4t dv = 1 d
i ) f)dy = lim 1o f(y) y

wherever the latter limit exists, in particular almost everywhere.

Exercise 2.2.29. Prove that the Fejér kernel does not satisfy the conditions of
Theorem 2.2.25.

Theorem 2.2.25 does not apply directly to the Fejér kernel, where K(x) =
(1 — cosx)/mx. In order to deal with this and other oscillatory kernels, we introduce
the notion of monotone majorant. This is a function K € L' (R), which satisfies

(2.2.15) IKx)| < K(x), K(-x)=Kx), xK'(x) <0.

Note that we do not require that fR K (x)dx = 1, so that we cannot expect, for exam-
ple, that ~' K (x/) be an approximate identity. However we have the following useful
replacement for Theorem 2.2.25.

Lemma 2.2.30. Suppose that K € L'(R) satisfies (2.2.15). If |e(x)| < M for
x > 0 withlim,_,o€(x) =0, then

}1_5%/000—1( ( )e(x)dx—O

Proof. Following the steps of the proof of Theorem 2.2.25 with K replaced by K, we see
that lim,_, .o xK (x) = 0, — [;~ xK'(x) dx < C < co. Forany § > 0

2.2.16) —/5 t—zK’(t>dx—§I—<<> ;Awk(§)a.

Taking § = 0 shows that — fooc (x/tz)K’(x/t) dx < C. For any § > 0, both terms on the
right side of (2.2.16) tend to zero when ¢ — 0. Therefore

/0 —K/ ( ) €(x) dx

First take  — oo and then § — 0 to complete the proof. u

Cx o, /X
<C sup |e(x)|+M’/; t_2K (;)dx‘

0<x<é§
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This allows us to reformulate and prove Theorem 2.2.25 as follows.

Theorem 2.2.31. Suppose that K defines an approximate identity with a mono-
tone majorant satisfying (2.2.15). Then

1 y
2.2.17) lim ~ R1{(;)f(x+y)dy_L

at every x for which limy_,o(1/2h) [*, |f(x +y) — L dy = 0.

Proof. Without loss of generality, we take x = 0 in the proof. Since fR K(x)dx =1, wecan
write
1 y 1 y
- | K{(= dy=L+- | K(= — L) dy.
[kG)rod=r+1 [K()¢0r-La

t

It remains to show that the last term tends to zero. For this purpose, define F(x) =
ffx | f(u) — L| du, sothat F(0) = 0, F(x)/|x| = Owhenx — Oand |F(x)| < 2L|x|+ || fl:-

Then
[k() oo -na| <1 [&()i70)-Lid

[

- L[ ®row

1

t

where we have used the bounds on K (x), F(x) to discard the terms at the upper limit in the
integration-by-parts. Now we use Lemma 2.2.30 with €(y) = F(y)/y:

1 < (Y 1 _— (Y F(Y)
— KI(=)F dy = — K'{(=-)—4d O,
t2.£ ([) O dy z2/0 y (t) y O
completing the proof. ]

Exercise 2.2.32. Show that for the Fejér kernel, with K (x) = (1 — cos x)/m x> we
may take K (x) = 1/(1 + x*) as a monotone majorant.

Check that 1 — cos x < wx?/(1 + x?) for all x. Consider separately |x| < 1 and |x| > 1.

Corollary 2.2.33. If the approximate identity defined by K (x) has a monotone
majorant, then for any f € L'(R), and x € Leb(f)

1 y
lim — RK(;)f<x+y>aly=f<x>.

We now return to the development of the Fourier transform.

2.2.2.2 Application to the Fourier transform

Theorem 2.2.34. The Fourier transformis a 1:1 map from the space S onto itself.
In particular every f € S can be recovered from its Fourier transform as

sy = [ i
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Proof. Since the Fourier transform is a linear map, it suffices to show that f‘ = 0 implies
f =0 ae., which was just proved in Corollary 2.2.23. To prove the onto property, note that
since f € §, in particular in L', so that we can take the limit under the integral in (2.2.13)
to obtain f(x) = [, F(&)ei<tx> dg which represents f as the Fourier transform of the

reflected function x — f’ (—x). This proves the onto property. ]

The almost everywhere convergence of the heat kernel transform cannot be
proved from the abstract properties of approximate identities. The one-dimensional
case is covered by Exercise 2.2.28. For the n-dimensional case the statement and proof
follow:

Proposition 2.2.35. Iff € L'(R"), then lim,_,o H,f (x) =f(x) where lim, o r™"
f]y—x|5r(f (y) — f(x)) dy = 0, in particular almost everywhere.

Proof, We let
o(r) :=/ FO)—fG)dy =_/ O+ po) —f)p" " dpdw,
ly—x|<r 0 Sn-
a continuous function of bounded variation. Clearly |®(r)| < flR,, |f] + C,r"| f(x)| and by
hypothesis ®(r)/r" — 0 when r — 0. Now we can write

—IM?/4r

@y ¥

Hfx) —fx) = /(f(x—H) —fO)——7

o0 e—l’2/4l
= L _do@
[ amaew

o re —r2jat
= S(r)y—————=ar
A ( )21(4m)”/2
To prove that this tends to zero, let €(r) = ®(r)/r", a bounded function that tends to zero
when r — 0. Then we make the change of variable r = s¢'/? to obtain
—r /4
e
———dr
2t(4me)n/?
—s2/4

— i n+l1 d
A le(s/1)s 2y

The integrand tends to zero and is bounded by an integrable function, completing the proof.
n

|H, f(x) — f(0) S/ e
0

The Lebesgue set of a function f € L' (R") is defined by

(2.2.18) Leb(f) = {x € R" : lim r~" / I£(y) — f(x)| dy = 0}.
y—x|<r

Clearly
x € Leb(f) = lim r™" / F()dy = Cuf )
r— [y—x|<r

where the dimension constant C, is the volume of the unit ball in R". But the converse
is not true, in general. [Consider f(x) = 1j_;,;;sgn (x)/+/Ix] at x = 0 in R.] In this
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terminology, Proposition 2.2.35 implies that H,f(x) — f(x) for all x € Leb(f). This
example is an instance of the fact that many of the almost-everywhere results in harmonic
analysis are proved on the Lebesgue set.

Hint:

Exercise 2.2.36. Extend the result of Proposition 2.2.35to f € LP(R") where 1 <
p = o0

Use the Holder inequality to check the bound on ®(r).

We can use Gaussian summability to extend Fourier inversion beyond the space S.
Proposition 2.2.37. (i) Suppose thatf € L' (R") has an integrable Fourier trans-

form: f € L'(R"). Then f is almost everywhere equal to a continuous function,
and we have

(2.2.19) fo) = | fEE dE  ae.

R

(ii) Conversely, suppose that S(x) = limy, flg|<[‘,‘,f($)(32’”"E * d& exists. Then S(x) =
f(x) a.e. N

Proof. From Fourier reciprocity, we have
Hf (x) = / F&re el g,
Y

Appealing to Proposition 2.2.35 shows that the left side tends to f(x) almost everywhere,
whereas the right side converges by the dominated convergence theorem.

For the converse, let S, = fiflsr F(&)e*™ & dg, the so-called spherical partial sum.
Using Sy = 0 and Sy, = S(x), we can write

Hf (x) = / e s,

0

oC
—A242
=/ 82 tre™ """ S, dr
0

Hf(x) —S(x) = / 8 2tre= " (S, — S(x)]dr.
0

It is easily checked that r — k,(r) := 8m2tre=*"" has total integral 1 and that for any
M > 0, lim,_,¢ fOM k,(r) dr = 0, from which the result follows immediately. [ |

Proposition 2.2.38. Suppose that f € L' (R") has a nonnegative Fourier trans-

form:f(é) > 0and 0 € Leb(f). Thenf € L'(R"), in particular f is a.e. equal to
a continuous function.

Proof. Take x = 0in (2.2.13) and apply Fatou’s lemma. [ ]

Warning. The alert reader may note the difference between the notion of
“almost everywhere equal to a continuous function” and the weaker notion of “continu-
ous almost everywhere.” For example, the indicator function of an interval is continuous
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almost everywhere, but it is not a.e. equal to a continuous function. Continuity a.e. is a
local notion, whereas the stronger concept is a global notion.

Exercise 2.2.39. Suppose that f € L'(R") has integrable partial derivatives of
order n + 1: D%f € LY(R") for any multiindex with || < n + 1. Prove that
f € L'(R") and hence Proposition 2.2.37 applies to give Fourier inversion.

We will see in the next section that pointwise Fourier inversion holds with n/2
derivatives instead of n + 1.

The heat kernel convolution operator, which was initally defined on the space
L'(R™), can be naturally extended to functions satisfying either of the growth conditions

(2.2.20) If(x)| < AP’
or
(2.2.21) IF (e B ax < 0.

R

Proposition 2.2.40. Suppose that f satisfies either (2.2.20) or (2.2.21). Then
u = H,f is defined for 0 < t < B/4 and is a solution of the heat equation u; = uy,
Jor which lim,_,o H,f (x) = f (x) at every point of continuity of f.

Exercise 2.2.41. Prove these statements, noting that one must work directly with
the heat kernel transform, since the Fourier transform is not applicable to this
class of functions.

The heat kernel can be used to prove that S is dense in each of the L? spaces,
1 < p < oo. First note that the set of L” functions with compact support is dense in L.
Now if f has compact support, the Fourier transform f is infinitely differentiable with
bounded derivatives. For such an f and any multiindices «, 8 we can write

Hf () = / STEf(§)e T dg

Ditf) = [ @mie) e ere T ag

"

(27fiX)ﬂDgH,f(x) = / D? (eZWi-’f‘f) I:(znig)af(&-)e-4nztlf|2] d‘é’:
R?

= DY / e ¢ Df (@mig)*f ()e™ """ ) de,
RH

which is a bounded function. This proves that H,f € S. But we proved that for any L?
function ||H,f — f|l, = 0 when t — 0. We summarize as follows.

Proposition 2.2.42. The space S is dense in each L” space, 1 < p < o00.

Note that the case p = oo is excluded, because we cannot assert that H,f — f for
every f € L*°.
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Exercise 2.2.43. Letf = 1;_ 1y withn = 1. Show that |H,f — f ||« does not tend
to zero whent — 0

One should not get the impression from the above proof that the heat kernel operator
maps L into S. We expect that for small ¢ the decay of H,f at infinity should mimick
that of f.

Exercise 2.2.44. Letf be the Poisson kernelinn = 1: f(x) = 1/m(1 +x?). Show
that H,f (x) ~ C/x?, |x| — oo, for a positive constant C.

Hint: Write

Hf(x) = / e g 2miEl it g 2/ e =Kl oo (2 xk) dE.
R

0

Integrate by parts twice and identify the constant.

When we pass out of the space S the problem of pointwise Fourier inversion
becomes nontrivial. In the next section we will treat the one-dimensional case, in parallel
with the treatment of Fourier series in Chapter 1. We will return to the higher-dimensional
case in a separate section.

2.2.2.3 The n-dimensional Poisson kernel
The n-dimensional Poisson kernel is defined as the absolutely convergent Fourier integral

(2.2.22) P(x,y) = / FriExe 2l ey 50, x e R
J_ n

By differentiation under the integral sign, it is immediate that u = P(x, y) is a solution
of the Laplace equation u,, + Y ., u,,, = 0 in the half space {(x, y) : x € R", y > 0}.

Exercise 2.2.45. Suppose that F € L>(R"). Prove that
) = [ e dg

is a solution of Laplace’s equation u,, + Y | uyx, = 0 in the half space.

We have already shown, in case n = 1, that P(x, y) is an approximate identity,
by an explicit computation. We now obtain an explicit formula for the n-dimensional
case. The general idea is called Bochner’s method of subordination, which allows us to
obtain new kernels as suitable transforms of the heat kernel in the ¢-variable. In terms
of operational calculus, the heat kernel operator H, is the exponential of ¢ times the
Laplace operator, whereas the Poisson kernel operator P, is the negative exponential
of y times the square root of the negative of the Laplace operator. Since the exponential
is a simple and basic function, it is natural to expect that other kernels can be obtained by
suitably transforming the heat kernel. The method will also be applied in later sections to
compute the Newtonian kernel associated with Laplace’s equation and the more general
Riesz kernels.
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To compute the n-dimensional Poisson kernel, we begin with the Laplace transform
of the one-dimensional heat kernel:

0o glel/ar e EIVE
(2.2.23) ——e Mdt = A>0, EeR.
0 Adnt 2v/x 5

This is proved by taking the one-dimensional Fourier transform of both sides, which is
justified by the Fubini theorem. Indeed, for the left side we have

/ 27n$x/ _IHZ/‘“ e Mdr d /oo —xt —4m dt 1
= I4 (4 : = 7,
0 A+ 4712x2

whereas the Fourier transform of the right side is

.*|§I~/_ 1 1 1 1
oSt sin () s )
R 22 23 \VA = 2mix 2% \WA + 27ix

_ 1
TOA 4 4m2x2’

which proves (2.2.23). Now we apply (2.2.23) with A'/2 = 27y and £ € R" to obtain

—|&12my Pl /4f anty
2.2.24 = e Y g1, 0, £ € R".
( ) pres. /0 ’_471 y>0,§

Finally, we compute the n-dimensional Fourier transform of both sides. In detail, we
multiply (2.2.24) by ¢?** and integrate over & € R". On the right side we recognize the
n-dimensional Fourier transform of the heat kernel, corrected by the factor (47¢)"~1D/2,
Using the definition of the Gamma function, we obtain

1 : o0 2,2 €_|E|2/4' ;
/ e—|€|2ﬂye2m§-x df — / e—4m y / e2m$~xd‘§. dt
47[)7 R 0 R" (47Tt)1/2

oo
=/ (4nt)(n—1)/2e—47r2t|x|2e—47r2ty2 dt
0

_ @4m"PT (4 1)/2)
- (471'2)(”+')/2[y2 + |x|2](n+l)/2 .

Therefore we have the following explicit formula

y((n+1)/2)
n(n+l)/2[y2 + |x|2]("+1)/2'

(2.2.25) P(x,y) := / eIy nisx ge —
L”

Formula (2.2.25) shows that the functions x — P(x, y) define an approximate identity
with y — 0, since clearly P(x,y) > 0, [, P(x,y)dx = 1 and f|x|>5 P(x,y) — 0 when
y— 0.

The method used to obtain (2.2.25) is a special case of Bochner’s method of sub-
ordination. In this case, we see that the Poisson kernel is subordinate to the heat kernel,
since we can obtain one as an integral transform of the other. In the next section we
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will see that the same idea can be used to obtain the Riesz potential kernel associated
with fractional powers of the Laplacian, where the exponential in (2.2.23) is replaced by
a suitable monomial.

2.2.3 Fourier Transforms of Tempered Distributions

The space S of rapidly decreasing functions is a linear metric space, when we define the
metric by

= mk
d § i = m| D% (x) — DY (x)].
(@, ¥) = P 1+dmk k xe]RS”,u|E|:k |x|"'| D% (x) Y ()|

A tempered distribution is a continuous linear functional L on the space S. The collec-
tion of all tempered distributions is denoted S’. The Fourier transform of a tempered
distribution is defined by

(2.2.26) L) =L@).

Clearly L is againa tempered distribution and the mapping L — L is injective: if L) =
0 for all ¢ € S, then the distribution L is identically zero. Convergence of tempered
distributions is defined in the pointwise sense: L; — L if and only if L, (¢) — L(¢) for
each¢ € S.

Exercise 2.2.46. Show that S is a complete metric space with the metric d defined
above.

Example 2.2.47. Anylocally integrable functionf defines a tempered distribution
by setting

L@) = [ feomds

A class of interesting examples is provided by the Riesz potentials, obtained as follows.
Example 2.2.48. Letf(x) = |x|™® where 0 < « < n.

Then f is locally integrable and the Fourier transform can be computed by
beginning with the heat kernel applied to ¢ € S:

eXp (—|y|2/4t) _ —dn|E|? 2mikx ]
(22.27) Ryu—w—agwy—@—ff4 PP (€) dt.

We multiply each side of (2.2.27) by #*, integrate on [0, o], and apply Fubini. The inner
integral on the left converges if and only if k<(n — 2)/2 while the inner integral on the
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right converges if and only if k& > —1. In detail, the inner integral on the left side of
(2.2.27) is transformed with s = 1/4¢ to obtain

2
/oo AP (=lyl*/41) g — 1 /oo oS gn/2k=2 g
0 (47[1‘)”/2 nn/24k+l 0
1 (()2) —k —2)!
= pni2gkt ly|"—2%=2 ;

while the inner integral on the right side of (2.2.27) is

o0 2 k!
/ kp—dmHER g ,
0 (42| |2)k+!

which gives the result

— k= _ 27rz$x
(2.2.28) (/2 =k=2! [ oG =7, / $E) ——

Y e [y[—22 dy = n2k+2 |£2k+2 d§

valid for all ¢ € S. Taking x = 0, the right side of (2.2.28) expresses the definition of
the Fourier transform of the tempered distribution defined by the function § — || —2k=2,
The left side shows that this is equivalent to integration with a constant multiple of the
locally integrable function y — |y|**?>~". The identification becomes complete when
we set @ = 2k + 2, and the result is paraphrased in the statement

(2.2.29) The Fourier transform of |£]7% is Ce|x|* ™", Where 0 < @ < n.

Note that the case « = 2 corresponds to the Newtonian potential kernel associated to
the Laplace operator of R" when n > 3. Then k = 0 and (2.2.28) takes the form

2) —2)! _ 1 27r1$x
((n/ )n/2 ) ¢(x y)d b
/1

L] R HE

dE.

(2.2.30)

Exercise 2.2.49. Show that the previous example can be generalized to complex
numbers o satisfying 0 < Re(a) < n.

Exercise 2.2.50. Let ¢ € S(R") where n > 3. Show that (2.2.30) is a solution of
the equation Au = —4m>¢, where A denotes the n-dimensional Laplace operator.

2.2.4 *Characterization of the Gaussian Density

We can use the Fourier transform to prove J. C. Maxwell’s (1860) characterization of
the Gauss density, as follows.

Proposition 2.2.51. Suppose that n > 2 and that f (x), x € R" is an integrable
function which has the properties that there exist fy, f1, . . ., fu S0 that

FOr X)) =A00) - ful) =fo(VaP +--+x7)  xeR
Then f (x) = Ae=8*" for some B > 0.
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Proof, From Fubini’s theorem we see that f; € L'(R') for 1 < i < n. Taking polar
coordinates, we see that f, € L'(R*; "' dr) and that the Fourier transform f can be
expressed as a function g of the square of the Euclidean norm. Taking the Fourier transform,
we see that

FE, . &) =FiE) ) = g€+ + D).

If f‘,-(O) = 0 for someAi, then we would have g(x) = 0 and we could Eake A = 0. Hence
we can suppose that f;(0) # 0. Setting &§ = O for j # i shows that f;(§) = c;g(£?) for
some constant ¢; # 0. Letting & = 0 identifies the constant ¢, - - -¢, = g(0)'~". Setting
G(x) = g(x)/g(0) we obtain the functional equation

(2.2.31) G(x+y)=Gx)Gy), GWO) =1, x-— G(x)continuous.

Let § > 0 so that G(x) > 0 for 0 < x < §. From this we can compute G on the rationals
multiples of §: G(8m/n) = G(8)"/" and by continuity this formula extends to all real

numbers in [0, 8] in the form G(x) = e#, B := —§'log G(§). Now we can use the
functional equation (2.2.31) to extend this to all x > 0. Since G is a bounded function, we
must have B > 0, which completes the proof. ]

In Chapter 5 we will see that this characterization of the Gaussian density is true in
the wider context of probability measures on R", not necessarily absolutely continuous
with respect to Lebesgue measure.

Exercise 2.2.52. Suppose that G is a measurable and locally integrable function
on R and satisfies the functional equation G(x + y) = G(x)G(y) a.e. Prove that
either G(x) = 0 or G(x) = e* for some a € R.

Hint: First show that G is a continuous function.

2.2.5 *Wiener’s Density Theorem

The Fourier transform in one dimension can be effectively used to study the L' closure
of the set of translates of a given L' function

N

(2.2.32) D af (x—x)

k=1
where g, are complex numbers and x; are real. A closely related set is formed by functions
written as convolutions

(2.2.33) /R ay)f(x—y)dy

where a € L' (R). From Lebesgue’s differentiation theorem it follows that any finite sum
of the form (2.2.32) can be written as an L' limit of functions of the form (2.2.33);
conversely, any convolution can be written as the limit of Riemann sums. Hence we see
that the L' closure of (2.2.33) is identical to the L' closure of (2.2.32). Wiener’s theorem
characterizes this in terms of the Fourier transform. The following proof is adapted from
Garding (1997).
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Theorem 2.2.53. Letf € L'(R). Then the L' closure of (2.2.33) is the full space
L' (R) if and only if the Fourier transform is never zero: f(€) # 0 for all £ € R.

Proof. The necessity of the condition is immediate, since the Fourier transform of a * f
is 4(&)f (€). If f (&) = 0, then the same is true for all convolutions and, by continuity, for
all elements in the L' closure. Therefore the L' closure of {a x f : a € L'(R)} is a proper
subset of L' (R). To prove the sufficiency, we first note that it’s enough to prove that there
exists a dense subset of L' (R), all of whose elements can be written a * f for some a € L'.
We let

Ay ={heL'(R): hhas compact support},
By = {h € Ay : h is piecewise C?}.

Clearly A, is dense in L'(R) since Fejér’s theorem guarantees that we have the L!
convergence

h(x) = lim /M ltl(é') (1 _ _'§__|) e2rrlx€ ds -
M J_m M

To proceed further, we introduce the notation A = {f : f € L'(R)}, which consists of
continuous functions vanishing at infinity, with the norm

WFlla == 11 £

We state and prove the following basic lemma.

Lemma 2.2.54. Foranyf € L'(R) and g € By, let G = g, Gs5(§) = G(£/5). Then
we have

lim |7~ 7(0))Gsll.a = 0.

Proof. f G; is the Fourier transform of
- /f(S)Bg(ﬁ(t —5)) ds,

i

whereas f’ (0)G; is the Fourier transform of

t — 8g(81) (/f(s) ds) .
3

Therefore the required .4 norm is estimated as

1G = FO)Gylu < fR ( fR £ (5) (gt — 55) —g(t>>|ds) s

where we have made the substitution ¢ — §¢. The final integral tends to zero by the
dominated convergence theorem.

To complete the proof of the theorem, we let P be the piecewise linear function such
that

1 iflg <1

P& = {0 if1E] > 2.
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Notice that P(§/8) # 0 implies that P(§/28) = 1, so that we can use the hypothesis
f(&) # 0 to write

P(§/8)
Ps(§)=p(§/8) f(§)———
’ f@®
A P(&/8
=F®) ST
F(O) +PE/28)(F(€) —f(0))
From the lemma we see that for sufficiently small § > 0, the term P (£ /25) (f &) —f )/ f )

has norm less than 1/2, so that we can make the following convergent Taylor series expansion
in the space A:

A

c- k
=iz ;( 0 (Put ~FODFO) -

We have proved that P; = f Qs where Qs € A. In the same manner we can apply this to
any translate of Pj to obtain

—b .
P <§T> =f(£)0s(&; b)

for some Qs € A. Note that Z'XN P(§ + 3k) = 1for |§| <3N + 1. Hence for any 4 € Ay
we can write

h(E) = hE1-man @) =& (Zﬁ(E)Qa@; b)) ,
b

which exhibits /4 as the convolution of f and an L' function, which completes the proof of
the theorem. ]

2.3 FOURIER INVERSION IN ONE DIMENSION

In this section we give a self-contained treatment of convergence theorems for the Fourier
integral in one dimension. Readers who have followed the treatment of Fourier series in
Chapter 1 may wish to omit much of the current section, since many of the theorems are
direct analogues of the corresponding theorems for Fourier series. An exception is the
discussion of one-sided Fourier representations in Section 2.3.9, but this is not used in
the sequel.

2.3.1 Dirichlet Kernel and Symmetric Partial Sums

The partial sum operator applied to f € L' (R) is defined by

M
(23.1) Suf (x) = / fepeiae.

We now rewrite the integral defining the partial sum so that it makes no reference to
the Fourier transform. This is called the explicit representation via the Dirichlet kernel.
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In order to do this, we use Fubini to write
M

M oo
Suf (x) =/ f(é;)ez”’f" d¢ = / </ e—2m’$yf(y) dy) iEx gg
-M M oo

[ ([l

® sin 2w M (x

:/_oon(x—f(y)d

* sin2w Mz
= / —flx—2)dz,
oo TZ
the required formula. The previous computation is summarized by writing
* sin 2w Mz
2.3.2) Suf (x) = / ——f(x—2)dz
o TZ

or equivalently, since the kernel is an even function

Suf (x) = / [FGx+2) +f<x—z>]s“’2”MZ dz.

The function z — (sin 27 Mz) /7 z is called the Dirichlet kernel and the integral operator
is a convolution with the Dirichlet kernel. We recognize the Dirichlet kernel as the Fourier
transform of the indicator function of the interval [—M, M]. As a first application, we use
the Gaussian identity (2.2.9) to compute the (improper) integral of the Dirichlet kernel.
Applying (2.2.9) withx =0 and f = 1|_; j

lim/oo sin_27£e_4”z,§zd£ =1,

t—0 —00 HS
or equivalently by changing variables to z = £/, N = 1/./t we have
® sin 27 N.
lim / ST a2 g — .
N—>oo J_ b 4

This can be applied first to compute

/ sm2nNz P (/ / )sm2rer a2y
—1 4 lz1=1 4 .

The first integral tends to 1, while the second integral tends to zero, by the Riemann-
Lebesgue lemma. Now

. e e
/ sin 2w Nz dz:/ s1n27er(1 —e_4”212)dz+/ s1n2nNze_4,,zzz dz.
—1 4 —1 4 —1 Tz

The first integral tends to zero by the Riemann-Lebesgue lemma and the final integral
tends to 1, by the previous step. We have proved that

1 [T oging ! sin 27Nz
lim —/ ——dt = lim ——dz=1.
N—oo T —INT t N—>oo -1 Tz
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This is the famous sine integral, which is often computed from Cauchy’s theorem on
complex integration. In Chapter 1 this was computed from the properties of Fourier
series. Now we have redone this using the Riemann-Lebesgue lemma and the explicit
Gaussian example. It is customary to write

2 [*sint
Si(x) = —/ M7,
T Jo t
so that lim,_, o, Si(x) = 1, lim,_, _,, Si(x) = —1.

Exercise 2.3.1. Prove the inequality |1 — Si(x)| < (4/7x) for all x > 0.

Hint: Integrate-by-parts fx M(sin t/t)dt and let M — oo.

2.3.2 Example of the Indicator Function

‘We now consider in detail the case of the indicator function f (x) = 1(,,5)(x). The Fourier
transform is '

e—2rri£b _ e—27ri$a

b
7 _ —2witx _
for= [ et =t

for & # 0 and f (0) = (b — a), by definition. Now we consider the nonsymmetric partial
sum

M A M 0 A
Synf () = / e2”'f"f(s>ds=( /0 + / N) T (E) dE.

-N

The first term is written

M . A
| emeie ds =

0

M 2rmit(x—a) _ ,2miE(x—b)
dé
0

2mwi&

while the second term has an identical structure. When we take the real and imaginary
part, we see that the real part may be written in terms of the sine integral Si(x) =
@2/m) fox (sint/t) dt, hence convergent. But the imaginary part is written in terms of
integrals involving fOM [cos &E(x — b) — cos &(x — a)]/& d&, which is convergent if x # a,
x # b, but otherwise diverges logarithmically. Therefore the nonsymmetric partial sum
Su.nf does not converge in general. Put otherwise, the improper Riemann integral will
not suffice for the Fourier inversion of this function.

This apparently anomalous behavior may be attributed to the generality of complex
notation. Indeed, if we had begun with the basic trigonometric form of the Fourier integral
(2.1.8) this would not occur, since the corresponding complex form will necessarily be
the symmetric partial sum.

Exercise 2.3.2. Show that for the above example, Sy nf (@) ~ Clog N and identify
the constant C.
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We now show explicitly that the symmetric partial sums converge.
M .
Sufe) = [ Feremae
-M

M
= / [sin27&(x — b) — sin2n&(x — a)]/nw& dE
0

= %[Si(2M7r(b —x)) — Si2Mn (a — x))].

It is immediate that if @ < x < b this converges to 1, while if x < aorx > b it
converges to zero. At the endpoints x = a, x = b it converges to % Furthermore these
approximating functions are uniformly bounded by 3.

Exercise 2.3.3. Check these statements.

2.3.3 Gibbs-Wilbraham Phenomenon

The Fourier inversion of the indicator function provides the simplest occurence of the
Gibbs-Wilbraham phenomenon. This is the detailed statement of nonuniform conver-
gence that is present in the Fourier analysis of discontinuous functions. Indeed, if we
had uniform convergence, then the above sequence of continuous functions would have
a continuous limit. But the indicator fails to be continuous at its endpoints. In order to
see this in more detail, we take the special case a = 0, b = 1. Applying the previous
discussion, we see that

Suf (x) = 3[Si@M7m (1 — x)) + Si@Mnx)].

For any fixed x € (0, 1) this converges to 1, when M—oco. But if we take x =
1/2M — 0, then fi,(1/2M) — (1/2)[1 4 Si(;r)], which is now shown to be larger
than 1. Indeed

. 2 (7 sinx xt  xb
Sl(n):—n—/ de=_f __+§_$ dx+ -
0 ! !

o ’
;(”*ﬁ% m)*
* 0
S S A R —

o T300 17,640

=2-1114+033-0.04+4.--

= 1.18 to two decimal places

so that to two decimal places, limy Spf(1/2M)=1.09, demonstrating the Gibbs
overshoot.

2.3.4 Dini Convergence Theorem

Returning to the theory, we now develop a basic convergence theorem.
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Theorem 2.3.4. Suppose that f(x), —00 <x < 00 is a complex-valued integra-
ble function that satisfies a Dini condition at x: for some S € C, § > 0,

8 J— —
(2.3.3) / [fx+0) +.ft (x-n-25
0

< OQ.
Then
M A .
lim fE)e™ 5 de = §.
M—o0 M

(It is not asserted that S = f(x)).

Proof. From the Dirichlet kernel representation, we have the Fourier partial sum

M 00 o3
Suf () = / F&reme de = / SIn2TM2 ot 7).
-M —oc

nz
Having proved Fourier inversion for the functione™"  wecan replace f (x) by f (x) —Se~™**,
The new choice of f is also in L' and satisfies the Dini condition with § = 0. The function
z = [f(x 4+ 2) + f(x — 2)}/z is integrable, since the Dini condition takes care of fl:
whereas

|<é

/ |f(x+z);i-f(x—z)ldZS é/ G+ 2) +Fx— )] dz < 00,
<=8 INEXY

Using the Riemann-Lebesgue lemma, it follows that the S,f (x) — 0, as required. ]

Corollary 2.3.5. Suppose that f satisfies a local Hilder condition with exponent
o> 0:

If () —f )] < Clx —yI%, ly —x| <38.
Then Fourier inversion holds with S = f (x).
Proof. Taking S = f(x), wehave for0 <t < §
[f+D+fx—0=2f@®)]=[fx+1—f)+ Flx—1—F)| <2C.

But the integral f: +*~'dt is convergent, hence the Dini condition is satisfied. |

Corollary 2.3.6. Suppose that f has right and left limits f (x & 0) and satisfies
a one-sided local Holder condition with exponent o > 0:

[fG) = fx+0)] < Clx —y|%, x<y<x+$
f) =fx =0l =Clx=yl*, x-d<y<nx
Then Fourier inversion holds with S = [f(x + 0) + f(x — 0)1/2.
Proof. We have for0 <t < 3§
fG+D+fx—D=25=[fx+D—-fOx+0)+ (k-1 —fx—0)| <2C.

. S o— . . ope . .
But the integral fo 1*~!dt is convergent, hence the Dini condition is satisfied. |
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The theorem of Dirichlet-Jordan also has a counterpart for Fourier transforms.

Theorem 2.3.7. Suppose thatf € L' (R) is of finite total variation on the real line.
Then limy Syf (x) = 3f (x + 0) + 1f (x — 0).

Proof. Letting F(u) = 1[f(x + u) + f(x — u)], we have
Syf () = / ™ F(u) d Si(2m Mu) du,
0

For any K > 0, the contribution to the integral from u > K is bounded by || f||, /K, which
can be made small by taking K sufficiently large. On the interval (0, K) we can integrate
by parts:

/ F(u)d Si@rMu) = F(K — 0) Si2rMK) — / Si(27 Mu) dF ().
(0.K)

(0.K)

The integrand is bounded and tends to 1, so that we can apply dominated convergence to
conclude

lim F(u)dSi2nMu) = F(K —0) — [F(K—-0) — F(0+0)] = F(0+ 0),

M Jo.kx)

completing the proof. |

Exercise 2.3.8. Prove that if f is of finite total variation, then the partial sums
Suf are uniformly bounded.: sup, g ps-¢ 1Suf (¥)| < oo.

2.3.4.1 Extension to Fourier’s single integral

We have proved the convergence of the Fourier inversion for functions in L' (R), which
satisfy a Dini condition or have finite total variation. The operator Sy;f can be extended
to a wider class of functions, if we note that the formula (2.3.2) is well-defined under
the sole condition that fR [f(x)]/(1 + |x]) dx < oo. This extended operator is called
Fourier’s single integral by Zygmund (1959). If we use the extended definition of the
operator f — Syf in formula (2.3.2), then we can extend each of the above theorems.
We leave the details as exercises.

Exercise 2.3.9. Suppose that fR | £/ (1+]x]) dx < oo and thatf satisfies a Dini
condition at x. Prove that limy; Sy f (x) = S.

Exercise 2.3.10. Suppose that [, | f(x)|/(1+|x|) dx < 00 and that f is of bounded
variation in a neighborhood of x. Prove that limy Sy f (x) = %f(x—%—()) + %f(x —0).

2.3.5 Smoothing Operations in R'-Averaging and Summability
The problem of pointwise convergence of Fourier series and integrals is beset with

numerous pathologies, of which we recall two, in the context of Fourier series:

e There exists a continuous function whose Fourier series diverges at a point. The
first such example was found by du Bois-Reymond and later simplified by Fejér.
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By superposing these at different points, one can construct a continuous function
whose Fourier series diverges at an infinite set of points.

o There exists an integrable function whose Fourier series diverges at every point. The
first such example was found by Kolmogorov, thereby answering in the strongest
negative sense the possibility of a general theorem on pointwise Fourier inversion for
integrable functions.

These examples, which can be replicated in the context of Fourier transforms,
suggest the difficulty of finding general sufficient conditions for convergence. In the other
direction, it is impossible in general to obtain a necessary condition for convergence: if
f is an odd function [ f(—x) = —f (x)], its Fourier transform reduces to a sine transform:
F(&) = f f(x) sin 2w &x dx, which is also an odd function; hence Sy f (0) = 0 identically
and limy, Syf (0) = 0 = £(0). Thus pointwise Fourier inversion holds at x = 0 without
any further regularity conditions.

In a positive direction, it was proved by Carleson (1966) that for an L? function,
the Fourier series converges at almost every point. This was later generalized by Hunt
(1968) to all of L7 if p > 1.

The Carleson-Hunt result is deep and difficult, beyond the scope of this work.
Instead we shall be content with theorems that replace pointwise convergence by a weaker
notion. If the sequence of numbers Syf (x) fail to converge, it is natural to form averages
and hope that the averages behave better than the original sequence of partial sums.
There are two possible ways to average:

e Average with respect to x: for example, form 1/(b — a) f[ f’ fx)dx.
e Average with respect to M: for example, the arithmetic mean (1/M) fOM Suf (x) dm.
(Fejér mean). Another choice is the Abel mean ¢ fooo e "Suf (x) dm.

2.3.6 Averaging and Weak Convergence

These smoothing operations lead immediately to general convergence theorems without
additional smoothness conditions.

Theorem 2.3.11. Suppose that f is any integrable function on R. Then for every
a<b

b b
Mlimw/ SMf(x)dx=/ f(x)dx.

Proof. To see this, we first recall that the Dirichlet kernel is even, hence the operator
f — Suf is self-adjoint, so that we can write

b
/’&Juyu:/\mmanuwu=/}umMumdn
a R R

Since 1, is of bounded variation, the partial sums Sy 1, converge boundedly so that
we can write

b b
W/smmm=fmmmw= £ dx. n
a R

a
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This type of averaging is natural in applications, where f may represent a
density function of mass, charge or probability. We are interested only in the

mass/charge/probability of an interval, which is defined by the integral f( Ib f(x)dx.
The previous theorem states for any integrable function f, we can always recover the
mass/charge/probability of an interval as the limit of the Fourier partial sums.

Exercise 2.3.12. Suppose that ju is a finite Borel measure on the real line. Modify
the above proof to show that limy, fab Syu(€)dé = u(a, b))+ %,u({a}) + %u({b})

where Sy (§) = [, L(E)e*™** dx.

We can use the above arguments to produce a continuous function vanishing at
infinity, which is not the Fourier transform of any integrable function.' Let

§
(1+ 15D log 2+ 1)

Suppose that F = f‘ for some f € L'(R). Let g = 1o,;; be the indicator function of the
unit interval, with g(£) = (1 — e~2"%) /2mi& for £ # 0. Since g is of bounded variation,
the Fourier partial sums Sy, g converge boundedly to g and we can write

(2.3.4) F(&) =

M
[ g5 =1tim [ g =tim [ g5ur =tim [ F-£0)de.
R M Jr M Jr M J_m
But a direct calculation shows that the real part of the last integral is

/M 1 — cos2mE
-m (1 +1&])log (2 + |€])

which diverges when M — oc.

dé,

2.3.7 Cesaro Summability

We now turn to the question of Cesaro summability. To study this, we rewrite the Fejér
mean in terms of the original f, as follows:

o fo Y S dm = / "’ ( / " peyeme ds) dm
=il ([([Lemerrma)de) an
L (R,

_ ©1— cos(ZMn(x -y
e L

'gari, 1996, p. 172
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The Fejér kernel is defined by Kj,(0) = M and

1 —cos QMmx)

23.5) Ku() = —— 5=

x #0.

It has the properties of an approximate identity, expressed by

e Ky(x) >0, [7 Ky(x)dx = 1.
e Forany § > 0, flxl>5 Ky (x)dx = 0, when M — 0.

The nonnegativity is obvious. The normalization can be found from Fourier inversion,
as follows: The Fourier transform of (1 — |£])1(.1;(|€]) is (1 — cos 2y)/2m2y?, which
is an L' function. Therefore we can apply Fourier inversion at y = 0 to conclude that
Jr(1 — cos 2my)/27%y* dy = 1, which transforms into [i, Ky (x)dx = 1 when we let
y = Mx.

To estimate the integral for |x| > §, we replace the sine by 1, to obtain

/ Ky () dx < — / “__2
X ==
x| M T Mna? Jss X2 Mén?

when M — oo.
In order to minimize the new notation, we write

o0 o0

Ky f(x—y)dy = / KnO)f(x+y)dy.

—00

Kuf ) = K 2 = [

—00
It will always be clear from context whether we are operating on a function or simply
considering the kernel.

Theorem 2.3.13. The Fejér means have the following properties:

o Iff is integrable on R and continuous at x, then the Fejér means converge to
fx): Kyf(x) = f(x) when M — oo.

o Iff is integrable on R then the Fejér means converge in L': |Kyf — fll1 = 0,
when M — oo.

o Iff is bounded and uniformly continuous on R, then the Fejér means converge
uniformly to f: sup g |Knf (x) — f(x)| — 0 when M — oo.

Proof. Since [, Ky = 1, we can write

Kuf ) —F() = f KuO)LF G +y) — f00ldy,

IKnf @) —f®)] < </z‘| a+/|| 6) KuOWf(x+y) —f(x0)]dy.

If f is continuous at x, then given € > 0 we can choose § > 0 so that | f(x +y) —f(x)| < €
for |y| < é. Therefore the first integral is bounded by €. On the other hand, the second term
is less than 2 supy | f] fM) s Ku () dy, which tends to zero, proving the first statement.
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To estimate the L' norm, we write

f Knf () —F ()] dx < / ( / KuO)f G +) —f(x)ldy>dx

o0 —00 o

=/ KM@)(/ |f(x+y>—f<x>|dx)dy

o o

- /_ KuO)If, = flli dy.

oC

But we can apply the reasoning of the previous step with x = 0, and f replaced by || f, —f 1,
which is bounded by 2| f||; and which is continuous at y = 0.

Now if f is bounded and uniformly continuous, we can choose § >0 so that
|f(x 4+ y) —fx)| < € simultaneously for all x, when |y| < 8. Thus

IKnf (1) —fx)| <€+ ZSlép | f1 Ku () dy.
I¥]>8

Hence lim sup,, sup . |Kuf (x) — f(x)| < € for any €, which completes the proof. n

We used above, without proof, the fact that || f, — fi|; — 0 when y — 0. This
can be proved in the same spirit as the Riemann-Lebesgue lemma. First prove it for
indicator functions of an interval (a, b), then extend to finite linear combinations, and
then to bounded measurable functions with compact support. But any L' function can
be approximated in L' by a bounded measurable function with compact support.

Exercise 2.3.14. Carry out the details of the proof that | f, — f|l; — 0.

2.3.7.1 Approximation properties of the Fejér kernel
As with Fourier series, we can find a universal bound for the accuracy of the Fejér
approximation, as follows.

Theorem 2.3.15. Let f € L'(R) have the property that |Kyf — fll1 = o(1/M),
M — oco.Thenf =0a.e.

Proof. The Fejér means are represented as

M

(2.3.6) Kuf(x) = /

-M

(1 - %) e (€) de

sin® w My
2.3.7 = | ——=-f(x—y)dy.
(23.7) /R 22My fx—y)dy
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In particular Kyf € L'(R) and its Fourier transform is (1 — [E[/M)f(&)l[_MlM](ij). Hence
for any M > |£| we have

(1 - %)ﬂe) = / e (Kyuf) (x) dx
R

Blre) = / e £ () — (Knf) (0] dx
R

lEf &) <M f |f () — (Kaf) ()] dx
R
= M||f — Kufli.

Letting M — o0 gives the conclusion that f‘ (&) = 0 for & # 0. But f‘ is a continuous
function, hence f(¢) = 0, which implies that f = 0 a.e. |

If f has some additional regularity properties, one may obtain the first term in the
asymptotic expansion of Ky f when M — oo.

Exercise 2.3.16. Suppose that f € L' (R) and thatf e L'(R), é‘f € L'(R). Then
(2.3.8) Jim MUf(x) = Kuf ()] = /R |E1e>™55F (&) d.

Hint: Begin with the Fourier representation (2.3.6) of Ky, noting that f (x) = [, e f () dE

and estimate each of the integral terms [ and fl separately.

1l=M §l<M

2.3.8 Bernstein’s Inequality

The Fejér means can be used to give a proof of an important inequality in approximation
theory, originally due to Serge N. Bernstein (1912). Suppose that a function is represented
in the form

M
(2.3.9) fx) = / ¥ (dr)

M

where u is a finite measure supported by the interval [—M, M]. This includes a finite
trigonometric sum when we specialize @ to be a discrete measure on an arithmetic
sequence with 27 = 0, =1, £2, .. .. In general, f is an infinitely differentiable function
whose derivatives are bounded. Bernstein’s inequality gives an upper bound for these
derivatives in terms of the upper bound of f.

Theorem 2.3.17. Under the above conditions, we have for all x € R

(2.3.10) |f' )] < 4w M sup | f(x)].

x€R
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Proof. 1tis no loss of generality to prove the inequality at x, = 0, since we can change the
measure . by replacing it by e ;1 (dt). We begin with the Fejér kernel

1 —cos2M M . - .
_237#[5 2/ (M - 'tl)ebnlx dt .= / AM(t)elmh dr
M .

where Ay (¢) is the triangular function defined by Ay (f) = M — |¢] if |t| < M and zero
otherwise. From this it follows that

®1—cos2Mnx ,_.
/ 2ﬂ2x2 eZm,rt dx = AM(I‘)

00 1 —cos2Mnx .. 1
/ sin 2M xS EVTX amivt g [ Ay (2 4+ M) — Ay (t — M)].
oo 27252 2i

The right side is equal to —¢ on the interval [—M, M] . Integrating both sides with respect
to the measure w1 (dt) on the interval [—M, M] and applying Fubini, we obtain from (2.3.9)

®° 1 —cos2Mnx 1 (M £(0)
in2Mmrx——m——— dx = — —tu (dt) = —=.
/:oc sin 2Mm x s f(x) % ./_M tu (dr) e
Therefore
(0 11— 2M
IOl swp 17001 % / LM =M sup (),
4 —00<X <00 —0 27252 —0C<X <00
completing the proof. |

By applying this repeatedly, we obtain estimates for the higher derivatives.

Corollary 2.3.18. Under the above conditions, we have for all x € R and any
k=1,2,...

k
IfOWI < (@rM)*sup | f ).
xeR
Bernstein’s inequality can be used to characterize the smoothness of functions on
the real line in terms of the speed of convergence of their approximation by Fourier
integrals on finite intervals. In complex analysis, it is shown that these approximants are

entire functions of exponential type. The following proposition is an immediate corollary
of Bernstein’s inequality.

Proposition 2.3.19. Suppose that f € C(R) is a bounded continuous function
with the property that there exist approximants of the form

(2.3.11)
T iX, : 1
frio) = LIST& ur @), with |fr —flloo = O(W)’ T — oo.

Then f € CK(R).

Proof. Forany N € Z* we can write

f=F+ ) (fyn =)
j=N
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Clearly f,~ is differentiable to any order. Now note that

i —fy = =+ ~f)

-o(6)7)+(G)")
~()")

But f,,+1 —f, is of the form (2.3.9) with M = 2/*!. Therefore by Bemstein’s inequality, we
have for any n

|1 — )P @] < [4n2F' ] sulg [ for1 () — fo ()]
j+1n E e
< [4n27)" x (2,> ,

which is the general term of a convergent geometric series provided that n < k. Hence the
differentiated series Z:j (fy+1 — fy)™ are convergent forn = 1, 2, ..., k, which proves that
the limit function f is k-times differentiable. |

In closing, we remark that in the best known version of Bernstein’s inequality, the
constant 4w M is replaced by 2w M and that this is sharp. Indeed, by considering the
example f (x) = 2"~ we see that | f'(x)| = 2w M| f(x)|. For details, consult Zygmund
(1959), vol. 2, p. 276.

2.3.9 *One-Sided Fourier Integral Representation

Sometimes we have to deal with functions that are defined on the halfline 0 < x < 00. We
can obtain several inequivalent representations by trigonometric integrals by extending
the function to the entire real line —00 < x < oo in different ways.

2.3.9.1 Fourier cosine transform

We can extend f as an even function by setting feven (x) = f(x) for x > 0 and foyen (x) =
f(=x) forx < 0. If f € L'(0, 00), then foyen € L' (R). In order to have a symmetrical
theory we define the Fourier cosine transform as

Fue) = / " ) costrex/2) dx.
0

The Fourier transform of fiyen (x) is computed as

F(foven) (€) = f Foven()e™ 75 dx = 2 f Oof(x) cos(2méx) dx = 2F (4€).
—00 0
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If in addition f satisfies a Dini condition at x, with S = f(x), then we have the Fourier
inversion as the improper integral

Foo) = / F (fuven) (€)67 5" d
= 2/00 2F.(4€) cos(méx) d&
0

[o¢]
:/ F.(v)cos(mvx/2)dv, x> 0.
0

The partial sums of the Fourier cosine transform satisfy (Sysfeven)’ (0) = 0, which suggests
the relation to the “boundary condition” f'(0) = 0.

2.3.9.2 Fourier sine transform

We can extend f as an odd function by setting foqq(x) = f(x) for x > 0 and fogq(x) =
—f{(—x) forx < 0. Iff € L'(0, 00), then f,4q4 € L' (R). In order to have a symmetrical
theory, we define the Fourier sine transform

Fy€) = / " ) sin(rex/2) dx.
0

The Fourier transform of f,4q(x) is an odd function, written

Flfan) = 2i / " ) sin(@rx) dx = 20F, (46).
0

If f satisfies a Dini condition at S = f(x), then we have the Fourier inversion in the form
o0
@ = [ F© sinwexn g x>0
0

Exercise 2.3.20. Check this directly from the Fourier inversion theorem.

The partial sums of the Fourier sine transform satisfy (Spfodad)(0) = 0, which
suggests the relation to the “boundary condition” f(0) = 0.

2.3.9.3 Generalized h-transform
It is also natural to consider Fourier integral representation for functions that satisfy
a boundary condition of the form

f'0) = hf(0).

The case h = 0 corresponds to the cosine transform, while the limiting case A — oo
corresponds to the sine transform.

In order to motivate the proper integral transform, we look for the combinations
of sin &x, cos £ x that satisfy the boundary conditions. It is immediately verified that the
function f(x) = & cos £x + h sin £ x satisfies the boundary condition. This function also
has the property that hf — f' = (£2 + h?)sin£x, an odd function. This immediately
suggests a new recipe for extension of an arbitrary f to the half line x < 0, namely
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to require that f'(x) — A f (x) be an odd function. This leads to a first order differential
equation, which is solved in detail by writing

(2.3.12) f(x) =f(=x) = 2h / xe”(y“)f(y) dy, x <0,
0

while f (x) = f(x) for x > 0. To proceed further we consider separately two cases.

Case 1. h > 0 : In this case we verify directly that if f € L' (0, 00) then f € L' (R).
The first term of (2.3.12) is clearly integrable, while for the second term we have

0 0 —x
/ |f(x)|dx < 2h / ( fo 'O f(y)] dy) dx
=2h / ” £ () ( f ” e""‘*”dx) dy
0 —00

- 2f0 1F )l dy < oo.

Therefore f is integrable. To compute the Fourier transform, we write
F® = foven®) = 2h(f - Lo,00) ¥ (€ " L10,00)(=X), =00 <x < 00.
The Fourier transform of the convolution is the product of the Fourier transforms while

the Fourier transform commutes with the reflection x — —x. For the individual terms,
we have

f(feven) = 2Fc(4$)’

F(f - 10.00) =f0 f)e 8 dx = Fo(46) — iF(46),

o) ) 1
—h- _ —hx ,—2mikx —
F(e 1(0,00))—‘/0 e e dx_h+27ri§'
Therefore
- _ Fe) +iF,46) _ hF(4) + 2mEF.(46)
F(f) = 2F.(4¢) Zh—-——h_zmS = =2 h = 2niE .

This is the h-transform of the given function f(x), 0 < x < oo:

o PFs(48) + 28 F.(45)

(2.3.13) Fp(§) = h — 2miE

The numerator is an odd function. In case # = 0 the & transform is twice the Fourier
cosine transform, whereas in the case 4 — o0 it reduces to (—2i) x the Fourier sine
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transform. The Fourier inversion formula gives the improper integral

(2.3.14)
£ = / FTIEE, (£) dE

o0

00 2mi&x
Y / O (hF,(4€) + 2nEF.(46)) dE

o h — 2mi&
_ ® hsin(méx) + 2mw€ cos(2mEx)
- 4/0 W2 + 4m2E? (hFs(4E) + 2nEF (48)) d&

(hF;(v) + (Tv/2)Fe(v)) dv.

_ /‘x’ hsin(rvx/2) 4+ (rv/2) cos(mvx/2)
o W+ (702 /4)
In this form we see more clearly the limiting cases # — 0 and & — oo. The results are
summarized as follows.

Proposition 2.3.21. Suppose that f € L' (0, 00) with h > 0. Then f, defined by
(2.3.12) is integrable on R. If f satisfies a Dini condition at x, then f may be
recovered from its h-transform, defined by formula (2.3.13) and (2.3.14).

Case 2. h < 0 : In this case we have the additional complication of a nonzero
integrable function whose h transform is identically zero. The function f(x) = e/ is
directly computed to have F,(§) = 0, hence f cannot be recovered from its A-transform.
This is the only obstruction, however.

Proposition 2.3.22. Suppose that f € L' (0, 0o) with

(2.3.15) fx)e™dx = 0.
0

Then f‘ defined by (2.3.12) is in L' (R) and the Fourier inversion holds at every
point where the Dini condition is satisfied.

Proof, 1f we combine (2.3.15) with (2.3.12), we can write

&) =f(=x) —2h / ) "Of(y) dy.

—X

oc 0
= / ( [hle"* d’C> If )l dy
0 -y

_ /0 [1 = MIf ()] dy < oo

Now we can estimate the L' norm as before:

0 00
h / ( f | e”<~"+*>|f<y>ldy) dx

since & < 0. Therefore we can apply the Fourier inversion theorem to f. |

The new behavior for 2 < 0 is related to the existence of a point spectrum in the
Laplace operator with these boundary conditions. The function f(x) = ¢** satisfies the
differential equation f” = h*f and also satisfies the boundary condition f'(0) = A f(0).
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If & > O this function is not in L' and hence does not figure in the Fourier analysis. But
when 2 < 0 it is integrable and must be dealt with.

In case f does not satisfy the orthogonality condition, we simply subtract a multiple
of " and then apply Proposition 2.3.22. The function f (x) + he™ [° f(y)e™dy will
satisfy the orthogonality condition, leading to the representation

fx) =Ce™ + / Oth(S)ez”'f* ¢, C= / oof(y)he"y dy.
00 0

This illustrates the role of the point spectrum in the Fourier analysis.

2.4 [? THEORY IN R”

The Fourier transform is well-adapted to the space of square-integrable functions,
denoted L?(R"). Since L' and L? are not properly contained in one another, we first
restrict to the common dense subspace S and extend by continuity.

2.4.1 Plancherel’s Theorem

The Plancherel theorem serves as a replacement for the Riesz-Fischer theorem that
appeared in the L? theory of Fourier series in Chapter 1. In contrast with the theory of
L?(T), in the present context we have an isometric bijective correspondence on the space
L*(R"). The precise statement follows.

Theorem 2.4.1. Plancherel: The Fourier transform can be extended to the
entire space L*(R") so that the map f — Ff preserves the L* norm. Furthermore
the extended mapping is 1:1 onto all of L*(R").

The key to the proof is to establish the isometry of the Fourier transform on the
space S, as follows.

Theorem 2.4.2. Parseval: For anyf € S, we have

24.0) / P de = fR NGRS

Proof. This depends on three simple facts, valid for u, v € S:

(24.2) /uﬁ:/ v

(2.4.3) (%) = u(—x) 1= Ru(x)
(2.4.4) i(x) = i(—x).

Formula (2.4.2) is a restatement of the Fourier reciprocity lemma, (2.4.3) is an expression
of Fourier inversion for Schwartz functions, and (2.4.4) is from the definition of the Fourier
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transform. Letting u = f, v = f, we have § = f and

ff‘:/ uﬁ:/ ftv:/ Ijti—:t,
RVI ]RV] n n

which was to be proved. |

Proof of Plancherel’s Theorem. By Proposition 2.2.42, any f € L>(R") can be approx-
imated in the L% norm by a sequence f € S. Having done this, we apply Parseval to
obtain

/R‘ i = i) dx = fR |y~ AP @) de.

By hypothesis the left side tends to zero when j, k — oo, hence fj is a Cauchy sequence.
By the completeness of the space L?, there is a well-defined limit F(f) in the L? norm so
that | F(f) — fill. = 0, which defines the required extension f — Ff. In particular,

IFfll2 = lijm £l = lim || fill2 = [1fll2-

Clearly this definition is independent of the approximating sequence, since if g; is another

approximating sequence, another application of Parseval shows that ||g; — fj»”z — 0.
To prove the onto property, we first note the properties of the reflection operator R,
defined by Rf (x) = f(—x). Applied to the Fourier transform, we have for any f € S,

REE) = / P f(x) dx = f e f(—x) dx = (RF)(§).
-

R

Clearly ||Rf|l2 = || f]l for all f € L>(R").
Now if ¥ € L?(R"), we approximate by Y; € S. From (2.4.3)

¥ =Ry = tRl/Afj) =4
where ¢; = R1/Afj. When j — oo we have ¢; — R(FV), q3j — F(RF). Hence
¥ =limy; = lim ¢; = F(RFY),
J J
which proves that the operator F is onto all of L*(R"). |

Exercise 2.4.3. Prove that the Fourier-Plancherel transform on L?(R") satisfies
the properties of linearity, translation, and phase factor that were proved for the
Fourier transform on L' (R"), described in Proposition 2.2.1.

2.4.2 *Bernstein’s Theorem for Fourier Transforms

In Chapter 1 we proved that any Holder continuous function with exponent o > % has
an absolutely convergent Fourier series. Here is the corresponding result for Fourier
transforms.

Proposition 2.4.4. Suppose that f € L*(R) satisfies
R

for some C > 0, > % and all h sufficiently small. Thenf = Ff € L'(R).
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Proof. The Fourier-Plancherel transform of the translate f, satisfies f,(§) = e=2"*f (£) so
that from the Parseval relation, we have

Co > / =) —fP dx = / e 1P )P de.
R R

Taking h = (1/6)27*, we estimate the L' norm of f for |¢| € [2¥, 2¢*!] by Cauchy-Schwarz,
noting that in this range [e=>*%" — 1| > 1:

2
( f F®)l d&) < k! / P ds
2k <|g|<2k+! 2k <|£| <2k +)
< 2k+l / |e—2ﬂiE/1 _ llzl)?(é)lz dt'j
2k <|g|<2k+!
< 2k+| (C2/36)2—2ku
= (C?/18)24' ™.
1

Therefore if @ > 3

F&)de <Y 2802072 < o0,
kX:(;/stlfisZ“' Z

k=0

and the proof is complete. n

In parallel with the theory of Fourier series, one can characterize the L? smoothness

of a function in terms of the speed of L? convergence of the Fourier transform. These
are listed in the following exercises.

Exercise 2.4.5. Suppose that for some 0 < o < 1 and some C > 0, we have
If —fulla < Ch® for all h > 0. Prove that fIEI>M If &)’ de < C;M~* for all
M > 0 and some C, > 0.

Hint: Mimick the proof of Theorem 1.3.3.

Exercisg 2.4.6. Suppose that for some 0 < o < 1 and some C| > 0, we have
fI£I>M If(€)1?de < C M~ for all M > 0. Prove that ||f — fy|l, < Ch* for all
h > 0 and some C > 0.

Hint: Mimick the proof of Theorem 1.3.3.

Exercise 2.4.7. Suppose that for some C| > 0 we have /IEI>M UA”(S)I2 dé <C\M~?

forallM > 0. Prove that || f —full2 < Ch log (1/h) for0 < h < %,forsome constant
C>0.

Exercise 2.4.8. Suppose that for some k € Z* and for some 0 < a <1, C > 0
we have [\, \f (£)I*d§ < C\M™*7>*. Prove that f, ..., f*" are absolutely
continuous with f' € L*(R), ...,f%® e L*(R) and that Hfh(k) —f®), < Ch* for
all h > 0, for some C > 0.



FOURIER TRANSFORMS ON THE LINE AND SPACE 131

2.4.3 The Uncertainty Principle

The L? theory of the Fourier transform can be used to discuss the Heisenberg uncertainty
principle, as follows. We restrict attention to the case of one dimension.

If f € L*(R), a quantitative measure of the spread about x = 0 is given by the
dispersion about zero and defined by the formula

L2 X2 f (02 dx
[o1fe2dx

This is defined whenever the relevant integrals are finite. The name is justified by
Chebyshev’s inequality, namely for any M > 0

S fOPdx 1 [Z 0P dx _ Do(f)
[l0f@Rde — M2 (2 f@kde M2

The fraction of the L? norm due to |x| > M is controlled by Do(f).

Do(f) =

Exercise 2.4.9. Suppose that f is a Gaussian density function:

1 2 “ 2,52
fo)=—=e  with  fE) ="

VAt
Check that Do(f) = t and Do(f) = 1/(167%) .

In this example the product is Dy(f) Dy (f ) = 1/167%. This can be paraphrased as
the statement that if a Gaussian density function is highly concentrated about its midpoint,
then the Fourier transform will be widely spread about its midpoint. A remarkable
statement holds in the general case, where we have the following inequality:

Proposition 2.4.10. Uncertainty principle: Let f € L*(R), be a complex-valued
function that is absolutely continuous and for which x f € L*(R) and f' € L*(R).
Then we have the inequality

(2.4.5) Do(f)Do(f) >

162"

Equality holds if and only if f is a Gaussian density function centered at x = 0;
in detail, f(x) = C1e*/°", (&) = Coe™"%"% for suitable constants C,, C,, 2.

Remark. The term “uncertainty principle” comes from the interpretation that we
cannot localize both f(x) and f‘ (&) in their respective spaces. If f(x) is localized about
x = 0, then Dy (f) will be small; the uncertainty principle then asserts that Dy (f ) will be
correspondingly large, indicating a lack of localization about £ = 0.

Proof. For notational clarity, write F = f . Unless otherwise noted, all integrals are taken
over the entire real line. First we apply the Cauchy-Schwarz inequality to |f(x)] =
JA+D)|f )] x +/1/(1 + x2) to conclude that f € L', similarly F =f € L', hence they
are Fourier transforms of one another, and in particular both f and F are equal a.e. to con-
tinuous functions vanishing at infinity. In addition, F’ exists as an L? function, since its
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Fourier transform is assumed to be L?. Both the numerator and denominator of the expres-
sions defining Dy (f) and D, (F) will be transformed by Parseval’s theorem. In this way one
is led to examine a corresponding integral involving F'(§). Writing F = f‘ , we write the
real part of the integral of £FF’ in two different ways. On the one hand,

2Re [eFrag= [ e+ rPyds = [eFyas = [sorryas = - [ i as

where we have integrated by parts in the last step. To justify discarding the term at the
limits, note that since all of the integrals are absolutely convergent, they are also convergent
improper Riemann integrals, so that M|F(M)|* and N|F(—N)|? tend to limits when either
M,N — oo in any order. If either limit is nonzero, then F(§) ~ const/|€|"?, which
contradicts the L? integrability of F. Now on the other hand,

(2.4.6)

12 172
—Re / £FF d < ’ / sF@)F’(s)ds[ < ( / EFE)P d&) ( / |F/<s>|2ds>

where we have applied the Schwarz inequality to the functions F'(§) and £§F(§). Now
we apply Parseval’s theorem twice, recalling that the Fourier transform of xf(x) is

F(§)/(~2xi):
/ FE) d = / F P d, / \F/©)P de = 4n? f 1@ d.

Squaring both sides of (2.4.6) and making these substitutions gives the desired result, in the
form (1/167%) [ |f12 [ IFP < [ IxfP? [ 1€F P

In case equality occurs in (2.4.6), we obtain two conditions: (i) Schwarz’s inequal-
ity implies that F’'(§) and £F(§) must be proportional a.e. thus F must satisfy a.e. the
differential equation F'(§) = —A&F (&) for some complex constant A; (ii) the imaginary
part of [ £FF'dE must be zero. From (i) it follows that the derivative of the function
G() = F(§)e*'/2 is zero a.e., hence G(£) = C a.e. for some complex constant C, which
proves that F(&§) = Ce™¢°/2 ae. But we noted above that F is continuous, hence the
equality holds everywhere.

This function will yield a finite value of Dy (F) if and only if Re A > 0. To show that
ImA = 0, we write A = o + i and compute F'(§) = —CA& e%"/2 F(§) = Ce /2

/ EF()F ) dE = |CPA / £ g

The imaginary part of the integral is zero if and only if 8 = ImA = 0, which was to be
proved. The constants can be identified by setting A = 27252 ]

In order to have a more flexible form of the uncertainty principle, we define the
dispersion about a of a complex valued function f by

[0 (e — a)?| f(0))? dx
So N f )2 dx

This can be reduced to the above case by defining

fop @) =P f(x —a),  Fy_,(&) =e T F(E - b).

