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Preface

Geoge Jaiani was born on
June 19 1945 in Thilisi,
Soviet Union (now Repub-
lic of Georgia). In 1962, he
was graduated from the 550
Tbilisi secondary school with
a gold medal. He entered
the I. Javakhishvili Tbilisi
State University for Mathe-
matics and Mechanics and
obtained in January 1968 the
diploma of honour in Me-
chanics. His Ph.D. (Candi-
date of Sci.) thesis "Some
Problems for Prismatic Shells
with Cusped Edge" (special-
ization "Mechanics of De-
formable Bodies") he pre-
pared under the supervi-
sion of Academician Profes-
sor Ilya Vekua at the Raz-
madze Institute of Mathemat-
ics of the Georgian Academy
of Sciences. In 1986 he ob-
tained the Doctor of Science

degree at the same institute. The title of the thesis was "Boundary Value Problems
for Linear Elliptic Equations with Order Degeneration and Their Applications".
His professional life is mostly related to the I. Javakhishvili Tbilisi State University
(TSU). He started in 1968 as post-graduate and in 1971 he became an invited
assistant. Frome 1974 up to 1987 he was the Scientific Secretary of the I. Vekua
Institute of Applied Mathematics of the TSU. From 1974 up to 1978 he was an

vii
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invited docent (lecturer) of the TSU and from 1981 up to 1988 an invited professor
of TSU. In 1989 he received a main research fellow position of the Department of
Partial Differential Equations (part-time position) at the I. Vekua Institute of Applied
Mathematics (up to 1994). In 1987 he was appointed as the deputy director of the
I. Vekua Institute of Applied Mathematics of TSU and later he was elected as the
director of this institute. Since 2009 he is also a full professor at the TSU and acts
as head of the Chair of Mechanics of the Faculty of Exact and Natural Sciences of
the I. Javakhishvili Tbilisi State University.

He supervised 6 Ph.D. thesis (among them was the thesis of one of the editors
(N.C.) of this book). He is the author/co-author or editor/co-editor of six monographs,
five textbooks, six edited books, and 113 papers (see complete list of publications at
http://www.viam.science.tsu.ge/curi/jaiani/index.html). His fields of scientific inter-
ests are

 Partial Differential Equations,

e Mathematical Modelling,

¢ Solid Mechanics,

¢ Solid-Fluid Interaction Problems,
* Shell and Plate Theory.

In particular, his focus is on boundary value problems for singular elliptic and
hyperbolic equations and their application to the theory of Cusped Plates and Shells.

In 1978, George Jaiani was awarded the medal and prize of the Georgian Academy
of Sciences for young researchers, in 1998 the medal and in 2013 the order of merit
of the Georgian president for achievements in scientific and educational activities.
During the last 25 years he received several grants, among them a grant of the
International Science Foundation (George Sorros Foundation) in 1993, a scholarship
of the German Academic Exchange Service (DAAD) in 1994, a grant of NATO-CNR
(Consiglio Nazionale delle Ricerche, Italy) for the project “Solid-fluid mathematical
models describing the stress state of a dam together with its environment under non-
ordinary actions” in 1995/6, a grant of the Max-Planck-Gesellschaft for the project
"Application of singular integral operators to problems of mathematical physics”
(1996), a grant of Ateneo (University of Rome "La Sapienza", 1996), a grant of
the DFG (German Science Foundation) for the project "Investigation of cusped
bars, plates, and connected with them degenerate ordinary, elliptic and hyperbolic
differential equations" (1999), etc. During the last years he obtained several grants
from the Ministry of Education and Sciences of Georgia and the Shota Rustaveli
National Science Foundation. The project titles were close to his scientific interest,
for example,

* Investigation of cusped elastic plate and beam hierarchical models,

* Construction and investigation of hierarchical mathematical models for a medium
consisting of deformable solid and fluid parts,

* Some nonclassical problems for thin structures,

¢ Non-classical problems of fluid-elastic cusped plate (beam) interaction,

e Boundary and initial boundary value problems for hierarchical models for cusped
plates,
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» Investigations of the theory of elasticity and thermoelasticity for microstuctures,

e Some classes of PDE and PDE systems with applications to mechanics and
biology,

e Development of analytical and numerical methods for cusped prismatic shells
and beams,

* Modeling and calculating of in practice widely-distributed structures with com-
plicated geometry, and

e Construction and investigation of hierarchical models for thermoelastic piezo-
electric structures.

George Jaiani is a well-known scientist in Georgia and abroad. Due to his ability
of speaking Georgian (native), German, Russian, English, and Italian languages, he
has a lot of international contacts. During the last years, he delivered many talks and
plenary lectures on national and international conferences and seminars. At the same
time, many colleagues from abroad got a deep impression of his hospitality. He was
among the organizers and the host of the [UTAM Symposium On Relation of Shell,
Plate, Beam, and 3D Models (dedicated to the Centenary of Ilia Vekua, April 23-27,
2007, Thilisi). He was several times invited as Visiting Professor by universities in
Germany, Italy, and Poland.

Finally, it should be mentioned that George Jaiani is the chairman of the Geor-
gian National Committee of Theoretical and Applied Mechanics, a member of the
International Association of Applied Mathematics and Mechanics [Gesellschaft fiir
Angewandte Mathematik und Mechanik (GAMM)], a member of the Georgian En-
gineering Academy, a member of the General Assembly of the International Union
of Theoretical and Applied Mechanics (IUTAM), since 1994 a member (Academi-
cian) of the Georgian Academy of Natural Sciences and since 2002 of the European
Academy of Sciences (EurASc), etc.

Last but not least, George Jaiani likes to be with his family: with his lovely
wife Natela, with his two children and their families including four grandchildren.
Moments with them often serve as starting point for his new scientific ideas.

Magdeburg Holm Altenbach
Thilisi Natalia Chinchaladze
Bremen Reinhold Kienzler
Berlin Wolfgang H. Miiller

June 2020
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Chapter 1

On some Classes of Three-dimensional Dynamic
Problems of Plates and Shells and an Asymptotic
Method of Solving them

Lenser A. Aghalovyan

Abstract The equations of the dynamic problem of the theory of elasticity, written
in dimensionless coordinates and displacements, are singularly perturbed relatively
with a geometric small parameter. For solving the corresponding system of differen-
tial equations, the asymptotic method turned effective. The asymptotic solutions of
three classes of dynamical problems with classical boundary conditions were found.
The amplitudes of the forced oscillations were determined. The conditions for the
appearance of resonance were established and when the asymptotic solution become
mathematically exact. The procedure for constructing a solution for a boundary layer
in orthotropic plates and its conjugation with the solution of an external problem
was described.

Key words: Orthotropic plates and shells - Spatial problems - Forced vibrations -
Asymptotic solution - Resonance

1.1 Introduction

The classical theory of plates and shells of Kirchhoff-Love and the moreprecise
theories of Reissner, Ambartsumian, and the Timoshenko type consider only one
class of problems, although it is very wide when the values of the corresponding
components of the stress tensor are specified on the facial surfaces of a thin body,
such as beams, plates, and shells (conditions of the first boundary value problem of
the theory of elasticity). If on the facial surfaces of a thin body the conditions of
the second or mixed boundary value problems of elasticity theory were given, we
have proved that to solve such problems the hypotheses of the classical and refined
theories were not applicable.

Lenser A. Aghalovyan
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Apparently for this reason, for a long time, these tasks, which are very important
for applications, have not been solved. We have found a fundamentally new asymp-
totics for the components of the stress tensor and displacement vector, allowing to
solve these classes of problems, as well as new classes of problems of statics and
dynamics of thin bodies, including layered, based on the asymptotic method for
solving singularly perturbed differential equations.

The equations of elasticity theory for thin bodies (beams, rods, plates, shells),
written in dimensionless coordinates and displacements are singularly perturbed by
a small geometrical characteristic parameter. For solving such equations and systems
of differential equations, the asymptotic method turned out effective. The solution
consists of an external problem (/°') and a boundary layer problem (/). The solution
to an external problem is sought in the form of a specific series in a small geometric
parameter € = h/l, where h — half thickness, [ - characteristic tangential size of the
thin body:

[ =g+ g =N (1.1)

where ¢y — intensity (order) of the corresponding desired g quantity, N - number
of approximations. The values g; are set in this way, so that after substituting
(1.1) into equations transformed to dimensionless, we obtain a consistent system for
determining /). Finding non-contradictory values g; — is the most difficult moment
when using the asymptotic method. In the case of the first boundary value problem
of the theory of elasticity (classical theory) for isotropic and anisotropic plates, it
was established (Gol’denveizer, 1962; Aghalovyan, 2015)

Ao ,Oxy,0yy = -2, doy.,oy; = -1, 9o, = 0, 9oy, = -2, qw = -3 (12)

In the case of the second and mixed boundary value problems for beams and
plates, we established (Aghalovyan, 2015, 1982)

doi;j = -1, Ju,y,.w = 0 (1.3)

Asymptotics (1.1), (1.2) and (1.1), (1.3) remains valid for layered beams and plates.
The corresponding boundary value problems of statics solved in (Aghalovyan, 2015;
Aghalovyan and Gevorgyan, 2005).

When solving dynamic problems of thin bodies, as usual, inertial terms simplified
by the adoption of hypotheses are formally added to the equations of the classical
theory. As a result of this, below, based on the solution of the corresponding spatial
dynamic problem, we make sure that the nature of the oscillatory process along the
transverse coordinate distorted.

1.2 Asymptotic Solutions of Dynamic Problems for Orthotropic
Plates

Let us assume that the plate occupies the area
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Z={(x,y,2):0<x<a0<y<bh-h<z<h min(a,b)=1Lh<]l}.

Consider the steady vibrations of an orthotropic plate caused by harmonically varying
in time external influences.

It is required to find a solution to the equations of the three-dimensional problem
of the theory of elasticity:

* equations of motion

(90'jx +(90'jy +(30'jz _ &
Ox dy 0z or?

(J=xy.zuv,w), (1.4)

 relations of elasticity of an orthotropic body (generalized Hooke’s law)

ou
o3 = N Txx + A0y +A1307z, (2, 1,2,3,u,v,w);

1.
6u+6v 6w+6u 6w+6v (1.5
— 4 — = A0y, —— + — = A550xy, — + — = d440-
(9y Ox 660 xy ax 0z 550 xz (9)7 9z 440 yz

under the following, of the most interest to applications, variants boundary con-
ditions:

a) plate vibrations caused by applied to its facial surfaces normal and tangential
loads
0jz(x,y,£h) = 207 (x,y)exp(iQt),  j=xy.2 (1.6)

b) vibrations of a plate fixed with absolutely rigid flat base

u(x,y,—h) =v(x,y,—h)=w(x,y,—h)=0, (1.7)
o (x,y,h) =0 (x,y)exp(iQr),  j=xy.z (1.8)
or
u(x,y,h) =u"(x,y)exp(iQt), (u,v,w) (1.9)
¢) plate vibrations caused by a displacement vector applied to the facial surface
z=-h
u(x,y,—h) =u (x,y)exp(iQt), (u,v,w), (1.10)
oj(x,y,h) =0,  j=xy,z (1.11)
or
u(x,y,h) =0,  (u,v,w) (1.12)
where o'jizh,uih,vih,wih - given functions, Q - frequency of external coercive
influence.

Since the process is steady, solving of systems of Egs. (1.4), (1.5) we will sought
in the form
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oap(X,¥,2,1) = 0ji(x,y,2) exp(iQt), B =xy,2j,k=123, (L13)
u(x,y,z,t) = i(x,y,z)exp(iQt), (u,v,w). ’

Substituting (1.13) into Egs. (1.4), (1.5) and passing to dimensionless coordinates
and displacements

X y Z u v w
=z, =2 =2 U=-, V=-, W=—, 1.14
E=7 =7 7 ] I ] (119
we obtain a system singularly perturbed by a small parameter € = h/I:
don + o2 +e! do13 +&72QU =0,
9&  dn e
doy 0oy _160'23 212
Qv =0,
o + o +& o +& °0Q;
doyz 0os 10033 22
o T an T° Tar TP
O _ anou +apon +
9 11011 +a12022 +a13033,
ov
o a0 + a0 +a30o;ss, (1.15)
_la—W—a o011 +ax30m +aszo;
o - 130711 +a230722 +a33033,
a—W+(9_16—U = asso
Py o - 550713,
6—W+8_16—V = ay40"
an 9 440723,
W
o T an T 660712,

where Q? = ph>Q?, p — density. We obtain a non-contradictory system for deter-
mining all quantities in an external problem if expansion (1.1) will has the form

O'J(.zut) = a‘”“‘a’}i)(g,n,{), jk=1,23,5=0,N,

(1.16)
(U(out)’v(out),W(out)) - 8S(US,VS,WS),

where the designation s = 0,N means that little by little (by repeating) index s is
taken place summed over integer values from zero to N. Formula (1.16) shows
that asymptotic (1.1), (1.3) turned out universal for solving the dynamic problems,
formulated above for all classes (1.6) - (1.12), while in static problems (1.2), (1.3)
asymptotics are fundamentally different.

By substituting (1.16) into system (1.15) and equating the coefficients in each
equation for the same degree &, we will obtain a system for determining O'J(.‘,? UGy
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W), From this system, all stresses can be expressed through displacements by

(1.17)

formulas
s _ 1 [oUu® owk=D s _ 1 (V) oWl
T3 = + ; X + ’
ass \ 04 ¢ > as\ 0¢ an
(s=1) (s=1)
) _ 1 [0V oU m
a-lZ—a—“( Py + an ) Q()=0 when m <0
(s) (s—1) (s—1)
(s) ow ou ov
=-A +A -A ,
(o 23 aC 22 oE 12 P
(s) (s—1) (s=1)
(s) ow ou ov
=-A -A +A ,
0—22 13 6@, 12 6§ 33 677
(s) (s—1) (s=1)
(s) ow ou 1%
= A _A _A )
033 11 ac 23 PY: 13 o0
where
apax — 0%2 axazs — 6153 ajass — 0%3
All:T’ = A33=T
apjjazs —apdalz axaiz —apans ajpaszs —agzans
Az = -5 Ay = + App = 1#

_ 2 2 2
A= ayanazs +2a12a13a23 — a11a5, — andj; — azsag,

and for determining U () () W) we obtain the equations

92U ¢

e +assQPU® = RY,

) O*WED A

9 __ ~ . ’

v T agac 0\ T ae an
82V ;

(3{2 +a44.QfU(S) = Rg}),

o__owen (oot doy

v ST T anac aqq ¢ on |’

2w ;
EYe + QWY = Rw,
92U-D 92y =D F PRl R P Cy

R = A % 1 14 _ 13 23

W 9E0L ol 0 on

The solutions of Egs. (1.19) - (1.21) are

U = U En o+ U EnL).  (UVW),

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)



6 Lenser A. Aghalovyan

where the first term is the solution of the homogeneous equation, the second term is
the particular solution of the inhomogeneous equation. Solutions of homogeneous
equations are

Uy = C(Em)sinyid +C(Em)cosyi L, y1 = Quass,
VY = P Em)singad + CO(En)cosyal, v = Quvau, (1.23)
W = P (gm)sinys¢ + COEm)cosysd, v = QAT

Having the values (1.22), (1.23) of displacements, stresses are calculated by formu-
las (1.17). Then satisfying each of the groups of boundary conditions (1.6) - (1.12),
uniquely determined the unknown integration functions C](.s)(f,n) and the final so-
lution of the external problem. Let us give this solution corresponding to conditions
(1.6)

s —dass
U = e {[U;p —o e, ;7,1)] cos(1+ )y,
+ |+ oliEn -] cost1-om} + UL €m0,
1
= G {|lee - oienn]sin(+ 0,

- |ed+ ol @n-|sin( - o} + ol @no),

1
W = _ {[ +(s) _ _(s) 1 ] 1+ (1.24)
Aryasinays 7% ooy (Em 1) cos(1+)y3
+ o+ ol @n -] cos1 -0} + W€ 2),
EONESE. +s) ()
7 = gz ([ oS En D sin(+ s

- I:O—ZZ(A) ’;;.),-(f n,- l)] Sln(l - 4)73} 33T(§ 7774')

fffz(o) = g0y, O-;Z(Y) =0, s #0,(x,y,2)

xzZ°
The formula for V(s),o'g) can be obtained from cyclic permutation
(u,v;ass,asa;x2,y7; 13,23, y1,72).

The final solution, corresponding to this case is determined by formulas (1.13),
(1.16), (1.24). The solution will be finite if sin2y; # 0;sin2y, # 0;sin2y; # 0. If
any of these conditions be broken resonance will occur. The resonant frequencies
coincide with the frequencies of the natural oscillations of the plate.

We also give a solution to problem (1.10), (1.11), simulating the effect of a seismic
wave on the foundation of a structure:
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U = | = U@ n -1 cosyi(1-0)
cos2y
a A
- ;5 oS EnDsin(1+ Oy +USERD,  (wviass,am;1,2),
1
W) = —— [w W -1)] cosya(1-0)
cos2y3 s,
1 s , (1.
— —— oW @nsin(1+ s + WEEnQ),
v3A11

uw @ = MT, w =0, s#0, (u,v,w),

vy’ aweD
0L 0¢

Stresses are calculated by formulas (1.13), (1.16), (1.17), (1.25). It is not difficult to
write out solutions corresponding to other conditions (1.7) - (1.12). Thus, conditions
(1.6) - (1.12) on the facial surfaces are sufficient to determine the solution of external
problem.

O
13T - ass

), (L,2;u,v;ass,a44;€,1)

1.3 About Mathematically Precise Solutions

If the functions o-fﬁz,ui,vi,wi entering into the boundary conditions (1.6), (1.8) -
(1.10) are algebraic polynomials with respect to the tangential coordinates , the
iterative process of determining unknowns break off after a finite number of steps,
depending on the degree of the polynomial. As a result is a mathematically precise
solution to an external problem (solution for the spatial layer). Lets give these
solutions for some variants of the boundary conditions.

If denote by Q any of the stresses and displacements, based on formulas (1.6),
(1.13), (1.16), the solution can be written in the form

0(x,y,2,1) = O(x,y,2) exp(iQ1) (1.26)

Of particular interest is obtaining a mathematically exact solution corresponding to
the boundary conditions (1.6), if only because finding the corresponding solution in
a static problem is associated with overcoming significant mathematical difficulties.
When o7 = const iteration breaks at the initial approximation and using formulas
(1.13), (1.16), (1.17), (1.24) we obtain the exact solution to the external problem

h
i = st [ Lcosyi(1+4)+o, cosyl(l—[)]
yl sty
Fyz = [osinyi(1+ ) -0 sinyi(1-0)|,  (,v;x,y;as5,a4431,72)

sin2yy
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. h )
T T Alyssin2y; [0, cosys(1+ ) +0 cosys(1-0)],

~ 1 . o

Ozz = sin2y; [O';z sinys(1+¢)— o, siny3(1 - é')] , (127)

0 Andw Az 0w

TE =TT 90 YT T T A Txy =0

The boundary conditions (1.7), (1.8), when a';z = const, correspond to mathe-
matically exact solution

ha v
55U xz Sin)’l(l +§)’ Oz = Xz 00871(1 +{),
Y1082y cos 2y
(U, V5 X,y A55,A445Y1,Y2)s
ot o (1.28)
W= ——= sinys(14+0), T = —=—cosys(1+0),
A11y3€082y3 cos2ys
B Az OW Az ow
Oxx = — = O-x)’ =0

o T e
When the boundary conditions (1.10), (1.12) are valid, and if #~,v~,w™ = const we
have mathematically exact solution

- u ~ u
i = ———siny(1-), Fu=———cosyi(1-2).

sin2y; asshsin2y,

(u,v; X,y a55,0443Y1,Y2)s

w— w (1.29)

vy = i 1 - % = —A 1 -
w Sn2ys siny3(1-2), 0 U sindys cosys(1-2),
- Apwys . Apwys .
Oxx = MCOS%(I -0, Oyy = —hsin2y3 cosys(1-2), Oxy =0

Using the solutions (1.13), (1.16), (1.17), (1.24), (1.25) it is not difficult to write out
exact solutions corresponding to external polynomial loads of various degrees.

From formulas deduced above, it follows that in the plate arise two types of shear
vibration and one longitudinal, which are independent in the initial approximation. In
subsequent approximations, they are dependent and one type of oscillation generates
another type of oscillation, but with a smaller amplitude compared to the main.

As is known, in the classical theory of plates and shells based on the Kirchhoff-
Love hypotheses, displacement w does not depend on the transverse coordinate,
but solutions (1.24) - (1.29) indicate that all quantities substantially depend on
this coordinate. The asymptotics (1.2) of the classical theory is also fundamentally
different from the asymptotics (1.16) in dynamic problems of plates and shells. This
means that the dynamic process can sharply change the character of the stress-strain
state. The formal addition to the classical equations of the statics inertial terms cannot
provide a description of the true dynamic state of the plate or shell.
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Asymptotics (1.3) is applicable for solving similar and new classes of problems
for isotropic and anisotropic shells (Aghalovyan and Ghulghazaryan, 2009, 2012,
2018).

The above derived formulas are right for determining solutions of all considered
variants of the boundary conditions. They were derived under the condition that in
(1.15) Q2 = ph®>Q? of the order of one. If Q2 = 0(&), the process is quasi-static in the
first boundary-value static problem is true the asymptotic (1.2). If Q2 = 0(s™!) we
can again use system (1.15), but considering that Q2 = pl/hQ?, and at Q2 = 0(s™?)
considering that Q2 = pI>Q%. At Q2 > 0(s™%) it is necessary to search for other
asymptotic.

1.4 About the Boundary Layer

The solution of the external problem satisfies all the equations and relations of 3D
the elasticity theory problem and the boundary conditions on the facial surfaces of
the plate. As a rule, it does not satisfy the boundary conditions on the side surface
of the plate. Arisen hitch is resolved by the boundary layer solution. Let describe the
procedure for constructing this solution near the side surface x = 0.

In Egs. (1.15) entered a new change of variable y = £/& and all the sought
quantities are assigned the index “b” (from the word boundary). The solution of the
newly obtained system should decrease rapidly with distance from the side surface
x = 0(y = 0) into the inside of the plate. This solution is sought in the form

Tjn =& o O exp(-Ay), j k=123 s=0N,

_ os(77) (s) (s) B (1.30)
(U, Vo Wo) = &5 (U (0,00, V, ™ (1,0), W, (1,0)) exp(=Ay),

where A — so far unknown number that characterizes the velocities of decrease of
values of stress and states of the boundary layer (exp(—y Re 1)),Re A > 0. Substituting
(1.30) into the aforementioned transformed system, from the newly obtained system,
the stresses can be expressed through the components of the displacement vector by
the formulas

(s=1) (s)

U 1 . oU
(s) 1 (s) b (s) (s) b
Ty _—z(—/u/b +—), 0-13b_;(_/lwb +_),

() _

1 (v awiY
23b —

e (9_§+ 67’] ), Q(m)EO when m<0,

asy
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8W(s) aV(s—l)
(s) (s) b b
=-AAnU>~" - A -A , 1.31
Tihb 2Uy B 5, 25 (1.31)
A ) A
B = (s) b b
=AU, - Az +As33 ,
b)) 0 { 677
owe  aylY
o = (s) b b
=AU +A -A
033 23 n— 7 13 on
To determine Vlfs) from the same system follows the equation
BZV(S)
b (B2 40y @2V = fY),
9¢2 \aes ' 1.32
JUSTD  aalTh gy (1.32)
f(s) el e SR Top
a66 a an 74 677
Displacements U (‘Y),WI(;) are determined from the system
FRITA 6W(S)
> 3 +ass(PAn + @)U + UApass = 1) — 2= = [l
¢ ( (1.33)
rw - ff) (5)
A + (A" +ass Q;)W,
11055 (A7 +ass Q)W o =fub
System (1.33) can be reduced to one equation
64 U(S) 02 U(S)
b b (s) _/ (s)
+B +BU) =y, 1.34
97 e (1.34)
where
2 2

By

“—[ass(A11 Az — A33) +2A03] + (1 + Ay ass),
A]] All

1
By = —(/121422 +Q2)(A% +assQ2),

(s) TR W
s 2 2 s uw
w = (/l +ass€2;)

A11 Juo Anass 9
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(()ths_l) (90_(.\‘—1)
+

(s) 12b
= - AA s
Tub ass | A —5 an
2y/(s=1) (s=1)

f(s) = ass ABa 1A B 905y,

wo ono¢ on |’
£8) = —Anass 6:’ + AAnzass — D),
0) _ £0) _ 0) _ 0) _ ,(0) _
fub _fwb_fvb _fuwb_ u =0

The solution to the Eq. (1.34) is

U = A9y 4 AD g+ A+ A+ U, (135)
where Uili) is the particular solution, and
Y1 =coshkil, Yo =sinhk({, Y3 =coshkrl, 4 =sinhkyl,
(1.36)

1
kia= \/5(—311 + B —4By)

From system (1.33) W]gs) it is expressed through Ul()s) by formulas

63U(S> 6U(?)
WS) =C (Auass—a('% +Co—57 +f$3b),
1

A2 +assQ2)(Axzass — 1)

Ci Cs = Ap1azs(A2 A + QF) — P(Anzass — 1)

(1.37)
The solution to the Eq. (1.32) is
ths) = Bgs) sinm¢ + B;S)cos mé + VT(E)(U,{), (1.38)
with
m= aﬁ/lz + a44QZ
ae6

Having the values of displacements U(S),Vés),Wt(f), stresses are determined by for-
mulas (1.31).

Since the solution of the external problem satisfies the inhomogeneous bound-
ary conditions (1.6) - (1.10), the solution for the boundary layer must satisfy the
corresponding homogeneous (zero) boundary conditions:
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a) oj30n,+1)=0, j=123 (1.39)
b) Uy(0,n7,—-1)=0,(U,V,W)
oia(0m,1)=0 or  Uy(0,7,—1) = 0,(U,V,W) (1.40)

) Up(0.n,£1) = 0,(U,V.W)
or Up(0.p,=1)=0,UV.W), 0j30n1)=0, j=123 (1.41)

The general solution for the boundary layer determined by formulas (1.30), (1.31),
(1.35) - (1.38) allows to satisfy each of the groups of conditions (1.39) - (1.41).
Satisfaction of the each group of conditions (1.39) - (1.41) leads to the solution
of two systems of homogeneous algebraic equations. One of the systems relatively

to unknown functions in the solution for ths). Another algebraic system relatively

to the unknowns in the solution for Ulgs),Wés). For these algebraic systems to have
nontrivial solutions, it is necessary that their determinants become equal to zero.
From the corresponding transcendental equations, the values of A are determined.
As a result, we have two groups of values for A, to which correspond to antiplane
(1%) and plane (1}) boundary layers. For an antiplane boundary layer 1¢ have real
values, and for a plane boundary layer A7 - complex conjugate.

For example, for boundary conditions (1.40) relatively V;, and o»3}, according to
(1.38), (1.31) correspond the equation cos2m = 0, from which follows

29 = ase
4= ==
ags

The flat boundary layer breaks up into symmetric (tension-compression) and skew-
symmetric (bend) boundary layers. When s = 0 antiplane and plane boundary layers
are independent. When s > 0 they are dependent, and the antiplane boundary layer
generates a plane boundary layer and vice versa (accompanying boundary layers).
However, the accompanying boundary layers have amplitudes on an order of mag-
nitude smaller than the main ones. Having determined A%, A} - the final solution
for the boundary layer is written out and it is conjugated with the already known
solution of the external problem. The procedure for conjugation these solutions is
described in Aghalovyan (2015). The asymptotic method can be used to solve new
classes of dynamic problems of the theory of elasticity, in particular, when studying
the interaction of thin bodies with various physical fields, in problems of seismology,
earthquake prediction, etc.

In conclusion, we note that a number of important questions on the problems of
plates and shells were considered by Altenbach et al (2015, 2018); Kaplunov et al
(1988, 2017); Boutin et al (2017); Mikhasev and Tovstik (2009); Chapman (2013);
Belyaev et al (2019).

2 2 |
(2n+1)271r—6—_Q3a44 L neN Vn>ZQyag-s o (142)
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1.5 Conclusions

The efficiency of the asymptotic method for solving spatial dynamic problems of
thin bodies (beams, plates, shells) is shown. The dependence of the components of
the stress tensor and displacement vector on the transverse (thickness) coordinate
is shown. The necessity for a more careful use of the classical theory of plates and
shells in dynamic problems is mentioned.

The 3D boundary layer in the plates was studied. It has been shown that in thin
bodies antiplane and plane boundary layers appear.
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Chapter 2

New Hamiltonian Semi-analytical Approach for
3D Solution of Piezoelectric Smart Composites

Orlando Andrianarison and Ayech Benjeddou

Abstract This chapter addresses the development of a new semi-analytical Lagran-
gian-Hamiltonian method for the three-dimensional solution of piezoelectric smart
composite plates. It is based on the analytic state space symplectic Hamiltonian ap-
proach to fulfil the electromechanical multilayer interface continuity constraints and
two-dimensional in-plane finite element (FE) numerical discretization to deal with
arbitrary boundary conditions (BC) on the composite lateral edges. The originality of
the proposed semi-analytical solution is that the latter feature (arbitrary BC handling)
is reached through a mechanical displacements-electric potential primary variables-
based Lagrangian formalism, while the solution accuracy feature is reached through
a primary and dual (transverse stresses and electric displacement) variables-based
partial mixed Hamiltonian formalism. The transformation of the Lagrangian FE
discretized formulation to a state space Hamiltonian one is made through the Leg-
endre transformation. The proposed methodology is applied to the static actuation
and sensing of piezoelectric hybrid laminated composite plates subjected to various
BC. The obtained results comparison to reference ones of various benchmarks solu-
tions, for non classical BC (cantilever), multilayer composite layups (angle-ply) and
electromechanical loadings (uniform), from the open literature shows good com-
putational convergence (coarse mesh), low cost (few FE degrees of freedom) and
high accuracy (exact through-the-thickness) of the present new Hamiltonian semi-
analytical solutions. Thus, the provided tabulated numerical results can be used
safely for benchmarking other closed-form, numerical or semi-analytical solutions.
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2.1 Introduction

Structural elements made of composite materials are already being used for a
long time in various fields of engineering. The range of their applications covers
several branches of industries such as aircraft and automotive constructions, med-
ical equipment or marine and civil engineering. Nowadays, the research activities
on composites mostly evolve to the integration (surface-bonding or embedding)
of the so-called smart materials. Among the latter, the piezoelectric sensors and
actuators are being widely used thanks to their undeniable advantages, like excellent
electromechanical coupling properties, low cost fabrication, design flexibility and,
most importantly, applicability in vibration control, health monitoring and damage
prognosis of load-carrying structures.

Over the past few decades, considerable efforts have been devoted to the devel-
opment of theories and numerical modelling of smart piezoelectric laminated com-
posites and structures (Benjeddou, 2000; Kapuria et al, 2010; Li, 2020). It appears
that the main issues are the computational cost and accuracy. Indeed, it is a fact that
they are anisotropic and three-dimensional (3D) in nature. Thus, their accurate elec-
tromechanical modelling requires appropriate descriptions of their mechanical and
electrical variables, particularly through the thickness direction. The compatibility
and equilibrium conditions at the interfaces state that an efficient modelling of such
structures must deal with the so-called inferface continuity (IC) constraints; namely,
the continuity of the transverse (out-of-plane) mechanical stresses and electric dis-
placement through the interfaces of the laminate. Among the numerous models and
tools available in the literature, only few can cope with these specific features; nev-
ertheless, natural theoretical frameworks to deal with these requirements are the
full/hybrid (Sze and Pan, 1999) and partial (Carrera et al, 2010) mixed ones.

Analytically, the mixed state space method (SSM) that uses the mechanical dis-
placements and electric potential variables, augmented with the transverse stresses
and electric displacement as independent variables (Benjeddou and Deii, 2001), is
a good example of partial-mixed frameworks. However, it is limited by the a priori
fulfilment of the boundary conditions (BC) and cross-ply laminate schemes so that
it is not usable for realistic BC other than the full simply-supported (SS) ones. The
practical cantilever (clamped-free) BC have been considered (Leung et al, 2008) an-
alytically through the exact symplectic approach, which review (Lim and Xu, 2010)
shows other solutions for various BC combinations with the classical SS ones. Al-
ternative approaches to the purely analytical ones are the so-called semi-analytical
solutions (Wu and Liu, 2016) which combine in-plane numerical discretization,
such as the finite element (FE) method, and through-the-thickness analytical meth-
ods, such as the SSM. Only the authors’ earlier work (Andrianarison and Benjeddou,
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2012) was cited, in the previous review (Wu and Liu, 2016), in the category of state
space-FE semi-analytical solutions for the quasi-3D analysis of smart composites
and functionally graded materials. Another type of semi-analytical methods was also
suggested in Benedetti et al (2010) for the 3D analysis of damaged structures, mod-
elled by the numerical dual boundary element method, with bonded piezoelectric
sensors, modelled by the analytical SSM.

Numerically, 3D full/hybrid (Sze and Pan, 1999) and mixed FE are suitable but
expensive, due to the thinness of the multilayer plies that often requires fine meshes.
Partial-mixed variational formulations (VF) that use the mechanical displacements
and electric potential, augmented with the transverse stresses and transverse elec-
tric displacement through Lagrange multipliers, are a good alternative for reducing
the number of independent variables (Benjeddou and Andrianarison, 2005). By re-
taining the primary variables along with their dual ones, the aforementioned mixed
formulations share a common mathematical issue: they must be able to satisfy the so-
called Brezzi-Babuska (BB) inf-sup conditions (Boffi et al, 2013). This saddle-point
property of the mixed VF in general is of crucial importance in the effectiveness
of such formulations. To tackle this issue, a Layer-Wise (LW) mixed least-square
framework was presented in Moleiro et al (2015) for example. Another option that
permits to deal with the special requirements of the smart laminated composites
modelling is to use the semi-analytical approach that combines an analytical mixed
SSM through-the-thickness and a numerical discretization of the reference plane.
Its major advantages are the significant reduction of the computational cost and the
increase of the solution accuracy. The starting point of the retained semi-analytical
method consists in decomposing the 3D volume into a reference two-dimensional
(2D) in-plane domain and a one-dimensional transverse direction, in combination
with the application of the method of separation of variables. The high-order 3D
partial differential equilibrium equations are then solved exactly along the trans-
verse direction thanks to the SSM, whereas a weak solution is searched in the
reference plane. Therefore, the main issue of semi-analytical methods concerns the
chosen numerical method to discretize the 2D in-plane problem. For example, the
method developed in Shan et al (2018) aims at applying the scaled boundary FE
method to the static bending of a piezoelectric beam. In Zhou et al (2020), the
traditional FE method is used to compute the deformation of general curved beams
under various BC. A similar approach is presented in Zhou et al (2015) where a
state space-FE semi-analytic approach is used to study the cylindrical bending of
a straight cantilever beam. Under plane strain conditions of elasticity (cylindrical
bending), the 3D governing equations transform into a two-point boundary value
problem (BVP) so that a numerical method can be bypassed for the benefit of an
analytic method such as the eigenfunction expansion. This is done in Zhang and
Wang (2018) where the axisymmetric static deformation of a piezoelectric cylinder
under arbitrary BC is investigated in the framework of a Hamiltonian symplectic
superposition approach. Through the literature review in the ongoing section, the
partial mixed VF, assorted with the semi-analytical approach, therefore constitutes a
suitable framework for modeling piezoelectric smart composites. Indeed, this allows
a straightforward fulfilment of the laminate transverse stresses and electric displace-
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ment IC without cumbersome manipulations (Khandelwal et al, 2013) as for the
equivalent single—layer or LW classical 2D models.

Alternatively to the classical Lagrange-type formulations, the partial mixed VF
presented in Andrianarison and Benjeddou (2012) has been derived in the framework
of the Hamiltonian formalism after a Legendre transformation. The latter allowed the
natural introduction of the transverse stresses and electric displacement as primary
variables, and maked the final partial differential equations (PDE) lower in order,
compared to the Lagrange-type formulations. Besides, the Hamiltonian formalism
allowed transforming, in a systematic way, the equations of 3D piezoelectricity (4th
order PDE) into first-order linear ordinary differential equations (ODE) for which the
coordinate in the thickness direction is the only independent geometric parameter.
This feature appears to be interesting in the perspective of developing efficient nu-
merical tools for multilayer smart composites since the propagator matrix approach,
used for the analytical mixed SSM, can then be exploited. Thus, the resulting model
simplifies considerably the computational treatment of the IC, leading potentially
to accurate predictions of the detailed response characteristics, such as the through-
the-thickness distributions of the state variables. However, recasting the classical VF
into a mixed one has also some inevitable drawbacks. As a matter of fact, by incor-
porating the transverse stresses and electric displacement as dual variables into the
VF, the question of the proper treatment of the BC arises for realistic ones other than
SS. Indeed, the use of the SSM to compute the through-the-thickness distributions
of the state variables implicitly requires that the final matrix is square so that its
exponential function can be used. This requirement determines the well-posedness
of this approach and explains why the VF in Andrianarison and Benjeddou (2012) is
only efficient for the theoretical SS BC; indeed, it can be shown that the problem is
well-posed if and only if the number of primal and dual variables to be constrained
on a given edge is equal, as is the case for the well-known Navier-type analytical
solutions.

In summary, according to the above discussion, it appears that the use of the
partial mixed VF is relevant since it makes possible the fulfilment of the IC condi-
tions when needed. However, the corresponding numerical models are non-standard
and must be used with care due to the BB stability conditions. Moreover, the use
of the Hamiltonian framework in combination with the partial Legendre transfor-
mation offers a good compromise between high needs of computer resources of
LW approaches and complexities of the 3D full mixed VF. Therefore, the purpose
of this chapter is to present a new partial-mixed VF where the above mentioned
drawbacks are circumvented by choosing a new set of dual stress-like variables that
coincide with the out-of-plane nodal transverse stresses-like resultants. This can
be seen as one of the main original contributions of the present work. Moreover,
a semi-analytic procedure is retained to solve the problem in the thickness direc-
tion. This is done through a 2D FE discretization of the mechanical displacements
and electric potential on the plate reference plane only and the mixed SSM is used
to compute the through-the-thickness distributions of the dependent variables. The
proposed approach is then used to compute the 3D static solutions of piezoelec-
tric multi-layered composite plates with symmetric and anti-symmetric lamination
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schemes as well as non-standard edges BC of cantilever type. Both sensor and ac-
tuator configurations are analysed and some tabulated results are given for future
reference in view of validating other numerical solutions. It is worthy to mention
that the validation benchmarks choice is guided by the need to show that the pro-
posed new semi-analytic FE-state space symplectic Hamiltonian methodology can
solve problems of realistic BC, multilayer composites layups and electromechanical
loads other than the classical SS, cross-ply and trigonometric ones, which are the
limitations of earlier semi-analytic and analytic proposed 3D solutions in the open
literature. This can be seen as another original contribution of the present work.

The chapter is structured in four subsequent sections. First, Sect. 2.2 describes the
in-hand problem and related notations. Then, Sect. 2.3 is devoted to the derivation
of the new mixed Hamiltonian semi-analytical solution. Next, Sect. 2.4 provides
few benchmarking examples to illustrate the effectiveness of the presented approach.
Finally, conclusions and perspectives close the chapter.

2.2 Problem and Notations

Consider a 3D linear piezoelectric body that occupies a simply connected domain 2
to which a Cartesian global coordinate system (O, x, y, z) is attached. It is bounded by
a sufficiently regular surface I" = 02, with outward unit vector n, and is subjected
to a known surface traction vector F on I'r and a scalar electric surface charge O
on I'g, where I'r and I'p are parts of its boundary I". The latter can also support an
imposed scalar electric potential ¢ on I, so that I, UI'g =I"and I, NI'g = 0, and
a mechanical displacements vector @t on [, so that I, Ul'r =1 and I, N[ = 0.
For simplicity, the body loads are not considered. Besides, in the following, an
underlined variable represents a vector while a doubled underlined one is used for
a matrix. Also a tilted quantity is an applied (imposed) one and a bold parameter
represents a tensor.

The electromechanical equations, describing the above stated static problem, are
(Benjeddou, 2000) the:

e Cauchy’s and Gauss’ equilibrium equations

. in Q 2.1
DivD =0

{Divo- =0
where o and D are the Cauchy linear stress tensor and electric displacement
(induction) vector. ‘Div’ represents the divergence operator.

e Mechanical strains-displacements and electric fields-potential relations

1
&== (Gradu + GradTu) )
2 = =/ in Q (2.2)

E = —Grady



20 Orlando Andrianarison and Ayech Benjeddou

with € and E being the engineering Lagrange linear strain tensor and electric field
vector. u and ¢ are the mechanical displacements vector and electric potential.
‘Grad’ denotes the gradient operator.

e Converse and direct e-form piezoelectric constitutive equations

o=CFfs-e'E
in Q (2.3)

D=ec+eE
where CF, e and €” are the elastic stiffness (at constant electric field), stress
piezoelectric and dielectric (at constant strains) matrices; here, o and ¢ are the
engineering (in the Voigt notations) stress and strain vectors.

e Dirichlet (essential) BC
u=1i only
~ 24)
¥

e Neumann (natural) BC
an=F onlF
- (2.5)
D'n=-Q onlp

where o is the matrix representing the stress tensor.
In order to formulate the reference problem in a generalized way, the following

generalized displacement U, strain S, stress T and load G vectors are introduced
(Benjeddou and Andrianarison, 2005)

e (3he-fghe-8) e

As a consequence, the piezoelectric constitutive equations (2.3) rewrite as this gen-
eralized Hooke’s elastic law-like form

T=CS @.7)

with C being the constitutive behaviour generalized matrix (Andrianarison and
Benjeddou, 2012).

It should be noticed that the negative sign before the electric field in the gener-
alized strain vector in (2.6) is introduced in order to get a symmetric piezoelectric
constitutive behaviour matrix in (2.7), as the initial equations in (2.3) are not sym-
metric. The equilibria equations (2.1) and gradient relations (2.2) are reformulated

as:
L'T=0
LU=S

in Q (2.8)

where L is the linear 3D derivation matrix defined as
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8,00 08,8,000
(r_|08,08.00,000
= 710008,8,8,0000

00000 0, dad,

with 0;,i = x,y,z standing for partial derivation with respect to i. Moreover, the
Dirichlet and Neumann BC are re-stated as:

U=U only=I,Ul,

Here, the generalized stress tensor 4th order matrix T is so that T? = [g Q].

In summary, the strong form linear static BVP in hand was reduced to find
U that satisfies Eqs. (2.7)-(2.9). Worth noticeable is that for practical problems
having complex geometries, loadings and BC, closed-form solutions to this BVP are
unreachable. Hence, numerical solution techniques, built in the framework of VF,
are necessary.

2.3 New Mixed Hamiltonian Semi-analytical Solution

In the context of multilayer composite structures modelling, the issue of enforcement
of the IC conditions is a difficult task. Straightforward fulfilment of the transverse
stresses and electric displacement IC constraints at the laminate interfaces is usu-
ally done in the framework of a mixed VF. Therefore, thanks to a partial Legendre
transformation, a four-field partial-mixed VF has been established (Andrianarison
and Benjeddou, 2012) so that it inherits the algebraic properties of Hamiltonian ma-
trices, making easy its numerical implementation. However, the detailed inspection
of this partial-mixed VF shows that it suffers from inconsistencies when dealing
with arbitrary BC. Namely, one can show that for BC other than SS, there is not
any more a one to one correspondence between the primary and conjugate nodal
variables to be constrained at the discretized level. Hence, in order to overcome
this drawback, the here developed approach follows two steps: in the first one, the
classical generalized displacement-type VF is stated at the continuum level; then, the
FE discretization and enforcement of the prescribed essential BC are made for the
mechanical displacements and electric potential. In the second step, the Hamiltonian
formalism and Legendre transformation are used to recast the Lagrange formulation
into a mixed one so that the mixed SSM can be used to deal with the IC constraints
enforcement at the layered composite interfaces.

The starting point in the derivation of the new VF is to state that the linear
generalized constitutive equation (2.7) is resulting from this generalized quadratic
strain energy density &'(S)

£S) = %STg§ (2.10)
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through this derivation with respect to the generalized strains vector

d&
T=— 2.11
273 2.11)

Then, the Lagrange functional associated to Eqgs. (2.8)-(2.9) is defined as

L) = [ £©)de- [ UTGdr 2.12)
fosun- |

I'c

and has to be stationary for the admissible solutions

/ 5&U)dQ - / sUTGdIr =0 (2.13)
Q I'c

Usual techniques of variational calculus can be used to show that Eq. (2.13)
enforces Eqs. (2.7)-(2.8) as Euler-Lagrange equations as well as Neumann BC (2.9),,
as natural ones provided that the enlarged displacement vector U is searched as
kinematically admissible on Iy i.e. U = Q on Iy (essential BC).

In the case of a layered body with adjoining laminae perfectly bonded together
and without internal electrodes, the generalized displacement vector,

T
U = {uy,uy,uz, 0},
and transverse surface traction vector,
T
IZ = {O'XZ’O'yz»O'zz»Dz} s

should be continuous through the laminate interfaces so that these IC conditions
hold
[U] =0:[T.]=0 (2.14)

with [] denoting the jump in the value of the enclosed quantity * across an interface.
Now, following the procedure described in Andrianarison and Benjeddou (2012),
the generalized strains vector (2.8) is split into thickness (z),

T
S, = {sz,yyz’gzz’_Ez}
and in-plane (p),
T
§]7 = {Sxx»gyy’yxy’_Ex,_Ey} >

contributions as ]
S, =U+DU:S,=DU (2.15)

where
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dy 000
00050 "
08,00
oy 000, 0
U=—: D = ;. D =13 d:00
= 0z =1 0000 =
0000 0 0004,
0 004,

Next, the above partition leads to this similar decomposition of the generalized
piezoelectric constitutive equation (2.7)

) [S,5.](S,
=" (2.16)
T CcC C S,

—Z —pz —zz

with
Ip = {O—xx, Oyy»Oxy>Dx, Dy}

standing for the in-plane generalized stress vector. It should be noticed here that the
original generalized Hooke’s matrix coefficients of Eq. (2.7) need to be reorganized
in compliance with components re-ordering for defining the in-plane and thickness
generalized strain and stress vectors used in Egs. (2.15)-(2.16).

Now, substituting Eq. (2.16) into (2.10), and having in mind generalized strains-
displacements relation (2.8), provides this decomposed generalized strain energy
density into thickness, in-plane and their coupling contributions

EWU,0) = STC S, +287C S +SI'C S. (2.17)
_pp P_pz L —=z7—%

After that, when considering the thickness and in-plane partitions of the general-
ized strains, as in Eq. (2.15), this explicit expression of (2.17) is obtained

&(U,0) = —UTDTC D U+U'D'C DU+ UTDTC DU

T2 = Eem :z_pz_ TEEEET o)
+ UTDTC U+UTDTC U+ U CU
_ _pz =1=zz— 2 —=zz—
And the variational equation (2.13) becomes
/ s&(U,U)dQ - / sUTGdIr =0 (2.19)

Q

The generalized displacements are now postulated in this separated in-plane (x, y)
and thickness (z) coordinates dependence

U(x.y.2) = N y)U'(2) (2.20)
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where, the 2D shape functions of the in-plane interpolation matrix, N(x,y), are
constructed in practice using the well-known isoparametric Lagrange interpolation
and the nodal amplitudes, U*(z), are to be determined.

Similarly, the body domain and its boundary can be separated, respectively, as
Q(x,y,2)=2,(x,y)x2; and I'G = ZG X 0%, with 2, = [zp,z;] referring to the whole
thickness havmg b and Z; as bottom and top coordinates. This allows to rewrite the
VF (2.19) as

6/[%E*T (§1+§4+ZE)U +U* (_3 Ks)g*+%gjgzg*+ dz

T ~17%t
—[5g* L] —0 2.21)
b
where
v
T odz
and the pre-integrated in-plane matrices and vector are
N'D’C D Nax K:/NTC Ndx
= R —=pp/2= ) = —zz—
Zp
/ N'D'C Nax K = [N'D'C D Nas
— _zz_ _____
Z, 2p
K =/NTDTC Nd~ K = /NTDTC D Ndx
=5 = 2—pz= =6 = 2—pz=I=
Z‘I’ Z‘/7
L= / N'Gdx (2.22)

G
25

Now, performing an integration by parts with respect to the nodal variables 62* (z)
and allowing the resulting variational equation to be satisfied for arbitrary virtual
nodal variables §U", this second-order ODE system is obtained

-3 =5 =3 A:S - =1 pu pr (223)
KU+ (K +K U =L forz= {23}

K I"J*+(K +K —KT—KT)U*+(K +K +K +KT)U*=0
== == e =6/ —

As can be seen from Eq. (2.23), the quantity
L' =K U+ (K +K)U’
= = \=3 =5/

can be formally assimilated to a nodal generalized stress vector resultant thanks to
the definition of the load vector L. It is also to be noticed that the essential BC have
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been enforced at this stage and U*(z) now refers to the unconstrained degrees of
freedom (DOF). The system of coupled ODE (2.23) can usually be solved in the
framework of quadratic eigenvalue problem of gyroscopic type through a standard
linearisation procedure which leads to a first-order ODE. However, to obtain the latter,
a more systematic and elegant approach based on Legendre-Fenchel transformation
of Hamiltonian systems is here adopted. For this purpose, the construction of the
extended mixed Hamiltonian formulation first requires the determination of the dual
or conjugate variable associated to g* This is achieved by deriving this discretized
generalized energy density, already used in the VF (2.21),

F U = LU (K +K +2K )U*+U*T (K +K )U*+1U*TK U (2.24)
== 2= = = =)= = = =/= 2= == T

with respect to g* so that the conjugate variable P has this expression

E” -
Pzza'*zKU +(KT+KT)U* (2.25)

By replacing the matrices in (2.25) by their expressions obtained after (2.22), it
is easy to show that the conjugate nodal variables vector P} actually coincides with
the out-of-plane nodal transverse stresses resultant, namely

g::/[NT(C NU'+C ND U*+C’ ND U*)]dz
= \=zz=— —zz—=—=1— —pz=—/2—
2

=/NT C’S +C S_|dz
= \=pz=P —=zz7¢

P

= / N(x,y)' T dx (2.26)
zp

Next, Eq. (2.25) is solved for Q* so that:

U =K 'P*-K! (KT +KT) 0 2.27)
=== = =)=

Now, the elimination of [_J* from the generalized strain energy density functional (2.24),
combined with a Legendre transformation defined as,

AU P =P U= 61U 0) (2.28)

leads to this explicit expression of the earlier Hamiltonian energy density functional
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% * PE 1 11— 1% | T T *
) = B KR - K KU
1 (2.29)
_ v’ [K +K +K +K' - (K +K )K‘I(KT+KT)U*]
2— -l —4 =6 =6 =3 —=5'—=2 —=3 =—=5'—

Thus, using (2.28), the Lagrangian VF (2.21) transforms into this Hamiltonian one

6/ |20 - )| dz- U L] =0 (2.30)
b
2z

Now, expliciting the variation in (2.30), combined with an integration by parts
with regards to U, gives

/

2

P P S P 7
0P, U-oU" P —6U (ag* )—522 (6P—*')

—Z

dz+ [5Q*T (e: —E)]Z' -0

(2.31)

After grouping together the terms relative to the same virtual nodal variables, the
previous equation turns into the following one

T ok 0%* T .k 0%*
P - —|dZ P’ - = 2.32
Jour (-2 s for! (02 a0

z z

v(6U'oR:) /P =L onz={za}

Now, the expression (2.29) of 77" is substituted in Equation (2.32), leading to

k=NL %k
>, [ |orr v -ou el U (BU TR
— =k =k (2.33)

2k

+oP) (-D, P +A U')]dz=0

where, NL is the number of layers and the layer-dependent matrices are given by

D =K' : A=K'K+K
—k =2 -k =2 \=3 =5
B =K +K +K +KT—(K +K )K—1 (KT+KT)
—k -l =4 =6 =6 -3 =5)/=2 \=3 =5

Hence, thanks to the arbitrariness of 6U" and 6P, Eq. (2.33) leads to this first-order
ODE system for the k-th layer

U| [-AD]|(U
= =* _;i { } (2.34)
P, B AP
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It is worth mentioning from Eq. (2.34) that the number of dual nodal generalized
stress resultants P* variables is now equal to the number of unconstrained N primary
nodal generahzed displacements U* ones so that Equation (2.34) is actually a 2N
linear system with 2N unknowns. Besides, it can be readily shown that the system
matrix of (2.34) is of Hamiltonian type since it satisfies the following identity for a
given layer k

T
1, = (18, @39
with
-A D 01
H=| 0=~ (2.36)
= |B_Al|' = |10

Furthermore, the diagonalization of the Hamiltonian matrix Hk is reached using

the eigen solutions, { Ek;gk} of the following Hamiltonian eigenvalue problem

H ¥ =¥ Diag (,u ) (2.37)

As it can be noticed, tr (ﬂk) = 0 (¢r is the trace operator) so that the spectrum of
the eigenvalue problem can be partitioned as

Diag (Ek) _ Dlagg(ﬁk) _Diag(ﬁz) ’EI: € C/Re (;_l]:) >0 (2.38)

Similarly, the eigen matrix splits into two parts as

v = [\It+ v (2.39)
—k —k =k

Where, each of its bloc matrices satisfies the following symplectic-orthogonality
relation

v = (Ww ) =61 2.40
—k _k__(:k::k) e ( )

Further on, considering this generalized state vector Z; = {Q* I_’;}:, and mak-
ing use of its modal projection as II, = \Il Z, , the Hamiltonian eigenvalue problem
(2.37) and the symplectic- orthogonahty relatlon (2.40) allow to recast Eq. (2.37)
into a diagonal form so that its general solution writes, for a given layer k, as

Z; = ¥ Diag (e"%) A, (2.41)

Where, the unknown layer-dependent coefficients vectors A, are determined with
the help of the IC constraints together with the BC on top and bottom surfaces of
the composite, thereby completing the resolution of Eq. (2.35). Clearly this solution
is of analytic type and hence the capacity to account for the exact satisfaction of the
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IC as well as the BC on the top and bottom of the composite is expected. Finally,
the formulation of the problem in terms of the state vector Z; allows to use the
well-known mixed SSM to compute the solution throughout the whole thickness.
The case of a layered composite is then treated through a propagator matrix which
maps the state vector on the bottom to any height while satisfying the IC and BC
(see Andrianarison and Benjeddou, 2012, for more details).

2.4 Benchmarking Examples

In this section, several numerical examples are investigated to test the stability and
accuracy of the proposed method. The focus is made here on open literature bench-
marks that provide tabulated results for non-classical BC (cantilever), multilayer
composite layups (angle-ply) and electromechanical loads (uniform). The aim is to
avoid, as much as possible, graphical (curves)-induced comparison errors and exact,
closed-form and earlier solutions limitations to SS BC, cross-ply composite layups
and trigonometric electromechanical loads. Such classical benchmarks are abundant
in the open literature and have been already analysed in an earlier work (Andria-
narison and Benjeddou, 2012). It is worthy to mention that tabulated results for the
above mentioned non-classical configurations are rather seldom in the open literature
and related benchmarks choice is very limited. Therefore, a numerical convergence
analysis is first performed through the test-case of a cantilever PVDF bimorph, that
is clamped on the edge x = 0 and free elsewhere. The actuator configuration is fur-
thermore considered and the results are compared with reference 3D FE solutions.
Next, the assessment of the accuracy of the method is obtained by analysing the
bending of a PZT angle-ply composite plate under sensor configuration for which
the cantilever and SS BC are successively analysed.

