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Preface

This book evolved from the notes of a course that I teach at the Uni-
versity of Geneva, for undergraduate physics students. For many gen-
erations of physicists, including mine, the classic references for classical
electrodynamics have been the textbook by Jackson and that by Lan-
dau and Lifschits.1 The former is still much used, although more modern 1In the text we will refer to the latest

editions of these books, Jackson (1998)
and Landau and Lifschits (1975). How-
ever, these books went through many
editions: the first edition of Jackson ap-
peared in 1962, while that of Landau
and Lifschits even dates back to 1939.

and excellent textbooks with a somewhat similar structure, such as Garg
(2012) or Zangwill (2013), now exist, while the latter is by now rarely
used, even as an auxiliary reference text for a course. Because of my
field-theoretical background, as my notes were growing I realized that
they were naturally drifting toward what looked to me as a modern ver-
sion of Landau and Lifschits, and this stimulated me to expand them
further into a book.

While this book is meant as a modern introduction to classical elec-
trodynamics, it is by no means intended as a first introduction to the
subject. The reader is assumed to have already had a first course on
electrodynamics, at a level covered for instance by Griffiths (2017). This
also implies a different structure of the presentation. In a first course
of electrodynamics, it is natural to take a ‘bottom-up’ approach, where
one starts from experimental observations in the simple settings of elec-
trostatics and magnetostatics, and then moves toward time-dependent
phenomena and electromagnetic induction, which eventually leads to
generalizing the equations governing electrostatics and magnetostatics
into the synthesis provided by the full Maxwell’s equation. This ap-
proach is the natural one for a first introduction because, first of all,
gives the correct historical perspective and shows how Maxwell’s equa-
tions emerged from the unification of a large body of observations; fur-
thermore, it also allows one to start with more elementary mathematical
tools, for the benefit of the student that meets some of them for the first
time, while at the same time discovering all these new and fundamental
physics concepts. The price that is paid is that the approach, following
the historical developments, is sometimes heuristic, and the logic of the
arguments and derivations is not always tight.

For this more advanced text, I have chosen instead a ‘top-down’ ap-
proach. Maxwell’s equations are introduced immediately (after an intro-
ductory chapter on mathematical tools) as the ‘definition’ of the theory,
and their consequences are then systematically developed. This has the
advantage of a better logical clarity. It will also allow us to always go
into the ‘real story’, rather than presenting at first a simpler version, to
be later improved.
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An important aspect of our presentation is that we keep distinct the
discussion of electrodynamics ‘in vacuum’ (i.e., the computation of the
electromagnetic fields generated by localized sources, in the region out-
side the sources) from the study of Maxwell’s equations inside mate-
rials. The study of the equations ‘in vacuum’ reveals the underlying
fundamental structure of the theory, while classical electrodynamics in
material media is basically a phenomenological theory. Mixing the two
treatments, because of a formal similarity among the equations, can be
conceptually confusing. Until Chapter 12 we will focus uniquely on vac-
uum electrodynamics, while from Chapter 13 we study electrodynamics
in materials.22This approach is different from, e.g.

that of Jackson, or Zangwill. It is
instead the same followed by Garg,
and especially by Landau and Lifs-
chits, that even separated the subjects
into two different books: “The Clas-
sical Theory of Fields”, Landau and
Lifschits (1975), for vacuum electrody-
namics, and “Electrodynamics of Con-
tinuous Media”, Landau and Lifschits
(1984) for electrodynamics in materials.

Focusing first on vacuum electrodynamics allows us to bring out the
two most important structural aspects of the theory at its fundamental
level, namely gauge invariance and the fact that Special Relativity is
hidden in the Maxwell’s equations. We will introduce immediately and
in full generality the gauge potentials, and work out most of the equa-
tions and derivations of vacuum electrodynamics in terms of them. From
a modern field-theoretical perspective, we know that classical electrody-
namics is the prototype of a gauge theory, and the notion of gauge fields
and gauge invariance is central to all modern particle physics, as well as
to condensed matter theory. Similarly, after having duly derived from
Maxwell’s equations the most elementary results of electrostatics and
magnetostatics, as well as the notions of work and electromagnetic en-
ergy and the expansion in static multipoles, we move as fast as possible
to Special Relativity, introducing the covariant formalism and showing
how Maxwell’s equations can be reformulated in a covariant form.3 Hav-3By comparison, Jackson introduces

the gauge potentials in full general-
ity for the first time only after about
220 pages and Zangwill after about 500
pages, and their introduction is in gen-
eral presented simply as a trick for sim-
plifying the equations. However, their
role is much more fundamental, since
they are the basic dynamical variables
in a field-theoretical treatment (which
also implies that they will become the
basic variables also when one moves to
a quantum treatment). As for Special
Relativity, Jackson introduces it only
after more than 500 pages, while Zang-
will relegates it to Chapter 22, after 820
pages, and Garg to Chapter 24.

ing in our hands the gauge potentials and the covariant formalism, most
of the subsequent derivations in Chapters 8–12 are performed in terms
of them, with a clear advantage in technical and conceptual clarity.

Even if this book was born from my notes for an undergraduate course,
and is meant to be used for such a course, it has obviously grown well
beyond the original scope, and some parts of it are quite advanced.
More technical sections, or whole chapters that are more specialized,
are clearly marked, so that the book can be used at different levels,
from the undergraduate student, to the researcher that needs to check a
textbook as a reference. Classical electrodynamics, for its richness and
importance, is a subject to which one returns over and over during a
scientist’s career.

Finally, an important point, when writing a textbook of electrodynam-
ics, is the choice of the system of units. In mechanics, the transforma-
tion between systems such as c.g.s. (centimeter-gram-second) and m.k.s.
(meter-kilogram-second) is trivial, and just amounts to multiplicative
factors. However, in electromagnetism there are further complications.
This has led to two main systems of units for classical electrodynamics:
the SI system, and the Gaussian system. As we will discuss in Chapter 2,
the essential difference is that, for electromagnetism, the SI system be-
side the units of length, mass and time, introduces a fourth independent
base unit of current, the ampere, while in the Gaussian system the unit
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of charge, and therefore of current, is derived from the three basic units
of length, mass and time.

The SI system is the natural one for applications to the macroscopic
world: currents are measured in amperes, voltages in volts, and so on.
This makes the SI system the obvious choice for laboratory applications
and in electrical engineering, and SI units are by now the almost uni-
versal standard for electrodynamics courses at the undergraduate level.
The Gaussian system, on the other hand, has advantages in other con-
texts, and in particular leads to neater formulas when relativistic effects
are important.4

4Actually, its real virtues appear
when combining electromagnetism with
quantum mechanics. In this case, the
reduction from four to three base units
obtained with the Gaussian system can
be pushed further, using a system of
units where one also sets ~ = c = 1,
with the result that one remains with a
single base unit, typically taken to be
the mass unit. In quantum field the-
ory this system is so convenient that
units ~ = c = 1 are called natural units
(we will briefly mention them in Sec-
tion 2.2). As a consequence, all general-
izations from classical electrodynamics
to quantum electrodynamics (and its
extensions such as the Standard Model
of electroweak and strong interactions)
are nowadays uniquely discussed using
the Gaussian system (or, rather, a vari-
ant of it, Heaviside–Lorentz or rational-
ized Gaussian units, differing just by
the placing of some 4π factors, that we
will also introduce in Chapter 2), sup-
plemented by units ~ = c = 1.

This state of affairs has led to a rather peculiar situation. In general,
undergraduate textbooks of classical electromagnetism always use SI
units; in contrast, more advanced textbooks of classical electrodynamics
are often split between SI and Gaussian units, and all textbooks on
quantum electrodynamics and quantum field theory use Gaussian units.
The difficulty of the choice is exemplified by the Jackson’s textbook,
that has been the ‘bible’ of classical electrodynamics for generations of
physicists. The second edition (1975), as the first, used Gaussian units
throughout. However, the third edition (1998) switched to SI units for
the first 10 chapters, in recognition of the fact that almost all other
undergraduate level textbooks used SI units; then, from Chapter 11
(Special Theory of Relativity) on, it goes back to Gaussian units, in
recognition of the fact that they are more appropriate than SI units
for relativistic phenomena.5 Gaussian units are also the most common

5Among the other ‘old-time’ classics,
Landau and Lifschits (1975) used Gaus-
sian units, while the Feynman Lectures
on Physics, Feynman et al. (1964), used
SI. The first two editions of the clas-
sic textbook by Purcell used Gaussian
units, but switched to SI for the 3rd edi-
tion, Purcell and Morin (2013). Among
more recent books, SI is used in Grif-
fiths (2017), Zangwill (2013) and Tong
(2015), while Gaussian units are used in
Garg (2012) (with frequent translations
to SI units).

choice in quantum mechanics textbooks: when computing the energy
level of the hydrogen atom, almost all textbooks use a Coulomb potential
in Gaussian units, −e2/r, rather than the SI expression −e2/(4πε0r).

6

6The most notable exception is the
quantum mechanics textbook Griffiths
(2004), that uses SI units, consistently
with the classical electrodynamics book
by the same author.

In this book we will use SI units, since this is nowadays the almost
universal standard for an undergraduate textbook on classical electrody-
namics. However, it is important to be familiar also with the Gaussian
system, as a bridge toward graduate and more specialized courses. This
is particularly important for the student that wishes to go into theo-
retical high-energy physics where, eventually, only the Gaussian system
will be used. We will then discuss in Section 2.2 how to quickly trans-
late from SI to Gaussian units, and, in Appendix A, we will provide an
explicit translation in Gaussian units of the most important results and
formulas of the main text.

Finally, I wish to thank Enis Belgacem, Francesco Iacovelli and Michele
Mancarella, who gave the exercise sessions of the course for various years,
and Stefano Foffa for useful discussions. I thank again Francesco Iacovelli
for producing a very large number of figures of the book. I am grateful
to Stephen Blundell for extremely useful comments on the manuscript.
Last but not least, as with my previous books with OUP, I wish to thank
Sonke Adlung, for his friendly and always very useful advice, as well as
all the staff at OUP.

Geneva, January 2023
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scalar and vector fields 3
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theorems 5

1.4 Dirac delta 7

1.5 Fourier transform 13

1.6 Tensors and rotations 16

1.7 Groups and representations
18

Classical electrodynamics requires a good familiarity with a set of math-
ematical tools, which will then find applications basically everywhere in
physics. We find it convenient to begin by recalling some of these con-
cepts so that, later, the understanding of the physics will not be obscured
by the mathematical manipulations. We will focus here on tools that will
be of more immediate use. Further mathematical tools will be discussed
along the way, in the rest of the book, as they will be needed.

1.1 Vector algebra

A vector a has Cartesian components ai. We use the convention that
repeated indices are summed over, so,

a·b =
∑

i

aibi ≡ aibi , (1.1)

where the sum runs over i = 1, 2, 3 in three spatial dimensions, as we will
assume next, or, more generally, over i = 1, . . . , d in d spatial dimensions.
We can introduce the “Kronecker delta” δij , which is equal to 1 if i = j
and zero otherwise. Note that, with the convention of the sum over
repeated indices, we have the identity

ai = δijaj . (1.2)

Then, we can also rewrite

a·b = δijaibj . (1.3)

From the definition it follows that, in three dimensions, δii = 3. Note
that δij are just the components of the 3×3 identity matrix I, δij = (I)ij
and δii is the trace of the 3× 3 identity matrix (or, in d dimensions, δij
are the components of the d× d identity matrix, and δii = d).

When using the convention of summing over repeated indices, one
must be careful not to use the same dummy index for different summa-
tions. For example, writing the sums explicitly,

(a·b)(c·d) =

(
3∑

i=1

aibi

)


3∑

j=1

cjdj


 . (1.4)

With the convention of the sum over repeated indices, the right-hand
side becomes aibicjdj . Notice that it was important here to use two
different letters, i, j, for the dummy indices involved.
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The vector product is given by

(a× b)i = εijkajbk , (1.5)

where εijk is the totally antisymmetric tensor (or the Levi–Civita ten-
sor), defined by ε123 = +1, together with the condition that it is an-
tisymmetric under any exchange of indices. Therefore εijk = 0 if two
indices have the same value and, e.g., ε213 = −ε123 = −1. This also
implies that the tensor is cyclic, εijk = −εjik = εjki, i.e., it is unchanged
under a cyclic permutation of the indices. Note that a × b = −b × a.
We will see in Section 1.6 that the tensors δij and εijk play a special role
in the theory of representations of the rotation group. Unit vectors are
denoted by a hat; for instance, x̂, ŷ, and ẑ are the unit vectors along
the x, y and z axes, respectively. Note that, e.g.,

x̂× ŷ = ẑ . (1.6)

A very useful identity is

εijkεilm = δjlδkm − δjmδkl . (1.7)

(Prove it!) Note the structure of the indices: on the left, the index i is
summed over, so it does not appear on the right-hand side. It is a dummy
index, and we could have used a different name for it. For instance, the
left-hand side of eq. (1.7) could be written as εpjkεplm, with a different
letter p. In contrast, the indices j, k, l,m are free indices so, if they
appear on the left-hand side, they must also appear on the right-hand
side. Note also that, because of the cyclic property of the epsilon tensor,
the left-hand side of eq. (1.7) can also be written as εjkiεilm.

Exercise 1.1 Show that

a·(b× c) = εijkaibjck . (1.8)

Exercise 1.2 Using eq. (1.7), show that

a× (b× c) = (a·c)b− (a·b)c , (1.9)

(a× b)× c = (a·c)b− (b·c)a . (1.10)

Observe that the vector product is not associative: in general, a×(b×c)
is different from (a× b)× c.

Exercise 1.3 Using eq. (1.7), show that

εijkεijm = 2δkm . (1.11)

Double-check the result by directly identifying the combinations of in-
dices that give a non-zero contributions to the left-hand side of eq. (1.11).
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1.2 Differential operators on scalar and
vector fields

We will use the notation ∂i = ∂/∂xi for the partial derivative with
respect to the Cartesian coordinates xi. Then, if f(x) is a function of the
spatial coordinates, its gradient ∇f is a vector field (i.e., a vector defined
at each point of space) whose components, in Cartesian coordinates, are
given by

(∇f)i = ∂if (gradient of a scalar function) , (1.12)

or, in vector form,

∇f = (∂xf)x̂ + (∂yf)ŷ + (∂zf)ẑ . (1.13)

The expression in polar coordinates (r, θ, φ) can be obtained by perform-
ing explicitly the transformation between the derivatives ∂x, ∂y, ∂z and
the derivatives ∂r = ∂/∂r, ∂θ = ∂/∂θ, and ∂φ = ∂/∂φ, and expressing
x̂, ŷ, ẑ in terms of the unit vectors r̂, θ̂, φ̂ (and similarly in any other co-
ordinate system, such as cylindrical coordinates); we will give the results
in polar ad cylindric coordinates for different operators at the end of this
section. Given a vector field v(x), we can form two notable quantities
with the action of ∇: the divergence

∇·v = ∂ivi (divergence of a vector field) , (1.14)

which is a scalar field (i.e., a quantity invariant under rotations, defined
at each point of space), and the curl, ∇ × v, which is again a vector
field, with Cartesian components

(∇× v)i = εijk∂jvk (curl of a vector field) . (1.15)

Given a function f , after forming the vector field ∇f , we can obtain
again a scalar by taking the divergence of ∇f . This defines the Laplacian
∇2, ∇2f = ∇·(∇f), or

∇2f = ∂i∂if = (∂2
x + ∂2

y + ∂2
z )f , (1.16)

where ∂x = ∂/∂x, etc. Similarly, we can differentiate further the diver-
gence or the curl of a vector field. For instance, ∇(∇·v) is a vector field
with components

[∇(∇·v)]i = ∂i∂jvj , (1.17)

while ∇·(∇ × v) is a scalar field, since it is the divergence of a vector
field. However, from the explicit computation in components,

∇·(∇× v) = ∂i(εijk∂jvk)

= εijk∂i∂jvk

= 0 . (1.18)
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The last equality follows because ∂i∂j is an operator symmetric in the
(i, j) indices (we always assume that the derivatives act on functions,
or on vector fields, that are continuous and infinitely differentiable ev-
erywhere, so the derivatives commute, ∂i∂j = ∂j∂i), and therefore it
gives zero when contracted with the antisymmetric tensor εijk. Thus,
the gradient of a curl vanishes. Similarly, the curl of a gradient vanishes:

(∇×∇f)i = εijk∂j∂kf = 0 , (1.19)

again because ∂j∂k is symmetric in (j, k). The Laplacian of a vector
field is defined, using Cartesian coordinates, as

(∇2v)i ≡ ∂j∂jvi = (∂2
x + ∂2

y + ∂2
z )vi . (1.20)

Exercise 1.4 Using eq. (1.7), show that

∇× (∇× v) = ∇(∇·v)−∇2v . (1.21)

For future reference, we give the expression of the gradient and Lapla-
cian of a scalar field, and of the divergence and curl of a vector field,
in Cartesian coordinates (x, y, x), in polar coordinates (r, θ, φ), and in
cylindrical coordinates (ρ, ϕ, z).1,2 Denoting by {x̂, ŷ, ẑ}, {r̂, θ̂, φ̂}, and1Our convention on the polar angles is

such that spherical coordinates are re-
lated to Cartesian coordinates by x =
r sin θ cosφ, y = r sin θ sinφ, z =
r cos θ, with θ ∈ [0, π] and φ ∈ [0, 2π].
Cylindrical coordinates are related to
Cartesian coordinates by x = ρ cosϕ,
y = ρ sinϕ (with ϕ ∈ [0, 2π]) and z = z.
Then, as ϕ increases, we rotate coun-
terclockwise with respect to the z axis.
This means that ρ̂×ϕ̂ = +ẑ.

2The Laplacian of a vector field has
been defined from eq. (1.20) in terms of
the Cartesian coordinates and, in this
case, on each component of the vec-
tor field, it has the same form as the
Laplacian acting on a scalar. This is no
longer true in polar of cylindrical coor-
dinates. In that case, ∇2v can be more
easily obtained from eq. (1.21), using
the corresponding expressions of ∇·v
and ∇× v.

{ρ̂, ϕ̂, ẑ}, respectively, the unit vectors in the corresponding directions,
we have

∇f = (∂xf)x̂ + (∂yf)ŷ + (∂zf)ẑ (1.22)

= (∂rf)r̂ +
1

r
(∂θf)θ̂ +

1

r sin θ
(∂φf)φ̂ (1.23)

= (∂ρf)ρ̂+
1

ρ
(∂ϕf)ϕ̂+ (∂zf)ẑ , (1.24)

∇2f = ∂2
xf + ∂2

yf + ∂2
zf (1.25)

=
1

r2
∂r(r

2∂rf) +
1

r2 sin θ
∂θ(sin θ∂θf) +

1

r2 sin2 θ
∂2
φf (1.26)

=
1

ρ
∂ρ(ρ∂ρf) +

1

ρ2
∂2
ϕf + ∂2

zf , (1.27)

∇·v = ∂xvx + ∂yvy + ∂zvz (1.28)

=
1

r2
∂r(r

2vr) +
1

r sin θ
∂θ(vθ sin θ) +

1

r sin θ
∂φvφ (1.29)

=
1

ρ
∂ρ(ρvρ) +

1

ρ
∂ϕvϕ + ∂zvz , (1.30)

∇×v = x̂(∂yvz − ∂zvy) + ŷ(∂zvx − ∂xvz) + ẑ(∂xvy − ∂yvx) (1.31)

= r̂
1

r sin θ
[∂θ(vφ sin θ)− ∂φvθ] + θ̂

[
1

r sin θ
∂φvr −

1

r
∂r(rvφ)

]

+φ̂
1

r
[∂r(rvθ)− ∂θvr] (1.32)

= ρ̂

(
1

ρ
∂ϕvz − ∂zvϕ

)
+ ϕ̂ (∂zvρ − ∂ρvz) + ẑ

1

ρ
[∂ρ(ρvϕ)− ∂ϕvρ] .

(1.33)
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1.3 Integration of vector fields. Gauss’s
and Stokes’s theorems

Given a vector field v(x) and a curve C, one can define the line integral
∫

C

d` ·v , (1.34)

by breaking the curve over infinitesimal segments, and introducing, in
each segment, a vector d` of length d`, tangent to the curve. Notice that
the line integral defined in this way is a scalar quantity. If the curve C
is closed, the line integral (1.34) is known as the circulation of v around
the curve. For a closed curve, we will denote the line integral by

∮
d`.

The integral over a two-dimensional surface S can be defined similarly.
We split the surface in infinitesimal surface elements of area ds,3 and 3When we want to stress that this is

a two-dimensional surface element, we
will write it as d2s. Otherwise, to sim-
plify the notation, we write simply ds.

we define ds as the vector of modulus ds, pointing in the direction per-
pendicular to the surface element (for a closed surface, the convention
is to choose the outward normal, otherwise a choice of orientation must
be made). Writing the unit vector normal to the surface as n̂, we have
ds = n̂ ds. The surface integral of a vector field v(x) is then given by

∫

S

ds ·v =

∫

S

ds (v·n̂) . (1.35)

For a closed surface, this defines the flux of v through S. In the case of
a closed surface, we will denote the surface integral by

∮
ds.

The fundamental theorem of calculus states that, for a function of a
single variable x,

∫ x2

x1

dx
df

dx
= f(x2)− f(x1) . (1.36)

This can be generalized to the line integral of a function of the three-
dimensional variable x: from the definition of the line integral (1.34)
one can show (do it!) that, for a function f(x) integrated over a curve
C with endpoints x1 and x2,

∫

C

d` ·∇f = f(x2)− f(x1) . (1.37)

Note in particular that, if C is closed, the line integral of a gradient
vanishes. Stokes’s theorem and Gauss’s theorem are generalizations of
eq. (1.37) to surfaces and to volumes, respectively. In particular, let C
be a closed curve and let S be any surface that has C as its boundary
(i.e., ∂S = C, where the notation ∂S stands for the boundary of S).
Then, Stokes’s theorem asserts that, for a vector field v(x) (with our
usual assumptions of differentiability, that we will not repeat further),

∫

S

ds · (∇× v) =

∮

C

d` ·v (Stokes’s theorem) . (1.38)
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The orientation convention is that, if we go around the loop C in the
direction of the line integral, the normal to S is obtained with the right-
hand rule.

Another useful identity is obtained by setting, in Stokes’s theorem,
v(x) = ψ(x)w, where w is a constant vector. Then, (∇ × v)i =
εijk(∂jψ)wk and eq. (1.38) becomes

wk

∫

S

dsiεijk∂jψ = wk

∮

C

d`k ψ . (1.39)

Since this is valid for generic w, we get
∫

S

dsiεijk∂jψ =

∮

C

d`k ψ , (1.40)

or, in vector notation,

∫

S

ds×∇ψ =

∮

C

d`ψ . (1.41)

Yet another useful identity following from Stokes’s theorem is obtained
by setting v(x) = u(x)×w, where, again, w is a constant vector. Then,

(∇×v)i = εijk∂j (εklmulwm)

= εijkεklm(∂jul)wm

= (∂jui)wj − (∂juj)wi , (1.42)

where, in the last line, we used eq. (1.7). Then eq. (1.38) gives

wkεijk

∮

C
d`iuj =

∫

S

dsi [(∂jui)wj − (∂juj)wi]

= wk

[∫

S

dsi ∂kui −
∫

S

dsk ∂iui

]
, (1.43)

and therefore

εijk

∮

C
d`iuj =

∫

S

dsi ∂kui −
∫

S

dsk ∂iui . (1.44)

A useful application of this formula is obtained choosing ui(x) = xi.
Then ∂kui = δik and ∂iui = 3, so eq. (1.44) gives

εijk

∮

C
d`ixj = −2

∫

S

dsk . (1.45)

However, for a planar surface
∫

S

dsk ≡ An̂k , (1.46)

where A is the area of the surface and n̂ is the unit vector normal to
it. We therefore obtain an elegant formula for the area A of a planar
surface S, bounded by a curve C,

An̂ =
1

2

∮

C
x×d` . (1.47)
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Gauss’s theorem extends Stokes’s theorem further, to integration over
volumes: let V be a finite volume bounded by the surface S, i.e., ∂V = S.
Then,

∫

V

d3x∇·v =

∫

S

ds ·v (Gauss’s theorem) . (1.48)

We will make use very often of both Gauss’s and Stokes’s theorems.4 4Proceeding as for Stokes’s theorem, if
we set v(x) = ψ(x)w, with w constant,
we also get the useful identity∫

V
d3x∇ψ =

∫
S
dsψ , (1.49)

while, setting v(x) = u(x)×w, we get∫
V
d3x∇×u =

∫
S
ds×u . (1.50)

A vector field such that ∇ × v = 0 everywhere is called irrotational,
or curl-free. We have seen in eq. (1.19) that, if v is the gradient of a
function, v = ∇f , then it is irrotational. A sort of converse of this
statement holds:

Theorem for curl-free fields. Let v be a vector field such that
∇ × v = 0 everywhere in a region V simply connected (i.e., such that
every loop in V can be continuously shrunk to a point). Then, there
exists a function f such that v = ∇f .

A vector field v such that ∇·v = 0 is called solenoidal, or divergence-
free. Similarly, there is a sort of inverse to eq. (1.18):

Theorem for divergence-free fields. Let v be a vector field such
that ∇·v = 0 everywhere in a volume V such that every surface in V
can be continuously shrunk to a point. Then, there exists a vector field
w such that v = ∇×w.

1.4 Dirac delta

The Dirac delta is an especially useful mathematical object, that appears
everywhere in physics. Physically, it can be seen as the modelization of
a point-like object. The Dirac delta δ(x) is not a function in the proper
sense. Rather, in one dimension, it is defined from the conditions that

δ(x− x0) = 0 if x 6= x0 , (1.51)

and that, for any function f(x) regular in an integration region I that
includes x0, ∫

I

dx δ(x− x0)f(x) = f(x0) . (1.52)

Note that the integral on the left-hand side vanishes if I does not include
x0 because of eq. (1.51) [and of the assumed regularity of f(x)]. On the
other hand, again because of eq. (1.51), the integral in the left-hand side
of eq. (1.52) is independent of I, as long as x0 ∈ I. In the following we
will set for definiteness I = (−∞,+∞), so eq. (1.52) reads

∫ +∞

−∞
dx δ(x− x0)f(x) = f(x0) . (1.53)
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Observe that, applying this definition to the case of the function f(x) =
1, we get the normalization condition

∫ +∞

−∞
dx δ(x) = 1 . (1.54)

Since the Dirac delta vanishes at all points x 6= x0, but still the integral
in the left-hand side of eq. (1.53) is non-zero, it must be singular in x0.
Actually, the Dirac delta is not a proper function, but can be defined
by considering a sequence of functions δn(x, x0) such that, as n → ∞,
δn(x, x0) → 0 for x 6= x0, and δn(x, x0) → +∞ for x = x0, while
maintaining the normalization condition (1.54). As an example, one can
take a sequence of gaussians centered on x0, with smaller and smaller
width,

δn(x− x0) =
1√

2π σn
e−(x−x0)2/(2σ2

n) , (1.55)

with σn = 1/n. Another option could be to use

δn(x− x0) =

{
n for |x− x0| < 1/(2n)
0 for |x− x0| > 1/(2n) .

(1.56)

These two sequences of functions are shown in Fig. 1.1. In both cases,
the limit of δn(x−x0) for n→∞ does not exists, since it diverges when
x = x0, and therefore does not define a proper function δ(x). However,
one can generalize the notion of functions to the notion of distributions
(or “improper functions”), which are defined from their action inside
an integral, when convolved with “test” functions f(x) (with suitably
defined properties of regularity and, possibly, behavior at infinity). In
the case of the Dirac delta, the definition in the sense of distributions is
given by eq. (1.53). Using the explicit expression of the functions δn(x)
given in eq. (1.56), for a function f(x) regular near x0, we getx

δn(x)

n
→

∞
=
⇒

σ
n
→

0

x

δn(x)

n
→

∞

Fig. 1.1 A sequence of approxima-
tions to the Dirac δ function, us-
ing the gaussians (1.55) (top panel)
or the “rectangles” (1.56) (lower
panel).

lim
n→∞

∫ +∞

−∞
dx δn(x− x0)f(x) = lim

n→∞
n

∫ x0+ 1
2n

x0− 1
2n

dx f(x)

= lim
n→∞

n

[(
x0 +

1

2n

)
−
(
x0 −

1

2n

)]
f(x0)

= f(x0) . (1.57)

Therefore, in the sense of distributions, i.e., after multiplying by a
smooth function f(x) and integrating, we have

δ(x− x0) = lim
n→∞

δn(x− x0) . (1.58)

From the definition, we see that the Dirac delta only makes sense when
it appears inside an integral. In physics, however, with an abuse of nota-
tion, the universal use is to treat it as if it were a normal function (and
it is even called the Dirac delta “function”!), with the understanding
that the relations in which it enters must be understood in the sense of
distributions, i.e., multiplied by a test function and integrated.
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From the definitions (1.55) or (1.56), setting x0 = 0, we see that
the Dirac delta function is even in x, δ(x) = δ(−x). Two more useful
properties are left as an exercise to the reader:

Exercise 1.5 Using the definition (1.53) show that, if a is a non-zero
real number,

δ(ax) =
1

|a|δ(x) . (1.59)

Exercise 1.6 Using again eq. (1.53) show that, if g(x) is a function
which has only one simple zero in x = x0, then

δ (g(x)) =
1

|g′(x0)|δ(x− x0) , (1.60)

where g′(x) = dg/dx. Show that, if g(x) has several simple zeros at the
points x = xi (i = 1, . . . , n), this generalizes to

δ (g(x)) =

n∑

i=1

1

|g′(xi)|
δ(x− xi) . (1.61)

Exercise 1.7 Show that, in the sense of distributions,

xδ(x) = 0 . (1.62)

Another useful notion is the derivative of the Dirac delta, δ′(x), which,
in the sense of distributions, is defined from

∫ +∞

−∞
dx δ′(x− x0)f(x) ≡ −

∫ +∞

−∞
dx δ(x− x0)f ′(x)

= −f ′(x0) . (1.63)

This definition is clearly motivated by the analogy with the integration
by parts of a normal function. Taking δ(x) as the limit for n→∞ (in the
sense of distributions) of a series δn(x) of continuous and differentiable
functions, such as the gaussians (1.55), one can see that δ′(x) is obtained,
again in the sense of distributions, from the limit n → ∞ of δ′n(x).
Indeed, for δn(x) differentiable (and vanishing at x = ±∞), the standard
integration by parts goes through,5 and 5We also assume that the test functions

f(x) go to zero at ±∞. In fact, here
it is sufficient that they do not grow
so fast to compensate the exponential
decay of the gaussian δn(x), so that, in
the integration by parts, we can discard
the boundary terms at infinity.

lim
n→∞

∫ +∞

−∞
dx δ′n(x− x0)f(x) = − lim

n→∞

∫ +∞

−∞
dx δn(x− x0)f ′(x)

= −f ′(x0) , (1.64)

where the last equality follows from eq. (1.58). Therefore, in the same
sense as eq. (1.58),

δ′(x− x0) = lim
n→∞

δ′n(x− x0) . (1.65)

Notice that δ′(x) is an odd function of x, δ′(−x) = −δ′(x), as it is
clear from its representation in terms of δ′n(x), with δn(x) given by the
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sequence of gaussians. Higher-order derivatives of the Dirac delta are
defined similarly,
∫ +∞

−∞
dx

[
dn

dxn
δ(x− x0)

]
f(x) ≡ (−1)n

∫ +∞

−∞
dx δ(x− x0)

dnf(x)

dxn

= (−1)n
dnf(x)

dxn
|x=x0

. (1.66)

There is an interesting relation between the Dirac delta and the Heav-
iside theta function (also called simply the “theta function”), defined
by

θ(x) =

{
1 for x > 0
0 for x < 0 .

(1.67)

Observe that, from the definition of the Dirac delta,
∫ x

−∞
dx′ δ(x′) = θ(x) . (1.68)

Indeed, if x < 0, the integration region does not include the point x′ = 0
where δ(x′) is singular, so the integral vanishes. For x > 0, instead,
we can extend the integral in eq. (1.68) up to x′ = ∞, since anyhow
δ(x′) = 0 for x′ > 0, and we can then use eq. (1.54) to show that the
integral is equal to one. Conversely, for a differentiable function f(x)
that vanishes at infinity, treating θ′(x) as a distribution and defining its
derivative as we have done for the Dirac delta,

∫ +∞

−∞
dx θ′(x)f(x) ≡ −

∫ +∞

−∞
dx θ(x)f ′(x)

= −
∫ ∞

0

dx
df

dx

= −[f(∞)− f(0)]

= f(0) . (1.69)

This shows that, in the sense of distributions,

θ′(x) = δ(x) , (1.70)

which could also have been formally derived by taking the derivative
of eq. (1.68).6 This result could have also been proved using a sequence

6Note that we have proved eq. (1.68)
for x > 0 and for x < 0. Whether it also
holds for x = 0 depends on the series
δn(x) that we use for approximating
δ(x), and on how we define θ(x = 0).
If we use functions δn(x) that are sym-
metric around x = 0, as in eqs. (1.55)
or (1.56), the equality holds if we define
θ(0) = 1/2. However, one could use dif-
ferent, non-symmetric series δn(x), and
one should then assign a different value
to θ(0) for the equality to hold. In fact,
the whole issue is irrelevant since the
relation (1.70) holds only in the sense
of distributions, i.e., after integrating,
and the fact that it holds in a single
point or not does not affect any inte-
grated relation.

δn(x) of approximations to the Dirac delta, and showing that, plugging it
on the left hand side of eq. (1.68), we get a continuous and differentiable
approximation to the theta function.

The Dirac delta has an extremely useful integral representation. A
simple way to obtain it is to use the sequence of gaussians (1.55). Then,

∫ +∞

−∞
dx δn(x)e−ikx =

n√
2π

∫ +∞

−∞
dx e−

1
2n

2x2−ikx

= e−k
2/(2n2) , (1.71)

as can be proven by carrying out the integral on the right-hand side of
the first line.7 Similarly,

7For instance, by completing the square
in the exponent one gets∫ +∞

−∞
dx e−

1
2
n2x2−ikx

= e
− k2

2n2

∫ +∞

−∞
dx e
−n2

2
(x+ ik

n2 )2

= e
− k2

2n2

∫ +∞

−∞
dx′ e−

n2

2
(x′)2

= e
− k2

2n2

√
2π

n
, (1.72)

where we introduced x′ = x + ik/n2.
More precisely, we have actually con-
sidered a closed contour in the complex
plane z = x + iy, composed by the x
axis y = 0, and by the parallel line
y = ik/n2, and closed the contour join-
ing these two lines at infinity. Since the
integrand has no singularity inside this
contour, by the Cauchy theorem the in-
tegral over the x axis is the same as the
integral over the line y = ik/n2, i.e.,
over the variable z = x+ ik/n2.
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∫ +∞

−∞

dk

2π
e−

k2

2n2 +ikx =
n√
2π

e−
1
2n

2x2

= δn(x) . (1.73)

Taking the limit n→∞ of these relations we therefore get

∫ +∞

−∞
dx δ(x)e−ikx = 1 , (1.74)

and its inverse relation
∫ +∞

−∞

dk

2π
eikx = δ(x) . (1.75)

Equation (1.74) could have been derived more simply from the defining
property of the Dirac delta, eq. (1.53), observing that, in x = 0, e−ikx =
1. Equation (1.75) was less evident, and provides a very useful integral
representation of the Dirac delta.8 In Section 1.5, we will use it to give 8Note that, renaming the integration

variable k → −k, we can also write
eq. (1.75) as∫ +∞

−∞

dk

2π
e−ikx = δ(x) . (1.76)

a simple derivation of the inversion formula of the Fourier transform.
The generalization to more than one dimension is straightforward. In

particular, in three spatial dimensions, we define the three-dimensional
Dirac delta as

δ(3)(x) = δ(x)δ(y)δ(z) , (1.77)

and this is a distribution to be multiplied by test functions f(x) and
integrated over d3x. Then, eq. (1.53) becomes

∫
d3x δ(3)(x− x0)f(x) = f(x0) , (1.78)

while the integral representation (1.75) becomes

∫
d3k

(2π)3
eik·x = δ(3)(x) . (1.79)

Example 1.1 Divergence of r̂/r2. As a particularly important appli-
cation of the concepts developed in Sections 1.2, 1.3, and in the present
section, we perform the computation of the divergence of the vector field

v(x) =
x

r3

=
r̂

r2
, (1.80)

where r = |x| and r̂ is the unit vector in the radial direction. In polar
coordinates, vr = 1/r2, vθ = vφ = 0. If we use eq. (1.29), we apparently
get

∇·v =
1

r2
∂r

[
r2 × 1

r2

]
(r 6= 0)

= 0 . (1.81)
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However, we have stressed that this only holds for r 6= 0, since these
manipulations become undefined at r = 0. To understand the behavior
of ∇·v in r = 0, we use Gauss’s theorem (1.48) in a volume V given by
a spherical ball of radius R. Its boundary is the sphere S2, and on the
boundary v = r̂/R2, while ds = R2dΩ r̂, where dΩ is the infinitesimal
solid angle.9 Then,9Recall that the infinitesimal solid an-

gle dΩ is defined from the transforma-
tion from Cartesian to spherical coor-
dinates. In two dimensions, from x =
r cos θ and y = r sin θ, it follows that
dxdy = rdrdθ. Similarly, in three di-
mensions, the relation between Carte-
sian and spherical coordinates (as we
already mentioned in Note 1 on page 4)
is x = r sin θ cosφ, y = r sin θ sinφ, z =
r cos θ, with θ ∈ [0, π] and φ ∈ [0, 2π].
Computing the Jacobian of the trans-
formation,

dxdydz = r2 sin θdrdθdφ

= r2drdΩ , (1.82)

where

dΩ = sin θdθdφ . (1.83)

Then, the total integral over the solid
angle is∫

dΩ =

∫ π

0
dθ sin θ

∫ 2π

0
dφ

= 4π , (1.84)

so the total solid angle in three dimen-
sions is 4π. Observe that we can also
write dΩ = dcos θ dφ, reabsorbing the
minus sign from dcos θ = − sin θdθ into
a change of the integration limits, so
that∫

dΩ =

∫ 1

−1
dcos θ

∫ 2π

0
dφ . (1.85)

∫

V

d3x∇·v =

∫

S2

ds ·v

=

∫

S2

R2dΩ r̂ · r̂

R2

=

∫

S2

dΩ

= 4π . (1.86)

This shows that ∇·v cannot be zero everywhere. Rather, since ∇·v = 0
for r 6= 0, but still its integral in d3x over any volume V is equal to 4π,
we must have

∇·
(

r̂

r2

)
= 4π δ(3)(x) . (1.87)

From this, we can obtain another very useful result. Using the expression
(1.23) of the gradient in polar coordinates, we get

∇
(

1

r

)
= − r̂

r2
. (1.88)

Writing

∇2

(
1

r

)
= ∇·

(
∇1

r

)

= −∇·
(

r̂

r2

)
, (1.89)

we see that eq. (1.87) implies that

∇2 1

r
= −4πδ(3)(x) . (1.90)

Replacing x by x− x′, for x′ generic, we then also have

∇2 1

|x− x′| = −4πδ(3)(x− x′) . (1.91)

We will use this result in Section 4.1.2, when we will introduce the notion
of Green’s function of the Laplacian.
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1.5 Fourier transform

We next recall the definition and some basic properties of the Fourier
transform. For a function of one spatial variable f(x), we define the
Fourier transform f̃(k) as10

10More precisely, one must restrict to a
space of functions such that the manip-
ulations below are well defined. This
can be obtained for instance consider-
ing f ∈ L1(R), the space of functions
whose absolute value is integrable over
R.

f̃(k) =

∫ +∞

−∞
dx f(x)e−ikx . (1.92)

Observe that, if f(x) is real, f̃∗(k) = f̃(−k). The simplest way to invert
this relation between f(x) and f̃(k) is to use the integral representation
of the Dirac delta, eq. (1.75).11 Multiplying eq. (1.92) by eikx, integrating

11This was not the historical path. The
theory of distributions, which puts the
notion of Dirac delta on a sound math-
ematical basis, was only developed in
the first half of the 20th century, while
the original work of Fourier dates back
to 1822.

over dk/(2π), and changing the name of the integration variable to x′ in
the right-hand side of eq. (1.92), we get

∫ +∞

−∞

dk

2π
f̃(k)eikx =

∫ +∞

−∞

dk

2π
eikx

∫ +∞

−∞
dx′ f(x′)e−ikx

′

=

∫ +∞

−∞
dx′ f(x′)

∫ +∞

−∞

dk

2π
eik(x−x′)

=

∫ +∞

−∞
dx′ f(x′)δ(x− x′)

= f(x) . (1.93)

Therefore, the inversion of eq. (1.92) is12

12There are different conventions for
the factors 2π in the definition of the
Fourier transform. The one that we
have used is, nowadays, the most com-
mon in physics. Another common
choice is to define

f̃(k) =
1
√

2π

∫ +∞

−∞
dx f(x)e−ikx ,

(1.94)
in which case eq. (1.96) becomes

f(x) =
1
√

2π

∫ +∞

−∞
dk f̃(k)eikx .

(1.95)

f(x) =

∫ +∞

−∞

dk

2π
f̃(k)eikx . (1.96)

Another useful relation is obtained considering the convolution of two
functions f(x) and g(x), defined by

F (x) =

∫ +∞

−∞
dx′ f(x′)g(x− x′) . (1.97)

Taking the Fourier transform we get13

13The explicit computation goes as fol-
lows:

F̃ (k) =

∫ +∞

−∞
dxF (x)e−ikx

=

∫ +∞

−∞
dx

∫ +∞

−∞
dx′f(x′)

×g(x− x′)e−ik[(x−x
′)+x′]

=

∫ +∞

−∞
dx′f(x′)e−ikx

′

×
∫ +∞

−∞
dx g(x− x′)e−ik(x−x

′) .

Introducing y = x−x′, the last integral
over dx at fixed x′ is the same as an
integral over dy, so

F̃ (k) =

∫ +∞

−∞
dx′f(x′)e−ikx

′

×
∫ +∞

−∞
dy g(y)e−iky

= f̃(k)g̃(k) .

F̃ (k) = f̃(k)g̃(k) . (1.98)

Therefore, the Fourier transform of a convolution is equal to the product
of the Fourier transforms. This is known as the convolution theorem.

Equations (1.92), (1.96), and (1.98) are easily generalized to any num-
ber of spatial dimensions. In particular, in three spatial dimensions, the
Fourier transform is defined as

f̃(k) =

∫
d3x f(x)e−ik·x , (1.99)

and its inversion gives

f(x) =

∫
d3k

(2π)3
f̃(k)eik·x . (1.100)
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If f(x) is real, f̃∗(k) = f̃(−k). The convolution theorem now tells us
that, if

F (x) =

∫
d3x′ f(x′)g(x− x′) , (1.101)

then
F̃ (k) = f̃(k)g̃(k) . (1.102)

For a function of time f(t) we will denote the integration variable that
enters in the Fourier transform by ω, and we will also use a different
sign convention, defining the Fourier transform f̃(ω) as

f̃(ω) =

∫
dt f(t)eiωt , (1.103)

so that

f(t) =

∫
dω

2π
f̃(ω)e−iωt . (1.104)

In the context of Special Relativity, the advantage of using a different
sign convention between the spatial and temporal Fourier transforms is
that the Fourier transform of a function f(t,x), with respect to both t
and x, can be written as

f(t,x) =

∫
dωd3k

(2π)4
f̃(ω,k)e−i(ωt−k·x) , (1.105)

i.e.,

f̃(ω,k) =

∫
dtd3x f(t,x)ei(ωt−k·x) , (1.106)

and, as we will see, the combination (ωt−k·x) is more natural from the
point of view of Special Relativity and Lorentz invariance.

Example 1.2 In this example, we compute the three-dimensional Fourier
transform of the function

f(r) =
1

r
, (1.107)

that appears in the Coulomb potential. A direct computation leads to
a problem of convergence.14 Indeed, from eqs. (1.99), (1.82), and (1.85),14Indeed, this function does not belong

to L1(R3), compare with Note 10 on
page 13. f̃(k) =

∫
d3x

1

r
e−ik·x

=

∫ ∞

0

dr r2

∫ 2π

0

dφ

∫ 1

−1

d cos θ
1

r
e−ikr cos θ , (1.108)

where, to perform the integral, we have written d3x in polar coordinates
with k as polar axis, so θ is the angle between k and x. The integral over
dφ just gives a 2π factor, and the integral over cos θ is also elementary,

∫ 1

−1

dα e−ikrα =
2

kr
sin(kr) , (1.109)

so we get

f̃(k) =
4π

k2

∫ ∞

0

du sinu , (1.110)
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where k = |k| and u = kr. The integral over du, however, does not
converge at u = ∞, and is not well defined without a prescription. We
then start by computing first the Fourier transform of the function

V (r) =
e−µr

r
, (1.111)

where µ > 0, and has the dimensions of the inverse of a length. This
function, which corresponds to an interaction potential known as the
Yukawa potential, reduces to the Coulomb potential as µ → 0+. Per-
forming the same passages as before gives

Ṽ (k) =
4π

k2

∫ ∞

0

du sinu e−εu , (1.112)

where ε = µ/k. For non-zero ε, i.e., non-zero µ, the factor e−εu ensures
the convergence of the integral. Writing sinu = (eiu − e−iu)/(2i), the
integral is elementary,

Ṽ (k) =
4π

k2

1

2i

[
1

i− εe
(i−ε)u +

1

i+ ε
e−(i+ε)u

]∞

0

=
4π

k2

1

1 + ε2

=
4π

k2 + µ2
. (1.113)

Therefore,

V (x) =
e−µr

r
⇐⇒ Ṽ (k) =

4π

k2 + µ2
. (1.114)

Since the limit µ→ 0+ of these expressions is well defined, we can now
define the Fourier transform of the Coulomb potential as the limit for
µ→ 0+ of the Fourier transform of the Yukawa potential,15 so

15A note for the advanced reader. In
quantum field theory, the Coulomb
potential is understood as the in-
teraction between two static charges
mediated by the exchange of a massless
particle, the photon. The exchange of
a massive particle produces instead a
Yukawa potential, with the constant
µ related to the mass m of the ex-
changed particle by µ = mc/~, see
e.g., Section 6.6 of Maggiore (2005).
This way of regularizing the integral
therefore corresponds, physically, to
assigning a small mass mγ to the
photon and then taking the limit
mγ → 0. Indeed, one way to put limits
on the photon mass is to assume that
the Coulomb interaction is replaced
by a Yukawa potential, and obtain
limits on mγ . Currently, the strongest
limit on the photon mass coming
from a direct test of the Coulomb law
gives mγc2 < 1 × 10−14 eV. Writing
µ = 1/r0, so that r0 = ~/(mγc), this
translate into a limit r0 > 2 × 107 m,
i.e., there is no sign of an exponential
decay corresponding to a Yukawa po-
tential up to such scales. Other limits
on the mass of the photon, not based on
a direct measurement of the Coulomb
law, are even stronger, with the most
stringent being mγc2 < 1 × 10−18 eV,
corresponding to r0 > 2 × 1011 m, see
https://pdg.lbl.gov/2021/listings/

contents_listings.html. Another
way to search for deviations from
Coulomb’s law is to look for a force
proportional to 1/r2+ε, and set limits
on ε. This is a purely phenomenolog-
ical parametrization and, contrary to
the case of the Yukawa potential (and
to statements in some textbook), it
has no field-theoretical interpretation
in terms of a photon mass.

f(x) =
1

r
⇐⇒ f̃(k) =

4π

k2
. (1.115)

The correctness of this limiting procedure can be checked observing that,
if we rather start from f̃(k) = 4π/k2 and compute the inverse Fourier
transform, we get 1/r without the need of regulating any divergence.
Indeed, in this case we get

f(r) =

∫
d3k

(2π)3

4π

k2
eik·x

=
4π

8π3
2π

∫ ∞

0

k2dk

∫ 1

−1

d cos θ
1

k2
eikr cos θ

=
1

r

2

π

∫ ∞

0

du
sinu

u

=
1

r
, (1.116)

since
∫∞

0
du (sinu)/u converges, and has the value π/2.

https://pdg.lbl.gov/2021/listings/contents_listings.html
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1.6 Tensors and rotations

The elementary definition of a vector is based on the notion of an arrow,
i.e., an object with a length and a direction. It is very useful to under-
stand vectors in a more elaborate language, that of representations of
the rotation group. This will allow us to better understand the meaning
of other objects, such as tensors, and will be a useful preparation for
understanding the formalism of Special Relativity, where the fundamen-
tal quantities will be given by representations of a broader group, the
Lorentz group, that we will introduce later. In this section, we will give
a first, simpler treatment, while in Section 1.7 we will provide a more
formal group-theoretical description (that will not be necessary for the
rest of the book but gives a deeper understanding).

Consider a vector v in two dimensions, defined as an arrow; with
respect to a given system of Cartesian axes, it will have components
(vx, vy). Consider now a counterclockwise rotation of the vector by an
angle θ in the plane. After the rotation, the new components are given
by1616Here, we are keeping the axes of the

reference frame fixed, and rotate the
vector by an angle θ. Then v′x and v′y in
eqs. (1.117) and (1.118) are the compo-
nents of the rotated vector with respect
to these fixed axes. This is called the
“active” point of view. Equivalently, we
can keep the vector fixed and rotate the
axes by an angle −θ. Then, v′x and v′y
in eqs. (1.117) and (1.118) are the com-
ponents of the vector v with respect to
the new system of axes. This is called
the “passive” point of view.

v′x = vx cos θ − vy sin θ , (1.117)

v′y = vx sin θ + vy cos θ . (1.118)

Therefore, under a rotation by an angle θ, the transformation of v is
given by

(
vx
vy

)
→
(
v′x
v′y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
vx
vy

)
. (1.119)

Using our notation with a sum over repeated indices, we can rewrite this
as

vi → v′i = Rijvj , (1.120)

where the indices i, j take the two values {x, y} (or, equivalently, {1, 2})
and Rij = Rij(θ) are the matrix elements of the 2 × 2 matrix that
appears in eq. (1.119).

We can now promote eq. (1.119) to the basic relation that defines
a vector, stating that a vector in two spatial dimensions is defined as
a set of two numbers (its components) with a well-defined transforma-
tion property under rotations, expressed by eq. (1.119). This definition
totally abstracts from the original notion of an arrow, and has the ad-
vantage that it can be generalized both to objects with different trans-
formation properties and to arbitrary dimensions.

Consider first the generalization to arbitrary dimensions.17 We begin17In elementary physics, we are usu-
ally interested only in rotations in two
or in three spatial dimensions. The
generalization to arbitrary dimensions,
however, is already a useful preparation
for the extension to more complicated
transformations, such as Lorentz trans-
formations.

by observing that the rotation (1.119) preserves the length of the vec-
tor, so the squared norm of the vector v (that, with our convention of
summation of repeating indices, can be written as vivi) is equal to the
norm of the vector v′ obtained applying a rotation to v,

v′iv
′
i = vivi . (1.121)
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We now use this relation to define rotations and vectors, in any dimen-
sions, as follows. We consider a set of d objects vi, i = 1, . . . , d, and
a linear transformation of the form (1.120), where now Rij is a d × d
matrix. We define rotations in d dimensions as the transformations Rij
that preserve the norm of v,18 so that eq. (1.121) (with i = 1, . . . , d)

18We will qualify this more precisely
at the end of this section and in
Section 1.7, where we will see that
“proper” rotations are obtained factor-
ing out some discrete parity symmetry.

holds. The set of objects vi that transforms as in eq. (1.120) when Rij
is a rotation matrix are then called “vectors under rotations” or, more
simply, vectors.

This definition allows us to characterize rotations as follows. Plugging
eq. (1.120) into eq. (1.121) we get

vivi = RijvjRikvk . (1.122)

Using eq. (1.3) and renaming the dummy indices on the right-hand side
as i→ k, j → i, k → j, this can be rewritten in the form

δijvivj = RijRikvjvk

= RkiRkjvivj . (1.123)

Since this must hold for any vector vi, it follows that

RkiRkj = δij . (1.124)

Recall that, if Rij are the matrix elements of the matrix R, the transpose
matrix RT has matrix elements (RT)ij = Rji. Then eq. (1.129) reads
RT
ikRkj = δij or, in matrix form

RTR = I , (1.125)

where I is the identity matrix. Therefore RT is the left inverse of R,
and then it also holds19 19This follows from the fact that, for

a square matrix, the left and right in-
verse are the same. Indeed, let A be
a matrix, and suppose that its left in-
verse, L, exists, so that LA = I. Then,
multiplying by L from the right, we get
LAL = L. Multiplying further by L−1

from the left, we get AL = I. Then, L
is also the right inverse.

RRT = I . (1.126)

In components, this reads

RikRjk = δij . (1.127)

Therefore, rotation matrices satisfy

RRT = RTR = I , (1.128)

or, in components,

RkiRkj = RikRjk = δij . (1.129)

Equation (1.128) is just the definition of orthogonal matrices. We have
then found that rotations in d dimensions are given by d× d orthogonal
matrices, and vectors are defined by the transformation property (1.120)
under rotations.

The transformation property of vectors can be generalized to objects
with different transformation properties. In particular, in any dimension
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d we can define a tensor Tij with two indices as an object that, under
rotations, transforms as

Tij → T ′ij = RikRjlTkl , (1.130)

(with the indices running over two values {x, y} in two dimensions, over
{x, y, z} in three dimensions, and more generally over d values 1, . . . , d
in d dimensions), with the same matrix Rij that appears in the transfor-
mation of vectors. Similarly, a tensor Tijk with three indices is defined
as an object that, under rotations, transforms as

T ′ijk = Rii′Rjj′Rkk′Ti′j′k′ , (1.131)

and so on. Note that, for tensors, the connection with the notion of arrow
is completely lost, and a tensor is only defined by its transformation
property (1.130).

Consider now a tensor Tij that, in a given reference frame, has compo-
nents δij . Normally, the numerical values of the components of a tensor
change if we perform a rotation, according to eq. (1.130). In this case,
however, in the new frame

T ′ij = RikRjlTkl

= RikRjlδkl

= RikRjk

= δij , (1.132)

where in the last equality we have used eq. (1.129). Thus, δij is a very
special tensor, whose components have the same numerical values in
all frames. It is then called an invariant tensor. In three dimensions,
the only other invariant tensor of the rotation group is εijk, since it
transforms as

εijk → Rii′Rjj′Rkk′εi′j′k′ . (1.133)

However, from the definition of the determinant of a 3 × 3 matrix, we
can check that the right-hand side of eq. (1.133) is equal to (detR)εijk.
Equation (1.128), together with the fact that, for two matrices A and
B, det(AB) = det(A) det(B), and det(RT) = det(R), implies that
(detR)2 = 1, so detR = ±1. “Proper” rotations are defined as the trans-
formations with detR = +1 (while transformations with detR = −1
correspond to parity transformations, that change the orientation of one
axis, or of all three axes, possibly combined with proper rotations), so
εijk is indeed invariant under (proper) rotations.

1.7 Groups and representations
This section is more formal and can
(actually, should!) be omitted at first
reading.

Vectors and tensors are usually the first examples that one encounters of
a much more general concept, that of representations of groups, which is
ubiquitous in modern theoretical physics. Even if this will not be strictly
necessary for the rest of the book, it can be interesting to expand on
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the previous discussion, taking a more abstract and mathematical point
of view. The underlying mathematics here is that of group theory and
group representations. Group theory is a fundamental element of the
mathematical arsenal of modern theoretical physics. While, especially
with hindsight, it was already implicitly present in the classical physics
of the 19th century, it acquired a central role first of all because of
Special Relativity and its connection with electromagnetism (in relation,
in particular, to the work of Lorentz and Poincaré), that we will explore
in the following chapters. The role of group theory in physics then
became even more central with the advent of quantum mechanics where,
for instance, concepts such as the spin of the electron cannot be really
understood without it. Modern particle physics, such as the Standard
Model that unifies weak and electromagnetic interactions, as well as all
attempts at going beyond it, are also formulated in the language of group
theory.20 20For an introduction to group theory

in physics, see e.g., Zee (2016).A group G is a set of objects g1, g2, . . . (discrete or continuous) among
which is defined a composition operation g1 ◦ g2, such that

• if g1 ∈ G and g2 ∈ G, then also g1 ◦ g2 ∈ G.

• The composition is associative, g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

• In G there is the identity element e, defined by the fact that, for
each g ∈ G, g ◦ e = e ◦ g = g.21 21The identity element is unique: in

fact, assume that e1 and e2 are two
identity elements. Then, using the fact
that e2 is an identity element, we have
e1 ◦ e2 = e1. However, using the fact
that e1 is an identity element, we also
have e1 ◦ e2 = e2. Therefore e1 = e2.

• For each g ∈ G there is an inverse element, that we denote g−1,
such that g ◦ g−1 = g−1 ◦ g = e.

Note that the composition operation is not necessarily commutative.
If it is, the group is called commutative (or abelian), otherwise is called
non-commutative (or non-abelian). Rotations form a group (in any di-
mensions), since they satisfy the previous axioms.

Exercise 1.8 Show that rotations in two dimensions form a commu-
tative group, while in three dimensions they form a non-commutative
group.

[Hint: take an object such as a book, lie it on a table, denote by x and
y the axes on the plane of the table so that the lower edge of the book
is along the x axis, and the rib of the book is along the y axis. Perform
first a rotation of the book by 90◦ around the x axis and then a rotation
of the resulting configuration by 90◦ around the y axis. Compare this
with what happens if you first perform the rotation by 90◦ around the
y axis and then by 90◦ around the x axis.]

A (linear) representation R of a group is an operation that assigns to a
generic, abstract element g of a group a linear operator DR(g) defined
on a (real or complex) vector space,

g 7→ DR(g) , (1.134)

with the property that, for all g1, g2 ∈ G

DR(g1)DR(g2) = DR(g1 ◦ g2) . (1.135)
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This condition means that the mapping preserves the group structure,
i.e., that it is the same to compose the elements at the group level (with
the ◦ operation) and then represent the resulting element g1 ◦ g2, or
first represent g1 and g2 in terms of linear operators and then com-
pose the resulting linear operators. Note that the composition oper-
ation in DR(g1)DR(g2) is the one between linear operators (such as
the matrix product when the linear operators are matrices, see next),
while the composition operation in g1 ◦ g2 is the one at the abstract
group level. Setting g1 = g, g2 = e in eq. (1.135), we find that, for all
g ∈ G, DR(g)DR(e) = DR(g); similarly, setting g1 = e, g2 = g, we get
DR(e)DR(g) = DR(g). This implies that the identity element of the
group e must be mapped to the identity operator I, i.e., DR(e) = I.
Similarly, we can show that DR(g−1) = [DR(g)]−1.

The vector space on which the operators DR act is called the basis,
or the base space, for the representation R and, as we have mentioned,
it can be a real vector space or a complex vector space. We will be
particularly interested in matrix representations. In this case, the base
space is a vector space of finite (real or complex) dimension n, and an
abstract group element g is represented by a n × n matrix [DR(g)]ij ,
with i, j = 1, . . . , n. The dimension of the representation is defined as
the dimension n of the base space.

Writing a generic element of the base space as a vector v with com-
ponents (v1, . . . , vn), a group element g can be associated with a linear
operator [DR(g)]ij acting on the base space, and therefore to a linear
transformation of the base space

vi → [DR(g)]ijvj , (1.136)

with our usual summation convention on repeated indices. The impor-
tant point is that eq. (1.136) allows us to attach a physical meaning
to a group element: before introducing the concept of representation,
a group element g is just an abstract mathematical object defined by
its composition rules with the other group members. Choosing a spe-
cific representation, instead, allows us to interpret g as a transformation
acting on a vector space.2222Apart from matrix representations,

the other typical situation encoun-
tered in physics is when a group el-
ement is represented by a differential
operator acting on a space of func-
tions. Since the space of function
is infinite-dimensional, this representa-
tion is infinite-dimensional.

1.7.1 Reducible and irreducible representations

The different representations of a group describe all possible ways in
which objects can transform under the action of the group, for instance
under rotations. However, not all possible representations describe gen-
uinely different possibilities. Given a representation R of a group G,
whose basis is a space X, and another representation R′ of G, whose
basis is a space X ′, R and R′ are called equivalent if there is an isomor-
phism S : X → X ′ such that, for all g ∈ G,

DR(g) = S−1DR′(g)S . (1.137)

Comparing with eq. (1.136), we see that, in the case of representations
of finite dimension, equivalent representations correspond to a change
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of basis in the vector space spanned by the vi, obtained acting on the
basis vector with a matrix S, so we do not consider them as genuinely
different representations.

Furthermore, some representations can be obtained trivially, just by
stacking together representations of lower dimensions, and do not really
describe novel ways of transforming under the action of the group. As a
simple example, consider two vectors v and w, in two dimensions. Under
a rotation in the plane by an angle θ, v transforms as in eq. (1.119), and
similarly

(
wx
wy

)
→
(
w′x
w′y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
wx
wy

)
, (1.138)

which expresses the fact that, in two dimensions, vectors are represen-
tations of dimension two of the rotation group. Naively, we might think
that we can find a new type of representation of dimension four, by
putting together the components of v and w into a single object with
components (vx, vy, wx, wy). Under rotations,




vx
vy
wx
wy


→




v′x
v′y
w′x
w′y


 =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ







vx
vy
wx
wy


 .

(1.139)

However, here we have not discovered a genuinely new type of repre-
sentation of dimension four; we have simply stack together two vectors.
Mathematically, the fact that this is not a genuinely new representation
is revealed by the fact that the matrix in eq. (1.139) is block diagonal
(for all rotations, so in this case for all values of θ), so that there is no
rotation that mixes the components of v with that of w.

This example motivates the definition of reducible and irreducible rep-
resentations. A representation R is called reducible if it has an invariant
subspace, i.e., if the action of any DR(g) on the vectors in the subspace
gives another vector of the subspace. This corresponds to the fact that
[possibly after a suitable change of basis of the form (1.137)] there is
a subset of components of the basis vector that never mixes with the
others, for all transformations DR(g). A representation R is called com-
pletely reducible if, for all elements g, the matrices DR(g) have a block
diagonal form, or can be put in a block diagonal form with a change
of basis corresponding to the equivalence relation (1.137). Conversely,
a representation with no invariant subspace is called irreducible. Ir-
reducible representations describe the genuinely different way in which
physical quantities can transform under the group of transformations in
questions.

To put some flesh into these rather abstract notions, we now look at
the simplest irreducible representations of the rotation group.
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1.7.2 The rotation group and its irreducible tensor
representations

The group of rotations in d spatial dimensions can be defined as the
group of linear transformations of a d-dimensional space with coordinate
(x1, . . . xd), of the form

xi → x′i = Rijxj , (1.140)

which leaves invariant the quadratic form

|x|2 = x2
1 + . . .+ x2

d . (1.141)

As we already found in eq. (1.128), the corresponding condition on the
matrix Rij is that it must be an orthogonal matrix, RRT = RTR = I.
The group of d×d orthogonal matrices is denoted by O(d). As we already
found below eq. (1.133), from RTR = I it follows that (detR)2 = 1, so
detR = ±1. The transformations with determinant +1 form a sub-
group, since the product of two matrices with determinant plus +1 is
still a matrix with determinant +1 (which is not the case for those with
determinant −1, given that the product of two matrices with determi-
nant −1 is a matrix with determinant +1). The subgroup of O(d) with
determinant equal to +1 is denoted by SO(d) and is identified with
the proper rotation group in d dimension. As already mentioned be-
low eq. (1.133), transformations with detR = −1 rather correspond to
discrete parity transformations, such as (x → −x, y → y, z → z) or
(x → −x, y → −y, z → −z) or, more generally, to parity transforma-
tions combined with proper rotations. By “rotations” we will always
mean the proper rotations. In particular, the rotation group in three
dimensions is SO(3).