Do (f) =
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It is immediately verified that the Fourier transform of f,, is " F_, , and that
D,(f) = Do(fyp), Dp(F) = Do(F_p,). Applying the uncertainty principle we see
that D, (f)Dy(F) > 1/1672 with equality if and only if f(x) = Ce*ix¢=@=®*/20" some
complex number C.

Exercise 2.4.11. Show that the uncertainty principle can be generalized to R" in
the form
2

DYDY = 1—

with equality if and only if f(x) = CeW7/o*, F¢) = Cye™ 0’ for suitable
constants Cy, C, o>. Here we use the notation
Jro [XIP1f G0 Pdx

Jpo [ FOPdx

Hint: Apply the proof of Proposition 2.4.10 in each coordinate and then apply the Cauchy-Schwarz
inequality.

Dy(f) =

2.4.3.1 Uncertainty principle on the circle

Heisenberg’s inequality has no direct analogue for Fourier series on the circle. This is
related to the fact that there is no direct counterpart of the Gaussian density on the circle.
The following modified form of Heisenberg’s inequality was discovered by Grunbaum
(1990).

Proposition 2.4.12. Suppose that 0 # f € L*(T) is absolutely continuous with
f" € L*(T) and f (x¢) = O for some xy € T. Then

Soez INPIF M) fr0 = xoP 1 f 0P dx 1
Y ez IF I Je 1f )17 dx g

Proof. By changing x to x — x,, we may suppose that xo = 7, so that f(r) = f(—n) = 0.
Then
2Re (/ xff’) = / x(ff +£1)
-7 -7

_ / *(f1Y

so that we can apply the Cauchy-Schwarz inequality to obtain

3 [ = e [y \// leflz\//_z e

Now square both sides and use the Parseval identity for f and f’ to obtain

% /I 12 I < /I 2R i F

nez nez
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which proves the inequality with >. If equality holds, then we must have f' = Axf for
some A and also f (;r) = 0, which implies that f is identically zero, a contradiction. |

2.4.4 Spectral Analysis of the Fourier Transform

In this section we show that the Fourier transform on R! has a complete orthonormal
system of eigenfunctions. To get started, we note that the Gaussian density function with
=1 /2 is its own Fourier transform, since

o 2 2
/ e—nx—e—eriEx dx = e—ng-.
—0o0
If we differentiate both the sides of this identity, we see that the Fourier transform of
xe ™ is —iée‘”fz.
2.4.4.1 Hermite polynomials
To proceed more generally, we introduce the generating function

2

0 tk ¢
2.4.7) ¢ =" —Hi(x) = Ho(x) + tH) (x) + S Ha(x) + -+ .
k=0 k! 2

This power series converges for all 7, real and complex; the coefficients H, (x) are the
Hermite polynomials. Since the generating function is a Taylor series in the variable #,
the coefficients can be obtained by successive diffferentiation as

a\*
(2.4.8) Hmmz(a)(w”ﬂmﬂ k=0,1,2,...

Equivalently, we can write

d k
—x2/2 _ —(t—x)*/2
e H,(x) = <d_t> (e )

The first few are written as follows:

__kik—xz/Z
fﬁ—(1)<¢>(e ).

Ho(x) =1
Hx)=x
Hy(x) =x* -1
H;(x) = x® —3x

Hi(x) = x* — 6x% + 3.

From the generating function, it follows that Ho_; (0) = 0 and that Hy, (0) = (2k)!/k!2*
fork=1,2,....
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Lemma 2.4.13. H)(x) = kH,_, (%).

Proof. From (2.4.8), we write the derivatives and use Leibnitz’s rule to write

d\" 2
H(x) = (E) (te"" )0

d k d k-1 ]
=t (E) @m0 +k (5> @m0

= ka,l(X)A |

Lemma 2.4.14. Forx > 0

/ e dy < /
X
Proof. Lety = x + t. Then

—r,\ —I /2 dt

/ e’ 2/2 dy = —x2 /2
X

e~ 2/2 —12/7

= \/Ee"xz/z. [ |
2
Lemma 2.4.15. For0 <a <2/2/n
o
Ay = / e 2|H, (ax)| dx < 332 2%k,
—00
Proof. We have for x > 0

He(ax) = He(0) + ak / He_(ay) dy,
0

|Hy (ax)| < |H(0)] +ak/ |Hi—1(ay)! dy.
0

Therefore

f we**”lHk(ax>|dx<\/> |H,(0)] + ak / |H, - 1<ay>|( / N ~"'Z”dx)oly
0 3
\/> |Hk<0>|+akf / He_ (ay)le™/? dy.

We perform the corresponding computation for x < 0. Combining the two, we see that the
sequence A, satisfies the system of inequalities.

Ay < V2 |Hi(0)] + 2kA;—y k>1
/—|Hk(0)| A
Zkk' - 2kk! (k — D121
Ay Ap_y < \/2—|Hk(0)|

2K k=D = VT
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which telescopes to

A, ~ |H (0)]
< Ao ++2
i =0T ”; 24K!

< 342m,

which was to be proved. |
Exercise 2.4.16. Prove that [Hy(x)| < c(1+ [x], ¢ == [, Ix|fe™ /2 dx/~/27.

Hint: Use mathematical induction, applied to H, = kH,_,.

2.4.4.2 Eigenfunctions of the Fourier transform
With this preparation, we can now list the eigenfunctions of the Fourier transform.

Proposition 2.4.17.
(2.4.9)

1 [ .
JT_f e T PH (xV2) e ¥ dx = (=) e F PHW(EV2), k=0,1,2,....
T J -0

Proof. To prove (2.4.9), we can use the generating function (2.4.7) with ¢ real and x replaced
by x+/2 to write

ok
Z LHk(xﬁ)e—x2/2e—i§x — VIR 2iE 2
k! ’

k=0

We apply Lemma 2.4.15 witha = V/2, to see that the series

o 4k o0
i) e el

o0

converges for |¢| < 1/2. Hence we can integrate term-by-term to find that

X, ke 2 : ot Vi-p? e 2
Z k—'/ H, (xv/2)e™ 2e™8% dx = / VI 2gmix g2 gy
+J—o00 -0

k=0

This integral can be evaluated by completing the square in the exponent and making the
substitution y = x — #+/2 to obtain

o0

e’2/2/ eV 12 iEG+HVD dy = oot 2o 61V /2
—00

When we compare this with the original generating function, we see that the only difference

is the replacement of # by —iz. But the series defining the generating function converges for

all complex ¢, from which we conclude that for |¢] < 1,

A 25 =\ (—itk 2
Z ﬁ/ Irik(x\/—Z_)e_’r 1= dy = Z Hk(fx/i)e'f 2,

!
k=0 k=0 k!

Identifying the coefficients of t* completes the proof. |
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If we make the substitution x = y+/2m, § = v+/2m, this can be written in terms
of the usual notations as

(2.4.10)

o0
/ e e 2y T)dy = (=) H QuyT)e ™,  k=0,1,2,....

o0

One can reinterpret the above result as providing a basis of functions in which
the Fourier transform has a simple structure. For example, if a function is written as a
finite sum:

N
f@) =" ae™ H2xy/T),
k=0
then the Fourier transform is

N
FE) =Y (=ae™ H 26 /7).
k=0

2.4.4.3 Orthogonality properties
The orthogonality properties of the Hermite functions are obtained from a second-order
differential equation which will be proved. Computing as above, we find

d k
= (2) 0

H]i/( )_ 2 t,\ t/2)|

(3
xH, (x) = (
(
(

(xtef,\ t /2)|t—

(1t = e )izo

t_(eIX—I2/2)>
( dt =0
d k+1 d k R

= kHj (x).

H}(x) — xH(x) =

We now prove the orthogonality of these functions with respect to the measure with
. 2 . . . .
density e~ /2. To do this we introduce the differential operator

Lf:=f"(x) —xf'(x) = & 2[f' (x)e 7).
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Thus if f, g are polynomials, we can integrate by parts as follows:
fR gLf (x)e™ 7 dx = fR g[f'e™ Y dx
- A g (Lf e Y dx
;
—+ [ roorgery as
= /R F)Lg(x)e™ /% dx.
Applying this with f = H,,, g = H,,, we see that
(n—m) Af(x)g(x)e_xz/z dx =0,
which proves the orthogonality. To obtain the normalization, we write
fR H,(x)%e ™2 dx = (=1)" fR H,(x)D"(e™"/?) dx
= (=1 fR D.H,(x)D"~" (e7*%) dx
= n(-1)""! /R H,o (D" (772

= n/ Hn_l()c)ze_"z/2 dx.
R

Proceeding inductively, we see that [, H, (x)2e~*/2 dx = n! Jz e 2 = )27,
The orthogonality properties may be concisely written

k'N2n k=]
k#j

(24.11) [ Hi)H;(x)e ™/ dx = {

We also introduce the normalized Hermite functions

174 Hi(x) TR x4

,  k=0,1,2...
V!

he(x) = 2m)~

which satisfy

*© 1 k=j
Ry (x) hj(x) dx = [ .

f_oo ’ 0 k#j
2.4.4.4 Completeness
Finally we discuss the question of completeness of the Hermite functions. We want to
show that the closed linear span of finite linear combinations of the Hermite functions
is the entire space L2(R). If not, there would exist f € L?>(R) which is orthogonal to
all of the eigenfunctions: fR Fh(x)dx = 0fork = 0,1,2,.... Since the Hermite
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polynomial = x" + lower-order terms, we conclude that fR f ©)x"e =/ dx = 0 for

n=0,1,2,.... Now we can compute the Fourier transform of f (x)e™*"/4 by integrating
term-by-term:

(e8] ! . o —27i n (o]
[ rweremea= Y EEEL [ apmetian =0
—o0 = n! oo

where the interchange of sum and integral is justified by noting that the modulus of the
integrand is bounded by

o0
Z |27TE'X|"6_X2/4 _ nErl =i
e L

which is an integrable function, for any &. Hence the Fourier transform of f (x)e"‘z/ 4is
zero, therefore f(x) = 0 a.e.

This immediately shows that any L? function has an L? convergent Hermite series.
Indeed, we define the Fourier-Hermite coefficients of f € L?(R) by

o = / FOOh() d.

Any finite linear combination fy = Zszo ayhy is orthogonal to f — fy, thus

N

A2 = 1 = Al + 1w l3 = I3 =D leel?

k=0
which proves Bessel’s inequality: "t lex|> < || f113. In particularf := 3"5° ay/y isan

L? convergent series and the differgnce f —f is orthogonal to A (x), fork =0,1,2, ...,
hence by the above argument f — f = 0 a.e. thus f = Y ;- axhy, in the sense of L2,

2.5 SPHERICAL FOURIER INVERSION IN R"

Bochner (1931) studied the pointwise convergence of the spherical partial sums of the
Fourier integral in Euclidean space. The purpose of this work is to determine the minimal
smoothness assumptions necessary for pointwise Fourier inversion in R”. In this section
we will give an up-to-date treatment of this material, based on Pinsky (1994) and Pinsky
and Taylor (1997).

2.5.1 Bochner’s Approach

The spherical partial sums are defined by

@2.5.1) Swf (x) = F©em ™t ge.

|El=M
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This integral may be rewritten as an integral transform on f by applying Fubini as follows:

Suf(x) = f ( f(y)e~2niy~'q’ dy) e2nix~§ dt
[El=M \JR"

= [ ro ( / e—z”“*—”'fds)dy
R~ |El=M

= [ Die-nsma

= f Dy () f(x —2)dz

where the n-dimensional spherical Dirichlet kernel is defined by

(2.5.2) D) = f e %8 dg = Dy (2))
<M

where we abuse the notation and identify a radial function on R” with a function on the
positive real line. Noting that Dj, is a radial function, we may further reduce Syf in
terms of the spherical mean value, defined by an integral over the surface of the unit
sphere:

(2.5.3) J_Cx(r) = fx + rw)dS,
n—1 JSn-1
resulting in
254 Suf (x) = wp—y / D (Nf(r)r" dr.
0

Lemma 2.5.1. The spherical Dirichlet kernel may be computed in terms of Bessel
functions according to

J,,/z(ZJIMr)

(2.5.5) Dl (r) =M" T

Proof. Taking a system of spherical polar coordinates with & = u cos 8§, we have

M pr
Dy, () =G, [ [ e " (sin )" dy df.
0 0

From equation (2.6.6) in the appendix to this chapter, the 6 integral is recognized as the
Bessel function (ru)@~™/2J(,_2 2 (27 rp). When we perform the r-integration and use the
differentation formula (2.6.2) for Bessel functions, we find the Bessel function J,; as
written. The dimensional constant can be identified by setting » = 0. Thus Dj},(0) =
vol(§ € R" : |§] < M) = (AM*)"?/(n/2)! u

The useful properties of D}, are summarized as follows, where C, denotes a
dimension constant.
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Proposition 2.5.2.
) \ (nMZ)n/Z
(i) Dy (0) = wr " >1

(ii) Dy (r) = CuM™=D72 (cos2nMr —6,) + O (5)), n=1, r> 0, M > o0

(iii) |Dy(r)| < a CaM”

+Mr)(n+l)/2 ’ nz 1’ r>0

-1 0
v) D" (r) = — —D/'2 > )
(iv) Dy (r) 77 37 M n, n>3r>0

Example 2.5.3. Ifn = 1 we have the one-dimensional Dirichlet kernel

Example 2.5.4. Ifn = 2 we have the two-dimensional Dirichlet kernel

D7y = MO @er)
r

The higher-dimensional Dirichlet kernels can be obtained by differentiation, using
the recurrence formula (iv) from Proposition 2.5.2.

Theorem 2.5.5. Suppose that f e L'(R") where n = 2k + 1 and the spherical
mean r — f.(r) is absolutely continuous, together with its derivatives of order
k — 1 and that f;° ¥/~ FPdr < oo forj = 1,..., k. Then the spherical partial
sum converges: limy Sy f (x) = £ (0 + 0).

Proof. Let ny(r) be a C* function with 0 < ny(r) < 1, my(r) = 1forr < M, nyu(r) =0

forr > M + 1, and |r7,(",,)(r)i < Ciforj = 1,...,k. We write (2.5.4) as Syf(x) =
Iy (x) + I, (x) where

Iy (x) = .oy ]O M (N (N Dy (r)r"~" dr

Iy (x) = -1 / (1= my (MDD} (r)r"~ dr.
0
The second term can be estimated by

Hy(x) < a),,_lf (D, ()" dr
M

n

® M !
=< CII X ” d
- /M O G ageron ™ ¥

Co % - 1
< y M dr=o0 (M)
where we have used the fact that f;° r"~! [f.(r)| dr < oo. The term Iy (x) is estimated by
repeated integration-by-parts, where we exploit the fact that the integrand has compact
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support to write

o0

o - -1 d
/ M (N (D (Nr'=" dr = [ nM(r)r""fx(nz——Dx;zmdr
0 0 Tr dr

oc d _ )
= / — [P (] Dy (r) dr.
0 dr
We repeat the partial integration k times to obtain

n—1 o 1d ¢ n-2 SIH(ZJTMV)
Iy(x) = (27‘[)"/ (;d_) [ M (Nf(r )]—r_

Writing out the derivative by Leibnitz, we find that

1d\* -
r(;;) [ (Nf(n] = chm( )[nM(r)fx(r)]

for suitable constants Cj. For each j > 1 we have (d/dr)[nm (r)ﬂ(r)] — (d/dr)Jﬂ(r) in
L'(0, 0o) when M — oo. Therefore by the one-dimensional Riemann-Lebesgue lemma
we have for M — oo

/ sm(27er)
0

nr

(d ) Iy fe()ldr—0  j=1,... k.

For j = 0 we have the one-dimensional Fourier inversion of the absolutely continuous
function n, (r)f,(r) at r = 0, which gives

Jim Ly (@) = S5 C 0 +0).
The constant is identified by choosing a function for which we have already proved the
Fourier inversion, e.g. f(x) = e~"*". [ |

The sharpness of the conditions is revealed by the following basic example in three
dimensions.

Example 2.5.6. Let n = 3 and let f(x) = 1 for 0 < |x| < a and f(x) =
otherwise.

To compute the spherical mean value, we note that f;(r) is the fractional area of
the sphere S(x; r) which is contained in the ball B(0; a). This is zero if r > a + |x| and
is one if r < a — |x|. Otherwise it is computed as

1
o= [ do
4” {w:x+rw|<a}
1

2 Ax|2+2r|x| cosf+r2<a?}

1 az—r2—|J|c|2+1
) 2r|x|

@ —(r— |x))?
4r|x|

sinf do
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Therefore if 0 < |x| < a, the spherical mean value fx(r) is

1 ifO0<r<a-—|x|
_ 2 _ (p— 2
fe(r) = @ == ) ifa—|x| <r<a+lx|
4r|x|
ifr >a+ x|

The function » — f,(r) is Lipschitz continuous, in particular absolutely continuous,
hence Theorem 2.5.5 applies to prove convergence at x. However if x = 0 we have
fx(r) = 1 for r < a and zero otherwise, a discontinuous function. The Fourier inversion
fails in a very simple way in this case, since we can use (2.5.4) to write

Suf (0) = 4 / Dy, (r)r*dr
0
@ d
= —2/0 rd—rD,lw(r) dar

= —2aD,,(a) + 2/ D;,(r)dr
0

2 “ in(2r M
:———sin(2M7ta)+2/ sin@rMr) .
b4 0 nr

The second term tends to 1 when M — o0, whereas the first term oscillates between
+2/7; in detail

2 2
liminf Sy, f(0) =1 — —, limsup Sy f(0) =1+ —.
M b4 M b4

This example provides a concrete illustration of the nonlocal dependence of Fourier
inversion in three dimensions. The function is smooth in a neighborhood of x = 0 but
has a jump at |x| = a. The jump effects the impossibility of Fourier inversion at x = 0.
Figure 2.5.1 gives the profile of the spherical partial sum for this example.

Kahane (1995) generalized this example to the setting of a bounded region in
R? bounded by a smooth surface. If the surface is analytic and if the spherical Fourier
inversion fails at a single point, then the surface must be a sphere and the point must be
the center. For more general smooth surfaces, one may have divergence of the spherical
Fourier partial sum at any preassigned finite set of points.

This example can be modified to provide a concrete example of nonlocalization.

Example 2.5.7. Let f(x) = 1 for 0 < a < |x| < b and zero otherwise. Then by
applying the previous example twice and subtracting, we have

2
Suf(0) = ;[sin(2M7ra) —sin(2Mnb)] 4+ o(1).
Clearly f (x) = 0 for |x| < a, but limy; Spf (0) fails to exist.

Exercise 2.5.8. Letn = 2 and letf(x) = 1for0 < |x| < aandf(x) = 0 other-
wise. Prove that if x # 0, then r — f.(r) is absolutely continuous and Hélder
continuous with exponent % but that if x = 0, r — f,(r) is discontinuous.
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FIGURE 2.5.1
The spherical partial sum of the indicator function of the unit ball in R with M = 99/2x.

Theorem 2.5.5 can also be formulated in the case of even dimensions. The basic

case of two dimensions is dealt with as follows.

Proposition 2.5.9. Suppose that f € L'(R?) and that the spherical mean value
r — fi(r) is absolutely continuous with fooo If/(r)| dr < oo. Then limpy Syf (x) =

£.(0 +0).

Proof. Appealing to (2.5.4) and (2.5.5) and the identity (d/dr)Jy = —J;, we have
Sy (x) =21 / MI, M= nf.(r)dr
0
®_ . d
= —f L —JyQ2rMr)dr
0 dr
- o0 d -
=£,(0) +/ Jo@rMr)—f.(r)dr.
0 dr

The final integral tends to zero by the dominated convergence theorem. ]

Exercise 2.5.10. Show that the conclusion of Proposition 2.5.9 holds true iff has
compact support and the spherical mean r — f.(r) is assumed to be piecewise
absolutely continuous. In particular for f = 19 ,4)(|x|), we have spherical Fourier
inversion at x = Q.

Now we can formulate Theorem 2.5.5 in even dimensions.

Theorem 2.5.11. Suppose that n = 2k and the spherical mean r — f.(r) is
absolutely continuous, together with its derivatives of orderj =1, ...,k — 1 and
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that fooo Pl Ifx(j) (Nldr < co forj = 1,..., k. Then the spherical partial sum
converges: limy Syf (x) = f;(0 + 0).

Exercise 2.5.12. Complete the details of the proof of Theorem 2.5.11, following
the corresponding reduction in the odd-dimensional case.

2.5.2 Piecewise Smooth Viewpoint

As in the case of one-dimensional Fourier inversion, it is not possible to obtain any
necessary conditions for spherical Fourier inversion in R”. However we can isolate a class
of functions for which we can obtain some simple necessary and sufficient conditions
for convergence of Syf(x), M — o0o. The original reference is Pinsky (1994).

Definition 2.5.13. f € L'(R") is piecewise smooth of degree k with respect to
x € R" if there exists a subdivision 0 = ay < a; < --- < ag such that r — fx(r)
is absolutely continuous on each subinterval, together with its derivatives of order
k — 1 and that fooo ri-1 |}—‘x(/)(r)| dr < oo for 0 <j < k. At each subdivision point
we asssume that there exist the one-sided limits fx(” (aix£0) for0 <j < k. The
Jjumps are denoted (Sﬂ(j) (a) = —x(j) (a; +0) — —XO) (a; — 0).

Theorem 2.5.14. Suppose that n = 2k + 1 and that f € L' (R") is piecewise
smooth of degree k with respect to x € R". Then limy Suf (x) exists if and only if
r — fi(r) is of class C*= 1 in detail Sfx(')(ai) =0for1 <i<K 0<j<k-1

Proof. The computations in the previous section can be repeated in this context on each
subinterval (a;_, a;). Each time we integrate by parts on (a;_, a;), we obtain a contribution
from the endpoints. When these are summed, the resultant contribution can be expressed
in terms of the jumps. In detail, we have,

k K J
(2.5.6) hf® =w1) ) ( %) a " (@)Dyy ? @)8fI " (@)
j=1 i=1

o [P (1d\ ., sin(2mw Mr)
+ (2n)k/ (;d_) [ e (Nf (r )]—r

If each of the jump terms is zero, then we obtain the desired convergence: limy Syf (x) =
fX(O + 0). Conversely, suppose that limy, Sy f (x) exists. Then it must be equal to f,(0 + 0),
by Gaussian summability. The final integral also converges to f; (0+0), by one-dimensional
Fourier inversion. Therefore the sum involving the jump terms must converge to zero. If
we now divide by M~/ and apply the asymptotic formula for D, (r), only the term with
Jj = 1 survives and we obtain

K
Jim ; 8f.(a;) cos(Ma; — 6,) = 0. [

To complete the proof, we state and prove a lemma on finite trigonometric sums.

Lemma 2.5.15. If {C:}X, are complex numbers and 6 €R is such that
lim, 00 YK, C; cos(xa; — 0) = 0, then C; = 0.
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Proof. Multiply the sum by cos(xa; — ), integrate over [0, M] and divide by M. Each term
in the sum tends to zero, save for the jth term, \_vhich tends to %C,-, which proves the result.

Applying this lemma we first see that §f,(a;) = 0fori =1, ..., K. Now we return
to (2.5.6) and divide by R“~>/2 to obtain

K
; 2 (. o =
Jim ; 8V (a;) cos(Ma; — 6,_3) = 0.

Applying the lemma once more we see that (Sfx(”x(a,») =0fori=1,...,K. Continuing
inductively proves the result. |

The results of this section can be reformulated in terms of the smoothness index,
which is defined as follows: If the spherical mean value r — fx(r) is discontinuous, we set
J(f; x) = —1. Otherwise r — f,(r) is continuous with a certain number of continuous
derivatives, denoted J(f; x). The convergence theorem for piecewise smooth functions
can be rephrased as follows, where [ ] denotes the integral part.

Theorem 2.5.16. Suppose that f € L'(R") is piecewise smooth with respect to
x € R" with smoothness index J(f; x). Then the spherical partial sum Spf (x)
converges when M — oo if and only if J(f; x) > [(n — 3)/2], in which case the
limit is]-‘x(O +0). If J(f; x) < [(n — 3)/2], then we have

—o0o< lim inf M (Spf (x) — f2(0 + 0)) < lim sup M~ (Spif (x) — f(0 + 0)) <00
M

wherek = (n—5—-2J(f;x))/2>0

2.5.3 Relations with the Wave Equation

We have already seen the close relation between Fourier analysis and the partial differ-
ential equation of heat flow, whose steady-state limit is the Laplace equation. In each
case the solution is defined by integration of an approximate identity applied to the
initial-boundary data, as we have seen in detail.

When we come to the wave equation the situation is different, since the solution is
no longer expressed as an integral with respect to a positive kernel, but rather a Schwartz
distribution on the surface or interior of a sphere. To see this in detail, consider the
initial-value problem for the wave equation

8%u ", 8%u
&> e = 2
au
(25.8) u(x; 0) = f(x), E(X; 0)=0

where f € S is a rapidly decreasing function. )
This initial-value problem can be solved in terms of the Fourier transform f by the
formula

2.59) i) = [ cosmilgDF e .
[Rll
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Itis immediately verified that u solves the wave equation with the given initial conditions,
in the sense that lim,_, o u(x; ) = f(x) and lim,_, o du/3¢t(x; t) = 0. A corresponding
formula can also be developed for the more general initial conditions, which is left as an
exercise.

In order to proceed further, we write (2.5.9) as

o0
u(x; t) :f cos(2mt)S' (n) du
0
where

Sw=Sf0= [ FEFedE Sw=[ e,
El<u [&l=p

where w,, (d§) is the surface measure on the indicated sphere. Since f € S it follows that

f‘ € &S and that both u — §’'(u) and ¢t — u(x, t) are rapidly decreasing functions. Hence

we can apply one-dimensional Fourier inversion to obtain

S'(w) = /00 cosRmtu)u(x; t) dt.
0

Integrating once more on [0, M] and applying Fubini, we obtain the following
proposition.

Proposition 2.5.17. Suppose that f € S and that u(x; t) is the solution of the
initial-value problem (2.5.7) and (2.5.8) for the wave equation. Then the Fourier
partial sum can be retrieved through the formula

(2.5.10) Suf(x) =

 sin(2mw Mt
/ SnQ@rM ey dr.
wt

0

Formula (2.5.10) was developed and applied by Pinsky and Taylor (1997) to study
pointwise Fourier inversion on Euclidean space and other classical spaces on which the
wave equation has a known solution.

Proposition 2.5.17 will now be used to find an explicit representation for u(x; t),
not involving the Fourier transform. To do this, recall the representation of Syf (x) in
terms of the Dirichlet kernel

Suf(x) = w,_ /O DL (Nf ("t dr.

Since f € S, the function r — f,(r) is also smooth and rapidly decreasing, so that we
can integrate-by-parts and use the properties of the Dirichlet kernel to write D}, (r) =
—(1/277)(8/3r)D}i; *(r) and obtain if n = 2k + 1

_ Wai % sin 2w Mr 3\ e
Suf () = 2, /0 - ’(E) 2 () dr.

But Proposition 2.5.17 also provides a representation in terms of the same one-
dimensional Dirichlet kernel. Therefore we obtain the following proposition.
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Proposition 2.5.18. The solution of the initial-value problem (2.5.7) and (2.5.8)
is given by the explicit formula

2.5.11 [ f) = o] t(i)k[t”‘z_ ]
@511 D) = oo ar S

Example 2.5.19. [fn = 3, then the solution is u(x; t) = (d/dt)[tfr(t)] = zf;/(t) +
f.(t). The second term corresponds to a measure on the sphere {y:|y—x| = t}, while
the first term corresponds to a (dipole) distribution, which is the first derivative of
a measure—in the sense of Schwartz distributions.

The representation formula (2.5.11) can be used to exhibit the finite speed of propa-
gation of the wave equation, as contrasted with the “instantaneous speed of propagation”
of the heat equation.

Proposition 2.5.20. Suppose that f(y) = 0 in a ball of radius a centered at x.
Then u(x; t) =0 fort < a.

Proof. If f=0 in the ball, then f,(1)=0 for t<a, likewise for all higher time
derivatives. |

The odd-dimensional wave equation also exhibits Huygens’ principle, stated as
follows.

Proposition 2.5.21. Suppose that f is supported in a ball of radius R centered at
x. Then u(x;t) =0 fort > R.

Proof. In this case the surface integral f,(r) = O for r > R, likewise for the higher time
derivatives. ]

The wave equation in even-dimensional space can be solved by the method of
descent, which we illustrate in the three-dimensional case. If f €S (R?), we define
F(x,y,z) = f(x,y). If we parametrize the upper and lower halves of the sphere by
writing w3 = ++/1* — w? — w3, the surface integral over the sphere of radius ¢ in three
dimensions is transformed into the two-dimensional integral

BN fx4+wihy+w)
2wt [w]<t

Fx.)',()(’) = dW] sz.

2 —wl—w3
From this formula we see that the finite speed of propagation still holds: if f = O in
a disk of radius a centered at x € R?, then u(x; r) = 0 for ¢ < a. However Huygens’
principle is not valid in two dimensions, since if f is supported in a ball of radius R, the
solution u(x; t) is written as an integral over the interior of the disc of radius ¢ about x,
hence will be nonzero for all ¢.

Figure 2.5.2 illustrates Huygens’ principle; f = 0 outside the sphere of radius R
about (0, 0, 0). If ct > R + |x|, then f = 0 on the surface of outer sphere (labelled III)
where the integration is performed.
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FIGURE 2.5.2

Illustrating Huygen’s Principle.

From M. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications. Used
by permission of The McGraw-Hill Companies.

2.5.3.1 The method of Brandolini and Colzani

The wave equation can be effectively used to study pointwise Fourier inversion and

localization. In this section we treat the case of the Fourier integral. Brandolini and

Colzani (1999) have also treated the corresponding problem for multiple Fourier series.
We begin with the spherical partial sum operator

Suf (x) = F(&) € dg

&1=mM
= /R” 1|0.M](|$|)];($)62mg,x i

Let ¥ € CY(R) for some N > n/2 be a nonnegative even function with [, ¥ = 1 and

Y () = 0 for |¢| > €, for some € > 0. For example we can take an iterated Fejér kernel

1 — cos 2n5t>N

(2.5.12) V() = cnd ( 3

where cy is a positive constant. Explicit computation shows that E[A/(l) = 0O for |t| > N3,
so that we can take § = € /N. Without loss of generality, we take § = 1 in what follows.
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Now 19 is the restriction to the positive real axis of the even function 1;_ s . Writing
L-mmy = L—mmy * ¥ + (Lmm.m) — Li—pm.my * ¥), we have

Suf (x) = Spyf () + Spf (x)

where
Suf (@) : = /R parn * W) (EDF €)™ dg

Suf @) - = /R,,(h—M,M] — Lo * WI(EDF§)e 5 ds.

The success of the method depends on two fundamental points: (i) S}, (x) depends only
on the values of f in a ball of radius € about x. (ii) S? w/f (x) is essentially bounded by a

constant multiple of |, M<|E|<M41 [f(f;')[ dé&. To see this, first write the convolution

(L—mmy * Y)(@) = /Rehmi[—M.M](S)‘&(S) ds

o0 _sin2wMs +
=2 cos(2nst)41p(s) ds
0

sin 2 Ms (

Spf(x) =2 / Y()————— [ [ FUEDETE cos(2mslE]) dé‘) ds

2 M.
=2/ w(s)wu(s,x)ds
0 s

where u is the solution of the wave equation u,, = Au with u(0, x) = f(x), (0, x) = 0.
Indeed, this equivalence has been demonstrated for the class S, and the solution formula
(2.5.11) easily extends to f € L' + L?. This formula shows two important properties.

Rn

e If f = 0 in a ball of radius € about x, then S,{4f(x) =0.
o If s — u(s, x) satisfies a Dini condition at s = 0, then limy; S ,}4 f&x) =fx).

To estimate S, f(x), we note that 1j_y p * ¥ (£) = f,’:rﬁy ¥ () dy. Assuming the
iterated Fejér kernel (2.5.12) with § = 1, we see that for M > 1

fww(mdr L Mz

/ Y@)ydt=1
R
which can be combined into the overall bound

Cy
Hdt < —————, O0<M .
o Y()de < e <M < o0
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We use this to estimate the difference (1j_p,p) * ¥)(®) — 1i_pm1(2) separately for |¢| >
M and |t| < M. In the first case 1{_a ) (t) = 0 and we have

Cy
_M|)2N—l ’

t+M 00
Li—sr i * ¥ (2) =/t_M V() dy < /’_Mw(y)dys T

while in the second case 1y m () = 1 so that

+M
temn s v @ =1= [ “yordy- fwy)dy
—-M
(o[ oo
+M
= (1+|t—M|)2N I

Proposition 2.5.22. Iff € L'(R") + L*(R"), and the Fourier transform satisfies
the Tauberian condition

lim I &)lds =0,

M Jm<om|E|<mM+1

then S,f,, f(x) — 0; if in addition s — u(s; x) satisfies a Dini condition at s = 0,
then we have pointwise Fourier inversion: limy Sy f (x) = f (x).

Proof. From the above computations,

S2F () = /R Wi * Y EDT @) d

1 R
¢ d§.
= N/Rn (1+||§|_M|)2N_|V(§)| £

If f € L*(R") this can be estimated by Cauchy-Schwarz and applying the dominated con-
vergence theorem, whereas for f € L'(R") it can be estimated by removing the supremum
of f (&) and applying the dominated convergence theorem. ]

Example 2.5.23. Suppose that f € L'(R?) is defined by a smooth function on
the interior of a convex region with a smooth boundary with nonzero curvature,
and defined to be zero outside. Then the Fourier transform satisfies the asymptotic
estimate | f ()| < C/|E|*/. Hence

o C 1
d —M =0 0, M .
stlzns|5M+1 F@Nds = M3/ («/M) - -

This example satisfies the Tauberian condition, hence we have Fourier inversion
and localization at every point.
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2.5.4 Bochner-Riesz Summability

Closely related to the techniques of spherical Fourier inversion is the notion of Bochner-
Riesz summability of the Fourier integral. This is a natural substitute for the Fejér means,
which have no direct counterpart in R” if n > 1.

The Bochner-Riesz means of order & > 0 are defined by

2
(2.5.13) S () = / (1 - 'f—') FE)E dk.
|§1=M

By Fourier reciprocity, this operator can also be represented as the convolution with K¢,
the inverse Fourier transform of the function £ — (1 — |&|2/M?)*1(9.41)(|€]). In detail,
the Bochner-Riesz kernel is

x- 617\"
K;I(x) = / emeg (1 s d;;:
l&1<M M2
=C /M 1_“_2 “M,,J&Md
n 0 M? (27[#_}:)(’1—2)/2
1
= 27I|X|_(n—2)/2/ (1- 32)0!_](”_2)/2(27[|x|5)sn/2 ds.
0

This integral is evaluated in the appendix to this chapter, with the result

oz+n/2 (2JTM |XD

(2.5.14) K (x) = YR

Proposition 2.5.24. If « > (n — 1)/2, then K}, is an approximate identity. In
particular for every f € LP(R"), 1 < p < oo, |Byf —fll, = 0 when M — oo.

Proof. From the properties of Bessel functions, we have the bound
o M"
|KM(r)| 5 Cnu (1 + Mr)-a+—(’1+l>/2 .

Therefore

f IKS, (9] dx < G / T <%

which proves that the L' norms remain bounded when M — oo. In particular the integral
of K), can be computed from the Fourier inversion at £ = 0:

(1 |§.|2)l¥ _/ K© 2miEx
-—=) = w(x)e dx, &l <M
R/l

1= / Ky (x) dx.
Finally for any § > 0
/ |Ky ()| dx =/ K (y)dy — 0, M — o,
|x|>8 Iy|>8/M

which proves that K}, is an approximate identity. n
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One can also prove a.e. summability, as follows.

Proposition 2.5.25. Ifa > (n— 1)/2 and f € LP(R") with 1 < p < oo, then
for every Lebesgue point, limy Bf, f(x) = f(x). In particular this holds at almost
every x € R".

Proof. Without loss of generality we can suppose that x = 0. Furthermore we may replace
fbyf(x)—f (O)e""'2 to reduce to the case f(0) = 0. Define
®(r)
)= | FOldy, e =—

Iyl=<r

From the hypothesis of Lebesgue point we have € (r) — O whenr — 0.Nowifl < p < oo,
for large r we can use Holder’s inequality to write

O < Cap Iflp 77 €y < Copr™ TV P =p/p—1)

so that € is a bounded function. In case p = oo it is immediate that € is a bounded function.
Now we can write

BLF(0) = f KS () f (x) dx
R"

[Byf (0)] < c,M" |f ()| dx

- (1 +M|x|)a+(n+l)/2
n * 1
= C"M 0 (1 + Mr)u+(l1+|)/2 d<l>(r)

o0 1
_ n+1
= CpuM /0 T My d(r)dr

_ W [T Ps/M)
= cpaM /0 AT sy ds

_ c s"e(s/M)
=Cna o (1 +S)a+("+3)/2

where we have integrated-by-parts and used ¢ (0) = 0 in the fourth line. The final integrand
tends to zero when M — oo and is dominated by an integable function since @ > (n—1)/2
and € is a bounded function. Hence B}, f(0) — 0 when M — oo, which was to be proved.

|

2.5.4.1 A general theorem on almost-everywhere summability

It is possible to abstract the features of the Bochner-Riesz kerel to prove a general
theorem on almost-everywhere summability, originally due to Calderén and Zygmund
(1952).

Theorem 2.5.26. Suppose that kr(x), T — oo is an approximate identity on R"
which is majorized in the form

lkr)| < T"K(TIx), xeR,T=>0

where K : [0, 00) — [0, 00) is a decreasing function with K(0) < oo, |K|; :=
fR,, K (Jx|) dx < oo. Suppose that f € L' (R") and that 0 is a Lebesgue point of f.
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Then
lim kr(x) f(x) dx = f(0).
T— 00 Rn

Proof. The approximate identity can be applied directly to the bounded continuous function
x — e "’; hence we may replace f by the integrable function f (x) —f (0)e~"" and reduce
attention to the case f(0) = 0. Having done this, we let

‘1>(r)

o) = / F@lde, €)=
|x|<r

Clearly ®(r) < [ f]l\ and, since O is a Lebesgue point, € is a bounded function with
lim,_ €(r) = 0. Now we write

‘ / kr () (1) dx
Rll

5/ T”K(T[x|)|f(x)|dx:/wT”K(Tr)ch(r).
R 0

This will be integrated-by-parts, following the remarks that (i) since ||K||; < oo, we must
have lim,_, o, K(r) = 0 and (ii) since ®(0) = 0 and ® is bounded, both terms at the limits
vanish and we can write

/ T'"K(Ir)d®(r) = —/ T"®(r) dK(Tr)
0

0

— /Oo(Tr)”e(r) dK (Tr)
0

- Aw s'e (%) dK (s).

But another partial integration shows that

M M
- f s"dK (s) = —s"K (M) + / K(s)s" 'ds < CIK|l; < 00

0 0
so that s"dK () is a finite measure on [0, 00). Meanwhile, the function €(s/T) is uniformly
bounded and tends to zero when T — oo. Therefore by the Lebesgue dominated con-

vergence theorem, the last integral tends to zero when T — oo, completing the proof.
n

Exercise 2.5.27. Extend the previous result to f € L’(R"),1 < p < oo with a
Lebesgue point at x = 0.

2.6 BESSEL FUNCTIONS

Here we give a self-contained development of the necessary facts about Bessel functions.
In Chapter 1 we encountered the so-called modified Bessel function I,,(t), defined by a
power series with positive coefficients. The standard Bessel function J, (¢) is defined by

2j+m
2.6.1) Tt = Z( UL

JG+m!
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This power series converges in the entire complex plane. If m is not an integer, we define
the factorial as the Gamma function

[e]
m! = / e ldt =T (m+1).
0

Proposition 2.6.1. Ifm, v > 0, the Bessel functions satisfy the relations

(2.6.2) -;it[tm.]m(t)] = " J oy (1) t>0
(2.6.3) i[t""Jm(t)] = —t"" 1 (2) >0
dt
(2.6.4)
1" 1 ! m2 _ I d
J.@®) + ;Jm(t) + (1 — t—2> Jn() =0 ( = E) t>0
1
(2.6.5) f Jn(Rs)s" (1 = §%)" ds = pvyJmtvt B) R>0
0 RV+1
1
(2.6.6) / (1 — A"V gg = Mr <m + 1) r <1> )
—1 tm 2 2

The first three are obtained by termwise differentiation of the power series. For the
fourth, we substitute the definition of J,, into the integral and integrate term-by-term:

1 m+2
/ Jm(RS)Sm+1(1 _ SZ)VdS — / (Z(_ %) sm+l(1 _ SZ)Uds
0 :
1 & (R/2)m+2f i )
"2 Vi )'/ S

(R/z)m+V+l+2j
—R”“f; Jlm+v+j+1)!

2Vp!
= RT+,‘Jm+u+1 (R)

The final integral formula is obtained by making the substitution s = sin 8 and recog-
nizing the power series coefficients from Chapter 1.

Exercise 2.6.2. Prove (2.6.2) by termwise differentiation of the power series
definition (2.6.1).

Exercise 2.6.3. Prove (2.6.3) by termwise differentiation of the power series
definition (2.6.1).

Exercise 2.6.4. Prove (2.6.4) by termwise differentiation of the power series
definition (2.6.1).

Exercise 2.6.5. Complete the details of the proof of (2.6.6).
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The asymptotic behavior of J,(¢),t— oo is most efficiently deduced from
a differential equation. Let y(¢) =+/tJ,(¢). From (2.6.4), we have by successive
differentiation

C 1
(2.6.7) y"—}—y:—zy, 0<t<oo, Ci=m*—=.
t 4
This implies that y and y’ remain bounded when ¢ — oo, since
d / , o 20y IC |
;i—t(y2+y2)=2yy +2y' = = 0+ Y.

Hence fort > ¢,
/ / ! ds /
Y& +Y (7 < (to)* + Y (t)] exp <|C| / ?2) < [y(t0)* + ¥ (o)1,
Iy

which proves the required boundedness. From this we have the representation

y()

[o.¢]
(2.6.8) y(t) = / sin(t — s) ds+Ajcost+ Apsint.
t

Indeed, the first term on the right of (2.6.8) is a solution of the differential equation
(2.6.7), so that it differs from y(¢) by a solution of the homogeneous equation 7’ +z = 0,
whose general solution is A} cost + A; sin .

From this follows an asymptotic formula for y(¢), since the integral term is bounded
in the form

foosin(t—s)ggds'sf |Cy(s)|d _0< ) t — 00.
1 &) t

We summarize the above work as follows.

Proposition 2.6.6. The Bessel function J,(t) satisfies the asymptotic relation

1
ﬁ]m(t)=Alcost+Azsint+0<;), t— 00
for suitable constants A\, A,. Equivalently, we may write

I (t)—%cos(t—9)+0<t31/2> t — 00

for suitable constants A, 6.
The constants A, 6 can be explicitly identified in the case of integer m by the

method of stationary phase, described in the next section. In the case of half integer m,
it is often possible to identify the constants from elementary formulas, beginning with

Jipp(x) = /2/mxsinx.

Exercise 2.6.7. Prove that the derivative of the Bessel function satisfies the
asymptotic formula (d/dt)(v/tJ,(t)) = —A; sint + Ay cost + O(1/t),t — oo.

Hint: Compute y'(¢) from (2.6.8).
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2.6.1 Fourier Transforms of Radial Functions

If f € L'(R"), the Fourier transform f is a continuous function vanishing at infinity,
whereas if f € L2(R"), we can only say thatf € L?(R"), in general. In Chapter 3 we will
prove that the Fourier transform can be extended as a bounded operator from L” (R")
to L” (R") if 1 < p < 2. However, if f depends only on r = |x|, then f will also be
continuous and will vanish at infinity when f € L”(R") for restricted values of p.

We proved in Section 2.1 that the Fourier transform of a radial function is again
aradial function. By writing this explicitly in terms of a suitable kernel, we can establish
useful properties of the Fourier transforms of radial functions. Specifically, we have the
following.

Proposition 2.6.8. If ¢ € S(0, 00), and we set f (x) = ¢(|x|), then

~ _ e J(n~2)/2(27[r|‘§|) n—
(2.6.9) f(é?)—/o ¢(0W’ Ldr.

Iff € LP(R"), 1 < p < 2, then this integral is interpreted as a limit in L’ (R") of
fOM when M — oo.

This follows from the representation of Bessel functions, specifically (2.6.6) with
m = (n/2) — 1, t = nr|&|. For details, see Stein and Weiss, 1971, p. 154.

We can use the representation (2.6.9) to prove additional properties of Fourier
transforms of radial functions for restricted values of p € (1, 2).

Proposition 2.6.9. Supposethat1 < p < 2n/(n+1). Then the Fourier transform
(2.6.9) is a continuous function for & # 0, which vanishes at infinity and satisfies

Fer =G, [ worma=c, /R FOP dx.
0 n

Proof. Recalling the bounds on the Bessel function and applying Holder’s inequality, we
have

M M n—1
Jo-pQrrlED - lo(r)|r
SR B gyl < Cn _lenir—

/0 (r Gepear T S0 T epe

M "y r(n~l)/p'
= Hr*” ——————dr
-/0 O e

=([ " opear) ([ )"
r r
“\Jo ¢ o (L4 r|g])=bror

The final integral converges when M — oo if and only if (n — 1) — p'(n — 1)/2 < —1,
which is equivalent to 1/p' < (n —1)/2n or 1/p > (n + 1)/2n. The continuity for § # 0
now follows from the dominated convergence theorem. To prove that f vanishes at infinity,
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we write for any € > 0,
Jou-22Qrr|E]) it
j© = (/ / ) wgneor T

€ M n—1
‘/0 go(r) (rli:l)(”_2>/2 r dr

<c, / oI dr
0

€
— C,,/ |¢(r)Ir(n—l)/pr(n—l)/p’ dr
0

13 1/p' 13 1/p'
<dC, (/ lo(r)Pr! dr) (] r! dr)
0 0
" € V74
= Ce? ( NG dr)
0

i J(an)/Z(ZT[rlED n—1 i lo(r)] n—1
/e YO Genen Y SC"[ GG

Cu > (n=1/p (n=1)/p'+(1=n)/2
= _lfl('””ﬂ lo(N)|r r dr
€

C, % 1/p o0 1/p'
= |E[=D72 (/ I(p(r)l”r”"ldr) (/ r"dr)

where g =n — 1 — p'(n — 1)/2. Taking € = 1 shows that |f(¢)|’ < Cop Jy~ lo(MIPr" " dr
provided that p’ > 2n/(n — 1). On the other hand, for this same range of p we have for any
€ >0,

3 1/p'
lim sup [ (§)] < C,e"”' ( le)I’r! dr)
1&|—>00 0
Taking € — 0 shows that the limit is zero, as required.

To see that this range of p is sharp, let

J, nf2 (27T T a)

which is the Fourier transform of the indicator function of a ball of radius a. From the
asymptotics of Bessel functions, we have ¢(r) = [C + O(1/r)]cos(r — 8)/r®*+"/2 when
r — oo so that (| - |) € L(R") if and only if oo > [, r®"=D=r"+D/2gr which happens if
and only if p > 2n/(n+1). But f is discontinuous at the sphere of radius a, which provides
the required counterexample. n

p(r) =a"

The above results can be extended, in a suitable form, to nonradial functions by
means of the restriction theorems, described below. These results depend in part on the
complex interpolation method, to be developed in Chapter 3.

2.6.2 [*-Restriction Theorems for the Fourier Transform

The Fourler transform of f € L' (R") is a continuous function that satisfies the pointwise
bound [f(é )l < Ifll:. However if f € L’(R") with p > 1 we cannot expect any such
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pointwise bound in general. However if f is a radial function, we have shown in the
previous subsection that |f(.§)| < Cpllfllp for 1 < p < 2n/(n + 1), hence this same
estimate applies to the average over a sphere. The restriction theorems generalize this,
by bounding the L? norm of the Fourier transform on a sphere in terms of suitable L”
norms. We have the following proposition, attributed to Tomas (1975).

Proposition 2.6.10. Letw(d0) be the uniform surface measure on the unit sphere.
Letf € S,and 1 < p < 4n/(3n + 1). Then for some constant A = A, we have

. 1/2
(2.6.10) ( - lf(9>|2w(d9>) < Aplf 1,

Proof. The Fourier transform of the surface measure is given by

Jn-2y2 (27 |x])
|x|(l172)/2

H0x) = / e it (dE) = C,
Su—l

and satisfies &(x) = O(|x|"'"="/?), |x| — oo. Hence & € LY(R"), provided that ¢ >
2n/(n — 1). Now by Fourier reciprocity, Holder’s inequality and the Young convolution
estimate, we have

FEPoMs) = | (*fHxdr) de

RI'I ]RII
<N *flg g
20 A
< Iflpl@ll

where (2/p) = 1 4+ 1/4'. But ¢ > 2n/(n — 1) implies that 1/¢' > (n + 1)/2n so that
2/p > (3n + 1)/2n, which was to be proved. |

2.6.2.1 An improved result

We can extend the range of p-values in the previous result by the use of Stein’s complex
interpolation method, which will be developed in Chapter 3. In this method, we imbed the
given problem in a one-parameter family of operators. A family of convolution operators
is defined by the kernels

Jin—2y2 + 221 |&|) 1—n

(2.6.11) K, (x) = C, P 5~ SRezs<l.
At the endpoints we have
1—
20 = —— n’ K,(x) = cos(2m|x|), abounded function,
Jupn(2 o
o =1Kk = TpQIED L 2 bounded F.T., Ky = 1j0.1)(Ix]).

|& 1"/
Therefore K,, maps L' — L*°, and K,, maps L> — L2, so we can use the complex
interpolation method with
1—n

2 9

po=1,q =00,20 =

pr=2,q =2z=1
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Thus
T_l-e ot ot
p 1 2 2’
1 1—¢ ¢t t
9" o 277
c=-n "4
2

In particular p and g are conjugate exponents, 1/p + 1/q = 1. In order to have z = 0
we must take t = (n — 1)/(n + 1), hence 1/p = 1 — (¢/2) = (n+ 3)/2n + 2),
p = (2n+2)/(n + 3). We now apply this to the Fourier reciprocity formula and apply
Holder’s inequality to write

IF @)1 (d6) = fR (N0 dx
=< ”f”p ”f* C"\)”p’-

The Fourier transform of w is given by ® = Kj. Each member of the one-parameter
family maps the Lebesgue space into its dual, in particular

If * olly < Clflp,

Sn—1

from which we conclude the following theorem.

Theorem 2.6.11. Ler w(dO) be the uniform surface measure on the unit sphere.
Letf € S,and 1 < p < 2n+2)/(n + 3). Then for some constant A = A, we
have

. 172
(2.6.12) ( - lf(9)|2w(d9)) < Clfllp-

In Chapter 3 it will be proved that the Fourier transform can be extended as a
bounded operator from L”(R") to L” (R") if 1 < p < 2. In this setting the restriction
theorem is also valid, by taking limits in the space S. Many of the properties of the
Fourier transform on L' (R") have counterparts in this wider setting. In particular, the
restriction theorem may be used to prove the following result on the average decay of
the Fourier transform of a function in L” for a suitable range of exponents.

Proposition 2.6.12. Suppose that f € LP(R") where 1 <p < 2n+2)/(n+3).
Then fll;'l:l If(r&))*w(d€E) — 0 when r — oo.

Proof. Define f,(x) = r™"f(x/r) for r > 0, x € R". Then

FE& =r L T EF (e dx = / L () dy = F(rE)
Rn R

£ = [ rrompdy = [ irompdy =i
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Applying the L? restriction theorem, we have
Fr&)Pw@g) < G = Cr 7| f2 — 0
1§1=1
since p > 1. ]

Corollary 2.6.13. Suppose that f € LP(R") where 1 < p < (2n+2)/(n + 3).
Then flglzlf‘(rg)w(df) — O when r — oo.

One may note that the results on radial transforms are valid on a wider set of L”
spaces than the L?-restriction theorem, since

2n+2 2n
—_— < .
n+3 n+1
Thus we may extend the previous corollary, as follows:

n>1—

ExerCiAse 2.6.14. Suppose that f e LP(R") with 1 < p < 2n/(n+ 1). Show that
Sg1=1 f (r§)(d&) — 0 when r — oo.

Hint: Interchange the orders of integration to reduce to the case of a radial function.

2.6.2.2 Limitations on the range of p
The sufficient conditions on the range of p-values for the restriction theorem are also
necessary, as revealed by the following example.

Example 2.6.15. Let f be the Fourier transform of the indicator function of the
rectangular region R defined by the inequalities

l—e<x <1, gl <ve 2<j<n

where 0 < € < 1.
In detail

f(x):/e~27ti§'xd§
R

L
— / e—zﬂl«ﬂ%’ldgl 1_[ / e"Z”ijE/dg:j
1-e j=2 \/-v¢

e~ _ pm2mini(1—€) ﬁ sin 27 x; /€
- 27‘[)6] TT X

j=2

n

[

j=2

sinx€ sin 27 x; /€

T Xj

lfe)l =

TX)|

To compute the L” norm, we note that by direct computation

p
[ e
R R

sin Txe siny

Ty

p
dy = Cpe’".

X
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Applying this to both factors above yields

_ (n—D(p-1) _
11l = Cper™' e P00 = e,

”f”p — CI)G(IH—I)/pr'

On the other hand, the L?-norm of the Fourier transform on the unit circle is

dxy...dx
2 no_ Cpe(n—l)/2‘

F&) o) = /

w(dE) = c / 2T
lEI=1 b | < VExt4t=1 "z VE

Hence
£ llz2sn-1y ~ Ae®=D/4,

If the restriction theorem (2.6.12) were valid, then we would have
en=ny/4 < AemtDi2p
This can be true for all € > O if and only if we have (n + 1)/2p’ < (n — 1)/4, or

equivalently

1 1 n+3
>

n—1
>

1
20+) " p p  pT 242

which is precisely the range of admissible exponents in the L?-restriction theorem
(2.6.12).

2.7 THE METHOD OF STATIONARY PHASE

Often we have occasion to make an asymptotic evaluation of a one-dimensional Fourier
transform, when |£| — oo. This can often be done by a simple integration-by-parts, for
example if f € L'[a, b] is absolutely continuous with ' € L'[a, b], we can write

b
Fe) = f Fx)e 8 dx

‘ b e»ZniEx
= [0 ()
B f(b)e—2ni$b _f(a)e-2ﬂi§a
- —2miE

—2mikx
+ ! X)e ! d.x.
271 I.E v/l: f ( )

The new integral is o(1/&) when || — oo and we have obtained an asymptotic formula.
If £ has higher derivatives in L', then this may be iterated to obtain an asymptotic
expansion.
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In many problems of interest, we encounter Fourier transforms when f’ ¢ L', for
example the Bessel function
1 1 eilx
Jo(t) = — f dx.
T J-

V1 —x?

If we make the change of variable x = cos 8, 0 < § < &, we obtain the formula

L 7
JO([) — _/ ellcose d@,
T Jo

which looks less forbidding, however it is no longer written as a Fourier integral. If we
try to integrate-by-parts, we find that the contribution to the integral from any interior
interval tends to zero like 1/¢, but this analysis no longer applies near the endpoints
0=0,0=nm.

To handle this and more general “oscillatory integrals,” we develop the method of
stationary phase. Specifically, we consider complex-valued functions of the form

b
(2.7.1) f@) = f e Wg(x) dx,

where ¢ is a real-valued function called the phase function. The function g(x) may
be either real- or complex-valued. If ¢’(x) # 0, then we may integrate-by-parts and
conclude that f(r) = O(1/t),t — oo. However, if ¢'(x) = 0 for some x, then this
conclusion is no longer valid. In order to find the correct result, we focus attention upon
those points x; where ¢’(x) = 0, the so-called stationary points.

2.7.1 Statement of the Result

The complete statement of the result is given as follows:

Theorem 2.7.1. The method of stationary phase: Suppose that g(x), ¢(x)
have two continuous derivatives for a < x < b, that ¢(x) is real-valued, and
that ¢'(x) # 0 except for a finite number of stationary points x;, where ¢" (x;) # 0.
Let these be labeled so that ¢"(xj) > 0 for 1 < j < K and ¢"(x;) < 0 for
K+4+1<j<K+L. Thenwhent — 00,

b 1
(2.7.2) / eOg(x)dx =IT() +1" () + O (;>
a
where
K 27 1/2 .
273 I"(t) = i1005) i/ g (x;
K+L 27 1/2 . -
2.7.4) 1 (t) = <7/> et p—in/ g(x).
./=;+l —19" () ’
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If either of the endpoints x = a, x = b are also stationary points, then they
contribute to (2.7.3) and (2.7.4) with a factor of %

A simple tool to remember this complicated formula is to observe that the result
is identical to what is obtained by replacing ¢ (x) by its two-term Taylor expansion and
replacing g(x) by its value at each stationary point, then doing the resultant integrals
(one for each stationary point), and then summing the results.

We illustrate with a typical example.

Example 2.7.2. Apply the method of stationary phase to find an asymptotic
formula for the integral

/2 )
/ (2x + 3)e "5  gx.
—/2

In this case we have g(x) = 2x + 3, p(x) = —cos x, ¢'(x) = sinx, ¢”(x) = cos x.
The only stationary point is x = 0, where ¢”(0) = +1, g(0) = 3. Applying (2.7.2), we

have
/2 oy
/n e_,‘rcosxdx =3 2_7Te—itein/4 +0 (1) , f — 00
—n/2 t t

2.7.2  Application to Bessel Functions

As a primary application of the method of stationary phase, we propose to identify the
constants in the asymptotic behavior when ¢t — 0o of the Bessel function J,,(¢), which
is represented by the integral

(2.7.5) Ju(t) = o / g1 c0s g=imé gg m=0,1,2,....

Proposition 2.7.3. The Bessel function has the asymptotic behavior

2.7.6) I (1) =\/gcos (t—n/4—mﬂ/2)+0(%>, t — o0.

Proof. From the integral representation (2.7.5) we have (2.7.1), where ¢ (x) = cosx, g(x) =
(1/2m)e~ "™ e~/ Since ¢'(x) = —sinx, ¢”(x) = — cosx, there are three stationary
points: x = 0, x = m, x = —m, with ¢"(0) = —1, ¢" (1) = 1 = ¢"(—m); also g(0) =
(1/2m)e™ /2 g(7r) = (1/2m)e~*""/2 = g(—m). We apply the method of stationary phase,
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noting that the endpoints contribute with a factor of % Hence

2T ) e#inm/Z 1 1 2T L e—-}mm/Z 1
Jm 1) = ./ et —in/4 - - &° i in /4 ol =
® V7ee 2 +2+2Vtee 2w + t
—imm /2 imm /2
_ /2_”ei,e—in/4; 4 z_ﬂe—nemﬂf___ +0 1
t 2 t 2w t

— L (ei(lfn/élfmn/Z) +evi(l*n/4~m7r/2)) +0 1
2mt t

=\/Zcos(t—rr/4—mn/2)+0<l> . |
Tt t

2.7.3 Proof of the Method of Stationary Phase

We now outline the steps used to prove (2.7.2). The idea is to reduce the study to each
stationary point, where we can approximate using with the Taylor expansions with an
error of O(1/t).

Step 1. If the interval ¢ < x < d does not contain any stationary points, then

d ) 1
/ e""Wex)dx = 0 (;) , t — o0.

Proof. We multiply and divide by ¢'(x) and integrate-by-parts as follows:

d d
100) g — 80) 1 (ite) gy
[ oo [ o)

d
= —'g(x) e"'w(x)r‘_:‘{ _ l/ eitw(x)i g(x) dx
itg’(x) =gt J. dx \ ¢'(x)

Both terms are O(1/¢), t — 00, and can therefore be included in the remainder term.

Therefore we can restrict attention to contributions from intervals containing the
stationary points. Assume that x; is a stationary point for which ¢”(x;) > 0, and let§ > 0
be chosen so that ¢(x) — ¢(x;) > O in the interval x;, — § < x < x; + §. We introduce a
new variable of integration v through the equation

) — p(x1)

( ¥ xy—8d<x<x—1+438.
X —X

v=(x—x)

The function x — v(x) vanishes at x = x|, with v'(x;) = /¢"(x,)/2 > 0. Therefore there
exists an inverse function x = X (v) with X(0) = x;, X'(0) = +/2/¢" (x)). |

Step 2.
X1 +8 &
f g(x)e"*Wdx = ei"p("')/ G(v)ei’uzdv
)C|—(S —(§|

where 8, = v(x; + 8), =8, = v(x; — 8) and G(v) = g(X(v))/v'(X(v)), GO) =
g(x1)/2/ 9" (x1).
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Proof. We make these substitutions in the integral and change variables to obtain the result.
|

Step 3.
/ G()e" dv = G(0) / e dv+ 0(1/1),  t—> oo.
8

Proof, We write G(v) = G(0) + vh(v), which defines the differentiable function i (v). The
second term contributes to the integral

5
/_ vh(v)e”” dv = ~——/ h(v)d )
-5
=5 (ne e~ [ * e
T 2it v & -5 v
(3)
= 0 -
t

as required. |

32 ) ) 1
/ eV dy = ze”'/4 +0 (—) , t — oo.
_5 Ve 1

Proof. This is the Fresnel integral. Readers familiar with complex-variable methods will
find this a one-liner: apply Cauchy’s theorem to the function f(z) = € * on the crescent-
shaped contour formed by the ray z = re™/%, 0 < r < R, the arc of the circle |z| = R, and
the real axis from (0, 0) to (R, 0), when R — oo. We now outline a proof that does not use
complex-variable methods.

The qualitative fact of convergence of the improper integral is established by the
following partial integration:

N Mo .2
/ e"dx =/ —d(")
M u 2ix
iN? iM? N ix?
1
= e._ — e. + = / £ dx
2iIN  2iM  2i Jy X*
The final integral is less than or equal to 1/N, so that the right side tends to zero when

M, N — ooc. This proves that the improper integral [~ ¢’ dx is convergent. Letting N —
oo shows furthermore that

Step 4.

oo iM? 00 ix?
2 e 1 e
M dx = — + dx
/M e 2iM x2

Both terms on the right are O(1/M), so that we have the required speed of convergence:

M 5 oo
/ e’ dx = eV dx + 001 /M), M — oo.
0 0
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It remains to compute the numerical value of the improper integral. To do this, we letp > 0
and examine the double integral

o0 o 24002y (2402
Jp — / f e—p(.\' +y )el(x +y )dx dy.
0 0

On the one hand, we can take polar coordinates x = r cos9, y = r sin 6 and compute

e} n/2 -
J,= f [ e e rdrdd
o Jo
oC
= %/ re "0 dy
0
/4 1

22— i)

On the other hand, the double integral is the square of a single integral:

oo . 2
Jp p— </ e‘Px‘g,dex) )
0

Letting I = f;° " dx, we conclude that

P=limJ, = 2.
4

p—0

But the complex number I has both positive real and imaginary parts, so that the appropriate
square root is
I=./ Lo,
4
To apply this to Step 4, write

fa gy = L Y g = ! [1+0<1)] t— 00
eV dv=— e = — — 11, .
0 Vil Vi Jt

The equality of the two limits follows from Abel’s lemma (see below), which completes
the proof. ]

2.7.4 Abel’s Lemma

We give two forms of Abel’s lemma for integrals, the second of which is applied above.

Proposition 2.7.4.

e Suppose that f(t),t > 0, is a locally integrable function and lim,_, o f(t) = L.
Then lim,y [, f(H)pe "'dt = L.

e Suppose that g(s), s > 0 is a locally integrable function and that the improper
integral f0°° g(s) ds converges to some L. Then

o0

lim g(s)e™™ds = L.
ri0 Jo
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Proof. The proof consists of writing

/ f@Ope™™dt—L= / (f(t) — L)pe™ dt.
0 0

Given € > 0, we split the region of integration into the two regions 0 < t < T and
T <t < oo, where T is chosen such that | f(#) — L| < € fort > T, so that the second
integral is less than €. The first integral is less than p fOT | f(t) — L} dt which tends to zero
when p | 0 and the first statement follows.