Before we proceed to the presentation of the benchmarking examples, it is worth-
while to show how the BC are actually taken into account in the numerical procedure.
Let us consider the case of a sensor configuration where a mechanical force is applied
on the top surface and a zero potential is applied on both lower and upper surfaces
(Fig. 2.1a). We recall that, at the final stage of the aforementioned Hamiltonian VF,
a 2N algebraic system is obtained after the mechanical displacement variables are
constrained in agreement with the actual lateral BC, that is

H H H H

u =uu  =u@ =up, —upe u

- H H H H o

f —_ | =ou = —opm —¢pe f (2 42)
P, H H H H P, '

F —PmU —PmP —PmPm —PmPe F

—e Jt H H H H —e /)b

—Pell —PeP —PePm —PePe

where index m (resp. e) refers to mechanical (resp. electric) type variables.
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F Piezoelectric layer

q)o

Multilayer composite —

(a) Geometry and electromechanical loads of a piezo- (b) Through-thickness evaluation of vari-
electric multilayer composite ables at point A(x, y) of the 2D FE meshed
reference plane

Fig. 2.1. Geometry and FE-SSM semi-analytical point 3D solution for a piezoelectric multilayer
plate

As soon as the electric potential is fixed on the bottom and top surfaces, the second
equation of (2.42) can be solved for the electric displacement nodal unknowns in
terms of the mechanical nodal unknowns u” so that

PP-H! (¢-H uw+H ¢'+H P/ (2.43)
=ppe \=  =pu =ep=  =¢pm

Next, combining equation (2.43) with the third equation of (2.42) allows us to
solve u? as the solution of

m -H H'H |Ju-P,-(H -H H'H P
—PmU  —PmPe—fPPe—pU —PmPe —PmPm—PPe—FPm
-B -B H'H )J¢"-BH H' (244)
—Pm¥P —PmPe—PPe—¢P/ — —PmPe—¥Pe—
Once u” are determined, all other nodal variables on the lower surface are easily

recovered recursively and the solution through-the-thickness of the plate is computed
with the help of the propagator matrix.

2.4.1 Numerical Convergence Analysis

In this first example, a piezoelectric cantilever bimorph (Fig. 2.2) under uniform
electric load is investigated using the proposed method. It is made of two-ply PVDF
identical layers with outward opposite polarities to obtain a bending actuator. The
bimorph total thickness is # = 1 mm whereas the length is @ = 100 mm and the width
is b = Smm. The actuator configuration is considered here so that a uniform electric
potential @ = 1V is applied on the top surface. The edge BC of the bimorph are
assumed clamped on the edge x = 0; that is uy|x=0 = uy|x=0 = z|x=0 = 0 and free
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Fig. 2.2 Bimorph actuator
configuration

z
A

M(L,0,0)

.";_( .

elsewhere. The material properties of the PVDF layers used in this numerical example
are (Tzou, 1993): E; = E, = E3 =2GPa,vip =vi3=v23=029,G1p =G13 =Gz =
1GPa, e31 = €3 = 0.046C/m> e33 = e24 = €15 = 0.0, €, = €5, = €5, = 106.2 pF/m.

Some selected references are given here for comparison. The results in Tahani
and Naserian-Nik (2013); Phung-Van et al (2015); Li et al (2014); Vidal et al (2011)
were obtained through 3D FE, 2D plate isogeometric FE, plate B-Spline finite point
and refined shell FE methods, respectively. These reference solutions are used here
to analyse the behaviour of the present semi-analytical solution in terms of accuracy,
stability and convergence. The variables are thus evaluated in specific in-plane
locations along the bimorph where their values are compared with those obtained by
the references. Therefore, the static deflection of the bimorph at those specific points
are given in Table 2.1 for the here implemented Q4 FE different mesh discretizations.
It can be seen that the results obtained with the present approach agree very well
with the 3D FEM solution as given in Tahani and Naserian-Nik (2013) and are
more accurate than those of the other 2D methods (isogeometric FE of Phung-Van
et al (2015), B-spline finite point of Li et al (2014) and refined shell FE of Vidal
et al (2011)). Besides, it is clear that the convergence of the present semi-analytical
approach is very rapid as the reference values are reached for the five evaluation
points with a maximum relative deviation of less than 1.5% using a coarse mesh
of 16 (8x2) in-plane FE (Fig. 2.3). Moreover, the through-the-normalized (Z = z/h)
thickness distributions of the non-dimensional transverse stresses

~ ~ a
(Oxz:0722) = (Oxz,02) X =——
¢e31

and the non-dimensional transverse electric displacement
- D
D, === x10°
e3]

displayed in Figs. 2.4 and 2.5 confirm that the IC constraints are satisfied.



2 New Hamiltonian semi-analytical approach. . . 31
Table 2.1
Transverse displacement (1, X 1077 m) at point (x mm, 0, 0) for a PVDF bimorph actuator
Solution method Mesh Point location x (mm)
20 40 60 80 100
Present (2D Q4 FE-SSM) 4x2 0.125 0.505  0.99 1.75  2.815
6x2 0.131 0.532  1.140 2.054 3.210
8x2 0.134  0.543 1.223  2.183 3.434
10x2 0.134  0.543 1.225 2.183 3.435
12x2 0.134  0.543  1.224 2.183 3.435
Errors p (%) -1.47 -0.55 -0.65 -0.55 0.73
3D H8 FE S5x1x2  0.136  0.546 1.232  2.193 3.410
(Tahani and Naserian-Nik, 2013)¢
2D plate quadratic isogeometric FE 101 X6 0.138  0.550 1.236 2.201 3.443
(Phung-Van et al, 2015)
Errors p (%)” 1.47 0.97 0.73 0.36 0.32
2D plate B-Spline finite point S5x4 0.137 0.551 1.241 2.207 3.449
(Lietal, 2014)
Errors p (%)? 0.74 0.92 0.73 0.64 1.14
2D refined shell Q8 FE 5x1 0.137 0.551 1.241 2.207 3.449
Vidal et al (2011)
Errors p (%)” 0.73 0.91 0.73 0.64 1.14

“ The numerical values are obtained from non-dimensional quantities in Tahani and Naserian-Nik

(2013)

b The errors are computed with respect to 3D FE results

Fig. 2.3 Deflection conver-
gence plots at different axial
positions for the PVDF bi-

morph actuator

Relative deviation vs. 3D FE (%)

T T T
—o— x=20mm
20 B
H —&— x=40mm
L —eo— x=60mm |
| —x— x =80mm |
15f ——x =100mm |
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Axial mesh (number of FE)
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0.4

o _(al2,b/2)

2z

(b) Through-the-thickness distribution of 6~

Fig. 2.4. Through-thickness distributions of non-dimensional transverse stresses in the PVDF
bimorph actuator
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Fig. 2.5. Through-thickness distribution of D_ in the PVDF bimorph actuator
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Table 2.2 shows the results relative to the bimorph tip deflection when different
voltages are applied. They are compared with those of 2D B-spline finite point
approach (Li et al, 2014) and with the theoretical and experimental data provided by
Tzou (1989). First, the observed relatively high deviations of the numerical results
with respect to the experimental ones can be explained by the stiffer clamping BC
numerical reperesentation compared to the softer actual ones, and by the non-realistic
(electromechanical isotropic behaviour, nil elastic Poisson’s ratio and piezoelectric

Table 2.2

Tip deflection (uz x 1077 m) of the PVDF bimorph for different applied voltages
Method Voltage (V)

10 40 80 130 160 200

Present (10x2) 3.460 13.771 27.407 45.433 54.703 68.228
Errorgy, (%) 5.33 10.48 12.37 13.06 9.22 7.91
Experiment (Tzou, 1989) 3.285 12.465 24.390 40.185 50.085 63.225
Classical beam theory (Tzou, 1989) 3.450 13.800 27.600 44.850 55.200 69.000
Errorgy,, (%) 5.02 10.71 13.16 11.61 10.21 9.13
2D B-spline finite point (Li et al, 2014)  3.449  13.797 27.794 44.841 55.188 68.986
Errorg,, (%) 4.99 10.6 13.96 11.59 10.19 9.11

* The errors are computed with respect to the experimental results
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coupling coefficients, etc.) PVDF available material data. Then, it can be seen that
the results obtained with the present method match well the theoretical ones obtained
in Tzou (1989) and are the closest to the experimental values, in particular for the
last two highest actuation voltages (see Fig. 2.6). To assess the computational cost, a
comparison of different models in terms of the number of DOF is presented in Table 2.3
when the convergence is reached. It can be observed that the present 2D Q4 FE-SSM
semi-analytical 3D solution is the cheapest (lowest total DOF) and, as expected, its
characteristics are closer to the 3D FE solution in terms of cost (total non-nil DOF)
and accuracy (relative deviation, see Table 2.1).

Table 2.3
Computational cost (out of clamped nodes and DOF) comparison of the present 3D semi-analytic
solution with others for the PVDF bimorph actuator

Method FE Free nodes Mechanical  Electrical Total
(free DOF) (non nil DOF) (non nil DOF)

Present 3D semi-analytical 16 24 72 24 96
(Q4 FE-SSM)

3D H8 FE 10 30 90 24 114
(Tzou, 1993)

2D refined shell Q8 FE 5 25 175 10 185
(Vidal et al, 2011)

2D plate B-Spline finite point 20 25 125 50 175

(Lietal,2014)
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2.4.2 Square Cantilever PZT Angle-ply Composite Plate

A (20cm x20cm) six-layer cantilever plate, made of T300/976 Graphite-Epoxy (GE)
and piezoceramic (PZT-G1195N) materials, is considered (Pablo et al, 2009). The
BC are thus uy|y=0 = ty|x=0 = uz|x=0 = 0. The GE composite is bonded by PZT
layers on its bottom and top surfaces and each of its laminae is of equal thickness
(see Fig. 2.1a). The composite plate total thickness is fixed as 2 = 1 mm whereas that
of each PZT layer is 0.1 mm. The anti-symmetric (as) laminate angle-ply sequence is
considered; that is [PZT/—-6/6] ,, where 6 (here 45°) is the fiber orientation angle of
the ply. The material properties are summarized in Table 2.4. It should be noticed that
the PZT-G1195N material properties given in Pablo et al (2009) are unrealistically
considered as elastically isotropic whereas those in Benjeddou et al (2002) are
realistically anisotropic (transverse-isotropic). The simulation is conducted for both
datasets in order to show the influence of the unrealistic assumption of PZT isotropic
elastic behaviour. Besides, only the sensor configuration is considered in this test-
case; that is, a uniform mechanical pressure of amplitude p° = 100N/ m? is applied
on the upper surface whereas a zero equipotential voltage is imposed on the plate
bottom and top surfaces. Table 2.5 shows that the present semi-analytical approach
is able to recover, with —0.18% of relative deviation for the same mesh, the 2D FE
solution (Pablo et al, 2009) based on the classical plate theory and without electric
DOF. Besides, it is clear that the unrealistic behaviour assumption for the PZT-
G1195N greatly overestimates its realistic anisotropic (transverse-isotropic) one.

Indeed, the converged tip deflection computed using the former over estimates by

Table 2.4
Material properties of the PZT composite plate (€° = 8.85 % 10712C/Nm?)

Pablo et al (2009) Benjeddou et al (2002)  Benjeddou et al (2002)
Property  T300/976 GE PZT-G1195N Property T300/976 GE Property PZT-G1195N

E,,GPa 150 63.0 E,,GPa 150 C11,GPa 148
E,»,GPa 9.0 63.0 E,,GPa 9.0 C»,GPa 148
E3,GPa 9.0 63.0 E3,GPa 9.0 Cs3,GPa 131
G1»,GPa 7.1 242 G»,GPa 7.1 C12,GPa 76.2
Gi3,GPa 7.1 242 G13,GPa 7.1 C3,GPa 742
G»3,GPa 25 242 G»3,GPa 2.5 C»3,GPa 742
V12 0.3 0.3 V12 0.30 C66, GPa 359
V23 0.3 0.3 V23 0.30 C44, GPa 254
Vi3 0.3 0.3 Vi3 0.30 C55, GPa 25.4
d3,pmV~! 0.0 254 e31,C/m> 0.0 e31,C/m> 2.1
ds, pmV™! 0.0 254 ex,C/m> 0.0 e3,C/m? 2.1
ds3, pmV~! 0.0 374 e33,C/m> 0.0 e33,C/m? 95
dys,pmV~! 0.0 584 e15,C/m? 0.0 e1s,C/m? 9.2
dry, pmV™! 0.0 584 e, C/m? 0.0 ex,C/m? 9.2
€/, ,nFm™"' 0.0 15.3 € /e 35 €5 /e 460
€,,nFm™! 0.0 15.3 &) /€° 3.0 €,/€° 460

el, nFm~! 0.0 15.0 6353/6O 3.0 6353/6° 235
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Table 2.5
Tip deflection u, (mm) at point (0.2m,0,0) of cantilever PZT composite plate under uniform
pressure

Method Mesh Isotropic PZT Transverse-Isotropic PZT
(Pablo et al, 2009) (Benjeddou et al, 2002)
2D plate FE (Pablo et al, 2009) 6x6 2.750¢ -
Present (2D Q4 FE-SSM) 6%x6 2.745 (—0.18%) 1.408
(deviation) 8§x8 2.748 (—0.07%) 1.410
10x10  2.748 (-0.07%) 1.410

“ This numerical value is estimated from Fig. 4 of Pablo et al (2009) and may be subjected to
inaccuracies

94.89% that obtained using the latter (see the last line and column values of Table
2.5).

2.4.3 Square SS PZT Angle-ply Composite Plate

The same PZT composite plate investigated in Subsect. 2.4.2 is considered here.
However, the plate is here supposed to be under SS-2 BC defined as uy, = u, =0
at x = {0,a} and uy = u, = 0 at y = {0,b}. The PZT-G1195N electro-mechanical
properties given in Table 2.4 (Pablo et al, 2009) are retained. Both symmetric (s)
and anti-symmetric stacking sequences are considered; that is [PZT /—-6/6],, and
[PZT/-6/6], with 6 = 45°.

Table 2.6 shows that the present semi-analytical approach is able to predict accu-
rate results with relative deviations of —0.03% for the symmetric and 0.06% for the
anti-symmetric 45° stacking with regards to the meshless Radial Point Interpolation
Method (RPIM) presented in Liu et al (2004). It can be also observed that the central
deflection is higher for all anti-symmetric layups and increases with decreasing the
ply angle. Moreover, the through-the-normalized (Z = z/H,H = h+2h,,) thickness
distributions of the non-dimensional transverse shear stress Gy, = 0x; X (H/ap®) and

Table 2.6

Central point deflection (x10~m) of a SS PZT composite plate under uniform pressure
Stacking sequence  6(°) 2D Plate meshless RPIM Present

(Liu et al, 2004) (2D FE Q4-SSM)
(15x15) (8x8) (10x10)

[PZT [-0/0]as 15 7.222 7.235 (0.18%) 7.235 (0.18%)
[PZT [-0/0]as 30 6.542 6.537 (-=0.08%)  6.537 (-0.08%)
[PZT [-0/0]as 45 6.217 6.221 (0.06%) 6.221 (0.06%)

[PZT /-0/0], 45 6.038 6.036 (-0.03%)  6.036 (—0.03%)
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the non-dimensional transverse electric displacement D, = D, /e3; displayed in Figs.
2.7 and 2.8 confirm that the IC constraints are satisfied.
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Fig. 2.7. [PZT/-45°/45°],s SS composite plate under uniform pressure
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Fig. 2.8. Through-the-normalized thickness distribution of & in the [PZT/-45°/45°], SS
composite plate under uniform pressure

2.5 Conclusions and Perspectives

This chapter presented a new mixed Hamiltonian semi-analytical 3D static analysis
solution. It is based on Lagrangian 2D in-plane FE discretization, allowing arbi-
trary edges BC, and mixed Hamiltonian VF, single-layer symplectic solution and
propagator matrix through the thickness of the multilayer smart composite, allow-
ing automatic satisfaction of the IC constraints. This combination of in-plane La-
grangian and through-the-thickness Hamiltonian formalisms, through the Legendre
transformation, and the use of the nodal transverse stresses and electric displacement
resultants as dual independent variables are the main originalities of the presented
research work. It is applied to the analysis of multilayered piezoelectric structures
static actuation and sensing and the comparison of the results with various reference
solutions shows its rapid convergence and high accuracy. Moreover, the results also
show that the present method is able to take into account realistic BC such as clamped
and free edges, as well as non-classical multilayer composites stacking sequences
such as symmetric and anti-symmetric angle-ply layups.

This work focused on presenting the detailed derivation of the new mixed Hamil-
tonian semi-analytic 3D solution with application to the static actuation and sensing
of multilayered piezoelectric smart composites. It is worthwhile to investigate its
extension to vibration and dynamic analyses.
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Chapter 3

On Static Two-dimensional Models of
Thermo-electro-magneto-elastic Shells

Gia Avalishvili and Mariam Avalishvili

Abstract This paper is devoted to the construction and investigation of two-
dimensional models for anisotropic inhomogeneous thermo-electro-magneto-elastic
shells with variable thickness, which may vanish on a part of the lateral boundary.
The variational formulation in curvilinear coordinates of the boundary value problem
corresponding to the three-dimensional model of the shell, when density of surface
force and components of electric displacement, magnetic induction and heat flux
along the outward normal vector are given along the upper and lower face surfaces
of the shell, is obtained and the well-posedness result in suitable factor space of
Sobolev space is given. The subspaces with special structures of the spaces cor-
responding to the original three-dimensional problem are considered and applying
variational formulation a hierarchy of static two-dimensional models is constructed.
The boundary value problems corresponding to the obtained two-dimensional mod-
els are investigated in factor spaces of suitable weighted Sobolev spaces, and the
relationship between the constructed hierarchical two-dimensional models and the
original three-dimensional one is studied.
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3.1 Introduction

Many parts of smart structures made of piezoelectric materials come in the forms of
plates or shells, which undergo high mechanical and thermal loads. Since inhomo-
geneous, in particular, functionally graded (Udupa et al, 2014), materials are used
to increase the durability and efficiency of devices, and two-dimensional models of
elastic structures are always preferable to three-dimensional ones, it is important
to construct and investigate mathematical models of inhomogeneous anisotropic
thermo-electro-magneto-elastic plates and shells.

Mathematical models of a three-dimensional piezoelectric and pyroelectric con-
tinuum and hypotheses of linear constitutive relations first were developed by Voigt
(1890). Later on, Tiersten (1964) studied problems of vibration of piezoelectric
plates. The three-dimensional equations of the linear thermopiezoelectricity were
considered by Mindlin (1974) and two-dimensional equations for plates were derived
on the basis of variational principle and approximation by polynomials with respect
to the variable of plate thickness. Nowacki (1978) developed some general theo-
rems for thermoelastic piezoelectric materials. Dhaliwal and Wang (1994) proved
a uniqueness theorem for linear three-dimensional thermopiezoelectricity without
making any restrictions on the coupling constant between temperature and electric
field, and with only symmetry assumptions imposed on the elasticity tensor, which
further was generalized by Aouadi (2007) for thermo-electro-magneto-elasticity and,
in addition, the result was proved without positive definiteness assumptions on the
thermal conductivity tensor. The analogue of the Reissner’s mixed variational theo-
rem for thermopiezoelectric multilayered composites was obtained by Benjeddou and
Andrianarison (2005). Mathematical modeling of electro-magneto-elastic thin plates
by using asymptotic method was discussed by Weller and Licht (2007). Applying
the potential method and theory of pseudodifferential equations, Natroshvili (2011)
studied static and pseudo-oscillation problems with basic, mixed and crack-type
boundary conditions for homogeneous anisotropic thermo-electro-magneto-elastic
bodies. Static and dynamic problems for inhomogeneous anisotropic thermo-electro-
magneto-elastic solids with general mixed boundary conditions were investigated
applying variational approach by Avalishvili et al (2017a,b).

In the present paper, we consider the static three-dimensional model of thermo-
electro-magneto-elastic shell and construct a hierarchy of two-dimensional models,
which approximates the original three-dimensional boundary value problem, by ap-
plying generalization of dimensional reduction algorithm suggested by Vekua (1955)
for homogeneous isotropic plates with variable thickness in the classical linear the-
ory of elasticity. In Vekua (1955) components of the displacement vector-function
were expanded into orthogonal Fourier-Legendre series with respect to the variable
of plate thickness and then leaving only the first finite number of terms in the ex-
pansions and corresponding equations a hierarchy of differential two-dimensional
models was constructed. Note that the classical Kirchhoff-Love and Reissner-Mindlin
models can be incorporated into the hierarchy obtained by Vekua so that it can be
considered as an extension of the frequently used engineering plate models. Fur-
ther, various mathematical models of plates and shells constructed by Vekua were
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collected in his monograph (Vekua, 1985). Static two-dimensional models con-
structed by Vekua (1985) for shallow shells first were investigated by Gordeziani
(1974b), and the estimates of the order of approximation of the exact solution of
the static three-dimensional problem for elastic plate by vector-functions of three
variables restored from the solutions of the reduced two-dimensional problems, con-
structed in Vekua (1955), in the spaces of classical smooth functions were obtained
in Gordeziani (1974a). The hierarchy of static two-dimensional models constructed
in Vekua (1955) for plates was investigated in Sobolev spaces, convergence result
and estimate of the rate of convergence was obtained by Avalishvili (1999). Static
and dynamic hierarchical two-dimensional models were constructed and modeling
error was estimated for plates with variable thickness by Avalishvili and Gordeziani
(2003) and for shells by Avalishvili and Avalishvili (2004); Gordeziani et al (2006).
Applying variational approach and generalization of Vekua’s dimensional reduction
method static and dynamic one-dimensional hierarchical models and correspond-
ing convergence results for elastic bars were obtained by Avalishvili (2002, 2006).
Mathematical models constructed by applying dimensional reduction methods of
Vekua (1955, 1985) and their modifications, and related mathematical problems
were studied by many researchers (see Vogelius and BabuSka, 1981; Miara, 1989;
Jaiani, 2001; Dauge et al, 2017; Gordeziani and Avalishvili, 2005; Avalishvili and
Avalishvili, 2007; Avalishvili et al, 2010; Avalishvili and Avalishvili, 2014, and the
references given therein).

It should be pointed out that two-dimensional hierarchical models for anisotropic
inhomogeneous thermo-electro-magneto-elastic shells with general geometrical
shape have not been constructed and investigated yet. The static and dynamic hi-
erarchical two-dimensional models for thermo-electro-magneto-elastic plates with
variable thickness were constructed and investigated by Avalishvili and Avalishvili
(2018a,b). In the present paper, we consider thermo-electro-magneto-elastic shells
made of anisotropic inhomogeneous material and construct a hierarchy of static two-
dimensional models approximating three-dimensional one where, on certain parts
of the lateral boundary, mechanical displacement, electric and magnetic potentials,
and temperature vanish and, on the corresponding remaining part of the boundary,
components of the mechanical stress vector, electric displacement and magnetic in-
duction, and heat flux along the outward normal vector of the boundary are given. We
investigate the constructed two-dimensional models and obtain new well-posedness
results for corresponding boundary value problems and modeling error estimates in
suitable factor spaces of Sobolev spaces.

In Sect. 3.2, we consider the differential formulation of the boundary value prob-
lem in Cartesian coordinates corresponding to the linear static three-dimensional
model of inhomogeneous anisotropic thermo-electro-magneto-elastic shell with
mixed boundary conditions. We obtain integral equations that are equivalent to
the original problem in the space of twice continuously differentiable functions
and applying them we present variational formulation in curvilinear coordinates of
the three-dimensional boundary value problem in corresponding Sobolev spaces.
Furthermore, we formulate theorem regarding the existence, uniqueness and con-
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tinuous dependence of a solution on the given data in suitable factor space of the
corresponding Sobolev space.

In Sect. 3.3, we introduce subspaces with special structures of the spaces corre-
sponding to the original three-dimensional problem and on these subspaces we ob-
tain a hierarchy of two-dimensional models for inhomogeneous anisotropic thermo-
electro-magneto-elastic shells. We investigate the existence and uniqueness of so-
lutions of the two-dimensional problems, and continuous dependence on the given
data in factor space of suitable weighted Sobolev space. Moreover, we present the
result regarding convergence of the sequence of vector-functions of three variables
restored from the solutions of the two-dimensional problems to the solution of the
three-dimensional boundary value problem and an estimate of the rate of conver-
gence.

3.2 Three-dimensional Model

Throughout this work, for each real 0 < s <1, we denote by H*(D) and H*(I") the Sobolev
spaces of real-valued functions based on H(D) = L*(D) and H*(I") = L*(I"), respec-
tively, where D c R", n € N, is a bounded Lipschitz domain and I is an element of a
Lipschitz dissection of the boundary d D (McLean, 2000). We denote the correspond-
ing spaces of vector-valued functions byH*(D) =[H* (D))’ H*(I')=[H*(I)]>, 0<s<]1,
L) = [L (D), s1 = 1 and by tr- : H'(D) — H'/?(I"), trj : H'(D) — H'/*(I")
the trace operators. For any measurable set D C R", n € N, (,,.)12p)y and (.,.)2(p)
are the classical scalar products in L?(D) and L?(D), respectively.

Let us consider a thermo-electro-magneto-elastic shell with initial configuration
Q = £(Q), where Q is of the following form

Q ={(x1,x2,x3) € R3; h™(x1,x%) < x3 < h™(x1,x%), (x,x)€wC Rz},

where £ is a C2 diffeomorphism of ©Q onto Q% so that the vectors G;(x) = 8;&(x) are
linearly independent at all points of Q, 8; denotes the partial derivative with respect
to x; (i = 1,2,3). Since £ is an injective mapping, each point x* € Q* in Cartesian
coordinates x* = (x’f,xz,x;) can be unambiguously written as x* = £(x), x € Q, and
the coordinates x; of x are the curvilinear coordinates of x*. The triplets {G;(x)}
and {G'(x)} form the covariant and contravariant bases at the point x* = &(x),
respectively, where G;(x)-G’(x) = dij, 6;j is the Kronecker delta, G;(x)- G/(x) is
the Euclidean inner product in R3 of the vectors G;(x) and G’(x). The mapping
& defines the metric tensor of Q* with covariant components G;; = G; - G; and
Christoffel symbols er; =G"-0;G;,i,j,p=123.QC R3 and w c R? are bounded
Lipschitz domains with boundaries I = 022 and y = dw, respectively, the functions
h*eCw) ﬂClol;i (w)are continuous on @ and Lipschitz-continuous in w, i.e., hi*€ C%'(w*),
for all subdomains w*, w* C w,h*(x1,x2) > h™(x1,X2), for (x1,x2) € WUY,y C dw
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is a Lipschitz curve, h*(x,x2) = h™(x1,x2), for (x1,x2) € dw\y. The upper and lower
face surfaces of Q , defined by the equations x3 = A*(xy,x2) and x3 = A~ (x1,x2),
(x1,x2) € w, are denoted by I'* and I'", respectively, and the lateral surface of Q,
where the thickness of Q is positive, is denoted by

FZ {(X1,)C2,X3) S R3;h_(x1,x2) <x3 < h+(x1,x2), (xl,)Cz) S ”)‘/’}

The static linear three-dimensional model of the stress-strain state of thermo-
electro-magneto-elastic shell Q* in differential form is given by the following system
of partial differential equations (Natroshvili, 2011; Avalishvili et al, 2017a):

3 60';;.
_Z a - :f;* in Q*, i= 1,2,3’ (31)
j=1 Y
3 4D*
Z g L= fer in QF (3.2)
i=1 Xi
3 9B
Z 5 L-0 in QF (3.3)
-1 9%
_Z ax; ( Tii g ) 1o in Q°, 3.4

where (o-l?;.)?j:l is the mechanical stress tensor, which is given by the following
linear constitutive equation for a thermo-electro-magneto-elastic solid:

3

Ui?': Z €ijpq Cpqg(t” )+Z Pua 5 Z pu@ : /ljjg*’ Lj=123 (3.5

P-q=1

where u*= (u;.‘)?:l : Q* — R is the mechanical displacement vector-function, ¢*:

Q" - Rand y* : Q* — R stand for the electric and magnetic potentials such that
electric and magnetic fields are

E*=—(0¢"/0x});, and H*=—(0y"/dx});_,
0* : Q* — R is the temperature distribution,

e;f,.(v*)z 1/2(0v?/0x;+8v;/8x;‘), i,j =123, v* —(v

=1
is the strain tensor,

(c qu( ))tJ P-q=1
is the elasticity tensor,

( PU( ))ljp 1 and (b;q(x ))ljp 1
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are piezoelectric and piezomagnetic coefficients,
(N} iy
is the stress-temperature tensor,
fr= (fi*)?=1 -0 5 R3

is the density of the applied body force. D* = (D;);zl is the electric displacement

vector and B* = (B*.‘)?=1 is the magnetic induction vector; the latter are given, re-
spectively, by the following linear constitutive equations:

3 3 . 6(,0* 3 6lﬁ*
Di= ) gl en,(u )"Zdifax* Z g 0, =123, (3.6)
P-q=1 Jj=1 J o j=
3 3
Bl* = Z bmq P‘Z Z x* Zfl]a * +m;6*’ = 1’2’3’ (37)
p,q=1 j= J j=1

where (d* (x* )); o1 and ({U (x* ))3 , are the permittivity and permeability tensors,
(au (x* ))l oy are the coupling coefﬁments connecting electric and magnetic fields,
(i (™ )) and (m*(x*))3 are pyroelectric and pyromagnetic coefficients, respec-
tively; f *"* Q- R3 is the density of electric charges. (7]” (x* ))3 | is the thermal

conductivity tensor and f%* : Q* — R3 is the density of heat sources.

We assume that the thermo-electro-magneto-elastic shell Q* is clamped along a
part Fé" = f(FO), I, = {(x1,x2,x3) € I';(x1,x2) € Y0}, Yo C ¥ is a Lipschitz curve, of
the lateral surface I™* = £(I') of the shell, and on the remaining part I’ [ =€),
I“' =T \IF:0 of the boundary surface force with density g* = (g;‘)?zl Y R3 is
given:

3
u' =0 onfg, Zo-i*jn;fzg;‘ only, i=123, (3.8)
=1

where n* = (n} 13:

is the unit outward normal vector to ;. The electric potential
©* vanishes along a part I~“0‘p* = f(fo‘p), fo‘p = {(x1,x2,x3) € I(x1,x2) € Yohve cy
is a Lipschitz curve, of the lateral surface I"* of the shell and on the remaining part
I = ¢ (ry ), Iy Y =T \l ¢ of the boundary the normal component of the electric
d1sp1acement W1th density g¥* : I 1"’ — Ris given:

3
* p* ok * @
=0 on I, ZDini =g” on I, (3.9)
i=1
where n* (n , is the unit outward normal vector to /'y #*. The magnetic potential

" vanishes along F('f = {;‘(Fg’), FO = {(x1,x2,x3) € F,(xl,xz) € %/}, 75’ Cyisa
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Lipschitz curve, of the lateral surface I'* of the shell and on the remaining part
I ;/' "= &I ;/' ), I’ 11/' =r \F(l)ﬂ of the boundary the normal component of the magnetic

induction with density g¥* : I’ ;/’ * — Ris given:
Y =0 onl}", ZB g’ on IV, (3.10)

where n* (n is the unit outward normal vector to I * The temperature o*

i=1
vanishes along a part I'/* = f(I“(’) F" {(x1,x2,x3) € T (xl,xz) €¥L Yl cyis
a Lipschitz curve, of the lateral surface I I of the shell and on the remaining part
I O = & (ry 9), I o=r \ly [0 of the boundary the normal component of the heat flux

wrth density g"* :T'%* — Ris given:

. o0
6" =0 on I(*, Z Ty i = % onr?, (3.11)
i,j=1

where n* = (n})7_, is the unit outward normal vector to I'7*.

We assume that the elasticity tensor (cupq)f’j pog=1’ the stress- temperature ten-

* *
sor (A7, 11—1’ and piezoelectric (epl i jp=l and piezomagnetic (bp[ )i jp=1 tensors
satlsfy the following symmetry conditions:
* — k —_ * * 0 __ * * — * 3k — 3k L —
Cijpg = Cijgp = Ciipg> Aij = A Epij = Epjir Lpij = bpjir 11P2q = 1’2’(2'12)

If u* = (u));_, CQF SR ¢ QF SRy QF >R, and 0% 1 QF — R, are twice
continuously differentiable, then by multiplying Eqs. (3.1) by arbitrary continuously
differentiable functions v} : Q* — R (i = 1,2,3), which vanish on I}, Eq. (3.2) by a
continuously differentiable function @* : Q* - R, such that @ =0o0n e, Eq. (3.3)
by a continuously differentiable function " : Q* — R, which vanishes on I, and
Eq. (3.4) by a continuously differentiable function 6 : Q" >R, suchthat§ =0on
I [0 , by integrating on Q" and by using Green’s formula, and taking into account

constrtutive Egs. (3.5)-(3.7), symmetry conditions (3.12) and boundary conditions
(3.8)-(3.11), we obtain:

./ Z l]pq pq(u )ell(v )dx” +/Z Plja *elj(v )dx*

OiaJ-p.q=1 O+ =1
/Z pl]a ¥ z](v )dx* _/Z /l;}g (V )dx* /Zf*v*dx+‘/2g*v*df
Q+bJp=1 b=l peis

(3.13)
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AR LA L
ing©pa Z i dx; ox; i ox; ox; |

/ G dxt — / ¢ dr, (3.14)

1z
gRt

3
. 0¢” 6«1/
) it G +/ Z 5 g

i.j,p=1 O =1

3
oy (?W /

365 o= [ 3

3 —

96" 98 s e

/Zn;——dx*szg*e dx*—/g9*9 dre. (3.16)

£ gxt Ox;
O i,j=1 J L O Fle*

Therefore, if u* = (u:.‘)f=1 cQF - RS, ©*: O >R, A Q* >R, and 6* : Q* > R,
are solutions of Eqgs. (3.1)-(3.4) and satisfy boundary conditions (3.8)-(3.11), then
u*, ¢*, Y and 6" are solutions of Egs. (3.13)-(3.16). Conversely, if #*, ¢*, ¥* and
6* are twice continuously differentiable solutions of integral Eqs. (3.13)-(3.16), then
by using Green’s formula we obtain:

+

/ ¢y dre, (3.15)

Uk
Fl

i
/

*

3

* % % 5 % % * 390

/Z o nvidl — /Zé Ciipg€pqa(U )+Zspijax;
p=1

ry B Yi \pa=t
me]a * l*j o *dx _/Zf v;dx" +/Zg*V*dr (3.17)
r* 1=
3 3 g
_/ZD*n* dr* + /Zax* Z [pq pq( ) Z ”6*
e i=1 o =1 i \p.g=1
1
3 *
_Zaijax* 07 ¢ dx :/f‘l’ ¢ dx —/g‘p ¢ dar-, (3.18)
Jj=1 J O I
3 de*
/ nydr +_/Za bipqepq )= Za,’fjax%
I“L/’* i=1 o+ = i p.q=1 Jj=1 J
3 e
Zgua - m; 9 z//*dx*z—/g‘”*Z'dF*, (3.19)
=1

U
I
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/Z”ua -ni0 dI /Z ( T )9 dx* /fe*e dx* _/ge*g*dr*,

Gljl 0+
n

(3.20)

where v* = (v i=1o o, E*, 0 are continuously differentiable functions on @,
such that vt. =0 on 1"8‘, v =0on res, E* =0 on F(;p*, 9 =0on 1"09*. By letting
v* € (CL(Q")), Cl(@) = {veC (@) |v=00nT"}, G € CH(Q"), ¥ e Cl(2"),
9 e C}(Q*) and by taking account of density of C} () in L*(Q), we obtain, from
(3.13)-(3.16), that u*, ¢*, y* and 6* satisfy Egs. (3.1)-( 3.4). Now, if functions v*, ¢",
¥ and @ are arbitrary continuous functions on the surfaces I" Y B Y* and " and
vanish on the remaining parts of the boundary I"*, then by applying Eqs (3. 1) (3.4)
and density of the sets of continuous functions vanishing on the boundaries of I,
rys, F{p* and I'?* in spaces L*(I'7), LX(I'Y"), LZ(F;W*) and L*(I'?*), we infer, from
(3.13)-(3.16), that u*, ¢*, y* and 8" satisfy the boundary conditions (3.8)-(3.11).

Hence the boundary value problem (3.1)-(3.4), (3.8)-(3.11) corresponding to
the static three-dimensional model in Cartesian coordinates of anisotropic in-
homogeneous thermo-electro-magneto-elastic shell is equivalent to integral Egs.
(3.13)-(3.16) in the space of twice continuously differentiable functions. There-
fore, from Egs. (3.13)-(3.16) by expressing all integrals in terms of curvilinear
coorninates xi,x,x3 we obtain the following variational formulation in curvilin-
ear coordinates of the boundary value problem (3.1)-(3.4), (3.8)-(3.11): Find u €
V(Q)={veH'(Q);try(v)=00nTy}, 0 € V¥(Q)={p € H(Q);trr(¢)=0o0n F(‘f },
YeV¥(Q)={y e H(Q);trr(¥)=00n I:Ow}, 0eV?(Q)={0eH (Q);trr(6)=0o0n
fOH } such that

c(u,w)+e(p,v)+b(y,v)—A0,v)=L*(v), Vv eV(Q), (3.21)
_‘9(¢s u) + d(‘,D,i,_D) + a(lﬁ@) - /J(H’E) = L(p(@, VE € VSD('Q)’ (322)
—b(w,u)+a(¢’$)+§(l/f,$)—m(9,a) = Ll//(E)’ v‘; € V¢(Q)’ (323)
n(6,0) = L(9), VO eV9(Q), (3.24)
where
3
c(u,v) =/ D e gerlia@en;v)dx, A, v)—/Z/l Oei) (v)dx,
o i,j,p,q=1 i,j=1
3 3
0 0
e(p.y) = / > sgij%einj(v)dx, b(y.v) = / b5, a‘”e,,b(v)dx,
o ij-p=1 p Q i.j.p=1
3
Z) = G 0¢ 0p GO 9%
dle.p) = Q/ ;fl { O g 0 AWP)= / ,lea” ox; o,
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3

(W) = /,21 52‘” (9¢’dx 10.3) = /Zy s,
3
m(0,¢) = /Zm[GH 0y -dx, 17(6,60) = /Z ng gxe g)i
L¥(y) = / Z FiviVGdx + / Z g'trr, (v)VGadr,
o i=1 I i=1

L¢@@) = | f*eVGdx~ | g*trpe(@IVGr,
[ rovea- |

F‘P
LY(y) = - / wtrrw(l//)\/_ Gdr,
FLI/
L0) = [ fP0NGdx ggtrrlg(é)\/ﬁdr,
[roe]

u= (ul)l \» wi (i =1,2,3) are the covariant components of the mechanical dis-
placement, 6(x) = 0*(x*), x* = £(x), x € Q, f% and g' (i = 1,2,3) are the con-
travariant components of the apphed body force f* and surface force g* densities,
epllq(v) =1/2(0,vq +0qvp) — Zl 1 pqvl (p,g=1,2,3),v = (vl) _,» are the covariant
components of the strain tensor (Ciarlet, 2000), G = det(G;),

3
g =" > ars (NG (G (G (GG,

k,l,r,s=1

3
60, 0= Y eu(¥(G) (GGG,
k=

r,s,k=1

3
S0 = > bGP (G (G NG,

r,s,k=1

3
A (x) = Z Aes(NGNHGHNG,  dG(x)= D dp (GGG,
r,s=1 r,s=1

3

3
al(x)= Y ar (GG NG, §(x)= ) L(x(G)(G)VG,

r,s=1 r,s=1

3 3
uf ()= Zur<x><cf>rﬁ m(x)= ) m(x)(G"), VG,
r=1

ni(x) = Z Nrs(X)(G)A(G)s VG,

r,s=1
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Cklrs(x) = C;:lrx (X*), grxk(x) = g:\'k(‘x*)’ brsk('x) = b;\'k(‘x*)’
s (6) = A (), dy (%) = iy (6°), () = a2, (6°),
s (X) = G (1), ptr(x) = pp(x7), my(x) = mp(x%), 1,5 (x) = 1 (x7),

i,j,p,q.k,l,r,s =1,2,3,
2 (x) = [ (x), )= £ (), x'=€(x)x€Q,
gf(x)=g# (x"), x"=¢£), xelf, g'(0)=g"" ("), x" =&@x)xely,

gf(x)=g%(x"), x"=€@)xerlf.

Hereafter, we assume that ¢;jpq, €pijs bpijs dij» aijs Gijs Aijs fis mi, Mij € L(Q),
i,j,p.q = 1,2,3, satisfy the following positive definiteness conditions

3
Z clJPq(x)‘flJé:Pq 2 Qe Z (‘flj Z nlj(x)gjé:j ay Z(ft)z (3.25)
i,j,p,q=1 i,j=1 i,j=1

3 3 3
Z dij(x)&;éi + Z aij(x)é & + Z aij(x)éE;

i,j=1 i,j=1 i,j=1

* Z Gi(EE; 2 az«af +ED), (3.26)

i,j=1

for all &5 € R, & =&, &, g_-“i eR, i,j =1,2,3, and for almost all x € Q, where a,,
@y, @ are positive constants.

Note that if the parts I, I~“0‘p*, I~“0¢* and fé’ * of the boundary of the shell Q*, where
mechanical displacement, electric and magnetic potentials, and temperature vanish,
are empty sets, then the parts I o 1 (‘f I g’ and I 5) of the boundary I" are empty sets and
the homogeneous problem (3.21)-(3.24), i.e., with f = (f)_ =0, g =(g');_, =0,
f£=0,82=0,8% =0, f7 =0, g¢ =0, has non-trivial solutions. Hence, the solution
of problem (3.21)-(3.24) is not unique in the first-order Sobolev spaces mentioned
in the variational formulation and it is necessary to introduce suitable factor spaces,
where the solution of problem (3.21)-(3.24) is unique. We denote by R the set of of
solutions of the homogeneous problem (3.21)-(3.24), where L*(v) =0, L¥(p) =0,
LYW)=0,L%6)=0,forally € V(Q), g€ V¥(Q), ¥ € V¥(Q) and 6 € VI (Q).

By applying generalized Poincaré’s inequality (Ciarlet, 1988), Korn’s inequality
in curvilinear coordinates (Ciarlet, 2000), corollary from Korn’s inequality in factor
spaces (Duvaut and Lions, 1972), and Lax-Milgram theorem (McLean, 2000), we
determine the structure of the set ‘R, which is of the following form:
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r_pgr —1ro" r . r
R = {(vre ,(pr() "7[’ ,gr); vre v +u" ro” ,<pr0 _()0 +(pr9

—re" _ Jr +¢r9r’(vr’¢r’ar) c mu‘pw, gr c me},

where
RV = (v, G0 ) € V(Q)xVH(Q)x V¥ (Q);
vV =a+Bxox,a,feRG = Qp, Uy € Ry = .y €R},
B x ox is the exterior product of vectors f € R* and ox = (x,-)?=1 eR?,
R ={0" e V?(Q):0" = ap, ap € R}

and (u"? ,¢"?" Y ?") € V(Q)x V¥(Q)x V¥(Q) is a solution of the homogeneous
Egs. (3.21)-(3.23) with#=6"and f =0,2 =0, f¥=0,g¥ =0, g¥ =0.
The set R defines the factor space

VA (Q) = (V(Q)x VF(Q) X V() x VO (2)) /R,

which consists of the following equivalence classes
0. ET " = {0200+ 0 GG R0 F G 0 e,

for each (v.7.1/, 6) € V(Q) x V#(2) x V¥ (2) x V*(Q). The factor space Vy*"*(2)
is a Hilbert space equipped with the following norm:

0288 v, = 0SB, 9)+(v RGNS /e
R
( ro” arﬁ gr) ES.R}

Note that, for all (v",@" i ) e R*#Y and 9" € RY we have

W' W) +&@ v)+bl V)= A0 v)=0, Vv eV(Q),
~e(@Y)+d(@ 9 +al 9 - pu0".5) =0, VgeVH(Q),
~b@v") +a@ )+ LW )~ m(O ) =0, Vi e VV(Q),
n(6",0) =0, Y0 eV?(Q),
and, consequently, for solvability of problem (3.21)-(3.24) it is necessary that

L"(v") =0, L¥(¢") =0, L””(azr) =0 and LY(0") = 0. Therefore, for each solution
(u,p,,0) of problem (3.21)-(3.24), any vector-function

(. o.0)+ 0" 7 5" 00,

where (v ,Ere 9’) € R is also a solution of (3.21)-(3.24), and problem

(3.21)-(3.24) in the factor space Vg, o (2) can be formulated as follows: Find
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(w,0,0,0)" € Vf;“’ow(.Q) such that any vector-function from the equivalence class
(u,,,0)™ is a solution of problem (3.21)-(3.24).

For problem (3.21)-(3.24), which is equivalent to the boundary value problem
(3.1)-(3.4), (3.8)-(3.11) in the spaces of classical twice continuously differentiable
functions, the following existence, uniqueness and continuous dependence theorem
is valid.

Theorem 3.1. Suppose that Q C R? is a bounded Lipschitz domain, the parame-
ters Cijpq Epij» bp[j, /l[j, d[j, aij, é’[j, Mi, my, 1;5 € LOO(Q), iL,j,p,q = 1,2,3, satisfy
the symmetry and positive definiteness conditions (3.12) and (3.25), (3.26). If f €
LY3(Q), g e L), ¢ € L3(Q), g% € LY3(IY), g¥ € LY3(1)), 1% € L7(Q),
g% e L¥3(r?), and

L“(vW")=0, LY@ ) =0, LY )=0, L°(6") =0, (3.27)

for all (v’,@r,wr) € R4 0" € RY, then problem (3.21)-(3.24) possesses a unique
solution (u,,p,0)" € V;¢¢9(Q), which continuously depends on the given data, i.e.,
the mapping (f.g. 1%, 8%.8%, 1%,8%) — (u,0,0,0)" is linear and continuous from the
space LO/3(Q) x LY3(I) x LS/ (Q) x L*3(I'f ) x L4/3(r1‘” )X LY3(Q)x L¥3(I'?) to
the space V;‘pwe(!)).

Remark 3.1. If the areas of the surfaces Iy, I (;p , I (;p , I 09 are positive, then the
homogeneous problem (3.21)-(3.24) has only a trivial solution. Hence, R*¥Y =
{(0,0,0)},%¢ = {0}, R = {(0,0,0,0)}, the factor space Vf;f‘/'g(Q) coincides with
V(Q)x VP (Q)x V¥ (Q)x V?(Q) and Theorem 3.1 is valid in the subspaces of first-
order Sobolev spaces mentioned in the variational formulation (3.21)-(3.24).

3.3 Hierarchical Two-dimensional Models

In order to construct a hierarchy of two-dimensional models let us consider the sub-
spaces VN(L) of V(2),N = (N,,N,,N,) € (NU {0})3, consisting of vector-functions
vN with components vn; (i = 1,2,3), which are polynomials with respect to the vari-
able x3,

N,
: 1 l r; r; .
VNi = Z W (rl- + 5) le-Pri(z) inQ,h vy € LY (w),0< r; <N, i=123,
r;=0

where z = x3}l_ Ly h;hi Jh= hhzr}f , and P, denotes the Legendre polynomial of

order r € NU{0}. We also consider the subspaces V]‘\’}w (2), N, e NU {0}, V%(Q),
Ny e NU{0} and V,?,H(Q), Ny € NU{0}, of V¥(Q), V¥(Q) and V?(Q), respectively,
which consist of the following functions
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— r}i]w 1 1 v T

Ny =), W (%* g)wNan,(Z) inQ, h'Pyy, €L} (w), 0<r, <N,,

i VN;O1 1 _rH _ry

s Zoﬁ (’“E)GNQPQ,(Z) inQ, h720y, € Lw), 0 <1y < N.
o=

Since the functions 2" and 4~ are Lipschitz-continuous in w from Rademacher’s
theorem (Whitney, 1957) we have that A* and /™ are differentiable almost everywhere
in w and d,h* € L®(w*) for all subdomains w*, w* C w, @ = 1,2. Therefore, the
positiveness of / in w implies that for any vector-function vy = (vNi)? € Vn(Q)

the corresponding functions va; € H!(w*), for all w*, @* C w, i.e. vn; € H} (w),
r,=0,...,N,, i =1,2,3. Similarly, for all functions ¢n, € V (.Q) lﬁNw € V‘p (Q),

_ rg v _®

On, € Vlf’,ﬂ (Q), the functions @y, ¥y, O, of two variables in the expressions
— _ A

of @y, ¥y, Oy, belong to H'(w"), ie. @n,» ¥n,» On, € H), (@), 7, =0,..

Ty =0,.. 5Ny rg =0,...,N,. Moreover, the norms ||.|[g1 (o) and || ||H1(Q) in the spaces

H] (Q) and Hl(_Q) define weighted norms |[.||. and [|.|lg«, ||-|ly |]-]lo« of Vector—

functlonst—(vN,)e[ c(w)] 123, Ny 3 =N+ N, + N, +3, andgoN —(tpN )e

rw - "o
[H] (@)¥ g, —(m)e[ H, (@), 0y, = Oy,) € [H], (@)Y, such
that |[7n]l. = [[¥Nllmo) and 1@y, llex = (B, @) 10w, o = 10, i)

16N, o« = ||5NH |11 (). Using the properties of the Legendre polynomials we can
obtain explicit expressions for the norms [|.[|. and ||.|lg+, |||l ||.|lo«. In particular,
[|.]]« is given by the following expression:

S 1 i 1 2
|" = ZZ(”[‘FE) (Si+§)(1—(—1)ri+si)h 3/2‘}31\31
o o LY(w)

+
N
=
)
<

W00 + 1+ D00

2 N,
ri ||? : 1 + ri+s; —\7,—3/2, 5
Ni Lz(w)+; :Z (si+§)(6ah — (=) By k)32
r Ty

2 1/2
sz)) ‘
ry W

ri — — = . - = =
For components vN; and ¢ . ¥y, . Oy, of vector-functions vy and @ No> UNy»

51\/,,, which possess the properties ||Vn||s < oo and ||¢N¢||s0* < 00, ||:ZNW||¢,* < 00,
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||0N9||9* < oo we can define the traces on Y. Indeed, the correspondlng vector-
function of three variables v = (VN,) and functions @ N, Un z 0 N, belong to the
spaces VN(Q) c H'(Q) and V;Gq} (Q), Vﬁw (2),V 'No 9 (Q) c H'(Q), respectively, and

i e _r v _rg —
using the trace operator trzwe define the traces of vn; and ¢ No» YN, On, 00y, in
particular,

h+
tr;,(vﬁ[) = /trf(vNi)P,i (z)dx3, r;=0,..,N;, i =1,2,3.
d

Since vector-function vy, from the subspaces Vn(£2), and functions an €
VI‘\Z(Q), Uy, € V;ffw(Q) and 0y, € V¥, (Q) are uniquely defined by the func-

"o

. e v
tions Vi, ¢N4,’ Un - HNQ of two variables, and considering the original three-
dimensional problem (3.21)-(3.24) on these subspaces, we obtain the following hier-

archy of two-dimensional boundary value problems: Find iy € W (w), ¢n, € \7& (w),

chN s € ‘_}ﬁw (w), 5N9 € \7139 (w), which satisfy the following equations

eN(UN, VN) + EN,N(PN, - VN) + D, NN, . N)

— AngN(Bn, . FN) = LE(N), Vi € Va(w), (3.28)
— N N@n,0iin) +dn, (En, 8, )+ any N, (N F,)

— 1oy O 8n,) = L @), Vo, € VS (o), (3.29)
- bNd,N(iNWﬁN) +an,n, (SZNWin) +{n, ('ZNwin )

gy O ) = Ly, W) Vi, €0 (@), (330)
1IN, (5N9,5N9) =Ly, (31\/9 ), VENH e Vg, (w), (3.31)

where

V() = In = () € [H (@)]M123; [inll, < 00, 1r5(vai) = 0 on 7o,
r;=0,..,N,i =123},

N > ® "
V(@)= {8, = @n,) € [Hly (@) [y, llp- < o0tr5(@y,) = 0 on 7,
o= O,...,N‘F},
. - v "y
V@)= (U, =@, € [ @110y, llg < o0, 115y, =0 on 72,
rw=0,...,N¢,}, ) )

0 a

‘71.\9/9(('0) = {ENG = (ENQ) € [ lnc(a))]N s ||9N9||0* <o tr?’(eNs) 0 on 70’
rg=0,..,Ny},
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the bilinear forms cy, EN,Ns bN,N> ANpN de AN, Ny> ANy Ny> Ny > HNgNg > MNg Ny, »
nn, are defined by the corresponding bilinear forms of Egs. (3.21)-(3.24), i.e.,

eN(VN,VN) = ¢(VN, VN),

N NN, IN) = £, PN, le,,N(iNW‘_’)N) = by, V),

NN OngsTN) = Ao, i, BB, ) = (@, B, )

AN, N, (éN‘P isz) =a@y,¥n,) an, Ny ($N¢,’$N )= a(¥n, PN, )
{N¢(wN¢, ‘/de/) LGN, W N, MN9N¢(9N9,90N¢) 1O PN, )

mNgN./, (HN(-)"I/NL,,) m(gNg’d/Nw) 1INy (GNH’GNQ) = n(gNgaGNg)

for all vector-functions v, VN € WW(w); @ N PN, € VI‘\’}p (W) ¥ Nw"ZNw € V;gw (w);
5;\/8,51\19 € \7]\9,9(a)), corresponding to VN, VN € VN(Q); (,ENW an € Vﬁw(!});
JNw’EN,/, € Vﬁw (Q); 9Ng,5N9 eVﬁa (9Q), respectively. The linear forms Ll'(I, Ll"f] s

@

LJ‘/\’]J/ and Lf{,ﬂ are given by the following expressions:

3 N, N
L{(I(T}N)=ZZ(;’I.+%) ‘/lv?h(f +g /l++gl.G’_/l_(—l)’i)dw

i=1r;=0 w

!

1
N,

= 4 1 11 _
L% @n,) =), (r¢+§) / @n, (f“’G g# ot —g# ﬂ—(—l)’“’)dw

ry,=0 w

1 e e
- [ G e ea)
,y‘/’
1

N, r,
= 1 1— _
Ly, @n)== ) (rw * E) /zm (52 + g0 A (= 1)v ) doo
rd,:O b

|- e
+/ZW«7(¢N¢)8¢’GdV?),
7
N

- 0 1 l_’e "o
LY, (On,) = Z (Vg+ 5) /ZHNH [0 =g, =g A (1) |dw

ry=0 w

1 ¢
—/Zl"’i(gNg)ge’GdY?),
¥
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whete G = NG, 195 = [T, 116 = I, 4 = gNG, g7 = g9\,
g9 = g'VG, g% " (x1,10) = g'(x1, %2, x3)VG, g#F*(x1,x2) = g% (x1,%2,33)VG,
g% OF (x1,x2) = g¥(x1, x2,03)VG, g% C*(x1,x2) = 8% (x1,22,x3)VG, for (x1,x2, x3) €

r= and y1 =9\7%0.7¢ =7\¥5. v =7\7y 70 =7\7G. As = 1+ (0182 + (0,1 )2,
h+
V= f VP, (z)dxs, for all functions v € L2(Q) and v € LX(I'), r € NU{0}.
i
Since the homogeneous problem (3.28)-(3.31), where Ly (Vn) =0, L (:0 N, )=0,

Ly, (ENw) =0, LY, (O, = 0, for all Ty € Tn(w). on, € Vi (), l/,Nw € Vy, (@)

and 5N€ € \7169 (w), has non-trivial solutions, if the parts vy, %p s 70” and ?0 of the
boundary of the two-dimensional domain w are empty sets, therefore the solution
of problem (3.28)-(3.31) is not unique in the mentioned spaces and it is necessary
to introduce suitable factor spaces, where the solution of problem (3.28)-(3.31) is
unique.