The simplest irreducible representation of the rotation group, as of
any other group, is the so-called trivial representation, that assign to
each group element the 1× 1 identity matrix, i.e., DR(g) = 1 for each g.
In this case, the basic properties (1.135) of a representation are obviously
satisfied (note, however, that if we assign DR(g) = I with I the n × n
identity matrix with dimension n > 1, we do not get an irreducible
representation, since the identity matrix is block diagonal). Despite
being trivial from the mathematical point of view, this representation is
very significant physically. According to eq. (1.136), the basis for this
representation is an object of dimension 1, i.e., a single quantity φ, that,
under any rotation, remains invariant, φ→ φ. Such quantities are called
scalars under rotation.

The next simplest representation of SO(3) is the vector representa-
tion vi. Indeed, the very definition that we have given of the group
SO(3), based on eq. (1.140) and the condition that it leaves invariant
the quadratic form (1.141), already introduces a transformation prop-
erty under rotation, in this case for the coordinates. More generally,
vectors are then defined as objects that transform as in eq. (1.120), and
the coordinates of three-dimensional space provide the simplest exam-
ple of a vector, x = (x1, x2, x3) [or x = (x, y, z); we will use the two



1.7 Groups and representations 23

notations interchangeably]. Other obvious examples of vectors from el-
ementary mechanics are the momentum p, or the angular momentum
L.

The vector representation can be taken to be real, since the rota-
tion matrix Rij has only real elements, and therefore transform real
vectors into real vectors. The real vector representation of SO(3) is ir-
reducible, since we cannot find a subset of the coordinates (x1, x2, x3)
that, whichever rotation we perform, never mix with the others. For
instance, a rotation around the third axis mixes x1 with x2, a rotation
around the x1 axis mixes x2 with x3, and one around the x2 axis mixes
x1 with x3. Since the vector representation enters in the very defini-
tion of the group SO(3), it is also called the defining, or fundamental
representation of SO(3).23 23Observe that we are considering here

real representations, i.e., representa-
tions where the basis vectors are real.
One can sometimes assemble real rep-
resentations of SO(d) into complex
representations of lower (complex) di-
mension. For instance, for SO(2),
eq. (1.119) defines an irreducible real
representation of (real) dimension two,
since the real quantities vx and vy mix
among them. However, if we form the
complex combinations v± = vx ± ivy ,
we see that v+ → eiθv+ and v− →
e−iθv− so, over complex numbers, we
have two irreducible representations of
complex dimension one. Indeed, a the-
orem states that all irreducible complex
representations of abelian groups, such
as SO(2), are one-dimensional.
For other groups, such as the groups
U(N) of N × N unitary matrices, or
SU(N) if we require the determinant
to be +1, the matrix elements are com-
plex, so, in general, one must consider
complex representations.

Consider next the tensor representation (1.130). In three dimensions
a tensor Tij has nine components, and eq. (1.130) states that these nine
components transform linearly among them, and therefore form a basis
for a representation of the rotation group of dimension nine. We could for
instance express the corresponding representation of rotations as 9 × 9
matrices, using as a basis (T11, T12, . . . , T33). We want to understand
whether this representation is reducible, i.e., if (possibly after a suitable
change of basis) there are subsets of elements of the basis that never
mix with the other elements. The best way to address the problem is to
observe that, given a generic tensor Tij , we can always separate it into
its symmetric and antisymmetric parts

Tij =
Tij + Tji

2
+
Tij − Tji

2
≡ Sij +Aij . (1.142)

Using eq. (1.130), we can show that, under any rotation, a symmetric
tensor remains symmetric:

S′ij = RikRjlSkl

= RikRjlSlk

= RjkRilSkl

= S′ji , (1.143)

where, to get the second equality, we used the symmetry of Skl and, in
the third, we renamed the dummy indices k → l and l→ k. Similarly, an
antisymmetric tensor remains antisymmetric. Therefore, Sij and Aij do
not mix under rotations. Consider now the trace of the symmetric part,
S = δijS

ij . Using eq. (1.130) and the property (1.129) of orthogonal
matrices, we see that it is invariant under spatial rotations. It is then
convenient to separate Sij as

Sij =

(
Sij −

1

3
δijS

)
+

1

3
δijS

≡ ST
ij +

1

3
δijS . (1.144)
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The term ST
ij is traceless (as can be shown contracting it with δij and

using δijδij = δii = 3).24 Since the trace is invariant, under rotations24We are working for simplicity in three
dimensions. In d dimensions, the trace-
less combination is Sij − (1/d)δijS.

it remains traceless, and therefore it does not mix with the term δijS.
We have therefore separated the nine components of a generic tensor
Tij into its symmetric traceless part ST

ij (which has five components,
corresponding to the six independent components of a symmetric 3× 3
matrix, minus the condition of zero trace), its trace S (one component),
and an antisymmetric tensor Aij which, in three dimensions, has three
independent components,

Tij = ST
ij +

1

3
δijS +Aij . (1.145)

The trace S = δijTij , being invariant under rotations, corresponds to the
scalar representation that we already encountered. The antisymmetric
tensor might look like a new representation of the rotation group, but
in fact, introducing

Ai =
1

2
εijkAjk , (1.146)

one sees that Ai is just a spatial vector. We have inserted a factor of
1/2 for convenience since, for instance, in this way A1 = (1/2)ε1jkAjk =
(1/2)(ε123A23 + ε132A32) = A23 [using the antisymmetry of εijk and
of Ajk with respect to (j, k)]. So, A23 = A1, and similarly one finds
A12 = A3, A31 = A2, so the inversion of eq. (1.146) can be written
compactly as

Aij = εijkAk . (1.147)

Therefore, the three independent components of an antisymmetric tensor
can be rearranged into the three independent components of a vector.
This means that these two representations are equivalent, in the sense
of eq. (1.137), and we have not discovered a genuinely new irreducible
representation of rotations.

In contrast, the traceless symmetric tensor is irreducible (since there
is no further symmetry that forbids its components to mix among them,
and then we can always find rotations that mix a given components of ST

ij

with any other component). We have therefore found a new irreducible
representation of the rotation group, of dimension five, the traceless
symmetric tensors, and eq. (1.145) can be rewritten as

Tij = ST
ij +

1

3
δijS + εijkAk , (1.148)

in terms of the invariant tensors δij and εijk, and of the irreducible
representations provided by the scalar S, the vector Ai, and the traceless
symmetric tensor ST

ij . Note how the nine independent components of
Tij have been shared between a scalar (one component), a vector (three
components), and a traceless symmetric tensor (five components). One
can work out similarly the decomposition into irreducible representations
of tensors with more indices, such as Tijk.

Observe that the dimension of the scalar, vector, and traceless sym-
metric tensor representations can all be written as 2s + 1 for s = 0
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(scalar), s = 1 (vector) and s = 2 (traceless symmetric tensor). Higher-
order tensorial irreducible representations, obtained from tensors with
more indices, give representations of dimension 2s + 1 for all other in-
teger values of s. The representations of the rotation group play an
important role also in quantum mechanics, where the (tensorial) repre-
sentations that we have found turn out to correspond to massive particles
with integer spin s (in units of ~).

Finally, it is instructive to consider infinitesimal rotations, and see
how they can be parametrized. A rotation matrix that differs from the
identity transformation by an infinitesimal quantity can be written as

Rij = δij + ωij +O(ω2) , (1.149)

with ωij infinitesimal parameters, which describe the deviation from the
identity transformation. Requiring that this satisfies eq. (1.129), to first
order in ω we get

δij =
[
δik + ωik +O(ω2)

] [
δjk + ωjk +O(ω2)

]

= δij + ωij + ωji +O(ω2) , (1.150)

and therefore, requiring that the linear order cancels, we get25 25Requiring the cancelation also to
quadratic and higher order does not
give any further constraint. This is a
general property of Lie groups, (i.e.,
group parametrized in a continuous and
differentiable manner by a set of param-
eters), see e.g., Section 2.1 of Maggiore
(2005).

ωij = −ωij , (1.151)

i.e., ωij is an antisymmetric tensor. An antisymmetric tensor ωij can
be written in terms of a vector θi as in eq. (1.147), i.e., we can write
ωij = −εijkδθk (where the minus sign is a convention, chosen so that δθi

corresponds to counterclockwise rotations, and the use of the notation
δθk stresses that this is an infinitesimal angle), so

Rij = δij − εijkδθk . (1.152)

Then, the infinitesimal form of eq. (1.140) is

xi → xi + ωijxj

= xi − εijkxjδθk . (1.153)

As a check, we can consider a rotation around the z axis, so that δθ1 =
δθ2 = 0 and δθ3 = δθ. Then, eq. (1.153) gives x → x − (δθ)y, y →
y+ (δθ)x, z → z, which is the infinitesimal form of the counterclockwise
rotation around the z axis, x→ x cos θ − y sin θ, y → x sin θ + y cos θ.
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As discussed in the Preface, there are two common systems of units, SI
and Gaussian, each one with its own advantages. We begin by defining
them and discussing their relation, which involves some subtleties. The
SI system is the most widely used in most contexts but an acquaintance
with the Gaussian system can also be very useful, in particular to prepare
the transition from classical electrodynamics to quantum field theory,
where (for reasons that we will explain) nowadays only Gaussian units
are used. Therefore, while we will use SI units in this book, we will
explain how to quickly translate the results into Gaussian units and, in
App. A, we will collect some of the most important formulas, written in
Gaussian units.

2.1 The SI system

Since its establishment in 1960, the International System of Units, or
SI (from the French Système International ), has imposed itself as the
international standard. The SI is based on seven basic units from which
all other units can be derived. For our course, we will really only need
four of them: the meter (the unit of length, m), the kilogram (the unit
of mass, kg), the second (the unit of time, s), that together form the
m.k.s. system used in classical mechanics, and the ampere (the unit of
electric current, A).1,2

1Two more basic units are the kelvin
(unit of temperature, K) and the
mole (amount of substance, mol).
The SI includes a seventh base unit,
the candela (cd), related to lumi-
nous intensity as perceived by the
human eye, mostly of interest for
biology and physiology. See https:

//www.bipm.org/utils/common/pdf/

si-brochure/SI-Brochure-9-EN.pdf

for a detailed description.

2Note that, while the correct spelling of
the last name of André-Marie Ampère
(1775–1836) involves an accent, in En-
glish the unit of measure “ampere” is
written without the accent. So, we
will refer to Ampère’s law, but the cur-
rent unit is the ampere. Note also
that units derived from names of per-
sons are written with lower cases, as
in ampere, coulomb, or kelvin (except
when grammatical rules require an up-
per case letter), while their symbols are
written in upper case, A for ampere, C
for coulomb, K for kelvin.

Over the years, the general trend in defining the basic SI units has
been to get rid of definitions involving any man-made standard, or prop-
erties of macroscopic materials, or descriptions of measurements, and
rather define them using fundamental constants of Nature, or quantum
properties of matter at the atomic level. For instance, the meter was
originally defined in 1793 as one ten-millionth of the distance from the
equator to the North Pole along a great circle and, after other redefi-
nitions, was eventually redefined in 1899 as the distance between two
lines marked on a prototype meter bar made of an alloy of platinum
and iridium and conserved in the International Bureau of Weights and
Measures in Sèvres, France. Such a definition had obvious intrinsic prob-
lems of reproducibility (national meter prototype had to be fabricated
and distributed), stability with time, and made reference to specific ex-
perimental conditions (e.g., the distance between the lines had to be
measured at the melting point of ice). Similarly, the ancient definition
of the second was based on the Earth’s rotation period, so that 1 day =
24 hr = 24× 3600 s. The modern definitions of the units of time and of

https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf
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length are different. The second is defined in terms of the frequency of a
specific atomic transition.3 Given this definition of a second, the meter3The exact definition is that the un-

perturbed ground state hyperfine tran-
sition frequency of an atom of Cs 133 is
∆ν = 9 192 631 770 Hz, where 1 Hz =
1 s−1.

is now defined in term of the speed of light c, stating that, by definition,

c = 299 792 458 m/s . (2.1)

This definition is consistent with the previous definition of the meter
based on a reference bar within the experimental error, but get rids of
any reference to specific macroscopic objects or detailed measurement
processes. In the same spirit, the kilogram is now no longer defined
in terms of a reference object, but rather from the Planck constant h,
stating that, by definition, h = 6.626 070 15 × 10−34 J s, where the unit
of energy, the Joule, is related to the basic units by J = kg m2 s−2. Note
that, in this way, h and c are used to define the units and therefore their
values are fixed by definition, and have no experimental error associated
with them.44Similarly, the kelvin (K) and the mole

(mol), are defined by fixing, respec-
tively, the Boltzmann constant

kB ≡ 1.380 649× 10−23 J K−1 , (2.2)

and the Avogadro number

NA ≡ 6.022 140 76× 1023 mol−1 .
(2.3)

For electromagnetic phenomena, the SI system proceeds by defining a
base unit for electric current, the ampere (A). Since a current is a charge
flowing per unit time, this induces the definition of a derived SI unit of
charge, the coulomb (C), from 1 A = 1 C/s. In 2019, the SI definition
of the ampere (that, as we discuss in more detail next, was previously
based on the force between two parallel wires carrying a current) has
been changed, in order to relate it to fundamental constants rather than
to experimental settings: now the ampere is defined from 1 A = 1 C/s,
and the coulomb is defined in terms of the electron charge −e, stating
that, by definition,

e ≡ 1.602 176 634× 10−19 C . (2.4)

To understand the reason underlying this definition and the relation
with the earlier definition, let us look at the force exerted between static
charges, and at the force between parallel wires carrying currents. It is
an experimental fact that two static charges, at a distance r, attract or
repel each other with a force inversely proportional to the square of the
distance. Even before having defined the units of electric charge, we also
know that the force is proportional to the charge q1 of the first body
and to the charge q2 of the second body, as could be shown comparing
systems with a different number of individual electron charges. This
gives Coulomb’s law,

F = k
q1q2

r2
r̂ . (2.5)

The value of the proportionality constant k depends, of course, on the
units chosen for the electric charge or, vice versa, could be used to define
the unit of electric charge. In the SI system, the constant k is denoted
as 1/(4πε0), so

F =
1

4πε0

q1q2

r2
r̂ . (2.6)

The constant ε0 is called the vacuum electric permittivity, or just the
vacuum permittivity.
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Similarly, if we take two parallel wires (approximated as infinitely long
and of negligible thickness) carrying currents I1 and I2 and separated
by a distance d, the observation shows that they attract or repel each
other with a force per unit length, dF/d`, proportional to I1I2/d. The
proportionality constant in the SI system is called µ0/(2π), so, for the
modulus, we have ∣∣∣∣

dF

d`

∣∣∣∣ =
µ0

2π

I1I2
d

. (2.7)

The force is attractive if the currents are parallel, and repulsive if they
are antiparallel (we will see how eqs. (2.6) and (2.7) follow from Maxwell’s
equations in Sections 4.1.1 and 4.2.3, respectively). The constant µ0 is
called the vacuum magnetic permeability. As we will see, Maxwell’s
equations tell us that µ0 and ε0 are not independent, but are related by
the exact relation

ε0µ0 =
1

c2
, (2.8)

where c is the speed of light. In eq. (2.6) the value of ε0 depends on
the choice of units of the electric charge and in eq. (2.7) the value of µ0

depends on the choice of units of the electric current. However, since
ε0 and µ0 are related by eq. (2.8), fixing one of the two units fixes the
other.

The definition of the ampere before 2019 was obtained from eq. (2.7),
by stating that, if we take two long (and infinitesimally thin) parallel
wires each carrying a current of 1 A and at a distance of 1 m, the force
per unit length in eq. (2.7) is equal to 2× 10−7N/m, where the Newton
(N) is the derived SI unit of force. The reasons for this numerical value
are historical, but the orders of magnitude are such that, for two wires
carrying a current of 1 A (and at a distance d of order, say, of a few
centimeters, rather than one meter), this force could be measured in a
laboratory with rather simple techniques. This definition of the ampere
(and therefore of the coulomb) amounts to fixing by definition µ0 in
eq. (2.7) to the value

µ0 = 4π × 10−7 N

A2
, (2.9)

so µ0 has no observational error. Equation (2.8), together with eq. (2.1),
then fixes ε0,

1

4πε0
= (2.99792458)2 × 109 N m2

C2
(2.10)

= (8.988 . . .)× 109 N m2

C2
, (2.11)

or5 5In terms of the fundamental SI units,

1
C2

N m2
= 1

A2 s4

kg m3
. (2.12)

ε0 ' (8.854 . . .)× 10−12 C2

N m2
, (2.13)

again with no observational error, since both µ0 and c are exact numbers.
In contrast, the electron charge becomes a measurable quantity. For
instance, we could in principle use eq. (2.6) to measure the electric force
between two electrons at a given distance and, since ε0 has been fixed,
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we would get a measurement of the electron charge. In practice, the
most accurate measurement of the electron charge are obtained with
other methods, such as the quantum Hall effects. In any case, the point
is that, with this pre-2019 definition of the ampere, the electron charge
was a measurable quantity with an observational error. For instance, the
2018 edition of the Review of Particle Physics,6 that contains a standard6https://pdg.lbl.

gov/2018/reviews/

rpp2018-rev-phys-constants.pdf.
compilation of physical quantities and of elementary particle properties,
quoted the value e = 1.602 176 6208(98)× 10−19 C.

In 2019, the official SI definition of the ampere was changed and now,
in the spirit of using only fundamental constants to define the units,
it is based on eq. (2.4), which defines the coulomb in terms of e (and
then the ampere from 1 A = 1 C/s). Therefore, now the value of the
electron charge is fixed by definition and no longer has an observational
error associated with it (just as the speed of light and the Planck con-
stant). Having fixed the definition of the ampere in this way, we can
now measure the force per unit length between two parallel wires at a
given distance and carrying a current of, say, 1 A each. Then, from
eq. (2.7) we now get a measurement of µ0, so µ0 becomes a measurable
quantity with an observational error; its measured value, as of 2019, was
consistent with the older definition µ0 = 4π × 10−7 N/A2 to a relative
standard uncertainty of 2.3×10−10. Since eq. (2.8) remains exact, being
a mathematical consequence of Maxwell’s equations, once measured µ0

one also gets ε0 and the relative accuracy on ε0 is the same as that on
µ0, since c has no error.

From eq. (2.4) we see that 1 C corresponds to a huge number of ele-
mentary charges, of order 1019. This clearly shows how the SI units have
their roots in the laboratory, since a huge number of elementary charges
flowing per second is needed to produce a typical current observed in
simple laboratory situations.

The definition of electromagnetic units is completed by the definition
of the electric and magnetic fields. These are defined through the Lorentz
force equation that, in SI units, reads

F = q (E + v ×B) . (2.14)

Maxwell’s equations will be discussed in detail in Chapter 3, but for
completeness we write them also here, in SI units:

∇·E =
1

ε0
ρ , (2.15)

∇×B = µ0j + µ0ε0
∂E

∂t
, (2.16)

∇·B = 0 , (2.17)

∇×E = −∂B

∂t
. (2.18)

As it is clear from eq. (2.14), the SI dimensions of the electric field are
N/C, or kg m/(s2C).7 We also introduce, as a derived unit, the volt

7As we have seen, the fourth funda-
mental base unit of the SI has been
chosen as the ampere rather than the
coulomb. It is sometime natural to use
the coulomb as the fourth base unit, as
we occasionally do here and in other
places in the book. (V), defined as V = J/C (where J is the Joule). The volt is therefore

https://pdg.lbl.gov/2018/reviews/rpp2018-rev-phys-constants.pdf
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an energy per unit charge, so is the unit used for potentials. From
J = kg m2/s2 it follows that, in SI units, the electric field has dimensions
of V/m,

[E] =
kg m

s2 C
=

V

m
. (2.19)

Again from eq. (2.14), we see that in the SI the magnetic field has units
of N/(C m s−1) = kg/(C s). This quantity is called the tesla (T), and is
the derived SI unit for magnetic field:

[B] =
kg

s2 A
= T . (2.20)

From eq. (2.15), together with eqs. (2.10) and (2.19), we see that ρ has
dimensions C/m3, so is an electric charge per unit volume. The electric
charge Q contained in a finite volume V is then given by

Q =

∫

V

d3x ρ . (2.21)

From eq. (2.16), using the dimensions of µ0 given in eq. (2.9), we find
that j has dimensions C/(m2 s) = A/m2, so j is a current per unit sur-
face. The current dI flowing through an infinitesimal surface is obtained
defining ds as a vector whose modulus ds is the area of the surface, and
whose direction is equal to the normal of the surface (with a given choice
of orientation), and is then given by dI = ds·j; so, the current I flowing
through a finite surface S is given by

I =

∫

S

ds·j . (2.22)

2.2 Gaussian units

Gaussian units, first of all, are based on the c.g.s. system (centimeters-
grams-seconds) rather than on the m.k.s. system. By itself, this would
only lead to trivial conversion factors. The crucial difference, however,
is in the definition of the electric charge. One starts again from eq. (2.5),
but now one defines the unit of electric charge setting k = 1 by definition,
so

F =
q1q2

r2
r̂ . (2.23)

This is not just a rescaling of numbers compared to SI units. In the SI
system, the ampere is a fourth independent base quantity, with respect
to the units of lengths, time, and mass. We cannot express the ampere
(and therefore also the coulomb) as a combination of positive or neg-
ative powers of meters, seconds, and kilograms. As a result, in the SI
the constant k = 1/(4πε0) is not a pure number, but has dimensions
N m2/C2, see eq. (2.11) (or, re-expressing it in terms of the base units,
it has dimensions kg m3 s−4 A−2). In contrast, in the Gaussian system,
k is taken to be a pure number without dimensions. The unit of charge
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defined in this way is called the esu (for “electrostatic unit”) of charge
or, equivalently, the statcoulomb (statC). Since, in Gaussian units, the
force is measured in dyne, with 1 dyne = 1 gr cm s−2, from eq. (2.23)
we see that, in Gaussian units, the unit of charge is a derived quantity,
given by

1 statC = 1 gr1/2 cm3/2 s−1 . (2.24)

So, as far as electromagnetism is concerned, the SI system has four base
units (kg, m, s, A) while the Gaussian system has only three (gr, cm, s).

Comparing the Coulomb law in the Gaussian and SI systems, we see
that the respective definitions of electric charges are related by

qgau =
qSI√
4πε0

. (2.25)

Observe, once again, that the electric charge in the two systems have
different dimensions, since ε0 is not a pure number. We can now consider
a charge such that qSI = 1 C, and ask what the corresponding value of
qgau is. Inserting the value (2.10) into eq. (2.25), we get

qgau = 2.99792458×
√

109 N m2

C
× 1 C

= 2.99792458×
√

109 × 105dyne × 104cm2 , (2.26)

= 2.99792458× 109 statC , (2.27)

where we have used the conversion 1 N = 105 dyne and, from eq. (2.24),
1 dyne cm2 = 1 gr cm3 s−2 = 1 statC2. Therefore, a charge of 1 C in the
SI corresponds to a charge of 2.99792458 × 109 statC in the Gaussian
system. In this sense, one might be tempted to write

“ 1 C = 2.997 924 58× 109 statC .” (2.28)

We have put the equality between quotes because, written as an equality
in this form, this is wrong. The relation between C and statC is not just
a simple proportionality factor, as say, in the relation 1 m = 102 cm. As
we have stressed previously, in Gaussian units the statC is a derived
unit, that can be expressed in terms of cm, gr, and s, while in the SI
system, the ampere (and therefore the coulomb) is a fourth independent
base unit, independent from m, kg, and s. If one would take eq. (2.28)
literally, it would be possble to transform the statC into m.k.s. units,
using, from eq. (2.24), 1 statC = (10−3kg)1/2 (10−2 m)3/2 s−1 and then
eq. (2.28) would give the coulomb in terms of m, kg, and s. This would
be wrong, since the coulomb is independent from m, kg, and s. The sense
in which eq. (2.28) is correct is that, as we have written above, a charge
of 1 C in the SI system corresponds to a charge of 2.99792458×109 statC
in the Gaussian system, not that 1 C is equal to 2.99792458×109 statC.
In other words, qSI and qgau are quantities with different dimensions,
and C and statC also have different dimensions. However, qSI/C and
qgau/statC are both pure numbers, and are related by

( qgau

1 statC

)
= 2.997 924 58× 109

( qSI

1 C

)
, (2.29)
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which is the real meaning of eq. (2.28).
Note also that, in the derivation of the relation expressed by eq. (2.28),

we have taken eq. (2.10) as an exact relation, as in the pre-2021 definition
of charge in the SI system. We can adapt this to the new SI definition
of the electric charge by stating that the the coulomb is now defined by
eq. (2.4) and that the relation (2.29) remains exact. This amounts to
saying that, in Gaussian units, the electron charge is −egau, where

egau ≡ 1.602 176 634× 10−19 × 2.99792458× 109 statC , (2.30)

and this relation is exact. Numerically, this gives egau ' 4.803 . . . ×
10−10 statC. Then, the constant k in eq. (2.5) becomes a measurable
quantity, whose current value is consistent with k = 1 at the level of 10
decimal figures.

Another important difference between Gaussian and SI units is in the
definition of E and B, which, in Gaussian units, are now defined writing
the Lorentz force equation as

F = q
(
E +

v

c
×B

)
, (2.31)

where, here, q = qgau, E = Egau and B = Bgau, and c is the speed of
light. Then, comparing eqs. (2.14) and (2.31), and using eq. (2.25), we
see that the relation between the definitions of the electric and magnetic
fields in the Gaussian system and in the SI system are

Egau =
√

4πε0 ESI , (2.32)

Bgau = c
√

4πε0 Bgau =

√
4π

µ0
BSI . (2.33)

Notice that, dimensionally, [BSI] = [ESI]/[v], where the brackets denotes
the dimensions of a quantity, and v is a velocity. In contrast, Egau

and Bgau have the same dimensions. Observe that, taking into account
eq. (2.25), (qE)SI = (qE)gau. In contrast eqs. (2.25) and (2.33) imply
that (qB)SI = (qB)gau/c. Equation (2.25) also implies jgau = jSI/

√
4πε0.

Performing these replacements in eqs. (2.15)–(2.18), we get Maxwell’s
equations in Gaussian units,

∇·E = 4πρ , (2.34)

∇×B− 1

c

∂E

∂t
=

4π

c
j , (2.35)

∇·B = 0 , (2.36)

∇×E +
1

c

∂B

∂t
= 0 , (2.37)

where we did not write explicitly the subscript “gau” on E, B, ρ, and
j. Observe that, formally, Maxwell’s equations and the Lorentz force in
the SI system can be transformed into the corresponding equations of
the Gaussian system with the replacements

ε0 →
1

4π
, µ0 →

4π

c2
, E→ E B→ B

c
, (2.38)
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and without changing ρ and j. As we have seen, this does not corre-
sponds to the actual conceptual relation between the two systems; elec-
tric and magnetic fields in the two systems have different dimensions, and
their correct relation is given by eqs. (2.32) and (2.33), and similarly the
correct relation between electric charges is given by eq. (2.25). However,
the formal replacement (2.38) is a useful trick for passing quickly from
equations in the SI system to the corresponding equations in Gaussian
units.

The transition from classical to quantum electrodynamics is more nat-
urally performed in Gaussian units, and Gaussian units are the only
ones that are used nowadays in quantum electrodynamics and its gen-
eralization to the Standard Model of particle physics. More precisely,
in quantum field theory it is customary to use a slight modification of
the Gaussian system, called rationalized Gaussian units (or Heaviside–
Lorentz units), which differs from (unrationalized) Gaussian units just
by the placing of some 4π factors. Denoting by the label “rat” the
quantities in rationalized Gaussian units and, as before, by “gau” the
quantities in (unrationalized) Gaussian units, the relations are

qrat =
√

4π qgau , (2.39)

Erat =
1√
4π

Egau , Brat =
1√
4π

Bgau . (2.40)

Thus, in rationalized Gaussian units the Coulomb force reads

F =
q1q2

4πr2
r̂ , (2.41)

which is formally the same as eq. (2.6) with ε0 = 1. The Lorentz force
still keeps the form (2.31), because the

√
4π factor in q cancels those in

E,B, while Maxwell’s equations (2.34)–(2.37) become

∇·E = ρ , (2.42)

c∇×B− ∂E

∂t
= j , (2.43)

∇·B = 0 , (2.44)

c∇×E +
∂B

∂t
= 0 . (2.45)

Similarly to eq. (2.38), eqs. (2.42)–(2.45) can be obtained from the
Maxwell’s equations in SI units with the formal replacements

ε0 → 1 , µ0 →
1

c2
, E→ E B→ B

c
, (2.46)

while leaving ρ and j unchanged.
The underlying reason why (rationalized) Gaussian units are the stan-The final part of this section involves

notions that go beyond the scope of a
course of classical electrodynamics, and
is not needed in the rest of the book. It
can be skipped at first reading without
loss of continuity.

dard choice in the context of quantum field theory is that they provide
a first step toward the definition of a system of units defined by set-
ting ~ = c = 1, which is very convenient in the context of quantum
field theory. We have seen that the Gaussian system is characterized by
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setting k = 1 in eq. (2.5), i.e., ε0 = 1/(4π) in eq. (2.6) (exactly, as in
the pre-2019 definition of the electric charge unit, or within the current
experimental accuracy, with the modern definition based on the electron
charge). Similarly, the rationalized Gaussian system is characterized by
the choice ε0 = 1. Here, the crucial point is not the specific numerical
value chosen for ε0, but rather the fact that ε0 is declared “by law” to be
a pure number, without dimensions. As a consequence, as we have seen,
the unit of electric charge becomes a derived unit that can be expressed
in terms of the units of mass, length, and time; then, the four indepen-
dent base units of the SI system relevant for electrodynamics (m, kg,
s, A) reduce to only three independent units in the Gaussian system,
that can be taken as (cm, gr, s). One can push this logic further and,
after having defined the unit of time from the frequency of an atomic
transition (see Note 3 on page 28), one can define the unit of length
in terms of the speed of light stating that, by definition, c = 1. Here,
again, the crucial point is not so much the precise numerical value as-
signed to c, but rather the fact that we declare the speed of light to be a
dimensionless quantity. Thus, in this system of units, we have a further
reduction of base units, and the unit of length is now the same as the
unit of time, while any velocity is a dimensionless number. Of course,
it is easy to go back to standard units; e.g., a velocity v = 0.9 in units
c = 1 corresponds to v = 0.9× 2.99792458× 1010cm/s in c.g.s. units.

At this stage, we remain with only two base units, the unit of time
and the unit of mass. One can now make a further step, and also set the
reduced Planck constant ~ = 1, and now time becomes, dimensionally,
the inverse of a mass. We are then left with a single base unit, that can
be taken as the unit of mass. All other quantities are related to it in
a simple way. Denoting by [M ], [L], [T ] the dimensions of mass, length,
and time, respectively, we have [L] = [T ] = [M ]−1, while velocities are
pure numbers, and therefore also linear momentum and energy have
dimensions of mass. In these units, even the electric charge becomes
a pure number. This can be seen observing that (having set ε0 = 1),
q2/r has dimensions of an energy (it is the Coulomb energy of a system
of two charges q1 = q2 = q); however, in units ~ = c = 1, 1/r has
dimensions of mass, exactly as the energy, so q must be dimensionless.
In quantum electrodynamics, an important role is played by the fine
structure constant α. In rationalized Gaussian units (while still using
“normal” c.g.s. units), it is defined as α = e2/(4π~c) (or by α = e2/(~c)
in unrationalized Gaussian units), and it can be seen, with standard
dimensional analysis, that it is a pure number. Using the value of e
given in eq. (2.30), one finds that its numerical value is α ' 1/137. If we
then set also ~ = c = 1, we see that the electron charge becomes a pure
number in agreement with the previous argument, and we find that its
numerical value is given by e2/(4π) ' 1/137.8

8More precisely, in a quantum field the-
ory course one learns that the electron
charge depends, logarithmically, on the
energy scale at which it is probed (is a
“running coupling constant,” in quan-
tum fields theory jargon). The value
α ' 1/137 is actually the value at low
energies.

This system of units, defined by setting ε0 to a pure number (whether
exactly ε0 = 1, or consistent with it within the current accuracy, given
the definition (2.30) of the electron charge) and also ~ = c = 1, might
look weird at first sight, but, in fact, it is so convenient in quantum
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mechanics and in quantum field theory that, in this context, these units
are called natural units.9 Of course, one has a significant loss in the9One can go even further and, when

quantum gravity enters the game, one
can also set Newton’s constant G = 1.
At this point, all quantities become di-
mensionless. These are called Planck
units.

possibility of spotting mistakes in the computations by making use of
dimensional analysis, since there is a much smaller variety of basic units.
However, this is a minor aspect, and it is largely compensated by the
gain in simplicity and physical clarity of many formulas. This subject
would bring us too far from the scope of this course, but the interested
reader can find an extended discussion of ~ = c = 1 units, and on
practical ways of using them, in Chapter 1 of Maggiore (2005).

2.3 SI or Gaussian?

After having defined the two systems, one can now try to tackle the
question of which system is “better.” The answer, in fact, depends on
the context.

The Gaussian system is more natural from the point of view of Special
Relativity. This is partly due to the definition of the magnetic field,
where a factor of c is reabsorbed in B compared to the SI system, so
that E and B have the same dimensions. This is much more natural from
the point of view of Special Relativity since, as we will see in Chapter 8,
in a relativistic formalism E and B enter on the same footing as the
six components of an antisymmetric tensor Fµν . As a result, many
equations of electrodynamics, in particular in its relativistic formulation,
look more elegant and more natural in Gaussian units. On the other
hand, SI units are much more natural in all laboratory situations.

The situation is quite similar to the option of using units ~ = c =
1. In quantum field theory, this is the only natural choice, by now
universally used, and all equations of relativistic quantum field theory
look much cleaner and elegant without being “cluttered” by factors of ~
and c. Measuring speeds in units of the speed of light is the only natural
option in particle physics (compare the statement “a particle has speed
v = 0.99,” in units c = 1, with “a particle has speed v = 2.96795 . . . ×
108m/s”). However, outside the relativistic domain, measuring speeds
in units c = 1 might be very weird (a speed limit at v = 60 km/h, in
units c = 1 would become a limit at v = 5.559 . . .× 10−8). So, elegance
of the fundamental equations is not the only criterion, and the attempt
at defining a unique “best” choice, independent of the context, is futile.

In a sense, one might argue that the Gaussian system stopped in the
middle of a commendable path. The same logic that suggests to fix ε0 =
1/(4π) (or ε0 = 1) also suggests to fix c = 1 (and, in a quantum context,
~ = 1). These choices all have the effect of making the fundamental
equations of the theory more transparent, getting rid of constants whose
numerical value, in the SI system, is ultimately related to the human
experience (e.g., the value of the speed of light in the SI system depends
on the definition of the meter which, as we discussed, was originally
defined as one ten-millionth of the distance from the equator to the
North Pole along a great circle) and have nothing to do with Nature at
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its most fundamental level.
So, one can see the Gaussian system (with c kept explicit) as an in-

termediate choice between two cases: one might decide of not using at
all the logic of reducing the number of independent units through the
fundamental constants, and keep ε0 and c explicit, and define the units
so that they are convenient in typical laboratory situations; this gives
the SI system. Or else, one could decide to use this logic to the very
end, setting not only 4πε0 = 1 (or ε0 = 1) but also c = 1 and, in a
quantum context, ~ = 1. This leads to more transparent formulas at a
fundamental level, in particular in a relativistic context and in quantum
field theory.

In conclusion, the best choice of units depends on the situation. In
this book, we will use SI units because of the broader contexts in which
they are used. Furthermore, it is trivial to pass from SI units to the
rationalized Gaussian units with c = 1 used in quantum field theory:
from eq. (2.46), we see that one can just make the formal replacements
c → 1, ε0 → 1, and µ0 → 1 in all SI equations so, in practice, one
can just ignore them in all the SI equations. The inverse path, from
(rationalized or unrationalized) Gaussian units with c = 1 to SI, requires
instead some extra work, with dimensional analysis required to inserted
the appropriate factors of c and ε0 (or µ0).

If one rather wants to translate equations from SI to unrationalized
Gaussian units, furthermore keeping c explicit, one must take care of the
placing of 4π factors and of the powers of c, and many relevant formulas
are collected in App. A.
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We now enter in the heart of the subject, presenting Maxwell’s equations
and beginning to extract their consequences. We assume that the reader
already has an elementary knowledge of the basic phenomenology of
electrostatic and magnetostatic phenomena, from a first introductory
course of electromagnetism, and we will proceed in a more formal and
advanced manner. We will first present Maxwell’s equations, both in
the local and the integrated form. We will then show how they imply
conservation laws for the electric charge and for energy and momentum
and, in the process, we will identify the energy density and momentum
density of the electromagnetic field. We will then introduce the gauge
potentials. While, at first, their introduction might look just a trick
for simplifying the equations, in fact we will gradually discover that
the gauge potentials play a fundamental role at the conceptual level.
Their introduction also brings in the notion of gauge invariance, of which
electromagnetism is the prototype example, and which is fundamental
to all modern theoretical physics. Contrary to most other textbook
treatments, we will therefore introduce them at a very early stage of
our presentation. Identifying the symmetries of the theory is another
basic aspects of a modern approach, and we will then discuss some of
the symmetries of Maxwell’s equations (leaving, however, the discovery
of Lorentz symmetry and Special Relativity for Chapter 8, after we
will have developed the necessary tools). In this chapter, we will keep
a rather formal approach. In Chapter 4 we will then discuss several
examples and applications to electrostatics and magnetostatics, both for
their intrinsic importance, and to illustrate the more general concepts
developed here in simple settings, making contact with more elementary
treatments of classical electromagnetism.

3.1 Maxwell’s equations in vector form

3.1.1 Local form of Maxwell’s equations

Maxwell’s equations are formulated in terms of the electric field E(t,x)
and the magnetic field B(t,x). The field concept is among the most
fundamental of modern physics, in particular in connection with Special
Relativity. In classical mechanics, the dynamical variables describing a
mechanical system are “generalized coordinates” of the form qi(t), with
i a discrete index corresponding to the degrees of freedom of the system;
these could be, for instance, the three spatial components of the position
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of a particle, {qx(t), qy(t), qz(t)}, or the 3N coordinates of a system of
N particles. A field can be seen as a collection of dynamical variables
labeled by a continuous spatial variable x, rather than by a discrete
index i, so at each point of space we have a dynamical variable (or a set
of dynamical variables, such as the three components of the electric field
and the three components of the magnetic field). As we will see in due
course, fields are the natural language for describing the electromagnetic
interactions in a way consistent with the principles of Special Relativity.

In classical electromagnetism, the dynamics of the electric and mag-
netic fields is governed by Maxwell’s equations, that we have already
presented in Chapter 2, but rewrite here. In SI units, they read

∇·E =
ρ

ε0
, (Gauss’s law), (3.1)

∇×B = µ0j + µ0ε0
∂E

∂t
, (Ampère–Maxwell law) , (3.2)

∇·B = 0 , (3.3)

∇×E = −∂B

∂t
, (Faraday’s law) . (3.4)

As shown in Section 2.1, ρ(t,x) has dimensions of charge per unit vol-
ume, so is an electric charge density, while j(t,x) has the dimensions of
a current per unit surface, and, in this sense, we will often refer to it as
the current density. These equations allow us, in principle, to solve for
E and B once assigned the “source terms” ρ and j (and the geometric
setting and boundary conditions of the problems). The motion of a non-
relativistic test charge,1 with charge q and velocity v, in these fields is1A test charge is a charged particle

which is taken to move in a given ex-
ternal electromagnetic field. Physically,
this means that we can neglect the
back-action of the charge on the system
that generates the external field.

determined by the Lorentz force

F = q (E + v ×B) , (3.5)

where E and B are computed at the position of the particle. For a non-
relativistic point particle, we have Newton’s law F = dp/dt, where p is
the momentum of the particle, and therefore

dp

dt
= q (E + v ×B) . (3.6)

In a relativistic context, force, with its instantaneous character, is no
longer a fundamental concept, while momentum still is, and we will see
later that eq. (3.6) remains valid.22With a common abuse of language, we

will in general refer to eq. (3.6) as the
“Lorentz force equation” even in a rela-
tivistic context. A more accurate word-
ing could be “Lorentz equation of mo-
tion,” but we will not tamper with such
a standard nomenclature.

We will take ε0 and µ0 as two basic constants characterizing electro-
magnetic phenomena. We have already met them in Section 2.1, and
we will indeed show later that eqs. (2.6) and (2.7) are a consequence of
eqs. (3.1)–(3.4). At this stage, it is also convenient to define a constant
c from

ε0µ0 =
1

c2
. (3.7)

As we saw in Section 2.1, ε0 has dimensions of C2/(N m2) while µ0 has
dimensions of N s2/C2, so c has dimensions of a velocity. The use of
the letter c obviously hints to the fact that this will turn out to be the
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speed of light, although this will only emerge later, from the study of
Maxwell’s equations. For the moment, we presume that we do not know
this yet, and we treat it just as another constant, and we use it to rewrite
Maxwell’s equations as

∇·E =
ρ

ε0
, (3.8)

∇×B− 1

c2
∂E

∂t
= µ0j , (3.9)

∇·B = 0 , (3.10)

∇×E +
∂B

∂t
= 0 , (3.11)

where, if one wishes, any one of the three constants ε0, µ0, and c can
be completely eliminated from the equations, using eq. (3.7). This form
of Maxwell’s equation is useful because, as we will see in Chapter 8, the
structure of the terms on the left-hand sides, that involve only electric
and magnetic fields, is dictated by Lorentz invariance, while the right-
hand sides of eqs. (3.8) and (3.9) show how ε0 and µ0 determine the
coupling to the charge density and to the current density, respectively.

Maxwell’s equations have gradually emerged in the 19th century as
a means of describing and unifying a vast body of observations of elec-
tric and magnetic phenomena and, for the moment, we will take them,
together with the Lorentz force equation in the form (3.6), as the basic
postulates that define the theory of classical electromagnetism. How-
ever, after having developed the appropriate tools, we will see how they
emerge very naturally (and, to a large extent, uniquely) from the re-
quirement of constructing a theory of electric and magnetic phenomena
which respects the principles of Special Relativity.3 3In this context, it is interesting

to observe that Einstein’s 1905 pa-
per on Special Relativity had the
title “Zur Elektrodynamik bewegter
Körper” (Annalen der Physik, 17:891,
1905), whose English translation is
“On the electrodynamics of mov-
ing bodies.” The link between Spe-
cial Relativity and electromagnetism
was there from the start! An on-
line edition of the English transla-
tion of Einstein’s 1905 paper can be
found at https://www.fourmilab.ch/

etexts/einstein/specrel/www/.

At first sight, the electric and magnetic fields might look just like
mathematical constructions which are convenient as an intermediate
step: the charge and current density determine E and B through Maxwell’s
equations, and E and B determine the motion of particles, through the
Lorentz force equation. As we work our way through classical electro-
dynamics, we will see that, in fact, E and B (or, even more precisely,
other fields, the gauge potentials, from which they can be derived, and
that we will introduce shortly) are the truly fundamental dynamical
variables for the description of electromagnetism. We will see that field
configurations carry energy, momentum and angular momentum, just
like particles, and can propagate as waves in vacuum and in materi-
als. Eventually, the fundamental nature of these fields is most clearly
revealed in the context of quantum field theory, where one discovers
that, in fact, all particles are described in terms of fields, and the gauge
potentials provide a description of a particle, the photon, which is the
mediator of the electromagnetic interaction. Even if all these develop-
ments have to wait for later chapters (and the quantum aspects belong
to the domain of quantum field theory and will not be covered in this
book), it is useful to already have in mind the fundamental nature of
the field concept.

https://www.fourmilab.ch/etexts/einstein/specrel/www
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3.1.2 Integrated form of Maxwell’s equations

Using Gauss’s or Stokes’s theorems, we can obtain useful integrated
forms of these equations.4 Integrating eq. (3.8) over a volume V bounded4Historically, these integrated forms

were typically the way in which the
equations of electrodynamics were first
discovered. Nowadays, considering
electrodynamics as a classical field the-
ory, the local form of the equations is
more fundamental. We will develop the
classical field theory approach in Sec-
tion 8.7.

by a closed surface S = ∂V and using Gauss theorem (1.48), we get

∮

S
ds ·E(t,x) =

1

ε0
QV (t) , (3.12)

where QV (t) is the electric charge inside the volume V ,

QV (t) =

∫

V

d3x ρ(t,x) . (3.13)

We can rewrite eq. (3.12) as

ΦE(t) =
1

ε0
QV (t) , (3.14)

where

ΦE(t) ≡
∮

S
ds ·E(t,x) (3.15)

is the flux of E through the closed surface S = ∂V . Note that, since
the coordinates x are restricted to be on the fixed boundary S of V ,
and one integrates over this boundary, the integral on the left-hand side
of eq. (3.15) is a function of the time coordinate only (and, implicitly,
on the choice of volume V , and therefore on its boundary ∂V ; however,
to keep the notation lighter, we omit the label V in ΦE). A similar
integration of eq. (3.10) over the volume V gives

∮

S

ds ·B(t,x) = 0 , (3.16)

i.e.,

ΦB(t) = 0 , (3.17)

where

ΦB(t) ≡
∮

S

ds ·B(t,x) (3.18)

is the flux of the magnetic field through the closed surface S = ∂V . The
flux of the magnetic field through any closed surface vanishes, because
of the absence of magnetic charges.

Integrating eq. (3.9) over a surface S with boundary C = ∂S and
using Stokes’s theorem (1.38), we get the integrated form of the Ampère–
Maxwell law,

∮

C
d` ·B(t,x) = µ0I(t) +

1

c2
dΦE(t)

dt
, (3.19)
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where

I(t) =

∫

S

ds · j(t,x) (3.20)

is the current passing through the surface S [as we already saw in
eq. (2.22)] and ΦE is the electric flux passing through S. Note that
the integral on the left-hand side of eq. (3.19) is the circulation of B
around the closed curve C. Finally, integrating eq. (3.11) again over a
closed surface S with boundary C = ∂S and using Stokes’s theorem, we
get the integrated form of Faraday’s law,

∮

C
d` ·E(t,x) = −dΦB(t)

dt
, (3.21)

where ΦB is the magnetic flux passing through S.5 The line integral 5Observe that, in eq. (3.17), ΦB was
the flux through a closed surface, while
in eq. (3.21) it is the flux through a sur-
face which is not closed, but rather has
a boundary C.

of E along the curve C is called the electromotive force, or emf.6 This

6The name is historical and not well
chosen given that it is not a force, but
rather the line integral of a force per
unit charge, i.e., a potential; since E
has dimensions of V/m, see eq. (2.19),
the electromotive force is measured in
volts.

result implies that, when the magnetic flux enclosed by a loop made by
a conducting wire changes with time, a voltage is induced around the
loop, and therefore a current appears in the wire, and in this form it
was originally discovered by Faraday. The effect can be induced on a
fixed loop by a time-dependent magnetic field but can also take place
just moving the orientation of the loop with respect to a static magnetic
field. We will discuss this in more detail in Section 4.3.

3.2 Conservation laws

We next show that Maxwell’s equations imply a conservation law for
the electric charge, as well as a conservation law for energy and mo-
mentum. In the process, we will also be able to identify the energy
and momentum carried by the electromagnetic field. In general, just
as in classical mechanics, conservation laws are a consequence of the
invariance of the system under some transformation. For instance, in
classical mechanics energy conservation is a consequence of invariance
under time translations and momentum conservation is a consequence
of invariance under spatial translations. We will see in Section 8.7.3 how
this relation between symmetries and conservation laws generalizes to
classical field theory and, in particular, to the electromagnetic field. In
this section we will rather see how these conservation laws emerge from
simple manipulations of Maxwell’s equations.

3.2.1 Conservation of the electric charge

A first immediate consequence of Maxwell’s equations is a conservation
law for the electric charge. Taking the time derivative of eq. (3.8) and
combining it with the divergence of eq. (3.9) [and recalling that the
divergence of a curl is zero, see eq. (1.18)], we get

∂ρ

∂t
+ ∇·j = 0 . (3.22)
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This is a continuity equation. Since it is a mathematical consequence
of eqs. (3.8) and (3.9), we see that, in Maxwell’s equations, the charge
density ρ and the current density j cannot be chosen arbitrarily but
must respect eq. (3.22). The physical meaning of this equation can
be understood better by integrating it over a finite volume V , with
boundary S = ∂V , and using Gauss’s theorem (1.48). This gives

d

dt

∫

V

d3x ρ(t,x) = −
∫

∂V

ds · j . (3.23)

On the left-hand side we have the total electric charge QV inside the
volume V , see eq. (3.13), so eq. (3.23) states that

dQV (t)

dt
= −

∫

∂V

ds · j , (3.24)

i.e., that the variation of the charge inside a volume V is due to the flux of
electric current going through its boundary, i.e., to the charges escaping
the volume or entering it. If no charge escapes or enters, QV is conserved.
Inside the volume V , charges are neither created nor destroyed.7

7As a historical note, the original
Ampère law was simply ∇ ×B = µ0j,
to be contrasted with the full Ampère–
Maxwell law (3.2). If we take its di-
vergence, we find ∇·j = 0, rather than
the continuity equation (3.22). In 1862,
Maxwell, with a heuristic mechanical
reasoning, postulated the presence of
the extra term µ0ε0∂E/∂t in eq. (3.2).
Since the term ε0∂E/∂t formally adds
up to j, it was identified with a form of
current, and was called the “displace-
ment current.” We now understand
that this term rather belongs to the
left-hand side of Maxwell’s equations,
as we have written in eq. (3.9), being
also present in vacuum, where there are
no charges and currents, and it is cru-
cial to obtain current conservation in
the form (3.22). However, the idea of
current conservation was not available
to Maxwell, since the electron was yet
to be discovered, and he did not as-
sociate electric currents with charges
in motion. See Zangwill (2013), Sec-
tion 2.2.5, and references therein, for a
historical discussion.

We will often consider the charge and current density generated by
an ensemble of point-like particles. The charge density of a point-like
particle with charge qa, on a trajectory xa(t), is

ρa(t,x) = qaδ
(3)[x− xa(t)] , (3.25)

and its contribution to the current density is obtained multiplying this
by its velocity va(t),8

8To obtain the current density, con-
sider a beam of charged particles, with
charge density ρ and velocity v, and
take a surface of area dA transverse
to v. In a time dt, the charges that
pass through dA have filled a volume
dV = dA×vdt. The electric charge that
has gone through the surface is there-
fore dQ = ρdAvdt. The current dI flow-
ing through the surface dA is then given
by dI = dQ/dt = ρvdA and the cur-
rent density j, i.e., the current per unit
surface, has modulus j = dI/dA = ρv.
Since, as a vector, it has the same di-
rection of v, then j = ρv.

ja(t,x) = ρa(t,x)va(t) (3.26)

= qava(t)δ(3)[x− xa(t)] . (3.27)

Then, for a collection of charges labeled by an index a,

ρ(t,x) =
∑

a

ρa(t,x) , (3.28)

j(t,x) =
∑

a

ja(t,x) . (3.29)

We can check that these expressions indeed satisfy the continuity equa-
tion (3.22), observing that

∂ρa
∂t

= qa
∂

∂t
δ(3)[x− xa(t)]

= qa
dxia(t)

dt

∂

∂xia
δ(3)[x− xa(t)]

= −qavia(t)
∂

∂xi
δ(3)[x− xa(t)]

= − ∂

∂xi

{
qav

i
a(t)δ(3)[x− xa(t)]

}

= −∇·ja . (3.30)

We will see in eqs. (13.35)–(13.37) how the expressions for the current
density and the continuity equation generalize from point particles to
fluids.
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3.2.2 Energy, momentum, and angular momentum
of the electromagnetic field

Energy density and energy flux

We next show that, from Maxwell’s equations, we can obtain conserva-
tion equations that allow us to associate energy and momentum to the
electromagnetic field. To identify the expression for the energy of the
electromagnetic field we take the scalar product of eq. (3.11) with B,
and of eq. (3.9) with E. Subtracting them, we get

[B·(∇×E)−E·(∇×B)] +
1

2

∂

∂t

(
1

c2
E2 + B2

)
= −µ0E·j . (3.31)

The term in brackets can be rewritten using9 9The explicit steps are as follows:

Biεijk∂jEk − Eiεijk∂jBk
= εijk (Bi∂jEk − Ei∂jBk)

= −εijk (Bk∂jEi + Ei∂jBk)

= −∂j(εijkEiBk)

= +∂j(εikjEiBk)

= ∇·(E×B) ,

where, in the second equality, we have
used the antisymmetry of εijk to write
εijkBi∂jEk = −εijkBk∂jEi.

B·(∇×E)−E·(∇×B) = ∇·(E×B) . (3.32)

Therefore, dividing by µ0, eq. (3.31) becomes

∂

∂t

(
ε0E

2 + µ−1
0 B2

)

2
= − 1

µ0
∇·(E×B)−E·j , (3.33)

where we used eq. (3.7). Let us define the Poynting vector10

10Named after John Henry Poynting,
who derived this conservation equation
in 1884.

S = µ−1
0 E×B . (3.34)

Integrating eq. (3.33) over a finite volume V with boundary ∂V and
using Gauss’s theorem, we get

d

dt

∫

V

d3x

(
ε0E

2 + µ−1
0 B2

)

2
+

∫

V

d3xE·j = −
∫

∂V

ds·S ,

(3.35)
which is known as Poynting’s theorem. In the absence of external charges,
j = 0, this equation is already in the form of a conservation equation: on
the left-hand side we have the time derivative of a quantity with the di-
mensions of an energy, and on the right-hand side a flux coming out or in
from the boundary of the volume. So, this already suggests that the en-
ergy density of the electromagnetic field is given by

(
ε0E

2 + µ−1
0 B2

)
/2

and the energy flux is given by the Poynting vector. However, if we set
j = 0, we could multiply both sides of eq. (3.35) by an arbitrary number
α, so this argument at most tells us that the energy density is of the
form α

(
ε0E

2 + µ−1
0 B2

)
/2 and the energy flux is αS, for some α. To

confirm this interpretation as an energy conservation law, and to fix the
normalization factor, we must better understand the term E·j. To this
purpose, we consider a collection of non-relativistic point-like charges
qa, a = 1, . . . , N inside the volume V , with positions xa(t) and veloc-
ities va(t). We could perform the computation for generic relativistic
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particles (see next) but, to understand that this is indeed an energy
conservation equation, and to fix the normalization factor α of the en-
ergy density, it is sufficient to limit ourselves to non-relativistic particles.
Using eq. (3.27)

∫

V

d3xE(t,x)·j(t,x) =
∑

a

qava(t)·E[t,xa(t)] , (3.36)

where the sum over a runs over all charges inside V . We now use the
Lorentz force equation (3.6) that, for a non-relativistic particle located
in xa(t), with velocity va(t), charge qa, and mass ma, becomes

ma
dva
dt

= qa {E[t,xa(t)] + va(t)×B[t,xa(t)]} . (3.37)

Multiplying both sides of this equation by va(t) and using va·(va×B) =
0, we get

qava(t)·E[t,xa(t)] = mava(t)·dva
dt

=
d

dt

(
1

2
mav

2
a

)
. (3.38)

Thus,
∫

V

d3xE(t,x)·j(t,x) =
d

dt

∑

a

1

2
mav

2
a

=
d

dt
Ekin , (3.39)

where Ekin is the total kinetic energy of the system. Therefore eq. (3.35)
can be rewritten as

d

dt

∫

V

d3x

(
ε0E

2 + µ−1
0 B2

)

2
+
d

dt
Ekin = −

∫

∂V

ds·S . (3.40)

This shows that, indeed, the energy of the electromagnetic field in a
volume V is

Eem =

∫

V

d3x

(
ε0E

2 + µ−1
0 B2

)

2
, (3.41)

so eq. (3.40) can be written as

d

dt
(Eem + Ekin) = −

∫

∂V

ds·S . (3.42)

The energy density of the electromagnetic fields, that we denote by
u(t,x), can then be identified with the integrand in eq. (3.41),

u =
1

2

(
ε0E

2 + µ−1
0 B2

)
, (3.43)
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(where, for notational simplicity, we did not write explicitly the argu-
ments (t,x) in u, E and B). Equivalently, eliminating µ0 with eq. (3.7),

u =
ε0
2

(
E2 + c2B2

)
. (3.44)

The Poynting vector (3.34) gives, instead, the energy flux across a sur-
face. In terms of u and S, eq. (3.33) takes the form11 11Observe that the energy density and

the energy flux are not uniquely fixed
by the integrated conservation equation
(3.35). Indeed, defining

u′ = u−∇·v , (3.45)

S′ = S + ∂tv + ∇×w , (3.46)

where u and S are still given by
eqs. (3.34) and (3.43), and v and w are
arbitrary vector fields, the local conser-
vation equation (3.47) is still satisfied.
The vector field v reshuffles the rela-
tive contributions of the integral over
the volume V and that over the bound-
ary ∂V , while w adds a term to the
energy flux whose surface integral van-
ishes, since its divergence vanishes (and
vice versa, on a topologically trivial
space any vector field with vanishing di-
vergence can be written as ∇×w, see
the theorem for divergence-free fields
on page 7). The expressions for the
energy density and the energy flux ob-
tained from eqs. (3.34) and (3.43), how-
ever, also emerge naturally in a rela-
tivistic formalism, as we will see in Sec-
tion 8.4, where they become part of
an energy-momentum tensor [although,
in general, some freedom also exists in
the definition of the energy-momentum
tensor of a field, see Sections 3.2.1 and
3.5.3 of Maggiore (2007)]. Eventually,
at the theoretical level, the best ar-
gument for the uniqueness of the ex-
pressions (3.34) and (3.43) comes from
General Relativity, where the expres-
sion of the energy-momentum tensor is
uniquely defined. So, for instance, the
energy density u in eq. (3.43) is the
quantity that couples to the gravita-
tional field in the way required for a
local energy density.

∂u

∂t
+ ∇·S = −E·j . (3.47)

When j = 0, as in a region of space where there are no charged particles,
this is a local conservation equation of the same form as eq. (3.22) for
the electric charge. However, for generic j, the right-hand side is non-
vanishing. While the electric charge inside a volume can only change if
charges flow in or out from the boundary, the energy of the electromag-
netic field inside a volume can be exchanged with the mechanical energy
of the particles, because of the work made by the electric field on the
charged particles, so the integrated conservation law rather has the form
(3.42), and the local conservation law has the form (3.47), with a term
−E·j, in general non-vanishing, on the right-hand side. Also note that,
as a by-product of this derivation, eq. (3.39) shows that

dWE

dt
=

∫

V

d3xE(t,x)·j(t,x) (3.48)

is the rate at which the electric field performs work on a system of
charges and currents (while the magnetic field performs no work, since
va·(va ×B) = 0).

Our use of the non-relativistic limit for the point-like charges was
fully sufficient to understand that eq. (3.35) is an equation for energy
conservation, and to fix the overall coefficient in the energy density of
the electromagnetic field. However, it is not difficult, and instructive, to
also perform the computation for fully relativistic particles.12 This can

12We follow the derivation in Garg
(2012).

be done if we anticipate that the Lorentz force equation for a relativistic
particle has the form (3.6), where, for a relativistic particle of mass ma

and velocity va, the momentum is

pa =
mava√

1− (v2
a/c

2)
, (3.49)

while the energy is
Ea = c

√
m2
ac

2 + p2
a . (3.50)

(We will prove these results in Sections 7.4.3 and 8.6.1.) Inserting
eq. (3.49) into eq. (3.50) we can also write

Ea =
mac

2

√
1− (v2

a/c
2)
. (3.51)

Equation (3.49) can be inverted to give

va =
cpa√

m2
ac

2 + p2
a

. (3.52)
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Then, multiplying the Lorentz equation (3.6) by va, we get

qava·E[t,xa(t)] = va·
dpa
dt

=
cpa√

m2
ac

2 + p2
a

·dpa
dt

=
c

2
√
m2
ac

2 + p2
a

dp2
a

dt
. (3.53)

On the other hand, from eq. (3.50), the term in the last equality is just
the same as dEa/dt. Thus,

∫

V

d3xE(t,x)·j(t,x) =
∑

a

qava·E[t,xa(t)]

=
dEkin.rel.

dt
, (3.54)

where Ekin.rel. =
∑
a Ea is the total relativistic kinetic energy of the

particles, and eq. (3.40) holds in the form

d

dt

∫

V

d3x

(
ε0E

2 + µ−1
0 B2

)

2
+
dEkin.rel.

dt
= −

∫

∂V

ds·S . (3.55)

Momentum and momentum flux

Beside energy, the electromagnetic field also carries momentum. To
identify its expression, we can proceed similarly to what we have done for
energy conservation, using Maxwell’s equations to obtain a conservation
law in which the part depending on the sources can be identified with the
time derivative of their mechanical momentum (just as, in eq. (3.40), we
found a conservation equation in which a term was the time derivative
of the mechanical energy of the sources). To this purpose, we consider
the quantity1313A quantity proportional to E ×B is

a natural candidate for the momentum
density of the electromagnetic field,
since momentum density is a spatial
vector, and E × B is the only vector
that we can form with E and B. Fur-
thermore, we will see in Section 3.4 that
B is a pseudovector under parity, and
then E×B is a true vector under parity,
just as the momentum density.

g(t,x) = ε0 E(t,x)×B(t,x) , (3.56)

which is related to the Poynting vector (3.34) by

g(t,x) =
1

c2
S(t,x) . (3.57)

To prove that eq. (3.56) indeed represents the momentum of the elec-
tromagnetic field, we take its time derivative,

∂gi
∂t

= ε0 εijk

(
∂Ej
∂t

Bk + Ej
∂Bk
∂t

)
. (3.58)

Using Maxwell’s equations (3.9, 3.11) to compute ∂Ej/∂t and ∂Bk/∂t,
we get

∂gi
∂t

= ε0Ej(∂jEi − ∂iEj) + ε0c
2Bj(∂jBi − ∂iBj)− (j×B)i , (3.59)
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where, as usual, ∂j = ∂/∂xj . We now use the identity

Ej(∂jEi − ∂iEj) = −∂j
(

1

2
E2δij − EiEj

)
− Ei∇·E

= −∂j
(

1

2
E2δij − EiEj

)
− 1

ε0
ρEi , (3.60)

where, in the second line, we used Gauss’s law (3.8). Similarly,

Bj(∂jBi − ∂iBj) = −∂j
(

1

2
B2δij −BiBj

)
, (3.61)

since, in this case ∇·B = 0. Then, eq. (3.58) becomes

∂gi
∂t

= −∂jTij − (ρE + j×B)i , (3.62)

where

Tij = ε0

[(
1

2
E2δij − EiEj

)
+ c2

(
1

2
B2δij −BiBj

)]
, (3.63)

or, equivalently,

Tij = ε0

(
1

2
E2δij − EiEj

)
+ µ−1

0

(
1

2
B2δij −BiBj

)
.

(3.64)

This tensor (or, depending on conventions, its sign-reversed), is called
the Maxwell stress tensor.14

14There are different conventions on
the sign used in the definition of the
Maxwell stress tensor. For instance,
Landau and Lifschits (1975) and Garg
(2012) define the Maxwell stress ten-
sor as the expression that appears in
eq. (3.64), as we do, while in Jack-
son (1998) and Griffiths (2017) it is
defined as minus the tensor given in
eq. (3.64). An advantage of using
the tensor T ij defined in eq. (3.63) or
eq. (3.64) rather than its negative (in-
dependently of which it is called the
“Maxwell stress tensor”) is that, from
eq. (3.62), Tij is the momentum flux,
rather than its negative, so momentum
conservation takes the same form as
energy conservation, eq. (3.40). A re-
lated advantage emerges in the context
of the relativistic formulation of electro-
dynamics: as we will see in Section 8.4,
the energy density of the electromag-
netic field will turn out to be the (00)
component of a Lorentz tensor Tµν ,
and T ij , as defined from eq. (3.63), will
turn out to be equal to the µ = i, ν = j
component of Tµν , rather than its neg-
ative.