To prove the second statement, we set f(1) = fo’ g(s) ds. By hypothesis f(t) — L
when # — oo. Interchanging the orders of integration yields

/oof(t)pe‘p'dt = /oope'”’ (/ g(s) ds) dt
0 0 0
= /00 g(s) (/ pe ™ dt) ds
0 K

= f g(s)e ™ ds.
0

Applying the first statement gives the result: if lim, fo'g(s) ds=L, then
lim,yo [y~ g(s)e”*ds = L. [ ]



CHAPTER

3

FOURIER
ANALYSIS
IN [P
SPACES

3.1 MOTIVATION AND HEURISTICS

Much of modern Fourier analysis is concerned with bounded linear operators on the
Lebesgue spaces L”(T) and LP(R"). This chapter is devoted to the development of
systematic methods for proving the boundedness of relevant operators by the method
of interpolation. Following M. Riesz, if we can first prove that an operator is bounded
on two different pairs of Lebesgue spaces, then we can often deduce boundedness on
the intermediate spaces. A more general concept, that of weak boundedness, can often
be used in place of strict boundedness, following the work of Marcinkiewicz. These
techniques are applied to prove the L” boundedness of the classical Hilbert transform,
both on the circle and on the real line. This yields the M. Riesz theorem on L” convergence
of Fourier series and integrals in one dimension. This chapter also includes the Hardy-
Littlewood maximal inequality, which proves the weak L'!-boundedness of a fundamental
operator that underlies the Lebesgue differentiation theorem and many other almost-
everywhere convergence results in Fourier analysis.

3.2 THE M. RIESZ-THORIN INTERPOLATION THEOREM

In order to introduce the ideas, we first develop some elementary properties of L” spaces.

Lemma 3.2.1. Suppose that f € LP*(R") N L*°(R"). Then f € L (R") for any
P > po.

Proof. Letting M = || f |}, We write

IO dx < MPiPo f OO dx < oo, -
RI'

Rn
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(3.2.1) LR NI R" ¢ LP(R™) ¢ L (R") + L7 (R™).

INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

We say that f lives on a set of finite measure if |{x : f(x) # 0}] < oo.

Lemma 3.2.2. Suppose that f € LP'(R") lives on a set B of finite measure |B]|.
Then f € LP°*(R") for any py < p;.

Proof. From Holder’s inequality we can write

Po/pi
rwr = [ rerwe s ( [ s dx) (IBY© M/ < oo,
Rll LR”

RH
|

Lemma 3.2.3. Let 0 < p; < p < p; and suppose that f € LP(R™) N L7 (R").
Then f € L’ (R").

Proof. We write f = f1y <1y +f1y>1) = fi +/>. Both f; and f, are dominated by f, in

particular f; € L and f, € L’'. But f; is bounded and f; lives on a set of finite measure,
since

x: o) # Ol = l{x : [f ()] > 1} < /R |f ()" dx < oo.

Therefore by the preceding lemmas, f; € L”(R") and f, € L”(R"). But L’(R") is a linear
space, hence f € L”(R"). ]

Lemma 3.2.3 has a sort of converse, as follows.

Lemma 3.2.4. Let 0 < py < p < p\ and suppose that f € L’ (R"). Then there
exist fy € L™ and fy € L' such that f = fy + f).

Proof. 1t suffices to takef() =f1|j|5| andf, =f1|_/|>|. |

The last two lemmas can be restated as follows: if py < p < p), then

The above lemmas show that for any measurable functionf, the set {p : || f|l, < oo}

is a connected subset of the real line. The theory of M. Riesz-Thorin quantifies this by
showing, for example, that the mapping p — log || f ||, is a convex function of 1/p. At the
same time we deal with linear operators that are simultaneously defined on two different
L? spaces, developing the interpolation properties of these linear operators.

Exercise 3.2.5. Use Holder’s inequality to show directly that if 1 < py < p; < 00
and 0 < a < 1, then

o -«
|f|alf|+(l—a)/’o < (/ |f|p|> (/ |f|p”>
RH n n

Conclude that p — log || f ||, is a convex function.

The basic convexity result of M. Riesz will be developed in the following general

setting. Suppose we have two measure spaces (M, i) , (N, v) and two pairs of indices
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o, 90), (1, q1) where 1 < po,p1,q0,q1 < oo with pg # p1, qo # q,. Further we
assume given linear operators Ay : L (M) — L®(N)and A, : L’'(M) — L7 (N) so that
Ao = A; on the common domain L7°(M) N L' (M). Let k; = ||All,, 4 be the respective
operator norms, i = 1, 2. An interpolation is defined by a real number ¢ € (0, 1) giving
rise to indices (p, g;) defined by the convex combinations
1 t 1—1¢ 1 t 1—1t
+ .

9

pe P Po @ @ o

Theorem 3.2.6. M. Riesz-Thorin: Under the above hypotheses there exists a
linear operator A, : LP"(N) — L% (N) that coincides with A; on LP*(M) N L”' (M)
and whose operator norm satisfies

1Al p,.q < ko ~'k}.

The M. Riesz-Thorin theorem can be applied to prove the Hausdorff-Young
inequalities for Fourier series in one dimension. This is illustrated in the following
two examples.

Example 3.2.7. Suppose that M = T with Lebesgue measure and that N = 7
with counting measure. Let Af (n) = 1/2n fT f(8)e™"db be the discrete Fourier
transform. Letting (po, qo) = (1, 00) we see from the contraction property that
Ay is bounded with ky = 1. Letting (p1, q1) = (2, 2), we see from the Parseval
identity that A| is bounded with k) = 1. Applying the theorem, we take 1/p, =
t+(1—-0/2=0+1/2and1/q, = (1 —t)/2. These are conjugate exponents,
satisfying 1/p, + 1/q, = 1. Since LP(T) C L'(T) the operator A must agree
with the discrete Fourier transform, so that we conclude for any 1 < p < 2
A LP(T) — L (Z) where 1/p + 1/p' = 1. Equivalently

R 1/p' 1 1/p
(Z lf(n)|”> < (2— / £ O d0>
nez T JT

The roles of T and Z can be reversed to obtain another example.

Example 3.2.8. Suppose that M = 7 with counting measure and that N = T
with Lebesgue measure. For a bilateral sequence {c,},n € Z, define Af(0) =
> ez Cne™. From the first properties of absolutely convergent series, this is
bounded from 1'(Z) to L®(T); also from the basic properties of L? it is also
bounded from 1*(Z) to L*(T). Therefore we can take py = 1,q9 = 00, p; = 2,
q1 = 2 to obtain the same conjugate exponents 1 /p, = (1+1)/2, 1/q, = (1—1)/2
and the conclusion that for 1 <p <2

g
27[11‘

The next exercise treats the convexity of the p norm by M. Riesz-Thorin.

1/p'

P 1/p
/ p
4 —
f(i |Cn|> P-—p 5

neZ

§ Cn emG

nezZ
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Exercise 3.2.9. Let f € L’(E), where E is a measurable subset of R" and
1 <p < oo with||fll, = (fg IfIH'.

(i) Prove that || fl, = SUPj4 <1 fE |f@|, wherep’ =p/(p — 1).

(ii) Use the M. Riesz-Thorin theorem to prove that if f € L, (E) N L, (E) with
1 < po < pi < oo, then IIfll, < IFILIFIL, where 1p, = (1— 1)/
po +t/p1.

(iii) Conclude that the mapping p — log | f |1/, is a convex function.

To prove the theorem, we first prove the maximum-modulus theorem.

Lemma 3.2.10. Suppose that f(z) is an analytic function in an open connected
subset S of the complex plane. This means that about every point z there is
a disk |7 — 29| < r so that f is the sum of a convergent power series f(z) =
Zz‘;o a,(z — z20)". Then f cannot have a local maximum at any interior point
unless f is constant. In particular, | f(2)| attains its maximum on the boundary.

Proof. If f is nonconstant, then there is a smallest value of n > 1 so that a, # 0. By
translation, we may suppose that zp = 0. Near z = 0, f(z) = ao + a," + O""),
|f (re®)|? = |aol? + 2|apa,|r" cos (nd — ¢) + O™ . Clearly | f(z)|?> — f (z0)? takes both
positive and negative values in any neighborhood of r = 0, which is a contradiction. =l

Now we can prove the three lines theorem.

Lemma 3.2.11. Suppose that F is an analytic function defined in the strip S =
{z : 0 < Re(2) < 1} and such that | F(iy)} < my, | F(1 + iy)| < m; for —o0 <
y < 0o where my > 0, m; > 0. Then | F(x + iy)|] < m(')_xm’l‘forO <x <1,
—0 <y <.

Proof. Let F,(z) = F(z)/my “m}, which is an analytic function with |F(iy)| <1,
|F(1+ iy)| <1, so that we can assume m, = m; = 1. First we prove the lemma under the
added condition that F(x 4 iy) — 0 uniformly when |y| — 00,0 < x < 1. Then we must
have [F(x £ iM)| < % for M large enough. Therefore by the maximum principle, we must
have |[F(x +iy)| < 1for0 <x <1, -M <y < M. But M was arbitrary, so the inequality
holds in the entire strip0 < x < 1, —0co0 < y < o0.

In the general case, we let F,(z) = F(z)e~"/". Then

[F(x+iy)| < |F(z)|e—.\'2/ne(x2—1)/n < e_yz/,,’

which tends to zero when |y| — oo. Hence we can apply the previous paragraph to conclude
that [F,(x 4+ iy)| < 1 in the entire strip. But |F(z)| = lim, |F,(z)| < limsup 1 = 1, which
completes the proof. ]

Proof of the theorem. Having made the necessary preparations, we first note that for
any measure space (M, ), A can be defined on the spaces L” (M), since we can write
f =f1lin<1 4+ fli5>1. By Holder’s inequality, this is the sum of an L function and an L”!
function, for which A is defined. Now the L? norm can be computed as

lAlly = sup /hgdv,
N

llgh, <!



FOURIER ANALYSIS IN 2 SPACES 173

where the supremum is taken over all simple functions, i.e., finite linear combinations of
indicator functions of sets of finite measure. At the same time we have

Allpy =  sup /(Af)gdv.

I lp=Llglly =1 JN
We extend the interpolated exponents to the complex plane by defining
1 b4 1-2 1 Z 1-z
—=—+ , <=+
p@ p o 9@ @ 9

0 <Re(z) <1.

It is sufﬁci_ent to prove the theorem for simple functions: f = 37,y ae“ 1y, g =
lejsN bjeh 15, where A;, B; are measurable sets, a;, b; > 0, and o}, 8; € (0, 27r]. The
functions f, g are extended to the strip in the complex plane by first definingp = p,, ¢’ = g,
and setting

N N
¢(,2) = Za}’/”‘“e'% 1a, = Z af/p(z)@j’

Jj=1 Jj=1
1//.( Z) _Zbll/‘l(A lﬁ, qu/‘l(l)q),

where we have set
®j = ei"l IAJ, (Dj = eiﬂf 13].
It is immediate that ¢ (-, z) € L (M), ¥(-,2) € L"J/(N), in particular Ay (-, z) € L¥(N).
Therefore the integral
(3.2.2) F(z) = / AP, DY ( ) dv = Z a"Opd O / (A®,) D dv
k=1

is a finite sum of exponential functions, in particular an analytic function in the open strip
0 < Re(z) < 1 and is bounded and continuous on the closed strip 0 < Re(z) < 1. On the
boundary we have by direct computation

16, i)l = NLF = IF1 = 1,
1L+l = 1P 1y = IFI7 =1,
19y, = 1819/ %0 = gl = 1,
T+l = g1 = gl = 1.
By the definition of F(z) above and Holder’s inequality, we have from (3.2.2)
IF@)] < 146 ¢, D)l ¥ @)l < ko
IF(L+iy)| < IAgC, L+ ip)ll, VG, L+ )y < k.

On the other hand, for ¢ € (0, 1), ¢(x, 1) = f(x), ¥ (y, 1) = g(y), so that F(¢) = fN Afgdv.
Applying Lemma 3.2.11, we conclude |F(#)| < k) ~'k!, which completes the proof. ]

Now we examine some important applications of the M. Riesz-Thorin interpolation
theorem.
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3.2.0.1 Generalized Young’s inequality
The interpolation theorem of M. Riesz-Thorin can be used to prove the generalized
Young’s inequality for convolutions:

1 1 1
(3.23) 1f * gl < 1/ lglly (1 Fo=—+ -)
rp q

where 1 <p < 00,1 < g <oowith1/p+1/g > 1. Here f, g are measurable functions
on R” and the integrals are taken over all of R”".

Proof. To prove (3.2.3), we begin with the elementary estimates from Lebesgue integration
theory:

If*glh <Ifilglh  feL', gel!
If *gllo < Ifllcllgli  feL® geL'.

This shows that, for a fixed g € L', the map f — f * g defines a bounded operator on L'
and L*, with norm less than or equal to one. Therefore, by the M. Riesz-Thorin theorem,
this map can be extended to L7, with the same operator norm, to yield

(3.2.4) If*gll, < lfl gl felL’, gelL.

In other words, the map g — f * g is bounded from L' to L. On the other hand, by Holder’s
inequality, if f € L, g € LV,

(3.2.5) If*gllo < lIflllglly P =p/(p—1.

Therefore the map g — f * g is bounded from L to L*. Hence we can apply the M. Riesz-
Thorin theorem with py = 1, gy = p, p1 = p', g1 = 00. In detail,

1 1 1-— t
(3.2.6) = .2
q9 P 1 r
1 1 1 —t
(3.2.7) S== +0.
r q: 14
Solving (3.2.6) for ¢ € [0, 1], we have t = p/q’, which is possible since p < ¢'. Finally, we
have
1 1 1—¢ 1 1 1 1
——:—:—:———/:——{———1’
ro 4 p p 9 P 49
which proves (3.2.3). ]

Beckner (1975) has shown that the value of the “best constant” in the generalized
Young’s inequality (3.2.3) has the precise value M,, = (p'/?/q'/7)"/2. The proof is
beyond the scope of this book.

3.2.0.2 The Hausdorft-Young inequality

The M. Riesz-Thorin theorem can be immediately applied to the setting of Fourier
transforms on R". Let M = N = R" with Lebesgue measure and py = 1, gg = oo. The
Fourier transform f — f is a bounded operator from L' (M) to L (N) with norm 1. Also
from the Plancherel theorem the Fourier transform is a bounded operator from L? (M) to
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L*(N) with norm 1. Therefore we conclude that

Theorem 3.2.12. Hausdorff-Young: If 1 < p < 2, the Fourier transform is
defined and is a bounded operator from LP(R") to L” (R") where p' = p/(p — 1)
is the conjugate exponent.

Beckner (1975) has shown that the best constant in the Hausdorff- Young inequality
has the value (p'/?/q'/9)"/? where g = p/.

Exercise 3.2.13. Letf(x) = e ", so thatf (&) = e ™", Show that || f|l, /1l f1,
attains the Beckner bound, where 1 < p < 2.

3.2.1 Stein’s Complex Interpolation Theorem

The M. Riesz-Thorin theorem deals with a single operator A, initially defined and
bounded on L’ N L”' and subsequently extended to L7, py < p < p;. EMM. Stein
discovered a remarkable extension to a family of operators A, which depend analytically
on a complex parameter z, where 0 < Re(z) < 1. For the complete theory, see Stein and
Weiss (1971), Chapter 4. The following is a special case of the general theory.

Theorem 3.2.14. Let (M, u) and (N, v) be measure spaces with a family of linear
operators A, defined on the class of simple functions S(M) so that 7 — |, vAgdv
is analytic and bounded for 0 < Re(z) < 1 whenever f € S(M) and g € S(N).
Furthermore suppose that for some 1 < pg, qo, p1, q1 < 00 we have

1A fllg < Mollfllp,  f €SWM), yeR
Ay fllg < Millfll,,  feSM), yeR.

Then forallt € (0, 1)

IA:fllg < My 'M{Ifll,,  f €SM),

where
1 1—1¢ t
= + —
Pt Po Po
1 _ 1—1t t
q: q0 q|'

Proof. We can follow the steps of the proof of the M. Riesz-Thorin theorem, defining
#(,2), ¥ (-, z) as above. Then for f € S(M), g € S(N) with || fll,, = 1, llglly, = 1 we set

F(z) = /;(Asrb(uz))t//(uz)dv,

which is an analytic function in the strip {0 < Re(z) < 1} and for which |F(iy)| < M,,
|[F(1 4 iy)| < M,. Hence by Lemma 3.2.11, |[F(¢)] < M,™'M! for 0 < ¢ < 1, which
completes the proof. |
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3.3 THE CONJUGATE FUNCTION OR DISCRETE
HILBERT TRANSFORM

We now pass to a particular operator of central importance in harmonic analysis, the
so-called Hilbert transform. In the setting of Fourier series this is defined on the set P
of trigonometric polynomials by the formula

(3.3.1D) H (Z cnei"9> = —iche[”e +i Z cne™.

neZ n>1 n<-—1
This gives a convenient way of expressing the projection operator
f — § Cnemﬁ' N § CnemQ — Pf
nez n>1

by writing
fHiHf =co+2) cue™ =F(0) + 2Pf.

n>1

If we restrict to the subspace of functions with fT f = 0, then we can write 2 Pf =
f + iHf . The operator H is more convenient to work with, since it is invertible on this
subspace: H? = —1I.

Exercise 3.3.1. Show that the Hilbert transform is skew-adjoint, in the sense that
for any trigonometric polynomials f, g, we have the identity

/T Hf(0)g(6)do = — /T f(©)Hg(©6)d6.

Now we will show that the Fourier partial sum can also be expressed in terms of
H by writing for any trigonometric polynomial f

eiNGH(e—iNGf) — _izcneing —{—iZCneme,

n>N n<N
e—tNOH(etNGf) = — § : C,-,Emo 4 § C"elnﬁ.
n>—N n<—N

When we subtract, we obtain
N
ezNGH(e—lNGf) _ e—tNGH(eINHf) =2 Z cnemﬁ _ icNelNG _ iC_Ne—lNg.
n=—N

This allows us to represent the partial sums Syf in terms of the norm-preserving operators
f — eTN%f and the fixed operator H.

(3.3.2)

SNf(e) — % (eiNHH(e——iNGf) _ e—iNHH(eiNgf)) + %f'(N)eiNG + %f‘(_N)e—iNe

The last two terms tend to zero when N — oo and are bounded by the L” norm of f for
any p > 1.
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The representation (3.3.2) shows that H cannot be bounded on L' (T).

Proposition 3.3.2.

up 1710 _
1713

where the supremum is taken over all trigonometric polynomials f # 0.

(33.3)

Proof. Suppose not; then we would have the estimate ||Hf||; < C| f||; for some constant
C and all trigonometric polynomials f. Referring to (3.3.2), this implies that ||Syf|; <
(1 4+ O\ fIl1, which implies that the (1,1) operator norm of Sy is bounded by a constant,

independent of N. But we showed in Section 1.6.3 of Chapter 1 that ||Sy|l,; = Ly ~
(4log N)/m? when N — oo. Thus we have a contradiction, which proves that the supremum
in (3.3.3) is infinite. n

3.3.1 I” Theory of the Conjugate Function

In order to prove uniform boundedness of Sy on the space L/(T) for 1 < p < oo, it
suffices to prove that the operator H can be extended to a bounded operator on the space
L7(T). This will be accomplished by interpolation, as follows:

Lemma 3.3.3. The operator H is bounded on L (T).

Proof. From Parseval’s identity, for any trigonometric polynomial f

HFI3 = D leal® <Y lenl® = II£13. L]

0s#neZ nez

This allows us to extend the definition of H to the space L?(T) as abounded operator
with norm at most 1. But this bound is attained, since |H ()|, = ||l¢ ||, = 1. Since
LP(T) C L*(T) for p > 2, we also obtain the existence of Hf when f € L”(T),p > 2.
We will now show by several steps that H is a bounded operator on any L” space for
p>2.

We first prove that H is bounded on LP(T) if p = 2k is an even integer. The
following lemma is attributed to M. Riesz (1927).

Lemma 3.3.4. Foranyk = 2,3, ... there exists a constant Cy, so that iff is any
trigonometric polynomial, || Hf ||ox < Cox || f 12

f’roof. It suffices to first prove this for real-valued functions. If f is real-valued ( f (—n) =
f(n)), then so is Hf and we have Pf = %( f +iHf). Expanding this by the binomial theorem
we note that (Pf )* has no constant term, so that

% ok .

0= [ - Z( ) [ 7y
T j=0 J T

Taking the real part and writing j = 2r we have

k
0= (2k)(_l)k—r/er(Hf)Zk—Zr.
T

r=0 2r
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We isolate the term with r = 0 and apply Holder’s inequality to the remaining terms:

2k d 2k 2r 2k-2r
/1; H* < )(Zr) /T £ (Hf)
r=1

() () (o)

r=I

k=r

Dividing both sides by || f||2¢, we have the polynomial inequality

2k - 2k 2k—2r
(3.34) X 52 ) X
r
r=1

where

1

_IHf (fT(Hf)Z")""
Nl Jof*

If X < 1 there is nothing to prove. If X > 1, then each term in (3.3.4) is bounded by

(i’;) X%-2 5o that the sum is bounded by

k
X < x%-2 Z <§k> — x%-2% _ 1)
r
r=1

equivalently X? < 2% — 1. The lemma is proved with Cy, = +/2% — 1. [ ]

Since the space of trigonometric polynomials is dense in L”(T), we immediately

obtain the extension of H as follows.

Corollary 3.3.5. The map f — Hf is a bounded operator on L*(T) for any
k=2,3,...

Proof. In order to prove the boundedness of H on the intermediate L’ spaces, we can apply
the M. Riesz-Thorin theorem to conclude that H can be extended to a bounded operator
from LP(T) to L(T) forany 1 < p < 2k. But k was arbitrary, so we conclude boundedness
for any p > 2. In order to prove boundedness for 1 < p < 2 we use the duality of the
norms, namely

|/Hg
”Hf”p = sup fT__
0£geL” (T) ”g”p’

where the supremum is taken over all trigonometric polynomials. We can apply Holder’s
inequality and the boundedness result on L”, p’ > 2 to see that the numerator is bounded
by

AN I1Hgly < Collfllpliglly
and thus conclude that
IHf I, < Cplifl,  fell (M, 1<p<2

which completes the proof. ]

We list the result as follows.
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Proposition 3.3.6. The mapping f — Hf is a bounded operator on LP(T)
whenever 1 < p < 00.

This is now used to deduce the following result on L” convergence of one-
dimensional Fourier series.

Theorem 3.3.7. M. Riesz: Suppose that 1 < p < oo and f € LP(T). Then the
Fourier series of f converges in the norm of LP(T): limy || f — Snfll, = 0.

Proof. 1t suffices to note that we have convergence on the (dense) set P of trigonometric
polynomials and that the partial sum operators have uniformly bounded norms. But from
(3.3.2), we have supy., |Sxfll,, < 1 4+ C, < 0o . Therefore we have norm convergence
on the entire space L7 (T). |

Exercise 3.3.8. Let Q, be the conjugate Poisson kernel, defined on trigonometric
polynomials by

(3.3.5) Qf 0) =—i Y sgn(m)fmre™.

0#£neZ

Provethatforanyk € 7, there exists a constant Cy;, such that ||Q,f l2x < Crll fll2«
forallf e Pand0 <r < 1.

Hint: P.f 4+i0,f =2}, F(myriem® Now copy the proof of Lemma 3.3.4 and use the L”
boundedness of the Poisson kernel from Chapter 1.

Exercise 3.3.9. Prove that for any 1 < p < oo there exists a constant C,, so that
11y < Cpllfllp forallf € Pand0 <r < 1.

Hint: Use the result of exercise 3.3.8 and the M. Riesz-Thorin theorem for 2 < p < oo. The
duality argument takes care of 1 < p < 2.

3.3.2 L' Theory of the Conjugate Function

An alternative method for proving L” boundedness of the conjugate function is to first
prove the following inequality of Kolmogorov:

ClAll

o

(33.6) HO : [Hf (0)] > a}| <

This is then combined with the Marcinkiewicz interpolation theorem, to be proved later
in this chapter. For this purpose, we need to define the conjugate function Hf when
f € L'(T). In order to develop these ideas, we begin with the Poisson integral P, and its
harmonic conjugate Q,:

Pf©®) =) r"fme™,

neZ

Qrf(e) =—i Z sgn (n)r|’1|f‘(n)ein(9‘

0#£neZ
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Exercise 3.3.10. Prove that both P, f (0) and Q.f (8) are harmonic functions and
that P.f + iQ.f is an analytic function of 7 = re®.

Note that, if f is a trigonometric polynomial, then lim,_,; Q,f(6) = Hf(9), as

defined in (3.3.1). The next theorem extends this definition to any f € L'(T). The proof,
which is adapted from Katznelson (1976), uses the properties of harmonic functions,
which are developed in an appendix to this chapter.

Theorem 3.3.11. Letf € L'(T). Then Hf (9) := lim,_,| Q.f (0) exists for almost
every 6 € T. For any a > 0 the weak (1,1) inequality (3.3.6) holds.

Proof. Since any L' function can be written in terms of four nonnegative functions, we
first assume that f > 0. In particular

A 1
Pf(0)=£(0) = Eﬁf= (FAlre

It is readily verified that

P,f(@) + lQlf(g) =f(0) +2 Z r”;‘(n)einﬁ,

n=1

which is a holomorphic function of z = re®®. By the Abel summability of L' functions,
we see that lim,_,| P, f(8) = f(0) for almost all . Now define G(z) = e "/~ a
holomorphic function in D. Since f > 0, then |G(z)| < 1 and we can assert the existence
of a radial limit g(8) = lim,_,, G(re’®) with |g(8)| = ¢ ® > 0 a.e. since f is finite a.e.
If Q,f(6) were unbounded when r — 1, then the set of accumulation points of e~¢/®
would fill out an interval, which contradicts the convergence of G(z), hence Q,f(6) remains
bounded—in particular has at least one point of accumulation when r — 1. If Q,f(0)
had two different accumulation points when » — 1, then the set of accumulation points
of e7'%/® would fill out an interval, which contradicts the existence of the radial limit of
G(z). From this it follows that there exists a radial limit of Q,f(9) for a.e. . A general
f € L'(T) can be written f = f; — f, + ifs — ifs where £, € L' (T) is nonnegative. We define
Hf = Hf, — Hf, + iHf; — iHfy, which completes the proof of the a.e. existence of Hf ().
Note that the exceptional set, which comes from the Fatou theorem, may be different from
the set where P, f fails to converge when r — 1.
To prove the weak (1,1) inequality (3.3.6), we first suppose that f > 0 and set

F(re®) =P, f©0),  F@re”)=Qf(®).

Then we have a holomorphic function z - w = F(z) + iF (z) which maps the disk D to
the right half plane Rew > 0. For any A > 0, consider the harmonic function H,, which
equals 0 on the segment of the imaginary axis from —iX to iA and equals 1 on the two
complementary rays. Equivalently

e
H(w) = j—tn—,

where ¢ is the angle that the point w makes with the points £iA. Note that H, has

the constant value of % on the half circle w = Ae", —m/2 < ¢ < m/2 and outside

of this circle is strictly larger than % At any point w of the positive real axis we have
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H,(w) = (2/m) arctan(w/A) < 2w/m A. The composed mapping z — H, (F +iF) is a har-
monic function in the disk D. From the mean-value property of harmonic functions, we have

1 , - 2
L[ b (Fore® + iF (™) do = B, IFO)] = H(lf 1) < 220
2r Jy TA
On the other hand,
1 . . 1 . -
— / H, (F(re”) + iF (re®)) do > — H, ((F(re®) + iF (re)) d6
2n Jp 2n (0:|F+iF) 2

1 . ~
> —{6 1 |F(re®) + iF (re"”)| = A}
4
1 T 0
> 4—|{9 D|F(re®)| = A,
T
from which we conclude that
~ 8
0 £ 1F ey 2 21 < 27

But Hf (8) = lim,_,, F(re"®) exists a.e. Therefore we have
811
116+ 1Hf @)] = 2} < ==,

which proves (3.3.6) in case f > 0. A general f € L'(T) is written f = f; — f + ifs — ifa,
for which Hf = Hf, — Hf, + iHfs — iHf;. Then

4
R GOEREDS {9 : IHE©)] = %”
=1

to which (3.3.6) is applied four times to obtain the result in general. |

Theorem 3.3.11 provides an extension of the Hilbert transform to the entire space
LY(T). If, in addition, f € L’(T) for some 1 < p < oo, then we can also compute
Hf as the L limit of trigonometric polynomials, from Proposition 3.3.6. By taking
subsequences, we see that the two definitions of Hf agree for f € L’(T), 1 < p < oo.

The discrete Hilbert transform is integrable under a slight additional condition,
where we use the notation log™ x = max{0, log x} for x > 0.

Theorem 3.3.12. Ifflog™ | f| € L'(T), then Hf € L'(T).

Proof. To prove this result, we introduce the distribution function of a nonnegative
measurable function f, defined by

(3.3.7) A(@) = 1{0: £0) > a}.
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The map o — A,(a) is decreasing and can be used to express the L” norm (0 < p < o0) as

follows:
1(6)]
f 1O do = / par- 'doz) 46
0

o0
</ pa’'1 a<|/w>nd°‘) do
T 0
o]
=/ (/ 1(a<|ﬂ9)”d9>pa”'lda
0 T
J

o

poz”_')»f (o) da.

We also use the observation that
f S A+fH= M(a) < A (a/2) + Ap(a/2).

Having made these preparations, we make the a-dependent decomposition f = f, + f¢,
where

fo=fhfizr = e
Since H is a linear operator we have

|Hf | < |Hf,| + |Hf*|,
M (@) < Mg (@/2) + Ao (/2).

The L' norm of HF is expressed in terms of the distribution function as

/IHfl =/ Mmpi(er) do < )‘IHfI(O)+/ Ay (o) dox.
T 0 ]

It remains to estimate the last integral in terms of the distribution functions of |Hf,| and
|Hf?|. Since T has finite measure and f, is bounded, it follows that f, € L>(T). From this it
follows that Hf,, € L*(T) with ||Hf, || < || fy|l2. Now we transform by the Fubini theorem
as follows:

4
M (@/2) < zllfallg

foe] o0 4
/ A (@/2) da < f ) (f |f(9)|21\f(9)|5a d9> do
I 1 T
=4/|f(0)|2 (/% da) do
T i@ o

<4 f F0)]d6

< OQ.
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Similarly, from (3.3.6) and the Fubini theorem, we have

C
Mg (0/2) < - (Fad¥

o0 o0 C
/ Ay (@ /2) da < / — (/ lf @) ron>a d9) do
1 1o T

1£@®)IAl
=C/If(0)|<f d—a) de
T 1 o

—c A 170)]log" |£©)]d6
< OQ.

The proof is complete.
Exercise 3.3.13. Iff € L'(T), prove that Hf € L’(T) for0 <p < 1.
Hint: Begin with the representation
[1=/4118 =p/0°° oAy (@) do < 2 /loopap_])\yf(a) do

and follow the steps of the proof of Theorem 3.3.12.

3.3.2.1 |Identification as a singular integral
We close this section by proving the a.e. representation.

(3.3.8) HFO) = —1im [ FO-0)—"0 _4s  FeLl(D).
27T €e—0 |p|>€ 1 - COS¢
Proof. To do this, we take » = 1 — € and write
1 sin ¢ _L+Dh
0.f0) — o ‘¢|>€f(9 —¢)1 ~cosd d¢ = o
where
._ o 2rsin ¢
I = fwse[f(@ ?) J’(G)]——~—1 - 2rcos¢d¢
. o 2r sin ¢ B sin ¢
hi= /,¢|>e[f(9 @) —f®)] (1 +7r2—2rcos¢p 1-— cos¢> 4@

183

where we have used the oddness of ¢ — sin ¢. To estimate I, we write 1 +r2 —2r cos ¢ =

(1 =72 +2r(1 —cos¢) > (1 — r)?, so that

2
nl < /W L1160 = 8) 1O do

2
<2 / FO — ) —F©O)]do,
€ Jipl<e

which tends to zero for almost every 6 € T, when € — 0.
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To estimate I,, we use the inequality 1 — cos ¢ > ¢?/m? for |¢p| < 7 to write

a2 sin ¢ N
b=—0=1 | i ey U@~ #) S @148
Ll < (1—r)? Isindl 1 v0 — ) - r@)1do

|p>€ 2r(1 — COS ¢)2
|f(9—¢)—f(9)|d¢ <r21>
1> lol? 2

dF (¢)
|pl>€ |¢|'§

<7t -r?
= 714(1 - r)2

where we have set F(¢) = ff | f(O — u) — f(8)] du. Integration-by-parts shows that

IF(¢) "= IF()|
I Y1 —r)? +3/ T de ).
L] <71 —7) ( 0P |y e @ ¢

But F(¢)/¢ := n(1/v) — 0 a.e. when¢ — 0and 1 —r = € shows that the first term tends
to zero. Similarly, the second term = || 11//7: un(u) du = o(e~?) when € — 0, which shows
that I, — 0. Recalling that Hf (0) = lim,_,; Q,f(8) a.e. completes the proof of (3.3.8). W

Exercise 3.3.14. Prove that 1 — cos ¢ > ¢*/n? for || < 7.

Exercise 3.3.15. Let n € L. (R) with n(x) - 0 when x — oo. Prove that

loc
lim, o0 x 2 fg un(u) du — 0 when x — oQ.

3.4 THE HILBERT TRANSFORM ON R

On the circle we developed the conjugate function beginning with its Fourier represen-
tation H 'f(n) = —i sgn(n)f(n) for trigonometric polynomials f, eventually leading to
the singular integral representation (3.3.8). When we pass to the corresponding problem
on the real line, the relevant operator is the Hilbert transform, defined formally as the

singular integral

f@—w@_

341 Hf (x) = l lim /
4 e<lyl<M y

€e—>0,M—o00
Proposition 3.4.1. Iff € S, the limit (3.4.1) exists.

Proof. Denoting the integral in (3.4.1) as H, y f(x), we have forf € S

THem f(x) = f fe=»

e<|yl<M y

_ / fat+y ,
== I
e<fyl<M y

2T H p f(x) = / w dy.

e<lyl<M y

dy
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If f € S, this family of integrals converge when € — 0, M — oo and we have

—fx+y) dy.

(3.4.2) Hf (x) = —l—ff(x —) m
2n Jg y

Example 3.4.2. Let f = 1(,p). Then Hf (x) = (1/7)log(|x — a|/|x — b|) for
x #a,b.

Exercise 3.4.3. Prove this.

Explicit calculation reveals that in this example Hf (x) ~ (1/7)(b — a)/x when
x — 00, showing that Hf ¢ L'(R). The same behavior is generically true whenever

Jof #0.

Exercise 3.4.4. Suppose thatf € S(R). Prove that lim,_, o, xHf (x) = 1 /7 fRf.

Exercise 3.4.5. Suppose that fR | f(x)]/(1 4+ |x])dx < oo and that f satisfies a
Dini condition at x. Prove that the integral in (3.4.2) is absolutely convergent.

3.4.1 L? Theory of the Hilbert Transform

In order to define H on L*(R), we let K. p(x) = (1/7x)1.<jxj<m- Then Heyf =
f * K.y € L* whenever f € L?, since K, j; € L'. We now study the Fourier transform.
Clearly K. 4 (0) = 0. The Fourier transform for £ # 0 is computed as

R e*2niEx
kou®) = [ dx
e<|x|<M X

M _: 2
_ —Zi/ sin 2w x& dx
P X

= —i(Si@rME&) — Si(2n€f)) .
From the properties of the Si function, we have

\Kem (®)] < 28i(m), lim K.y (&) = —im sgn(é).
e—>0,M—o00
We can use this to define H on the space L?(R) as follows.

Proposition 3.4.6. Forf € L*(R) there exists the L* limit

Hf = lim Heyf= lim Ko m(©)F (§)e¥ &+ dt.
R

e—>0,M—>00 e—>0,M—oc0

Proof. Forany0 <€ <M < 0o

Honf§) = R ©F ©),
and by the dominated convergence theorem for any f € L2,

IHopf(E) +isgn@F )2 =0, €—0, M— oo
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Therefore the L? limit of I:IE,M f exists, especially Houf is a Cauchy sequence. By
Plancherel’s formula it follows that H, y f must also be a Cauchy sequence in L?. Hence
there exists g € L2, g = lime—0.m— 00 He m f, Which was to be proved. |

Proposition 3.4.6 can be paraphrased as the representation formula
HF ) = =i [ senf@)em dg

valid for f € L*>(R). This shows, in particular, that H is norm-preserving: |[Hf |l = || f|l»
and that H(Hf) = —f whenever f € L*>(R).

3.4.2 IP Theory of the Hilbert Transform, 1 < p < oo

‘We now develop the tools to prove the L” boundedness of the Hilbert transform. For any
€ >0, let

Se=1{feS:fE) =0for|g| <e)

and Sy = Ue»0Se. A typical element of Sy is written

fo0) = g F&)em s gg,

and the Hilbert transform
—€ A . 0 ~ .
Hf.(x) =i / fEe™  dg — i f f&)E dE € Sp.
—00 €

Proposition 3.4.7. Foranyp > 2, Sy is dense in L’(R).

Proof. Since S is dense in L7, it suffices to prove that Sy is dense in S in the L” norm. For
p = 2 this follows immediately from the Plancherel formula, since

If = £13 = / @)1 d,
which can be made arbitrarily small with €. For any p > 2, we can write
F0) — L)l < [ F®)lde < Ce,

which proves that Sy is dense in the supremum norm, hence also in the L” norm on compact
sets. But if p > 2 we can write

If () —£OF < €72 f(x) — £
If =fll2 < (Ce D) f = £ > = O,

which completes the proof. |
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To prove L’ boundedness, we can follow the proof in the case of the circle. For
f € Sy, we write

o 0
fx) = ‘/0 (& P iEx dt +/ f(é_.)ebriéx dt,

o 0
Hf (x) = _i/ f‘(&-) eZniEx dt + l/ .f(g) e27ri$x dt,
0 —00
so that
f+iHf = 2/ Py g
0

Now if p = 2k is any even integer, we can write

(f + le)Zk — 22k ‘/Ooo (A ... *f) (§)62m’$x d%_’

/_TT(f+in)2kdx= fooo ——_—Sin(i’;”) (Fx-o w7 e

The right side is the partial Fourier inversion at § = 0 of a smooth function that vanishes
for small £, hence limy_, o, [7.(f + iHf)* dx = 0. On the other hand this integral is
absolutely convergent, since f € Sy and Hf € Sy. Expanding by the binomial theorem
we have

2k k ) )
0=3 (%) [anryr-.

j=0

If f is real, then Hf is also real, so that we can restrict attention to the even powers and

write
/ (Hf)* = ( ) / (N H(Hf)Y.
j=0

Applying the Cauchy-Schwarz inequality as before, we can estimate fR (Hf)* interms of
Jg . This completes the proof that the Hilbert transform is bounded on the space L (R)
foranyk =1, 2, .... Asbefore, we can apply the M. Riesz-Thorin interpolation theorem
to conclude that f/ — Hf is bounded on any intermediate space L” for 2 < p < 2k. But
k was arbitrary. So we conclude boundedness on L? for any p > 2. By duality, it also
follows, as before, that f — Hf is bounded on L” for any 1 < p < 2. We have proved
the following theorem.

Theorem 3.4.8. Forany1 < p < oo, the Hilbert transform can be extended from
the space Sy to LP(R) as a bounded operator.

3.4.2.1 Applications to convergence of Fourier integrals

In parallel with the case of the circle, the Hilbert transform on R can be used to study the
convergence of the partial sums of the Fourier integral in the space L”(R), 1 < p < oo.
This development is described in the following exercises.
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Exercise 3.4.9. Letf € S(R) and let M > 0. Prove the identity
SMf(x) ( ZJT!MXH( —27TlMXf) —ZniMxH(e27riMXf)) .

Exercise 3.4.10. Prove that for any f € S(R), we have the bound ||Sufll, <
Cllfll,for1 < p < oo, where C = C,,. In particular the operator Sy has a unique
extension as a bounded operator on LP (R), with operator norm independent of M.

Exercise 3.4.11. If2 < p < oo andf € S(R), prove that |Suf —fl, — 0 when
M — oc.

Hint: Use the Hausdorff-Young Theorem 3.2.12 to estimate ||Syf — f|l, in terms of its Fourier
transform.

Exercise 3.4.12. Combine the previous exercises to show that for any f € L?(R),
2 < p < oo, we have ||Suf —fll, = 0 when M — oc.

Exercise 3.4.13. Use the duality of L? and L” to prove that for any f € L,(R),
1 <p <2, wehave |Suf — fl, = 0 when M — oo.

3.4.3 L' Theory of the Hilbert Transform and Extensions

It remains to discuss the Hilbert transformin case p = 1. Atthe same time we will identify
the Hilbert transform with the limit of the conjugate Poisson kernel, equivalently as the
imaginary part of the boundary value of an analytic function in the upper half plane. This
extension will be carried out in the Banach space

. [
34.3) B;—[f. R—1+|x| dx<oo],

which contains all of the Lebesgue spaces L7 (R), 1 < p < oo. To do this, we begin with
the absolutely convergent Fourier integrals:

Y 2miEx —27ry|$|
_ e d >0, x e R,
T(x? +y%) /R 7
X mitx —2mylE|
—_— = sgn(&)e d >0, xeR.
- /R gn(®) £,y

For f € L' (R), the Poisson integral and conjugate Poisson integral are written

1 A .
Pyf(x) = p= /Rf(x - t>}$y2 dt = Af(E)EZNlEXe—ZHY|$]d§,

0y f(x) = — f fx— =—i f F(e)ermisr el g
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The defining equations for P, f, O, f are also meaningful for f € B). Itis immediate that

L [fa=0D [ fw
P,f+i0,f = R—y—it dt =i Rx7+iy—u

du,
which is an analytic function of the complex variable z = x + iy for y > 0; hence
the name conjugate Poisson kernel. In particular, the defining integrals are absolutely
convergent and can be differentiated repeatedly to show that P, and Q, are both harmonic
functions for y > 0,x € R. In case f € LP(R), the harmonic property follows from
repeated differentiation of the Fourier integral representation.

In order to study the conjugate Poisson kernel, we first develop the necessary
properties of the operator

(3.4.4) Pofe) = - /R ff‘T—y’)

This operator is defined on the Banach space

_ . 11w
(3.4.5) Bz—{f.llfllgz = R1+x2dx<oo].

Clearly L' (R) C B, C B,. The Poisson kernel has the following properties.

Proposition 3.4.14. Suppose that f € B,. Then |Pyfllg, < 2||flls, for 0 <
y < land foranyf € By, limy_, ||Pyf — fllg, = O. Furthermore iff € B, then
limy_,q P, f(x) = f(x) for almost every x € R.

Proof. We have

1 yIf @)l dx
1Py flls, < 2 R (/R Y+ (x—1)? dt) 1+x2
_1 y :
T om? /le(!)| </1R Y+ -n214+x2 dx) a

= /If()|(1+ Pt

< — )| ——=d 0 1
_n/R|f<)|1+t2 t 0<y<
= 20 f sy,

where we have used the semigroup property of the Poisson kernel in the form P, x P| =
P),. To prove the norm convergence, we first note that if f = 1y, ), then 7P, f(x) =
arctan [(x — b)/y] — arctan [(x — a)/y], which is bounded by 2 and tends pointwise to
1(4,5 €xcept at the endpoints x = a, b. By the dominated convergence theorem, we have
IIPyf —flls, = O wheny — 0. Similarly for a finite linear combination f = Z,N=| il
we have ||P,f — flls, — 0. But these functions are dense in the space B, and we already
have proved that the operator norms ||P, ||, are uniformly bounded for 0 < y < 1, hence
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the result. To prove the almost-everywhere convergence, we write

P () —f () = / [ +0)+76 =) = A W) d
y
t2+ 2

A

[Py f(x) — f(0)I _/0 5 2490

1
0= /0 G+ )+ (x — ) — 2 (o) di

From Lebesgue’s theorem, we have for almost every x, ®,(¢)/t — 0 when ¢t — 0. On the
other hand, f € B, implies that ®,(r) < Ct for all t > 0. Now we integrate-by-parts:

[Py f(x) —f0)] < /0 m@(x) dt,

where the estimate | P, (¢)| < Cr allows one to discard the term at the limits. Setting ¢ = yz
in the integration gives

2z D, (zy)

P,f(x) —f(x)| < —_— dz.

IP,f(x) = f ()l _fo T

But the integrand is bounded by an L' function and tends to zero pointwise when y — 0,
hence P, f(x) — f(x) as required. |

‘We now introduce a norm on the space B, by defining

I,
R 1422

Theorem 3.4.15. Suppose that f € By. Then Q,f(x) converges when y | 0
almost everywhere to a limiting function f (x) and we have for almost every x € R,

fx—y) dy
e Y

(3.4.7) fx) = Hf (x) := L im

T €0

Proof. Any complex-valued function can be written as f = fi — f, + i(f5 — f1) where
fi = 0. We begin with the conjugate Poisson kernel operator

_ ofx—
(3.4.8) ny( x) = 7[ Pty dt, y>0, xeR.
Clearly |Q,f(0)| < [|flls,- Then
(3.4.9) P,f(x) +iQ,f(x) = _' o .
rRX+iy—t

For any f € By, (3.4.9) defines an analytic function in the upper half plane y > 0. The
mapping

(3.4.10) (x,y) — exp[—(P,f(x) +iQ, f(x))]

is a bounded analytic function in the upper half plane. By the Fatou theorem, it possesses
a.e. limits when y | 0. But P, f(x) converges to a finite limit a.e. whenever f € B C B,.
Hence we deduce the existence of the a.e. limit of exp [—iQ, f (x)] wheny | 0. From this it
follows that O, f (x) can have only one accumlation point when y | 0, hence the existence
of Hf (x) = lim, 0 0,/ (x). n
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It remains to identify the Hilbert transform as defined in (3.4.7), with the boundary
values of O, f, namely to show that for a.e. x € R,

tf(x —

t2+ 2 dt — Hf (x), y ] 0.

(3.4.11) O fx) = /
T JR

Lemma 3.4.16. Suppose that f € B|. Then

1im</mdt— f(x_t)dt>=0
y—0 R ’2+}’2 |t]>y t

for almost every x € R.

Proof. We write the above difference as I; + I, where

[ _/ tf(x—t)
' 1<y t+y

t 1
= s _ d .
g Az;- <t2 +y? ,)f(x 1) dt

The function t — ¢/(z*> + y?) is odd and increasing for |f| < y, so that we can write

h= /I;I<) 12 4 y? =0 —f)ldr
1
It = 2__/ If(x—1) —f(x)|dt -0
Ith<y

at every Lebesgue point of f, especially almost everywhere.
To estimate I, we note that its kernel is odd, hence forany § > O and y < 8§,

2
b= AI» t(t +3?) fx =0 —fx)ldt

Il < / —|f(x—t) —folde
|

t>y | P

=y2/ dF (1)
Itl>y HE

where F(t) = f(; |f(x —s) — f(x)|ds. Clearly F(t)/t — O at every Lebesgue point when
t — 0, whereas F(¢) < Ct when for all ¢. Therefore we can integrate-by-parts to obtain

f dF(l‘) F(y) 43 f -@dt
1>y |l‘|3 |}’|3 >y

The term at the limits is clearly o(y~2) when y — 0. To analyze the new integral, write
F(t)/t =n(t), v =1/t to obtain

17y
f @dt / vn(1/v)dv = o(y™?), y — 0,
lt|>y 0

which completes the proof that I, — 0 when y — 0 for almost every x € R. |

As a special case, we can deduce the properties of the Hilbert transform on
LP(R),1 <p < o0.
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Corollary 3.4.17. Suppose that f € LF(R), 1 < p < oo. Then P, f(x) — f for
almost every x € Rand the convergence takes place in L” (R). Furthermore Q, f (x)
converges almost everywhere to a limiting function f(x) and the convergence takes
place in L7 ifp > 1.

The convergence properties of P, f follow from the properties of the Poisson kernel:
It is readily verified that ¢+ — ¢/(¢> + y?) satisfies the properties of an approximate
identity. Therefore if B is any homogeneous Banach space, we have P, f — f in the B-
norm when y — 0. The almost-everywhere convergence of Q, f follows from Theorem
3.4.15. n

3.4.3.1 Kolmogorov’s inequality for the Hilbert transform

Following the discussion of the conjugate function on the circle, we can establish a
corresponding inequality for the distribution function of the Hilbert transform whenever
f € Li(R). This takes the form

C
(34.12) o )] 2l = /R F)dx

where C is an absolute constant. This will be deduced as alimiting case of a corresponding
inequality for functions in the space B). Define a weighted measure by

1 dx
(3.4.13) (A) = ;/A e

Theorem 3.4.18. Suppose thatf € By. If f > 0, thenwe have the weak inequality
(34.14)
2
utr s 1= o) < 2

115, 1£lla,
= fls T a+ifla

For any complex-valued f € By, (3.4.14) holds with four terms on the right side
and with « replaced by o /4.

>, a > [ fl-

Proof, We consider the harmonic function J, (w), defined for Re(w) > 0 as the harmonic
measure of the two rays {w = iv,v > «} and {w = iv, v < —a«}. This is the harmonic
function that takes the value 1 on these rays and takes the value zero on the segment {w =
iv, —a < v < «a}. Equivalently, it can be obtained as the imaginary part of (1/7) log [(w —
ia)/(w+ ia)] for a suitable branch of the logarithm. The set {w : J, (w) > %} is the exterior

of the semicircle described by {w : Re(w) > 0, |w| = «}. On the strip [Im(w)| < «, we

have
“ )], u>0, [v| <«
+ v
‘We now consider the harmonic function
Ua(x,y) = JuPyf (%) + 0, f (0)].

We first recall a basic fact on harmonic functions.

1
(3.4.15) Jy(u+iv) = — |:arctan <L> + artctan (
o o

T
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Lemma 3.4.19. IfU(x, y) is any bounded harmonic function in'y > 0, then for any
i, y2 > 0, we have

L[ »nUGw
3.4.16 U(x, =—f ————dt
(3.4.16) *x Y1+ ) n_/R(x—t)z—i—y%

Applying (3.4.16) withx =0, y, = 1, U = U,, we have

. 1 [ Jo(Pyf(r) +i0,f (1)
(34.17) Jo (Priyf(0) + Q14 £ (0) = = / SO+ 10TO) g,
T Jr 1 +t
The right side of (3.4.17) is underestimated by
l/ Jo (P, f(1) + Q) f (1)) dt > L/ dt
™ Jr I+2 727 Juigswrza 11

Using the inequality |arctan (x)| < |x|, applied to (3.4.15), we can overestimate the left side
of (3.4.17) by writing

Ju(P1+yf(0)+iQ1+yf(0))§%( P /O Pr/ O )

o = Qi[O a+10if(0)]

Therefore we have

510, F 0] = o) = & dx
wlx 10, f()| = a) = = &
’ T o r@iza 1+ X2

2 < Priof©  Piyf(© )
7\ @ =101 fO] " a+101fO])

Recall that Hf (x) = lim,_,o O, f(x) a.e., in particular we have convergence in measure.
Now from (3.4.6), |0, f(0)| < || flls,, P1f(0) = || f 5, and the right side of (3.4.18) is only
increased when we replace Q; f(0) by its upper bound || f||,. Hence

£ s, N (1115, )
a=Iflls,  a+Ifls /)’

which proves the result in case f > 0. In the general case, we write

(3.4.18) <

2
wlx: HF O = o) < = (

T

4
plx: HF @) > a) < ) plx: |HF ()] > a/4)
j=1

J

and apply the result for nonnegative functions to each of the terms on the right. |
The upper bound assumes a more familiar form in case f is even, as follows.

Corollary 3.4.20. Suppose that0 < f € B, is even: f(—x) = f(x), Vx € R. Then
for any a > 0 we have

wle s 0] > @) < 00
To
Proof. In this case we have Q,f(0) = 0 for all y > 0. Thus the right side of (3.4.18)
becomes (4/m)P 4, f(0) — 4| flls,/m wheny — 0.
The inequality (3.4.14) contains the classical Kolmogorov inequality (3.4.12) as a
limiting case, when we introduce a scaling parameter Y.
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In detail, define

1 Y
3.4.19 A=— | ——dt
(34.19) wy(A) n/mwz

Then we have the following scaled replacement for (3.4.14) when a > |Qyf(0)|:

_ 2 ( Pyf(0) Pyf(0)
(3.4.20) uylx s |Hf ()] > a} < p (a — 0yf(0) ta + ny(0)> ’

Now multiply (3.4.20) by Y and take Y — oo. For the left side, we note that for any Borel
set of finite Lebesgue measure we have from the dominated convergence theorem

1
lim Yuy(A) = —|A|.
Y—oo mw

For the right side, we see that when ¥ — o0, the dominated convergence theorem shows
that for any f € L' (R)

lim YPyf(0) = — / F0)dx
Y—oc T Jr

whereas
It]
1OvfO) < ISl ey X ?Bg Zry: — 0, Y - o0
Hence when we multiply (3.4.20) by Y and take ¥ — 0o, we obtain (3.4.12), the original
form of Kolmogorov’s inequality. |

3.4.4 Application to Singular Integrals with Odd Kernels

The theory of the Hilbert transform can be transplanted to study n-dimensional singular
integrals of the form

(34.21) Kemf(x) k@)f (x —y) dy.
e<|yl<M

Here k is supposed to be an odd function that is homogeneous of degree —n and satisfies
flxlzl lk(x)|dx < 0o. We write k(x) = |x|"Q(x) where 2 is odd and homogeneous of
degree zero. This can be reduced to the Hilbert transform by the method of rotations,
developed by Calderdn, as follows: We take spherical polar coordinates y = rw, with
dy = r""' dr dw. Then

M

/ kf(x—y)dy = / r" (/ Q(w)f (x — royr"™! dr) dw

e<|yl<M € Nt

M

/ Q(w) (/ Mdr)dw

=1 € r
=1/ Q(w)(/ f(x_rw)—f(x+rw)dr>dw

2 Nt e<r<M r

=1/ Q(w)(/ Mdr)dw
2 sn=t e<|r|<M r

where we have used the oddness of €2 in the last step. Now if f € S, the inner integral
is the truncated Hilbert transform of the function r — F, ,(r) = f(z + rw), where we

I
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make the w-dependent decomposition of R* > x = z 4+ sw where —0o < s < oo and
z is in the hyperplane defined by z- w = 0. In detail, s = x-wand z = x — (x - W)w.
Taking € — 0, M — oo, we have

Kfix) = % / Q(w)HF, ,(s)dw.
Sn

We estimate the n-dimensional L” norm by using Minkowski’s integral inequality and
writing dx = ds d7 as follows:

1 I/p
K e = 5 f IQ(w)I< f IHFz,w(S)l”dzds) do
Rn

Sn-1

1/p
SC"/S,H |Q(w)|(/R”_I/le(z—i—ws)l”dsdz) dw

= Cp”f”U’(R”)/ (@) do.

gn -

We summarize the above computations as a theorem.

Theorem 3.4.21. There exists an absolute constant C, such that for eachf € S
and 1 < p < 00, we have the estimate

K Sl < Goliflve [ 12@) do.

sn-

Using the oddness of the kernel, we can also write

1
Kemf(x) = 5/ kDfx =y —fx+ldy, feS.
e<|yl<M
Taking limits, we have the absolutely convergent representation of the operator:

1
Kf(x)= —/ kW)OIf(x—y) —fx+yldy, fes.

2 R»
Example 3.4.22. The Riesz kernels are defined by k;j(x) = cux;/ |x|"*! for 1 <
J < n where c, is a constant. Clearly they satisfy all of the above conditions of
oddness, homogeneity, and integrability.

The associated singular integral operator is denoted R;. From Theorem 3.4.21 we
have the estimate [|Rf ||, < G, fll, forf € S.

We now show that, to w1th1n a constant, the Riesz kernels can be regarded as the
formal first partial derivatives of the operator f — [p, f(x — )/ ty|"~! dy.

To see this we use the method of subordination. We begin with the heat kernel

transform of f € S:

—Iy2/4t
fx—

R (4 t)n/2 dy = / f();-') —4n2r|E)? 2n1§xd§
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Taking the partial derivative with respect to x;, we have for 1 <j <n,

-yl

R” 2t (47'[[)n/2 dy = / f(‘i:) —4r r|§|2(27_”%_ )eZHlSAd.{:

Multiply both sides by ¢~'/? and integrate over 0 < ¢ < co. We recognize the elementary
integrals

o _ 2 ra/s2)
1/2 472 tE|
./0 U= GEp)R

(n+1)/2
/oo =322 0P /4 gy — (” + 1) <_43)
0 2 Iyl

Therefore

n n+1 F(l/z) 'i: 27TIE/\
2 ("37) [ e —fa-min = T2 [ fodenta,

which displays the Fourier transform of the kernel. We choose the constant ¢, in the
definition so that the Fourier transform is as simple as possible, thus we define the Riesz
transform by

(3.4.22) Rif (x) := / é’l 2mikxf (£ dE, l<j<n, fes.

This leads to a famous application of Calderén and Zygmund, as follows:

Proposition 3.4.23. Suppose that f € S(R") then we have the a priori bound

92f

0x;j 0xy

(3.4.23) < Al Afllr @, l<j k=<n

U’(R”)

where A =), 8°/3x} is the n-dimensional Laplace operator.

Proof. We first prove the identity

3%

3.4.24
( ) ij Bxk

= —RRiAf.

The Fourier transform of the left side is —47%¢;&; f (&), while the Fourier transform of the
right side is
i§) ik 2|27
= (HATTIENf ),
151151 ( )
which proves (3.4.24). The proof is completed by applying the L” boundedness of the
operators R;. n
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3.5 HARDY-LITTLEWOOD MAXIMAL FUNCTION

A powerful tool in harmonic analysis is the concept of a maximal function. Strictly speak-
ing, one should speak of a maximal operator, transforming a function into a supremum
over an appropriate indexed family of sets.

If f is a locally integrable function on R”, the Hardy-Littlewood maximal function
is defined by

(3.5.1) Mf (x) := sup Js\f]
Bax |B|

where the supremum is taken over all balls containing the point x € R". The balls need
not be centered at x. The operator M is sublinear, in the sense that for any two locally
integrable functions f, g we have M(f + g)(x) < Mf(x) + Mg(x). It is also clear that
Mf(x) = M (| f|)(x), so that we can always assume that f is positive when studying Mf.

To see that Mf is a measurable function, note that both numerator and denominator
of (3.5.1) are continuous functions of the radius and center of the ball B. Hence if we
restrict the supremum to balls with rational centers and rational radii, the supremum will
be unchanged. But for any fixed ball B, the average in (3.5.1) is a two-valued, hence
measurable function of x.

It is obvious from the definition (3.5.1) that M is bounded on L®(R"): |Mf ||loc <
I flloo- The following theorem describes the boundedness properties on the other L”
spaces.

Theorem 3.5.1. Hardy-Littlewood: (i) There exists a positive constant C,
depending only on n such that for each o > 0, f € L'(R")

C
I{x:Mf(x)>a}I§—/ 7.
o Jre

In particular Mf is finite almost everywhere.
(ii) If 1 < p < o0, there exists a positive constant C, , so that for f € L’ (R")

f MFP < Cp.n / he
n Rn

(iii) If f lives on a set B of finite measure and |f|log* |f| € L'(B), then
fB Mf < oo.

Proof. We begin by studying the set E, = {x : Mf(x) > a}. If x € E,, then there is a
ball B, > x so that fo |f| > «a|By|. Thus we have a covering: E, C Uy, By. Since R" has
a countable dense subset (of points with rational coordinates), we can choose a countable
subcollection x; so that E, C U2, B, . Calling these By, we must show that o [(U2,By)| <
C||fl;. From the countable additivity of Lebesgue measure, | U2, B;| = limy | UY_, Byl,
so it’s enough to show that for any N

(3.5.2) o <Cliflh.

N
Us
k=1
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If the balls were pairwise disjoint we would be done, since for each &, f B |f| > a |B|, and
summing on k we would have

iz [, iza

k=154

N
U=
k=1

To complete the proof, it suffices to find a subcollection of balls that are pairwise disjoint
and whose union covers at least a fixed fraction of E,,. |

Lemma 3.5.2. Wiener covering lemma: Given any finite collection of balls
Bi:1 <k <N inR" there exists a subcollection B; : 1 < i < p so that

oG8}l

(ii) {B:Y_, are pairwise disjoint.

Z 3—!1

Proof. We order the balls in order of decreasing radii, renaming them B;, B,, .... Let
B, = B,. Assuming that B L B,, have been chosen, choose B,,,; = B; where k is the
smallest index so that By N B, = ¢ forj = 1, ..., m. If no such index exists then the process

terminates. We now check condition (i): if By is a ball that was discarded, then by definition
there is a ball B, = B; such thatj < k and B, N B; # ¢. Since the radii are ordered, we have
7, = r; > r,. We claim that B, C 3B;. Indeed, there is some z € B, N B;. Now if x is any
point of By, we can use the triangle inequality to estimate the distance from x to the center

of B, as
x| =|(x—2)+z| < |x —z| + |z <2n + 7 < 37

Hence B, C 3B,, which proves that UY_, B, C U"_,3B;. But the measure of a disjoint union
is the sum of the measures, and for any B, the n-dimensional measure of 3B is 3" times the
measure of B. The proof is complete. |

Having proved the covering lemma, part (i) of the Hardy-Littlewood maximal

theorem is complete, since

P
B =
1= | V1> Bl =

=1 (=

14
s
i=1

This proves (3.5.2) and hence part (1). Taking @ — oo shows that Mf < oo a.e.

Proof. To prove part (ii), we introduce the distribution function

(35.3) A @) =[x 1f0] > a)| = / Loy (F ) dx.

ol

The L norm can be written in terms of the distribution function by writing

1 o0
If1 =/ pu”"du=/ pu™ o) () du
0 0
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and applying Fubini’s theorem to obtain

|f )P dx = (/ Pu"fll(o.u(x)n(”)) dx
R”

0

= / pul~! ( / 1(u,w)(f(x))dx> du
0 "

:/ pu”"k/(u)du.

0

R

We will apply this identity to estimate ||Mf|],.
To do this, we first decompose f into a bounded part and an unbounded part (without
loss of generality, we can assume that f > 0).

3.5.4) f=fea +fline i =fu +f°
Since the operator M is sublinear, we have
Mf (x) < Mf, (%) + Mf® (x) < o + Mf* (x).
Hence if Mf > 2«, then Mf* > «. In terms of the distribution function, we have
A Qo) = |{x s Mf () > 2a}) < [{x : Mf*(x) > a}l.
But f¢ lives on a set of finite measure, since

111,

al

{x:f @) > 0} = [{x : f(x) > a}| <

while |f¢| < o + |f] so that f* € L’(R") to which we can apply the Hardy-Littlewood
maximal inequality; we change « to 2« and write

IMfIy =p / (20)" ™ Ay Qe)d (2ar)
0
< p2”C/ o2 ( f4x) dx) da
0 R”
=p2C / al? ( F ) Ligon) F (X)) dx) da
0 R#

f(x)
= p2”C/ (/ Olp_del)f(x) dx
rt \Jo

_ Cpy
Tp-1 e

Cp2r
= -

FEf(x) dx

115,

which was to be proved. |
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Proof. To deal with (iii), we write

/BMf: ./BMflesz +/BMf1Mf>2

[oe]
< 2|Bl+f Ay (max(a, 2)) do
0

= 2|B| + 20y (2) + / Mg (@) da.
2

The last term is estimated from the Hardy-Littlewood maximal inequality and the decom-
position f = f, + 1

2/ hgy 20) der < zc/ 1 ( f"(x)dx) dat
1 T4 R"

1
—2c f —( FO oo (F)) dx) da
1 [0 R"

f(x)
e ([ )
R” 1 o

—2c f £ log £ () d
]R”

=2C| flog" fl1,

which completes the proof. |

Remark. It is important to note that Mf € L'(R") if and only if f = 0. To see this,
let f € L'(R") and choose a (large) ball B centered at 0, so that f sl fl > %ll flli. Then
for any x ¢ B, we have

Jooay I fylft_  IfI

IB(O; 213D = 1B(O; 21xD)] = <" Tl

where the constant is half the reciprocal of the volume of the ball B(0; 2) in R". Hence
Mf (x) > C/|x|" for large x, which contradicts [, |Mf| < co.