The set ‘ﬁm of solutions of the homogeneous problem (3.28)-(3.31) is of the
following form:

- ro%,  -rér Zrérr\/ - rr ro’
_ ) =2"Ng 2Ny 0 7r \. = UNg _ =r , 2"YNg
Ry = {(VN PN, YN, Ong )i VN =Nty
10" N 4r ->r9 N ar
—=roy r oy rHNG

‘prg—QoN +‘70N lﬁNl,, l/’Nw"'l//]\/ ,

sr 2 puey 50
(VI(I,QONW,(//M) € ‘RNN‘FNW, 91’\,9 €Ny, (»
where
guev L2 ) e @)XV (@)x 7 (w);
NN, Ny N*#Ny> ¥ Ny N N, Ny )

ri 0 _ 0 _
\71’;1 = (Vlr\.li)’ V{;“ = Zh(a’l —ﬂ3)1€'2 +ﬁ2h), VIQQ = zh(az +ﬁ3x1 _ﬁl h)’
W = 2hlos=Foxi+ i v =2BR/3, i 2 1,
=-2B1h*[3,ifr, > 1, vy =0,ifr3> 1,

VW =
1

3
v =0 forr 22, a= (al)l o B=B)i, eR3,
o Ty 0 Ty

on, = (@N,) @, =2hay, 9_0?\,“7 =0, forr, 21, a,€R,
"y 0 "y

=r — — —
¥n, = (lv[/;\],/,)"r//;\]w = Zhaw"ﬁ;v.,, =0, forr, > l,ay € R}

N e _'f
RY, = {0, €V, )0y, = Oy,).0y, =2hag.0y, =0, forry > 1ag €R}
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ror ror
ST"ONg STONy
and (uN P, s

neous Egs. (3.28)-(3.31) with 6y, = 04, .
By applying the set Ry we define the factor space

6%, - - -
zﬁNwN") € W(w) X V;\Z, (w) X V;f;w (w) is a solution of the homoge-

Uyl ey =@ S =0 >
V‘.ﬁgz (w) = (W(w) x VNw (w) % VN:// (w) % VNe (w))/Ra,
which consists of the following equivalence classes

- - > - N - > g7 -ré oy,
(PN, Dy O™ = (O, D, ) + (T G g, )
N’SDN¢7 Nl//$ Ng - N’SDN(p, Nl//, Ng N "’Dan ) Nl/] b N(_] )
_)rélr\, :rélr\, 1”97\/9 > -
(VN G’ th g$wNw 79rNH) € miﬁ},

for each (¥n, ¢ N, W Ny» On,) € V(w) X \7&; (w) X ‘7& (w)x \71\9,0 (w). The factor space
is a Hilbert space equipped with the following norm:

e
(VN590N¢’wNw’9Ng) %

‘71“0‘//6((0) = inf{“(vNaEN(p’t//Nw’gNg)
gy
ré;:j qré" >roy, S
by 0 — No o ar . R . . .
+ (VN ’()ON‘p ’lbe,l, ’HN(;)||V1\1((.:.))><V;$</J (w)XV%w (w)xvlsg(w)a

_)rGIrV :r@};, :"a;/H > -
(VN 99 N‘pgalew ’eg\le)emm}'

;ﬁuw

RO
NN, Ny and ERNH that any vector-

It follows from the definition of the sets

ugy

=r
= =0 )
NN, Ny and Oy, € Ry, satisfy the homogeneous Eqs.

oy 2 =
functions (ﬁﬁ,E;vw,lﬂ ny) €ER
(3.28)-(3.31):
N or =r 7S PN € Vi
NN VN) + EN,N(@n, VN) + Dy N(W iy, IN) = ANgN(B )y, VN) = 0, ViN € W(w),
> or o = = 5.3
—SNLPN(‘PNWV;I)+dan(‘pN¢p’90N¢)+anN‘p(wN‘”’soN‘p)_#NHN‘F(GNW"DN‘F):0,
V@mevﬁw(w)’
or N >r -

=, or = =r = >r =
—bn,NW N, V) +an, N, (@n, YN, + N, W, Y, ) —mNgN, (On, ¥ N, ) =0,
Viby, € V3, ().
z>r =z judl -
MNe Ony-On,) =0, YOn, € VY, (w),
-y =r =r =r
and, hence, we have that Ly () = 0, Ll‘f,w(<pN¢) =0, Lf\’,w (Wn,) =0, Lf,g (On,) =0.

Consequently, problem (3.28)-(3.31) can be formulated in the factor space X_}g‘pw(w)
N
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Uyl

as follows: Find (iin, @, .U, (//’GNH Y e V (w) such that any function from the

equivalence class (uN,gon,wN,p,HNg )“RJ‘ isa solutlon of problem (3.28)-(3.31).

For the constructed hierarchical two-dimensional models (3.28)-(3.31) for thermo-
electro-magneto-elastic shells the following existence and uniqueness theorem is
proved, where we use the following weighted function spaces

6/5 43, N~
L ()= (1% e LR @)}, 1,PG) = (v e LB (), 7 ¢ 7,
L (w) = {47 v e LB W)}, LY () = (a7 v e LYB(w)}.
Theorem 3.2. Suppose that Q c R3 is a bounded Lipschitz domain, the parameters
Cijpg> Epij» bpij: /lijy dij’ aij, (ij: Mi, M, i € LOO(Q), i,j,p,q =1,2,3, satisfy symmetry

and positive definiteness conditions (3.12) and (3.25), (3.26). If the functions defining
the linear forms Lll\ll’ Llffw’ L%w and Lg,g are such that

Ly(i) =0, LF, (SON) 0. LY, (wsz) 0, LY, (O,) =0,
for all (W@, Wy,) €

- o
9?;‘]{]‘/’ Ny and 6y, € ‘RIHVH, and
7

4/3 4/3

ri
4/3
Bw), g8 e L} (),

Ty Ty
6/5 4/3 - 4/3 4/3
P9 e L), g9 e L (w), 8297 e L (), 29 e (),
T,

ri
6/5
fiGeLh/(a)),g €L, (w),g’ €L,

W
4/3 - 4/3 4/3
gh Ot e, Pw), g7 e L), g9 e 1, o)),

f" .G ¢ L6/5(w)7 g”’ 4/3(w) P G,— 4/3(w) ge G ¢ L2/3(71)

where r= =0,.. N, i= 1,2,3, o = 0,...,N =0,.. l//, ry = O,...,Ne, then the

boundary value problem (3.28)-(3.31) possesses a unique solution (L_t)N,gZN‘p,lZN o

7] Ny )T € \75:(” (w), which continuously depends on the given data, i.e., the mapping

7G ,G.+ ,G,— 3G 79.G ¢.G,+ G,- =¢.G G+ G,- =¢.G
(ng 7g 9gNsN sg‘p #> '1[’ w

878N, 8T8 L8,
fg 9,500 g0 _,§NG) - (ﬁNatﬁNWlﬁNWGNg)R““
is linear and continuous from the space
(L (@)™ 5 (L (@) % (L @) % (L i)™ x (L (@) Vet
X (L3 (@) X (L @) ) (L PN X (L @) x (L) )’
(LRGN ) (LR @) Vot (L (@) x (L @) x (L ()N !

to the space Vgi:‘pl/lg(w), where
N
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R =U0) g% =67, 897 =(677), & = (55
2 ro
70.G _ G -><pG "G\ 2u.G wc 0.Gy 30.G _ (40.G
In, (f”") (“’) gy, =g ) el =79, 850 =",
Remark 3.2. If the lengths of the curves o, ¥ , )75” and ) are positive, then the
homogeneous problem (3.28)-(3.31) possesses only a trivial solution. Consequently,

i}{;‘ﬁp Ny ‘Rg and iRs)z consist of vector-functions with zero components. The factor

space Vﬁ gyl (w) coincides with Vi (w) x V"D (@)X Vw (w)x Ve , (@) and Theorem 3.2
?

is valid in the spaces mentioned in the formulatlon of the two- dlmensmnal problem
(3.28)-(3.31).

So, we have constructed a hierarchy of two-dimensional models for thermo-electro-
magneto-elastic shells and have investigated the well-posedness of the obtained
boundary value problems (3.28)-(3.31), which can be considered as approximations
to the original three-dimensional problem if we estimate the difference between
the exact solution of the three-dimensional problem and the functions of three
variables restored from the solutions of the two-dimensional problems. We denote by
(un, Ng YN, 4 ONg )m“‘ the equivalence class consisting of vector-functions restored

from the solution (ﬁN,gZN(p,t/_/)N «/ﬂéNe )(ﬁ"‘ of problem (3.28)-(3.31), where

Rer r9
(uN’SDN¢awN¢’HN9)RJ‘ = {(uNa90N¢ ¢N¢79N9)+(V ’QDNNH WNNH gr )
r0’ rQNg Ne -
vy . lﬂN .O0n,) € Ra},

un € Vn(9Q), ¢n, € VI‘\Z(Q), ¥nN, € VI‘\”,w(Q), On, € Vf,H(Q) correspond to solutions
in € W(w), @, € Vi (). ¥, € VY (@), 6N, € V) (w) of problem (3.28)-(3.31),
and Ry, consists of vector-functions of three variables

ro% _rox roy, .
(T, Ty, O,) € VN(Q) X VE (@)X VY (@)% V5, (2)

= ézr\/ = éN Ir\’e > -1
that correspond to (Vy ., ¥ N, ‘W, Oy,) € Ra.
In the following theorem we present the results regarding the relationship between
the constructed two-dimensional and original three-dimensional models, where we
use the following anisotropic weighted Sobolev space

Hy Q)= {vi 1057107 v € L2(Q), W' 9uh*05v e LX(Q),1 < k <,
r=0,1,i=123a=12}, seN,

which is a Hilbert space equipped with the norm
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2
V1.5 ) = (Z (ZZHhk Lok larvHLz(Q)+Z(||hk_16(yh+(9§\/“iz(g)

k=1 \r=01i 12 a=1
+ W05 2g))))

Theorem 3.3. If Q c R? is a bounded Lipschitz domain, the parameters c; ipg» Epijs
bpij,Aij, dij, aij, Gij, i my, mij € L*(Q), i, j,p,q = 1,2,3, satisfy the symmetry and
positive definiteness conditions (3.12) and (3.25), (3.26), f € LO/(Q), g e L*3(I)),
f¢ € LO5(Q), g¢ € LY3(I¥), g¥ e L)), 9 € L¥5(Q), g% € LY3(I'?), and
condition (3.27) is fulfilled, then the two-dimensional problem (3.28)-(3.31) pos-

)?@J‘ c V"¢¢9

sesses a unique solution (Un,¢n, VYN, 0N, (w) and the sequence of

vector-functions of three variables (un,¢nN,,¥N, L,,,t91\19)}{Je restored from the so-
lutions (uN,(,oN WN.p’eNe )R” of problem (3.28)-(3.31) converges to the solution
(w0 Y e Vu<pt//0 (Q) of problem (3.21)-(3.24) as Npin = 1r£1ii£13{Ni,N‘r,),Nl//,Ng}—>oo .
In addition, if one of the vector-functions (u,p,,0) from the equivalence class corre-
sponding to the solution (u,.\,0)" is such that u € (HY 5 (Q))3, pe Hl b5 (9Q),

v e H:" Q) 0 € H(Q), s, Se» Sy» S0 €N, Su, S, Sy, So 2 2, then

: 0" 1
||(u7 SD,W,G)R - (uN9()0N<p7wN,/,’9N0)RR||V;¢¢H(g) < FO(Q’f’Nl\Cp?Nw’NH)v

min

where s = min{sy, Sy, Sy,5¢} and 0(2,E,N,Ny,Ny,Ng) — 0 as Nyjn — oo.

3.4 Conclusions

We studied the boundary value problem in curvilinear coordinates with mixed bound-
ary conditions for the mechanical displacement, electric and magnetic potentials, and
temperature corresponding to the linear three-dimensional model of inhomogeneous
anisotropic thermo-electro-magneto-elastic shells. We obtained a variational formu-
lation of the three-dimensional boundary value problem, in curvilinear coordinates
in corresponding factor space of Sobolev space, and formulated theorem regarding
the existence and uniqueness of its solution. We then constructed a hierarchy of static
two-dimensional models for thermo-electro-magneto-elastic shells and studied the
existence and uniqueness of solutions of the corresponding boundary value problems
in factor space of suitable weighted Sobolev space. Furthermore, we investigated the
relationship between the obtained two-dimensional and original three-dimensional
models. Note that the lower order models of the constructed two-dimensional models
can be used as engineering models of thermo-electro-magneto-elastic shells.
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Chapter 4

On Buckling Behavior Of Inhomogeneous
Shallow Spherical Caps with Elastically
Restrained Edge

Svetlana M. Bauer and Eva B. Voronkova

Abstract Asymmetrical buckling of pressurized nonuniform shallow shells with
elastically restrained edge under normal pressure is studied. The load is applied
internally to the shell. The unsymmetric part of the solution is sought in terms
of multiples of the harmonics of the angular coordinate. A numerical method is
employed to obtain the lowest load value at which waves in the circumferential
direction can appear. The effect of material heterogeneity and boundary on the
buckling load is examined. If the outer edge can move freely in the radial direction,
decreasing of the elasticity modulus to the shell (plate) edge leads to sufficient
lowering of the buckling pressure. For a shell with ellastically restrained edge, the
buckling pressure and mode number increase with a rise of spring stiffness.

Key words: Shallow shells - Asymmetrical buckling - Elastic edge support

4.1 Introduction

Circumferential instability of pressurised spherical shells and circular plates appears
in a number of pure engineering (metal or polymer sheets) and biomechanical
(human tissue, living cells) applications and has been discussed by many authors
(e.g., Adachi and Benicek, 1964; Bushnell, 1981; Huang, 1963; Panov and Feodosiev,
1948). Authors underlined that a precise approximation of a shell (plate) prebuckling
state is crucial in predicting of buckling load and buckling mode shape (Bushnell,
1981; Feodos’ev, 1963).
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The unsymmetrical buckling problem for a thin circular plate subjected to normal
pressure was formulated by Panov and Feodosiev (1948). They approximated non-
axisymmetric displacement in the form w = (1 —r2)?(A + Br* cosnf) and studied the
bending problem using Galerkin procedure. Later, Feodos’ev showed that the elastic
surface of plates or shells under large deformations could not be described by one or
two unknown parameters in approximating functions (Feodos’ev, 1963).

Morozov proved the existence of unsymmetric equilibrium states for a simply sup-
ported circular plate (Morozov, 1961), the uniqueness of the asymmetric equilibrium
state was proved by Piechocki (1969).

Asymmetric equilibrium states of a clamped circular plate subjected to surface
load were analyzed numerically in Cheo and Reiss (1973). The authors confirmed
that a ring of large circumferential compressive stress near the edge of the plate
plays the crucial role in possibility of plate’s wrinkling near the boundary. They
also emphasized that the approximation of the prebuckling state used by Panov and
Feodosiev (1948) was "too inaccurate to adequately describe the wrinkling of the
plate".

Experiments on uniform heating of thin circular plates with fixed edges and
formation of waves near plate’s edge were discussed in Goldstein et al (2016).

Coman and Bassom (2016a) investigated the asymmetric bifurcation for a shallow
spherical cap subjected to either external or internal pressure. He discussed the role
of the boundary conditions in the appearance of asymmetric equilibrium states
and compared numerical calculations with two-term asymptotic predictions for the
buckling pressure and one-term approximations of the corresponding wave number.
Comparisons of the asymptotic approximations of the wrinkling load with numerical
solutions for a uniformly stretched circular plate under transverse pressure was
reported in Coman and Bassom (2016b, 2018).

This paper deals with buckling of elastically restrained spherical caps and circu-
lar plates with nonuniform mechanical characteristics. Such a plate or a cap can be
used as the simplest model of Lamina Cribrosa (LC) in the human eye (Bauer and
Voronkova, 2014). Buckling of the LC in a nonaxisymmetric state in the neighbor-
hood of the edge can cause edamas and folds at the periphery of the LC and loss of
sight.

4.2 Problem Formulation

We consider a thin shallow spherical elastic cap of uniform thickness A, base radius a
and rise H subjected to transverse uniform load p, applied to its internal surface. The
middle surface of the shell can be represented by the paraboloid z = H (1 — r?/ az)
(see Fig. 4.1).

The curvature radius of the shell is R = a?/(2H). The cap is thin if the ratio
of its thickness to the radius of curvature is much less than unity (2/R < 1). For a
shallow spherical cap, the apex rise is assumed to be much smaller than the curvature
radius (H < R). We consider a shell with the outer edge elastically restrained against
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in-plane displacement. The shell material is considered as linearly isotropic with
spatially varying elastic properties.

The Donnell-Mushtari-Vlasov equations for a spherical cap with meridional in-
homogeneity can be written in the form (Bauer and Voronkova, 2019)

oD 8’D 1
DAAW+ELT(W)+WL;(W) = P+L(W,F)—§AF,
AAF 0 (1 9% (1 h 1
L (F)+ 2 (=) ;p) = -21L A
( ) 1( )+ar2 (E) 2( ) 2 (W’w)+R w,

A.1)

+
E or

E

where r, 8 are the polar coordinates, w(r,) is the transverse displacement of the
shell, F(r,0) is the Airy stress function, v is Poisson’s coeflicient, and

3 E(r)h3
b =500

is the bending stiffness. 4 is the usual Laplacian in polar coordinates

P10 1P
Tor2  ror  r2oe?’

and definitions of the differential operators L, L:" (i = 1,2) are listed in Appendix.

The deformation of an externally pressurised spherical shell can be described
by the same system of equations (4.1) with the opposite signs before the last terms
on the right-hand side of both equations. Dropping these last terms one obtains the
governing equations for a inhomogeneous circular plate under normal pressure.

The outer edge of the shell is clamped in transverse direction; therefore, at the
edge r = a, we have w = dw/0r = 0. The standard variants of the boundary conditions
require that one of the two quantities in each of the following pairs is set to zero:
either u = 0 or 7,, = 0, and either v = 0 or 7,9 = 0, where u, v are the projections
of the displacement vector on the r and 6 axes; T,., T;¢ are stress-resultants. The
conditions of completely clamped edge correspond to w = dw/dr =u=v =0,
and if the boundary can move freely in the radial direction, the constrains are
w=0w/dr =T, =T,9 =0.

We suppose that the edge r = a has a translational restraint: i.e. the boundary
conditions are

Fig. 4.1. Geometry of the spherical cap.
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w=0w/dr=ku+T,, =T,9=0 atr=aq, 4.2)

where k, is the translational flexibility coefficient. All sought-for functions must
fulfil the regularity condition at the apex of the shell

ow/dr=0w/d0=0F/0r=0F/00 =0 at r=0. 4.3)

To express the constrains (4.2) in terms of the displacement component w(r,6)
and stress function F(r,6), we use the strain-displacement and stress-strain relations.
This results in the following relation on the boundary r = a with consideration of the
first two conditions (4.2)

u 1 62u _ T, — Vng 0 (ng —vT,, ) 2(1 + V) 6Tr9 (44)

r_2+r_2@_ E(r)hr Cor E(r)h E(r)h ror’

The function F(r,0) is related to the stress-resultants T}, Tyg, Tr¢ according to

oF  0°F 0*F d (OF
Trr:_+—7 r0 = S 5> 9= "53| 5,1
ror = r2962 or? or \rod
We introduce the following dimensionless quantities
4
* r * * 2 * 3 Pa
r'=—, w=8—, u=p"—u P =p ,
a ﬁ h ) h2 ﬁ Eavh4 (4 5)
F a R ’
F*=p° , A=f—, ki = ky, B*=12(1-v%).
B E D B ku HWEon B (I-v9)

Here E,, is an average value of Young’s modulus in the radial direction

1
Eu = 3 @//E(r)r drdf, E(r)=Ef(r), (4.6)

where f(r) is a smooth position function and S denotes the area of the shell mid-
surface.

For simplicity we shall further use the notations ()’ = 8()/dr, () = d()/d6 and
drop the asterisks on the dimensionless variables. The dimensionless form of the
system (4.1) is

g1(r)d4w + gi(r)LIr(w) + gi’(r)L;(w) =P+ L(w,F)—AA4F,
82(r)AAF + g5 (r)Ly (F)+ g5/ (r)Ly (F) = =L(w,w)/2+ Adw, 4.7)
g1(r)=Eof(r)/Eay, &(r) =1/gi(r).

For the nonlinear symmetrical problem the system (4.7) is reduced to
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” @/ @0 ’ ’
g1 (@0 +70—r—2)+g1 (@0+v

—+

— Ay,
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r

@()) _ Pr @0@0
(4.8)

o’ ® ® @2
o+ 22|l —v—) = —=2 + A6
gz( 05 2 £2{%o Vr 2r 0

where O = Oy(r) = w’(r) and @y = @y(r) = F’(r). In axisymmetric case the boundary
conditions (4.2)-(4.3) together with (4.4) can be rewritten as

Oy = kug2(¢6—v(150)+¢0 =0 at r=1, Op=DPy=0 at r=0. 4.9)

4.3 Equations for Buckling

We seek a solution of Egs. (4.7) in the form
w(r,0) = wo(r) + ew, cos(nd), F(r,0)= Fy(r)+ eF, cos(nd), (4.10)

where w(r), Fo(r) describe prebuckling axisymmetric state, € is an infinitesimal
parameter, n is the mode number, and w,,(r), F;,(r) are non-symmetrical components.

After substitution of (4.10) in (4.7), using Egs. (4.8), and linearization with respect
to & we obtain

7

w,/ F
g1dndywy, +~£1(81,Wn) = —Ad,F, + TnQDO + : eN)

’ n2

’ Fn ’ Wi/’l n2
+@0 T_r_QFn —¢0 T—r—zwn R (411)
Wi (e
ngnAnFn+.£2(g2,Fn)ZAAan—T@O—@O T—F—Wn .

The definitions of the operators L, £, are listed in Appendix and

> 1d n?
dp=—+————.
dr? rdr r?
Boundary conditions (4.2)-(4.3) are reduced to

wp(0) = F;(0) = wy(1) = wy (1) =0, @.12)
kuttn (1) + F(1) = Fy (1) = F(1) = Fa(1) =0, '
where asymmetrical part of the displacement component u,,(r) on the boundary r = 1
can be found with the help of (4.4)

tn = = (@2(F = (@4 V)i + 1= V), + 30 F,) + gy (Fy = v(F; = 1*F,)

n?-1
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Buckling system (4.11) with boundary conditions (4.12) constitute an eigenvalue
problem, in which the parameter P is implicit and appears in the equations through the
functions ®¢ and @j. We use MATLAB functions to solve nonlinear axisymmetric
problem (4.8) together with (4.9). The critical values of P, for which (4.11) with
(4.12) have nontrivial solution, were calculated using the finite difference method
(Cheo and Reiss, 1973; Huang, 1963). We refer to the smallest of these eigenvalues
as the buckling load.

4.4 Numerical Results

The mechanism that initiates the buckling of a shperical cap or circular plate about
the axisymmetric state into an unsymmetric equilibrium state is described, for ex-
ample, in Cheo and Reiss (1973); Morozov (1961). A ring of large circumferential
compressive stress develops near the edge of the plate and indicates possibility of
wrinkling near the edge. In Fig. 4.2 we plotted the dimensionless axisymmetrical
circumferential stress that developed in a non-uniform spherical cap (A = 10) for
different values of edge restraint coefficient k,. The value k,, = O corresponds to a
freely movable in radial direction edge, in this case 7,.- = 0 at the edge. For the com-
pletely clamped edge we have u = 0 or k,, = co. The compressive stress intensity and
the width of the compressive ring decrease as the translational flexibility coefficient
k, increases. For the completely immovable outer boundary (k,, = o) the stress Tyg
takes only positive values, i.e. Tyg is tensile stress, and the buckle of the cap about
axisymmetrical state into nonsymmetrical is not possible (Cheo and Reiss, 1973;
Coman and Bassom, 2016a) (Fig. 4.2).

Dependence of the normalized critical load P, and the critical mode number n
on the edge-restraint coeflicient for a homogeneous shallow spherical shell is illus-
trated in Fig. 4.3. The value Pl’; ! corresponds to the buckling load of axisymmetric

Fig. 4.2 Dimensionless cir-
cumferential stress resultant
Ty O for several values of
spring stiftness k,,. For the
edge movable in the radial
direction k,, = 0, for the com- : ‘ ‘ ‘
pletely clamped edge k,, = co.

Here load value P = 30000, 0 0.2 0.4 0.6 0.8 !
A=10,v=0.4. r
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Fig. 4.3 Dependence of the

normalized critical load P, 10

on the mode number n and

the restraint coefficient k,, for 8l

a uniform shallow spherical

shell (A =5). Black line with

square markers corresponds to %:z 61

amovable outer edge (k,, =0). ~

Py ! denotes the buckling 4T

pressure for a uniform circular

plate. 2+
0 L

15 20 25 30
mode number, n

equilibrium states of an isotropic homogeneous circular plate (PZ = 64453, n = 14).
The larger value of the spring stiffness, the higher critical load is.

Effect of the shallowness parameter A on load-mode number relation is demon-
strated in Fig. 4.4. The critical load P, and the corresponding mode number increase
as the shallowness parameter A increases. Similar results we reported in Bauer and
Voronkova (2018, 2019). We assumed the exponential law for material inhomogene-
ity (E = Epe™") and calculated the buckling load and corresponding number of
waves for a large range of parameters Ej, g and for constant average value of the
elastic modulus (4.6). The results are summarized in Table 4.1 and Fig. 4.4. The
heterogeneity coefficient ¢ = 0 corresponds to uniform plate with constant Young’s
modulus.

For a nonuniform shell or plate the loss of the stability of axisymmetric equi-
librium form occurs under lower load than for a homogeneous shell or plate if
the edge-restraint is equal to zero or small (see Fig. 4.5 and Table 4.1). As the

7
6 L
207
o8
Fig. 4.4 The load-mode num- e
ber curves for different values a4y
if shallowness paramenter A.
Black line with square marks 3t
corresponds to a circular
plate (A = 0). Here k,, = 0.1, 2l

v=0.4, P{; ! denotes the buck-
ling pressure for a uniform
circular plate.

15 20 25 30
mode number, n
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Table 4.1
Normalized buckling load (Pp, / Pl‘f l) and corresponding wave numbers for the heterogenous circular
plate for different values of the restrained coefficient of the outer edge

qg=0 q=0.5 g=1 qg=2

k, =0

Pcr /P;’l’ 1 0.87 0.76 0.56
Mode number, n 14 14 14

k,, =0.05

P”/P;l’ 1.62 1.49 1.38 1.23
Mode number, n 14 15 16 16

k, =0.15

P”/P;If 3.96 3.92 4.01 4.69
Mode number, n 18 19 19 21

Fig. 4.5 Effect of the hetero-
geneity rate and edge restraint
coefficient on the buckling
critical loads of a circular
plate and spherical cap. Solid
lines correspond to a circular
plate (A = 0), dashed lines —
to a shell with A =5.

translational flexibility coefficient increases, a heterogeneous shell may buckle into
asymmetrical state under a larger load than an uniform shell with the same average
material properties. Thus, for the inhomogeneous plate restrained with the spring of
k, = 0.15 and the heterogeneity rate g = 0.5 the buckling load slightly decreases in
comparison to a uniform plate, and then increases by 18% as the heterogeneity rate
increases from g = 0 to g = 2. At the same time, the nonuniform plate (shell) losses its
axisymmetrical stability with formation of larger number of waves in circumferential
direction compared with the uniform plate (shell) (Table 4.1).

4.5 Conclusion

In this article we have discussed the wrinkling of the plates and shallow spherical
shells with elastically restrained outer edge and subjected to internal pressure. Pre-
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buckling stress-state in a narrow zone near the shell edge makes a major contribution
to the unsymmetrical buckling mode and the value of the critical load. If the outer
edge can move freely in the radial direction, decreasing of the elasticity modulus
to the shell (plate) edge leads to sufficient lowering of the buckling pressure. For a
shell with restrained against translation edge, the buckling pressure and the buckling
mode number increases as the translational flexibility coefficient increases.

Acknowledgements This research was supported by the Government of Russia grant no.
14.750.31.0046.

Appendix

The linear differential operators that appear in (4.1) are defined by

, . ’ . NN
s 3)orE3) ]
r r r r r r
Li) =2+ e 42 Y 3 ey (Y T
r r r 3 ro o2
Here, a prime and dot denote a derivative with respect to the radial » and circumfer-

ential @ coordinates, respectively. The differential operators introduced in (4.11) are
given by

L (glaWn) = giLf—n(Wn) +gi,L;n(Wn), Lz(gz,Fn) = géLl_n(Fn) +gé,L2_n(Fn)a

where

2+vy 20241 . 3n%. y on*
L) =2y""+——=y"~ ot A in(y)=y”tV(7—r—2y).
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Chapter 5

Some Two-dimensional Non-classical Models of
Anisotropic Plates

Alexander K. Belyaev, Nikita F. Morozov, Peter E. Tovstik, and Tatyana P. Tovstik

Abstract Thin elastic plates made of an anisotropic material (with 21 elastic moduli)
and heterogeneous in the thickness direction (in partial, multilayered) are considered.
A short overview of various 2D models describing deformations and vibrations
of a plate is given. The classical Kirchhoff-Love and the Timoshenko—Reissner
models are discussed and compared in cases of isotropic and transversely isotropic
materials. A correspondence of boundary conditions of these models is established.
A multilayered plate with alternating soft and hard layers is considered. By using an
asymptotic expansion of the solution in a series in small thickness parameter, the 2D
equations of second-order accuracy are delivered. From these equations the correct
choice of parameters of the single-layered Timoshenko—Reissner model is derived,
which is equivalent to a given multilayered plate. In the case of general anisotropy, a
model of second-order accuracy is presented as well, and the main properties of the
harmonic solutions for static problems and for free vibrations of a plate are briefly
described.
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5.1 Introduction

The main origin of the 2D models of plates and shells comes from the 3D equa-
tions of theory of elasticity. The equations of bending and vibrations of a plate can
be obtained on the basis of the Kirchhoff-Love (KL) hypotheses (Kirchhoff, 1876;
Love, 1927). The more complex equations, taking into account a transversal shear,
follow from the Timoshenko—Reissner (TR) hypotheses (Timoshenko, 1921; Reiss-
ner, 1945). The shell theory was further developed in (Donnell, 1976; Novozhilov,
1970; Goldenweizer, 1961).

In addition to hypotheses mentioned above, we discuss various expansions of un-
known functions in the thickness direction. Expansions in the series of the thickness
co-ordinate is discussed in Reddy (2004). Expansions in the Legendre polynomials
in the thickness direction are used in Vekua (1955); Chernykh et al (1996). Numer-
ous investigations (Goldenweizer, 1961; Tovstik and Tovstik, 2014b; Tovstik, 2007;
Kienzler and Schneider, 2014; Vetyukov et al, 2011) are devoted to the derivation of
2D equations by using asymptotic expansions in power series in the small thickness
parameter = h/L (h and L are the thickness and the typical length of waves in the
tangential directions). The other possibility (Eremeev and Zubov, 2008; Altenbach
and Mikhasev, 2015) is the direct derivation of 2D equations of plates and shells
without referring to a 3D media.

We discuss the plate models and their relative exactness under various assump-
tions about a plate material and structure. The accuracy is estimated by a comparison
with test 3D problems, which have exact solutions. The KL model is known to be
asymptotically correct for an isotropic homogeneous plate (Tovstik, 2007). This
gives results of zero-order accuracy with respect to the parameter u = i/ L. For such
a plate, the TR model is not more exact than the KL model, because it describes
only a part of the second order summands. For a transversely isotropic or for an
orthotropic plate with a very small transversal shear modulus G the KL model be-
comes unacceptable. To describe a transversal shear, the shear parameter g = u>E /G
(E is the Young modulus) is introduced. For g ~ 1, the KL model is unacceptable,
while the TR model gives sufficiently accurate results.

The same effect of a small transversal shear stiffness influence arises in mul-
tilayered plates with alternating hard and soft layers. Various aspects of multilay-
ered plates are presented in Reddy (2004); Chernykh et al (1996); Ambartsumjan
(1970); Agolovyan (1997); Altenbach (1998); Tovstik and Tovstik (2007, 2014a);
Tovstik (2009); Berdichevsky (2010). For a simplification of analysis it is desirable
to change a multilayered plate by an equivalent homogeneous single-layered plate
(an ESL plate). The most important and also the most difficult task here is that of
the correct choice of an equivalent transversal shear modulus, G°?*. Our suggestion
is based on the asymptotic solution of the second-order accuracy model (the SOA
model), and it is described in Tovstik and Tovstik (2014b, 2017b,a). The alternative
choice of G°?* is discussed in Grigolyuk and Kulikov (1988b,a); Mikhasev and
Altenbvach (2019); Hill (1965).

The problem of general anisotropy with 21 elastic moduli is essentially more
complex. The asymptotic SOA model for heterogeneous (in partial, for multilay-
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ered) plates is built in Tovstik (2019); Belyaev et al (2019b). A multilayered plate
consisting of orthotropic layers with arbitrary directions of orthotropy is investigated
in Morozov et al (2018); Belyaev et al (2019a).

In the present paper, the classical Kirchhoff-Love and the Timoshenko—Reissner
models are discussed and compared in cases of isotropic and transversely isotropic
materials. A correspondence of boundary conditions of these models is established.
A multilayered plate with alternating soft and hard layers is considered. By using
an asymptotic expansion of solution in a series in the small thickness parameter, the
2D equations of second-order accuracy are delivered. Using these equations, we find
the correct choice of parameters of an ESL Timoshenko—Reissner model, which is
equivalent to those of a given multilayered plate. In the case of general anisotropy, a
model of second-order accuracy is presented as well, and the main properties of the
harmonic solutions for static problems and for free vibrations of a plate are shortly
described.

5.2 Kirchhoff-Love and Timoshenko—Reissner Models for a
Beam

First, we consider an elastic strip-beam of rectangular cross-section made of a
transversely isotropic homogeneous material. According to the classical KL model,
the bending of a beam is described by the well known relations

9 =0, M_poy
ox ox 5.1
M=Di, k=20 g-_9 .
T T ox’ Todx’
with
d%w ERW

F(x,t):Fg(x,t)—phW, D = m

Here w(x,t) is the deflection, Q and M are the shear stress-resultant and the stress
couple, 8 is the angle of normal fiber rotation, F is the external force (with the inertia
force), and D,E,v,p,h,t are the bending stiffness, the Young modulus, the Poisson
ratio, the mass density, the beam thickness, and the time, respectively. Relations (5.1)
lead to the Bernoulli equation of a beam

O*w

Equation (5.2) is based on the hypothesis of straight normal, and it does not take
into account the transversal shear. The more complex TR model (which includes the
transversal shear) is described by the same relations as in Eq. (5.1)
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a oM 3%
—Q+F=0, o _0-J—+m=0,
0x ox ot? (5.3)
a6 oh? ’
M = D 5 =, J = —
ST 12
with the following difference
0 5
9:')/__w, Q:F‘y, rsz13h, k=-—. (54)
ox 6

Here the transversal shear angle, y, is included. The stress-resultant, Q, is expressed
by the shear angle y, where G5 is the transversal shear modulus and k is the
correcting factor related to the distribution of shear stresses in the normal direction.
For an isotropic material, G13 = E/(2(1 +v)), and in the general case G3 is an
independent parameter. The second equation in (5.3) contains two small summands:
the rotation inertia moment, —J 626 / 912, and the external moment, 7. In what follows
for simplicity these summands will be omitted.
Equations (5.3) and (5.4) yield

*w D 9*F

ax*t F I ox?’ (5-5)
Unlike Eq. (5.2), here the additional summand appears on the right of Eq. (5.5).
According to Donnell (1976), the entire deflection, w, consists of the bending, wp,
and of the shear, wy, parts:

3*wy, _F I_azws
ox4 0x?

w=wp + Wy, D =-F. (5.6)

We consider a static problem with F(x) = Fysinrx. In this case, the particular
solution of Eq. (5.5) reads as

W(x) =Wy sinrx (57)
with
F Dr? n E (h)’
KL KL 0
= 1+g), D ST T30k Gi\L
wo=wiE(l+g), Wit =0, g=—p 3(1-v2)k G13(L)

Here the deflection wX’ corresponds to the KL model, the dimensionless shear

parameter g describes the transversal shear influence, and L = 2x/r is the wave
length. Let the wave length, L, be much larger than the beam thickness, & (h/L < 1).
Then if the elastic moduli E and G 3 are of identical orders (in particular, for an
isotropic beam), then g < 1 and the influence of a transversal shear may be neglected.
In the opposite case, G13 < E, the shear parameter, g, is larger, and the transversal
shear influence should to be taken into account.
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The same conclusions are valid for free vibrations as well. Let the vibration mode
be
w(x,t) = wosinrxsinwt.

Then the dimensionless frequency parameter A reads as

_ ph*w*(1-v*)  AKE xr_ M

A = s A = TA>
E T+g 2

2th
u:rh:% (5.8)

where 1%L is the value corresponding to the KL model, and g is the same shear

parameter, as in Eq. (5.7). Here y is the small thickness parameter.

5.3 Kirchhoff-Love and Timoshenko-Reissner Models of a
Transversely Isotropic Plate

We consider the TR model of bending of a transversely isotropic homogeneous plate.
The elasticity relations read as

M1 = D(ki +vka), My =D(k2+vky), Mia=(1-v)Dt, Q;=Ty;, i=12 (5.9)

with
_ ow ki = 691' _ (991 (992
7i—9i+a—xi, Il _a_xz+6_x1’
where M, M»; are the bending moments, M, is the torsion moment, Q1, O are
the transversal stress-resultants, y, y; are the transversal shear angles, and 6, 6, are
the average angles of a normal fiber inclination. The elastic coefficients D and I” are
the same as for a beam (see Egs. (5.1), (5.4)). The 2D equilibrium equations are as
follows:

2t i=12,

oMy OMp, 3291
Q-T2 -0,
ax om QT z tm
IMy,  OM. %0
6)6:2 + 6x§2 —Q2—J—0t22 +my =0, (5.10)
an an 62W
e ) F =0,
ox o oz T3

where m, my are the external moments. As for a beam, we omit in Egs. (5.10) the
small rotation inertia moments, J 9w / 912, and the external moments.

For the KL model, the equilibrium equations coincide with Egs. (5.10), and
in the elasticity relations (5.9) it is necessary to put y; = y2 = 0. As a result, the
stress-resultants can be found from Eqgs. (5.10), and now Egs. (5.9), (5.10) yield

2 2 2

DAAw = F(x1,x3,t), F(x1,x2,1) = F3(x1,X2,1) —phé;—tvzv, A= :—x]z + aa—x%

(5.11)
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Let us return to the TR model. The basic unknowns in system (5.9), (5.10) are
w, Y1, Y2 or w,601,6,. This system is of the 6th differential order, and among its
solutions there are boundary-layer type solutions. To exclude the boundary layer we
transform Eqgs. (5.10) as follows. Instead of 61, 6, we introduce the new unknown
functions ¥ and @ by

LA N (5.12)

01=- + -
! 6x1 0)62 2 8)62 6)6]

Now Egs. (5.10) split into the equation

1-v

DAO-T0 =0 (5.13)

and the system

8w 8%*w
T'(Aw = A¥) - ph—— + F3 = 0, DAY — ph—— + F5 = 0. 5.14
(4w )= ph—m +Fs ph—7 +Fs (5.14)

Equation (5.13) describes the boundary layer, and Eqgs. (5.6) lead to the fourth-
order equation for the internal part of deflection w(xy,x;)
w D 62Aw) D

DA? h|— - =2 | —=F3+ —AF; = 0. 5.15
wre (c’)tz r o 3TTAN -15)

In Tovstik and Tovstik (2017b), a more complex equation involving the rotation
inertia moments was considered.

For the double periodic solution with w = wq sinr| x| sinrpxo, F3 = Fysinryxy sinr,
Eq. (5.15) assumes the form

92 Dr?
a:;()—(1+g)F0=O, g=—— PP=r2+rZ  (5.16)

Driwo +ph(1+g) i

Here g is the transversal shear parameter, and, as for a beam, the similar conclusions
follow. If a plate is made of an isotropic or close to it material, then g <« 1, and the
influence of the transversal shear is small, and the KLL model (5.11) should be used.
In the opposite case with G|3 < E, Eq. (5.16) for an amplitude wy in the static case,
and for a frequency parameter A gives relations, similar for a beam (see Egs. (5.7)
and (5.8))

F /]_KL 4
KL 0 AKL=E = rn (5.07)

KL
=wKE (g whb= 20 =t ,
woswiH(ltg) Wit = oG l+g 12

where the same designations as in Eqs. (5.7) and (5.8) are used.

We consider an influence of the boundary layer on the main boundary conditions
for the function w in Eq. (5.15). For definiteness we consider the edge x; = 0. The
simplest possible variants of boundary conditions read as



5 Some Two-dimensional Non-classical Models of Anisotropic Plates 81

0 1-v 0
=0, =-D|—4a¥ - —A40] =0,
W or Ql (6x1 2 6x2 )
oy 00 k4 k4 %6
6 =———+—=0, My =D|—+v—=—-(1- =
! 0x;  Oxp o ! x% Y 8x§ ( )c')xl[)xz
v 00 l-v (. o’F 0%*0 0°6
O)=———-——=0, H=D — | =
2 0xy  0xi of 2 dx10x2 ax% dx%

(5.18)
From the each line of Egs. (5.18) we choose one condition, thereby getting 8 variants
of boundary conditions.

We consider a static problem for a rectangular plate with F3(x1,x2) = F3(x1)sinrx;
and assume that the edges x, = 0 and x, = L, are simply supported, w = M = ¢1 =0.
Then itis possible to separate the variables and now the solution of Egs. (5.13)—(5.15)
has the form

(W) (erx2) = (W), P ()} sin(rox). nm
@(xlm) = Q(xl)lcos(rzlx2), n 7% (5.19)

To obtain the dimensionless parameter we put X; = rpx1, X = r2x, and then drop
all “hats”. Now the solution of Eq. (5.13) read as

oo 2 24(-vkGi

@ — C —aXx| +C H(X]—L])’ = — 4+ =
(x1)=Cie 2¢ Dr? E(ryh)?

+1, (5.20)

where C, C, are arbitrary constants. We take O(x;) = Cie™ " and perform the
asymptotic analysis under the assumption @ > 1. Our aim is to formulate two
boundary conditions for the function w for each variant of three boundary conditions
(5.18). The results are given in Table 5.1.

To obtain these results we write down the functions entering Eqs. (5.18) as follows
(the constant factors are omitted):

Table 5.1

Main boundary conditions

No. | Full conditions Main conditions
1 w=¢p;=H=0
2 | w=¢=¢=0 w=0,w =0
3101=¢p1=¢2=0
4 |w=M;=H=0
S5 |w=M=¢=0 w=0,w"=0
6 |Q1=M;=¢,=0
7| Qi=¢1=H=0 w =0, w"=0
8 |Q1=M=H=0|w"—vg*>w=0, w”-2-v)qg*w=0
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R4 1-v

= -—q4C 2—1 =0,
o o om 1— @ -1
oY
9126—+C1:0, QZZ—W'F(YC[:O, (521)
X1

52 ov
Mi=— -vW-(1-v)Cila=0, H=2-—+Ci(a*+1)=0.
6x]2 dxi

After excluding the constant C; from three of equations in (5.21) and taking into
account that
¥ =w+0(a?)F, (5.22)

we obtain two main boundary conditions, as given in Table 5.1. For all 8 studied
variants of boundary conditions, the order of error of this approximation is at most
a2, namely, C; = O(a">)wy.

We consider, for example, the clamped boundary conditions, w = 8; = 6, = 0.
From 6, = 0 it follows that C; = O(a~")¥, and from Eq. (5.22) with w = 0 it follows
that ¥ = O(a™?)F,, therefore C; = O(a~>)Fy. Three variants (1-3) of boundary
conditions (5.18) of the TR model correspond to the clamped boundary conditions
of the KL model, and three variants (4-6) of conditions (5.18) of the TR model
correspond to the simply supported conditions of the KL. model. It is interesting to
note that the well known boundary conditions

My =0, O+ 6_H =0, (5.23)
(9)62
of the KL model for the free edge coincide with the conditions obtained from the
TR model (see line 8 in Table 5.1). If the parameter « in Eq. (5.20) is not large, then
the excretion of the main boundary conditions for Eq. (5.16) is impossible.

In the next sections we consider anisotropic plates and build 2D models by an

asymptotic solution of 3D equations of the theory of elasticity.

5.4 Asymptotic Expansion of Solutions of 3D Equations of
Anisotropic Plates

The 3D equilibrium equations of a thin elastic plate with thickness % read as
3 (90'1']' .
Z—+fi=0, i=123  0<x3=z<h, (5.24)
= ij

where o7;; are the stresses, and f; are the intensities of the external forces. In the case
of general anisotropy of material, the stresses o7; are expressed through the strains
&;j as follows (Tovstik, 2019):
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c=Es E= (Eij)i,j=1,...,6’

T T
0 =(011,02,033,023,013,012) , € = (£11,€22,€33,623,€13,€12) ", (5.25)

614[ 614,- 6’4/'
a0 ij= 5t ] .» .7.:1’2’3'
6Xi &ij an Bxl- ' J bJ

Eii =
The tensor designations are not used, and strains and stresses are presented as 6D
vectors. Here and in what follows, transposition is denoted by T bold letters are
used for vectors, matrices and operators, a dot denotes the product of vectors and
matrices. The matrix E is symmetric and positively definite. It is assumed that
the elastic moduli E;; do not depend on the tangential co-ordinates x,x>, but they
may depend on the transversal co-ordinate x3 = z. A dependence on z has place
for functionally graded plates, and for multilayered plates moduli E; ; are piecewise
functions of z.
As in Tovstik (2009); Tovstik and Tovstik (2017b,a) for an asymptotic analysis
we split the stresses o;; and the strains &;; in the groups of tangential o, & and
transversal o, &, stresses and strains and put

o = (011,000, 012)", 0 = (0713, 023, 033) ",

5.26)
& =(e1,emen) . &= (e1383,83), (
where
Ey Ep Erg
A ={A;j} = En2 Ex Ex |,
Ei6 Ex Esc
E\s Eas Esg
B = {B;j} =| E14 Ez4 Egs |, (5.27)
Ei3 Eps Esg
Ess Eys E3s
C ={Cij}=| E45 Egq E34
Ess E34 E33
Now the elasticity relations (5.25) have the form
o, =A-g,+B-g,, 0,=B" .£,+C &, (5.28)
Excluding the transversal strains &, we obtain
o, =A* & +BC o, e, =Cla,-C "B ¢ (5.29)
where
A*=A-B-.Cc'.BT. (5.30)

The assumption that the planes z = —h/2 and z = h/2 are free gives the boundary
conditions
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0'1320'2320'3320, Z=0, Z=h. (5.31)

We introduce the dimensionless variables (denoted by “hats”) by relations

{xnxe} =% %) {uuus,zh = h{d b2 w2}, u=h/l,
{Eij,Aij,Bij,Cij,0i;} = EAEij, A1, Bij, Cij6ij}s fi = (Eo/D)fiy 1,5 =1,2,3,
(5.32)
where [ is the typical length of waves in tangential directions, E, is the typical value
of elastic moduli, u is the small thickness parameter.
For the dynamic problems we take

fi = fio+ pwtu; = (E. /W) fi + (Ap/h)i;, i=1,2,3,
h

h2w? 1 (5.33)
—BRE  p=pp pa= —/p(Z)dz,

E,

A
h

0

where p,p.,w,A are the mass density, the average density, the frequency, and the
frequency parameter, respectively. In what follows, we shall drop the “hat” signs. As
aresult, we get a system of 6th order with the small thickness parameter g,

ow

AL

92 ME33

ou; o( .

a—Z' =—upiw=gi3), pi= a—x) i=12,

s ! (5.34)
aj .

8_23 = —p(p101i+p2oai) = Apu; - fi = g i=12,

0033

e —u(p1013+p2023) — Apw — f3 = g3.

In this system the main unknowns are w,u;,073,033, i = 1,2, the functions &;3,07},
i,j = 1,2 in Egs. (5.34) are expressed in terms of the main unknowns via Egs. (5.28),
(5.29). For j =1,...,6 we denote ¥ = {y;} = {w,uy,u2,013,023,033}, and seek the
solution of Egs. (5.34)) in the form of the formal asymptotic expansions

¥j(x1,%2,2) = p (yj-o)(th,z)+,uy§-')(xl,Xz,z)+u2y;-2)(x1,xz,z)+.-.), (5.35)

where the powers a; of the unknowns depend on the studied problem. For example,
for a bending problem with 3 ~1 we get a1 = -4, ;y =a3 =-3, ay = as = —1,
a6 = 0. Further in Egs. (5.35) we will be concerned only with the terms of the zero-,
the first-, and the second-order accuracy.

Integrating with respect to z the first three equations of (5.34), we introduce
arbitrary functions wo(x1,x2), u10(x1,x2), and uzo(x1,x7), which are later found from
the compatibility conditions of the rest three equations of (5.34)
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1

(g/(2))=0, j=123, (Z(2)) = / Z(z)dz, (5.36)

0

which follow from the boundary conditions (5.31). Here and what follows, the
average value of a function Z is denoted by (Z). As a result, the 2D particular
differential equations for the functions wy,u10,u20 are found.

By this algorithm, the 2D model of second-order accuracy for a heterogeneous
plate in the case of general anisotropy (with 21 elastic moduli) is constructed in
Tovstik and Tovstik (2017b), and a multi-layered plate, made of a monoclinic ma-
terial, is investigated in Morozov et al (2018); Timoshenko (1921). These models,
which are quite cumbersome, have not been sufficiently studied. Here we consider
the more simple problem for a plate made of a heterogeneous transversely isotropic
material.

5.5 Transversely Isotropic Plate Heterogeneous in the Thickness
Direction

A transversely isotropic material is described by 5 elastic moduli (instead of 21
moduli in the general case), and Eqgs. (5.34)) and their asymptotic solutions become
essentially simpler. The main simplification consists in the possibility of separation
of the system (5.34) into two parts: one part describes the main stress state, and the
other one describes the boundary layer (for the TR model the similar separation of
variables is performed in Sect. 5.3).

To simplify Eqs. (5.34) we introduce the new unknown functions u,v,o, T

I O N L W
Ton 0w’ am om (5.37)
0oz 0oz _ o3 _60'23 '

axl axZ ’ e ax2 axl '

For a transversally isotropic material, system (5.34) is split into two sub-systems
(Tovstik and Tovstik, 2017b):

v T ot

— =y, — = —uGpAv — Apv —my, 5.38
oz~ "Gn bz HRATT AP -39
0 0

6_2) = —peyu+ 30733, 0—2- = —pPcodu - pey Aos3 — Apu—m,

o b } (5.39)
97 = THAWco, 5, = HO- ow = f3,

with my = pafi — p1fo, mo = p1fi + p2fo. Equations (5.38), which are of second
differential order in z and describe the boundary layer, will not be studied here. The
fourth-order equations (5.39) describe the plate bending with the designations
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1

E2 E
33 0 (5.40)
Ey E3 E. E,
co = Cy = —/—

- - s Cg = ’ = .

E. Ess £ Gz E3;

The right-hand sides in Eqs. (5.39) are small, and the method of iterations (Tovstik,
2009; Tovstik and Tovstik, 2017b,a) is used. To construct the solution of second-order

accuracy we take

= 40 -2,,(2) — ,,~3,,0) -1,,(2)
W= w+uw, u=uu e u,
©, 2 (2 (5.41)

o= ,u‘la'(o) +,UO'(2), 033 = 033 + 7033 .
For a transversely isotropic material, in contrary to the general case (5.35), the terms
of the first-order accuracy are absent.
In the zero approximation we get

wO =wo(xi,x), u® =(a—2)APwo, a=(zc(2)),

z

o = o1 Pwo, o1(2) = / co(2)(z - a)dz,
0

DAwo=Fs, D=((z-a)co(z)), F3=(f),

Z

Z
oy = —%% -3, ¢(2)= /wl(Z)dz, @3(x1,%2,2) = /fs(xl,xz,z)d2~
0 0
(5.42)
Here z = a is the position of a plate neutral plane, D is the bending stiffness of
a plate with variable elastic moduli, F3 is the full transversal force. The equation
D A?*wq = F; corresponds to the classical KL model. The function wy does not depend
on z, but the small stress oég) depends on the distribution of the function f3(z) in the
thickness direction (in the KL model, o33 = 0).
In the second approximation the solution is more unwieldy. Here, we give only
the function w®, which depends on z. At z = —1/2 it satisfies the equation

DAW(0) = AAF; + L(Af3) - M, (5.43)

where
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1 Z 1
A=-Ag—A,, L(4f3) =/CV(Z)(a—Z)(/Af3d21)dz, M= /(a—Z)m(Z)dz,
0 0 0
1

1 b4 21
Ag =—%/Co(z)(z—a)/Cg(Zl)/Co(Zz)(Zz—a)dzdeIdZ= %/Cg(z)ff(z)dz’
0 0 0

0

1 zZ 21 Z 21
1
A, =— (Z—a)(cy(z) co(z2)(z2—a)dzadz1+¢(2) CV(ZZ)(Zz—a)dZZdZI)dZ.

(5.44)
The full deflection of the plane z = 0 satisfies the equation

Dt 42w(0) = F3 + 2 (AAF3 + L(A f3) — M)+ O(u™), (5.45)

and the deflection w(z) of the arbitrary plane z is expressed in terms of w(0) as
z
w(z) = w(0) + > Aw(0) / o (z)(z—a)dz. (5.46)
0

In Eqgs. (5.43)-(5.46) the coefficients D, A,co,cg,c, depend of the elastic moduli
distribution in the thickness direction, the summands L(4f;) and M depend on the
distribution of f3 and of fi, f>, respectively.

Consider a plate bending under an external harmonic loading

fi=1£=0, f5(x1,x2,2) = f3(z)sinr|x; sinryx;. (46)

In this case, the deflection of the plane z = O is also harmonic, w(0) = W sinry x| sinryxp,
and Egs. (5.43), (5.45) gives the following expression for an amplitude, W(0),

1
W)= 5 (F+2(Ag+ AR =LY+ OGN, w=rh, P =ri+r,

! z
L,= [ ¢(z)(a-2) | f3(z1)dz1dz.
[eoraaf

(5.47)
Here the small thickness parameter u is introduced according to Eq. (5.8), and in the
dimensionless designations the Laplace operator 4 in the case of double periodic
functions is replaced by —1: 4= —1.
The deflection of the arbitrary plane z is equal to

W(z) = W(O)( 1- 12 / o(2)(z—a)dz + 0(;14)). (5.48)

0
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The summands in Eq. (5.47) of second orderin Ag, A,, and L, describe, respectively,
the influence of the transversal shear, of the extension of normal fibers, and of the
distribution of the external loading, f3(z).