Integrating eq. (3.62) over a volume V that includes all charges and
currents, and using eq. (3.66), we get

(
dPem

dt

)

i

+

∫

V

d3x (ρE + j×B)i = −
∫

∂V

ds n̂jTij , (3.65)

where we have defined

Pem(t) =

∫

V

d3xg(t,x) (3.66)

= ε0

∫

V

d3x (E×B)(t,x) . (3.67)

We now observe that the Lorentz force exerted on an infinitesimal vol-
ume d3x, which contains a charge distribution ρ(t,x) with a velocity field
v(t,x), is obtained writing dq = ρd3x in eq. (3.6), and ρ(t,x)v(t,x) =
j(t,x) is the current density at the point x and time t, see Note 8 on
page 44. Therefore, the Lorentz force equation on an extended distribu-
tion of charges and currents can be written as

dPmech

dt
=

∫

V

d3x (ρE + j×B) , (3.68)
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where Pmech is the mechanical momentum of the extended source dis-
tribution. Therefore, eq. (3.65) can be written as

d

dt
(Pem + Pmech)i = −

∫

∂V

ds n̂jTij . (3.69)

This has the required form of a conservation equation, and shows that
Pem, defined in eq. (3.67), is indeed the momentum of the electromag-
netic field (so g(t,x) is the momentum density), while n̂jTij is the flow
of the i-th component of the momentum of the electromagnetic field
through a surface normal to n̂.

We will confirm this result in Section 8.4 with a covariant computation
(which will first require the development of the covariant formulation of
electrodynamics),15 and in Section 8.7.3, with a computation that will15The expression “covariant,” referred

to an equation, means that the left-
and right-hand sides of the equation
transform in the same way under the
given transformation. This is a gener-
alization of the notion of invariance, in
which the left- and right-hand sides do
not change. For instance, an equation
such as F = ma is covariant under ro-
tations, since both the left- and right-
hand sides transform as vectors under
rotations. Therefore, if the equation
holds in a reference frame, it also holds
in a rotated frame. When we use the
word “covariant” without further spec-
ification, we will refer to the covariance
under the transformation of the Lorentz
group (spatial rotations and boosts),
that we will introduce in Chapter 7.

make use of the machinery of classical field theory and Noether’s theo-
rem, which is more involved, but will make it clear that the conservation
law (3.69) is related to the invariance under spatial translations, confirm-
ing the interpretation of Pem as the momentum of the electromagnetic
field.

Equation (3.69) is valid in full generality, for a relativistic source. In
the non-relativistic limit, dPmech/dt becomes the same as the mechanical
force F exerted on a system of charges and currents, localized in a volume
V . Therefore, eq. (3.69) can be written as

Fi = − 1

c2

∫

V

d3x
∂Si
∂t
−
∫

∂V

ds n̂jTij (3.70)

= −
∫

V

d3x

[
1

c2
∂Si
∂t

+ ∂jTij

]
, (3.71)

where, in the second line, we have “undone” Gauss’s theorem to write
back the surface integral as a volume integral. Therefore, the electro-
magnetic field exerts a force per unit volume fi ≡ dFi/dV , given by

fi = − 1

c2
∂Si
∂t
− ∂jTij . (3.72)

Whenever ∂Si/∂t = 0, the force in eq. (3.71) can be written as a surface
integral. This happens in particular in electrostatics, where E = 0, or in
magnetostatics, where B = 0, so in both cases, S = 0. We will discuss
some applications of these results in Section 4.1.7.

The previous result shows that the momentum density of the electro-
magnetic field, g, is related to the energy flux, which is given by the
Poynting vector S, by eq. (3.57). It is interesting to understand this
relation in the following way. Consider a beam of relativistic particles
propagating with velocity v along a given direction, all with energy E
and momentum p. According to eqs. (3.49) and (3.51),

p =
vE
c2
. (3.73)

Let dN = ndAdt be the number of particles of the beam that cross a
transverse area dA in a time dt. Since each particle carries an energy E ,
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the corresponding energy flux (energy per unit area and unit time) is nE
while, since each particle carries a momentum p, the total momentum
carried by these particles is pdN = pndAdt. On the other hand, given
that their velocity is v, in a time dt they have filled a volume dV =
dA× vdt so their momentum density is

pndAdt

dA vdt
=
pn

v
. (3.74)

Inserting p from eq. (3.73), we therefore find that the momentum density
is nE/c2, so it is equal to 1/c2 times the energy flux. So, eq. (3.57) is
the relation that should be expected for a collection of particles. This
may come as a surprise. In the classical treatment of electromagnetism,
there is no notion of a particle associated with the momentum and the
energy flux of the electromagnetic field. This is actually a hint of the
fact that, at the quantum level, a notion of particle, the photon, will
emerge.

Angular momentum

One can similarly show that the electromagnetic field carries an angular
momentum

Jem =

∫
d3xx×g(t,x) , (3.75)

where g(t,x) is the momentum density, i.e., x×g is the angular momen-
tum density of the electromagnetic field.16 Using the explicit expression 16In analogy with the notation used

in quantum mechanics, for the an-
gular momentum of the electromag-
netic field we prefer to use the nota-
tion Jem, rather than Lem. Indeed,
as we will show in Section 8.7.3 using
the formalism of classical field theory
and Noether’s theorem, the expression
given in eq. (3.75) can be rewritten as
the sum of two terms that, at quantum
level, correspond to the orbital angular
momentum and to the spin part. We
will then denote the mechanical angular
momentum of the particles by Jmech.

(3.56),

Jem = ε0

∫
d3xx×(E×B) . (3.76)

Taking the time derivative and performing manipulations analogous to
those performed previously for momentum conservation, gives angular
momentum conservation in the form

d

dt
(Jem + Jmech)i = −

∫

∂V

d2s n̂jMij , (3.77)

where the flux of angular momentum is

Mij = εiklxkTlj , (3.78)

(where Tij is the Maxwell’s stree tensor), and

dJmech

dt
=

∫

V

d3xx×(ρE + j×B) . (3.79)

We will rederive this result explicitly in Section 8.7.3, using the for-
malism of Noether’s theorem. The fact that the electromagnetic field
carries energy, momentum, and angular momentum, just as a mechanical
system, shows that, already at the classical level, E and B must be con-
sidered as real physical entities (in the same sense in which we think of
particles as real physical entities), and are not just useful mathematical
constructions.
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3.3 Gauge potentials and gauge invariance

We will now rewrite Maxwell’s equations introducing a scalar potential
φ and a vector potential A, that we will call collectively the “gauge po-
tentials.” At the level of classical electromagnetism, this might look at
first just like a useful mathematical trick for rewriting the equations in
a simpler form. However, gauge potentials are much more fundamen-
tal. One realizes this, already at the level of classical electrodynamics,
when expressing the theory in a Lagrangian formalism, as we will do in
Section 8.7.2. There, one discovers that they play the role that “general-
ized coordinates” have in the description of classical mechanical systems.
The Lagrangian formalism is the starting point for the quantization of a
field theory, so the gauge potentials also have the role of the basic fields
in terms of which the quantization procedure is carried out. Classical
electrodynamics is also the simplest example of a gauge theory, i.e., a
theory built with gauge fields, of the type that we will introduce below,
and with an invariance under “gauge transformations,” that again will
be introduced next. The generalization of these concepts plays a crucial
role in modern physics, particularly in particle physics and in condensed
matter. Even if the extension to more general gauge theories, as well as
all aspects related to quantization, go beyond the scope of this book, it
is useful to be aware of them to already have a correct perspective.1717See Maggiore (2005) for an introduc-

tion to quantum field theory and quan-
tum electrodynamics with a conceptual
unity with this book.

At the mathematical level Maxwell’s equations, in the form (3.8)–
(3.11), are two vector equations (three components each) and two scalar
equations, for a total of eight equations, for six fields Ei and Bi. It
is therefore clear that there must be some degree of interdependence
among them, otherwise in general they would not admit solutions. The
introduction of the gauge potential will show, first of all, how to reduce
them to four equations for the four fields (φ,A). Furthermore, we will
see that, in terms of these variables, there is an extra symmetry (gauge
symmetry), that allows us to further reduce the number of independent
fields and equations.

Let us begin with the Maxwell equation (3.10), ∇·B = 0. Because
of the theorem for divergence-free fields given on page 7 (and taking
into account that we work in R3, so that every surface in V can be
continuously shrunk to a point), there exists a vector field A(t,x) such
that

B = ∇×A . (3.80)

The field A is called the vector potential. Consider next Faraday’s law
(3.11). In terms of A, it can be rewritten as

∇×
(

E +
∂A

∂t

)
= 0 . (3.81)

Using now the theorem for curl-free fields, see again page 7, we conclude
that there exists a function φ(t,x) such that

E +
∂A

∂t
= −∇φ , (3.82)
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(where the minus sign is a convention in the definition of φ), and there-
fore

E = −∇φ− ∂A

∂t
. (3.83)

Thus, in terms of the scalar and vector potentials, the two Maxwell’s
equations that do not depend on the sources, eqs. (3.10) and (3.11), are
automatically satisfied, because of the identities ∇ · (∇ ×A) = 0 and
∇ × (∇φ) = 0. We can now insert eqs. (3.80) and (3.83) into the two
remaining Maxwell’s equations, eqs. (3.8) and (3.9). This gives

∇2φ+
∂

∂t
(∇ ·A) = − ρ

ε0
, (3.84)

and

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A +

1

c2
∂φ

∂t

)
= −µ0j , (3.85)

where we have used eq. (1.21). Thus, Maxwell’s equations are completely
equivalent to eqs. (3.84) and (3.85), i.e., to four equations for the four
fields (φ,A). The solutions for E and B can then be obtained using
the definitions (3.80) and (3.83). The electromagnetic field is therefore
completely specified by four functions, the scalar field φ and the three
components of the vector field A, rather than by six quantities (the three
components of E and the three components of B).

In fact, even this description in terms of gauge potentials is redundant.
Indeed, consider the simultaneous transformation of φ and A given by

A→ A′ = A−∇θ ,

φ→ φ′ = φ+
∂θ

∂t
,

(3.86)

where θ is an arbitrary function.18 Since ∇×(∇θ) = 0, this transforma- 18We always assume that functions
such as θ(t,x) are continuous and in-
finitely differentiable. In particular,
subsequent derivatives applied to φ, A,
or θ commute, e.g., ∂i∂jθ = ∂j∂iθ. We
will not repeat these conditions further
in the following.

tion does not affect B. Similarly, the transformation of φ is chosen so as
to cancel the transformation of A in eq. (3.83), so E is also unchanged.
The physical, observable, quantities are the electric and magnetic fields.
The potentials (φ,A) and (φ′,A′) are therefore physically equivalent,
since they describe the same electric and magnetic fields. The trans-
formation (3.86) is called a gauge transformations. The fields E and B
do not change under this transformation and are therefore examples of
gauge-invariant quantities. Maxwell’s equations (3.8)–(3.11) are obvi-
ously gauge invariant, since they depend only on E and B.

Since θ can be chosen arbitrarily without changing the physics, we
can choose it so that eqs. (3.84) and (3.85), written in terms of the new
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gauge potentials (φ′,A′), are simpler. A convenient choice is obtained
observing that, from eq. (3.86)

∇ ·A′ + 1

c2
∂φ′

∂t
=

(
∇ ·A +

1

c2
∂φ

∂t

)
−2θ , (3.87)

where

2 = − 1

c2
∂2

∂t2
+ ∇2 (3.88)

is called the d’Alembertian operator (or, colloquially, the “Box” opera-
tor). The d’Alembertian is invertible (we will perform its inversion ex-
plicitly in Section 10.1, using the method of Green’s functions). There-
fore, an equation of the form 2θ = f always admits solutions [with
suitable boundary conditions at spatial infinity for f(t,x)] so, for any
given value of the initial gauge potentials φ and A, we can choose θ
such that the left-hand side of eq. (3.87) vanishes. Omitting hereafter,
for notational simplicity, the prime on the transformed gauge fields, we
have reached the gauge

∇ ·A +
1

c2
∂φ

∂t
= 0 . (3.89)

This is called the Lorenz gauge.19 In this gauge, eqs. (3.84) and (3.85)19This gauge was first introduced by
L. V. Lorenz in 1867. It is often mis-
spelled as “Lorentz gauge” (with an ex-
tra “t”), after H. A. Lorentz (the per-
son after whom the Lorentz transfor-
mations are named; in 1867, however,
he was just 14 years old...). This “mis-
print” has only been widely recognized
in relatively recent times, thanks to
Jackson and Okun (2001).

become

2φ = − ρ

ε0
, (3.90)

and

2A = −µ0 j , (3.91)

and therefore have the form of wave equations, that we will study in
detail in Chapter 9.

Another convenient gauge choice is

∇·A = 0 , (3.92)

which can always be reached because the Laplacian is invertible (again,
assuming suitable boundary conditions at spatial infinity). This is called
the Coulomb gauge. In this gauge, eqs. (3.84) and (3.85) become

∇2φ = − ρ

ε0
, (3.93)

and

2A = −µ0j +
1

c2
∇∂φ

∂t
. (3.94)
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As we will discuss in Section 4.1.1, for static sources eq. (3.93) is just
Poisson’s equation, the basic equation of electrostatics and, for a point-
like charge, it gives rise to the Coulomb potential (this is the origin of
the name of this choice of gauge). For a generic charge distribution, we
will see in Section 4.1.2 how eq. (3.93) can be solved for φ by inverting
the Laplacian. The solution for φ can then be inserted in eq. (3.94) to
solve for A. Note, however, that in this gauge the equations for φ and
for A are very different. The equation for φ involves a Laplacian, and
the solution vanishes if the source term ρ = 0 (again, with vanishing
boundary conditions at infinity). In contrast, the equation for A in-
volves the d’Alembertian. As we will see in Chapter 9, even when the
source term vanishes, j = 0, and φ = 0, this equation has non-vanishing
solutions in the form of plane waves.

3.4 Symmetries of Maxwell’s equations

We will now examine some of the symmetries of Maxwell’s equations.
First of all, Maxwell’s equations are obviously invariant under spatial or
temporal translations. There is no preferred origin of time or of space
in the equations, and time and space derivatives are invariant under
translations, e.g., ∂/[∂(t+ t0)] = ∂/∂t, for any constant t0. As we know
from classical mechanics, in a mechanical system invariance under time
translations implies energy conservation, and invariance under spatial
translations implies momentum conservation. When we will develop a
field theoretical approach in Section 8.7, we will see how this translates
in the conservation equations for energy and momentum that we have
found in Section 3.2.

Maxwell’s equations are also clearly invariant under spatial rotations:
in eqs. (3.8) and (3.10) both the left- and right-hand sides are scalars
under rotations, so if the equations hold in a reference frame, they also
hold in a rotated frame. Similarly, in eqs. (3.9) and (3.11) both the left-
and right-hand sides are vectors under rotations so, again, they trans-
form in the same manner under rotations and, if they hold in a reference
frame, they hold in a rotated frame. Just as in classical mechanics, this
will translate into the conservation of angular momentum.

Another important symmetry of Maxwell’s equations is parity, which
is related to reflection of the axes. We see by inspection that, if we
transform the spatial coordinates as x → −x, while at the same time
we transform the fields and the sources as

E(t,x)→ −E(t,−x) , B(t,x)→ B(t,−x) , (3.95)

and
ρ(t,x)→ ρ(t,−x) , j(t,x)→ −j(t,−x) , (3.96)

the transformed Maxwell’s equations, rewritten in terms of the trans-
formed variable x′ = −x, are the same as the original ones. Note that
a space-time event P , that has coordinates (t,x) in the original frame,
has coordinates (t,−x) in the transformed frame. The change in the
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arguments in the previous transformations therefore simply reflects this
change of label of the given space-time point P . The non-trivial aspect
is the sign in front of the various quantities: the transformation of E
is that of a polar (or “normal,” or “true”) vector, while that of B is
that of an axial vector (or “pseudovector”). Similarly, ρ(t,x) is a scalar
under parity (while a pseudoscalar is defined as a quantity that, under
rotations, is a scalar, but picks an overall minus sign under parity) and
j is a polar vector. Finally, comparing the definitions (3.80) and (3.83)
with eq. (3.95), we see that, under parity, φ is a scalar field (rather than
a pseudoscalar) and A is a polar vector field.

The fact that electrodynamics is invariant under parity might seem,
naively, an obvious fact. Shouldn’t the law of physics be the same under
a change of the orientation of the three axes, or under reflection in
a mirror? This was, somewhat implicitly, the point of view until the
1950s, when it was discovered that there is another interaction, the
weak interaction, that, in fact, is not invariant under parity. So, the
invariance of electromagnetism under parity is a non-trivial fact.

Another symmetry of Maxwell’s equations is time-reversal t→ −t. In
this case, the equations are invariant if we transform

E(t,x)→ E(−t,x) , B(t,x)→ −B(−t,x) , (3.97)

while we transform the sources as

ρ(t,x)→ ρ(−t,x) , j(t,x)→ −j(−t,x) . (3.98)

These are the natural transformation properties under time reversal: a
current is proportional to the velocity of the charges that produce it, so
it changes sign if we reverse the direction of time. Magnetic fields, which
are generated by currents, therefore must also change the sign. Electric
charges and electric fields, instead, do not reverse the sign. Just as with
parity, time-reversal is an invariance of electromagnetic interactions, but
is violated by weak interactions.

Actually, Maxwell’s equations have a much larger symmetry which is
not readily apparent from the form (3.8)–(3.11) in which we have written
them, which is based on the spatial vectors E and B. This symmetry is
the covariance under Lorentz transformations, i.e., the transformations
of Special Relativity. We will discover this symmetry in Chapter 8, after
having developed a more convenient formalism in Chapter 7.

Finally, in the absence of sources, i.e., when ρ = 0 and j = 0, Maxwell’s
equations also have a duality symmetry

E→ cB , B→ −E

c
. (3.99)

This symmetry is broken by the source terms.
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Historically, the mathematical descriptions of phenomena in the do-
mains of electrostatics, magnetostatics, and electromagnetic induction
provided the building blocks from which Maxwell’s equations were even-
tually inferred, with a “bottom-up” approach in which equations valid
in specific settings were generalized and unified. Such a bottom-up ap-
proach, beside being important for providing a historical perspective, is
also appropriate for a first elementary introduction to electromagnetism.
In this more advanced course, we take instead a “top-down” approach
in which, after having presented the full Maxwell’s equations in the pre-
vious chapter, we systematically develop their consequences starting, in
this chapter, with the most elementary applications. This, of course,
does not respect the actual historical development, but has the advan-
tage of allowing for a logically clear and streamlined presentation. In
the main text of the chapter we discuss a selection of important results,
while several other applications are discussed in a long Solved Problems
section, at the end of the chapter.

4.1 Electrostatics

In terms of the electric field, the fundamental equations of electrostatics
are obtained from eqs. (3.8) and (3.11), setting the time derivative in
eq. (3.11) to zero, so they are

∇·E =
ρ

ε0
, (4.1)

∇×E = 0 . (4.2)

It is convenient to use eq. (4.2) to introduce the field φ from E = −∇φ
(making use of the theorem for curl-free fields, see page 7), so that
eq. (4.2) is automatically satisfied, and eq. (4.1) becomes Poisson’s equa-
tion

∇2φ = − ρ

ε0
. (4.3)

Of course, this could have also been obtained setting the time derivatives
in eqs. (3.83) and (3.84) to zero. We will use eq. (4.3) as our basic
equation to be solved in electrostatics.
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4.1.1 Coulomb’s law

As a first application we will show how, in electrostatics, Maxwell’s
equations imply Coulomb’s law. In Section 4.1.2 we will solve eq. (4.3)
for a generic distribution of charges. Here, we limit ourselves to a point-
like charge q located at the origin, so that

ρ(x) = qδ(3)(x) . (4.4)

Then, eq. (4.3) becomes

∇2φ = − q

ε0
δ(3)(x) . (4.5)

A solution can be found immediately using eq. (1.90), that gives

φ(x) =
q

4πε0

1

r
, (4.6)

which, as expected, is the Coulomb potential of a point-like charge. This
solution is unique once one imposes the boundary condition that φ van-
ishes as r →∞ (in Section 4.1.5 we will provide a proof of the uniqueness
of the solution to electrostatic problems). Using the expression (1.23) of
the gradient in polar coordinates, the electric field E = −∇φ generated
by a charge q at the origin is therefore

E =
1

4πε0

q

r2
r̂ . (4.7)

From the Lorentz force equation (3.5), the force F2 exerted on a charge
q2 located in x2 = r by a charge q1 located at x1 = 0 is F2 = q2E1, so

F2 =
1

4πε0

q1q2

r2
r̂ . (4.8)

This confirms that the constant ε0 that appears in the Maxwell equation
(3.1) is the same that appears in the Coulomb force (2.6).

The result (4.6) is immediately generalized to the case where the
source term is given by a set of N point particles with charges qa and
position xa, so that

ρ(x) =

N∑

a=1

qa δ
(3)(x− xa) . (4.9)

Then

∇2φ = − 1

ε0

∑

a

qa δ
(3)(x− xa) , (4.10)

whose solution is1

1This is an example of the superposi-
tion principle. Since Poisson’s equa-
tion (4.3) is linear, both in φ and in
the source term ρ, if ρ is taken to be
a sum of terms ρ =

∑
a ρa, the so-

lution for φ (that, as we will see, is
unique) is φ =

∑
a φa, where φa is

the solution when the source term is
ρa. This linearity is not just a prop-
erty of electrostatics but extends to the
full Maxwell’s equation. As we see from
eqs. (3.8)–(3.11), Maxwell’s equations
are linear, both in the fields E, B, and
in the sources ρ, j. As a consequence,
suppose that, when the charge and cur-
rent densities are given by some func-
tions ρ1, j1, Maxwell’s equations have
a solution E1, B1 (we omit the argu-
ments (t,x) for notational simplicity)
and that, when the sources are given
by ρ2, j2, they have a solution E2, B2.
Then, from the linearity of the equa-
tions it follows that, when the charge
and current densities are given by ρ =
ρ1 +ρ2 and j = j1 +j2, Maxwell’s equa-
tions have a solution E = E1 + E2,
B = B1 + B2.

φ(x) =
1

4πε0

N∑

a=1

qa
|x− xa|

. (4.11)
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4.1.2 Electric field from a generic static charge
density

We now consider an electric charge density ρ(x), independent of time and
localized in space (i.e., non-vanishing only inside a finite volume), but
otherwise generic, while we set the electric current j = 0. Note that this
choice is consistent with the continuity equation (3.22). It is convenient
to work in the Coulomb gauge (3.92), where Maxwell’s equations take the
form (3.93, 3.94). Since ρ(x) is independent of time, also φ(x), derived
from eq. (3.93), is independent of time.2 Then, eq. (3.94) becomes simply 2One could always add to the solution

of the inhomogeneous equation ∇2φ =
−ρ/ε0, a solution of the homogeneous
equation ∇2φ = 0, which could be
taken to be time dependent. However,
for a localized distribution of charges
we impose the boundary condition that
φ = 0 as r → ∞, and this fixes to zero
the solution of the homogeneous equa-
tion, see Section 4.1.5.

2A = 0. Non-vanishing solutions of this equation describe plane waves,
and will be discussed in Chapter 9. Here, we are interested in the solution
sourced by the static charge density, so we set A = 0, which is the trivial
solution of 2A = 0 (and is obviously consistent with the condition
∇·A = 0 that defines the Coulomb gauge).

An equation such as (3.93) can be conveniently solved with the method
of Green’s functions. The Green’s function of the Laplacian operator,
G(x,x′), is defined as the solution of the equation

∇2
xG(x,x′) = δ(3)(x− x′) , (4.12)

[where the subscript x in the Laplacian indicates that ∇2
x acts on the

x variable of G(x,x′)]. Since the right-hand side depends only on the
difference x − x′, we can already anticipate that, in fact, G(x,x′) will
only depend on x,x′ through the combination x−x′, and we will there-
fore write it as G(x − x′).3 Once found a solution of eq. (4.12), the 3Actually, setting for instance x′ = 0,

we see that eq. (4.12) is invariant under
rotations of the variable x around the
origin (or, for x′ generic, is invariant
under rotations of x−x′), so we can also
anticipate that G(x − x′) (that, as we
will see later, is unique) will actually be
a function only of the modulus |x−x′|.

corresponding solution of eq. (3.93) is given by4

4As long as the integral converges at
infinity, which, as we will see below, is
the case for a localized distribution of
charges.

φ(x) = − 1

ε0

∫
d3x′G(x− x′)ρ(x′) . (4.13)

In fact, taking the Laplacian of both sides,

∇2φ(x) = − 1

ε0

∫
d3x′ [∇2

xG(x− x′)]ρ(x′)

= − 1

ε0

∫
d3x′ δ(3)(x− x′)ρ(x′)

= −ρ(x)

ε0
. (4.14)

The Green’s function method can be applied to more general linear
differential equations, where a differential operator (here the Laplacian),
acting on a function, must be equal to a given source term. Its advantage
is that it allows us to separate the problem of solving a differential
equation such as (3.93) into two steps. First, one searches for the solution
of the Green’s function. This part of the problem is independent of the
source term [here ρ(x)] and for several operators, such as the Laplacian,
can be solved exactly. Then, one remains with the computation of the
integral in (4.13). For a generic source term it will not be possible to
perform it exactly, but the integral might be amenable to useful analytic
approximations (or direct numerical evaluation).
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The first step for solving the differential equation (3.93) is therefore
to find the Green’s function of the Laplacian.5 This can be done using5For the Laplacian, the solution of

eq. (3.93), with the boundary condition
that φ(x) → 0 as |x| → ∞, is unique,
as we will show in Section 4.1.5, and
therefore also the Green’s function is
unique. This will not be true for other
operators such as the d’Alembertian de-
fined in eq. (3.88) and, indeed, in Sec-
tion 10.1 we will study the physics asso-
ciated with different Green’s functions
of the d’Alembertian.

eq. (1.91), which shows that the Green’s function of the Laplacian is

G(x− x′) = − 1

4π|x− x′| . (4.15)

As anticipated, this is actually a function only of |x − x′|. Then, from
eq. (4.13), the general solution for the scalar potential generated by a
localized charge density is

φ(x) =
1

4πε0

∫
d3x′

ρ(x′)
|x− x′| . (4.16)

Observe that the condition that the charge density is localized, i.e., that
the function ρ(x) has compact support, ensures the convergence of the
integral at infinity. For a set of point-like particles, inserting eq. (4.9)
into eq. (4.16), we recover eq. (4.11). In electrostatics, the electric field
is obtained from

E(x) = −∇φ , (4.17)

since A = 0 in eq. (3.83). Therefore,

Ei(x) = − 1

4πε0
∂i

∫
d3x′

ρ(x′)
|x− x′|

= − 1

4πε0

∫
d3x′ ρ(x′)∂i

1

|x− x′|

=
1

4πε0

∫
d3x′ ρ(x′)

xi − x′i
|x− x′|3 , (4.18)

where we used6

6This can be shown as follows:

∂i
1

|x− x′|
= −

1

|x− x′|2
∂i|x− x′|

= −
1

2|x− x′|3
∂i|x− x′|2

= −
1

2|x− x′|3

×∂i(xjxj − 2xjx
′
j + x′jx

′
j)

= −
1

2|x− x′|3
(2xi − 2x′i)

= −
xi − x′i
|x− x′|3

.

∂i
1

|x− x′| = − xi − x′i
|x− x′|3 . (4.19)

Therefore, in vector form,

E(x) =
1

4πε0

∫
d3x′ ρ(x′)

x− x′

|x− x′|3 . (4.20)

Another useful variant of eq. (4.20) is obtained starting from the second
line in eq. (4.18), and writing

Ei(x) = − 1

4πε0

∫
d3x′ ρ(x′)

∂

∂xi

1

|x− x′|
= +

1

4πε0

∫
d3x′ ρ(x′)

∂

∂x′i

1

|x− x′|

= − 1

4πε0

∫
d3x′

∂ρ(x′)
∂x′i

1

|x− x′| , (4.21)
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where, in the last line, we integrated by parts, and used the fact that
ρ(x) is localized to discard the boundary term. Then,

E(x) = − 1

4πε0

∫
d3x′

∇x′ρ(x′)
|x− x′| . (4.22)

We can then compute the force exerted between two distributions of
charges, ρ1(x) and ρ2(x), that we take as localized in two non-overlapping
volumes, denoted by V1 and V2, respectively. The force dF1 exerted on
the infinitesimal charge

dq1 = d3x ρ1(x) , (4.23)

contained in the infinitesimal volume d3x, by the electric field E2(x)
generated by a charge distribution ρ2(x), is given by

dF1 = dq1E2(x) . (4.24)

Therefore, integrating over the volume of the first charge,

F1 =

∫
d3x ρ1(x)E2(x) . (4.25)

Using eq. (4.20), this can be written as

F1 =
1

4πε0

∫
d3xd3x′ ρ1(x)ρ2(x′)

x− x′

|x− x′|3 . (4.26)

Note that, since ρ1 vanishes outside V1 and ρ2 vanishes outside V2, we
could actually extend the integrations over d3x and d3x′ to all of space.7 7Note also that, thanks to the con-

dition that the two charge densities
are non overlapping, there is no prob-
lem of convergence of the integral as
|x− x′| → 0, since there is a minimum
distance d between the localization re-
gion of the two distributions, so that
ρ1(x)ρ2(x′) = 0 if |x− x′| < d.

The force F2 exerted on the current density ρ2 by the charge density ρ1

is obtained exchanging 1↔ 2 in eq. (4.26). Then, after also exchanging
the names of the integration variables x↔ x′, we get

F2 =
1

4πε0

∫
d3xd3x′ ρ1(x)ρ2(x′)

x′ − x

|x− x′|3 , (4.27)

and see that F2 = −F1, so the force satisfies Newton’s third law. If we
apply this to two point charges, setting

ρ1(x) = q1δ
(3)(x) (4.28)

and
ρ2(x′) = q2δ

(3)(x′ − r) , (4.29)

eq. (4.27) gives back, of course, Coulomb’s law (4.8).
In Section 5.5, we will discuss how to obtain this force from a contin-

uous generalization of the Coulomb potential, and the relation of such
a potential to the energy stored in the electric field generated by ρ1(x)
and ρ2(x).
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4.1.3 Scalar gauge potential and electrostatic
potential

In the elementary treatment of electrostatics, one starts from eq. (3.4)
with a vanishing magnetic field, ∇×E = 0, and uses the theorem for
curl-free vectors, see page 7, to introduce the electrostatic potential ϕ(x)
from E = −∇ϕ. Comparing with eq. (3.83), we see that the scalar gauge
potential φ(t,x) is the generalization of the electrostatic potential ϕ(x)
to the general setting of time-dependent electric and magnetic fields,
and reduces to it when we can neglect all time dependences. We will
then use the notation φ(x) even in the context of electrostatics. Using
eq. (1.37), the equation

E(x) = −∇φ(x) , (4.30)

can be integrated to give

φ(x)− φ(x0) = −
∫ x

x0

dx′·E(x′) , (4.31)

where the line integral is carried out over an arbitrary path C connecting
an arbitrary initial point x0 to the point x. The integral in eq. (4.31)
is independent of the path C that connects x0 and x: the difference
between the integral computed on a path C1 and that on a path C2,
both with endpoints in x0 and x, is in fact the same as the integral over
the closed loop C1−C2 (where we denote by C1−C2 the loop where first
we go from x0 to x following C1, and then back to x0 following C2 in
the opposite sense). As already discussed after eq. (1.37), for a function
E that can be written as a gradient, the line integral over a closed loop
vanishes, so the integral in eq. (4.31) is independent of the path.

Consider now a particle with charge qa, moving on a trajectory xa(t)
under the action of an electromagnetic field. We take the particle as
non-relativistic, so we can use the Lorentz force equation in the form
(3.5). In eq. (4.31), for the path C we use the actual trajectory xa(t)
of the particle, and we denote its velocity by va(t) = dxa/dt. Since
va·(va×B) = 0, eq. (3.5) implies that va·F(xa) = qava·E(xa) or, equiv-
alently, dxa·F(xa) = qadxa·E(xa). Then, eq. (4.31) can be written as

qa [φ(x)− φ(x0)] = −
∫ x

x0

F(x′)·dx′ . (4.32)

On the right-hand side, we recognize minus the work made by the
Lorentz force on the particle. The fact that, as we have seen, the integral
is independent of the path C connecting x0 and x means, in the language
of mechanics, that the force F, given in our case by the Lorentz force, is
conservative.

The work made by an external agent against the electric field to move
a particle from x0 to x is equal to minus the work made by the Lorentz
force,8 so

8Compare, for instance, with the pro-
totype mechanical example, where the
positive work Wext = mgh made by an
external agent to lift a mass m from
z = 0 to z = h against the gravitational
force F = −mgẑ is minus the work
Wgrav =

∫
F·dx =

∫ h
0 (−mgẑ)·(dz ẑ) =

−mgh, made by the gravitational field.

Wext = −
∫ x

x0

F(x′)·dx′

= qa [φ(x)− φ(x0)] . (4.33)
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4.1.4 Instability of a system of static charges

We now prove Earnshaw’s theorem, which states that, in a finite region
R, free of charges, the electrostatic potential φ(x) takes its maximum
and its minimum on the boundary ∂R. This theorem can then be used
to show that (in classical electrodynamics) a system of static charges
interacting only electromagnetically cannot be in a state of mechanical
equilibrium.

The proof of the theorem is as follows. Suppose, to the contrary, that
φ(x) has a minimum at a point x in the interior of R. We can then
construct an infinitesimal volume V , which encloses x and is still inside
R, and is therefore charge-free. Let ∂V be the boundary of V . If φ(x)
has a minimum at x, its gradient is such that, for any vector v, v·∇φ is
strictly positive in x, and remains positive at an infinitesimal distance
from x. Then, on any point of ∂V we should have n̂·∇φ > 0, where n̂
is the unit normal to ∂V at that point, and therefore we should have

∫

∂V

d2s n̂ ·∇φ > 0 . (4.34)

However, this is not possible since
∫

∂V

d2s n̂ ·∇φ = −
∫

∂V

d2s n̂ ·E

= −
∫

V

d3x∇·E , (4.35)

and this vanishes, since ∇·E = 0 in a charge-free region. Similarly, one
shows that there can be no maximum. Actually, even if we have stated
the theorem in the language of electrodynamics, using the electric field,
the theorem states, more generally, that any harmonic function, i.e.,
any function φ that satisfies ∇2φ = 0 in a region R, has its minima and
maxima on the boundary ∂R. In fact, from Gauss’s theorem

∫

∂V

d2s n̂ ·∇φ =

∫

V

d3x∇·(∇φ)

=

∫

V

d3x∇2φ , (4.36)

and this vanishes if ∇2φ = 0 in V .
An important consequence of Earnshaw’s theorem is that a set of iso-

lated charges cannot be in a state of stable equilibrium under the action
of electrostatic forces only. Indeed, consider the electrostatic potential
φ(x) generated by a given distribution of charges, localized in a volume
V , and imagine placing a test charge qa at some position xa inside V ,
where there was no other charge. A stable equilibrium situation is then
only obtained if φ(x) has a minimum (or a maximum, depending on the
sign of qa) at x = xa. However, as we have seen, this is not possible.
Therefore, any point-like charge inserted into a pre-existing electrostatic
potential cannot be in equilibrium.9 Another important application of

9This shows that a classical model of
matter, based only on point-like elec-
trons and nuclei interacting with static
electromagnetic interactions, cannot be
stable. As we will see in Problem 10.2,
the same is true also beyond the static
limit, and a model of an atom made of a
classical electron rotating around a pos-
itively charged nucleus decays on a very
short time scale because of the emission
of electromagnetic radiation. This is an
intrinsic limitation of classical electro-
dynamics, and hints to the fact that, at
some microscopic scale, the classical de-
scription must be replaced by quantum
mechanics.

Earnshaw’s theorem will be discussed in Section 4.1.6, where we will see
that it implies that the electric field inside a hollow conductor vanishes.
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4.1.5 Uniqueness of the solution of electrostatic
problems

We now ask to what extent the solution of a problem of electrostatics,
determined by eq. (4.3) together with the geometry of the system and
the boundary conditions, is unique. Let us assume that there are two
solutions φ1(x) and φ2(x) of eq. (4.3). Then, the difference ψ(x) =
φ1(x)− φ2(x) satisfies

∇2ψ = 0 . (4.37)

Let V be a volume with boundary ∂V . We use the identity1010This follows trivially, expanding
∇·(ψ∇ψ) on the right-hand side. More
generally, given two functions φ and ψ,
we have the identity∫

V
d3x

(
∇φ ·∇ψ + φ∇2ψ

)
=

∫
V
d3x∇· (φ∇ψ)

and therefore, upon use of Gauss’s the-
orem,∫

V
d3x

(
∇φ ·∇ψ + φ∇2ψ

)
=

∫
∂V

ds · (φ∇ψ) , (4.38)

which is called Green’s first identity.
Rewriting this exchanging φ with ψ we
have∫

V
d3x

(
∇ψ ·∇φ+ ψ∇2φ

)
=

∫
∂V

ds · (ψ∇φ) ,

and, subtracting this from eq. (4.38) we
get∫

V
d3x

(
φ∇2ψ − ψ∇2φ

)
=

∫
∂V

ds · (φ∇ψ − ψ∇φ) , (4.39)

which is called Green’s second identity.

∫

V

d3x∇ψ ·∇ψ =

∫

V

d3x
[∇·(ψ∇ψ)− ψ∇2ψ

]
. (4.40)

Then, using eq. (4.37) for the second term on the right-hand side, and
Gauss’s theorem for the first, we have

∫

V

d3x |∇ψ|2 =

∫

∂V

ds · (ψ∇ψ) . (4.41)

Consider first the situation in which the source term in eq. (4.3) is lo-
calized, and the space is just a large volume in three-dimensional space,
with no inner boundaries, and a boundary ∂V at large distances from
the sources. If the distribution of charges is localized, we can take as
volume V a sphere of radius R enclosing all charges, so

∫

∂V

ds ·ψ∇ψ = R2

∫
dΩ r̂ ·ψ∇ψ , (4.42)

where we used the fact that, for a sphere, ds = R2dΩ r̂. At sufficiently
large distances any solution φ(x) of eq. (4.3) decreases with distances
at least as 1/r, so ∇φ decreases at least as 1/r2.11 Therefore, on the

11We will formalize this more precisely
in Chapter 6, where we will see that, for
a distribution of charges, the Coulomb
potential φ ∝ 1/r is the first term in a
multipole expansion. If the total charge
of the distribution vanishes, the 1/r
term is absent and φ(x) goes to zero
faster that 1/r.

surface of the sphere, ψ∇ψ is of order 1/R3 or smaller. Then, taking the
limit R → ∞, the right-hand side of eq. (4.41) vanishes, and eq. (4.41)
gives ∫

d3x |∇ψ|2 = 0 , (4.43)

where the integral is now over all three-dimensional space. Since |∇ψ|2 is
a non-negative quantity, this can only be satisfied if ∇ψ = 0 everywhere,
so ψ must be a constant. This shows that, if φ1(x) and φ2(x) are two
distinct solutions of eq. (4.3), they can differ at most by a constant. A
constant addition to a potential is irrelevant, since it does not affect the
electric field, and can be fixed simply by imposing that the solution of
eq. (4.3) vanishes at infinity. Therefore, the solution of eq. (4.3) for a
localized distribution of charges, in a space with no inner boundaries, is
unique.

This argument can be easily generalized to the situation in which we
consider a space that, rather than being the whole R3, has one or several
inner boundaries Si, that could correspond, for instance, to surfaces of
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material bodies (we will study the case where these bodies are perfect
conductors in Section 4.1.6). In this case, eq. (4.41) becomes

∫

V

d3x |∇ψ|2 =
∑

i

∫

Si

ds ·ψ∇ψ . (4.44)

To have a well-defined problem we must assign boundary conditions for
φ1(x) and φ2(x) on the inner boundaries Si, which will induce corre-
sponding boundary conditions on ψ. There are two natural boundary
conditions on a surface:

• Dirichlet boundary conditions: in this case we fix the value of the
potential φ on the surfaces, so we set φ1(x) = φ2(x) = fi(x) on the
surface Si. This implies ψ(x) = 0 on each surface Si, so the right-
hand side of eq. (4.44) vanishes. Then, we find again eq. (4.43),
which implies that ∇ψ = 0 and therefore ψ is a constant.

• Neumann boundary conditions: in this case we require that, for
any solution φ of eq. (4.3), the component of ∇φ normal to the
surface vanishes, so n̂·∇φ1,2 = 0 and therefore also n̂·∇ψ = 0.
Since ds = dsn̂, we find again that the right-hand side of eq. (4.44)
vanishes and that ψ is a constant.

Then, also in these cases, the solution for φ is unique, apart from an
irrelevant constant.

A related result is that (on a topologically trivial space, such as R3) a
vector field V(x) is uniquely determined by its divergence and its curl,
modulo the gradient of a function ψ that satisfies ∇2ψ = 0. In fact,
consider the equations

∇·V = f(x) , ∇×V = u(x) , (4.45)

with f(x) and u(x) given. Let V1(x) and V2(x) be two solutions of
these equations. Then the vector field w(x) = V2(x)−V1(x) satisfies

∇·w = 0 , ∇×w = 0 . (4.46)

From the theorem for curl-free fields given on page 7, ∇×w = 0 implies
that (on R3) we can write w = ∇ψ. Then, ∇·w = 0 becomes ∇2ψ = 0.
Therefore,

V2(x) = V1(x) + ∇ψ , with ∇2ψ = 0 . (4.47)

If, furthermore, the boundary conditions of the problem are such that
ψ goes to zero at infinity, then the only solution of ∇2ψ = 0 is ψ = 0,
and V2(x) = V1(x).12 12In Solved Problem 11.1, we will

show explicitly how to compute V in
terms of its curl and its divergence,
see eq. (11.174). In eqs. (13.52) and
(13.56), we will then use these results
to give the corresponding solutions for
E and B in material media, in full gen-
erality.

In electrostatics, we have ∇·E = −ρ(x)/ε0 and ∇×E = 0, so, in R3,
ρ(x) uniquely determines the solution for E(x), modulo the gradient of
a function that satisfies ∇2ψ = 0. For a localized distribution of charge,
the argument in eqs. (4.37)–(4.43) then shows that ∇ψ = 0, so we find
again that E is uniquely determined by ρ(x). In this form, however, the
theorem extends also to magnetostatics (with a localized distribution of
currents), which, as we will discuss in more detail later, is governed by
the equations ∇·B = 0 and ∇×B = µ0j, so both the divergence and
the curl of B are given.
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4.1.6 Electrostatics of conductors

Consider now a conductor, with volume V and boundary S = ∂V . A
fundamental property of conductors is that, in a static situation, the
electric field inside them must vanish. Indeed, suppose that we apply an
external time-independent electric field. In a conductor, the electrons
are free to move, and, because of their negative charge, they will move
in the direction opposite to the applied electric field. They will then
eventually accumulate on some parts of the surface, which will therefore
be negatively charged, and deplete other parts of the surface. The latter
will therefore be overall positively charged because, there, the positive
charge of the ions (which stay fixed) is no longer fully compensated by
the electrons, see Fig. 4.1. This charge imbalance creates an induced
electric field in the direction opposite to the applied electric field. The
process will continue until the external field is completely screened and
the total electric field vanishes (we are assuming here an ideal conductor,
with an infinite supply of free charges; in normal situations this is a
very good approximation for a metal). From Gauss’s law ∇·E = ρ/ε0,
E = 0 implies ρ = 0. Therefore, at equilibrium, in the interior of
the conductor positive and negative charges balance perfectly, and any
charge imbalance is on the surface of the conductor.1313Note that this only holds for a static

situation in which a conductor, subject
only to a static external electric field,
has rearranged its surface charges and
reached an equilibrium situation, where
the external field is screened. If, in-
stead, we use a battery to keep a po-
tential difference between two points of
a conducting wire (which amounts to
continually removing the surface charge
imbalance), a steady current will flow.
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Eind

Eext

Fig. 4.1 A conductor in an external
electric field Eext. Under its action,
the free electrons move to the sur-
face and create an induced electric
field Eind, that screens Eext.

Another consequence of this screening process is that the surface of
the conductor is an equipotential surface, i.e., the potential φ has a
constant value on the surface. This follows from eq. (4.31), taking x0

and x to be two points on the surface of the conductor, and C any path
that connects them passing through the interior of the conductor, where
E = 0. The fact that φ is constant on the surface also means that, on
the surface, the components of ∇φ parallel to the surface vanish. The
electric field at the surface of the conductor is therefore perpendicular to
the surface. Again, physically, what happens is that, as long as there is
a component of E tangential to the surface, the surface charges move in
such a way as to screen it, until an equilibrium configuration with zero
tangential electric field is reached. The component of E perpendicular
to the surface of the conductor can be computed using the integrated
Gauss’s law, that we rewrite here as

∫

V

d3x∇·E =
1

ε0

∫

V

d3x ρ . (4.48)

We take as volume V the cylinder shown in Fig. 4.2, which straddles
across the boundary between the conductor and the vacuum. We take
the z axis along the height of the cylinder, so

x

y

z

h

A

2

1

Fig. 4.2 An infinitesimal cylin-
der across the boundary between
a conductor (shaded part, marked
as medium 1) and the vacuum
(medium 2).

∫

V

d3x =

∫

A

dxdy

∫ +h/2

−h/2
dz . (4.49)

In the limit h→ 0, ∫ +h/2

−h/2
dz ρ = σ (4.50)
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is the surface charge density. We take A sufficiently small, so that σ can
be taken to be spatially constant over A. Then,

∫

A

dxdy

∫ +h/2

−h/2
dz ρ = Aσ . (4.51)

On the left-hand side of eq. (4.48), in the limit h→ 0 we have

∫

V

d3x∇·E =

∫

A

dxdy

∫ +h/2

−h/2
dz ∂zEz

+

∫ +h/2

−h/2
dz

∫

A

dxdy (∂xEx + ∂yEy)

= A[Ez(2)− Ez(1)] +O(h) , (4.52)

where Ez(2) ≡ Ez is the value of Ez as we approach the conductor from
the medium 2, here taken to be just the vacuum, and Ez(1) is the value
when we approach the boundary from the medium 1. In the case where
the latter is a conductor, Ez(1) = 0. Therefore, sending h → 0 with
A sufficiently small so that σ is constant over it, but still its linear size
much larger than h, we find that, on the surface,

Ez =
σ

ε0
. (4.53)

For a boundary with a normal n̂ (pointing outward from the conductor)
in a generic direction, rather than along ẑ, we then have

n̂·E =
σ

ε0
. (4.54)

We can now use the fact that on the surface of conductors φ is constant,
combined with the results of Section 4.1.5, to investigate the uniqueness
of the solution of electrostatic problems in the presence of conductors.
Let φ1 and φ2 be two solutions of ∇2φ = −ρ/ε0, and define ψ = φ1−φ2.
According to the discussion in Section 4.1.5, we want to understand
under what conditions the integral on the right-hand side of eq. (4.44)
vanishes. We write E1 = −∇φ1 and E2 = −∇φ2, and we consider
for simplicity the case of a single conductor with surface S, so that the
volume V that includes the conductor has S as its inner boundary. Then

∫

S

ds ·ψ∇ψ = −(φ1 − φ2)|S

∫

S

ds ·(E1 −E2)

= −(φ1 − φ2)|S

∫

V

d3x∇·(E1 −E2)

= −(φ1 − φ2)|S
1

ε0

∫

V

d3x (ρ1 − ρ2)

= −(φ1 − φ2)|S
Q1 −Q2

ε0
, (4.55)

where, in the first line, we used the fact that φ1 and φ2 are constants on S
and can therefore be carried out of the integral, and we then used Gauss’s
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theorem (1.48) and Gauss’s law (3.1). From this, we see that there are
two ways of making the left-hand side of eq. (4.55) vanish: (1) we can fix
the value of the potential φ on the surface, so that (φ1−φ2)|S = 0. This is
a Dirichlet boundary condition; (2) we rather fix the total charge on the
conductor, so that Q1 = Q2. As we see from the previous steps, this is an
integrated form of a Neumann boundary condition, since it corresponds
to fixing the surface integral of the component of ∇φ normal to the
surface (rather than assigning its value at each point of the surface). In
both cases, the left-hand side of eq. (4.55) vanishes and, by the argument
in Section 4.1.5, the solution for φ is then unique.

Finally, consider a hollow conductor, i.e., a conductor which, in its
interior, has a cavity region R, where no charges are present. In this
region, the potential satisfies ∇2φ = 0. Furthermore, at the boundary
∂R between the cavity and the conductor, we have φ = φ0, with φ0

a constant, since we have seen that the surface of a conductor must
be an equipotential surface (and the argument holds independently of
whether this is an external or an internal boundary surface). However, as
we discussed in Section 4.1.4, Earnshaw’s theorem states that φ cannot
have minima or maxima inside a charge-free region R. A function that
is constant on the boundary ∂R and has no maxima or minima inside
is necessarily constant everywhere in R. Therefore, in all R, φ = φ0,
and E = −∇φ = 0. This is a remarkable result, that shows that, no
matter the geometry of the inner cavity, the surface charges distribute
themselves on the boundary in such a way that they screen any electric
field in its interior. This is the principle at the basis of Faraday’s cage.

Note, however, that the argument no longer goes through if there are
charges inside the cavity, since in this case ∇2φ 6= 0 inside. Therefore,
the surface charges on the inner and outer surfaces of a hollow con-
ductor distribute themselves so as to cancel the electric field generated
by charges outside the conductor, but do not cancel the electric field
generated by charges in the internal cavity.

4.1.7 Electrostatic forces from surface integrals

We now elaborate on eq. (3.69) to show that, in electrostatics, the equa-
tions of motion of charged particles (or of extended bodies) can be writ-
ten in terms of surface integrals. We consider a set of extended bodies (or
point charges) and, for the integration volume that enters in eq. (3.68),
we choose a volume Va that includes only the a-th body, so that Pmech

is the momentum pa of the a-th extended body. In electrostatics B = 0,
and therefore Pem vanishes, see eq. (3.67). Then, eq. (3.69) becomes

(
dpa
dt

)

i

= −
∫

∂Va

d2s n̂jTij . (4.56)

Note that the derivation of eq. (3.69) was completely general and did
not assume that the particles are non-relativistic. When they are non-
relativistic, we can also use Newton’s law dpa/dt = Fa, where Fa is the



4.1 Electrostatics 69

force acting on the a-th body, and eq. (4.56) can be rewritten as

(Fa)i = −
∫

∂Va

d2s n̂jTij . (4.57)

It is remarkable that, in electrostatics, the total electric force acting
over a body can be computed as an integral over any surface enclosing it
(so, in particular, over its boundary surface), without apparently know-
ing the forces on the individual volume elements inside the body.14 In 14The underlying reason is that, in

electrostatics, the knowledge of the
field on the boundary uniquely deter-
mines the field everywhere, as we have
seen in Section 4.1.5, so, in fact, the in-
formation on the field inside the body
is implicitly there.

electrostatics, the Maxwell stress tensor (3.63) reduces to

Tij = −ε0
(
EiEj −

1

2
E2δij

)
(4.58)

= −ε0
(
∂iφ∂jφ−

1

2
δij∂kφ∂kφ

)
, (4.59)

where we used eq. (4.30). Using eq. (4.58), we can rewrite eq. (4.56) as

dpa
dt

= ε0

∫

∂Va

d2s

[
(E·n̂)E− 1

2
E2n̂

]
. (4.60)

This expresses the force on a charge qa as an integral of the total elec-
tric field (including that generated by the charge qa itself) over a surface
enclosing the charge. This is, apparently, quite different from the stan-
dard expression F = qaE

′(xa), where we denote here by E′(xa) the field
generated by all other charges, except qa, evaluated at the position xa
of the charge qa.

As an application, it is instructive to see how eq. (4.60) reproduces the
Coulomb force between two point charges. We consider for simplicity
two equal charges q1 = q and q2 = q (we take q > 0) at a distance
2d, and we set their positions at x1 = (0, 0,+d) and x2 = (0, 0,−d),
respectively. To compute the force on the first charge we take, as the
volume V1 that encloses it, a hemisphere of radius R in the z ≥ 0 region,
i.e., the volume defined by the conditions x2 + y2 + z2 ≤ R and z ≥ 0,
see Fig. 4.3, and we send R → ∞. The boundary ∂V1 is then given
by the union of the (x, y) plane and the surface of the hemisphere at
infinity. The electric field to be used in eq. (4.60) is the total electric
field created by the two charges, since this is the quantity that enters in
the energy-momentum tensor (4.58). As R→∞, E is of order 1/R2. So,
on the surface of the hemisphere, the term in bracket in eq. (4.60) is of
order 1/R4, while d2s = R2dΩ. Therefore, as R→∞, the contribution
from the surface of the hemisphere at infinity vanishes, and only the
contribution from the (x, y) plane matters. This can be computed as
follows. Consider first the electric field E1(x, y) produced by the charge
q1 in a point x = (x, y, 0) of the plane. The squared distance between
the charge q1 located at x1 = (0, 0,+d) and the point x = (x, y, 0) is
x2 + y2 + d2, so the modulus of E1(x, y) is given by

x1q1

q2
x

v

∂V1

x

y

z

Fig. 4.3 The hemisphere surround-
ing the charge q1. The vector v in-
dicates the direction of the electric
field generated by the charge q1 at
the point with coordinates (x, y, 0).

|E1(x, y)| = q

4πε0

1

x2 + y2 + d2
. (4.61)
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For positive q, E1(x, y) points in the direction of the vector v given by
x1 + v = x, see again Fig. 4.3, so v = x − x1 = (x, y,−d). The unit
vector in this direction is therefore

v̂ =
1

(x2 + y2 + d2)1/2
(x, y,−d) , (4.62)

and therefore

E1(x, y) =
q

4πε0

1

(x2 + y2 + d2)3/2
(x, y,−d) . (4.63)

The field E2(x, y) generated by the second charge at the point x =
(x, y, 0) is simply obtained by replacing d→ −d in the previous expres-
sion. Therefore, the total electric field E(x, y) = E1(x, y) + E2(x, y) is
given by

E(x, y) =
2q

4πε0

1

(x2 + y2 + d2)3/2
(x, y, 0) . (4.64)

Note that, on the (x, y) plane, the electric field has no ẑ component, as
was clear from the symmetry of the problem, since we have taken q1 = q2.
We now introduce polar coordinates in the (x, y) plane, x = ρ cosφ,
y = ρ sinφ. Then, in eq. (4.60), d2s = ρdρdφ and, for the volume V1,
the outer normal to the plane is n̂ = −ẑ. Therefore, in eq. (4.60), the
term E·n̂ vanishes and, for the force F1 = dp1/dt exerted on the first
particle, we get1515To compute the integral over ρ we

introduce u = ρ2/d2 and we use∫ ∞
0

du
u

(u+ 1)3
=

1

2
. (4.65) F1 =

1

2
ε0

(
2q

4πε0

)2

ẑ

∫ ∞

0

ρdρ

∫ 2π

0

dφ
ρ2

(ρ2 + d2)3

= ẑ
q2

4πε0

1

(2d)2
. (4.66)

This correctly gives the Coulomb force on the first charge, due to the
second charge at distance 2d. In particular, a force in the +ẑ direction
on the first charge, which is located at (0, 0, d), exerted by the charge at
(0, 0,−d), corresponds to a repulsive force along the line joining the two
charges, which is the correct result given that we took charges with the
same sign.

It might appear that we have killed an ant with a hammer, given the
long computation performed just for getting back the Coulomb force.
However, conceptually it is quite interesting to see how the force on a
charge can be obtained without using the electric field at the position
of the charge itself, but rather using the total electric field on a surface
surrounding it, which could even be chosen at a large distance from it.
Note also that, in the usual computation of the force F1 exerted on a
charge q1 by a charge q2, we have F1 = q1E2(x1), where E2(x1) is the
electric field generated in x1 by the charge q2 (or, in general, by all other
charges present, except q1 itself). In contrast, in the computation of the
force F1 from the Maxwell stress tensor enters the total electric field E
generated by all charges, including q1.16

16A note for the advanced reader. This
way of writing the equations of mo-
tions in term of surface integrals can
also be performed in Newtonian grav-
ity, with the gravitational potential
taking the role of the scalar poten-
tial φ in eq. (4.59) (and ε0 replaced
by 1/(4πG), where G is Newton’s con-
stant), see eqs. (5.221)–(5.224) of Mag-
giore (2007). This admits an elegant
extension to General Relativity, devel-
oped in a classic work by Einstein, In-
feld, and Hoffmann in 1938. In Gen-
eral Relativity, this can provide signifi-
cant advantages because the dynamics
can then be written in a way that only
involves fields at large distances from
the source, i.e., the weak-field regime,
independently of the internal structure
of the sources, where, in General Rela-
tivity, in particular for black holes and
neutron stars, complicated non-linear
effects might take place.
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4.2 Magnetostatics

We now turn to magnetostatics, i.e., situations that involve only static
magnetic fields. In this case the Ampère–Maxwell law (3.2) reduces to
Ampère’s law (see Note 7 on page 44),

∇×B = µ0j , (4.67)

and this, together with eq. (3.3), that we repeat here,

∇·B = 0 , (4.68)

determines the magnetic field. Observe that, in magnetostatics, only the
combination µ0 = 1/(ε0c

2) enters. Equation (4.67) implies

∇·j = 0 , (4.69)

as we see by taking the divergence of both sides. This is consistent with
the conservation equation (3.22) if we set the net electric charge density
ρ = 0 or, more generally, if ∂ρ/∂t = 0. The integrated form of the
Ampère–Maxwell law, eq. (3.19), reduces to

∮

C
d` ·B(x) = µ0I , (4.70)

where I is the current through any surface bounded by C, while the
integrated form of eq. (4.68) is still given by eq. (3.16), which we repeat
here, ∮

S

ds ·B(t,x) = 0 . (4.71)

4.2.1 Magnetic field of an infinite straight wire

As a first application, we compute the magnetic field generated by an
infinite straight wire carrying a steady current I. The problem of com-
puting the magnetic field produced by a generic static distribution of
currents will be studied, in full generality, in Section 4.2.2. We set the
wire along the z direction, and we use cylindrical coordinates (ρ, ϕ, z),
as shown in Fig. 4.4. Since the problem is invariant under translations
along the z axis and rotations around the wire, B(ρ, ϕ, z) must be of the
form

B(ρ, ϕ, z) = Bρ(ρ)ρ̂+Bϕ(ρ)ϕ̂+Bz(ρ)ẑ , (4.72)

where Bρ, Bϕ, and Bz are independent of z and ϕ. Writing j = jz(ρ)ẑ,17

17Here, we consider the limit of an in-
finitely thin wire, so we can write the
current density as jz(x) = Iδ(x)δ(y),
and the proportionality constant is the
current I, fixed by I =

∫
dxdy jz . How-

ever, later, it will be useful to model
it using a function jz(ρ) that vanishes
for ρ > a, with a the transverse size of
the wire, that we will eventually send
to zero.

and using eqs. (1.30) and (1.33) for the divergence and curl in cylindri-
cal coordinates, as well as the fact that B is independent of ϕ and z,
Ampère’s law (4.67) becomes

ρ

φ

I

C

Fig. 4.4 The cylindrical coordinate
system centered on the wire (with
the wire along the z axis), and the
loop C used to apply the integrated
Ampere’s law.

−ϕ̂∂ρBz + ẑ
1

ρ
∂ρ(ρBϕ) = µ0jz(ρ)ẑ , (4.73)
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while eq. (4.68) becomes

1

ρ
∂ρ(ρBρ) = 0 . (4.74)

From eq. (4.73), we can immediately conclude that ∂ρBz = 0 and there-
fore Bz is a constant. As a boundary condition, for physical reasons
we require that, at infinite distance from the wire, i.e., at ρ → ∞, Bz
vanishes. Then, this constant is actually zero, so Bz = 0 everywhere.

ρ h

I

Fig. 4.5 The cylinder used in the in-
tegrated Maxwell equation (4.71).

Next, we can prove that the radial component Bρ also vanishes. This
can be seen more easily from the integrated Maxwell equation (4.71),
taking as surface S the boundary of a cylinder of height h and radius
ρ > 0, whose axis coincides with the wire, and with faces at z = ±h/2,
see Fig. 4.5. Equation (4.71) states that the magnetic flux through the
boundary S of the cylinder vanishes. The flux through the faces of the
cylinder at z = ±h/2 vanishes because Bz = 0,18 while the flux through

18In fact, it is not even necessary to
use this information; even if Bz were
non-zero, invariance under translation
along the z direction would imply that
Bz is the same at z = ±h/2, so the
flux entering from the lower face would
cancel against that coming out from the
upper face.

the lateral surface of the cylinder is 2πρhBρ(ρ). Since this must vanish,
we get Bρ(ρ) = 0 (for ρ 6= 0, i.e., outside the wire, that we have taken
here as infinitesimally thin).
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·
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·
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·
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B′′
z

B′′
x

Fig. 4.6 The geometry of the sym-
metry argument based on parity
and subsequent 180◦ rotations, dis-
cussed in the text.

The vanishing of Bz and Bρ can actually be understood using a sym-
metry argument based on parity. The argument, however, has some
subtleties, so it is instructive to go through it in some detail. Consider
the parity transformation (“Π”), x→ −x. Since j is a true vector (rather
than a pseudovector), it changes sign under parity, j(x) → −j(−x). In
our case j(x) is proportional to a Dirac delta in the transverse plane
and is independent of z, so the change x → −x in its argument has no
effect, and simply j→ −j. So, if before parity j was in the +ẑ direction,
after the parity transformation it points in the −ẑ direction. Therefore,
the geometry of this problem is not invariant under parity alone. How-
ever, we can combine this with a rotation by 180◦ around the y axis,
that we denote by Ry, that sends the current back toward the positive
ẑ direction. Thus, the combined transformation RyΠ is a symmetry
transformation of the system.