Mf(x) >

The upshot of this last remark is that no matter what decay condition we impose
on f, it is never possible to achieve Mf € L!(R").

3.5.1 Application to the Lebesgue Differentiation Theorem

The Hardy-Littlewood maximal inequality can be used to give an efficient proof of the
differentiability of the integral, as follows:

Proposition 3.5.3. If f is a locally integrable function, then for almost every
xeR”

. /B(x;r)f
im——
r—0 |B(x; r)|

Here B(x; r) is the ball of radius r centered at x € R".

(3.5.5) = F(x).
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Proof., To apply the Hardy-Littlewood weak (1, 1) estimate, we need to replace f by an
integrable function. This is easily accomplished by writing the exceptional set in (3.5.5) as
the union of the exceptional sets Sy, in the ball |x| <M, M = 1,2,.... On each Sy we
can replace the locally integrable function f by the integrable function f (x) Ijp a4 1;(x]), to
which Hardy-Littlewood can be applied.

To prove (3.5.5), we first note that if g is a continuous function, then the indicated
limit exists and = g(x) for every x € R". For an arbitrary f, define

fB(x;r)f
IB(x; )|’

Given € > 0, there exists a continuous function g such that ||f — g|l; < €. Writing
f =g+ hwith |||, < ¢, we have

fr(x) = Qf (x) = lim sup £, (x) — lim inf f, (x).
r—0 r=

lim supf, (x) = g(x) + lim sup A, (x),
r—0 r—0
lim iglff,(x) = g(x) + lim ig)f h,(x),

Qf (x) = Qh(x) < 2sup |h(x)| < 2M|h|(x).

r>0

Therefore for any § > 0,
2¢
[{x 0 QF(x) > 8} < H{x : Mlh|(x) = 8/2}| < 3
But the left side does not depend on €, hence we conclude that for every § > 0,
[{x: Qf(x) > 8} =0

which means that ©2f (x) = 0 almost everywhere, which was to be proved. |

The above reasoning can be strenthened and clarified in terms of the Lebesgue set
of the locally integrable function f. This is defined as

_ d
(3.5.6) Leb(f) = |x € R : lim Join /O = )mdy) o}.
r—0 |B(x; r)|

Proposition 3.5.4. For any locally integrable f, |(Leb(f))¢| = 0.

Proof. For each real number ¢ we apply the previous proof to the function |f — ¢|. Thus
we obtain for almost every x € R”,

- d
(3.5.7) lim fB(x;r) lf(y) clm( y)
=0 |Bx; 1)

If ¢; is an enumeration of the rational numbers, we obtain a countable collection of excep-
tional sets E;. Then E := U;E; also has Lebesgue measure zero. But the right side and left
side of (3.5.7) are continuous functions of c; the right side is obvious, but so is the left since
the triangle inequality gives || f(y) — ci| — |f(y) — c2l]l < |c1 — ¢2|. Hence if x ¢ E we let
¢; — f(x) to conclude that

. fB(x:r) If(y) _f(x)|m(d)’)

m =0

li
r—0 |B(x; r)|

which was to be proved. |

=|f@) —cl

x¢E,
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The Hardy-Littlewood maximal function can also be used to investigate certain
questions of nontangential convergence. Normally this is considered in the framework
of convergence in the unit disk or a higher-dimensional space. But the basic ideas are
already present in the above framework, in the context of convergence of the type

lim  fi /(X)) = f(x) when x,,, — x.
m—00

We do not expect that this will be true unrestrictedly, since x — fi,,(x) is a continuous
function whereas the limit f is not continuous in general—hence we cannot expect
uniform convergence. Nevertheless we have the following proposition.

Proposition 3.5.5. Suppose that x,, — x so that |x,, — x| < 1/m. Then for any
f € LY(R"), lim,, f; ym(Xm) = f(x) at almost every x.

Proof, Repeating the above steps, we write f = g+ h where g is continuous and |||, < €.

Define
Qf(x) = lim sup fl/m(xm) — lim inf fl/m(xm) < 2 sup hl/m (xm)'
But
. h
h 1/m (xm) = j;“ —nl <_] [
c,m™"

The hypothesis |x — x,,| < 1/m ensures thatx € {y : |y — x,,| < 1/m}, hence
hl/m(-xm) < Mh(x), Qf(X) < 2Mh(x)

from which the proof can be completed as above:
28
It - S () > 8} < [fx - Mh(x) 2 8/2}] = —.

But the left side does not depend on €, hence we conclude that for every § > 0,

[{x : Qf (x) > 8} =0. |

3.5.2 Application to Radial Convolution Operators

The Hardy-Littlewood maximal function can be used to estimate more general convolu-
tion operators of the form

(3.5.8) (k% f)(x) = fR ) k:)f (x —y) dy,

where the radial kernel k; € L' (R") is obtained from a monotone decreasing nonnegative
function K : Rt — R™* by setting k,(y) = t~"K(y/t). The example of the Hardy-
Littlewood operator is obtained when we set K (x) = 1j0,1j(]x|), the indicator function
of the closed unit ball.

The following lemma shows that the Hardy-Littlewood maximal function can be
used as a universal bound for any radial convolution. The original form is attributed to
K.T. Smith (1956), and appears in Stein (1970). The proof below is attributed to S. Saeki,
reproduced by Banuelos and Moore (1999).
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Lemma 3.5.6. For any radial kernel, we have the estimate
kf @) < MOk, feL'®R".

Proof. Let u, be the measure defined by 1, (A) = f 4 |f(x — y)| dy, for any Borel set A. In
particular if A is a ball, we have 1, (A) < |A|(Mf)(x). Applying this to the ball defined by
B, ={y € R" : k,(y) > A}, we have

(ke F)00] < f LO)If (=)l dy
R”
- f k()1 (dy)
R”
- / o(B) A
-

< MH) f 1B, dA
0
— MH® Ik,

where we have used the definition of Mf and twice used the representation of the L'-norm
as the integral of the distribution function. |

A typical application is to the n-dimensional heat kernel, where K(x) =
e~ */4 /(47)"/2. Lemma 3.5.6 can then be combined with the Hardy-Littlewood maxi-
mal inequality to give a new proof of Proposition 2.2.35, that for any f € L' (R"), and
for almost every x € R", (k; * f)(x) — f(x) whent — 0.

Exercise 3.5.7. Complete the details of this argument.

Hint: Define Qf (x) = lim sup,_, o(k, * f)(x) — liminf,_,(k, * f)(x) and argue as in the proof of
the Lebesgue differentiation theorem to prove that lim,_,o(k, * f)(x) exists a.e. Then identify the
limit by a density argument.

As a second application of Lemma 3.5.6, consider the case of the n-dimensional
Poisson kernel—K (x) = C,,/(1 + |x|*)""+D/2 from (2.2.25). Following the steps of the
proof of the Lebesgue differentiation theorem, we can prove that for any f € L' (R"),
lim, o (k; * f)(x) = f(x) for almost every x € R".

Exercise 3.5.8. Complete the details of this argument.

3.5.3 Maximal Inequalities for Spherical Averages

Stein (1976) has shown that there exist L” maximal inequalities for the spherical maximal
function

(3.5.9) A*f(x) = sup

t>0

fx—m)do®)

IyI=1

where dw is the normalized surface measure on the sphere "' < R”. Results of this type
can be used to prove Fatou-type theorems for solutions of the wave equation u,, = Au
for suitable values of n, p. In the treatment below we restrict attention to the simplest
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case, where p = 2, n > 4. A complete account of the subject for more general values of
n, p can be found in Stein (1993), Chapter XI.
We begin with the spherical averaging opeator

f—> A@NHK = fx—ty)do®) = (f xdo)x).

Iyl=1

We will also make use of the square function, defined by

2 1/2
tdt) ,

which is well-defined whenever f € C! has compact support.

*13
(3.5.10) Sf(x) = (/ 'E—(AJ")(X)
o |0t

Lemma 3.5.9. Forany f € C'(R") with compact support, we have

S
Af@] < M) + LD

V2n

where Mf is the Hardy-Littlewood maximal function.

Proof, We write
Af(x)=1tT"(t"A f(x))
[ d
=t "/ —(s"A, f(x))ds
0 ds
=L+5
where

I} = t‘"/ ns" (A, f)(x) ds
0

L=s" 4 (A, f)(x) ds.
ds

I, is majorized by the Hardy-Littlewood maximal function, since for any ¢ > 0,
Cu
I = o F»dy < M.
Iy—x|<t
Meanwhile, I, is estimated in terms of Sf by using Cauchy-Schwarz:

!
d
|| = t"/ AN o (A H(x0) ds
s

0

’ o J NV
<t (/ st ds) (s [— (Axf)(x)] ds)
b ds

1
V2n

which completes the proof. ]

<

(S x),
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Lemma 3.5.10. Ifn > 4 and f is C' with compact support, then
15f1l2 < Gall £ 2

where the L% norm is taken over all of R" and the constant C,, depends only upon
the dimension.

Proof. The Fourier representation of the spherical average is
afe = [ et feous ds
Rll

where &(§) = c,Ju-2,2(1&])/1€]"~/% is the Fourier transform of the normalized measure
. Now by the chain rule

i _ 27 ik x P - ) _BLAD
S M@ = /R a0 (; 55 <ts>ds)

(3511) =/ ZmE)(f(E) (tg) E

where we have set

wE) = Zs, P
)

Now from the asymptotic behavior of the Bessel function, we have

A

N LID)
&) = 0(&|"~"7), 3 = O(E1%™"7),  |E] - oo.
7

On the other hand, when |&] — 0, we have d®/8&; = O(|¢|). Combining these estimates,
we can write

(35.12) |u(®)] < C,min([, |£]°~"72).

Applying Planchere!’s theorem to (3.5.11), we have
d
o A )

2
[ o luGE)P
[ 13 dx—/Rnlf(S)l DL e

Integrating both sides with respect to the measure s ds and applying Fubini, we have

oo 2
(3.5.13) ISP dx = f FePr ( f Ma's).
R" R 0 A

But the inner integral can be estimated using (3.5.12) . For any M, we have

9] d M 00 d
[ m(ssnz—s:(/ +f )lu(ssnz—s
0 s 0 M s

M o
d
< C,,|€|2/ sds+C,,|§|3‘"/ ds
0 M

sn-—2
&>
(n —2)M"=3"

= Cnl‘SlZMz +C,
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The two terms are comparable to one another by taking M = 1/|£|, leading to the estimate

i , ds | n—1
(&))" — < C, [ 1+ =C—.
0 s n—2 n—2

Referring to (3.5.13) and applying Plancherel’s theorem once again, the proof is complete.
|

Combining Lemmas 3.5.9 and 3.5.10, with the L? bound for the Hardy-Littlewood
maximal function, we have proved the following result.

Theorem 3.5.11. Suppose that n > 4. Then we have the following estimate for
any f € C'(R") with compact support:

(3.5.14) Il sup(A ) ()l < Cli fll2

t>0

where the constant depends only on the dimension.

The estimate (3.5.14) can be extended to any f € L?(R") by noting that the set of C!
functions with compact support is dense in L?.

Example 3.5.12. Taking n=1 and f an unbounded function shows that
sup, Af(x) = 400 for every x € R!, hence the estimate (3.5.14) cannot hold
for general f € L*(R).

Example 3.5.13. To obtain an example in higher dimensions, take f(x) =
Ix|'"="[log (1/1x])]~"110.1(|x]), which fails to be in L*(R") and for which it is
verified that sup, A,f (x) = 400 for every x € R".

3.6 THE MARCINKIEWICZ INTERPOLATION THEOREM

In this section we develop the notion of weakly bounded operators and apply it to prove
the theorem of Marcinkiewicz. To orient the thinking, we first define the notion of weak
Lebesgue space.

Definition 3.6.1.
wkLP(R") :={f : [{x : |f®)] > a}] < Ca™}
forsome C > 0, where 1 < p < 00. In case p = 00, we set wkL™(R") = L (R").
This definition can be rewritten in terms of the distribution function A; in the form
A(@) < Ca™.
Clearly LP(R") C wkL"(R") since if f € L”(R"), then by Chebyshev’s inequality we

have for any a > 0

= [ 1reoracz [ iz it 170 2
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But the converse is not true. For example f(x) = 1/(1 + |x|) is wkL'(R") but is not
integrable.

In parallel with the discussion preceding the M. Riesz-Thorin theorem at the
beginning of this chapter, we have the following elementary properties.

Lemma 3.6.2. Suppose that f € wkLP*(R") and that | f| < M for some M. Then
f € LP"(R™) for any p; > po.
Proof, In terms of the distribution functions, we can write

M M
/ | f ()P dx =p1] a”'_'A, (¢)da < Cpy / a”’"l"’”kj (@) da < 00.
R" 0 0

|
Lemma 3.6.3. Suppose that f € wkL" (R") lives on a set of finite measure B.
Then f € L’ (R™) for any po < p).

Proof. If p; < oo, we write

lf@IPdx=py [ o 'Ap(a) da
R" 0 /

(o]
<x@)+ CP()/ a™ P do < o0.
|

In p; = oo, then the result is immediate, since on a space of finite measure, any bounded
function is in L for any p. |

Lemma 3.6.4. Suppose that f € wkL (R") and f € wkL”' (R") where py < p <
pi1- Thenf € LP(R").

Proof. We write f = f1y5<1y +f1y5=1y = fi + fo- Both f; and f, are dominated by f.
In particular f; € wkL™ and 5 € wkL”'. But £, is bounded and f, lives on a set of finite
measure, since

fx:fo(0) # 0} ={x: |f()| > 1} = C < oo

Therefore by the preceding lemmas, f; € L’(R") and f, € L”(R"). But L,(R") is a linear
space, hence f € L. ]

These lemmas will be applied in many ways. As an elementary instance, we note
that the Hardy-Littlewood maximal function is in the space wkL'(R") and also in the
space L (R"). Therefore we may conclude that Mf € L’(R") forany 1 < p < oo.

In order to include the Hardy-Littlewood maximal function and related operators,
we first formulate the general notion of sublinear operator as follows.

Definition 3.6.5. An operator T is said to be sublinear if, whenever Tf, and Tf,
are defined, and c is any complex number, then

IT(fi + 21 < 1THI + 1111, IT(efD)l < clfil-

We also need the notion of type (p, g).
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Definition 3.6.6. Let (M, u) and (N, v) be measure spaces with a sublinear
operator T : LP(M, u) — LI(N, v). We say that T is of type (p, q) if there exists
a positive constant C so that for every f € L’ (M, ),

(3.6.1) 1771y < Clf

As a consequence, it follows from Chebyshev’s inequality that for each « > 0,
(3.6.2) alplx TfF )] > a} < CPIIFID.

The converse is not true. This leads us to the notion of weak type (p, q).

Definition 3.6.7. An operator for which (3.6.2) holds is said to be of weak type
(P, 9)-

For example, the Hardy-Littlewood maximal operator is of weak type (1, 1) but does
not satisfy (3.6.1) with (p, ¢) = (1, 1). In case ¢ = o0, condition (3.6.2) implies that
Tf € L™ so that the definition can be taken in the strong sense.

Theorem 3.6.8. Let T be a sublinear operator that is defined on the space LP*+L"!
so that it is weakly bounded of type (po, po) and weakly bounded of type (py, p1),
where 1 < pg < p; < 0. Then for any py < p < py, T is defined on L’ and T is

of type (p, p).

Proof. Any f € L” can be written as f = f1,5<1 + f1,)>1, Where the first term is in L
and the second term is in L. Hence L” C L™ + LP'. We first prove the theorem in case
p1 = +oo. Dividing T by a constant, we may assume that || 7f |l < || f|lco. Now we make
the a-dependent decomposition

f=h+h
where
fi=flipsery,  Jo=Flupser
Now |Tf| < |Tfy| + |Tfi|, so that the distribution functions satisfy
M) < Agp(a/2) + Ay, (@/2).

But |fi| < a/2 and ||T|leo.co < 1 so that the second term is zero. Now from the weak
(Po, po) hypothesis,

2 Pro
A (a/2) = C (E) I follbe

and

Ifolln = / PO Ly 1oaray ).
M
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To compute the norm of Tf, we write
e
T 1D = p / M@y’ da
0

§p/ )qfo(ot/Z)ot”“1 do
0

SP/ P10 (/ lf(t)lpo1(|j'|>u/2)u(dt)> o
0 "

21f 0l
=p / ( f a"‘"““da) FOF ()
M 0

prPo
P / LFOPLf@OF pu(dn)
- M

p2l’—l7n )
=——|IfI.
P —Po

This completes the proof that | If ||, < C(p, po)ll fll, in case p; = o0o. To discuss the case
p1 < 0o, we make the same decomposition of f = f; + f;:

oo
(Vigl =17/ Ap(e)e’ ™" da
0
[o )
< p/ ATh (/)" ' da + Ay, (a/2)aP" do
0

The term involving f; can be estimated in precisely the same fashion as above. For the term
involving f, we use the weak (p,, p\) hypothesis to write

/ i a/2pa’ da < € [ @/ap i igpar da
0 0
and hence

/ pa’ g llfnll’p’:dasf pal~t M (/ Lirwiza F O Mdf))‘ia
0 0 M

= / (/ pal~!=P dot) £ (OI" p(dt)
M 21f0

ol
= I£12. n
Pr—p

3.7 CALDERON-ZYGMUND DECOMPOSITION

In previous sections we had to decompose a function into a bounded part and an
unbounded part. This suffices to prove the Marcinkiewicz interpolation theorem, for
example. In other problems one needs a more sophisticated decomposition of an inte-
grable function, due to Alberto Calderén and Antoni Zygmund in their seminal work on
singular integral operators.



210  INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Proposition 3.7.1. Let f € L'(R") be nonnegative and let « > 0. Then there
exist disjoint subsets F, S2 so that

(i) |f(x)| <aforxeF.

(ii) 2 = UrQx , where Qy are cubes with disjoint interiors so that

1

dx < 2"«
= 0d Jo =
(iii) R" =QUF, |2 < |flli/.

Proof. We begin by decomposing R” into cubes Q whose sides are parallel to the coordinate
axes with |Q| > || f]},/«. Clearly this is possible since || f||; < oo. In particular, we have

1 1

3.7.1) —/fg— fZa

101 Jo 1Ol Jrn
For each of these cubes, subdivide into 2" congruent cubes Q’. For each of these cubes, it’s
clear that

1
(3.7.2) f <2"a
o1

for otherwise we would violate (3.7.1). These cubes are of two types:

1
Type(i): IQ_'I/fo <a

1
|Q/|/Q,f>ot.

If Q' is of type (ii), then one does not subdivide further and it is added to the list of
cubes Q. If Q' is of type (i), then we subdivide it into 2" congruent cubes whose sides are
parallel to the axes and repeat the decision process. As before, the discarded cubes satisfy
(3.7.2). Continuing inductively defines the cubes Qy; we let Q := U, Oy, F := R"\Q.
If x € F, then every cube containing x is of type (i). By the corollary to the Lebesgue
differentiation theorem we have for almost every x,

f(x)—-hm Qlff xekF.

Type(ii):

Finally we note that since a|Qi| < [, o f for each cube Q;, we can sum these over k to
obtain the estimate that «|Q2| < fQ f < |Iflli, which was to be proved. ]

This can be restated as a decomposition of the function
f=g+b
where the good part g(x) = f(x) forx € F and g(x) = fij/Ile forx € int(Q;). Hence
the bad part b must satisfy b(x) = 0 forx € F and |, 0 b = 0 for each cube Q;.

3.8 A CLASS OF SINGULAR INTEGRALS

The Calderén-Zygmund decomposition can be used to treat a class of singular convo-
lution operators that generalize the odd kernels which were discussed in Section 3.4.4.
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We will only state the results, referring to Stein (1970) for a complete treatment of the
details.

We begin with a real function K(x), x € R"\{0}, which satisfies the following
growth, smoothness, and cancellation properties:

C
(3.8.1) IK(x)| < T 0+#xeR",
x|n
C
(3.8.2) IVK(x)| < ——  0#xeR",
|x|n+l
3.8.3) / K(x)dx =0 0<R <R, <o0.
R <|x|<R,

A truncated convolution operator is defined by setting
(3.8.4) 1= [ KOFG-ya.
[y|>e€

Iff € L’(R") for 1 < p < oo, then this integral is well-defined by Holder’s inequality, in
light of (3.8.1). If f € L' (R™), then T. f is defined almost everywhere as the convolution
with a function of class L (R"). However the naive bounds in these estimates depend on €,
when e — 0. Itis remarkable that, under hypotheses (3.8.1) through (3.8.3) the operators
T, have uniformly bounded operator norms and are convergent in L” for 1 < p < oo.

Theorem 3.8.1. Suppose that the kernel K(x) satisfies (3.8.1) through (3.8.3).
Then for each p € (1, 00), there exists A, < 00 such that for each f € L’ (R"),

(3.85) ITef Nl < Apli £l

In addition, there exists the L’ limit Tf = lim¢_ o Tf and the operator T also
satisfies the inequality (3.8.5).

The conditions (3.8.1) through (3.8.3) are by no means necessary. In fact, (3.8.2)
can be replaced by the weaker Hormander condition:

(3.8.6) / IK(x—y)—Kx)|dx <C, 0#£yeR"
[x|>2]y|

Exercise 3.8.2. Prove that (3.8.2) implies (3.8.6).

Hint: Apply the mean-value theorem to the integrand in (3.8.6), noting that the segment from
x to x — y is outside of a sphere of radius |x|/2.

We now discuss some of the broad outlines of the proof of Theorem 3.8.1. The
basic strategy is to apply the Marcinkiewicz interpolation theorem, first proving the
boundedness on L2(R") and the weak boundedness on L'(R"). The first of these is
proved by showing that the truncated Fourier transforms

K () = / K (x)e™ "% dx
lx|>€
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remain uniformly bounded: |IA{€ &) < M,Ve > 0,& € R". This is proved in Lemma
3.3 of Stein (1970), pp. 36-37. The weak L' boundedness is proved by applying the
Calderén-Zygmund decomposition at level o: f = g, + b, and doing each term
separately. We have

x TF )| = e} < [{x: [Tga ()] = a/2}] + [{x 1 [Tbo (x)| = /2}] .

We outline the treatment of the first term. From the properties of the Calderén-Zygmund
decomposition, we can write

lgal? = f 1 (O dx
R/l
=/|ga(x)|2dx+/ e (O dx
F Q

< a] F ) dx + 2710
F

<allfl +2*«|lfl
=a(l+ 2" £l

This is combined with Chebyshev’s inequality and the L?-boundedness to write

1
[{x 1 |Tga ()] > a/2}| < ((x/—Z)ZIITgallz
2

M
<
T (a/2)?
M2
< 1 2211 i
< (2N
which proves the weak L' bound for g,. A more lengthy argument using the
Marcinkiewicz integrals shows that the corresponding estimate holds for Tb, and allows
one to complete the proof of boundedness for 1 < p < 2. Then a duality argument is
applied to prove the boundedness in case 2 < p < oo. For details see Stein (1970),
pp. 30-33.

llga I3

3.9 PROPERTIES OF HARMONIC FUNCTIONS

For completeness we state and prove the basic properties of harmonic functions in
the disk.

3.9.1 General Properties

A twice differentiable function u(x, y) is called harmonic in an open set D if it satisfies
Laplace’s equation u,, + u,, = 0 for every (x,y) € D. The prototype examples of
harmonic functions are the real and imaginary parts of f(x,y) = (x + iy)". It is clear
that f satisfies Laplace’s equation, hence each of the real and imaginary parts do also.
These are abbreviated in the polar form u, = r" cosnf and v, = r" sin nf. Taking the
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derivatives of f and forming the real and imaginary parts shows that |D,u,| < nr*™!,
ID%u,| < n(n—1)r""% and similarly for v,. Hence we can form more general harmonic
functions by the series u(x, y) = Z”>O anun(x,y). If |a,| < M andR < 1, then this series
converges uniformly in the closed disk x*> + y> < R? together with the differentiated
series, thus defining a harmonic function in the open disk x*> + y* < 1.

In particular, a useful class of harmonic functions are provided by the Poisson
integrals of integrable functions (or more generally of finite measures):

1 R?—r? rylt s ind
GOD ) =50 /T R 7 2Reos(@ gy D= ; (z) Fomer.

Proposition 3.9.1. Suppose thatf € L'(T) and u(x, y) is defined by (3.9.1). Then
u is a harmonic function in the disk 2+ y2 < R? and lim,_, g u(re) = f(0) for
almost every 0 € T. If f € C(T), the convergence is uniform in T. If f € L'(T),
1 < p < 00, then the convergence is in the norm of L’ (T).

Proof. We simply note that | f (k)| < |Iflly so that we can infer that the sum of the series in
(3.9.1) is a harmonic function. The convergence to the boundary values was already proved
in Chapter 1 as part of the Abel summability of Fourier series in the spaces L'(T), C(T),
and L”(T). |

Exercise 3.9.2. Suppose that f € L™(T) and that u is defined by (3.9.1). Prove
that lu(x, y)| < || fllec in the disk x> + y* < R

Exercise 3.9.3. Suppose that m(d0) is a finite Borel measure on T. Defining

) lf R-r (d)
u(x,y) .= — m ,
Y o L R4 2~ 2rR cos (6 — ¢)

show that u is a harmonic function in the disk x* +y> < R?. Show by example that
u is not necessarily a bounded function.

Hint: First show that u(x, y) = Y, (r/R)"'m,e™ for a bounded sequence m,. If m is a point
measure, then u is unbounded near that point.

‘We now turn the picture around, assuming only that u is a given harmonic function
in the disk. The first problem is to prove the uniqueness of harmonic functions with given
boundary values.

Proposition 3.9.4. Suppose that D is a bounded and connected region with a
piecewise smooth boundary. Suppose that v, w are twice differentiable in D and
the first derivatives have continuous extensions to D. If v, w are harmonic in D
and satisfy v = w on the boundary. Then v = w in D.

Proof. Let u = v — w, so that u is harmonic in D with u = 0 on the boundary. We will
apply Green’s theorem to the vector identity

div(u gradu) = u(uy, + uy) + 2 + u2).
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The first term on the right is zero since u is harmonic. Applying Green’s theorem transforms
the double integral of the divergence into a line integral on the boundary. Thus

/ ugradudS = /(uf + ui) dx dy.
aD D

But the left side is also zero, since u is zero on the boundary. Hence we conclude that the
continuous function u? + u3 = 0 in D, meaning that u is constant on D. But the boundary
value is zero, hence u = 0 in D. |

Corollary 3.9.5. Any harmonic function in the disk x* + y* < 1 can be rep-
resented on the closed disk x> +y> < R?> < 1 by a Poisson integral, in the
form

3.9.2)

2 2
u(x, y) = i/ R —r u(Re®Ydp, P+ <R <1
2 Jp R2+r2 —2rR cos (8 — ¢) -

Proof. From the above discussion, the right side of (3.9.2) is a harmonic function in the
disk x? 4+ y* < R? and has the same boundary values as . Hence by Proposition 3.9.4 the
equality (3.9.2) follows. ]

Corollary 3.9.6. Any harmonic function in the disk x> + y*> < 1 has the mean
value property:

1 )
(3.9.3) u(0) = — / u(Re") do, R<1.
2.7'[ T
Proof. 1t suffices to take (x, y) = (0, 0) in (3.9.2). |

3.9.2 Representation Theorems in the Disk

The Poisson integral can be characterized in each of the spaces L*°(T), L"(T), (1 <
p < 00) and the space of nonnegative measures. We enumerate these results separately,
beginning with the classical Fatou theorem for bounded harmonic functions.

Theorem 3.9.7. Fatou: Suppose that uis a harmonic function that is bounded in
the unit disk x> +y?> < 1: |u(x, y)| < M for some M. Then there exists u; € L®(T)
so that

_ 1 1—72% 2 2
(3.9.4) “(x’y)"E/T1+r2—2rcos(9—¢)u'(¢)d¢’ x4y <1

In particular we have lim,_, | u(re’®) = u,(6) for almost every 6 € T.

Proof. We will make a compactness argument based on duality of L'(T) and L>(T).
Consider the linear functionals on L' (T) defined by

(3.9.5) Lef = % / f@®u(Re®yds, O0<R<1.
T

Clearly |Lg f| < M||f1l;, so that this family of linear functionals is a bounded subset of the
ball ||L|| < M in the dual space of L'(T), namely L>°(T). But this ball is compact in the
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weak* topology, which can be seen directly by taking a countable dense subset of L' (T)
and applying Cantor’s diagonal argument. Thus we obtain a weak* convergent subsequence
LRJ with R; — 1 with a weak* limit, call it u, with the property that for every f € L'(T),

lim; Lg f = % f1r f(@)u,(0) d6. We apply this to the Poisson integral representation of u:
(3.9.6)

2 _ 2
u(x,y) = i/ Ri—r u(R;e'?) de, 2+ <R <.
21 Jy R} +r2 —2rRicos (0 —¢)  ’ =

For any fixed (x, y) the Poisson kernels Pg, converge uniformly on T when R; — 1 to the
Poisson kernel P; this follows from the series representation

1 — Rl’l
Z r’ cos (n6)
n>1 R”

<231 ——R)Zr”%

n>1

2r \"
52(1——R)Zn(1+r>

n>1

|P1(r,9)——PR(r,9)|=2

provided that R > (1 + r)/2. For any fixed r < 1 the last sum is finite, which proves
the uniform convergence of the Poisson kernel. Hence we have established (3.9.4). The
convergence of u(re') follows from the almost-everywhere Abel summability of the Fourier
series. |

The next result concerns representation of nonnegative harmonic functions.

Theorem 3.9.8. Suppose that u is a nonnegative harmonic function in the disk
x* + y? < 1. Then there exists a nonnegative Borel measure m on T so that

1 1—r2
3.9.7 =— d¢), P+yr <1
B9 utx.y) 2nA~1+r2—2rcos(9—¢)m( 9 XHy<

For any f € C(T), we have

(3.9.8) lim / u(re®)f(0)do = / f(O)m(de).
r— ']1- T

Proof. Again we consider the linear functional (3.9.5), now defined on the space C(T)
whose dual space is the set of finite Borel measures on T. We have

1 )
Laf1 < 1oy f u(re®) df.
T Jr

But from the Poisson integral representation of u in the disk x> + y*> < R?, we have
u(0) = 1/2m [ u(re®)do, hence |Lgf| < u(0)| flls. Applying the weak compactness
argument once again yields a measure m on T and a weak* convergent subsequence Lg,
so that Lg f — fT f(6)m(d6). As in the previous proof we have (3.9.6) on which we
can take the limit R, — 1 to conclude (3.9.7). To prove the convergence, we multiply
(3.9.7) by a continuous f(0) and integrate on the circle of radius r. The left side is L,f =
[z u(reé®)f (0) d6. The right side can be written as [ P,f(6)m(df). But P,f converges
uniformly to f, so that the right side converges to fT f(@)m(d6), from which it follows that
lim, .| L.f exists and is given by (3.9.8). |
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To complete the picture, we state and prove the theorem on L” boundedness.

Theorem 3.9.9. Suppose that u is a harmonic function in the disk x> + y* < 1
with the property that

sup / lu@re®)|P do < M < 0o
T

O<r<l

where 1 < p < 00. Then there exists u; € LP(T) so that

1 1—-r2 2 2
699 uxy) =3 [ @ g, F 4y <,

In particular
nn} lu(re®y — u; (9)| d6 = 0
r— T

and lim,_, | u(re®®) = u,(0) for a.e. 6 € T.

Proof. Again we consider the linear functional (3.9.5), now defined on the space L” (T)
which is the dual space of L”(T) where p’ = p/(p — 1). We have for any f € LP(T),

ILe fl = M1l

so that the linear functionals Ly have bounded norms. Applying the weak compactness
argument once again yields an L” function f on T and a weak* convergent subsequence Lg,
so that Lg f — fo(G)ul (6) d6. As in the previous proof we have (3.9.6) to which we can
apply take the limit R; — 1 to conclude (3.9.9). The convergence follows from the L” and
a.e. Abel summability of the Fourier series proved in Chapter 1. u

3.9.3 Representation Theorems in the Upper Half Plane

The results in the previous section can be transformed to obtain representation theorems
for harmonic functions in the upper half plane R2" = {(x,y) : —00 < x < 00,y > 0}.
To see this, we write z = x + iy and introduce the fractional linear transformation

W_Z—i_x+i(y—1)
z+i x+i(y+1)

which maps i to 0 and maps the real axis —oo < x < oo to the unit circle |w| = 1,
deleted by the point w = 1, which corresponds to the point z = oo. The upper half plane
R*" is mapped 1 : 1 conformally onto the unit disk D = {w : |w| < 1}.

If U(z) is a harmonic function defined for z = x 4 iy € R? ¥ we obtain a harmonic
function on D by setting u(w) = U (2). This can be seen directly by computing the partial
derivatives by the chain rule or by observing that u is the real part of the holomorphic
function obtained by composition of a holomorphic function with the fractional linear
transformation (3.9.10). If U is a bounded harmonic function on ]R2+, then u is a bounded
harmonic function in D. If U is a nonnegative harmonic function in ]R2+, then u is
a nonnegative harmonic function in D. We state and prove the corresponding Fatou
theorems.

(3.9.10)
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Theorem 3.9.10. Suppose that U is a bounded harmonic function in R2", Then
there exists U, € L (R) so that

Ui (1)
(3.9.11) Ulx,y) = / -2+ +y

Proof. From the Fatou theorem in the disk, we set w = re’ and

(3.9.12)

()_1/ 1= ( d_1/1—|w|2 .,
U = S | T3 —arcos@ =@ P = 37 | jew — @) 40

It remains to transform this to the z = x + iy coordinates. Direct computation shows that
the numerator of the Poisson kernel is computed from

4y

lez—xz+(y—1)2 —.
x4 (y+ 1)

- 7 @ — 2:
RNt ™

The denominator is computed by writing e = (¢t —i) /(¢ +i), w = (z — i) /(z + i) to obtain

0 t—i z—1i
e —w=———
t+1 Z+1
_ 2y + 2i(t — x)
T x—y—D+ilty+x+1)’
> , 4y 4+ 4(t — x)?
e —w|” =
(tx—y =12+ @y +x+1)?
4 Y=
142 2+ (y+ DY
resulting in the identity
1—wP oy +7)

e — w2 (=)

It remains to compute the Jacobian of the mapping ¢t — ¢. This is computed directly by
writing ie’® d¢ = 2idt/(t + i)* from which d¢ = 2dt/(1 + t*). Substituting this into
(3.9.12), we conclude the representation formula (3.9.11), where U, (¢) = u,(¢). |

The representation theorem for nonnegative harmonic functions contains a new
term, which was not present in the disk.

Theorem 3.9.11. Suppose that U is a nonnegative harmonic function in R2",
Then there exists a nonnegative finite Borel measure M on R and a nonnegative
constant c so that

_ Y 1
(3.9.13) U@Jy'q+ﬁpéa—xy+ﬁﬂaw)

Proof. Again setting u(w) = U(z), we apply Theorem 3.9.8 to obtain

1—r?

1 11—
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If the measure m attributes no mass to the point ¢ = 0, then we can transform this integral
exactly as we did in the proof of the previous theorem, by setting M (A) = m(A) if the Borel
set A is the image of the Borel set A under the mapping (3.9.10). If m({0}) > 0, we must
compute the contribution as the Poisson kernel corresponding to t = 0o

1—|w? _ 4y X4 (y+1)? _
1—w2  x2+ (y+1)? 4 -
which gives the additional term in (3.9.13), where ¢ = m({0}). [ ]

The Fatou theorem for the L” norm is also different from the case of the disk.
To see this, we first note that the image of a horizontal line y = const. under the map
z — (z —i)/(z + 1) is a circle whose center is on the line Rew = 0 and which passes
through the point w = 1. When y — 0 this circle tends to the circle |w| = 1. In detail,
we write

x+iy—i y 1 x—i(y+1)
x+iy+i y+1 y+1x+i(y+1)

so that the center is at y/(y 4 1) and the radius = 1/(y + 1). We parametrize the circle
by writing

1 .
— _y_ + et\ll
y+1 y+1
from which we compute d¥ = 2(y 4 1)/(x> + (y + 1)) dx. Therefore the L” norms
transform according to

1

(3.9.15) f Iu(w)l”dllf=2(y+1)/R|U(x,}’)|pm

-7

Theorem 3.9.12. Suppose that U is a harmonic function in R2" such that for
eachY > O,

P
/' WEIW 4t < b1 < co.
Y>)>O 1+x

Then there exists U, € L’(R; dt/(1 + t%)) so that

y 1
3.9.16 Ux,y) == | ————=U,(t) dr.
(3.9.16) =2 [ s i)

Proof. We have 1> + (y + 1)? > 1+ 2, thus

1 1
2+ (y+1)? <,z+1

so that

U@ I’
R 2+ (y+1)?
Transforming the integrals as in (3.9.15),

i Y 1 iW)
su u| — + e
Y>‘I:()/:71 (}"" 1 y + 1

t, 7’
2(y+1) dr52w+4)L;%;?%Ldr54Maﬂ+D.

P

d¥ < o0.
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Now we can apply the compactness argument from the previous section, defining a sequence
of linear functionals on L (T) by

_ ™ y 1
s = [ (S + ) av

We see that their norms are uniformly bounded, hence we can choose a weak* convergent
subsequence L, where y; — 0 and L, — u; € L?(T). Writing the Poisson integral
representation of u with respect to a fixed but arbitrary point in the interior of the circle
C,,, we note that the Poisson kernels converge uniformly in W € (—, 7r) so that we can
take the limit y; — 0 and conclude that u(w) is represented by the Poisson integral of u,
as in (3.9.9). Finally we transform this into the (x, y) variables, exactly as in the proof of
Theorem 3.9.9. ]

3.9.4 Herglotz/Bochner Theorems and Positive Definite Functions

We can use the representation theorem for positive harmonic functions to characterize
the Fourier coefficients of a nonnegative measure on the circle. A bilateral sequence of
complex numbers {u,}.cz is called positive definite if for every finite set of complex
numbers {c,}"__,, we have

N
(3.9.17) Y Cmbultmon = 0.

mn=—N

Exercise 3.9.13. Prove that a positive definite sequence {u,} satisfies up > 0 and
lunl < ug forn € Z.

Hint: Apply the definition with ¢y = 1, ¢, = re” and otherwise c; = 0. By suitable choice of
0, first prove that u, is hermitian symmetric: u, = u_,. Then minimize a quadratic polynomial to

obtain the inequality.

Theorem 3.9.14. Herglotz: A sequence of complex numbers {u,},cz is positive
definite if and only if there exists a nonnegative Borel measure M on T such that

(3.9.18) U, = / e MM (d0), nel.
T

Proof. 1f (3.9.18) holds, then we have for any finite set of complex numbers {c,}__,,,

N
E CmCnllm—n = f
N T

mn=—

N 2

imf
E Cm€

m=-N

M(d9)

>0.

Conversely, suppose that (3.9.17) holds. Let ¢, = r"e¢™ forn > 0 and ¢, = 0 for n < 0,
where 0 < r < 1 and set

F(r,6) := E Upnt" ™ P

m,n>0

The double sum is majorized by ug Y, .o """ = o/ (1—r)* < oo.Itisalso the (N — 00)
limit of the finite sum for 0 < m,n < N, hence F(r,0) > 0 by (3.9.17). We can rewrite
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F(r, 0) as a sum along 45 degree lines in the first quadrant:

0 < F(r, 9) — § : § : um_nrmeunerne—mﬁ

Jj€Z  mn=0,m—n=j

— § :ujeyﬁ § : rm+n~

JezZ m,n>0,m—n=j

If m — n = 0 the inner sum is ) o, 7" = 1/(1 — r?). Otherwise we have m — n = j # 0
and we can remove the common factor 7! from the inner sum to obtain

1 oo
F@r,0)= —— E urlle® >0,
1—1r2 — J
je

which proves that the harmonic function u(r, 6) := )., u;rVle’ is nonnegative in the unit

disk. Hence by Theorem 3.9.8 there exists a nonnegative Borel measure M on T so that

I 1—1#2
39, i u*':/ Mdo).
(3919 jgz:ujr ¢ Tt 1472 —2rcos(® —¢) @)

Now we multiply both sides of (3.9.19) by e~ and integrate over T to conclude that
uy = [y e ™M (df) for any N € Z, which was to be proved. [ ]

One can also consider positive definite functions f(£) on the real line. These are

defined by the statement that for every finite set of real numbers &1, ..., £y and every
finite set of complex numbers {c,}"_, we have

N

(3.9.20) > ntnf (b — &) = 0.

m,n=1

Again it follows that f(0) > 0 and that | f(§)| < f(0).

Exercise 3.9.15. Prove this.

Theorem 3.9.16. Bochner: A continuous function f (&) is positive definite if
and only if there exists a nonnegative Borel measure M on R such that

(3.9.21) f&) =ME) = fR e Mdx), EeR.

Proof. Suppose that f (&) is defined by (3.9.21). Then for any finite sets (£,) and (c,) we
have

2
M (dx)

N
§ : Cn elbnx

n=1

N
Z sz'nf(gm - &n) =/

m,n=1
>0.
Conversely, suppose that (3.9.20) holds. Now for any x € R, y > 0, define
oo o0 . .
F(x,y) = / / f(& —me e e e ™ dt dn.
o Jo

This double integral is majorized by the convergent double integral
FO) [ [ e e ™ d& dn = £(0)/y*. 1t is also the limit of finite Riemann sums of the
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form Y, . f(&n — &)e "t e nre~tw'e=%n which are nonnegative, by hypothesis. Hence
F(x,y) = 0. On the other hand we can write

0 < F(.x, y) — /f(u)eiux (/ e—)'(5+fl) dn> du
R En=0,E—n=u

1 ]
= —/f(u)e“"‘e""'“' du,
2y Jr

which proves that 2yF(x, y) is a nonnegative harmonic function in the upper half plane.
Hence by Theorem 3.9.11 there exists a nonnegative finite Borel measure M on R and a
nonnegative number c such that

(3.9.22) ey +2 [ Y M) = [ ¢ F (e
R R

2+ —x)

However both integrals are bounded functions of y when y — co. Hence the constant term
must be ¢ = 0. To complete the identification, we recall the representation of the Poisson
kernel:

2y _ / ek g el g
Y+ (t—x)? R
Integrate both sides with respect to M (dt) over R to obtain

[f(u)eizl.te—)'|u| du = /M(&)eif,\e—yk:] dt
R R

from which we conclude, by the uniqueness of Fourier transforms, thatforall§ € R,y > 0,
we have f (£)e ¥l = M(£)e™%!, hence f(&) = M(£), as required. [ |



CHAPTER

4

POISSON
SUMMATION
FORMULA
AND
MULTIPLE
FOURIER
SERIES

4.1 MOTIVATION AND HEURISTICS

Up until now we have treated Fourier series and Fourier integrals independently of
one another. Given the strong parallels between the one-dimensional theories, we may
ask if there is a systematic link for passing back and forth. This is supplied by the
notion of periodization and the closely related Poisson summation formula. For the
sake of clarity, we will first pursue these ideas in one dimension where the formu-
las are simpler. As applications, we will obtain the Shannon sampling formula for
band-limited signals and the transformation formulas for Gaussian sums from number
theory using these ideas. The higher-dimensional Poisson summation formula allows us
to study multiple Fourier series. As a by-product we can derive the famous Landau
asymptotic formula for the number of lattice points in a large sphere in Euclidean
space.

In order to simplify the notations, we will consider Fourier series for functions
of period 1; these are defined by their restriction to the interval (0, 1). In this setting a
Fourier series is written

1
fx) ~ Zf(n)ehinx, fn) = '/(; f(x)e—Zm'nx dx,

nezZ

222
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and the Dirichlet kernel of Fourier series is written

P ¥ sinwx

4.2 THE POISSON SUMMATION FORMULA IN R!
4.2.1 Periodization of a Function

Given a function on the line, one can construct a periodic function by summing over the
integer translates, defining

(4.2.1) foy=) fex+n

nezZ

where the series is supposed to converge in the sense of symmetric partial sums. This is
called the periodization of f.

Example 4.2.1. If f € L'(0,1) and is defined to be zero elsewhere, then f is
simply the periodic extension of f to the entire real line.

Example 4.2.2. If f is the heat kernel, defined by f(x) = (4rt)~"2e/* for
t>0,x€eR thenf(x) = (4n)"' 2y, e~ /41 s the periodic heat kernel.

Example 4.2.3. Let f be the Dirichlet kernel relative to the Fourier transform,
studied in Chapter 2:

i M
fx) = D,f,,T(x) - M@ — / PTEX gt
X Y

In this case the series defining f is not absolutely convergent, but we can compute the
periodization f directly as follows:

N

. N "
(4.2.2) 3 % -y ( f 2 ds)

n=—N n=—N -M

M N
Zmifx 2m$n
(X

= /M > ix (M) dt.
-M sinmé

We apply the pointwise inversion of Fourier series on each interval (k — 1/2, k + 1/2),
each time obtaining a contribution from the center. If M ¢ Z, we obtain

lim i sin2rM(x +n) _ % ik _ sin((2[M] + Drx)

4.2.3) -
w(x + n) sinwx

n=—N k=—[M]
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Furthermore the partial sums (4.2.2) converge boundedly for each M < oo, since the
right side consists of a finite number of Fourier partial sums for the function & — ¢?7¢
até =0, =xl1,..., £[M]

We have shown that the periodization of the Dirichlet kernel DT is the periodic
Dirichlet kernel Dfy;,.

Exercise 4.2.4. IfM € Z, show that we must add an additional term of cos 2Mm x
to the right side of (4.2.3).

We can further exploit the bounded convergence to represent the Fourier partial
sum of an arbitrary f € L'(0, 1):

/ Foc+ 0DET (1) di = / Fo+1) Z sin2xM@+n)

g /f(x+t)D (0 dt.

When N — oo, the left side converges to the Cauchy principal value, or symmetric
improper integral, which can be summarized by writing

PV / fx+nDIT () dt = / f@&+ DD, @) dt, M¢TZ.

As afinal example of periodization, we consider the kernel of the Hilbert transform,
which was studied in Chapter 3.

Example 4.2.5. Let f(x) = 1/x for x # 0.

The periodization is determined from the identity

|
4.24) Z = v cot T x, x¢Z.
nez x—n
This can be proved by residue calculus, which the reader is invited to supply. We offer
a Fourier-analytic proof as follows:

Proof. Let f(x) = >,.,1/(x —n) — wcotnx for x ¢ Z. Then x — f(x) is an odd
function of period 1. It is also a continuous function, since ) 4nez 1/(x — n) converges
uniformly for —1/2 < x < 1/2, [since |1/(x* —n?)| < 4/(4n* — 1)], hence to a continuous
function. On the other hand the function x — 7 cot wx — 1/x can be defined by continuity
at x = 0 and thus is a continuous function for —1/2 < x < 1/2. To prove that f = 0, we
note that its Fourier cosine coefficients are all zero; it remains to show that its Fourier sine
coefficients also vanish, i.e., f ]62 fx)sin2nMxdx =0forM = 1,2, .... Now the series
> nez Sin(2wMx)/(x — n) converges uniformly in —1/2 < x < 1/2, so we can integrate
term-by-term: On the one hand,

1/2 N N+172 M.
425)  lim ] sin (2 Mx) (Z —) x = lim [ Sin2xMx
N X—n

=172 _N N-1/2
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On the other hand

172 1/2 o 2aM
4.2.6) [ sin(QarMx)m cotmxdx = / Mn cosxdx.
—1,2 -1/2 smmwx

But elementary trigonometric identities reveal that Zkle cos (2k — )mx = sin(QMnx)/
2 sin rx, so that by orthogonality

172 1/2
4.2.7) / sin(2nMx)w cotmx dx = / 27 cos® wxdx = 7.
-1/2 —-1/2

Therefore fl{% f(x)sin@rMx)dx =0forM = 1,2, ..., hence f(x) = 0 almost every-
where. But we already noted that f is continuous, and a continuous function that is zero a.e.
must be zero everywhere, which completes the proof of the required identity. |

Additional examples of periodization are obtained from the Fejér kernel and the
Poisson kernel.

Exercise 4.2.6. Consider the Fejér kernel on the line, Kr(x) = (1 — cos2nTx)/
27 2Tx? for x # 0. Show that if T < 77, the pertodzzatton of Kt is the Fejér kernel
of Fourier series: Kr_(x) = sin®(Tx) /T sin®(rx).

Hint: Begin with the representation of K as a Fourier integral: Kr(x) = fj, e (1 —|€|/T) dt.

Exercise 4.2.7. Consider the Poisson kernel on the line, B(x)=y/[n (2 + yH]
where y > 0, x € R. Show that the periodization of P, is the Poisson kernel of
Fourier series.

Hint: Begin with the representation of P, as a Fourier integral: P,(x) = [, e e=27ED g&.

4.2.2 Statement and Proof

The Poisson summation formula allows us to compute the Fourier series of f in terms of
the Fourier transform of f at the integers.

Theorem 4.2.8. Suppose that f € L'(R). Then f(x) is finite a.e., satisfies
f(x 4+ 1) = f(x) a.e. and is an integrable function on any period, e.g., [0, 1].
The Fourier coefficient is obtained as

1 oo
/ FOe™ ™ dx = f(m) = / f(x)e™27ime gy, me 7.
0 —00

Ifin addition y 72 _ | JA‘ (n)| < 00, then the Fourier series of f converges and we
have the a.e. equality

4.2.8) Z fx+n) =Ffx) = Z Fmyemims.

nez meZ




226

INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

In particular f is a.e. equal to a continuous function on T = R/Z. Redefining f if
necessary, then the equality holds everywhere and we have the Poisson identity

(4.2.9) Y fy=fO =) fom.

nez mez

Proof. We have
/ (Z |f<x+n>|)dx- Z/ F@)ldx = [ F@lds < oo,

which shows that £ is finite almost everywhere and integrable on [0, 1]. The same calculation
applied to f(x)e~2"" allows us to integrate term-by-term:

! 1 00
[ ]?(x)e—Znim\’ dx = ( Z foe+ n)) e 2mimy g
0 0

H=—0C

0 1
Z f(x + n)e—Znimx dx
n=—oov0

n+l
Z / f(y)e—me(\ n)d

n=—oc

/ f( y)efzrrimv dy

= f(m),

I

which proves the first statement. Now if the series ), , | f(m)| converges, then the Fourier
series of f converges uniformly and in L', in particular the Cesaro means converge to the
same limit. But the Cesaro means converge in L' to f. Therefore f is almost everywhere
equal to the sum of its Fourier series. In particular, for adense set S. Finally iff is continuous,
we let y — x through the set S to conclude that f(x) = >, ., f(n)e*™*_ Finally, set x = 0
to obtain the Poisson identity (4.2.9). |

Exercise 4.2.9. Suppose thatf € L' (R), that f has finite total variation on R and
is normalized so that 2f(x) = f(x 4+ 0) + f(x — 0). Prove the Poisson identity
(4.2.9).

Hint: Show that f satisfies the hypotheses of Dirichlet’s convergence theorem from Chapter 1.
Check first the uniform convergence of the series (4.2.1).

Example 4.2.10. Iff(x) = (471)~"2e /%, then all of the conditions are satis-
fied and we have f(n) = e=**"™ and thus the identity

—(x n)? /4t

§ : § :62771/1x —472n?

nez nez

This example shows that the periodic heat kernel has a natural Fourier series

representation in terms of separated solutions of the heat equation.
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Remark. 1tis clear that some continuity restriction is necessary to obtain the Poisson
summation formula. Indeed, if f(x) = O for x = 0,+1,£2,... and f(x) = e
otherwise, then the left side of Poisson’s identity (4.2.9) is zero, but the right side is
obtained as ), ¢, from the above example.

Closely related to the Poisson summation formula is a bilinear identity similar to
the Fourier reciprocity studied previously.

Proposition 4.2.11. Suppose that either

(a) f e L°(T)and K € L'(R") or
(b) f € L'(T) and Y ez K(x + n) converges boundedly on T.

Then

|
4.2.10) / f(x)I_((x) dx = / j_”(x)K(x) dx.
0 R

Proof. In case (a) we appeal to Theorem (4.2.8) to obtain the a.e. convergent series

K@) = ZK(x—f—n) x€(0,1),

nez
fWE® =) f®K&x+n  xe©,.
nez

The right side is dominated by the integrable function || f]|x Y.
can integrate term-by-term to obtain

2 |K(x + n)| so that we

ne

1 1
/f(x)l_((x)dx=2[f(x)K(x+n)dx
0

nez v 0

n+l
= Z f(x —n)K(x)dx

nez vn
= / f(x)K(x) dx.
R
The proof in case (b) is another application of the dominated convergence theorem. |

The previous proposition can be paraphrased in terms of adjoint operators. Let P
be the operator that transforms f € L!(R) into its periodizationf = Pf € L'(T). In each
case the dual space is L* and (4.2.10) becomes the identity

/f(PK)dx: /(P*f)de, K € L'(T), f € L®(T),
T R

which shows that the adjoint of the periodization operator P is the operator that forms
the periodic extension of f € L*(T) to L (R).

These ideas can be applied to “lift” computations from the circle to the real line
where the formulas may be simpler. For example, if f € L'(T) is extended periodi-
cally to R and K} is the Fejér kernel with Ky (r) = (sin’ Mrnt)/(mMt?), then from
Exercise 4.2.6, its periodization is the Fejér kernel for Fourier series, defined by
Ky_1(t) = (sin> Mmr) /(M sin’ 7r¢) so that we can transform the Fejér mean of the
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Fourier series as follows:
1 .2 )
sin“(Mmt) / - sin“(Mmt)
x4+t ———dt = x+1) ————dt.
/0 /¢ ) Msin® zt Rf ) 2Mr?
In the same fashion, the Poisson integral is transformed according to the identity

1—1r?2

1
_ —2ny
/of(x+t)1+r2—2rcos2m ff(x+) # +y?) dt (r=e"").

4.2.3 Shannon Sampling

As a first application of the Poisson summation formula, we consider the problem of
reconstructing a band-limited signal from its values on the integers. By definition, these
are functions of the form

A
(4.2.11) f@) = f F(§)e¥™™ dk
—A

where F € L'(—X, A) and where we set F(§) = O for |£] > A. The number X is the
bandwidth. The Shannon sampling formula is the following identity:

(4.2.12) fo=Yfon )M teR

nez n)

where the series is taken as the limit of the symmetric partial sums and where the fraction
is set equal to 1 when n = ¢.

The following example shows that one cannot expect (4.2.12) to hold for an arbi-
trary bandwidth.

Example 4.2.12.

fm:<“”v l/u—m%”ws

is a band-limited signal with A = 1. Clearly f is zero on the integers, so that we
cannot retrieve f from {f(n)}, n € Z.

The following general theorem gives sufficient conditions for the validity of
(4.2.12).

Theorem 4.2.13. Whittaker, Shannon, Boas. Suppose that F eL'(—A, 1)
defines a band-limited signal with }. < % Then the Shannon sampling formula

(4.2.12) holds. More generally, if . > % we have the estimate

sinz(t — n)

4.2.13 -
(4.2.13) OEDINIO) =

nez

=2 IF@ld
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Proof. Let F(¢) =3, <z F(€ +n) be the periodization of F € L'(R). The Fourier trans-
form of F is x — f(—x) so that by the Poisson summation formula, we have the Fourier
series

(4.2.14) FE)~ Y f(=m)e™™ =Y fme .

nez neZ

From the results of Chapter 1, any L' Fourier series may be integrated term-by-term after
multiplication by a function g of bounded variation. Applying this with g(£) = ¥,
we have

7z ) vz
/ F(g—)eZmrE = Zf(n)/ e27”5(1—n) d&'
- ~12

12 nez

—Zf( )smn(t ).

nez n)

If A < 3, then F is the periodic extension of F to R, so that F(&) = F(¢) for |€] < —, and
the left s1de reduces to flfz F(£)e*™ " = f(t), which proves (4.2.12).
Otherwise, we can rewrite the left side as

12 _ ) 1/2 )
/ Fee ™ ds = / F(E +me’™ dk

—-1/2 nez v —1/2

n+1/2
— Z/ F(u)leriI(u—n) du
nez, vyn—1/2

n+1/2
— A27lell/ F(u)eZ,vim du: but

nez —1/2

n+1/2 )
f@ = Z/ Fu)e*™ ™ du;  thus
nez Yn—1/2

) n+1/2 )
Z(l _ e—27rm[) F(u)ethu du

n#0 n—1/2

n+1/2
<2y [ Il

nz0 172

= 2/ |F ()| du,
lulz1/2

which completes the proof. |

o,
[ ke a| =

~1/2

’f OF

Band-limited signals have the further property that the total signal strength
fR f(¢) dt can be computed by sampling at the integers.

Proposition 4.2.14. Suppose that A < % and that F € L' (=X, A) satisfies a Dini
condition at § = 0 with value S. Then the series ), , f(n) converges and we
have the identity

(4.2.15) Jim / fydi=s=Y"fm).

nezZ
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Proof. From (4.2.11), the left side of (4.2.15) is computed as

T sin2w&T
dt = F ,
/Jf(f) t / E)———— E d§

which converges to S by one-dimensional Fourier inversion. The convergence of the series
on the right side of (4.2.15) can be seen directly by computing from (4.2.11):

% g in(2N + 1
Zf(n) = / F(E)u dt
—N —A

sinwé
Since A 5 =, this is an integral on a single copy of the basic period interval (—— ) and
converges to S by applying one-dimensional Fourier inversion. |

Exercise 4.2.15. Suppose that f(t) = f_)”A e*™ " 1 (dE), where | is a finite Borel

measure and ) < % Prove the identity

17 1 &
4.2.16 lim — 1) dt = lim n).
( ) T—o0 2T _/;Tf( ) N 2N +1 n;Nf( )
Hint: Suitably apply the dominated convergence theorem and identify both sides with w({0}).

Remark. The formula (4.2.12) for a band-limited signal with A < % is not canon-
ical. If instead we integrate (4.2.14) on the interval [—A, A], we obtain the alternative
representation

(4.2.17) fO =3 fo )M teR.

nez ( n)

Equivalent formulas can be obtained for any v € [A, %].

Exercise 4.2.16. Suppose that f (t) is any band-limited signal. Show that we can
reconstruct f from its values at the points n/2A, n € Z by means of the formula

£(t) = 2)»Zf (ZA) sin 7w (At — n).

s 7(2At — n)

Hint: Apply the Shannon sampling formula to F; (&) := F(2)A£).

4.3 MULTIPLE FOURIER SERIES

Multiple Fourier series are naturally associated with functions on the torus T¢ =
(0, )Y = RY/Z?. There is a natural 1:1 correspondence between functions on T¢ and
functions on R?, which are periodic in each coordinate: f(x;,...,x; + 1,...,x4) =
fOr, oo xi, . xg) forl <i<d, (xp,...,x5) € RY.

We begin with an integrable function on the d-dimensional torus T¢ = (0, 1)¢.
The L' norm is denoted | f|;= fT(, |f(x)|dx and the Fourier coefficients of
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f € L'(T%) are

f(n) = / fx)e i gy, nez!
"!I‘(l
and the Fourier series is written

(4.3.1) @)~ Y fmer i,

neZd

4.3.1 Basic L' Theory

The elementary properties of multiple Fourier series may be obtained from the peri-
odic heat kernel. We first develop the lemma of Fourier reciprocity in the following
form.

Proposition 4.3.1. Suppose that K(x) = ), g K(n)e*™ ™~ is an absolutely
COnvergent trigonometric series: y_, . lk (n)| < oo. If f € L' (TY), then

4.3.2) ‘/Tlf(y)K(x —y)dy = Z k(n)f(n)EZnin»x.

neZ!

Proof. Multiply the defining equation for K (x — y) by f(y) and integrate term-by-term. l

We apply this to the periodic heat kernel

e—lx—nl'/4l

(4.3.3) K@) =) Aty

neZd

The Fourier representation of K,(x) is obtained by repeated application of the
one-dimensional Poisson summation formula to obtain

(4.3.4) K,(x) = Z eerin-xe—élnzr\nlz,
neZ!

since both (4.3.3) and (4.3.4) are absolutely convergent sums, and can be evaluated by
multiplication of the corresponding one-dimensional sums. Applying Fourier reciprocity,
we obtain

(43.5) f FOIK(x=y)dy =)~ fme™ e f e L'(T.
’Ll"t/

nezd

This can also be written in terms of f, the periodic extension of f to R? as

_ —lx—yl? /41 . )
(4.3.6) FO) o dy= 3 e e 150, x e RY.

R¢ (4mr)"? =
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Exercise 4.3.2. Prove that the series Y., .74 [ps | (D)€~ ¥ /4 dy converges
whenever f € L' (T%) and use this to show that the left side of (4.3.5) is equal to
the left side of (4.3.6).

From this we conclude the following.

Proposition 4.3.3.
(i) Iff(n) = 0, thenf =0 a.e.
(i) If ' ,eze |f(n)| <00, then the Fourier series (4.3.1) converges to a
continuous function and we have almost everywhere

foy =Y fme™*,

nezd

Proof. Both statements are direct consequences of the pointwise almost everywhere
summability associated with the Gauss kernel, proved in Chapter 2. u

The periodic heat kernel is a nonnegative approximate identity, meaning that

(4.3.7) K, (x) >0, / K/(x)dx =1, lim K/(x)dx =0, V¥é>0.
Td

1—0 |X|>5

Exercise 4.3.4. Prove the three properties (4.3.7) of K,.

A multiple Fourier series is said to be Gauss-summable if (4.3.5) converges to f
when ¢ — 0. Since the periodic heat kernel is an approximate identity, we immediately
obtain the following properties of Gauss summability.

Proposition 4.3.5. Suppose that f € L' (T¢). Then the Fourier series is Gauss-
summable in L' (T%) tof. If, in addition, f is continuous at x € T¢, then the Fourier
series is Gauss-summable to f (x).

The Gauss-summability of Fourier series has the further consequence that the set
of trigonometric polynomials is dense in L'(T¢). A direct proof can be obtained by
applying properties of one-dimensional Fourier series, as follows.

Lemma 4.3.6. The trigonometric polynomials Zlnls " a,e’™ "~ are dense in
LY(T%.
Proof. From Chapter 1, we know that the Fourier series of an indicator function converges

boundedly and in the L' norm. Now if we have a product of indicator functions 1(,.5,) €ach
approximated by a Fourier partial sum S}, then we can write

d d d
l_[S;u - l_[ L6y = Z [SI’W - 1(""”’)] G
i=1 i=1 =l
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where C; contains i — 1 factors of S{;,, and d — i factors of l(uj,bj). But these are uniformly
bounded, so that we can write

d d
T80 =TT @
i=1 i=1

But finite sums of indicators of rectangles are dense in L' (T?), which completes the proof.
|

d
= CZ ISt = Lo ||, = O M = oo.
1 i=1

4.3.1.1 Pointwise convergence for smooth functions

The condition of absolute convergence: Y, ;. | F(m)| < oo can be verified in case f
is sufficiently smooth. To see this, we compute the Fourier coefficients of any mixed
partial derivative corresponding to a multiindex o = («y, . . ., @4), obtaining

Qrim)*f (m) = / DOf (x)e~ 2 dx.
’]I‘tl

Applying this twice to each of the coordinate derivatives and summing, we obtain
(1 + [2rm|))f (m) = /w[l — Alf(x)e™>""™* dx,

where A = Zj‘lzl 9?/0x? is the Laplace operator. Applying this k times we obtain
(U + rm)fom) = | 11— AFf e~ dx.