Consider free vibrations of a plate with double periodic mode,

wi(x,x2,2,t) = w(z)sinr x; sinrx;. (5.49)

Replacing the external forces in Eq. (5.45) by the inertia forces we get the asymptotic
expression for the frequency parameter, A4 (see Eq. (5.32)) (Tovstik and Tovstik,
2017b,a)

-1
A= Dy (1 +12(Ag +AV+J+AP)+0(h;‘)) , (5.50)
where the coeflicients A, and A, are the same as in Eqgs. (5.45)), and the summands

with J and A, take into account the rotation inertia and the inertia of the normal
fibers extension

1

J = / (z—a)*po(2)dz,

y z . (5.51)
Ap =0/ cv(z)(z—a)b/po(m)dzl—po(z)O/CV(Zl)(Zl_a)le dz.

In the next section, Egs. (5.47) and (5.50) will be discussed for a multilayered plate.

5.6 Multilayered Plates Bending

Consider a plate consisting of n homogeneous isotropic layers of thicknesses Ay
(h= ZZ:] hy), Young’s moduli Ej, Poisson ratios v, and densities pg, k = 1,...,n.
All the relations of Section 5 can be used to analyze the bending of this plate if
the corresponding piecewise coefficients in Eqgs. (5.39) are taken into account. The
approximate equations (5.47) and (5.50) of second-order accuracy are compared in
Tovstik and Tovstik (2017b,a) for various multilayered plates with exact solutions of
Egs. (5.39). These equations after the replacement 4 = —1 become one-dimensional
and hence can be solved numerically.

The plates with u = 0.1 and with the various ratio n between the maximum and
minimum Young moduli of layers are considered. The results of this comparison
are as follows. If the ratio 7 is close to 1 then the relative error & of both Egs.
(5.47) and (5.50) is very small (& < 0.001%), which justifies the correctness of Egs.
(5.47) and (5.50). With the growth of 7 the error also increases, and for n = 1000 the
error € ~ 1%. For = 10000 the error € ~ 10-30%, and Eqgs. (5.47) and (5.50) are
unacceptable.
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Now we discuss an equivalent single layer (ESL) of a homogeneous transversely
isotropic plate, which may describe approximately the multilayered plate bending in
frames of the KL or the TR models. We set

Ey

k
Ej

20 =0, Zk=zhi, k=7 &=
i=1 I=v

The horizontal stiffness E., the coordinate z = a of the neutral layer, the bending
stiffness D according to Egs. (5.42)), and the average density p. are as follows:

n

— N _ 1 2 2
E* —;hka, a= Z_E‘*ZCk(Zk_Zk_l),

(5.53)
IG5 . 1<
D= 3 k§=1 (@ —2%_), k=z-—a, p= 1;:1 I Pk -

The parameters D,p,. for an ESL model are the same as for the KL and the TR
models. Equations (5.17) for the TR model read as

AKL DZ
wo=wKi(l+g) A=1—,  g=—.

54
l+g (5-54)

If we hold in Egs. (5.47), (5.50) the summand with A,, take into account the
transversal shear, and neglect the other terms of second order, then after comparing
with Egs. (5.53) we conclude that g = ,uzAg and in the initial designations

z 2

h
5 E. 1 dz
I'=khGiz, k==, Gz=———, A,=— d —. (5.55
13 G 13 10hA, g D/ /C(Zl) 21 B (5.55)

o \0

Here ¢(z) and G(z) are the piecewise constant functions with the values ¢ and g
according to Egs. (5.52). In (5.54), G5 is the transversal shear modulus of the ESL
plate. Equations (5.52), (5.55) may be used to construct an ESL plate made of a
transversely isotropic functionally graded material.

Consider the numerical values of the equivalent parameters of second order Ag,
Ay, J, A, from Eq. (5.6). We take three-layered plates with soft intermediate layers
with dimensionless parameters:

Ei=Es=1,E=n" vi=»=03,%=035 p=p3=1, pr =0.3, (5.56)

and consider the four values 1 = 1, 10, 1000 of the ratio, n = E|/E>. The results,
as found from Egs. (5.42), (5.44), (5.51), are presented in Tables 5.2 and 5.3,
respectively, for a plate symmetric in the thickness direction and for an asymmetric
plate. From Tables 5.2 and 5.3 it follows that the transversal shear parameter Ag
has the largest magnitude among the second-order other parameters, especially for
n > 1. Therefore, the ELS TR model is sufficiently accurate. Its accuracy for n > 1
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Table 5.2

Second-order parameters for an symmetric plate with 2y = h3 =0.2, hy = 0.6
" Agl A | 7 | A |a] D
1 0.299 | -0.0913 | 0.1220 | 0.0306 || 0.5 | 0.0822

10 1.871 | —=0.0874 | 0.1220 | 0.0306 || 0.5 | 0.1454
100 17.567 | —0.0868 | 0.1229 | 0.0306 || 0.5 0.1613
1000 |[ 174.517 | =0.0868 | 0.1219 | 0.0306 || 0.5 | 0.1631

Table 5.3

Second-order parameters for an asymmetric plate with 7y = 0.3, hy = 0.6, hz =0.1
" Al A, 7| a | a| D
1 0.299 | —0.0928 | 0.1150 | 0.0308 | 0.502 | 0.0824

10 1.461 | -0.0875 | 0.1114 | 0.0081 |{ 0.384 | 0.1202
100 12.921 | -0.0844 | 0.1149 | 0.0026 |{ 0.354 | 0.1253
1000 || 127.515 | =0.0840 | 0.1154 | 0.0019 | 0.350 | 0.1259

is the same as that of the SOA model, but it is simpler, because it is not necessary to
calculate the parameters, A,, J, A,,.

5.7 General Anisotropic Plate

The 2D model of second-order accuracy for a plate in the case of general anisotropy
is built in Tovstik (2019); Belyaev et al (2019b). The PDE system for the unknown
displacements u;(x1,x2),u2(x1,x2),w(x1,x3) of a reference plane may be written as

Ly +Ligto + pNyw+ F =0, Ly = L +uL + 2L, ij =12,

L21u1 + Lzzuz + /JNZW + F2 = 0, Ni = Ni(3) + /JN[.(4) + /.lth.(S), = 1,2, (557)

uNwy + pNouy +1*Qw+F3 =0, Q= 0W+u0® + 120,
Here ij].‘),Ni(k),Q(k) are the homogeneous differential operators of order k in xj,x,
with the constant coefficients, which are the repeated integrals of elastic moduli
E; j(z). The operators Ni have the same expansions as N;. The summands F}, j = 1,2,3,
include the external and the inertia forces. System (5.57) (of 14th differential order)

is cumbersome and was not sufficiently studied. Consider some particular cases.
If the forces F; are harmonic

Fj(x1,x0) = Felt2) =123,

then for the harmonic solution
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ui(x1,x0) = 0pilnxitrx) +— 193 —
] ]’Z_Mje ’J_ ,,,M3—W,

system (5.57) becomes an algebraic system, and the amplitudes u; may be easily
found. The harmonic solution appears for an infinite plate and sometimes for a
rectangular plate with a special boundary conditions.

For a monoclinic material (in particular, for transversely isotropic and for isotropic
materials) Egs. (5.57) becomes simpler. The summands involving the factor u in the
expansions (5.57) of the operators L;;, N;,Q disappear. As a result, the term with the
factor u disappears in the expansions (5.35) of solutions, and one has to build the
zero and the second approximations.

For a transversely isotropic material in all cases by an appropriate choice of
a reference plane, Eqs. (5.57) may be split into an equation describing the plate
bending and a system describing the tangential deflections. In the remaining cases, the
separate analysis of bending and tangential deformations is possible only for plates
symmetric about the middle plane (z = //2). In this case N; = 1\7,- =0,i=1,2,and
Egs. (5.57) is split into two systems. For an asymmetric plate, a joint consideration
of bending and tangential deformations is necessary.

Consider a bending deformation of an infinite multilayered plate consisting of
orthotropic plates with various orientations of orthotropy under the action of external
forces, F1 = F, =0, F; = F30 sinrx; sinrpx,. For a symmetric in the thickness
direction plate, the amplitude w? of deflection reads as w” = FY /(1> QW + 12Q©®).
For an asymmetric plate, the neutral plane does not exist, and it is necessary to
perform a common consideration of bending and tangential deformations, and for
amplitude w® we get the following expression (Tovstik, 2019; Belyaev et al, 2019b):

@ ;2 B -1
Lll L12 N]

2) 7(2)
L
0 _ -0 11 12 2 2) ;) 3) 4 0_ 0 .
WESES o oK Loy Ly Ny |FOW) |, up=0(uwT), j=1.2.
L21 L22

1\71(3) ]\7§3) —o®W

(5.58)
From this expression it follows that for an asymmetric plate the main term of the
amplitude, w°, expansion, in powers in y is changed compared with an symmetric
plate.

In the case of free harmonic vibrations we put F; = Au;, j = 1,2,3, with the
frequency parameter, A, as given in Eq. (5.32), and seek a solution in the same
form u; = uel*1+12%2) For a symmetric plate with N; = N; = 0 the bending and
the tangential vibrations may be studied separately. The eigenvalue A} of bending
vibrations is small, /lf ~ /,12, and two eigenvalues of tangential vibrations, are of the
order of 1, 43,435 ~ 1. For an asymmetric plate the bending parameter, A7, is of the
same order as /lf, but essentially differs from it,

1@ 1@
A=2(Q-N"-L'N), N=(NIND), N=@®O8D), L=| 1 ) .
1@ @
21 F22
(5.59)
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In contrast, the eigenvalues of tangential vibrations differ very small due to the
asymmetry of the plate, /l? = /1;3 +0(u?), j=2.3.

5.8 Conclusion

A 2D model of second-order accuracy (SOA) for an anisotropic heterogeneous in the
thickness direction plate is discussed. The model is cumbersome, and the particular
cases should be studied more detailed. It is desirable to put forward more simple
models that give the sufficiently exact results for particular static, dynamical and
buckling problem. In particular, it is interesting to study the waves propagation in an
anisotropic plate.

The asymptotic SOA solution describes only a main (internal) stress state. The
problem of construction of a boundary layer is not solved in the general case. Only
for the transversely isotropic plates a boundary layer satisfies a separate equation. It
is desirable to formulate the boundary conditions with the same accuracy as that of
the SOA model.
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Chapter 6

Interface Strength Assessments of Sandwich
Panels with a Face Sheet/Core Debond

Vyacheslav N. Burlayenko, Holm Altenbach, and Svetlana D. Dimitrova

Abstract Virtual fracture tests combining analytical considerations and a finite el-
ement analysis are performed to provide assessment of face sheet-to-core interface
strength in sandwich panels. Three fracture test methods, different in laboratory
testing procedures and virtual modeling solutions, such as sandwich double can-
tilever beam subjected to uneven bending moments (DCB-UBM), sandwich double
cantilever beam (DCB) and sandwich single cantilever beam (SCB) specimens are
examined with the aim to predict the fracture parameters - energy-release rate (ERR)
and stress-intensity factors (SIFs) - required for the assessment of the interface
strength within the framework of linear elastic fracture mechanics (LEFM). The
existence of mode mixity at the bi-material interface of a sandwich panel is con-
sidered and appropriate methods applied for mode decomposition are described.
The numerical analyses are carried out using the capabilities of the ABAQUS code.
In general, good agreement between the results of numerically calculated fracture
parameters and those obtained using analytical solutions and/or from experimental
data available in the literature is observed. Finally, computational aspects of the
numerical models have been revisited and put into perspective of the accurate and
efficient interface strength assessments of sandwich panels.
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6.1 Introduction

A sandwich panel consists of three material layers such as a low-density core and two
thin stiff face sheets bonded to each side of the core (Altenbach et al, 2018). Due to this
design, sandwich panels have been widely used in various engineering applications,
for which an efficient combination of high structural rigidity and low weight is
required and/or whose structural properties should meet particular design features
(Harne et al, 2012; Xie et al, 2016; Mouritz, 2017; Chatterjee et al, 2019). The layered
structure of sandwich panels makes a premise to their inevitable susceptibility to
interfacial damage between the constitutive material layers, the so-called face sheet-
to-core debonding. Theoretical and experimental studies have already shown that
this defect decreases the overall load-bearing capacity of sandwich panels and gives
rise to quantitative and qualitative changes of their dynamic responses (Burlayenko
and Sadowski, 201 1a; Idriss and Mahi, 2017; P6loskei and Szekrényes, 2017; Qu and
Meng, 2017; Burlayenko and Sadowski, 2018). The latter features are exploited for
identifying and quantifying such type of damage within sandwich panes as discussed,
e.g., in Burlayenko and Sadowski (2011b); Mustapha and Ye (2013); Farhana et al
(2016); Luetal (2017); Seguel and Meruane (2018). The relevance of such structural
monitoring techniques is justified by the evidence that the debonding propagation
can lead to eventual failure of sandwich structures (Triantafillou and Gibson, 1987,
Burlayenko and Sadowski, 2014). Therefore, sandwich panels should be validated
in terms of damage tolerance and possible failure.

The structural integrity of the sandwich structure is defined by the strength of its
face sheet/core interface. Traditionally, the debonding between the face sheet and
the core is treated as an interfacial bi-material crack, and the interface strength is
quantified using the concept of interface fracture toughness within the framework of
linear elastic fracture mechanics (LEFM) (Willis, 1971). Fracture specimens are used
to supply necessary information regarding the interface strength. Hence, by analysing
the specimens’ behaviour with experimental, analytical or numerical methods, the
fracture parameters such as stress-intensity factors (SIFs) or energy-release rates
(ERRs) controlling the fracture process at the crack tip are obtained.

A variety of test configurations towards the face sheet/core-strength assessment
of sandwich panels have been proposed during the last two decades. Some of the
most popular specimens’ geometries being studied in an attempt to define interfacial
fracture toughness in pure or mixed fracture modes are listed in Shivakumar and
Smith (2004). The strength of the face sheet/core bond corresponding to the lowest
critical ERR has traditionally been measured using a double cantilever sandwich
beam (DCB) (Prasad and Carlsson, 1994; Avilés and Carlsson, 2008). An alternative
test method for generation of mode I dominated fracture is a single cantilever sand-
wich beam (SCB) as proposed in Cantwell and Davies (1996) and further improved
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in Ratcliffe and Reeder (2011); Rinker et al (2011); Adams et al (2012). In order to
characterize the interfacial shear strength of sandwich panels, a cracked sandwich
beam (CSB) specimen developed in Carlsson et al (1991) or its modifications, e.g.
Cantwell et al (1999), accommodating the sliding deformation between the face
sheet and the core through three-point bending are often used. However, while the
studies on the pure (strictly speaking - dominated) modes I and II are important, they
are not sufficient for evaluating interface fracture toughness of sandwich panels.
Dillard et al (2009) presented the findings for adhesive joints, which are similar to
sandwich panels, where the most critical ERR occurs at a certain I/Il mode mix-
ity. Moreover, recently it has been recognized that the mode-III deformation and
its different combinations (i.e. mixed mode I/III, II/III and even I/II/III) are also
essential for the complete fracture characterization of advanced composite materials
(Hernandez-Pérez et al, 2013). Although some test methods have been proposed for
the determination of interfacial fracture toughness involving the tearing mode, all
of them have yet unresolved issues which restrain their standardization. The main
issues in these test methods relate to difficulties to produce a pure mode III fracture
state at the debonding front, difficulties to track the crack propagation, uncertainty
in the data reduction methods and/or complexity of the test rig (Rodriguez-Gonzélez
et al, 2014). Thereby, the mode I and II mixity as the simplest case of mixed mode
fracture is commonly analyzed in sandwich materials so far. For studying mixed
mode I/II fracture, the mixed mode bending (MMB) test devised earlier for lami-
nated composites has been adapted to sandwich structures as done in Quispitupa et al
(2009). Other methods for mixed mode I/II testing has been derived from the DCB
and SCB test configurations such as a double cantilever sandwich beam subjected to
uneven bending moments (DCB-UBM) (Sorensen et al, 2006) and a titled sandwich
debonded (TSD) specimen (Li and Carlsson, 1999), respectively.

The majority of analytical solutions relevant to the extraction of ERR or SIFs
from the tests mentioned above have been found by reducing the dimension of the
problem. Efficient structural models presenting the specimens as an assemblage of
beams or plates can be found in Valvo et al (2015); Saseendran et al (2018); Massabo
and Campi (2014); Odessa et al (2018); Kiss and Szekrényes (2019), just to name
few recent publications. In doing so, either classical or first-or higher order shear-
deformation structural theories as well as assumptions on either rigid or flexibile
flexible deformability ahead of the crack tip within the intact part are used for an-
alysing the specimen’s behaviour. Some aspects of interface fracture analysis in
layered structures can be found in Thouless (2018). Moreover, since the face
sheet/core interface has a bimaterial nature, the fracture analysis must recognize the
mixed mode loading and be able to define the relative amount of mode I and mode II
at the debonding tip. A great effort has been made to obtain such mode partition. For
this either semi-analytic (numerical) solutions for particular loading cases within the
interface LEFM concepts (Suo and Hill, 1990; Li et al, 2004; Kardomateas et al,
2013) or the structural models (Williams, 1988; Bruno and Greco, 2001; Wang and
Qiao, 2004; Andrews and Massabo, 2007) for the fracture specimens have been
exploited. Herewith, two approaches are used. The first one referred to as local
approach considers debonding conditions as local stresses at the crack tip (Suo and
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Hutchinson, 1990; Li et al, 2004). Alternatively, the second one is a global approach
that evaluates the ERR as the first variation of the total potential energy with respect
to the advancing crack area (Williams, 1988).

In an attempt to improve the accuracy of data evaluation in the tests, two- and
three-dimensional analytical elasticity solutions have also been applied to the frac-
ture analysis. In Fichter (1983); Georgiadis and Papadopoulos (1990), the exact 2-D
elasticity solutions of the DCB have been obtained by using the Wiener-Hopf tech-
nique. On the other hand, the 2-D elasticity solutions are limited by the assumption
of either plane stress or plane strain conditions. As a result, they are not able to cap-
ture an actual curved crack front (thumb nail shaped) associated with Poisson-strain
effect under specimen bending (Samborski, 2018). Therefore, 3-D elasticity models
are obviously the most accurate, but their solutions can only be obtained by using
numerical methods, in particular the finite element method (FEM) (Williams and
Addessio, 1997; Davis et al, 2014). Two-dimensional debonding problems have also
broadly been reported in the literature by using the FEM. It has been reported if
the effect of front curvature is not a main concern, the less sophisticated 2-D mod-
els would be sufficiently accurate for performing the fracture analysis (Crews et al,
1991). The FEM provides efficient techniques for the mode partitioning in bimaterial
interfacial cracks. These techniques include the displacement or stress interpreta-
tion methods (Kuna, 2013), the crack surface displacement method (Smelser, 1979),
the interaction integral approach based on the path independent integral technique
(Shih and Asaro, 1988), the virtual crack extension (VCE) (Matos et al, 1989) and
virtual crack closure techniques (VCCT) (Beuth, 1996). In addition, a large number
of studies involving the strength prediction of layered structures including sandwich
composites use the crack tip element approach (Davidson et al, 1995).

This paper extends some preliminary considerations by Burlayenko et al (2018,
2019c,b,a) in the light of new findings in the recent literature on interfacial strength
assessments of sandwich materials. The study is aimed at understanding and re-
producing the features of interfacial cracking, which are observed in the DCB-UBM,
DCB and SCB sandwich specimens broadly used for fracture testing. In addition
to these experimental aspects, both analytical and numerical calculations are pre-
sented to explain how the ERR and SIFs are derived from the frature test data for
those specimens. Comparisons between analytical and numerical solutions and
experimental data available in the literature are also given. Finally, the accuracy of
the theoretical predictions is discussed.

6.2 Mechanics of Bi-material Interface Cracks

A complexity in analysing bi-material interface cracks is that such cracks generally
exhibit tension-shear coupling effects even under pure opening or shearing loading.
Also, the oscillations of stress and displacement fields, increasing when approaching
the crack tip, from the standpoint of LEFM (Hutchinson and Suo, 1991). Thus, to cha-
racterise the singular stress and displacement fields, a complex stress-intensity factor
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(SIF), K, together with the oscillation index, €, relating to the elastic properties of the
materials are utilized (Rice, 1988). Following Suo and Hill (1990); Kuang-Chong
(1991) the structure of the asymptotic near-tip fields for an interface crack results
from the solution of the eigenvalue problem induced by the traction free boundary
conditions on the crack flanks as

Hw = ¢*"“Hw, 6.1)

where H is a 3 x 3 positive defined compliance-like Hermitian matrix involving the
bi-material elastic constants and H is its complex conjugate matrix. Three eigenpairs
such as (e,w), (—e,w) and (0, w3 ), where w, w and w3 are complex, complex conjugate
and real eigenvectors, respectively, are the solutions of (6.1).

In the 2-D case of the interface crack between two dissimilar orthotropic materials,
where the material symmetry axes are aligned along the interface (Fig. 6.1b), the
matrix H takes the form (Wang et al, 1992):

Hyy = [2n'fsirsm ], + [204" 4511922 4 -
Hy = [2}1/1‘1/4\/s11sz2]#1 + [2n/1“/4\/s11sz2]#2, (6.2)
Hyy = Hy = [\/S11522+S12]#2— [\/S11522+512]#1,

where s;;, s16 = 526 = 0, i,j = 1,2,6 are components of the compliance matrix of the
orthotropic material (#1 or #2) in plane stress; in plane strain the compliances are
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The solution of the eigenvalue problem (6.1) results in the eigenvectors:

wed L1 [Hu
B 2’2\ Hy’

and wz = {0,0,1}. The oscillation index is expressed as follows:
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1 1-
€e=—In 1=k , (6.3)
2r 1+
where the first and second Dundurs’ parameters are defined by
-1 Hiy
a=—— and B=—=, 6.4
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respectively, and
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The stresses 0», and o7, at a distance 7 in front of the crack tip at § = 0 (Fig. 6.1b)
can be expressed as follows (Suo and Hill, 1990; Wang et al, 1992):

[Hx . Kre
— 0 +10712 = (6.5)
Hi \2nrr

and an associated pair of the relative crack surface displacements (jumps) 4; and 4,
at a distance r behind the crack tip at § = +x, can be presented in the form:

1,
H 2H Krate

LAy iy = nare (6.6)
Hy V2nr(1 +2i€e)coshme

Here, i = V-1, K = K +iK, = |K| ¢ with K, and K, used instead of K; and K;;
adopted for homogeneous materials and the mode mixity phase angle i is specified

as
H
v = tan-! [0 (@) 67)
Hy \ o2

To avoid oscillations in the mode mixity parameter, a characteristic length scale,
[ chosen in consistence with discussions in Hutchinson and Suo (1991) is usually
introduced. Then, the non-oscillatory phase angle i/ is established as

A Hy (o
J =tan™! ,/ﬁ (—12)
Hy \ o2
where K’ = K is a normalized complex SIF with ordinary units as those in homo-
geneous materials. The amplitudes of K and K are the same, but their phase angles
are distinguished as ¢ = ¢ + eln/.

The ERR, G is related to the components of complex SIF as follows (Suo and
Hill, 1990; Kuang-Chong, 1991):

(6.8)

~ jie
= tan_] (qu}) s
Re{KI[€}

i

r=

Hy

S | N - )
- (K1 +K2) (6.9)
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6.3 Numerical Evaluation of Interface Fracture Parameters

In this section, the numerical methods, which are appropriate for numerical solutions
based on the FEM for obtaining the fracture parameters of an interfacial bimaterial
system, are discussed.

6.3.1 Interaction Integral Method (I1IM)

The interaction integral method is one of the most popular techniques to calculate
complex SIFs by the FEM. This method is based on the Rice’s J-integral which is
identical to the ERR in LEFM. A common way to calculate the J-integral within the
framework of the FEM is the use of the domain integral approach (Shih and Asaro,
1988). The 2-D domain form of the J-integral over the closed counter C+C; + 1" +C-
around the crack tip (Fig. 6.1a) can be expressed as follows:

]=/ WI—a'-é)—ll :8—qu—/ t-@-qdl", (6.10)
A ox ) ox cc. OX

where W is the strain energy; u and o are the displacement and stress fields; A is the
domain enclosed by the contour C +Cy + 1"+ C_; q is a smooth weighting parameter
that takes q = ¢q; on I" and is zero on C; m is the outward vector normal to the
closed contour such thatm = —non /" and t = m- o on C; + C_ if the surface traction
on the crack flanks are accounted for. A geometrical interpretation of q is a virtual
advancing of the crack tip in the local direction q;.

Following the finite element spatial discretization, the domain integral (6.10)
is computed over a group of finite elements enclosed into the domain A (a ring
around the crack tip in Fig. 6.1a).The integration is achieved by using the Gaussian
quadratures for each element and consecutive summation, i.e.

A Face sheet material #2
1

crack tip

\%

A,

l X Interface
— r

Core material #1

(a) (b)

Fig. 6.1. Sketches of: (a) a closed contour C + Cy + I" + C_ around the crack tip; (b) displacements
of crack flanks at bi-material crack bounded by orthotropic materials.
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El [ G
J= Y (AP, | (6.11)
n=1\p=1

n

where n and p indicate that all the entities are associated with the n-th finite element of
the area A and are determined at the p-th Gauss integration point; [ f] is the integrand
in (6.10), |j| is the determinant of Jacobian matrix and w is the weight of the Gauss
numerical quadrature. The domain integral is calculated by post-processing the results
of finite element analysis.

The basic idea of the interaction integral method for calculating separated frac-
ture modes involves superposing actual and auxiliary (aux) displacement and stress
fields, where the auxiliary ones are assumed to be known a priori. The asymptotic
Williams type’ solutions of the corresponding material system regardless of the ac-
tual geometry can be used as the auxiliary field. Then, using the relation between
the ERR and the SIF components (6.9), the interaction integral takes the form:

2 4cosh?
IM = 2K KO 4 K KSY), with H =~ 1€ 6.12)
H Hi
This formula is valid for each fracture mode M = I,11. On the other hand, the
interaction integral for a straight crack can be expressed analogously to the J-integral
definition in (6.10), i.e.

0
Jine = /A Q" a_:dA (6.13)
with the integrand QM given by
a aux M C’)
QM =0 : (g M1_g. L8 _(gauxym 28 (6.14)
0x 0x

Since the interaction integral is formulated similar to the J-integral in (6.10), the
domain integration approach identical to that in (6.11) can be applied to the numerical
computation of the integral in (6.13).

Finally, making a judicious choice of the auxiliary stress intensity factors and
computing auxiliary displacement and stress fields associated with them, the sepa-
rated stress intensity factors can be evaluated as follows:

H o u

Ky = W‘Iim‘

(6.15)

6.3.2 Crack Surface Displacements (CSD) Method

The CSD method is based on the approach proposed by Smelser (1979). In accor-
dance with this method, the complex SIF components are determined by the amplitude
and phase angle of K which are calculated using the displacements at the crack
faces close to the crack tip (Fig. 6.1b).
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The method has an advantage for computing the SIF components in the context of the
FEM since the displacement field is a direct outcome of the finite element analysis.
Thus, in contrary to the IIM, the CSD method does not require the retrieval of strains
and stresses. Using (6.6) in conjunction with the expressions for the mode-mixity
parameter (6.8) and the ERR (6.9), it yields the formulae to compute the fracture
characteristics as follows (Kardomateas et al, 2013):

h 1

Hy 4
J = tan” ,/H—Zi)-eln(%)ﬂan-‘ze (6.16)
and 5 )
Hy |[K 1+4 H
- 11|2| gt E)(iz@m%), (6.17)
4cosh® e 8H11(r/f) H»
where

Aj =uj(r,m)—u;(r,-m), j=12

represents the relative crack flank displacements (shearing and opening modes) at
distance r behind the crack tip, Hj; and Hy; are components of the matrix H.

Thus, in accordance with the CSD method, the nodal displacements of finite ele-
ments, whose faces are adjacent to the opposite crack flanks, are extracted from
the finite element results to compute the ERR and phase angle at different dist-
ances r close to the crack tip. However, approaching the crack tip, the values of
ERR and phase angle tend to be incorrect due to the singular nature of the rela-
tive displacements 4; and 4, at » — 0. Instead, the ERR and phase angle are esti-
mated by linear extrapolation of their values in a chosen interval of r to the crack
tip (Ryoji and Sang-Bong, 1989). The nodal displacements in the neighborhood of
the region - /[ about 1072 — 1073 typically provides a good estimate of G and ¥
(Smelser, 1979). Finally, the results can be expressed in terms of stress intensity factors:

K; = Re{KI['€} = |[K|cosy

. 6.18
K> =3m{KI'*} = |K|siny, (6.18)

where ¢ = ) —eln/ for a given reference length, . A free choice of [ in the deter-
mination of i is proven by fulfilling a simple transformation rule from one value to

another (Suo and Hutchinson, 1990): ¥, = ¢ + eln(l} / lAl) with 1 and v, associated

with /; and b, respectively.

It is worth mentioning that since the analytical expressions (6.16) and (6.17) allow
extracting the fracture parameters from numerical displacement data, the accuracy of
this process is dependent upon the amount of data available along the crack flanks
in the vicinity of the tip. Hence, a fine enough mesh in the region around the crack
tip is required in the FEM calculations. Also, some accuracy difficulties may be
encountered in determining the ERR and phase angle from the FEM displacements
for models with high overall stiffness or when the angles are small (Smelser, 1979).
The first issue can be overcome by using the J-integral and correlating the results of
the both methods, whereas the second one is not critical as long as the interface bond
is weak relative to the two adjoining materials. When this is the case, the crack will
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most likely propagate along the interface with dominating failure mode I i.e. the angle
of the stress intensity factor is not so important.

6.4 Numerical Solutions

In this section, we present the results of numerical evaluations of the fracture pa-
rameters of DCB-UBM, DCB and SCB sandwich specimens used for the interfacial
bond strength assessment of sandwich panels. The calculations are carried out using
the finite element code ABAQUS (2016). The interaction integral method is a built-
in option of the package, but it is applied to bi-material interfaces consisting of two
isotropic dissimilar materials only. The CSD method is programmed as an add-on
subroutine in Matlab environment and can be utilized for orthotropic bi-material
configurations. The subroutine extracts the displacements at given nodal sets from the
ABAQUS’ result database file and, then, computes the required values (Burlayenkoal,
et al, 2018, 2019a). The numerical results are compared with known analytical
solutions or experimental data, when these are available in the literature.

6.4.1 DCB-UBM Sandwich Specimen

A DCB-UBM sandwich beam shown in Fig. 6.2a is selected as a first example. The
DCB-UBM test method was first used in Sorensen et al (2006) for evaluating the
interface strength of laminated composites and, was later extended to sandwich
materials (Saseendran et al, 2018). In this test, the DCB specimen’s cracked edges
are subjected to uneven bending moments, M; and M, (both being defined per unit
specimen width, b), while the intact end of the specimen is fixed and generates the
reactive moment My = M| + M>, as illustrated in Fig. 6.2a. The DCB-UBM test
allows a variety of mixed mode I/II states by changing the ratio of the moments
applied to the specimen, MR = M, /M,. Considering this, the crack is open at a
negative ratio MR < 0, while a positive ratio M R > 0 generates sliding between the
crack flanks. Also, it is known that the test enables to produce the crack length-inde-

Y eutral axis of “D” h
M, tie=—= e —— gy o
My 5 Neural aiof 5" Nl aisof 0”1\ TThc s I
R T 1
L L
(a) o)

Fig. 6.2. DCB-UBM sandwich specimen: (a) geometry and loading; (b) local force and moment re-
sultants.
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pendent ERR and a constant mode mixity, when the moment ratio M R does not
change during the crack growth.

The ERR can analytically be determined using the specimen geometry, elastic
properties and applied external bending moments. The Euler-Bernoulli theory is
utilized to model both the intact end of the specimen and each of the cracked edges.
In the case of orthotropic face sheets and/or core, the principal material axes are aligned
with the reference coordinate axes of the specimen and Young’s moduli corresponding
to the specimen axial rigidity are used in the formulation. The J-integral calculated
along the outer boundaries of the specimen (Fig. 6.2b) leads to the following ex-
pression (Burlayenko et al, 2019c):

GPCB-UBM 1 { N? N? m? M+ }, (6.19)

T2 | (A, T (EAS (ED,  (EDy

where N =y, My, M = M| —y3 M, and

Mo=N[eg+ ey M)y
= e+ —+—|—
ST

are the equivalent axial load and bending moments, respectively, with

C(EAp [ he _(EDy
= (ED), (e°+7+7) and Y= EDy

Y2

the parameters ey and e locate neutral axes of the intact part of specimen and the
substrate, Fig. 6.2; (EA); and (EI); are generalized axial and flexural rigidities of
the debonded portion ”D”, substrate S and intact part "0" of the specimen, i.e.
i = D,S,0. It should be noted that the expression of ERR (6.19) is applicable to DCB
sandwich samples subjected to bending moments only, and it does not account for
shear and root rotations (Thouless, 2018).

The fracture analysis was carried out for the DCB-UBM specimen with glass/epo-
xy composite face sheets of thicknesses /; = hy = 2.4 mm and a PVC H 100 core
of thickness /. = 50 mm. The resin rich layer between the face sheets and the core
is considered to be a zero thickness, i.e. we neglect its influence on the interfacial
fracture behaviour at all. The material properties of the sandwich specimen con-
stituents are summarized in Table 6.1. The specimen of total length L =270 mm
with pre-crack of length ¢ = 90 mm and a fixed end of length Ly =27 mm was
considered. It is assumed that the principal axes of the orthotropic materials of face
sheet and core of the specimen are aligned with the co-ordinate axes, Fig. 6.2a. Also,
the Young’s moduli along the x-axis of the given orthotropic materials are adopted
as the effective moduli for determining the generalized stiffness in (6.19).

A 2-D finite element model of the DCB-UBM specimen is developed using eight-
node reduced integration plane strain finite elements (CPE8R) available in ABAQUS,
Fig. 6.3. The finite element mesh contains a refinement in the vicinity of the crack-tip
as shown in Fig. 6.3. In the calculations, the bending moments are applied to the
DCB-UBM specimen edges at the points of the neutral axes of each subregion of the
cracked part, Fig. 6.2a. Coupling kinematic constraints (ABAQUS, 2016) between
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Fig. 6.3. A 2-D finite element model of the DCB-UBM sandwich specimen.

the set of nodes on the edge and the point of neutral axis are used to enforce equal
rotation of the entire edge. The debonding in the specimen is modelled by a real gap
of % between the separated face sheet and core. The contact and friction conditions
analogous to those in Burlayenko and Sadowski (2018) are introduced between the
faces of the appropriate finite elements located along the pre-cracked bi-material
interface.

To demonstrate the performance of the developed finite element model, different
moment ratios, MR are considered in the calculations. Both the J-integral option
of ABAQUS (2016) and the CSD method that post-processes the finite element
results using the add-on Matlab-subroutine are utilized for computing the fracture
characteristics. In all the calculations, the bending moments induced nearly the
same ERR for each loading case. The values of ERR, G computed numerically
were compared with those found using the analytical formula (6.19) and the semi-
analytical expression deduced in Kardomateas et al (2013). Good agreement between
all the solutions has been achieved as seen in Table 6.2, where the phase angle ¢
and the complex SIF components found with the CSD method are presented as well.

The contour plots of the stress tensor components associated with different mo-
ment ratios, MR listed in Table 6.2 are illustrated in Fig. 6.4, where the first row

Table 6.1
Material properties of the sandwich specimens.

Constituents Material constants
Glass/Epoxy face sheet E, = E; =16.5 GPa; E, = 3.8 GPa; Gxy = Gx; = 1.3 GPa;
Gy, =6.6 GPa; vyy, =0.05; vy, = vy, =0.25; p = 1650 kgm™
E-Glass/Epoxy face sheet Ey =27.6 GPa; Ey =25.2 GPa; E, = 3 GPa; G, = 2.2 GPa;
Gy =Gx; =1.2GPa; vy, =0.24; vy, =0.12; vy, = 0.06;
p = 1800 kgm™>
Aluminium face sheet E.=E,=E.=69.5GPa; vy, =vx; =v,, =0.3; p=2700 kgnf3
PVC H 80 foam core Ex=E,=E;=80MPa; Gxy = Gy, = Gy, =27.3 MPa;
Vxy =Vxz =Vyz =0.25; 0 =80 kgm‘3
PVC H 100 foam core E.=E,=E. =105MPa; G,y = Gx; = Gy, =39.8 MPa;
Vxy =Vxz =Vyz =0.325; p =100 kgm™3
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of the images corresponds to o1, the second and third ones show 0%, and o2,
respectively. A complicated nature of the near-tip stress field is clearly observed
here. One can see that the shear stress exists in the vicinity of the crack regardless of
the loading cases as shown in the third row of Fig. 6.4. This is an apparent evidence
of the mode mixity conditions being expected in sandwich structures. By comparing
the values of the total ERR in Table 6.2, which are calculated by the FEM accounting
for shear stress and by the analytical formula (6.19) neglecting it, one can conclude
that the shear stress does not influence much on the total value of the ERR in this
case. However, the sign of the shear stress ahead of the crack defines a favourable
direction of interface crack propagation in the bi-material interface as mentioned in
Adams et al (2012) and shown in Burlayenko et al (2019b).

6.4.2 DCB Sandwich Specimen

The second example considers symmetric (/) = hy = hy) sandwich beam-like spec-
imens exploited in the DCB test method. A scheme of the DCB test is illustrated in
Fig. 6.5a. In this test, two piano hinges are usually used to transfer the loading to the
edges of the specimen’s cracked region. The DCB sandwich specimen is subjected to
an opening displacement by applying to the grip plates either two opposite transverse
loads or an upward load and appropriate boundary constraints. The asymmetry of
the specimen caused by the fact that the lower part (below the crack plane) being
more rigid in flexure than the upper one (above the crack plane) may result in a slight
rotation of the specimen at large opening displacements as shown in Fig. 6.5b, but
usually such a rotation tends to be small in actual tests (Avilés and Carlsson, 2008).

The total ERR, generated by the interface crack during DCB testing can ana-
lytically be evaluated. Avilés and Carlsson (2008) used a model that considers the
upper face sheet as a beam partially supported by an elastic foundation representing

Table 6.2
Calculations of the ERR and the phase angle with respect to the moment ratio M R.
M, Nmm 75.6 103.42 1234 10413 738
M> Nmm -1512.2  -1034.2  -1234 10413 1476
MR -0.05 -0.1 -1.0 0.1 0.05
ERR, GFEM N/mm 0.399 0.399 0.403 0399  0.377
G619 N/mm 0.398 0.398 0402 0400 0375
GRardomateasetal 2013) N/mm  0.351 0.363 0376 0365 0.332
Phase angle, /" EM deg. 30.26 11.31 -17.16 ~ -51.87  -70.71
SIFs, Re {Kh e } N/mm? 9.652 10.96 10.74 6914  3.585

Sm{Kh,'“} N/mm? 5631 2192 3313 8809  10.24
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(

Fig. 6.4. Contour plots of the stress components at the crack tip of the DCB-UBM specimen w.r.t.
the moment ratio M R equal to: (a) -0.05; (b) -0.1; (c) -1; (d) 0.1; and (e) 0.05.
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Fig. 6.5. Double Cantilever Beam sandwich specimen: (a) a schematic test; and (b) a deformed
configuration.

a core. The model formulation was based on the assumptions of the Euler-Bernoulli
beam theory and the Winkler elastic foundation theory for describing the deforma-
tion of the upper face sheet and the core of the DCB specimen, shown in Fig. 6.5b,
respectively. The final expression of the ERR has a form:

GPCB = F_2

2
1 a 12
o { 0 (a§+2aon1/4+n1/2)}, (6.20)

+ +
G.:he (D-B2/A) th}

where the initial crack length a = ag, the parameter n = bh}Ef /(3K) and the elastic
foundation coefficient K = 2bE./h.. The 1-D extensional, coupling and bending
stiffness coefficients A, B and D are computed as

hyhe

AZthf+EChC, B= ) (EC—Ef) and
1 3 2 3 3

D= {Ef(hf +3hh2) + Eo(h +3hfhc)}

The finite element model similar to that used in the fracture analysis of the DCB-
UBM specimen (Fig. 6.3) was adopted for the numerical calculations of the fracture
parameters in the DCB specimens. To accurately reproduce the specific loading
conditions in the finite element model, the hinges, modelled as rigid bodies, were
linked to the face sheets of the sandwich beam using the TIE constraints (ABAQUS,
2016). Moreover, the external concentrated forces were applied to points in the
centres of the hinge holes. Each the point was connected to the hole contour using
Multi-point Constraints (MPCs). This type of constraint allows a hinge rotation
relatively to the point of force application, i.e. it simulates the real conditions of the
laboratory testing, Fig. 6.5b.

In the finite element predictions, DCB sandwich specimens of length L =250 mm
and width b =25 mm with a PVC H 80 foam core of thickness 4. =25 mm and
either e-glass/epoxy composite or aluminium face sheets of thickness, h¢ ranging
from 0.1 mm to 10 mm at different pre-crack lengths ¢=30,50,70,90 and 110 mm
are analysed. The properties of the sandwich specimen constituents are shown in
Table 6.1. The comparisons of the ERR computed by resolving a 2-D elasticity problem
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with the FEM in conjunction with the J-integral method and obtained using the an-
alytic expression (6.20) based on the classical beam theory are presented in Fig. 6.6.
The plot illustrates a scattering of relative errors between both the results
DCB
4G = l6-6""1 % 100%
G

with respect to appropriate linear trend lines depending on the face sheet thickness
and the pre-crack length. It is found that the analytical predictions mainly overes-
timate the numerical ones, but the differences between them do not exceed 50%
and the error tends to decrease with thickening the face sheet. Also, the findings
observed in Fig. 6.6 show that the differences between the two solutions are smaller
for the specimens with composite face sheets (Fig. 6.6a) than with stiffer aluminium
ones, i.e. for a lower material ratio, E¢ /E.. Herewith, the differences become smaller
with increasing the pre-crack length in both types of the specimens. Thereby, the
numerical results clearly demonstrate the limitations of the analytic formula (6.20)
and justify the importance of accounting for shear deformation in the vicinity of the
crack tip for accurate calculations of the ERR.

The other validation of the finite element model is done by comparing numerically
computed ERRs and those obtained experimentally in Avilés and Carlsson (2008).
Two types of DCB sandwich specimens denoted as ‘thick DCB’ and ’thin DCB’
are considered. All details related to these two tests can be found in the mentioned
source and the references cited there. The results of the comparison are displayed in
Fig. 6.7 for a normalized value of the ERR,

. G
G = ﬁ
It is seen that the finite element predictions are satisfactory close to the measured
data for all the crack lengths studied in both the specimens. Also, it is obvious
that the trends of changing the ERRs with increasing the crack length observed

50 T T T
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Fig. 6.6. The variation of relative errors 4G = |ggg_| % 100% vs. the face sheet thickness h for

different pre-crack lengths in the DCB test with: (a) composite face sheets; and (b) aluminium face
sheets.
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Fig. 6.7. Comparison between numerical and experimental ERRs vs. crack length for DCB
sandwich specimens: (a) thick sample; and (b) thin sample.

in the experiments and predicted by the finite element analysis show quite similar
behaviours. Hence, one can conclude that the computational models can accurately
represent the actual DCB tests.

The ERR and the phase angle, computed by both the IIM and the CSD method
for a 150 mm length and 27 mm width DCB sandwich specimen with pre-crack of
aop = 50 mm, which is made up of the PVC H-100 core of thickness &, = 38 mm and
the e-glass/epoxy composite face sheets of thickness /1y =2.4 mm, subjected to a unit
load are presented in Table 6.3. It is seen that although the IIM uses effective
elastic properties reduced to isotropic materials instead of actual orthotropic ones,
both the numerical techniques give quite close results. Also, the calculated
fracture characteristics clearly exhibit the dominated mode I deformation of the DCB
specimen at the given material and geometrical parameters. The distribution of near-
tip stress fields in the DCB specimen is demonstrated in Fig. 6.8. The plots show
that the maximum longitudinal normal stress is primarily developed in the upper
(debonded) face sheet due to its high in-plane and bending resistance, Fig. 6.8a,
whereas the transverse normal stress is the biggest in the region around the crack
tip, Fig. 6.8b. In addition, the shear stress exists at the crack tip, Fig. 6.8c. However,
this stress component is smaller about one order of magnitude than the transverse
normal stresses in the same region. Despite its relatively small magnitude, the sign
of shear stress in the vicinity of the crack tip defines the orientation of presumed
crack growth direction (Adams et al, 2012). As seen in Fig. 6.8c, the shear stress

Table 6.3
Calculations of the ERR, SIFs and phase angle for DCB and SCB specimens.

Specimen type Method G N/mm  Re{Kh, 16} N/mm> Im{Kh, 16} N/mm> Y deg.

DCB 1M 67.76e-6 0.1299 -0.0321 -13.93
CSD 67.21e-6 0.1356 -0.0448 -18.29
SCB 1M 12.39¢-6 0.0689 -0.011 -9.08

CSD 12.01e-6 0.0586 -0.015 -13.03
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Fig. 6.8. Stress distribution in front of the debonding in DCB specimen: (a) longitudinal normal
stress o71; (b) transverse normal stress 0-,; and (c) in-plane shear stress oj».
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arisen in the area around the crack tip is strongly negative that confirms the finding
for a negative phase angle, i observed in Table 6.3. This value predicts the crack
propagation direction either into the face sheet material or along the face sheet/core
interface during this test method. The latter crack growth path is more likely due
to a weaker crack resistance of the face sheet/core interface compared with the face
sheet strength.

6.4.3 SCB Sandwich Specimen

The last example is a SCB sandwich specimen, which presents the second class
of test methods generating dominated mode I fracture by peeling the face sheet
from the core. A SCB test method with given boundary conditions and schematic
loading is illustrated in Fig 6.9a. As seen, only one upward force, F is applied to the
specimen through a steel hinge mounted on the upper debonded face sheet, while
the lower one is affixed to a rigid base. Moreover, to provide an accurate interface
toughness measurement and to ensure that bending is the primary form of loading,
the dimensions of the SCB specimen and the load rod length, #r have to satisfy
sizing requirements defined in Ratcliffe and Reeder (2011).

An analytical estimation of the total ERR G5¢Z can be deduced from a kine-
matic analysis of the SCB sandwich sample (Fig. 6.9b) within the elastic foundation
approach. Then, the final expression can be written as follows (Rinker et al, 2011):

41F? K
G5B = ——{Pal+22ap+ A+ ————— ¢, (6.21)
2bK 4bAkGY,hy
K \/4
()
4Dy

where the parameter

with
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Fig. 6.9. Single Cantilever Beam sandwich specimen: (a) a schematic test; and (b) a deformed
configuration.
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is identical to that in (6.20).

In the context of comparative studies, both the analytic expression (6.21) and the
general formula of LEFM (6.6) are used to calculate the ERR for a variety of SCB
specimens distinguished by the pre-crack length and the face sheet thickness. The
SCB specimens of a 250 mm length made up of a 50 mm thick PVC H-80 foam
core and either glass/epoxy composite or aluminium face sheets of the thickness
varying from 0.1 to 10 mm are analysed. The comparisons, presented by relative
errors between the results computed with FEM and those found analytically

SCB

4G = l6=6""1 % 100%
G

the same as in Sect. 6.4.2, are shown in Fig. 6.10. Analogously to the predictions
for the DCB specimens, it was found out that the approximate analytic formula
(6.21) for the SCB specimens also mainly overestimates the ERR, especially it is
apparent for short pre-cracks, but the maximal deviation does not exceed 50% in our
study again. Herewith, the aluminium-PVC material configuration corresponding to
a higher Er/E, ratio leads to bit larger differences than those in the composite-PVC
system with a lower E¢/E. ratio. This is similar to the results observed for DCB
specimens considered in the previous example. Also, the errors are less for longer
pre-cracks and thicker face sheets.

The comparison of the ERR values over a range of crack lengths, which are
predicted with the finite element model and those known from experimental studies
available in Li and Carlsson (1999), is illustrated in Fig. 6.11. The SCB specimens,
tested in Li and Carlsson (1999) as tilted sandwich debond (TSD) samples at the

T T
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T T 50
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Face sheet thickness, h, mm Face sheet thickness, h, mm

(a) ()

Fig. 6.10. The variation of relative errors 4G vs. the face sheet thickness Ay for different pre-crack
lengths in the SCB test with: (a) composite face sheets; and (b) aluminium face sheets.
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zero tilt angle, are considered for this comparative study. Mechanical properties and
dimensions of the specimens as well as the details of laboratory testing can be found
in the original reference. From Fig. 6.11 one can see that the dimensionless ERRs,
G =G Fb)
obtained numerically and the experimental values correlate quite well between each
other. This confirms high-fidelity modelling results which are provided by the finite
element models developed for the SCB sandwich specimens.

In Table 6.3, the finite element calculations performed for obtaining the ERR, SIFs
and phase angle of a 210 mm length and 38 mm width SCB sandwich specimen
consisting of 3.6 mm thick glass/vinylester face sheets bonded to a 50 mm thick PVC
H-100 foam core are summarized for the case of unit transverse force and pre-crack
length of ap = 50 mm. One can see that the results provided by the IIM approach and
the SCD method are in good agreement similar to the case of the DCB specimen.
The distribution of near-tip stress components, associated with the deformed state
of this SCB specimen is plotted in Fig. 6.12. The analysis shows that the normal
longitudinal and transversal stresses have profiles close to those observed in the DCB
specimen (Fig. 6.8a and b), while the magnitude of the shear stress is visibly smaller
than that in the DCB specimen (Fig. 6.8c). The reason of such similarity is that
the face sheets of both the specimens behave in the same manner under the applied
upward force, but the difference in the shear stresses is due to additional contribution
of bending moment and shear force induced by a downward force acting on the lower
part (below the crack plane) of the DCB sample. Hence, it is reasonable to expect
that such the deformation state with extra shear and normal stresses at the crack tip
can give rise to a more complicated cracking behaviour in the DCB specimen. Thus,
the SCB specimen is able to produce dominated mode I deformation conditions with
less limits than the DCB sample. This conclusion correlates with a smaller negative
phase angle in the SCB test sample compared with the DCB specimen for the given
face sheets and core materials and specimens’ geometries as displayed in Table 6.3.
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S, St

(Avg: 75%)
+6.906e-01
+5.000e-01

S, 822
(Avg: 75%)

+1.323e-01
+1.200e-01
+1.083e-01
+9.667e-02
+8.500e-02
+7.333e-02
+6.167e-02
+5.000e-02
+3.833e-02
+2.667e-02
+1.500e-02
+3.333e-03
-8.333e-03
-2.000e-02
-4.565e-02

S, 812
(Avg: 75%)

+7.669e-02
+6.000e-02
+5.375e-02
+4.750e-02
+4.125e-02
+3.500e-02
+2.875e-02
+2.250e-02
+1.625e-02
+1.000e-02
+3.750e-03
-2.500e-03
-8.750e-03
-1.500e-02
-4.767e-02

(©)
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Fig. 6.12. Stress distribution in front of the debonding in SCB specimen: (a) longitudinal normal
stress 011; (b) transverse normal stress 07;; and (c) in-plane shear stress op;.
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6.5 Conclusions

In this research, efforts have been focused on evaluating the fracture parameters in vir-
tual tests related to the assessment of face sheet-to-core interface strength in sandwich
panels. Both analytical methods based on beam-like models and two-dimensional
finite element analyses with ABAQUS have been applied to the computation
of ERR, SIFs and phase angle in popular DCB-UBM, DCB and SCB sandwich
fracture specimens. The numerically obtained results have been extracted from the
finite element solutions using two techniques such as the [IM and the CSD method,
which are suitable for analysing a bi-material configuration of the sandwich panel
interfaces in perspective of the evaluation of mode mixity. Also, the use of these me-
thods in finite element predictions is very efficient since they have a straightforward
finite element formulation that allows one exploiting a whole power of general
purpose finite element packages like the ABAQUS code.

The parametric studies in the 2-D fracture analysis of the sandwich specimens
made up of either aluminium or various composite laminated face sheets and PVC
foam core of different thicknesses have been carried out. Results received from the
finite element simulations of all the specimens were compared with those obtained by
the analytical approximate formulae and the experimental data available in the literature
for DCB and SCB fracture tests. Generally, good correlation between the results
has been observed. Evaluating the fracture parameters of the hypothetical sandwich
specimens, it was found that the shear stress exists in the vicinity of the crack tip
regardless of the specimen type and the material and geometrical configurations of
those specimens. Hence, it has been recognised that the mode mixity is an inherent
characteristic of sandwich panels’ deformed state. This characteristic should be
known a priori to accurately estimate the strength of the face sheet-to-core interface
and to simulate the debonding fracture along an appropriate crack growth path in
sandwich panels. In turn, the crack path can be predicted based on a mode mixity
fracture criterion, which could be known after performing a comprehensive actual
and virtual test campaign.

Finally, it needs to mention that although the present results are demonstrated
only for the selected three sandwich samples, the 2-D finite element techniques
used in this research can be applied to virtual tests of sandwich specimens of any
other geometry and boundary conditions. Thus, the results presented in the paper
may provide a benchmark for studying the considered DCB-UBM, DCB and SCB
sandwich fracture specimens and, on the other hand, they may guide further research
associated with the assessment of interfacial strength of sandwich panels.
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Chapter 7

Asymptotic Approximations for Frequencies and
Vibration Modes of Cylindrical Shell Stiffened
by Annular Plates

Sergei B. Filippov

Abstract Low frequencies and vibration modes of a closed circular cylindrical shell
joined with annular plates are obtained by means of asymptotic methods. Two types
of vibrations, corresponding to narrow and wide plates, are analyzed. It is shown
that narrow plates can be considered as circular beams. For wide plates joined with
a cylindrical shell the couple vibration problem in the first approximation is reduced
to the eigenvalue problem describing the plate vibrations. An approximate solution
of the last problem is obtained with the help of the perturbation approach.

Key words: Ring-stiffened shell - Annular plate - Vibration frequency - Asymptotic
methods

7.1 Introduction

Ring-stiffened shells are extensively applied in submarine, vehicles, pipelines and
aerospace engineering. It is therefore necessary to create accurate models of physical
processes in such constructions. However, almost in all studies of ring-stiffened
shells, including Filippov (2006b); Hodges et al (1985); El Raheb and Babcock
(1981); Ross et al (1996), the rings have been treated as circular beams.

There are, at least, two reasons to consider the wide ring as the annular plate. First,
the flexural stiffness of the beam in its plane ¢; increases rapidly with ring width b.
However, for the wide ring its stress-strain state localizes near the inner boundary of
the ring, which is attached to cylindrical shell (Filippov, 2006a). Therefore change
in b almost have no influence upon the stiffness ¢ of the sufficiently wide ring. To
catch this effect one should consider the wide ring as an annular plate. It is especially
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important because the stiffness ¢ has an determinative influence on the vibration
frequencies.

Secondly, vibrations of the shell, stiffened by a narrow ring, differs very much
from vibrations of the shell stiffened by a wide ring. If the width of the ring b is
sufficiently small, then the vibration mode of the stiffened shell is similar to the
mode of the shell without rings, and the shell’s surface is covered by a series of pits
stretched along the generatrix of a cylinder. In this case it is possible consider the
ring as a circular beam. Such vibrations we call the vibrations of the first type.