Consider now how the magnetic field B, at a generic point x is space,
transforms under this combined operation. We found in eq. (3.95) that
B is a pseudovector under parity, i.e., for a static field, B(x)→ +B(−x).
Note that its argument changes from x to −x, i.e., the parity operation
sends the point P = (x, y, z) into the antipodal point P′ = (−x,−y,−z).
We assume, without loss of generality, that the point P has coordinates
(x = 0, y, z) and we consider, for definiteness, a magnetic field that, in P,
is the sum of three vectors Bx, By, and Bz pointing, respectively, toward
the positive x, y, and z axes, as shown in Fig. 4.6. Note that, having
set x = 0, a vector in the positive x direction corresponds to a clockwise
azimuthal component, and a vector in the positive y direction to an
outward radial component. After the parity operation, the three vector
components of the magnetic field B′ at P′ will be as shown in the figure,
i.e. B′x, B′y, and B′z would still point in the same directions as before
the transformation, since B → +B; however, now B′y corresponds to
an inward radial vector, and B′x to a counterclockwise azimuthal vector.
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After the subsequent Ry rotation, the point P′ is transformed into the
point P′′ in Fig. 4.6 and, because of the 180◦ rotation in the (x, z)
plane, B′′x = −B′x and B′′z = −B′z while B′′y = B′y. The three vector
components of the magnetic field at P′′ will therefore be as shown in the
figure. We can finally perform a 180◦ rotation around the z axis, Rz,
that brings the point P′′ back onto the initial point P. Thus, in the end,
after the combined RzRyΠ transformation, eventually x→ x, while

Bρ(x)→ −Bρ(x) , Bϕ(x)→ +Bϕ(x) , Bz(x)→ −Bz(x) . (4.75)

Thus, we have found a transformation that leaves the system invari-
ant, and such that, under it, both Bρ(x) and Bz(x) change sign; one
is therefore tempted to conclude that they must vanish. While, as we
have seen from the explicit computation, this conclusion is indeed true,
the correct logic still requires some more steps. Indeed, one can already
be perplexed by the fact that, with this argument based on symmetries,
it seems that we do not even need to impose the boundary condition
Bz = 0 at infinity, that was necessary in the derivation from eq. (4.73).
After all, symmetry arguments can be an elegant way of extracting the
consequences of the equations of a theory, but do not contain more in-
formation than the equations themselves. In fact, the correct chain of
reasoning here is as follows. First of all, it is useful to stress that, behind
any use of arguments based on parity invariance, stands the fact that
Maxwell’s equations are indeed invariant under parity, as we discussed in
Section 3.4.19 Second, the invariance of the geometry of the problem and 19As we stressed there, despite its ap-

parently obvious geometric nature, in-
variance under parity is not guaranteed
a priori. Electrodynamics happens to
respect it, but, for example, another
fundamental interaction, the weak in-
teraction, is not invariant under parity;
we do not perceive this in the macro-
scopic world just because the range of
weak interactions is limited to subnu-
clear scales.

of the equations governing a theory under a transformation, is not yet
enough to guarantee that the corresponding solutions will also be invari-
ant under this transformation. A necessary condition is that even the
boundary conditions will be chosen to be invariant under the symmetry
transformation. Maxwell’s equations are invariant under parity and un-
der rotations; still, a solution of Maxwell’s equations invariant under this
combination of parity and subsequent 180◦ rotations, can only emerge
if also the boundary conditions are invariant under it. In our problem,
a natural boundary condition on Bz is imposed at ρ→∞, and the only
such boundary condition that respects this symmetry is Bz(ρ =∞) = 0,
which is indeed the condition that we imposed, for physical reasons,
when searching the solution of eq. (4.73). In principle, we could rather
decide to impose a boundary condition Bz(ρ = ∞) = B∞ 6= 0; this
would break the symmetry (in particular, the parity trasnformation).
The corresponding solution for Bz(ρ), which in this case would simply
be a constant equal to the boundary value, Bz(ρ) = B∞, would not be
invariant under parity. Still, at the mathematical level, it would be a
perfectly well-defined solution of Maxwell’s equations. For Bρ, instead,
the correct boundary condition is Bρ(ρ = 0) = 0, since a radial field that
does not vanish at ρ = 0 would be mathematically ill-defined. Again,
this boundary condition respects the parity and rotation symmetries.

Last but not least, in general, even when the geometry of the prob-
lem, the equations of the theory, and the boundary conditions respect
a symmetry, this does not yet necessarily imply that the solution re-
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spects it. This only happens if the solution is unique. The other option
is that there is a family of solutions, that transform into each other
under this symmetry transformation.20 For instance, in our case, using20See also the discussion on sponta-

neous symmetry breaking in Note 39 on
page 86.

only symmetry arguments, one could not exclude the possibility that,
even once imposed the boundary condition Bz(ρ =∞) = 0, there could
be two solutions, one with Bz(ρ) > 0 and one with Bz(ρ) < 0, that
both approach zero at large ρ, and that transform into each other under
parity. In our case this does not happen because, as we have seen at
the end of Section 4.1.5, in magnetostatics, once assigned the boundary
conditions, the solution is unique. So, the complete logic of the sym-
metry argument is: (1) Maxwell’s equations are invariant under parity
and under rotations.21 (2) The problem is invariant under a combina-

21More accurately, they are covariant,
i.e., the left- and right-hand sides of the
equations transform in the same way.
See Note 15 on page 50.

tion of parity and 180◦ rotations. (3) For physical reasons, as boundary
condition on Bz we choose Bz(ρ = ∞) = 0, while on Bρ we impose
Bρ(ρ = 0) = 0 for mathematical consistency; these boundary conditions
are invariant under the combined parity and 180◦ rotation transforma-
tions. (4) In magnetostatics, once given the boundary conditions, the
solution is unique. Then, we can finally conclude that the solution must
be invariant under this combined parity plus rotation transformation
and, since under this transformation Bz and Bρ change sign, they must
vanish.

In conclusion, either from the explicit computation using the inte-
grated Maxwell’s equations, or from the symmetry argument, we find
that in cylindrical coordinates the only non-vanishing component of the
magnetic field is Bϕ(ρ), and eq. (4.72) becomes

ρ

I

B

Fig. 4.7 Some field lines of the solu-
tion for the magnetic field.

B(ρ, ϕ, z) = Bϕ(ρ)ϕ̂ . (4.76)

The function Bϕ(ρ) can now be determined using the integrated form
of Ampère’s law, eq. (4.70). Taking as curve C a circle of radius ρ in
the plane transverse to the wire and centered on the wire, as shown in
Fig. 4.4, in eq. (4.70) we have d` = ρdϕ ϕ̂, so

ρ

∫ 2π

0

dϕBϕ(ρ) = µ0I , (4.77)

and therefore

Bϕ(ρ) = µ0
I

2πρ
. (4.78)

In conclusion,

B(ρ, ϕ, z) = µ0
I

2πρ
ϕ̂ . (4.79)

Some field lines of this solution in a transverse plane are shown in
Fig. 4.7.22

22It is also interesting to find the cor-
responding solution for the vector po-
tential. Using the expression (1.33) for
the curl in cylindrical coordinate, one
can see directly that the magnetic field
(4.79) can be obtained from

A(x) = Az(ρ)ẑ , (4.80)

with

Az(ρ) = −
µ0I

2π
ln ρ . (4.81)

This gauge potential satisfies the
Coulomb gauge condition, since ∇·A =
∂zAz(ρ) = 0. Note that A grows with-
out bounds at large distances from the
wire. This is an artifact of having taken
a current distribution that is not local-
ized, and rather extends from z = −∞
to z = +∞. We will see in Section 6.2
that, for a localized current distribu-
tion, A vanishes at infinity.

It is instructive to see how the same result can be obtained from a
direct integration of eqs. (4.73) and (4.74), since some subtleties ap-
pear. Equation (4.74) tells us that ρBρ(ρ) = α, with α a constant, so
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Bρ(ρ) = α/ρ. Setting α = 0 we get back the result Bρ(ρ) = 0 found
previously. However, it seems that any field of the form Bρ(ρ)ρ̂ = αρ̂/ρ,
with arbitrary α, would give an acceptable solution of eq. (4.74). This,
however, is not the case, because eq. (4.74) becomes singular at ρ = 0,
and more care is needed. To compute the divergence of a vector field
that, in cylindrical coordinates, has the form v(ρ, ϕ, z) = ρ̂/ρ, we pro-
ceed similarly to what we did in eqs. (1.86) and (1.87) for a field that,
in polar coordinates, had the form r̂/r2. In the present case, we take as
volume V the same cylinder used in Fig. 4.5, with radius ρ and height
h. Its lateral surface has a surface element ds = dzρdϕρ̂. Then, using
Gauss’s theorem

∫

V

d3x∇·v =

∫

∂V

ds ·v

=

∫ h/2

−h/2
dz

∫ 2π

0

ρdϕρ̂ · ρ̂
ρ

= 2πh . (4.82)

We now write d3x, on the left-hand side of eq. (4.82), as d3x = dzd2x⊥,
where x⊥ = xx̂+yŷ is a two-dimensional vector spanning the transverse
plane. Then, the left-hand side of eq. (4.82) can also be written as

∫

V

d3x∇·v =

∫ h/2

−h/2
dz

∫

|x⊥|<ρ
d2x⊥∇·v

= h

∫

|x⊥|<ρ
d2x⊥∇·v , (4.83)

where the integral over dz is trivial because, for the vector field v(ρ, ϕ, z) =
ρ̂/ρ that we are considering, ∇·v is independent of z. Since this holds
for arbitrary ρ > 0, and therefore also for ρ infinitesimally small, com-
parison of eqs. (4.82) and (4.83) shows that

∇·v = 2πδ(2)(x⊥) , where v(ρ, ϕ, z) =
ρ̂

ρ
. (4.84)

Therefore, a magnetic field of the form B(ρ, ϕ, z) = αρ̂/ρ would satisfy

∇·B = 2πα δ(2)(x⊥) , (4.85)

so it is not a solution of ∇·B = 0, unless α = 0.
Finally, we can determine Bϕ from a direct integration of eq. (4.73),

whose ẑ component is

∂ρ(ρBϕ) = µ0jz(ρ)ρ . (4.86)

Rather than taking an infinitesimally thick wire, it is simpler here to
take a model for a circular wire of radius a, with jz constant for ρ ≤ a
and jz = 0 for ρ > a. Then, integrating eq. (4.86) from ρ = 0 to
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ρ = a (with the boundary condition Bϕ(ρ = 0) = 0, necessary because
a non-vanishing ϕ̂ component would be singular at ρ = 0) we get

Bϕ(ρ) =
µ0jzρ

2
, (ρ ≤ a) , (4.87)

so

Bϕ(ρ = a) =
µ0I

2πa
, (4.88)

where I = jzπa
2 is the current flowing through the wire (recall that j

is a current per unit surface). Outside the wire, i.e., for ρ > a, jz = 0,
and eq. (4.86) gives Bϕ ∝ 1/ρ. The proportionality constant is obtained
requiring continuity at ρ = a, which then gives

Bϕ(ρ) =
µ0I

2πρ
, (ρ ≥ a) , (4.89)

so we have recovered eq. (4.78) outside the wire (and we can now also
send a → 0 to describe an infinitesimally thin wire carrying a fixed
current I).23

23It should be appreciated how, in
this problem, the use of the integrated
Maxwell’s equations provided a simpler
and more elegant way of obtaining the
solution for Bρ and Bϕ. In particular,
in the direct integration of eq. (4.73),
we had to deal with the subtle issue of
the spurious solution Bρ(ρ) = α/ρ with
non-vanishing α that, as we have seen,
generates a Dirac delta on the z axis in
∇·B, and is therefore not acceptable.
In the integrated form of the Ampère
law, in contrast, we only dealt with
the field at a surface of the cylinder
used in the integrated form of the equa-
tion, and the spurious solution never
appeared. Notice also that, for com-
puting Bϕ from the direct integration
of eq. (4.73), we had to make a choice
for the functional form of j inside the
wire, that we just took to be a constant
for ρ < a. The fact that the radius a
of the wire eventually disappeared from
the right-hand side of eq. (4.89) is an
indication of the fact that the result,
outside the wire, is independent of the
modelization used; however, the inte-
grated form of the Ampère law makes
this apparent, since no modelization of
the wire was ever needed.

4.2.2 Magnetic field of a static current density

We now compute the magnetic field produced by a current density j(x),
that we take localized in space and time-independent, but otherwise
arbitrary, and we also set ρ = 0 for the total charge density. According
to eq. (3.22), this implies

∇·j = 0 . (4.90)

This situation is realized, for instance, if we have a wire forming a loop,
with a steady current flowing through it. Within the wire, the positive
charge density of the ions compensates for the negative charge density of
the flowing electrons, so there is no net electric charge density. However,
the ions do not have a bulk motion, while the electrons do, thereby
creating a net electric current. The condition ∇·j = 0 expresses the
fact that electrons are neither created nor destroyed inside the wire and,
in each infinitesimal volume inside the wire, bounded by surfaces S1

and S2 in the transverse directions and of length dl in the longitudinal
direction, the flow of electrons entering through S1 is compensated by
the electrons flowing out through S2.

It is convenient to work in terms of the gauge potentials, in the
Coulomb gauge. Since ρ = 0, the solution of eq. (3.93) is φ = 0 and,
looking for a static solution A(x),24 eq. (3.94) reduces to

24As in the electrostatic case, we could
add an arbitrary time-dependent solu-
tion of the equation 2A = 0 that, as we
will see in Chapter 9, describes plane
waves. Here, we only consider the solu-
tion sourced by the current.

∇2A = −µ0j . (4.91)

The solution is obtained again from the Green’s function (4.15) of the
Laplacian, and is given by25

25Recall that, in Cartesian coordinates,
the Laplacian of a vector field has the
same form as the Laplacian on a scalar
field on each component, so we have
∇2Ai = −µ0ji, with ∇2 = ∂2x+∂2y+∂2z
just as on scalars. Correspondingly,
also the Green’s function for each com-
ponent is the same as in the scalar case.
As discussed in Note 2 on page 4, this is
no longer true in polar or cylindrical co-
ordinates. However, working in Carte-
sian coordinates suffices to obtain the
Green’s function and solve eq. (4.91).
Then, since the solution is written in a
vector form, it holds in any coordinate
system.

A(x) =
µ0

4π

∫
d3x′

j(x′)
|x− x′| , (4.92)
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as long as the integral converges at infinity. This is the case, in partic-
ular, with our assumption that j(x) is localized in space. As a check,
observe that this solution was found by writing Maxwell’s equations in
the Coulomb gauge ∇·A = 0, and therefore must satisfy this gauge
condition. This indeed holds, thanks to eq. (4.90). In fact,

∇x·A(x) =
µ0

4π

∫
d3x′ j(x′)·∇x

1

|x− x′|
= −µ0

4π

∫
d3x′ j(x′)·∇x′

1

|x− x′|
=

µ0

4π

∫
d3x′ [∇x′ ·j(x′)]

1

|x− x′|
= 0 , (4.93)

where we added to the ∇ operator a label x or x′ to stress on which
variable it acts. We then integrated ∇x′ by parts (setting to zero the
boundary terms, by the assumption that j(x) is localized), and we finally
used eq. (4.90). Then, from B = ∇×A,

B(x) =
µ0

4π
∇×

(∫
d3x′

j(x′)
|x− x′|

)
, (4.94)

or, equivalently,26

26Explicitly,

Bi(x) =
µ0

4π
εijk∂j

∫
d3x′

jk(x′)
|x− x′|

=
µ0

4π
εijk

∫
d3x′ jk(x′) ∂j

1

|x− x′|

= −
µ0

4π
εijk

∫
d3x′ jk(x′)

xj − x′j
|x− x′|3

= +
µ0

4π
εijk

∫
d3x′ jj(x′)

xk − x′k
|x− x′|3

,

where we used eq. (4.19).

B(x) =
µ0

4π

∫
d3x′

j(x′)×(x− x′)
|x− x′|3 . (4.95)

As an application, consider the situation in which the current is carried
by a thin wire that forms a closed loop. We idealize the thin wire as
a loop C of zero thickness and, at a generic point x ∈ C, we denote by
d` the vector tangent to the loop (after having chosen one of the two
possible directions for running along the loop C), and of infinitesimal
length d`, see Fig. 4.8. We also denote by êd` the unit vector in the
direction of d`, so that

d` = d` êd` . (4.96)

We denote by x⊥ the two dimensional Cartesian coordinates orthogonal
to d` at the point x so, for instance, if in x we have d` = d` x̂, then
x⊥ = yŷ+zẑ. It is convenient to introduce a one-dimensional coordinate
` that parametrizes the position of a point on the loop C, as follows. We
arbitrarily choose a point P in C, and we assign to it the value ` = 0.
This corresponds to a choice of origin for this coordinate. Given another
point P ′ ∈ C, we assign it the coordinate ` given by

d` x

x⊥

C

Fig. 4.8 A graphical illustration of
the definitions of d` and x⊥, for a
loop C.

` =

∫ P ′

P

d` , (4.97)

where the integral is a line integral along C. We have therefore con-
structed a convenient coordinate system (`,x⊥), useful along the loop
and in its immediate neighborhood.27 The idealization of zero thick-

27Actually, in general this coordinate
system is well defined (in the sense
that it is in one-to-one correspondence
with the x coordinates of the three-
dimensional space in which C is em-
bedded), only in a sufficiently small
transverse region around the loop. In-
deed, for a closed loop, starting from a
point P on the loop with coordinates
(` = `1,x⊥ = 0), and moving in the
transverse direction, for some value x∗⊥
of the coordinates x⊥ we would eventu-
ally reach another point P ′ of the loop,
corresponding to a value `2 of the ` co-
ordinate. Then, the coordinate values
(` = `1,x⊥ = x∗⊥) and (` = `2,x⊥ = 0)
would describe the same point in three-
dimensional space. However, in the fol-
lowing, we only use this coordinate sys-
tem in an infinitesimal neighborhood of
the loop, so the problem does not arise.
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ness means that the current density j(x) = j(`,x⊥) is a two-dimensional
Dirac delta in the transverse directions, i.e.,

j(`,x⊥) = I(`)δ(2)(x⊥)êd` , (4.98)

where I(`,x⊥ = 0) ≡ I(`) could a priori still be a function of ` (while
the multiplication by δ(2)(x⊥) allows us to set to zero its argument x⊥).
However, the condition ∇·j = 0 implies that I(`) is actually independent
also of `. For instance, if at the point x we orient the axes so that
d` = dx x̂, in x we have j = (jx, 0, 0) and current conservation becomes
∂xjx = 0. Since in this case d` = dx, this condition is equivalent to

dI(`)

d`
= 0 , (4.99)

and this holds on a generic point on the loop, i.e., for ` generic. There-
fore, for an infinitesimally thin wire

j(`,x⊥) = Iδ(2)(x⊥)êd` , (4.100)

with I a constant. Recall that j(x) is a current per unit surface. Since
∫
d2x⊥ j(`,x⊥) = Iêd` , (4.101)

I is just the current flowing in the wire. Its independence on ` means
that, in a single closed loop, the current is the same at all points of the
loop. Sufficiently close to a point on the loop labeled, in three-space, by
the coordinates x, the variables x⊥ and ` form an orthogonal system of
coordinates, so we have d3x = d2x⊥d`. Therefore

j(x)d3x = Iδ(2)(x⊥)êd` d
2x⊥d`

= Iδ(2)(x⊥) d2x⊥d` , (4.102)

where we used eq. (4.96). Inside an integral, we can first carry out the
integration over d2x⊥ with the help of the Dirac delta; this amounts to
replacing

j(x)d3x→ Id` , (4.103)

while setting x⊥ = 0 in any occurrence of x⊥ in the integrand. Equa-
tions (4.92) and (4.95) can then be written as loop integrals, as

A(x) =
µ0I

4π

∮

C
d`

1

|x− x(`)| , (4.104)

and

B(x) =
µ0I

4π

∮

C

d`×[x− x(`)]

|x− x(`)|3 , (4.105)

respectively, where x is the generic point in space where we compute the
field, and x(`) is the coordinate in three-dimensional space of the point
of the loop parametrized by `. Equation (4.105) is called the Biot–Savart
law.28

28Sometime, the name “Biot–Savart
law” is given directly to the more gen-
eral expression (4.95).
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4.2.3 Force of a magnetic field on a wire and
between two parallel wires

We now compute the force exerted by an external magnetic field B on
a wire currying a current, and we will then use this result to compute
the force between two parallel wires. In Section 4.2.4, we will compute
the force between two arbitrary current distributions.

Consider a line element d` = d` êd` of the wire, see eq. (4.96). We
denote by ne the number of electrons per unit length in the wire, all
taken to have a velocity v = −vêd`. Given that the electron charge is
q = −e < 0, we have qv = evêd`, so the current flows in the direction
+êd`.

29 The Lorentz force (3.5) on a single electron, due to the external 29This is not how currents really flow
in metals. As we will discuss in
Section 14.4, individual electrons un-
dergo collisions on microscopic distance
scales, and v should really be under-
stood as a macroscopic drift velocity of
the ensemble of electrons, not as the ve-
locity of individual electrons. However,
once understood in this average sense,
this derivation of the force on a wire is
correct.

magnetic field, is given by F = (−e)(−vêd`)×B = evêd`×B. The total
charge contained in a line element d` is (−e)ned`, so the force on it is
dF = (−ened`)(−vêd`)×B = (enev) d` êd` ×B. In a time dt, the total
charge passing through a transverse surface of the wire is dQ = ene(vdt),
so the current I = dQ/dt flowing in the wire is I = enev. Therefore

dF = Id`×B , (4.106)

or, equivalently,
dF

d`
= I êd` ×B , (4.107)

and the total force on the loop is30 30Observe that, if B(x) = B0 is spa-
tially constant, the total force on a
closed wire vanishes,

F = I

(∮
C
d`

)
×B0 = 0 , (4.108)

since
∮
C d` = 0.

F = I

∮

C

d`×B . (4.109)

More generally, if we have a current density j(x) not necessarily con-
fined to a one-dimensional wire, we can repeat the same argument with
j(x)d3x replacing Id` [compare with eq. (4.103)], and we get31 31Actually, we already knew this result

from the derivation of momentum con-
servation in eq. (3.68). Rather than
deriving eq. (4.109) from the Lorentz
force on the individual electrons, we
could have equivalently started from
eq. (3.68) to write eq. (4.110) and then,
specializing to a wire using eq. (4.103),
we get eq. (4.109).

F =

∫
d3x j(x)×B(x) . (4.110)

We next compute the force between two infinite straight parallel wires
carrying steady currents I1 and I2. We consider first the case where
the two currents are in the same direction, that we take to be the +ẑ
direction, and we denote by d the distance between the two wires. We
denote by dF2/dl the force per unit length on the second wire (which
we take parallel to the z axis and located at a distance d from it) due
to the magnetic field of the first wire (again parallel to the z axis and
located in x⊥ = 0). From eq. (4.107),

dF2

d`
= I2ẑ×B1 , (4.111)
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where B1 is the magnetic field generated by the first wire. Using eq. (4.79)
gives

dF2

d`
= I2ẑ×

(
µ0

I1
2πd

ϕ̂

)

= −µ0

2π

I1I2
d
ρ̂ , (4.112)

where we used ẑ×ϕ̂ = −ρ̂.32 We have therefore recovered eq. (2.7), that32Note that, in order for {ρ̂, ϕ̂, ẑ} to
be a right-handed frame, we must have
ρ̂×ϕ̂ = +ẑ, so ẑ × ϕ̂ = −ρ̂. This
convention has already been implic-
itly used when we derived the solution
(4.79), since it is implied by the expres-
sions (1.30) and (1.33) of the divergence
and curl in cylindrical coordinates, see
Note 1 on page 4.

we anticipated in Section 2.1. This shows that the vacuum magnetic
permeability µ0, that was originally defined from eq. (2.7), is indeed the
same as the constant µ0 that appears in the Ampère law (4.67). Note
that, if the currents are parallel, the force is attractive. The case of
anti-parallel currents can be obtained reversing the sign of I1ẑ in the
previous derivation, and therefore the force becomes repulsive.

4.2.4 Force between generic static current
distributions

We can now compute the magnetic force between two arbitrary static
current densities j1(x) and j2(x). We set again ρ1 = ρ2 = 0, and we
take the currents to be separately conserved,33 so that33This is the case, in particular, if the

two current densities are spatially non-
overlapping, as, for instance, in the case
where they are confined to two different
wires.

∇·j1 = ∇·j2 = 0 . (4.113)

From eq. (4.110), the force F1 exerted on the current density j1 by the
magnetic field generated by the current density j2 is

F1 =

∫
d3x j1(x)×B2(x) . (4.114)

Using eq. (4.95),

B2(x) =
µ0

4π

∫
d3x′

j2(x′)×(x− x′)
|x− x′|3 , (4.115)

and therefore

F1 =
µ0

4π

∫
d3xd3x′

j1(x)× [ j2(x′)×(x− x′)]
|x− x′|3 (4.116)

=
µ0

4π

∫
d3xd3x′

[ j1(x)·(x− x′)] j2(x′)− [ j1(x)·j2(x′)] (x− x′)
|x− x′|3 ,

where we used eq. (1.9) to expand the triple vector product. We now
observe that

∫
d3x

j1(x)·(x− x′)
|x− x′|3 = −

∫
d3x j1(x)·∇x

(
1

|x− x′|

)

= +

∫
d3x [∇x·j1(x)]

1

|x− x′|
= 0 , (4.117)
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where we used eq. (4.19), we integrated by parts discarding the boundary
term (which is valid if j1(x) is localized, or, more generally, if it decreases
faster than 1/|x| as |x| → ∞), and we finally used current conservation
in the form (4.113). Therefore, eq. (4.116) simplifies to

F1 = −µ0

4π

∫
d3xd3x′ j1(x)·j2(x′)

x− x′

|x− x′|3 . (4.118)

Equation (4.118) is the analogue of eq. (4.26) for the magnetostatic case.
For two current loops C1 and C2, using eq. (4.103), we get

F1 = −µ0I1I2
4π

∮

C1

∮

C2
d`1·d`2

x(`1)− x(`2)

|x(`1)− x(`2)|3 , (4.119)

where x(`1) is the spatial coordinate of the points of the loop C1 labeled
by the coordinate `1 along the loop [defined as in eq. (4.97)], and x(`2)
is the spatial coordinate of the points of the loop C2 labeled by the
coordinate `2.

Similarly to the electric case [see the discussion following eq. (4.26)],
the force F2 exerted on the current density j2 by the current density j1
is obtained exchanging 1↔ 2 in the previous expression,

F2 = −µ0

4π

∫
d3xd3x′ j2(x)·j1(x′)

x− x′

|x− x′|3 , (4.120)

and, renaming x ↔ x′, we see that F2 = −F1, so the magnetostatic
force satisfies Newton’s third law. We also observe that, if we set j2(x) =
j1(x), the integral vanishes because it becomes odd under x↔ x′. This
shows that a current distribution does not exert a force on itself.

To make contact with the setting of Section 4.2.3, we now choose
j1(x′) = I1δ

(2)(x′⊥)ẑ and j2(x) = I2δ
(2)(x⊥ − d⊥)ẑ [compare this with

eq. (4.100)], where d⊥ is a vector of modulus d in the transverse (x, y)
plane. This corresponds to two infinite straight wires with parallel cur-
rents, separated by a distance d = |d⊥| in the transverse plane. For
definiteness, we take d⊥ along the x axis, so that d⊥ = (d, 0). Writing
d3x = d2x⊥dz and d3x′ = d2x′⊥dz

′, eq. (4.120) gives

dF2

dz
= −µ0I1I2

4π

∫ ∞

−∞
dz′

x2(z)− x1(z′)
|x1(z′)− x2(z)|3 , (4.121)

where, having performed the integration over d2x⊥ and d2x′⊥ with the
help of the Dirac deltas δ(2)(x′⊥) and δ(2)(x⊥ − d⊥), we have x2(z) =
(d, 0, z) and x1(z′) = (0, 0, z′). Carrying out the integral,34 we get

34Explicitly, we write x2(z)−x1(z′) =
(d, 0, z − z′), and therefore(

dF2

dz

)
i

= −
µ0I1I2

4π

×
∫ ∞
−∞

dz′
(d, 0, z − z′)i

[d2 + (z − z′)2]3/2
.

Passing to the integration variable u =
(z − z′)/d, we see that the third com-
ponent in this vector expression van-
ishes because the integrand is odd in u,
while, for the first component, we get∫ ∞

−∞
dz′

d

[d2 + (z − z′)2]3/2

=
1

d

∫ ∞
−∞

du
1

[1 + u2]3/2

=
2

d
.

dF2

dz
= −µ0

2π

I1I2
d

x̂ . (4.122)

Since we have chosen ρ̂ = x̂, where, in general, ρ̂ is the unit vector in
the radial direction of the transverse plane, from the wire 1 sitting at
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x⊥ = 0 toward the wire 2 (and dz = d`, since the wires are parallel to
the z axis), we see that we have recovered eq. (4.112).

It is interesting to observe that the results for the electrostatic and
the magnetostatic forces, eqs. (4.26) and (4.118), are completely anal-
ogous, except for the overall sign, which is such that the electric force
between charges of the same sign is repulsive, while the magnetic force
between parallel currents is attractive. The similar structure of the in-
tegrals comes from the fact that in both cases we had to solve a Laplace
equation, for the scalar or the vector potential. The relative minus sign
can be traced to the different nature (scalar or vector, respectively) of
the scalar and vector potentials, resulting in different tensor structures
of the indices involving the ∇ operator, see in particular the minus sign
coming from the triple vector product in eq. (4.116).3535The difference between the behavior

of the Coulomb force between two point
charges, which decreases as 1/r2, and
the magnetic force between two infi-
nite straight parallel wires, which de-
creases with distance only as 1/d, is
due to the different structure of the
sources, which is a three-dimensional
Dirac delta for a point-like charge,
but just a two-dimensional Dirac delta
in the transverse plane, extending in-
finitely in the longitudinal direction, for
an infinite straight wire. Note, how-
ever, that when the current densities
are localized, as for two well separated
wire loops, the factor j1(x)·j2(x′) in
eq. (4.118) gets both positive and neg-
ative contributions, depending on the
relative orientations of different por-
tions of the wires, and therefore there
are partial cancellations. As a result,
the magnetic force decreases faster than
the Coulomb force between two charge
densities ρ1(x) and ρ2(x′) with fixed
signs (and is very sensitive to the rel-
ative orientation of the loops). We will
come back to this when we study the
expansion in electric and magnetic mul-
tipoles, in Chapter 6.

4.2.5 Magnetic forces from surface integrals

We now show that, similarly to the situation discussed in Section 4.1.7
for electrostatics, the force exerted by a static magnetic field on a lo-
calized current distribution can be written as a surface integral, on a
surface enclosing the source.

We start from eq. (4.110). We observe that, in that equation, B was an
external magnetic field acting on a current j. Below eq. (4.120) we have
found, however, that the force generated by a current distribution on
itself vanishes. We can therefore extend eq. (4.110) to a generic current
j, possibly made of several disjoint contributions, and we can take B as
the total magnetic field generated by j. We can then use Ampère’s law
(4.67), so that

F =
1

µ0

∫
d3x (∇×B)×B . (4.123)

Using the identity (1.7), we have

[(∇×B)×B]i = Bk∂kBi − (∂iBk)Bk . (4.124)

Using ∇·B = 0, we can rewrite Bk∂kBi = ∂k(BkBi), so

[(∇×B)×B]i = ∂k

(
BiBk −

1

2
δikB

2

)
. (4.125)

Therefore, if V is any volume such that the j vanishes outside it,

Fi =
1

µ0

∫

V

d3x ∂k

(
BiBk −

1

2
δikB

2

)

=
1

µ0

∫

∂V

d2s nk

(
BiBk −

1

2
δikB

2

)
, (4.126)

or, in vector form,

F =
1

µ0

∫

∂V

d2s

[
(B·n̂)B− 1

2
B2n̂

]
, (4.127)

which is the magnetic analog of eq. (4.60). The force is then expressed
in terms of the magnetic part of Maxwell’s stress tensor (3.64).
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4.3 Electromagnetic induction

We now take a closer look to Faraday’s law, in the integrated form
(3.21). This law governs the induction phenomena on which are based
ac generators, transformers, etc., and therefore has a fundamental role
in electrical engineering and all the related technology. Here we will
limit to two basic examples that put in evidence the basic principles.

4.3.1 Time-varying magnetic field and Lenz’s law

j = σE
Bind

Bext

C

Fig. 4.9 The induced current and in-
duced magnetic field created by in-
creasing the flux of an external mag-
netic field through the closed loop C.

Equation (3.21) tells us that, if the flux of the magnetic field through
a surface S, with boundary C = ∂S, changes in time, this induces a
circulation of the electric field along the closed curve C. Therefore, a
time-varying magnetic field generates an electric field, which is called the
“induced” electric field. We are interested, in particular, in the case in
which C is the loop made by a conducting wire. As the simplest example,
we consider a wire in the (x, y) plane, at rest in our reference frame, and
a magnetic field Bext in the ẑ direction, see Fig. 4.9, and we increase
the magnetic field with time. Then, there will be an induced electric
field in the wire. This will generate a current in the wire (the “induced
current”) and, in turn, a wire carrying a current generates a magnetic
field (the “induced magnetic field”). Since we will eventually use the
approximation of magnetostatics to compute the induced magnetic field,
the following computation is only valid if the change in time of the
external magnetic field is quasi-adiabatic.

Lenz’s law states that the induced magnetic field has the direction
that opposes the change of the flux of the external magnetic field. To
see how this comes out from eq. (3.21), recall that the flux ΦB is defined
choosing an orientation for the normal of the surface S; for the surface
bounded by the wire in Fig. 4.9, let us choose its normal, for instance,
in the positive ẑ direction. From Stokes’s theorem, this choice then fixes
the direction of the line element d` in eq. (3.21), according to the “right-
hand rule”: if we close the right hand along the direction of integration
of the loop C, the thumb must point in the direction of the normal to
the surface. Therefore, choosing the +ẑ direction for the normal of the
surface implies that the line integral on the left-hand side of eq. (3.21)
runs counterclockwise. In our setting, we have chosen Bext = Bext(t)ẑ
with Bext(t) > 0 and dBext/dt > 0, and, having chosen the normal n̂ to
S equal to +ẑ, so we have ΦBext

> 0 and dΦBext
/dt > 0. Therefore, from

eq. (3.21), along the wire the electric field must point in the clockwise
direction, so that d`·E < 0, in order to compensate for the minus sign
on the right-hand side.36

36Had we chosen −ẑ as the direction
of the normal to S, we would now have
ΦB negative and increasing in absolute
value, so dΦB/dt < 0. Then, overall,
the right-hand side of eq. (3.21) would
now be positive. On the other hand,
with this choice of the normal, the line
integral in Stokes’s theorem would run
clockwise. Since we would now need
d`·E > 0 to match the sign on the
right-hand side, we would still conclude
that E points in the clockwise direc-
tion. Of course, the direction of the
induced electric field does not depend
on our arbitrary choice of the direction
of the normal to the surface S.

This electric field generates in the wire a current j in the direction
of E,37 which therefore also runs clockwise, as shown in the figure. In

37As we will discuss in Section 13.6.2,
for a simple conducting wire the current
is given by Ohm’s law, j = σE, where
the positive constant σ is the conduc-
tivity of the material.

turn, this current generates a magnetic field (the “induced magnetic
field”) Bind. From eq. (4.105), one can see that the induced magnetic
field circulates around the wire, in the direction shown in Fig. 4.9; at a
sufficiently small distance from the wire, where it can be approximated as
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straight, this can also be seen more simply using the result for a straight
wire found in Section 4.2.1, see Fig. 4.7. So, inside the wire, Bind is
in the direction opposite to the external field. It therefore generates a
flux that goes in the direction of opposing the increase of the flux of the
external magnetic field, which is the content of Lenz’s law.

Note that Lenz’s law states that the induced magnetic field opposes
the change of the flux, not the flux itself. For instance, if we repeat the
same argument as before starting from a given magnetic field Bext =
Bextẑ, with Bext > 0, and we decrease Bext toward zero, we find that
the induced current will flow counterclockwise, so, in the direction that
tries to restore the original value of the field inside the loop.

4.3.2 Induction on moving loops

We next consider the case in which a wire, which makes a closed loop,
moves with respect to a magnetic field. It takes no extra effort to con-
sider the most general case in which the magnetic field also changes
with time, so we will include both effects. The situation is depicted in
Fig. 4.10, where we show the position of a loop C, representing a closed
wire, at time t and at time t+ δt, and two corresponding surfaces, S(t)
and S(t+ δt), that have C(t) and C(t+ δt), respectively, as boundaries.
We do not need to assume that the loop moves rigidly. The motion
of the loop is determined by giving, at each point of C(t), the corre-
sponding velocity v(t). The position of that point at time t+ δt is then
obtained by adding to it the vector v(t)δt, as shown in the figure, and
v(t) is allowed to change from point to point of the loop (we should then
write v[t,x(`)] where ` is the curvilinear coordinate along the loop, see
eq. (4.97), but we will keep the notation simple).

vδt

dℓ

(dℓ× v)δt

n̂(t+ δt)

n̂(t)

C(t)

C(t+ δt)

Fig. 4.10 A closed loop evolving in
time, and two surfaces that have
C(t) and C(t + δt), respectively, as
boundaries.

The difference between the magnetic flux going through S(t+ δt) and
that going through S(t) is given by

δΦB(t) =

∫

S(t+δt)

ds ·B(t+ δt,x)−
∫

S(t)

ds ·B(t,x) . (4.128)

Working to first order in the infinitesimal quantity δt, we can manipulate
this as

δΦB(t) =

∫

S(t+δt)

ds · [B(t+ δt,x)−B(t,x)] (4.129)

+

∫

S(t+δt)

ds ·B(t,x)−
∫

S(t)

ds ·B(t,x)

= δt

∫

S(t)

ds · ∂B

∂t
+

∫

S(t+δt)

ds·B(t,x)−
∫

S(t)

ds·B(t,x) ,

where we first added and subtracted the same quantity
∫
S(t+δt)

ds ·B(t,x)

and then, in the first integral of the last line, to first order in δt we could
replace S(t+δt) by S(t), since this terms already has a factor δt in front.
We now consider the closed volume V bounded by the surfaces C(t) and
C(t+δt), and by the lateral cylindrical region SL swept by the loop when
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it evolves from C(t) to C(t + δt). Observe that, on S(t + δt), the outer
normal to ∂V is the same as the normal n̂(t+ δt) of C(t+ δt), while, on
S(t), the outer normal to ∂V is the same as −n̂(t), see Fig. 4.10. Using
the fact that ∇·B = 0, together with Gauss’s theorem, we have

0 =

∫

V

d3x∇·B (4.130)

=

∫

S(t+δt)

ds·B(t,x)−
∫

S(t)

ds·B(t,x) +

∫

SL

ds·B(t,x) ,

where the minus sign in front of the second term is due to the fact
that the outer normal of ∂V on S(t) is minus the normal n̂(t) shown
in Fig. 4.10. We now observe, again from Fig. 4.10, that the surface
element of the lateral surface SL is given by

ds = d`× (vδt) , (4.131)

where d` is the line element on C(t). Therefore, eq. (4.130) gives
∫

S(t+δt)

ds·B(t,x)−
∫

S(t)

ds·B(t,x) = −δt
∮

C
(d`×v)·B(t,x)

= −δt
∮

C(t)
d` · (v×B) , (4.132)

where, more explicitly, v = v[t,x(`)] and B = B[t,x(`)]. Plugging this
into eq. (4.129) and taking the limit δt→ 0, we get

dΦB
dt

=

∫

S(t)

ds · ∂B

∂t
−
∮

C(t)
d` · (v×B) . (4.133)

Finally, in the first integral we express ∂B/∂t in terms of ∇×E using
Faraday’s law (3.4) and we use Stokes’s theorem (1.38). This gives the
final expression

dΦB
dt

= −
∮

C(t)
d` · (E + v×B) . (4.134)

Equation (4.134) shows that, for a moving loop, the electromotive force
Eemf , that, for a static loop, we have already introduced after eq. (3.21),
can be written as

Eemf =

∮

C(t)
d` · (E + v×B) , (4.135)

and is made of two terms: the first is the electric field induced by the
time derivative of the magnetic field, and the second (the “motional
emf”) is due to the motion of the loop in the magnetic field. Note that
the latter gives an electromotive force even in a static magnetic field.

Observe that, on the right-hand side of eq. (4.134) we have obtained
the combination of electric and magnetic fields, E + v×B, that enters
in the Lorentz force (3.5).38

38This, eventually, is dictated by
the underlying Lorentz covariance of
Maxwell’s equations. As we will see in
Section 8.6.1, the combination E+v×B
is the spatial component of a four-
vector.



86 Elementary applications of Maxwell’s equations

4.4 Solved problems

In this section we collect, in the form of Solved Problems, a number of
other rather classic applications of electrostatics and magnetostatics.

Problem 4.1. Electric field of an infinite charged plane

The integrated form of Maxwell’s equations, presented in Section 3.1.2, is
particularly useful when the geometry of the problem has a high degree of
symmetry. As an example, consider the electric field generated by a static
charge density, distributed uniformly on a plane, idealized to be infinite in
extent and with zero thickness. Let σ be the charge per unit surface on the
plane. We orient the axes so that the charged plane coincides with the (x, y)
plane, as in Fig. 4.11. For symmetry reasons, the electric field must then
point in the ±ẑ directions and its modulus cannot depend on x, y.39 Taking

39As we have already seen in Sec-
tion 4.2.1, there is a subtle limitation to
this use of symmetry arguments, which
is related to the phenomenon of spon-
taneous symmetry breaking and is es-
pecially important in particle physics
and in condensed matter. In general,
the symmetries of the problem (i.e., the
symmetries of the equations that gov-
ern the problem, including its geome-
try and boundary conditions) are the
same as the symmetries of the solution
of these equations only when the solu-
tion is unique. More generally, one can
have a family of solutions, that are not
invariant under the symmetry transfor-
mation of the problem (in our example
of an infinite plane, rotations around
the z axis), but are transformed into
each other by such transformations. A
classic example is given by a ferromag-
net: the fundamental equations govern-
ing the interaction between elementary
dipole moments in a ferromagnet are
invariant under the full group of rota-
tions in three dimensions. However, in
its magnetized phase, in a ferromagnet
the dipole moments are aligned along
one specific direction, randomly chosen,
so this solution is not invariant under
rotations. The symmetry under rota-
tions is now reflected in the fact that
the ferromagnet can align itself along
any direction, so there is a family of so-
lutions, related to each other by rota-
tions. However, the solution to electro-
static problems is unique, as we have
shown in Section 4.1.5, so in our case
this use of symmetry principles is cor-
rect.

for definiteness a charge density σ > 0, so that the lines of electric field go out
from the plane, we have

x

y

z S1

S2

σ > 0

Fig. 4.11 The electric field gener-
ated by a charged plane, and the
cylinder through which we compute
the flux of the electric field. The ar-
rows denote the lines of the electric
field.

E = ±E(z)ẑ , (4.136)

where the plus sign holds for z > 0 and the minus sign for z < 0, and E(z) =
|E(z)|. To compute E(z), we consider a volume V bounded by the cylinder
shown in Fig. 4.11, with end-faces S1 = Sẑ and S2 = S × (−ẑ), both of area
S, located at ±z, respectively, and we use Gauss’s law in the integrated form
(3.12). The charge inside the cylinder is Q = σS. The fluxes through S1 and
S2 are equal and add up, since, at S1, both E and the outer normal to the
surface are in the ẑ direction, while at S2 they are both in the −ẑ direction, so
E(z)·S1 = E(−z)·S2 = E(z)S, while there is no flux from the lateral surface
of the cylinder. Then, eq. (3.12) gives

2SE(z) =
σS

ε0
, (4.137)

so, in the end, the modulus of the electric field is independent even of z, and

E = ± σ

2ε0
ẑ . (4.138)

It is instructive to repeat the computation by performing explicitly the inte-
gration over the electric fields generated by the infinitesimal surface elements
of the plane. We choose the coordinates so that the charged plane corresponds
to z = 0, and we compute the electric field at a given point P with z > 0. We
set the origin of the reference frame so that the coordinates of this point are
(0, 0, z) and, in the (x, y) plane, we use polar coordinates (ρ, ϕ). We compute
first the electric field generated in P by the charges in an infinitesimal ring,
lying in the charged plane, and with radial coordinate between ρ and ρ+ dρ,
while 0 ≤ ϕ < 2π. Integrating over ϕ, the total contribution to the compo-
nents of E parallel to the plane, Ex and Ey, vanishes, since the contribution
from an infinitesimal surface ρdρdϕ at a given value of ϕ is canceled by the
contribution from the infinitesimal surface on the other side of the ring, at
ϕ+π, so Ex = Ey = 0. This explicitly confirms the result obtained previously
from symmetry arguments. Writing Ez = |E| cos θ, all the points in the ring,
i.e., with the same value of ρ, contributes in the same way to the modulus, as
well as to cos θ,

|E| = 1

4πε0

σρdρdϕ

ρ2 + z2
, cos θ =

z

(ρ2 + z2)1/2
. (4.139)



4.4 Solved problems 87

Therefore,

Ez =
σ

4πε0
2πz

∫ ∞
0

dρ
ρ

(ρ2 + z2)3/2
. (4.140)

Passing to the integration variable u = ρ/z, we see that z cancels and

Ez =
σ

2ε0

∫ ∞
0

du
u

(u2 + 1)3/2
. (4.141)

The integral is elementary and equal to 1, so we recover eq. (4.138).
We can now determine the corresponding gauge potentials φ and A. In a

problem of electrostatics the magnetic field vanishes, and we can set A = 0.
Then, eq. (3.83) gives E = −∇φ. In this case, again for the symmetry of the
problem, φ cannot depend on (x, y), so φ = φ(z) and ∇φ = (dφ/dz)ẑ. Then,
from eq. (4.138),

dφ

dz
= ∓ σ

2ε0
, (4.142)

so
φ(z) = φ0 − σ

2ε0
|z| , (4.143)

where φ0 is an arbitrary integration constant. The use of the integrated form
of Maxwell’s equations (in this case, just the integrated form of Gauss’s law),
for a problem with a high degree of symmetry, has allowed us to very quickly
solve directly in terms of the electric field. It is instructive to compare this
with the direct integration of Poisson’s equation (4.3). In our idealized setting
of a charged plane with zero thickness, we have ρ(x) = σδ(z). Since ρ(x) only
depends on z, we search for a solution φ = φ(z) and eq. (4.3) becomes

d2φ

dz2
= − σ

ε0
δ(z) . (4.144)

From eq. (1.70) we see that the most general solution for the dφ/dz is of the
form

dφ

dz
= − σ

ε0
[θ(z) + a] , (4.145)

with a a (dimensionless) integration constant. Quite commonly, in problems
of electrostatics, integration constants are fixed by requiring that the electric
field vanishes at infinite distance from the sources. Here, however, this is
not possible, since we have considered an infinite plane and, with such an
idealization, there is no guarantee that the electric field will vanish at z → ±∞.
In fact, we already know from the solution (4.138) that this will not be the
case. Rather, the symmetry of the problem requires that the modulus |dφ/dz|
must be invariant under the parity transformation z → −z (we have in fact
already used this condition when solving the problem using the integrated
Gauss’s law). The function θ(z) is equal to 0 for z < 0 and to 1 for z > 0, so
its absolute value is not an even function, but this is easily fixed by choosing
the integration constant a = −1/2, since θ(z)− 1/2 is equal to −1/2 for z < 0
and +1/2 for z > 0, so |θ(z) − 1/2| is an even function. Then, eq. (4.145)
becomes

dφ

dz
= − σ

ε0

[
θ(z)− 1

2

]
, (4.146)

which agrees with eq. (4.142). Observe also that, using the identity

θ(z) + θ(−z) = 1 , (4.147)

we can also rewrite eq. (4.146) as

dφ

dz
= − σ

2ε0
[θ(z)− θ(−z)] . (4.148)
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Problem 4.2. Electric field of a spherical charge distribution

Consider now the electric field generated by a spherical charge distribution
of radius d. In this case, by symmetry, the electric field will be in the radial
direction and its modulus will only depend on r, so E = E(r)r̂. We take a
spherical surface S of radius r > d and use eq. (3.12). Writing ds = r2dΩ r̂
we get

ΦE(t) =

∫
S

r2dΩ r̂ ·E(r)r̂

= 4πr2E(r) , (4.149)

and therefore, from eq. (3.12),

E(r) =
1

4πε0

Q

r2
, (r > d) , (4.150)

where Q is the total charge of the sphere. This is the famous result (which is
due to Newton, who found it for the gravitational case, but is valid for any
force proportional to 1/r2) that the field outside a uniformly charged sphere
is the same as if all the charge (or, in the gravitational case, all the mass) of
the sphere were concentrated at its center.

O

P

dS1= r21dΩ

dS2= r22dΩ

σ > 0

Fig. 4.12 The geometry for com-
puting the contribution of the elec-
tric field at the point P, due to the
charges on two antipodal infinites-
imal regions on the surface of the
sphere.

If, instead, we take r < d, ΦE is still given by eq. (4.149), but, on the right-
hand side of eq. (3.12) the only contribution comes from the charge at r < d.
In particular, if all the charge is on the surface of the sphere, the electric field
at any point inside the sphere is zero! To understand how this comes out
from the cancelation among the contribution of different charges, consider the
setting of Fig. 4.12 in which, for graphical clarity, we only show a section of
the sphere. We want to compute the electric field at a generic point P inside
the sphere by summing over the contributions from the charges on the surface
of the sphere. Consider first the charges in the infinitesimal region dS1 which,
with respect to the point P, subtends a solid angle dΩ and is at a distance
r1. Then, dS1 = r21dΩ and, if the surface charge on the sphere is σ (which is
a constant, independent of the polar angles θ, φ, because of the assumption
of spherical symmetry), the charge in dS1 is σr21dΩ. Taking σ > 0, we see
from the figure that the electric field produced in P from the charge in dS1 is
directed radially and inward, toward the center O of the sphere. Therefore, it
generates an electric field

dE1 =
1

4πε0

σr21dΩ

r21
(−r̂)

= − 1

4πε0
σdΩ r̂ . (4.151)

The crucial point is that r21 canceled between numerator and denominator.
Consider now the contribution of the antipodal surface dS2, subtending the
same solid angle dΩ. Now, as we see from the figure, the contribution to the
electric field is in the +r̂ direction. We denote by r2 the distance of dS2 from
P. Then

dE2 =
1

4πε0

σr22dΩ

r22
(+r̂)

= +
1

4πε0
σdΩ r̂ . (4.152)
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This is equal and opposite to the contribution from dS1. Therefore, when
integrating over the whole sphere, the contribution of each surface element is
canceled by that of its antipodal surface elements, and we recover the result
that E = 0 inside the sphere.

d

x

y

z

σ > 0 −σ

Fig. 4.13 The electric field gener-
ated by a parallel plate capacitor.

Problem 4.3. Parallel-plate capacitor

We next consider a parallel-plate capacitor, made of two parallel and op-
positely charged infinite planes, separated by a distance d along the z axis,
with surface densities σ > 0 at z = 0 and −σ at z = d, as shown in Fig. 4.13.
The electric field can be computed using the superposition principle, that we
discussed in Section 4.1.1. The electric field of the parallel-plate capacitor is
then immediately obtained from the result of Problem 4.1, just by summing
the electric fields produced by the two plates. Taking into account that the
modulus of the electric field of an infinite plane is independent of z and its
direction changes sign on the two sides, and that we have taken the opposite
signs for the surface charge densities on the two planes, we see that, for z < 0
and for z > d, the fields produced by the two planes cancel out, while inside
the capacitor they add up, so

E =
σ

ε0
ẑ , (0 < z < d) . (4.153)

The potential φ is therefore constant for z < 0 and z > d, while, inside, it
satisfies

dφ

dz
= − σ

ε0
, (4.154)

so
φ(z) = φ0 − σ

ε0
z . (4.155)

The absolute value of the difference in the potential between the charged plates
is therefore

V ≡ |φ(d)− φ(0)| = σd

ε0
. (4.156)

If, rather than taking an infinite extent in the (x, y) plane, we take the charged
plane to have a finite area A, the total charge Q on each plate is, in absolute
value, Q = σA. We take A sufficiently large so that the effects near the finite
boundary can be neglected, and the previous computation of the electric field
still goes through, except near the boundaries. For a generic capacitor the
capacitance C is defined by

C =
Q

V
, (4.157)

where Q is the charge of the positively charged plate, so Q > 0. Since V is
the absolute value of the potential difference between the two conductors, C is
positive by definition. Then, from eq. (4.156) we find that, for a parallel-plate
capacitor,

C =
ε0A

d
. (4.158)

From eq. (4.157), we see that capacitances are naturally measured in coulombs
per volts, C/V, and this derived SI unit is called the farad (F), in honor of
Michael Faraday. In terms of the base units, 1 F = 1 C2s2/(kg m2).40 The 40As mentioned in Note 7 on page 30,

we sometimes use the coulomb instead
of the ampere as a basic unit.

farad, however, turns out to be an unreasonably large unit, in practice. Typical
values for capacitors are of order picofarad (pF = 10−12 F) to microfarad
(µF = 10−6 F). Note also that the combination C2/(N m2), that gives the
units of ε0, is the same as farads/meter; we see this, for instance, from the
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fact that C × V = N × m, since, dimensionally, they are both energies, and
therefore

C2

N m2
= C

(
Nm

V

) (
1

N m2

)
=

C

Vm

=
F

m
. (4.159)

We could also have seen this directly from eq. (4.158). Therefore, eq. (2.13)
can be rewritten as

ε0 ' 8.854 . . .× 10−12 F

m
. (4.160)

From this we see why the picofarad is a more appropriate unit than the farad.
For a plane parallel capacitor filled with vacuum, as in the example that we
have considered, taking for instance A ∼ 1 cm2 and d ∼ 1 mm, from eq. (4.158)
we get C of order of a pF.

The force exerted by a plate on the other is attractive, given that the two
plates are oppositely charged. Its modulus can be obtained from eq. (4.138),
which gives the electric field generated by one plate, multiplying it by the
absolute value Q of the charge on the other plate, so

F =
Qσ

2ε0
. (4.161)

We can re-express it in terms of the total electric field E between the two
plates, given in eq. (4.153), which is twice as large as the field generated by
each plate, so

F =
1

2
QE . (4.162)

Typical circuits contain a large number of capacitors. The linearity of Maxwell’s
equation implies that the total charges Qa on the capacitors (where a =
1, . . . , N labels the capacitor) and the potentials φa on their surfaces are re-
lated linearly,

Qa =

N∑
b=1

Cabφb . (4.163)

The coefficients Cab depend only on the geometry of the system, i.e., the shape
of the conductors and their relative arrangement. They are called the coef-
ficients of capacitance, and form the capacitance matrix C. The off-diagonal
elements Cab, with a 6= b, are called the mutual (or cross) capacitances, while
the diagonal elements Caa are the (self) capacitances. Their values are not
the same as the value of the capacitance of the a-th conductors in the absence
of all other. Indeed, even when all φb with b 6= a are set to zero (i.e., the
conductors are “grounded”), there are charges on their surfaces that influence
the potential on the surface of the a-th conductor. In Problem 5.2, we will
prove some useful properties obeyed by the coefficients Cab.

The inverse matrix C−1 is often denoted by P , so

φa =
N∑
b=1

PabQb , (4.164)

and Pab are called the coefficients of potential.
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Problem 4.4. Spherical capacitor

We now consider a spherical capacitor, made of two concentric spherical
shells of radius a and b, with a > b, and charges −Q and Q, respectively.
Again, by symmetry, the electric field is radial, E = E(r)r̂. Applying the
integrated form of Gauss’s law, eq. (3.12), to a spherical volume with a radius
r < b we find that the flux is zero because there is no charge inside the
volume, and therefore E = 0 at r < b. Similarly, at r > a, the charges of the
two spherical shells compensate each other and the total charge is Q−Q = 0,
so again eq. (3.12) gives E = 0. The field between the two shells can be
computed using eq. (3.12) where the volume V used in the integration is now
a sphere of radius r, with b < r < a. The total charge inside this volume is
just the charge Q of the inner spherical shell, while the external spherical shell
has no effect so, as in eq. (4.150),

E(r) =
1

4πε0

Q

r2
, (b < r < a) . (4.165)

The potential difference between the two shells is therefore, in absolute value,

V =

∫ a

b

E(r)dr

=
Q

4πε0

(
1

b
− 1

a

)
, (4.166)

and the capacitance is

C = ε0
4πab

a− b . (4.167)

Comparing with the result (4.158), we see that we still have at denominator
the distance d = a−b between the two elements of the capacitor, while the area
factor A in eq. (4.158) is replaced by 4πab in eq. (4.167). In the limit b→ a,
4πab tends to the area A of the sphere, consistently with the fact that, if the
radii of curvature of the spheres are much larger than their distance d = a− b,
locally, the geometry is the same as that of a parallel plane capacitor.

Problem 4.5. Electrostatic energy of an ionic crystal

We now discuss the electrostatic energy of an ionic crystal, such as NaCl,
where the positively charged Na+ ions and the negatively charged Cl− ions
are arranged in a cubic lattice, with lattice spacing a (so that each ion has six
nearest neighbors with opposite charge, at a distance a). To compute it, we
can select one given ion, say of Na+, and compute its interaction energy with
all other Na+ and Cl− ions. This gives the interaction energy per unit ion,
u. Since the computation performed choosing any of the N/2 positive ions or
any of the N/2 negative ions gives the same result, the total energy potential
energy is then obtained multiplying this result by N , and then dividing by 2,
since in this way each pair has been counted twice, so U = uN/2.

We set the origin of the reference frame on the chosen ion. The positions
of the ions, in a regular cubic lattice of spacing a, are given by x = an̂ =
a(nx, ny, nz) with nx, ny, nz integers running from zero to infinity, so their
distance from the origin is a(n2

x + n2
y + n2

z)
1/2. The charge of the ion at the

position an̂ is (−1)nx+ny+nze.41 Therefore, the potential energy per unit ion

41This can be checked setting at first
ny = nz = 0 and moving along the x
axis. At nx = 0 we have our chosen
Na+ ion, with charge +e; for nx even
we find again positively charges ions,
and for nx odd negatively charged ions.
In the line defined by, say, ny = 1, nz =
0, the situation is inverted. Just on top
of our chosen ion, at nx = 0, we find
a negative charge, at nx = 1 a positive
charge, and so on.
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of an ionic crystal is given by

u =
1

4πε0

e2

a

∑
n̂6=0

(−1)nx+ny+nz

(n2
x + n2

y + n2
z)1/2

. (4.168)

The sum in eq. (4.170) is called the Madelung’s sum. Here, however, we
encounter a problem. This series is not absolutely convergent, i.e., its con-
vergence (and its finite value in the case that it converges) depends on the
order in which we sum the terms. For instance, if we would first sum up all
the terms with nx + ny + nz even, we would get a divergent result, since a
sum of terms, all with the same sign, and that goes asymptotically as

∑
n 1/n,

diverges. This mathematical problem reflects a physical ambiguity. The sum
can be organized moving outward from our chosen ion, and including in the
sum the interaction with the ions which belong to larger and larger volumes,
with our chosen ion near their center. One possibility is to choose these vol-
umes such that they all contain a zero net charge. Another option is to choose
them so that, near their boundaries, they are deformed so as to include only
ions of a certain type, e.g., positively charged. Choosing different sequences
of volumes, that include or exclude ions at given positions on the boundary,
we can obtain any desired distribution of surface charges on this sequence of
volumes. Such a distribution of surface charges can, in general, have a fi-
nite or even a divergent interaction energy with the chosen ion, even when
the boundary is at a very large distance r from it, since the contribution to
the sum from the ions at a large distance r decreases as 1/r, but, taking for
instance the extreme case of a constant surface charge (i.e., the situation in
which the boundary is deformed so as to include only ions of a given sign),
the total charge on the surface grows as r2; in this case, the interaction of
the surface charges with the chosen ions diverges as r → ∞. With different
organizations of the sequence of volumes used in the sum, corresponding to
different surface charge distributions, we can obtain different results, finite or
divergent; this is the physical reason why the result depends on how the sum
in eq. (4.168) is organized. For computing the electrostatic energy of a crystal,
we are interested in the situation in which there is no surface charge; therefore,
the sum must be organized through a series of electrically neutral subsequent
volumes. Using a series of expanding and electrically neutral cubes, one can
show that the sum converges, and can be computed numerically.42 The result

42Actually, there are further mathe-
matical subtleties here. If one uses a
series of expanding cubes the sum con-
verges while, if one uses a series of ex-
panding spheres, it can be proven that
the sum diverges. In fact, the prob-
lem is quite interesting and challeng-
ing from a mathematical point of view.
The rigorous definition of the sum in
eq. (4.168) is obtained from the ana-
lytic continuation to s = 1 of the series∑

n̂6=0

(−1)nx+ny+nz

(n2
x + n2

y + n2
z)s/2

which is absolutely convergent for
Re(s) > 1, and the sum over expanding
cubes converges to the correct result;
see the discussion in Section 3 of Bai-
ley, Borwein, Kapoor, and Weisstein
(2006), https://www.davidhbailey.

com//dhbpapers/tenproblems.pdf.

can be written as

u = − A

4πε0

e2

a
, (4.169)

where A ' 1.7476 is the Madelung’s constant for a cubic lattice, such as that
of NaCl. Equivalently, using U = uN/2, the total potential energy of a crystal
with N ions is

U = −N A

8πε0

e2

a
. (4.170)

We can compare the value of A obtained from this procedure with that ob-
tained starting from a given Na ion and computing its interaction energy with
the 6 nearest neighbor Cl ions at distance a, the 12 Na ions at distance a

√
2

and the 8 Cl ions at distance a
√

3 (note that this configuration is not electri-
cally neutral). This gives

u =
1

4πε0

e2

a

[
−6 +

12√
2
− 8√

3
+ . . .

]
, (4.171)

and therefore in this approximation A = 6 − (12/
√

2) + (8/
√

3) + . . . ' 2.13,
to be compared with the correct value A ' 1.7476.

https://www.davidhbailey.com//dhbpapers/tenproblems.pdf
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Two aspects of eq. (4.170) are noteworthy. First, the sum gives a negative
result for U . This means that the attraction between opposite charges wins
over the repulsion between charges of the same sign, resulting in a bound
state. This is a welcome result, since it goes in the direction of explaining the
cohesion of a crystal. However, we can now ask what fixes the value of the
lattice spacing a. From eq. (4.169), the smaller is a, the more negative is the
potential energy, and the state with the largest binding energy is obtained for
a → 0+. Therefore, if eq. (4.169) was the end of the story, the crystal could
lower its energy by decreasing a indefinitely and would therefore collapse. This
result, however, is not unexpected: we have already found in Section 4.1.4
that no set of electric charges can be in electrostatic equilibrium. Once again,
at atomic scales quantum mechanics must come to the rescue to ensure the
stability of matter.43

43Actually, the result that, for this
problem, no stable result is possible in
classical electrodynamics, can already
be derived just with dimensional anal-
ysis. The electrostatic energy per ion
pair must be proportional to the prod-
uct of their charges and therefore, in
SI units, to e2/(4πε0). The only way
to obtain an energy from this quan-
tity is to divide it by a length, and in
this problem we have only one length-
scale available, the lattice spacing a.
Therefore, the result must necessarily
be of the form (4.169), for some numer-
ical constant A, positive or negative.
If A > 0, as is actually the case, the
energy is minimized for a → 0+, and
the lattice collapse. If one had found
A < 0, u would have been given by a
positive constant times 1/a, and this
is minimized for a → ∞, so in this
case repulsion wins and the lattice “ex-
plodes,” with its ions dispersing at in-
finite distance from each other. Quan-
tum mechanics is able to solve the prob-
lem because it has at its disposal an-
other fundamental constant, the Planck
constant ~, and with it, together with
the mass m of a particle (or, here,
of an ion), we can form the combi-
nation ~/(mc), which has dimensions
of length. Therefore, we have another
length-scale at our disposal, which al-
lows for more complicated functional
forms of the potential, such as that in
eq. (4.172) (note, in fact, that B there
is not a pure number, contrary to A).

Indeed, quantum effects induce an effective repulsion between the core elec-
trons of the Na and Cl ions, that counterbalances the tendency of the elec-
trostatic potential to induce the collapse of the lattice. Without entering into
details beyond the scope of this course, all we need to know here is that, phe-
nomenologically, this quantum repulsion can be described by a potential per
unit ion of the form B/rn, for some positive constants B and a power index
n > 1 (with n ' 8 for NaCl).44 The equilibrium value of the lattice spacing is

44For the reader with some elementary
knowledge of quantum mechanics, the
mechanism that stabilizes the system
is actually the Pauli exclusion princi-
ple: when two ions get too close, the
core electrons of an ion begin to feel
the presence of the core electrons of
the other ion and the Pauli principle
(more precisely, the antisymmetriza-
tion of the wave functions of these elec-
trons) provides an effective repulsion
between them.

then determined minimizing, with respect to r, the total potential energy per
unit ion,

u(r) = − A

4πε0

e2

r
+
B

rn
. (4.172)

Requiring du/dr = 0 fixes the equilibrium value of r, which we denote by a,
from the relation

B =
A

4πε0

e2an−1

n
, (4.173)

so the lattice spacing a is fixed in terms of A,B, and n. If we use this relation
to eliminate B from eq. (4.172), we find that the potential per unit ion is

u = − A

4πε0

e2

a

(
1− 1

n

)
. (4.174)

The term 1/n therefore gives a quantum correction to the binding energy. Us-
ing the numerical values of e and 1/(4πε0) from eqs. (2.4) and (2.11), together
with the NaCl values A ' 1.7476, n ' 8 and a ' 0.281 nm, gives a dissociation
energy per unit molecule (i.e., the energy per unit pair of NaCl that must be
provided to dissociate the crystal) udiss ≡ −u ' 1.255× 10−18 J. The energy
needed to dissociate a mole of NaCl is then

Udiss = udissNA

' 756 kJ/mol , (4.175)

where NA is the Avogadro number (2.3). Using the conversion factor 1 kJ '
0.239 kcal, we can also rewrite it as Udiss ' 181 kcal/mol. Alternatively, a
convenient unit for atomic physics is the electronvolt (eV), defined by the
exact relation45

45Note the relation with the absolute
value of the electron charge, e, given in
eq. (2.4): the eV is the energy that a
charge e acquires by going through a
potential difference of 1 V.