If f € C*(T?), the right side is the Fourier coefficient of a continuous function, hence
the estimate

- C
- - @ Zd.
Foml = e M

In particular, if 2k > d, then the series ), ;. | f(m)| converges and we have absolute
and uniform convergence of the Fourier series. This is summarized as follows:

Proposition 4.3.7. Suppose that f € C*(T¢) with 2k > d. Then the Fourier
series converges absolutely and uniformly to f.

In particular, the Fourier series of an infinitely differentiable function on T is
uniformly convergent. If f has fewer than d/2 derivatives, examples show that one may
have Fourier series that are divergent at a point. This will be discussed in Section 4.5.3
in the context of radial functions.

4.3.1.2 Representation of spherical partial sums
The partial sum of a one-dimensional Fourier series can be written in terms of a cor-
responding partial Fourier integral. Restricting attention to # = 0 and f € L'(T),
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we can write

Moo V2 sin2M + )7
S = Y fao= [ S ) ag
Pyt —-1)2 sinT &
_['* sin@M + )76 (n@f(@)) 40
B ./—1/2 o sinr 6 '

The last integral is a Fourier partial integral of the associated function 8 — [76f(0)/
sin w61 1(_1/2.1,2)(8). This allows convergence questions for Fourier series to be reduced
to corresponding convergence questions for Fourier integrals.

In higher dimensions the spherical partial sum of a multiple Fourier series bears
no simple relation to the spherical partial sum of the corresponding Fourier integral, as
it does in the case of one dimension. To obtain a suitable substitute for the latter, we
consider the quasispherical partial sum of the Fourier integral, defined for f € L!(R?) as

(4.3.8) Suf) == | f&)e¥® dg,
By

where By, is the set of cubes Sy, of side 1, centered at the integer points k with |k| < M. In
one dimension By is the interval [~M — 1, M + $]if M = 1,2, ... The corresponding
quasispherical Dirichlet kernel is

Dy (x) := / eFTEX gk
By
Clearly we have the representation formula that for any f € L' (R9)

43.9) Suf () = fR D= yf (.

This is to be compared with the spherical Dirichlet kernel of Fourier series, defined as

DM(X) i Z eZﬂik»x-

lkl=Mm

To compute Dy in general, we first compute the integral
, L sinx;
/ e2m$-x df — eka~x I—[ J , ke Zd.
Sk

=1 TX;

Summing these for |k| < M, we have

d -
/ eZJTff:"X d%‘ — S1n T X 2 : eZm’k»x
By = X

Jj=1

and the formula
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The spherical Dirichlet kernel of Fourier series differs from the quasispherical Dirichlet
kernel by a factor which is smooth and bounded above and below over the basic cube

1179
[=3.2] -
This can be immediately applied to write the spherical partial sum of the Fourier
series.

Suf () = Y flkye?™**

lkl<M

T k<M

_ / Pu@f & +2) dz
T

d H ~
- / (]‘[ T )DM(z)f(x+z)dz.
T =l Sin 7w zZ;

At x = 0 this is the quasispherical partial sum of the Fourier integral for the associated
function defined by fo(z) = H;’zl(nzj/ sin(mz;))f (z)11«. From (4.3.8) and (4.3.9) it
follows that ‘

Su f(0) = fR Dufo(2) dz = /B e de.

Proposition 4.3.8. Suppose that f € L'(T¢) satisfies the condition that for
the associated function fy, limy_, f{M—ﬁglflsM+JE] | fo(§)|d& = 0. Then the
spherical partial sum of the Fourier series is equiconvergent with the spherical
partial sum of the corresponding Fourier integral.

Proof. From the above computations, we have

Suf(0) — fo6) dg 1fo(§)1ds — 0. n

1El<M

<
/lM—JZs?EISM+Jz7)

This can be applied to certain two-dimensional Fourier series where the Fourier
coefficients satisfy ZMSInIsM 4 lf@m| — 0 when M — oo but not the stronger

condition that )", . | Fn)| < oo.

Exercise 4.3.9. Letd = 2 and f(x) = 1i0.q(1x]). Show that }_, |f(n)| = 400
but 3y <ini<pr | f ()| — 0 when M — oo.

4.3.2 Basic L* Theory

As in the case of the circle, multiple Fourier series have a very satisfactory theory in
the space L?(T%). For any finite set of complex numbers ¢y, ..., cy, and multiindices
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my, ..., my, we have

2

N
2mim,-x
f- E cie™"™
J=I

N N
=Y lg=FOP+ 117 = D IFDP.
j=1 J=t

2

Thus we see, as in the one-dimensional case, that the Fourier coefficients minimize the
mean-square distance between f and the finite dimensional set spanned by e>"%*, In
particular we have Bessel’s inequality ZjeZ" LFDHI2 < IIFI%

Proposition 4.3.10. If f € L>(T¢), then the Fourier series converges to f in
L*(T%) and we have the Parseval equality

D IFmP = 1115

nez!

Proof, From Bessel’s inequality, the series D, 7| f‘ (n)|* converges. Let F =
> e f(n)e¥ ™= an L? convergent series. The function f — F has all Fourier coefficients
equal to zero, hence f — F = 0 a.e. Since ¥, ;4 f (n)e*™"* converges to f in L>(T¥), the
L? norms also converge, which yields Parseval’s equality. ]

4.3.3 Restriction Theorems for Fourier Coefficients

Zygmund (1974) discovered a universal bound for the L? norm of the Fourier coefficients
of two-dimensional Fourier series in terms of the L” norm of the original function, for
some p < 2. This is closely related to the restriction theorems for Fourier transforms,
which were treated in Chapter 2. To formulate the result, we begin with f € L'(T¢) and
its Fourier coefficients

(4310) fA(S) =/ f(x) e—27ri$»x dx.
T2

For any given r > 0, the set {¢ € Z? : || = r} is a (possibly empty) finite collection of
lattice points on the circle of radius r. Then we have the following theorem.

Theorem 4.3.11. For any f € L*3(T?) and any r > 0, we have the bound

172
43.11) ( > |f"<s>|2> <5 flasa-

E€Z2:|E|=r

Proof, If the left side of (4.3.11) is zero, then there is nothing to prove. Otherwise, let

e(®) =)/ Tgro 1T @ Then T _, [e(€)[ = 1 and we have
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FEr =FEFE)

=F®c® > 1FEPr
[&l=r
M IFer= (Zﬁ@c@) PMIGE
11=r |E1=r |§1=r
Y IF©OPr =) FEe®)
1§1=r [&l=r

= /T @) (Z c(é)e‘”"“) dx.
I

E=r

We now apply Holder’s inequality with p = %, p' = 4, to obtain

“43.12) D IFOR <Uflan | Y e
1€l=r

|&|=r
Therefore we need to show that if ¢ (x) = }_,_, c(£)e*™** is a trigonometric sum with
Y= [€(®)1> = 1, then ||@||4 < 5'/*. To do this, we define

4

(4.3.13) L) =191’ = ) c(ue()el™

v
> v

pe?

Y i),

n-v=p

where y(p) :

and where the final sum is over those pairs (u, v) with |u| = |[v| = rand u — v = p. From
the complex orthonormality of {¢2*"** }, we have

4 __ 4 — 2 — 2
ot = [ teeorde= [ rwiras= Y v

peZ?

The nonzero terms in this sum are of three types: (i) p=0, (i) |p|=2r and
(iii) 0 < |p| < 2r. The contribution of the terms of type (i) is given by

y(©) = lel’ =1.
lul=r

For the terms of type (ii), the pairs (u, v), which enter into the defining sum, are antipodal
points (u = —v) of the circle |£| = r, one for each admissible value of p. Therefore the
sum of these pairs contributes

Y el =Y lewlPle-wI.

|pl=2r lul=r

To study the terms of type (iii), note that for a given value of p € Z? with 0 < |p| < 2r,
we can have at most two pairs (i, v) and (', V'), corresponding to two nondiametrical
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chords of the circle with diametrically opposite endpoints; in detail, either u + p' = 0 or
wu+v' = 0. Thus, if 0 < |p| < 2r, we have

y(p) = c(u)e) + c(u)e(v)
ly () < 2le(@)Ple@)? +2le(w) Pl
The sum of these pairs contributes at most

Yoo @l <2 Y lewPle@P+2 Y le@)Ple)P

O<lp|<2r uo0<fu—vi<2r w v 0<|u'—v'|<2r

=4 Z le())Ple)].

v:0<lp—v]<2r
On the other hand, we have from the normalization
2
1= (Z |c(s>|2) =Y lc@Plew)P.
|§1=r I’8%

Therefore, the sum of terms of type (ii), (iii) can be bounded by

4 ) JewPlem? <4,

uow:0<|u—v|<2r

leading to the final estimate
/ ITx))Pde<1+4=35,
T2

which was to be proved. |

4.4 POISSON SUMMATION FORMULA IN R?

The Poisson summation formula in R is entirely similar to the one-dimensional case.
The periodization of f € L' (R?) is defined by

fay =3 fa+n.

neZ!

This is a periodic function, whose Fourier coefficients are computed as

f fe ™  dx = / (Zf(x + n)) e 2T dx
¢ ¢

neZd

= Z flx 4 mye k> gy

neZ4 T

— Z f(y)e—ZNik-(y—n) dy

nezd YN +Td

= | fye
R4

=f(k),
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leading to the formal identity

“4.4.1) j?(x) = Z f(x+n)~ Z ]Ac(k)ez””‘*.

nezd kezd

Without any additional conditions on f, we can only interpret this as a formal computa-
tion. In order to obtain a pointwise identity, we assume that f and its Fourier transform
satisfy the decay estimates

C] 7> C2
(4.4.2) ol = o V0I= pe

for positive constants C;, C,, €. Then both sides of (4.4.1) converge absolutely and
uniformly on T¢. This is seen from writing the sum as a Steiltjes integral with respect
to the lattice point counting function N(R) = Zlkis z 1, which satisfies N(R) < cy Re.
Hence

R
Y 1wl < 1O+ ¢ /1 x|~ dN (x)

k<R
R
= 1FfO)| + R NR) + (d + € f x| 747N (x) dx.
1

The term at the limits tends to zero and the final integral is absolutely convergent, proving
that the right side of (4.4.1) is absolutely convergent.

Exercise 4.4.1. Place a cube of unit side with center at the lattice point k € Z¢
to prove that the lattice point counting function satisfies the two-sided estimate

d d
ca(R=3vd) =N® < ca(R+1Vd)
where cy is the volume of the unit ball in R®.
We can summarize the above discussion as follows:

Theorem 4.4.2. Suppose that f € L'(RY). Then the Fourier series of the period-
ization f is given by

(4.4.3) o)~ Y fyer .

neZd

If in addition we have the decay estimates (4.4.2), then both sides of (4.4.3) con-
verge absolutely and uniformly on T¢ and we have equality in (4.4.3) almost
everywhere.

4.4.1 *Simultaneous Nonlocalization

When we discussed the uncertainty principle in Chapter 2, we remarked that one can
prove that a function and its Fourier transform cannot both be nonzero on a bounded
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set. We now use the Poisson summation formula to prove a stronger proposition on
simultaneous nonlocalization due to Benedicks (1985). The statement and proof are
carried out in the d-dimensional setting, as follows:

Proposition 4.4.3. Suppose that f € L'(R?) is supported by a set of finite
measure:

4.4.4) A:={x:f(x) #0}, Al < o0

and the same for the Fourier transform:

(4.4.5) B:={£ : f(§) # O}, IB| < o0.

Then f = 0 almost everywhere.

Proof. By a scaling transformation x — ax, we may assume that |[A| < 1. Consider the
periodization of the indicator function of B:

D -k =0
kezd
Since 15 € L' (RY), it follows that except for a set U of measure zero, this sum is finite for
all £ € RY. But the terms are natural numbers, therefore
£§¢U  implies  card{k € Z¢ : 15(€ — k) # 0} < oo.
But the Fourier transform f“ (&) is nonzero iff & € B, therefore
(4.4.6) E¢U implies card{k e Z¢ :f‘(&‘ — k) # 0} < o0.
Now let fi (x) = €¥"*%f(x) and let f; be its periodization. The Fourier transform of f; is
f‘ (- — &) so that the Poisson summation formula gives

(447) f&(x) — Z e2ni(x—v)»5f(x _ V) ~ Z fE(k)eZJrikx — Z f(k _ E)ebrikx.

vezd kezd kezd

Now since | f; (x)| = |f(x)| forx € RY, |]_‘5(x)[ <) e | (x — V)] so that
eT : fim #£0 c [ Jlxe T : |f(x+v)| #0}

vezd

lxe T:fix) # 0} < D lix € T : |f (x+ )| # O}

vezd
=Y lyev+T:1fm) # 0}
vezd
=4] <1
so that

(4.4.8) fe € L'(TY), Hx e T : fi(x) #0}] < L.

Property (4.4.6) implies that for & ¢ U, f; is a trigonometric polynomial. But property
(4.4.8) implies that this polynomial is zero on a set of positive measure. Hence we must
have fs = 0 almost everywhere for & ¢ U, furthermore (4.4.7) shows that the Fourier
transformf(k —&)=0for& ¢ U, k € Z. But the set of translates {k — U; k € Z¢} has
measure zero. Hence we conclude that f = 0 almost everywhere, hence f = 0 almost
everywhere, which completes the proof. ]



POISSON SUMMATION FORMULA AND MULTIPLE FOURIER SERIES 241

4.5 APPLICATION TO LATTICE POINTS

The number of integer lattice points in a ball centered at x € R is defined by
NG R =Y Lior(lx = n).
nezZd

This is the periodization of the function x — 1o g)(|x|); hence the Fourier series is found
from the Poisson summation formula as
4.5.1) N(x;R) ~ Z Fr(k)e¥ k=

keZd

where Fg(k) is the Fourier transform of x — 1(o.z(|x]):

FR(k) — f e—27rik-x dx
[x|<R

_ Rdfd/2(2ﬂ|k|R)
([k|R)*/2
For each R > 0, x — N(x; R) is a bounded function, in particular in L?(T¢), so that
the Fourier series (4.5.1) is convergent in L?(T¢). But the series is divergent at x = 0 if

d > 2, as we shall show below. We first do the L? theory of lattice points, due to Kendall
(1948).

4.5.1 Kendall’s Mean Square Error

The Fourier transform of 1o ) at k = 0 is the volume of the ball, whereas the Fourier

transform has slower growth for k& # 0; in detail

(NRZ)d/Z d

— Fr(®)| < Cor—rr—5
@ |Fr(k)| < T T kRO

from the asymptotic behavior of Bessel functions. This sequence is square-summable
and we can apply Parseval’s theorem to N (x; R) — (wR?)%/?/(d/2)! to obtain

Fr(0) = (k #0)

2

(nR2)11/2 )
N@xR) — ———| dx=) |Fr(k)]
[w d/2)! ; *
2
% ()
;{; (1+kR)('+d)/2
R2d
<C k" dk

4 o0 sd—l
=R —d.
fR (1 + 5)d+1 S
=O0OR"Yy R oo.

We can summarize the result as follows.
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Proposition 4.5.1. The L* norm of the error term is bounded in the form

(nRZ)d/Z

@2 |, CaR VP

(4.5.2) ”N(-; R —
2

This L? estimate can be transformed into an almost-everywhere result by using the
Chebyshev inequality: for any § > 0
= 5]].

J.

If we let R — oo along integer values we can take § = R“/2%¢ and obtain a convergent
series:

2
dx > 8% x

(ﬂRz)d/Z
d/2)

(TR
(d/2)!

[xer

N(x; R) —

N(x;R) —

( R2)d/2

NG R) = @2

S Cd § R—d—2ERd—l < 00.
ReZ~

> R(d/2)+s }

{x eT?:

Therefore the set of points in infinitely many of these sets has measure zero. We
summarize this as follows:

Proposition 4.5.2. For each € > 0 and for almost every x € T, the number of
integer lattice points in a ball centered at x satisfies the estimate

7TR2 dj2
L) < R@/D+e Z* 5 R — oo.

s - G| <

Exercise 4.5.3. Show that if R — oo along the sequence of squares R = j?, then
we have the improved estimate: Ve > 0 and almost every x € e,

(nR2)d/2

@ | SRV R=7 > 00

’N(x; R —

Generalize to any power law R = j* witha > 0.

Kendall also obtained a formula for the limiting average variance, defined as

(nRZ)d/2
(@/2!

dx.

N(x; R) —

(4.5.3) = lim —f dR/ R
T—>oo Td

Incase d = 2, this can be computed from the asymptotic expansion of the Bessel function

R 3 1
Fr(n) = NInLP/z l:cos<27r|n|R - T) + 0<R):|
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T -R) — R22
(et )
1 Td
= Z —l—l/T cos? 2n|n|R—3—n dR+0 1
- 72T J, 4 T)|

0#£neZ?

The average value of the trigonometric term is 1, leading to the evaluation

1 1
2 _ - -
o T on2 Z ln3’

0#neZ?

which can be expressed in terms of the Riemann zeta function and Dirichlet’s L function
(see Kendall, 1948).

Exercise 4.5.4. Obtain a formula for the limiting average variance o’ in the
general case d > 3.

4.5.2 Landau’s Asymptotic Formula

A more specific result is obtained if we fix attention on a single point, which we take to
be the origin. This leads to the famous Landau estimate, as follows.

Proposition 4.5.5. The lattice-point counting function satisfies the asymptotic
estimate

(JTRz)d/Z

@ T ORI2+@+Dy R 5 oo,

4.5.4) N@O;R) =

Proof. Ford = 1 the estimate is exact, so we assume thatd > 1. The lattice point counting
function can be represented as

NO;R) =Y fa(v)
vezd
where fz(x) = 1),z (|x|) with Fourier transform Fg (k) = R‘J,,»(2m R|k|)/ (R|k|)*/*. How-
ever we cannot apply the pointwise form of the Poisson summation formula directly. Instead
we will apply the pointwise form of the Poisson summation formula to the regularized func-
tion fz * p. where p,(x) = € ¢ p(x/€) and p is a nonnegative C* function supported in the
ball |x| < 1 and of total integral 1. Both p, and its Fourier transform are rapidly decreasing,
so that we can apply the pointwise form of Poisson’s formula to obtain

45.5) Ne(R) := ) (fox p)W) = ) Frlk)pe(k) = Y Fr(k)p(ek).

vezd kezd kezd

On the other hand, the smoothing density can be chosen so that for any desired integer
N>{@d+1)/2,

1 N
o(k)| < C, —_
lo(k)| < /'N(1+|k[>
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for a constant C,y. The term of the series (4.5.5) with k=0 is simply the volume
792R4/(d/2)!. Subtracting this, we estimate the remainder as

INC(R) — (rRY'?/(d/2)!] = | Y Fr(k)p(ek)

k£0
- CynR¢ 1 ( 1 )N
= RU+n2 e k@02 \ 1 + €|k|

Cy nR? 1 1 N
S II.Nl 7[ 141 ’( ) ds

Rd+1)/2 E1>1/2 EWHD2 \ 1 +€|&]

(d=1)/2 v 1 N d

< CyNnRYD - [—— ) g
= /R [y|@+Dr2 (1 + |y[) Y

B R (d-1)/2
(456) = LunN <Z>

On the other hand, since p, is supported in the ball of radius €, we have

4.5.7) (free * p)V) < fr(W) < (frre * )W), veR.

This follows from the fact that the middle term is either zero or one; in the first case |[v| > R
and the ball {|z — v| < €} does not intersect the ball {[z7| < R — €}. In the second case
[v] < R and the ball {|z — v| < €} is contained in the ball {|z| < R + €}.

Summing (4.5.7) over v € Z¢, we obtain

N.(R —€) <N(O;R) <N.(RR+e).

Applying the estimate (4.5.6) gives the upper and lower bounds

) R @-ny2
(4.5.8) N(O; R) < cs(R+€)* + Cun ( : E) ,

_ R— (d—1)/2
(4.5.9) N(O;R) > cy(R— €)' — Cyn ( . E)

The two error terms are balanced when we choose € = R!'~/0+® Making the necessary
substitutions produces the stated result. |

4.5.3 Application to Multiple Fourier Series

We can use the Landau lattice-point formula to estimate the partial sums of multiple
Fourier series of radial functions at the center of the torus. We begin with a function F
on the real line, which is supported in the interval [0, a], obtaining a radial function on
R through the formula f (x) = F(|x]). X

The Fourier transform is again a radial function: f(§) = A(]§|), where A is the
Hankel transform

“ Ja—22Q2m|E|r)

—2mikx g d—1
F(|x)e dx = Cdl - F(ryr™' dr.

AN =F&) = f

x| <a
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We now consider the Fourier series of the periodized function

(4.5.10) J;(x) = Z F(lx —n|) ~ Z A(Iml)e2nim»x.

nezd meZd

The partial sum of the Fourier series at x = 0 is written as a Steiltjes integral:

Suf () = Y A =A©) + f AW dN ().

|nj<M

4.5.3.1 Three-dimensional case

245

We can obtain a simple necessary and sufficient condition for the convergence of the
spherical partial sums of a periodized radial function in three dimensions, as follows.

The case a < % was treated in Pinsky, Stanton, and Trapa (1993).

Proposition 4.5.6. Suppose thatd = 3 and that F is a C? function on the interval
[0, a] for some a > 0. Then the spherical partial sums of the Fourier series (4.5.10)
converge at x = 0 if and only if F(a) = 0.

This will be proved by developing an asymptotic expansion for the Fourier

transform.
Lemma 4.5.7. We have the asymptotic estimates when u — 00

acos2map sin2mwpua d
AW = Tt S &

, 2a”sin2mwap
A(M)—————F(H-O( )
w? u?

Proof. We have A() :f‘(&) where u = |€| and

f(‘f) = [OO /0" /Oof(xl,xz,x3)3'271(51X|+Ezn+£zm) dx, dx, dx;
—00 J —0C J —00

a pa 2
= f / / F(r)e %2 sin6 dr d6 d¢
0 Jo 0

a > 2
— 2[ r2F(r)M dr
0 rp

a 2
= —zf rF(r) i I:LS( 7””)] dr
w Jo dr 27

_ _g (aF(a) cos(2rau) _/ cos(Qmur) d
o Q) o 27

o VEC ))dr>

(rF(r))(a—0) + 0( ) ,
u?

The final integral can be integrated by parts once again to obtain the indicated form, with the
indicated remainder term for A(w). Finally the last formula can be differentiated to obtain

the asymptotic formula for A" (w).
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Now we use the Landau formula (4.5.4). We must compare a sum of the form

M M
/ A() dN (@) with / A(Nanr? dr.
0 0

To do this we integrate both by parts:

M M
[A(u)dN(M)=A(M)N(M)—/ A'(WN () du,
0

0

M daM® (M Ampd
/A(M)47ru2du=A(M) : —/ AT
0 0

Now we subtract these two expressions and analyze the two terms separately.
If F(a) = 0, then we have the asymptotic forms

sinap 1 , acosap 1
Ap) = G— +0<—4>, A(p) =G 7 +0(—4>-
w I W I
Therefore the product A(M)(N (M) — 4xM? /3) = O(M>/? x M~3) = O(M~3/?). Similarly

the integral is estimated by [ r*/2r~3 dr, an absolutely convergent integral. Therefore the
difference

M M
/ AQu)dN () — / AP A ) dt
0 0

has a limit when M — oo. But the integral is easily seen to be convergent from the form
of A(r).

To treat the case F(a) # 0, we exgmine the sum stllrlfuk+| A(|n]) for large &,
where uy = (2k +1)/4a. If the series ), f(n) converges, this sum must tend to zero when
k — oo. But the above analysis allows one to compare this with the corresponding integral,
with a smaller error. Thus

Uk Uk+1 3
> Alnh - / " anraw dr = f " A [N(m— 4”3’”‘ ]
Iz

HiSinl<pigp k=1 Hk

When we integrate-by-parts, we find that the terms at the limits yield

A}

Alp) [N(Mk) - } =0k 2 x k) =0k

while the new integral is

Mk+1 3
/ k [N(M) - 4”TM}A/(/L)du =0k x k%) = 0(k™'7%).
I,

k

Thus
i1
Z A(ln]) = _/ drptA(wydu = Ok™"*) k> oo.
Mi Sl <ptps Mk
On the other hand, the explicit form of A(u) with F(a) # 0 shows that the integral has the

explicit asymptotic expression

ke e 1
/ 4 p*A(w) = 4 F(a) / cos2mwau du + 0<E>
123 1323

k

which fails to tend to zero when k — 0o, completing the proof. |

=2F(a)(—1)* + 0(1> ,
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4.5.3.2 Higher-dimensional case
In higher dimensions, we can use the above method to prove that the Fourier series of
the periodized indicator function of a ball diverges at x = 0.

Proposition 4.5.8. Suppose that d > 3. Then the spherical partial sums

JinQm|k|a)
Suf(0) = Z akdﬂ—d
[k|<M |ka|>

are unbounded when M — oo, where f(x) = 19 q,(|x|).

Proof. We can repeat the asymptotic analysis done above in case d = 3. The Bessel
function A(u) = a’(Jy2(27 na))/ (aw)?/* has the asymptotic behavior

Cy d-3)rm 1
Alp) = W l:cos(Znau. — T) + 0(;)] ,

’ _ _znacd . (d - 3)7‘[ 1
A ([,L) = W |:sm(27tau - T) + 0(;)] .

Letting u, be the consecutive zeros of the above cosine function, we estimate as before:

Mik+1 i1
> A(lnl)—[ dclzu""A(/L)du=/ A(wd [N () = cau].
M, 12

i SInl<pigs A k
When we integrate-by-parts, we find that the terms at the limits yield
A(Mk) [N(,LLk) _ CLI/'L;(I] — O(k—(zl+])/2 x kd—2+2/(zl+])) — O(k(d—ﬁ)/Z—((I—])/(d+]))

while the new integral is

-/HAH [N(M) _ C([,LL(I]A/(,LL) dll- — O(k—(d+1)/2 x k(l—2+2/(z/+])) — O(k(z[—B)/Z—((I—])/(1l+l)).
m

k
Thus we have when kK — 00,

Z A([n[) _ /MHI dcd/JL"*]A(/JL) dll- — O(k—(u+1)/2 x k(1—2+2/(d+|)) — O(k(‘l_3>/2_(‘l_”/(‘/“’).
M

M Sl < k

On the other hand, the explicit form of A(u) shows that the integral has the explicit
asymptotic expression

M+l it 5 d—-3 1
/ w A du = / pk=312 l:cos(27rap, - 7r——) + O(—)] du
1233 My 4 k
1
= const k=32 (— 1)k [1 + O(E)] ,

which is unbounded, and of larger order than the error term, completing the proof. ]

4.6 SCHRODINGER EQUATION AND GAUSS SUMS

In this section we will use the Poisson summation formula to evaluate some finite sums
that occur in number theory. In order to explain the setting, we first formulate the notion
of Fourier series of Schwartz distributions on the circle. This will be applied to the
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fundamental solution of the Schrédinger equation, which is a finite linear combination of
8-distributions at equally spaced points whenever 27 ¢ is arational number. The treatment
follows Taylor (1999).

4.6.1 Distributions on the Circle

C*°(T) is the space of infinitely differentiable functions on R that are periodic with
period 1. Convergence is defined by requiring that all derivatives converge uniformly on
any period interval. This can be defined by the metric

el d
dip,v)=)» 27"—~— d, = su W(x) — P x)|.
@, V) ‘;0 ) OSX];;ms @) — ™)

A periodic distribution is a continuous linear functional L on the space C*°(T). The
Fourier coefficients of a periodic distribution are defined by

(461) IZ(l’l) — L(e—Zm'n)
and the Fourier series is written L ~ Zn <z i(n)ehi’w_

Example 4.6.1. The linear functional L(¢) = ¢(0) is the Dirac mass at zero,
written L = &. Its Fourier coefficients are given by i(n) = 1 so that we have the

Fourier series
60 ~ § : eZninx

nezZ

Example 4.6.2. Any f € L'(T) becomes a periodic distribution by setting
Li(¢p) = fT f(x)p(x) dx. The Fourier coefficients are given by the usual integrals

£rn) = fT FR)e T dx = Fn).

The Fourier representation of a periodic distribution is obtained from the Fourier series
of ¢ € C*°(T), which has the convergent Fourier series

PO =) _me™
neZ
so that we can apply L to both sides to obtain the Fourier representation
4.6.2) L(¢) =Y _ pmL(-n).
nez
This allows us to identify a distribution in terms of its Fourier series, as follows.

Proposition 4.6.3. If L,, L, are periodic distributions with the same Fourier
series, then Ly = L.

Proof. Applying (4.6.2) to L = L; — L, shows that L(¢) = 0, V¢ € C>(T), hence L is
identically zero. ]

The Fourier representation can also be used to define new distributions.
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Exercise 4.6.4. Suppose that L, is a bilateral sequence of complex numbers of
polynomial growth: |L,| < C(1 + |n|)N fqr some C > 0, N > Q. Prove that there
exists a periodic distribution L such that L(n) = L, for every n € Z.

Hint: Forevery ¢ € C™(T), and every k > 0, there exists Cy, > 0 so that [$(n)| < Cea(1+1n)~*
for every n € Z.

Exercise 4.6.5. Define the convolution of a periodic distribution L with ¢ €
C®(T) by L * ¢(x) = L(¢p(x — -)). Show that L x ¢ € C*®(T) and that we
have the convergent Fourier series

Lx¢() =) Limpme ™.

nez

An important class of distributions are those that are sums of a finite number of
delta measures at equally spaced points; in detail we write L = ZJN:”Ol c;8;;y wWhere

N—1 .
J
L = ol = ).
©=500(3)
j=0
The Fourier coefficients are
N—1

i(k) = Z cje_Z”ikj/N.

j=0
This sequence is periodic with period N, since

) N-1 . _ N-1 - .

Lk +N) = Z cje2ritkENIIN Z cie” P HIN = 1 (k).

j=0 =0

Conversely, suppose that we are given a bilateral sequence L; with the property that for
some N € Z*, L.y = Ly for all k € Z. The smallest such value N is called the period.
Then we can uniquely solve the system of linear equations

Lk = Z Cje—27rijk/N 0 < k < N-—-1
0<j<N-1

in the form

1 ,
G=— > LN 0<j<N-1
0<j<N-1

to obtain a periodic distribution L = ZJI.V:_O' c;8;;n and conclude the following.

Proposition 4.6.6. Every periodic sequence is the set of Fourier coefficients of
a unique distribution that is obtained as a finite sum of delta measures: L =
Z;V:_Ol c;j8jn where N is the period of the sequence.

Example 4.6.7. Let L = ~ j(vz—()l 8j/n. The Fourier coefficients are given by

Loy = Ly e iIN, which is one if n = 0,%N,+2N, ..., and zero
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otherwise. Therefore we have the Fourier series

1 N-—1 .
N Z Bj/N ~ Z eZlecx-
j=0

keZ

4.6.2 The Schrodinger Equation on the Circle

The initial-value problem for the one-dimensional Schrédinger equation on the circle is
to find u(x, ¢) defined for x € T, ¢t > 0 so that
du  8u
ot ox?
u(x,0) = ¢ (x) € C(T).

. . . ; _ 20,2 .
Separation of variables produces the factored solutions u = 7 "*¢~47"i"" and the Fourier
series

N . 2. 2
u(x,t) = Z¢(n)62mnxe—4n im*
nezZ

It is immediately verified that for ¢ € C*°(T) this series converges in C*°(T) and that
lim,_, o u(x, t) = ¢ (x). The fundamental solution is the distribution with Fourier series

Lr —~ Z e27rinxe~4n2imz’ iq(l’l) — e—47r2irn2‘
nezZ
From the definition of convolution, we have u = L, * ¢.
Proposition 4.6.8. Assume that 2t = M/N for some M,N € Z*. Then L, is

periodic with period N and L, is a finite sum of delta measures at the equally
spaced points 0, 1/N, ..., (N — 1)/N where the measure of j/N is

N-—1

Cj — CMN(]/N), CMN(-x) = ZEZNirXe—ZnirzM/N
r=0

forj=0,...,(N —1)/N.
Proof. 1t is immediate that if 271 = M /N, then

i,,(k +N) = e—4n21(k+N)2M/2N7r

_ e—Zni(N2+2Nk+k2)(M/N)

a2
—e 2mik (M/N)’

which proves the periodicity of the sequence. In order to obtain an explicit evaluation, we
write the Fourier series at 27t = M/N: L, = lim, 00 2 _,__, L, (k) in the sense that for
each ¢ € C*(T), we obtain L,(¢) by integrating and taking the limit of the partial sums.
This limit can be computed by writing k = Nj + r and considering an arithmetic sequence
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of sums as follows:

N(n+1)—1 n
§ leuk\e—Zrukz(M/N) § § eZm(Nj+r),x —2711(Nj+r) (M/N)
k=—Nn Jj=-n r=0
n N-—I )
— § : § :82711(/\/1+r)xe—2mr (M/N)
j=—n r=0
—1
_ 2 :EQnrN/ § Zmrx ~2mir? (M/N)
j=—n r=0
n
= Cun(@) ) _ &
j=n

When n — oo, the last sum converges to the distribution Z,}-V;ol 8j/n, which completes the
proof. |

We now look for another formula for L,, by means of the Poisson summation
formula. The solution of the Schrédinger equation on the real line can be obtained from
the Fourier transform as

u(x, t)=ff(§)82niéxe—4n2it52 de
R

where f € S. Clearly u(-, t) € S for each ¢ > 0. This can be represented as an integral

in x if we identify
—x2 /41
e—4n2it52 — / eZm'Exe / Idx
R 4rit

where the integral is taken as a Cauchy principal value and the square root is taken with
positive real part. This gives the explicit representation

==y /4ti
7t =
u(r, 1) /R ey

Applying the Poisson summation formula leads to the representation

Zf(n)ebrinxe—élnzimz — Z u(x — v, 1)

neZ veZ
—(x—y—v)?/4it
e
(S5
R vez 4rit
This allows us to represent the distribution L, as
—(x—k)?/4it n —(x—k)? /4t
e . e
L=y
ez 4mit n—>o0 == JA4mwit

Taking 27t = M /N, we have
1 _Nrm 1 N
it~ 2Mi’ Amit ~ 2Mi’
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The sum is evaluated by letting k = 2Mj + r, leading to

o~ k)2 /4it —(x=2Mj—r)2 (N7 /2Mi)

=e
_ e_(x2+r2—2rx—4MjX)(N7T/2Mi)

2 L _AM N P2
=" Nn/2M:e 4ij(Nn/2M:)eanrx/Metr Nrr/ZM.

Therefore
1 2M (n+1)—1 N n
e—(x—k)2 /4t __ eNm'xz /2M D (%) Z 2N

v 4mit k=—ZZMn 2Mi Jj=—n

where we have set

2M—1 )
DMN(x) — E : e!Nnrx/Me—r Nn/ZMt'
r=0

The last sum converges to a sum of unit delta measures at the points 0, 1/N, ...,
(N — 1)/N. Equating the two forms of the distribution, we obtain the identity

| N , 1 N-1
CMN(X) = me_N””‘z/zMDMN(x) X = 0, N’ ey T

In detail,
N—1 N 2M—1

(4.6.3) ZeZHir(k/N)e—Znirz(M/N) — .e—ink2/2MN Z einrk/Meiern/ZM
r=0 2Mi r=0

foreachN =1,2,...andeachk € {0, 1, ..., N — 1}. In particular for kK = 0 we have

N—1 \/_'2M 1 )
Z —27wir*(M/N) __ Z ir Nﬂ/ZM

Specializing this to the case M = 1 yields the most classical Gauss sum:

N—1
: |N
Ze—Zﬂer/N — _(1 +lN)
2i

r=0

4.7 RECURRENCE OF RANDOM WALK

The formalism of multiple Fourier series can be combined with Laplace’s asymptotic
method to study the recurrent behavior of a simple random walk on the integer lattice.
The integer lattice Z¢ is the set of all d-dimensional vectors whose coordinates
are integers: Z¢ = {(ky, ..., kq) : ki =0, %1, £2,...}. The simple random walk begins
at the origin and moves with equal probability 1/2d to one of its neighbors, with the
successive steps being independent of one another. In detail, denoting the coordinate
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vectors by e;,
Prob[Sp+1 — S, = Lej] = 1/2d 1<j<d, n=0,1,2,....
Fourier series are introduced through the characteristic function

fu() = E[e“5] = )" £/““Prob[S, = k]
keZd

where (,) denotes the standard inner product of R. The hypothesis of independence
allows us to write

fi) =E [1_[ ’f“”“"sﬂ))} = [ Ete =571 = £y
j=1

Jj=1
But

e e 4o el fe7i cost) + -+ costy
f@ = = .
2d d

The recurrent behavior is determined by Prob[S, = 0], as follows.

Proposition 4.7.1.

e Ifnis odd, then Prob[S, = 0] = 0.
e Ifn =2mis even, then

lim m?/?Prob[S,,, = 0] = 2! a4/ ?x /2,
m

Proof. A return to zero occurs at time n if and only if in each coordinate the number of
positive and negative steps are equal, hence the total number of steps in each coordinate
must be even, in particular the total number of steps (in all coordinates) must be even.
We have

f@O" =" “PProb[s, = k].

kezd

From the formulas for multiple Fourier series,
1 )
Prob[S, = k] = —— ek gy,
robl. ] @) f(ym)df( )'e
In particular

— — _1__ 2m
ProblSan = 0] = &5 f f@o™ar.

(_ﬂyﬂ)zl

This can be further simplified by noting that f is 27 -periodic in each variable and satisfies
the oddness property f(t, + 7, ..., t; + w) = —f (¢, ..., t;). The periodicity allows us to

write
/ f®O>dt = / f@®* dr.
(=m,m)d (—=n/2,31/2)4

The oddness property further allows us to write fl n<sf ()" dt = /[ rmi<sf (t)¥" dt. Now we
can apply the asymptotic method of Laplace. On the cube (—7/2, 37 /2)¢, | ()] < 1 with
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global maxima assumed at ¢, = 0, and t; = w where |f(0)| = 1, | f(;r)| = 1. On the sets
|t] > 8, |t — | > 8§ wehave |f(#)] <1 —n, < 1so that

/ F@™dt < Qm)*(1 — )™
t]>8,|t—n|>8
Thus

m(I/Z/ f(t)Zm dt = 2mz[/2 f(t)Zm dt + O(md/z(l _ n])Zm)
(=n/2.3m/2)4

|t|<8
=2 fs/mnds +o(h).
|s|<8m!/2

In order to apply the dominated convergence theorem, we first note that the integrand is
bounded by the integrable function e™#"/3¢, To find the limit, we use the Taylor series
expansion and the inequality |[A>" — B*"| < 2m|A — B to write

2
f=1- % +0(|t]", t—>0

s \2m 2 s \2m .
—eWY [ ) — (e BT/ @mdy2m
f (m‘/z) € f (ﬁ) (e )
<2m ‘f (%) _ o WP/@md)
S L o L 2, (1
<2m|(l->—+0l=)-1+—+0(—
- m( 2ma T\ toma T\ m— oo

1
:0(—) m— 00
m

from which we conclude that

lim m‘/? f [ f@ymdr =2 f e 1 gs = 2(md)/?,
(—7/2,37/2)¢

m— 00 RY

which gives the required result. |

This can be used to estimate the mean occupation time of the origin, defined by

o0
Mean occupation time = Z Prob[S, = 0].

n=0
If the dimension d = 1, resp. d = 2, then the 2mth term of this series is asymptotic to
the general term of a divergent series (1/4/m resp. 1/m), thus we have an infinite mean
occupation time. However if d > 3, then the general term of the series is asymptotic to
the general term of a convergent series (1/m/?), thus a finite mean occupation time. In
this sense we say that symmetric random walk is recurrent in one and two dimensions
and transient in dimensions three and greater.

Exercise 4.7.2. Suppose that a one-dimensional random walk is defined by
independent steps with

Prob[S, — S,—1 =11 =p, Prob[S, = S,-1 =11=1-p
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where p = 1/2. Show that Prob[S,,, = 0] = (zy;")p’"(l — p)™. Find an asymptotic
formula for Prob[S,,, = 0] and conclude the transient behavior.

Exercise 4.7.3. Suppose that a one-dimensional random walk is defined by inde-
pendent steps with

Prob[S, — S,—1 = k] = p« k=0,%£1,%2,...

where Yy 7Pk = 1L,Y 4oz kpk =0, Y1, k* pr = 02 < oo. Find an asymptotic
formula for Prob[S, = 0] and conclude the recurrent behavior.



CHAPTER

5

APPLICATIONS
TO PROBABILITY
THEORY

5.1 MOTIVATION AND HEURISTICS

The previous chapters have dealt with the Fourier analysis of functions in one and
several dimensions. While this is sufficient for many applications, it does not fully cover
problems from probability theory, where we must deal with measures that do not have a
density with respect to Lebesgue measure. Unlike the L? theory of the Fourier transform
from Chapter 2, this theory is inherently nonsymmetric: The Fourier transform of a finite
measure is a continuous function rather than another measure. For this reason we change
slightly the definition of the Fourier transform for notational convenience.

5.2 BASIC DEFINITIONS

Let m be a finite Borel measure on R¢. This is a nonnegative, countably additive set
function defined on the Borel sets of R? with m(R?) < oc. The Euclidean inner product
isdenoted £ - x = Zi, &x;. The Fourier transform of the measure m is the function

(5.2.1) mE) = / €% m(dx).
R¢

Note the change in the sign convention and the omission of the factor 27 in the definition.
These adjustments are made in order to conform with the conventions of the theory of
probability. If m is a probability measure (m(R?) = 1), we refer to i as the characteristic
Sunction of the measure m. The properties are listed below.

Proposition 5.2.1. The Fourier transform has the following properties:
1. 7 is a continuous function with m(0) = m(R?).

256
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2. mis a positive definite function, meaning that for every set of complex numbers
(¢))1<j<n and vectors (§)1<<n

Y e — &) = 0.
jok=1

3. If my, my are two measures, the Fourier transform of the convolution is the
product of their Fourier transforms, where the convolution is defined by

(my x my)(B) = / my (dx)m;y(dy).
{(x,y):x+yeB}

Equivalently, for any bounded continuous function g
f{g(z)(ml * my)(dz) = fﬂg(x + y)m (dx)my(dy).
R¢ R

Proof. The continuity of 7 follows from the dominated convergence theorem: If £, — &,
then the complex-valued functions e®* are bounded by 1, and converge to e** when
n — o0o. The positive definite property is a direct computation:

Z cic (& — &) = Z C,ckf 5% e 5 m(dx)

k=1

A(I

> 0.

m(dx)

Z ;e

To prove the convolution property, multiply the two transforms to obtain
iy (§)rina () = f 5 my (dx)my (dy) = / ) my % my) (dz),
R2d R4
which was to be proved. |

Example 5.2.2. The centered Gaussian distribution with variance parameter
. . . /202 .

o > 0is the measure with density e”¥'/27"_ Its Fourier transform can be computed

in terms of a product of one-dimensional transforms as

I”;l(g)=/ et xem 120 gy
R4

J

—-

(e"f“‘f e/ 2“2dxj>

d

1

J

Il
]~
~
o

ei&,xl e—xf /202 dx])

~.
Il

I
:&

(*/2_71'?6 S”)

1

= (27r02)d/ze'“2'5’2/2.

~.
Il
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Example 5.2.3. The Fourier transform of the uniform measure on the rectangle
l’I‘l _(aj, b)) is computed as

st — 69

() =f e dx = f ¢y = [[————. & #0.
]—]d:l (a,,b)) 1_[ =1 lé'j !
If & = 0 for some j, then the corresponding factor is replaced by b; — a;.

We now prove that the mapping m — mis 1:1.

Proposition 5.2.4. The measure m can be retrieved from its Fourier transform by
the inversion formula

—igb, _ e—iE,a,

d d
(2N)dm (l—[(aj’ b])> — (}-1% All ’/h(g)e_gzlﬂz/z l—[ f__:lg___ ds
=1 =1 ]

provided that the m-measure of the boundary of this rectangle is zero. In particular,
m is uniquely determined by m.

Proof. Multiply the defining equation (5.2.1) by e=°¥/2¢=% to obtain
e P2y 8Y = f ) o= R 2 ()
R4

If we integrate this with respect to & and use the Gaussian Example 5.2.2, we obtain
/ T2 €) d = (2m) f ﬂm(dx),
& Rt (V2 02)dr2
Now we integrate with respect to y over I1;(a,, b;) to obtain

ﬂé,l)l _ eﬂéjaj

—2t€/2 £ d
fm ) ﬂ e

A=y17/20
= (27[)‘// ] —dy m(dx).
#t \JML, @) (V210 2)4P2

The integrand on the right side is bounded by 1; it tends to 1 if x € I, (4;, b;) and tends
to zero if x ¢ I'I" _:la,, b)]. The boundary of this rectangle is supposed to have m-measure
zero. The conclusmn now follows from the dominated convergence theorem. |

(5.2.2)

If the Fourier transform of a finite measure is integrable, then the measure has a

density that can be recovered by Fourier inversion, as follows.

Corollary 5.2.5. [fin € L'(RY) then the measure m has a density, given by

dm 1 iy a
% = /Rde EYm(E) dE.
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Proof. With this extra hypothesis, we can take the limit under the integral in Proposition
5.2.4 to obtain

d . d e_,‘gjbj _ e_,'gj,,j
@r)im ([ J@. b)) = / @) [ | ————dt
=1 R i —i;

- / ( / e-"f*"rh(ws) dy,
l'l,"= 1(ay.8)) Rd

which displays the measure of the rectangle as the integral of the required density
function. ]

These ideas allow us to generalize Maxwell’s characterization of the Gaussian
density in Chapter 2, Proposition 2.2.51, from density functions to the larger class of
finite measures on R¥. The precise statement is the following.

Proposition 5.2.6. Suppose that m is a finite measure on RY, d > 2 with the
Sollowing two properties:

(5.2.3) m(dxy - - dxg) = my(dxy) - - - ma(dxy)

where my, . .., my are finite measures on R.

For any orthogonal transformation T of R¢,
5.2.4) / f(Tx)m(dx) =/ fx)m(dx), Vf € C(RY).
RY R

Then either m = A 8, or m(dx) = Ae B’ dx where A > 0, B > 0.

Proof. The Fourier transform m(§) = [,, **m(dx) satisfies the corresponding factori-
zation

(5.2.5) m&, ... &) =m&) - me(Ey).

Taking f(x) = e~~, (5.2.4) shows that m(T&) = m(£), hence m(&) = G(|&|*) for some
continuous function G. Now we can follow the steps of the proof of Proposition 2.2.51 in
Chapter 2 to conclude that, since G is bounded, G(x) = Ae™?*, where B > 0. If B = 0,
then m is a multiple of §y; otherwise B > 0, which completes the proof. |

Remark. We can render more transparent the computations in Proposition 5.2.4 and

Corollary 5.2.5 following by using the notations of Chapter 2, beginning with the Fourier
representation of the heat kernel H,, a bounded function with H, € L' (R%):

H(x —) = / TN (6) df.
R
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Multiply both sides by 14(y)m(dx) and integrate over RY x R?:

/R (H* 1) ()m(dx) = /R , m(—6)14(&)H, (&) d&
m(&) = lim / PO OBE) dE  if m@A) =0
11— IR"

_ / A(—8) 14 (8) de if 1 e L' (RY)
]R(l

= f ( / ezﬂff*rh(g)dg) dx by Fubini.
A Rd

The above methods can also be used to prove the following continuity theorem for

Fourier transforms of measures.

5.2.1

Proposition 5.2.7. Suppose that m,,n = 0,1,2,... is a sequence of finite
measures whose Fourier transforms converge:

Then the measures converge on every rectangle whose boundary has my measure

zero.

Proof. Forany ¢ € S, let ¥ (§) = 43(—5), so that ¢ = 1/} Then by Fourier reciprocity we
have

f V(&g (€) dE = f 6 (00) ma(d).
R R

Letting n — o0, the dominated convergence theorem implies that

lim A & (x) my (dx) =1im/ Y (&), (§) dé =/R VY (E)ino(§) dé =/R @ (xymo(dx).
n o n R? " n
If R = IT}_, (a;, b)) is any rectangle, let ¢* € Ssothat ¢~ < 1z < ¢*. Thus

lim supm, (R) < limsup | ¢*()m,(dx) = [ ¢ (x)my(dx)
n n R" R"

6~ (omy(dx) = /R 6 Como(d).

lim inf m,, (R) > lim inf
n n R

Now let ¢ | 1z, ¢~ 1 1 to conclude that

mo(R®) < lim inf m, (R) < lim supm,(R) < mo(R).

If my(3R) = 0, then the extreme values are equal, so that the limit exists as required. W

The Central Limit Theorem

Fourier analysis of measures is particularly well suited to study the convolutions of a
single probability measure. In the case of the measure pd; 4 (1 —p)y this was effectively
studied in Chapter 1 in connection with the DeMoivre-Laplace local limit theorem. The
central limit theorem extends this to an arbitrary probability measure with a finite second
moment, which we now describe.
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Theorem 5.2.8. Suppose that m is a probability measure on the real line with
/xm(dx) =0 /x2 m(dx) = 0% < o00.
R R

Then for any interval A,

1 | 2,2
lim(@m % m * - - - % m)(A/n) = / X197 gy
& V2mo? Ja

Proof. From Proposition 5.2.7 it suffices to compute the Fourier transform of the indicated
convolution. This is [7(£ /+/n)]". The Taylor expansion at & = 0 is
) =1—-§0%/2+ o(€?).

The characteristic function of the Gaussian measure with mean zero and variance o2 has
the same Taylor expansion. Now we can write
~ E g2 2
m —e £°/2n0
N

) i n_ _52/202
"”(f) ¢

where we have used the fact that if a, b are complex numbers with |a| < 1, |b] < 1, then
|a" — b"| < nla — b|. But from the Taylor expansions,

A E — no
" (ﬁ — e = o(1/m),

which proves that lim, (& /n'/2)" = e~¢"/2> The conclusion now follows from the
continuity theorem proved above. ]

<n

Exercise 5.2.9. Central limit theorem for Abel sums. Suppose that m is a
probability measure on the real line with

/xm(dx) =0, /xz m(dx) = 1.
R R

ForO<r<landn=1,2,..., let m (A) = m(A/(r"~/1 —r?)). Prove that for
any interval A

lim () * ml % - - )(A) = —°12 .

1
iy e
r—1 v 2T /A

It suffices to show that the Fourier transform satisfies the limiting relation

lim, ., TI% m(tr"~/T — r%) = e/, Use the fact that /(&) = e~5*/20+o() when & — 0.

5.2.1.1 Restatement in terms of independent random variables

The central limit theorem is presented as a result on the convolution powers of a single
probability measure. This can also be recast as a result about the measure induced by a
sum of independent random variables, as follows:

Definition 5.2.10. A set of real-valued functions X,(¢), ... , X,(t) on a proba-
bility measure space (2, u) is mutually independent if for every choice of real
numbers x,, . .., x,, we have

ult X)) <xi,.... %@ < xu} = plt : X1 (@) <x1}---plt X () < xa}
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Let m; be the distribution of X;, namely the measure induced on R by the equation
mi(A) = u{t : X;(t) € A}. Then the distribution of the sum X;(¢) + --- + X,,(¢) is
the convolution m; * - - - x m,, so that (m x - -- x m)(A/n) is the distribution of the
sum (X;(¢) + --- + X,(1))/+/n. In probability theory, the term “random variable” is
synonymous with “real-valued measurable function.” The central limit theorem can now
be recast as follows:

Theorem 5.2.11. Suppose that {X,,(t)}u=1.2.... is a sequence of mutually indepen-
dent random variables with distribution m, where fR xm(dx) =0, fR x2 m(dx) =
02 < 00. Then the distribution of the normalized sum [X,(t) + - - - + X,,(t)]/o /n
converges to a standard normal distribution when n — oo.

Independent random variables may be constructed on the unit interval = [0, 1]
as follows. Let ¢ : N — N? be a bijective mapping. For example, this may be constructed
by listing all of the integers in a doubly infinite array as follows:

1 3 6 10 15 21...
2 5 9 14 20...

4 8 13 19...

7 12 18...

11 17...

16

In this example we have, for example ¢ (8) = (2, 3), ¢(18) = (3, 4) and so forth. Now
we expand t = Y o, wi/2* and define

3

n=1

and so forth. Then for every n, {X,(t),X2(?),...,X,(t)} are independent random
variables, each of which is distributed according to Lebesgue measure on [0, 1]. To
achieve more general distributions, it suffices to form Borel functions in the form
Yi(t) = ¢p:i(X;(t)) fori=1,2,....

5.3 EXTENSION TO GAP SERIES

The asymptotic normal distribution is not restricted to sums of independent random
variables. In this section we consider a class of trigonometric series that are asymptoti-
cally normal. More general results are found in the book of Zygmund (1959, Volume 2,
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Chapter XVI). Here we consider sums of the form

k
(5.3.1) Se(t) = Z a; cos njt
=1
where (a;) are real numbers and n; < ny < - - - are integers which satisfy
(5.3.2) Merl > qhg k=1,2,..)

for some g > 1. The growth of the sum is measured by the L? norm, which is

L& 12
(5.3.3) A = (5 Z‘??)

where we assume that

(5.3.4) Ay — 00, :—" >0 (k- oo0).
k

As preparation for the theorem, we first prove a simple lemma.

Lemma 5.3.1. Under the conditions (5.3.4), we have

1
— max |aj| = 0 (k — 00).
k1< j<k

263

Proof. Given € > 0, let K, be such that |a;|/A; < € for k > K.. On the one hand, since

(Ay) is increasing, we have for k > K,

1 1
— max |a,|§A—e max |A;| =,

Ay K<<k o Kesisk
while
1
— max |a;] — 0 (k — 00).
Ay 15)<K,

Hence lim sup,_, .. (1/|A«|) max, << la,| < €. Bute was arbitrary, so the proof is complete.

This lemma allows one to conclude, for example, that for any p > 2
a; a; P2
Z | (] < 2 max | ll B - 0.
l<1<k Ap

I<i<k k

Theorem 5.3.2. Suppose that the integers (ny) and the real numbers (a;) satisfy

(5.3.2) and (5.3.4) with q > 3. Then we have for k — oo

1 /«“2
— /2
o el e du.
VTt Jy

(5.3.5)

P {’ETi)’ISMS)’z}
Ay
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Proof, We compute the Fourier transform, defining

1 .
() = 5 / eSS/ gy
T

k
L / l_[eig(aj/Ak)cosnjl dr.
T JT

It suffices to prove that ®x(¢) — e~*'/2 when k — oco. From the power series of the
exponential function, we have for small |z],

2
z
1+ =(1+2 (1 it o+ O(IZIB))
2
=1-2+0(z")
— /20U

so that
& = (1 + z)ezz/2+0(12|3) (Z — 0)

and we can write

2
P, (€) = /H<1+z§—cosnj )exp{ 2A2 [cos® njt + o(1)] § dt

where the o(1) term is uniform in r € T. Now we write

kg2 , 1 ¢ a?
4 — — 2L :
Z 27 08 nit =1+ > Z a2 cos 2n;t

=1

=N

=1+ Ty (#)

noting that
1 k 4
— | T, (®)%dr = /AN k ,
2”fT (0 d ; (k — 00)

in particular Ty (#) — 0 in measure. Meanwhile

k 2 2.2
. a; &a 2
11+ cosm) 51‘[(1+A_5)5625

j=1 j=1

so that we can write

1 k . 4 x2
c1>k(g)=5/]'[ 1+1§A—kcosnjt exp | =7 (1 + &0 +o(1)) | dr
T j=1
2
e™* /2 k a;
1+ix-L cosn-t) dt.
o | TT(1#ixg o

=o(1) +
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It remains to analyze the final integral. For this purpose we expand the cosine prod-
ucts using repeatedly the identity 2cosacosb = cos(a + b) + cos (a — b) to obtain a

finite sum
k a: nyptetng
(5.3.6) I—[ (1 + iE;‘i cos njt> = Z o, COS VI
j=1 k v=0

where the sum is over those indices of the form v = n;, £ n;, £ -+ withn; > n;, > -

Lemma 5.3.3. Suppose that n| > gqny with q > 3. Suppose that an integer v is
represented in two (possibly) different ways

n, n, £ =v=n; £n, £-..
wherei|y > iy > -, ji >Jp > . Theniy =j, i =J3,....

Proof. If all of the subscripts are equal, there is nothing to prove. Otherwise there is a
first subscript that differs in the two representations. By relabeling the subscripts, we may
assume without loss of generality that i; > j,. By a further relabeling and moving all of the
terms to one side, we may write

ni, = ang + ang, +---
where the coefficients a; € {0, &1, +2} and i} > k; > k; > ---. Hence
i sz(""] + +)

1 1
§2<nk|+§nk| +§nk| +>

< 3nk| 5

which is a contradiction.

To complete the proof of the theorem, we note that in the product (5.3.6) the only
contribution to the term o occurs when all of the frequencies are zero, hence oy = 1.
Applying the orthogonality of cos vt, we conclude that

1 k a;
— 142 t)de =1,
2”/1”1:][( +z!§Akcosn,>

which completes the proof of the theorem. |

Exercise 5.3.4. Suppose that the coefficients (a,) satisfy (5.3.4). Prove that
n~!log|a,| — 0 when n — oo.

Hint: Write a? /A2 = €, — 0 and solve for a2 = aZ (¢,/ex)Ty,(1/(1 — )) for n > N, where
ey >0ande¢ < eforn > N.

Exercise 5.3.5. Suppose that the coefficients (a,) satisfy (5.3.4) and the inte-
gers (ny) satisfy (5.3.2). Let S;(t) = ij a; cos(n;t — ;) where 9; € R. Prove

=1

that (5.3.5) holds for this wider class of series.
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5.3.1 Extension to Abel Sums

The central limit theorem for gap series can naturally be extended to obtain the limiting
distribution of the harmonic function

00

5.3.7) u(r,t) = Z a;r" cosn;t

J=1

under the same conditions as in Theorem 5.3.2.
We define

1

1 oc
2. 2 _ 2.2n,
(5.3.8) A(r)" = T /;ru(r, 1 dt = 3 ]«:EI a;r.

Then Exercise 5.3.5 implies that A(r) < oo for0 <r < 1.
The following result was first proved by Kac (1939) and later extended by Salem
and Zygmund (1948).

Theorem 5.3.6. Suppose that the integers (ny) and the real numbers (a;) satisfy
(5.3.2) and (5.3.4) with q > 3. Then for any interval C C T, we have forr — 1

(5.3.9)

u(r, 1) /e—-‘*/2
T: C dy.
{te Ao € ”% BV

We first develop the Abelian counterpart of Lemma 5.3.1.

Lemma 5.3.7. Let by > O fork > 1 and set By = 0, B, = by + --- + b, for
n > 1. Suppose that B, — oo and b, /B, — 0 when n — oo. Furthermore let
B(r) =3, byr" for0 < r < 1. Then

1
——supbrt — 0
B(r) i>1

when r — 1.

Proof. We sete, = b, /B, forn > 2. Without loss of generality we may assume thatb, = 1
and e, < 1 for all n. Then B,_;/B, = 1 — e,, so that we can write for n > 2

s (] 1
"T\l-e 1—e,

1 1
bn—en<]_ez)"'<]_en>-
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Since B, —> 00, we have B(r) — oo when r — 1. On the other hand we can write for any

N e Z,
0
B =3
n=1
N
Y (B, —B, )"
N
=r"By+(1—r))_ r'B,
n=I
> r"By

=”(11Q)“(1fm>"

Given € > 0, let K, be such that ¢, < € for k > K. If sup, byr* is attained at some k > K.,
then

k
bt = Gr < exB(r) < €B(r).

(I-e)--(I-e) ™

On the other hand, if the supremum is attained at some k < K., then

bkr" < maXj <<k, bkr" <e
B(r) — B(r) -

But € was arbitrary, which completes the proof. ]

We can apply this lemma by taking b,, = a? and b, = 0if n ¢ {ny,, ny,, ...}, to
conclude that r*a; /A(r) — 0 when r — 1, uniformly in k € Z*.

Proof of the Theorem. We compute the Fourier transform

_ L LR - U
®,.(5) = . /TCXP(A(r) ;q,r cosn,t) dr.

We proceed as in the proof of Theorem 5.3.2, beginning with the estimate e’ =
(1 + z2)explz?/2 + O(lz|*)] applied to z; = (i& /A(r))a;r' cosn;t, noting that z; — 0
when r — 1, uniformly in j. Then

® ( L r) _EE ot + 0(1)] ) e
(g)._/Tk_ +A( )akr cOSs 1y exp( A [cos®(mt + o )])

Write

1
2.1, 2 _ 2.1,
A(r)2 E spr'’k cos” it .-5 2A( )2 E a,r' cos 2mt

+ W, (2).

Nl'—‘
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The L? norm of W, is estimated as before

1 1 &
— | W,()%dr = gt 5 0, 1
7 /T ) 8A()? ;r a, —> r—

where we have used Lemma 5.3.7 to replace one factor by the supremum, the remaining
sum being equal to 1. Meanwhile, we have the uniform bound

< ﬁ 1+ §a; < &
- €

kel An?) T~

so that we can apply the dominated convergence theorem to conclude that

0.6 = o1y 4 S [ T (14 o™ ’)d;
(&) =o(1) + 7 -/T!:[l( + e COS 1y .

But this infinite product can be expanded as a sum:

]_[ (l + lgA(k cosnkt> Zau(r) Cos V.

k=1

2

1+z—cosnt
I—” At

From Lemma 5.3.3 and the condition (5.3.4) we have a(r) = o(1), so that we conclude

1 o0 ; g
— [ T1 (1 L e cosnkt> dr =1,
2 Jy 1 e

which completes the proof. |

5.4 WEAK CONVERGENCE OF MEASURES

To probe the deeper aspects of the convergence question, we develop the following notion
of weak convergence of measures.

Definition 5.4.1. A sequence of finite Borel measures (m,) is said to converge
weakly to a limit measure m if for every bounded continuous function g

lim | g(x)m,(dx) = / g(x)m(dx).
n R"I R([

If Ais any setin RY, the interior A° is the set of points x € A such that A contains an
open ball about x. The closure A is the complement of the interior of the complement; in
symbols (A)¢ = (A°)° and we have A° C A C A. The boundary is defined as dA = A \A°.

The portmanteau theorem gives equivalent conditions for weak convergence.

Theorem 5.4.2. The following conditions are equivalent

1. m, converges weakly to m.
2. For every closed set A, lim sup, m,(A) < m(A).
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3. For every open set A, liminf, m,(A) > m(A).
4. For every Borel set A with m(dA) = 0, lim,, m,,(A) = m(A).

The proof of this theorem, which has nothing to do with Fourier analysis, can be
found in Billingsley (1999).

It is also helpful to develop the appropriate notions of compactness in the context
of weak convergence of measures. In this setting we refer to a tight family of measures,
formalized as follows:

Definition 5.4.3. A sequence of finite measures (my,) is tight if
lim sup,m,({x : |x| > A})) =0.
A—00

Theorem 5.4.4. Suppose that m, is a tight sequence of finite measures with
sup,m,(R?) < oco. Then there exists a weakly convergent subsequence.

Again we refer to Billingsley (1999) for the details.

Exercise 5.4.5. Prove that any weakly convergent sequence of finite Borel mea-
sures is tight.

Example 5.4.6. Withd = 1, let m, = §,, a point mass at the point n. Then m,, is
not a tight sequence, since for any n, m,{x : |x| > n/2} = 1.

5.4.1 An Improved Continuity Theorem

The theory of tightness can be used to formulate an improved version of the continuity
theorem for sequences of characteristic functions of probability measures. In the previous
version, Proposition 5.2.7, we required that the Fourier transforms #1,(£) converge to a
limit M (£¢), which is assumed to be a characteristic function. We now have the following
improved version.