At increase in b the frequencies grows until the vibrations of the first type replace
with the vibrations of the second type. The vibration mode of the second type is
localized on the surface of the ring and the cylindrical shell itself does not actually
deform. After the vibration mode changed, the further increase in b leads to reduction
of frequencies. For studying the vibrations of the second type the beam’s model can
not be used, and one must consider the ring as an annular plate.

Various methods for the analysis of ring-stiffened shells vibrations have been
developed. In Yang and Zhout (1995) and Loy and Lam (1997) natural frequencies
of stiffened shells are obtained by Fourier expansions and Rayleigh-Ritz procedure.
In Samanta and Mukhopadhyay (2004) for vibration analysis of ring-stiffened shell
finite element method was used.

The equations describing a thin shells contain the dimensionless shell thickness
h as a small parameter. Hence, for the solution of these equations it is possible to
use asymptotic methods (Bauer et al, 2015; Tovstik and Smirnov, 2001). To get the
approximate solutions of the shell’s equations in this paper the Vishik-Lyusternik
algorithm (Bauer et al, 2015; Vishik and Lyusternik, 1957) is applied. We seek
solutions of shell equations as a sum of slowly varying functions and edge effect
integrals. Thus the initial singularly perturbed system of differential equations is
reduced to an approximate system of the smaller order (Tovstik and Smirnov, 2001).

The major problem in the asymptotic analyses of the ring-stiffened shell is a
separation of the continuity conditions on main and additional conditions. The
main conditions are used as boundary conditions for the approximate system. From
additional conditions one can find arbitrary constants in the edge effect functions.
As a rule, to get the main and additional conditions, it is necessary to make linear
combinations of the continuity conditions.

In the case of the second type vibrations the eigenvalue problem for a cylindrical
shell joined with annular plates in the first asymptotic approximation can be split
into the five separated problems. Most important of them is the eigenvalue problem,
describing vibrations of the annular plate. In assumption that the ratio of the plate
width to the radius of its inner edge is small, approximate formulas for the frequencies
was obtained.

The asymptotic analyses of low-frequency vibrations of the cylindrical shell
stiffened at an edge by the annular plate was fulfilled in Filippov (2004); Filippov
and Haseganu (2003). In the present contribution frequencies and vibration modes
of cylindrical shell, stiffened by annular plates located on inner parallels of the shell,
are evaluated.
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7.2 Basic Equations

We consider small free low-frequency vibrations of the thin cylindrical shell stiffened
by nidentical annular plates. The plates are located on the parallels s = s;,i = 1,2,...,n
of the shell, where s is the dimensionless axial coordinate on the shell’s middle
surface. The radius of the cylindrical shell R is taken as the characteristic size. One
of the plates is shown in Fig. 7.1.

After the separation of variables the non-dimensional differential equations de-
scribing free vibrations of a cylindrical shell (Filippov, 2004) may be represented in
the form

T(+mS+Au=0, S'—mhh+Qr)+2H +Av=0,

Q/l +mQy—Tr+ Aw = 0, 0 = M1’+2mH, 0> = —mM>,

My = @29 +vmda), My = pt(mdy+v9)), H=p*(1-v)9,  (1.1)

Ty=u+viw+my), Th=w+mv+vu', 2S=(1-v)V —mu),

H=—w, h=mw+v,
where (’) denotes the derivative with respect to the coordinate s € [0,{], [ is the di-
mensionless shell length, m is the circumferential wave number, 1 = 4720 p f2R?E~!
is the frequency parameter, o = 1 — v, v is Poisson’s ratio, E is Young’s modulus, p
is the mass density, f is the vibration frequency, u, v and w are the components of the
displacement, 71, T, S, Q1, Q2, M, M, H are the dimensionless stress-resultants
and stress-couples, ©#; and 9 are the angles of rotation of the normal, u* = h?/12 is
a small parameter, 4 is the dimensionless shell thickness.

The equations of plate’s bending (Filippov, 2004) can be written as

(xQ1p) +mQsp + Axw, =0,
xQ1p = (xMip) = Mo, +2mH,, xQ>p =-mMs, +2H,,

, , (7.2)
)CMIIJ = ﬂ‘;, [xz?lp + V(mﬁzp + ﬂlp)], xsz = ui(mﬁzl, + ﬂlp + vxﬁlp),
H, = /14px(1 —v)ﬁép, tp = —w!’,, xthp =mwp.
AX
b+1
w 1
>u
0 3
Ve

~

[
v| 0 \si

Fig. 7.1 Shell and plate
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Here () denotes the derivative with respect to the radial coordinate, x € [1,1 + b],
b is the dimensionless plate width, w), is the transverse deflection, Q1,, Q2,, M),
M,,, H,, are the dimensionless stress-resultants and stress-couples, ¢, and @,
are the angles of rotation of the normal, /J;‘, =a? /12 is a small parameter, a is the
dimensionless plate thickness.

For the evaluation of the tangential (in plane) deformation of the plate we have
the following equations (Filippov, 2004):

(xT1p) =Top +mS, + Axup =0, xSl'7 +28, —mTr, + Avp =0,

xTyp = xué7 +v(mvy, +up), xThp =up+mv,+vxu (7.3)

’
p’
2xSp = (1=v)(xv,, —mup —vp),
where u,, and v, are the tangential components of the displacement, T, T3, Sp, are
the dimensionless stress-resultants.
We denote as u®), v®)_ & the solutions of Egs. (7.1) in the intervals

SE[sk—1,8k), k=12,....n+1, s50=0, s5,41=1L.

If the shell and the plates are made of the same material, then the following 12
continuity conditions have to be satisfied
u(i) — M(i+l) — _Wp(l), 19(11) — 0§i+]) - ﬁ]p(l),
w = D = up(1), p@O =D = vp(1),
Iy =1{") = =a01,(1), W@\ -0 = aTi, (1), (74)
hMP = M) = aMyp (1), A(SD - 50D = aS,,(1),
s=us;, [=12,...,n.
The outer edges of the plates are free, therefore

Tip=S,=M,=01,=0, x=1+b. (7.5)

At the edges of the shell s =0 and s =/ any homogeneous boundary conditions can
be introduce. As an example we consider the shell with simply supported edges, i.e.

v=w=T1=M;=0, s=0, s=1[. (7.6)

If for A = Ay equations (7.1)-(7.3) have a nontrivial solution satisfying boundary
conditions (7.4)-(7.6) then Ay is an eigevalue of eigevalue problem (7.1)-(7.6). The
minimal positive eigevalue 1; corresponds to the fundamental frequency f;.
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7.3 Boundary Conditions for the Shell’s Equations

Let us seek the vibratons modes of the first type which are similar to the vibrations
modes of the non-stiffened shell. The transverse flexural stiffness of the plate is more
less than its tangential stiffness in plane. Setting to zero the flexural plate’s stiffness,
we obtain from (7.4)

p@ = D D D), Tl(i) _ Tl(i+1)’ (1.7)
wl = @D gl = gl D gD = gl (7.8)
w® =u,(1), v =v,(1), (7.9)

h(QV -0y = aTi (1), n(SD-$5TD)=as,(1), s=si.  (7.10)

Conditions (7.7) and (7.8) are the continuity conditions for solutions of the shell
equations (7.1). To get two more conditions from relations (7.9) and (7.10) we must
find the solution of Egs. (7.3).

For the low-frequency vibrations the parameter A is small, and we neglect of the
inertial terms Axu, and Av, in Egs. (7.3):

(xT1p) = Top +mS, =0, xS[', +28, —mT,, =0,
xTip =xu1',+v(mvp+up), (7.11)

xTop = up +mvp +vxu 2x8Sp, =(1- v)(xv; — Mty —Vp).

’
p?
Then the change of variable x = ¢’ reduces Egs. (7.11) to equations with constant
coeflicients:

dzl/tp 2 de
F—up—’ym Mp+6m7_(1+'}/)mvp=0,
dzvp 2 du
Y2 VM v,,—émz—(l+y)mup =0, (7.12)

where y = (1 -v)/2, 6 = (1+v)/2. The general solution of Egs. (7.12) have the form

m+1

m+1 -1 +azc4x— ,

m

u, = Cix™ '+ a1 Cox™ ! + Cyx™

vp = —Crx™ !+ b1 Cox™ !+ C3x T 4 by Gy (7.13)
Here C;, j = 1,2,3,4 are arbitrate constants,
a; =2y/(6m)—1, ap=2y/(6m)+1, by =2/(6m)+1, by=1-2/(6m).

From Egs. (7.11) and (7.13) we obtain the following formulas
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Ty, = 2Cyy(m— Dx™=2 =2Cyy(m+ 1)(m—2)m~' x™
— 2y(m+ 1)C3x™"2 = 2Cyy(m—1)(m+2)m~' x™™,

(7.14)
Sy, =-2Cry(m— Dx™=2 4+ 2Cyy(m+ 1)x™ = 2y(m+ 1)C3x "2
- 2Cqy(m—1)x7.
On the free edge of the plate x = 1+
T, =S, =0. (7.15)

Substitution solutions (7.13) and (7.14) into conditions (7.9) and into boundary
conditions (7.15) leads to equations
Ci+aiCr+Cs+arCs =w(s;), —C1+b1Cr+Cs+bryCy =vP(sy),
(m—1D[mB™Cy — (m+2)BCs] - (m+ D[(m—-2)B""'C, +mC3] =0, (7.16)
(m=1)(B"C1 +BCa) = (m+ 1B C = C3) =0,
where 8 = (1 +b)>.

Determine the expressions for the arbitrary constants Cy from Egs. (7.16) and
substitute them into formulas (7.14). Then we obtain

Sp(1) = =2y5[(By +mB)wD(s;) + (Dy + mDo)v(s;)]/D,

, . (7.17)
Tip(1) = =2y5[(mBy + Bo)w'D(s;) + (mDy + Do)y (s;)] /D

with
By = B(B*™ - 1)—-2mb(b+2)B™,
By = B(B™+ 1) —4B™ —5B(B™ — 1)* +5m*b*(b+2)* B™,
Dy = yB(B™ = 1)? +5m*b*(b+2)*B™, (7.18)
Dy = B(B>™ — 1) +2mb(b+2)8™,
D = y[4B™ +5B(B™ - 1)*] +6[B(B™ + 1)* + Sm*b* (b +2)* ™).
From formulas (7.10) and (7.17) we get two following continuity conditions for
solutions of shell’s equations
SO — 8D = _2ay8[(B) + mBy)w) + (D + mDy))v®]/(hD),

(@) (i+1) _ (@) (@) _ (7.19)
Q)" -0, ' =-"2ayd[(mBy + Bo))w'") +(mDy + Do)v\"]/(hD), s =s;.
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7.4 Asymptotic Solution Corresponding Vibrations of the First
Type

For the low-frequency vibrations the first type vibration mode of cylindrical shell
stiffened by annular plates is similar to the vibration mode of the non-stiffened shell.
In both cases the circumferential wave number m is large. We seek approximate
solution of eigenvalue problem (7.1), (7.6)-(7.8) and (7.19) as a sum of the semi-
membrane solution and the edge effect functions (Filippov, 2004):

Y& = oy L hO) (0 4 VB k= 1,2, 1 (7.20)

Here y denotes any unknown function, /(y) and /;(y) are the intensity indices. Table
7.1 lists values of the intensity indices for the problem under consideration

The function v(()k) satisfy the semi-membrane equation
d4v(k)
et =0, (7.21)
where 4 4s
ot = /lm——,um’ (7.22)
o
and
(k) 2,,(k) 3.,(K)
SOk Mo T w4V (723)
0 0> Yo ds ° 10 ds2 =~ 0 ds3

The edge effect functions have the form
2 4
k AK) & k AK) A
W=D exp(ri(s —si-)/p), 35 = DT DO5 explri(s—si)/u]. (7.24)
j=1 j=3
Here D i ~ 1 are arbitrary constants,

ra=g(-1+i), ra=gl=i), g=oc*/V2, #=-1.

Table 7.1
Intensity indices for the vibration mode of the first type

Functions

Indices | u® | v® [ Wk | gk | 78 | g | a8 o)

Io 2 | 4 0 0 2| 3 6 6
I 4| 5| 2 0 4 | 3 6 4
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In particular, w; = 1, j = 1,2,3,4. The functions ygk) and yék) decrease rapidly at
increase in s from sx_; up to s; and at reduction from s up to sx_1, correspondingly.
Assume that s; —sr_1 > u, for k =1,2,...,n+ 1. Then

k+1
y

yik)(sk) <1, )(sk) <1

and in the first approximation
Yy = mlo(y)y(()k) +mh <y)y§k), Yyt = m’o(y)y(()k“) + mll(y)y§k+1), s =sk. (7.25)

Boundary conditions for Egs. (7.21) can be determine after a separation of the
boundary conditions on main and additional conditions (Tovstik and Smirnov, 2001).
From the main conditions by neglecting of small terms we obtain boundary condi-
tions for Eqgs. (7.21).

Let 4 be the difference between maximal intensity indices of semi-membrane
solutions and the edge effect functions. Then

1. For the main boundary conditions the value 4 must be strict more, than for the
additional boundary conditions.

2. The semi-membrane solutions included in the main boundary conditions and
the edge effect solutions included in the additional boundary conditions must be
independent.

In order to satisfy condition 1 and 2, as a rule, it is necessary to use linear combina-
tions of boundary conditions.
At the edge s =0

V= m_lvo +m_5v2 =0, w=wy +m_2w2 =0,
T, = m_leo +m_4T12 =0, M, = m_é(Mlo + M) =0, (7.26)
Adiy=4, Ar=2, A3=2, A4=0,

where A corresponds to k-th equation (7.26). It is impossible to separate boundary
conditions (7.26) on main and additional conditions so that the condition 1 has been
fulfilled. However, for linear combinations of first and second conditions mv +w =0,
taking into account that vy + wg = 0, we have 4 = 0. Therefore main and additional
conditions are v =77 = 0 and w + mv = M| = 0. The boundary conditions for Eq.
(7.26) at the edges s = 0 and s = [ have the form vo =719 =0 or

gy = C0 ety P
VO (0) = F(O) = 0, VO (l) = 7(1) =0. (727)
7.5 Main Continuity Conditions

For s = s, main and additional conditions are conditions (7.7) and (7.8). It follows
from (7.7) three continuity conditions for Egs. (7.21):
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v(()k) = v(()kH), v(()k)/ = v(()kH)l, v(()k)” = v(()k+1)”, s=sr, k=12,...,n. (7.28)
To obtain the fourth main condition we exclude the edge effect functions
k) _ Ak | AK)Y (k1) _ AR+ | AR+
=D;"+D, ", w, =Dy '+Dy
ﬁ;k) = —gK_l(rgﬁgk) +r ﬁ(k)) ﬁ(kH) = —gK_l(rlﬁng) +rzlA)gk+l))
MY;) = —g2K2(r32D(3k) +r4D<k)) M(kH) = 2K2(r2ﬁ(k+]) +r22ﬁ;k+l)),
k k k k e+l k+1 Ak+1 Ak+1
Sg):Q(lz):_gSK(rng) jD( )) S(+) Q(+) 3K(FI3D5+)+7'23D(2+))

from relations (7.19). Here K = um?.
Taking into account that

wi) = w98 =g ) = D = k= 1,2,00m (729

after substituting solutions (7.20) into first and third conditions (7.8) we obtain
D] + ﬁz = 153 + D4, r12ﬁ§k+l) + VZZDgH—l) =13 D3 +r; D4, (7.30)

where
By =D%D, Dy=p*D Py =P, py=DP.

It follows from relation (7.30) and equalities

that
Dy =D, D,=Da. (7.31)

Substituting solutions (7.20) into second conditions (7.8) leads to the relation
”1[)1 +I”2[)2 = 73[53 + r4lA)4

which may written as
C 1+ Cz =0,

where
él = Dl +IA)2, éz = l,jl —ibg.
Finally, we substitute solutions (7.20) into conditions (7.19) using formulas
S8 s = %) oWtV 223K (13 Dy + 13 D) =48 K (Cy - C2) =8g°K C,
and after neglecting of small terms obtain the approximate continuity conditions:

A (8g3Kél + S(()k) - S(()k+1)) = m(mBz - Dz)v(()k) - Bzé],

(S(k) S(k”)) mA(Dy —mBy W +mB Gy, A= (7.32)

2am?ys’
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The linear combination of boundary conditions (7.32), which do not contains the
arbitrary constant C| is the fourth continuity conditions for Egs. (7.21):

SO sk o 0, 5=, (7.33)

where

8m?g>AK(mB) — D) +m*(B; D, — B, D)
c= .
A(8g3AK+mB] + Bg)
The parameter ¢ defines the tangential stiffness of the plate in plane.

It follows from formula (7.22) that the frequency parameter corresponding to the
first type of vibrations is

(7.34)

4
A0 (m,n) = %im) +ptm, (1.35)
m

Here at(m), n = 1,2,... are the eigenvalues for which the eigenvalue problem for Eqs.
(7.21) with boundary conditions (7.27), (7.28) and (7.33) has non-trivial solutions.
This eigenvalue problem also describe the flexural vibrations of the simply supported
beam, stiffened by » identical springs of stiffness c at the points s = s.

The solutions of Egs. (7.21) can be represented in the form Timoshenko (1955)

v(()k) = ArS(zk) + BiV(zi) + CU(zk) + DT (zk), 2k = s — sk-1),
Sk—1 <8s<sr, k=12,....n+1, s0=0, 5,41=1, (7.36)

where

S(z) =coshz+cosz, T(z)=sinhz+singz,
U(x) =coshx—cosx, V(x)=sinhx-—sinux, (7.37)

Ak, Bk, Cr and Dy are arbitrary constants. Substituting (7.36) into boundary con-
ditions (7.27), (7.28) and (7.33), we obtain 4(n + 1) linear homogeneous algebraic
equations in 4n + 1 unknowns Ay, By, Ci, and Dy. These equations have nontrivial
solutions if its characteristic determinant G(«) is equal to zero:

G(a)=0. (7.38)

The roots of Eq. (7.38) are eigenvalues of the problem (7.21), (7.27), (7.28) and
(7.33).
Consider the narrow plate for which

pm* < 1.

Substituting the approximate relation

2m(2m —1)b? s 2m(2m —1)(2m —2)b3

"= (1+b)*™ ~1+2mb
B (1+0b) +2mb+ > G
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into formulas (7.18) and neglecting of small terms, we obtain

By ~4mb®> +8m’b*/3, D ~4m*b?,
By ~8b+4m*b>, D, ~8mb, D =~4. (7.39)

If we substitute formulas (7.39) into relation (7.34) then we obtain

om?® e*F om?F
~cp=—|J+ , d=———, 7.40
s h( 1+d) 8hg K (7.40)
where
S
12

is the dimensionless moment of inertia of the plate’s cross-section with respect to

the generatrix of the cylinder,
b

e =—

2

is the distance the centre of mass of the plate’s cross-section from the shell’s neutral
surface,
F=ab

is cross-section area of the plate. The condition
S —SED Loy =0, 5=, (7.41)

is the main continuity condition for a cylindrical shell stiffened by a beam of the
rectangular cross-section (Filippov, 1999). It means, that for the narrow annular plate
one can use beam’s model.

For the wide plate, when

bm>1,
using the approximate relations
h(1+
A=A0ﬁ2m+1’ AO: ( )/)’ Bl =D2=ﬁ2m+1’ Bzle :,)/BZI’I’H-I7
2am?y

we obtain
m*(8g°mK Ay +1—-v?)
c=cp= 3
Ap(8g°KAy+m)
The stiffness ¢, do not depends on the width of the ring b, since the stress-strain

state of the plate is localized near its inner boundary, which is attached to cylindrical
shell Filippov (2006a).
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7.6 Example 1

Consider the freely supported cylindrical shell of the length [ stiffened by the annular
plate at the parallel s; = 1/2. Then Eq. (7.38) has the same roots as the following two
equations

tanhz —tanz = 3223 /c, sinz=0, z=al/2. (7.42)

The roots of second Eq. (7.42) do not depend on the stiffness c. If we denote by z;
and z, the minimal positive roots of the first and second equations, then

n/2 < z1 <3.927,  =7.

Assume that [ =4, the thicknesses of the shell and the plate 7 = a = 0.01, the Poisson’s
ratio of the materials is v = 0.3 and find the lowest frequency parameters

/1§1) = min A" (m, n)
m,n

for the various plate’s width b.
First we calculate c(m) by means of formula (7.34), then the root z;(m) of Eq.
(7.42). Consider b < 0.2. Then z; < z2 and

8ozt (m
AV = min (¢ + /14m4) . (7.43)
m 14

The function in relation (7.43) attains its minimum at m = 4. The results are shown
in Fig. 7.2 (curve 1), where
AV =10,

()

Curve 2 plots the values A}/

(7.40)).

While the plate is sufficiently narrow, the using of the beam’s model gives good
results, which differ a little from the results obtained on the basis of plate’s model.
However, for sufficiently large b the frequency parameter Aj, is larger than A;

which are found using beam’s model when ¢ = ¢}, (see

a
6.0
55
50 ¢
45 1
4.0

3.5

Fig. 7.2 Frequency parameter b
A(ll) vs. the plate’s width b
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because the beam’s stiffness cj, is larger than the plate’s stiffness c¢. The values c¢;,
and ¢ for m = 4 and various b are shown in Fig. 7.3

7.7 Vibration of the Second Type

The vibration modes of the second type correspond to low frequencies and is local-
ized on the surface of the plate. The cylindrical shell itself does not actually deform.
Let us seek the approximate solution of system (7.1) as a sum of the membrane
solutions and the edge effect functions:
k k k

y0 = o0y 0 4 I 1 ), k=23, 0,

y = 'ulo(y)y(()l) + o)+ y§1> + o) yél), (7.44)

YD = 0Oy L BO) D)y B )

The functions ug, vo, T1o and Sy satisfy the membrane equations:
T{y+mSo=0, S;=0, 2So=(-v)(vyg—mug), Tio=0cu. (7.45)

The membrane equations (7.45) are derived from Eqgs. (7.1) assuming u = 0 and
neglecting the small terms Au, Av and Aw. The edge effect functions y; and y, have
the form (7.24). The intensity indices are given in Table 7.2.

We suppose that
100 [
80
60 Ch
40 [
201 ¢
Fig. 7.3 Plate’s stiffness ¢
and beam’s stiffness ¢, vs. the : : 1
plate’s width b 0 05 0.10 0.15 0.20

Table 7.2
Intensity indices for the vibration mode of the second type

Functions

Indices | u® | v® [ W | gk | 78 | gl a8 o)

Io 3 3 3 3 3 3 7 7
L 3 4 2 1 4 3 4 3




136 Sergei B. Filippov
wp ~Op~ 1, Mip~Q0ip~pt up~vy,~Tip~S,~ . (7.46)

After the substitution the solutions (7.44) and (7.46) into Egs. (7.1)-(7.3), continuity
conditions (7.4) and boundary conditions (7.5)-(7.6) the eigenvalue problem (7.1)-
(7.6) in the first approximation can be split into the following five separated problems:

1. The eigenvalue problem for Egs. (7.2), describing the transverse flexural defor-
mation of the plate with the boundary conditions

w,=91p=0, x=1, M, =01,=0, x=1+b. (7.47)
2. The linear algebraic equations

wi(s0) =w D (s0), AIME (s1) = MV (sl =adip (1), k=1,2,...n. (7.48)
for the unknown constants lA)gk) , lA)ik) , lA)(lkH) and lA)ng). The solution of these
equations allows us to obtain the edge effect functions near the parallel s = s.

3. Non-homogeneous boundary value problem for membrane shell equations (7.45)
with the boundary conditions

1(0) = vo(0) = uo(1) = vo(1) = 0, T (s) = T4 (s),
h[Sék)(Sk)+S§k)(Sk)—Sék”)(sk) + Sf"“)(sk)] =aS,(1), k=1,2,...,n.(7.49)

4. The linear algebraic equations
w0) = w0, 900 = 0, w0y = w0y, 9 =0, (7.50)

for the unknown constants Dgl), Dgl) and Dg"”), ﬁf‘"“).
5. Non-homogeneous boundary value problem for plate equations (7.3) with the
boundary conditions at x =1 and x+ 1+ b

vp(1) = v (s1) = Vs, aTip(1) = QW (s1) -0V (s0)],  Tip =S, =0.

Thus, the approximate solution of the the eigenvalue problem (7.1)-(7.6) is reduced
to the solution of five more simple problems. First we have to solve the eigenvalue
problem 1 for the flexural plate’s deformation. Then, solution of Eqs. (7.48) allows
us to obtain the edge effect functions near the parallel s = s;. Further we get the
solution of the membrane problem 3, using boundary conditions (7.49) and find by
means of equations (7.50) the edge effect integrals near the parallels s =0 and s = [.
Finally it is possible to solve the boundary value problem 5, describing tangential
displacements of the plate.

We consider only the problem 1, since after its solution we find frequency pa-
rameter A and main part of the vibration mode. The displacements of the cylindrical
shell and the tangential displacement of the plate are very small in comparison with
the transverse plate deflections (see relation (7.46) and Table 7.2).
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7.8 Flexural Vibrations of the Plate

Equations (7.2) describing free flexural vibrations of an annular plate can be reduced
to the following equation

A
APw-pw=0, p*=", (7.51)
Hp
where
ld( d\ m
=——|x—|-—.
xdx\"dx] x2
The exact solution of Eq. (7.51) has the form (Filippov and Kolyada, 2013)
w = C1Ipm(Bx) + G Y (Bx) + G hn(Bx) + Cs K (Bx), (7.52)

where C; (j = 1,2,3,4) are the arbitrary constants, J;,, ¥, are the Bessel functions and
I, K, are the modified Bessel functions. Solution (7.52) must satisfy the boundary
conditions (7.47).

We can obtain a simple approximate solution of the problem 1 in the case b <« 1.
Let us suppose that the circumferential wave number m ~ 1. In this case replacing
variable x = 1+ b¢ in Eq. (7.51), boundary conditions (7.47) and neglecting small
terms leads to the boundary-value problem

‘% yw=0, (7.53)
w(0) =w’(0) =w”(1)=w""(1) =0, (7.54)
where .
vy=bB, w'= TR
The solution of Eq. (7.53) has the form
w=C1S(yxi) +CoT(yxi)+ C3U(yxi)+ C4V(yxi), (7.55)

where C; are arbitrary constants and the function T, S, U, V are determined by
relations (7.37). Substituting solution (7.55) into boundary conditions (7.54), we get
system of linear homogeneous algebraic equations in unknowns C;. By setting to
zero the characteristic determinant of this system we obtain the equation

coshycosy = 1. (7.56)

The positive roots yx of Eq. (7.56) are eigenvalues of the problem (7.53), (7.54). The
minimal eigenvalue is y; = 1.875. It follows from the second formula (7.51) that the
approximate value of a frequency parameter is
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2.4
@ _ 4%k
= N k:1,2, 757
k 12b% (7.5
Formula (7.57) shows that the frequency parameters /122) for the second type of
vibrations goes up as the width of plate b increases.

7.9 Example 2

Consider the vibrations of the cylindrical shell stiffened by the annular plate, as-
suming that parameter of this structure are the same as in (7.6). The dependencies
of
(k) _ 103,
A7 =104

for k = 1,2 on the plate width b, is shown in Fig. 7.4.
To the fundamental frequency f; correspond the frequency paramer

. 1 2
A1 = min(2!",2?).

At increase of the plate’s width A and f; first increases and then decreases.

7.10 Conclusions

The application of asymptotic methods to the analysis of low-frequency vibrations
of a cylindrical shell joined with annular plates permits to obtain simple approximate
formulas for evaluation of frequencies and vibration modes. The different approaches
were used for narrow and wide plates. If the plates are narrow then circumferential
wave number m is large and frequencies increase with the width of plates b. For
the wide plates frequencies in the first approximation do not depend on m and they
decrease when b increases. In the both cases the solutions of shell equations were
represented as a sum of slowly varying functions and edge effect integrals.

— N W kA N 2

Fig. 7.4 Frequency parameter 0
Ay vs. plate’s width b
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As an example the vibrations of the shell stiffened by one plate are considered.
For sufficiently large number of plates to the approximate calculation of frequencies
the homogenization procedure may be used.
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Chapter 8

Free Vibrations of an Open Non-circular
Cylindrical Shell of Variable Thickness

Alexander Ya. Grigorenko, Maksym Yu. Borysenko, Olena V. Boychuk,
and Larisa Ya. Vasil’eva

Abstract The natural frequencies and the corresponding vibration modes of open
cylindrical shells with an elliptical cross-section and variable thickness are analyzed.
Variations in the cutting of the shell along both the minor and major axes are
allowed and various boundary conditions are considered. The numerical solutions
are obtained using the finite element package FEMAP with the NASTRAN solver.
A number of low-frequency vibrations are investigated in terms of their dependence
on the cutting angle along major and minor axes of the shell.

Key words: Free vibrations - Open non-circular cylindrical shell - elliptical cross-
section - variable thickness - FEM

8.1 Introduction

In different industries cylindrical shells of non-circular cross-section of constant
and variable thicknesses are widely used. These can have both a closed and an
open contour with different variations in the boundary conditions. In this regard it
is necessary to have information about their dynamic characteristics, in particular,
about the frequencies and forms of natural vibrations, since under real operating
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conditions, it is necessary to avoid resonance patterns that cause structural damage.
A theoretical study of this class of problems is associated with significant difficulties
due to the complexity of the system of initial partial differential equations with
variable coefficients and the need to satisfy boundary conditions. The solution to the
problem of determining the natural frequencies in the framework of the theory of
thin shells is possible for objects of simple geometric shape (Arnold and Warburton,
1953; Baron and Bleich, 1954; Greenspon, 1959; Grigorenko et al, 2017; Grigorenko
and Rozhok, 2004; Leissa, 1973; Markus, 1988; Stricklin et al, 1971).

Experimental methods are also used to solve the problem of determining the
frequencies and forms of natural vibrations, for example, the non-contact method
of strobe-holographic interferometry (Budak et al, 2014; Grigorenko et al, 2013),
which not only gives a real picture of the behavior of mechanical structures under the
influence of variable loads, but also allows us to estimate the applicability limits of
those or other theoretical models (Budak et al, 2014). A feature of this method is the
need to manufacture a real object of study, to qualitatively implement the boundary
conditions and the experiment itself, which in turn leads to significant costs in time
and financial resources. Note that this experimental method can be applied not only
to two-dimensional, but also to three-dimensional dynamics problems (Grigorenko
et al, 2018).

In cases of a complex geometric shape —a closed shell of an elliptical cross section
with variations in shell thickness, for example — it is advisable to use the finite element
method (FEM) (Budak et al, 2017, 2016; Grigorenko et al, 2018), which gives good
convergence with the experimental results (Grigorenko et al, 2018), thus confirming
the accuracy of its application. Moreover, this numerical method does not require
large expenditures of time and money.

In the literature, study of the dynamics of open shells is not given as much
attention as the study of closed shells. Consider a few of these publications.

In Suzuki and Leissa (1986) an exact solution procedure is developed for determin-
ing the free vibration frequencies and mode shapes of open non-circular cylindrical
shells with varying thickness along the cross-section and opposite curved two edges.
The method is demonstrated for shells having elliptical cylindrical curvature and
a thickness which varies quadratically in the circumferential direction, and straight
edges which are fixed. For this symmetric configuration, vibration modes separate
into symmetric and antisymmetric classes, and the exact frequencies are the roots
of fourth order determinants. Numerical results are given showing the variations of
frequencies and mode shapes of both symmetry classes with the shell length.

In Xiong-liang et al (2016) is concerned with the free vibration analysis of open
circular cylindrical shells with either the two straight edges or the two curved edges
simply supported and the remaining two edges supported by arbitrary classical
boundary conditions. Based on the Donnell — Mushtari — Vlasov thin shell theory,
an analytical solution of the traveling wave form along the simply supported edges
and the modal wave form along the remaining two edges is obtained. The exact
solutions for natural frequencies of the open circular cylindrical shell are obtained
with the employment of a golden section search algorithm. The calculation results
are compared with those obtained by the finite element method and the methods in
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the available literature. The influence of length, thickness, radius, included angle,
and the boundary conditions of the open circular cylindrical shell on the natural
frequencies is investigated.

In Lekomtsev (2012), in the framework of two finite element realizations, the
authors studied the natural vibrations of thin-walled open shells of circular cross
section with different boundary conditions and with different cutting angles. In the
considered range of variation of the cutting angle, an increase in all vibration fre-
quencies is observed. This dependence is nonmonotonic. Typically, it is a significant
increase in frequencies with an cutting angle ¢ € (60°;90°). One of the problems
solved in In Lekomtsev (2012) was taken as a test case in this paper.

This article concerns the numerical determination of the dynamic characteristics
of an open cylindrical shell of an elliptical cross section of variable thickness with
variations of the shell cutting - along both the minor and major axes, as well as with
two variations for rigid fixes at the ends.

8.2 Basic FEM Relations for Natural Vibrations Problems

Dynamic equations for FEM can be obtained from the system of Lagrange equations
of the second kind with n degrees of freedom:

d (0T oT
—|—]-|—1=0;,i=12,...,n. 8.1
d’(a/li) (‘9/11') Qi ! ®-D

Using the discrete form of the kinetic energy functional
| I
Tr= E{ﬁ}i MA{A}, (8.2)

The Lagrange equations (8.1) for the shell with its finite element approximation,
taking into account the absence of external forces (Q = 0) and damping, can be
rewritten in the form:

[M]{A} +[K]{} = {0}, (8.3)

where [M] is the mass matrix of the structure; [K] is stiffness matrix; and {1} is the
vector of nodal displacements.
Equation (8.3) has a solution in the form

{4} = {A}cos(wt + B), (8.4)

where { A} is the vector of amplitude values of nodal displacements, which determine
the form of natural vibrations; w is cyclic frequency; and S is the initial phase of the
oscillations cos (wf + ). Substituting (8.4) into (8.1) and cancelling, we obtain this
system of algebraic equations:
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(~w? M1+1K1) (4} = (0}. 8.5)

In this system, nonzero component values {A} are possible only under the condition
det ([K] —w? [M]) - {0}. (8.6)

If the square matrices [M] and [K] are positively defined, then the characteristic
equations (8.6) have N positive solutions — natural frequencies wg, and pair values
are possible (N is the number of unknowns in the system of algebraic equations
(8.5)). N values of natural frequencies wy allows the solution of system (8.5) to be
represented as a linear combination of N expressions (8.4):

N
{4} = D {Ax}cos (it + ), (8.7)
k=1

Each value wy corresponds to a certain ratio between the amplitudes Ag;, that
is, all the amplitudes of the vector can be expressed through one of them. The
relations between the amplitudes Ay, determine the kth natural mode of vibration.
All degrees of freedom in the process of oscillations with their own frequency wy
make synchronous movement. Thus, the configuration of the structure does not
change its basic form, but only the amplitudes change. Since the values of the
components of the natural vectors {A;} can be determined only up to a constant
factor, they should be normalized as follows:

(AT [M]{A} =1 (8.8)

8.3 Solution to the Test Problem

To verify the reliability of the chosen methodology for studying the dynamic charac-
teristics of an open cylindrical shell, a test problem was solved and the results were
compared with the results of [13].

Using FEMAP, we constructed the geometry of two cylindrical open shells of
circular cross section with the radius of the midsurface R = 77.25 mm, the ratio of
height to radius L/R = 2.99, thickness d = 1.5 mm, cutting angle ¢ = 30°, ¢ = 45°,
and ¢ = 60°, physico-mechanical characteristics: Young’s modulus E = 205 GPa,
Poisson’s ratio v = 0.30, and density p = 7800 kg/m>. The shells were fixed at two
ends with different fixing variations: Fis a free edge u # v #w # ¢ # ¢, # ¢, #0;
Cis arigid fastening u =v=w = ¢, = ¢, = ¢, =0.

The results of the test problem, namely the first ten frequencies of natural vibra-
tions for two options for cutting the shell with two types of fastening, are obtained
using FEMAP solid elements, as well as results by another author, are presented in
Tables 8.1 and 8.2, where ¢ is the deviation between the calculations. Analyzing the
obtained results of the test problem, one can observe a small deviation between the
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Table 8.1
Free vibration frequencies of an open circular cylindrical shell with an cutting angle ¢, and boundary
conditions C-F (own calculations compared with Lekomtsev, 2012)

f,Hz
No. @ =30° @ =450 ¢ =60°
Lekomtsev FEMAP &, % Lekomtsev FEMAP &, % Lekomtsev FEMAP &, %

1 256.77 259.61 1.1 259.34 25799 0.5 25223 24426 32
2 261.90 264.78 1.1 260.53 259.18 0.5 267.34 260.01 2.7
3 591.20 599.14 1.3 608.43 611.64 0.5 588.18 569.26 3.2
4 665.87 676.80 1.6 640.49 64325 04 683.98 675.06 1.3
5 72448 72744 04 726.19 71840 1.1 726.83 698.18 3.9
6 732.29 737.78 0.7 729.67 720.58 1.2 740.19 72532 2.0
7 749.48 755.18 0.8 818.26 821.25 04 856.84 81142 5.3
8 907.77 931.72 2.6 994.47 997.72 0.3  1012.87 1028.89 1.6
9 114272 114648 0.3 111736 1121.51 0.4  1318.40 1259.12 4.5
0

1 1199.38 122327 2.0  1320.68 1300.85 1.5 1319.38 1260.01 4.5

Table 8.2
Free vibration frequencies of an open circular cylindrical shell with an cutting angle ¢, and boundary
conditions C-C (own calculations compared with Lekomtsev, 2012)

f,Hz
No. @ =30° @ =450 ¢ =60°
Lekomtsev FEMAP &, % Lekomtsev FEMAP &, % Lekomtsev FEMAP &, %

1 651.02 652.35 0.2 652.81 651.17 0.3 651.39 62631 39
2 651.42 652.78 0.2 654.52 651.68 0.4 652.90 627.19 3.9
3 1217.19 121550 0.1  1220.82 121036 0.9  1218.61 1163.12 4.6
4 1217.26 1215.54 0.1 122391 121045 1.1  1219.46 1163.54 4.6
5 1525.10 1536.75 0.8  1537.59 1556.65 1.2 1515.20 1477.19 2.5
6 157098 1587.00 1.0 1557.57 1568.48 0.7 1639.62 1577.09 3.8
7 1693.53 1699.11 0.3  1744.70 176544 1.2 1706.47 1716.06 0.6
8 1784.50 1837.10 2.9 1846.03 1848.11 0.1  1889.38 1792.45 5.1
9 1890.76 1882.44 0.4 189831 187496 1.2 1895.76 1797.72 5.2
0 1891.08 1885.34 0.3 1909.95 1889.94 1.0 2061.30 2045.99 0.7

two finite element implementations proposed by us and Lekomtsev (2012), which
does not exceed 5.5%. The reliability of the results obtained is ensured by using
a sound mathematical model, the correctness of the problem statement, and the
practical convergence of the results obtained using the finite element method.

8.4 Construction of the Calculation Model

Using FEMAP, the geometry of the cylindrical shell of an elliptical cross section
of variable thickness was constructed with the following dimensions: height /& =
120 mm, half-axes of the middle surface are a = 50.810 mm and b = 36.295 mm,
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thickness of the shell along the major axis d, = 3 mm, and along the minor axis
dp = 1.3 mm. Then the shell was cut at a given angle (Fig. 8.1). The material was
set to steel with the characteristics: Young’s modulus £ = 212 GPa, Poisson’s ratio
v =0.30, and density p = 7800 kg/m>. The shell was studied with one and two
ends rigidly fixed. The simulation parameters are selected in accordance with the
characteristics and dimensions of a closed non-circular cylindrical shell of constant
thickness, which was studied for the frequency and shape of free vibrations of the
FEM (Budak et al, 2016).

Since the shell in the cross section has the shape of an ellipse of variable thickness,
it is necessary to consider different ways of its cutting about the major (Fig. 8.1, a)
and minor semiaxes (Fig. 8.1, b), since its strength properties will change depending
on this, and, accordingly, the frequency of free vibrations. In this study, we determine
the dependence of the frequency of free vibrations on the magnitude of the cutting
of the shell, which is determined by the angle of the cutting ¢ in the range from 0°
to 90V in increments of 10°. Since the shells are of variable thickness, it is better to
use a mesh of solid elements (Fig. 8.2).

8.5 Results of Numerical Calculations

The first ten frequencies of free vibrations calculated for a non-circular cylindrical
shell of variable thickness with the cutting about the major semi-axis with one rigidly
fixed end, depending on the cutting angle, are shown in Table 8.3. For comparison,
frequencies for a closed non-circular cylindrical shell of variable thickness are also
given for the corresponding boundary conditions. Table 8.4 shows the first ten
frequencies of free vibrations of a non-circular cylindrical shell of variable thickness
of the cutting about the major semi-axis, fixed at two ends, depending on the angle
of the cutting. The first natural frequency of a closed non-circular cylindrical shell of
variable thickness rigidly fixed at one end is 2.2 times greater than the corresponding

a) b)

Fig. 8.1. The cross sections of open shells: a) angle of the cutting about the major semiaxis, b)
angle of the cutting about the minor semiaxis
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Fig. 8.2. Finite element models: a) angle of the cutting about the major semiaxis, b) angle of the
cutting about the minor semiaxis

Table 8.3
Frequencies of free vibrations (f,um, Hz) of a shell of variable thickness rigidly fixed at one end,
opened about the major semi-axis

Angle of the cutting about the major semi-axis ¢, degrees
. Cl
No. Closed 50" 10" 20 30 40 50 60 70 80 90

1725 768 674 604 564 558 590 615 660 734 820
1800 781 679 614 587 579 591 655 734 802 844
2128 1520 1495 1531 1472 1465 1523 1564 1534 1561 1715
2225 1712 1629 1533 1615 1623 1587 1586 1653 1759 1888
3238 2003 2047 2035 1835 1700 1677 1666 1671 1762 1924
3718 2386 2325 2054 1869 1818 1742 1803 2070 2464 2536
3796 2636 2395 2271 2118 2055 2265 2647 2987 2802 3063
3948 2763 2467 2277 2541 2887 3095 3007 2992 3093 3274
4398 2799 2706 3014 3459 3288 3097 3012 3032 3099 3294
4446 3298 3622 3892 3628 3291 3363 3247 3179 3877 4551
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frequency of an identical shell with a cut (¢ = 0°) lengthwise along the major axis
and is 1.6 times greater in the case of rigid fastening of two ends.

Comparisons of the dependencies of the first four frequencies of free vibrations
of a non-circular cylindrical shell of variable thickness with one base fixed on the
cutting angle along a major semi-axis are shown in Fig. 8.3, and for the case of fixed
two bases in Fig. 8.4. The first two natural frequencies correspond to the symmetric
and antisymmetric form of vibrations of free edges along the cut. The maximum
value of the first resonant frequency is observed at an cutting angle of 90° along
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Table 8.4
Frequencies of free vibrations (fium, Hz) of a shell of variable thickness rigidly fixed at two ends,
opened about the major semi-axis

Angle of the cutting about the major semi-axis ¢, degrees
No- Closed 557710 20 30 40 50 60 70 80 90

3955 2401 2062 1778 1584 1458 1408 1411 1449 1536 1677
3980 2403 2063 1781 1585 1461 1413 1414 1467 1564 1683
4360 3863 3772 3618 3392 3045 2854 2761 2745 2831 2993
4389 3995 3785 3715 3392 3046 2854 2763 2748 2833 3007
5538 4250 4386 3880 3562 3492 3496 3627 3775 3903 4190
5615 4523 4411 3880 3602 3568 3653 3721 3895 4285 4556
6539 5218 4529 4291 4436 4674 4691 4498 4402 4463 4663
6542 5220 4529 4659 4770 4757 4713 4500 4403 4476 4684
6573 5229 5391 5365 5466 5093 4730 4985 5498 5426 5784
6574 5854 5633 5848 5723 5099 5302 5639 5559 6428 6658
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Fig. 8.3 The first four fre- 2000

quencies of free vibrations of 1800 7
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Fig. 8.4 The first four fre- 4500
quencies of free vibrations 4000 M
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the major semi-axis for the case of rigidly fixed at one end and at 0° for the case of
rigidly fixed at two ends. For a shell fixed at two ends, with an cutting angle of 30°
and higher relative to the major semi-axis, the third and fourth natural frequencies
correspond to vibrations of free edges, and for cutting angles of up to 30°, vibrations
along the contour of the shell predominate. For a shell fixed at one end, there are
discrepancies in the values of the third and fourth natural frequencies up to 13%.
The first ten natural frequencies of the non-circular cylindrical shell of variable
thickness of the cutting along the minor semi-axis with one end rigidly fixed, de-
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pending on the angle of the cutting, are shown in Table 8.5. For comparison, the
frequencies for a closed non-circular cylindrical shell of variable thickness are given
under the corresponding boundary conditions. Table 8.6 shows the first ten natural
frequencies of a non-circular cylindrical shell of variable thickness of the cutting
along the minor semi-axis, fixed at two ends, depending on the angle of the cutting.

The first natural frequency of a closed non-circular cylindrical shell of variable thick-
ness rigidly fixed at one end is 2 times greater than the corresponding frequency of
an identical shell with a cut (¢ = 0°) along the minor axis and is 2.4 times greater in
the case of rigid fastening of two ends.

Comparisons of the dependencies of the first four frequencies of free vibrations
of a non-circular cylindrical shell of variable thickness on the angle of cutting along
the minor semi-axis with one end fixed are shown in Fig. 8.5, and for the case of fixed
two ends in Fig. 8.6. The first two natural frequencies correspond to the symmetric
and anti-symmetric form of vibrations of free edges along the cut. The maximum

Table 8.5
Frequencies of free vibrations (fum, Hz) of a shell of variable thickness rigidly fixed along one end,
opened along the minor semi-axis

Angle of the cutting about the major semi-axis ¢, degrees
No. Closed 50" 7107 20 30 40 50 60 70 80 90

1725 841 912 959 983 990 991 992 927 804 710
1800 849 915 990 1055 1098 1098 1037 994 961 826
2128 1637 1701 1825 1815 1766 1763 1838 1679 1511 1528
2225 1841 1942 1882 2008 2239 2157 1917 2002 2189 2011
3238 1896 2025 2241 2516 2389 2535 2872 2720 2526 2703
3718 1963 2054 2277 2532 2813 3070 2966 3186 3025 2753
3796 2042 2139 2393 2597 2842 3126 3231 3282 3189 2927
3948 2600 2857 2766 2725 3143 3192 3317 3403 3899 4338
4398 3085 2938 3214 3582 3410 3685 4298 4622 4376 4430
4446 3269 3495 3738 3659 4236 4540 4492 4710 4875 4757
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Table 8.6
Frequencies of free vibrations (fium, Hz) of a shell of variable thickness rigidly fixed at two ends,
opened along the minor semi-axis

Angle of the cutting about the major semi-axis ¢, degrees
. Cl
No. Closed 55" 510" 20 30 40 50 60 70 80 90

3955 1679 1826 2028 2264 2513 2714 2821 2833 2628 2365
3980 1680 1826 2030 2267 2517 2746 2877 2835 2736 2436
4360 2997 3201 3517 3929 4143 4125 4100 4227 3959 3904
4389 2997 3201 3518 3929 4181 4282 4405 4252 4533 4343
5538 4023 4087 4076 4082 4450 5038 5493 5773 5356 5167
5615 4130 4097 4155 4196 4451 5046 5557 5811 5640 5275
6539 4338 4650 4893 5045 5335 5588 5571 5853 5733 5391
6542 4561 4749 5080 5591 5781 5839 6567 6080 6540 6569
6573 4658 4931 5367 5961 6352 6634 6653 6661 6635 6788
6574 4671 4935 5370 5963 6647 6684 6727 6834 6934 6931
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value of the first resonant frequency is observed at an cutting angle of 60° relative
to the minor semi-axis for the case of rigidly fixed at one end and at 70 for the case
of rigidly fixed at two ends.

For a shell fixed at two ends, with an angle of cutting of up to 40° along the
minor semi-axis, the third and fourth frequencies correspond to vibrations of free
edges, and for cutting angles of 40° and higher, vibrations along the shell contour
predominate. A comparison of the nature of the dependencies of the first resonant
frequency on the angle of cutting is shown in Fig. 8.7. The influence of the cutting

3000

2300
/ \
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—#— Big Fixed-Free

2}
wl 1300 —— Big Fixed-Fixed
—#— Small Fixed-Free
1000 itk
( _}_q —+— Small Fixed-Fixed
500 s r—F

Fig. 8.7. Comparison of the nature of the dependencies of the first resonant frequency on the angle
of cutting
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angle is greater in the case of fixing two ends. The nature of the dependencies of the
resonant frequency on the angle of cutting along the major semi-axis is opposite that
along the minor semi-axis.

The first four forms of free vibrations of an open cylindrical shell of variable
thickness with different values of the cutting angle along the major or minor axis for
one or two rigidly fixed ends are shown in Figs. 8.8-8.15.

Forml Form2 Form3 Form4

Fig. 8.8. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 0° along the major axis for one fixed ends

¥ ‘ ¥ ‘ ¥
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Fig. 8.9. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 0° along the major axis for two rigidly fixed ends
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Fig. 8.10. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 0° along the minor axis for one rigidly fixed ends
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Fig. 8.11. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 0° along the minor axis for two rigidly fixed ends
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Fig. 8.12. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 90° along the major axis for one rigidly fixed ends
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Fig. 8.13. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 90° along the major axis for two rigidly fixed ends

Forml Form2 Form3 Form4

Fig. 8.14. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 90° along the minor axis for one rigidly fixed ends
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Fig. 8.15. The first four forms of free vibrations of an open cylindrical shell of variable thickness
with a value of the cutting angle ¢ = 90° along the minor axis for two rigidly fixed ends
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8.6 Conclusion

The resonance frequencies of free vibrations of an open cylindrical shell of an
elliptical cross section of variable thickness were calculated for different cutting
angles along the minor and major semiaxes with one and two rigidly fixed end by
the finite element method implemented using the FEMAP software package.

Numerically obtained frequencies and forms of free vibrations of the considered

shell make it possible to draw a number of conclusions:

the first two natural frequencies of a closed non-circular cylindrical shell of
variable thickness rigidly fixed along one end are 2.2-2.3 times greater than the
corresponding frequencies of an identical shell with a cut along the major axis
and 2.1 times with an cutting along the minor axis;

if two ends are fixed the first two natural frequencies of the closed non-circular
cylindrical shell are 1.7 times greater than the corresponding frequencies of the
non-circular cylindrical shell with a cut along the major semi-axis and 2.4 times
with an cutting along the minor semi-axis;

the first two frequencies correspond to the symmetric and antisymmetric form of
vibrations of free edges along the cutting;

the maximum value of the first resonant frequency is observed at an cutting angle
of 0° relative to the large semiaxis for rigid fixe at two ends and at 90° for rigid
fixed at one end;

the maximum value of the first resonant frequency is observed for a shell with
one rigidly fixed end at an cutting angle of 60" relative to the minor axis, for fixed
at two ends at an cutting angle of 70° relative to the minor axis;

for a shell fixed at two ends with an cutting at an angle of 30° and above relative
to the major semi-axis, the third and fourth natural frequencies correspond to
vibrations of free edges, and for cutting at angles of up to 30° vibrations along
the contour of the shell predominate;

for a shell fixed at two ends with an cutting at an angle of up to 40° relative to the
minor semi-axis, the third and fourth frequencies correspond to vibrations of free
edges, and for an cutting at angles of 40° and above, vibrations along the shell
contour predominate;

for a shell with one rigidly fixed end, there are discrepancies in the values of the
third and fourth frequencies up to 45% when the cutting is relative to the minor
axis and up to 13% when the cutting is relative to the major axis;

in the case of two fixed ends, the cutting angle more evenly affects the frequency
distribution;

the nature of the dependencies of the resonant frequency on the cutting with an
angle relative to the major semi-axis are opposite those with an angle relative to
the minor semi-axis.
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Chapter 9

Use of Quadratic Strain Interpolation Functions
in a Mixed Quadrilateral Shell Element

Friedrich Gruttmann and Werner Wagner

Abstract In this paper a robust and effective shell element for the structural analysis
of thin structures is presented. A Hu—Washizu functional with independent displace-
ments, stress resultants and shell strains is the variational basis of the theory. Based
on a previous paper an additional interpolation part with quadratic shape functions
is introduced for the independent shell strains. This leads to a significant improved
convergence behavior especially for unstructured meshes. The expanded element
formulation proves to be insensitive to mesh distortion. Another essential feature
of the quadrilateral element is the robustness in nonlinear applications with large
deformations.

Key words: Reissner—Mindlin shell theory - Hu—Washizu variational principle -
Quadratic strain interpolation functions - High accuracy for coarse meshes - Insen-
sitivity towards mesh distortion

9.1 Introduction

Nonlinear structural analysis of thin structures requires effective and robust element
formulations. Desired properties are high accuracy when using reasonable unstruc-
tured meshes and the possibility of large solution steps.

To bypass the difficulties caused by C'-requirements of the Kirchhoff-Love
theory many of the shell models consider transverse shear deformations within a
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Reissner—-Mindlin theory. Low order elements like quadrilaterals using a standard
displacement interpolation are characterized by locking phenomena and lead to
unacceptable stiff results when reasonable finite element meshes are employed. In
shells two types of locking occur: transverse shear locking in which bending modes
are excluded and nearly all energy is stored in transverse shear terms, and membrane
locking in which bending energy is restrained and energy is stored in membrane
terms.

An effective method to avoid transverse shear locking is based on assumed shear
strain fields first proposed in MacNeal (1978), and subsequently extended among
others in Hughes and Tezduyar (1981); Dvorkin and Bathe (1984). The assumed
strain method has also been applied to approximate the membrane strains, e.g. Choi
and Paik (1996); Koschnick et al (2005); Kulikov and Plotnikova (2010); Ko et al
(2017a,b); Lavrenci¢ and Brank (2019, 2020). The papers show that membrane
locking is relieved.

The basis for assumed strain methods are multi-field variational principles. Espe-
cially for linear elasticity the Hellinger—Reissner functional is adequate as variational
foundation for mixed interpolated elements, e.g. Sze and Chow (1991); Gruttmann
and Wagner (2005); Wisniewski and Turska (2008). In case of a nonlinear material
law a local iteration for the determination of the physical strains is necessary. Hence,
a Hu—Washizu functional with independent displacements, stresses and strains seems
to be more appropriate, e.g. Kulikov and Plotnikova (2002); Wagner and Gruttmann
(2005); Gruttmann and Wagner (2006); Wisniewski and Turska (2009); Wisniewski
etal (2010); Lavrencic¢ and Brank (2019, 2020). Within the so-called enhanced strain
formulation the independent stresses are eliminated from the set of equations using
orthogonality conditions and a two field formulation remains (Simo and Rifai, 1990).
This approach has been successfully applied for shell problems in a multiplicity of
publications.

An important issue within the context of developing a finite shell model is the
number and type of rotation parameters on the element. Mostly general shell theo-
ries exclude explicit dependence of a rotational field about the normal to the shell
surface which leads to a five parameter model (three displacements and two local
rotations). Use of 5 degree—of—freedom frame requires construction of special co-
ordinate systems for the rotational parameters. Considering the so—called drilling
degree-of—freedom leads to a finite element discretization with six nodal parame-
ters. This has some advantages since both displacement and rotation parameters are
associated with a global coordinate frame (e.g . Gruttmann et al, 1992).