1 eV = 1.602 176 634 × 10−19 J . (4.176)

Then, the dissociation energy per unit pair of NaCl can be written as

udiss ' 7.84 eV . (4.177)
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Problem 4.6. Magnetic field of a straight solenoid

z

C

Fig. 4.14 A solenoid, made by a wire
winding along a cylinder, and the
contour C used for the integrated
Ampère law.

z

C

Fig. 4.15 As in Fig. 4.14, for a wire
that winds very tightly around the
cylinder, so that j = jϕ̂.

We next compute the magnetic field of an infinite straight solenoid, i.e., of
a wire carrying a current, that winds around an infinitely long cylinder, as in
Fig. 4.14. We proceed similarly to the computation for an infinite straight wire
in Section 4.2.1. We use again cylindrical coordinates (ρ, ϕ, z). We assume
that the wire winds very tightly around the cylinder, so that it practically
defines a surface current density j = jϕ̂, see Fig. 4.15. Then, the problem is
invariant under translations along the z axis and rotations around the cylinder,
and therefore B(ρ, ϕ, z) must again be of the form (4.72), as was the case for
an infinitely long straight wire.

The radial component Bρ vanishes, by essentially the same argument used
in Section 4.2.1: we denote the radius of the solenoid by a and we consider a
cylinder of radius R > a, such as that in Fig. 4.5, which encloses the solenoid
(rather than enclosing a wire, as was the case in Fig. 4.5). The flux through
the surface of the cylinder must vanish, by eq. (4.71). Since Bz is the same
at the faces of the cylinder at z = ±h/2 (because of the invariance of the
problem under translations along z), the flux from the lower face cancels that
from the upper face, and then the flux from the lateral surface of the cylinder
must also vanish, and this implies Bρ = 0. This remains true if we put this
cylindrical volume inside the solenoid, i.e., if we take R < a. Therefore, Bρ
vanishes both inside and outside the solenoid.

Similarly, taking a loop C in the plane transverse to the cylinder, such as
that in Fig. 4.4 (where, again, now the loop encloses the solenoid rather than
a wire) and of radius ρ > a, the left-hand side of eq. (4.70) is 2πρBϕ, while
the right-hand side vanishes, because for the (tightly winding) solenoid the
current is uniquely in the ϕ̂ direction, and has no ẑ component, so there is
no current flowing through a surface bounded by C; the same holds for ρ < a,
and therefore Bϕ = 0. This means that, in this problem,

B(ρ, ϕ, z) = Bz(ρ)ẑ . (4.178)

This could have also be shown using symmetry arguments, similarly to what
we did in Section 4.2.1 for an infinite wire: we begin by considering a parity
transformation x → −x, denoted by Π. Under it, a point on the surface of
the cylinder, say at x = (0, a, z) (where the axes are oriented as in Fig. 4.6),
is sent into the antipodal point x′ = (0,−a,−z), which is still on the surface
of the cylinder. Under this transformation, j transforms as j(x) → −j(x′).
So, if at the point x the current was flowing inward with respect to the plane
of the page in Fig. 4.15, after the transformation the current at x′ is flowing
outward from the plane of the page. This is indeed how the current at the
antipodal point actually flows in Fig. 4.15, so the configuration in Fig. 4.15
is invariant under parity. We next study how B(x) transforms, for a generic
starting point P with coordinates x. After this parity transformation, the
situation is exactly the same as for the transformation from the point P to
P′ in Fig. 4.6. Similarly to what we did in the discussion of Fig. 4.6, we
then perform further symmetry transformations that bring back the point P′

onto P. In this case, a convenient choice is to perform first a rotation by 180◦

around the z axis, that we denote by Rz, that brings P′ to a point P′′ with
coordinates x′′ = (0, a,−z), and finally a translation Tz along the z axis that
brings it back to P . Under Rz, Bz is invariant while Bx and By change sign,
while under the translation all components are invariant. So, in the end, the
combined transformation TzRzΠ is a symmetry transformation of the system
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and, under it, Bx(x) → −Bx(x), By(x) → −By(x), and Bz(x) → +Bz(x).
Therefore, by the same chain of arguments discussed in Section 4.2.1 (including
a choice of boundary conditions that respect this symmetry), both Bx and By
(and therefore Bρ and Bϕ) must vanish and, in this setting, only Bz is non-
zero, confirming the result that we found by a direct use of the integrated
Maxwell’s equations.46 46We could reach the same conclusion

by a combination of time reversal and
rotations. The transformation of j and
B under time reversal was given in
eqs. (3.97) and (3.98). For time inde-
pendent fields, this reduces to B(x) →
−B(x) and j(x) → −j(x) and cor-
responds to the fact that eqs. (4.67)
and (4.68) are invariant under a trans-
formation that flips simultaneously the
signs of B and j, without touching the
spatial coordinates. We can now ob-
serve that, under a rotation by 180◦

around the x axis (denoted again by
Rx), the solenoid in Fig. 4.15 is geo-
metrically unchanged, except that now
j runs clockwise rather than counter-
clockwise. This, however, can be com-
pensated by a time reversal transforma-
tion T . Therefore, TRx is a symmetry
of the system and, proceeding similarly
to what we did previously, one finds
that, under this transformation (fol-
lowed by a translation along the z axis
to get back to the original point P with
coordinate x), Bx(x)→ −Bx(x), while
By(x) → By(x) and Bz(x) → Bz(x).
Then, with the by now usual chain
of arguments, Bx = 0. In the same
way, using the transformation TRy , one
finds By = 0. So, again, we find that
only Bz is non-zero.

So, either from a direct use of Maxwell’s equations, or from symmetry
arguments, the magnetic field of an infinite straight solenoid has the form
(4.178). We then plug it into Ampère’s law (4.67). Using the curl in cylindrical
coordinates, eq. (1.33), we get

∂ρBz = −µ0j . (4.179)

Outside the solenoid, i.e., for ρ > a, we have no current, so j = 0 and ∂ρBz = 0.
The boundary condition Bz = 0 at ρ → ∞ then fixes Bz = 0. Inside the
solenoid, at ρ < a, again j = 0 and Bz is constant. However, we cannot
appeal to continuity across the solenoid to fix this constant to zero, because
of the singular current density that is present there. Rather, we take a loop C
such as that in Fig. 4.15, and we apply the integrated Ampère-law (4.70),∮

C
d` ·B(x) = µ0IS , (4.180)

where we denote by IS the total current flowing through the surface S bounded
by C. If we denote by I the current carried by the wire, by n the number of
loops of the wire per unit length, and by L the vertical length of the loop C,
we have IS = nLI. The portions of C in the radial direction do not contribute
to the integral in eq. (4.180) because there d` ·B = dρ ρ̂ ·B = dρBρ, and we
have seen that Bρ = 0 everywhere. Similarly, the portion of the loop in the
ẑ direction outside the solenoid does not contribute because, there, Bz = 0.
The only contribution therefore comes from the part of C along the ẑ direction
and inside the solenoid, and there∫

d` ·B(x) =

∫ L/2

−L/2
dz Bz(ρ)

= LBz(ρ) . (4.181)

Equation (4.180) therefore gives LBz(ρ) = µ0nLI, so Bz is actually also inde-
pendent of ρ and given by Bz = µ0nI. In conclusion, in an infinite cylindrical
solenoid the magnetic field is non-vanishing only inside and, there, it is ori-
ented along the axis of the solenoid and is spatially uniform,

B = µ0nIẑ . (4.182)

Problem 4.7. Energy dissipation in a conducting wire

We now consider a resistive wire, i.e., a wire where the relation between the
current density and an applied electric field is given by Ohm’s law,47

47In Section 4.1.6 we proved that, in-
side a conductor, E = 0. This, how-
ever, was shown for static charges at
equilibrium, i.e., when a conductor, iso-
lated and subject only to a static ex-
ternal electric field, has rearranged its
surface charges and reached an equilib-
rium situation, where the external field
is screened and j = 0. Here, we are in-
terested precisely in the opposite situa-
tion where, using for instance a battery,
a potential difference is kept among two
points of a conducting wire, driving a
steady current inside it.

j = σE , (4.183)

where σ (not to be confused with a surface charge density) is a proportionality
constant called the conductivity. We will discuss Ohm’s law and its microscopic
justification (as well as its frequency-dependent generalization) in Section 14.4;
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for the moment, we just take it as a simple phenomenological relation which,
observationally, turns out to have a very broad range of applicability. Note
that, for a steady current, in the continuity equation (3.22) we have ∂ρ/∂t = 0,
and therefore, ∇·j = 0. From eq. (4.183), it then follows that also

∇·E = 0 , (4.184)

so, even if, in this case, E 6= 0 inside a conductor, still its divergence is zero.48

48This, of course, can be seen also as
a consequence of Gauss’s law, given
that the overall charge density inside
the wire is zero. In the wire, the ions
are fixed while the electrons drift with
the current. However, consider a mi-
croscopic volume dV = Adl, where A
is the transverse size of the wire and
dl a line element along the wire (here
dV is small compared to macroscopic
scales, but still sufficiently large to al-
low us to perform an average over many
ions and electrons, as necessary to de-
fine “macroscopic” quantities such as ρ
and j, smoothing out fluctuations on
atomic scale; we will discuss these av-
eraging procedures in detail in Chap-
ter 13). The positive charge of the ions
present in the volume dV is always com-
pensated by the negative charges of the
electrons that, at the given time, hap-
pens to be in dV . The individual elec-
trons will continuously flow out of dV
from one side but, in a steady current,
they will be replaced by an equal flux
of electrons that enter dV from the op-
posite side.

From the discussion in eqs. (4.96)–(4.99) we know that ∇·j = 0 implies that
j is uniform along the wire and therefore the same holds for E.

If we apply a potential difference Vab between two points a and b of the
wire at a distance L apart, this will induce a current I, and the resistance
Rab between these two points is defined by Vab = RabI, or (leaving henceforth
implicit the labels a, b)

V = RI , (4.185)

which is the most elementary version of Ohm’s law. The resistance R is
determined by the conductivity σ, the geometry of the wire, and the distance
between the points a, b. For example, taking for simplicity a wire of cross-
sectional area A, with j uniform inside it, we have I = jA. On the other hand,
we have seen that the electric field is uniform along the wire so, if it produces
a potential difference V among two points a, b at distance d, its modulus is
E = V/d. Then, multiplying eq. (4.183) by A, we get I = σAE = (σA/d)V
which shows that, in this geometry,

R =
d

σA
. (4.186)

From eq. (4.185), R has dimensions of volts per ampere, V/A. This derived
SI unit is called the ohm (Ω).4949Instead of the conductivity σ, it is

common to use the resistivity ρ = 1/σ
(again, not to be confused with a charge
density!) Then, for a thin wire,

R =
ρd

A
. (4.187)

We see that, dimensionally, ρ is the
same as a resistance times a length and
is normally given in the derived SI units
of Ω m. For instance, for copper at 20◦,
ρ ' 1.68 × 10−8Ω m. Conductivities
are then given in (Ω m)−1. In the SI
system, the inverse of the ohm is called
the siemens (S), so 1 Ω−1 = 1 S. In
the SI system, conductivities are then
measured in siemens per meter, S/m.
In terms of the fundamental SI units,

1 S = 1
A2 s3

kg m2
. (4.188)

As we have mentioned before, in the absence on an external agent such as
a battery, the current in the conductor would quickly set to the equilibrium
value j = 0. The mechanism that damps any initial current is given by the
collisions of the electrons, accelerated by the external field, against the fixed
ions, so that the kinetic energy of the electrons is dissipated into heat (“Joule
heating”). We will study this mechanism with a simple model in Section 14.4.
In any case, to keep a steady current going, we need to supply continuously
energy to the system, for instance with a battery. The corresponding work
per unit time can be computed observing that, if we take two points a and b
on the wire, with potential difference V , the work done to transfer a charge
dq from a to b is dW = V dq. In a steady current I, a charge dq = Idt is
transferred in a time dt, so the required work is dW = V Idt. Then, using
V = RI (where, again, V = Vab and R = Rab are, respectively, the potential
and the resistance between the points a and b but, according to standard use,
we suppress the labels a, b), we get

dW

dt
= V I = RI2 =

V 2

R
. (4.189)

This is the energy per unit time that must be supplied to keep a steady current
going, to compensate the energy dissipated into heat in the wire.

It is instructive to compare this result with the flow of electromagnetic
energy into the wire, obtained from the Poynting vector. Observe that, outside
the wire, E = 0 and the Poynting vector vanishes. Inside, however, both E
and B are non-vanishing. In particular, the flow of energy into the wire can
be computed from the Poynting vector at the wire surface. We take the wire
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as circular, of radius a. Using cylindrical coordinates with the z axis along
the wire, the magnetic field is given by eq. (4.79),

B(ρ = a) =
µ0I

2πa
ϕ̂ , (4.190)

where I = jπa2. The electric field at the wire surface is obtained from
eq. (4.183) with j = jẑ and j = I/(πa2), so

E(ρ = a) =
I

σπa2
ẑ . (4.191)

Therefore, using eq. (3.34) together with ẑ×ϕ̂ = −ρ̂, we get50 50This can be rewritten as

S = −
σ

2
E2(ρ = a)aρ̂ . (4.192)

Observe that, if j is uniform across the
wire, the same argument, taking as vol-
ume V a cylinder of length L along the
z axis and radius ρ < a, shows that,
inside the wire,

S = −
σ

2
E2(ρ)ρ , (4.193)

where ρ = ρρ̂.

S = − I2

2π2a3σ
ρ̂ , (4.194)

Note that the energy flux points toward the wire, so the electromagnetic field
at the exterior of the wire feeds energy into the wire. The energy per unit time
that flows into a portion of wire of length L is obtained from the right-hand
side of Poynting theorem (3.35), taking as volume V a cylinder of length L
along the z axis and radius a. Its lateral surface element is dz adϕ ρ̂, so

−
∫
∂V

ds·S =
I2

2π2a3σ

∫ L

0

dz

∫ 2π

0

adϕ

=
I2L

σA
, (4.195)

where A = πa2. From eq. (4.186), the resistance between two points at dis-
tance L is R = L/(σA), so we see that

−
∫
∂V

ds·S = RI2 . (4.196)

Therefore, the flow of energy from the electromagnetic field into the wire
balances the losses due to dissipation in the wire, providing the continuous
inflow of energy necessary to maintain a steady current. Note that the flow of
energy is in the radial direction −ρ̂, even if eventually the flow of the current
is in ẑ direction.

As discussed in Note 11 on page 47, one can find different expressions for
the energy density and Poynting vector, that give the same integrated energy
conservation law. In particular for a static problem, where E = −∇φ and
∇×B = µ0j, we can rewrite the Poynting vector as51

51Explicitly,

S =
1

µ0
E×B

= −
1

µ0
(∇φ)×B

= −
1

µ0
[∇× (φB)− φ∇×B]

= −
1

µ0
[∇× (φB)− φµ0j]

= φj−
1

µ0
∇× (φB) .

The term ∇ × (φB) does not con-
tribute to the integrated conservation
equation, since its integral over a closed
boundary ∂V vanishes. It corresponds
to the freedom of adding to S a term
∇ ×w, for an arbitrary vector field w
(see Note 11 on page 47). We can there-
fore drop it, and use eq. (4.197) for the
Poynting vector.

S = φj . (4.197)

So, in this case the energy that flows into a portion of wire of length L,
obtained as before taking as volume V a cylinder of length L along the z axis
and radius a, now appears to enters from the lower face of the cylinder and
flow out from the upper face (with a net difference between incoming and
outgoing flow due to the fact that the potential φ in eq. (4.197) grows linearly,
in absolute value, along the wire), rather than from the lateral faces of the
cylinder, as in eq. (4.194).

In any case, the important notion is that the energy is transferred to the
wire by the surrounding electromagnetic field, and energy conservation, as
derived from Maxwell’s equations, is fundamentally an integrated relation.
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Problem 4.8. Inductance of a circuit

Consider a set of closed loops Ca, (a = 1, . . . , N), carrying currents Ia.
These currents generate a magnetic field, and we denote the flux of the total
magnetic field through the a-th loop by ΦB,a,

ΦB,a =

∫
Sa

ds·B , (4.198)

where Sa is any surface having Ca as the boundary. The linearity of Maxwell’s
equation implies that the relations between the currents and the flux is linear,
i.e.,

ΦB,a =
N∑
a=1

LabIb . (4.199)

The coefficients Lab, with a 6= b, are called the mutual inductances, while the
diagonal element La ≡ Laa is the self-inductance (or, simply, the inductance)
of the a-th loop. In Section 5.3, we will prove explicitly eq. (4.199), and we
will show how to compute the mutual inductances in terms of the shapes and
positions of the loops. From eq. (4.199), we see that the dimension of Lab, in
SI units, are the same as Tm2/A. Comparing eqs. (2.19) and (2.20) we see
that this is the same as Vs/A. This derived SI unit for inductance is called
the henry (H).

If we have just a single loop, we can omit the index a and write, more
simply,

ΦB = LI . (4.200)

As an application, consider the situation in which we have a single loop; the
current in the loop is initially zero and the loop is connected to a battery,
which is suddenly switched on at time t = 0. We denote by V0 the electro-
motive force (emf) provided by the battery. This emf drives a current in the
loop, so I(t) raises with time. According to eq. (4.200), the time evolution
of the current induces a time evolution of the flux ΦB . In turn, according to
Faraday’s law (3.21), this induces an electromotive force −dΦB/dt. Then the
total electromotive force in the loop is

Eemf = V0 − LdI
dt
. (4.201)

The relative minus sign is the content of Lenz’s law, as we have seen in Sec-
tion 4.3.1, and is such that the induced electromotive force opposes the change
in the flux produced by the external source. If the loop has a resistance R,
then Ohm’s law (4.185) states that Eemf = RI. Therefore, the equation that
governs the time evolution of the current, after the battery is switched on, is

V0 − LdI
dt

= RI , (4.202)

i.e.,

τ
dI

dt
+ I =

V0

R
, (4.203)

where τ = L/R. The solution, with the initial condition I(t = 0) = 0, is

I(t) =
V0

R

(
1− e−t/τ

)
. (4.204)

Therefore, τ is the timescale on which the current raises to its asymptotic
value V0/R. For a given value of R, the larger is L, the slower is the raise of
the current.
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As we have seen in Section 3.2.2, the electromagnetic field carries energy.
In this chapter, we will see that the energy stored in a static electric field
is equal to the work that has been done to assemble the configuration
of charges that generates it (although, for point charges, this requires
to deal with some “self-energy” divergences) and, similarly, the energy
stored in a static magnetic field is equal to the work needed to pro-
duce the configuration of currents that generates it. We will also show
how to rewrite the electromagnetic energy in different useful forms, in
electrostatics and magnetostatics.

Another important aspect is the relation between the electromag-
netic energy and the “mechanical potentials” U , from which (for non-
relativistic systems) the electromagnetic force acting on the sources can
be derived, as F = −∇U . We will see that in electrostatics, in par-
ticular when dealing with a set of conductors, to compute the forces
acting on them we must distinguish between a mechanical potential at
fixed charges, and a mechanical potential computed keeping fixed the
electrostatic potentials on their surfaces. A similar issue arises in mag-
netostatics.

5.1 Work and energy in electrostatics

In this section, we evaluate the energy of a system of point-like charges
qa, at given positions xa, using the mechanical definition of energy of a
system as the work that should be done, by an external agent, to build
the desired configuration. We will then consider the generalization to
continuous charge distributions. In Section 5.2, we will compare with
the energy stored in the corresponding electromagnetic field.

We consider first a system of two charges, q1 and q2, and we compute
the work done by an external agent to bring the second charge from
infinity to a final position x2, in the potential generated by the first
charge, which is located at a fixed position x1.1 To compute the work

1Observe that we are interest in build-
ing a final static configuration of
charges by bringing them into the de-
sired position from infinity. We can
imagine doing it very slowly, so that
the velocities of the particles during
the whole process are infinitesimally
small, and we can then apply the non-
relativistic notions of force and work
to obtain the exact energy required to
build the final field configuration.

done, we assume that the position of the first charge is nailed down in
x1, so that it does not move. Then the work is given by eq. (4.33),
where, from eq. (4.6), the potential generated by the first charge is

φ(x) =
1

4πε0

q1

|x− x1|
. (5.1)

If the charge comes from an initial position x0 with |x0| → ∞, we have
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φ(x0) = 0, so,

W
(2)
ext = q2φ(x2)

=
1

4πε0

q1q2

|x2 − x1|
, (5.2)

where the superscript (2) reminds us that this is the work made to bring
the charge q2 at the specified position.22As a check of the sign, we observe that

the work needed to bring closer to each
other two charges of the same sign must
be positive, to overcome their repul-
sion, and this is correctly reproduced
by eq. (5.2). Also note that, as dis-
cussed after eq. (4.31), the result is in-
dependent of the path used to bring the
charge q2 from infinity to the position
x2.

We now keep the positions x1 and x2 of these two charges fixed, and
we compute the work needed to bring a third charge, q3, from infinity to
a given position x3. We therefore use again eq. (4.33), where now φ(x)
is the potential generated by the first two charges,3

3It is often remarked that we are us-
ing here the superposition principle,
that states the the electric and mag-
netic fields generated by an ensemble
of charges with pre-assigned positions
or trajectories is the (vector) sum of
the fields generated by the individual
charges. However, as we discussed in
Section 4.1.1, in classical electrodynam-
ics this is not a separate principle, but
just a consequence of the linearity of
Maxwell’s equations. At the quantum
level, there can be effects that gener-
ate non-linearities, which will manifest
at microscopic scales or for sufficiently
strong fields.

φ(x) =
1

4πε0

[
q1

|x− x1|
+

q2

|x− x2|

]
. (5.3)

The work needed to bring the charge q3 at the specified position is
therefore

W
(3)
ext =

1

4πε0

[
q1q3

|x− x1|
+

q2q3

|x− x2|

]
. (5.4)

The total work done to build the configuration made of these three
charges is W

(2)
ext +W

(3)
ext , so,

Wext =
1

4πε0

[
q1q2

|x2 − x1|
+

q1q3

|x3 − x1|
+

q2q3

|x3 − x2|

]
. (5.5)

Note that the expression is fully symmetrical with respect to the charges,
independently of the order in which they are brought from infinity to
their final position; as we have seen in Section 4.1.3, it is also independent
of the path chosen to bring the charges in their final positions, and is
therefore a function of the final configuration only.

It is clear that we can now proceed iteratively and, for a system of N
charges,

Wext =
1

4πε0

N∑

a=1

N∑

b>a

qaqb
|xa − xb|

. (5.6)

Since the energy of a (non-relativistic) system is the same as the work
made by an external agent to build it, the electrostatic energy EE of a
static system of point charges is

(EE)p.p. =
1

8πε0

N∑

a=1

N∑

b6=a

qaqb
|xa − xb|

, (5.7)

where the subscript “p.p.” stands for “point particles”, and we included
in the sum over b both b > a and b < a, so that each pair is counted
twice, and we compensated this dividing by two. From eq. (4.11) we
see that the electrostatic potential felt by the a-th charge because of the
interaction with all other charges is

φa(x1, . . .xn) ≡ 1

4πε0

N∑

b6=a

qb
|xa − xb|

, (5.8)
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so eq. (5.7) can also be written as

(EE)p.p. =
1

2

N∑

a=1

qaφa . (5.9)

The formal generalization of eqs. (5.7) and (5.9) to a continuous charge
distribution ρ(x) are

EE =
1

8πε0

∫
d3xd3x′

ρ(x)ρ(x′)
|x− x′| , (5.10)

and

EE =
1

2

∫
d3x ρ(x)φ(x) , (5.11)

respectively. We note, however, that in the continuous formulation the
condition a 6= b that appears in eq. (5.7) is absent. We will discuss this
point in great detail in Section 5.2.2.

Consider now the situation where we have two continuous charge dis-
tributions ρ1(x) and ρ2(x), localized in two non-overlapping volumes V1

and V2, respectively. Setting ρ(x) = ρ1(x) + ρ2(x) in eq. (5.10), we get

EE = E(1)
E + E(2)

E + E int
E where

E(a)
E =

1

8πε0

∫
d3xd3x′

ρa(x)ρa(x′)
|x− x′| , (5.12)

(with a = 1, 2), can be seen as the electromagnetic “self-energy” of the
a-th charge distribution, while

E int
E =

1

4πε0

∫
d3xd3x′

ρ1(x)ρ2(x′)
|x− x′| (5.13)

is the interaction energy between the two charge distributions.

5.2 Energy stored in a static electric field

The energy stored in a static electric field can be obtained from the
general results of Section 3.2.2. We will see how it can be rewritten in
different useful forms. We will then take the limit of point-like charges,
and compare with the work needed to build the corresponding charge
configuration, that we computed in Section 5.1. This computation is
instructive, also because it allows us to illustrate some subtleties in
the passage from a continuous charge distribution to a set of point-like
charges.

5.2.1 Continuous charge distribution

We start from the expression (3.41) for the energy density of the elec-
tromagnetic field. In the context of electrostatics, B = 0 and E depends
only on x. Furthermore, E can be written in terms of φ as in eq. (4.30).



102 Electromagnetic energy

Then the electrostatic energy in a volume V , sufficiently large to include
all the charges under consideration, is

EE =
ε0
2

∫

V

d3xE2(x)

=
ε0
2

∫

V

d3x∇φ ·∇φ

=
ε0
2

∫

V

d3x
[∇·(φ∇φ)− φ∇2φ

]
. (5.14)

As we already saw in the discussion of eqs. (4.41) and (4.42), for a
localized charge distribution, the term ∇·(φ∇φ) gives a boundary term
on the surface ∂V , that vanishes when we send the integration volume to
infinity. Furthermore, in electrostatics φ obeys Poisson’s equation (4.3).
Then, we get

EE =
1

2

∫
d3x ρ(x)φ(x) , (5.15)

where we have sent V →∞, so the integration is now over all of space,
in order to eliminate the boundary term. The solution of Poisson’s
equation (4.3) for a generic charge distribution is given by eq. (4.16).
Inserting it into eq. (5.15) we get

EE =
1

8πε0

∫
d3xd3x′

ρ(x)ρ(x′)
|x− x′| , (5.16)

which allows us to express the energy stored in the electric field, in the
electrostatic limit, in terms of the charge distribution that generates it.

These results agree with eqs. (5.10) and (5.11), that were obtained
computing the work performed to assemble a configuration of point
charges and performing a “naive” generalization to a continuous dis-
tribution. As we mentioned, a subtle point is that, in the point-particle
formulation, φa is the electrostatic potential generated by all charges
except the a-th charge, see eq. (5.8). In the continuous formulation, a
condition equivalent to b 6= a in eq. (5.8) is absent. We will examine this
point in Section 5.2.2. Barring a clarification of this point, we have then
found that the energy of a static charge configuration, defined as the
work done by an external agent to assemble it, is the same as the energy
stored in the electric field that this charge configuration generates.

A first comment on these results is that the previous manipulations
raise a question on the uniqueness of the expression for the energy den-
sity. From eq. (3.41), we would naturally conclude that the energy den-
sity of the electromagnetic field, in the electrostatic limit, is

u(x) =
ε0
2
|E(x)|2 , (5.17)

as we wrote indeed in eq. (3.43). In contrast, eq. (5.15) might suggest
that we identify the energy density with

u(x)
?
=

1

2
ρ(x)φ(x) . (5.18)
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Locally, the two expressions are very different. In particular, u(x) in
eq. (5.18) is localized on the position of the charges, and vanishes in
regions where ρ = 0 (so, in particular, for a set of point-like charges
it would be a sum of Dirac delta functions), while the expression in
eq. (5.17) is non-vanishing even in charge-free regions. Also note that
|E(x)|2 is definite positive, while ρ(x)φ(x) is not. The correct interpre-
tation is that the energy density of the electromagnetic field is given by
eq. (3.43) and so, for electrostatics, by eq. (5.17). Indeed, the deriva-
tion leading to eq. (3.43) was completely general, independently of the
specific form of the charge and current distributions in Maxwell’s equa-
tions. In contrast, eq. (5.15) only holds in electrostatics. Basically, what
we have done has been to use the equations of electrostatics to rewrite
the integral over |E(x)|2 as an integral over a different integrand that
gives the same result. This, however, was specific to electrostatics, and
even to the situation when the integral is over all of space rather than
over a finite volume (otherwise we cannot discard the boundary term),
while eq. (3.43) is much more general. For instance, we will see in Chap-
ter 9 that we can associate an energy density even to electromagnetic
waves propagating in vacuum, in which case the source terms are just
vanishing. Therefore, no special general meaning should be attached
to ρ(x)φ(x)/2, apart from being a function whose spatial integral over
R3, in electrostatics, happens to coincide with the spatial integral of
ε0|E(x)|2/2. The general expression for the energy density of the elec-
tromagnetic field is given by eq. (3.43).4

4As we have discussed in Note 11 on
page 47, there is some potential ambi-
guity even for this expression of the en-
ergy density, corresponding to the pos-
sibility of adding to it a term ∇·v,
as in eq. (3.45). As we mentioned in
Note 11, this, however, can be set to
zero appealing to the Lorentz covari-
ance of the energy-momentum tensor in
Special Relativity, or even better, using
General Relativity to identify the en-
ergy density that couples to the gravi-
tational field, which is indeed given by
eq. (3.43).

A second comment is that the integrand in eq. (5.16) becomes singular
when |x−x′| → 0. We must therefore understand under what conditions
the integral converges, since only in that case eq. (5.16) provides a well-
defined expression for the energy of a static charge distribution. The
issue is clearer in Fourier space. According to the definition (1.100), we
write

ρ(x) =

∫
d3k

(2π)3
ρ̃(k)eik·x , (5.19)

and we use eq. (1.115) for the Fourier transform of 1/|x|, which allows
us to write

1

|x− x′| =

∫
d3k

(2π)3

4π

k2
eik·(x−x

′) , (5.20)

where k = |k|. Then eq. (5.16) can be rewritten as5

5The explicit computation goes as fol-
lows:∫

d3xd3x′
ρ(x)ρ(x′)
|x− x′|

=

∫
d3xd3x′

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

×ρ̃(k1)eik1·x 4π

k22
eik2·(x−x′)ρ̃(k3)eik3·x′

= 4π

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
ρ̃(k1)ρ̃(k3)

k22

×
∫
d3x ei(k1+k2)·x

∫
d3x′ ei(k3−k2)·x′

= 4π

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
ρ̃(k1)ρ̃(k3)

k22

×(2π)3δ(3)(k1 + k2)(2π)3δ(3)(k3 − k2)

= 4π

∫
d3k1

(2π)3
ρ̃(−k1)ρ̃(k1)

k21
.

Renaming k1 = k we get eq. (5.21).

EE =
1

2ε0

∫
d3k

(2π)3

ρ̃(−k)ρ̃(k)

k2
. (5.21)

The possible divergence of the integral in eq. (5.16) as |x − x′| → 0
translates into a possible divergence of eq. (5.21) at large k. This is to
be expected from the general properties of the Fourier transform since,
in a relation such as (1.100), the term f̃(k)eik·x describes features of the
function f(x) at scales |x| ∼ 1/|k|, so the Fourier modes with large k
describe the short-distance behavior. Writing d3k = k2dkdΩ, eq. (5.21)
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becomes

EE =
1

2ε0 (2π)3

∫ ∞

0

dk

∫
dΩ ρ̃(−k)ρ̃(k) . (5.22)

The condition for convergence is therefore that the Fourier modes ρ̃(k)
go to zero as k → ∞ sufficiently fast, so that this integral converge. A
sufficient condition, for this, is that ρ̃(k) goes to zero faster that 1/k1/2,
so ρ̃(−k)ρ̃(k) goes to zero faster than 1/k.6 Therefore if, in this sense,6This condition is sufficient, but it is

not necessary. A term in ρ̃(−k)ρ̃(k)
that goes to zero more slowly could still
give a vanishing contribution when in-
tegrated over the solid angle.

ρ(x) is sufficiently smooth on short scales, the integral in eq. (5.21)
[and, therefore, that in eq. (5.16)], converges and provides a well-defined
expression for the energy generated by a static charge distribution.

5.2.2 The point-like limit and particle self-energies

The most notable exception to the smooth behavior defined above is
obtained for an ensemble of point-like charges, described by Dirac deltas.
Consider a set of charged particles with charges qa and fixed positions
xa, with a = 1, . . . , N . In this case,

ρ(x) =

N∑

a=1

qaδ
(3)(x− xa) , (5.23)

and, from eq. (1.99),

ρ̃(k) =

N∑

a=1

qa e
−ik·xa . (5.24)

We see that, for point-like charges, the Fourier modes ρ̃(k) do not even
go to zero as k →∞, and the integrals in eqs. (5.16) and (5.21) diverge.
Indeed, if we naively insert eq. (5.23) into eq. (5.16), we get

EE ?
=

1

8πε0

N∑

a=1

N∑

b=1

qaqb
|xa − xb|

. (5.25)

The question mark stresses that what we are doing is not correct, since
ρ̃(k) in this case does not satisfy the convergence condition; as a result,
the right-hand side is divergent, because of the contribution of the terms
with a = b.

To understand the meaning of this apparently nonsensical result, con-
sider first the terms in eq. (5.25) with b 6= a. These are just the terms
that we denoted as (EE)p.p. in eq. (5.7). As we have seen in Section 5.1,
this is equal to the work that one must perform to assemble this dis-
tribution of charges, starting from a set of charges at infinite distances
from each other, and therefore agrees with the definition of energy of
the system as the work needed to build the given configuration.

So, the terms with a 6= b in eq. (5.25) give precisely the result expected
for a system of point-like particles with Coulomb interaction, and the
trouble comes from the terms where a = b. This is a sort of “self-energy”
term, and it is interesting to understand the origin, and the cure, of this
divergence in some detail.7 The problem is in the assumption of exactly

7This part can be skipped at first read-
ing. The bottomline of the follow-
ing discussion is that these divergent
self-energy terms, once regularized (i.e.,
suitably treated from the mathematical
point of view), are just constants, and
can be discarded.
The reader with experience in quantum
field theory, on the other hand, will no-
tice that, even if we are in a purely
classical context, we have patterned our
discussion in analogy to the procedure
of regularization and renormalization in
quantum field theory. In Section 12.3.1,
we will expand on this approach, and
we will compare it to attempts to deal
with these problems by building a clas-
sical model of an extended electron.
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point-like particles, and its resolution comes from the realization that
the notion of an exactly point-like particle is a mathematical idealiza-
tion that is useful in many situations, but this is one case in which the
idealization leads us astray. When we write the charge density as in
eq. (5.23), we are implicitly assuming that we know the structure of
an elementary particle down to infinitely small length scales or, equiva-
lently, eq. (5.24) assumes that we know the Fourier modes of its charge
distribution up to infinitely large values of k. However, the structure of
elementary particles can only be discussed in the framework of quantum
mechanics or, in fact, quantum field theory. Within the context of a
classical treatment, the best that one can do is to acknowledge one’s
ignorance of physics at sufficiently small scales, where quantum effects
enter into play. If we denote by ` the length-scale below which a classical
treatment of elementary particles breaks down, this amounts to saying
that we do now know the Fourier modes of the charge distribution for
modes with |k|>∼O(1/`). We should then put a cutoff on the integrals
over d3k, integrating only over the Fourier modes with |k| smaller than
some cutoff value Λ of order 1/`, and deferring the proper treatment
of higher values of |k| to quantum mechanics and quantum field the-
ory. Then eq. (5.23), that, using the integral representation (1.79) of
the Dirac delta, can be written as

ρ(x) =
N∑

a=1

qa

∫
d3k

(2π)3
eik·(x−xa) , (5.26)

should be replaced by

ρ(x) =

N∑

a=1

qa

∫

|k|<Λ

d3k

(2π)3
eik·(x−xa) . (5.27)

The resulting expression is a smoothed approximation to the Dirac delta,
of the type of the functions used in Section 1.4 to approximate the Dirac
delta (which is actually a distribution) with a sequence of “normal”
functions, and with a smoothing length-scale ` ∼ 1/Λ. Equation (5.27)
is formally equivalent to setting to zero all Fourier modes of ρ̃(k) with
|k| > Λ and therefore has the effect of restricting also the integral in
eq. (5.21) to |k| < Λ. Then eq. (5.21) becomes

(EE)reg =
1

2ε0

∫

|k|<Λ

d3k

(2π)3

ρ̃(−k)ρ̃(k)

k2
, (5.28)

and is now finite. The subscript “reg” stands for “regularized” and
means that now this expression is, at least, mathematically well defined.
We can then insert eq. (5.24), which is still valid for the modes with
|k| < Λ, into eq. (5.28). This gives

(EE)reg =
1

2ε0

N∑

a=1

N∑

b=1

qaqb

∫

|k|<Λ

d3k

(2π)3

eik·(xa−xb)

k2
(5.29)

=
1

ε0

N∑

a=1

N∑

b>a

qaqb

∫

|k|<Λ

d3k

(2π)3

eik·(xa−xb)

k2
+

1

2ε0

N∑

a=1

q2
a

∫

|k|<Λ

d3k

(2π)3

1

k2
.
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The terms with a 6= b have a finite limit for Λ → ∞. This means that
they are insensitive to the details of the structure of elementary particles
at short distances, and for these terms we can take the limit Λ→∞. In
this limit, using eq. (1.115), we get back eq. (5.7). The integral in the
second term is easily computed analytically: passing in polar coordinates

1

(2π)3

∫ Λ

0

k2dk

∫
dΩ

1

k2
=

Λ

2π2
, (5.30)

and diverges if we remove the cutoff, i.e., if we send Λ→∞. The result
become nicer defining ` = π/Λ (note that ` has dimensions of length).
Then, apart from terms that vanish as `→ 0,

(EE)reg =
1

4πε0

N∑

a=1

N∑

b>a

qaqb
|xa − xb|

+
1

4πε0

N∑

a=1

q2
a

`
. (5.31)

The last term can be interpreted as a “Coulomb self-energy” term, as-
sociated with individual charges, rather than to their interaction. This
interpretation should not be taken too literally, first of all because, again,
classical electrodynamics is not the proper framework for studying the
nature of elementary particles. Observe, furthermore, that the exact
numerical value of the self-energy term depends on the details of the
regularization procedure. For instance, instead of putting a sharp cutoff
setting to zero all modes with |k| > Λ, we could have used a smooth
cutoff that suppresses them gradually, and the precise numbers would
have been different, so this term reflects the details of our mathematical
regularization procedure, rather than a direct physical property. The im-
portant points, however, are: (1) this term is divergent if we remove the
cutoff, sending ` → 0. For this reason, it was necessary to “regularize”
eq. (5.21) before applying it to point-like particles. (2) This “self-energy”
term, for given `, is just a numerical constants. The energy of a static
system of charges can be redefined as the difference between its value in
a given configuration and the value when all charges are at an infinite
distance among them, since this represent the work that should be done
to assemble the charges in the given spatial configuration; the charges
themselves are taken as given, and we must not perform work to create
them. The constant self-energy term then cancels in this difference and
can therefore simply be discarded. We then get back the expression (5.7)
of the Coulomb energy of a system of charges interacting among them.8

8See Section 12.3.1 for a more accu-
rate formalization of this subtraction,
within the logic of renormalization. It
would also be tempting to interpret the
self-energy term as the origin of the rest
mass of a charged particle. Then, for an
electron, one could be tempted to fix `
from [1/(4πε0)](e2/`) = mec2, which
would give

` =
1

4πε0

e2

mec2
≡ r0 . (5.32)

We will meet r0 again in Section 16.2,
where we will see that it enters the
scattering of electromagnetic waves off
free electrons and is called the “clas-
sical electron radius.” The idea of
an electromagnetic origin of the mass
of elementary particles is suggestive
but, once again, classical field theory
is not the right framework for address-
ing this type of questions. In particu-
lar, quantum mechanics introduces an-
other length-scale associated with the
electron, called the Compton radius,

rC ≡
~
mec

, (5.33)

(where ~ is Planck’s constant) that we
will also meet in Section 16.2. The rela-
tion between rC and r0 becomes clearer
introducing the fine structure constant

α =
1

4πε0

e2

~c
. (5.34)

Dimensionally, this quantity is a pure
number, and has the value α ' 1/137,
so α � 1. In terms of α, the relation
between r0 and rC reads r0 = α rC ,
so quantum mechanics enters into play
at a scale rC = r0/α � r0. There-
fore, one should already stop the classi-
cal treatment at a scale ` ∼ rC . Then,
the self-energy term in eq. (5.31) is of
order αmec2, so should rather be seen
as a small electromagnetic correction
to the rest-mass of the electron. Once
again, within our classical discussion we
cannot push these reasonings too far,
but the latter interpretation is closer to
the actual treatment in quantum elec-
trodynamics, where one starts with a
“bare” mass term for the electron, and
radiative effects, computed as an ex-
pansion in powers of the small param-
eter α, give corrections to it producing
a “renormalized” mass, which is then
identified with the observed mass; see
e.g., Maggiore (2005) for an introduc-
tory textbook.

In summary, eqs. (5.16) or (5.21), which have been derived from the
general formula (3.41) for the energy of the electromagnetic field, give
the energy density of a localized and static charge distribution ρ(x),
as long as the latter is sufficiently smooth on short scales. Basically,
the exception to this behavior is given by point-like particles. In this
case, one must be aware of the fact that the notion of point-like particle
is just a mathematical idealization and, after a suitable regularization
procedure and the subtraction of a constant term (that would diverge
when removing the cutoff), one obtains the expected result (5.7) for the
Coulomb potential energy of a set of charges.



5.2 Energy stored in a static electric field 107

5.2.3 Energy of charges in an external electric field

Another important quantity is the electrostatic energy of a system of
charges in an external electric field. Eventually, the external field will
itself be generated by a set of charges. So, we can model the situation
considering two sets of spatially separated charges, localized into two
non-overlapping volumes V1 and V2. Then, using a discrete formulation
first, the sum over a in the equations of Section 5.1 splits into a sum
over the charges in V1 and those in V2, and eq. (5.7) becomes

(EE)p.p. =


 ∑

a,b∈V1,b6=a
+2

∑

a∈V1

∑

b∈V2

+
∑

a,b∈V2,b6=a


 qaqb

8πε0|xa − xb|
. (5.35)

The first term gives the interaction energy among the charges in V1,
while the third term gives the interaction energy among the charges in
V2. The middle term is the interaction between the two groups.9 Then, 9Note that, there, we could omit the

condition b 6= a since in this sum a and
b run over different groups of particles,
so this condition is automatically satis-
fied.

the electrostatic interaction energy between the two groups of particles
is given by

1

4πε0

∑

a∈V1

∑

b∈V2

qaqb
|xa − xb|

. (5.36)

We next observe, from eq. (4.11), that

φext(x) ≡ 1

4πε0

∑

b∈V2

qb
|x− xb|

, (5.37)

is the potential generated by the charges in V2 at the point x. The label
“ext” stresses that we consider this as an “external potential,” from the
point of view of the charges in V1.10 Correspondingly, we denote the 10This distinction is useful in partic-

ularly when the back-reaction of the
charges in V1 on those in V2 is small
(for instance, the charges in V1 are
a small group of elementary charges,
while those in V2 form a macroscopic
object, e.g., a capacitor, creating a
macroscopic electric field), so we can
consider the external field as given, in-
dependently of the motion of the parti-
cles in V1.

expression in (5.36) as (EE)ext, to stress that this is the electrostatic
energy of a set of particles (the particles in V1) due to the interaction
with a given external field. Then, combining with eq. (5.37), we get

(EE)ext =
∑

a∈V1

qaφext(xa) .
(5.38)

[Note the absence of the factor 1/2, compared to eq. (5.9)]. The contin-
uous versions of these results are obtained from eq. (5.13), considering
the charge density ρ2(x) ≡ ρext(x) as an external source,11 and therefore 11We will then label again the corre-

sponding energy as (EE)ext, to stress
that it is the energy of ρ1(x) in an ex-
ternal field, while in eq. (5.13) it was la-
beled E intE , to stress that it is the inter-
action energy between ρ1(x) and ρ2(x).

are given by

(EE)ext =

∫
d3x ρ(x)φext(x) , (5.39)

where we denoted ρ1(x) simply as ρ(x), and

φext(x) =
1

4πε0

∫
d3x′

ρext(x
′)

|x− x′| , (5.40)

is the scalar potential generated by the second charge distribution, which
can be seen as an external potential from the point of view of the first
charge distribution.
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5.2.4 Energy of a system of conductors

Consider a set of extended charge distributions ρa(x), labeled by an
index a = 1, . . . , N , each localized in a volume Va, non-overlapping
with the other volumes. Then ρ(x) =

∑N
a=1 ρa(x), and the integral in

eq. (5.15) splits into a sum over non-overlapping volumes,

EE =
1

2

N∑

a=1

∫

Va

d3x ρa(x)φ(x) . (5.41)

In the special case in which these N bodies are conductors, this ex-
pression simplifies considerably. Recall from Section 4.1.6 that, for con-
ductors at equilibrium, the charge density is zero inside the conductor,
and non-vanishing only on its surface. Furthermore, we found that, on
the surface, the electrostatic potential is constant. Denoting by φa the
constant value of φ(x) on the surface of the a-th conductor, eq. (5.41)
becomes

EE =
1

2

N∑

a=1

φa

∫

Va

d3x ρa(x) , (5.42)

where we could extract φ(x) from the integrals, since ρa(x) is propor-
tional to a two-dimensional Dirac delta on the surface of the a-th con-
ductor, and there φ(x) = φa. The remaining integral is the total charge
Qa of the a-th conductor, so we see that the energy of an ensemble of
conductors can be expressed as

EE =
1

2

N∑

a=1

Qaφa , (5.43)

which is analogous to eq. (5.9) for point particles. As we discussed in
Problem 4.3, for a set of conductors the charges Qa and the potential φa
are linearly related, through eq. (4.163) or the inverse relation (4.164).
Therefore, eq. (5.43) can be rewritten in terms of the potentials φa and
the coefficients of capacitance Cab as

EE =
1

2

N∑

a,b=1

Cabφaφb , (5.44)

or in terms of the charges Qa and the coefficients of potential Pab as

EE =
1

2

N∑

a,b=1

PabQaQb . (5.45)

In Problem 5.1, we will check this expression for a single capacitor,
computing the work need to assemble its charge configuration.

The relation between the energy of a system of conductors, and the
mechanical potentials from which we can derive the forces acting on
them is somewhat subtle and depends on whether the conductors are
kept at fixed charge or at fixed electrostatic potential. We will examine
this in Section 5.5.1.
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5.3 Work and energy in magnetostatics

We now discuss the corresponding issues in the context of magneto-
statics. We begin by computing the work necessary to build a static
magnetic field configuration. The source of the magnetic field is a cur-
rent distribution j(x), and we must therefore ask what work is necessary
to build up such a current distribution, starting from zero.

For the sake of the argument, imagine an external agent that “grabs”
an electron at rest, and starts to accelerate it, moving it in a circular
orbit, until it reaches a given velocity corresponding to a given current.
Concretely, a current will rather be produced by accelerating a large
number of electrons, and the force that accelerates them will be an ex-
ternal electric field, but we do not need to specify this for the following
argument. If we neglect for a moment any effect related to electromag-
netism, we would conclude that the work done by the external force goes
into the kinetic energy of the electron; or, in the more realistic setting
of an electric wire, it goes partly in the kinetic energy of the electrons
and partly into dissipation in the wire. Once we include Maxwell’s equa-
tions in our considerations, we realize that the final configuration, with
a given final current, generates a magnetic field. We already know that
a magnetic field carries energy, so energy conservation must now take
a different form: to conserve energy, the work that has been done by
the external force during the process of building the final configuration
must be equal to the kinetic energy of the final electron (or the kinetic
energy of the electrons in a wire plus the energy lost to dissipation, in
a more realistic setting) plus the energy of the final magnetic field. In
other words, the work done by the external force to accelerate a particle
to a given velocity must be different when the particle is charged from
when it is electrically neutral, and the difference must be precisely the
work done to create the corresponding magnetic field.

The reason why the work is different for a charged and for neutral
particle is that the charged particle interacts with the electromagnetic
field that is being built. The magnetic field, by itself, does no work
on the charged particles on which it acts, given that (v×B)·(vdt) = 0.
However, as we raise the current, the magnetic field that it generates
also raises. Therefore, during the transient period needed to reach the
final static field configuration starting from zero initial field, ∂B/∂t is
non-zero. According to Faraday’s law (3.4), a non-zero value of ∂B/∂t
generates an electric field (the “induced” electric field). The induced
electric field performs work on the charged particles that make up the
current and, as we have seen in Section 4.3.1, for a closed loop it acts
to oppose the increase of the magnetic flux (Lenz’s law). So, we have
to supply extra external work to counterbalance the work made by this
induced electric field during the transient period needed to reach the
desired final value of the magnetic field, even if this final configuration is
static. One might try to circumvent the problem by raising the current
very slowly, so that ∂B/∂t is very small, and, at any given time, the
effect might seem negligible. However, in this case it would take a very
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long time to reach the desired final value of j and, as the following
computation will make clear, the two effects compensate.

The work per unit time made by an electric field on a current distri-
bution j(x) has already been computed in eq. (3.48). The work made
by the external agent is the negative of this, so, at a time t during the
transient period, when the current has a value j(t,x), we have

dWext

dt
= −

∫
d3xE(t,x)·j(t,x) , (5.46)

where E(t,x) is the induced electric field at that time. In a magneto-
static setting, we want to raise the current very slowly; then the Ampère–
Maxwell law (3.2) reduces to Ampère’s law, and

j(x) =
1

µ0
∇×B . (5.47)

In other words, while we must take into account ∂B/∂t during the tran-
sient period, otherwise we miss the leading contribution to Wext, we can
assume that the time derivative of the induced electric field is sufficiently
small to be neglected. Then eq. (5.46) becomes

dWext

dt
= − 1

µ0

∫
d3xE· (∇×B)

= − 1

µ0

∫
d3xB· (∇×E)

=
1

µ0

∫
d3xB·∂B

∂t

=
1

2µ0

d

dt

∫
d3x |B(t,x)|2 , (5.48)

where, in the first line, we have integrated by parts, so that Ei(εijk∂jBk)
gives −(εijk∂jEi)Bk, which is the same as +(εijk∂iEj)Bk = B·(∇ ×
E), and in the second line we used Faraday’s law (3.4). Therefore,
integrating with respect to time, with the initial condition that Wext = 0
at the initial time when B = 0, we find that the work needed to obtain
a given final static field B(x) is

Wext =
1

2µ0

∫
d3x |B|2 , (5.49)

in full agreement with the general result (3.41) with E = 0. Therefore,
the energy associated with a static magnetic field B, defined as the work
needed to build the configuration of current that generates it, is

EB =
1

2µ0

∫
d3x |B(x)|2 , (5.50)

and agrees with the expression of the energy stored in the final magnetic
field obtained from eq. (3.41).
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5.4 Energy stored in a static magnetic
field

In this section, in analogy with the treatment in Section 5.2 for electro-
statics, we rewrite the energy (5.50) in some other useful forms, in terms
of the vector potential A(x) corresponding to the final magnetic field
and of the final current distribution j(x) that generates it, and we will
also write the corresponding expression when the current distribution
corresponds to a set of closed loops.12 We write 12Note that, in the electrostatic case,

we considered separately a discrete and
a continuous distribution of charges.
In magnetostatics, currents are neces-
sarily extended, so we work directly
in the continuous formalism. Alterna-
tively, one could consider the interac-
tion between two closed loops, with a
size small compared to their distance.
We will discuss this setting in the con-
text of the multipole expansion in Sec-
tion 6.3, where we will see that this cor-
responds to the magnetic dipole inter-
action. Since the equivalent of the elec-
tric charge (the electric “monopole,”
in the language of multipole expan-
sion) does not exist for the magnetic
source, the analogy with electrostatics
is clearer working directly in terms of
extended distributions.

EB =
1

2µ0

∫
d3xB·B

=
1

2µ0

∫
d3xB·(∇×A)

=
1

2µ0

∫
d3x (∇×B)·A

=
1

2

∫
d3x j·A , (5.51)

where in the second line we integrated by parts [similarly to the passages
made after eq. (5.48)] and we then used eq. (5.47). Note that the last
passage is again specific to magnetostatics. Therefore, in magnetostatics
we can write the energy as

EB =
1

2

∫
d3x j(x)·A(x) . (5.52)

This is the analog of eq. (5.15) in electrostatics.13 Another useful form is 13Observe that this expression is gauge
invariant, as it should be for an energy.
This is evident from the original ex-
pression (5.50), because it only involve
B, which is gauge invariant. Equa-
tion (5.52), in contrast, is written in
terms of A, which is not gauge invari-
ant. However, under the gauge trans-
formation A→ A−∇θ,∫

d3x j·A→
∫
d3x j·(A−∇θ) ,

and the extra term vanishes after inte-
grating by parts and using ∇·j = 0,
which is valid in magnetostatics, see
eq. (4.90).

obtained using the solution for A(x) in terms of the current distribution
given by eq. (4.92),14 which gives

14This solution for A was obtained in
the Coulomb gauge but, as shown in
the previous note, eq. (5.52) is anyhow
gauge invariant.

EB =
µ0

8π

∫
d3xd3x′

j(x) · j(x′)
|x− x′| . (5.53)

This is the analog for magnetostatics of eq. (5.16) in electrostatics. Sim-
ilarly to eq. (5.21), we can take the Fourier transform of eq. (5.53), and
write

EB =
µ0

2

∫
d3k

(2π)3

j̃(−k) · j̃(k)

k2
. (5.54)

As in eq. (5.21), the convergence of the integral is assured if j̃(k) goes
to zero faster that 1/k1/2.

If j(x) = j1(x) + j2(x), where j1(x) and j2(x) are localized in two
non-overlapping volumes V1 and V2, eq. (5.53) becomes

EB = E(1)
B + E(2)

B + E int
B , (5.55)

where

E(a)
B =

µ0

8π

∫
d3xd3x′

j(a)(x) · j(a)(x′)
|x− x′| , (5.56)
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(with a = 1, 2), can be seen as the “self-energy” of the a-th current
distribution, while

E int
B =

µ0

4π

∫
d3xd3x′

j1(x) · j2(x′)
|x− x′| , (5.57)

is the interaction energy between the two current distributions.1515Note that, as in eq. (5.13), which
is the analogous result for electrostat-
ics, the integral over d3x takes contri-
butions only when x is inside the vol-
ume V1 where j1(x) is non-vanishing,
and the integral over d3x′ takes contri-
butions only when x′ is inside the vol-
ume V2 where j2(x′) is non-vanishing.
Therefore, having taken V1 and V2 non-
overlapping, |x − x′| is always above a
minimum value and there is no prob-
lem of convergence in the integral in
eq. (5.57).

When the back-action of j1 on j2 is negligible, from the point of view
of the first current distribution it can be useful to see the second current
distribution as generating a given “external field.” We can then rewrite
eq. (5.57) as

(EB)ext =

∫
d3x j1(x)·Aext(x) , (5.58)

where A2(x) ≡ Aext(x) is the vector potential generated by j2(x), ac-
cording to eq. (4.92). Equations (5.52) and (5.58) can be compared to
eqs. (5.15) and (5.39) for the electrostatic case.

While in electrostatic the most elementary source is provided by a
point charge, in magnetostatics the simplest source is a closed loop car-
rying a current. We therefore discuss how the previous general expres-
sions simplify for a collection of loops. We consider a set of closed loops
Ca, (a = 1, . . . , N), carrying currents Ia. From eq. (4.103),

j(x)d3x =

N∑

a=1

ja(x)d3x

→
N∑

a=1

Iad`a . (5.59)

Then, using Stokes’s theorem (1.38), we can transform eq. (5.52) as

EB =
1

2

N∑

a=1

Ia

∮

Ca
d`a·A

=
1

2

N∑

a=1

Ia

∫

Sa

ds·(∇×A)

=
1

2

N∑

a=1

Ia

∫

Sa

ds·B , (5.60)

where Sa is any surface having Ca as the boundary and B is the total
magnetic field generated by all the loops. The integral on the right-hand
side is just the magnetic flux of B through Sa, that we denote as ΦB,a,
so

EB =
1

2

N∑

a=1

IaΦB,a , (5.61)
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which can be compared with eq. (5.43) for a system of conductors. For
a closed loop C carrying a current I, placed in an external magnetic field
Bext, proceeding as in eq. (5.60) we see that eq. (5.58) can be rewritten
as

(EB)ext = IΦBext
, (5.62)

where we denoted the magnetic flux of Bext through C by ΦBext
.

We now observe that the knowledge of the position and shape of the
loops, and of their currents, uniquely determines the magnetic field ev-
erywhere, and therefore the fluxes through the loops. As we have already
mentioned in Problem 4.8, the linearity of Maxwell’s equation implies
that these relations are linear, so that

ΦB,a =

N∑

b=1

LabIb . (5.63)

The coefficients Lab are called the mutual inductances, while the diag-
onal terms Laa ≡ La are called the self-inductances and depend on the
shapes and positions xa of all loops. Equation (5.63) is the analog of
eq. (4.164) in electrostatics. The derived SI units for the inductance is
the henry (H).

The mutual inductance between two loops Ca and Cb (with a 6= b) can
be written explicitly, in terms of the geometry of the loops, computing
the contribution to the flux through loop a produced by the current
Ib. Denoting this as (ΦB)a,b, and using the same manipulations as in
eq. (5.60) in reverse order,

(ΦB)a,b =

∫

Sa

ds ·Bb

=

∫

Sa

ds ·(∇×Ab)

=

∮

Ca
d`a·Ab[x(`a)] , (5.64)

where Bb and Ab are the magnetic field and, respectively, the vector
potential, generated by the loop b, and we wrote explicitly that the
argument of Ab is the value of x that corresponds to the coordinate `a
on the loop, x(`a). Using eq. (4.104), we get

(ΦB)a,b =
µ0

4π
Ib

∮

Ca

∮

Cb

d`a · d`b
|x(`a)− x(`b)|

. (5.65)

This shows that a relation of the form (5.63) indeed holds, and provides
an explicit expression for the coefficients Lab,

Lab =
µ0

4π

∮

Ca

∮

Cb

d`a · d`b
|x(`a)− x(`b)|

. (5.66)

From this explicit expression we see that Lab = Lba. Using eq. (5.63),
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eq. (5.61) can be rewritten as

EB =
1

2

N∑

a=1

LabIaIb . (5.67)

This is analogous to eq. (5.44) for conductors. Therefore the a-th loop
has a self-energy

(EB)a =
1

2
LaI

2
a , (5.68)

while, using Lab = Lba, the interaction energy between loop a and loop
b is

(EB)ab = LabIaIb , (5.69)

or, using the explicit expression (5.66)

(EB)ab =
µ0

4π
IaIb

∮

Ca

∮

Cb

d`a · d`b
|x(`a)− x(`b)|

. (5.70)

From eq. (5.68), we see that the self-inductance of a loop must be a
positive quantity and provides a measure of how much energy should be
given to a circuit to raise its current to a given value. The larger La,
the larger is the energy that must be supplied to reach a given value of
I, just as, in the expression Ekin = (1/2)mv2 of the kinetic energy of
a non-relativistic particle, the larger the mass, the larger is the energy
that must be supplied to reach a given velocity. More generally, the
condition that the quadratic form (5.67) must be positive imposes the
constraints La > 0 and

LaLb > L2
ab . (5.71)

5.5 Forces and mechanical potentials
This section is quite long and technical,
and should be skipped at first reading.

In non-relativistic mechanics, conservative forces acting on a system can
be obtained from mechanical potential functions, that we generically de-
note by U , defined by the fact that the force can be written as F = −∇U .
Similar relations hold for the forces acting on charge and current dis-
tributions in the full Maxwell theory.16 However, one must be aware of16It should be stressed that force, with

its instantaneous character, is an intrin-
sically non-relativistic notion that has
no place in a full relativistic theory, and
the same holds for the “instantaneous”
mechanical potential U (in the various
forms that it can take, that will be de-
scribed in the following). Therefore,
the whole discussion in this section is
only valid for non-relativistic sources.
In Section 12.2.2, we will see how the ef-
fective dynamics of a system of charges
can be written in terms of instanta-
neous interactions, order by order in
v/c.

some subtleties: a correct treatment is analogous to that of thermody-
namical potentials, where one must specify which, among the variables
that determine the state of the system, are kept constant, and which are
varied, and different mechanical potentials, related by Legendre trans-
forms, are appropriate to different situations.

Let us begin with the most obvious example, which is the Coulomb
potential. We consider a system of N point charges, q1, . . . , qN , located
at positions x1, . . . ,xN , respectively. The force Fa acting on the a-th
charge is obtained summing the contribution from all other charges,
which are given individually by Coulomb’s law (4.8), and is therefore

Fa =
1

4πε0

N∑

b6=a
qaqb

xa − xb
|xa − xb|3

. (5.72)
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Using eq. (4.19), we see that this force can be written as

Fa = −∂UCoul

∂xa
, (5.73)

where17 17When computing ∂/∂xa, one must
be careful to use a different dummy in-
dex in the double summation, writing
e.g.,

∂UCoul

∂xa
=

1

8πε0

∂

∂xa

N∑
c=1

N∑
b 6=c

qcqb

|xc − xb|
.

Then, there are two equal contributions
from c = a and from b = a, that trans-
form the factor 1/(8πε0) in the poten-
tial into 1/(4πε0) in the force.

UCoul(x1, . . . ,xN ) =
1

8πε0

N∑

a=1

N∑

b 6=a

qaqb
|xa − xb|

. (5.74)

This expression defines the Coulomb potential. Comparing with eq. (5.7),
we see that the Coulomb potential is the same as the energy of a system
of static charges (which is the same as their interaction energy, given
that the kinetic energy vanishes for static charges). Thus, eqs. (5.73),
(5.74), and (5.7) reveal that the mechanical potential from which we
can derive the force on a static charge due to all other static charges
is equal to the energy of the whole configuration of static charges. To
mitigate the feeling that we are elaborating on the obvious, let us an-
ticipate that we will find in Section 5.5.1 that this result only holds
because we have implicitly assumed that the charges on the individual
bodies are conserved. For a set of point particles this is a somewhat ob-
vious assumption; however, in other contexts other options are possible;
in particular, for a set of conductors, one could rather fix the value of
the electrostatic potentials on their surfaces, and in that case we will
find that the equality between the relevant mechanical potential and the
energy of a static configuration does not hold. We will meet similar
situations in magnetostatics.

First, however, we examine the generalization to a continuous charge
distribution. The forces between two charge distributions ρ1(x) and
ρ2(x), localized in two non-overlapping volumes V1 and V2, have already
been computed in eqs. (4.26) and (4.27), while the continuous general-
ization of the Coulomb interaction potential (5.74) is given by18 18The overall factor 1/(4πε0) in

eq. (5.75) differs by a factor of 2
from the factor 1/(8πε0) in eq. (5.74);
this comes from the (by now, usual)
fact that, setting e.g., N = 2, in
eq. (5.74) we have

∑2
a=1

∑2
b=1 with

the condition b 6= a, so there are two
equal contributions to the sum, from
(a = 1, b = 2) and from (a = 2, b = 1).
The result is then the same as that
obtained from eq. (5.75) when we
set ρ1(x) = q1δ(3)(x − x1) and
ρ2(x′) = q2δ(3)(x′ − x2).