Theorem 5.4.7. Suppose that m, is a sequence of probability measures on R?
with Fourier transforms m, (§), with the property that there exists

(5.4.1) M(§) = lim 7, (§)

and that M is continuous at & = 0. Then there exists a probability measure m so
that m, converges weakly to m and m(§) = M(§).

Proof. From the hypotheses, we can write

- ’;ln(?f) = / (1 - e'E"‘) m,,(dx).
R4
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This equation is integrated over the cube C, = ﬂ;’zl {I&| < a} to obtain

d

/ [1 = iy (§)] d = / ((2a>" ST “"") ()
Cu RY X;

j=1 J

1 N _ d Sinaxj
Qa)! ./c,, [1—m,(§)]1d§ = -/IRZ" (1 - l—[ p )m,z(dx)

j=1

d :
Sin ax;
2/ 1-— | | — m,,(dx),
(Cym1)* j ax;

J=1

since the integrand on the right side is nonnegative. If (xj, ..., x,) lies outside the cube
C,,-1, then the indicated product contains at least one factor that is less than 1, the remaining
factors are less than 1. Hence

1

A 1
Gyt . 0= @148 2 5/(%”‘ ().

From the dominated convergence theorem we conclude that

2
(2a)!

f [1 — M(@©)]dE.
Cq

n

lim sup / m,(dx) <
(C2{ -1 )(.

From the continuity of M, the right side can be made arbitrarily small by taking a sufficiently
small. This proves that the measures m, are tight, hence we can extract a weakly convergent
subsequence. If we had two different subsequential limits m, and ng, then both of these
measures must have the same characteristic function, hence they must be the same measure
by the uniqueness of Fourier transforms, Proposition 5.2.4. Hence every subsequence has
a subsubsequence that converges weakly to the same measure mj. From this it follows that
the original sequence converges weakly to my. ]

Exercise 5.4.8. Show that the hypothesis of continuity at § = 0 in Theorem 5.4.7
can be weakened to the hypothesis that & = 0 is a Lebesgue point for M, in the
sense that lim,_,q a4 Jo, 1 =M&)|d§ =0.

5.4.1.1 Another proof of Bochner’s theorem

In Chapter 3 we introduced the concept of positive-definite function and used a Fatou
theorem for harmonic functions in the upper half plane to prove Bochner’s theorem,
which affirms that any continuous positive-definite function on R is the Fourier transform
of a nonnegative measure. In this section we will give an independent proof of Bochner’s
theorem using the theory of weak convergence applied to a Gaussian convolution.

Proof. We begin with f (£), a complex-valued positive-definite function that is assumed to
be continuous. Define

(54.2) me(x) = L / e_f""e—etlzf(u) du.
2w R

By hypothesis, we have for every ¥ € L' (R),

[[ 7€ -mv@imatan=o.
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Taking the choice ¥ (€) = et e~¢’/2 we infer that
2 2
0< /f fE —n)eE et 2= 2 e dy
RrR2

— / f(u)ei.xue—e(u+17)2/28—en2/2 du d’l
R2

\/>/ f(u)enu —€lr /4

= const. X Mc/4(x),

which proves that m, (x) > 0. We claim that m, € L'(R) and that the Fourier transform of
the nonnegative function m, is precisely e“”zf (£). To see this, we use Fubini to establish
the following identity where § > 0

/me(x)elEx —5x2 /2 // ix(E— u) —5x2 /2 —eu~ f(u)dxdu
R R

—(E—u) /28
(5.4.3) = f(u)e_‘“ du.
R 2

Taking £ = 0 and using Fatou’s lemma and the continuity at # = 0 shows that

/me(x) dx < liminfs_ / m.(x)e= 12 dx = £(0) < oo.
R R

Hence m. € L'(R) and ||m, Iy < f(0) < oo. Now we use (5.4.3) and the dominated
convergence theorem to compute the Fourier transform with € > O fixed:

me (&) =‘/me(x)e"§" dx
R

§—0

. ey 8.2
= llm/mg(x)e’“e 8512 gy
R

e (E-0?/28 2
=lim | ———f(w)e ™" du
=0 Jr  2mé

=f&)e

where we have used the continuity of f in the last line. Hence the product f (£)e™¢* ? is the
Fourier transform of the function m,. Taking € — 0 and using Theorem 5.4.7, we see that
f is the Fourier transform of a nonnegative finite measure, which was to be proved. ]

Exercise 5.4.9. Show that the hypothesis of continuity in Bochner’s theorem can
be weakened to the hypothesis that ¢ = 0 is a Lebesgue point for f, in the sense

thatlim,0a ' [ |f(0) —f(€)|dE =0.

Exercise 5.4.10. Show that the above argument can be generalized to RY, to
obtain a characterization of the Fourier transform of a finite nonnegative measure
as a positive definite function on RY.
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5.5 CONVOLUTION SEMIGROUPS

Fourier analysis is particularly well suited to deal with one-parameter families of proba-
bility distributions that are closed under convolution.

Example 5.5.1. Let P, be the probability distribution on R! with density
e/ /~/2nt. Then by direct computation, P, x P has the density e /2+) /
J2m(t +5), so that P, x Py = P, .

Definition 5.5.2. A convolution semigroup of probability measures is a family
(Py);~0 With the properties

5.5.1) Py x Py = Py,
(5.5.2) P, — & when t— 0,

in the sense of weak convergence.

The Fourier transform of the convolution semigroup is defined by

(5.5.3) £E =PE) = / " P (dx).
R
This has the following properties.

Proposition 5.5.3.
o & — f(&) is continuous and bounded by 1.

e fi(§) — 1 uniformly on compact &-sets when t — O.
o t — f(&) is continuous fort > 0.
o 1 — f,(§) is differentiable for t > 0 and (&) = lim,_,¢ f/(§) exists.

e fi(§) satisfies the identity f,(§) = 1 + ¥ (§) fot fi(&)ds, and f,(£) = €'V ®.

Proof. The first property follows immediately from the definition (5.5.3). To prove the
second, we have for any § > 0

1f& -1 = ‘fm [¢%" — 1] Pi(dx)

S[ |x|P,(dx) + 2P, ({x : |x| > &})
|xj<é

where the second term tends to zero when t — 0. On any compact interval |§| < M, the
first term is less than M§. Therefore

lim sup sup |fi(§) — 1| < Mé.
t—0  |E|<M

But § > 0 is arbitrary, hence the limsup is zero, proving the uniform convergence. From
(5.5.1) and (5.5.2) we have

(5:54) fs® =£@£E),  lmfE©) =1

Letting s — 0, we see that f; is right continuous at each ¢ > 0. But for small s > 0 we can
write

fi€)
£:§)

f;—.\‘(g) =
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so that we can take s — 0 and conclude that t+ — f; is left continuous. In particular
t — f; is bounded and measurable, so that we may integrate (5.5.4) on an interval [0, §] to
obtain

t+8 8
(5.5.5) f ﬂ-(&)ds:fz(f)/ofc(&)ds

where § > 0 is chosen so that |f;(§) — 1] < 1/2for0 < s < 4.
The formula (5.5.5) displays f; as a differentiable function of ¢ with a continuous
derivative. Taking the derivative for t > 0 we obtain

)
Fas®) —Fi®) =€) A £®)ds.

Hence there exists

fs§) -1
o i) ds
which displays ¢ as a continuous function with ¥ (0) = 0. Computing the derivative

from (5.5.4), we obtain the differential equation f/(§) = ¥ (£)f,(£). The unique solution
satisfying fo(§) = 1 is

Y =limf/¢) =

fi(&) =e"®. n
The next goal is to prepare the proof of the following theorem of Lévy and Khintchine.

Theorem 5.5.4. Suppose that (P,),-q is a convolution semigroup of probability
measures on R. Then there exists a unique Borel measure M and real numbers
W, o, so that the Fourier transform has the representation

fi®) = / e™Py(dx) = eV
R

where

0252
2

V) =iné -

N / [ — 1 — i sinx] M(dx)
R

and

x2
M (dx .
/Rl-i—xz (dx) < o0

To prepare the proof, we define F,, = P/, and G, = nx? /(1 4+ x2)F,.

Lemma 5.5.5. The rotal mass of G, is uniformly bounded, specifically

2
nx
——F,(d .
Sl:p/]Rl+x2 (dx) < o0
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Proof. We begin with the basic relation 1 — f,(§) = fR[l — e**]P,(dx) that is integrated
on the interval [—1, 1] to yield

l .
(5.5.6) %/ (1 — £.(£)) dt :/ (1—%> P,(dx).
—1 R X

When we divide by ¢, the integrand on the left side tends boundedly to v (§). On the right
side, we use the inequality

sinx 1 x?
- == .
x T 71+x?
Dividing both sides by t = 1/n we obtain
nx? 7 !
li ——F,dx) < < dg. |
1m”sup/R e (dx) < 2/:11#(5) &

Lemma 5.5.6. F(A) := sup, nF,(|x|] > A) < oo for each A > 0 and F(A) tends
to zero when A — 0.

Proof. We first prove this for the symmetrized distribution F,’f (dx) = F,(dx) * F,(—dx),
whose characteristic function is

# -2
Fla(§) = e Cmve,

We apply the technique of (5.5.6) with the interval [—1, 1] replaced by the interval
[—2/A, 2/A] and use the inequality 1 — e™ < y to write

FY(E] > A) < 2A/ (1—£4,) de

[El<1/A

4A
< —/ [Re (6] d&.
1&1<2/A

n

Therefore
sup nF*(|x| > A) §4A/ |Re ¥ (&) d&.
n JE]1<2/A

But y is continuous at £ = 0, hence the right side of the final inequality tends to zero when
A — oo0.

To handle the general (nonsymmetric) case, note the following “symmetrization
inequality” for any two independent random variables X, Y:

P[IX — Y| = A] = P[IX| = 2A]P[|Y| < A]
(draw the picture). Applying this to X, Y distributed as F),, we obtain

F (x| > A)

Fo(lx] > 24) < .
(il >24) < £ =4

But the denominator tends to 1 whenn — oo, from the basic hypothesis that P, — &g,
so that

lim sup nF,(|x| > 24) < lim supanf(lxl > A) < 4A/ |Re ¥ (&) d§,
1§1<2/A

n n

which tends to zero when A — oo. n
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Having done this, we now turn to

Lemma 5.5.7. The measures G, are tight: in detail

nx2
lim sup su / ——=F,(dx) = 0.
A—)oop np |x|>A 1+x2

Proof. We write

nx?
an(dx) < nF,(|x| > A)
Ix|>A

and we have shown above that the supremum over » tends to zero when A — oo. ]

Proof of Theorem 5.5.4. Now we prove the representation theorem. From the definition

L f® -1
Ve =ln T

= lim f €™ — DnF,(dx).
n R

For any n we can write

N e —1—ifsinx ) .
(5.5.7) (€ — DnF,(dx) = x—2(1 +x°) G, (dx) +ip,&,
R R

where u, = fR sin xF,(dx). The integrand in (5.5.7) is defined by continuity at x = 0. Note
that G,({0}) = O for all n. From Lemma 5.5.5, we may take a subsequence for which the
total masses G, (R) converge to a limit. Since the measures G, are tight from Lemma 5.5.7,
we may take a further subsequence that converges weakly to a limit measure G. All of the
limits below will be taken through this new subsequence. The integral term on the right side
of (5.5.7) converges to

i _ 1 _ s
/ e - i& smx(] 4 ) G(dv)
R X

while the left side converges to ¥ (§). Letting § = 1 and taking the imaginary part shows
that u, converges to Im v (1). We have obtained the Lévy-Khintchine representation in
Feller’s form:

e — 1 — j£sinx )
(5.5.8) ¥ () =/ x—zs(l +x%) Gdx) + ipk.
&
It remains to discuss the uniqueness of the pair (1, G). The number p is uniquely determined

by u = Im ¥ (1). To identify G, we form the convolution of ¥ with the kernel 1¢~! whose
Fourier transform is 1/(1 + x?). This results in the identity )

O+ 5 / Ky () dy = f ¢ G(d),
R R

which shows that ¥ uniquely determines the characteristic function of the finite measure G.
But the uniqueness theorem for characteristic functions shows that G is thereby uniquely
determined from its characteristic function, which completes the proof. n
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5.6 THE BERRY-ESSEEN THEOREM

Fourier analysis is extremely effective in obtaining sharp estimates on the rate of con-
vergence in the central limit theorem. The following discussion is presented for the case
of convolution powers of a single probability distribution, but it can be easily extended
to the case of different distributions, under suitable hypotheses.

Let m be a probability measure on R with

5.6.1) /xdm =0, /xzdm =1, / x> dm = m; < oo.
R R R

From the central limit theorem, we know that the normalized convolution of the distri-
bution function F converges to the normal distribution

X —u?/2
(5.6.2) lim(F % F % - F)(x/n) = ©() Z/_w i/z“n du.

The Berry-Esséen theorem gives the rate of convergence.
Theorem 5.6.1. We have uniformly for —00 < x < 00
C
(5.6.3) (FsFx-- % F)(xy/n) — d@)| < =
Jn
where C is a universal constant.

The idea of the proof is to regularize the given distribution by convolution with
a smooth density. Then we can apply the inversion formula directly to the regularized
convolution, whose Fourier transform is the product of the given Fourier transform with
the smoothing factor. For the smoothing density we choose the Fejér kernel
1§ 1

., with 1‘<T<s>=(1—7)1[o,n<|s|>.

1 —cosTx

5.64 K =
(5.6.4) ) = —
Lemma 5.6.2. Let G be a probability measure on R and set

(5.65) A®) :=Gx) — (), n=sup|AX)|, nr=supl(Ax*Kr)x)l
X X

Then

<o+ 24m he &' () 1

< -+ ——, where m = su X) = ——.

n N7 =T XP P

Proof. Since A(x) vanishes at +00, the supremum occurs at some point x, where we have
A(xg £ 0) = £n. If A(xg £ 0) = +n, we propose to estimate the convolution

)
(A*Kr)(xo+8) = </ +/ > A(xo + 8 — x)Kr(x) dx
-8 |x|=68

where § is to be chosen. If —§ < x < §, then
Axg+6—x)=Glxy+8—x) —Pxp+ 8 —x)
> Glxo £0) — [P (xo) +m(8 —x)]
=n+m(x —9).
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We use the estimate on the Fejér kernel

2 4
K dx < dx = —
~/|Alzr3 T(x) - -[\‘\25 Tx? aT$§

and the fact that fis xK7(x) dx = 0; thus

5
/ Axg + 8 — x)Kr(x)dx > (n — mé) (1 - ——4—> .
-5 nTé

On the interval |x| > § we use the bound A(x) > —n to write
4
/ A@)Kr(x)dx > —nf Kr(x)dx > —n——-.
IxI=8 NE) nTé

Adding the two, we obtain

5
(A * Kr)(xp+98) = </ +/ ) A(xy + 8 — x)Kr(x) dx
5 Jixizs

(- 55) ra
=2-—m) |1l —— | —n—rx.
T

The proof is completed by choosing § = 1/2m to obtain (A x Kr)(x0) > n/2 — 12m/n T,
which immediately gives the required result. If A(xy, = 0) = —n, then we apply the above
argument to —A(x). |

Proof of the Theorem. Let G(x) = F,(x) = (F*- - -xF)(x+/n), whose Fourier transform
is F (&/+/n)". The Fourier transform of F, * K is obtained by taking the product with
(1 —1£1/T)110,11(1€1), in particular the product is absolutely integrable on R. Hence we can
apply the inversion formula to write

1 T —itx _ ,—ika n n
(F, % Kr)([a, x]) = E/ % (1 - '?) fa (%) dt.
*T -

Applying the inversion formula to ® * K7 and subtracting, we have

_ 1 T e—ié,x _ e—iea l§| R g n —52/2
(F"*KT_CD*KT)([a'X])_E[TT(I_?><F(%> —e )dé.

For each fixed T > 0, n < oo the integrand is an integrable function, so that we can apply
the Riemann-Lebesgue lemma to let a — —oo and obtain

(5.6.6)

(F, _ L[l EY (5 (5N _ en
n* Ky — @ *K-/)((—OO, x]) - _2; , —ls 1- ? F —ﬁ —e d{:'

It remains to estimate the integrand and apply Lemma 5.6.2. From the definition of the
Fourier transform,

R 2 ] §2x2
‘F(é)—1+— = /(e’s"—l—i§x+ >F(dx)’
2 R 2
£x°
< /R 5 F(dx)
P
= m;—.

6
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We apply the same estimates to ¢£'/? and use Holder’s inequality to obtain

3
—-£22 2 €] / 3_—x2/2 dx
e —14&°21 <= | |x|’e —
I &/ A T
_ 2P
327
< 2ms|§|3
T 327
I€°
Thus
|F©) - e < msfeP.
Furthermore
~f & ) £2 mlg
Fl=>=])<l—-2>+
(«/ﬁ 2n 6n?
g2 & Vn
<1—-2-42 < N©
=1 2n + 6n 61 = m
52
=l1-3 &1 < f
< p—E2/3n €] < ﬁ
< =

We now estimate the integrand in (5.6.6) by the telescoping sum

() o)) S ol ]

m3|§'| ne=t13 €] < ﬂ
Tz = m

— ms 6 ° et €] < ﬂ

n'/2 - ms ’

Applying Lemma 5.6.2 with T = /n/4m;, we have

r 2 24
anipe/m - et <2 [ (1= 81 2oL e a4 2

T 2
12m
< —f |&]%e -+ Pdg+ Jnm 33/2
which is of the required form with 27 C = (3/2)*2/4/2m + 12/73/2. | |

Remark. We can obtain a lower bound on the best possible constant by recalling the
DeMoivre-Laplace limit theorem from Chapter 1: In this case the explicit asymptotic
analysis shows that F,,(0 + 0) — F,(0 — 0) ~ 1//nt = /2/m1/~/2n. Since m3 = 1,
we see that the best constant in (5.6.3) satisfies C > /2/7 ~ .79.
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5.6.1 Extension to Different Distributions

The Berry-Esséen theorem extends naturally to a sequence of probability measures (F)
that satisfy

(5.6.7) /xdFk =0, fxz dFy, = a} < oo, / x> dFy = m;, < 00
R R R

and the additional conditions that

(5.6.8) Al=al+ .. +al - oo

ax
— =0
Ag

my < )&ai

for some A > 0. Under these hypotheses we claim that
C
(5.6.9) [(F %+ % F)(xA,) — ®(x)| < ™

for a suitable constant C.

To prove (5.6.9), we apply Lemma (5.6.2) with G = Fy * - - - x F,. The Fourier
transform of the left side of (5.6.9) is Fy (€/A,) - - - ' (E/An) — e‘f /2, Now if CD(E)
e7%'/? is the Fourier transform of the standard normal distribution, we can write ®(&) =
®1(E/Ay) - - Du(E/A,) where d;(6) = e—f 4'/2 is the Fourier transform of a normal
distribution with mean zero and variance a , so that we can write

Fi(€/An) -+ Fu(§/An) — ©1(E/AD) - -+ DulE /An)
- Z (Fie/an — ®16/a0) T duce/an [T Fie/An.

i<j i>j
Arguing as before, we have for sufficiently large n,
|Fj(&/An)| < exp[—a’€?/3A2],  |®;(6/An)| < exp[—a’£?/3A2)],

so that

V(€ /A - Fu€ /A — 72 < P S 1Fie /A0 — &;(6/A0)1.

J=1

Ex £ l$13m,

41§ Pa} 2|g|3m,»
V2 A3_ A

Now

|Fie/an — 1+ 82242 =

|®i6/An — 1+82/247 <
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so that

315Pm; _ 36P°Aa}
A S A
3|s|3x

|Fj(&/An) — exp[—£7a} 247]] <

Z |Fj(§/A,) — exp[—&7a’ /247]| <

j n

Applying Lemma (5.6.2) we have

G
sup|G) - =34,

T
(1 |§|>|§lz —t /3d§+c

Choosing T = A,, balances the two error terms and leads to the desired result.

5.7 THE LAW OF THE ITERATED LOGARITHM

The central limit theorem, which gives the limiting distribution of normalized sums of
independent random variables, has an almost-everywhere counterpart, as follows:

Se(t
(5.7.1) lim sup S0 _ +1  ae.t.

k=oo /242 loglog Ay

The proof of (5.7.1) depends on careful bounds for the distribution of Sy (#)/Ax and a
simple estimate for the distribution of the maximum of S;(¢), ..., S (). We will prove
the following result:

Theorem 5.7.1. Suppose that {X;(t)}rez+ are independent functions on T =
[0, 1] with [ X, (t)dt = 0, [ Xu()?dt = a}, [;1Xi(®)*dt < oo and that the
conditions (5.6.8) are satisfied. Suppose further that for each x € R and k € Z*

(5.7.2) {t : Xe (1) < —x} = |{t: Xp(®) > x}].
Then (5.7.1) holds.
The distribution of the maximum is estimated as follows.
Lemma 5.7.2, Let S} (1) = max{S(t), ..., Sy(t)} where (5.7.2) is satisfied. Then
(5.7.3) [{t: Sp(0) > x}| <20t : Sk(@) > x}.

Proof. LetA; = {r: 5,(t) <x,...,Si-1(#) < x, S;(t) > x}. Then the event {r : S;(t) > x}
is written as the disjoint union U 1A From the symmetry hypothesis (5.7.2) we have for
anyn; <y, |{r: 32, X;(0) > 0}l > 5 Now

Si®) > x, X+ + X)) =2 0= 5 (1) > x
henceAjﬂ{XjH ++Xk EO}CAJO{S/( >X}.
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Then

It : Sk(t)>x}|>Z]A N {2 Si(t) > x}
j=1

k

> Y A0t X () + - + Xu() 2 0}

j=1

k
=Y A X @) + -+ Xe() 2 0}
=1

1
= 5 le: 80 > x)l. ]

Lemma 5.7.3. If x, — 00 so thatxk/2 log Ay — —00, then

H s }
fr L > x
Ay

Proof, From (5.6.9) we have
[ECH

k
where C is a constant. When x — oo we have 1 — ®(x) = exp [—x2/2(1 + 0(1))]. The
hypothesis on x; is equivalent to 1/4; = o(e‘xk/ 2y and therefore the error term can be
absorbed into the Gaussian term when this is satisfied. |

= exp [—x; (1 + o(1))].

C
< _
= a4,

XH —(1-ox)

We also need the first and second Borel-Cantelli lemmas, as follows.

Lemma 5.7.4. Suppose that (By) are measurable sets with Z;’il |By| < 0o. Then

{t:ZlBk(I)<oo}|=l.

k=1

Proof, The assertion is that, almost surely, only a finite number of the events B, occur. The
proof comes from applying the monotone convergence theorem to write

/Zl,;k(t)dt =) B < oo.
T k=1 k=1

Hence Y72, 1p,(f) < oo for almost all 7. |

Lemma 5.7.5. Suppose that (By) are measurable sets with Y ., |Bx| = 0o and
that (By) are mutually independent: | ﬂ =1 Bil = f:] lBiil Jor any choice of £,
where Bt = B and B~ = B°. Then

{t:ilgk(t)=+ooH = 1.

k=1
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Proof. The assertion is that, almost surely, infinitely many of the events occur. To prove
this, use the monotone convergence theorem with a = log 2 to write

/exp(—aZlBk (t)) dt = l—[2 s () gy

Ti=

Thus exp(—a} 1o, 1p, (£)) = O for a.e. t, hence |{t : Y -, 15, (t) < o0}| = 0. |

Proof of (5.7.1). Given 6 > 1, define a sequence of integers (n;) by the recipe that
n, = max{n: A, < 0"}.

Thus 4,, < o < A,,., and it follows that A, ~ ~ 9% and Ay, /Ay — 6 when k — oo.
Now from Lemma 5.7.3 we have for any § > 0,

(£ 2 S, (1) > (1 + 8)An, y/210g Iog Ay, }| = exp[—(1 + ) loglog A, (1 + o(1))]

1 (1+8)2(1+o(1))
- <logAnk>

1 (148)2(140(1))
<logA,,A>

Since § > 0, this is the general term of a convergent series, so that by the first Borel-Cantelli
Lemma 5.7.4, for a.e. ¢ only a finite number of these events occur. Thus for k > k(#) we have

(5.7.4) S (1) < (1 + 8)A,,/2loglogA,, .

Now by Lemma 5.7.2, given 8 > 0, choose 6 > 1 so that §2/(6 — 1) > 1. Then the last
series of terms converges and the first Borel-Cantelli Lemma 5.7.4 shows that for a.e. t we
have for k > k(t)

(5.7.5) max (S;(¢) — S, (1)) < (1 + A, /2loglogA,,.

N <j<ngq

Adding (5.7.4) and (5.7.5) we have for k > k(¢) and ny <j < myy
Si(®) = (S;(1) — Sy (1)) + S5, (D)
< 8A,/2loglogA,, + (1+ 8)A,,\/2loglogA,,
< (1428)4;/21loglogA,.

Thus lim sup; §,/A,,/2loglog A; < (1 + 28). But$ > 0 was arbitrary therefore the limsup
in equation (5.7.1) is less than or equal to 1. Applying the same reasoning to the sequence
—S, shows that the liminf is greater than or equal to —1.
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To prove the lower bound, we consider the independent events

By :={t:8, ) —S,_, ) = (1 —08A,2loglogA,,}.
Then

|By| = exp (—(1 _ep loglogA,, (1 + 0(1))
n, n

k — k-1

1 (1-8)26* 1 (BF —6* ) (1 +0(1))
- ( klog6 )

1 (1-8)%/(1-671) (I +0(1))
5.7.6 =
( ) (klog0>

Given 8 > 0, we choose @ > 1solarge that 1 —6~' > (1 —4)2. Then the last term in (5.7.6)
is the general term of a divergent series, to which we can apply the second Borel-Cantelli
Lemma 5.7.5 to conclude that for infinitely many indices k — oo

(5.7.7) Sy (8) = Sy, (1) = (1 — 8)A,, /2 ToglogA,,.

But since we have shown in the first part that the liminf is greater than —1, we have for all
sufficiently large k,

(5.7.8) Sn_, (1) = —24,,_,+/2loglogA,,.
Adding (5.7.7) and (5.7.8) and dividing by the right side, we have
S (1) 2

— e > (1-8) - —=.
A, +/2TloglogA,, z =9 NG

Now we rechoose 6 so that 1 —§ —2/~+/8 > 1 — 28. This proves that for any § > 0 there is
a subsequence j — oo so that S;(¢)/A; /2 loglogA; > (1 — 25). Hence the limsup of this
ratio is greater than or equal to 1, which was to be proved. |

lim inf
k



CHAPTER

6

INTRODUCTION
TO WAVELETS

6.1 MOTIVATION AND HEURISTICS

Classical Fourier analysis may be viewed as the problem of reconstructing a func-
tion f from dilations of a fixed sinusoidal function x — €*™™ by writing f(x) =
[, €75f (&) d&. The Fourier transform f(£) may be thought of as the amount of the
sinusoidal oscillation e*"%* present in the function f. The Fourier representation is
instrumental in analyzing translation-invariant operators such as convolution operators
and linear differential operators with constant coefficients, where we can write

fR fax—NK(ydy = /R K(&)em 5 f () de,

d A
p<d—>f(x) = /p(ZniE)ez”’“f(E)dé-
X R

However classical Fourier analysis suffers from the defect of nonlocality: The behavior
of a function in an open set, no matter how small, influences the global behavior of
the Fourier transform. We have also remarked on the simultaneous nonlocalizability in
connection with the uncertainty principle.

The theory of wavelets is concerned with the representation of a function in terms
of a two-parameter family of dilates and translates of a fixed function that, in general, is
not sinusoidal, for example:

; —b
fx) = /RZ lal”2y <XT> Wyf(a, b)dadb

where W, f is a suitably defined transform of f.
Alternatively one may envision a series expansion

f@) =Y cu2y@x -k
J.k

284
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where we sum over the dilates in geometric progression. The factors of |a|~'/? and 2//?
are inserted to preserve the L2-norm of the basic wavelet .

In this chapter we will describe the properties of wavelets in one dimension, making
full use of the tools of Fourier analysis.

6.1.1 Heuristic Treatment of the Wavelet Transform

The wavelet transform of f with respect to ¥ is defined by the integral
- (y=b\ dy

Wef(@.b) = [ f)0 ( ) 2L

) R a ) Jlal

It is straightforward to compute this transform and the inverse transform on the Fourier
exponentials f(x) = e?**; from the definition of the Fourier transform, we have

Wyf(a, b)=/62m'5y1p (y—_b) dy
R

a /] Jlal
=\/H/62ﬂi&'(b+az)&(z)dz
R
= Vlale™ ¥y (a).

Now we form the adjoint operator

— b\ db
WS Wof () = /R (W), )y (x )ﬁ

_ B 2mign,, (X —b) _db_
—\/la_lw(aS)/Re w( . )M
= J]aly (at)+/Tal /R POy (7) dy

= |al| ¥ (a&)|?e* ¥
7 2
W@r

lal

a

da A
W*W f(x)__ — eZHZEX
/R v a? R

The final integral is independent of &, which is seen by making the substitution v = a§,
from which we obtain the inversion formula

Je Wy Wyf [a*)da
Jo 1T )12/ Ivldv

This leads us to impose the normalization fR h}(v)l2 /Iv|dv = 1, in order to obtain the
wavelet representation

f(x) — eZﬂi{-’x —

da
= W*Wyf —
f L v \//f 02

valid when f(x) = €**%*, It now remains to investigate this inversion procedure for
arbitrary f € L?>(R).
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6.2 WAVELET TRANSFORM
Let ¥ € L*(R). The dilated-translated function is defined by

(6.2.1) Vap () = la]~ 2y (?) . 0#acRbeR

This function is obtained from i by first dilating by the factor a and then translating
by b. Clearly [|¥q,5ll2 = [I¥ 2.

Definition 6.2.1. ¥ € L>(R) is a continuum wavelet if

(6.2.2) _/W(E)I g =%

The wavelet transform of f € L*(R) by  is defined by

(6.2.3) Wyf(a, b) = fR Vb () f (x) dx.

From the Cauchy-Schwarz inequality, we see that Wy, f is a bounded function with
[Wyf(a, b)] < [|[¥]20lfll2. The intuitive meaning of W, f(a, b) is the amount of the
dilated-translated waveform 1, , that is present in the function f.

Remark. If, in addition, ¥ € L'(R), then the integrability condition (6.2.2) implies
that fp ¥ (x) dx = 0. Indeed,  is continuous at & = 0 with ¥/(0) = Jg ¥ If this is
nonzero, then the integral (6.2.2) is divergent.

The following is a form of Parseval’s theorem for the wavelet transform:

Proposition 6.2.2. Suppose that  is a continuum wavelet with (¥, ¥),, = 1.
Then for any f, g € L*(R), we have

(6.2.4) /R F()e(x) dx = /R A

Proof. Let /(x) = {(—x). Then Wyf(a, b) is the convolution of f with ¥,,, whose
Fourier transform is «/|a|1/}(a$). Hence the Fourier transform of W, f is f (S)«/|a|1j/((1§),
and similarly for W, g. Therefore from Parseval’s theorem for the Fourier transform we
have

(6.2.5) f Wyf (a, bYWy g(a, b) db = /R F®&E®)lally @) dé.
R

We integrate both sides with respect to da/|a|?, apply the Fubini theorem to the right side,
and use the definition of (i, ), to remove this constant factor. The remaining integral is
transformed by another application of Parseval’s theorem in the form fn« fg= fR f 2, which
completes the proof.
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This proposition can be interpreted as the statement that f — W, f is an isometry
from L(R; dx) to L>(R?; dadb/|a|?), where the inner product is defined as

((F, G)) = /
RZ

Theorem 6.2.3. Suppose that  is a continuum wavelet with (¥, \),, = 1. Then
for any f € L>(R), we have the L? inversion formula

adb

d db
F) = / Waf @ 500 () g

(6.2.6) i db

€—0,A,B—00

- lm f Wof (@, bV (x)
e<lal<A,|b|<B

Proof. Writing S(e, A, B) f for the integral in (6.2.6), we note that this integral is absolutely
convergent for each 0 < A < B and € > 0, since each factor is in L?>(R?; da db/a*). To
prove the required convergence, we first note that

”f_S(E’AaB)f”Z = Ssup |(f —S(Ea AaB)f!g)|

llgla=1

Applying Fubini’s theorem, we see that
_ dadb
(S(e,A,B)f, 8) = / &) (/ Wyf(a, b)l/fa,b(X)—2> dx
R e<jal<A.|b|<B a
db
e<|al<A,|bl<B
so that by (6.2.4) and Cauchy-Schwarz,

I(f - S(G,A,B)f, g)| =

dadb\'"? dadb\'"?
s(/ IWwf(a,b)lz—z) (/ W, gl 2)
(e <lal<A.|b| <B)¢ a 1R2 a
db\ 2
=<f 2) gl
{e <lal<A.|b| <B}

When € — 0 and A, B — oo the region of integration decreases to the empty set, hence
the integral tends to zero by the dominated convergence theorem. This completes the proof
that ||S(e, A, B)f —fll, = 0. |

&

/ Wyf(a, b)Wyg(a, b)
{e<la|<A.|b|<B}*

We now give some examples of continuum wavelets.

Example 6.2.4. The standard Haar function is defined by ¥ (x) = +1 for 0 <
x < 1/2, y(x) = —1for1/2 <x < 1and y(x) = 0 otherwise.
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The Fourier transform is computed as

1/2 1
Il}(x) — / e—27tffxdx _ -/ e—zni?;'x dx
0 1/2

e—in&' -1 e—Zm'E _ e—mg

—omie  —2mit
B 1 — 2e~imk 4 o= 2mit
2mig
B (1— e—ms)z
2mi&

Clearly the integrability condition (6.2.2) is satisfied, so that i is a continuum wavelet.
In the next example, we specify the continuum wavelet in terms of its Fourier
transform.

Example 6.2.5. Let ¢ (§) = 1y, 1 (ED.

Clearly the integrability condition (6.2.2) is satisfied. The continuum wavelet is

1/2 ) —1/4 )
w(x) =/ eme&' d§ +/ eme&‘ d“;‘
1

/4 —1/2
einx _ einx/Z e—iﬂx/Z _ e—iﬂx

- + ;
2mwix 2mix
sintx sinmx/2

X X

However this continuum wavelet is not integrable, since fR | (x)|dx = 4o00.
The following two examples include the normalization (, ¥),, = 1.

2

Example 6.2.6. A Gaussian wavelet is defined by y (x) = Cxe™™*".

The Fourier transform is computed as 1/7(5 ) = —iCke™™¢ g Clearly the integra-
bility condition (6.2.2) is satisfied. The normalization is computed from the integral

Je 0 @©P/161dg =2C? [ €7 dg = C?/2n, thus C = V/2m.

Example 6.2.7. The Mexican hat wavelet is defined through its Fourier transform
by ¥r(§) = Cg%e ™",

The continuum wavelet 1 can be computed directly as the derivative of the previous
example.A Thus ¥ (x) = C(1/27 — xz)e"”z. The normalization is obtained by noting
that [i |V (&)|*/I€|d§ = 2C% [° £3¢7278" dg = C?4n?, thus C = 2r.
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Figures 6.1.1 and 6.1.2 illustrate Examples 6.2.6 and 6.2.7.

y
0.6
04
02}
! ! ! | ! 1 x
-1.5 1 -0.5 0.5 1 15
_O -
4+
—0.6 -
FIGURE 6.1.1
Gaussian wavelet.
y
I il x
1 1.5

FIGURE 6.1.2
Mexican hat wavelet.

Itisinstructive to examine the inverse wavelet transform in the particular case of the
. 2 . .
Gaussian example, where 1 (x) = /2w xe™™" . Define the partial inverse transform by

dadb
62.7) sfw = [ W@ e
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This can be computed through the Fourier transform by writing
Sef(€) = f Se f (0)e~ 2 dx
R
da A N
- (f ;Iallw(aS)lzda>f(S)
la|>¢€

=27 &2 </| |la|e™ 28 da)f(g)
a|>e€

= e TR ().

But this is the Fourier transform of the convolution f * g, where g, is the Gaussian density
ge(x) = e7™'12€" | /2¢2, which is an approximate identity in the sense of Chapter 2, from
which we conclude that for any homogeneous Banach space B, we have S, f — f innorm.
In particular, if f is bounded and uniformly continuous we have ||S¢ f — fllcc — 0 when
€ — 0.Iff € LP(R), 1 < p < oo, then ||Sc f—fll, = Owhene — Oand S, f(x) — f(x)
for almost every x € R. This follows from the results on Gaussian summability in
Chapter 2. These desirable properties are not shared by the partial inversion of the
Fourier transform, for example.

Exercise 6.2.8. For the Mexican hat wavelet, define the partial inversion by
(6.2.7) and explicitly compute S, f as the convolution with an integrable func-
tion, in particular verify that |Scf — fll, = Oin case of f € L’(R),1 < p < o0
orf € B,.(R) in case p = oo.

Exercise 6.2.9. Formulate the waAvelet transform in n dimensions, beginning
with y € L*(R") satisfying fR,, [V (8)12dE/|E]" < oo and defining W, p(x) =
Y ((x —b)/a)/|al"’? forb e R" and 0 # a € R.

6.2.0.1 Wavelet characterization of smoothness
We can use the wavelet transform to characterize the smoothness of f € L*(R) as
measured by the Sobolev norm

If1I3, = /K; &% 1 F(£)1? dt.

Exercise 6.2.10. If || f|l2.; < 00, prove that f has k continuous derivatives, where

1
k<s 3

Hint: Apply Cauchy-Schwarz to the Fourier integral representation of f®.

The next proposition applies to continuum wavelets that possess a certain number of
vanishing moments: fR ¢ (x) dx = 0. The result states that for this class of wavelet
expansions, the Sobolev norm is equivalent to a weighted L?> norm of the wavelet
transform.
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Proposition 6.2.11. Suppose that ¥ is a continuum wavelet with (yr, ¥),, = 1
and

19 (&)[?
Vs o= R |E|1+2s d§ <

for some s > 0. Then
da db
(6.2.8) /R /R Wy @ O e = Cu 1,

Proof. Returning to (6.2.5) with f = g, we divide both sides by |a|*** and integrate with
respect to a € R. Thus

dadb ’
[ [waraor @ - [ [ 7oL g

2
/ |f(s>|2( "“f,gl v)l&lz"dé

= Cy.s /m &1 £ (€)1 de,

which completes the proof. u

6.3 HAAR WAVELET EXPANSION

In this section we develop the properties of the Haar wavelet expansion, which is the
oldest and most basic example of an orthonormal wavelet (to be defined in the next
section).

The Haar series expansion can be naturally motivated by the search for an orthog-
onal series representation of Lebesgue’s differentiation theorem for a locally integrable
function f € L} :

loc*

b—>x,a—>x b—

f(x)= lim / f(y)dy ae. xeR

We will systematically describe this connection in the following subsections.

6.3.1 Haar Functions and Haar Series

We begin with the basic Haar function

Yx) =1 if0<x<?i

3 Yy =-1 ify<x<lI,

and

Y(x) =0 otherwise.

Clearly fol ¥ (x) dx = 0 and fo1 V(x)2dx = 1.
A doubly indexed family of Haar functions is defined by writing

(6.3.1) Un(x) =22y @Px — k), jk=0,%1,42,....

We will prove that {1/ }; rcz» form an orthonormal basis of L*(R).
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Proof. The first task is to prove orthonormality, namely

0 if (j,k) # (J, k)

/]R‘l’jk(x)l/fj’k’(x)dx = {1 if (j, k) = (j, k).

A direct proof of orthogonality if j = j is seen from the fact that if k # &/,
[vex-nvex-na=27 [ vowo+k-a=0
R R
since the integrand is identically zero. Otherwise we can assume that j < j’, and write

/ Y(@x - Y@ x—K)dx = / Y)Y @ Ty + 2 k- k) dy
R R
1/2 ; t L
= [ v@mrna- [ v e,
0 172

But both of these integrals are zero, since fol ¥ = 0. Finally the normalization in case
(j, k) = (J', k') is established by computing

/vf,-k(xfdx:zf/ Y@x =k dx = / v(*dy=1. u

R R R
The Fourier/Haar coefficients of f € L?(R) are defined by

(6.3.2) ik = Ci(f) = f F )Y (x) dx,
R
leading to the Haar series

(6.3.3) F@) ~ ) ).
J.k

From the orthonormality of {1/} and Bessel’s inequality, we conclude that ij lcjk 12 <

00. The completeness of L?(R) further assures that the series (6.3.3) converges in L?(R).
It now remains to identify the sum of the series with the given function f € L*(R).

6.3.2 Haar Sums and Dyadic Projections

In order to identify the sum of the Haar series, we introduce the dyadic projec-
tion operator P, as follows. Consider the dyadic partition F,, consisting of the sets
Iy = ((k—1)/2", k/2"], where n = 0, £1,£2, ... and k = 0, &1, +2,.... P, is the
projection of f € L?(R) onto the space L2(R, F,, dx), which consists of L? functions
that are constant on each of the intervals I;,,. In detail, we have

(6.3.4) P.f(x)y=2"| f(y)dy if x € I,.

Ten

Formula (6.3.4) can be written explicitly in terms of the scaling function

(6.3.5) p(x)=1if0<x<1 and ¢(x) =0 otherwise

(6.3.6) Pf@) =2"Y ( /R $Q"y — ) f() dy) $(2"x — k).

keZ
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Indeed, the function x — ¢(2"x — k) = O unless x € (k/2", (k + 1)/2"]. To be more
succinct, we have

63.7) Pof(x) = / Ko, Y)f () dy
R
where
(6.3.8) Ki(x,y) =2" Y ¢Q2"x — k)¢ 2"y — k)
keZ
_ 2" if x, y € I, for some k
“]o otherwise.

The projection operators are (i) increasing and (ii) converge to the identity:
<P PP = SP <Py > 1 (n —> 00)

in the sense that (i) P,f = f implies P, f = f and (ii) lim,_,» P,f = f, a.e. and in
L2(R) (to be proved in the next subsection).

We now seek a representation of the operator P, — P,, which is the projection
onto the orthogonal complement L2(F,,;) © L*(F,). To do this, note that any square
of the form ((k — 1)/2", k/2"] x ((k — 1)/2", k/2"] (where K,, = 2") is decomposed
into four smaller squares; on these smaller squares we have K, (x, y) = 27+1 on each
of the smaller squares ((k — 1)/2", (k — 1/2)/2"] x ((k — 1)/2", (k — 1/2)/2"] and
(tk —1/2)/2", k/2"} x ((k — 1/2)/2", k/2"] whereas K,1|(x,y) = O on the smaller
squares ((k — 1)/2", (k — 1/2)/2"] x ((k — 1/2)/2", k/2"} and ((k — 1/2)/2", k/2"] x
((k—=1)/2", (k — 1/2)/2"]. Hence

Ln(x9 )7) = K/H—l(x, )’) - Kn(xa )’)

-1 k- -1 k-1/2
— ontl _on on k ,k 1/2 % k ,k /
on on on on
:211+l_2n on k_l/z’_k_ % k—l/Z,lc_
on on on on
k—1 k—1/2 k—1/2 k
—0=7" ’ X
0 on ( on on } X < on 2n:|
k—1/2 k k—1 k—1/2
=0-2" on / ,— | x [ ——, / .
2:1 2!1 2:1 211

This can be conveniently represented in terms of the Haar function by writing
Ly(x,y) = ) _2"¥(2"x — )y 2"y — k).
keZ
Thus
(63.9) Lo, y) = Y Yk )Yk (3).
keZ

For a fixed value of n, the functions {1, }xcz form an orthonormal basis of the space
L*>(Fps1) © L*(F,). For each x € R, the series (6.3.9) contains exactly one nonzero
term, hence convergence is trivial.
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This provides the desired representation of P,,; — P, in terms of orthogonal
functions, namely

(6.3.10) Posif —Puf =D Ym(x) (fR T Ym(y) dy) :

keZ

Hence we can write the original projection operator in the form

Purif =Pof + Y _(Piaf — Pif)
=0

—Pf+3 3 (/mejk(y) dy) e

j=0 kez

=P f+) (Z Vi ® w_,»k>f,

Jj=0 \keZ

and thus the one-sided Haar series representation

63.11) f=Pf+3.3" ( fR FOWR() dy) e

=0 kez

In the following sections, we will abstract this to a more general setting, noting that the
subspaces V, := L*(R, F,, dx) have the following properties:

(i) U2V, is dense in L2 (R)
(ii) f € V,ifand only if f(27") € V)
(ii1) {¢ (x — k)}xez is an orthonormal basis of V.

This can also be extended to a bilateral family of subspaces by considering V,, forn < 0,
namely larger and larger dyadic intervals. As above, the orthogonal projection on the
subspace L2(R, F,41, dx) © L*(R, F,, dx) continues to be represented by the formula
(6.3.10), and the above nesting properties of the subspaces can be modified to

oC

i) U V,, is dense in L*(R), ﬂ vV, = {0}.

n=—00 n=-—00

The latter property is evident from the fact that if f € V|, for all n < 0, then f is constant
on each interval [0, 2I"!), hence must be identically constant for x > 0; but f € L*(R)
means that the constant must be zero.

Before passing on to more general wavelet expansions, we note that the Haar
function v and the scaling function ¢ are related by the identity

(6.3.12) v(x) =¢@2x) —¢p(2x - 1),
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whereas ¢ satisfies the identity

(6.3.13) B(x) = p(2x) + p(2x — 1).

Much of the challenge of constructing more general wavelets will reduce to the suitable
generalization of these simple relations.

6.3.3 Completeness of the Haar Functions

To prove the validity of the two-sided Haar representation (6.3.3), we go back to (6.3.10)
and write

n

(6.3.14) Pot f(X) = P f(0) = ) ) cptr(x).

Jj=—m keZ

It remains to prove that P_,,f — 0 and P, f — f when m,n — oo. First we prove
that the operators P, have uniformly bounded operator norms.

Lemma 6.3.1. Foranyf € L>(R) and n € Z, we have |P,fll2 < | fl2.

Proof. From the definition of P, f, we apply Cauchy-Schwarz:

X €ly=> P L <2" [ If()*dy

lin

/ P dx < | 1f)I dx

Ttn Tt

/ P f P dx < / F G d. n
R ]

We use the notation Cy(IR) to denote continuous functions vanishing at infinity
and Cyy(R) to denote continuous functions of compact support.

Lemma 6.3.2.

(i) If g € Co(R), we have ||P_,gllcc — 0 when m — oo.
(ii) Iff € L*(R), we have ||P_,f|l2 — 0 when m — oo.

Proof. 1f g € Cy(R) has support in [—K, K], we can write

K
0<x=<2"= |P.,g()| = 2_”1/ gl — 0,
0

and similarly for —2” < x < 0. Hence ||P_,,g|l.c — 0. But these functions are dense in
Co(R); given f € Cy(R) and € > 0, there exists g € Cyy(R),h € Cy(R) sothatf =g+ h
with ||h|lc < €. Then lim sup,,_, . [Py flloc < limsup,,_, . |P-nhllc < €, which proves
the required convergence.
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If f € L*(R), for any € > 0,f = g + h, where g is continuous and has support in
[—K, K] for some K > 0, and ||A|; < €. Then for 2" > K, we have

K
2" <x 22" = |P.ug(0)| = 2_'"/ lgl = 27"V2Kllgll2
K

IP-mgllz < V4K27"2||g]|
IP-wf ll2 < 1P-mgllz + 1 P-mhll2
< NP-ngla+ €
limsup [P fll2 < €

m—00

where we have used Lemma 6.3.1 in the last line, in the form ||P_,,k]l,» < ||k]|». Since this
holds for every € > 0, we conclude that P_,,f — 0 when m — oo. ]

The above proof contains the following general principle: If a sequence of bounded

linear operators has uniformly bounded operator norms and converges to a bounded
operator on a dense subset of a Banach space, then it converges on the entire space.

To prove that P, f — f when n — 00, we first prove that this holds on the dense

set of continuous functions with compact support.

Lemma 6.3.3. Iff € Coo(R), then P, f — f uniformly and in L>(R), when n —
00.

Proof. Let f be supported in [—K, K], where we may suppose that K > 1. Given ¢ > 0,
from the uniform continuity of f, there exists § > 0 so that | f(y) — f(x)] < €/K whenever

|[x —yl < 8.If27" < §, we have |P, f(x) — f(x)| < €/+/2K < € for all x, which proves the
uniform convergence. Integrating over the support of f, we have

K
/ |Pof (x) — f (x)Pdx S/ € /2K < €,
R -K
which proves that |P,f — f|l, = 0 when n — oo. ||
We have thus proved the following theorem.

Theorem 6.3.4. The normalized Haar functions {/jc}; kez form an orthonormal
basis of L*(R), in particular we have the L* convergent expansion

(63.15) f= > v ( /R f(y)W(y)dy).

Jjok=—00

6.3.3.1 Haar series in Cg and Lp spaces

The Haar series is well defined for any locally integrable function, hence it makes sense
to study the convergence in other spaces of functions. We have treated the L% convergence
of the Haar series by relating the partial sum to the fundamental theorem of calculus.
These ideas can also be used to discuss the uniform convergence of the Haar series in
spaces of continuous functions, as well as the norm convergence in L”(R), 1 < p < oo.
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We first treat the convergence in the space Cy(RR), consisting of continuous func-
tions with limyy_, o f (x) = 0. This Banach space contains as a dense subspace the set of
continuous functions with compact support, on which we have proved Lemma 6.3.3. It
remains to prove that the operators P, are uniformly bounded. We prove a more general
estimate on the (larger) space of bounded continuous functions.

Lemma 6.3.5. Forany f € B.(R), we have |P,f (x)| < || fllco-

Proof.

x €Ly = [P, f(x)| < 2"/ Lf NIy < [ flleo- u
Ikn

From Lemma 6.3.2, we have for any continuous function g with compact support,
|P-»gll = O when m — oo. Since these are dense in Co(R), from the uniform bound-
edness of ||P,|| we obtain ||P_,,f|lcc — O when m — oo. Meanwhile, Lemmas 6.3.3
and 6.3.5 show that P,f — f in the supremum norm when n — oo. This leads to the
following general proposition on uniform convergence.

Proposition 6.3.6. If f € Co(R), then the Haar series (6.3.15) converges uni-
formly on the entire real line.

If f is merely bounded and uniformly continuous, we cannot expect a uniformly
convergent expansion on the entire real line, as shown by the following.

Exercise 6.3.7. Let f(x) = 1. Prove that the Haar series expansion (6.3.15) is
identically zero, especially not convergent to f.

Exercise 6.3.8. Suppose that f € B,.(R), the space of bounded and uniformly
continuous functions. Prove directly that the one-sided Haar series (6.3.11)
converges uniformly to f.

To treat convergence in L”(R), we first prove uniform boundedness.
Lemma 6.3.9. Letf € L’(R), 1 <p < 0. Then |B,fll, < I fllp foralln € Z.

Proof. Setp’ =p/(p—1)if p > 1. Then Holder’s inequality gives

t/p
x € iy = |P.f(x)] =2 ( [fnIP dy) 2

lin

IP.f)P < 2 ( / IF(I dy) 27l
lkn
/ |P.f(x) P dx < 2722w/ / IF(IP dy
Ikn Ikn

= | IfIFdy.

Ik

Summing on k € Z gives the result. This proof also applies in case p = 1, by setting
1/00 = 0 whenever p’ appears. |
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To prove L” convergence, we must check that P, f — f and P_,f — 0.
Lemma 6.3.10. Let 1 < p < oo. Then ||P,f —fll, — 0 when n — oo.
Proof. The space of continuous functions with compact support is dense in L”(R). From
Lemma 6.3.3 we have uniform convergence on this space. In particular if f is supported in
[—K, K], then for n > N(¢)

/W |P,f(x) = f()IPdx < 2Ke”,
which shows that ||P, f — fll, < €(2K)'/". ]
It remains to consider P, f, m — oo. This puts a new restriction on p.
Lemma 6.3.11. Let 1 < p < co. Then |P.,, f|l, = 0 when m — oo.
Proof. 1t suffices to check this for g continuous with compact support in [—K, K]. If

2" > K, then P_,g is constant on (—2",0), (0, 2™) and zero elsewhere, so that from
Holder’s equality,

K
0<x<2" = Pog)] =27 / () dy|
0
K 2
g = 27 / 8P dy QK"
0

o K
/ IP-ng ()| dx = 2277 f 81" dyl 2K,
0 K

which tends to zero when m — 00. The contribution from the negative axis is estimated in
the same fashion. ||

Hence we conclude the following.

Proposition 6.3.12. Let1 < p < oo. Foranyf € L”(R), the Haar series (6.3.15)
converges in the norm of L’ (R).

In the case p = | there is a simple example to show that this proposition is sharp.

Exercise 6.3.13. Let f = 1,y,1). Prove that the Haar series (6.3.15) is not conver-
gentin L' (R).

However this anomaly is not present for the one-sided Haar series.

Exercise 6.3.14. Let 1 < p < 0o and let f € L’(R). Prove that the one-sided
Haar series (6.3.11) converges in the norm of L’ (R).

6.3.3.2 Pointwise convergence of Haar series

Since the projection operator P, agrees with the average over dyadic intervals, it follows
from Lebesgue’s theorem that P, f (t) — f(¢) for almost every ¢ € R. In particular if f is
continuous at ¢, then we have lim,_, .o P, f(¢) = f(¢). If f has a jump discontinuity at a
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dyadic rational ¢, then we note that K, (¢, y) = O for y < ¢ and sufficiently large n. Then
we can write

Pof(t) — (1 +0) = / () —f(t+OIKa(t, ) dy = 0,  n— o0

to conclude that
P.f(t) = f(t+0) t=k/2", n— oo.

One can also confirm the absence of a possible Gibbs phenomenon for Haar series.
Indeed, the kernel K, (x, y) > 0 with fR K, (x, y)dy = 1. Therefore if f € L (R)

= flloo < Paf @) = I fllcos

which implies that for any sequence x, — x, we must have

=l lloo < liminf B, f (x,) < limsup P f () < Il flloo-
Exercise 6.3.15. Suppose that f(t) = 1 for 0 <t < 1/3 and that f(t) = 0O for
1/3 <t < 1. Show that we have liminf, P,f(1/3) < limsup, P, f(1/3), so that
the Haar series diverges att = 1/3.

6.3.4 *Construction of Standard Brownian Motion

The Haar wavelet expansion can be used to make an effective construction of the standard
Brownian motion process. By definition, this is an indexed family of real-valued functions
X(w) where 0 < ¢t < 1 and w € Q, where (2, F, P) is a measure space of total
measure 1. In this context, the functions w — X;(w) are called random variables. They
are assumed to have the following properties:

1. Foreach 0 < s <t < 1,X, — X, has a normal distribution with mean zero and
variance ¢t — s: in detail

1 Y 2
Plo : X, (0) — X,(®) < y] = —— e 1209 gy,
[0 : X(0) — X,(@) <] \/m—_s)f_w
2. For any subdivision 0 = £y < f; < --- < ty < 1, the random variables X, —
X, ..., X, — X,,_, are independent.

3. For a.e. w, the function t — X,(w) is continuous, with X, = 0.

From properties (1), (2), it follows that the random variables X, , ..., X, have
a joint normal distribution with mean values zero and covariance matrix defined by
E[X;IX;J] = min(t[, tj).

Exercise 6.3.16. Prove this.

The Haar functions v are not continuous, so we would not expect to be able to
construct the Brownian motion as a Haar series. But the functions ¢ — for Yk (s) ds are
continuous and can be used to construct the Brownian motion. In order to prove the
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distributional properties (1) and (2), we will first consider a general orthonormal basis
of the space L*[0, 1].
The Brownian motion will be constructed as the infinite series

(6.3.16) X(@) =Y Zy(w) / B (s) ds.
n=0 0

Here (¢,) is an orthonormal basis of the space L2[0, 1] and (Z,) is a sequence of inde-
pendent standard normal random variables; in detail

L /y e V24 eR 0,1,2
— u y , n=0,1,2,....
VZJT —00

Lemma 6.3.17. Suppose that (¢,) is an orthonormal basis of L*[0, 1] and (Z,,)
is a sequence of independent standard normal random variables. Then (6.3.16)
converges in L>(Q) to a limit X,(w), which satisfies properties (1) and (2).

P[Zn<y]=

Proof. Let the inner product in the space L*[0, 1] be denoted by {, ) and let 1, be the
indicator function of the interval [s, t]. With these notations, we can write ﬂ "éu(w)du =
(Lj5.1» @n) sO that we can compute the variance of the sum (6.3.16) as

00 i 2
/ X, —X)?dP =" ( f (1) du)
Q n=0 s

20
Z 1[\ 0 ¢n
n=0

= gl

=r—39

where we have used Parseval’s identity for the orthonormal basis (¢,). This proves that the
series (6.3.16) converges in L?(2); the partial sums of the series are normally distributed
with mean zero, so that the limit is also a normally distributed random with mean zero
and the asserted variance, proving (1). To prove (2), we note that the partial sums of the
series define a Gaussian distribution on R" so that the independence can be inferred from
the covariance function by showing that the increments are orthogonal in pairs. Now if
s <t <u< v, wehave

/(Xv - Xu)(Xt - X\) dP = / ¢I1(W) dW/ ¢,,(W) dw
Q

n=0

oc

(1[\ 2B ¢n)(1[u v]» ¢n>

n=0

= (1[.\,I]v ][u‘v])
=0
where we have used the bilinear version of Parseval’s identity and the disjointness of the

interval [s, ¢] from the interval [u, v]. This proves the pairwise orthogonality. Since the
vector is multivariate normal, the independence is thereby proved. ]
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6.3.5 *Haar Function Representation of Brownian Motion

The normalized Haar functions /; (¢) together with the constant function provide a con-
venient orthonormal basis of the Hilbert space L2 (0, 1). We find it convenient to relabel
them as follows:

Yo(2) =1, 0<tr=1.

Ifn>1,thenwecanwrittn =2 +kforj=0,1,2,...andk=0,1,...,2 — 1 and
we set

Yn(0) = Y(0) = 272y 21 — k).
From the one-sided Haar series representation (6.3.11), we see that {¢,,(¢)},—0.1.2.... is an
orthonormal basis of L?(0, 1).
To display the Haar series representation of Brownian motion, we introduce a se-
quence of independent standard normal random variables Z,, n > 0 with

(6.3.17) PIZ, <x] = ~/2 gy,

1 /X
< — e
V2 J -
These may be defined on a probability space, denoted (2, F, P). The Brownian motion
is sought in the form

t o] 2/—1 t
63.18) | X,(@) = Zo() /0 Yo(s)ds + (Z e ]0 w21+k<s>ds>.
k=0

j=0

It is immediate from the orthonormal basis properties of v, that for each ¢t € [0, 1],
the series (6.3.18) converges in L?(S2, F, P). From this it is immediate from the
proofs of (1), (2) above that X, has the required distributional properties of Brownian
motion.

6.3.6 *Proof of Continuity

We will now prove property (3) of Brownian motion, by showing that the series (6.3.18)
converges uniformly for almost all w € €.

Lemma 6.3.18. There exists M = M(w) < 00 so that

P{w:sgp% §M(a)):| =1.

Proof. From the normal distribution (6.3.17), we have the bound
PlZ)>x<e™?  n=012..,x>0.

Setting x = 2.,/logn, we have the bound P[|Z,| > 2,/logn] < n~2, which is the gen-
eral term of a convergent series. Therefore by the first Borel-Cantelli lemma there exists
no(w) < oo ae. so that n > ng(w) implies |Z,(w)] < 2,/logn. Hence we can set

M(w) = max{2, (|Z,(®)])/y/1ogn, n < no(w)}. u
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Lemma 6.3.19.

271

222,+k(w) /0 Vs (s) ds| < My(w)V/j27%, M (w) := 2M(w)+/2log2.
k=0

Proof. For fixedj, the functions Sy () := f(; Vi (s) ds are polygonal functions supported on
disjoint intervals of length 2~ with 0 < S (f) < 27/ x 2/2. Hence ) o, S(#) < 27972
and Yoo ISk @) — Su ()] < |t — s|2//2. Thus

2/—1

Z Zy (@) / Yo 4i (8) ds
k=0 0

< max (Z @] Y S

0=k O<k<2/-1
< ViM ()27

as required. |

From this it follows that the jth dyadic block of the series (6.3.18) is bounded

by a constant multiple of \/j27//?, the general term of a convergent numerical series.
Therefore by the Weierstrass M test, this series of dyadic blocks converges uniformly
to a continuous function, denoted  — X;(w). This proves property (3), hence we have
proved the existence of the Brownian motion process. [ ]

6.3.7

*Lévy’s Modulus of Continuity

The method used to prove continuity can be easily extended to obtain a modulus of
continuity, first established by Paul Lévy (1948). This is encapsulated in the following
theorem.

Theorem 6.3.20. There exists M} = M (w) so that if |t —s| < 8 < %, then

1
X (@) — X;()| < My(w), |élog <5>

Furthermore there exist intervals (s,, t,) with t, — s, — 0 such that [X;, — X;,1/
\/ (t, — sp) log(1/(t, — s,)) is bounded below by a positive constant.

Proof. We write the increment of (6.3.18) in two parts:

L 00 2/—1 t
X, (@) — X,(0) = Zo(@)(t — 5) + <Z+ Z) > Zy (@) / Vo i (W) du

=0 j=L+1/ k=0
where L will be chosen in terms of §. Now

L 2/—1

2k [ Vit du
k=0 s

=0

L
<ls—fMy (@) Y V2,
=0

oo 2/-1

Y Y Zuw@ / Yoy 4 (1) dl

J=L+1 k=0

M) Y V27"

J=L+1
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The two sums are estimated by the elementary inequalities

L 0
(63.19) > VPl < oVt Y Vi ?? < oIt
j=0 j=L+1

so that if |t — s| < §, then
X, — X,| < 1Zo(@)]8 + Ma(0)(8VL2H? + VL2711,

The final two terms are balanced by taking §2¢ ~ 1, or specifically, L = [log,(1/8)], with
the result

1Xi (@) — X, (@)| < Yoo(@)d + 2M>(w)+/810g,(1/8),

which completes the proof of the upper bound, since § < +/8 for0 < § < 1.
To prove the second statement, we consider the independent events

n
A;: = {(JJ : Xk2—-n _X(k—])2“” <c ’?}’ 1 < k < 2/1’

where c is to be chosen. We use independence, the tail of the normal distribution, and the
elementary inequality 1 — x < ™ to write

A =i [ e

P Al l= (1 - / e )

k=1 k=1 e/n 2
o

< n (1 _ e—:z(»2/2(|+n(1»)
k=1

< exp(=2"¢”"2(1 + o(1)))

= exp(—(27/%)"(1 + o(1))).

It suffices to choose 0 < ¢ < /21log2 so that 2¢=¢"/2 > 1, and we have the general term
of a convergent series, and by the first Borel-Cantelli lemma the series > oo, ]nf'l A < 00

for almost all w. Therefore for n sufficiently large N7~ A? fails to occur, in particular for
some k, Xy o0 — Xp—1y2n = c+/n/2", which proves that the Lévy modulus is a sharp lower
bound also. ]

Exercise 6.3.21. Prove that the elementary estimates (6.3.19) hold with the con-
stant Cy = Cy = 1/(1 —271/%).

Hint: Compare a sum with an integral, which can be estimated by partial integration.

6.4 MULTIRESOLUTION ANALYSIS

In this section we return to the construction of general wavelets. The main features of
the Haar wavelet expansion can be abstracted as follows.

Definition 6.4.1. An orthonormal wavelet is a function ¥ € L*>(R) such that the
doubly indexed set {2/>W (2/t — k)}; x.ez is an orthonormal basis of L*(R).
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We have already seen that the Haar function provides an example of an orthonor-
mal wavelet. To develop a systematic method for producing orthonormal wavelets, we
introduce another notion, which generalizes the Haar construction.