The essential features and new aspects of the present formulation are as follows:

e The nonlinear variational formulation is based on a Hu—Washizu functional with
independent displacements, stress resultants and shell strains. The associated
Euler—Lagrange equations are the static and geometric field equations, the con-
stitutive equations and the static boundary conditions. The kinematic relations
account for transverse shear deformations and are valid for finite rotations. The
strain energy is chosen as a quadratic function of the independent shell strains.
Based on our previous publication (Gruttmann and Wagner, 2006) the following
amendments are included.
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o Inthis paper the strain approximation is modified. The first part with 14 parameters
corresponds to the stress interpolation. The second part with a variable number
or parameters is expanded using quadratic shape functions. The functions of the
second part are chosen orthogonal to the constant part of the strains.

e The resulting mixed hybrid quadrilateral element fulfills the membrane and bend-
ing patch test and possesses the correct rank. The element is tested by means of
several nonlinear shell problems. It is shown that the expanded interpolation of
the shell strains with quadratic shape functions relieves membrane locking in an
effective way. It is emphasized that for pure membrane problems below presented
interpolation matrices lead to results which are to soft and thus are not applicable.

9.2 Hu-Washizu Variational Formulation

Let B be the three—dimensional Euclidean space occupied by the shell of thickness
h in the reference configuration. With £ we denote a convected coordinate system
of the body. The coordinate in thickness direction & is bounded by 7~ < &3 < h™,
where h~ and h* are the coordinates of the outer surfaces. In the following the
summation convention is used for repeated indices, where Latin indices range from
1 to 3 and Greek indices range from 1 to 2. Commas denote partial differentiation
with respect to the coordinates £“. The coordinate on the boundary I" = I, UT, of
the initial reference surface Q2 is denoted by s.

The position vectors of the initial and current shell reference surface are denoted as
X(&1,£?) and x(¢1,£2), respectively. Hence, the displacement vector of the reference
surface is defined with u = x—X. A vector field D(¢',£%) with |D(&',£%)| = 1,
associated with the initial configuration, is introduced. The unit director d of the
current configuration is obtained by an orthogonal transformation of the initial vector
D. With x,, -d # 0 shear deformations are accounted for within the Reissner—-Mindlin
theory.

The shell is loaded statically by surface loads p on £ as well as by boundary loads
t and couple loads m on the boundary I',,. The variational formulation is based on
the Hu—Washizu functional

II(v,0,8) = / [W(e)+0 (g4(v)—&)—u'pldA - / (uTt+¢ m)ds — stat. (9.1)

Q F(T

with dA = jdé'dé? and j = |X,; xX,5 |. Here, v = [u,¢]T contains the displacements
u and rotational parameters ¢, as well as & and o~ denote the independent shell strains
and stress resultants, respectively. We assume a strain energy density W(g), which
can be written as a quadratic form W(g) = %sTCs using the constant elasticity matrix
C. The geometric shell strains are organized in the vector

£4(V) = [£11,82,2812,K11, k22,2612, Y1, 72] 9.2)
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where the membrane strains &4, curvatures k,g and transverse shear strains 7y, are
derived from the Green-Lagrangean strain tensor

1
8(1ﬂ = E(Xsa 'X9ﬁ _Xul X,ﬁ)

1
K(lﬁ = E(Xm/ dvﬁ +X»ﬁ 'd%l _X’ﬂ D’B _X’B D’a)

Ya = X0 d—X,o-D.

(9.3)

The work conjugate stress resultants are integrals of the Second Piola—Kirchhoff
stress tensor

122 12 11 22 12 1 29T
0-:[” no,n ,m o ,m,m ,q ’Q] (94)

with membrane forces n® = nf?, bending moments m® = mP? and shear forces
q”.

Introducing 6 := [V,O’,{;‘]T and admissible variations 60 := [V, 60',68]T the station-
ary condition associated with functional (9.1) reads with displacement independent
loads p, t and m

511 = g(0,60) = / (68T (0 W —0) + 60" (4 — &) + 68,0 dA + gex = 0

Q 9.5)

8ext = —/6qudA—/((5qu+(5¢pTrh)ds.
Q Iy

With integration by parts and application of standard arguments of variational cal-
culus one obtains the associated Euler—Lagrange equations. These are the static field
equations, the geometric field equations and the constitutive equations in 2, as well
as the static boundary conditions on I, see Wagner and Gruttmann (2005).

The associated finite element equations are iteratively solved applying Newton’s
method. For this purpose the linearization of the stationary condition (9.5) is derived
with C = 2. W as

L[g(0,50),40] := g(0,60)+ Dg - A0

= Gext + / AdeyodA
e (9.6)
0 o 0 1 0|f4e,
+/ oo Eg—€ |+|1 0-1||4do |;dA
Q | de O0sW -0 0-1 C|| 4de

Finally, the geometric boundary conditions v =V on [, have to be fulfilled as
constraints.
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9.3 Finite Element Equations

The approximation of initial and current geometry of the shell reference surface
applying the isoparametric concept for 4-node elements is specified in detail in
Wagner and Gruttmann (2005); Gruttmann and Wagner (2006). Bilinear functions
Nj(&,n) are used, where for the coordinates of the unit square —1 < {£,17} < 1 holds.
The constant orthonormal element coordinate system is denoted by [t,t;,t3], where
t3 is normal vector of the approximated shell surface at the element center. Hence
the Jacobian matrix J follows from

- [111 112] _

Jo1 J2

Xty Xg o
9.7)

Xha)] ‘t Xh’]] ‘t

The superscript A refers to the finite element approximation of the particular quantity.
Furthermore, commas denote the partial derivative with respect to & or 1. The
matrices

0 70 70 70 0 70
I I alyyJy 500
0_1| 70 y0 70 50 0 50 70 _ [ 711 Y21
T = Tt Iniy altyy Iy = [Jo JO l ©.-8)
12 /22
0 70 70 70 70 0 . 50 50
bJy Iy b Iy iy Ty 1 0y
cause a transformation of contravariant tensor components to the constant element
base system t;. The entries Jg are the components of J evaluated at the element
center. The factors a and b are specified below. Detailed investigations on the use of
ansatz functions for contravariant stress and strain components in the framework of

a Hu—Washizu functional are contained in Wisniewski et al (2010).
The finite element approximation of the vector 66" := [6&),60™",6&"]" reads

ogh B0 0][ov

sl =1 0N, 0 ||o6

seh 0 0 N.||s& 9.9)
50" = Ny6sb.

To avoid transverse shear locking, ansatz functions of the assumed strain method
(Dvorkin and Bathe, 1984) are incorporated in B. For details we refer to Gruttmann
and Wagner (2006).

The matrix N,,- for the interpolation of o and 6" is chosen as follows

150 ON" 0 0
N,={0130 0 N2 0
001, 0 0 N
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(9.10)

where 1,, denotes a unit matrix of order n. The coefficient matrices read T, = T°
witha =2 and b =1 as well as Tg =TO. The constants & and 77 are the coordinates
of the center of gravity of the particular element. For rectangular elements holds
& =17 = 0. The parameter vector 66 contains 8 parameters for the constant part and 6
parameters for the varying part of the stress field. The interpolation of the membrane
forces and bending moments corresponds to the membrane part in Simo et al (1990).
The original approach for plane stress problems was published in Pian and Sumihara
(1984). Regarding requirements on the interpolation functions to fulfill the patch test
and to ensure stability of the discrete system of equations we refer to the discussion
in Wagner and Gruttmann (2005).

The matrix N, for the interpolation of the independent strains &" = N & as well
as 6" = N, 68 is subdivided in two parts

N. = [NLNZ], 9.11)

where & = [£,&,]7, & € R'*,8, € R". The number of parameters n of the second
part is specified below. The submatrices N. and N2 read

1,0 0N 0 0 Lrom,
NL=]01;0 0 N2' 0 NZ= 0 (9.12)
sl
001, 0 0 N| . (I
with
0 n=1 0
N =Nl =T | 0 ¢-¢ N;‘=T2[ ] ©13)
0 0 0 ¢-¢

as well as T = T? with a = 1, b = 2 and T% = T°. Furthermore, j, = j(¢€ = 0,5 = 0)
and
£000&n 0 0|(€-c)p 0 n*¢ 0
M,=[(0n00 0 &n 0 0 (n*=c)é 0 &2 (9.14)
00£n 0 0&y 0 0 0 0

The index n € {0,2,4,6,7,9,11} has the meaning that optionally the first n columns
of M, are taken. With n = 0 only the first part of N, is used. The shape factor

_ maX(Gll,Gzz)+ |G 12| +1Gai
min(G11,G22)  min(Gy1,G22)

(9.15)

considers the deviation of the element form from a square in the first part and the
deviation from a rectangle in the second part. Here,
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G =X¢Xl, Gn=X)X), Gn=Gy=X;X) (9.16)

denote the metric coefficients of the initial reference surface evaluated at the element
center. For a square element holds ¢ = 1. Due to the factor jy/j and the constant
coefficient matrix T in (9.12) the integral of all functions in N2 over the element
domain Q. vanishes, thus the functions are orthogonal to the constant part of the
membrane strains. In contrast to Gruttmann and Wagner (2006) also transformations
of contravariant tensor components are considered in the interpolation matrix N2.
The finite element approximation of the external virtual work of p,t and m leads

to
numel

gélxt == Z SV E
e=1

Here, numel denotes the total number of finite shell elements to discretize the
problem and f¢ corresponds to the element load vector of a standard displacement
method. Furthermore, it holds

numel
/ 68l oM dA = Y 69Tk A,
A =
where K, is specified in detail in Wagner and Gruttmann (2005).

We insert 68" = Ny 60 according to Eq. (9.9) and the corresponding equation
40" =Ny A0 into the linearized variational equation (9.12), which now reads

T

numel | OV fi—fa kg GT 0 AV
L[g(8",66"),46"] = Z 66  |+|G 0 FT| |46 9.17)
=t o8|, || f 0 F H| ||,
with
fi = /BTO'hdA F:—/NZN(,dA
Q. Q.
— T oh T A _ T
fs _/N ghdA+FTe G_/N(TBdA ©9.18)
.Qe Qe
f*= [ NL9;WdA+F& H=/N£CN5dA.
.Qe Qe

The integrals over an element domain Q. of a particular element e are computed
numerically using a 2 X2 Gauss integration scheme. With incorporation of the
quadratic functions in Eq. (9.14) a 3 X 3 Gauss integration is necessary.

Matrix F is expressed with (9.11)
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vl

e

117

&
N2

&

F
N, dA = [ ] (9.19)
| )

The last four columns with quadratic shape functions in (9.14) are not orthogonal to
column 9 and 10 of N according to (9.10) and thus lead to entries in F,. They are
consistently omitted when setting F» = 0 in F, f¢ and f°.

We continue with L[g(6",60"),40"] =0, where 68" # 0 and obtain for each

element )
f' —f¢

ke GT 0 ][ 49 r
G 0 F'||46|+] £ |=]0 (9.20)
0 F H|| 4 fe 0

where r denotes the vector of element nodal forces. Since the stress resultants and
shell strains are interpolated discontinuously across the element boundaries the
parameters 46 and A& can be eliminated from the set of equations. This is done
by application of a standard Gaussian elimination procedure, see Cook et al (1989).
One obtains the tangential element stiffness matrix k., the element residual vector f
and (9.17) reduces to

numel
L[g(@",66"),46"] = Z SVT(KS 49 +1). (9.21)

e=1

The shell elements possess 5 or 6 degrees of freedom (dofs) at the nodes. At nodes
on intersections 6 dofs (3 global displacements and 3 global rotations) and at the
remaining nodes 5 dofs (3 global displacements and 2 local rotations) are present.
The linear element stiffness matrix possesses with six zero eigenvalues the correct
rank. The derived element formulation has been implemented in an extended version
of the general purpose finite element program FEAP (Taylor, 2020).

9.4 Examples

9.4.1 Membrane and Bending Patch Test

A rectangular plate under membrane forces and bending moments according to
MacNeal and Harder (1985) is considered. Both, membrane and bending patch test
are fulfilled for the meaningful parameters n € {0,2,4,6,7,9,11} by the developed
element.
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9.4.2 Hemispherical Shell

The first problem is the hemispherical shell with an 18° cutout subjected to alternating
radial point loads P at its equator, shown in Fig. 9.1a. This geometrically non-linear
example is often cited as a benchmark problem for shell elements and is a test for the
ability to model rigid body modes and inextensible bending (MacNeal and Harder,
1985). Considering symmetry only one quarter of the structure corresponding to the
region ABCD in Fig. 9.1a is discretized using 8 X 8 and 12 x 12 uniform meshes.
Geometrical and material data are chosen with R = 10, ¢ = 18°, thickness & = 0.04
and E = 6.825-107, v = 0.3. We employ the boundary conditions uy =B =0o0n AD,
uy =B =0 on BC and u, = 0 at a point on AB, e.g. at A. Figure 9.2 shows the
load displacement curves for the uniform meshes. The defined converged solution is
obtained using a 128 x 128 uniform mesh. Results are only presented for P —u,4;
similar output can be obtained for P —u,p. In addition, Fig. 9.3 depicts results
for distorted meshes. The principal mesh distortion is described in Fig. 9.1b for a
4 x4 mesh. Here each edge is discretized using the aspect ratios Ly: Lo: L3: .. .:
Ly=1:2:3:...:N. The 12x 12 distorted mesh is illustrated in Fig. 9.1c. As
can be seen in Figs. 9.2 and 9.3, significant improvements can be achieved along
with the quadratic terms in Eq. (9.14) (n = 11), especially for distorted meshes. For
comparison we add results from Ko et al (2017b) using the MITC4+ element.

a)
P
P A
b)
D C
T 3L
L, L
N ¥
i ks
i i
L L,
L 1
A B

Fig. 9.1. Hemispherical shell: a) system and 12 X 12 uniform mesh, b) principal mesh distortion for
4 x4 mesh, c) 12 x 12 distorted mesh
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Fig. 9.2. Hemispherical shell: P —u, 4 for the uniform 8 x 8 (left) and 12 x 12 (right) meshes
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Fig. 9.3. Hemispherical shell: P —u, 4 for the distorted 8 x 8 (left) and 12 x 12 (right) meshes

9.4.3 Cylindrical Shell Segment

In this subsection we examine a cylindrical shell segment, e.g. Bathe et al (1984),
subjected to a uniform bending moment M = My - h* along BC. The shell segment
is fully clamped at DE (Fig. 9.4). Geometrical and material data are chosen to
R =20, L =10, thickness 42 = R/10000, 8 = 30° and E = 2.1 - 100, v =0.

Figure 9.5 depicts load displacement curves for point A and uniform meshes. A
128 x 128 uniform mesh is utilized for the defined converged solution. In addition,
Fig. 9.6 shows results for distorted meshes. Here, the principal mesh distortion is
described in Fig. 9.4b for a 4 x4 mesh. Left and right edge are discretized using the
aspect ratios Lj: Ly: L3: ...: Ly =1:2:3:...: N. A 12 x 12 distorted mesh for
the calculation is presented in Fig. 9.4c in a perspective view. Again, improvements
can be achieved for distorted meshes when using the quadratic terms in Eq. (9.14)
(n = 11). For comparison we add results from the element formulation (Lavrenci¢
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Fig. 9.4. Cylindrical shell segment: a) system and 12 x 12 uniform mesh, b) principal mesh
distortion for 4 X 4 mesh, ¢) 12 x 12 distorted mesh
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Fig. 9.5. Cylindrical shell segment: M —ux and My —u 4 for the uniform 12 X 12 mesh

and Brank, 2020) denoted as +HW. The performance of the MITC4+ element (Ko
et al, 2017b) is similar.

9.4.4 Twisted Beam

Finally, we consider the twisted beam problem shown in Fig. 9.7, originally intro-
duced in MacNeal and Harder (1985). Geometrical and material data are chosen to
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Fig. 9.6. Cylindrical shell segment: My —ux and My —u_ 4 for the distorted 12 x 12 mesh

Fig. 9.7 Twisted beam: sys-
tem and 4 X 24 uniform mesh

L =12,b=1.1, thickness 2 =0.0032 and E = 29- 106, v = 0.22, respectively. The
cantilever beam is clamped at one end and is loaded by an out-of-plane acting load P
at point A. A regular 4 x 24 mesh is selected for the solution. Figure 9.8 depicts the
convergence behavior of the displacements of point A for different parameters n and
results using the MITC4+ element (Ko et al, 2017b). Furthermore mesh distortion is
investigated. The first distorted mesh is shown in Fig. 9.9a together with a flat projec-
tion in Fig. 9.9b, both in a perspective view. A ratio Lyax/Lmin = 2 is chosen, where
Lmax and Ly, denote the longest and shortest element length in the flat projection,
respectively. Figure 9.10 depicts the resulting load displacement curves of point A.
In both cases we define a converged solution by employing a 32 x 192 uniform mesh.
Very good results can be seen, even for n = 0. In addition we investigate a second
distorted mesh, where the distortion is introduced in the opposite direction, see Fig.
9.11. Now, Fig. 9.12 illustrates the load displacement curves of point A with respect
to the choice of n. Again, the quadratic terms in Eq. (9.14) (n = 11) are necessary to
produce accurate results. The associated convergence behavior of displacement uy 4
for the second distorted mesh versus the number of elements N in width direction is
presented in Fig. 9.13. It is obvious that n = 11 leads to a significant improvement
of the element behavior.
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Fig. 9.8. Twisted beam: P —u; 5 and P —uy 4 for the regular 4 X 24 mesh

Fig. 9.9. Twisted beam: distorted 4 X 24 mesh 1, a) perspective view, b) perspective view of the flat

projection
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Fig. 9.10. Twisted beam: P —u; 4 and P —uy 4 for the distorted 4 X 24 mesh 1
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Fig. 9.11 Twisted beam:
distorted 4 x 24 mesh 2, a)
perspective view, b) perspec-
tive view of the flat projection
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Fig. 9.12. Twisted beam: P —u; 5 and P —uy 4 for the distorted 4 X 24 mesh 2
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9.5 Conclusions

Based on a previous paper on a mixed hybrid quadrilateral shell element the interpo-
lation matrix for the membrane strains are expanded by quadratic shape functions.
Thereby membrane locking can be significantly relieved. The shape factor ¢ ac-
cording to Eq. (9.15) has been chosen by numerical tests. The new terms lead to
a considerable improvement of the approximation behavior especially when the
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element form deviates from a square or for distorted elements. Further systematic in-
vestigations using the proposed ansatz, like eigenvalue computations of the element
stiffness matrix, should be topic of future research. For pure membrane problems
the interpolation matrix leads to results which are to soft and thus is not applicable
in the presented form. A well-known feature of present element formulation is the
remarkable robustness in nonlinear applications. It allows very large load steps in
comparison to element formulations based on the displacement method.
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Chapter 10

Development of a Method for Determining One
of the Additional Elastic Moduli of Curvilinear
Rods

Elena A. Ivanova and Valentina A. Timoshenko

Abstract In this paper we suggest a method for determining one of the additional
elastic moduli in curvilinear rod theory. The method is based on the comparison
of the analytical solution of the problem of static curvilinear rod bending with the
numerical solution of the corresponding 3D problem. The method can be used for
rods with any section shape and any microstructure.

Key words: Curvilinear rods - Thin-walled structures - Elastic moduli - Numerical
experiment

10.1 Introduction

The rod model has been known for a long time and is widely used in engeneering
analysis. However, there are still a lot of unsolved problems in the rod theory. An
overview of investigations in modern rod theory can be found in Ghuku and Saha
(2017). The research of statics, dynamics and stability of curvilinear rods is one
of the most significant research directions (Ghuku and Saha, 2016; Sato, 1959;
Tarn and Tseng, 2012; Sugiyama et al, 2006; Shiva Shankar and Vijayarangan, 2006;
Gummadi and Palazotto, 1998; Erkmen and Bradford, 2009; Pippard, 1990; Francois
et al, 2010). It is well known that two approaches are used for the formulation of
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the rod theory equations. They are the asymptotic one Berdichevskii (1981); Rubin
(2000); Tiba and Vodak (2005); Meunier (2008); Jurak and Tambaca (2001) and the
direct one Svetlitsky (2000, 2005); Zhilin (2006, 2007); Altenbach et al (2006, 2012,
2013). If we consider the asymptotic approach, the formulae for the elastic moduli
are obtained during the formulation of the basic equations, and this is an advantage
of the approach. On the other hand, it is evident that if the rod has a complex
configuration or complex internal structure, the use of mentioned approach becomes
quite problematic. For the direct approach, the complexity of the configuration and
internal structure do not influence the formulation of the basic equations, but in
this case the determination of the elastic moduli becomes the separate research. A
method for determining the elastic moduli and in the simpliest cases the elastic moduli
themselves are well known for straight rods. The situation is completely different
with curvilinear rods. In addition to those elastic moduli that straight rods have, there
are several additional elastic moduli in curvilinear rod theory Zhilin (2006, 2007);
Altenbach et al (2006, 2012, 2013). The additional moduli can be neglected if the
rod is thin enough. But the additional elastic moduli can be important in the case of
thick rods. Consequently, the development of a method for their determination is an
important problem. In this paper we suggest the method for determining one of the
additional elastic moduli of curvilinear rods.

10.2 Basic Equations of the Linear Theory of Curvilinear Rods

In this section we consider the basic equations of the linear theory of curvilinear
rods, which has been suggested in Zhilin (2006, 2007) and further developed in
Altenbach et al (2006, 2012, 2013). The model of the curvilinear rod is the directed
curve. Reference configuration is defined by the position vector r(s), where s is the
coordinate along the curve. Further we consider two triples: natural triple t, n, b
and additional triple d, d;, d3. Vectors t, n and b are the unit vectors of tangent,
normal and binormal respectively. The triple of mutually perpendicular unit vectors
d,, d,, d3 associated with the cross-section of the rod. Vector d3 coincides with the
direction of targent vector t, and vectors d;, d, are placed in the cross-section plane
(see Fig. 10.1).
In the linear theory the motion equations are

T + pof = poK1, M’ +txT+pom = pek. (10.1)

Fig. 10.1 The directed curve
and position of the triple
vectors in the cross-section
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Here the prime represents the derivative with respect to the spatial coordinate, the
dot represents the time derivative, T and M are the force and the moment in the
cross-section, pg is the linear density of mass in the reference configuration, f and
m are the external force and the external moment per unit mass, %; and K, are the
linear momentum vector and the angular momentum vector per unit mass.

The kinetic energy per unit mass is

1 1
W:EV-V+V-@1'w+§w-@2'w, (10.2)

where v is the velocity vector, w is the angular velocity vector, @; and @, are the
inertia tensors per unit mass. The tensors @1 and @, are time independent in the linear
theory, but can be dependent on the spartial coordinate. The linear momentum vector
and the angular momentum vector per unit mass are defined as partial derivatives
of the kinetic energy per unit mass with respect to the velocity and angular velocity
vectors respectively:
oK oK
Ki=—=v+0; w, Ky=—=v-01+60,- w. (10.3)
ov ow
The linear density of mass pp and the inertia tensors per unit length po@1, po©2
are

po = /p(”ﬂd‘f’, P00 = —E></p(3)aud?, P02 = /pG)(a-aE—aa)ﬂd?’,
() (9 ()

(10.4)

with {

u=1+—n-a.

R
Here p® is the mass density per unit volume, ¥ is a cross-section area, E is the unit
tensor, R. is the radius of curvature, a is a vector, which connects the centre and

some point of the cross-section (see Fig. 10.1).

The internal energy is the quadratic form of the deformation vectors in the linear

theory:

porU:%8~A-8+8~B-¢+%¢-C~d§. (10.5)

Here U is the internal energy per unit mass, & is the vector of extension-shear
deformation, @ is the vector of bending-twisting deformation, A, B, C are the
elasticity tensors. Tensor A is responsible for extension and transverse shear, tensor
C is responsible for bending and twisting, tensor B characterizes the mutual influence
of the extension-shear deformations and the bending-twisting deformations. If we
consider the straight rod and the natural twisting is absent, the tensor B is equal
to zero. The tensors A, B, C are time independent in the linear theory, but can be
dependent on spartial coordinate. The deformation vectors are

E=u+txy, D=y (10.6)
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where u is the displacement vector, ¥ is the rotation vector. The constitutive equations
have the form

90t gy, M= @0

T 0& 0P

=&-B+C-&. (10.7)

The elasticity tensors have the following structure for curvilinear rods without the
natural twisting:

A= A1d1d1 +A2d2d2 +A3d3d3,
C= C1d1d1 + Czdzdz + C3d3d3,

1
B = = (By3dad3 + B3pdsdy)cosa + (By3d ds + B3dsd; ) sina (10.8)

C

1
+ F(Bldldl + Bzdzdz + B3d3d3),
1

where R; is the radius of torsion, @ is an angle between the vectors d;, d, and the
vectors n, b (see Fig. 10.1). Other scalar coefficients in Eq. (10.8) represent the
elastic moduli. The elastic moduli A and Cy are determined during the experiments
with straight rods. The elastic moduli B;; can be determined during the experiments
with plane curvilinear rods. The elastic moduli By can be determined during the
experiments with spatially curved rods.

We need formulae relating the characteristics of stress-strain state of the rod
and the three-dimensional body for interpretation of the data from physical and
numerical experiments. In the linear theory the force and moment vectors in the
cross-section of the rod are the integral characteristics of stress in cross-section of
the three-dimensional body. The corresponding formulae are generally accepted.
Different authors determine the relationships between the kinematic characteristics
differently. In considered theory for comparison of the kinematic characteristics we
use the assumption that the linear momentum vector and the angular momentum
vector of the rod and the three-dimensional body must be the same. The mentioned
relationships are easily integrated over time, as a result we get the relationship
between the displacement vector, the rotation vector and the integral characteristics
of the displacement vector of three-dimensional body. This way we get the following
relationships:

T=/t-‘rd7:, M=/a><(t-‘r)d7",
(F) (%)
po(u+6;-§) = / PP pdr, (10.9)
()
po(u-61+02-a//)=/p(3)axu(3)ud7".
(F)
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Here 7 is the stress tensor, u® is the displacement vector in the 3D-theory. Eq. (10.9)
form the method of the numerical experiment.

10.3 Formulation and Solution of the Model Problem

The aim of this research is to formulate the model problem, which solution provides
the opportunity of determination of the elastic modulus Bs;. In this section we
discuss the formulation and numerical solution of the model problem within the rod
theory, the formulation of the corresponding problem within the 3D-theory and the
relationships that allow us to compare the solutions of mentioned problems.

We consider the plane curvilinear rod, which has a form of 3/4 of the circle with
the radius R. We also assume that the principal axes of inertia of the cross-section
coincide with the vectors of the natural triple. This way @ = 0, R, = co. It is obviously
that the use of cylindrical coordinate system r, 6, z (see Fig. 10.2) is convenient for
the model problem. The following relationships occur:

s=rf, di=n=-e.,, do=b=k d3=t=ey, R.=-R. (10.10)

We consider the static deformation of the rod. One end of the rod is rigidly fixed
and another end is loaded only by the moment, which deforms the rod without taking
it out the plane. External forces and moments distributed along the length of the rod
are absent. In the rod theory we formulate this problem as

T =0, M+txT=0, E=u+txy, D=y,
T=A-E+B-®&, M=&-B+C- &, (10.11)
ul;—0=0, Yls=0=0, Tls=0=0, Ml =Mk,

where M) is the external moment. Taking into account the structure of the tensors
from Eq. (10.8), we obtain the solution of Eq. (10.11):

u=u,n+ut, ¥ =ypb, (10.12)

where

Fig. 10.2 The natural triple
and the cylindrical coordinate
system
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-1
B2 B

u, = MoR* (G - 32 — (l—cosi),
R2A5 R2A; R

2 B3, B s B3, s
u = MR [y — — L sin= |, (10.13)
R2A3 R R2A3 R
B\
= Mpys|Cr— .
Yy = Mos | C2 R2A3)

From Egs. (10.12), (10.13), it follows that the rod is deformed in the plane and the
solution depends on three elastic moduli. These moduli are the extension elastic
modulus A3, the bending elastic modulus C, and the additional elastic modulus Bs;.
It is important that the solution of the model problem depends on only one unknown
elactic modudus. If the elastic modulus B3, = 0, Eq. (10.13) simplifies and has the
form

. MyR? s
uy, = o (l—cosﬁ),
MyR?
e (i_sini), (10.14)
C R R
Mys
Yy = <

Comparison of the solutions of Eqgs. (10.13) and (10.14) shows that the elastic
modulus B3, has an effect on the solution of the problem and also provides the effect
of the elastic modulus As.

Figure 10.3 illustrates the formulation of the corresponding problem in 3D-theory.
We consider the body, which is 3/4 of the hollow cylinder. The height of the cylinder
is b, the difference between the internal and external raduii is a, the radius of the
midline, i.e. the line passing through the centres of the sections, is equal to the
radius R of the rod. The surface of the cylinder 6 = 0 is rigidly fixed. There is a
distributed load on the surface 8 = 37/2, which causes the resultant force equal to
zero and the resultant moment M. The other cylinder surfaces are free. As a result

YA
b/2
—a/2 d> a |(a/2
s=0 q, e
M
0 —b)2

Fig. 10.3. Boundary conditions and the local coordinate system in the cross-section
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of numerical solution we determine the displacement field u®® in the cylindrical
coordinate system:
u® = ue, +ueq +ulk. (10.15)

Taking into account Egs. (10.4), (10.9) and writing vector a (see Fig. 10.3) as
a=xd; +yd,, (10.16)

we get the following integral relationships between the components of the displace-
ment and rotation vectors in the rod theory and the components of the displacement
vector in the 3D-theory

a b
2 2
E

a b
2 2
1 le -l 3) xz
“’zﬁ(l_lsz) //”6 (l_ﬁ)dmy’ 1017
—ﬂ_L)
1 12Rx
_ ) _x
Vo abR( 12R2) // ( )(1 )dXdy

Thus, if we get the numerical solution of the 3D-problem, we can calculate
components u,, u; and Y, in current cross-section of the rod using Eq. (10.17).
After their substitution into Eq. (10.13), we get three expessions for determining the
elastic modulus Bs;. From the theoretical point of view the value of the modulus
B3, should be independent of the choice of the expression. This value also should
be independent of the cross-section position. However, the elastic modulus Bs;,
depends on the position of the cross-section and the chosen equation in fact. It is
the reason why the choice of the method for determining the elastic modulus Bz is
very important. We choose the method with respect to the less dependency on the
cross-section position.

Uy = —

1
ab

ola
DI

10.4 Method for Determining the Elastic Modulus B3;

In this section we consider three methods for determining the elastic modulus Bj3;.
For better presentation of the difference between the methods for determining the
elastic modulus we perform the calculations for the body, which is not very similar
to the rod. This body has the radius of the midline R = 0,5 m, its cross-section is
the square with the sides length a = b = 0,2 m. We choose the steel with Young’s
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modulus E = 2- 10" N/m? and Poisson’s ratio v = 0.33 as a material. For the chosen
body:

E 2
Ay=Ed®>=8-10°N, A3R*>=2-10° Nm?, C2=1—L; =2.67-10" N. (10.18)

In this section and further all values of the elastic moduli are in the SI. The
external moment equals My = 150000 N-m. The calculations are done with a software
application ABAQUS. We use cubic finite element with the side length 0,005 m.
The investigation of the convergence shows that the numerical solution converges
even for coarse mesh. Decrease of the mesh element length increases the accuracy
of the calculations of the integrals from Eq. (10.17). We use the displacements and
rotation angles from Eq. (10.17) in three cross-sections 8 =37 /4,0 =, § = 57 /4 (it
also is necessary to consider the cross-section 8 = /2 for one calculation series) for
determining the elastic modulus Bs3,. The choice of the cross-sections is explained
by the fact that their positions are quite far from each other and the boundaries (see
Fig. 10.4).

 The first method uses the coeflicient

5 -1
Cy - B3 | B
R2A; R2A; )"
According to Eq. (10.13), there are two ways to calculate the mentioned coeffi-
cient. The first one uses the value of the component u,, in the cross-section s

as ’
BY \ B un(8s)
Cy— —2 1- =2 = o 10.19

( : R2A3) ( R2A; |~ MoR2(1 —cos(s./R)) (10.19)

and the second one uses the value of the difference u, — Ry, in the cross-section
Sy as

Fig.10.4 The position and an-
gles of chosen cross-sections
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(10.20)

-1
Cy— B, L _ B | _ RYp(s) —u(s.)
2T R A, R2A;) ~ MoR2sin(s./R)

The calculation results are presented in Table 10.1. Obviously we cannot calculate
the coefficient using the values u;, — Ry, but the way of calculation using the
values of the component u,, is highly accurate. However, solving Eq. (10.19)
we obtain complex values of the modulus Bs;, the imaginary parts of which are
comparable to the real parts. It means that this method of determining the elastic
modulus Bj; is unacceptable.

e The second method supposes the use of the coefficient

o -1

C 332

2= .
R2A;

According to Eq. (10.13), this coefficient can be calculated in three ways. The
first one uses the value of the component ¥, in the cross-section s, as

2
_ By
R2A;

-1
— lpb(s*)
MORS*,

G (10.21)

the second one uses the value of the component u, in the cross-section with

s, =nmR as
B
( 32 Mt(S*)

= MoR%s,

10.22
RoAs ( )

and the third one uses the value of the sum u,, +u, in the cross-section s, = 7R/2,
i.e. the cross-section, where

s S
1-cos— =sin—,

R R
as

Table 10.1 ]

- B3,
R2A;

Cross-section Using u,, Error, using u,, Using u; — Ry, Error, using u; — Ryp,

2

B,
Coeflicient values | Cy — —-
R2A;

3n/4  3,67-10%  0,90% 4,8-10°% 52,84 9%
s 3,65-1078 0,41% - -
57/4  3,59-1078 1,31% 1,48-1078 52,84%
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(10.23)

-1
B?%Z _ un(s*)+ut(s*)
M()RS* ’

The calculation results are presented in Table 10.2. It is evident that the way
based on the use of the values of the component i, is highly accurate. The value
calculated using the sum u,, +u; corresponds the general tend to decreasing of
the value as the cross-section gets closer to the fixed end. The coefficient value
calculated using the component i, is smaller than other values, and we suppose
it to be questionable.

From the theoretical point of view the elastic modulus Bz, can be positive or
negative. It is clear that the suggested method allows us to determine the absolute
value of modulus Bj3,. In Table 10.3 we present positive values of the modulus
B3;. An analysis of the results shows that the method for determining the elastic
modulus B3, using Eq. (10.21) allows us to obtain the values, which slightly
depend on the choice of the cross-section. Thus this method is acceptable. It has
the only disadvantage that we cannot determine the sign of the elastic modulus
Bs).

The third method uses the values of the coefficient

| B
R2A5 )
According to Eq. (10.13), we can calculate this coefficient in three ways. The first
one consists in the use of the ratio u,, /u, in the cross-section s, as

Table 10.2

Coefficient values

2 -1
Cr_ 32
2T R2A,

Cross-section Using u,, +u, Using u; Using ¢y, Error, using ¢,

/2 3,91-1078 - - -
3n/4 - - 4,08-1078 1,18%
s - 3,76-107% 4,14 -10°8 0, 18%
514 - - 4,17-1078 1,00%
Table 10.3
B2\~
The elastic modulus B3, calculated using | C; — 32
R2A;

Cross-section Using u,, + u, Using u, Using y;, Error, using ¢,

/2 4,67 -107 - - -
3m/4 - - 6,56 -107 5,99%
3 - 1,19-107 7,05 - 107 1,04 %

51/4 - - 7,32:107  4,95%
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1 By _ Up(S) S
R2A3  R[u;(s.)(1—cos(s./R)) +un(s.)sin(s./R)|’

(10.24)

the second one consists in the use of the ratio u, /i, in the cross-section s, as

1— B32 _ Mn(S*)S*
R2A3  R2yp(s.)[1 - cos(s./R)]

(10.25)

and the third one consists in the use of the ratio u, /i, in the cross-section s, as

S [Ryp(s.) — 1y (5.)] 5.
R2A;  R2yp(s.)sin(s./R)

(10.26)

The calculation results are presented in Table 10.4. It is evident that the way based
on the use of the ratio u; /y;, is unacceptable at all. Others demonstrate the same
dependency of the cross-section choice, but give different average values of the
coefficient.

The results of calculation of the elastic modulus are presented in Table 10.5. An
analysis of the results shows the noticeable difference between the values of the
modulus Bs; calculated using the ratio u, /u; and the values calculated using the
ratio u,, /¥y The substitution of the average values into the coefficient

-1
B2
G — 32 )

R2A;

Table 10.4

B
Coefficient values |1 — —22
RZA;

Cross-section Using u,, /u; Error, using u,, /u, Using u,, /¢ Error, using u,, /¥, Using u, /¢y

3n/4 0,981 1,54 % 0,899 2,02 % 1,18
T 0,970 0,47 % 0,883 0,21 % -
Sr/4 0,946 2,01 % 0,860 2,31% 0,36
Table 10.5
B
The elastic modulus B3, calculated using |1 — 32
R2A;

Cross-section Using u,, /u, Error, using u,, /u, Using u,, /¥, Error, using u,, /¢p

3n/4 3,85-107 43,6 % 2,02-108 15,44 %
7 5,91-107 13,4% 2,35-108 1,58%
5r/4 10,7 - 107 56,9 % 2,79 108 17,02 %
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shows that this expression is positive if the modulus Bs; is calculated using the
ratio u, /u;, and the expression is negative if we substitute the values calculated
using the ratio u,, /. Consequently, the way of determining the modulus B3,
using the ratio u,, /i is unacceptable.

Thus the only method for determining the sign of the elastic modulus consists in
determining this modulus using the ratio u, /u;. From Table. 10.5 we see that this
way gives the values dependent on the cross-section choice. However, the average
value B3> =6,82 - 107 is close to the average value B3, =6,98 - 107 which is calculated
using the components ;. The relative difference between them is equal to 2,32 %.

10.5 Discussion

As a result of our study we conclude that considered model problem can be used
for determining the elastic modulus B3, by the numerical experiment. The best of
considered methods for determining this modulus is the method which uses Eq.
(10.21). We can also use the method based on Eq. (10.24) for additional verification
and determining the sign of modulus B3;.

In Zhilin (2007) the author considers the method for determining the elastic
modulus Bj3,, based on the solution of a problem of the deformation of a closed
circular rod under the action of a uniformly distributed radial load. The balance
equations have the form

T + fn=0, M +txT=0. (10.27)

Due to axial symmetry the solution has the following structure:

u = u,n, ¥ =0,
&=&t ® =0, (10.28)
B3>

T = A3E4t, M= —&;b.
R
This model problem is interesting with the fact that the corresponding 3D-problem
allows to find the analytical solution in the case if the height of the cylinder is small
enough to allow us to consider the stress-strain state to be plane. The conparison of
the 1D-problem solution and the 3D-problem solution leads to the simple formula
B3, = (5.

The calculated above value of B3, coincides with B3, = C; in an order of magni-
tude. However, the calculated value is about 2,5 times higher. Taking into account
the specifics of the model problem considered in Zhilin (2007) and the fact that
three-dimensional body used in our study is not very similar to the rod, we can
consider the coincidence of the results as quite good.
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The developed method can be used for determining the elastic modulus Bs, in
the case of curvilinear rods, which have different shapes of the cross-section and the
arbitrarily complex internal structure.
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Chapter 11

Beam Dynamics Using a Generalized Beam
Theory Based on the Solution of a Reference
Beam Problem

Stephan Kugler, Peter A. Fotiu, and Justin Murin

Abstract Mechanical properties of slender, prismatic structures are typically an-
alyzed based on classical beam mechanics (Timoshenko’s shear force bending,
Vlasov’s theory of warping torsion, ... ). There it is assumed that the cross-section
remains rigid in its projection plane and in-plane distortional deformations of the
cross-section are neglected. Such a model is predictive in case of static gradually
distributed loading, and solid cross-sections, however, in case of thin-walled cross-
sections and dynamic loading severe deviations might occur. Therefore, a generalized
beam theory is proposed, where warping fields and accompanied distortional fields
of the cross-section are axially distributed each based on one generalized degree of
freedom. The evaluation of pairs of warping and distortional fields in ascending order
of importance is performed using a specific reference beam problem (RBP), where
three-dimensional elasticity theory is applied in connection with semi-analytical
finite elements (SAFE). Convergence of the resulting formulation is ensured by in-
creasing the number of contributing pairs of warping and distortional fields. The
resulting formulation yields significantly better results compared to classical beam
mechanics especially in the dynamic regime.
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11.1 Introduction, Motivation and State of the Art

Classical beam mechanics (CBM) is frequently applied in engineering practice to
analyze the mechanical properties of slender structures. The main advantages of
CBM are without any claim to completeness the small number of degrees of freedom,
a decoupled analysis of different load cases (axial, shear force bending and warping
torsion), less modeling time due to simple modeling of supports and junctions and
the possibility of analytic analyses in connection with parametric results without
the construction of multiple models. Specific homogenization procedures allow the
application of CBM even in case of composite or functionally graded material beam
structures (see e.g. Murin et al, 2016). However, the gain of these advantages requires
the following specific assumptions whose validity depends mostly on the slenderness
of the structure and on the cross-sectional shape:

* Rigid cross-section: CBM assumes that the cross-section moves rigidly in space
based on three displacement and three rotational degrees of freedom. If transverse
shear is included shear correction factors have to be established which account
for the mismatch between true non-linear shear strains and constant assumed
strains, i.e. any warping due to shear is smoothed in Timoshenko’s theory. The
hypotheses of a rigid cross-section has to be weakened in case of non-uniform
warping torsion, where out of plane warping deformations have to be included.
This typically causes an additional degree of freedom in the beam model. In
Vlasov’s theory of torsion (Vlasov, 1961) the axial displacements in the shaft are
related to a warping function w(y,z) depending on the cross-sectional coordinates
times the twist go;(x). The introduction of a dependent additional degree of
freedom seems to be artificial and can be weakened according to a theory due
to Benscoter (1954), where warping is described by an independent degree of
freedom F(x)!. After all, the hypothesis of a rigid cross-section is responsible for
the small number of degrees of freedom and the efficiency of CBM.

* Decoupling of different load cases: Axial, transverse and torsional load cases
can be typically analyzed in a decoupled manner if they refer to beam coordinate
systems originated at specific locations of the cross-section. It is well known that
axial and transverse load cases will decouple if the origin of the coordinate system
is located at the centroid of a homogeneous cross-section.

A decoupled analyses of transverse loading with respect to two specific transverse
directions is somewhat questionable: There, it is typically assumed that the cross-
section has principal directions which are related to the bending stiffness tensor.
Such an assumption, however, requires that a tensor of transverse shear stiffnesses
(with shear correction factors included) has the same principal axis, which is not
true in an arbitrary unsymmetrical case. In an example of Sect. 11.4.1 it is shown
that a single cantilever with unsymmetrical cross-section loaded by an end force
directed into a principal direction of the bending stiffness tensor, exhibits side-

! Modern applications of a Benscoter related theory of torsion are discussed in recent proceedings
by Kugler et al (2018b, 2019) which indicate slightly more accuracy compared to Vlasov and
improvements regarding the corresponding finite element equations.
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way deflections transversely to the load direction. This effect, which decreases
with increasing slenderness, has been reported by Schramm et al (1994) and
is discussed in Dong et al (2013) (note the corrigendium Dong et al, 2015). A
suitable finite beam element formulation is proposed by Pilkey et al (1995). In
most applications these side-way deflections are small and can be neglected for
the sake of efficiency. Then, shear correction factors have to be evaluated with
respect to the principal directions of the bending stiffness tensor (see e.g. Kugler
et al, 2018a).

A decoupling of transverse and torsional loading requires the origin of the beam’s
coordinate system to be located at the shear center. This location is typically
assumed to be congruent with the drill center, i.e. the pivot point of in-plane rigid
body rotation due to torsion, see e.g. Barretta (2012), where it is proved that the
shear center coincides with the St. Venant drill center. However, the definition
of the shear center is not unique, see Schmidrathner (2019), where between the
kinematic shear center and the energetic shear center is distinguished. Torsional
and flexural vibrations always couple, except when the cross-section has two
orthogonal axes of symmetry (i.e. drill-center and centroid are congruent). This
well known fact (see e.g. Weaver et al, 1990) is shown in Subsect. 11.4.3, where
resonance curves of a shaft with an unsymmetrical cross-section are calculated.
The results show a slight amplification of the torsional angle at eigenfrequencies
of a bending mode.

Clearly, CBM requires stiffness quantities which are typically evaluated by cross-
sectional integration. For axial and bending stiffnesses this integration can be carried
out analytically. However, in an arbitrary case quantities like transverse shear stiff-
nesses and stiffness quantities for non-uniform warping torsion can only be evaluated
numerically based on a discretized cross-section?. The definition of transverse shear
stiffnesses requires the knowledge of transverse shear stresses due to shear forces,
which cannot be given analytically in an arbitrary case (see e.g. Gruttmann and
Wagner, 2001, for a corresponding procedure). The evaluation of torsion stiffnesses
requires a warping function w(y,z) which is the solution of a Laplace equation
AW = W yy + W, =0, which cannot be solved analytically in an arbitrary case.
Therefore, any new formulations based on discretized cross-sections will not add a
substantial amount of complexity.

Deficiencies of CBM are typically reported in case of buckling problems of
short members in connection with thin-walled cross-sections (see e.g. Sapountzakis
and Argyridi, 2018, and the references therein). In order to motivate our following
approach, we consider the torsional resonance curves of a prismatic shaft with a
homogeneous rectangular box type cross-section (see Subsect. 11.4.2, Fig. 11.10):
Fig. 11.1 displays considerable discrepancies between continuum models and CBM
formulations (Vlasov’s or Benscoter’s theory of warping torsion, Kugler et al, 2018b,
2019). Even though the shaft seems to be slender (Iength to height ratio of ten) CBM

2 In Kugler et al (2018a,b) a new numerical approach for the evaluation of these quantities is
proposed, which is based on the solution of a reference beam problem and, therefore, is physically
interpretable and easy to understand.
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Fig. 11.1. Resonance curve of problem Fig. 11.10. Comparison of FEM solutions and torsion
theories

reproduces only the first resonance spike accurately, whereas the higher frequency
spectrum does not come close to FEM results (Fig. 11.1).

The major limitations of CBM are due to the neglection of in-plane distortions
which is also indicated by observing the first two relevant mode shapes of the
problem (Fig. 11.2). The inclusion of in-plane distortions necessitates higher order

Fig. 11.2. Two mode shapes of continuum model



11 Beam Dynamics Using a Generalized Beam Theory 189

beam theories or generalized beam theories (GBT)3. A comprehensively written
paper discussing the state of the art in GBT is due to Sapountzakis and Argyridi
(2018). There, it is pointed out that the majority of research focused on thin-walled
profiles with pronounced distortion and warping. Schardt (1989) introduces GBT to
the analysis of linear static and buckling problems of thin-walled open cross-sections
which are assumed to be unbranched. A generalization to branched profiles or closed
sections leads to much more involved formulations (e.g. Dinis et al, 2006; Goncalves
et al, 2009).

After all, GBT is a two-step algorithm consisting of a cross-sectional analysis
defining warping and distortional fields, followed by a member analysis, where those
deformation fields are weighted axially along the beam. According to Sapountza-
kis and Argyridi (2018) most approaches in that field perform the cross-sectional
analysis in two stages, first defining the warping modes and then the distortional
modes found from Vlasov’s zero shear stress conditions. Ranzi and Luongo (2011)
propose a reversed procedure starting with an eigenvalue decomposition of a pla-
nar discretized cross-section, where the eigenvectors define the distortional fields.
Then, the warping modes are evaluated from conditions enforced on the shear strain.
Warping and distortional fields are found simultaneously in Genoese et al (2014)
where an eigenvalue cross-sectional problem is developed. Finally, Dikaros and
Sapountzakis (2017); Argyridi and Sapountzakis (2018, 2019) developed a very ad-
vanced beam formulation based on a so-called sequential equilibrium scheme where
within the cross-sectional analysis the boundary element method is employed. This
formulation is not restricted to thin-walled cross-sections and does not stand on any
corresponding assumption.

In Sect. 11.2 we discuss the basic idea of our present approach, where we focus
on plane beam problems. In Sect. 11.3 we discuss our approach in a more rigor-
ous manner, where the cross-sectional analysis (Subsect. 11.3.1) and the member
analysis (Subsect. 11.3.2) refer to three-dimensional structures. No a priori assump-
tions regarding the cross-sectional shape or regarding the applied coordinate system
are taken, however, we restrict ourselves to constitutive relations with point-wise
isotropy. Finally, in Sect. 11.4 the performance of the proposed solution strategy will
be investigated.

11.2 Preliminaries and Basic Idea of Present Approach

In the following we briefly introduce our approach to analyze isotropic prismatic
structures where distortions and warping deformations cannot be neglected. The
procedure is related to GBT and identifies warping and distortions from a vibra-
tion analysis of a reference beam followed by a member analysis, where the beam
kinematics from the first step is weighted axially. For the sake of clarity in this

3 Alternatively to GBT, the finite strip method is also a possibility to introduce distortional and
warping effects in slender members (see Adany and Schafer, 2006a,b), however, the finite strip
method is not directly related to a beam theory.
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section we discuss a two dimensional plane stress problem here (see Fig. 11.3): The
crucial idea is the extraction of warping and distortions from a dynamic analysis
of a reference beam problem (RBP) with length /gg. According to Fig. 11.3(a), we

Reference Beam Problem
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Fig. 11.3. Principle of present approach:

(a) Two noded line elements discretize the cross-section in plane problems. Nodal degrees of
freedom are the amplitudes of (b)

(b) Simply supported reference beam of length Irp - axial distribution of u, and u_,, is due to one
cosine and sine function, respectively.

(c) Physical flexural mode of simply supported beam.

(d) Physical axial mode of unrestrained truss.

(e) Artificial third mode to trigger warping and distortions.
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start by discretizing the cross-section with semi-analytical finite elements (SAFE),
where displacements u; with i = x,z,, are interpolated using finite element type
shape functions within the cross-section, while analytical functions are applied ax-
ially (Zienkiewicz and Taylor, 2000): In Fig. 11.3 the reference beam is assumed
to deform in the x-z,, plane only, which enables one to use simple two noded line
elements over the cross-sectional height. The variation of the components u, and
u,, along the x-direction is modeled by a Fourier series, i.e. the application of,

Uy = Z U)(C")(zm)cos (%x) and u,, = Z Ug")(zm)sin (%x), (11.1)
n=1 n=1

defines the kinematic boundary conditions of the reference beam, we chose a simply
supported reference beam problem here. The amplitudes of the sine and cosine
functions in (11.1), Uf")(zm) for i = x,z, are interpolated based on classical shape
functions, and we may write on element level,

(n)e

U™ (20) = [ Ni(zm) No(zm) | Lime = N(z,n)U™*. (11.2)
i2

Now, the key in the present approach lies in recognizing that it is sufficient to include
only the first wave number n = 1 in the analysis, and from (11.1) and (11.2) we get
with @ = 7r/Irg on element level,

[ u;(x,zm) ]

M;m (X ’ Zm)

_ | N(zm)cos (ax) 0
h 0 N(z,,)sin(ax)

Us
U;]' (11.3)

The displacement interpolations (11.3) are introduced into the principle of virtual
work#,

‘/a',-jée,»jdV+/p12,-6uidV=0. (11.4)
Vi VkB

There, oy; and ¢; denote the stress and strain tensor (Einstein sum convention is
understood), a superscript double dot refers to the second partial time derivative, p
represents the density of the material while § is the variation symbol. The strain tensor
is found from (11.3) based on classical strain-displacement relations (a comma in the
index refers to a partial derivative), and the stress tensor is subsequently evaluated
using the linear elastic constitutive relation,

1
€j = E (ui,j +uj,,~) and gij = f(Eij). (115)

Using classical finite element assembly procedures, we obtain for steady state vibra-
tion,

4 Note, that any integration with respect to the axial coordinate x can be carried out analytically
due to the sine and cosine functions in (11.3).
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(K—sz)I’z(), (11.6)

where K and M denote the global stiffness and mass matrix, respectively, I" =

[ U, U, ]T refers to the eigenvector consisting of the nodal amplitudes from (11.3),
while w = wy,w,. . . denote the resonance frequencies in ascending order. Any vibra-
tion mode amplitude vector I'y can be decomposed into axial displacements UX and
accompanied transverse displacements U’Z‘, which are related by /rg. It is important
to note that only the first two eigenvalues represent a physical solution of the RBP
if Irp is large compared to a characteristic cross-section dimension (see Fig. 11.3(c)
and (d)): The first resonance frequency w; is due to transverse vibration of a simply
supported beam (analytical vibration mode based on a shear rigid Euler-Bernoulli
beam theory, which is valid for a slender RBP): The axial displacement amplitude
vector Ul represents the rigid body rotation about the centroid of the cross-section,
while the transverse amplitude vector U; refers to rigid body translation (see Fig.
11.3(c)). Although, shape changing warping and distortions decrease for increasing
values of lrp, we suggest a true rigid body mode extraction by simple linear fitting.
Note, that the orders of U} and U! are related by /gp, i.e. lrg max (UL) ~ mean (U!).
This can be explained by the Euler-Bernoulli constraint, where the bending angle
is proportional to the first derivative of transverse displacement. However, both the
axial and the transverse displacement amplitude vector can be scaled independently
(such that each maximum value is related to a characteristic cross-section dimension)
to arrive at the first pair of GBT kinematics.

The second resonance frequency ws > w; refers to axial vibration of an unre-
strained truss. There, U2 corresponds to approximate axial rigid body motion of the
cross-section, while U% refers to the accompanied Poisson contraction (again a linear
fitting operation is proposed to extract true rigid body motion). After independent
scaling of U2 and U2 we obtain the second pair of GBT kinematics. Note, that U? is
the first shape changing distortion mode of the cross-section, which is typically not
present in CBM.

All resonance frequencies wy for k = 3,4,5,... cannot be interpreted as physi-
cal steady state vibration modes of the RBP (see the third artificial mode in Fig.
11.3(e)), since we restrict ourselves to only the first wave number n =1 in (11.3).
This is done as an artifice to trigger warping and accompanied distortion fields of
the cross-section. Again each mode I'y for k > 3 is decomposed into the corre-
sponding axial displacement amplitude vector (shape changing warping mode UX)
and into the accompanied transverse displacement amplitude vector (shape changing
distortion mode Ui). Subsequently, they are scaled independently in order to avoid
bad conditioning due to small numbers, and they contribute pair-wise to the GBT
kinematics. Note, that the resonance frequencies wy are used in the cross-sectional
analysis to order the corresponding pairs of warping and distortion modes, i.e. larger
pair numbers k contribute to the results of GBT to a lesser extent. In a plane problem
at least UL, U! and U2 have to be introduced in the GBT formulation. The proposed
linear fitting operations are important to achieve the required rigid body criteria
within GBT. Additional higher pairs of warping and distortion modes enhance the
accuracy of the resulting GBT formulation.
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Once, the independently scaled pairs of warping and distortion modes are found,
we introduce them in the member analysis of our GBT formulation as corresponding
kinematical fields. We assume the following separation Ansatz based on K pairs of
warping and distortion modes,

K K
ue(5,zm) = D U (n)an(x) s uz(x,2m) = D U m)Be(x), (11.7)
k=1 k=1

where the generalized degrees of freedom @y and S interpolate the corresponding
warping and distortional fields by finite element shape functions®. Then, the GBT
strain fields are evaluated from the strain-displacement relations (11.5), and the GBT
stress fields are found by the constitutive relation. Subsequently, these tenors are put
into the principle of virtual work (11.4)°, where all displacement amplitude vectors
couple with each other due to a product of sums. A somewhat laborious collection
of terms detailed in Subsect. 11.3.2 enables the integration with respect to the cross-
section, while the axial integration can be carried out subsequently. Without giving
any mathematical details here, it has to be pointed out that within the cross-sectional
integration some of the following terms will arise: Denoting the Young’s modulus
by E we get

/E (U)lc(zm))TU;(zm)dA
and

/ E (Ui(zm))T V(2,)dA

which are recognized as being proportional (see footnote 5) to the bending stiffness
and the axial or membrane stiffness, respectively, since according to Fig. 11.3(c) and
(d) Ul is a linear field while U2 is a constant field.