U int
E ≡ 1

4πε0

∫
d3xd3x′

ρ1(x)ρ2(x′)
|x− x′| . (5.75)

We now want to understand how to get the forces in eqs. (4.26) and
(4.27) by taking gradients of this potential. At first, one might even
wonder where the variables are with respect to which we could take
derivatives of U int

E , since in eq. (5.75) x and x′ are integrated over and
therefore do not appear as free variables on the left-hand side. Actually,
the required variables are hidden in ρ1(x) and ρ2(x′), through the fact
that these charge distributions are localized in the volumes V1 and V2,
respectively. We take V1 and V2 to be volumes with a fixed shape and
orientation, so their position in space can be given by specifying the
coordinates x1 and x2 of just one of their points, such as, for instance,
their geometrical centers. For instance, if V1 and V2 are spheres of given
radii R1 and R2, we can take x1 and x2 as the respective centers of these
spheres. A change in x1 corresponds to a rigid displacement of the first
charge distribution, and similarly a change in x2 corresponds to a rigid
displacement of the second charge distribution. Let us denote by ρ

(0)
1 (x)
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the first charge density distribution in the reference frame where x1 = 0.
Then, in a translated reference frame where the coordinate specifying
the position of V1 has the generic value x1, we have

ρ1(x) = ρ
(0)
1 (x− x1) . (5.76)

Similarly, denoting by ρ
(0)
2 (x) the second charge density distribution in

the reference frame where x2 = 0, in a generic frame we have

ρ2(x) = ρ
(0)
2 (x− x2) . (5.77)

For instance, for a point charge q1 located at the origin, ρ
(0)
1 (x) =

q1δ
(3)(x), and then ρ1(x) = q1δ

(3)(x − x1) is the charge density in the
frame where the charge is located in the position x1. So, x1 and x2

are the “hidden” variables on which the potential depends. The use
of the densities ρ

(0)
1,2(x) has the advantage of explicitly bringing out the

dependence on x1 and x2, which is otherwise implicit in ρ1,2(x), and
eqs. (4.26), (4.27), and (5.75) can be written, more explicitly, as

F1(x1,x2) =
1

4πε0

∫
d3xd3x′ ρ(0)

1 (x−x1)ρ
(0)
2 (x′−x2)

x− x′

|x− x′|3 , (5.78)

F2(x1,x2) =
1

4πε0

∫
d3xd3x′ ρ(0)

1 (x−x1)ρ
(0)
2 (x′−x2)

x′ − x

|x− x′|3 , (5.79)

and

U int
E (x1,x2) =

1

4πε0

∫
d3xd3x′

ρ
(0)
1 (x− x1)ρ

(0)
2 (x′ − x2)

|x− x′| . (5.80)

We can now check that

F1(x1,x2) = −∂U
int
E

∂x1
, (5.81)

and, similarly, F2(x1,x2) = −∂U int
E /∂x2, where it is understood that

the partial derivative with respect to x1 is taken at x2 constant, and
vice versa.19 Also note, for future reference, that the derivatives have

19The explicit computation is as fol-
lows:

−(4πε0)
∂U int

E

∂x1

= −
∫
d3xd3x′

∂ρ
(0)
1 (x− x1)

∂x1

×
1

|x− x′|
ρ
(0)
2 (x′ − x2)

=

∫
d3xd3x′

∂ρ
(0)
1 (x− x1)

∂x

×
1

|x− x′|
ρ
(0)
2 (x′ − x2)

= −
∫
d3xd3x′ ρ(0)1 (x− x1)

×
(
∂

∂x

1

|x− x′|

)
ρ
(0)
2 (x′ − x2)

=

∫
d3xd3x′ ρ(0)1 (x− x1)

×
x− x′

|x− x′|3
ρ
(0)
2 (x′ − x2),

where we used ∂ρ
(0)
1 (x − x1)/∂x1 =

−∂ρ(0)1 (x − x1)∂x, we then integrated
∂/∂x by parts (discarding the bound-
ary term since ρ1 is localized), and we
finally used eq. (4.19).

been taken keeping fixed the total charges in the volumes V1 and V2.
Comparing eq. (5.75) with eq. (5.13) we see that, also in the continu-

ous case, the mechanical potential from which the forces acting on the
charges can be derived is the same as the energy that these charges have
in a static configuration, i.e., their interaction energy. If, instead of just
two charge distributions ρ1 and ρ2, we have N of them, labeled as ρa(x)
and localized in volumes Va, identified by coordinates xa, eq. (5.75) is
generalized by summing over all possible pairs,

U int
E (x1, . . . ,xN ) =

1

8πε0

N∑

a=1

N∑

b 6=a

∫
d3xd3x′

ρa(x)ρb(x
′)

|x− x′| , (5.82)

where, as usual, we have counted each pair in the sum twice, and com-
pensated for this by an extra factor 1/2; again, the dependence on xa is

hidden in ρa(x), and can be shown explicitly using instead ρ
(0)
a (x−xa).
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It is useful to define

UE [ρ] ≡ 1

8πε0

∫
d3xd3x′

ρ(x)ρ(x′)
|x− x′| . (5.83)

Similarly to eqs. (5.12) and (5.13), we now write ρ(x) = ρ1(x) + ρ2(x),
with ρ1(x) and ρ2(x) localized to volumes V1 and V2, respectively, identi-
fied by the positions x1 and x2 and, correspondingly, we use the notation
UE(x1,x2) for UE [ρ]. Then, we get

UE(x1,x2) = U
(1)
E + U

(2)
E + U int

E (x1,x2) , (5.84)

where

U
(a)
E =

1

8πε0

∫
d3xd3x′

ρa(x)ρa(x′)
|x− x′| , (5.85)

while U int
E (x1,x2) is given by eq. (5.75). In terms of the densities ρ(0),

U int
E (x1,x2) =

1

4πε0

∫
d3xd3x′

ρ(0)(x− x1)ρ(0)(x′ − x2)

|x− x′| , (5.86)

while

U
(a)
E =

1

8πε0

∫
d3xd3x′

ρ(0)(x− xa)ρ(0)(x′ − xa)

|x− x′| . (5.87)

We now observe that, shifting simultaneously the integration variables
x → x + xa and x′ → x′ + xa we can eliminate the dependence on
xa in eq. (5.87), since this eliminates the dependence on xa from both
ρ(0)(x−xa) and ρ(0)(x′−xa), while |x−x′| is invariant under this shift.

So, in the end, for each a, U
(a)
E is independent of xa. This is physically

clear, since it means that the self-energy of the a-th charge distribution
is independent of where the volume Va is located, i.e., is invariant under
translations. Therefore, we can use UE(x1,x2) as a mechanical potential
function in place of U int

E (x1,x2), i.e.,

F1(x1,x2) = −∂UE
∂x1

, (5.88)

and, similarly, F2(x1,x2) = −∂UE/∂x2. The form (5.83) of the mechan-
ical potential is convenient because it is also valid for N charged objects
with densities ρa(x) (a = 1, . . . , N), localized in non-overlapping vol-
umes Va identified by the position xa, simply setting ρ(x) =

∑
a ρa(x).

Then, eq. (5.83) becomes

UE(x1, . . . ,xN ) =
1

8πε0

N∑

a,b=1

∫
d3xd3x′

ρa(x)ρb(x
′)

|x− x′| . (5.89)

The terms of the sum with a = b are self-energy terms that, as we have
seen, are independents of all coordinates xa and do not contribute when
taking the gradients, while the terms with a 6= b give back eq. (5.82).
We can also use eq. (5.89) for point charges, with the understanding
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that the self-energy terms are regularized as in eq. (5.31), and then are
again irrelevant constants.

Comparison of eqs. (5.83) and (5.16) shows that the mechanical poten-
tial UE needed to compute the forces is the same as the total interaction
energy EE of the system a static charge distributions,

UE = EE . (5.90)

Given the equality between eqs. (5.15) and (5.16), we can also rewrite
UE in the form

UE =
1

2

∫
d3x ρ(x)φ(x) , (5.91)

where φ(x) is the total electrostatic potential generated by ρ(x).

5.5.1 Mechanical potentials for conductors

In the previous section, we have considered a system of N charged bod-
ies, with charge densities ρa(x) localized in non-overlapping volumes Va,
so that the total charge density is ρ(x) =

∑
a ρa(x). We have identified

the position of the volume Va by a coordinate xa that describes rigid dis-
placements of the volume (corresponding, e.g., to the geometrical center
of the body). The total charge of each extended body is

Qa =

∫
d3x ρa(x) . (5.92)

Since ρa(x) vanishes outside the volume Va, it is actually not necessary
to restrict explicitly the integral in d3x to the volume Va. We have then
found that the force acting on the a-th charge can be written as

Fa = − ∂

∂xa
UE(Q1, . . . QN ; x1, . . . ,xN ) , (5.93)

where UE can be written in the equivalent forms

UE(Q1, . . . QN ; x1, . . . ,xN ) =
1

8πε0

∫
d3xd3x′

ρ(x)ρ(x′)
|x− x′|

=
1

8πε0

N∑

a,b=1

∫
d3xd3x′

ρa(x)ρb(x
′)

|x− x′|

=
1

8πε0

N∑

a,b=1

∫
d3xd3x′

ρ
(0)
a (x− xa)ρ

(0)
b (x′ − xb)

|x− x′| . (5.94)

Compared to the previous section, we have slightly changed the notation,
also writing explicitly the dependence of UE on the charges Qa.20 This

20For extended bodies, in principle, one
should also include the variables that
define their shapes and orientation in
space. Such variables could be added
trivially to the steps that we will per-
form in the following. To keep the nota-
tion simpler, we neglect these variables,
assuming for instance that the bodies
are spherical, of fixed radii. Each vol-
ume Va can then be identified uniquely
by the position xa of its center. The
treatment discussed here can then be
generalized to the inclusion of thermo-
dynamic variables such as the tempera-
ture, see Chapter 4 of Landau and Lif-
schits (1984).

different notation reflects a broader of point of view, inspired by the
treatment of thermodynamic potentials in statistical physics. First of
all, we have already observed in Section 5.1 that the work needed to
build a configuration of charges is independent of the order in which we
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bring the charges from infinity, and on the path that we follow to bring
them to their final positions. In the language of thermodynamics, this
means that UE in eq. (5.94) is a function of state, i.e., depends only on
the variables Q = {Q1, . . . QN} and x = {x1, . . . ,xN} that identify the
final state, and not on how we reached it. A second point to stress is
that the definition of functions of state depends on which quantities are
kept constant during the process of building the given configuration. In
the case where we built a configuration of point charges bringing them
from infinity, it was implicit that the charges of the individual particles
were kept constant. For a set of elementary charges this was an obvious
assumptions, since the electric charge associated with each elementary
particle is a conserved quantity. However, now it is useful to keep this in
mind and, in eq. (5.94), we stressed this by writing explicitly Q1, . . . QN
among the arguments of UE .

We now restrict to the case of extended conductors. In this case,
starting from eq. (5.91) and performing the same steps as in eqs. (5.41)–
(5.43), we can write

UE =
1

2

N∑

a=1

Qaφa . (5.95)

A more accurate notation is

UE(Q1, . . . QN ; x1, . . . ,xN ) =
1

2

N∑

a=1

Qaφa(Q1, . . . QN ; x1, . . . ,xN ) ,

(5.96)
which stresses that, for given values of the charges Qa, the value of the
electrostatic potential at the surface of the a-th conductor, φa, depends
on the positions x1, . . . ,xN of all conductors (as identified by their cen-
ters, see Note 20 on page 118), as well as on their charges.

We now want to compute the partial derivative of UE with respect to
Qa, for a given a, while keeping fixed all other charges, and all the vari-
ables x1, . . . ,xN . Starting from eq. (5.96) would require us to compute
the derivative of φa with respect to Qa. Actually, it is simpler to use
UE in the form given in the second line of eq. (5.94), and compute how
UE changes under

ρa → ρa + δρa . (5.97)

We denote this variation by δa, so that δa[ρb(x)] = δabδρa(x), where δab
is the Kronecker symbol. Then (taking care of changing the name of the
dummy summation indices),

δaUE =
1

8πε0

N∑

b,c=1

∫
d3xd3x′

δa[ρc(x)ρb(x
′)]

|x− x′|

=
1

8πε0

N∑

b,c=1

∫
d3xd3x′

[δaρc(x)]ρb(x
′) + ρc(x)[δaρb(x

′)]
|x− x′|

=
1

4πε0

N∑

b=1

∫
d3x δρa(x)

∫
d3x′

ρb(x
′)

|x− x′| , (5.98)
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where the second variation in the second line gives the same contribution
as the first, after renaming x↔ x′ and b↔ c. We now observe that

1

4πε0

N∑

b=1

∫
d3x′

ρb(x
′)

|x− x′| = φ(x) (5.99)

is the total electrostatic potential generated by the charge densities.
Therefore

δaUE =

∫
d3x δρa(x)φ(x) . (5.100)

These manipulations were valid for generic charge distributions. We
now specialize to conductors using again the fact that, for conductors
at equilibrium, the charge density is zero inside the conductor, and non-
vanishing only on its surface, and that the electrostatic potential on the
surface is constant. Denoting again by φa this constant value of φ(x)
on the surface of the a-th conductor, and using the fact that δρa(x) is
proportional to a two-dimensional Dirac delta on the surface of the a-th
conductor, eq. (5.100) becomes

δaUE = φa

∫
d3x δρa(x)

= φaδQa , (5.101)

where δQa is the variation of the charge Qa of the a-th conductor, in-
duced by the variation (5.97) of its charge density. This shows that, for
a set of conductors,

∂

∂Qa
UE(Q1, . . . QN ; x1, . . . ,xN ) = φa , (5.102)

where φa is the total electrostatic potential on the surface of the a-th
conductor. Therefore, for conductors we can write

dUE =

N∑

a=1

(
∂UE
∂Qa

)

Q′,x

dQa +

N∑

a=1

(
∂UE
∂xa

)

Q,x′
· dxa

=

N∑

a=1

(φadQa − Fa· dxa) , (5.103)

where the subscripts in the partial derivatives indicate the variables
that are kept constant when taking the partial derivative: the subscript
{Q′,x} in ∂UE/∂Qa means that we keep fixed all the charges except Qa,
and all the x, while the subscript {Q,x′} in ∂UE/∂xa means that we
keep fixed all the charges, and all the x except xa. In this more precise
notation, we can rewrite eqs. (5.93) and (5.102) as

φa =

(
∂UE
∂Qa

)

Q′,x

, (5.104)

Fa = −
(
∂UE
∂xa

)

Q,x′
. (5.105)
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Therefore, we can see UE as a “mechanical potential function at fixed
charge,” in the sense that, from it, we can obtain the mechanical forces
by taking (minus) the gradient with respect to xa, at fixed charges.

For a set of point-like particles, working at fixed charges is the only
natural option, so, in Section 5.1 we computed the work needed to as-
semble a given configuration of point charges, bringing them one by one
to the desired final location, while keeping their charges constant. For
conductors, however, there are two natural options. The first is to keep
a conductor at fixed charge as we move it from infinity to the desired
location. This is automatically obtained if the conductor is isolated, so
that the charge on it is conserved. Note that, if a conductor is isolated,
a second conductor that is moved toward it induces a change in the
electrostatic potential of its surface, so Qa is constant while φa is not.

Another possibility is to keep the electrostatic potential at its surface,
φa, at a fixed value. For this, the conductor cannot be isolated. For
instance, it might “grounded,” i.e., connected by a thin conducting wire
to the Earth, so that the potential at its surface is at the same value
as the potential of the Earth, taken to be the reference value φ = 0;
or, more generally, it could be connected to some external source such
as a battery, that keeps its surface to the desired value of φa. The
external source, such as a battery or the Earth, exchanges charges with
the conductor connected to it, in order to re-equilibrate the effect of the
external disturbances and keep the electrostatic potential on its surface
constant. In this case, the work done to reach the final configuration
must be computed at constant φa, rather than at constant Qa.

We therefore want to define another potential function ÛE , which
is the appropriate one when we keep fixed the electrostatic potential,
rather than the electric charge. The relevant tool here is the Legendre
transform, which is the standard technique used in similar contexts in
classical mechanics and in thermodynamics. Suppose that we have a
function of two variables U(Q, x), so that

dU =

(
∂U

∂Q

)

x

dQ+

(
∂U

∂x

)

Q

dx , (5.106)

and we define

φ(Q, x) =

(
∂U

∂Q

)

x

. (5.107)

We assume that this relation can be inverted, so as to give Q = Q(φ, x).
Then, one defines the Legendre transform Û(φ, x) as

Û(φ, x) ≡ U(Q, x)−Qφ , (5.108)

where, on the right-hand side, Q = Q(φ, x). This definition is chosen so
that

dÛ = dU −Qdφ− φdQ

=

(
∂U

∂Q

)

x

dQ+

(
∂U

∂x

)

Q

dx−Qdφ− φdQ . (5.109)
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Using eq. (5.107), the terms proportional to dQ cancel, and we get

dÛ = −Qdφ+

(
∂U

∂x

)

Q

dx . (5.110)

We see that Û is a function of φ and x, such that
(
∂Û

∂φ

)

x

= −Q , (5.111)

(
∂Û

∂x

)

φ

=

(
∂U

∂x

)

Q

. (5.112)

In this context, φ and Q are called “conjugate variables.” We now apply
this procedure to a system of conductors. If all of them are kept at
constant potential, we perform the Legendre transform with respect to
all variables Qa, defining

ÛE(φ1, . . . φN ; x1, . . . ,xN ) = UE(Q1, . . . QN ; x1, . . . ,xN )−
N∑

a=1

Qaφa ,

(5.113)
where, on the right-hand side, the charges Qa are expressed as functions
of the electrostatic potential φa.21 For conductors, this relation is linear21If some conductors are kept at fixed

electrostatic potential and some are iso-
lated, so are at fixed charge, we per-
form the Legendre transform only for
those that are at fixed electrostatic po-
tential, obtaining a function ÛE of the
variables φ1, . . . , φn, Q1, . . . , Qm, and
x1, . . . ,xN , where i = 1, . . . , n labels
the conductors at fixed electrostatic po-
tential and j = 1, . . . ,m those at fixed
charge (with n + m = N). For nota-
tional simplicity, we just consider the
case where all conductors are at fixed
electrostatic potential.

and invertible and is expressed by eq. (4.163). Note that the coefficients
of capacitance Cab depend on the positions x1, . . . ,xN of all conductors.

Similarly to eq. (5.110), using eq. (5.103) we get

dÛE = dUE −
N∑

a=1

φadQa −
N∑

a=1

Qadφa

=

N∑

a=1

(−Qadφa − Fa· dxa) , (5.114)

and therefore

Qa = −
(
∂ÛE
∂φa

)

φ′,x

, (5.115)

and

Fa = −
(
∂ÛE
∂xa

)

φ,x′

. (5.116)

The knowledge of ÛE therefore allows us to obtain the total charge on
the surface of the a-th conductor, using eq. (5.115), and the force exerted
on it, using eq. (5.116).

We now recall that the potential UE can be written in the simple form
(5.95), where φa = φa(Q1, . . . QN ; x1, . . . ,xN ) are given, in terms of the
charges Q1, . . . QN and of the positions x1, . . . ,xN , by the inversion of
eq. (4.163),

φa =

N∑

b=1

PabQb , (5.117)
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as in eq. (4.164). Note, again, that the dependence on x1, . . . ,xN enters
through the coefficients Cab, or through the coefficients Pab of the inverse
matrix. Then, from eq. (5.113), performing the Legendre transform on
UE has the effect of just flipping the sign,

ÛE(φ1, . . . φN ; x1, . . . ,xN ) = −1

2

N∑

a=1

Qaφa , (5.118)

where now the φa are taken as the independent variables, and the Qa
are expressed in terms of them, and of the xa, using eq. (4.163). In other
words,

ÛE(φ1, . . . φN ; x1, . . . ,xN ) = −UE(Q1, . . . QN ; x1, . . . ,xN ) , (5.119)

where, on the right-hand side, the charges Q1, . . . QN must be expressed
as functions of φ1, . . . φN and x1, . . . ,xN ; or, equivalently,

UE(Q1, . . . QN ; x1, . . . ,xN ) = −ÛE(φ1, . . . φN ; x1, . . . ,xN ) , (5.120)

where, on the right-hand side, the electrostatic potentials φ1, . . . φN must
be expressed as functions of Q1, . . . QN and x1, . . . ,xN . Combining this
with eq. (5.90), we see that

ÛE = −EE . (5.121)

In conclusion, if the charges on the conductors are conserved, the appro-
priate potential function to use is UE . Using eq. (5.96), together with
eq. (5.117), we can write

UE(Q1, . . . QN ; x1, . . . ,xN ) =
1

2

N∑

a,b=1

Pab(x1, . . . ,xN )QaQb . (5.122)

The force acting on the a-th conductor can then be computed using
eq. (5.105), which gives

Fa = −1

2

N∑

b,c=1

(
∂Pbc
∂xa

)

x′
QbQc . (5.123)

If, instead, we fix the values of the electrostatic potentials φa on the con-
ductors, the appropriate potential function is ÛE , given in eq. (5.118).
Using eq. (4.163), we can write it as

ÛE(φ1, . . . φN ; x1, . . . ,xN ) = −1

2

N∑

a,b=1

Cab(x1, . . . ,xN )φaφb . (5.124)

Equation (5.116) then gives the force on the a-th conductor in terms
of the electrostatic potentials φ1, . . . φN assigned on the surfaces of the
conductors,

Fa =
1

2

N∑

b,c=1

(
∂Cbc
∂xa

)

x′
φbφc . (5.125)
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Note, however, that the force acting on a conductor is an instantaneous
property of the system, independent of whether the system was assem-
bled keeping the charges fixed or the electrostatic potentials, so, in the
end, eqs. (5.123) and (5.125) must give the same numerical result, in
one case expressed in terms of the charges, and in the other in terms of
the electrostatic potentials generated by these charges in the given con-
figuration of conductors. This can be explicitly shown recalling, from
eqs. (4.163) and (4.164) that, denoting by C the matrix with matrix
elements Cab, and by P the matrix with matrix elements Pab, we have
P = C−1. We denote by Q the (column) vector with components Qa
and by φ the (column) vector with components φa. Then, in matrix
form, eq. (4.163) reads

Q = Cφ , (5.126)

while eq. (5.123) reads

Fa = −1

2
QT

(
∂C−1

∂xa

)
Q , (5.127)

where QT is the transpose vector, i.e., the vector written as a row rather
than as a column. From eq. (5.126), we also have QT = φTCT , where CT

is the transpose matrix. However, C is a symmetric matrix, Cab = Cba
so, C = CT (we will prove this in Problem 5.2) and therefore QT = φTC.
We also use ∂xC

−1 = −C−1(∂xC)C−1.22 Then,22This follows from the fact that C−1C
is equal to the identity matrix I, and
therefore

0 = ∂x(C−1C)

= (∂xC
−1)C + C−1(∂xC) .

Multiplying by C−1 from the right, we
get ∂xC−1 = −C−1(∂xC)C−1.

Fa = −1

2
QT

(
∂C−1

∂xa

)
Q

=
1

2
(φTC)

(
C−1 ∂C

∂xa
C−1

)
Cφ

=
1

2
φT
(
∂C

∂xa

)
φ , (5.128)

which is just eq. (5.125), written in matrix form.

5.5.2 Mechanical potentials in magnetostatics

The force between two static current distributions was computed in Sec-
tion 4.2.4, see eq. (4.118). We now want to find a mechanical potential
function from which this magnetic force can be obtained. The procedure
is analogous to that presented in Section 5.5.1 for the electrostatic case.
Similarly to the discussion there, we consider two current distributions
j1(x) and j2(x), localized in the non-overlapping volumes V1 and V2,
respectively (and, therefore, separately conserved). We use a coordinate
x1 to label rigid displacements of V1, and x2 for V2. For instance, for
two circular loops of currents, x1 and x2 could be the coordinates of
the centers of the two loops. We then denote by j

(0)
1 (x) the first current

density, in the reference frame where x1 = 0, and similarly by j
(0)
2 (x)

the second current density, in the reference frame where x2 = 0. Then,
in a frame where the centers of the two loops have generic coordinates
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x1 and x2, respectively, we have

j1(x) = j
(0)
1 (x− x1) , (5.129)

and
j2(x) = j

(0)
2 (x− x2) . (5.130)

In this notation, the forces (4.118) and (4.120) read

F1(x1,x2) = −µ0

4π

∫
d3xd3x′ j(0)

1 (x− x1)·j(0)
2 (x′ − x2)

x− x′

|x− x′|3 ,
(5.131)

and [after renaming x↔ x′ in eq. (4.120)]

F2(x1,x2) = −µ0

4π

∫
d3xd3x′ j(0)

1 (x− x1)·j(0)
2 (x′ − x2)

x′ − x

|x− x′|3 ,
(5.132)

i.e., F2(x1,x2) = −F1(x1,x2). Proceeding exactly as in Note 19 on
page 116, we see that the desired potential function is

Û int
B (x1,x2) = −µ0

4π

∫
d3xd3x′

j
(0)
1 (x− x1)·j(0)

2 (x′ − x2)

|x− x′| , (5.133)

since the magnetic forces (5.131) and (5.132) can be obtained from

F1(x1,x2) = −
(
∂Û int

B

∂x1

)

x2, j

, (5.134)

and F2(x1,x2) = −
(
∂Û int

B /∂x2

)
x1, j

. Rewriting eq. (5.133) in terms of

j1(x) and j2(x), we have

Û int
B (x1,x2) = −µ0

4π

∫
d3xd3x′

j1(x)·j2(x′)
|x− x′| , (5.135)

where the dependence on x1 and x2 is now implicit in j1(x) and j2(x′),
respectively, just as in the discussion in Section 5.5 for the electrostatic
case. The reason why for this function we used the notation Û int

B , rather
than just U int

B , will become clear soon.
Exactly as we did in eqs. (5.83)–(5.89) for the electrostatic case, it is

convenient to introduce a function

ÛB [j] = −µ0

8π

∫
d3xd3x′

j(x)·j(x′)
|x− x′| . (5.136)

If j(x) = j1(x) + j2(x), where j1(x) and j2(x) are localized in two non-
overlapping volumes V1 and V2 identified by coordinates x1 and x2,
respectively, eq. (5.136) becomes

ÛB(x1,x2) = Û
(1)
B + Û

(2)
B + Û int

B (x1,x2) , (5.137)

where

Û
(a)
B = −µ0

8π

∫
d3xd3x′

j(a)(x) · j(a)(x′)
|x− x′| , (5.138)
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(with a = 1, 2), while the interaction term Û int
B is given by eq. (5.135).

Just as in the discussion following eq. (5.87), the self-energy terms Û
(1)
B

and Û
(2)
B do not depend on x1 and x2, so we can use ÛB(x1,x2) as the

mechanical potential, in place of Û int
B (x1,x2). As in the electrostatic

case, the form (5.136) of the mechanical potential is also valid for N
charged objects with current densities ja(x) (a = 1, . . . , N), localized in
non-overlapping volumes Va identified by the position xa, simply setting
j(x) =

∑
a ja(x).

From eqs. (5.53) and (5.136), we get

ÛB = −EB . (5.139)

Comparing this to the electrostatic case, where eqs. (5.90) and (5.121)
hold, we see that ÛB is really the magnetostatic analog of ÛE , rather
than of UE , which is the reason why we used the notation ÛB when we
introduced it in eqs. (5.133) and (5.136).

The reason is that, while the charge on an isolated conductor moving
in an electric field is conserved, the current of an isolated loop moving
in a magnetic field is not. If we want to build a configuration of charges
at given positions, all the work that we do goes into the mechanical po-
tential energy, and no work is needed to keep the charges at the initial
value. Therefore, in this case, the energy of the system, defined as the
work needed to assemble it, is the same as the mechanical potential en-
ergy. As we saw in Section 5.5.1, this is not the case when we assemble a
configuration of conductors with given values of the electrostatic poten-
tials φa at their surfaces, since the latter are not conserved quantity, and
we must also provide some extra “electric” work, e.g., through batter-
ies that keep the electrostatic potentials constants. The magnetostatic
case at fixed currents that we are considering here is analogous to the
electrostatic case at fixed φa, rather than at fixed charges. To assemble
a configuration of loops at given positions and with given currents, it is
not sufficient to take a set of loops with the desired currents, at infinite
distance from each other, and compute the mechanical work necessary
to bring them to the desired final positions, as we did in Section 5.1 for
a set of charges. We must also provide, along the way, further electric
work to maintain the currents fixed, connecting the loops to batteries.
Otherwise, as we move a loop in the magnetic field created by the others,
an electric field is induced in the loop, as we saw in Section 4.3.2, and
the corresponding “motional” electromotive force changes the value of
the current in the loop. The net effect is that the final energy EB of the
system has the form EB = ÛB + We, where We is the required electric
work. Since we have found that ÛB = −EB , we conclude that the re-
quired electric work is We = 2EB . The same holds for the electrostatic
case at fixed φa.

We now consider a set of current loops, and we ask what the magnetic
analog of the potential UE is. For a set of loops, with currents Ia and
identified by the position xa (given, e.g., by the position of their centers,
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for circular loops), using eqs. (5.61) and (5.139), we have

ÛB(I1, . . . , IN ; x1, . . . ,xN ) = −1

2

N∑

a=1

IaΦB,a . (5.140)

Here, the magnetic fluxes ΦB,a are expressed in terms of the currents
through eq. (5.63).23 Consider now the function of the fluxes defined by 23Similarly to the electrostatic case,

the dependence on the positions
x1, . . . ,xN enter through the fact that,
for given currents, the fluxes depend on
the currents and on the positions of the
loops; in particular, the dependence on
the positions is carried by the mutual
inductances Lab, so eq. (5.63), more
precisely, reads

ΦB,a(I1, . . . , IN ; x1, . . . ,xN )

=

N∑
b=1

Lab(x1, . . . ,xN )Ib . (5.141)

UB(ΦB,1, . . . ,ΦB,N ; x1, . . . ,xN ) =
1

2

N∑

a=1

IaΦB,a , (5.142)

where now the currents are expressed in terms of the fluxes by inverting
eq. (5.63). It is clear that ÛB is just the Legendre transform of UB , with
the currents Ia and the magnetic fluxes ΦB,a playing the role of conjugate
variables since, from the explicit expressions given in eqs. (5.140) and
(5.142), we have

ÛB(I1, . . . , IN ; x1, . . . ,xN ) = UB(ΦB,1, . . . ,ΦB,N ; x1, . . . ,xN )

−
N∑

a=1

IaΦB,a . (5.143)

Then, eq. (5.139) implies
UB = EB . (5.144)

We see that the situation is exactly the same as in the electrostatic case,
with the replacements UE ↔ UB , ÛE ↔ ÛB , φa ↔ Ia and Qa ↔ ΦB,a.
Then, proceeding exactly as we did in Section 5.5.1 for the electrostatic
case, we now find that

ΦB,a = −
(
∂ÛB
∂Ia

)

I′,x

, (5.145)

and

Fa = −
(
∂ÛB
∂xa

)

I,x′

, (5.146)

which are the analogues of eqs. (5.115) and (5.116). Therefore, the
mechanical potential ÛB can be used to obtain the force on the a-th
loop for a system of loops at fixed currents, taking minus its gradient,
while (minus) its derivative with respect to the current Ia, with all other
currents fixed, gives the magnetic flux though the a-th loop. Using
eq. (5.63), we can express ÛB directly in terms of the currents, as

ÛB(I1, . . . IN ; x1, . . . ,xN ) = −1

2

N∑

a,b=1

Lab(x1, . . . ,xN )IaIb , (5.147)

and therefore the force on the a-th loop, in a set of loops at fixed currents,
is

Fa =
1

2

N∑

b,c=1

(
∂Lbc
∂xa

)

x′
IbIc , (5.148)
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to be compared with eq. (5.125) for the case of conductors at fixed
electrostatic potentials. The potential UB satisfies instead

Ia =

(
∂UB
∂ΦB,a

)

Φ′B ,x

, (5.149)

Fa = −
(
∂UB
∂xa

)

ΦB ,x′
, (5.150)

which are the analogues of eqs. (5.149) and (5.150). Denoting by L the
matrix with elements Lab and by L−1 the inverse matrix with matrix
elements L−1

ab , we have

Ia =

N∑

b=1

L−1
ab ΦB,b , (5.151)

UB(ΦB,1, . . .ΦB,N ; x1, . . . ,xN ) =
1

2

N∑

a,b=1

L−1
ab (x1, . . . ,xN )ΦB,aΦB,b ,

(5.152)
and

Fa = −1

2

N∑

b,c=1

(
∂L−1

bc

∂xa

)

x′
ΦB,bΦB,c . (5.153)

Exactly as we did in eqs. (5.126)–(5.128), we can then prove that the
force computed using eq. (5.148) is the same as that computed using
eq. (5.153), in one case expressed in terms of the currents, and in the
other in terms of the magnetic fluxes generated by these currents in the
given configuration of loops.

5.6 Solved problems

Problem 5.1. Energy stored in a capacitor

In this chapter we have shown, in full generality, that the energy stored in
the electric field of a system with given static charges is the same as the work
that has been done (at fixed charge) to assemble the corresponding charge
configuration.

It is instructive to check this explicitly for a single capacitor made of two
plates, computing on the one hand the work made to charge it, and on the
other hand the electromagnetic energy stored in it. We consider an initial
configuration in which the two plates are both uncharged, and we transfer
elementary charges from one plate to the other so that, at the end, the two
plates have charges Q and −Q, respectively (we take Q > 0).24 Let q and −q

24This is analogous to the assembling
of a static charge configuration by car-
rying elementary charged particles from
infinity to the desired final position,
studied in Section 5.1. We are there-
fore working a fixed charge in the sense
that no extra work is needed to ensure
that the charges of the elementary par-
ticles stay fixed.

be the value of the charges on the two plates at some stage of this charging
process. From eq. (4.157), for a capacitor of capacitance C, when the charge
on the positive plate is q, the potential difference between the plates has
a value V = q/C. We now imagine to transport an infinitesimal positive
charge dq from the negatively charged to the positively charged plate (more
realistically, we would rather move the negatively charged electrons in the
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opposite direction, but the mathematics is the same), so that the charges on
the two plates become −(q + dq) and q + dq, respectively. The work made
by an external agent to carry this charge across a potential difference V is
dWext = V dq, so, using V = q/C,

Wext =

∫ Q

0

dq V

=

∫ Q

0

dq
q

C

=
Q2

2C
. (5.154)

UsingQ = CV , this can be rewritten in the equivalent formsWext = (1/2)CV 2

or Wext = (1/2)QV . We can compare this result with that obtained from
the general expression (3.41) for the energy of the electromagnetic field. For
a parallel-plate capacitor, E is given by eq. (4.153) (while B = 0). Then
eq. (3.41) gives

Eem =
ε0
2

∫
V

d3xE2

=
ε0
2

(
σ

ε0

)2

Ad

=
Q2

2C
, (5.155)

where we used Q = σA and C = ε0A/d, from eq. (4.158). Comparing this
with eq. (5.154), we therefore see that the work done to assemble the static
charge configuration of a parallel-plate capacitor is equal to the energy stored
in its final electric field, in agreement with the general result. Note that we
could have obtained eq. (5.155) without even using the explicit expressions for
the electric field inside the parallel-plate capacitor and for its capacitance C,
but just using eq. (5.44) or eq. (5.45), that give, in full generality, the energy
stored in the electric field of a system of capacitors. For the single capacitor
that we are considering, the matrix Cab in eq. (5.44) becomes a single number
C and the inverse matrix Pab becomes the single number 1/C, so eq. (5.45)
reduces to eq. (5.155).

We can make the same check for a spherical capacitor. Inserting eq. (4.165)
into eq. (3.41),

Eem =
ε0
2

∫
V

d3xE2

=
ε0
2

4π

∫ a

b

r2dr
Q2

(4πε0)2
1

r4

=
1

2

Q2

4πε0

(
1

b
− 1

a

)
=

1

2
QV , (5.156)

where, in the last line, we used eq. (4.166). Using V = Q/C, we get again
Eem = Q2/(2C), in agreement with eq. (5.154) (which was obtained indepen-
dently of the plate’s geometry).
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Problem 5.2. Green’s reciprocity relation and properties of mutual
capacitances

Consider a charge distributions ρ1(x). The potential that it generates is

φ1(x) =
1

4πε0

∫
d3x′

ρ1(x′)

|x− x′| . (5.157)

Similarly, another charge distributions ρ2(x) generates a potential

φ2(x) =
1

4πε0

∫
d3x′

ρ2(x′)

|x− x′| . (5.158)

Then, ∫
d3xρ1(x)φ2(x) =

1

4πε0

∫
d3xd3x′

ρ1(x)ρ2(x′)

|x− x′| . (5.159)

On the other hand,∫
d3xρ2(x)φ1(x) =

1

4πε0

∫
d3xd3x′

ρ2(x)ρ1(x′)

|x− x′| , (5.160)

which, upon renaming x↔ x′, is the same as the right-hand side of eq. (5.159).
Therefore, we have the identity∫

d3x ρ1(x)φ2(x) =

∫
d3x ρ2(x)φ1(x) , (5.161)

which is valid for arbitrary charge densities ρ1(x) and ρ2(x), and the potentials
φ1(x) and φ2(x) that they generate. Equation (5.161) is known as Green’s
reciprocity relation. A discrete version of this identity is obtained considering,
as first charge distribution, a set of conductors with charges Q1, . . . , QN . We
denote by φ1, . . . , φN the corresponding values of the electrostatic potentials
on their surface. As the second charge distribution, we take the same set
of conductors, in the same positions, but with charges Q′1, . . . , Q

′
N , and we

denote by φ′1, . . . , φ
′
N the corresponding values of the electrostatic potential

on their surface. Then, ρ1(x) =
∑
a ρ1,a(x), where ρ1,a is non-vanishing only

on the surface of the a-conductor, where φ2(x) has the constant value φ′a, and
therefore, ∫

d3x ρ1(x)φ2(x) =
N∑
a=1

φ′a

∫
d3x ρ1,a(x)

=
N∑
a=1

Qaφ
′
a . (5.162)

Similarly, ∫
d3x ρ2(x)φ1(x) =

N∑
a=1

φa

∫
d3x ρ2,a(x)

=
N∑
a=1

Q′aφa . (5.163)

Therefore, for a set of conductors, Green’s reciprocity relation becomes

N∑
a=1

Qaφ
′
a =

N∑
a=1

Q′aφa . (5.164)
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From eq. (4.163), we have Qa =
∑N
b=1 Cabφb and Q′a =

∑N
b=1 Cabφ

′
b, with the

same coefficients Cab, since these depend only on the geometry of the system,
i.e., on the positions and shapes of the conductors, that we have taken to be
the same in the two cases. Then eq. (5.164) gives

N∑
a,b=1

Cabφbφ
′
a =

N∑
a,b=1

Cabφ
′
bφa , (5.165)

or, renaming a↔ b in the second sum,

N∑
a,b=1

Cabφ
′
aφb =

N∑
a,b=1

Cbaφ
′
aφb . (5.166)

Since this is valid for arbitrary choices of the charge configurations Q and Q′,
and therefore for arbitrary values of φ and φ′, we conclude that

Cab = Cba , (5.167)

i.e., the capacitance matrix is symmetric. We can repeat exactly the same
argument in magnetostatics. In this case we get∫

d3x j1(x)·A2(x) =

∫
d3x j2(x)·A1(x) . (5.168)

We can then apply it to a given configuration of loops. Let I1, . . . , IN be a set
of values of the of currents in the loops, and ΦB,1, . . . ,ΦB,N the corresponding
magnetic fluxes; and let I ′1, . . . , I

′
N be another set of values of the currents of

the same loops, and Φ′B,1, . . . ,Φ
′
B,N the corresponding magnetic fluxes. Then,

N∑
a=1

IaΦ′B,a =

N∑
a=1

I ′aΦB,a . (5.169)

From this, we can prove in the same way as before that Lab = Lba. In this
case, we already knew this from the explicit expression (5.66), while for Cab
there is not an equally simple general expression.

Problem 5.3. Energy stored in a wire loop

We now consider the work that should be done to create a current I in a
loop. This is a special case of the discussion in Section 5.3 and allows us to
illustrate that general analysis in a simpler setting. As in the discussion of
Section 5.3, we raise the current in the loop from zero to the final value I. Even
if the final value is constant in time, during the transient period necessary to
reach the final value, I is a function of time, I = I(t). As a consequence,
according to eq. (4.200), the magnetic flux ΦB through the loop also changes
in time,

dΦB
dt

= L
dI

dt
, (5.170)

where L is the self-inductance of the loop. As already discussed after eq. (4.200),
this creates a “back-emf”

Ebackemf = −dΦB
dt

, (5.171)

that opposes the increase in the current. An external agent must therefore
provide work against this back-emf. From the definition of emf as the line
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integral of E around the circuit, the work needed to push a charge dq through
a single trip around the loop is

dWext = −Ebackemf dq

= L
dI

dt
dq . (5.172)

On the other hand, if we have a current I in the loop, the charge that moves
around the circuit in a time dt is dq = Idt, where I is the current I that flows
in the wire. Therefore,

dWext

dt
= LI

dI

dt
. (5.173)

With the initial condition Wext = 0 when I = 0, this integrates to

Wext =
1

2
LI2 , (5.174)

or, using eq. (4.200),

Wext =
1

2
IΦB . (5.175)

This is the work done to create the desired final steady current I in the circuit.
As we see comparing with eq. (5.68), this is indeed the same as the energy
EB stored in the magnetic field generated by the current I, that we obtained
starting from the general definition

EB =
1

2µ0

∫
d3x |B|2 . (5.176)

It is important to appreciate that this energy, which is stored in the magnetic
field and is associated with the self-induction L, is fully recoverable, for in-
stance, turning the current back to zero. This should be contrasted with the
energy dissipated in the wire because of its resistance R, which is irretrievably
lost to Joule heating.
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When a source is localized in a volume V of typical linear size d, and we
are only interested in the field that it generates at distances r � d, we
expect, physically, that only the gross features of the source distribution
will be important, rather than all its fine details. The tool that allows
us to formalize this intuition is the multipole expansion. If the source is
static, the multipole expansion is an expansion in powers of d/r. When
the source is type-dependent a new parameter enters into play, which
is the typical frequency ω of the source, and this defines a new length-
scale λ− ≡ c/ω. In this case the expansion is more complex, and even
when r � d, still depends on the relative values of r and λ−. In this
chapter we study the multipole expansion for static sources, both in
electrostatics and in magnetostatics. This will allow us to introduce
the static multipoles of the source. The time-dependent situation, that
will lead to a multipole expansion of the electromagnetic radiation in
terms of radiative multipoles, is more complicated and will be studied
in Section 11.2, after we will have developed the formalism for dealing
with time-dependent fields and electromagnetic radiation.

6.1 Electric multipoles

In eq. (4.16) we found the solution for the scalar gauge potential φ(x)
in the presence of a charge distribution ρ(x), taken to be static and lo-
calized (or, at least, decreasing sufficiently rapidly at large distances, so
that the integral in eq. (4.16) converges), but otherwise arbitrary. This
solution is still given in terms of an integral, that cannot be computed
analytically for a generic ρ(x). We now assume that the source is local-
ized in a region of typical linear size d, and we study the solution for
φ(x), and the corresponding electric field, in the limit r � d.

We begin by observing that, in eq. (4.16), x′ is an integration variable
that in principle runs over all the three-dimensional space R3. However,
since we have assumed that ρ(x′) = 0 for |x′| > d, in practice the integral
in eq. (4.16) only runs over the values of x′ with |x′| < d. In the limit
r � d we can therefore expand |x − x′| for |x′| � |x|, i.e., in powers
of the small parameter d/r. Before studying the full expansion, let us
consider the first two non-trivial terms. These can be obtained defining
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n̂ as the unit vector in the direction of x, so that x = rn̂, and writing

|x− x′|2 = r2 − 2rn̂·x′ + |x′|2

= r2

[
1− 2n̂·x′

r
+O

(
d2

r2

)]
, (6.1)

so that

d

x = rn̂

x′

x− x′

{

x′ · n̂

Fig. 6.1 A graphical illustration of
the relation given in eq. (6.3).

|x− x′| = r

[
1− n̂·x′

r
+O

(
d2

r2

)]
(6.2)

= r − n̂·x′ +O
(
d2

r

)
. (6.3)

The first two terms of this expansion have a simple graphical interpre-
tation shown in Fig. 6.1. From eq. (6.2) we find that

1

|x− x′| =
1

r

[
1 +

n̂·x′
r

+O
(
d2

r2

)]
. (6.4)

Inserting this into eq. (4.16) we get

φ(x) =
1

4πε0

1

r

∫
d3x′ ρ(x′)

[
1 +

n̂·x′
r

+O
(
d2

r2

)]
. (6.5)

These are the first two terms of the so-called multipole expansion.1 The1Observe that r is the distance of the
point x from an origin of the reference
frame, that we have chosen as an arbi-
trary point inside the charge distribu-
tion. We will later discuss the depen-
dence of the multipole expansion from
the choice of origin.

first term, that in this context is also called the “monopole” term, is just
the Coulomb potential (4.6),

φmonopole(r) =
1

4πε0

q

r
, (6.6)

where

q =

∫
d3x ρ(x) , (6.7)

is the total electric charge of the system. We define the dipole moment
of the electric charge distribution, or, simply, the “electric dipole,” as

d =

∫
d3x ρ(x)x . (6.8)

Then, the second term in eq. (6.5) can be written as

φdipole(x) =
1

4πε0

d·n̂
r2

, (6.9)

or, equivalently,

φdipole(x) =
1

4πε0

d·x
r3

. (6.10)

Observe that, while φmonopole depends only on r, φdipole(x) depends
both on r and on n̂. The corresponding electric fields are obtained from
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E = −∇φ, since A = 0. Of course, φmonopole(r) generates the Coulomb
electric field ECoulomb = qr̂/(4πε0r

2). The electric field generated by
the dipole is

(Edipole)i = − 1

4πε0
dj∂i

(xj
r3

)

=
1

4πε0

1

r3
(3ninj − δij)dj , (6.11)

where we used eq. (6.10) and, to compute ∂i on a function of r, we used
∂if(r) = (∂ir)df/dr, and

∂ir = ∂i(xjxj)
1/2

=
xi
r

= ni . (6.12)

We can rewrite eq. (6.11) in vector form, as

+

−

Fig. 6.2 The field lines of an electric
dipole.

Edipole =
1

4πε0

3(d·n̂)n̂− d

r3
. (6.13)

Fig. 6.2 shows the field lines of the dipole electric field. We now work out
the next term in the expansion. To systematically carry out the multi-
pole expansion to higher orders it is convenient to write the expansion
of 1/|x− x′|, for |x′| small compared to |x|, in the form

1

|x− x′| =
1

r
− x′i∂i

1

r
+

1

2
x′ix
′
j∂i∂j

1

r
+ . . . . (6.14)

where, again, r = |x| and ∂i is the derivative with respect to xi. The
corresponding expansion of φ(x) in eq. (4.16) is

4πε0 φ(x) =
1

r

∫
d3x′ ρ(x′)−

(
∂i

1

r

)∫
d3x′ ρ(x′)x′i

+
1

2

(
∂i∂j

1

r

)∫
d3x′ ρ(x′)x′ix

′
j + . . . . (6.15)

The first two terms give again the monopole and dipole terms computed
previously. The third term can be further transformed observing that we
are interested in the field at distances r much larger than the size of the
region d where the source is localized, so, in particular, for r 6= 0. In this
case, from eq. (1.90), ∇2(1/r) = 0. Then, in the third term of eq. (6.15),
we can replace x′ix

′
j with the traceless combination x′ix

′
j − (1/3)δij |x′|2,

since

x′ix
′
j∂i∂j

1

r
=

(
x′ix
′
j −

1

3
δij |x′|2

)
∂i∂j

1

r
+

1

3
|x′|2δij∂i∂j

1

r
, (6.16)

and, in the last term on the right-hand side of eq. (6.16), we can use
δij∂i∂j(1/r) = ∇2(1/r) = 0. We then define

qij =

∫
d3x ρ(x)

(
xixj −

1

3
δij |x|2

)
, (6.17)



136 Multipole expansion for static fields

which is called the “reduced quadrupole moment” of the charge distri-
bution. The advantage of removing the trace part in qij is that, as we
mentioned in Section 1.7.2 (and we showed explicitly for a tensor Tij
with two indices), symmetric trace-less tensors (or “STF” tensors, for
“symmetric trace-free”) provide irreducible representations of the rota-
tion group. Working with the irreducible representations, we are directly
working with the fundamental “building blocks” of the representation
theory, so it is conceptually clearer, and this also typically brings tech-
nical simplifications in various computations.

While the normalization in (6.17) is the most natural from the point
of view of STF tensors, for historical reasons the name “quadrupole
moment” is usually reserved for the quantity Qij ≡ 3qij ,

22Actually, there are different conven-
tions in the literature. Our defini-
tion agrees with Jackson (1998) (and
with Landau and Lifschits (1975), that,
however, denotes it as Dij) while, for
instance, Griffiths (2017) defines the
quadrupole moment as

Qij =
1

2

∫
d3x ρ(x)

(
3xixj − δij |x|2

)
,

while Zangwill (2013) defines it as

Qij =
1

2

∫
d3x ρ(x)xixj .

Qij =

∫
d3x ρ(x)

(
3xixj − δij |x|2

)
. (6.18)

The corresponding term in the potential is given by

4πε0 φquadrupole(x) =
1

2
qij∂i∂j

1

r

= − 1

2r3
(δij − 3ninj)qij

=
3

2r3
ninjqij

=
1

2r3
ninjQij . (6.19)

Putting together the terms up to the quadrupole, we therefore have

φ(x) =
1

4πε0

[
q

r
+
nidi
r2

+
ninjQij

2r3
+ . . .

]
. (6.20)
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Fig. 6.3 An example of a distribu-
tion of charges leading to a dipole
moment (upper panel) and to a
quadrupole moment (lower panel).

In Fig. 6.3 we show an example of a distribution of charges on the surface
of a sphere, leading to an electric dipole moment (upper panel) or to
an electric quadrupole moment (lower panel). The two different colors
describe an excess of positive and negative charges, respectively. In all
cases, the net charge is zero. In the configuration in the upper panel
there is a positive net charge in the z > 0 hemisphere and a negative net
charge in the z < 0 hemisphere. The charge distribution ρ(x) has been
taken to be odd under z → −z. Then, the integrand ρ(x)xi in eq. (6.8)
is even only when the index i = z, while for i = x or i = y the integration
over d3x gives zero (we do not put the prime here over the integration
variable). This leads to a dipole moment along the z axis, while dx and
dy vanish. In the distribution shown in the lower panel, in contrast,
ρ(x) = ρ(−x). Then, the dipole vanishes since the integrand ρ(x)x is
odd under x → −x. However, this configuration has a non-vanishing
quadrupole moment and, in this example, only Qxz and Qzx are non-
zero. This can be understood observing that the charge distribution in
the lower panel of Fig. 6.3 is odd under the parity transformation {x→
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−x, y → y, z → z} and also under the parity transformation {x→ x, y →
y, z → −z}. Therefore, the integral of ρ(x′)|x′|2 in eq. (6.18) vanishes,
because its integrand is odd under any of these parity transformations.
The term ρ(x)xixj is even under both, and therefore has a non-vanishing
integral, only when i = x, j = z (or i = z, j = x), so, for the charge
distribution shown in the right panel of Fig. 6.3, only the Qxz = Qzx
component of the symmetric traceless tensor Qij is non-vanishing.

It should be observed that the expression for the multipole moments
depends on the choice of the origin of the reference frame. If we perform
a translation of the origin of the reference frame by a vector −s, a point P
that before the transformation had the coordinate x will have coordinate
x′ = x + s in the new frame, i.e., the coordinates transform as

x→ x′ = x + s . (6.21)

Under this transformation the charge density transforms as a “scalar
under translations,”3 3This expresses the fact that the nu-

merical value of the charge density at
a given point P is the same indepen-
dently of where we put the origin of a
reference frame. In a frame with a given
origin, the point P will be labeled by a
coordinate x, while in a frame with a
different origin it will be labeled by a
coordinate x′ and, numerically, x′ 6= x.
However, under this change of reference
frame, the functional form of the charge
density changes, from ρ(x) to a new
function ρ′(x), such that the numerical
value of ρ′ in x′ is the same as the nu-
merical value of ρ in x, so that, in the
end, the numerical value at the point
P remains the same, independently of
how P is labeled.

ρ(x)→ ρ′(x′) = ρ(x) . (6.22)

Since also d3x is invariant under translation, d3x′ = d3x, the total charge
q of the system is independent of the choice of the origin of the reference
frame, as of course we expect. However, the dipole moment transforms
as

d →
∫
d3x′ ρ′(x′)x′

=

∫
d3x ρ(x) (x + s)

= d + qs , (6.23)

where q is the total charge. Therefore, the electric dipole moment is
invariant under shifts of the origin only for a system with zero total
charge. Similarly, from eq. (6.18),

Qij → Qij + q
(
3sisj − δij |s|2

)
+ 3(disj + djsi)− 2δij(s·d) , (6.24)

and therefore it is invariant only if both q and d vanish. These transfor-
mations are, indeed, precisely those required so that the full expansion
(6.5), when carried out to all orders, is independent of the choice of the
origin. This is as it should be, since the original expression that we
are expanding, eq. (4.16), makes no reference to a choice of origin: as
we have seen d3x′ and ρ(x′) are invariant under translations, and also
x − x′ is invariant under translation. However, the latter property is
apparently lost in the expansion (6.4), at least as long as we truncate it
to a finite order.

To see how the independence from the choice of the origin is recovered,
thanks to the transformations of the multipole moments such as those
in eqs. (6.23) and (6.24) for the dipole and quadrupole, we proceed as
follows. Under the transformation (6.21), the coordinate of the point P
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in which we are computing the field changes from x to x + s. Therefore,
using eq. (6.4) and working to first order in s only, the term q/r in
eq. (6.20) transforms as

q

r
→ q

|x + s|
=

q

r
− qsi

ni
r2

+ . . . . (6.25)

This extra term −qsini/r2 is precisely canceled by the transformation
(6.23) of the dipole, in the term nidi/r

2 in eq. (6.20). To second order
in s, there will be a contribution from the q/r term in eq. (6.20), due
to the expansion of eq. (6.25) to second order in s, as well as a further
contribution from the term nidi/r

2, due to the expansion of 1/r2 to first
order in s. These are precisely the contributions that are canceled by
the transformation (6.24) of the quadrupole. This continues to all or-
ders, with cancellations among terms of different orders in the multipole
expansion. In this way, the full expansion at all orders is independent
of the choice of origin. Note, however, that any truncation of the ex-
pansion to finite order (e.g., restricting to the monopole and dipole) will
retain a dependence on the choice of origin. In practice, as long as we
compute the field at a distance r from the localized charge distribution,
much larger than the linear size d of the distribution itself, any choice
of origin inside the localization volume of the charge will give basically
equivalent results, with differences that disappear quickly as we go to
larger distances (or include higher multipoles in the truncation). From
the mathematical point of view, nothing forbids us from performing the
expansion (6.5) choosing an origin outside, or even very far from the
localization region of the charge; however, since in eq. (6.4) we are ex-
panding in powers of x′, taken to be small with respect to x, it is clearly
convenient to use a choice of origin such that, when ρ(x′) in eq. (6.5)
is non-zero, x′ is as small as possible, which is obtained by choosing
the origin somewhere inside the charge distribution (for instance, in the
“center-of-charge,” the equivalent of the center of mass for the charge
density). Otherwise, the consequence would be that a truncation of the
expansion to any finite order would be a worse approximation to the
exact result.

The expansion in STF tensors is easily generalized to arbitrary order.
Equation (6.14) becomes

1

|x− x′| =

∞∑

l=0

(−1)l

l!
x′i1 . . . x

′
il
∂i1 . . . ∂il

1

r
. (6.26)

Again, using ∇2(1/r) = 0 for r 6= 0, we can remove the traces with
respect to any pair of indices. We then define

qi1...il =

∫
d3x′ x′〈i1 . . . x

′
il〉 ρ(x′) , (6.27)

where the brackets in x′〈i1 . . . x
′
il〉 mean that we must take the trace-free

part of the symmetric tensor x′i1 . . . x
′
il

i.e., we must remove the traces
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with respect to all pair of indices. For instance, for the tensor with three
indices, we can replace xixjxk with

x〈ixjxk〉 = xixjxk −
1

3
|x|2 (δijxk + δikxj + δjkxi) . (6.28)

The coefficients qi1...il are called the STF multipole moments of the
charge distribution. Then, inserting eq. (6.26) into eq. (4.16), we get

φ(x) =
1

4πε0

∞∑

l=0

(−1)l

l!
qi1...il∂i1 . . . ∂il

(
1

r

)
. (6.29)

The terms l = 0, l = 1, and l = 2 in eq. (6.29) are just the monopole,
dipole, and quadrupole terms that we found previously.4

4The expansion in STF tensors can be
rewritten as an expansion in spherical
harmonics. We will not elaborate on
this here. The interested reader can
find a discussion of the relation between
these two expansions, as well as the
extension to vector spherical harmon-
ics (relevant in electromagnetism) and
tensor spherical harmonics (relevant for
the gravitational field) in Section 3.5.2
of Maggiore (2007).

6.2 Magnetic multipoles

We now consider the multipole expansion in magnetostatics. We start
from eq. (4.92), and we consider the situation in which the current j(x′)
is localized in a region with |x′| < d. We then compute A(x) at dis-
tances r � d, where, as before, r ≡ |x|. We limit ourselves to the first
non-trivial term that, as we will see, is the magnetic dipole term. The
generic expansion to all orders in STF tensors can be performed simi-
larly to what we have done in the electric case, but one rarely encounters
situations where magnetic multipoles higher than the dipole play a role.

We therefore insert the expansion (6.4) into eq. (4.92) [technically, it is
slightly simpler to perform the multipole expansion of A(x) and then ob-
tain the corresponding expansion for B(x) from B = ∇×A, rather than
performing the corresponding expansion directly in eq. (4.95)]. This
gives

A(x) =
µ0

4π

1

r

∫
d3x′ j(x′)

[
1 +

n̂·x′
r

+O
(
d2

r2

)]
. (6.30)

The first term in the expansion actually vanishes, as a consequence of
current conservation. This can be shown using the identity ∂jxi = δij
to rewrite, trivially, ji(x) = jj(x)∂jxi. Then

∫
d3x ji(x) =

∫
d3x jj(x)∂jxi

= −
∫
d3xxi∂jjj(x)

= 0 , (6.31)

where in the second line we integrated by parts (setting the boundary
terms to zero, because j(x) is localized) and we used current conservation
in the form (4.90), valid for magnetostatics. The leading term is then
given by the second term, which we denote as Adipole. In components,

Ai,dipole(x) =
µ0

4π

xj
r3

∫
d3x′ ji(x

′)x′j , (6.32)



140 Multipole expansion for static fields

where we wrote nj as xj/r. To manipulate this expression, we proceed
similarly to the previous computation, integrating by parts and using
current conservation,

∫
d3x ji(x)xj =

∫
d3x (∂kxi) jk(x)xj

= −
∫
d3xxi∂k[jk(x)xj ]

= −
∫
d3xxijk(x)∂kxj

= −
∫
d3x jj(x)xi . (6.33)

This shows that the integral is antisymmetric in the (i, j) indices, and
therefore

∫
d3x ji(x)xj =

1

2

∫
d3x [ji(x)xj − jj(x)xi]

= −1

2
εijk

∫
d3x [x×j(x)]k , (6.34)

where the last identity can be verified writing εijk(x×j)k = εijkεklmxljm
and using eq. (1.7). We define the magnetic dipole moment of the current
distribution (or, more simply, the “magnetic moment”), as5

5Observe that, under a change of the
origin used to define the multipole mo-
ment, corresponding to changing x →
x′ = x + s, we have j(x) → j′(x′) =
j(x), i.e., the current density is invari-
ant under translations, and d3x′ = d3x,
and therefore

mi → mi +
1

2
εijksj

∫
d3x jk . (6.35)

However, because of eq. (6.31), for a lo-
calized current density the extra term
vanishes, and therefore, in magneto-
statics (i.e., when ∇·j = 0 holds, so
that also eq. (6.31) holds) the magnetic
dipole moment is independent of the
choice of the origin. This is due to
the fact that, in the expansion in mag-
netic multipoles, there is no monopole
term, i.e., no magnetic charge, so the
situation is analogous to eq. (6.23) for
the electric dipole, when q = 0. For
magnetic multipoles, the dependence
on the choice of the origin starts from
the magnetic quadrupole (if the mag-
netic dipole is non-vanishing, otherwise
it starts at even higher orders).

m =
1

2

∫
d3x x×j(x) . (6.36)

Therefore ∫
d3x ji(x)xj = −εijkmk , (6.37)

and eq. (6.32) becomes

I

Fig. 6.4 The field lines of a magnetic
dipole, represented here by a closed
loop carrying a current.

Adipole(x) =
µ0

4π

m×x

r3
. (6.38)

Taking the curl (for r 6= 0, given that we are computing the magnetic
field generated by a localized source, in an expansion for r � d), we get

(Bdipole)i =
µ0

4π

1

r3
(3ninj − δij)mj , (6.39)

or, in vector form,

Bdipole =
µ0

4π

3(m·n̂)n̂−m

r3
, (6.40)

to be compared with eq. (6.13) for the electric field generated by an elec-
tric dipole. This is the leading term for the magnetic field generated by
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a localized current, at large distances. Fig. 6.4 shows the corresponding
lines of the magnetic field, to be compared with Fig. 6.2 for the electric
field from the electric dipole.

A typical situations in which a magnetic dipole moment appears is
given by a loop C carrying a current. Using eq. (4.103), eq. (6.36) be-
comes

m =
I

2

∮

C
x×d` . (6.41)

For a loop lying in a plane, the integral in this expression is just twice
the area A of the loop times the normal n̂ to the surface, as we proved
in eq. (1.47) using Stokes’s theorem,6 so

6This can also be shown, in a less ele-
gant but possibly more direct manner,
just by explicitly computing the inte-
gral for a square loop, setting the origin
for instance in the center of the square
and computing the separate contribu-
tions of the four sides. The result for a
generic planar loop is then obtained by
filling it with infinitesimal square loops.m = IA n̂ . (6.42)

Another important case is given by a non-relativistic charged particle
with charge qa, mass ma and velocity va. The corresponding current is
given by eq. (3.27) which, inserted into eq. (6.36), gives7

7Note, however, that in this case the
current also depends on time and satis-
fies the full continuity equation rather
than ∇·j = 0, see eq. (3.30). There-
fore, this example does not belong to
the domain of magnetostatics and in
this case eq. (6.31) does not hold. As
a consequence, it is no longer true that
the magnetic dipole is independent of
the choice of the origin (compare with
Note 5 on page 140). Indeed, we see
from eq. (6.43) that, in this case, the
magnetic dipole is given in terms of
the orbital angular momentum, which
is another quantity that depends on the
choice of origin.

m =
qa

2ma
La , (6.43)

where La = maxa×va is the angular momentum of a non-relativistic
particle.8

8In quantum mechanics, particles carry
an intrinsic angular moment called
spin, usually denoted by S. One would
then be tempted to assume that, beside
having a magnetic moment associated
with their angular momentum L, which
indeed even in quantum mechanics is
given by eq. (6.43), particles should also
carry an intrinsic magnetic moment
m = [qa/(2ma)] S associated with spin.
However, spin is a purely quantum con-
cept, and the previous classical deriva-
tion does not go through. It turns
out that the actual intrinsic magnetic
moment of a charged particle is rather
given by m = ga[qa/(2ma)] Sa, where
ga (usually written simply as g, when
it is clear to which particle it refers)
is a number that depends on the type
of particle. For an elementary particle
of spin 1/2, such as the electron, in a
first approximation (given by the Dirac
equation) g = 2, and quantum field the-
ory gives corrections to this result that
can be computed as an expansion in
powers of the fine structure constant α,
see e.g., Section 3.6 and Solved Prob-
lem 7.2 of Maggiore (2005).