Definition 6.4.2. A multiresolution analysis (MRA) is an increasing sequence of
subspaces {V,} C L*(R) defined for n € Z with

eCcVoocVoc Vi
together with a function ® € L*(R) such that

(i) UV, isdensein L*(R), N2 _ Ve = {0}

(ii) f € V,ifand only if f(27"-) € V
(iii) {®(x — k)}xez is an orthonormal basis of Vj,.

d is called the scaling function of the MRA.

Clearly V; is uniquely defined by & through (iii), and V, is further uniquely
determined through (ii). However we do not require that ® be unique; a given family
{V,.} may have several different possible choices of .

The job of the theory is to show that there exist other nontrivial examples of
multiresolution analyses, to construct the corresponding orthonormal wavelet bases and
to discuss their properties.

Example 6.4.3. Let V,, be the set of f € L*(R), which are constant on the dyadic
intervals I, = [(k — 1)/2", k/2™).

Clearly all of the properties are satisfied, with the Haar scaling function ®(x) =
Lio,1y(x).

Example 6.4.4. Let V, be the set of f € L*(R), which are continuous and linear
on each dyadic interval I,,.

It is straightforward to see that properties (i) and (ii) of Definition 6.4.2 are satis-
fied. The choice of a scaling function is less obvious and will be obtained in this section.
This example is related to piecewise linear spline approximation.

In order to develop scaling functions for more general MRA systems, we first
develop the necessary properties of orthonormal systems and Riesz systems.

6.4.1 Orthonormal Systems and Riesz Systems

Let H be a Hilbert space with inner product (, ). A set of vectors (x,) is an orthonormal
system, by definition, if (x,, x,,) = 8.
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Lemma 6.4.5. The set (x,) is orthonormal if and only if for every finite set of
complex numbers (a,), we have
2
= lal”.
n

6.4.1) ” Z anXy

Proof. If (x,) is orthonormal, then the left side of (6.4.1) is the finite sum

— — 2
Z am an (x71'l £ 'xll) = Z al'la)‘l = Z |all | .
n

m.n n

Conversely, if (6.4.1) holds, first we choose a,, = §,y to obtain (xy, xy) = 1. Then choosing

a, = 8y — Sy With M # M gives 2 = |xy — xy||*> = 2 — (xn, X)) — (xr, xn) hence
0 = (xn, xum) + (xar, xn)- Replacing xu by ixy we obtain 0 = (xy, xp) — (xur, xn), from
which the result follows. |

This leads us to formulate a more general concept.

Definition 6.4.6. Let H be a Hilbert space. A set of vectors (x,) is, by definition,
a Riesz system, if there exist constants 0 < ¢ < C < 00 such that for any finite set
of complex numbers (a,)

(642) Yl < | Yam| <Y la

Clearly any orthonormal system is a Riesz system, where ¢ = C = 1. If (x,) is

a Riesz system, then the vectors (x,) are linearly independent: ), a,x, = 0, implies
that a,, = 0 for all ».

Example 6.4.7. Let H = L*(R) and x,(t) = A(t —n) where A is the tent function
A) =1 —[thL-1.n@).

To verify the Riesz property, we note that the linear combination A(f) :=

> anA(t — n) is piecewise linear with A(n) = a, for all n. Hence

n+l
/RIA(t)th = Z/ l(n+1—Da, + (¢ — n)an | dt

nezZ v
1 _
= 3 2_ (e + lani P + Re ayans).

nezZ

We use the Cauchy inequality [2ab| < |a|? + |b|? to obtain the upper bound

1
/R|A<t>|2dz <52 (el +lan ) =3 lal’

nez nez

and the lower bound

1 1
[ 40P d = & T dal +la? = 5 Y lank

neZ nez

Therefore (6.4.2) is satisfied with ¢ = %, C=1.
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The next proposition characterizes Riesz systems and orthonormal systems in
terms of the Fourier transform.

Proposition 6.4.8. Let & € L>(R) and 0 < ¢ < C < oo. The following two
conditions are equivalent.

(i) The periodized square of the Fourier transform satisfies the double inequality

(6.4.3) c<) I®E+DP<C  aeteR
leZ

(ii) {® (@ — m)} ez is a Riesz system with constants (c, C).

Recalling that orthonormality is characterized by ¢ = C = 1, we obtain the foll-
owing useful characterization.

Corollary 6.4.9. The translates {®(t — m)}nez of ® € L*(R) are orthonormal if
and only if Y, |<i>(§‘ + D)|?> = 1 for almost every £ € R.

The sum in (6.4.3) is well defined a.e., since we may compute the integral over the
unit interval as

1
/ Z|é>(s+l>|2ds—2/ B Pde = [ 1BEF ds < o0

leZ leZ

hence the integrand is finite a.e. and defines a 1-periodic function.
Before giving the proof of Proposition 6.4.8, we give some examples of the compu-
tational power of these relations.

Example 6.4.10. Haar scaling function: Let ® (1) = 1/0,1)(2).

Clearly the translates & (z — m) are orthonormal, hence ¢ = C = 1. The Fourier trans-
form is computed explicitly as ®(£) = e~ ¢sin(w&) /£, so that (ii) gives for a.e. £

_ Z sin® &
T2E L D2’
=z mrE+D
which is equivalent to the partial fraction expansion of the function csc? w£. Noting that

the series on the right converges uniformly on each finite interval, we infer that the series
defines a continuous function, hence the equality holds for every &.

Example 6.4.11. Shannon scaling function: Let & (t) = sin(wt)/wt for t # 0,
with ®(0) = 1.

The Fourier transform is fb(‘;‘) = 1[_1 ](E) thus we have Y, , |<i>(‘;‘ +D>=1ae,
since for & ¢ Z, all terms in the series are zero except for one which = 1. Hence
{®(t — n)},ez is an orthonormal system in L?(R). This is the orthonormal system that
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occurs in the Shannon sampling formula, studied in Chapter 4 and to be redone in the
context of wavelets.

Proof of Proposition 6.4.8. We first establish an identity for the Riesz sum in terms of
the Fourier transform. The Fourier transform of & (t — n) is e~ %" & (£), so that the Fourier
transform of > _, a,®(t — n) is A(§)P(£) where A is the 1-periodic function

A(§) = Z ane” e

nez

nez

From Parseval’s identity for Fourier series, we have f()' JAGE)2dE = Y, ., |a,|?. From
Parseval’s identity for Fourier transforms, it follows that

(644) [ aca-n| = [ neorberde

nezZ

I+1 R
= Z/ JAG)PID(E)P dt

lez V1

|
=Z/O A@IP 1D + DI dt

leZ

1
- [ ner (Z b +1>|2) .

lez

To prove that (i) implies (ii) in Proposition 6.4.8, we simply note that the integrand in
parentheses in (6.4.4) is bounded above by C and thus the integral is bounded above by
C f(,l |A(§))* = CY_, |a,|*, similarly for the lower bound, which proves (ii). To prove that
(ii) implies (i), we use the above transformations to rewrite the Riesz condition (6.4.2) in
the form

Sy A@P (Tiez 196 +DP ) de
c<

(6.4.5)
Ji 1AG)2dE

<C.

This holds for every trigonometric polynomial A(§). Taking a sequence Ay that converges
boundedly to the indicator function of the interval [a, b] C (0, 1) (the partial sums of the
Fourier series of 1, will suffice for this purpose), we obtain

b
cs <Z|<i><s+z>|2>d55c.
a leZ

This holds for every interval (a, b). Taking a sequence with (a,b) — {x} and applying
Lebesgue’s differentiation theorem, we obtain (i). ]

Example 6.4.12. Returning to the tent function A(t), we have

. 4
(e )-Eles)

leZ leZ
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This sum can be evaluated by repeated differentiation of the series from Example
6.4.10, namely

1
2 2 s
mweesctwE = IEEZ E1 D7

to obtain the identity

sinmé 4_1 2
Z(M) = 3(1+2c0s" w8),

leZ

which again reaffirms that ¢ = 1/3, C = 1 for this Riesz system.
Exercise 6.4.13. Check the details of this computation.

We can use Corollary 6.4.9 to estimate the support of the Fourier transform of
a scaling function.

Corollary 6.4.14. Suppose that ® € L*(R) and that {®(t — k) ez, is an ortho-
normal set. Then |supp <i>| > 1, with equality if and only if |<i>| = 1k for some
measurable set K with |K| = 1.

Proof., From Corollary 6.4.9 we have ), , | + )2 =1 ae., hence |D(€)] < 1 ae.
From Parseval’s identity

MW@=/ /ﬁZ/Aﬁ@W#=L

supp & upp ¢

which proves that |supp @l > 1. If equality holds, then the middle terms give

ozj (- 1B@)P) dt.

suppd

But the integrand is nonnegative a.e., hence 1 — |<f>($) [> = O a.e. on the support of &, which
means that |®| = 1k a.e., where |K| = |supp ®| = 1. |

Proposition 6.4.8 allows us to obtain the following orthogonalization procedure to
generate scaling functions from a Riesz sequence.

Proposition 6.4.15. Let ® € L>(R) be such that {®(t — m)}cz is a Riesz
sequence. Then there exist complex numbers b, with )", , |b,|? < oo such that
{®1(t — m)}hnez is an orthonormal sequence, where ®1(t) := Y, ., b, ®(t — n).
Furthermore, the span of {®(t — n)},cz equals the span of {P(t — n)},ez.

Proof. From Proposition 6.4.8, it suffices to find b, such that Z/ez |<i>, E+DP?=1ae
From the definition of &, we have
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Bi(§) =) b o)

nez
= BE)® ()
YIBE+DIP =D IBE+DPIPE +DI
leZ leZ
= BEP Y 19¢E + DI
leZ

Therefore we must choose the constants b, so that
BOP = | Y b :
= € =
et ez |PE +DP

Clearly there are many possible solutions. The simplest one is to take the positive square
root, leading to

d(&)
VY ez |19E + D

This is clearly the Fourier transform of an L? function, since the denominator is bounded
above and below by the Riesz condition. To prove the last statement, we need to study the
equation

6.4.7) Za,,tb(t—n):Zc,,(D](t—n)

nez nez

(6.4.6) &) =

and to show that, given (a,) € I*(Z), we can solve for (c,) € [*(Z) and conversely. In terms
of Fourier transforms, this is written

(Z ane-”""f) b) = (Z cnez’“'"f) &)
net nez

Recalling the relation between &, and & is a special case, with a, = b,,, ¢, = §,9. Making
this substitution we see that (6.4.7) is implied by the identity

(6.4.8) A(§) = Za,,e'Z””’E = (Z b,,e"z”i”g) <Z c,,eﬁz”""s) .

nez nez nes
= B()C ().

But we have shown above that C~' < |3, , b,e™>™™| < ¢! from the Riesz property.
Hence, given (a,) € I*(Z), we may solve (6.4.8) uniquely by taking c, as the Fourier
coefficients of the 1-periodic function A(§)/B(§). Conversely, given c,, one simply refers
to (6.4.8) and chooses a, as the Fourier coefficients of the right side. |

The above proof shows that the set of functions described by the left side of
(6.4.7) when (a,) € I*(Z) is identical to the set of functions described by the right side
when (c,) € I>(Z). But the set on the right is a closed subspace of L?>(R), from the
orthonormality of {®,(¢z — n)},cz. Hence the set on the left is also a closed subspace,
which is the closed linear span of {®(t — n)},ez.
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Exari\ple 6.4.16. In the case of the tent function ® = A, the orthogonalized
Fourier transform is obtained as

(sinmé/mE)?
VA + 2cos27r§)/3.

d(8) =

This corresponds to the MRA of Example 6.4.4, where the functions are continuous and
piecewise linear on each dyadic interval. We write ®,(r) = Y, b,A(t — n), which is
clearly a piecewise linear continuous function with ®,(rn) = b,. The coefficients are
obtained from the Fourier expansion

1 A
(6.4.9) =) b,
V(1 +2cos? &) /3 ;

Since the left side is a real analytic function, the Fourier coefficients have an exponential
decay.

Exercise 6.4.17. Show that there exist constants K > 0,8 > 0 so that |b,| <
Ke=P!" and obtain an estimate for B.

6.4.2 Scaling Equations and Structure Constants

The axioms describing an MRA system are not completely independent of one another,
as we will show. First we note a simple consequence of properties (ii) and (iii) from
Definition 6.4.2.

Proposition 6.4.18. For each j € Z,{2/?®(2/t — k)}sez is an orthonormal
basis of V.

Proof. From property (ii), V; and V, are isomorphic by virtue of the map x — 27x. The
indicated functions are clearly orthonormal. Now we pull back to V;, and use property (iii).
|

In order to proceed further, we discuss the consequences of the inclusion Vy C V.
Since V is spanned by translates of {&® (2t — n)},ez, we have the L? convergent
sum

(6.4.10) (1) =) a, b2t —n)

neZ

where the structure constants satisfy ), , la,|? < oo. Relation (6.4.10) is called the
scaling equation and will be instrumental in the sequel.

Example 6.4.19. If ®(t) = 1j0,1)(t), then clearly ®(t) = ®(2t) + (2t — 1)
is the scaling equation, with structure constants ap = 1,a; = 1 and a, = 0
otherwise.

Exercise 6.4.20. Suppose that ® € L' (R) N L*(R) satisfies the equation & (t) =
D (2t) + P (2t — 1). Prove that for some c, ®(t) = cljp,1)(t) a.e.
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Hint: Take the Fourier transform of both sides and iterate to solve for &.

The next exercise shows that a similar two-scale difference equation can have
radically different solution behavior.

Exercise 6.4.21. Suppose that ® € L'(R) satisfies the functional equation
29(t) =3P (31) + 3P 3t — 1). Prove that d(¢) = 0.

Hint: Show that ® 0 must agree with the Fourier transform of the Cantor measure.

The next example shows that the existence of a scaling equation does not follow
from the orthogonality properties.

Example 6.4.22. Let ®(r) = l[_%‘%](t). We suppose that (6.4.10) holds for some
(ay) € I*(Z) and obtain a contradiction.

To see this, we have from the orthogonality of {® (2t — n)},cz
a, = 2/ ()P 2t — n) dt.
R

But this integral is nonzero unless # = 0, £1, in which case we obtainag = 1, ax| = %
But this leads to a contradiction on the interval % <t< %, where the left side of (6.4.10)
is zero but the right side is nonzero.

We record some properties of the structure constants.

Proposition 6.4.23. The structure constants obey the following properties:

(6.4.11) ax = 2/ &) DQ2t — k) dt, keZ
R
(6.4.12) Y lal =2
keZ
(6.4.13) > aplnsr =260 (Kronecker delta).
k'eZ

Ifalso ® € L'(R), [, ® # 0and (6.4.10) converges in L' (R), then

(6.4.14) Y a=2

keZ

Proof. Since a;/+/2 are the Fourier coefficients of ® € V, with respect to the orthonormal
basis V2P (21 — k), we have a;/v/2 = [p ®(1)v/2® (2t — k) dt, as required. Parseval’s
theorem gives Y, ., lax1?/2 = || ®||? = 1. To prove (6.4.13), we begin with (iii) of definition
6.4.2, in the form

f &t — k)D(t) dt = Sox.
R
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Substitute (6.4.10) and use Parseval’s identity and orthogonality to write

Sok = Zak,aku f &2t — 2k — kK)YDQ2t — k") dt
KK R

1 Z _
= E ay ak” N
2k+k'=k"

which is the same as (6.4.13). In particular, taking k = 0 we retrieve a new proof of (6.4.12).
If, in addition, we have ® € L' with fm d = 0, then we integrate (6.4.10) term-by-

term to obtain
f O(t) dt = Zakf Ot — k) dt
R

keZ R

2
= = ay o) dt,
2%,

which we divide by [, ® to obtain (6.4.14). [ |

Itis often useful to work with (6.4.10) in the Fourier domain. The Fourier transform
of ®(2¢ — n) is easily obtained:

f@(zt—n)e—zﬂ”f dr = 1/ @(u)exp[—2ni§ <"+”>]du
R 2 Jr 2

1 —inmé g
=3 e [ ( > )
so that (6.4.10) is written

(6.4.15) o) = m0(§> é(%)

where the scaling filter is defined by

(6.4.16) mo(€) 1= % 3" e

neZ

The existence of a scaling equation can be formulated in the Fourier domain as follows
where L2(R/Z) denotes 1-periodic functions that are square-integrable on any period.

Proposition 6.4.24. ® € L*(R) satisfies a scaling equation (6.4.10) with (a,) €
I2(Z) if and only if there exists my € L*>(R/Z) so that (6.4.15) holds, in which case

(6.4.16) holds. In particular a, = 2 f_lﬁz mo(&)e¥ " dE.

Proof, If ® satisfies (6.4.10), then we can take the Fourier transform of both sides
to obtain (6.4.15). Conversely, if (6.4.15) holds with my € L?>(R/Z), we define
a, =2 f_lﬁz mo(§ Ye¥™ i dE | so that (6.4.16) holds. The Plancherel theorem ensures that
the map & — & is bijective. Since the right side of (6.4.15) is the Fourier transform of
> . an® (2t — n), it follows that ®(r) = Y, a,P (2t — n), which was to be proved. |



INTRODUCTION TO WAVELETS 313

Example 6.4.25. The Shannon scaling function is

o = 20 _ /5 I .

wt 1
2

The scaling equation can be obtained at the level of Fourier transforms by solving

(6.4.15) as follows:
106 =mo (%) -4 (%) :

Therefore we need to choose the coefficients so that mg(§) = 1for [£| < i andmy(&) =0

for i < |§] < % The structure constants are obtained from (6.4.10) as the Fourier

coefficients
a, = 2/ e 27k g |
1<lgl=}

Thus ap = 1 and a, = (=2 /nm)sin(nn/2).

Exercise 6.4.26. Consider the spline function A(t) = (1 — |t])1j-111(t) with
<i>(§) = (sinmw&/mE)2 Show that A satisfies a scaling equation (6.4.10) and
exhibit the scaling filter my(§). Use this to infer that its orthogonalization, defined

by ®(&) = A€)/\/ X ez |AE + D)2, also satisfies a scaling equation (6.4.10).

6.4.3 From Scaling Function to MRA

We now prove an important theorem, showing the existence of MRA systems under
useful hypotheses.

Theorem 6.4.27. Suppose that ® € L*(R) is such that

(i) The translates {® (¢t — m)},ez are orthonormal.
(i) (1) =Y, 70, P2t —n), an L2-convergent sum, with Y, 5 |an|* < .
(iii) The Fourier transform &(5) is continuous at £ = 0 with |é>(0)[ =1

Define V; = span {®(2/t — k)}xez. Then {V;} defines an MRA.

Proof. The scaling equation (ii) implies that V; C V. Now let &y (r) = 2/2® 2/t — k)
and let P; be the orthogonal projection on the space V;. In detail
Pif =Y (f> )Py
keZ

These projection operators satisfy the bounds ||P; f|| < || f]|. To prove the MRA property,
it suffices to show that lim;_. P;f = f and lim;_, oo P;f = O for all f € L*(R). This is
done in two separate lemmas.

Lemma 6.4.28. For any f € L*>(R), lim;_, _o P; f = 0.
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Proof. Since ||P;|| = 1, it suffices to prove the result on a dense set, e.g., L? functions with
compact support. If f has support in [—R, R], then

IPFIP =) 1P, D)

keZ

=Y I, o)l

kel

() ([

=£12)_ 2 (/ |<1>(2fs~k>12ds~)

keZ
—k+2/R
= uf||22/ D (u)[? du.
kez Y —k—-2/R

If 2/R < %, then these integrals are over disjoint intervals whose union is written U, =
Urez(—k — 2/R, —k + 2/R), with N,U; = Z, which has Lebesgue measure zero. Therefore

||P,~fu25||fu2/ ®@)du— 0,  j— —oo
UI

by Lebesgue’s dominated convergence theorem. |
To proceed further, we now turn to the Fourier domain and prove a useful identity.

Lemma 6.4.29. Let f € L*>(R) with a Fourier transform f that is bounded and
supported in [—R, R] for some R > 0. Then for =" > R we have

R
64.17) P = [ iFerdeInR ds.
-R
Proof. We use Parseval’s identity to write

I FI? =) 1P f, D)l

keZ

=Y I(f, Dl

keZ
/ G

/ f(s)e—ZJTI/(EZ U —j/2¢(2

keZ

kel

where we have used the fact that the Fourier transform of the function & is explicitly
written 277/2¢=27 k627 §(27g). Now if 2! > R, the last integral is equal to the integral
on the interval [—2~', 2~!], where the functions {277/2¢?7*¢27}, . form an orthonormal
basis. Moreover, £ — f(§)®(277¢) € L2 (=2, 27"), so that by Parseval’s theorem for
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Fourier series, we have for 2~! > R
21
1P fI” = / 1 |FE)1|DE) dE
_2]_

R
= [ ifemeania,
-R
which completes the proof. |

Corollary 6.4.30. Suppose that the scaling function_satisfies the additional
condition that ®(&§) is continuous at & = 0 with |®(0)| = 1. Then for any
f € L*R), |P;f —fll — Owhenj — oc.

Proof. Since P; is a contraction, it suffices to prove this on the dense set of f whose
Fourier transforms have compact support and are bounded. Furthermore, from the projection
property, we have ||P;f||> = || fII* — |l f — P;fl|?, so we must show that ||P;f]| — | fI|.

A

Using the hypothesis, we see that |®(277£)| converges uniformly to 1 on compact sets, so
that (6.4.17) gives for 2~! > R

R
1P fIP = / ifedeends

R
.
R / NGRS
— 112,

which completes the proof. n

Combining the above lemmas and corollaries completes the proof of the theorem.
The following exercise provides a one-parameter generalization of the Shannon
wavelet.

Exercise 6.4.31. Let K = [a — 1, a] where 0 < a < 1 and set b= 1x. Prove
that ® is the scaling function of an MRA.

Hint: First check that ® has orthonormal translates. To find the scaling relation, it suffices to find
my € L*(R/Z), by solving ®(2&) = mgy(&)D(£).

Example 6.4.32. One should not infer from the continuity at & = 0 that d is
continuous elsewhere, much less that & € L'(R). Consider the Shannon scaling
function, where ® = 1[_%&], which is continuous at &€ = 0 but is discontinuous at

£ =1

6.4.3.1 Additional remarks
We note some additional relations between the above notions.

e If we have an MRA, the condition 1D(0)| = 1 actually follows from the apparently
weaker condition that ®(&) is continuous at £ = 0. To see this, apply Lemma 6.4.29
to a function f whose Fourier transform is bounded with compact support. Since we
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assume an MRA, it follows that P; f — f whenj — co. Taking limits in (6.4.17), we
have for 2/ > R,

R A A
I£1% = |®(0)12/R If &)1 ds = 12©0) 2111

by Parseval’s identity. Hence |®(0)] =1, as promised.
e Theorem 6.4.27 remains true if one weakens the condition |$(0)| = 1 to $(0) # 0.

To see this, suppose that f is orthogonal to U;czV;. Then P;f = 0 for all j € Z. Given
€ > 0, there exists g whose Fourier transform is bounded and supported in [—R, R] for
some R > 0 and so that ||f — g|| < €. Hence |IP;gll = |IPj(g — )l < €. Applying
Lemma 6.4.29 yields the estimate

R
e = |Pgl’ = / 8© 12278
—R
- 1907l
= [BOPAfI -
This holds for every € > 0, which is a contradiction if € is sufficiently small.

e The continuity condition (iii) in Theorem 6.4.27 can be weakened to

lim |®27¢) =1 ae £€R,
J—>00
and this condition is also necessary.

Indeed, the sufficiency is apparent from application of Lemma 6.4.29 to f, whose
Fourier transform is bounded with compact support. To see the necessity, we anticipate
a result from the next section, that |mg(£)| < 1 a.e. From this it follows that

o(f=-=k(5)

In addition 1 = Y, |®(& + )|? > |®(&)[?, so that we have the existence of the limit
g(&) =lim;, |<i>(2"f§)[ and g(¢§) < 1. Applying Lemma 6.4.29 to f Withf =111
we see that

1) <

1 1
2=j1irgo/1 |B(&)%dE = flg@)ds,

where we have applied the Lebesgue dominated convergence theorem, thanks to the
bound |g(&)| < 1. Hence f_ll(l — |g(&)]) d¢ = 0 where the integrand is nonnegative,
hence g(§) =1 ae.

e If the scaling function ® € L!(R) N L?(R), then the conditions of Theorem 6.4.27 are
necessary as well as sufficient.

To see this, note that ® € L!'(R) implies that ® is continuous, especially at

& = 0. If ¢ generates an MRA, then we can apply Lemma 6.4.29 to f # 0 whose
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Fourier transform is bounded with compact support. Taking j — 00 in (6.4.17), we
obtain || f|| = |<i>(0)|||f||, hence |ﬁ>(0)| = 1, as promised.
If the scaling fugction ®eL'(R)NLA(R), then ®()=0 for 0 #1€Z and
Y okez P —k) = P(0) ae.

Indeed, from the orthonormality relation, wehavea.e. 1 > |®(£)|2 + | P (& +)|2.
But & is continuous, hence we can take & — 0 avoiding the exceptional set to obtain
|<i>(l)| < 0, which was to be proved. From this it also follows from the Poisson sum-
mation formula that the periodized scaling function ) ", ., ®(t—k) = ) (0) a.e., since
its Fourier coefficients are all zero except for one term.

If the scaling function has compact support with [ ®(x)dx=1, then the Fourier
transform argument of Lemma 6.4.29 can be avoided. This is formulated as follows.

Proposition 6.4.33. Suppose that ® is the scaling function for a compact MRA
with [ ®(x) dx = 1. Then UjezV; is dense in L*(R).
Proof. The orthogonal projection P; onto V; is given by
Pif =23 ®@x—y) (ff(y)<1>(2’y - y)dy)
y€eZ R

and satisfies
(6.4.18) /(f PP f =0, |fI>=If—PfI*+ 1P fI
R

Therefore, to show that P, f — f in L?, it suffices to prove that
(6.4.19) WP fll =111

Since the operators P; have norm 1, it suffices to prove (6.4.19) on a dense set, e.g., linear
combinations of f = I, where A = [a, b]. If supp ® € [—M, M]

2
I1PLal? =27 ) </ 2y —v) dy)
A

Y€EZ

2
=2-fz<fmq>(x—y)dx>

YE€Z
2
- > v ¥ o+ v ([ ea-na).
yeliatM 2b—M]  yg[2a—M,2b+M]  dist(y, 2/ A)<M 2/A

In the first term the integral is one, while in the second term the integral is zero. In the third
term the integral is less than ||®||; and the number of such terms is less than 4M. Thus

2
2-1‘2(/ d>(x—y)dx> =27 > 14+0Q27)
yeL 2/A

2Ja+M<y<2ib-M
= (b—a) +0Q7).

Hence ||P;14]3 = b — a = || 14]|3, which completes the proof. [ ]
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6.4.4 Meyer Wavelets

The previous examples of scaling functions include the Haar wavelet—where the scaling
function ® has compact support but is not smooth. At the other extreme we have the
Shannon wavelet, where the scaling function is infinitely differentiable but has slow decay
at infinity. Theorem 6.4.27 allows one to construct a large class of new scaling functions,
including the Meyer wavelets, where the scaling function is infinitely differentiable and
rapidly decreasing (Schwartz class S). This general class also includes the Shannon
scaling function from Example 6.4.25 as an extreme case.

We begin with a function @ (§) defined on the interval 0 < & < 1 satisfying the
following properties:

(6.4.20) 0<0(¢) <1,

(6.4.21) OE)+6(01-§)=1,
(6.4.22) & — ©(&) is monotone decreasing,
(6.4.23) ¢ =1 0<&<i

The symmetry condition (6.4.21) implies that ®(¢) = 0 for % <&<l, 6(%) = %,
while the monotonicity condition (6.4.22) shows that ®(§) > 5 for 0 < & < 1. We
extend O to thereal line by setting @ (§) = @ (—§) for —1 < & < Oandsetting ®@(&) =0
for |£| > 1. The resulting function is even on the entire axis and satisfies 0 < @(§) < 1.
Now we define

1
(6.4.24) o) = / VO dg, teR.
-1

Proposition 6.4.34. & (¢) is the scaling function of an MRA system satisfying the
conditions of Theorem 6.4.27 and is of class C*™ with all derivatives bounded:
|®O@)| < C,. If, in addition, £ — JO(E) is of class C*, then |t*®D(1)] < Cy
forallrealt andl € Z™. In particular if ¢ — /O(&) is of class C*®, then ® € S.

Proof. We first check the conditions of Theorem 6.4.27. Since © is supported in an interval
of length 2, the sum ", |PE + D> = Y., ©(& + 1) consists of at most two nonzero
terms, of the form

@) +0¢E+)=0(-H+001+§) =1,

which proves the orthonormality of {® (¢ — m)}uez. To prove the scaling equation, define

mo(§) = /OQ28) £l <3

and extend m; to the real line as a 1-periodic function: my(§€ + 1) = mgy(§), espemally
my € LZ(]R/Z) In addition ®(§ ) = 1 whenever ®(2¢) # 0, so that the equatlon CD(Z& )=

m()(g)CD(s) holds for |$| <z.In addmon my (&) is zero for 1 <&<:,s0 that we have
the scaling equation <I>(2£) mo(s)db(’;') forall £ € ]R smce both 49(5) and <I>(2’;‘) are
zero when || > %, while my is zero when 1 <&l < % Fmally, the condition (6.4.23)
guarantees that & is continuous até =0 w1th |<I>(0)| = 1 Hence by Theorem 6.4.27 there
exists an MRA corresponding to ®. Since ® has compact support, ¢ is of class C* and we
have the bounds |® ()| < f_ll 27| | P ()] dé < oo. If in addition we have k continuous



INTRODUCTION TO WAVELETS 319

derivatives, we can write

1 k
(—2mt)k<1><’>(t)=/ it (%) [(2rig) d(&)]de,
|

which completes the proof. |

Example 6.4.35. If ©(§) = 1 for —% <& < %, then ©® (&) =0 for || > % with

@(ﬂ:%) = % This gives the Shannon scaling function ®(t) = (sin xt)/mt.

6.4.5 From Scaling Function to Orthonormal Wavelet

Once we have a scaling function satisfying the hypotheses of Theorem 6.4.27, it is
relatively straightforward to construct a corresponding orthonormal wavelet, namely a
function ¥ € L?(R) so that {2//2W (2/¢ — k) }se7 is an orthonormal basis of the orthogonal
complement V| ©V;. This general construction will specialize to yield the Haar function
in case =1y ).

To describe the defining equations on W, it suffices to take j = 0. Since ¥ € V|,
which is spanned by {® (2t — n)},cz, there exists an L?-convergent expansion

(6.4.25) V() =Y b2t —n).

nezZ

But ¥ must be orthogonal to V), namely

(6.4.26) / Ot —kV()dt=0 VkelZ.
R
These are translated into the Fourier domain as follows:
(6.4.27) da+eP =1,
l€Z
- E\ (8§
6.4.28 V() = =Pl >),
( ) é) m1<2) <2>
(6.4.29) f dE) V(&) g =0  VkeZ,
R

. 1 —2mink

(6.4.30) mi€) =3 gzj bue .

The 1-periodic function m; is called the wavelet filter. It allows us to pass directly
from the scaling function to the wavelet via (6.4.25).

It remains to periodize these relations. At the same time we formulate the peri-
odized version of (6.4.15) from the previous discussion. The idea is that the scaling
equations allow us to rewrite the orthogonality relations as identities on the circle R/Z
in terms of the scaling filter and wavelet filter.

Proposition 6.4.36. Suppose that ® is a scaling function of an MRA with scaling
filter my defined by (6.4.16). Then my(§) satisfies (6.4.31) a.e.
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(i) If ¥ is an orthonormal wavelet with respect to &, then the 1-periodic
Sfunctions my(€), my (§) satisfy the relations (6.4.32)—(6.4.33), a.e.

(6.4.31) Imo€) + |mo (€ + 1)|” = 1,
(6.4.32) my € + |mi (€ + 1)) =1,
(6.4.33) mo(€)ny (§) + mo (€ + 1) iy (£ + 1) = 0.

(ii) Conversely, givenm, € L*(R/Z) satisfying (6.4.32) and (6.4.33), if we define
W by (6.4.28), then {V (2/t — k)}iez is an orthonormal system in V| © V.

The equations (6.4.31) and (6.4.32) suggest the term quadrature mirror filter for
the functions mg (&), m; (€), since the point £ + % is the mirror image of & in the circle of
unit circumference, with respect to which the quadratic functional equations are satisfied.

Proof. We apply Corollary 6.4.9 to formula (6.4.15) summing separately over the odd and

even!l € Z.
1= "19¢+DP
leZ
=18 + 2017 + ) 1 + 2k + D
keZ keZ

2 2

+2

keZ

(i)

2 2

->

(e-+2k)
my| ——
keZ 2

E\ s (& ?

+
2
(@) e G3)

+
where we have applied Corollary 6.4.9 twice in the last line, thus proving (6.4.31). To
prove (6.4.32), we replace ® by ¥ on the left and m, by the 1-periodic function m, on
the right. Applying (6.4.27) and (6.4.28), we see that with these replacements, all of the
above computations apply and we obtain (6.4.32). To prove (6.4.33), we periodize (6.4.29)
by writing

é<s +2k)
2

” (§+2k+1)
0 2

2

2

keZ

(i><§+2k+1)
2

L(E 1 z
¢'<2+§+k)

2

1+1 R < .
0=y f[ eV (E)e ™ dE

leZ

1 -
=% [ e+ b+ nemae
0

leZ
1 -
= / (Z dE +nbE + 1)) e gt
0 \iez

The Fourier coefficients of the indicated 1-periodic function are all zero, hence

(6.434) Y e +D¥E+D=0 aek

leZ
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Now we can apply the same transformations that were used to prove (6.4.31) above: in
detail

0=Y"d¢E+n¥E +1

leZ

=Y dE +200E + 20+ Y b + 2%+ DIE +2k+ 1)
keZ keZ

= Zmo(g +k>rh1(% +k> é(% +k>

keZ

keZ
2§
3(5++)

=m(3) ()%

2
INCR M)

- 1
8(5+5++)
keZ 2 2

_(5\- (¢ § 1\ _(§ 1
_m"(z mig)tmlzty)m(213)
which completes the direct proof. Conversely, if (6.4.32) and (6.4.33) hold, then we can

compute ) ., l<i>(i;‘ + 1)|? following the proof of (6.4.32) above, using the orthonormality
of ®(t —m). Similarly, the proof of (6.4.33) demonstrates that 3",_, ®(& + )W (& +1) = 0.

2

2

A 1
¢‘<§+k+§>

2

|
This lemma may be paraphrased by the statement that the matrix
o — (mo@) mo (& + %))
mi€) mi(§+3)
is unitary.
Example 6.4.37. Haar wavelets
We illustrate the above formulation in the case of the Haar wavelet, where
o) =1, 0<t<l1
vo- [, 92124
The structure constants are obtained from the scaling relations
D) =PR2H+ PRt —-1), V() =PQ2 — P2t —1).
Hence ag =1, a; =1, by = 1, by = —1 and otherwise a; = b; = 0. The scaling filter

and wavelet filters are given by (6.4.16) and (6.4.30):

my(€) = %[l +e_2ﬂi€]’ my(§) = %[1 _ e—Zm'E]'
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The Fourier transform of the scaling function and wavelet are

1 —e i e SINTTE

1
®) /o ¢ ! it ¢ TrE

‘i»’(f)-') = fi _/] L | — 2e~imé 4 o 2miE _ 1- e—iné)z
o3 ik ik

| _ipesin’(£/2)
= le e

(§/2)
Equivalently
13 -
mo(§) = 3@ =e ">cos(né),
70 .
m(§) = &)((;)) = ie " sinmé

Returning to the theory, we now solve for the wavelet ¥ by means of the function
my. We give the first row of the matrix M and must find the second row. The orthogonality
condition (6.4.33) requires that we have

(mi (&), my (& + 5)) = «(®) (mo (§ + 3), —mo(8))
for some 1-periodic complex-valued function «(¢). The normalizations (6.4.31) and
(6.4.32) further require that |« (§)| = 1. Finally, the substitution § — & + % shows that
o must satisfy the half period condition «(§ + %) = —a(§). Thus we find the general
solution

6435)  mi(§) =i (& + ) a®), wherea (£ + 1) = —a(®), le@®)| = 1.

It is immediately verified that this choice of m, satisfies the conditions of Proposition
6.4.36. Therefore the wavelet W can be obtained through its Fourier transform as

(6.4.36) B&) = my (%) &(%) . ’"O(g + %) a(%) @(%) ,

Clearly we have infinitely many choices for «. A unique choice is dictated by the
normalization that the Haar scaling function & = 1o 1, give the standard Haar function
. Thus we choose a(£) = —e~2"% which satisfies all of the conditions. Computing in
detail, we have

mi(§) = —e % ing (s - %)

1 , B )
— __8—271'!:‘;: Zane2mn({:+]/2)

2 nez

1

— E Zarl(_l)n+le2ﬂi(n—l)$

nez

1 . —2mi
= EZal_m(—])me 2mimg

mez
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Referring to (6.4.25), we have the explicit representation of W(¢) in terms of
{® (2t — n)},ez, namely

(6.4.37) V() =) (1)@, ® (2t — n).

neZ

This explicit formula displays the orthonormal wavelet in terms of the scaling function
and the structure constants. In case of the Haar scaling function (ap = 1,a; = 1) we
obtain the standard Haar function W(¢) = ®(2t) — ®(2t — 1). In the Fourier domain
(6.4.37) is written

Finally, we prove that the spaces V;.1 © V; are spanned by the set consisting of
{W(2/t — k)}rez. By scaling, it suffices to prove this in case j = 0.

Proposition 6.4.38. Anyf € V; &V, can be represented by its Fourier transform

as
A 1 N
f@>=ﬁm<s+5>wa¢(§>

where v € L>(R/Z) satisfies v(§ + %) = —v(§). In particular, we can write

(6.4.39) (o) = Z caV(t — n)

nez

where Y, 7 |c,|* < 00.

Proof. Since f € V,, we have f(¢) = _Znez a,® (2t — n) for some o € L (Z). The orthog-
onality to V, further requires fR f@)®P(t — k)dt = 0 for all k € Z. In terms of Fourier
transforms, we have

r; 1 —inmé F E i g,: 2 E
f(g) = Ezane E‘b(z) = C<§> (b(i) s

neZ

0= f FEedE e ge ke
R
Now we can apply the same computations as those following (6.4.34) to conclude that
_ 1\ - 1
@) +m (£ +5) € (4 3) =0
But we have already seen from the proof of Proposition 6.4.36 that the general soluAtion of
this equation is obtained as (6.4.35). Finally, this can be written as a multiple of ®(§/2)
defined in (6.4.38), expressed as
2 = 1 s & it &
f@&) =mo(§+ 2 vEIP| 5 | = —a@)e 2E),

which translates into the ¢ domain as (6.4.39). |

In conclusion, we note some other basic properties of the scaling filter my.
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Proposition 6.4.39. If my is the scaling filter for an MRA, then |my(§)| < 1 and
mo(0) = 1,mo (3) = 0.

Proof, This follows from (6.4.31) and then setting § = 0 in the scaling equation in the
Fourier domain (6.4.15). |

6.4.5.1 Direct proof that V| & V, is spanned by {¥ (t — k)}cz

Proposition 6.4.40. Any f € V) is equal to its projection on the set of functions
spanned by {®(t — k) ez, (¥ — k) }xez-

Proof. Since V) is spanned by {® (2t — I)}cz, it suffices to prove that for each [ € Z,
PR —l) =Y adt—k+) dW(—k

keZ keZ

where ¢, d are the generalized Fourier coefficients of (2t — I) with respect to the
orthogonal system {® (¢t — k) }xez, {¥ (¢ — k) }kez. Computing directly, we have

ck=/<b(2t—l)<f>(t—k)dt
R

_l & § —inkl & —2mike
= 2‘/]]%43(2)13 D()e d&

SIRORORORS

=/ |D(E) [P (§) e~ 2 P+ g
R

1
= [ et g
0

where we have changed & — 2§ in the next-to-last line and used periodization in the last
line. Similarly

1
&= [ e ag
0

1
— _/ mo (5 + %) o2t g2 QkH]) de
0

1
— (_1)1-—1—2/(/ mo(n)e—ann(2k+l—l) d']
0

Thus ¢, is the 2k + Ith Fourier coefficient of m, and d; is * the 2k + [ — 1th Fourier
coefficient of my. Hence by Parseval,

1
1
S (il + deP) = / mo(m? dn = 3.
0

keZ

On the other hand,
1 1
/|<D(2t—l)|2dt= —f|<I>(y)|2dy= 5
R 2 Jr 2

which completes the proof. |
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6.4.5.2 Null integrability of wavelets without scaling functions

Any wavelet may be expected to have integral zero. Indeed, (6.4.38) shows that U (0) =
mo (%) ®(0) = 0, by Proposition 6.4.39. In particular, if ¥ € L' (R), then we must have
fR v = \fl(O) = 0. Yet this may not be strictly true if the scaling function does not
belong to the space L' (R). For example, the Shannon wavelet has ®(r) = (sin 7t)/7t,
which fails to be integrable, from which it follows that the associated wavelet defined
by (6.4.38) also fails to be integrable.

The following proposition generalizes the property of null integrability in two
directions: (i) to wavelets that do not necessarily belong to an MRA and (ii) to higher
dimensions. The proof assumes only orthonormality. We use the notation S; for the cube
of lattice points k defined by the inequalities —2/~! < k; < 2~! fori =1, ..., d. Thus
card(S;) = 2.

Proposition 6.4.41. Suppose that W € L'(RY) NL*(R?) has the property
that (Wj} := {292W(2/t — k)} <j<n keze is an orthonormal set and that
0D I[-1,1V is a cube centered at 0 with fQ(.l\Ill < 3| fga ¥| > 0. Then

VN < 21201/ fR(, W|. In particular, if {Wj}jez+ reze is an orthonormal set,
then [p, ¥ = 0.

Proof. Let [, ¥ = Re® with R > 0. Replacing W by e~ W, we preserve the orthonor-
mality of W, while achieving fR(, W =R > 0.Now let 0 D [—1, 1]¢ be a cube centered
at 0 so that IfQ( V| < R/2. Then for any set A with Q C A, we have lfA(. Y| < R/2 and
[Re [, ¥ —Re [ W| < R/2,s0thatRe [, ¥ > R — R/2 = R/2. Now let

(6.4.40) Y=Y W@x—k=ITF=) 27 =1

kes, keS,
On the other hand,

T = W(2/x — k) dx
/ZQ, Z/ZQ Q@x -

kes,

- Z 2~ f W (1) du.
kes, 2+ Q—k

But if Q = [-M,M]? and x € Q and j > 0, then |(x; + k)/2*!| < M, so that
Q C 2*'Q — kfor k € S; and x € Q. This means that

R
(6.4.41) Re/ T, >
20 2

On the other hand, the orthonormality of W implies that {Y}} is an orthonormal sequence,
so that for any N > 1 we have

N
Zj:l ’rl

(6.4.42) i

=1.

2
On the other hand, (6.4.41) shows that

(6.4.43) Re
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‘We combine these and apply the Cauchy-Schwarz inequality in the last line:

R YN,
—\/NfRe/ =
2 20 <N

/ 1 Yo,
v 2 UN
< /20|

from which the first statement follows. To prove the second, we take VN > 2/T201/R to
obtain a contradiction, hence R = 0. |

=<

6.5 WAVELETS WITH COMPACT SUPPORT

In this section we develop the tools to construct MRA wavelets whose scaling functions
are differentiable and vanish outside of a finite interval. This will be done by a passage
from the scaling filter to the scaling function.

Clearly, a necessary condition for a compactly supported scaling function is that
the scaling filter be a trigonometric polynomial. This is also sufficient, formalized as
follows.

Proposition 6.5.1. Let ® be the scaling function of an MRA satisfying the
hypotheses of Theorem 6.4.27.

(i) If ®(t) = O for |t| = M, then the structure constants satisfy a, = 0 for
|n| > 3M. In particular the scaling filter is a trigonometric polynomial:

(6.5.1) m0(§)=% Z age Tk

|k|<3M

(ii) Conversely, suppose that the scaling filter is a trigonometric polynomial
(6.5.1). Then the scaling function can be obtained from the infinite product

(65.2) o) = [ [mot€/2),
j=1

and ® has compact support.

Proof. From orthogonality, we have a, = 2 f_MM & (1) D2t — n) dr. If |n| > 3M then the
support of ®(2¢ — n) is disjoint from [—M, M] and the integrand is identically zero, hence
a, = 0 for |n| > 3M. Conversely, suppose that my is a trigonometric polynomial. Since
mgy(0) = 1, the infinite product (6.5.2) converges and we have for any N

. N EN) .
o) = (I—[mo(-27>) dE27™)
J=1

where the last factor tends to 1 when N — 00, hence (6.5.2) holds.
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From the construction, &>(§) = limy [y (&), where [1y(§) := Hf"=, mo(£/27). Now
Iy (§) is a finite linear combination of terms of the form

N oo
e——ZmE pn 2

where |r;] < M. This is the Fourier transform of a linear combination of §-measures
concentrated at the points x = Z:V:, 27'r; € [-M, M]. Hence the scaling function & is the
weak limit of measures concentrated on [—M, M], in particular of compact support. ]

6.5.1 From Scaling Filter to Scaling Function

Having obtained some conditions in terms of the Fourier transform of the scaling function
and its scaling filter, we now attempt to go in the other direction. Beginning with the
scaling filter m, (&) we attempt to construct the scaling function. The next theorem does
not assume that my is a trigonometric polynomial.

Theorem 6.5.2. Suppose that my(£) is a 1-periodic function on the line that sat-
isfies the following conditions:

(6.5.3) mo(0) = 1, |my(§)| > ¢ > 0 for [§] < %
N
(6.5.4) Imo(8)1* + ’mo (5 + 5) =1,
C 1
6.5.5 1- PR PPN 2
( ) [1—my(§)| < og2(1/1E) 15 = 5

Then the infinite product T15°my (& /2%) converges and defines an L? function ) for
which {®(t — k)}ez is orthonormal and ® is the scaling function of an MRA.

We remark that although condition (6.5.3) can be weakened, it cannot be dispensed
with entirely, as shown by the next example.

Example 6.5.3. Let my(§) = (1 + e~ ™%).

Computing the infinite product explicitly, we find that for & 0, ) =
(1 — e7"#)/6si, which is the Fourier transform of ® = 11,03}, whose translates do
not form an orthonormal sequence.

Exercise 6.5.4. (a) Check this calculation. (b) Check that |®|, < 1. (c) Show
that {® (t — k)}rez, does not form a Riesz sequence.

We will see below that the lower bound in (6.5.3) can be replaced by a weaker condition,
which is in fact necessary.

Proof of the Theorem. We will break the proof into four distinct steps, which will reveal
the points where the different assumptions are invoked. The first step is a general statement
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about L? functions. If ® € L*(R), let

M:={®el’R): [®|,=1 and / (DG —k)dt =0, VkeZ\{0}}.
R

Step 1. M is a closed subset of L*(R).
To see this, we let &, € M with &, - & € L?(R). Using the notation L, ®(f) =
®(t — k), a norm-preserving operator, we have

(®, L®) — (D), Lk ®)) = (P — @, L ®) + (¥, L P — L, D))
(P, Ly ®) — (P, Ly ®))| < 1D — Dsll2ILe Pll2 + (1D)1I211 L @ — Ly Pyl2
=P — @;l21Pll2 + | P; 121D — @5l

— 0.

Taking k = 0 shows that ||®||, = 1. Taking k # O proves that (®, L, ®) =0, i.e., & € M.

Step 2. We define an inductive process beginning with the Shannon wavelet. Let @ (¢) =
(sinme)/mt, with $o(§) = l[_%‘%], and define forj > 1.
s
27 )

&, = (5 ) m((5 ) om0
We claim that ®; € M forallj > 0.

To see this, we will use mathematical induction to prove that {®;(t — k)},ez is ortho-
normal. Forj = 0 we have ), |<i>0(§ + D|? = 1, so that $¢(t — k)xez is an orthonormal
set, i.e., Py € M.

Assuming that ®;_, € M we write Ci>j(§) = m0(§/2)<i>j_1 (£/2) and compute

()05

Y &+ = (Z + Z)
leZ leven [ odd
2

R NP

() 2 (429
[ even

N\ . + I\

m(3+3) Zlen (55)

The first sum can be written 3", |®;_1(£/2 + DI?, which equals 1 by the induction hy-
pothesis. The second sum can be written ), |<I>J 1((§ +1)/2 4+ D|?, which also equals 1
by the mductlgn hypothesis. Hence (6.5.4) shows that we have orthonormality for all j, in
particular f; |®;|* = 1, completing Step 2.

2

+

Step 3. The infinite product (6.5.2) converges uniformly on compact sets to d € LX(R)
with || @[], < 1and limg_,o P(§) = 1.
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It suffices to prove uniform convergence on the interval |§| < M with M > 1. This
follows from the estimates

c A
mo(g"-)"llf—z—., <M, 27" =M
2 log”(M2-/)
B c
~ (logM — jlog2)?
c
< 1 AN
~ (jlog2)?

which is the general term of a convergent numerical series. To prove that & € L2(R), we
use Fatou’s lemma:

@], = | lim &I, < lim inf I, = 1,

which completes Step 3. 3
We define @ as the L? function such that @ = ®. It remains to prove that ® € M.

Step 4. |®; — @[, - 0 whenj — oo.
To see this we will first prove that for some C, > 0, |®;(€)| < C,®(&) forall ¢ € R
and all sufficiently large j. From Step 3, the infinite product is uniformly convergent on
[—3. 31, hence for some M we have I,y |mo(§27)| > ; for all |§| < 1. Hence

6©1 = L[ Tme2 = Lo, <!
=254 =27 =2

where ¢ = infg <174 [mo(§)]. Hence infig) < /2 |<i>(i;‘)| > C > 0. From the definition of ®;
in Step 2, we see that on the interval |§| > 2~!, &, is zero, whereas on |£| < 2~! we have
() = &;(£)D(£/2/). We can solve this to write for all j,

d(¢)
D(§/27)
where C = infi_y 2,12 |<i>(i;‘)|, so we have proved the stated domination. Thus |<i>j &) —
<i>(§ )| tends to zero and is bounded by an L? function, which shows that || &Z‘j -® I, = 0,by
the dominated convergence theorem. Parseval’s identity shows further that | ®;, — &I, — 0
which completes Step 4.
Combining these results, we see that & € M, namely the integer translates of &

form an orthonormal sequence. The uniform convergence from Step 2 shows that P is
continuous at § = 0 with ®(0) = 1, while the scaling identity follows from the definition

of &:
N = & §\ (&
JI;['”(’ 2 ) =™\3 2

Applying Theorem 6.4.27 completes the proof. ]

(6.5.6) < CTBE -1 5-1§) < €D

43,(5)' =

Exercise 6.5.5. Suppose that the l-periodic function my satisfies (6.5.4) and
(6.5.5).
Define an operator P on nonnegative measurable functions by

()l D)

Pf(§) =
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(i) Check that P1 = 1.

(ii) If g satisfies the equation g(§) = mo(E/2)g(E/2), define e(§) =
Y ez g€ + 1)|?> and prove that Pe = e.

(iii) Define &D(é) =172, mg (€/27). Assuming that the unique solution of Pf = f
is f = const, prove that {®(t — k)}rez is an orthogonal sequence.

t: For part (ii), copy Step 2 of the above proof.

.2 Explicit Construction of Compact Wavelets

In order to construct wavelets with compact support, it remains to exhibit trigonometric
polynomials with the properties (6.5.3) and (6.5.4), since (6.5.5) is automatically satisfied

for
whi

any trigonometric polynomial. We begin with a trigonometric polynomial C(§),
ch satisfies the following conditions

6.5.7)

C()=0,C() > 0for |E|§%, c) =1, C(§)+C<S+%):l.

For example C(£) = cos® & satisfies these conditions.

Exercise 6.5.6. Show that any trigonometric polynomial that satisfies (6.5.7) is
of the form

N
(6.5.8) CE) = % + ) (axcos(2k + 1)2& + by sin(2k + 1)27£)
k=1

for some N and suitable values of the real constants ay, by.

Once we have found a solution of (6.5.7), we need to find the scaling filter my

as a suitable square root. This is accomplished by applying the following lemma on

fact

orization of trigonometric polynomials.

Lemma 6.5.7. Fejér and Riesz: Suppose that t(x) = Y " cye'* is a nonnegative
trigonometric polynomial. Then there exists a trigonometric polynomial g(x) so
that t(x) = q(x)q(x) for all x € R.

Proof. We first prove the lemma in case #(x) > 0 for all x. Since #(x) is real, the coefficients
must be Hermitian-symmetric: ¢_; = ¢, for —n < k < n. Define a polynomial in the
complex plane:

P(Z) =c,+ -+ 6/122” = En +o+ E—”22”'
Clearly we have
, 1 5
t(x) = e“”“P(e“), Zz"P (—) = P(2).
Z

This implies that, whenever « is a zero of P in the exterior of the unit circle, then 1/& is
a zero in the interior of the unit circle, of the same multiplicity. Furthermore, there are no
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zeros on the unit circle, since #(x) > 0. Factoring out the zeros and simplifying, we have

1
P — C n _ _
(2) Z |k|(z o) (z ——dk>

1) = e™™P(e™) = Ce™ [ ] (W>

k Ok

for suitable integers m, p. Since t(x) > 0, we must have p = 0 and C/IT;q; > 0. This

leads us to choose
C
q(x) = cI; (e — ay), ci= | —,
Hkak

which completes the proof in case ¢(x) > 0. In the general case when #(x) > 0, we apply
the above construction to the trigonometric polynomial € 4 #(x), to obtain a trigonometric
polynomial g, (x), which depends continuously on €. In particular, we can take go(x) =
lim, g, (x) to obtain the required trigonometric polynomial. |

We present several concrete formulas for generating the required trigonometric
polynomials

6.5.2.1 Daubechies recipe
This begins with the identity cos? & + sin® 7& = 1, which is raised to an odd power:

W oN 41
1 = (cos® & +sin® w&) N+ = Z ( ' )sinZk(ng)cos4N+2_2k(7r$).
=0

This sum has an even number of terms. We take the first half of the terms and define

N /2N +1
(6.5.9) C) :=Z( k+

) sin?* (&) cos™ T2 (g,
k=0

When we replace & by & + % the sines turn into cosines and the cosines turn into sines,
yielding the remaining terms in the binomial expansion; thus C(¢) + C(¢ + %) =1,as
required. Clearly C(0) = 1 and C(§) > O for all &, so that the conditions (6.5.7) are
satisfied.

It is also useful to write this in the factored form

N
(6.5.10) C(§) = (cos? wg)NT! Z (ZNk+ 1) sin? (&) cos? " £)
k=0

— (COSZ JTS)N-H[(COSZ JTE)N 4o <2NN+ 1)(Sin2 JTE)N]

The second factor can be rewritten as a polynomial in sin® 7& with positive coefficients,
which will be shown below. Therefore the maximum of the second factor is attained
when sin® néE=1, cos? & = 0, and we obtain the useful bound

2N+1>

2 N+1
C(&) < (cos“mé§) ( N
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The last factor is the middle term of the binomial expansion of (1 + 1)?*! and can be
conveniently expressed by Lapiace’s method as asymptotic to 2V +! /4/N7.

Exercise 6.5.8. Show that (6.5.9) can be written as a trigonometric sum in the
form

CE) =5+ arcos(2k + 1)2m¢
k=1

N =

for suitable values of the constants ay.

Exercise 6.5.9. Use Laplace’s method for integrals to show that

2N +1
( N+ ) ~2WH /N7 N — oo.

Hint: Begin with the integral representation

1 2N +1 1 T
ST ( N+ ) = 2—/ e cos? 1 9 db.
T J_n

We still need to show that the Daubechies recipe can represented as a polynomial
with positive coefficients. In fact

Lemma 6.5.10. Let Py(y) = Yoo (V')W1 — )V * for 0 <y < 1. Then
Py(y) = Yoo ("F)y*. In particular Py(y) < Pyv(1) = ().

Proof. From the binomial theorem, we have

1= @+ 1 -y
— ZNZH <2N + l)yk(l _y)2N+l—I<
k=0 k

N /2N +1
= (1 -y Z( N )yk(l — N

k=0

2+

2N + 1\ , o_ -

4N Z ( ) )yk N=1(] — )Nk
k=N+1

=1 ="' Pu(y) +y" Py —y).
In particular (1 — ) Py(y) =14+ 0@"*'),y — 0. Now let
N
N+k _
QN(}’)=Z< X )yk = (1 -y~ 4 oM, y—0,
k=0
which is the first N + 1 terms of power series expansion of (1 — y)~¥+!, Thus
A=»"'ov(n=1+006"", y—0
hence the difference polynomial satisfies

A =p"'Py(y») —ov(MI=0"h,  y—>o0.
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In particular, the first N derivatives of the polynomial Py — Oy evaluated at y = O are all
zero, hence the polynomial is identically zero, and we have proved that Py(y) — Qn(y) =
0, as required. Since the coefficients of Qy are positive, it follows immediately that for
0<y<LPuy(y <Py)= (") u

Exercise 6.5.11. Show that we have the following values of Py( y).

Pi(y)=1+2y, Pi(1)=3=()
Py(y) =1+ 3y + 62, Py(1) =10 = (})
P3(y) =1+ 4y + 10y* + 20y°, P3(1) =35=(})
P4(y) =1+ 5y + 15y% + 35y + 70y*, Ps(1) =126 = ()
Ps(y) =1+ 6y +21y* + 56y° + 126y* + 252y°, Ps(1) = 462 = (V)

Ps(y) =1+ Ty + 28y* + 84y® + 210" + 462y° + 924)°, Pe(1) = 1716 = ()

In the above Daubechies recipe, we used an odd exponent in the binomial theorem
so that we could conveniently group the terms into two separate groups. The following
exercise shows that one can make a parallel computation for even exponents also.

Exercise 6.5.12. For N > 2, define
N—1
2N 1 /2N
R _ k] — Nk 4 = Nep — )V
N () ;(k>y( ») +2<N)y 1 -y
Show that 1 = (1 —y)Ry(y) + YRy (1 —y) and deduce that Ry is a polynomial
of degree N — 1, specifically, Ry(y) = Py—_1(Y), defined above, for N > 2.

6.5.2.2 Hernandez-Weiss recipe
This begins with the function

i sin?™+ ) dr

(6.5.11) gm(§) =1— =
it sin®™*' 2re) dt

% and extended periodically. Clearly 0 < g,(§) < 1 with

defined for —% <& <
= 0and g,(&) > 0for 0 < |§] < % A direct computation shows

gn(0) = 1,8n(3)
further that

8n® +an(t +3)

1 L
2 [iF sin®™ Qo) de — [§ sin?™ Qo) de — [ 7 sin?t Qe dr

1
o2 sin®"*'2xe) dt

1 L
JiF sin?™ @ryde — £ sin® @ty de — [ sin?™ (2r) di

1
fo? sin®™*'2nt) dt
=1

since the integrand is odd about t = % Thus the conditions (6.5.7) are satisfied.
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Exercise 6.5.13. Show that (6.5.11) can be written as a trigonometric sum in the
form

gn(€) = % + ) arcos(2k + 1)2mE
k=1

for suitable values of the constants ay.

6.5.3 Smoothness of Wavelets

We now investigate the smoothness properties of the compact wavelets, which are con-
structed in terms of the scaling function ®. The estimates obtained below, although not
optimal, do show that one can obtain compactly supported wavelets of any degree of
smoothness, beginning with a suitable trigonometric polynomial m(§).

We begin with the function C(£) = |mg(&)|?, which satisfies the properties (6.5.7).
Following the Daubechies example from (6.5.10) we can write

C(£) = (cos® m&)VH Py (sin® m§),

where Py is a polynomial of degree N that satisfies a bound |Py(y)| < Ky for some
constant K.
The scaling function satisfies the relation

. o0 s Jj+1 f
|())* = ,IJ,C(?) < Hc(g) (G=1.

A pointwise estimate is obtained by using the identity sin & = 2 sin(6/2) cos(6/2) to
write

) 1 £
1)1 < ]‘[c(7>
=1

2(N+1)
< cosﬁ---cosn—S K
- 2 2+! N

. 2N+1)
_ sinmwé K]
2/+!sin (—27%) N

Now restrict & to lie in the dyadic shell defined by the inequalities 2/~! < |£] < 2/. With
this restriction, we have w&/2/*! < /2 and we can use the inequality sin§ > 26/7 to
underestimate the denominator. At the same time we use the upper bound |sin 6| < 1 in
the numerator. Combining these with the bound for Ky we have

2J

2-i/2 IN+1/2
= ((an‘) ((Nn>‘/4>‘

. (N+1) ) ) )
l¢(§)ls(—.) Kyt 2 < g < 2
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Therefore

R 2i/2 IN+1/2
/2/'515\52] D@ e = ((Nﬂ)’/4> ((Nfr)”4>
9172 J oN+1/2
N ((Nn)‘/‘*) ((Nn>1/4>
log, Nwm —2
o=
4

= C27,

To complete the proof of smoothness, it remains to prove the following proposition
from classical harmonic analysis, related to the Littlewood-Paley method.

Proposition 6.5.14. Suppose that f € L*(R) and that for some a > 0, C > 0,
we have the system of inequalities

(6.5.12) / [f"(’;‘)ldé‘ < C279, j=0,1,2....
2-l<|E|<2)
Then

(i) If0 <« < 1, then f satisfies a Holder condition with exponent .

(ii) IfK < a < K + 1 for some K € Z%, then f has K continuous derivatives
and f5O satisfies a Holder condition with exponent o — K.

Proof. The hypothesis (6.5.12) shows that f e L'(R), since

A i »
/R|f(s>ldssfmgllf@ndﬁcZz < co.

jz1

In particular f is a.e. equal to a continuous function. To prove the Holder continuity, first
suppose that 0 < & < 1. Define the index j = j(h) so that (1/2)/*' < |n| < 1/2/.
From (6.5.12) we see that f € L'(R) so that we can write the absolutely convergent

integral
P = f) = [ (@ ) dg
R
=1+1+1
where

1 =/ emeE (e2ni/1.“;' _ l)f(é.) ds
1§

<3

Il / e27ru£;' (e2lrihE _ l)j?(f)d?;'
3 <lél<2)

= / P (P 1) £(£) dE.
€122/
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It suffices to prove the Holder condition when |h| < 1. Making use of the inequality
le?® — 1] < 6, we have

Il <mlhl | 17 @lds <mlalIf],

1<3

J
1| < 27 |h| / HHGIES
; 2k=1<|g)<2k

J
<Cln Y 2k
k=0

J
=Clny 21
k=0

= C(a)|h| U012 —1)
< C@)hl*

where we have used the definition of j = j(h) in the last line. Finally, we have

<2y HQIES
k

i1 Y 2 <lg| <2k
o0
<2C ) 27
k=j+1
=2C(a)27
< 2C(a)|h|%,

which completes the proof in case 0 < a < 1. Now if @ > 1 we see immediately that
fR |€11 (&) d§ < oo so that we have the absolutely convergent integral

£ = f Dt F (&) de
R

from which we can repeat the above reasoning to show that f’ satisfies the appropriate
Holder condition. The higher derivatives are handled in the same manner. ]

We can summarize the above results in the following form.

Theorem 6.5.15. For any preassigned integer s, there exists a compactly sup-
ported scaling function ® with continuous derivatives up to order s, so that the
corresponding MRA generates a wavelet W of compact support with continuous
derivatives of order s.

6.5.3.1 A negative result

It is interesting to note the impossibility of constructing wavelets that are simultaneously
infinitely differentiable and of compact support. The following discussion includes the
case of MRA wavelets, but also applies to wavelets which may be constructed by other
means.
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Proposition 6.5.16. Suppose that € L*(R) has the property that
{224 (2% — k)}; kez is an orthogonal set.

(i) Ify eL'NL®NC, thenlejf = 0.