Note, that our briefly introduced approach relies on a cross-section discretization,
thus, the proposal is applicable for cross-sections made of inhomogeneous multi-
layer composites or functionally graded materials (FGM). In such a case clearly both
the cross-sectional and the member analysis has to be performed based on E(z,,)
where E is constant within one element.

5 Strictly speaking, a; is proportional to the bending angle, 3; is related to cross-sectional shape
preserving transverse displacements, while «; is proportional to cross-sectional shape preserving
axial displacements. The factor of proportionality depends on the above-mentioned scaling opera-
tion where the maximum amplitude of Uf.‘ is related to characteristic cross-sectional dimension in
order to avoid numerical issues.

¢ Volume integration is now with respect to the beam element member V,,,.
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11.3 Generalized Beam Model Based on the Reference Beam
Problem

In this section we discuss the new approach to derive beam models for prismatic
structures which are capable to cover in-plane distortions of cross-sections lead-
ing to more predictive solutions in dynamic problems according to Fig. 11.1. The
procedure is suitable to arbitrary cross-section shapes and inhomogeneous material
distributions. In what follows we restrict ourselves to constitutive relations that are
isotropic at each material point. Basically, the idea of our approach is the separation
Ansatz with a multiplicative decomposition of the displacement field,

ui(x,y,z)Zf(y,Z)g(x). (118)

This is a typical approach also for classical first order beam theory (CBM). In
addition we assume that the functions f(y,z) do not depend on the beam’s boundary
conditions, i.e. f(y,z) might be prescribed regardless of any restraints to the global
prismatic structure. Hence, we can evaluate f(y,z) from a suitably chosen Reference
Beam Problem (RBP), where global boundary conditions are elected such that three
dimensional elasticity theory can be applied at minimum computational costs. In this
respect the present work is a generalization of the procedures discussed in Kugler
et al (2018a) where the RBP was used to identify stiffness properties of classical
beam mechanics where cross-sections remain plane in their projection area.

The present approach is carried out in two steps: At first the RBP is used to
evaluate the relevant warping and distortion modes (cross-sectional analysis), and,
secondly, these modes are weighted axially by generalized degrees of freedom to
arrive at a generalized beam element (member analysis).

11.3.1 Reference Beam Problem for the Cross-sectional Analysis

Consider a prismatic structure of arbitrary length [ = [gg described in a Cartesian
base where x directs along the axis while y,, and z,, are Cartesian cross-section
coordinates with arbitrary origin (see Fig. 11.4). The mechanical behavior of such a
structure can be analyzed efficiently by semi-analytical finite elements (SAFE), where
the cross-section is discretized using a standard quadrilateral” FE approach with
local coordinates & —n (see e.g. Zienkiewicz and Taylor, 2000). The displacement
components are interpolated by finite element shape functions with respect to the
cross-section coordinates, and their axial interpolation is carried out using Fourier
series (Kugler et al, 2018a). The boundary conditions at x = 0 and x = [rp define the
specific form of the expansion, where we assume for the in-plane displacements

7 Some authors in that field apply quadratic Serendipity or Lagrangian elements to avoid locking,
however, since functionally graded material (FGM) cross-sections are in the scope of this text
(where fine meshes have to be applied in order to capture the variation of the constitutive model)
we prefer to apply quadrilateral low order finite elements.
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Reference Beam

Fig. 11.4. Application of SAFE to analyze the RBP

Uy, (x=0)= Uz, (x=0)= uym(x =Irp) = Uz, (x =Irp) =0, (11.9)

together with arbitrary axial displacements at both beam ends. The resulting RBP is

* simply supported for transverse action,
* double sided fork supported for torsional action,
e and unsupported for axial action.

In order to satisfy (11.9) we apply the following Fourier series expansion

i, ~cos(ﬂx), (11.10)
RB
y,, ~sin(ﬂx) Uy, ~sin(ﬂx), (11.11)
R lrp

with n = 1,2,3,... denoting the number of harmonic and Irp referring to the length
of the reference beam. Thus, we propose® on element level

ux(x’§777) NCOS (a’n.x) 0 0 Ugce)n
uy,, (x.6,1m) | = Z 0 Nsin (@, x) 0 v, 11.12)
iz, (Em) | 0 0 Nsin(a,x) ]| ylr

with the bilinear shape functions N(&,7) and the nodal displacements
T
Uge)n _ [Ulgl)n U,@n
depending on the number of harmonic n, while «@,, = nx/Igg. It can be shown that

different wave numbers n remain uncoupled in case of a point-wise isotropic consti-
tutive relation (see Kugler et al, 2018a). By introducing (11.12) into the principle of

8 Equation (11.12) is also based on the Separation Ansatz.
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virtual work (11.4) in connection with the strain displacement relations (11.5) and
the constitutive relation

Oxx E 1—-v* v* v* Exx
Cypym | = T 1—v* v* Eym | > (11.13)
To (1+v*)(1-2v*) v |
Ty E 10O | Yxym

x =——| 10 x , 11.14
TZm 2(1+V) 72m ( )

Tymzm 1 Yymzm

with y;; = 2¢;; and v* = kv (k < 1) defining the amount of coupling of the normal
components, we are able to define elemental mass- and stiffness matrices depending
on the length of the reference beam /rp and the number of harmonic n. There, the
required volume integration is done analytically in axial direction and numerically
(2 %2 Gauss points) in &€ —n. A subsequent assembly to global matrices is straight
forward and has to be carried out for each harmonic n leading to a global system
of differential equations describing the dynamic behavior of the RBP. By using
element-wise constant material properties, FGM or multi-layer composite structures
can be modeled easily.

By assuming (see Sect. 11.2) that only one wave number (n = 1) contributes
and lrp is large compared to a characteristic cross-section dimension, we perform
a steady state vibrational analysis (see (11.6)) leading to resonance frequencies
w; = w1, Wy, ...in connection with the eigenvectors I'; consisting of nodal amplitudes
Ug) with k = x, v, 2. The resonance frequencies are used to order the eigenvectors
ascendingly, and it can be assumed that lower ones contribute more in the upcoming
member-analysis. Note that due to n = 1 only the first four resonance frequencies are
related to physical vibration modes of the RBP:

1. The lowest resonance frequency is related to a flexural mode about the weak
principal direction of the cross-section (e.g. the z-axis in Fig. 11.7). The solution
is exact compared to CBM and analytical considerations since for large reference
beam lengths transverse shear can be neglected, i.e. the transverse displacement
mode is proportional to a sine function and the bending angle (related to axial
displacements) is proportional to a cosine function in the first bending mode (see
(11.12)) of a simply supported beam.

2. The second resonance frequency corresponds to the flexural mode about the stiff
principal direction of the cross-section (e.g. the y-axis in Fig. 11.7) and the above
considerations. In that sense engineering quantities like the principal directions
and the elastic center (centroid in homogeneous cross-sections) can be extracted
based on fitting operations.

3. The third resonance frequency is due to torsion of a double sided fork supported
shaft. According to Gere (1954) (see Blevins, 1979) warping can be neglected
in vibrational analysis even in thin-walled open cross-sections if ¢ /rp > 10D2,
where 7 is the minimum wall thickness and D denotes the diameter of the cross-
section, i.e. the relation of u,, and u,,, to torsional angle ¢.(x) ~ sin(mx/lrp) is
consistent to analytical considerations of Vlasov’s theory of torsion, while axial
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motion uy ~ (,o; ~ cos(mx/Igp) is proportional to the warping function w (which
is typically defined from the St. Venant problem as w y,.y,, + @ 7, -, = 0) if rp
is large.

4. The forth resonance frequency is related to steady state vibration of an unsup-
ported truss. There, axial motion proportional to a cosine function is consistent to
analytical considerations, and in-plane displacements based on Poisson-breathing
are proportional to Vexyx = vy x ~ sin(mx/Irp).

The eigenvectors I'; can be split up according to couples consisting of warping
modes,

w =Y, (11.15)
and distortion modes,
(@) (i)
a0 = | B | = | Y | (11.16)
dZm UZm

for each mode number i = 1,...inax® Which are scaled in a way that maximum nodal
displacements in (11.15) separately from (11.16) are e.g. one tenth of a characteristic
cross-section dimension y. If the length of the reference beam is large compared
to y (i.e. Irg > 100y) we expect approximate rigid body modes for 1 <i <4, i.e.
i =1 andi =2 lead to bending modes with respect to the principal axes of the cross-
section, i = 3 leads to torsion (the nodal warping function w(y,,z) is represented
by w® while rigid in-plane rotation is represented by d®) while w*) is devoted
to the axial mode and d is Poisson’s mode for axial vibration. All further modes
(i > 4) contribute to higher order beam mechanics!°.

At this stage a linear fitting operation is useful to extract the real rigid body
modes (see footnote 10) from the approximate ones (Fig. 11.5 for a challenging
unsymmetrical thin-walled multi-cell cross-section made of steel, see Fig. 11.15): If
the difference between approximate and true rigid body motion is small, we expect
to have chosen the right reference beam length /zp, in case of nonphysical behavior
(e.g. bending is not directed into the principal direction) /rg might be too large and
some numerical issues related to the eigenvalue problem are encountered, and if the
cross-section changes significantly its shape except w® and d®, lrg was selected
too short. Some of the ascending higher order mode shapes (5 < i < 8) are depicted
in Fig. 11.6. These mode shapes represent the f(y,z) in the separation Ansatz (11.8),
and we develop our beam finite elements subsequently in the following section.

% imax = 4 can be selected and represents a convergence parameter in the upcoming beam model.
10 At a rigid load sharing plate being able to move rigidly through space only w'"), w®, w* and
d®,d®,d® remain, while all other modes have to be restrained. In that sense, w® and d® also
count to higher order beam mechanics.
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Fig. 11.5. Modes before rigid body extraction lgg = 50 m, v* =v
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11.3.2 Member Analysis Based on Generalized Beam Finite
Elements

At this stage of the derivation we have the mode shapes describing warping and
distortion based on the separation Ansatz (11.8) within the considered cross-section.
The terms warping and distortion could be misleading for the first four mode couples
since there rigid body modes (except w® and d¥) are delivered, however, we
call any out of plane motion (shape preserving displacements or shape changing
deformations) a warping mode, while all in-plane motions are called distortional
modes. In this section we start weighing them in axial direction. For each SAFE
element e in the cross-section we have,

u(&n,x) = NEpwd i (x), (11.17)
ull) (&m,x) = N Bi(x), (11.18)
W) (€.x) = Nl Bi(x), (11.19)

where each warping mode is weighted with one degree of freedom (a;), while
each distortional mode is weighted using another degree of freedom (8;). The ma-
trix N = [ N; N, N3 N4 | represents classical finite element shape functions for the
quadrilateral element and the index e in the column vectors wfj) and dg:)e fork =y, 2m
denotes the extraction of the elemental nodal displacements from the global warp-
ing and distortion modes found in Sect. 11.3.1. Equations (11.17)-(11.19) can be

reformulated in matrix notation,

(@)

: Uxe .
u @ noxe) = [ul) | =Napull, (11.20)
u, .
with
N¢Em 0 0
Nap=| 0 N(E&n) 0 (11.21)
0 0 N(.n)
3x12
and

) = NIIN 20 -

w00 |[Ng(x) 0 [A@]

=] 0 4, 0 0 Np(x) || gy (11.22)
0 o0 a7, 0 Np(x) " 7
—_ 2kx1
12x3 3x2k

where x, denotes the beam element’s axial direction 0 < x, < [, with [, denoting
the beam’s element length. In (11.20) we use a k-noded beam element (k > 2)
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and classical finite element shape functions Np of order kK —1 (we additionally
assume that the distance between nodes is kept equal in each beam finite element)
and the beam element’s degrees of freedom A and B, i.e. o;(x.) = Np(x,)A®
and f;(x.) = Np(x.)B®. The interpolated strains are found according to the strain
displacement relations (11.5) in connection with (11.20) and we get by laborious
suitable rearrangement,

(¥

E.xxe
E)(;i_iy;ﬂe
L
i E. i
elEnxe) = | e | =Bul, (11.23)
yxyme
@)
J_vzme
'ﬂy;lrlzme-
with
0N OO0 0 0
0 ON, 0 0 0
{00 0 oN_ 0
B= N,,0 0 N 0 of (11.24)
N. 0 0 0 0 N
0 ON_ ON, 0
6x24
and . ' .
) = NN 0 =
0) .
wo (zl_) 0 0 0 0 Ny 0
0 w, (Q) 0 0 0 Nz, O
i 0
|0 o0 df. ((_)) 0 0 0 N A(.). (11.25)
0 0 0 4d), 0 0 0 Nz, |[BY
00 0 0dal, o |l 0 No|——
(o0 0o o0 o a2, |l O Now
| S —
6x2k

24x6

From the strains (11.23) we find stresses according to the constitutive relation (11.13)
and (11.14) with v* = 0 representing a decoupled one-dimensional material law o =
C,.q€. By using element-wise (with respect to cross-section discretization) constant
material properties, FGM or multi-layer composite structures can be modeled easily.
Introducing that into the principle of virtual work (11.4) leads to
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50T / NT NUT Z / oNI N3pdA R Np,dx, 50+

le
\_____\f_____/
M

inner

e
Mg,

e
MBI]

+o5UT / NL_ N7 Z / B7C,.yBdA 8" Npedx, 2V = W,  (11.26)

le
\_____\/_____/

e
inner

KE’
ij

e
KBU

There, M{, .. = 3N X 3N (integrated analytically with respect to A.) and K{ ==
6N X 6N (integrated with 2 X2 Gauss integration) are assembled to global matrices
based on cross-section discretization with N nodes. The modal coupling based on fo)
and N(Ei) to arrive at four dimensional arrays M¢, = 3x3XiX jand K{, = 6x6xix j for
i=1...imax and j = 1 ...inax is carried out on global level and the final integration in
axial dlrectlon to evaluate Me =2k x2kxixjand Ke =2k X2k xixjiscarried
out using a full Gaussian 1ntegrat10n with two 1ntegrat10n pomts for k =2 (linear beam
element), with three points for k = 3 (quadratic beam element) and with four points
for k = 4 (cubic beam element), respectively, where k denotes the number of beam
element’s nodes. Next, a rearrangement of the four dimensional arrays M, ; and
K% i to beam elemental matrices Mg = 2kimax X 2kimax and K§ = 2kipax X 2kipay is
performed and, finally, the beam elemental matrices are assembled to global global
matrices Mp and Kp,

MpEY L KpE® = Fp, (11.27)

with 2in.x of generalized degrees of freedom at each node. The force vector Fp
has to be established consistently according to the principle of virtual work. Now,
boundary conditions of the beam structure can be introduced by canceling the corre-
sponding generalized degrees of freedom. Then, the resulting dynamic properties of
beam structures (11.27) now converge due to mesh refinement of the cross-section
discretization, due to the number of mode couples i« !, due to the polynomial
order k — 1 of the beam element’s shape functions and due to the number of beam
elements discretizing the entire prismatic structure.

I Note, that i = 1...im.x does not necessarily have to be applied. If some mode shapes obviously
do not contribute, i.e. they are not excited by the applied loading, they can be skipped.
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11.4 Examples

In this section we check the performance of the proposed solution strategy (Sect.
11.3) and discuss its convergence characteristics. The first example (Sect. 11.4.1)
considers elasto-statics of a short single cantilever with an unsymmetrical thin-walled
cross-section. As discussed in the introduction some side-way deflections occur even
if the cantilever is transversely loaded into its principal direction, and we prove that
our present procedure is capable to cover such an effect. The remaining examples
firstly introduced in Kugler et al (2019) focus on harmonic analyses of torsional
shafts of length / which are fully clamped at x = 0 and a harmonic torsion moment is
applied on a massless rigid load sharing plate at x =/ (see Fig. 11.10). The results are
compared to classical torsion theories where cross-section distortions are assumed to
vanish and the issues discussed in Sect. 11.1 occur. The analysis of the problem using
three-dimensional continuum elements and (if possible) shell elements is called an
exact solution if fine meshes are used.

11.4.1 Static Analysis of Single Cantilever with an Unsymmetrical
Thin-walled Cross-section

Consider a single cantilever of length / made of an unsymmetrical thin-walled
open cross-section shown in Fig. 11.7, where x = 0 is fully clamped while an end
force F, = 3EI, /I3 (wall thickness 1) is applied onto a rigid load sharing plate
at x =/ (vanishing distortions and warping) such that no torsion occurs. There,
I, =1.1332- 1072 m* refers to the stiff principal second moment of area, and the end

0.25m
<«
\ t = 0.05m
\
! E=1-10"Pa
z
‘ v=20.3
\
\ Principal
Im

directions

— Direction of

=
=
R N D S

displacement vector

Fig. 11.7 Unsymmetrical
C-profile 0.5m
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force is selected such that transverse tip displacement into z-direction equals one if
[ is large (Euler-Bernoulli solution). Due to transverse shear the tip displacement
increases for decreasing beam lengths, and this effect is covered in CBM based on a
shear correction factor which influences the transverse shear stiffness. As discussed
in Sect. 11.1 plane behavior with respect to the principal axis is typically assumed,
thus, CBM delivers typically no side-way deflection even in short beams (8 = a*).
However, Pilkey et al (1995); Schramm et al (1994) report side-way deflections
(B # ") in that kind of problems and Table 11.1 shows the corresponding amount
based on Ansys continuum solutions. The application of the present GBT solution
algorithm requires the discretization of the cross-section using a regular mesh of m
elements in wall-thickness direction. The cross-sectional analysis (Sect. 11.3.1) is
carried out with a reference beam length of /rg = 400 m, however, it turns out that
the results do not depend on /gp if lrg > 40 m. The member analysis (Sect. 11.3.2)
is done based on 30 cubic k = 4 GBT elements to discretize the cantilever. Figure
11.8 shows the corresponding outcome for / = 1 m with respect to the total number
of contributing mode couples inax. The magnitude of tip displacement converges
smoothly to values slightly above the Ansys reference (see Fig. 11.8 (a)), while the
corresponding direction converges non-monotonic to the Ansys reference (see Fig.

Table 11.1
Convergence study using an Ansys continuum formulation with respect to the length of the single
cantilever

[ [m] uy,, [m] uz, [m]  magnitude [m] B = arctan %["]
Zm
1 -0.78672 2.8921 2.9972 15.2
1.5 -0.45337 1.8381 1.8932 13.9
2 -0.32714 1.4656 1.5017 12.6
3 -0.23345 1.1985 1.2210 11.0
4 -0.19997 1.1051 1.1230 10.3
5 -0.18439 1.0620 1.0779 9.8
10 -0.16372 1.0051 1.0183 9.3
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Fig. 11.8. Magnitude and side-way deflection of single cantilever of length / = 1 with respect to the
total number of active mode couples



11 Beam Dynamics Using a Generalized Beam Theory 205

11.8 (b)). It turns out that accurate solutions require at least im,x = 12 contributing
mode couples, while the discretization parameter m of the cross-section introduces
only a minor dependency of the results (virtually no difference between m = 2 and
m = 4). Figure 11.9 illustrates the magnitude and side-way deflection of a single
cantilever with respect to [, where the lines refer to the GBT solution while the
circles denote the Ansys reference solution. Accurate values of the magnitude require
imax = 9 (Fig. 11.9 (a)), while the corresponding direction calls for ip,x > 12 to be
accurate (Fig. 11.9 (b)). After all it turns out that the proposed GBT formulation
behaves well and converges to accurate solutions.

11.4.2 Homogeneous Rectangular Hollow Cross-section

In this example - used as a motivation in Sect. 11.1 (Fig. 11.1) - we analyze the
dynamic behavior of a prismatic shaft of length / = 1 m made of a homogeneous
thin-walled closed cross-section (wall-thickness #) shown in Fig. 11.10. The left hand
side of the shaft x = 0 is fully clamped while a harmonic torsional moment (excitation
frequency v, amplitude My = 1000 Nm) is applied onto a rigid massless load sharing
plate, i.e. any warping deformations or any distortions are prohibited x =. We
evaluate resonance curves (amplitude of steady state vibration of torsional angle at
x = [, modal damping ¢ = 0.01) of this problem (see Fig. 11.1) by applying Ansys
continuum or shell elements to discretize the structure and compare the results to

~
o

««««“‘N

magnitude of displacement
at the location of the load
v

o

\\0\,@&&9 10 ON\H"

1 9
10° 10' 10? 10° 10 102
length of single cantilever length of single cantilever

(a) Magnitude of displacement 9 < ijpax < 30 (b) Direction of displacement 12 < ijpax < 30

Fig. 11.9. Magnitude and side-way deflection of single cantilever with respect to / and the total
number of active mode couples. The circles refer to the Ansys reference solution
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Fig. 11.10. Shaft with box type cross-section under harmonic load
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CBM solutions (Vlasov’s non-uniform warping torsion or a Benscoter related theory,
Kugler et al, 2018b, 2019). Now, we add the results of the present procedure to the
problem. There, we regularly discretize the cross-section with either two elements in
wall-thickness direction (coarse mesh) or with five elements (fine mesh), respectively.
The analysis of the reference beam problem is performed by assigning a reference
beam length of [xg = 50 m. Figure 11.11 depicts the superior over all performance
of the proposed method, where 30 cubic beam elements (k = 4) in connection with
the first 30 mode couples (i = 1,2,3,...30) are applied. The model v* = v fits very
well at higher frequencies (observe sixth and seventh spike in 11.11 (a)), while
some deviations are observed at the second and third spike (relative error of plus
three percent in location of the spike for the coarse mesh). In contrast, the model
v* =0.01v tends to weaker responses which according to the coarse mesh fits nicely
at second and third spike, however, at higher frequencies (seventh spike) a relative
error of minus 1.5 percent occurs. Overall, the fine mesh with v* = v performs nearly
perfectly compared to 3D continuum elements and discretization stiffening (some
locking phenomenon of coarse meshes) could be reduced by applying v* < v. The
convergence characteristic for different numbers of mode couples in use is shown
in Fig. 11.12, where the fine cross-section discretization mesh is applied (v* = v)
with thirty cubic (k = 4) beam elements. The application of only the third mode
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| — — —Shell181 5mm
— — — Benscoter

coarse 30 beams 30 modes 1'=0.011
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Fig. 11.11. 30 cubic beam elements (k = 4), first 30 mode couples
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couple leads to results identical to Benscoter’s theory of torsion. The addition of
the fifth mode couple enhances the performance significantly and the accuracy of
the first four spikes is nice both in amplitude and location. More accuracy in higher
frequency bands requires the addition of the ninth, 16th and 21st mode couple. All
other mode couples are not excited by the applied torsion moment and, thus, do not
contribute. Those higher order mode couples are depicted graphically in Fig. 11.13,
where we used to coarse mesh for clarity in the plot. The convergence characteristic
with respect to the polynomial order of the beam element’s shape function is shown
in Fig. 11.14 where the fine cross-section discretization mesh in connection with
v* =y and mode couples 3,5,9,16,21 are used. There, we observe severe locking for
k =2 (linear shape functions), where the results depend significantly on the number
of beam elements (Fig. 11.14(a)). Locking is much more moderate for quadratic
shape functions (k = 3) (see Fig. 11.14(b)), while nearly perfect results are obtained
using cubic shape functions (k = 4) since locking within the beam element is nearly
overcomed (see Fig. 11.14(c)).

11.4.3 Homogeneous Unsymmetrical Thin-walled Multi-cell
Cross-section

In this example we use a homogeneous unsymmetrical thin-walled multi-cell cross-
section (see Fig. 11.15) with wall-thickness ¢ where the profile center-lines are
dimensioned. We apply two different discretizations of the cross-section (free coarse
(Fig. 11.15) and fine mesh with two and five elements in wall-thickness direction,
respectively). The amplitude of the harmonic excitation is My = 1000 Nm and the
length of the considered shaft is again / = 1 m. The cross-section analysis (Sect.
11.3.1) is carried out using a length of the RBP /rg = 50 m. Some of the cross-section
mode shapes are depicted in Figs. 11.5 and 11.6 and we analyze the dynamic behavior
using 30 cubic beam elements (k = 4) in connection with the first 30 mode couples
(imax = 30). The harmonic answer of the system is found based on the eigenvalues
and -vectors in an interval of 0 < f < 4000 Hz in connection with modal damping
¢ =0.01. The parameters of classic torsion theories are C,, = 1.762-10710 m6, I =
1.083-107° m*, K| = —K» = 1.1525-10° Nm? and K3 = 1.971 - 10° Nm?, which are
extracted using the procedures discussed in Kugler et al (2018a). The corresponding
resonance curves are shown in Fig. 11.16, where the exact solution is evaluated
using Shelll181 elements, indicating a very complex behavior due to geometrical
unsymmetry of the cross-section. Vlasov’s and Benscoter’s theory of torsion (no
coupling between bending and torsion is considered) leads to significantly erroneous
results, while the present approach is more predictive. There, the application of v* = v
leads to some stiffening and the peaks slightly shift to the right. This shift is more
severe for the coarse mesh compared to finer one. Using a weaker coupling within the
cross-section analysis (v* = 0.01v) cures that phenomenon and the fine mesh delivers
very accurate response curves. In contrast to double symmetric cross-sections, where
only some cross-sectional modes contribute to the load case of torsion (and others
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can be skipped), here, all mode shapes couple and contribute altogether (we have to
apply i = 1,2,3,4,. . .imax). This is shown in Fig. 11.17 where smooth convergence

with respect to increasing imax is observed.
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11.4.4 Hollow Thin-walled Box Cross-section made of
Functionally Graded Material

In the third example we check the performance of the proposed procedure re-
garding inhomogeneous cross-sections. We consider a double symmetric hollow
box cross-section depicted in Fig. 11.18, where the outer surface consists of pure
TiC (Etic = 480 GPa, vyic = 0.2, pric = 4920 kg/m?) while the inner sur-
face consists of pure Aluminum (Ea; = 69 GPa, va; = 0.33, pa; = 2700 kg/m3).
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0.005m

y‘—lz
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Fig. 11.18. Hollow thin-walled box cross-section made of functionally graded material

The spatial variations of the material properties is assumed to be linear in wall-
thickness direction as shown for E(y,z) in Fig. 11.18, where we use a regu-
lar mesh with ten layers each with constant constitutive properties. The length
of the considered shaft (30 cubic beam elements) is / = 0.1 m and the ampli-
tude of the harmonic end-moment is My = 1 Nm. The results regarding clas-
sical theories of torsion require torsion properties, which are again found with
the strategies discussed in Kugler et al (2018a) and a reference beam length of
Irg =5 m (ErCyp =9.011-107 Nm*, Grlt = 22.15 Nm?, K| = —K» = 21.32 Nm?,
K3 = 43.47 Nm?, m,, = 1.4115-107% kgm?, m, = 1.17-10~'? kgri). The cross-
section analysis for extracting the mode couples for present approach (Sect. 11.3.1)
is done using [rg = 2 m. The harmonic answer is found based on a modal decompo-
sition of the considered shaft in an interval 0 < f < 80000 Hz, and a constant modal
damping ¢ = 0.01 is applied. The resulting resonance curves are depicted in Fig.
11.19, for v*(y,z) = v(y,z), where the “exact” solution is found with linear enhanced
strain Solid 185 elements and quadratic reduced integrated Solid186 elements in AN-
SYS (2019), indicating no difference. The application of the third mode couple only
leads to Benscoter’s classical theory which is way off the exact solution. Introducing
additionally the fifth mode couple delivers considerably more predictive quality and

Classic theory - Benscoter
Ansys Solid 185

Ansys Solid 186

3

—— =35

3 3
v[Hz] x10* v[HZ] x10*

Fig. 11.19. Variable number of mode couples (v*(y,z) =v(y,z))
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Fig. 11.20. Variable number of mode couples (v*(y, z) = 0.01v(y, z))

only slight deviation occur in higher frequency bands (two percent error in location
of the sixth peak). There, the eleventh and 18th mode enhances the performance
and the results converge to the exact solution, however, being slightly stiffer. In con-
trast, if we apply v*(y,z) = 0.01v(y,z) in the cross-section analysis leads to weaker
responses, i.e. the spikes are slightly shifted to left (see Fig. 11.20) with minus two
percent error in location of the sixth spike. Note that our cross-sectional analysis
is carried out using 18.000 degrees of freedom (see Fig. 11.19), and the member
analysis with 30 cubic elements and four relevant mode couples has 728 degrees
of freedom. The gain in efficiency of our theory becomes obvious since the Ansys
continuum results require at least more than one million degrees of freedom.

11.5 Conclusion

This contribution introduces a generalized beam theory (GBT) to cover effects due to
higher order beam mechanics, where cross-sectional warping and distortions influ-
ence the results considerably. While most literature regarding GBT state that warping
and distortions influence buckling loads, we show that these effects also contribute to
beam dynamics especially regarding torsion of thin-walled box type cross-sections.
There, the resonance curves due to harmonic loading indicate significant qualita-
tive and quantitative discrepancies compared to “exact” solutions evaluated using
3D continuum elements or shell elements. In order to overcome these issues a new
procedure is proposed where distortion and warping modes of the cross-section are
evaluated with the aid of a reference beam problem RBP. These mode couples are
introduced in a herein proposed generalized beam theory, where their axial distribu-
tion is weighted by generalized degrees of freedom. Then, the resulting mechanical
properties of beam structures converge due to mesh refinement of the cross-section
discretization, due to the number of mode couples, due to the polynomial order
of the beam element’s shape functions and due to the number of beam elements
discretizing the entire prismatic structure. The predictive quality of the outcome is
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significantly better compared to classical beam mechanics CBM, and homogeneous
and inhomogeneous cross-sections can be analyzed.
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Chapter 12

Free Vibration of Flexomagnetic Nanostructured
Tubes Based on Stress-driven Nonlocal Elasticity

Mohammad Malikan and Victor A. Eremeyev

Abstract A framework for the flexomagneticity influence is here considered extend-
ing the studies about this aspect on the small scale actuators. The developed model
accommodates and composes linear Lagrangian strains, Euler-Bernoulli beam ap-
proach as well as an extended case of Hamilton’s principle. The nanostructured tube
should subsume and incorporate size effect; however, for the sake of avoiding the
staggering costs of experiments, here, via stress-driven nonlocal elasticity theory,
the desired influence is captured. A given section is dedicated to reveal the accuracy
of the achieved model. In view of solution, the numerical results are generated ana-
lytically. We receive the conclusion that in nanoscale tubes the diameter can affect
fundamentally the performance of the flexomagnetic effect.

Key words: Flexomagneticity - Nanotube - Magnetoelasticity - Hamilton’s principle

12.1 Introduction

As anew-discovered material’s phenomenon, flexomagneticity absorbs the engineer-
ing researchers to study this physical occurrence when materials subject to static and
dynamics states. Indeed, flexomagneticity results from strain gradients. This manner
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can be named as the direct impact of flexomagneticity. In a reverse impact, one can
observe the flexo-effect during existence of an outer magnetic field gradient. This
effect would not be absolutely and solely in actuators and smart materials, but even
can occur in all materials and crystalline structures, see Eliseev et al (2009); Luka-
shev and Sabirianov (2010); Zhang et al (2012); Zhou et al (2014); Kabychenkov
and Lisovskii (2019); Eliseev et al (2019).

Since discovering of flexomagneticity effect, a very few publications have been
observed on the statics and dynamics responses of small scale actuators and sensors
which incorporate the effect, see Sidhardh and Ray (2018); Zhang et al (2019). Within
these articles, Zhang et al (2019) entirely focused on the effect of flexomagnetic dur-
ing bending of a nano actuator beam. By means of Euler-Bernoulli beam theory, the
static bending equation was formulated. Moreover, the consideration has been carried
out by use of surface elasticity. A variety boundary conditions were investigated on
the basis of both converse and direct magnetizations. From their result, one can find
that the flexomagnetic is a size-dependent material property. On the other hand, Sid-
hardh and Ray (2018) studied the static bending of a piezomagnetic-flexomagnetic
Euler-Bernoulli nanosize beam based on the clamped-free ends conditions. Both
inverse and direct effects of magnetization were discussed. The surface elasticity
aided to examine the size-dependency into the small beam. With a quantitative eval-
uation, they showed the scale-dependent behavior of flexomagneticity and identified
the significance of such the effect into nanostructures even with disregarding the
piezomagneticity.

As far as we are aware, no research work is found yet in terms of investigating of
natural frequencies of a nano-actuator tube composing the flexomagnetic. We aim
to study the flexomagneticity effect on the natural frequencies of a nanostructured
tube and intend to evaluate the small scale behavior on the basis of the stress-
driven nonlocal model of elasticity. The numerical outcomes pertain to an analytical
solution. The magneto-mechanical model is extended by illustrating some drawn
graphs during variations in significant and particular criterions.

12.2 Applied Mathematical Model

Here aright-handed Cartesian coordinate system is attached to the schematic domain
of the flexomagnetic nanotube as presented by Fig. 12.1. To this, we define L and r,
for length and radius of the specimen, respectively.

Assuming that the nanostructured tube contains flexomagneticity influence give
the constitutive equations as in Sidhardh and Ray (2018); Zhang et al (2019)

Oxx = Cri&xx —q31Hy, (12.1)
Exxz = 831Mxxz — f31H, (12.2)
Bz a33Hz +q318xx+f31nxxz’ (123)
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Fig. 12.1 Pictured geometry
of a nanostructured tube
presented schematically in the
Cartesian coordinates

in which g3; illustrates the influence of the sixth-order gradient elasticity tensor, H,
and B, exhibit the component of magnetic field and the magnetic flux, respectively,
&xxz 1s the component of the higher-order hyper stress tensor and is an induction of
coverse flexomagnetic effect, ¢3; depicts the component of the third-order piezomag-
netic tensor, a33 represents the component of the second-order magnetic permeability
tensor, f3; denotes the component of the fourth-order flexomagnetic coefficients ten-
Sor, Oxx is the axial stress, Cpp is the elastic modulus, &y, and 7,,, are the axial
elastic strain and its gradient.

To have a movement for each node of body of the applied model after deformation,
the Euler-Bernoulli hypothesis is used as in Song and Li (2007); Reddy (2010);
Malikan and Eremeyev (2020)

ow(x,1)

, uz(x,z,t) = w(x, 1), (12.4)
ox

uy(x,z,t) =u(x,t)—z
in which the general movements along x and z directions are shown by u; (i = 1,3)
and the movements of the middle plane of the thickness alone the aforementioned
directions there have been used as u and w, respectively. More importantly, we
employ z to dedicate the thickness coordinate. Axial strain and the related gradient
by means of linear Lagrangian strains as well as Eqgs. (12.4), are attained as

0x ZaxZ’ ez = dz  0x%’

Exx =

(12.5)

To yield the equation which governs the domain subjected to vibrational state,
the Hamiltonian can be extended and nominated as

153

6/(HK—HU +ITy)dt =0 (12.6)

n

for which the total internal strain energy, work of external forces and the kinetic
energy are introduced by 7, ITy and Ik . To determine the total strain energy, one
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should collect the strain energy by mechanics and the magnetic strain energy which
lead to

6HU = /(O-xxésxx +§xxz§77xxz - BzéHZ)dV' (127)
\4

In a magnetic-mechanical coupling problem for a beam, the resultants of stress

can be defined as
h/2

NXZ/O'XXdZ, (12.8)
)
h/2

My = /Uxxzdz, (12.9)
~h/)2
/2

Tixz = / xxzdz. (12.10)
—h/2

To write a relation between the transverse component of the magnetic field and
magnetic potential ¥, one can show that

oY
H,+—=0. (12.11)
0z
Here we assume a closed circuit state for the modeled system giving the boundary
conditions for the magnetic potential as

h h
av(+§) =y, sff(—z) =0. (12.12)

To determine the magnetic potential which is externally applied on the model as a
result of the existence magnetic field, we symbolize .

A mathematical combination of Egs. (12.3), (12.7), (12.11) and (12.12), we can
obtain the magnetic potential along the thickness and the magnetic field as below,
see Sidhardh and Ray (2018); Zhang et al (2019) for details,

q31 [ » W\ *w h
po_ B2 222 P2, 12.13
2az3 (Z 4 ) o2 h\*T2 ( )
g3 O*w ¥
H =z——-=, 12.14
‘ Za33 (9)62 h ( )

Therefore, one can insert Egs. (12.13) and (12.14) into Egs. (12.1)-(12.3) to harvest
the magnetic induction and stress also higher-order moment stress component as
follows
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ou a3
O =Cri——z[Cp + =4 +M,
0x ass h
e =25 L Bz 3w MPAIL
XXz a3 6x2 h 5
B 0w a33¢
f31 T
Thus, the magnetic-mechanical stress resultants can be developed as
0w
My =-1|Cj1 + — ) ox -2
0w
Txxz = —831h—— + 314,
0x

where the general form of the area moment of inertia is as

IZ=/zsz.

A

The general form of kinetic energy is displayed below

L[ [y

—h/2 A

The first variation of kinetic energy leads to

L
*w 62
ollx = / (12 3720 5~ 6t2 )6wdx
0
where the mass moment of inertias are given by

h/2

ol = /p(Z)(l,zz)dz-

~h/2

We consider the general case of established work by external forces as

1 F o (ow)

_ 2 ofow

_2/Nx(_6x) dx,
0

which its first variational case will be

dAdx.

219

(12.15)

(12.16)

(12.17)

(12.18)

(12.19)

(12.20)

(12.21)

(12.22)
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SIly / Ngag;” (;W (12.23)

in which N depicts the axial load. In this paper, we investigate the axial magnetic
force as the in-plane axial resultant. To this,

N =vqs. (12.24)

Eventually, based on the above formulation the local governing equation which gives
the natural frequencies of the flexomagnetic nanotube can be taken as

O’M,  8°Ty., 0 8%w 0w 9*w
+ +N, —=1y—-LHL——. 12.25
axz | axz  Yoaxz Yo Paxi? (12.25)

Here, we employ the stress-driven nonlocal elasticity model (NDM). It stands
here differentially as below in Apuzzo et al (2017); Sedighi and Malikan (2020)

Px(x) 1
in which L. shows a nonlocal characteristic length. And for y(x) we have

*w

Consequently,

8w 8 5t 2w 82 5t
D(2 id W):B LAy Vi id id (12.28)

— g+ [y ———,
©9x6  ax* axt T ax2 e T ax
where B = —g31h and

D =

q
Cll + ﬁ
ass

It is required to solve the above characteristic equation to obtain the natural frequen-
cies of the flexomagnetic nanotube.

12.3 Solution of the Equation

The methodology here comprises the analytical solution as in Malikan et al (2020)

00

wi(x,t) = Z sin (%x) exp{iw,t}. (12.29)

m=1
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The above-mentioned series can satisfy the conditions for pinned-pinned beams.

To compute and present the numerical values of the natural frequencies of the
flexomagnetic nanostructured tube, we apply Eq. (12.28) on Eq. (12.29). Finally, the
characteristic equation of frequency would be

(12.30)

—DL2a8 — (D +B)ak, -V g3
w}’l = 2 ’
Iy + haj,

where a,, = mn/L.

12.4 Results and Discussions

12.4.1 Results’ Validation

This section associates a comparison for the present formulation. The examination
of formulation is based on the ignoring piezo-flexomagnetic features. Table 12.1
is prepared to estimate natural frequencies in dimensionless quantities with respect
to Barretta et al (2018) in which one can observe the evaluations for stress-driven
nonlocal integral model (SDM) and strain gradient theory (SGT). As itis clear, slight
differences are seen between NDM and SDM when the characteristic parameter A is
sufficiently small. However, increasing this dimensionless characteristic parameter
results in further conflicts. Nevertheless, it is so far easier to use the NDM vis-a-vis
the SDM and results can be acceptable. Here we assume that

L L
A==5, E=30x10% v=0.23, =10, p=1.

12.4.2 Computational Model

This section devotes some tabulated results for natural frequencies of the nanotube in
the presence and absence of the flexomagneticity impact. To do this, the Table 12.2
aids us in Sidhardh and Ray (2018); Zhang et al (2019). Additionally, the results are
shown for a non-dimensional manner of natural frequency as

We initially evaluate the effect of length scale parameter variations in accordance
with the Table 12.3. The nanotube is assumed in two states. The former has been
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Table 12.1
Evaluation of natural frequencies of a nanobeam. SDM and SGT relate to Barretta et al (2018),
whereas column NDM present current research

A SDM SGT NDM

0 9.82927  9.8293  9.82927
0.01 9.83402 9.8339 9.8341
0.02 9.84787  9.8471 9.8486
0.03 9.87022  9.8676 9.8728
0.04 990042  9.8943 9.9066
0.05 993783  9.9259 9.9498
0.06 998183 9.9614  10.0024
0.07 10.0318  9.9997  10.0641
0.08 10.0871 10.0398  10.1349
0.09 10.1472 10.0810 10.2146
0.1 10.2115 10.1223  10.3029

investigated with regard to the effects of flexomagnetic and the latter without consid-
ering the effect and merely under piezomagnetic conditions. It is important to note

Table 12.2

Material specifications of an assumed piezo-actuator nanotube
Ci1 286 10° N/m?

B 10710 N/A

q31 580.3 N/A‘m

ayz 1.57x107* N/A?

L 15d

d 1 nm

h 0.34 nm

Table 12.3

Dimensionless natural frequencies in variations of the length scale parameter (¥ = 1uA)

L. nm  Piezomagnetic nanotube with  Piezomagnetic nanotube
considering flexomagneticity

0 14.4114 14.4303
0.25 14.4307 14.4496
0.5 14.4886 14.5074
0.75 14.5845 14.6032
1 14.7177 14.7362
1.25 14.8872 14.9055
1.5 15.0918 15.1099
1.75 15.3301 15.3479
2 15.6006 15.6180
2.5 16.2312 16.2480
3 16.9702 16.9863
3.5 17.8041 17.8194

4 18.7202 18.7347
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that the flexomagnetic effect makes the natural frequencies smaller. It is also worth
mentioning that the larger the values of L., the higher the natural frequencies. It can
be observed that while the value of L. is set to be zero in contrast to the when its
value is at 4, give further difference for natural frequencies of the mentioned tubes.
It can be stated that this decreasing behavior in the difference of results of both cases
can be because the length scale parameter increases the strength of the tubes and
as far as the flexomagnetic effect makes the material more flexible, hence, in higher
values of the length scale the influence of flexomagneticity is slighter. More signif-
icantly, as the variation of the length scale parameter creates differences between
results of a piezomagnetic nanotube against a flexo-piezomagnetic one, this behavior
can confirm that the flexomagneticity is a size-dependent phenomenon similar to the
flexoelectricity, see Yudin and Tagantsev (2013); Wang et al (2019); Nguyen et al
(2013); Eremeyeyv et al (2020) and the reference therein.

Tables 12.4 and 12.5 give the numerical values of natural frequencies for the
both aforementioned cases of nanotubes in variations of diameter and length of the
tubes. Again here the size dependency behavior of flexomagneticity can be seen.
The increase in the diameter leads to decrease of the discrepancy between response

Table 12.4
Dimensionless natural frequencies in variations of the diameter (L. = 0.5 nm, ¥ = 1uA)

d nm Piezomagnetic nanotube with ~ Piezomagnetic nanotube
considering flexomagneticity

0.7 10.6768 10.7023
1 14.4886 14.5074
1.2 16.6303 16.6467
1.5 19.5766 19.5905
2 24.2887 24.2999
2.5 29.2463 29.2556
3 34.8146 34.8224
35 41.2301 41.2367
4 48.6422 48.6478
Table 12.5

Dimensionless natural frequencies in variations of the length (L, = 0.5 nm, ¥ = [uA)

L/d Piezomagnetic nanotube with ~ Piezomagnetic nanotube
considering flexomagneticity

10 14.4471 14.4660
15 14.4886 14.5074
20 14.8129 14.8313
25 15.5244 15.5420
30 16.7575 16.7737
35 18.6175 18.6321
40 21.1582 21.1710
45 24.3866 243977

50 28.2822 28.2919
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of the two tubes. Howbeit it is noteworthy that the reducing effect in Table 12.3 is
further remarkable than the Table 12.2. In addition, it seems that the diminishing
effect as a result of enlarging diameter is more noticeable than the lessening effect
of the length scale parameter as the previous Table. Accordingly, it is important to
say that the diameter plays as a crucial factor to study size-dependent response of
nanotubes possessing flexomagneticity.

In Table 12.6 the natural frequencies of both cases of nanotubes are tabulated in
order to exhibit whether the magnetic field affects a flexo-piezomagnetic nanotube
more than a piezomagnetic one or not. As can be observed, there is no highlight

Table 12.6
Dimensionless natural frequencies in variations of the magnetic potential (L. = 0.5 nm)

Y(uA) Piezomagnetic nanotube with  Piezomagnetic nanotube
considering flexomagneticity

-2 13.9794 13.9989
-1 14.1512 14.1704
0 14.3209 14.3399
1 14.4886 14.5074
2 14.6544 14.6730
3 14.8183 14.8367
4 14.9805 14.9987
5 15.1409 15.1589
6 15.2996 15.3174
7 15.4567 15.4743
8 15.6122 15.6297
9 15.7662 15.7835
10 15.9187 15.9358

difference among the two tubes, although a very little difference can be seen. The
meaning of difference is here about difference between results of two cases when the
magnetic potential is chosen as minimum against when it is selected as maximum in
the Table. As a matter of fact, it can be said that the magnetic field has approximately
identical influence on the two tubes. Furthermore, it is substantial that the values of
the external potential are insignificant, but their effect is major. In fact, it is concluded
that the effect of outer magnetic potential on the natural frequencies of a nanoscale
actuator tube having piezo-flexomagnetic influences is momentous.

12.5 Conclusions

In this paper, we successfully combined the flexomagnetic effect with elasticity
relations to consider this impact on the natural frequencies of a nanotube. We fur-
ther considered the nanosize effects based on the stress-driven nonlocal elasticity
model. The extended Hamiltonian demonstrated governing equation in a magnetic-
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mechanical coupling. We verified our results regarded to a nanotube and correspond
well to the open literature. In an analytical framework, we established some tabu-
lated results to show the flexomagnetic effect. Based on our numerical exercises,
it was found that the variation of diameter is more notable to show the effect of
flexomagneticity. And the lesser the diameter, the larger the flexomagnetic effect.
Likewise, the smaller the length of the tube, the greater the flexomagneticity effect.
It can confirm that the flexomagneticity is a size-dependent feature of materials, and
its impact is more considerable in nanoscale.
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Federation (contract No. 14.250.31.0046).

References

Apuzzo A, Barretta R, Luciano R, de Sciarra FM, Penna R (2017) Free vibra-
tions of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model.
Composites Part B: Engineering 123:105-111

Barretta R, Faghidian SA, Luciano R, Medaglia CM, Penna R (2018) Free vibra-
tions of FG elastic Timoshenko nano-beams by strain gradient and stress-driven
nonlocal models. Composites Part B: Engineering 154:20-32

Eliseev EA, Morozovska AN, Glinchuk MD, Blinc R (2009) Spontaneous flexoelec-
tric/flexomagnetic effect in nanoferroics. Physical Review B 79(16):165,433

Eliseev EA, Morozovska AN, Khist VV, Polinger V (2019) Chapter six — effective
flexoelectric and flexomagnetic response of ferroics. In: Stamps RL, Schulthei3 H
(eds) Recent Advances in Topological Ferroics and their Dynamics, Solid State
Physics, vol 70, Academic Press, pp 237-289

Eremeyev VA, Ganghoffer JF, Konopinska-Zmyslowska V, Uglov NS (2020) Flexo-
electricity and apparent piezoelectricity of a pantographic micro-bar. International
Journal of Engineering Science 149:103,213

Kabychenkov AF, Lisovskii FV (2019) Flexomagnetic and flexoantiferromag-
netic effects in centrosymmetric antiferromagnetic materials. Technical Physics
64(7):980-983

Lukashev P, Sabirianov RF (2010) Flexomagnetic effect in frustrated triangular
magnetic structures. Physical Review B 82(9):094,417

Malikan M, Eremeyev VA (2020) Post-critical buckling of truncated conical carbon
nanotubes considering surface effects embedding in a nonlinear Winkler substrate
using the Rayleigh-Ritz method. Materials Research Express 7:025,005

Malikan M, Krasheninnikov M, Eremeyev VA (2020) Torsional stability capacity
of a nano-composite shell based on a nonlocal strain gradient shell model under
a three-dimensional magnetic field. International Journal of Engineering Science
148:103,210

Nguyen TD, Mao S, Yeh YW, Purohit PK, McAlpine MC (2013) Nanoscale flexo-
electricity. Advanced Materials 25(7):946-974



226 Mohammad Malikan and Victor A. Eremeyev

Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear
deformation theories of beams and plates. International Journal of Engineering
Science 48(11):1507-1518

Sedighi HM, Malikan M (2020) Stress-driven nonlocal elasticity for
nonlinear  vibration  characteristics of  carbon/boron-nitride  hetero-
nanotube subject to magneto-thermal environment. Physica Scripta DOI
http://iopscience.iop.org/10.1088/1402-4896/ab7a38

Sidhardh S, Ray MC (2018) Flexomagnetic response of nanostructures. Journal of
Applied Physics 124(24):244,101

Song X, Li SR (2007) Thermal buckling and post-buckling of pinned—fixed Euler—
Bernoulli beams on an elastic foundation. Mechanics Research Communications
34(2):164-171

Wang B, Gu Y, Zhang S, Chen LQ (2019) Flexoelectricity in solids: Progress,
challenges, and perspectives. Progress in Materials Science 106:100,570

Yudin PV, Tagantsev AK (2013) Fundamentals of flexoelectricity in solids. Nan-
otechnology 24(43):432,001

Zhang JX, Zeches RJ, He Q, Chu YH, Ramesh R (2012) Nanoscale phase boundaries:
a new twist to novel functionalities. Nanoscale 4(20):6196-6204

Zhang N, Zheng S, Chen D (2019) Size-dependent static bending of flexomagnetic
nanobeams. Journal of Applied Physics 126(22):223,901

Zhou H, Pei Y, Fang D (2014) Magnetic field tunable small-scale mechanical prop-
erties of nickel single crystals measured by nanoindentation technique. Scientific
Reports 4(4583):1-6



®

Check for
updates

Chapter 13

Coupled, Thermo-elastic, Large Amplitude
Vibration of Bi-material Beams

Emil Manoach, Simona Doneva, and Jerzy Warminski

Abstract The main goal of this work is to develop a theoretical and numerical
approach, to study the geometrical nonlinear vibration of bi-material beams under
the combined action of mechanical and thermal loads. The geometrically nonlinear
version of the Timoshenko beam theory is used to describe the theoretical model of
the problem. Starting from the geometrical, constitutive and equilibrium equations
of each layer the governing equations of the bi-material beam are derived. The beam
is subjected to heat flux and dynamic mechanical loading. The influence of the
elevated temperature or the heat propagation along the beam length and thickness
on the response of the beam was studied.

Key words: Bi-material - Timoshenko beam - Large amplitude vibration - Heat
propagation

13.1 Introduction

The usage of composites materials in many engineering fields has grown in recent
years. Among the most popular composite structures the bi-material structures and
especially the bi-material beams are frequently used in different branches in industry.
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When the bi-material beam is subjected to different fields including mechanical
and thermal loading the modelling of their behavior could be very complex. Most
of the studies of the thermomechanical behaviour of the beams are devoted to their
static states. Some consideration of the bending of bi-material beams can be found
as early as in 1960 in Boley and Weiner (1960). Later many studies appear about the
deformation, stresses and temperature distribution in bi-metalic beams. A subject of
interest is the thermoelastic behavior of such beams because of the different elastic
and thermal properties of the layers which lead to more complex behavior of the
structures. The static thermoelastic deformation of composite beams was studied, for
example in Shang et al (2013); Carpinteri and Pugno (2006); Carpinteri and Paggi
(2008); Srinivasan and Spearing (2008).

Generally, the most of the studies of the dynamic response of the thermally
loaded beam consider that the structure gets elevated temperature instantly, and
the heat propagation is not included in model. The elevated temperature can lead
the structures to buckle and several authors studied the buckling and postbuckling
behaviour of structures subjected to mechanical loads at elevated temperatures (Mei
et al, 1999; Shi et al, 1999, etc).

Many years ago, however, it was shown, in Boley (1956) that the intensive ther-
mal loading (thermal shocks) can result to a transient vibration in structures. For
such cases the simultaneous consideration of the heat propagation and the structure
vibration is important. Such studies are performed in Karagiozova and Manoach
(1992); Manoach (2003); Manoach and Ribeiro (2004).

Recently, deep and complicated studies of nonlinear behaviour of structures sub-
jected to thermal and mechanical loading have been done in the works of Saetta and
Rega (2014, 2016, 2017); Settimi et al (2018). They used reduced models to study
the local and global dynamics of the coupled and uncoupled thermoelastic nonlinear
vibration of structures.

The dynamic instabilities and transient vibrations of a bimaterial beam with
alternating magnetic fields and thermal loads are investigated in Wu (2009). The
authors used the Hamilton principle to deduce the equation of the beam vibration on
the base of the Euler-Bernoulli theory. The equation of motion and the solution of
thermal effect are obtained by superposing certain fundamental linear elastic stress
states.

The goal of the present work is to derive the equations of the geometrically
nonlinear vibration of bi-material beam with non-symmetric layers according to the
Timoshenko beam theory and to study the coupled nonlinear vibration of the beam.
An influence of the heat propagation during the vibration will also be analysed.

13.2 Basic Equations

A beam with length / width b and thickness 4 is considered. The beam consists of
two layers made of different materials (Material 1 and 2) with thickness /4 and &,
(h = hy + hy). The geometrical scheme of the beam is shown in Fig. 13.1.
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Material 2 h,

=
- W
=)
v

Material 1

Fig. 13.1. The geometrical scheme of the beam model

13.2.1 Geometrical Relationships

The strain and curvature-displacements relationships associated with the mid-axes of
the beam, which consider large displacements u(x,#) and w(x,¢) in x and z directions,
respectively, and the angle rotation (x,#) of the cross-section effect, take the form:

& 0x

_ o ow_ =Y 13.1
T ox 2 v K (13.1

o Ou 1 [ow\’ o _ow o O
’ Yooax ox’
and the strain vector is expressed as follows:
g ={e)+ 2 f(2)e), } (13.2)

where f(z) is a function describing the distribution of the shear strain along the beam
thickness.

13.2.2 Constitutive Equations

Assuming that the beam material is linear elastic and isotropic the relations between
the component of the stresses and the strains are:

oD = g0 ]g, —oz(Ti)(T—To)], o) =G0ey,, =12, (13.3)

where E) is the Young modulus and G is the shear modulus of the i layer and
a(Ti) is the coefficient of thermal expansion of the corresponding layer.