6.3 Point-like electric or magnetic dipoles

Equation (6.13) gives the electric field generated by an electric dipole, at
distances r much larger than the size d of the source, since we obtained
it performing an expansion in the small parameter d/r. Consider now
as source a point-like electric dipole d located at the origin (which could
be, for instance, a classical modelization of a microscopic object with an
intrinsic dipole moment). In this case the size d of the source vanishes,
and an expansion in powers of d/r gives the exact result for all values of
r except r = 0, so eq. (6.13) is exact for all r 6= 0. In principle, however,
there could still be a Dirac delta singularity at the origin. To test for
the presence of a Dirac delta in the electric field Edipole generated by a
point dipole, we integrate it over a volume V with boundary ∂V ,

∫

V

d3x (Edipole)i = −
∫

V

d3x ∂iφdipole

= −
∫

∂V

d2s ni φdipole , (6.44)

where ds = d2s n̂ is the surface element on the boundary ∂V , and n̂ is
the outer normal of the boundary. We now insert here the expression
(6.9) for φdipole, and we take V to be a sphere of radius R, so that
d2s = R2dΩ. Then,

∫

V

d3x (Edipole)i = − 1

4πε0

∫
R2dΩni

njdj
R2

= − 1

ε0
dj

∫
dΩ

4π
ninj . (6.45)
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The remaining angular integral could in principle be performed com-
ponent by component, writing dΩ = d cos θdφ and using the explicit
expression of the unit normal vector in polar coordinates,

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) . (6.46)

There is, however, a much more clever way of computing an integral
such as

Iij ≡
∫
dΩ

4π
ninj , (6.47)

based on the observation that ninj is a tensor under spatial rotation.
After integration over the whole sphere with the measure dΩ, which is
invariant under rotations, the result must still be a tensor. However,
after having integrated over all directions, there is no longer a preferred
direction in space, so no vector on which the result could depend. Since
the result is a symmetric tensor with two indices, the only possibility is
that it is proportional to δij , with some proportionality constant κ,

∫
dΩ

4π
ninj = κδij . (6.48)

Taking the trace of both sides, we get
∫
dΩ/4π = 3κ, and therefore

κ = 1/3. Thus, without even computing a single integral, we get the
identity ∫

dΩ

4π
ninj =

1

3
δij . (6.49)

Applying this to eq. (6.45), we get
∫

V

d3x (Edipole)i = − 1

3ε0
di . (6.50)

This result, for a point dipole, is exact, because, to compute it, we only
used the expression for φdipole on a surface at r = R > 0, see eq. (6.44).
In the case of a point-like source that we are considering, as long as r 6= 0
the exact result for the electric field is given by eq. (6.11). Allowing for
a possibility of a Dirac delta at the origin, the most general form of the
electric field generated by a point-like electric dipole is

(Edipole)i =
1

4πε0

[
1

r3
(3ninj − δij)dj + κEi δ

(3)(x)

]
. (6.51)

The constant vector κEi can be fixed inserting eq. (6.51) into eq. (6.50).
The first term in bracket in eq. (6.51) does not contribute to the integral.
In fact,

∫

V

d3x
1

r3
(3ninj − δij)dj = dj

∫ R

0

dr r2 1

r3

∫
dΩ(3ninj − δij) ,

(6.52)

and the angular integral vanishes because of eq. (6.49).9 Then, eq. (6.50)

9Actually, one should also observe that
the radial integral diverges in r = 0. A
more correct procedure is to regularize
it by integrating from r = ε to r = R,
and in the end taking the limit for ε→
0+. However, since the angular integral
vanishes identically, this limit is indeed
zero. gives κEi = −(4π/3)di. The conclusion is that the electric field generated
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by a point-like electric dipole d at the origin of the coordinate system is
given by

E =
1

4πε0

[
3(d·n̂)n̂− d

r3
− 4π

3
d δ(3)(x)

]
. (6.53)

We can proceed in exactly the same way to compute the magnetic field
generated by a point-like magnetic dipole m (which could be, for in-
stance, a classical modelization of an elementary particle with an intrin-
sic magnetic moment, see Note 8 on page 141). Again, in the limit in
which the size d of the source vanishes, an expansion in powers of d/r
gives the exact result for all values of r 6= 0, so eqs. (6.38) and (6.40)
are exact for all r 6= 0. Just as we did for the electric field, to test for
the presence of a Dirac delta in B we integrate it over a volume V with
boundary ∂V , ∫

V

d3xBi(x) = εijk

∫

V

d3x ∂jAk(x)

= εijk

∫

∂V

d2s njAk(x) . (6.54)

We insert here the expression (6.38) for A, and we take V to be a sphere
of radius R, so that d2s = R2dΩ. Then∫

V

d3xBi(x) =
µ0

4π
εijkεklmml

∫
R2dΩnj

xm
R3

= µ0 (δilδjm − δimδjl)ml

∫
dΩ

4π
njnm , (6.55)

where we made use of eq. (1.7) and of the fact that, on the surface of the
sphere, xm = Rnm. The remaining angular integral is performed using
eq. (6.49), so we eventually get∫

V

d3xBi(x) = µ0 (δilδjm − δimδjl)ml
1

3
δjm

=
2µ0

3
mi . (6.56)

In the case of a point-like source that we are considering, for r 6= 0, the
exact result for the magnetic field is given by eq. (6.39). Allowing for a
possibility of a Dirac delta at the origin, the most general form of the
magnetic field generated by a point-like magnetic dipole is therefore

Bi =
µ0

4π

[
1

r3
(3ninj − δij)mj + κBi δ

(3)(x)

]
, (6.57)

and the constant vector κBi can be fixed by comparing with eq. (6.56).
The first term in bracket in eq. (6.57) has the same angular dependence
as in the electric case and so does not contribute to the integral. Then,
eq. (6.55) gives κBi = (8π/3)mi. The conclusion is that the magnetic
field generated by a point-like magnetic dipole m is given by10 10The term proportional to the Dirac

delta in eq. (6.58) has an important ap-
plication in quantum mechanics, where
it contributes to the hyperfine splitting
of the hydrogen atom.

B =
µ0

4π

[
3(m·n̂)n̂−m

r3
+

8π

3
m δ(3)(x)

]
. (6.58)
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6.4 Multipole expansion of interaction
potentials

We now study the interaction potentials associated with electric and
magnetic multipoles. We consider electric multipoles in an external
static electric field, as well as the interaction between the multipoles
of two charge distributions. We will then repeat the analysis for mag-
netic multipoles.

6.4.1 Electric multipoles in external field

As we found in eq. (5.90), in electrostatics the mechanical potential at
fixed charges, UE , is the same as the energy EE stored in the electric
field. We will then write the following equations in terms of UE , which
is the quantity that enters directly when computing the forces to which
a given multipole moment is subject, or the forces between multipoles of
different charge distributions, but it can be kept in mind that the same
equations hold in terms of the energy EE stored in the electric field.

We consider first a charge distribution ρ(x) in an external electric
field. We assume that ρ(x) is localized inside a region V that can be
enclosed in a sphere of radius d. We also assume that the external
potential is generated by charges localized in a region V ′, at a distance
r � d from V (so, in particular, there is no overlap between V and V ′).
The condition r � d implies that the external electrostatic potential
φext(x) varies slowly across V . We then choose an origin inside V , so
that the multipole moments are defined with respect to that origin, and
we expand φext(x) in a Taylor series around that origin. Denoting by
(UE)ext the mechanical potential at fixed charge in an external field, we
have (UE)ext = (EE)ext and the Taylor expansion of φext(x) in eq. (5.39)
gives

(UE)ext =

∫

V

d3x ρ(x)

[
φext(0) + xi∂iφext(0) +

1

2
xixj∂i∂jφext(0) + . . .

]

= φext(0)

∫

V

d3x ρ(x) + ∂iφext(0)

∫

V

d3x ρ(x)xi

+
1

2
∂i∂jφext(0)

∫

V

d3x ρ(x)xixj + . . .

= φext(0)q − Ei,ext(0)di − 1

2
∂iEj,ext(0)

∫

V

d3x ρ(x)xixj + . . . , (6.59)

where Ei,ext = −∂iφext is the external electric field. The first term is the
“monopole interaction” energy, i.e., the interaction energy of the total
charge q of the system with the external potential. The second term is
the mechanical potential energy associated with an electric dipole in an
external electric field, when the position of the volume V is identified
by the value x = 0 of the coordinate of one of its points (and the
multipoles are defined with respect to that point). If we perform a
rigid displacement of the charge density, in the fixed external field, the
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position x = 0 is replaced by a generic position x (with respect to which
we still define the multipoles), and eq. (6.59) becomes

(UE)ext(x) = qφext(x)−diEi,ext(x)−1

2
∂iEj,ext(x)

∫

V

d3x′ρ(x′)x′
i
x′
j
+. . . .

(6.60)
The term associated with the dipole defines the potential (UE)dipole(x),

(UE)dipole(x) = −d·Eext(x) . (6.61)

According to eq. (5.88), the mechanical force exerted on the dipole is
therefore11 11Note that the dipole moment d of the

charge distribution does not change un-
der rigid translations of the charge dis-
tribution, since it is always defined with
respect to the new, “translated” point
chosen to identify the position of the
volume V . The dependence on x enters
only through a possible spatial depen-
dence of the external electric field. If
the external field is uniform, the force
vanishes.

Fk = di∂kEi,ext . (6.62)

Since, in electrostatics, ∇×E = 0, we have ∂kEi,ext = ∂iEk,ext, and
eq. (6.62) can also be written as

Fk = di∂iEk,ext , (6.63)

or, in vector notation,
F = (d·∇)Eext . (6.64)

We can also use (UE)dipole to find the torque acting on a dipole. Consider
a rotation of the dipole by δθ (where, writing δθ = δθ n̂, n̂ defines the
direction of the axis around which we perform a rotation and δθ the
rotation angle) around the origin O with respect to which the multipoles
are defined. Under this rotation the electric dipole moment changes by

δd = δθ×d , (6.65)

which is the transformation of a vector under infinitesimal rotations, see
eq. (1.153). The corresponding change in (UE)dipole is

δ(UE)dipole = −(δd)·Eext

= −(δθ×d)·Eext

= −(d×Eext)·δθ . (6.66)

Just as the force is obtained from a potential from eq. (5.88), i.e., from
δU = −F·δx, the torque N is obtained from12 12Note that, to define the torque as in

eq. (6.66), we compute how (UE)dipole
changes when we rotate the dipole
with respect to a fixed electric field.
Given that (UE)dipole is a scalar, if
we would simply rotate the refer-
ence frame, transforming both d and
Eext accordingly, (UE)dipole would not
change and δ(UE)dipole = 0. This is
of course the same that we do when
we define the force on an object from
δU = −F·dx, where we consider the
change in the potential when the posi-
tion of the object changes, with respect
to a fixed external field.

δU = −N·δθ . (6.67)

Therefore, the torque on a dipole in an external electric field is

N = d×Eext . (6.68)

This force tends to align the dipole so that it is parallel to the external
electric field, so that the potential (6.61) is minimized.

Note that this is the torque around the center of the dipole, i.e., in the
frame where the dipole center has the position x = 0. In a frame with
a different origin of the axes, in which the dipole center has a generic
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position x, in addition to this there will be a torque exerted by the force
F in eq. (6.64), that will make the dipole rotate around the new origin,
so the total torque is

N = d×Eext + x× [(d·∇)Eext] . (6.69)

The second term vanishes if the external electric field is uniform, while
the first is present even for a uniform field.

The next term in eq. (6.59) involves the electric quadrupole. Actu-
ally, the reduced quadrupole defined in eq. (6.17) also involves a term
proportional to δij . However, Eext is defined as the electric generated
by the external charges ρext, and therefore satisfies ∇·Eext = ρext/ε0.
Since the external charges are localized in the volume V ′, which has no
overlap with V , inside V we have ∇·Eext = 0; then δij , when contracted
with ∂iEj,ext, gives zero. Therefore, we are free to add to the term xixj

in eq. (6.59), the term proportional to δij that completes the definition
(6.17) of the reduces quadrupole moment. Also taking into account the
factor of 3 in the relation between the reduced quadrupole moment qij
and the quadrupole moment Qij , see eq. (6.18), we see that the energy
associated with an electric quadrupole in an external electric field is

(UE)quadr(x) = −1

6
Qij∂iEj,ext(x) . (6.70)

The force exerted on the quadrupole by the external electric field is
obtained from Fk = −∂k(UE)quadr, so

Fk =
1

6
Qij∂i∂kEj,ext . (6.71)

Again, using the fact that, for static fields, ∂kEj,ext = ∂jEk,ext, we can
rewrite this as

F =
1

6
Qij∂i∂jEext . (6.72)

Similarly, for the total torque on a quadrupole with respect to its origin,
we get13

13We now need to use the fact that,
under rotations, a tensor Qij with two
indices transforms as

Qij → RikRjlQkl ,

see eq. (1.130). For an infinitesimal ro-
tation, we write the rotation matrix Rij
as in eq. (1.152). This gives (taking into
account that Qij = Qji)

Qij → Qij − (εilmQlj + εjlmQli)δθm .

Then, taking again into account that,
for a static external field, ∂iEj,ext =
∂jEi,ext, eq. (6.70) gives

δ(UE)quadr =
1

3
εilmQlj∂jEi,extδθm .

Therefore, the quadrupole contribution
to the torque is

Nm = −
1

3
εilmQlj∂jEi,ext , (6.73)

which, after renaming the indices as
m → i, i → k, l → j and j → l, gives
eq. (6.74).

Ni =
1

3
εijkQjl∂lEk,ext . (6.74)

If we denote by Q·∇ the vector differential operator whose j-th compo-
nent is Qjl∂l, we can write this in a more compact form as

N =
1

3
(Q·∇)×Eext . (6.75)

Again, in a frame where the origin used to define the quadrupole moment
is at a generic position x, rather than at x = 0, we must add to this the
term x×F, where now F is given by eq. (6.72), and therefore

N =
1

3
(Q·∇)×Eext +

1

6
x× (Qij∂i∂jEext) . (6.76)
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6.4.2 Interaction between the electric multipoles of
two charge distributions

A description in terms of interaction of the multipole moments of a
charge distribution with a given external electric field is particularly
appropriate when the external field is generated by a macroscopic ob-
ject, and we study its interaction with a microscopic charge distribution.
If, instead, we have two localized charge distributions of similar size,
e.g., two molecules, interacting among them, a symmetric treatment of
the two systems can be more appropriate. In this case, we start from
eq. (5.75), that we rewrite here

U int
E =

1

4πε0

∫

V

d3x

∫

V ′
d3x′

ρ1(x)ρ2(x′)
|x− x′| . (6.77)

We choose the origin O of the reference frame at some point inside
the volume V , see Fig. 6.5; we will use this origin to define the mul-
tipole moments of the charge distribution ρ1(x) (recall the discussion
of eqs. (6.21)–(6.25) on the dependence of multipole moments from the
choice of origin). We denote by O′ a fixed point inside the volume V ′,
and we will use this origin to define the multipole moments of the charge
distribution ρ2(x). We denote the vector from O to O′ by r. A point
inside the volume V can be labeled by a vector x starting from the ori-
gin O. Similarly, a point inside V ′ can be labeled by a vector y starting
from O′. With respect to the origin O, the coordinate x′ of the latter
point is given by x′ = r + y. Then, eq. (6.77) can be rewritten as

O′

O

r

x

y

V ′

V

Fig. 6.5 Two charge distributions lo-
calized on non-overlapping regions,
and the coordinates and origins de-
scribed in the text.

U int
E (r) =

1

4πε0

∫

V

d3x

∫

V ′
d3x′

ρ1(x)ρ2(x′)
|r− (x− y)| , (6.78)

where r is fixed and y is a function of the integration variable x′, given
by y = x′ − r. We write it in this form, however, because we can now
expand the denominator in the limit |x| � r, |y| � r (where r = |r|),
corresponding to the fact that we are interested in the limit in which
the linear sizes of the volumes V and V ′ are much smaller than r. We
then expand the denominator to second order, as in eq. (6.14),

1

|r− (x− y)| =
1

r
+

(xi − yi)ri
r3

(6.79)

+
1

2r5
(xi − yi)(xj − yj) (3rirj − δijr2) + . . . .

Then, collecting the various terms,

(4πε0)U int
E (r) =

1

r

∫

V

d3x ρ1(x)

∫

V ′
d3x′ ρ2(x′) (6.80)

+
ri
r3

[∫

V

d3x ρ1(x)xi
∫

V ′
d3x′ ρ2(x′)−

∫

V

d3x ρ1(x)

∫

V ′
d3x′ ρ2(x′)yi

]

+
3rirj − r2δij

2r5

∫

V

d3x

∫

V ′
d3x′ ρ1(x)ρ2(x′)(xixj − xiyj − yixj + yiyj) .
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In the first line, we see that the integrals give the total charges q1 and
q2 of the two charge distribution. In the second line, we recognize the
electric dipole moment of the first charge distribution,

di1 =

∫

V

d3x ρ1(x)xi , (6.81)

defined with respect to the origin O, which is the natural choice for this
charge distribution. Similarly,

di2 =

∫

V ′
d3x′ ρ2(x′)yi

=

∫

V ′
d3x′ ρ2(x′)(x′ − r)i , (6.82)

is the dipole moment of the second charge distribution, now defined with
respect to the origin O′, which is the natural definition for this charge
distribution.14 In the last line of eq. (6.80), the quantity14Equivalently, introducing the charge

distribution ρ
(0)
2 (x) as in eq. (5.77), we

have ρ2(x′) = ρ
(0)
2 (y) and, since d3x′ =

d3y, eq. (6.82) reads

di2 =

∫
V ′
d3y ρ

(0)
2 (y)yi . (6.83)

∫

V

d3x ρ1(x)xixj (6.84)

is the reduced quadrupole moment of the charge distribution ρ1(x),
again with respect to the origin O, except that the term proportional to
δij in eq. (6.17) is missing. However, this expression is contracted with
3rirj − r2δij , and, using δijδij = 3

(3rirj − r2δij)δij = 0 , (6.85)

so we can add for free the missing term proportional to δij and recon-
struct the full expression for the reduced quadrupole moment qij1 . In the
same way, ∫

V ′
d3x′ ρ2(x′)yiyj , (6.86)

is the reduced quadrupole moment of the charge distribution ρ2(x′), with
respect to its natural origin O′ (again, apart from a term proportional
δij , which anyhow gives zero upon contraction). So, putting everything
together, and writing qij = Qij/3, we get

(4πε0)U int
E (r) =

q1q2

r
+

1

r3
(q2d1·r− q1d2·r) (6.87)

+
3rirj − r2δij

2r5

[
1

3

(
q1Q

ij
2 + q2Q

ij
1

)
−
(
di1d

j
2 + dj1d

i
2

)]
+ . . . .

The first term, proportional to q1q2/r, is a “monopole-monopole” term,
i.e., the Coulomb interaction between the total electric charges of the two
charge distributions. If both q1 and q2 are non-zero, it is the dominant
term at large r. The second term, proportional to (q2d1·r−q1d2·r), gives
the interaction between the charge of a distribution and the electric
dipole of the other, and is therefore a “monopole-dipole” term. Note
that, as all other terms, it is symmetric under the exchange of the two
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charge distribution, 1 ↔ 2 (observing that, under such an exchange,
r → −r). In the second line we have a “monopole-quadrupole” term,
and a “dipole-dipole” term. As long as q1 and q2 are non-zero, at large
distances, where this expansion is valid, the monopole-monopole term,
which is of order 1/r, dominates over the monopole-dipole term, which is
of order 1/r2, and this in turn dominates over the monopole-quadrupole
and dipole-dipole terms, which are of order 1/r3. However, if both
localized charge distributions have an overall zero charge, q1 = q2 = 0,
the dominant term becomes the dipole-dipole interaction,

(UE)dipole−dipole =
1

4πε0

r2δij − 3rirj
2r5

(
di1d

j
2 + dj1d

i
2

)
. (6.88)

Performing the contraction of indices and using r̂ = r/r, this gives

(UE)dipole−dipole =
1

4πε0

d1·d2 − 3(d1·r̂)(d2·r̂)

r3
. (6.89)

Observe that the interaction between dipoles can be attractive or repul-
sive, depending on the relative orientation of the dipoles and on their
relative direction with respect to the vector r joining them. For instance,
if the dipoles are orthogonal to r̂, so that d1·r̂ = d2·r̂ = 0, the interac-
tion is repulsive when the dipoles are parallel and attractive when they
are antiparallel. If, instead, d1 and d2 are aligned or antialigned with r̂,
the interaction is attractive when the dipoles are parallel and repulsive
when they are antiparallel.

Equation (6.89) could have also been obtained more simply, consid-
ering the interaction between the electric dipole of the second charge
distribution with the external electric field created by the first. Accord-
ing to eq. (6.61), this is

(UE)dipole = −d2·E1 . (6.90)

We then substitute the electric field generated by the electric dipole
of the first charge distribution at the position O′, that, according to
eq. (6.13), is given by

E1 =
1

4πε0

3(d1·r̂)r̂− d1

r3
, (6.91)

and we get again eq. (6.89). The expansion (6.87), however, provides
the cleanest way of understanding the structure of the expansion and
computing all terms systematically. These results have been obtained
from an expansion at large distances, compared to the size of the charge
distributions. For the interaction among two point-like electric dipoles,
we must also add the Dirac delta in eq. (6.53), and therefore

(UE)dipole−dipole =
1

4πε0

d1·d2 − 3(d1·r̂)(d2·r̂)

r3
+

1

3ε0
d1·d2δ

(3)(r) ,

(6.92)
where r = x2 − x1 is the relative distance between the two point-like
electric dipoles.
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6.4.3 Interactions of magnetic multipoles

We next turn to the interactions involving the magnetic multipole mo-
ments. To compute the mechanical forces, such as those due for instance
to the interaction of a magnetic dipole with an external field, or between
two magnetic dipoles, the most convenient quantity is the mechanical
potential ÛB introduced in eq. (5.136), since from it we can obtain the
mechanical forces by taking spatial derivatives at fixed currents, as in
eq. (5.146), and therefore keeping the magnetic moments fixed. How-
ever, one should keep in mind that ÛB = −EB , see eq. (5.139), so the
corresponding formulas for the magnetic energy have the opposite sign.
In the following, we will work in terms of ÛB rather than EB .

We limit ourselves to the magnetic dipole term, since higher-order
magnetic multipoles are rarely encountered in practical applications. We
proceed similarly to what we did for the electric dipole. We now start
from eq. (5.135), that we write in the form

Û int
B = −

∫
d3x j1(x)A2(x) , (6.93)

where, from eq. (4.92)

A2(x) =
µ0

4π

∫
d3x′

j2(x′)
|x− x′| . (6.94)

To stress that we consider the current distribution j2 as an external
source from the point of view of the current distribution j1, we change
notation writing j1(x) = j(x), j2(x) = jext(x), A2(x) = Aext(x) and
we denote the interaction potential Û int

B as (ÛB)ext, in analogy with the
notation used in eq. (6.59) for the electrostatic case. Then

(ÛB)ext = −
∫
d3x j(x)Aext(x) . (6.95)

We assume that j(x) is localized in a finite volume V , and that Aext(x)
varies slowly across V . Similarly to what we did in eq. (6.59), we choose
an origin inside V , that we use to define the multipole moments,15 and15Although, as discussed in Note 5 on

page 140, in magnetostatics the mag-
netic dipole is independent of the choice
of the origin, and the dependence only
starts from the magnetic quadrupole,
that we will not include here.

we expand Aext(x) around that origin. Then, to first order, eq. (6.95)
becomes

(ÛB)ext = −Ai,ext(0)

∫
d3x ji(x)− ∂kAi,ext(0)

∫
d3x ji(x)xk + . . . .

(6.96)
The first term vanishes because of eq. (6.31), while the second term is
transformed using eq. (6.37). This gives

(ÛB)ext = εikl∂kAi,ext(0)ml + . . .

= −εikl∂iAk,ext(0)ml + . . .

= −Bl(0)ml + . . . , (6.97)

and the first term in this expansion defines the interaction of a magnetic
dipole with the external magnetic field, (ÛB)dipole. As in the electro-
static case, we perform a rigid displacement of the current density, in
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the fixed external field, so that the position x = 0 is replaced by a
generic position x, with respect to which we still define the multipoles.
Therefore, in vector form,

(ÛB)dipole(x) = −m·Bext(x) . (6.98)

Equation (6.98) can be compared to eq. (6.61) for the electric dipole.
The computation of the force and torque on a magnetic dipole is then
completely analogous to that performed for the electric dipole, taking
into account that ÛB (at fixed currents, and therefore at fixed magnetic
moment) plays the role that UE plays in electrostatics (at fixed charges).
The force exerted on a magnetic dipole by an external magnetic field is
obtained from eq. (5.146) and is

Fk = mi∂kBi,ext , (6.99)

to be compared to eq. (6.62). If the current jext sourcing the external
magnetic field has no overlap with the current distribution j that gives
rise to the magnetic dipole m on which we are computing the force,
then, from ∇×Bext = µ0jext it follows that ∇×Bext = 0 in the region
where we compute the force, and eq. (6.99) can also be written as Fk =
mi∂iBk,ext or, in vector notation,

F = (m·∇)Bext , (6.100)

to be compared to eq. (6.64). The torque acting on a magnetic dipole
at the origin, due to an external magnetic field, is obtained exactly as
in the derivation of eq. (6.68), and is

N = m×Bext , (6.101)

and tends to orient the magnetic dipole so that it aligns with the ex-
ternal magnetic field, thereby minimizing (ÛB)dipole. For a magnetic
dipole located in a generic point x, we must add to this torque the term
x×F, where F is given by eq. (6.99) [which, when ∇×Bext = 0 in the
region under consideration, can also be written as in eq. (6.100)], to be
compared to eq. (6.69).

Finally, we consider the interaction between the magnetic multipoles
of two different current densities, similarly to the discussion in Sec-
tion 6.4.2 for the electric case. However, in this case the “monopole”
term is absent, and we are not interested in going beyond the magnetic
dipole, since higher-order magnetic multipoles rarely appear. There-
fore, the only interaction term that we need is the dipole-dipole term.
Rather than performing the full expansion of Û int

B similarly to what we
have done for U int

E in eqs. (6.80)–(6.87), it is then simpler to proceed as
in eqs. (6.90) and (6.91): we write

(ÛB)dipole = −m2·B1 , (6.102)

for the interaction potential between the magnetic dipole m2 of the
second current distribution and the magnetic field B1 generated by the
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magnetic moment of the first current distribution, and, for the latter,
we use eq. (6.40),

B1 =
µ0

4π

3(m1·n̂)n̂−m1

r3
. (6.103)

We then obtain

(ÛB)dipole−dipole =
µ0

4π

m1·m2 − 3(m1·n̂)(m2·n̂)

r3
, (6.104)

to be compared to eq. (6.89). Once again, for the interaction between
two point-like magnetic dipoles, we must also add the Dirac delta in
eq. (6.58), so that

(ÛB)dipole−dipole =
µ0

4π

m1·m2 − 3(m1·n̂)(m2·n̂)

r3
− 2µ0

3
m1·m2 δ

(3)(r) ,

(6.105)
where r = x2 − x1 is the relative distance between the two point-like
magnetic dipoles, to be compared to eq. (6.92).

6.5 Solved problems

Problem 6.1. Larmor precession

The torque gives the rate of change of the angular momentum L, as

N =
dL

dt
. (6.106)

As an application, recall from eq. (6.43) that, for a non-relativistic particle
with charge qa, mass ma and angular momentum L, the magnetic dipole
moment is m = (qa/2ma) L. We write, more generally,

m = γaL , (6.107)

(so that this equation applies also to the spin angular momentum, for which
the proportionality constant is different, see Note 8 on page 141).16 Equa-16The subscript a in γa is unconven-

tional, but helps to avoid confusion
with the Lorentz γ factor, that will in-
stead appear in the formula for the fre-
quency at which the position a charged
particle rotates in a magnetic field, see
eq. (8.201) in Solved Problem 8.4.

tions (6.101) and (6.106) then give

dL

dt
= γaL×Bext , (6.108)

which give the evolution of the angular momentum (or, equivalently, of the
magnetic moment) in an external magnetic field. Performing the scalar prod-
uct of both sides of eq. (6.108) with L we get

L·dL
dt

= 0 , (6.109)

since L·(L×Bext) = 0. This can be rewritten as

1

2

d(L·L)

dt
= 0 , (6.110)

and therefore the modulus |L| is constant. Similarly, multiplying eq. (6.108)
by Bext and using Bext·(L×Bext) = 0, we get Bext·dL/dt = 0. Therefore, also
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the component of L parallel to B is conserved, and only the components of L
orthogonal to B change. Setting Bext = Bẑ, eq. (6.108) gives

dLx
dt

= −ωLLy , (6.111)

dLy
dt

= ωLLx , (6.112)

dLz
dt

= 0 , (6.113)

where
ωL = −γaB (6.114)

is called the Larmor frequency. When γa = qa/2ma, as for a classical particle
of charge qa and mass ma,

ωL = − qaB
2ma

. (6.115)

The minus sign in the definition of ωL is inserted so that, for electrons, where
qa = −e < 0, we have ωL > 0. The solution of eqs. (6.111) and (6.112) is

Lx = L⊥ cos(ωLt+ ϕ) , (6.116)

Ly = L⊥ sin(ωLt+ ϕ) , (6.117)

where L⊥ = (L2
x + L2

y)1/2 is the constant value of the projection of L on the
(x, y) plane, and ϕ is a phase (that can be reabsorbed into a choice of the
origin for t). So, the vector L⊥ = Lxx̂ + Lyŷ rotates in the (x, y) plane at
the Larmor frequency (counterclockwise, if ωL > 0), while Lz stays constant.
This behavior is known as the Larmor precession. The factor γa, when Larmor
precession is applied to the spin of an elementary particle with mass ma and
charge qa, must be written as

γa =
gaqa
2ma

, (6.118)

where ga is the g-factor of the particle (see again Note 8 on page 141). The

constant γa is called the gyromagnetic ratio of the particle.17

17Note that the name “gyromagnetic
ratio” is also often used instead for the
dimensionless g-factor.
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We now introduce the basic postulates and the formalism of Special Rel-
ativity. Special Relativity is one of the pillars of modern physics. Our
presentation will be tuned toward understanding how Special Relativ-
ity is hidden into Maxwell’s equations, and in building a “covariant”
formalism that makes this symmetry explicit.

7.1 The postulates

To introduce the postulates of Special Relativity, we first need to define
inertial frames. These are reference frames defined by the condition
that, in these frames, a body on which no external force acts moves
with constant speed v (constant both in modulus and in direction).
The special theory of relativity, as formulated by Einstein in 1905, is
based on two postulates:

(1) Principle of relativity: the laws of nature are the same in all inertial
frames.

(2) Constancy of the speed of light: the speed of light has the same
value in all inertial frames.

Newtonian physics also has a relativity principle, that we now call
Galilean Relativity, that again states that the laws of Newtonian physics
are the same in all coordinate systems moving at uniform speed relative
to one another.1 Given two reference frames K, with coordinates (t,x),

1From Galileo’s 1632 book Dialogue Concerning the Two Chief World Systems, (Sec-
ond Day), translated by S. Drake, University of California Press, 1953 (taken from
https://en.wikipedia.org/wiki/Galileo\%27s_ship.) “Shut yourself up with some
friend in the main cabin below decks on some large ship, and have with you there
some flies, butterflies, and other small flying animals. Have a large bowl of water with
some fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath
it. With the ship standing still, observe carefully how the little animals fly with equal
speed to all sides of the cabin. The fish swim indifferently in all directions; the drops
fall into the vessel beneath; and, in throwing something to your friend, you need
throw it no more strongly in one direction than another, the distances being equal;
jumping with your feet together, you pass equal spaces in every direction. When you
have observed all these things carefully (though doubtless when the ship is standing
still everything must happen in this way), have the ship proceed with any speed you
like, so long as the motion is uniform and not fluctuating this way and that. You
will discover not the least change in all the effects named, nor could you tell from
any of them whether the ship was moving or standing still. In jumping, you will pass
on the floor the same spaces as before, nor will you make larger jumps toward the
stern than toward the prow even though the ship is moving quite rapidly, despite the

https://en.wikipedia.org/wiki/Galileo\%27s_ship
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and K ′, with coordinates (t′,x′), such that the origin of K ′ moves with
respect of the origin of K with speed −v0, in Galilean Relativity the
space and time coordinates of the two frames are related by

t′ = t , x′ = x + v0t (7.1)

(with a suitable choice for the origin in space and time, such that t = 0
corresponds to t′ = 0 and, at t = 0, the point x = 0 corresponds to
x′ = 0). The laws of Newtonian mechanics are invariant under these
transformations. Note that, in Newtonian mechanics, time is absolute,
and is the same in all reference frames, i.e., for all observers.2 In Galilean2Of course, different observers can use

different origins for time, so that, in
general t′ = t+t0. This reflects another
invariance of Newtonian mechanics, in-
variance under time translations, which
is related to energy conservation. When
one says that, in Newtonian mechan-
ics, time is absolute, one means that
time differences are the same for all ob-
servers in relative uniform motion.

Relativity, from eq. (7.1), if a particle in the frame K moves along the
trajectory x(t), so that its velocity is v(t) = dx(t)/dt, in the frame K ′

it will move on the trajectory x′(t) = x(t) + v0t and will therefore have
a velocity v′(t) = dx′(t)/dt, such that

v′(t) = v(t) + v0 . (7.2)

Thus, according to Galilean Relativity, if in the frame K the speed of
a light beam traveling along the x̂ axis is v = cx̂, and the frame K ′

is related to K by a velocity transformation (7.1) along the x axis, i.e.,
v̂0 = v0x̂, then in the frame K ′ the light beam should travel at the speed
(c + v0)x̂. Thus, the second postulate of Special Relativity marks the
difference with Galilean Relativity and, as we will see more formally in
the following, implies the end of the absolute notion of time.

We now develop the mathematical consequences of the two postulates
of Special Relativity. Consider two inertial frames: K, with coordinates
x = (x, y, z), and K ′, with coordinates x′ = (x′, y′, z′). We denote by t
time measured in the K frame and by t′ that in the K ′ frame. We do
not assume a priori t′ = t. The correct relation will emerge from the two
basic postulates. Suppose that, in the frame K, a flash of light is emitted
a time t1 at the position (x1, y1, z1) and is subsequently absorbed at time
t2 at the position (x2, y2, z2). The fact that light moves at the speed c

fact that during the time that you are in the air the floor under you will be going in
a direction opposite to your jump. In throwing something to your companion, you
will need no more force to get it to him whether he is in the direction of the bow or
the stern, with yourself situated opposite. The droplets will fall as before into the
vessel beneath without dropping toward the stern, although while the drops are in
the air the ship runs many spans. The fish in their water will swim toward the front
of their bowl with no more effort than toward the back, and will go with equal ease
to bait placed anywhere around the edges of the bowl. Finally the butterflies and
flies will continue their flights indifferently toward every side, nor will it ever happen
that they are concentrated toward the stern, as if tired out from keeping up with the
course of the ship, from which they will have been separated during long intervals by
keeping themselves in the air. And if smoke is made by burning some incense, it will
be seen going up in the form of a little cloud, remaining still and moving no more
toward one side than the other. The cause of all these correspondences of effects is
the fact that the ship’s motion is common to all the things contained in it, and to the
air also. That is why I said you should be below decks; for if this took place above in
the open air, which would not follow the course of the ship, more or less noticeable
differences would be seen in some of the effects noted.”
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implies that

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − c2(t1 − t2)2 = 0 . (7.3)

In the frame K ′ light will be emitted a time t′1 at the position (x′1, y
′
1, z
′
1)

and absorbed at time t′2 at the position (x′2, y
′
2, z
′
2). Since, according to

the second postulate, also in K ′ light propagates with the speed c, we
have

(x′1 − x′2)2 + (y′1 − y′2)2 + (z′1 − z′2)2 − c2(t′1 − t′2)2 = 0 . (7.4)

We define the interval s2 between the two events as

s2 = −c2(t1 − t2)2 + (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 .

(7.5)
We have therefore found that the interval between two events related by
light propagation is zero, in all inertial frames. Note that the interval
between two arbitrary events in general will not be zero: for example,
for events along the path of a particle moving in straight line at a speed
v < c we have

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = v2(t1 − t2)2 , (7.6)

and therefore

s2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − c2(t1 − t2)2

= (v2 − c2)(t1 − t2)2 < 0 . (7.7)

We can distinguish three cases:

(1) Light-like interval: s2 = 0, as for the flash of light discussed above.

(2) Time-like interval: s2 < 0, as is eq. (7.7). Such events correspond
to the motion of particles traveling at v < c. This is, in particular,
the case for two events happening at the same point in space, at
succesive values of time, i.e., at spatial separation ∆x = 0, and
t2 6= t1.

(3) Space-like interval: s2 > 0. This is, for instance, the case of two
events such that t1 = t2 but x1 6= x2. Such events cannot be joined
by the trajectory of a particle moving with speed v ≤ c. We say
that they are causally disconnected, because, as we will discuss
in Section 7.2.2, the first event cannot influence the second event,
and vice versa.

The relation between the space-time coordinates (t,x) of K and the
space-time coordinates (t′,x′) of K ′ must therefore be such that, when
the interval between two events is zero in K, it must also be zero in
K ′. We now show that, in fact, this relation must be such that, even
for non-zero intervals, the interval must be the same in the two frames.3

3We follow here Section 2 of the old
classic Landau and Lifschits (1975).
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To this purpose, it is convenient to work with infinitesimal intervals. In
the K frame, the interval between an event at (t, x, y, z) and an event
at (t+ dt, x+ dx, y + dy, z + dz) is

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (7.8)

In the frame K ′, the two events will have coordinates (t′, x′, y′, z′) and
(t′ + dt′, x′ + dx′, y′ + dy′, z′ + dz′), and the interval between them is
ds′2 = −c2dt′2 + dx′2 + dy′2 + dz′2. Since ds2 and ds′2 are infinitesimals
of the same order, we must have

ds′2 = a ds2 , (7.9)

for some coefficient a. Because of the invariance under spatial and tem-
poral translations (i.e., of the fact that there is no privileged position
in space nor a privileged origin of time) the coefficient a cannot depend
on the value (t, x, y, z) of the first event that enters in ds2 (nor of the
coordinates of the second event, that, furthermore, only differ infinites-
imally from the first), and therefore can only depend on the relative
velocity v between the two frames K and K ′. Furthermore, because of
the invariance under rotations (i.e., the isotropy of space) it can actu-
ally depend only on the modulus v = |v|. Consider now three reference
frames K1,K2,K3 and denote by v12 the relative velocity of K2 with
respect to K1, by v13 the relative velocity of K3 with respect to K1,
and by v23 the relative velocity of K3 with respect to K2. Similarly, we
denote by ds2

1, ds2
2 and ds2

3 the respective intervals. From eq. (7.9) we
have

ds2
2 = a(v12)ds2

1 , ds2
3 = a(v13)ds2

1 , ds2
3 = a(v23)ds2

2 . (7.10)

Combining these expressions we get

a(v13) = a(v12)a(v23) . (7.11)

However, v13 = |v13| depends not only on v12 = |v12| and on v23 = |v23|,
but also on the angle between the vectors v12 and v23.4 This angle does4As we will see below, in the limit

of velocities small with respect to the
speed of light we recover the composi-
tion of velocities of Special Relativity,
v13 = v12 + v23. However, we do not
need to use this relation (that, as we
will see, is not valid for generic veloci-
ties), but only the fact that v13 depends
on the angle between the vectors v12

and v23, independently of the specific
form of this dependence.

not appear on the right-hand side of eq. (7.11) and therefore the only
possible solution of eq. (7.11) is that a does not depend on the velocity
at all and is just a constant. Then, eq. (7.11) reduces to a2 = a, which
has the solutions a = 0, 1. The solution a = 0 is clearly not acceptable,
so we get a = 1. Thus, the relation between the coordinates (t,x) of
K and the coordinates (t′,x′) of K ′ must be such that, for all events
(light-like, space-like, or time-like),

ds′2 = ds2 . (7.12)

From the equality of the infinitesimal intervals also follows the equality
of the finite intervals, so s2 = s′2. In conclusion, from the two postulates
it follows that the laws of Nature must be invariant under the transfor-
mations that leave invariant the interval (7.5) between two events.
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7.2 Space and time in Special Relativity

7.2.1 Lorentz transformations

We now identify the set of transformations that leave invariant the in-
terval (7.5), which, without loss of generality, we can write as

s2 = −c2t2 + x2 + y2 + z2 , (7.13)

having set t′ = 0 and x′ = 0. The set of transformations that leaves this
expression invariant forms a group. As we saw in Section 1.7, the group
that leaves the quadratic form x2 + y2 + z2 invariant is the rotation
group in three dimensions, SO(3) (apart from the parity transforma-
tions). Similarly, the group of transformations that leaves invariant the
quadratic form (7.13) is called the Lorentz group,5 and the correspond- 5We will further refine the definition of

the Lorentz group later, by eliminating
the discrete parity transformations.

ing transformation are called Lorentz transformations. First of all, we
see that rotations of the spatial coordinates, i.e., transformations of the
form

t→ t′ = t , xi → x′i = Rijxj , (7.14)

where R is the rotation matrix that we introduced in Section 1.6, leave
the interval (7.13) invariant, since they do not touch time and they trans-
form the spatial coordinates in such a way that x2 +y2 + z2 is invariant.
In three dimensions, the most general rotation can be expressed as a
combination of a rotation around the z axis, i.e., in the (x, y) plane,
a rotation around the x axis (i.e., in the (y, z) plane) and a rotation
around the y axis, so in the (x, z) plane. For instance, a rotation around
the z axis has the form

x→ x′ = x cos θ − y sin θ , (7.15)

y → y′ = x sin θ + y cos θ . (7.16)

Since rotations form a group, they are a subgroup of the Lorentz group.
It is convenient to introduce x0 ≡ ct, which has dimensions of length, just
as the xi, and to define the four-vector xµ, with components (x0, x, y, z)
(or, for uniformity of notation, (x0, x1, x2, x3), so the “Lorentz index” µ
takes the values {0, 1, 2, 3}). Just as we did for vectors, we will actually
define four-vectors in terms of their transformations under the action of
the Lorentz group. Let us begin by observing that, under a rotation in
the (x, y) plane, xµ → x′µ = (x′0, x′, y′, z′), where




x′0

x′

y′

z′


 =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1







x0

x
y
z


 (7.17)

We can similarly write all other rotations so, denoting by Λ the 4 × 4
matrix of Lorentz transformations, and by R a generic 3 × 3 matrix
describing a rotation, rotations are a special case of Lorentz transforma-
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tions, of the form

Λ =




1 0 0 0

0
0 R
0



. (7.18)

By analogy with rotations in a plane, it is also easy to find other trans-
formations that leave the interval (7.13) invariant. We can consider for
instance a transformation that does not act on y and z, and that leaves
(x0)2 − x2 invariant. This has the form of a “hyperbolic rotation”

x0 → x′0 = x0 cosh ζ + x sinh ζ ,

x→ x′ = x0 sinh ζ + x cosh ζ , (7.19)

where ζ ranges in the interval −∞ < ζ < +∞ and (especially in a
particle physics context) is called the rapidity. In matrix form




x′0

x′

y
z


 =




cosh ζ sinh ζ 0 0
sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1







x0

x
y
z


 . (7.20)

A transformation of the form (7.19) is called a Lorentz boost along the
x axis. We can similarly perform a hyperbolic rotation in the (t, y) and
in the (t, z) planes. Thus, we have found six independent transforma-
tions that leaves the quadratic form (7.13) invariant, corresponding to
three rotations and three hyperbolic rotations. We will see below that
this exhausts the set of (proper) Lorentz transformations. First, let us
understand the physical meaning of eq. (7.19). We introduce v0 from

v0 = c tanh ζ . (7.21)

Since −∞ < ζ < +∞, we have −c < v0 < c. Then eq. (7.19) can be
rewritten as

x0 → x′0 = γ(v0)
(
x0 +

v0

c
x
)
, (7.22)

x→ x′ = γ(v0)
(
x+

v0

c
x0
)
, (7.23)

or, using t = x0/c instead of x0,

t→ t′ = γ(v0)
(
t+

v0

c2
x
)
, (7.24)

x→ x′ = γ(v0) (x+ v0t) , (7.25)

where we have introduced the “gamma factor”66Typically, when there will be no possi-
bility of confusion, we will denote γ(v)
simply by γ. γ(v) =

1√
1− (v/c)2

. (7.26)

We see that, in the limit v0/c → 0, eqs. (7.24) and (7.25) reduce to
the transformation (7.1) of Galilean Relativity! Thus, from the point of
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view of Special Relativity, the apparent validity of Galilean Relativity in
Newtonian physics, and in everyday experience, is due to the fact that
we usually deal with velocities which are very small compared to the
speed of light.

From eqs. (7.24) and (7.25) we can obtain the corresponding compo-
sition of velocities. Consider a particle that, with respect to an observer
that uses coordinates (t, x, y, z), moves with velocity v = (vx, vy, vz).
In this frame, in a time dt its coordinates will change by an amount
dx = vdt, i.e., dx = vxdt, dy = vydt, and dz = vzdt. Then, with re-
spect to an observer that uses coordinates (t′, x′, y′, z′), with the x′ axis
parallel to the x axis, it moves by an amount dx′ in a time dt′, where

dt′ = γ(v0)
(
dt+

v0

c2
dx
)
, (7.27)

dx′ = γ(v0)(dx+ v0dt) , (7.28)

while dy′ = dy and dz′ = dz. From this, using v′ = dx′/dt′ and v =
dx/dt, we get

v′x =
vx + v0

1 + vxv0
c2

, (7.29)

v′y =
vy

γ(v0)
(
1 + vxv0

c2

) , (7.30)

v′z =
vz

γ(v0)
(
1 + vxv0

c2

) . (7.31)

In the limit c → ∞ (i.e., c much larger than all other velocities in the
equations) we recover the Galilean composition of velocities, eq. (7.2).
However, for generic velocities the composition is different. In particular,
in the limiting case of a particle moving with the speed of light along the
x axis, vx = c, vy = vz = 0, and a velocity transformation of parameter
v0 again along the x axis, we get v′x = c, v′y = v′z = 0, independently
of the value of v0! We have therefore recovered the fact that the speed
of light is the same in all inertial frames, which was our starting point.
Notice also that (unless vy = vz = 0), even the transverse components of
the velocity change when performing a Lorentz boost, contrary to what
happens in the Galilean transformation. This is due to the fact that we
are also transforming the time variable.

7.2.2 Causality and simultaneity

t′ = 0

x

c t

Fig. 7.1 The past and future light
cones of the observer located at
the origin (boundaries of the gray
shaded areas). The white regions
are causally disconnected from the
observer at the origin. For the ob-
server using the (t, x) coordinates,
the x axis corresponds to simulta-
neous events, all characterized by
t = 0. For the boosted observer K′,
the simultaneous events correspond
to the line labeled t′ = 0.

Physically, the fact that Nature is invariant under Lorentz transforma-
tions, rather than under the Galilean transformations of everyday expe-
rience, introduces a revolution in our notions of space and time. This
is seen in a particularly stunning way in the change of the concept of
causality, as well as in the notion of simultaneity of events, as illustrated
in Fig. 7.1. In this plot, on the vertical axis we display x0 ≡ ct and
on the horizontal axis one spatial coordinate, say x, while y and z are
suppressed for graphical reasons. In this plot, light rays travel at 45◦,
corresponding to the fact that the interval between two events connected
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by a light ray has s2 = 0, i.e., |∆x| = ±c∆t. We see that an observer
located at the origin x = 0 can receive signals, traveling at a speed
less or equal than the speed of light, only from the t < 0 part of the
shaded region in the figure; its boundary is called the past light cone of
that observer (if one makes the plot in three dimensions, with one more
spatial coordinate, it is indeed a cone with the tip at the origin, see
Fig. 7.2). The region where this observer can send signals is the shaded
region of Fig. 7.1 with t > 0, or the corresponding region in Fig. 7.2; its
boundary is called the future light cone. The white regions to the left
and to the right in Fig. 7.1 are causally disconnected from the observer
at the origin: the events that fall in these region cannot be influenced by
anything that happens at (t = 0,x = 0); and, vice versa, nothing that
happens there can influence the events at (t = 0,x = 0). Only events
in or inside its past light cone can influence the events at (t = 0,x = 0)
and, conversely, what happens in (t = 0,x = 0) can only influence the
events in, or inside, its future light cone.

c t

x

y

Fig. 7.2 A three-dimensional ren-
dering of the past and future light-
cones.

Related to this, the notion of simultaneity of the events is also rel-
ative to the observer considered. In the reference frame K, that uses
coordinates (t, x), the events with the same value of t are simultane-
ous. In Fig. 7.1, simultaneous events are along lines parallel to the x
axis, and the events that take place at t = 0 are those along the x
axis in the figure. However, for the observer K ′, that uses coordinate
(t′, x′) related to (t, x) by the Lorentz boost (7.24–7.25), the events are
simultaneous if they have the same value of t′. For instance, the events
with t′ = 0 correspond, according to eq. (7.24), to the events on the
straight line ct = −(v0/c)x. Since the boost parameter v0 is in the
range −c < v0 < c, these are lines comprised between ct = −x and
ct = +x (with the limiting lines excluded), i.e., contained in the white
regions causally disconnected from the origin; an example is given by
the line shown in the figure. So, simultaneity is no longer an “absolute”
concept, but is relative to the observer.

We see from Fig. 7.1 that, whenever two events are causally discon-
nected, we can find a boosted reference frame such that, in this frame,
the two events become simultaneous, since we can always find a straight
line ct = ax, with −1 < a < 1, that joins the origin with a point in
the white region. Conversely, when two points are causally connected,
i.e., one is on (or inside) the past or in the future light cone of the
other, this is not possible. This is graphically clear from the figure and
can also be seen more formally as follows. Consider two events that,
in the frame K, have coordinates (t1,x1) and (t2,x2); let (t′1,x

′
1) and

(t′2,x
′
2) be their coordinates in the boosted frame K ′. If the events

are simultaneous in K ′, we have t′1 = t′2 and therefore the interval
s′212 = −(t′1 − t′2)2 + (x′1 − x′2)2 > 0. However, the interval is invari-
ant under Lorentz transformations, so we must also have s2

12 > 0. This
is just the condition that (setting the first event at the origin) the second
event is in the white, causally disconnected, area of Fig. 7.1.
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7.2.3 Proper time and time dilatation

We next define the proper time τ of an observer (or, e.g., of a particle).
Suppose that, with respect to a given inertial observer K, a second
observer O moves with velocity v(t), with v(t) = |v(t)| strictly smaller
than c. We do not need to assume that v is constant, i.e., the frame
moving with O need not be an inertial frame. We want to understand the
relation between the time t measured by the clock of the inertial observer
K, and the time τ measured by a clock moving with O. To this purpose,
we consider an inertial reference frame K ′ such that, as some time t, O
and K ′ have the same velocity, i.e., the frame K ′ is (instantaneously)
comoving with O. We can imagine that at time t the observer O emits
a first signal and at time t + dt it emits a second signal. Each of these
signals marks an event, and we can compute the infinitesimal interval
between these two events. In the frame K, during the time interval dt,
the observer O has moved by dx = v(t)dt. Therefore, the corresponding
interval between the two events is

ds2 = −c2dt2 + dx2 = −c2dt2[1− v2(t)/c2] , (7.32)

where v(t) = |v(t)|. In the inertial frame K ′, in contrast, the observer O
is instantaneously at rest so, to linear order in dt, dx = 0. Then, calling
dτ the time interval measured by a clock carried by the observer O, to
lowest order in the infinitesimal quantity dt the interval measured in the
inertial frame K ′ is

ds2 = −c2dτ2 . (7.33)

Since the intervals measured in two inertial frames must be the same,
we get

dτ = dt

√
1− v2(t)

c2

=
dt

γ(v)
, (7.34)

where γ(v) was defined in eq. (7.26). This relation can be integrated
(which, physically, means that we are using a succession of comoving
inertial frames) so that, choosing the origin of times so that t = t0
corresponds to τ = τ0, we get

τ(t)− τ0 =

∫ t

t0

dt′
√

1− v2(t′)
c2

. (7.35)

The quantity τ is called the proper time of the observer O. It is the
time measured by the clock carried by this observer. Note that, since√

1− v2/c2 is always smaller than one, dτ is always smaller than dt.
From the point of view of the observer K, the clock carried by O goes
slower. This is the famous phenomenon of time dilatation of Special
Relativity.

This apparently leads to a paradox. Suppose that O actually moves
with constant velocity v, so that now also the frame moving with O is an
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inertial frame, that coincides with K ′ at all times. Then, from the point
of view of an observer in K, the clock carried by the inertial observer in
K ′ goes slower but, exactly by the same reasoning, the inertial observer
K ′ will rather find that the clock carried by K goes slower!

In fact, there is no logical contradiction with this and, rather, this
apparent paradox is at the core of the notion of “Relativity.” This
can be understood by specifying more carefully what should be done,
operationally, to compare the two clocks. Suppose that, at some initial
time, the clocks in K and that in K ′ are together at the same point in
space and are both set to the same initial value of time, say t = t′ = 0. To
determine what the clock inK ′ measures at a subsequent time, compared
to a clock in K, we need a second clock, at rest with respect to K and
located in a second position, that the observer in K must have previously
synchronized with the first clock. That is, these two clocks belonging to
K have been first carried to the same place, where it has been checked
that they both read the same time, and then one has been brought to
the second position.7 When the clock carried by the observer in K ′ will7To be precise, this second clock, that

at the beginning is at the same posi-
tion as the first, and with the same
zero velocity with respect to K, must
have been brought to the second posi-
tion very gently, i.e., giving to it a negli-
gible acceleration at the beginning, and
a negligible deceleration to eventually
stop it in the final position. This is in
principle always possible, at the level of
these “gedanken” experiments. Accel-
eration and deceleration indeed affect
the reading of a clock, as one learns in
General Relativity.

have reached the position of this second clock, a comparison can be
performed. However, now the situation is no longer symmetric between
the two frames. We are comparing one clock in K ′ with two clocks in K.
The clock that goes slower is the one that is compared with two clocks
of the other frame.8

8Alternatively, the clock in K′ might
invert its motion and come back to
meet the clock in K again; this how-
ever introduces extra complications due
to the corresponding phase of accelera-
tion, so K′ is no longer inertial. In the
context of General Relativity, this pro-
duces another apparent paradox called
the Twin Paradox, on which we will not
dwell here.

We can also consider a more symmetric situation, in which each ob-
server prepares two clocks, synchronizing them in his/her frame, and
uses them to compare with a clock of the other frame. Again, each
observer will find that the other observer’s clock goes slower; the clock
that goes slower is always the one that is checked against two clocks of
the other frame. Observe also that, for the observer K ′, the two clocks
in K are not synchronized! We indeed see from Fig. 7.1 that, if in K
a clock is at (t = 0, x = 0) and another is at (t = 0, x = x0), for some
x0 6= 0 (and therefore in K the two clocks are synchronized, since they
both register the same value of time, in this case t = 0), from the point
of view of a boosted observer K ′ they will not be synchronized. For K ′,
synchronized clocks are those that, in this space-time diagram, can be
found on a line such as the t′ = 0 line shown in Fig. 7.1. So, for instance,
the inertial observer K could use two clocks, synchronize them (from his
point of view), place them at two different positions, and use them to
compare with one clock of K ′, and he would find that the clock of K ′

goes slower. The observer K ′ could do exactly the same, preparing two
clocks synchronized in her frame, and use them to check a clock of K.
Again, she would find that the clock in K goes slower. The observer
K would attribute this different result to the fact that K ′ had made a
mistake: from his point of view, the two clocks used by K ′ were not
correctly synchronized. The observer K ′ would reach the same conclu-
sion: the fault was in the fact that the clocks in K were not correctly
synchronized! In fact, both observers were right, and simply there is no
“absolute” notion of which clock goes slower. The fact that a moving
clock goes slower is a correct statement, relative to the (two) clocks of
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the observer that sees that clock in motion. This is one instance of the
fact that some statement that, in Newtonian physics, have an absolute
validity (a clock either goes slower than another or it does not), in Spe-
cial Relativity can have a validity only relative to some observer (hence,
the name “Relativity” given to the theory).

7.2.4 Lorentz contraction

In a similar way we can prove that, given two inertial observers K and
K ′, the length of a rigid rod depends on the velocity at which the ob-
server sees it moving. Consider first the frame K, where the rod is at
rest along the x axis. If we call ` its length in this frame, the coordinates
of its two endpoints can be taken, respectively, as (x1, 0, 0) and (x2, 0, 0),
with x2 − x1 = `. Inverting eqs. (7.24) and (7.25), the relation between
the coordinates (t, x) in K and the coordinates (t′, x′) in K ′ is

t = γ(v0)
(
t′ − v0

c2
x′
)
, (7.36)

x = γ(v0) (x′ − v0t
′) . (7.37)

It is straightforward to explicitly check that this provides the inversion
of eqs. (7.24) and (7.25), but in fact the result can be obtained much
more simply by reversing the sign of v0. In the frame K ′, the bar moves
with velocity v0 along the x axis, and, at a given time t′, the position of
its end-points will be (x′1, 0, 0) and (x′2, 0, 0), respectively. The observer
in K ′ will define the length of the bar as the difference in the position of
its end-points, x′2 − x′1, measured at the same value of her time variable
t′. From eq. (7.37), we have

x′2 =
1

γ(v0)
x2 + v0t

′ , (7.38)

x′1 =
1

γ(v0)
x1 + v0t

′ , (7.39)

and therefore

x′2 − x′1 =
1

γ(v0)
(x′2 − x′1) . (7.40)

Therefore, the length `′ = (x′2−x′1), measured in a frame where the rod
moves with velocity v0, is related to the length ` in the frame where the
rod is at rest, by

`′ =
`

γ(v0)

= `

√
1− v2

0

c2
. (7.41)

This is the Lorentz contraction of lengths. Note that the contraction only
takes place in the direction of motion. The coordinates of the transverse
directions, for a Lorentz boost along the x axis, satisfy y′ = y and z′ = z,
so transverse directions are not affected.
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7.3 The mathematics of the Lorentz group

7.3.1 Four-vectors and Lorentz tensors

We now introduce a covariant formalism, that will make the transforma-
tion properties of the various quantities under Lorentz transformations
explicit. In the case of rotations, in Section 1.7.2 we have defined the
rotation group as the group of linear transformations (1.140), in a space
with d spatial dimensions, which leave the quadratic form (1.141) in-
variant. We have seen that this implies that R is an orthogonal matrix.
Vectors were then defined as objects that transform according to the
“fundamental” representation, vi → v′i = Rijvj , i.e., with the same ma-
trix Rij used in the definition itself of the group. It was also useful to
introduce a “metric tensor” δij , so that the scalar product between two
vectors is given by v·w = δijviwj , so in particular the squared norm of
a vector v is |v|2 = δijvivj .

Similarly, after eq. (7.13) we have defined the Lorentz group as the
group of linear transformation of a four-dimensional space, with coordi-
nates (x0, x1, x2, x3), which leaves invariant the quadratic form

s2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 . (7.42)

Generalizing eq. (1.140), we now write such linear transformations with
the notation

xµ → x′
µ

= Λµνx
ν , (7.43)

where the “Lorentz index” µ takes the values 0, 1, 2, 3 and, again, the
sum over repeated indices is understood. Note, however, that, contrary
to the case of the rotation group, we are now careful about the position-
ing on the indices, and the sum is always performed by contracting an
upper and a lower index. The reason for this convention will become
apparent in the following.

Equation (7.43) is the transformation law that is used to define the
Lorentz group and therefore, just as for vectors in the case of rotations,
can also be used to introduce the “fundamental” representation of the
Lorentz group, that we call the four-vector representation: four-vectors
are defined as any set of four quantities (V 0, V 1, V 2, V 3), [or, with an
equivalent notation, (V 0, V x, V y, V z)], collectively denoted as V µ, that,
under Lorentz transformations, transform linearly among them, accord-
ing to99More precisely, as we will see be-

low, this transformation property de-
fines “contravariant” four vectors, to
be distinguished from “covariant” four-
vectors that will be introduced in Sec-
tion 7.3.2.

V µ → V ′
µ

= ΛµνV
ν . (7.44)

For instance, for a Lorentz boost along the x axis with velocity v0, we
saw in eqs. (7.22) and (7.23) that

x0 → x′0 = γ(v0)(x0 + βx) , (7.45)

x→ x′ = γ(v0)(x+ βx0) . (7.46)
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where, for the parameter of the transformation, we have introduced the
notation β = v0/c and β = |β|. Then, for a generic four-vector V µ,

V 0 → V ′0 = γ(v0)
(
V 0 + βV x

)
, (7.47)

V x → V ′x = γ(v0)
(
V x + βV 0

)
, (7.48)

(where, of course, the notation V 0 for the µ = 0 component of the
four-vector V µ should not be confused with the velocity v0 of the trans-
formation), while V ′y = V y and V ′z = V z. For a boost in a generic
direction, we can write10 10In Section 7.3.5 we will show that the

spatial components (V x, V y , V z) of a
four-vector V µ transform as a vector
under rotations, so we already use the
notation V = (V x, V y , V z).

V 0 → V ′0 = γ(v0)
(
V 0 + β·V

)
, (7.49)

V‖ → V ′‖ = γ(v0)
(
V‖ + βV 0

)
, (7.50)

V⊥ → V′⊥ = V⊥ , (7.51)

where we have split V = (V x, V y, V z) into its components parallel and
perpendicular to β,

V = V‖β̂ + V⊥ . (7.52)

The four-vector representation has dimension four and is irreducible
since, with rotations, we can mix among them all the spatial compo-
nents V i, while with boosts we can mix V 0 with any of the spatial
components.

Similarly to what we have done for the rotation group, after having
defined the four-vector representation, we can proceed to define tensor
representations of the Lorentz group (that we will call “Lorentz tensors,”
or, when the context is clear, simply “tensors”). For instance, a tensor
Tµν with two upper indices (or a “contravariant” tensor) is defined as
an object that, under Lorentz transformations, changes as

Tµν → T ′
µν

= ΛµρΛ
ν
σT

ρσ , (7.53)

and similarly for tensors with three or more Lorentz indices.
We next introduce the Minkowski metric11 11At first, we introduce ηµν as a fixed

matrix, given by eq. (7.54) in all refer-
ence frames. More precisely, we will see
in Section 7.3.3 that it is actually an
invariant tensor of the Lorentz group,
i.e., a tensor that keeps the same nu-
merical value in all frames related by
Lorentz transformations, similarly to
the metric δij for rotations, as we saw
in eq. (1.132).