(ii) If for some m € Z+,8 > 0, we have ¥, ¥’ ..., ¥™ e LI NL*® N C with
Y™ = 0L+, x| > 00, then 0 = fo = fpxy = - =
Jrx™.

Proof. Letting a = k/2/ € Q, be an arbitrary dyadic rational number, we have from the

definition of orthogonality

0=f¢um@&—ma
R
= fmw(x)x/'f(ﬂ(x—a))dx

o=/wm+ﬂﬂWw@
R

where we have made a change of variable in the integral. Letting j ~ oo with k = a2/
(a fixed), we use the dominated convergence theorem to conclude that 0 = ¥ (a) fR V() dy.
If fm ¥ # 0, then ¥ (a) = 0, Ya € Q, hence ¢ = 0, a contradiction, proving part (i).

To prove part (ii), let

&m=f WW@&@=/ Wﬁ@ww%m=/ Om-1(y) dy.

—00

Clearly 6;(x) = O(1/|x[)"**, x — —oo. But since we have proved in (i) that [ ¥ = 0,
we can write 0;(x) = — [ () dy, showing also that 8; (x) = O(1/|x|)™**,x — +o0.
Hence we can integrate by parts and write

/xlﬂ(x)dx:/xﬂ{(x)dx:—/GI(x)dx.
R R R

Now we use orthogonality and partial integration to write

0=/wm+ﬂﬂWw@
R
=4wm+ﬂﬂWw@

=—AWm+ﬂﬂMww
Letting j — oo with a € Q, fixed, we have 0 = ¥'(a) [ 01 () dy = —y'(a) [g x¥ (x) dx.

If fR x¥r(x) dx # 0, we conclude that ¥'(a) = 0, Va € Q,, which proves that ¢ is a linear
function, a contradiction. Proceeding inductively, suppose that we have shown that

0=/mw@=m=/%4w@
R R

From the hypothesis on y, we obtain the bounds

1 m+48 1 146
01(y)=0<;> 7‘“‘6”1()}):0(;) , [yl — oo.



338

INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

Partial integration shows that
/x’"t//(x)dx = —m/ O ) de = = (=1)"m! / B, (x) dx.
R R R
From the orthogonality relation we have forany a € Q,,j € Z
0= / V(a+y27)W(y)dy = (—1)"‘/ v (a+ y27)0n(y) dy.
R R

Letting j ~ oo with a fixed and using the hypothesis on ¥ proves that

v @
m!

0=1/f('")(a)/5m(y)dy= fRY"'Il_f(y)dyv
R

from which it follows that if fR Y™y # 0, then ¥ is a polynomial, a contradiction. ]

Corollary 6.5.17. Ify € CZ and {2/*y (2/x —k)}; kez is an orthogonal set, then
Yx) =0.

Proof. From the previous proposition, we have fR x™y(x)dx = 0forallm € Z*. Since ¥
has compact support, we can find a sequence of polynomials p, (x) that converge uniformly
to ¥ (x) on the bounded interval of support. From this it follows that fR [ (x)|2dx = 0,
which shows that ¢ = 0, as required. ]

We can obtain the same conclusion if we have a suitable decay rate.

Corollary 6.5.18. Suppose that ¥ € S and that for each A > 0

Jim. / M () dx =

If {24 (2x — k)}j kez is an orthogonal set, then ¥ (x) = 0.

Proof. From the hypotheses we can apply the prev1ous proposition to conclude that
Jrx"¥(x)dx = 0 for all n. Now we can estimate ¥ by applying Taylor’s theorem with
remainder to the complex exponential function. Thus

_ @rgnt '

N-1 .

; —2miEx)"
—2mitx __ (

¢ Z - N!

Multiplying by ¥ and integrating, we obtain
- SIN N
W) < l ¥ (x)] dx.

Applying the hypothesis shows that the right side tends to zero, hence ¥ (€) = 0, so that
the result follows from the uniqueness of the Fourier transform. |

6.5.4 Cohen’s Extension of Theorem 6.5.1

We have seen by an example that the positivity condition on the scaling filter in (6.5.3)
cannot be totally omitted. Nevertheless it can be relaxed to a condition that is both
necessary and sufficient for the existence of a scaling function of an MRA system.
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To motivate Cohen’s condition, note that the set K = [—1, 1] has the following
properties:

(6.5.13) U MK =R

(6.5.14) Y kE+h=1 ae.

leZ

Furthermore if (6.5.3) holds, then

(6.5.15) mo(%) £0, j>1¢&eKk.

Condition (6.5.14) was instrumental in proving that the sequence of approximants ®;
satlsﬁes the orthonormality condmon for each j, while (6.5.13) was necessary to 1dent1fy
lim; <1> with the 1nﬁmte product ® on the entire real line. Condition (6.5. 14) states that
K is congruent to [— 2] modulo 1. More precisely, for a.e. § € R, there is precisely
onel € Z so that & +l € K As a simple example, consider K = [0, 2] U [ ] This
can be transformed into [— ] by translating the second interval by 2 to the left. More
general examples can be obtamed by further cutting and pasting.

Now suppose that my is one-periodic and satisfies (6.5.4) and (6.5.5) of The-
orem 6.5.2. Then the infinite product (6.5.2) converges uniformly on compact sets.
Further, suppose that K C R is a compact set that satisfies the three conditions (6.5.13)—
(6.5. 15) Defining W so that Ci>0 = 1k, we see that ®( has orthonormal translates, since
Y ez | o€ + D|? = Y ez 1k (6 +1) = 1 a.e. Hence we can begin the inductive pro-
cess of Theorem 6.5.2 and define <I>j (&) = So(E2)mo(€/2) - - - mo(£/27), which also
satisfies the orthonormality condition. The limit function b e1? (R) by Fatou’s lemma.
If £27/ ¢ K then ®;(£) = 0. Otherwise we may solve for ®;(&) = ®(£)/P(£27) and
copy the argument in the proof of Theorem 6.5.2 to conclude that we have an estimate
on the real line: [<1> @&l =<cC [<I>(§)[ from which we can apply dominated convergence
to deduce that || ® ||, = 1, and that ® has orthonormal translates. Thus we have proved
half of the following theorem.

Theorem 6.5.19. Suppose that my is 1-periodic and satisfies (6.5.4) and (6.5.5).
Suppose further that there exists a compact set K C R such that (6.5.13)—(6.5.15)
hold. Then ®, defined by the infinite product (6.5.2), defines the scaling function
of an MRA.

Conversely, suppose that & € L'(R) N L*(R) is the scaling function of an
MRA for which ¥, |®(E + D> = 1,V& € R, and that the scaling filter my
satisfies (6.5.5). Then there exists a set K C R, which is a finite union of closed
intervals such that (6.5.13)—(6.5.15) hold.

Proof. The direct assertion has been proved in the above discussion. To prove the converse,
we begin with the orthonormality condition of ®:

Y1dE+nP=1, teR

leZ
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In particular, for each & € [—1, 1], there exists k = k(§) € Z so that |E + k)| > 0.
But & e L'(R) implies that ® is continuous. Hence there exists § = 8¢ > 0 so that
|ﬁ>(.§’ + k)| > C¢) > O for |& — &| < §. Since |<i>(0)| = 1, we can take k(0) = 0.
From the Heine-Borel theorem, we can extract a finite system of these open intervals which
covers [—3, 3]. Now we form a finite union U}, V; that covers [—3. 3], beginning with
Vo = [—80, 8]; replacing V; by V;© (VoU- - -UV,;_)N[—1, 1], we may assume that int V; are
disjoint. Now define K := ;":0(% + k(£)). Since 0 € V,, C K, we see that U2 | 2"K =R,
as required. Since {V;} is a finite partition of [—3, ], we have ZJ'.\':O 1,(§) = 1 ae. on
[—1, 1]. Then we compute the 1-periodic function

N
Y kE+D=) <Z 1y, i (6 + l))

leZ leZ \ j=0

N
= <Z Ly ke (6 + 1))

Jj=0 leZ
N

> 1y @

j=0

=1 aetel-11]

where we have used the fact that & + [ € V; 4 k(&) precisely once, when | = k(&)
(otherwise we would contradict V; C [—%, %]). But this sum is 1-periodic, so that it is
1 almost everywhere on R. Finally to prove (6.5.15) we note that from the above con-
struction |<i>(§)| > C; when & € Vj, hence for all £ € K, we have |ﬁ>(§ +&)=>=C=
min{Cy, ..., Cy}. Referring to (6.5.2), we see that forany J € Z*, & € K, 0 < C <
1) < IT/_;mo(£§27), so that we must have mg(§27) # O for all £ € K and j > 1,
completing the proof. ]

Remark. Thesum ), , ]<i>(§ +1)]?> = 1 under mild additional conditions, especially
whenever this series is uniformly convergent on compact sets. This will hold if, for
example, we have an estimate of the form <i>(§) = 0(|&]7#), |E| = oo, with B > % This
will be satisfied whenever &' € L!'(R). Cohen’s theorem yields an important corollary
that gives an optimal estimate for the interval on which my must remain positive.

Corollary 6.5.20. Suppose that my satisfies (6.5.4) and (6.5.5).

(i) If Imp(§)] = ¢ > 0 for |&] < %, then the infinite product (6.5.2) generates

an MRA.
(ii) There exists mg for which |my(§)| > 0 for |&] < éfor which (6.5.2) does not
generate an MRA.
Proof. 1t suffices to apply Cohen’s theorem to the set K = [—1, £]. Clearly (6.5.13)

and (6.5.15) are satisfied so that the direct part of the theorem applies. To see that this is
optimal, consider the example mo (&) = (1 +e~"%)/2. From Exercise 6.5.4 we see that the
infinite product (6.5.2) is the Fourier transform of 19 3;/3, which does not have orthonormal
translates. u
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6.6 CONVERGENCE PROPERTIES OF WAVELET EXPANSIONS

If the scaling function satisfies additional regularity properties, we can expect that the
series expansion f(¢) = ij cjx ¥k (t) will converge uniformly when f is continuous or
in L”(R) when f € L’(R), 1 < p < oco. Indeed, this has already been demonstrated in
detail for the Haar series expansion in Section 6.3. In the present section we will describe
a class of scaling functions for which one has these extended convergence properties, as
well as the properties of a.e. convergence.

Going beyond the qualitative fact of convergence, one can also discuss the speed
of convergence, when f has additional regularity. Indeed, in the case of Fourier series
in Chapter 1, we saw that the L>-Holder continuity of f is equivalent to a rate of con-
vergence result in the L? norm. The corresponding results for continuous functions in
the supremum norm are attributed to Jackson and Bernstein in the case of trigonometric
series. We will see below that corresponding results apply to a class of MRA systems
associated with a suitably regular scaling function ®.

6.6.1 Wavelet Series in LP Spaces
We begin with a scaling function that satisfies the estimate
(6.6.1) ()] = KQ2lt)),

where K : [0,00) — R is a monotone decreasing integrable function. In particular,
® € L'(R) and | [, (1) dt| = 1, by the remarks following the proof of Theorem
6.4.27. The projection operator P; is represented by the series

(6.6.2) Pif(D) =Y &) ( /;{ F©®i(s) ds)

keZ

=2/ Z Ot — k) /f(s)é(zfs — k) ds
R

keZ
=2/ f & (271, 2/5)f (s) ds
R

where the wavelet kernel

(6.6.3) O(t,5) =y _ Dt — k)D(s — k).
kel

Proposition 6.6.1. The wavelet kernel ®(t, s) enjoys the following properties:

(6.6.4) ® e Ll (R,

(6.6.5) O(1,5) = O(s, 1),

(6.6.6) f |2, 5)|ds < C < o0 and f d(t,5)ds =1,
R R

(6.6.7) [P (t, 5)| < CK(|t — s)).
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Proof. From (6.6.3), we have
[P, 5)| < ZI‘D(I -kl —1)] < oo,
k.

where the right side is the product of two periodic, locally integrable functions, which
proves (6.6.4). From the definition (6.6.3), (6.6.5) is immediate. Now

/1¢<r,s>|dss Zld>(t—k)|/ |O(s — k)l ds = @]l Y| —k)| < C
R R

keZ keZ

and

&(t, s)ds = ) o —k).
/R<rs>s (/R )2( )

But () =0forl e AZ, so that the Poisson summation formula shows that the last sum
has the constant value ®(0) = fn& ®, which proves (6.6.6). To prove (6.6.7) we write

¢(t,s)s< oo+ Y )K(2|t—l|)K(2|s—l|)

El=t=[s—tl/2  Lll=s|>]s—t]/2

<K(s—1) Y K@ls — )+ K(ls — ) Y K@l 1)

1eZ leZ

< CK (|t —sD),
which completes the proof. |

The main purpose of this section is to prove that P;f — f whenj — oo and
P;f — 0 whenj — —oo. We can reduce this to the study of Py by introducing the
dilation operator J, defined by

(6.6.8) Lf@) =fQ2'n, rel.

Proposition 6.6.2. We have the following properties:

(i) For any r € Z, we have the commutation relation P;J, = J.P;_, and the
norm relation ||J; f1l, = 2'1/”||f||,,, 1 <p<oo.

(ii) There exists a constant C, such that for each j € Z and for each f ¢
LP(R),1 < p < o0,

”P/f” = Cp”f”p-
Proof. From (6.6.2), we make the substitution 2/s = u to obtain

Pif(t) = qu>(2!:, wf w27y du

=Py(J_; )2 1)
= JiPoJ_; f(1),
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which is equivalent to the stated commutation relation. The norm relation follows from the
identity

1= [ reiopa=27 [ ifopas.
R

To prove (ii), we first do the case j = 0. Then

[Pof (O] =

/ D(t, $)f (s)ds
R

IPaflly < CIK *fllp, < CIKILNf1lps

where we have used Young’s inequality for convolutions. To treat the case j # 0, we use
part (i) to write

< C/ K(lt = sDIf)lds < CIKN N flloo
R

1P 1l = I;:(PoJ-) fll,
=27"I1PoJ £y
< CIKIL 27710 £,
= ClIK 111 £1l,- ]

These bounds allow us to formulate and prove a general theorem on the conver-
gence of the small-scale projection operators.

Theorem 6.6.3. Suppose that © is the scaling function of an MRA and satisfies
the bound (6.6.1).

(i) Iff € Buc(R), then |Pif — flloo = 0 when j — oo.
(ii) Iff e P(R) for 1 <p < oo, then ||P;f —f|, = 0 whenj — 0.

Proof. First we note that P;1 = 1, which follows from fR ® (¢, s)ds = 1. This allows one

to write f () — P, f(£) = 2/ [, ®(27t, 2/5)[f (t) — f(s)] ds. Since f is uniformly continuous,
given € > 0, let § > 0 be chosen so that | f(¢) — f(s)| < €/2C for |s — t| < §. We write

fO-Pf)=2 (/ +/ ) () —f()]PQ2'1,2'5) ds.
|s—r]<8 ls—t|>8
We apply the bound [, | (¢, 5)| ds < C in the first integral to conclude that this term is less

than €/2, for all j. To estimate the second integral, we use the boundedness to obtain the
upper bound

20 fllee / 21| (21, 2J5)) ds
|s—t]>8
< Cllflloo/ 2K 2|5 — t]) ds
|s—t|>8
= Cllflloo/ K(ju — 27t)) du
|u=27t|>248

- cnfnwf K (v) dv,
lv[>2/8

which tends to zero whenj — 00, by the dominated convergence theorem. This is a uniform
bound, independent of ¢ € R, from which we obtain the asserted uniform convergence.
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To prove the L? convergence, we first discuss the case p = 1. From the uniform
boundedness ||P;fll; < C|fl, it suffices to prove the L' convergence on the dense set of
continuous functions with compact support in [—R, R]. For such an f, we have

If = Piflh = /

(L

£ () — P dt + / \P,f ()] dt.
2R f|>2R

The first integral tends to zero by virtue of the uniform convergence already proved. To
estimate the second integral, we write

f [P f@)]dr < llflloo/ (f 27| (27t zfs)lds) dt
|t|>2R 1t|>2R |s|<R
c/ / 2K (2'|s — t|) dt ds
|s|<R J|t|>2R
C/ / 21K (2|5 — t|) dt ds
Isi<R Jt—s|>R

5C/ / 2K (27 |ul) duds
|sl<R J{u]>R

SZCR/ KWw)dv -0 Jj— 00,
|v|>2/8

IA

IA

which completes the proof of L! convergence.
To treat the case 1 < p < o0, it again suffices to deal with continuous functions with
compact support. In this case we have the bounds

If @) = PifOF < IIf = Pif I If @) = Pif ()]
/le(t) —PfOF < |If - PifI%! /R |f(®) = Pif(0)] dt
= If = Bif I NF = Pif s

which tends to zero, by the convergence in case p = 1, already proved. This proves
the theorem. [

Remark. An alternative approach to the proof of Theorem 6.6.3 is to utilize theorems
on approximate identities, which were proved in Chapter 2. We begin with the bounds

IPif@) —f@0 < C2jAlf(t) —f($)IK (2|t = s])| ds,

which shows that the left side is majorized by K; » f — f where K; is a family of kernels
defined by K;(s) = 2/K(2/s), to which we can apply Theorem 2.2.21 from Chapter 2.

It is interesting to compare the relative simplicity of the above proofs of L? con-
vergence with the difficulty in proving L” convergence of trigonometric series. For
trigonometric series we have two main obstacles: (i) convergence does not hold in case
p = 1 and (ii) it is nontrivial to prove uniform L” boundedness of the operators P;. In the
case of MRA wavelets, the basic hypothesis (6.6.1) on the decay of the scaling function
easily provides the necessary uniform bounds, as we have seen.
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6.6.1.1 Large scale analysis

To complete the analysis of L” convergence of general wavelet series, it remains to prove
that P;f — 0 whenj — —o0. As in the case of Haar series, we expect only that this
will take place for L”(R), 1 < p < 0o and in the space Cy(R).

Proposition 6.6.4. (i) If f € Cy(R), then |Pjfllooc — O whenj — —o0. (ii) If
fel’R),1 <p < oo, then |Pifl, = 0whenj — —oo.

Proof. We begin with f € Cypo(R). If f(£) = O for |z| > R, we can write

R
(6.6.9) P..f@t) = 2”'"C/ FDPQ27,27"s)ds
—R

R
< 2_'"C/ [fIKQ™™ |t —s])]ds
—R

<27"C|fll=2RK(0) — O, m — 0o.

But Cy(R) is dense in Cy(R) where we have the estimate ||P; fllcc < Cll fllco-
To prove the L? convergence, it suffices to take f € Coy(R). For |¢| < R the estimate
(6.6.9) shows that ffR |P_ f ()P dt — 0.Fort > R we make the substitution v = 27" (t—s)

to write
2—m(I+R)
Paf @1 <10 [ KONy
_2'"! I+
< I flle2™™RK(27"(t — R))
[o9) o0
/ [P f@)I1Pdt < ||f|l’;o2_'"”/ [KQ™™(t — R)I" dt
R R
o0
= IIfIl’;oT”"’2"’/ |K(s)I” ds
0
= I £1IE,2" P K [P — 0
with a similar estimate for r < —R. |

In exact parallel with the case of Haar series, the large scale projection operators
to do not behave well on L' (R).

Exercise 6.6.5. Letf € L' (R). Prove that [ P;f(t) — [y f(2) dt when j — oc.

This means that we must restrict the range of p when formulating a general L”
convergence theorem for wavelet series. Similarly, we must restrict to Cy(R), since the
identity P;1 = 1 shows that P; f — 0 is false in general when f € B, (R) forj — —oo.

Combining Proposition 6.6.4 with Theorem 6.6.3, gives a complete picture of
the convergence of one-dimensional wavelet series in the spaces Cy(R) and L”(R),
1 < p < oo. This can be restated as a separate theorem.

Theorem 6.6.6. Suppose that the scaling function ® satisfies (6.6.1).

(i) Iff € Co(R), then the sum Y ' 3" 7 Pu(t) [ f(5) P (s) ds converges
uniformly to f when m, n — oo.
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(ii) Iff € L’(R), 1 < p < oo, thenthesum_"__, > 17 P (1) [ £(5)P(s) ds
converges to f in LF (R) when m, n — oo.

6.6.1.2 Almost-everywhere convergence
We can prove that the projection operators P;f converge almost everywhere when j —
00, by using the techniques appropriate to monotone kernels from Chapter 2.

Theorem 6.6.7. Suppose that the scaling function ® satisfies (6.6.1) and let f €
L'(R). Then Pif(t) — f(t) for every t in the Lebesgue set of f, in particular
almost everywhere.

Recall that the Lebesgue set of f, Leb (f), is the set of ¢ for which lim,—.oa™" [ | () —
f@+uwldu=0.

Proof. From the previous computations, we write

If@®) =P f(0)] < 2j/ | () = f()IK @]t = s]) ds
R

oc 0
=(/ +/ >|f(t)—f(t+2‘jV)|K(V)dV-
0 -0

To treat the first integral, we define

G(u) :=/ [f@®) —f@+w)|dw.
0

If t € Leb (f), then G(u)/u — 0 when u — 0 and we have the bound |G(u)| < C|u| for
all u. Then we can set € = 27/ and obtain

oc

(6.6.10) /wK(v)lf(t) —f(t-i—ev)ldv:/ KW)G'(ev) dv

0 0

_ /w Kw)d (G(Ev)>
0 €

- _/ vak () Z 4y,
0 €V

The monotonicity of K implies that vK(v) — 0 and a partial integration shows that

—/mvdK(v)dv=/ocK(v)dv < 00

0 0

so that we can apply the dominated convergence theorem to conclude that (6.6.10) tends
to zero with €. A similar analysis applied to the integral for —oo < v < 0 proves that
Pif(t) = f(t) when t — oo. |

Corollary 6.6.8. Suppose that f € L'(R) and that f is continuous at t. Then
Pif(t) = f(t) whent — oo.

Indeed, if f is a continuity point, then it is also a Lebesgue point of f.

Exercise 6.6.9. Extend Theorem 6.6.3tof € L”,1 < p < oo.
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We also note that if f € L' (R), then Pif(t) — 0 when j — —oo. This follows
from the estimate

P <2 fR KQls — 1)If(s)] ds
< 2KO)IfI
-0 j — —oo.

This observation can be combined with Theorem 6.6.3 to obtain a statement on the
almost-everywhere convergence of the bilateral wavelet series.

Corollary 6.6.10. Suppose that the scaling function ® satisfies (6.6.1). Then for
any f € L'(R), the wavelet sum Z;l:—m cjik Wik (t) converges for a.e. t, when
m,n — o0. ’

6.6.1.3 Convergence at a preassigned point

It is natural to expect that the wavelet series will converge to the normalized value of f
in case f has a simple discontinuity. In the case of Fourier series one needs additional
regularity conditions in order to ensure this convergence. In the case of MRA wavelets
it is sufficient that the wavelet kernel satisfy the mild normalization condition

(6.6.11) foo (@, 5)ds = % :/ ®(t, 5) ds.

o0

Proposition 6.6.11. Suppose that the scaling function ® satisfies (6.6.1) and that
the wavelet kernel satisfies (6.6.11). Suppose that f € LP(R) for some 1 < p < oo
and that there exist the one-sided limits f(t + 0) = lim,, f(s) and f(t — 0) =
limgy, f(s). Then

i Pif() = 5 [ +0) 4/ - 0]
Proof. Using (6.6.11), we can write
S0+~ 0) = Pf () = f " 0@ P +0) — f(5)]ds
Y f @ Y9 +0) — f)]ds.

From the proof of Theorem 6.6.3 we see that both of these integrals tend to zero when
j — oo. [ ]

6.6.2 Jackson and Bernstein Approximation Theorems

In this subsection we formulate results that relate the speed of convergence of wavelet
series to the smoothness of f. We focus attention on the rate of decay of ||P;f — f|l,,.
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In order to measure the smoothness of a function, we introduce the L? modulus of
continuity:

(6.6.12) wp(f38) = Sup 1fC) =fC=Mlp.

This is certainly defined if f € L”(R), but may also be defined more generally, e.g., if
f = 1. The elementary properties are detailed as follows:

Proposition 6.6.12. The L modulus of continuity satisfies the following condi-
tions:

(i) & — wp(f; 8) is monotone increasing.

(ii) Iff € LP(R), then w,(f; 8) — 0 when § — 0.
(iii) wp(f; 81+ 82) < wp(f; 1) + wp(f; 82)
(iv) wp(fi +12;8) < wp(fi; 8) + wp(f; 8)

(v) wp(Jaf; 8) = 27Pw,(f;298)

Proof. Property (i) comes directly from the definition. Property (ii) is immediate for con-
tinuous functions with compact support, which are dense in L? (R), hence the general case.
Properties (iii) and (iv) follow from the triangle inequality for the L” norm. Property (v) is

a direct computation when we recall the defining properties of J,f from (6.6.8). ]
We define the space
(6.6.13) MC,(R) :={f : w,(f;8) < 00 for all 5 > 0}

Exercise 6.6.13. Iff € MC,(R), prove that | fIP € L._(R).

In order to prove suitable approximation theorems, we need to consider a smaller
class of scaling functions, defined by an estimate of the form

C

Lemma 6.6.14. If O satisfies (6.6.14), then the kernel function ®(t, s) satisfies
the estimate

C
(6.6.15 D, 9| < ———=.
) 9] = T s
Proof. The proof is identical to the proof of (6.6.7) in Proposition 6.6.1. ]
The direct approximation (Jackson’s estimate) is the following statement.

Theorem 6.6.15. Suppose that the scaling function satisfies (6.6.14). Then there
exists C = C, such that for all f € MC,(R)

(6.6.16) If = Pifllp < Cap(f;27).
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Corollary 6.6.16. If w,(f; 8) < C8* for some a with 0 < o < 1, then ||P;f —
fl, <27

This is a direct counterpart of the corresponding result for trigonometric approximation,
proved in Chapter 1 in case p = 2 or p = oo.

Proof of the theorem. First we do the case j = 0. We pick a > 0,5 > O so that B =
a+bandap > p+1,bp’ > 1. Applying (6.6.15), Holder’s inequality, and the Fubini
theorem, we obtain

p
Ilf-Pofll,‘iS/m(/R Lf () —f(5)||¢(t,5)|d5> dt
SC/( @ —f(t+u)]du)pdt
R \r  (1+u)?
//
SC/( wdu) (/ lel,{)ppdt
R \Jr (14 |uh® r (1+ [u])?

<cC / L)
R

On the interval u| < 1 we apply the monotonicity of w, to majorize this contribution to
the integral by Cw,(1). On the interval |u| > 1 we apply the subadditivity property (iii)
to write w,(f; u) < 2|ulw,(f; 1), hence this contribution to the integral is majorized by
Caw,(f; l)fiul>1 [ul? /(1 + |u|)®du < oo, sinceap > p + 1.

To prove the estimate for j > 1, we use the scaling properties of J;.

Pif —f =Jj(Po = DJ;f
1P f = fll, = 27°11(Po — DJ_if Il
< C2¥Pw,J_if; 1)
= Cw,(f; 27),

where we have used the scaling property (v) in the last line. The proof is complete. ]

Remark. This proof can be rendered more transparent by replacing the Holder
inequality with Minkowski’s integral estimate: beginning with

Pof () —f ()] < fR £+ u) — F 01K (w)du,
we have

IPof —fll, < fR w0y (f WK () du

<wp(f; 1) K(u) du+ 2w,(f; 1) lu|K (u) du,
lul<1 lul=1
which provides the required bound.
This result can be reformulated in terms of an estimate of the best approximation
by elements in the space V;. Let s;(f) = infgev, || f — gllp, which is the distance from
f to the subspace V;. If p = 2, then P;f provides the best approximation, so that
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5;(f) = I f — Pjfll2. In general, we have || f — P; f1l, = 5;(f). On the other hand, given
€>0,letg € Vjsothat |lg —fll, <s;(f) + €. Then we can write

f=-Pf=(—-8+@E—Pf
=(f-8+Pi—f
If=Pifll, < IIf —gllp + IPillppllg — £l
<Clg—fl,
< C(si(f) +€)

where we have used the uniform L” boundedness of the projection operators P;. But
€ > 0 was arbitrary so that we have the two-sided bound

s5i(f) < If = Pifll, = Cs;(f)
leading to the following restatement of Theorem 6.6.15.
Corollary 6.6.17. Suppose that the scaling function ® satisfies the estimate

(6.6.14). Then the distance from f € MC,(R) to the subspace V; satisfies the
bound

5i(f) < Cpp(f527).

We now formulate the Bernstein inequality, for which we impose a condition of
smoothness, namely that the scaling function have a continuous derivative ®’(t) which
satisfies an estimate

(6.6.17) |@'(0)] < Cle @)
for some C > 0. From this it follows that the wavelet kernel is estimated by

|+ h,s) — D(t,5)| = Z(CD(t +h=D—®@—1)Ds—1)
leZ

< ClhIK (|t — s).

Theorem 6.6.18. Suppose that the scaling function satisfies (6.6.1) and (6.6.17).
Then there exists a constant C,, so that for any f € V; N L?, we have

(6.6.18) wy(f; 8) < C, min(278, DI f[l,-

Proof. First we do the case j = 0. Thenf = Py f € V, and we can write

fe+h—f)= /[d>(t+h, s) — &, )1f(s)ds
R

lf+h) —fO] < lhlLK(lt —sDIf(s)lds = [hIK * | f]

1/p
( fR F+h) —f(t)l"dt) < RIE I F T,
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which proves the resultin case || < 1.If || > 1, then w,(f; h) < 2|l fll,, which completes
the proof in case j = 0.

If j # 0, then f € V;iff J_;f € V, and we can use the scaling properties of w), to
write for f € V;

w,(f:8) = 27" w,(J_;f; 2/8)
< C279/P min(2/8, VIIJ- fl,»
= Cmin(2’8, DI fll,- n

The Bernstein inequality (6.6.18) can be combined with the Jackson inequality to
obtain a characterization of the L” Holder continuity in terms of the speed of conver-
gence to zero of ||P;f — f|,. The method follows closely the corresponding proofs in
Chapter 1.

Proposition 6.6.19. Suppose that the scaling function satisfies (6.6.1) and
(6.6.17). Then f € LP(R) satisfies |P;f — fll, < C27% for some 0 < a < 1,
if and only if f satisfies the LP Holder condition wy,(f; 8) < C&%.

Proof. The direct statement that [[P;f — f, < C27* is an immediate consequence of
Jackson’s estimate, as previously noted. To prove the converse, we define Q; f = Pj. —P; f,
hence [|Q;fll, < C27%, Given h > 0, let m = m(h) be defined by the inequalities
2m=1 < 1/h < 2™. Then we write

m—1 oc
fO =Pof®+Y 0if®+) Qf®
Jj=0

Jj=m

m—1

Fa+h) —f@) =Pof(t+h) — Pof(t) + Y _[Q,f(t + k) — Q£ (D]
j=0

+ Y 10 f(t+h) — O f (D]

j=m

The first term is Lipschitz continuous, from (6.6.17). To estimate the first sum we have from
(6.6.18)

m—1

m—1
Y NQfC+R) = O fll, <D 2hIQif1,
j=0 j=0

m—1
<Chy 227
=0

< Ch2m(l—o()
= Ch®.
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To estimate the second sum we write

> 10+~ Qf®l, <2 10fl,

Jj=m j=m

< Cizﬁ"’

j=m
= CQ M
= Ch*,

which completes the proof. ]

The alert reader will note that the converse Proposition 6.6.19 has been stated only
for 0 < o < 1, whereas the direct result following Jackson’s inequality is valid for
0 < o < 1. Indeed, we see that the proof of the converse proposition breaks down if
a=1

Exercise 6.6.20. Suppose that |P;f — fl, < C27. Prove that w,(f;8) <
Cslog(1/8) for 0 < h < 3.

6.7 WAVELETS IN SEVERAL VARIABLES

We conclude this introduction to wavelets with a glimpse of the multidimensional theory.
The one major change in passing from one to several variables is the need for a system
of wavelets, in contrast with the single wavelet W, which suffices in the one-dimensional
case. In order to motivate this, we consider two important generalizations of the one-
dimensional Haar expansion.

6.7.1 Two Important Examples

Without leaving the one-dimensional setting, we can already see the need for several
wavelets when we try to generalize the Haar expansion to describe an orthogonal expan-
sion associated with a b-adic subdivision of the real line, where b € {2, 3, .. .}. Consider
the projection operator

(k+1)/b? k +

. k
Pif () i= b f fordy,  E<xs
kb b/

bi

and the limit relation lim;_, o, P; f(x) = f(x) a.e. where f € L?(R). In order to transform
this into a wavelet framework, we begin with the Haar scaling function ®(t) = 10,1)(¢)
in the context of the scaling equation

() =dbt)+ Pt —1)+---+ P(bt — (b—1)).

Defining V; = P; (L*(R)), W; = Vi1 ©V;, we need to exhibit a basis of the space W, the
orthogonal complement of V; in V;,. Itis clear that on any interval [k/b/, (k+1)/b/) the
space W; has dimension b— 1. Beginning with any basis, we can apply the Gram-Schmidt
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procedure to obtain an orthonormal basis. For example, in case b = 3, we define

1 ifo<r<i
vi={-1 ifi<r<?
0 ifi<r<l
ifo<r<3

Ul(t) = )
® -2 iff<r<l1

Itis clear that ;| &)W (1) dr = 0 = [}/ D()W2(r) dr and that [ W' (1) W(r) dt = 0.
Therefore we have an orthogonal basis of V), © V; on [0, 1]. Normalizing these functions
we obtain an orthonormal basis of L2(R) by {W'(3/t — k)}jez.kez, (W2 (3/t — k)}jez ke
This demonstrates the necessity of two different wavelets.

In general, we will need b — 1 different wavelets in order to generate L (R).
These can be obtained by applying the Gram-Schmidt orthogonalization to the Haar
functions {H (bt — k)/2}5Z5. For example in case b = 3 we can take W' () = H(3t/2),
W2(r) = 2H[(3r — 1)/2] + H[(31)/2].

As a second example, we consider the problem of generalizing the Haar series to
L?(R?). We begin with the projection operator

(k+1)/20 pU+1)/2! k k+1 I 1+1
— 9% e _
Pif(x,y):=2 » // f(s,t)dsadt, (x,y) € [2]. 57 )x [2j, 57 )

and the limit relation lim;_, o, P; f(x,y) = f(x,y), ae. (x,y) € R2. As above, we let
Vi = Pj(Lz(]R)) and W; = V;,, © V. The associated scaling function is ® (¢, ;) =
1[0,])(tl)1[0,1)(t2) with scaling equation

Ot, 1) = P21, 26) + P2t — 1,26) + ©2t,26, — 1) + P21y — 1,28, — 1).
Letting H (¢) be the standard Haar function, we consider the products

W', 1) = H(t))1j0,1)(12)
WO (11, 12) = Lio.) (1) H (t2)
Wt ) = HEDH(®).
It is clear that these functions are orthonormal and orthogonal to the scaling function

®(t;, ;). We obtain an orthonormal basis of L>(R?) by considering the three sets of
functions

(W07t — k))jezreze, (W (27t — K))jezpeze, (W' (27t — K)}jezkeze-

This is the two-dimensional Haar wavelet basis, which is constructed in a canonical
manner beginning with the one-dimensional Haar wavelet basis. If we perform the cor-
responding construction in R¢, we would need a system of 2¢ — 1 basic products. This
general construction is described in the following subsection.
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6.7.1.1 Tensor product of wavelets

In order to generalize the previous example, we let (€, . .., €p) be a multiindex, where
€ € {0, 1}. If {®, ¥} is an MRA ‘wavelet, the symbol W€ is interpreted as ® for ¢ = 0
and is interpreted as W is € = 1.

Proposition 6.7.1. Let {®,, W, } 1 <y<q be a set of one-dimensional MRA wavelet
systems. Let V; be the span of ®1(2/t, — y)®2(2/ty — y) - - ®4(2/ty — ) where
y €Z%andj € Z.

Then W, := V| ©V; is spanned by

where (€, . . ., €;) ranges over all 24 — 1 multiindices withQ < €+ -+ ¢4 < d.

6.7.2 General Formulation of MRA and Wavelets in R?

We now abstract these examples to formulate the MRA concept in R¢.

Definition 6.7.2. A d x d matrix A is called a dilation matrix if it has integer
entries with eigenvalues larger than 1 in absolute value.

In case d = 1, a dilation matrix is defined by an integer b € {2,3,...}. The
two-dimensional Haar system is associated to the dilation matrix

2 0
A= (O 2) .
Definition 6.7.3. A wavelet set with respect to a dilation matrix A is a set
Wl v e L2(RY) so that
{| det AV/>W" (Wx — 1)}y eze jez 1 <rss

is an orthonormal basis of L*(RY).

Note that the factor of | det A}/? is inserted in order to preserve the norm of the
functions W".

Definition 6.7.4. A d-dimensional MRA with respect to a dilation matrix A is an
increasing sequence of subspaces {V;} C L*(R) defined for j € Z with

.cVacVocViC--

together with a scaling function & € L*>(R) such that

(i) UX_.V;is dense in L*(R), nX_..V; = {0}.

(ii) f € V;if and only if f(A™/-) € V.
(tii) {®(x — ¥)}, ez« is an orthonormal basis of Vj.

In the previous section we have exhibited two examples of such MRA systems.
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6.7.2.1 Notations for subgroups and cosets

If A is a dilation matrix, the image of Z¢ under A is an additive subgroup of Z¢, denoted
A(Z%). The quotient group Z?/A(Z¢) is obtained by applying the equivalence relation:
v = wiff v —w € A(Z?) to the points of Z¢ to obtain a collection of cosets. These cosets
may be labelled by coset representatives ki, ..., k, € Z¢ with k; = 0. Thus we have
the disjoint union

m

6.7.1) z¢ = Jt + 4@ =J | @ +A0).
=1

i=] )/EZ‘I

Note that A maps Z¢ to a proper subset of Z¢, but A is invertible on R, since ¢ :=
|detA| > 1. In particular, for any two sets Cy, C C R?,

A(CIUG) =A(C)HUVA(G),  ACING) =AC) NA(G),
ATNCUG) =AT1(CHUATI(C), ATH(CING)=AT(C)NAT(C).

Proposition 6.7.5. The number of elements in the quotient group 74 JA(Z%) is
equal to | detA|.

This will be proved using the following simple lemma on sets whose integer
translates cover RY.

Lemma 6.7.6. Suppose that Q C RY has integer translates that cover R?:
Uyeze(Q +y) = R%. Then |Q| = 1 with equality iff these integer translates
are a.e. disjoint:

0l=1 iff |0N@+y) =0, VyeZ! y=+£0.

Proof. Let Q) := [0, 1]‘f ) = ZyeZ" 1o(x — y), an integer-valued periodic function
on RY with f (x) > 1, by hypothesis. Clearly

(6.7.2) 10l ZL/ lo(x)dx = Z/

yezd Y Qoty

lQ(x)dx:] f(x)dx > 1.
Qo

If |Q| = 1, then (6.7.2) shows that fQO(f(x) —1)dx =0, hence f(x) = L a.e.x € R?, hence
fora.e. x € R the series defining f (x) contains only one nonzero term, in particular for any
y #0wehaveae. 1 =f(x) > 1p(x) + 1p(x — y), which proves that |Q N (Q + y)| =0.
Conversely, if |Q N (Q + y)| = 0 for all ¥ # 0, then the series defining f(x) contains a.e.
at most one nonzero term, since x — y; € Q and x — y, € Q contradicts the hypothesis with
y = y; — 2 and x replaced by x — ;. Thus f(x) < 1 a.e., which implies that f(x) = 1 ae.,
hence (6.7.2) implies that |Q| = 1. |

Proof of Proposition 6.7.5. Using the disjoint union (6.7.1), we can write RY as the a.e.
disjoint union:

m

R'=J@o+w = @+k+A0).

vezd =1 yezd
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Let Q be the ae. disjoint union Q = U™ A~'(Qy + k), a set of measure |Q] =
m|det(A~")| = m/q. Then for y € Z¢ we can write

0+y=JA" Qo +k+AW)

i=1

Ue+n=UUJAa"@+k+Ax)

yezd yezd i=1

=A"" (U L'"J<Qo+k,~ +A(y))

yezd i=1
=A"' R
=R?

so that the integer translates of Q cover R¢. But |Q N (Q + y)| = 0 for y # 0, since

4 (eNe+n)|=a@Nuw@ +a0))|

O(Qo +k) () CJ(QO +k +AX))
i=1 i=1
=0.

Therefore we can apply Lemma 6.7.6 to conclude that 1 = |Q| = m/q, which was to be
proved. n

6.7.2.2 Riesz systems and orthonormal systems in R¢
It is straightforward to generalize the notion of Riesz system to R.

Definition 6.7.7. A set of functions {®y} € L*(R?) is a Riesz system iff there
exist constants 0 < ¢ < C < 00 such that for any finite set of complex numbers

(ar)

2
ey lal < “ Zakq’kHz <CY |l
k 3 k
In particular we have an orthonormal sequence if and only if c = C = 1.
Proposition 6.7.8. Let F € L*(RY).
o {F(x — ¥)},cze is a Riesz system iff ¢ < ¥, 54 |F(§ = D> < Cae. £ € R

e The sequence is orthonormal iff Y, 74 IFE—DP =1ae.

e IfG € L*(R%), thep the set of translates {G(x — ¥)}yere is orthogonal to F if
and only if Y .50 G(E —DF(§ — 1) =0a.e. & € R
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Proof. The Fourier transform of Y, axF(x — k) is Y, axe ™ *5F(§) = AE)F(E).
Therefore from the Plancherel theorem and periodization, we have

H D_wF(x—k) Hz =/ JAE)IP1F &)1 dt
k RY

/[ y LA PIFE + D dt
0,1

lezd

- [ L aor (Z |F<§+l>12> dt.
[0,1]

lezd

Ife< e IIA'“ (& + I)|> < C, then Parseval’s theorem for Fourier series yields
Slara-bP<C [ A©FE=CY laf
k .14 kezd
and
S laF (- B = ¢ / AR =c Y laf?,
k [0,1) kezd
which proves the Riesz property. On the other hand, if {F(x — k)};¢z¢ is a Riesz system,
then for any trigonometric polynomial A, we have
_ o A®P (Sreas 1P € + D) dt
ﬁo ”d |A(§)I2d€ -

First we take a sequence of trigonometric polynomials that converge boundedly to the
indicator function I1%, 1, 5,1, then we let b; — a; to conclude that for a.e. £ € R?, ¢ <
> ez |F(& + DI|* < C. The orthogonality statement is proved by writing

<C.

” ZaJ’(x)G(x — k) ”2 = /Rd A(E)I;?(g)f;(g — D dt
k

=Y [ A®F©GE -

ezt TN

- /{0 LA© (Z F&)GG - z)) ds.

lezd

The inner sum is a.e. zero if and only if all inner products on the left are zero. ]

6.7.2.3 Scaling equation and structure constants
Since V) is spanned by translates of {®(Ax — y)}, ¢z¢, there exist constants a,, so that
we have the L? convergent sum

(6.7.3)

dx) =

Y a,®Ax—y)

yezd

where the structure constants satisfy Zyezd la, | < oo. Relation (6.7.3) is the scaling
equation for wavelets in R and plays the same role here as for d = 1. The scaling filter
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is defined by

1 A
6.7.4 = “2miky
(6.7.4) mo(&) maMEQ@e
yEeL

The Fourier transformed equation, proved below, is written

(6.7.5) D(€) = mo((A™)E)D((A™")8).

Then we have the counterpart of Theorem 6.4.27.

Theorem 6.7.9. Suppose that ® € L*(R) is such that

(i) The translates {®(x — y)}, ez« are orthonormal.
(ii) ®(x) = ZyeZ" a),CD(A)E — y), an L?-convergent sum. R
(iii) The Fourier transform ® (&) is continuous at & = 0 with |®(0)| = 1. Define
V; = span {®(A'x —y)}, cze. Then {V;} defines an MRA system with respect
to the dilation matrix A.

The proof follows the one-dimensional development and is left to the follow-
ing exercises. As before, the MRA property reduces to the behavior of the projection
operators P;, which satisfy the uniform boundedness property in L2 : ||Pj[22 = 1.

Exercise 6.7.10. For any f € L*(R), lim;_, oo P;f = 0.
Hint: First prove this on the dense set of continuous function with compact support.

Exercise 6.7.11. Let f € L*(RY) with a Fourier transform f" that is bounded
and supported in [—R, R)? for some R > 0. Then for all j sufficiently large, we
have

6.7.6) Hﬂﬂf=%}m”ﬂ®ﬁ¢mﬂﬁfﬁ-

Hint: Imitate the proof of Lemma 6.4.29.

When we combine the continuity hypothesis (iii) with the identity in Exercise
6.7.11, we see that for a dense class of f € L*(RY), limj_, o0 [|P;fll2 = |l fll2, which
implies that P; f — f forall f € L2(RY).

6.7.2.4 Existence of the wavelet set
It now remains to construct the wavelet system {W!, ..., W*} as previously announced.
To do this, we first need to describe the orthogonal complement W; = V; © V.
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Lemma 6.7.12. Suppose that ® is the scaling function of an MRA with respect
to the dilation matrix A. Let f € V. Then the Fourier transform satisfies

6.7.7) FA%E) = mp(&)D (&)

where my € L*(RY/Z%) with

2
I£115 > yezlay]
6.7.8 (&)|1>dt = 2 —
6.7.8) /[0,,,1, Im §)17ds = AT | det A2
Proof. Any f € V| has the L? convergent expansion
6.7.9) fx) = Z a, ®(Ax — y).
yeZ‘l

We must compute the Fourier transform of ¢(Ax — y). We make the change of variable
y = Ax — y to write

) 1 -1
b (Ax — —27iEa dx = d e—27r1£-/\ O+y) d
</R" ( . )/)6 | detAl Rd ())) 4

:L,-zmew'(w/ q)(y)efzms-r'n) dt
R
— ot '(y>&>((A71).S).

We define

1 —2miy-&
(6.7.10) my(§) = m;: age”E,

,/EZ"
Taking the Fourier transform of (6.7.9), we have
(6.7.11) FE =m A" 6)d@A ).

Letting £ = A*n, we obtain (6.7.7) as written.
Now we compute the L norm in two different ways. From (6.7.9) we have

[ irrac= 3 1o [ 10— pPas
d R4

VEZ‘I

1
> lay = IdetAl | |m(€)[ dt.

| detA| i 10,1

On the other hand, from (6.7.11), we have
/R FaePde = / iy ORI de
d R"

=) Imy €)*1DE + )1’ d&

Jezd 1011

- f iy )1 d
{0.1)4
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where we have used the orthonormality of {®(x — y)} in the last step. Combining these
two calculations, we have

/ Imy©)P di = / FAePde
[0,1)¢ R4

_ 1 2
= TdetA| /Rd @I dx

_ Zyezd laylz

]
|detA[2

The orthonormality properties of ® and the wavelet basis are translated into unitary

properties of the functions my, as follows. We rewrite the scaling equation (6.7.5) as

(6.7.12) dA*8) = m(©)d().
We denote by I'y, ..., I'; a set of representatives for A*(Z%) and their antecedents by
ki, ..., kg, defined by A*(k;) = T';. The following identity is useful for dealing with

orthogonality.

Lemma 6.7.13. Let ® be the scaling function of an MRA, with scaling filter mg.
Letf,g € Vi withf(A*§) = my (§) P (§), 8(A™E) = my(§)D(§). Then

R _ q
(6.7.13) D FAE+DRAE+D =) mp(E + k)ing(€ + ko).
lezd i=1

Proof. We break up the sum (6.7.13) according to the cosets defined by A*(Z¢). Each point
of Z¢ is uniquely represented as [ = A*y + I';, where 1 <i < gand y € Z“. Thus

FA*E + Ay +TDRAE +A"y +T) =mp(E +y +k)mg(E +y + k)| DE +y + k)
= my(& + k)mg (€ + k)| DE +y +k)|?

~ < a 2
D FAEADRAE+D =) D mpE +k)mg(§ + k) DE +y + k)

lezd i=1 yezd

9
=) mpE + kg€ +h) Y 1DE +y + k)
i=1

yezd
q
=) mp(E + k)ing(€ + k)
i=1
where we have used the orthonormality of ®(x — k) in the last step. |
This identity is used repeatedly in what follows.

Proposition 6.7.14. Let ® be the scaling function of an MRA with scaling filter
my. Then the scaling filter satisfies the condition that for a.e. £ € R%, we have

gq—1
(6.7.14) > ImoG + k)P = 1.
r=0
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If my, ... ,my_ correspond to the wavelet basis {W', ..., Wi~} then the row
vectors (m;(§ + ki), ..., mi(§ + k,)) are mutually orthogonal unit vectors in C4
fori=1,...,q — 1 and are orthogonal to the vector (my(§ + ki), ..., mo(§ +
ky)). Conversely, if we have I-periodic functions m(§), ..., my_1(§) with the
aforementioned orthogonality properties, then defining fi, ..., f;—1 by (6.7.7), we
obtain a wavelet set.

Hence a d-dimensional wavelet is described by a g x ¢ unitary matrix just as in the
one-dimensional case, where g = 2.

Proof. We take f = g = @ in (6.7.13), noting that the left side is a.e. equal to 1, by
orthonormality, hence (6.7.14) follows. Now if we have a wavelet set W', ..., W9~!, then
we take f = W', g = & to deduce the orthogonality of the first row with the other row
vectors. Taking f = W/, g = W proves the mutual orthonormality of the remaining row

vectors.

Conversely, if we are given 1-periodic functions my, ..., m,_, with the aforemen-
tioned orthogonality properties, we apply (6.7.13) repeatedly to deduce that the functions
{fitx — k) }1<i<g—14eze constitute an orthonormal family. |

Remark. 1t is noteworthy that the number of wavelets is equal to ¢ = | detA|, inde-
pendent of any details of the scaling equation.

6.7.2.5 Proof that the wavelet set spans V, © V,
Proof. 1t remains to prove that any f € V, © V, is an L? convergent sum of linear combi-
nations of integer translates of w! .., Wil Since V is spanned by {®(Ax — Y)heza, it
is sufficient to prove that functions of this form are equal to their projection on the integer
translates of &, W', ... Ww9! The following computation is carried out in the case y = 0.
Using the notation B = A*, the projection of ®(Ax) is written

Y ad@ -+ Y GV -k 4+ Y T x—k).

kezd kezd kezd

Applying Parseval’s identity, the scaling equation and periodization, we obtain
ck =f (Ax)P(x — k) dx
R4
1 2 pl ey & owik-E
=—| B EHPE)T dE
q JRrd
1 A .
=- f ig(B™'£)|(B™'6) "™ dt
q Jre
= [ mneidmren o ay
]R(
=/ r;lo(n)e2ﬂi/\k-n dT]
10,11

1 .
— _/ ';IO(B—IS)eZmEvk d&
q JBjo.11¢
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But B[0, 1]¢ is the disjoint union of g sets each of which is congruent to [0, 1]¢. Hence we
can write

. g-1
(6.7.15) = 1/ (Z 7710(34& +ku)) eZnik»E ds
0.1 a=0

so that by Parseval’s identity we have

(6.7.16) dolal’ = /
0»]](1

kezd

2

dé.

q—1
> io(BT'E + k)
a=0

We compute the other sums in the same fashion, replacing mg by mg, 1 < 8 < g — 1, thus
obtaining

6.7.17 ‘e = /
67.17) Y ldy| .

kezd

2
q9-

Z p(B™'E +ky)

a=0

dé, l1<p=<qg-1L

When we add the terms of (6.7.16) to those of (6.7.17) and apply the unitary properties of
the matrix mg(§ + k), we find g terms, each equal to l/qz, hence the sum is 1/g. On the
other hand, (i, |®(Ax)|?dx = 1/q, and the proof is complete. [ |

Exercise 6.7.15. Carry out the computaton for ®(Ax — y) with y # 0.

6.7.2.6 Cohen’s theorem in R?

In order to construct a scaling function & from the scaling filter mg, we formulate the
extension of Cohen’s Theorem 6.5.19 to the multidimensional case. As before, the main
task is to prove that the infinite product 1'[°° 2, mo((A* )~/&) has orthonormal translates. We
restrict attention to the case of trlgonometrlc polynomials, which is equivalent to scaling
functions of compact support.

Theorem 6.7.16. Let A be a dilation matrix and suppose that my is a trigono-
metric polynomial that satisfies my(0) = 1 and Zr_() |mo (€ + k,)|> = 1. Suppose
that there exists a set K C R? with the properties that K contains a neighborhood
of 0, Zyezd 1x(€ +y) = 1 ae and mg((A*) 7€) # 0 forj = 1,2, .... Define
Do(&) = 1g(&) and ®;(£) = mo((A*)'6)D;_1((A*)~'€). Then ®; converges in
L2(R?) to @, which is the scaling function of an MRA.

The proof follows exactly the steps 1 through 4 in the proof of Theorem 6.5.2, as
modified in the proof of Cohen’s theorem in one dimension. The details are left to the
reader.

Exercise 6.7.17. Prove that the scaling function ® has compact support if and
only if the scaling filter my is a trigonometric polynomial.

6.7.3 Examples of Wavelets in R“

We can construct an interesting class of d-dimensional wavelets by considering scaling
functions that are the indicator functions of suitable measurable sets. If ® = 1y is a
scaling function, then orthonormality requires that (i) the integer translates of O be a.e.
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disjoint, and (ii) |Q| = 1. These imply that fp(x) := ZyeZ" lo(x+y) =1ae., since
(i) implies that fp(x) < 1 a.e. and (ii) implies that 1 = |Q| = f[O,ll" fo(x) dx. Hence
0 = f[o,nd(l — fo(x)) dx, which proves that fo(x) = 1 a.e. Now the scaling relation is
written

(6.7.18) o) = Y a,lp(Ax —y).

yez!

Conversely, if we are given a set Q for which 3 ;s 1o(x+y) = 1 a.e. and which
satisfies a scaling relation (6.7.18), then we obtain an MRA wavelet, since 15 € L'(R9)
implies that ® is continuous at £ = 0 with d0)=1.

Exercise 6.7.18. If & = 1y is a scaling function, prove that a,, = 0 for all except
a finite number, where a,, = 1. Hence the set Q is identical to a finite sum of
translates of an A-similar copy of itself.

A large class of sets Q satisfying (6.7.18) are generated in the following manner:
Given a dilation matrix A, let S = {I"}, ..., [';} be a set of representatives of the cosets
[ +A(Z%, 1 < i < q. The set Q is defined by

(6.7.19) O={xeR!:x= ZA—J'(;,-)

=1

where s; € S. The series is clearly convergent, since we have the estimate [A7x| <
Ca™/|x| for any dilation matrix, where 0 < o < 1 and C > 0. Furthermore Q satisfies
a scaling equation, since for any x € Q

o0

x=A""(s) +A47! ZA_j(Sj+l) =A"'(s))+A7y

Jj=1
with y € Q. This means that x € Q if and only if for some i, we have Ax — I'; € Q for
some i =1,...,q. Thus 1p(x) = ?:1 lo(Ax — T';). The scaling relation (6.7.18) is
satisfied with a, = 1if y = I'; for some i and a,, = 0 otherwise.

In order to prove the orthonormality, we appeal to Theorem 6.7.16. This requires
that we study the properties of the scaling filter

q
(6.7.20) mo(§) = é 3 emich,

=1

If we can find a set K to satisfy the conditions of Theorem 6.7.16, then we can assert that
1¢ is the scaling function of an MRA wavelet. The details will depend on the choice of
the representatives ki, ..., k,.

Example 6.7.19. If

+=(5 2)

we choosek; = (0,0), k; = (1,0), ks = (0, 1), k4(1, 1) as a set of representatives.
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Then
mo(§) = mo(&1, &)

_ 1(1 4o | g nis 4 2l
4

1 ) :
— Z(1 +e—2ﬂ!€|)(1 +e—2n1§2)'

If wechoose K = [— %, %]2, thenmy (&) # Oon K, so that the conditions of Theorem 6.7.2
are satisfied. The set Q is simply the set of binary expansions of pairs of real numbers in
[0, 1], hence Q = [0, 112, so that we obtain the two-dimensional Haar wavelet, discussed
previously.

Example 6.7.20. With the same choice of A, let ky = (0,0),k, = (1, 1), k3 =
©, 1), ks =(1,2).

In this case the scaling filter is
my(€) = 1(1 4 o miGitE) y mlmihy e_zni(g,d;_gz)).
4

Letting K = [—1, %]2, we again infer that the my(&) # 0 on K. In this case the set Q is
the rhombus obtained as the convex hull of the four points &y, &, k3, k4.
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NOTATIONS

A\ B is the difference of the two sets, defined as {x € A : x ¢ B}
AAB is the symmetric difference of the two sets, defined as (A \ B) U (B \ A)

14 is the indicator function of the set A, defined by 1,(n) = 1ifn € A and 14(n) =0 if
n¢A

“iff” means “if and only if”

R = {x: —00 < x < oo}, the real number system

R* = {x € R: 0 < x < 00}, the nonnegative real numbers

R* = {(x1,...,%y) : x; € R for 1 < i < n}, the n-dimensional Euclidean space
Z = {0, £1, £2, ...}, the integers

Zt =1{0,1,2,...}, the nonnegative integers

3" ez G is the symmetric infinite sum, defined as limy 0o 3 r__y Gn

T = R/2nZ, the circle, identified with (—, 7]

C(T) = the space of complex-valued continuous functions on T, identified with
continuous 2 -periodic functions on R

LP(T) is the space of complex-valued measurable functions on T with ||f]l, :=
(@m)~! [L1£6)IP d6)'"” < oo, where 1 < p < 0o

L*(T) is the space of complex-valued measurable functions on T with ||fl|l, :=
esssupger|f(0)| < 00

L (R) is the space of complex-valued measurable functions on R with fin [f()]dx <
oo foreach M > 0

Var(f) is the total variation of the complex-valued measurable function f on T, defined
as the supremum of ), | f(xi+1) — f (x;)| taken over all finite partitions of T

f is the translate of f € L'(T), defined by £,,(9) =f (@ — h)
(f *x8)(0) = (1/27) [.f(¢)g(6 — ¢) d¢, the convolution of f, g € L' (T)
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(f, g = % fo(e)g(e) df, the inner product of f, g € L'(T).

1— 2
P.(0) = —r—, the Poisson kernel, defined for0 <r < 1,6 € T
1+7r2—2rcosf
2rsin @

0,6) = 157 —2rcosd’ the conjugate Poisson kernel, defined for0 <r < 1,60 € T

o (f; h) = Supper y<4 | f(0 +¥) — f(0)] is the modulus of continuity of f € C(T)

Q,(f3 h) = sup, <, (5= fr 1£ 6 +y) —f(©)1P d6)'”, the L” modulus of continuity of

f el (T

~ 1 .

fn) = - Jpf(©)e™™ do is the n'™ Fourier coefficient of f € L'(T).

sin(N + 1)6
i 6

2
L, = 5 [1|Du(¢)| d¢ is the n'™ Lebesgue constant

Si(x) = % fox sin #/t dt is the Sine Integral function, defined for x € R*

Dy(0) = is the Dirichlet kernel, defined for N € Z* and0 #60 € T

Snf@) = YN f(m)e™ is the N symmetric partial sum of the Fourier series of
feL\(T)

onf®) = 1/(N+1)XN__ (1 = |n|/(N + 1))f (n)e™ is the N Fejér mean of the
Fourier series of f € L'(T)

T (8) = 2024-1(8) — 0,-1(8), the de la Vallée Poussin mean of order n
P.f(0) =Y,z r"f (n)e™ is the Abel mean of the Fourier series of f € L!(T)

[x] is the integer part of x € R

(x) = x — [x] is the fractional part of x € R

card(A) is the number of elements in the set A

|A[ is the Lebesgue measure of the set A

’PNNis the spilgce of trigonometric polynomials of degree N, functions of the form f(0) =
D k= Cke'

A, is the set of Holder continuous functions, with w(f; k) < Ch® for some C > 0,

O<a<lforallh >0

A* is the Zygmund class, {f € C(T) : [f(® + h) + f(0 — h) — 2f(0)| < Ch, Vh >

0,0 € T}

Inf() = (1/2hy) [ (sin Nu/sin w)*[ f (x + 2u) +f (x — 2u)] du, the Jackson mean of
/2

order 4 at level N, where hy = [/~ (M )4 du.

f(x) is the " derivative of the function f, where r € Z*
C'(T) = {f € C(T) : f” e C(T)}

CroNT) ={f € C"(T) : f) € A}

(Aa), = a, — a,—), the first difference of the sequence {a,}

L.() = # T emimiel 94 the m™ modified Bessel function, defined for m € Z*
andz € R
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f(@® = O(g(®)),t — oo means that there exists M > 0 such that |f(z)| < Mg(r) for
t>M

f(t) = o(g(t)), t — oo means that lim,_, . f(¢)/g(t) =0

F(&) = (Ff)(€) is the Fourier transform of f € L' (R"), defined by S f )28 dx
(f *@)(x) = [z.f(»)g(x — y) dy is the convolution of f, g € L' (R")

o = (aj, ..., o, is a multiindex, where o; € Z+

l¢| = ) + - -+ + &, is the norm of the multiindex

Df(x) = _8‘% is the mixed partial derivative of f

I lkm = SUPepn o <m (1 + XDFIDF (X))
S= {f : ”f”k,m < 00, Vk € Z+,m S Z+}

/4

Hi(x) = G is the heat kernel of R”
1— Tx

kr(x) = Rl is the Fejér kernel of R

7 Tx?

y . .
P,(x) = ——==———isthe P kernel of R
3 () ) is the Poisson kernel o

B, (R"™) is the space of complex-valued bounded and uniformly continuous functions on
Rn

CoR") = {f € Bue(R") : limyjsoof (x) = 0)

Coo(R™) is the set of continuous functions on R” with compact support

B, is the Banach space of complex-valued functions f on R with fR FO) /(1 + x| dx <
00

LP(R") is the space of complex-valued measurable functions on R” with

1fllp = (Jpr IF GO dx) " < 00

Leb(f) is the Lebesgue set of f € LlOC (R™), defined as those x € R" for which

lim, o™ fi,_yo 1fG) —f(0)|dy =0

P(x,y) is the n-dimensional Poisson kernel, defined by P(x, y) = [, e e "l g¢
Dy (x) is the Dirichlet kernel of R, defined by Dy, (x) = %’X@f forM >0,0#4x€R
Su nf (x) is the two-sided Fourier partial sum of f € L'(R), defined by | iVM FE)e i dg
Snf(x) = S_y.nf (x) is the symmetric Fourier partial sum of f € L!(R)

F.(§) = [;° f(x) cos(r&x/2) dx is the Fourier cosine transform of f € L' (R*)

F (&) = fooof(x) sin(m&x/2) dx is the Fourier sine transform of f € L' (R*)

Do(f) = [gX1f(x)|*dx/ [ | f(x)[* dx is the dispersion about zero of f € L*(R)
Hi(x) = (4)* e=""/2| _q is the k™ Hermite polynomial

Rf(x) = [, i&/|E]€*™* *f(£) dE is the j Riesz transform of f € L> (R")
Sgf (x) is the spherical partial sum of the Fourier integral of f € L'(R™), defined by

f|g|<Rf(’§)ezms *d§
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f(x) is the periodization of f € L' (R%), defined by f(x) = 3,74 f(x — 1)

Ky o is the Bochner-Riesz kernel, defined as the Fourier transform of (1 —
112/M?)* 0.4 (€1

Va5 (x) is the rescaled function defined by |a|~!/?y ((x — b)/a).

Wyf (a, b) is the wavelet transform of f € L*(R), defined as the convolution of f with
the rescaled function v, o

Fn is the dyadic partition of R, consisting of the intervals ((k — 1) /2", k/2"|xez

V, is the n'" space in a multiresolution analysis

P, f is the orthogonal projection of f onto the space V,

®(2) is the scaling function for a multiresolution analysis

W (¢) is the orthonormal wavelet associated with the scaling function @

mo(&) is the scaling filter associated with the scaling function ®

my (&) is the wavelet filter associated to the wavelet W
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