The bending moment M, the shear force Q and the in-plane stress resultant per
unit length N are expressed by the stresses as follows:
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Zy h/2
M=b /o-xzdz+/a'xzdz ,
\—h/z 21
zy h/2
Q=b /o-xydz+/0'xydz , (13.4)
h/2 21
Zy h/2
N =b /a’xdz+/0'xdz
h/2 zi

13.3 Field Equations

13.3.1 Governing Equations

The equations describing the coupled problem of the temperature distribution and
the beam vibrations as a result of the action of a heat flow with intensity g(x,) and
of mechanical load with intensity p(x,t) are (i = 1,2):

) o T T o EVT 9

+ - N b

(’) ot sz 072 /lﬁ) ot
6N ()614 i i 6214
ax G g P G =0

(13.5)

oM (1)69” (i) (1)6 v
- vr =0,

x 2 P e
00 62w ON ow ()(9w ( 9w
%% NIV i z)bh(l) - _ t
ox Vo Taxax U Gx oz = PLeD):

where 7@ is the inertia moment of i™ layer, p) is the density of the i material,
T(x,z,t) is current temperature Ty is the initial constant temperature, /l() is the
thermal conductivity of /" material and cl(,l) is the heat capacity per unit volume,

w(x,t) is the transverse displacement, y/(x,?) is the rotation angle and

; 61& u aw\?
W) — _ (t)
£ = ox (T To) + ( I )

Neglecting the longitudinal inertia effect and by using the geometrical and con-
stitutive equations Egs. (13.5) can be rewritten in the form:
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(13.7)
Here the nonlinear terms due to the large deflections and the thermal loading are
moved to the right hand side of the equations, thus forming pseudo-load vectors
GL(GL,GZL), GT(GT,Gg).
In these equations the following notations are introduced:

(Eh)* = (E(l)h(l)+E(2)h(2)), (Gh)* = (G(l)h(l) +G(2)h(2)),

1 h3 n?
)i —_EW |, +_ 1@ @[ _.3

=3 8 g ‘1
(ED* = (E(l)l(l) +E(2)I<2)), (pl)* = (p(l)l(l) +p(2)1(2)),

2] h/2
o o (13.8)

Yy = Tdz, vy = [ Tdg,

-h/2 21

21 h/2

/Tzdz, )((Tz) =/Tzdz.
“h)2 2

1
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It is seen that the different properties of the composing materials lead to appearance
of new terms in the governing equations which do not exist in the case of one-material
beam. The greater is the difference in material properties, the greater the influence of
the shear forces on the beam behavior. This fact shows that for analyzes of composite
beams it is important to use at least first-order beam theory, such as Timoshenko’s
theory.

13.3.2 Boundary and Initial Conditions

Assuming that the upper surface and the surfaces at x = 0 and x =/ are heat isolated
and a heat flow ¢(x,t) acts on the lower beam surface, the boundary conditions for
the equation describing the heat propagation are:

1o if £ >

ar | 7! i
a_Z _ {AT q(.x,t) if t < fo (139)

The beam is considered clamped, in-axis fixed, i.e.:
w(0,0) =u(l,t) =w(0,t) =w(l,t) =0, (0,1)=w(l,t)=0. (13.10)

The initial conditions are accepted as:

w(x,0)=0, Ww(x,0)=0, ¥(x,00=0, ¥(x,00=0,

T(x,z,0)=Ty, xe€l0,],z€[-h/2,h/2]. (13.11)

13.3.3 Dimensionless Variables
The derived partial differential equations and associated boundary conditions have
been transformed to dimensionless form by following transformations:

2o (Eh) _T-T
(D)’ To

i=ull, w=w/l, z=z/h, f:t%, (13.12)

Omitting the bars above the dimensionless variables the equations of the beam
dynamics can be rewritten in the form:
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0%u
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The nonlinear terms (13.7) from Eqs. (13.6) get the form

G, =

ow *w\ EW-E® Wy 52y

- (E W) T (Ehy 20 9x2
gy a2\ n

G = |[EW @Y | g2, %e ’
T ox TEUMT o | Eny

oL EP—ED OO (P ow Pw
b 2 (B \9x2 ox ax2)
(1) ) )
Gl = - E<1>a<Tl>6Xe +E<z>a<Tz)‘9Xa Ih .
o Ox | (ED) (13.14)
GL = _ @ 405 6_w 2 B (E(l)_E(Z))h(l)hQ) 5_',0 32_w
2 (9x : ax Z(Eh)*l ax axz s

2
_ Do), )2 @) W
G = _(E( lag)yy + E®ap)yy ) ox2’
Gh)* Eh)* 2
: =k2( )’ az( ) ’
(Eh)* (ED)*
Ip(x,t
dy = l2/[DER)), o= crl2J(ED), pl(x,t)z%

Here, k? characterizes the distribution of the shear stresses along the beam cross-
section (shear correction factor). It is assumed that the damping coefficients are equal
for both layers.

13.4 Numerical Approach

13.4.1 Discretization of the Equation for the Heat Transfer

For the solution of the equation for the heat propagation (13.5); the finite difference
method is applied for the space discretization. The central difference formulas were
used and this equation becomes:
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i = b1(0is1,;—20; j +0i-1,;)] Ax* = by (0141, — 20, j + 01 ;) 42°

+ b3z j (i1 —i-1)/(24x) = ba(wis1 — wimt)(Wis1 —Wi—1)/(44x%), (13.13)

where i = 1,...,Ny,j = 1,...,N,,4x = 1/(Ny = 1),4z = 1/(N, = 1). Ny and N, are
numbers of points taken along the axes x and z, respectively and

. . N1-1 . , . -1
bY) = [dz (a%’) +a§’))] , bg) =1 [ch(’)2 (a%j) +a§’))] )

. . . R L o1-1 . . . . . o1-1
D _ D7 EORD 19 104D 4 g D _ @D ED [ 19 104D + g
by’ =ay ToED Y [/lT(i)l(al +a; )] , b, =ay EW [/IT(I.)l(a1 +a; )] ,
aV =D, d)) =V THEV /AP, j=12.

It must be noted that the discretization step along the thickness Az of the beam is
equal for both layers.
The discretized initial condition is:

t=0: 91', j= 0
The discretized boundary conditions are:

0o,j =02,j, On+iN, =ON-1,N,» Oin.+1=0i N1,
0i.0 = 0i.2 +2q;(NhAz/(ATy) if 1 <1 (13.16)
0i1=0i2 ift>n

The thermomechanical coupling effects are defined by the coefficients as, b3 and b4.
Case ap =0 and b3 = by = 0 is referred to the uncoupled problem.

13.4.2 Algorithm for the Solution of the Beam Vibration Problem

The algorithm to solve the Eqgs. (13.13) is very similar to the one used in Manoach
and Ribeiro (2004) and only briefly is reported here.

e First, the eigenvalue problem was solved by considering the Eqs. (13.13),,
(13.13)3 with zero right hand sides.

e Then using the pseudo-normal mode superposition method (see Manoach and
Ribeiro, 2004) the generalized displacements vector v = {ay,w} is expanded
as a sum of the product of the vectors of pseudo-normal modes v, and time
dependent functions g, (f) as

Ny
v(x,t) = Z Vu(2)gn(t) (13.17)

n=1

and the partial differential equations are transformed in the following coupled
system of ordinary differential equations:



13 Coupled, Thermo-elastic, Large Amplitude Vibration of Bi-material Beams 235

(1) + 266 (1) + W2 qn(1) = Fo (1), (13.18)

where n are the natural frequencies of the linear elastic (undamped) bi-material
Timoshenko beam, &, are modal damping parameters and

1
Fo(t) = /0 vE (0)[P(x,1) + G(x,1)]dx, P(x,1) = (0,-p)", G =G +Gr (13.19)

In (13.19) by G, and Gy are denoted the vectors G (GF,GY) and G7(GT,GY)
(see Egs. (13.14)) and P(x,) is the force vector. In (13.17) it is assumed that the
transverse displacements and the rotation angle have the same time dependent
amplitudes ¢;,.

The algorithm is based on the successive solution of the equations for the mechanical
vibrations of the beam and for the heat transfer. The detailed description of the
algorithm could be found in Manoach and Ribeiro (2004).

13.5 Numerical Examples

The numerical examples given here aim to illustrate the application of the numerical
approach described above and to verify the equations deduced her for thermoelastic
vibration of bi-materials Timoshenko beams. The considered beam consists of two
materials (aluminium and copper) with the following parameters:

EW =7x10'N/m?, E® =12.8x10’N/m?, vV =y® =0.34,
pV =2778kg/m?,  p? = 8960kg/m>, ¢l =2484N/(m’K), ¢ = 1018N/(m’K),
AW =207N/(sK), AP =385N/(sK),  1=0.5m, b=0.025m

Two cases of the geometry of the beam were considered: (i) #// = 0.1 and (ii)
h/l=0.05. In the first case z; = 0.007 m and in the second case z; = 0.003125 m. In
both cases the beam cross-section was discretized with 9 nodes along the thickness,
ie. N; = 9,Nz(l) =6 and Nz(z) = 4 (the interface layer was counted 2 times) . For the
interface layer (N, = 6) the coefficients in Eqgs. (13.12) were calculated using the
average values of the physical parameters , i.e.

otV 40

* —
ar = —2 s etc.

ED 4+ EQ@
E'= ——,
2
The beam was discretized with 41 nodes along its length - N, = 41. The results

of calculations with 81 nodes show almost identical results with the ones with 41. In
all calculations five terms were chosen in the expansion of Eq. (13.17) (N = 5).
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13.5.1 Eigenfrequencies

The natural frequencies and normal modes of the bi-material Timoshenko beam
were calculated using the same approach as in Manoach and Karagiozova (1993).
The natural frequencies and normal nodes were calculated for a beam with the
“averaged” properties

(Eh)* =5.73%x10'N/m?, v=0.34, (ph)* =3981.2kg/m’

by using the general purpose FE program MSC NASTRAN. The beam was dis-
cretized with 40 linear beam elements. The obtained frequencies are shown in Table
13.1.

The “averaging” of the material properties is an approximation of the real mod-
elling of the bi-material beam. For example, the inertia moment for the equivalent
beam is different from the one obtained by the present model. There are other dis-
crepancies between two models so we accept that the relative differences in the
calculated frequencies according to the two models are acceptable and the present
model can be applied for the further studies.

13.5.2 Beam at Elevated Temperature

The first considered case is the beam at an elevated temperature. We consider that the
beam with /2/] = 0.1 gets an elevated temperature A7 instantly. The beam is subjected
to harmonic loading p = posinw.t, where w, denotes the excitation frequency. It
is accepted that the mechanical loading is uniformly distributed along the beam
length. The results for vibration of centre of the beam in time for four different
temperatures are shown in Fig. 13.2. The dimensionless excitation frequency is
@, =0.4 (01 =0.61). As can be expected the elevated temperatures lead to vibrations
with larger amplitudes. In all cases vibrations are periodic and symmetric around
the mid-axis of the beam. Because the beam is quite thick for this parameter of the
loading more complex phenomena like buckling or non-periodic response have not
been observed. The non-symmetric vibration around the mid-axis of the beam is not

Table 13.1
The natural frequencies of the beam

Frequency number | Present model, rad/s | MSC NASTRAN, rad/s | Relative difference, %
1 4934 5041 2.10

2 12579 12878 2.32

3 22628 23206 2.49

4 34221 35146 2.63

5 46839 48162 2.75
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observed for the selected geometrical parameters of the beam. Such phenomenon
was observed for thinner beams (not shown here).

13.5.3 Beam Subjected to Heat Impact

The next considered case is a thinner beam (h/] = 0.05) subjected to a harmonic
loading and heat impact. In this case the beam made of the same two materials (with
z1 =0.003125 m) is subjected to a short heat pulse acting on the lower beam surface,
distributed along the beam length according to the sin function and its amplitude
decreases in time as:

r -

do |1 — = | sin(zx) for 0 <1 < 1

EGE qo( to) o '
0 for 7>1

The thermal loading changes dramatically the beam response. The intensive short
thermal pulse force the beam to buckle. After the initial peak of the response, with

0.0014

7 3 2
0.0007 H[II]IIIIII

w/l
=)

-0.0007

00014 — T I |

0 1000 2000 3000
Dimensionless time

Fig. 13.2. Time-history diagrams of the response of the beam subjected to harmonic loading at
elevated temperature (p =8 - 10° N/m, w, = 3284.2 rad/s): 1 — AT =10K, 2 — AT =20 K,
3— AT=30K, 4 - AT=60 K
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decreasing and ceasing of the thermal loading the maximal deflections of the beam
decrease and the beam continue to vibrate around a buckle state which changes with
time. This can be seen in Fig. 13.2 where the response of the beam subjected to
mechanical loading and thermal shock are shown.

The results concerning the heat propagation along the beam length and thickness
can be seen in Figs. 13.3 and 13.4. These figures compared with Fig. 13.5 clearly
show the different velocity of the heat propagation and beam elastic vibrations. As
it is known the heat propagation is much slower process. It is seen that after tens
periods of elastic vibrations the temperature still continues to propagate along the
beam cross-section.

Atthe first contour plot of the temperature distribution (Fig. 13.3a) the temperature
propagates only at the first layers of the beam and it even has not reached the middle
of the beam cross-section. At the same time the beam oscillates more than 40 times
along its mid axis. At later moment, f = 1277, the temperature propagation has
reached the whole beam cross section but still has not reached a uniform value.
The speed of the heat propagation is different for the different layers because of the
different thermal properties of the materials.

The influence of the speed of the heat propagation can be judged and from Fig.
13.4 where the change of the temperature in time at three different layers along z
axis is shown. The bottom layer (layer 1), its adjacent layer (layer 2) and interface

Node numbers along z axis
=y
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Fig. 13.3. Distribution of the temperature along the beam cross-section and the beam length:
(a)-1=827;(b)-1=1277
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Fig. 13.4. Variation of the temperature at the beam center at the first layer — 1 (red colour), at the
second layers - 2 (blue colour), and at 6™ (interface) layer (green colour) of the beam cross-section

layer (layer 6) are chosen. In order the process of the heat propagation to be more
visible, a small figure showing the heat evolution at layer 6 is added.

13.6 Discussion and Conclusions

The large amplitude vibrations of bi-material Timoshenko beams subjected to me-
chanical load and thermal loading are studied in this work. The deduced equations of
the beam motion include nonlinear terms which do not appear in the equation of mo-
tion of homogeneous beams. These terms are GIL and GIT. The other nonlinear terms
in the right hand side of the Eqs. (13.13) are more complex than the ones obtained
for the single-material Timoshenko beam model. The equations of the beam motion
are coupled with the equation of the heat propagation. The different properties of
the beam material along the beam cross-section are also considered in the solution
of this equation. The considered equations include full coupling of the mechanical
and thermal fields, i.e. the thermal field influences the beam motion and the beam
motion influence the heat propagation.

The considered numerical examples aim to check the applicability and the cor-
rectness of the deduced equations and the methods developed to solve them. The
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obtained results demonstrate that temperature loading and short heat pulses can have
a big influences on the beam behavior.

Of course the influence of the mechanical vibration on the heat propagation is
much weaker and often negligible. In some cases, for example, for bi-material micro
structures,) the beam motion could have some influence on the heat propagation
process. In the considered case only at the initial stage of the process small differences
between the coupled and uncoupled solution could be observed — see Fig. 13.6.

The small difference at the beginning of the process becomes negligible in time.

The influence of the nonlinear terms due to different layers on the beam response
as well as the influences of the coupled terms on the beam vibration and heat
propagation will be studied in our further works. The heat pulse parameters (pulse
shape, pulse duration and the heat flux value) are also objects of interests and will
be studied.
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Chapter 14

Effect of Longitudinal Variation of Material
Properties in Warping Torsion of FGM Beams

Justin Murin, Juraj Hrabovsky, Stephan Kugler, Vladimir Kutis,
and Mehdi Aminbaghai

Abstract In this paper, the influence of longitudinal variation of material properties
on the deformation and stresses of thin-walled non-uniformly twisted Function-
ally Graded Material (FGM) beams is investigated. The longitudinal variation is
described by a polynomial. Secondary deformations, resulting from the angle of
twist, are considered. The transfer relations are derived and used for establishing
finite element equations for non-uniformly twisted FGM beams in local coordinate
systems. The warping part of the first derivative of the twist angle, caused by the
bimoment, is considered as an additional degree of freedom at the nodes of the
beam elements. The numerical investigation is performed with consideration of the
Secondary Torsional Moment Deformation Effect (STMDE). It is focused on elas-
tostatic analysis of straight cantilever FGM beams with doubly symmetric open as
well as closed cross-sections. A very strong effect of the longitudinal variation of
material properties on the twist angle and bimoment normal stresses is originally
studied and presented. The results are compared with the ones obtained by a very
fine mesh of standard solid and shell as well as warping beam finite elements.
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14.1 Introduction

The effect of non-uniform torsion may be significant in structural elastostatic and
elastodynamic analysis of thin-walled beams with open as well as closed cross-
sections and with constant material properties. The maximum normal stress resulting
from the bimoment occurs at the points of action of the external torques (except for
free ends of beams) and at cross-sections of restrained warping (e.g. clamped cross-
sections). A comprehensive overview of the literature dealing with the issue of
non-uniform torsion of thin-walled beams made of homogeneous material can be
found, e.g., in Aminbaghai et al (2016); Dikaros et al (2016). Commercial Finite
Element Method (FEM) codes allow for elastostatic torsional analysis by 3D finite
beam elements without as well as with consideration of the warping effect (ANSYS,
2019; ADINA, 2013; ABAQUS, 2018; Przemieniecki, 1992; Murin et al, 2014).
For uniform torsion, frequently an improved Saint-Venant theory is used. In non-
uniform torsion, the bicurvature is very often chosen as an additional warping degree
of freedom, and the Secondary Torsion Moment Deformation Effect (STMDE) is not
considered. Most recent research results have shown, however, that for non-uniform
torsion of beams with closed cross-sections the influence of the STMDE (Murin
et al, 2014) and of the distortion of the cross-section (Tsiptsis and Sapountzakis,
2017b) is particularly significant. The effect of the axial force on torsional warping
is investigated in Aminbaghai et al (2017). A common feature of the cited articles is
that constant material properties of the beams are assumed.

In material science, one of the ground-breaking technologies are functionally
graded materials (FGMs). Natural biomaterials often possess the structure of FGMs.
This enables them to satisfy requirements such as corrosion resistance, thermal
conductivity, strength, elastic stability, fatigue durability, dynamic stability, etc. Fab-
rication of such materials is complicated. However, in recent years a progress in this
area has been significant. A FGM consists of a mixture of two or more constituents
of almost the same form and the same dimensions. Plasma spraying, powder metal-
lurgy, 3D printing, and other technologies are used for fabrication of such materials.
From a macroscopic point of view, FGMs are isotropic at each material point, but
the material properties can vary continuously or discontinuously in one, two, or
three directions. The variation of the macroscopic material properties can be rea-
lized by varying the volume fractions of the constituents or their material properties.
An important class of structural components, made of FGMs, are beams. Thin-
walled beams play an important role not only in structural applications, but also in
thermal, electro-thermal, and electro-thermo-structural systems (e.g. Micro-Electro-
Mechanical-Systems (MEMS), sensors and actuators), as well as in mechatronics. In
all of these applications, FGMs can greatly improve the effectiveness of the systems
concerned (Shoghmand and Ahmadian, 2018; Fariborz and Batra, 2019).

For mechanical investigations of FGM beams, semi-analytical and numerical
methods of analysis of planar beams with a predominantly transverse variability
of the material properties were first developed. Intensive activities in the area of
uniform (Saint-Venant) torsion are presently in full swing. A list of scientific articles
on modelling of FGM beams can be found e.g. in Murin et al (2016). In this article, a
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3D FGM beam finite element with a spatial variation of the material properties was
presented, considering Saint-Venant torsion. Uniform torsion of FGM beams was
also investigated in Shen et al (2016); Kim and Lee (2016); Barretta et al (2018). In
Barretta et al (2015), closed-form solutions of FGM beams, subjected to non-uniform
torsion, were presented. In Yoon et al (2015), nonlinear finite element formulations
for 3D analysis of FGM beams were presented. A power law distribution of the
material properties in the transverse direction was considered.

In Aminbaghai et al (2016); Murin et al (2014), anew 3D Timoshenko finite beam
element including warping torsion of open and closed cross-sections with constant
material properties was presented. In Murin et al (2018) and Aminbaghai et al (2019),
this beam element was extended for non-uniform torsional modal and elastostatic
analysis of FGM beams with a polynomial form of variation of the material properties
in the longitudinal direction. This form of longitudinal variability of the material
properties allows for a wide range of practical applications. Moreover, it facilitates
structural analysis of such composite beams. In many cases, the spatial validation of
the material properties of FGM beams can be reduced to a longitudinal variation (e.g.
Murin et al, 2014; Kutis et al, 2011). From the finite element equations, established
for such partially homogenized beams, the primary variables in form, e.g., of nodal
displacements are obtained. The stresses, however, must be computed for the real
beam.

The main body of the present paper consists of the theoretical part and the
numerical evaluation of the developed elastostatic warping torsion theory for thin-
walled beams with longitudinally varying material properties. Doubly symmetric
open and closed cross-sections of straight FGM beams are considered. In Sect. 14.2,
a summary of the differential equations for non-uniform torsional deformations is
presented. The part of the bicurvature, caused by the bimoment, is taken into account
as the warping degree of freedom. The STMDE is also considered. A general semi-
analytical solution of the differential equation is presented. Furthermore, the transfer
matrix relation is presented, from which the finite element equations for two-node
straight warping torsion beams (FGM-WT) are derived. Section 14.3 contains the
numerical investigation. The results from elastostatic analysis of cantilever beams
with open I cross-sections and rectangular hollow cross-sections are presented and
compared with results obtained from commercial FEM codes. The effect of the
longitudinally varying material properties is quantified. A final assessment of the
proposed method is contained in the conclusions. A very strong effect of the lon-
gitudinal variation of material properties on the twist angle and bimoment normal
stresses in the field of the beams is originally studied and presented.

14.2 Non-uniform Torsion FGM Beam Finite Element

In the following, the differential equations, with variable parameters, for torsional
elastostatic analysis of FGM beams with doubly symmetric open or closed cross-
sections will be shortly presented. The material properties in the longitudinal direc-
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tion of the beams are assumed to vary in a polynomial form. The solution of the
differential equations is based on the concept of transfer functions. After derivation
of the transfer matrix, the finite element equations for local coordinate systems for
non-uniform torsion are established.

The stiffness matrix of the developed finite element is based on a semi-analytical
solution of the differential equation for non-uniformly twisted FGM beams, derived
by the authors. In this way, the longitudinal variability of the material properties
is considered with great accuracy. Thus, in a system consisting of several beams,
with a polynomial form of variability of the material properties, each beam can be
modelled by a single finite element. It is, of course, possible to divide the beam into
several finite elements of the proposed kind, but this has no significant influence on
the accuracy of the numerical solution. This is seen as a strong advantage of the
proposed finite element. However, for a longitudinally discontinuous change of the
cross-section or of the material properties of the beam, a subdivision into several
finite elements is necessary.

Figure 14.1 refers to the determination of the deformation of a FGM beam,
subjected to non-uniform torsion. It shows the torsional moment My (x) as the sum
of the primary torsional moment Mr,(x), the secondary torsional moment Mz(x)
and the bimoment M,,(x) according to the definitions of positive values of these
quantities in the framework of the Transfer Matrix Method (TMM). Figure 14.1 also
shows the angle of twist, (x), corresponding to M7, (x). It is equal to the sum of
the angle of twist from the primary deformation, ¥,(x), and of the one from the
secondary deformation, ¥g(x).

Figure 14.2 illustrates the beam element. It is loaded by the torsional line moment
my(x). The equilibrium equations are obtained as

My.(x) = =mr(x), (14.1)
where
maxk
mr(x) = Z an,kxk
k=0

is the polynomial representation of the torsional moment with the parameters 77,,,7 «.
According to Murin et al (2018),

M, (x) = My (x) = Mrp(x) +me(x) = Mrs +me,(x), (14.2)

where

/\v(x) = Yu(0)+ye(x)

Fig. 14.1 Non-uniform tor- i 7 M,(x)
sion: torsional moment, bimo- |

‘ Mi(x) = M, (x)+M;(x)

ment, and angle of twist.
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Fig. 14.2. Definitions of positive torsional moments and rotation angles at the element nodes for the
TMM and the FEM in the local coordinate system.

maxk

me,(x) = Z nmm,kxk

k=0

is the polynomial representation of the warping moment with the parameters 7,,,, x

and
Mr(x) = Mrp(x)+ Mrzg(x). (14.3)

According to Aminbaghai et al (2016),
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M,
Vi) = - ((’;)) (14.4)
and

Y (x) =¥, (x) + (%), (14.5)

with My ()

X
Y'(x) = G;Tp(x) (14.6)

and My ()
wi(x) = GI]; ();), (14.7)

where I, denotes the secondary torsion constant and E(x) and G(x) stand for the
longitudinally varying effective elasticity modulus and shear modulus, respectively.
Multiplication of the polynomial representation of the shear modulus, i.e. of G(x),
by Iy yields G(x)Irs. For convenience, it will be written in the following as GIr.
Multiplication of the polynomial representation of the modulus of elasticity, i.e. of
E(x), by I, yields E1,,.

According to Murin et al (2018), differentiation of Eq. (14.7) with respect to x
and multiplication by E1,, gives

. El,(MyGI} )+ Glrg(-M} +Glrs""))
GIZ,

0. (14.8)

w

Differentiation of Eq. (14.8) with respect to x, multiplication by E12,, and use of Eq.
(14.7) yields

—2E1,Mrs(G1. )* My
EI}, | +Glry(GI, (2E1 M} + EI,,Mys)+ E1,)GI}! Mrs 0 (149)
GI3, —(GIrs)X(EI,M]. +EI, M) ' :
+GI. (Mg +me+EILY" + ELy"")
Substituting Eq. (14.6) into Eq. (14.3) gives
Mrs = My — My, = My - GIry'. (14.10)

The first and the second derivative of Eq. (14.10) with respect to x are inserted into
Eq. (14.9). This yields the following expression for the torsional moment:
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My (G, +GlryEI,Gly, ~2E1, (GIy,) + EL,Glr,Gly, ) =

(Gl (Glrs) = (Gl E'1,G Iy + GIr Gl E' 1, G Irg

+2E1,GIrG'Irs —2E1,Gly (G'Irs)* — El, (Glrg)* G Ir Wy’
+E1,GIrGlIrg G”ITX)

+(2E1,GI; GGl -~ GIrGl; EIl, - GI3. EI,,—2E1,GI3 GI.) "
~(El,GIrGI2 +EI,GL}) (2l

-GI3 my, + (-GIZ EI, +2E1,GIrsGlI}. ) mr — E1,GI3 m)..
(14.11)
Setting M7., which follows from Eq. (14.8), equal to —my, results in the following
differential equation of fourth order:

na (""" (x) + 30y " () + () 7 (x) + i (0w (x) + 0 () (x) =

oy 14.12
=np(x)= Z nrsx°. ( :
s=0

The variable polynomial parameters n(x) —n4(x) are given in Appendix 14.4.
The general semi-analytical solution of Eq. (14.12) can be written as follows:

maxs

Y (x) = bo(x)Wi + b1 (W [+ ba(x)y "+ b3(x)y | + Z NL,s bsra(x).  (14.13)

s=0

In Eq. (14.13), bo(x), b1(x), by(x), b3(x) and bsi4(x), s € (O,maxs) denote the
transfer functions. The quantities ¢;, t’ s glrl.’ " t’ ” stand for the integration constants,
referred to the starting point i, see Figs. 14.1 and 14.2, (e.g., ¥; = ¢/(x) for x =0,
etc.). Equation (14.13) and the first three derivatives of /(x) are condensed to the
following matrix equation:

‘I’L
rmax s

;0 NLs bgia(x)
w0 ] [bo@) bi(x) bax) bs)] [wi] |mas
) || bl b B0 | [ || Z e e 14.14)
v | 7By bYC) B B | fuy | T gl
w//l(‘x) bz)ll(x) bg//(x) bIZl/(x) bg//(x) lpilll S:() * S+4

max.s

Z NLs b;/_:_4(x)
L s=0 ]

Equation (14.14) can be written as
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B
Y [ hw b b bg(x);ljisbm(xf R
.Z/'(()’C“)) b(x) b(x) b(x) bg(x)i‘:isb;M(X) :Z
V| 7| ) B B0 B E b ||| (1419)
][R Bw b;"<x>:;jfb;';4<x> R
0 0 0 0 |

In Eq. (14.15), B is a matrix, containing the solution functions of Eq. (14.13) and
their first three derivatives at x. Thus, the so-called transfer functions for torsion
with warping, ¥, represent a vector, containing the angle of twist and its first three
derivatives at x. ¥; is a vector, containing the values of the angle of twist and of
its first three derivatives at the starting point i, and W’ is a load vector. Based on
the dependence of ¥’(x), "' (x), and ¢’ (x) on Mr(x) and M, (x), the following
transfer matrix expression is obtained:

Zx A Zi
e e ——
¥ (x) Ap1(x) Ara(x) A3(0) Ava(),As(x)] [ v
Wy (%) Az 1(x) Az p(x) Az 3(x) Az a(x)1Aas(x) | ()

My (x) | = | Az.1(x) Az 2(x) A3 5(x) A3.4(x),A35(x) || Yeosi |- (14.16)
Mr(x) || Aa(x) Aa(x) Ag3(x) Aqa(x)i1Aas(x) | | dri
1 0 0 0 0 T 1 1

The transfer matrix A relates the vector Z, to the "static vector" Z;. Appendix 14.4
contains a detailed description of these terms.

The kinematic and kinetic variables at node i are characterized by the subscript
i. By setting x = L in Eq. (14.16), the dependence of the nodal variables at node
Jj on the ones at node i is obtained. Then, by means of appropriate mathematical
operations, the finite element equations for non-uniform torsion are obtained as

K F
_ -
My ; K1 Kip K13 Kiaf | Wi Fy
M, ; K>1 K2» Koz K Vi F.
wi| _ K21 Kop Koz K| Wi |2 , (14.17)
Mr ; K31 K32 K33 K3 4 v F3

M, ; K1t Kap Koz Kas| ¥y ; Fy
where
Mri=-Mri,My;=-My i, Mrp;=—Mrp;, Mrs; =My, (14.18)

considering the definitions of positive quantities in the framework of the FEM.
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A detailed description of establishing of the finite element equations Eq. (14.17)

is made in (Aminbaghai et al, 2019). The finite element matrix K in Eq. (14.17) is
symmetric.
The described solution algorithm was implemented into MATHEMATICA (Wol-
fram, 2012). Elastostatic analyses were performed for selected thin-walled cantilever
FGM beams with open and closed cross-sections in Sect. 14.3. The effects of seve-
ral longitudinal variation of material properties on the deformation and stresses is
studied. The results from the numerical experiments are presented and compared
with results obtained by means of the available commercial software. After simple
modification, the Eq. (14.17) can be also used for Saint-Venant torsion analysis of
FGM beams.

14.3 Numerical Investigation

In this section, the results from elastostatic analysis of cantilever FGM beams with
I-cross-sections and hollow cross-sections are presented. The length of the beams,
L, is equal to 0.1m. The FGM consists of a mixture of Aluminum and Tungsten
(denoted with the indexes m and f). The material properties are listed in Table 14.1.
To show the effect of the longitudinal variation of material properties, the variable
Young’s modulus E(x) and Poisson’s ratio v(x) are chosen for following three cases.

14.3.1 Case 1 - Polynomial Variation

E(x) = Ef"‘(Em_Ef)(%)n, (14.19)
V(x)zvf"‘(vm_vf)(%)n, (14.20)

where n denotes the power of (%) The expression for the shear modulus reads as

E(x)

R (EE)

(14.21)

Table 14.1
Material properties of the FGM constituents.

Material properties

Young’s modulus Ef=4.8x 10 E, =0.69% 10! Pa
Poissom’s ratio vy =0.2 vm =0.33 -
Shear modulus Gr=2.0x 10! G, =0.26x 10" Pa
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The axial variation of the material properties for the Case 1 is shown in Figs. 14.3
and 14.4 for n € (1,5).

14.3.2 Case 2 - Polynomial Variation

E(x)=Em+(Ef—Em)(%)n, (14.22)
V(X) = Vi + (v = Vi) (%)n (14.23)

where n denotes the power of (%) The expression for the shear modulus reads as

E(x)

O = 0y

(14.24)

The axial variation of the material properties is shown in Figs. 14.5 and 14.6 for
n e (1,5).

5%x10" l‘? [Pa]

4x10"

3x10"

Fig. 14.3 Variation of

Young’s modulus E and
Poisson’s ratio v for different ‘ ‘ dx [m]
values of n (Case 1). 0.00 0.02 0.04 0.06 0.08 0.10
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Fig. 14.4 Variation of the G [Pa]
shear modulus G for different 2.0x10"F
values of n (Case 1).
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14.3.3 Case 3 - Parabolic Variation 1 and 2

For the variation 1, the volume fractions of the constituents are
vp(x) = —400x% +40x, v,(x) = 400x? —40x + 1. (14.25)
Effective Young’s modulus E and Poisson’s ratio v is

E(x) = Efvp(x) + Epvm(x)
6.9%10'0+1.644x10"0x - 1.644 x 10! x* [Pa] (14.26)

v(x) = vpve(X) + Vipvm(x) = 0.33+52x + 52x% [-].

After substitution (14.26) into (14.24), the effective shear modulus G is calculated.
The parabolic axial variation of the effective material properties is shown in Figs.
14.7 and 14.8 (blue curves).

For the variation 2, the volume fractions of the constituents are

Vi(x) = —400x% +40x, v¢(x) = 400x% —40x + 1. (14.27)

Effective Young’s modulus E and Poisson’s ratio v is
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Fig. 14.6 Variation of the v[-]

Poisson’s ratio v and shear I
modulus G for different 0.32f
values of n (Case 2). r

0.22F
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E(x) = Epve(x)+ Epvp(x)
=4.8x10" +1.644x10"0x — 1.644 x 10" x? [Pa] (14.28)

v(x) = vpve(X) + Vimvim(x) = 0.2+5.2x - 52x% [-].

After substitution (14.28) into (14.24), the effective shear modulus G is calculated.
The parabolic axial variation of the effective material properties is shown in Figs.
14.7 and 14.8 (red curves).

Despite the academic nature of the chosen variations of the material properties,
it allows for an assessment of the effect of the variability of E and v on the state of
deformation of thin-walled beams, subjected to non-uniform torsion.

14.3.4 Elastostatic Analysis of a Cantilever Beam with an 1
Cross-section, with Longitudinally Varying Material
Properties

The cross-sectional dimensions of the cantilever beam, shown in Fig. 14.9, are given
as follows: b =0.005m, 7; =0.010m, h=h; —t=0.00875m, t = s =0.00125m. In
Table 14.2, the cross-sectional parameters required for the analysis are listed. The
geometric constants in Table 14.2 were computed by means of ANSYS (ANSYS,
2019), except for the secondary torsion constant and the warping torsion constant,
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Fig. 14.7 Variation 1 (blue L [Pa]

curve) and 2 (red curve) 53107 ]
of Young’s modulus E and

Poisson’s ratio v for Case 3. 4x10"
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Fig. 14.8 Variation 1 (blue
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curve) of the shear modulus
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which were calculated by the Thin Tube Theory (TTT) (Rubin, 2005). The beam is
loaded by the torsional moment my = Fh = 1 Nm at point k. The elastostatic torsional
analysis of the considered cantilever beam were performed for the three cases of the
material properties variation.

The following boundary conditions were specified for warping torsion in Eq.
14.17):

Ulro=0. ¥iyliso =¥ari =0 (14.29)

Remark 14.1. According to the analogy between non-uniform torsion and the Timo-
shenko beam theory (Rubin, 2005), the following conditions hold at the clamped end
of the beam:

¢ for the case of flexural deformations:
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~i= ] FE— ———————— [
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y i =) y 1
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F
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Fig. 14.9. Cantilever beam with an I cross-section: a) system, b) cross-section, c) applied forces
(F = 114.3N).

Table 14.2
Cross-sectional parameters for warping torsion.

Cross-sectional parameters

™

Cross-sectional area A=0.21875x10"*

m
Second moment of area about the y-axis I, = 0.28483x 1077 m*
Second moment of area about the z-axis 1. =0.27262x 10710 m*
Polar moment of area I, =1, +1; =0.31212X 1070 m*
Torsional constant Ir =0.1119%x 10710 m*
Secondary torsion constant Irs =0.19938 x 1077 m*
Warping conctant I, =0.498 x 1071 m°

ow

— =wlf;t0,but¢,0| _Ozga,-=0,and

dx x=0 =
 for the case of warping deformations:

0 oy,

Wl —yrzobu ul —yr o,

O0x x=0 X Ix=0 ’

where w = w(x) is the deflection and ¢ = ¢(x) is the angle of rotation of the cross-
section about the y-axis.

14.3.4.1 Elastostatic Analysis of a Cantilever Beam with an I Cross-section,
with Longitudinally Varying Material Properties for the Case 1 and
Case 2

The elastostatic torsional analyses were performed by means of:
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e one warping torsion FGM beam finite element, simplified for Saint-Venant tor-
sion (FGM SV), one warping torsion beam finite element with STMDE (FGM-
WT with STMDE) and for warping torsion without STMDE (FGM-WT without
STMDE);

e a very fine mesh (500 finite elements) of WT BEAM finite elements, with the
STMDE included (Murin et al, 2014) and BEAM 188 WR finite elements with
option Warping Restained (ANSYS, 2019), with constant material properties
obtained as the average values of their variation over the length of each finite
beam element (Figs. 14.3-14.6);

e avery fine mesh of 3D SOLID186 finite elements (850500 finite elements), imple-
mented into the commercial software ANSYS (2019), used for stress evaluation
and for comparison of the results with the ones obtained by the FGM-WT beam
finite element. In the SOLID186 FE model, all degrees of freedom of the nodes
at the clamped end of the beam were restrained. At the free end of the beam, the
torsional moment My = Fh = 1 Nm with F = 114.3N was applied, as shown in
Fig. 14.9c;

e avery fine mesh of SHELL181 finite elements (17700 elements), implemented
into the commercial software ANSYS (2019). The beam is loaded at its free end
in the same way as in Fig. 14.9c.

Results of the analyses for the clamped and the free end of the beam, i.e. at nodes
i and k in are drawn in Figs. 14.10-14.14 for the Case 1 and Case 2. Numerical
results of the analyses for the Case 1 are listed in Table 14.3.

As shown in Table 14.3, the results for the Case 1, obtained by all of the warping
torsion beam finite elements (WT) and SHELL181 elements (ANSYS, 2019), agree
very well. The STMDE is marginal for this type of cross-section. The FGM SV
solution for the angle of twist gives slightly different results, because the warping
torsion effect for open cross-section beams on the stress state is significant, whereas.
This fact is verified by the torsional analysis of such beams with constant material
properties. Plots of the longitudinal distribution of the angle of twist, ¢ [rad], for
the case of non-uniform torsion of the investigated cantilever are shown in Figure
14.10. As expected, the variation of material properties influences the angle of twist

y [rad]
0.30F -
_ 7
Fig. 14.10 Angle of twist, 0.25f  Casel Case 2 7
Y[rad], for non-uniform T - -
0.20 -

torsion of the cantilever
beam with an I cross-section, 015F
(x € (0, L)), for the Case 1
and Case 2 for n € (1,5), and
for n = 0 (constant material
properties equal to the ones of
Tungsten for the Case 1 and of
Aluminum for the Case 2).

0
1
2
3 e -
4
5

n
n
n
n
n
n
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Table 14.3

Angle of twist and internal moments, calculated by FGM-WT with and without STDME, WT BEAM,
and SHELL181 finite elements in the expression for the material properties, for the Case 1 with
n € (1,5) and for the case of n = 0 (constant material properties equal to the ones of Tungsten).

FGM-WT with

Variables FGM SV STMDE/ WT BEAM FvaﬁXtT
ariables 1 SHELLI81 Murin etal 2014) '
ANSYS (2019)
0 0.044 0.040/0.0420 0.042 0.040
1 0.108 0.098/0.102 0.098 0.098
[rad] 2 0.082 0.073/0.074 0.073 0.072
Vi 3 0.072 0.062/0.064 0.062 0.062
4 0.066 0.057/0.058 0.057 0.056
5 0.062 0.053/0.055 0.053 0.053
0 - 0.447 0.447 0.477
1 - 2.169 2.169 2.190
, 2 - 1.690 1.690 1.711
Vb lrad/m] ; 1.423 1.423 1.442
4 - 1.250 1.250 1.267
5 - 1.129 1.129 1.144
0 - —-1.006 % 1073 -1.006x 107> 1.003x 1073
1 - -1.072x 1073 -1.072x 107> 1.099x 1073
A 2 2 - -1.024x107° -1.024%x 107> 1.052x107°
Mo [kNm’] 3 - -1.012x 1073 -1.012x107°  -1.039x107°
4 - -1.012x 107 -1.009%x 107> —1.036x 107>
5 - ~-1.009% 1075 -1.007x107> —1.035%x107°
0 - 5.3140%x 107 5.3141x 1073 0.0
1 - 5.3141%x 1073 5.3141%x 1073 0.0
_ -5 -5
My [kNm] 2 5.3141 % 1075 5.3141 % 1075 0.0
3 - 5.3140% 10 5.3141x 10 0.0
4 - 5.3141x107° 5.3141x107° 0.0
5 - 5.3141x107° 5.3141%x107° 0.0
0 - 9.998x 1074 9.998x107*  9.999x10™*
1 - 6.495x 1074 6.530x107*  6.551x107*
2 - 5.177x 1074 5.233x107*  4.965x107*
My, x [KN
Tp.k [kNm] 3 - 4.442 %1074 4.514x107%  4.185x107*
4 - 3.969x 1074 4.052%x10™*  3.679x107*
5 - 3.635%x 1074 3.729%x107%  3.322x 1074
0 - 9.469x 1074 9.469x 1074 0.001
1 - 9.469x 1074 9.469x 1074 0.001
2 - 9.469x 1074 9.469x 1074 0.001
My ; [KN
7s.i [kNm] 3 - 9.469x 1074 9.469x 1074 0.001
4 - 9.469%x 1074 9.469%x 1074 0.001
5 - 9.469x 1074 9.469x 1074 0.001
0 - 1.543%x1077 1.543%1077  1.255x1077
1 - 3.505%x 1074 3.469%x107*  3.449%x107*
2 - 4.822%x107* 4.766x107™%  5.034x107*
Mg i [KN
rs. [KNml - 5.557x 107 5.486x10  5.815x 107
4 - 6.031x107* 5.948x107*  6.321x107*
5 - 6.365x 1074 6.270x107*  6.678x 1074
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significantly. For the Case 2 and n = 0 (the beam is made of Aluminum only), the
twist angle exceeds permissible values of only academic significance.

Figure 14.11 shows the longitudinal variation of the part of the bicurvature, i,
[rad/m] for the Case 1, resulting from the bimoment of the cantilever beam of the
I cross-section for the Case 1. This quantity was computed by the FGM-WT with

STMDE.

Figure 14.12 shows the longitudinal variation of the bimoment, M,, [kNm?2], for
the cantilever beam with an I cross-section for the Case 1 and Case 2. This quantity
was computed by the FGM-WT with STMDE. The maximum value of the bimoment,
which occurs at the clamped end of the beam, is not significantly influenced by the
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Fig. 14.14 Primary torsional M,,[kNm]
moment, Mr, [kNm], for 0.0014 ‘ 5
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considered variability of the material properties. As shown in Fig. 14.12, longitudinal
variation of the material properties increases significantly the bimoment in the field
of the beam.

In comparison to the case with constant material properties, i.e. for n = 0, the
influence of the variability of the material properties increases with increasing dis-
tance from the clamped end of the beam (in some parts of the beam field). For the
Case 1, the strong increase of the bimoment correlates with the strong decrease of E
and G close to the free end of the beam. It holds for the considered case only if the
material properties vary such that the warping effect is increased, since warping is
increasing along the length. For the Case 2, the strong increase of E and G changes
surprisingly the sign of the bimoment in the field of the beam.

Figure 14.13 shows the longitudinal variation of the primary torsional moment,
Mz, [KNm], for the cantilever beam with an I cross-section for the Case 1. This
quantity was computed by the FGM-WT with STMDE. Figure 14.14 separately
shows the longitudinal variation of the primary torsional moment, Mz, [KNm], for
the cantilever beam with an I cross-section, computed by the FGM-WT BEAM finite
elements with STMDE for the Case 1 and Case 2 for parameter n = 3.

Figure 14.15 shows the longitudinal variation of the secondary torsional moment,
My [kNm], for the cantilever beam with an I cross-section, computed by the FGM-
WT BEAM finite elements with STMDE for the Case 1. Figure 14.16 separately
shows the longitudinal variation of the secondary torsional moment, Mrg [kNm],

0.0010 M [KNm]
0.0008 |4
0.0006
0.0004
Fig. 14.15 Secondary tor- 0.0002
sional moment, M7 [KNm],
for the cantilever beam with 0.0000

an I cross-section for the Case 10,0002 ‘ ‘ ‘ ‘ Jx [m]
1, (x € {0, L)). 0.00 0.02 0.04 0.06 0.08 0.10
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Fig. 14.16 Secondary tor- M, [kNm]
sional moment, Mg [KNm], 0.0010F ‘ ]
for the cantilever beam with 0.0008 F ]
an I cross-section for the Case =3 - Case 1
1 and Case 2 and for n = 3, 0.0006
(x € (0, L)). 0.0004 ]
0.0002 -
0.0000 -
-0.0002
-0.0004 ‘ ‘ ‘ ‘ 1 x [m]

6.60 0.02 0.04 0.06 0.08 0.10

for the cantilever beam with an I cross-section, computed by the FGM-WT BEAM
finite elements with STMDE for the Case 1 and Case 2 for parameter n = 3.

The maximum value of the primary and secondary torsional moment, which
occurs at the clamped end of the beam, is not influenced by the considered variability
of the material properties. As shown in Figs. 14.13-14.16, longitudinal variation of
the material properties influences significantly the primary and secondary torsional
moment in the field of the beam.

For all of the investigated cases, Mr(x) = M7, (x)+ Mrs(x) = 1 Nm, the variation
of the angle of twist and of the internal moments, obtained by the fine mesh of
WT BEAM finite elements, is very close to the ones shown in Figs. 14.10-14.16.
Therefore, the diagrams concerned are not shown. This confirms the efficiency and
the accuracy of the FGM-WT BEAM finite elements with STMDE.

The normal stresses in consequence of the bimoment and the torsional shear
stresses, in the cross-section at the clamped end of the beam, were computed by the
TTT. For example, as shown in Table 14.3 for n = 1 (Case 1), the cross-section at the
clamped end i was subjected to the bimoment

M, ; =-1.072x 107 kNm? = —0.01072Nm?,
the primary torsional moment
Mrp.; =5.314x 107 kNm = 0.05314 Nm,
and the secondary torsional moment
Mzrs.; =9.469x 107 kNm = 0.9496 Nm.

According to Rubin (2005), the maximum bimoment normal stress at the corners of
the clamped cross-section was obtained as

Mw i
Ow,i=*t—>=wr = £235.2MPa,
1,

where
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bh
lwr| = 7= 10.94 mm?

is the warping ordinate at these points (Rubin, 2005), Fig. 14.17d. The figure does
not explicitly show this quantity. The maximum shear stress, resulting from the
secondary torsion moment, was obtained as

My
thb

Ts1=1.5 =25.97MPa,
Fig. 14.17c. The shear stresses, resulting from the primary torsion moment, were
obtained as

M
Ty =Tpo= %t =5.47MPa,

Fig. 14.17b. According to Figs. 14.17b and 14.17c, the total shear stresses are given
as follows:

7% = 70| +7,1 = 31.44MPa, 71" = 7, 5 = 5.47 MPa.

The results for the stresses at the clamped end of the beam have shown that the
normal stresses, resulting from warping, are much higher than the torsional shear
stresses. The longitudinal variation of the maximum bimoment normal stresses is
proportional to the longitudinal variation of the bimoment shown in Fig. 14.12. The
longitudinal variation of the maximum bimoment normal stresses along the upper
left beam edge for the Case 1, computed by the FGM-WT with STMDE for n € (0,5),
is shown in Fig. 14.18. Almost identical distributions of these stresses are obtained
by the WT BEAM finite elements with STMDE (Murin et al, 2014). Figure 14.18
shows that because of the variation of the material properties, the bimoment normal
stresses do not only occur at the clamped end of the beam. At the free end of the
beam, there is only one material, namely, Aluminum. Its elasticity modulus is much
smaller than the one of tungsten. The strong increase of the angle of twist causes

é‘cs,l Oy

X

y
y
f Ts,l
[ = ,l:_.,.,.,._._._ = _]. - ,:z_zf_:l X - E -
A z" A z
a) b) c) d)

Fig. 14.17. I cross-section: a) Cross-section, b) primary shear stresses, ¢) secondary shear stresses,
d) axial stresses in consequence of warping.
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Fig. 14.18 Distribution of the o, [Pa]
warping normal stresses along ol ‘ i
the upper left beam edge for
Case 1, n € (0,5). -5.0x10’

-1.0x10°

-1.5x10°

-2.0x10°

0.00

normal stresses resulting from warping also in the vicinity of the free end of the
beam. The longitudinal variation of the maximum bimoment normal stresses along
the upper left beam edge for the Case 2, computed by the FGM-WT with STMDE
for n € (0,5), is shown in Fig. 14.19.

To verify the obtained results, numerical analyses of the beam were performed
with very fine meshes of BEAM188 WR finite elements (500 elements), SOLID186
finite elements (85500 elements) and SHELL 181 finite elements (17604 elements),
ANSYS (2019). The results obtained for the Case 1 and for n = 1 are compared in
Tables 14.4 and 14.5 and Figs. 14.20-14.21.

Table 14.4 shows that the maximum values of the angle of twist, obtained by dif-
ferent analysis tools, agree very well. For the solid and the shell finite element model,
the twist angle at the free end of the beam was computed from the displacements of
the points on the symmetry axes of the I-profile.

1.0x10° [Pal 1
5.0x10"
0L
-5.0x107F =0
-1.0x10%F g -n=1 ]
) ’:;2/ -n=2
- [ -n= ]
Fig. 14.19 Distribution of the 1.5x10 ,:é/ _Z:i
warping normal stresses along  -2.0x10*7 n=5 1
'3
the upper left beam edge for 25x10°Ls ‘ ‘ ‘ ‘ Jx [m]
0.00 0.02 0.04 0.06 0.08 0.10

Case 2, n € (0,5).

Table 14.4
Comparison of results for the Case 1 and n = 1.

Analysis tool FGM-WT with STMDE WT BEAM [7] SOLID186 [3] SHELLI181 [3]

Y [rad] 0.098 0.098 0.096 0.102
Ow,i [MPa] +235.2 +235.2 +(375.8/244.5) £(308.9/232)
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Table 14.5
Maximum values of the normal stresses at both ends of the beam, in MPa, for the Case land n = 1.
Case/x [m] clamped end free end
Green curve - SOLID186 -339.6 -42.6
Dotted blue curve - SOLID186 -244.5 39.5
Dotted red curve - SOLID186 -375.8 1.6
Dashed orange curve - SHELL181 -308.9/-232.0 34
Dashed black curve - FGM-WT with STMDE -235.2 0
Fig. 14.20 Angle of twist, v [rad]
[rad], for non-uniform torsion 0.06 [
of the cantilever beam with an . ]
I cross-section, (x € {0, L)), 0.05F ]
for the Case 1 and n = 3. F — FGM-WT with STMDE

0.04F --- ANSYS SHELLI181
f —— ANSYS BEAM188 WR

0.03f 1
0.02f 1
0.01f 1
0.00L dx [m]
0.00 0.02 0.04 0.06 0.08 0.10
Fig. 14.21 Angle of twist, ¢ v [rad]
[rad], for non-uniform torsion ' -
of the cantilever beam with an 0.15¢ — =
I cross-section, (x € (0, L)), .
for the Case 2 and n = 3.
0.10+ 4
0.05+ — FGM-WT with STMDE 4
--- ANSYS SHELLI181
--— ANSYS BEAM188 WR
0.00E ‘ ‘ ‘ A x [m]
0.00 0.02 0.04 0.06 0.08 0.10

Figures 14.20-14.21 show distribution of the twist angles for the Case 1 and Case
2 for n = 3. They were calculated by a very fine mesh BEAM 188 WR finite elements
(ANSYS, 2019).

Figure 14.22 shows distributions of the maximum longitudinal normal stresses
for the Case 1 and linearly varying material properties (n = 1). They were calculated
by a very fine mesh of SOLID186 finite elements (ANSYS, 2019). The green curve
refers to a line at a distance of 0.1 mm from the edge of the longitudinal upper left
flange of the beam; the dotted blue curve refers to the longitudinal middle axis of
the flange thickness ¢; the dotted red curve refers to the edge of the longitudinal
upper left flange of the beam. The maximum warping normal stress distribution,
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Fig. 14.22 Distribution of o, [Pa]
the maximum normal stresses ‘
along the upper left side of
the beam flange for linearly
varying material properties 11408
for the Case 1 and n = 1.

240°F
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based on the FGM-WT BEAM finite elements with STMDE, is marked by a dashed
black curve. The dashed orange curve shows the normal stress distribution along the
longitudinal bottom edge of the left part of the flange, calculated by the SHELL181
finite elements (ANSYS, 2019).

Maximum values of the normal stresses, for the Case 1 and n = 1, at both ends
of the beam are listed in Table 14.5. Figure 14.22 shows good agreement of the
authors’ results (dashed black curve) with the ones obtained by the SOLID186 finite
elements (dotted blue curve). According to Table 14.5, the percentage difference of
the maximum value of the normal stresses at the clamped end (-244.5 for the SOLID
186 element and -235.2 for the authors’ element) is less than 4%.

Very good agreement of the normal stresses along the beam was obtained for all
of the investigated cases. Small discrepancies of the results occurred in the vicinity
of the free end of the beam. Fig. 14.22 shows a significant difference of the results at
the clamped end, obtained by the SOLID186 finite elements (dotted red curve) and
the SHELL 181 finite elements (dashed orange curve).

The maximum value of the normal stress at the sharp corners of the I-profile
obtained by the SOLID186 finite elements, (+375.8 MPa), and the SHELL181 finite
elements, (+308.9), are strongly affected not only by a numerical singularity, but also
by the different type of the finite elements and the way of satisfaction of the boundary
conditions. Therefore, they are not relevant to the evaluation of the numerical results.
As shown in Fig. 14.26, the normal stress in the middle of the flange thickness ¢,
obtained by the SHELL 181 finite elements, is above +232 MPa. It agrees very well
with the authors’ FGM-WT with STMDE beam solution. According to Fig. 14.18,
the distribution of the warping normal stresses at the clamped end for n > 1 is very
similar to the distribution for n = 1. Figures 14.23-14.24 show the warping normal
stress distribution for the Cases 1 and 2, and n = 3. Additionally to Fig. 14.22, the
solution results (the dot-dashed blue curve), which were obtained by BEAM188
finite element with option warping restrained (ANSYS, 2019), are shown in Fig.
14.23 and Fig. 14.24.

The distribution of the normal stresses for the Case 1 and of linearly varying
material properties, calculated by SOLID186 finite elements along the flange width
b, is shown in Fig. 14.25. The green curve refers to a line, at a distance of about
0.4 mm from the upper edge of the clamped flange, in the longitudinal direction of
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