ηµν = diag(−1, 1, 1, 1) . (7.54)

This plays a role analogous to the metric δij in the case of rotations,
in the sense that it allows us to define the scalar product between two
four-vectors V µ and Wµ, as

(VW ) ≡ ηµνV µW ν , (7.55)

so that the squared norm of a four-vector V µ is V 2 = ηµνV
µV ν . Notice

that this scalar product is not positive definite, and V 2 can be positive,
negative, or zero. The infinitesimal interval (7.8) can then be rewritten
as

ds2 = ηµνdx
µdxν . (7.56)
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In eq. (1.129) we saw that the condition that rotations must preserve
the quadratic form (1.141) restricts Rij to orthogonal matrices. We
now derive the analogous condition on Λµν . Writing x′µ = Λµρx

ρ and
requiring that

ηµνx
′µx′

ν
= ηµνx

µxν , (7.57)

we get
ηµν(Λµρx

ρ)(Λνσx
σ) = ηµνx

µxν . (7.58)

By renaming the dummy indices µ → ρ, ν → σ on the right-hand side,
and rearranging the factors, we get

ηµνΛµρΛ
ν
σx

ρxσ = ηρσx
ρxσ. (7.59)

Since this must hold for x generic, we must have

ηµνΛµρΛ
ν
σ = ηρσ . (7.60)

This is the analogous of the condition (1.129) for the rotation group.
In matrix notation, eq. (7.60) can be rewritten as

ΛT ηΛ = η , (7.61)

where (ΛT )ρ
µ

= Λµρ is the transpose matrix. Taking the determinant
of both sides, we get (det Λ)2 = 1, and therefore det Λ = ±1. Trans-
formations with det Λ = −1 can always be written as the product of
a transformation with det Λ = 1 and of a discrete transformation that
reverses the sign of an odd number of coordinates, e.g., a parity trans-
formation (t, x, y, z) → (t,−x,−y,−z), or a reflection around a single
spatial axis, such as (t, x, y, z) → (t,−x, y, z), or a time-reversal trans-
formation, (t, x, y, z) → (−t, x, y, z). Transformations with det Λ = +1
are called proper Lorentz transformations.12

12More generally, in the group the-
ory language developed in Section 1.7,
the group of transformations of a
space with coordinates (y1, . . . ym,
x1, . . . xn), which leaves invariant the
quadratic form

s2 = −(y21 + . . .+y2m)+(x21 + . . .+x2n) ,

is called the orthogonal group O(n,m)
[or, equivalently, O(m,n)], and it re-
duces to O(n) if m = 0. Thus,
in three spatial dimensions, the group
that leaves invariant the quadratic form
s2 = −(x0)2 + x2 + y2 + z2 is called
O(3, 1). However, in O(n,m) there are
both transformations with determinant
+1 and with determinant −1. The
transformations with determinant +1
form a subgroup, which is denoted by
SO(n,m). Thus, the “proper” Lorentz
group, which is defined by eliminating
the discrete parity transformations, is
actually SO(3, 1). When we will refer
to the Lorentz group, we will hence-
forth always mean the proper Lorentz
group SO(3, 1), similarly to our restric-
tion from O(3) to SO(3) for rotations.
This can be generalized to arbitrary
spatial dimensions. Just as SO(d) is
the group of (proper) rotations in a
four-dimensional space, SO(d, 1) is the
Lorentz group in a space-time with d
spatial dimensions and a time-like co-
ordinate.

7.3.2 Contravariant and covariant quantities

From the metric ηµν and a contravariant four-vector V µ, we can form a
set of four quantities Vµ with lower index, defined by

Vµ ≡ ηµνV ν , (7.62)

called a covariant four-vector. Explicitly,

V0 = −V 0 , Vi = +V i . (7.63)

It is also convenient to define a matrix ηµν , with both upper indices,
whose numerical values are still the same as for ηµν , i.e.,

ηµν = diag(−1, 1, 1, 1) . (7.64)

With our convention that Lorentz indices are summed over by contract-
ing an upper and a lower index, we can use ηµν to invert eq. (7.62),
writing

V µ = ηµνVν , (7.65)



7.3 The mathematics of the Lorentz group 169

since this gives V 0 = −V0 and V i = +Vi, which is the (obvious) inversion
of eq. (7.63). So, ηµν can be used to lower the index of a contravariant
four-vector, obtaining a covariant one; and, vice versa, ηµν can be used
to raise the index of a covariant four-vector, obtaining a contravariant
four-vector.

Consider now the combination ηµρη
ρν . Numerically, this is just the

identity matrix. We denote it by δνµ,

δνµ = ηµρη
ρν

= diag(1, 1, 1, 1) , (7.66)

where the position of the indices on δνµ (one upper and one lower)
matches the position in ηµρη

ρν . Observe that we have obvious iden-
tities such as V µ = δµνV

ν .
In terms of a covariant and a contravariant four-vector, the scalar

product (7.55) can then be rewritten as

(VW ) = VµW
µ = V µWµ . (7.67)

Explicitly,

VµW
µ = V0W

0 + V1W
1 + V2W

2 + V3W
3 , (7.68)

so, using a covariant and a contravariant four-vector, the scalar product
takes a Euclidean form, with all plus signs.

By definition, a contravariant four-vector V µ is an object that trans-
forms as in eq. (7.44). From eq. (7.62), it then follows that the corre-
sponding covariant four-vector transforms as

Vµ = ηµσV
σ

→ ηµσΛσρV
ρ

= ηµσΛσρη
ρνVν . (7.69)

and therefore
Vµ → V ′µ = Λµ

ν Vν , (7.70)

where
Λµ

ν = ηµσΛσρη
ρν . (7.71)

The matrices Λµ
ν and Λµν are different: because of the ηµν involved

in the transformation, some of their matrix elements differ by a minus
sign. In particular, Λ0

0 = Λ0
0, Λ0

i = −Λ0
i, Λi0 = −Λi

0, and Λij =
Λi
j . However, physically V µ and Vµ represents the same quantity in

a different notation and, in the language of representation theory, they
correspond to equivalent representations, related as in eq. (1.137), with
ηµν playing the role of the matrix S.13

13More abstractly, one can define con-
travariant four-vectors as object V µ

that transform as in eq. (7.44), and co-
variant four-vectors as objects Wµ that
transform as

Wµ →W ′µ = Λµ
νWν ,

with Λµν defined by eq. (7.71). At
this point, however, one would discover
that, given any contravariant four-
vector V µ, the quantity Vν ≡ ηµνV ν is
a covariant four-vector and vice versa,
given any covariant four-vector Wµ,
the quantity Wµ ≡ ηµνWν is a con-
travariant four-vector. Therefore, the
spaces of covariant and contravariant
four-vectors are in one-to-one corre-
spondence, so we do not lose gener-
ality by defining contravariant four-
vectors starting from covariant four-
vectors and lowering their indices. The
same holds for the covariant and con-
travariant tensors that we now intro-
duce.

Similarly, we can use ηµν to lower one or more indices of a tensor. For
instance, given a contravariant tensor with two indices Tµν , defined by
the fact that it transforms as in eq. (7.53), we can define a covariant
tensor Tµν as

Tµν = ηµρηνσT
ρσ . (7.72)
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Proceeding as in eq. (7.69) we see that it transforms as

Tµν → T ′µν = Λµ
ρΛν

σTρσ . (7.73)

We can also define tensors with mixed covariant and contravariant in-
dices. For instance, defining

Tµν = ηνσT
µσ , (7.74)

we find that it transforms as

Tµν → ΛµρΛν
σT ρσ . (7.75)

We can proceed in the same way for tensors with three or more indices.
For later use, we observe that, in terms of Λµ

ν , the condition (7.60)
can be written as1414To get eq. (7.80) we multiply both

sides of eq. (7.60) by ησαΛβα. This
gives

ηµνΛµρ
(

Λνση
σαΛβα

)
= ηρση

σαΛβα .

(7.76)
The right-hand side can be rewritten as

ηρση
σαΛβα = δαρ Λβα

= Λβρ

= ηµνη
νβΛµρ ,

where we used ηµνηνβ = δβµ . There-
fore, writing ηµνΛµρ = Λνρ on both
sides of eq. (7.76),

Λνρ
(

Λνση
σαΛβα

)
= Λνρη

νβ .

(7.77)
Since Λνρ is an invertible matrix, we
can factorize it out from this equation,
and we get

Λνση
σαΛβα = ηνβ , (7.78)

or, renaming the indices as σ → ρ, α→
σ, ν → µ and β → ν,

ηρσΛµρΛνσ = ηµν . (7.79)

Lowering the µ, ν indices on both sides,
and inverting the upper/lower position
of the contracted ρ, σ indices, we finally
obtain eq. (7.80).

ηρσΛµ
ρΛν

σ = ηµν . (7.80)

This is similar to eq. (7.60), except that now, on the left-hand side, the
contraction of the two indices of η is made with the second indices of
each of the two Λ matrices, rather than with the first indices.

7.3.3 Invariant tensors of the Lorentz group

The notation ηµν for the metric (7.54), with two lower Lorentz indices,
implies that it is a covariant tensor. However, ηµν is a special type of
contravariant tensor, that retains the same numerical value of its com-
ponents in all frames connected by Lorentz transformations, i.e., is an
invariant tensor of the Lorentz group [just as we found that δij is an
invariant tensor of the rotation group, see eq. (1.132)]. Indeed, consider
a covariant tensor Tµν whose components, in a given frame, are given
numerically by Tµν = ηµν = diag(−1, 1, 1, 1). After a Lorentz transfor-
mation, this tensor becomes T ′µν = Λµ

ρΛν
σηρσ. However, because of the

defining property of the Lorentz group, written in the form (7.80), the
right-hand side of this equation is just ηµν again, so T ′µν = ηµν . Thus,
ηµν is an invariant tensor with two lower indices.

Similarly, using eq. (7.79), we see that ηµν is an invariant tensor with
two upper indices. The same holds for δµν that, being constructed from
ηµρ and ηρν as in eq. (7.66), is also an invariant tensor. It is important,
however, to understand that the identity matrix is an invariant tensor
only if we define it with an upper and a lower index. In this way it
transforms so that, if it is equal to diag(1, 1, 1, 1) in a frame, it remains
equal to diag(1, 1, 1, 1) in any other frame related by a Lorentz transfor-
mation. We have derived this from the fact that it is constructed with
ηµρ and ηρν , and we proved that the latter are invariant tensors, but we
can also show it directly from its transformation property

δµν → ΛµρΛν
σδρσ , (7.81)
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and using eq. (7.60) (with the indices properly raised and lowered).
Note that the positioning of the Lorentz indices in the two Λ factors
in eq. (7.81) is the one appropriate to the transformation of a tensor
with one upper and one lower index. If, in contrast, we consider a ten-
sor with two lower indices Tµν , whose numerical value in a reference
frame happens to be diag(1, 1, 1, 1), and we perform a Lorentz trans-
formation transforming it as in (7.73), as appropriate for a tensor with
two lower indices, in the new frame Tµν will have different numerical
values, and will no longer be of the form diag(1, 1, 1, 1). So, for instance,
it makes no sense to define an identity matrix with two lower indices,
“δµν = diag(1, 1, 1, 1).” Such an object is not an invariant tensor, and
the numerical assignment diag(1, 1, 1, 1) could only hold in one Lorentz
frame (and in those related to it by a spatial rotation) but would change
as soon as we perform a boost. Notice that, lowering the upper index of
δµν , we get ηµν ,

ηµρδ
ρ
ν = ηµν , (7.82)

and similarly raising an index of ηµν we get δµν ,

ηµρηρν = δµν . (7.83)

Just as there is no meaning in writing “δµν = diag(1, 1, 1, 1),” there is
no meaning in writing “ηµν = diag(−1, 1, 1, 1).” Again, a tensor of the
form diag(−1, 1, 1, 1) maintains the same numerical value in any frame
only if it is transformed according to the transformation law of a tensor
with two lower indices (or with two upper indices), not with one upper
and one lower index.

The only other invariant tensor of the Lorentz group (apart from all
possible lowering of its indices, see below) is the totally antisymmetric
tensor εµνρσ. This tensor vanishes if two indices take the same value,
satisfies ε0123 = +1, and changes sign under permutations of any two
indices; so, for instance, repeatedly switching the position of the 0 index,
ε1023 = −1, ε1203 = +1, and ε1230 = −1 so, in this case, it changes
sign under a cyclic permutation. Note, however, that starting from
ε1230 = −1 and making three jumps for the index 1, we get ε2301 = +1,
so in this case a cyclic permutation of 0123 gives again +1 instead of −1.
Therefore, the tensor εµνρσ is neither cyclic nor anti-cyclic (in contrast,
for the rotation group in three dimensions, εijk is cyclic, since it is again
antisymmetric, but it has only three indices, so, e.g. ε123 = −ε213 =
+ε231). Observe that ε0ijk = εijk.

The fact that εµνρσ is an invariant tensor follows from the fact that,
from the definition of the determinant of a 4× 4 matrix,

Λµµ′Λ
ν
ν′Λ

ρ
ρ′Λ

σ
σ′ε

µ′ν′ρ′σ′ = (detΛ)εµνρσ , (7.84)

and, for the (proper) Lorentz group, det Λ = 1. Combining εµνρσ with
the metric tensor we can lower some of its indices. In particular, εµνρσ
is still totally antisymmetric, while mixed combinations such as εµ

νρσ =
ηµµ′ε

µ′νρσ are not.



172 Special Relativity

7.3.4 Infinitesimal Lorentz transformations

With the formalism that we have developed, we can now compute how
many independent parameters there are in a Lorentz transformation.
This is conveniently done restricting to infinitesimal transformations.
For the Lorentz group, the identity transformation is given by Λµν = δµν ,
since, on any vector V µ, we have in this case V µ → ΛµνV

ν = δµνV
ν =

V µ. A transformation infinitesimally close to the identity can then be
written as

Λµν = δµν + ωµν , (7.85)

where ωµν are infinitesimal of first order, that describe the deviation
of Λµν from the identity transformation. Note the positioning of the
indices in Λµν and in ωµν , with the lower index in the second position;
as we will see in a moment, it is important to keep track of it, since
it will turn out that the matrix ωµν is not symmetric. Plugging this
into eq. (7.60), neglecting terms quadratic in the infinitesimal quantity
ωµν , and raising and lowering the Lorentz indices according to the rules
discussed in this section, we get1515Explicitly,

ηρσ = ηµν(δµρ + ωµρ)(δνσ + ων σ)

= ηρσ + ηµνδ
µ
ρω

ν
σ + ηµνδ

ν
σω

µ
ρ

+O(ω2) .

Therefore, to linear order in ω,

0 = ηµνδ
µ
ρω

ν
σ + ηµνδ

ν
σω

µ
ρ

= ηρνω
ν
σ + ηµσω

µ
ρ

= ωρσ + ωσρ .

Observe that this generalizes to the
Lorentz group the result that we found
for spatial rotations in eq. (1.151).

ωµν = −ωνµ . (7.86)

An antisymmetric 4 × 4 matrix has six independent elements, so the
Lorentz group has six parameters. These are the three angles and the
three rapidities, corresponding to the three independent rotations and
the three independent boosts that we found by inspection in Section 7.2.
Thus, the angles and rapidities associated with rotations and boosts,
respectively, exhaust the parameters associated with Lorentz transfor-
mations.

7.3.5 Decomposition of a Lorentz tensor under
rotations

Since four-vectors and four-tensors have well defined transformation
properties under the Lorentz group, in particular they also have well
defined transformation properties under spatial rotations, since these
are a subgroup of the Lorentz group. In this subsection we explore this
connection in more detail.

Rotations are a particular case of Lorentz transformations, with Λµν
of the form (7.18) so, in components,

Λ0
0 = 1 , Λi0 = Λ0

i = 0 , Λij = Rij , (7.87)

where Rij is the rotation matrix. Note that we now keep one index
upper and one lower also on Rij . However, for the rotation group the
spatial indices could be raised and lowered with the Kronecker delta,
that can be written as δij or as δij , and we could keep all indices lower
(or upper), as indeed we have done in Section 1.6.

Consider first the Lorentz transformation of a four-vector V µ, given
by eq. (7.44). Since the matrix Λ in eq. (7.18) is in a block-diagonal
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form, under rotations V 0 does not mix with V i, and

V 0 → V 0 , V i → RijV
j . (7.88)

Thus, under rotations, V 0 is a scalar while V i is a vector. According to
the discussion in Section 1.7.1, the fact that V 0 and V i never mix under
rotations is expressed in the language of group theory by saying that
V µ provides a reducible representation of the rotation group; in other
words, it is made by separate “building blocks” (here V 0 and V i) that
do not mix among them under any rotation. However, under boosts V 0

and V i mix, so four-vectors are an irreducible representation of the full
Lorentz group.

Let us now consider the transformation of a tensor Tµν under rota-
tions. From eqs. (7.53) and (7.87), we find that

T 00 → Λ0
ρΛ

0
σT

ρσ = T 00 , (7.89)

since, for rotations, Λ0
i = 0 and Λ0

0 = 1. This means that T 00 is a
scalar under rotations. Similarly,

T 0i → Λ0
ρΛ

i
σT

ρσ = RijT
0j , (7.90)

which is the transformation law of a spatial vector (and the same for
T i0), while

T ij → ΛiρΛ
j
σT

ρσ = RikR
j
lT
kl , (7.91)

and therefore is a spatial tensor. Recalling that a spatial tensor T ij

further decomposes into irreducible representations of the rotation group
as in eq. (1.148) we see that, from the point of view of spatial rotations,
the 16 components of a Lorentz tensor Tµν decompose into two scalars
[T 00, and S = δijT

ij , see eq. (1.148)], three vectors (T 0i, T i0 and Ai),
and a traceless symmetric tensor ST

ij . The counting of degrees of freedom
of course matches, 4× 4 = 1 + 1 + 3 + 3 + 3 + 5.

Observe also that the trace of Tµν in the four-dimensional sense, T =
ηµνT

µν , is a Lorentz invariant quantity, and therefore is invariant (i.e.,
a scalar) also under rotations. Writing T = η00T

00 + δijT
ij , we see

that T is related to the two scalars under rotations that we have found
above, T 00 and S, by T = −T 00 + S. Note that T 00 and S are scalars
under rotations but are not Lorentz scalars. For instance, T 00 is the
(00) component of a Lorentz tensor. Only their combination −T 00 + S
is a Lorentz scalar.

7.3.6 Covariant transformations of fields

In classical electrodynamics the fundamental variables are fields, i.e.,
dynamical quantities that depend not only on time, as the typical vari-
ables qi(t) of an elementary mechanical system, but also on space. For
instance, the scalar potential φ(t,x), the vector potential A(t,x), or the
electric and magnetic fields E(t,x) and B(t,x), are all functions of time
and space. Under a rotation, or under a Lorentz transformation, they
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therefore transform both because their arguments transform, and be-
cause of their intrinsic scalar, vector, or tensor nature. To understand
these transformation properties, let us consider first spatial rotations (in
which case, we can suppress for simplicity the time dependence). The
simplest example of a transformation is that of a scalar field. Consider
for instance the temperature T (x) as a function of the position. The
numerical values of the coordinates xi of a point P depend on how we
have chosen the reference frame. If we rotate our reference frame, they
will change according to xi → x′i = Rijxj (for rotations we use here
the simpler convention of keeping all spatial indices lower and summing
over repeated lower indices). However, the temperature at the point P
is the same, independently of how we choose to orient the axes of the
reference frame, i.e., independently of the labels xi that we choose to
assign to the point P. This means that, when x→ x′, the function T (x)
must change as

T (x)→ T ′(x′) = T (x) . (7.92)

This relation expresses the fact that T will become a new function T ′ of
the new coordinate x′, and the functional form of T ′ must be such that,
on the new label x′ that we have given to the point P , it has the same
numerical value that the old function T had on the old label x of P . In
other words, the functional form will adapt itself to the change of the
argument, so that, in the end, the temperature at a point P is the same,
independently of how we have chosen to orient the axes of our reference
frame.16 Equation (7.92) can be rewritten as T ′(Rx) = T (x), where Rx16This is completely analogous to the

discussion of scalars under translations,
see eq. (6.22) and Note 3 on page 137.

denotes the vector with components Rijxj ; then, replacing the generic
point x by R−1x, we can also rewrite it as

T ′(x) = T (R−1x) . (7.93)

This defines the transformation of a scalar field (in this case, scalar under
spatial rotations). If, in contrast, we consider a vector field, such as for
instance the electric field E(x), when the label x of the point P becomes
x′, with x′i = Rijxj , the vector itself (seen as an abstract geometric
object, e.g., an arrow starting from P with a given length and direction)
will not change, but now we must refer its components Ei to the new
axes. Thus, under a rotation xi → Rijxj , they will change as

Ei(x)→ E′i(x
′) = RijEj(x) . (7.94)

This can be rewritten also as E′(Rx) = RE(x), or

E′(x) = RE(R−1x) . (7.95)

This is the transformation law of a vector field.17 Similarly, a tensor field

17As a check, consider a vector field
E(x) = x. This is a purely radial vec-
tor field. Then eq. (7.95) gives E′(x) =
R(R−1x) = x. Indeed, a purely radial
field is rotationally invariant and does
not change under rotations. The same
holds if we rather write E(x) = cx, with
c a constant (needed to provide the cor-
rect dimensions to E), since R(cx) =
cRx, or even if we take c = c(r) where
r = |x|.

transforms as

Tij(x)→ T ′ij(x
′) = RikRjlTkl(x) . (7.96)

We now consider a scalar function f(x), and we study how its gradient
transform under rotations. If xi → x′i = Rijxj and f(x) → f ′(x′) =
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f(x), we have
∂f(x)

∂xi
→ ∂f ′(x′)

∂x′i
=
∂xj
∂x′i

∂f(x)

∂xj
. (7.97)

For orthogonal matrices, the inversion of x′i = Rijxj gives xj = Rijx
′
i,

18 18This is seen most easily writing, in
matrix form, x′ = Rx. The inversion
is then x = R−1x′. For orthogonal
matrices R−1 = RT, see eq. (1.128),
so we get x = RTx′. In components,
this gives xj = RT

jix
′
i and, by defini-

tion of transpose matrix, RT
ji = Rij .

Otherwise, working in components, we
multiply x′i = Rijxj by Rik, to get
Rikx

′
i = RikRijxj and use eq. (1.129)

in the form RikRij = δkj . This gives
Rikx

′
i = xk and we then rename k → j.

and therefore ∂xj/∂x
′
i = Rij , so we finally obtain

∂f(x)

∂xi
→ Rij

∂f(x)

∂xj
. (7.98)

Comparing this to eq. (7.94) we see that the gradient of a scalar function
transforms as a vector field. A useful notation that makes this result
more explicit is19

19For spatial indices, the upper/lower
position is irrelevant. However, we will
see in eq. (7.107) that, for Lorentz in-
dices, the derivative with respect to a
quantity with upper index gives a quan-
tity with lower index, so in the final re-
sult (7.99) we already use the position-
ing of the indices appropriate for the
extension to the relativistic context.

∂i ≡
∂

∂xi
, (7.99)

so eq. (7.98) reads
∂if(x)→ Rij∂jf(x) . (7.100)

Thus, the index i in ∂i behaves as a vector index. In the same way we
can prove, for instance, that ∂i∂jf(x) is a tensor field with two indices
(symmetric, since the derivative commutes, assuming as always smooth
functions) or that, if vi(x) is a vector field under rotations, then ∂ivj(x)
is also a tensor field under rotation, and so on.

The generalization of these manipulations to the Lorentz group is
straightforward. A field φ(x) [where we use the notation x to denote
collectively (t,x)] is a scalar under Lorentz transformations if, under
xµ → x′µ = Λµνx

ν , it transforms as

φ(x)→ φ′(x′) = φ(x) . (7.101)

Similarly, a (contravariant) four-vector field V µ(x) is defined as a field
that transforms as

V µ(x)→ V ′µ(x′) = ΛµνV
ν(x) , (7.102)

while a covariant vector field transforms as

Vµ(x)→ V ′µ(x′) = Λµ
νVν(x) , (7.103)

and similarly for tensor fields. We define

∂µ ≡
∂

∂xµ
. (7.104)

Using eq. (7.60), we can check that the inversion of x′µ = Λµνx
ν is

xν = Λµ
νx′µ . (7.105)

Then, if φ(x) is a Lorentz scalar,

∂φ(x)

∂xµ
→ ∂φ(x′)

∂x′µ

=
∂xν

∂x′µ
∂φ(x)

∂xν

= Λµ
ν ∂φ(x)

∂xν
, (7.106)
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so
∂µφ(x)→ Λµ

ν∂νφ(x) , (7.107)

which shows that ∂µφ(x) is a covariant four-vector field. Note that ∂µ,
which is the derivative with respect of xµ where µ is an upper index,
produces a four-vector with lower index.20 We can also define20This can also be checked observing,

for instance, that if we act with ∂µ on
the scalar field configuration φ(x) =
vνxν , with vν some four-vector inde-
pendent of x, we get

∂µ(vνx
ν) = vν

∂xν

∂xµ
= vνδ

ν
µ = vµ ,

(7.108)
so the result is indeed a four-vector with
lower index. The fact that ∂xν/∂xµ =
δνµ follows from the fact that this
derivative is one if ν = µ and is zero
otherwise, and it is a tensor, with an
upper index ν inherited from xν . It is
therefore given by δνµ.

∂µ ≡ ∂

∂xµ
, (7.109)

and, from xµ = ηµνx
ν , we can easily prove that ∂µ = ηµν∂ν and ∂µ =

ηµν∂
ν , so the index µ in ∂µ or ∂µ can be treated as a normal Lorentz

index, raised and lowered with ηµν and ηµν . Note that

∂µx
ν = δνµ , (7.110)

while
∂µxν = ηµν , (7.111)

as can be seen by contracting both sides of ∂ρx
ν = δνρ with ηµρ.

We can similarly work out the transformations of other quantities
involving ∂µ. Consider for instance a tensor field Tµν(x) and form the
quantity ∂µT

µν(x). Under Lorentz transformations

∂Tµν(x)

∂xµ
→ ∂T ′µν(x′)

∂x′µ

=
∂xα

∂x′µ
∂

∂xα
[ΛµρΛ

ν
σT

ρσ(x)]

= Λµ
αΛµρΛ

ν
σ
∂

∂xα
T ρσ(x) , (7.112)

where we used eq. (7.105) to compute ∂xα/∂x′µ. Using eq. (7.60), we
get

Λµ
αΛµρ = δαρ , (7.113)

and therefore
∂µT

µν(x)→ Λνσ∂ρT
ρσ(x) . (7.114)

In terms of T ν(x) ≡ ∂µT
µν(x), this reads T ν(x) → ΛνσT

σ(x), which is
the transformation law of a four-vector field. Therefore ∂µT

µν(x) is a
four-vector field. From these examples, it is clear that the transformation
properties of quantities obtained acting with ∂µ on tensor fields can
be read from the remaining free Lorentz indices. So, as we have seen
explicitly, if φ(x) is a scalar field, ∂µφ is a four-vector field; similarly,
we can show that ∂µ∂νφ is a Lorentz tensor with two covariant indices,
etc. If V µ(x) is a four-vector field, manipulations analogous to those
performed above show that ∂µV

µ(x) is a scalar field, while, for instance,
∂µVν(x) is a Lorentz tensor field with two covariant indices; given a
Lorentz tensor field Tµν(x), ∂µT

µν(x) is a four-vector field, as we have
seen explicitly, and similarly ∂µ∂νT

µν(x) is a scalar field, ∂ρT
µν(x) is

a Lorentz tensor field with one covariant and two contravariant indices,
and so on.
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7.3.7 More general lessons

We conclude this section by remarking that the two postulates of Special
Relativity emerged from the extraordinary physical intuition of Einstein.
From the modern point of view, largely stimulated by Special Relativ-
ity, as well as by the developments in the theory of fundamental inter-
actions and quantum field theory, one of the fundamental questions is
always what are the symmetries of a given theory. Special Relativity is
a statement about the symmetries of Nature at the most fundamental
and elementary level, namely, the symmetries of space and time. In
the mathematical language that we have developed in this section, the
postulates of Special Relativity are equivalent to saying that, as far as co-
ordinate transformations are concerned, the symmetry group of Nature
is given by the Lorentz group SO(3, 1), rather than just by its rotation
subgroup SO(3) [together with Galilean velocity transformations (7.2)].
In fact, with one more decade of deep thinking, Einstein went even
(much) further and realized that, when gravitation enters the game, the
symmetry transformations are much larger and include all coordinate
diffeomorphisms. This, however, is the subject of another fascinating
chapter of physics, General Relativity. Modern particle physics is also
very largely based on the identification of symmetry groups, in this case
at the level of the dynamics; this will be the subject of a quantum field
theory course. For the purpose of the present course on classical elec-
trodynamics, we can just stress that the revolution initiated by Special
Relativity has gradually permeated basically all of theoretical physics,
not only because of its specific concepts, but also for bringing the no-
tion of symmetry groups to the forefront of the modern understanding
of Nature.

7.4 Relativistic particle kinematics

7.4.1 Covariant description of particle trajectories

In Newtonian mechanics, the motion of a particle is described by giving
the evolution of the three spatial coordinates as a function of time, xi(t).
In our relativistic setting, for a given inertial observer K that uses co-
ordinates (t,x), this amounts to giving the spatial components of xµ as
a function of t or, equivalently, of x0 = ct. In Special Relativity this is
not a natural choice, since it obscures the fundamental Lorentz covari-
ance of the equations, by separating artificially the x0 coordinate from
the three spatial coordinates xi, that together form the four-vector xµ.
Furthermore, the use of time t as a way to parametrize the trajectory is
also not natural from the relativistic point of view, since time is not a
Lorentz-invariant quantity. However, we have seen in Section 7.2.3 that
for a massive particle, moving at a speed v strictly smaller than c, we
can introduce its proper time τ , as in eq. (7.33). Since, for motions with
v < c, we have ds2 < 0, dτ =

√
−ds2/c is a real quantity. Since dτ

is defined in terms of the interval ds2, it is clearly a Lorentz-invariant
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quantity, and any inertial observer will agree on its value (apart from an
arbitrary choice of the origin of time). For the inertial observer K that
uses coordinates (t,x) and sees the particle moving with velocity v(t),
the relation between the particle’s proper time τ and his/her time t is
given by eq. (7.35). This relation is one-to-one since, from eq. (7.34),
we see that dτ/dt = 1/γ > 0, and can be inverted to obtain t = t(τ) or,
equivalently,

x0 = x0(τ) . (7.115)

Since t can be expressed as a function of τ , instead of using xi(t) the
observer K can use

xi(τ) ≡ xi[t(τ)] . (7.116)

As a result, the trajectory of the particle is now described by the set of
four functions {x0(τ), xi(τ)} or, in four-vector form, xµ(τ). In this way,
the motion of a particle in space-time is described in an explicit covariant
manner, through a four-vector xµ, which is a function of a Lorentz-
invariant quantity τ . From the point of view of Lorentz covariance, this
is much more natural than using xi(t), in which we have a three-vector
xi, function of a quantity t, or of x0, which is the temporal component
of a four-vector. In other words, rather than describing the motion
of a particle throughout space with a function x(t), as in Newtonian
mechanics, we prefer to use a parametric form x = x(τ) and t = t(τ).
In principle, one could invert the latter to obtain τ as a function of t,
τ = τ(t), and plug this back into x = x(τ) to get back the more usual
description in terms of x(t). However, the description in terms of xµ(τ)
has the advantage of being explicitly Lorentz covariant. The functions
xµ(τ) define the so-called particle world-line.

Given a trajectory xµ(τ), in an infinitesimal interval dτ of proper time
xµ(τ) changes by an amount dxµ(τ) = (dx0(τ), dx(τ)). The interval ds2

separating the events xµ(τ) and xµ(τ) + dxµ(τ) is

ds2 = −[dx0(τ)]2 + [dx(τ)]2 . (7.117)

From the definition (7.33) of proper time, we then have

[dx0(τ)]2 − [dx(τ)]2 = c2dτ2 , (7.118)

or, in a more explicitly covariant form,

ηµνdx
µ(τ)dxν(τ) = −c2dτ2 . (7.119)

From xµ(τ) we can form the four-velocity uµ, defined as

uµ(τ) =
dxµ(τ)

dτ
. (7.120)

Since xµ is a four-vector, and τ is Lorentz-invariant, uµ(τ) is a four-
vector. From eq. (7.119) we immediately get

u2 ≡ ηµνuµuν = −c2 . (7.121)
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Consider an inertial frame K, with coordinates (t,x), where the particle
moves with velocity v(t). Using dτ = dt/γ from eq. (7.34), x0 = ct, and
dxi/dt = vi, we get

u0 = γ
dx0

dt
= γc , (7.122)

ui = γ
dxi

dt
= γvi , (7.123)

from which one can check that eq. (7.121) indeed holds.

7.4.2 Action of a free relativistic particle

We now introduce a relativistic generalization of the action principle.
This will be useful as a first example of a relativistic action principle, and
also provides a clean conceptual way of defining energy and momentum
for a free relativistic particle. Recall that, in classical mechanics, for
a particle described by coordinates q(t), with components qi(t), the
Lagrangian is a functional of the coordinates and their time derivatives,
L[q, q̇], and the corresponding action is

S =

∫
dtL[q, q̇] . (7.124)

The conjugate momentum is defined by

pi =
δL

δq̇i
. (7.125)

The Hamiltonian is then defined as

H[q,p] = q̇·p− L[q, q̇] , (7.126)

where q̇ is expressed in terms of p (and possibly of q) by inverting
eq. (7.125). Writing −H[q,p] = L[q, q̇] − q̇·p , and comparing it to
the definition of Legendre transform in eq. (5.108) and the discussion
following it, we see that −H is the Legendre transform of L, and q and
p are conjugate variables, in the sense of the Legendre transform.

The simplest example is provided by a particle of mass m in an ex-
ternal potential V (q). The Lagrangian is

L =
1

2
mq̇2 − V (q) , (7.127)

where q̇ = v is the velocity of the particle. The momentum is then
pi = mq̇i, whose inversion is just q̇i = pi/m, and we get

H =
p2

2m
+ V (q) . (7.128)

For a free relativistic particle the action must be Lorentz invariant and
must therefore be obtained from the integration of a Lorentz-invariant
first-order differential. The only available Lorentz-invariant quantity
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(assuming the particle to be point-like and without internal degrees of
freedom, such as spin) is the proper time of the particle, so we must
have

Sfree = −α
∫
dτ , (7.129)

for some constant α.21 Using dτ = dt/γ, we can also rewrite this as21This kind of reasoning, based on the
most general structure that respects
some symmetry principle, is quite typ-
ical of modern field theory. In more
detail, we wish to construct the action
for a free relativistic point-like particle.
The fact that the particle has no inner
structure means that the only variables
that we have at our disposal are its
proper time τ and the four-vector xµ(τ)
that describes its trajectory. Requir-
ing invariance under spatial and tem-
poral translations implies that the ac-
tion must be invariant under the trans-
formation xµ(τ) → xµ(τ) + aµ, where
aµ is an arbitrary constant four-vector.
This means that any dependence of the
action on xµ(τ) can only enter through
dxµ(τ)/dτ , i.e., uµ. The most gen-
eral action could then have the form
S =

∫
dτf(uµ), for some scalar func-

tion f . To construct a scalar out of uµ

we need to contract its Lorentz index
with another four-vector (or, more gen-
erally, to consider uµuν and contract its
two Lorentz indices with a tensor with
two indices, or to consider uµuνuρ and
contract it with a tensor with three in-
dices, and so on). Since we are consid-
ering a free particle, there is no external
four-vector field (such as the gauge po-
tential Aµ) that could be used here, and
the contraction of uµ with itself gives a
constant, because of eq. (7.121). There-
fore, f must be a constant, independent
of uµ. Note that this state of affairs
changes completely if we assume that
the particle has an internal structure.
In this case, new degrees of freedom
would enter the action; for instance, a
massive particle could have a spin s,
that in a covariant setting can also be
described by a four-vector sµ, defined
by the fact that, in the rest frame of the
particle, sµ = (0, s). The action then
becomes more complicated, and in gen-
eral contains an infinite number of pos-
sible terms that can be organized in or-
der of importance, in a sense very simi-
lar to the multipole expansion discussed
in Chapter 6. This is the logic behind
the use of effective actions in modern
field theory.

Sfree = −α
∫
dt

√
1− v2

c2
, (7.130)

so the corresponding Lagrangian is

L = −α
√

1− v2

c2
. (7.131)

Expanding the square root to order v2/c2 we get

L = −α+ α
v2

2c2
+O

(
v4

c4

)
. (7.132)

Comparison with the non-relativistic limit shows that α = mc2, so that,
apart from a constant term that has no effect on the equations of motion,
we get the non-relativistic Lagrangian of a free particle, L = (1/2)mv2.
Therefore, the action of a free relativistic particle is

Sfree = −mc2
∫
dτ , (7.133)

or, equivalently,

Sfree = −mc2
∫
dt

√
1− v2

c2
. (7.134)

7.4.3 Relativistic energy and momentum

From the relativistic Lagrangian, we can get the relativistic momentum
using eq. (7.125),

pi =
δ

δvi

[
−mc2

√
1− v2

c2

]

= γmvi , (7.135)

and the energy

E = p·v − L
= γmc2 . (7.136)

In conclusion, we have obtained the relativistic expression for the energy
and momentum of a particle,

E = γmc2 =
mc2√

1− (v2/c2)
, (7.137)
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and

p = γmv =
mv√

1− (v2/c2)
.

(7.138)

Equation (7.137) shows that, even for v = 0, a particle still has an energy

E = mc2 , (7.139)

associated with its mass (with no doubt, the most famous formula of
physics for the general public!). Expanding to second order in v2/c2,
the next term gives the Newtonian expression for the kinetic energy,

E = mc2 +
1

2
mv2 +O

(
v4

c4

)
. (7.140)

Comparing eqs. (7.137) and (7.138) to eqs. (7.122) and (7.123) we find
that

E/c = mu0 , (7.141)

pi = mui . (7.142)

Therefore, defining
pµ ≡ muµ , (7.143)

we have
pµ = (E/c,p) . (7.144)

Since we have already proven that uµ is a four-vector, this shows that
E/c and p form a four-vector. We will refer to pµ as the four-momentum
of the particle. Note, from eq. (7.121), that

p2 ≡ ηµνp
µpν

= −m2c2 , (7.145)

or, explicitly,22

22A comment on notation. When en-
ergy appears in equations where also
the electric field appears, as was the
case for instance in eq. (3.54), to avoid
confusion we use E for the energy and E
for the electric field (so E = |E| denotes
the modulus of the electric field). In a
context such as here, where only energy
is involved, we use the more common
notation E for the energy.

E2 = m2c4 + |p|2c2 . (7.146)

For physical reasons we only keep the positive root of this equation,23 23A really satisfying understanding of
the negative root only comes from
quantum field theory. See e.g., Sec-
tion 4.1 of Maggiore (2005).

so
E =

√
m2c4 + |p|2c2 , (7.147)

which is the dispersion relation for relativistic particles, that we already
anticipated in eq. (3.50). Equations (7.137) and (7.138) can also be
combined to give

p =
Ev

c2
. (7.148)

From eq. (7.147), if m = 0 we have

E = |p|c , (m = 0) . (7.149)
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Inserting this in eq. (7.148) and taking the modulus, we get |v| = c.
Massless particles always travel at the speed of light and, vice versa, if
|v| = c then eqs. (7.147) and (7.148) give m = 0.

Consider now a particle with energy E, subject to an external inter-
action that changes its four-momentum. Applying a time derivative to
both sides of pµp

µ = −m2c2 it follows that

0 = pµ
dpµ

dt

= −E
c2
dE

dt
+ p·dp

dt
. (7.150)

Therefore, using eq. (7.148), we see that, in a full relativistic setting, we
still have

dE

dt
= v·dp

dt
. (7.151)

In the non-relativistic limit, dp/dt is equal to the force F acting on the
particle, and we recover the result that dE/dt = v·F, i.e., dE/dt is equal
to the work per unit time performed by the external force.

The fact that pµ is a four-vector immediately tells us how energy and
momentum change under Lorentz transformations. They will simply
transform as any other four-vector; so, for instance, if we make a boost
with a velocity v0 along the x axis, we can read the transformation from
eqs. (7.22) and (7.23) with x0 replaced by E/c and x replaced by px,
which gives

E′ = γ(v0)(E + v0px) , (7.152)

p′x = γ(v0)
(
px +

v0

c2
E
)
, (7.153)

while p′y = py and p′z = pz. In particular, if before the boost the particle
is at rest, after the boost we will have E = γ(v0)mc2 and pL = γ(v0)mv0,
where we eliminated the prime from the boosted quantity and we used
the more general notation pL for the component of the momentum in
the direction of the boost, i.e., in the longitudinal direction. Eliminating
v0 in terms of the rapidity ζ from eq. (7.21), we have γ(v0) = cosh ζ, so
E = mc2 cosh ζ and pL = mc sinh ζ. Then, we have

(E/c) + pL
(E/c)− pL

= e2ζ , (7.154)

and therefore24

24This expression for the rapidity is
useful in experimental particle physics.
Note that the rapidity, that we denoted
by ζ, is also often denoted by y in this
particle physics context, while the let-
ter η is instead reserved to the ‘pseudo-
rapidity’, defined as

η =
1

2
log

(
|p|+ pL

|p| − pL

)
. (7.155)

For an ultra-relativistic particle, E '
|p|c, and the pseudo-rapidity becomes
the same as the rapidity.
A useful property of the rapidity is
that, if we consider a particle charac-
terized by a value ζ of the rapidity,
i.e., with E = mc2 cosh ζ and pL =
mc sinh ζ, and we perform a boost with
rapidity ζ0 along the longitudinal direc-
tion, using the analogous of eq. (7.19)
we get

E′/c = (E/c) cosh ζ0 + pL sinh ζ0

= mc(cosh ζ cosh ζ0 + sinh ζ sinh ζ0)

= mc cosh(ζ + ζ0) ,

and, similarly,

p′L = mc sinh(ζ + ζ0) .

In other words, under boosts in the lon-
gitudinal directions, ζ transforms sim-
ply as ζ → ζ + ζ0 (which is com-
pletely analogous to the composition of
angles for subsequent rotations around
the same axis). Therefore, dζ is invari-
ant under longitudinal boosts.

ζ =
1

2
log

[
(E/c) + pL
(E/c)− pL

]
. (7.156)
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We now use the formalism developed in the previous chapter to rewrite
Maxwell’s equations in a form that will make explicit their covariance
under Lorentz transformation. We find it convenient to start by study-
ing the source term, i.e., the charge and current density. After having
established that they can be assembled into a four-vector, we will then
see how to write Maxwell’s equations in a covariant form.

8.1 The four-vector current

We begin by studying the Lorentz transformation properties of the
charge density ρ and of the current density j. For a single point-like
charged particle, the charge density and the current density have been
given in eqs. (3.25) and (3.27). If we denote by x(t) the trajectory of a
particle with charge q, and by x a generic point in space, we can rewrite
these expressions as

ρ(x) = qδ(3)[x− x(t)] , (8.1)

j(x) = qv(t)δ(3)[x− x(t)] , (8.2)

where x = (ct,x) and v(t) = dx(t)/dt. A simple way of understanding
their properties under Lorentz transformations is to describe the trajec-
tory using the four-vector xµ(τ), defined as in Section 7.4.1, instead of
x(t). Indeed, consider the quantity

jµ(x) ≡ q
∫
cdτ ′ uµ(τ ′)δ(4)[x− x(τ ′)] , (8.3)

where the factor of c is inserted for later convenience. Note that uµ(τ) =
dxµ(τ)/dτ is a four-vector and proper time τ is a Lorentz scalar. Fur-
thermore, by definition,

∫
d4x δ(4)(x) = 1 . (8.4)

Under a Lorentz transformation xµ → x′µ = Λµνx
ν we have

d4x→ d4x′ = (det Λ) d4x . (8.5)

Since det Λ = 1, d4x is Lorentz invariant. From eq. (8.4), then, also
δ(4)(x) is Lorentz invariant.1 It then follows that jµ(x), defined by

1Equivalently, under a generic linear
transformation xµ → x′µ = Λµνxν we
have

δ(4)(x)→
1

det Λ
δ(4)(x) , (8.6)

and, for a Lorentz transformation,
det Λ = 1.
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eq. (8.3), is a four-vector, since it is obtained multiplying the four-vector
uµ(τ ′) by the Lorentz invariant quantity δ(4)(x) and integrating over the
Lorentz invariant differential dτ ′. The integral over dτ ′ in eq. (8.3) can
be computed explicitly using eq. (1.61), that we rewrite with the nota-
tion

δ[f(τ ′)] =
∑

i

1

|f ′(τi)|
δ(τ ′ − τi) , (8.7)

where τi are the simple zeros of the function f(τ ′). We use this identity
for f(τ ′) = ct−x0(τ ′) and we denote by τ the value of τ ′ such that ct =
x0(τ ′),2 which is nothing but the proper time of the particle considered.2The solution exists and is unique

because, for any acceptable physical
trajectory (e.g., a trajectory that do
not go back and forth in time) the
parametrization of the trajectory in
terms of proper time is in one-to-
one correspondence with that in terms
of “coordinate time” t. Furthermore,
dx0/dτ > 0, i.e., t and τ increase in the
same direction.

Then eq. (8.3) can be rewritten as

jµ(x) = q

∫
cdτ ′ uµ(τ ′)δ(3)[x− x(τ ′)]δ[ct− x0(τ ′)]

= q

∫
cdτ ′ uµ(τ ′)δ(3)[x− x(τ ′)]

1

|dx0/dτ |δ(τ
′ − τ)

= qc
uµ(τ)

u0(τ)
δ(3)[x− x(τ)] , (8.8)

where we used u0 = dx0/dτ . Recalling, from eqs. (7.122) and (7.123),
that u0 = γc and ui = γvi, and comparing with eqs. (8.1) and (8.2), we
see that

jµ = (cρ, j) . (8.9)

Therefore, the charge density ρ (times c) and the current density j, de-
fined by eqs. (8.1) and (8.2), are the temporal and spatial components,
respectively, of the contravariant four-vector jµ defined by eq. (8.3).
Since any distribution of charges and currents can be obtained by super-
position of individual charges, eq. (8.9) is completely general. If we lower
the Lorentz index, according to our metric signature ηµν = (−,+,+,+),
we get jµ = (−cρ, j).

In terms of jµ, the conservation equation (3.22) can be rewritten in
an explicitly Lorentz covariant form as

∂µj
µ = 0 . (8.10)

Also observe that, in the covariant language, the total charge Q over all
of space is obtained from a volume integral of the µ = 0 component of
the four-vector jµ,

Q =
1

c

∫
d3x j0(t,x) . (8.11)

Since the right-hand side is integrated over x, but not over t, a priori the
left-hand side could have been a function of time. However, as we saw in
Section 3.2.1, current conservation implies that the chargeQ is conserved
in the sense of eq. (3.24), so, in particular, dQ/dt = 0 if the integral in
eq. (8.11) is over all space, and we set the boundary condition that j has
compact support, or anyhow vanishes sufficiently fast at infinity.3

3The charge given in eq. (8.11), be-
side being conserved, is also a Lorentz
scalar. This is not readily apparent
from eq. (8.11) because the integration
is only over the spatial variables d3x,
and the integrand, j0 is the temporal
component of a four-vector. The ex-
plicit proof is somewhat technical, and
we give it in Solved Problem 8.1, where
we also provide an explicitly Lorentz-
invariant expression for it.
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8.2 The four-vector potential Aµ and the
Fµν tensor

We next consider the scalar potential φ(x) and the vector potential A(x).
We combine them into a contravariant four-vector field Aµ(x),

Aµ = (φ/c,A) , (8.12)

and we will show in Section 8.3 that, with this assignment, i.e., with
this definition of how φ and A behave under Lorentz transformations,
Maxwell’s equations are Lorentz covariant, so that, if they hold in a
frame, they also hold in a Lorentz-transformed frame. For rotations,
this is already explicit from the vector form (3.8)–(3.11). The new result
will be that they are covariant under the larger Lorentz group, i.e., that
Special Relativity is an underlying symmetry of electromagnetism.

First, it is useful to observe that the assignment of φ and A to the four-
vector field Aµ is consistent with gauge invariance, and in fact allows us
to write the gauge transformation (3.86) compactly. This can be shown
observing first that, lowering the Lorentz index,

Aµ = (−φ/c,A) . (8.13)

Then eq. (3.86) takes the simple and elegant form

Aµ → A′µ = Aµ − ∂µθ . (8.14)

Taking θ to be a Lorentz scalar function, ∂µθ is a four-vector field,
and the gauge transformation preserves the fact that Aµ is a covariant
four-vector field. For the contravariant field Aµ, raising the indices in
eq. (8.14), we have Aµ → Aµ − ∂µθ.

We next introduce the Lorentz tensor field

Fµν = ∂µAν − ∂νAµ . (8.15)

This tensor is antisymmetric and therefore has six independent com-
ponents. We can work them out explicitly as follows. Consider first
F 0i,

F 0i = ∂0Ai − ∂iA0

=
1

c

(
−∂tAi − ∂iφ

)
. (8.16)

Comparing with eq. (3.83) (and recalling that ∂i = ∂i is the i-th compo-
nent of ∇) we discover that F 0i is just the i-th component of the electric
field (divided by c),4

4The extra factors of c or 1/c in several
of the subsequent formulas, as well as
the relative factor of c between the tem-
poral and spatial components of Aµ in
eq. (8.12), are absent in Gaussian units,
see App. A, and this is among the rea-
sons why Gaussian units provide nicer
expressions for relativistic equations.

F 0i =
1

c
Ei , (8.17)
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or Ei/c = −F0i = Fi0. Similarly (keeping for simplicity all indices lower,
since spatial indices are raised and lowered with δij),

εijkFjk = εijk(∂jAk − ∂kAj)
= 2εijk∂jAk , (8.18)

where in the last equality we used the antisymmetry of εijk. However,
εijk∂jAk is just (∇×A)i. Then, comparison with eq. (3.80) shows that

Bi =
1

2
εijkFjk , (8.19)

which can be inverted to give

Fij = εijkBk . (8.20)

Thus, the six independent components of Fµν are given by the three com-
ponents of E and the three components of B. Explicitly, as a matrix,55Note that the signs in the matrix el-

ements depend on our choice of metric
ηµν = (−,+,+,+). To compare with
a text that uses ηµν = (+,−,−,−)
[such as Jackson (1998)], one must ob-
serve that Aµ is always defined in terms
of φ and A from eq. (8.12), but now
Aµ = ηµνAν differs from ours by an
overall minus sign (while ∂µ = ∂/∂xµ is
unchanged because it involves xµ with
an upper index); therefore also Fµν =
∂µAν − ∂νAµ has the opposite sign,
and the same holds for Fµν , since we
need two η factors for raising its indices,
Fµν = ηµρηνσFρσ .

Fµν =




0 E1/c E2/c E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0


 . (8.21)

Under a gauge transformation (8.14),

Fµν → Fµν − (∂µ∂νθ − ∂ν∂µθ)
= Fµν , (8.22)

(we always consider transformations such that the function θ is infinitely
differentiable, and therefore on it the derivatives commute), so Fµν is
gauge invariant. Indeed, we have already seen in Section 3.3 that the
electric field and the magnetic field are gauge invariant.

8.3 Covariant form of Maxwell’s equations

We are now ready to write Maxwell’s equations in covariant form. Con-
sider the equation

∂µF
µν = −µ0j

ν , (8.23)

where jν is given by eq. (8.9).6 Note that eq. (8.23) is a four-vector6As remarked in Note 5, if one rather
uses the signature ηµν = (−,+,+,+)
for the metric, opposite to ours, Fµν

also differs from our definition by an
overall sign, and then eq. (8.23) is re-
placed by ∂µFµν = +µ0jν .

equation, since the index ν is free. For ν = 0, ∂µF
µ0 is the same as

∂iF
i0, since F 00 = 0. Then, using F i0 = −Ei/c and j0 = cρ, we see

that eq. (8.23) with ν = 0 is the same as

∇·E = µ0c
2ρ . (8.24)
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For ν = i, instead,

∂µF
µi = ∂0F

0i + ∂jF
ji

=
1

c2
∂tE

i − ∂jεijkBk

=

[
1

c2
∂tE−∇×B

]i
. (8.25)

Therefore, eq. (8.23) with ν = i reduces to the vector equation

∇×B− 1

c2
∂E

∂t
= µ0j . (8.26)

Note that eqs. (8.24) and (8.26) are written in terms of only two param-
eters: µ0, that appears in eq. (8.23), and c, which physically represents
the speed of light and, formally, entered these equations through the
definition of the Lorentz group [defined by the condition that Lorentz
transformations leave invariant the quadratic form (7.13)] and, from
there, entered all other formulas of this chapter through xµ = (ct,x),
∂0 = (1/c)∂t, and so on.

We see that eqs. (8.24) and (8.26) are the same as eqs. (3.1) and (3.2)
once we make the identification

ε0µ0 =
1

c2
. (8.27)

The quantity that we formally denoted by c in eq. (3.7) is therefore the
same as the speed of light that we are using here, as the notation in
eq. (3.7) already anticipated.7 7We will confirm the interpretation of

1/
√
ε0µ0 as the speed of light in Chap-

ter 9, where we will see that it is in-
deed the velocity at which electromag-
netic waves travel in vacuum.

In terms of Aµ, eq. (8.23) reads

2Aν − ∂ν(∂µA
µ) = −µ0j

ν , (8.28)

which puts together eqs. (3.84) and (3.85) into a single four-vector
equation.8 Also observe that the Lorenz gauge condition (3.89) takes 8The equation with ν = i reduces

indeed trivially to eq. (3.85). Equa-
tion (8.28) with ν = 0 can be written
as

2(φ/c)− ∂0[∂0(φ/c) + ∇·A] = −µ0cρ .

Using 2 − ∂0∂0 = ∇2, ∂0 = −∂0 =
−(1/c)∂t and µ0c2 = 1/ε0 we get back
eq. (3.84).

the compact form

∂µA
µ = 0 . (8.29)

Therefore, in the Lorenz gauge, eq. (8.28) becomes a simple wave equa-
tion,

2Aµ = −µ0j
µ , (8.30)

which, again, unifies the scalar and vector equations (3.90) and (3.91)
into a single four-vector equation.

Let us now turn to the second pair of Maxwell’s equations, eqs. (3.10)
and (3.11). These equations do not involve the sources and we have
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seen that, once the electric and magnetic fields are written in terms of
the gauge potentials, they reduce to mathematical identities. In the
covariant formalism this comes out as follows. We define the tensor

F̃µν =
1

2
εµνρσFρσ . (8.31)

This is called the tensor dual to Fµν . Note that, since εµνρσ is totally
antisymmetric, we can also rewrite it as

F̃µν =
1

2
εµνρσ(∂ρAσ − ∂σAρ) = εµνρσ∂ρAσ . (8.32)

Again because of the antisymmetry of εµνρσ, we have the mathematical
identity εµνρσ∂µ∂ρ = 0 (as an operator acting on any infinitely differen-
tiable function, on which ∂µ and ∂ρ commute), since ∂µ∂ρ is symmetric
in (µ, ρ) and its contraction with the antisymmetric tensor εµνρσ van-
ishes. Therefore,

∂µF̃
µν = 0 . (8.33)

Proceeding as before (and observing that ε0νρσ is different from zero
only when ν, ρ, σ are all spatial indices, and ε0ijk is equal to the three-
dimensional tensor εijk) one can check that, for ν = 0, eq. (8.33) gives
eq. (3.10), while for ν = i it gives eq. (3.11).

Equations (8.23) and (8.33) are therefore Maxwell’s equations in co-
variant form. From these expressions, it is explicit that the underlying
symmetry of Maxwell’s equations is given by the Lorentz group, i.e., spa-
tial rotations and Lorentz boosts, since both sides of eq. (8.23) transform
as a four-vector, while eq. (8.33) sets a four-vector to zero, which is of
course also a condition that, if it holds in a reference frame, holds in
any other frame related by a Lorentz transformation. The covariant for-
malism therefore unveils a symmetry that, in the original formulation
(3.8–3.11), was actually already present, but was not readily visible.

8.4 Energy-momentum tensor of the
electromagnetic field

We can now use the covariant formalism to discuss the energy and mo-
mentum of the electromagnetic field. Let us consider the tensor

Tµν = − 1

µ0

(
FµρFρ

ν +
1

4
ηµνF ρσFρσ

)
. (8.34)

This is called the energy-momentum tensor of the electromagnetic field,
for reasons that we will now explain. The (00) component can be written
as

T 00 = − 1

µ0

[
F 0iFi

0 − 1

4

(
2F 0iF0i + F ijFij

)]

= − 1

µ0

(
1

2
F 0iF0i −

1

4
F ijFij

)
, (8.35)
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since Fi
0 = −Fi0 = F0i. Using eqs. (8.17) and (8.20), as well as

eq. (8.27), we get

T 00 =
1

2

(
ε0E

2 + µ−1
0 B2

)
. (8.36)

Comparing with eq. (3.43), we see that T 00 is the energy density u of the
electromagnetic field. Similarly, setting µ = 0 and ν = i in eq. (8.34),
we find that

T 0i =
1

c
Si , (8.37)

where S is the Poynting vector (3.34). Given that Tµν is symmetric, we
also have T i0 = T 0i. Finally, setting µ = i and ν = j in eq. (8.34), and
using again eq. (8.27), we get

T ij = ε0

(
1

2
E2δij − EiEj

)
+ µ−1

0

(
1

2
B2δij −BiBj

)
, (8.38)

which is the same as eq. (3.64). We therefore see that the energy density
u of the electromagnetic field given in eq. (3.43), 1/c times the Poynting
vector Si given in eq. (3.34), and the Maxwell stress tensor given in
eq. (3.64), form together a Lorentz tensor Tµν .9

9It is also interesting to observe that
Tµν is traceless. In fact, using
ηµνηµν = 4 in eq. (8.34),

ηµνT
µν = −

1

µ0
(FµρFρµ + F ρσFρσ)

=
1

µ0
(FµρFµρ − F ρσFρσ)

= 0 .

In the quantum theory, this is related
to the fact that the photon is a massless
particle.

The conservation equations discussed separately in Section 3.2.2 can
then be derived, in a unified manner, in terms of the Lorentz tensor
Tµν . Applying ∂µ to both sides of eq. (8.34), and using the equation of
motion (8.23), we find10

10The explicit computation is as fol-
lows. Applying ∂µ to both sides of
eq. (8.34), we get

−µ0∂µTµν = (∂µF
µρ)Fρ

ν

+Fµρ∂µFρ
ν +

1

2
(∂νF ρσ)Fρσ .

Using the equation of motion (8.23),
the term on the right-hand side, in the
first line, can be rewritten as

(∂µF
µρ)Fρ

ν = −µ0jρFρν .

The sum of the terms in the second
line, instead, vanishes. In fact, we can
rewrite it as

Fµρ∂
µF ρν + (∂ν∂ρAσ)Fρσ

= Fσρ∂
σF ρν + (∂ν∂ρAσ)Fρσ

= Fρσ [∂ν∂ρAσ − ∂σ(∂ρAν − ∂νAρ)]

= Fρσ [∂ν(∂ρAσ + ∂σAρ)− ∂ρ∂σAν ] .

We now observe that Fρσ is antisym-
metric in (ρ, σ), while the expression in
brackets is symmetric. Therefore, the
contraction vanishes. We are then left
with

∂µT
µν = jµF

µν .

Renaming the indices µ ↔ ν and us-
ing Tµν = T νµ and Fµν = −F νµ, we
finally obtain eq. (8.39).

∂νT
µν = −Fµνjν . (8.39)

In particular, setting µ = 0, we have

∂0T
00 + ∂iT

0i = −F 0iji . (8.40)

Using ∂0 = (1/c)∂t, T
00 = u, T i0 = T 0i = (1/c)Si and F 0i = Ei/c, we

can rewrite this as
∂tu+ ∇·S = −E·j , (8.41)

which is the same as eq. (3.47). Energy conservation is therefore the
ν = 0 component of eq. (8.39).

Similarly, recalling that j0 = −cρ, the µ = i component of eq. (8.39)
gives

∂0T
0i + ∂jT

ij = −F i0j0 − F ikjk
= −ρEi − εikljkBl
= −(ρE + j×B)i . (8.42)

Writing again ∂0 = (1/c)∂t, and observing, from eqs. (3.57) and (8.37),
that

T 0i(x) = cgi(x) , (8.43)

we get
∂gi
∂t

+ ∂jTij = −(ρE + j×B)i , (8.44)
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which is the same as eq. (3.62). This confirms the result found in
eq. (3.67) with a non-covariant formalism. Note that the scalar and
vector conservation equations (3.47) and (3.62) are now unified into the
single covariant equation (8.39).

Since T 00 is the energy density of the electromagnetic field, and T 0i/c
is the momentum density, the energy and momentum carried by the
electromagnetic field are given by

Eem =

∫
d3xT 00 , (8.45)

P iem =
1

c

∫
d3xT 0i , (8.46)

where the integral extends over all of space (or over a finite volume V ,
if we are interested in the energy and momentum of the electromagnetic
field in that volume). As can be expected by analogy with the result
(7.144) valid for point particles, the quantity

P νem =
(
Eem/c,P

i
em

)
(8.47)

=
1

c

∫
d3xT 0ν , (8.48)

is a four-vector. The proof is analogous to the one used to show that the
charge Q given in eq. (8.11) is a Lorentz scalar, and we give it explicitly
in Problem 8.2.

8.5 Lorentz transformations of electric
and magnetic fields

The results of Sections 8.2 and 8.3 show that, from the point of view
of Lorentz transformations, the vectors E and B are not the spatial
component of a four-vector, as one could have naively guessed. There
is no “E0” that combines with E to form a four-vector, and similarly
for B. Rather, Maxwell’s equations become Lorentz covariant when we
assemble E and B together into a different representation of the Lorentz
group, the antisymmetric tensor Fµν .

From this, we can immediately derive how E and B transform under
Lorentz transformations. Under a Lorentz transformation

xµ → x′µ = Λµνx
ν , (8.49)

we have
Fµν(x)→ F ′µν(x′) = Λµ

ρΛν
σFρσ(x) , (8.50)

or, in matrix form,

F (x)→ F ′(x′) = ΛF (x)ΛT . (8.51)

Let K be an inertial frame where the electric and magnetic field are E(x)
and B(x), and let K ′ be the reference frame of an observer that moves
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with constant velocity v = vx̂ with respect to K. The coordinates of the
two frames are then related by a boost along the x axis, as in eqs. (7.22)
and (7.23), with v0 = −v (since, if v > 0, K ′ moves in the direction
of the positive x axis with respect K, so a particle at rest in K moves
toward the negative x axis in K ′). Then, Λµν is given by the matrix in
eq. (7.20), with tanh ζ = −v/c. Performing the matrix product explicitly
in eq. (8.51) we get, for the electric and magnetic field seen by the K ′

observer,

E′1 = E1 , E′2 = γ(E2 − vB3) , E′3 = γ(E3 + vB2) , (8.52)

and

B′1 = B1 , B′2 = γ
(
B2 +

v

c2
E3

)
, B′3 = γ

(
B3 −

v

c2
E2

)
,

(8.53)
where, for notational simplicity, we have not explicitly written the argu-
ment x in E(x),B(x) and the argument x′ in E′(x′),B′(x′). These
expressions can be rewritten in a rotationally invariant form (which
therefore holds for boosts in a generic direction) denoting by E‖ the
component of E parallel to the boost axis (so, for a boost along the x
axis, E‖ = Exx̂) and by E⊥ the component transverse to the boost axis
(so, for a boost along the x axis, E⊥ = Eyŷ + Ez ẑ), and similarly for
B. Then eqs. (8.52) and (8.53) can be written as11

11Equivalently, we can write v×E⊥ as
v × E, and v × B⊥ as v × B, given
that v × E‖ = v × B‖ = 0. Another
expression equivalent to eqs. (8.57) and
(8.58) is

E′ = γ(E + v×B)− (γ − 1)v̂(v̂·E) ,
(8.54)

and

B′ = γ(B−v×E/c2)− (γ− 1)v̂(v̂·B) ,
(8.55)

where β = v/c. The equivalence of
eqs. (8.57) and (8.54) can be shown
writing E = E⊥ + E‖, E′ = E′⊥ + E′‖,
and observing that E‖ is the projection
of E in the direction of the velocity, so
E‖ = (E·v̂)v̂, while v×B is transverse
to v so, in eq. (8.54), it only contributes
to E⊥. Then eq. (8.54) gives

E′⊥ = γ(E⊥ + v×B) , (8.56)

and v×B = v×B⊥, so we recover the
second equation in eq. (8.57). For the
parallel component, writing E‖ = E‖v̂,
E′‖ = E′‖v̂, and using v̂·E = E‖,
eq. (8.54) gives

E′‖ = γE‖ − (γ − 1)E‖ ,

so E′‖ = E‖. Equation (8.54) is there-

fore equivalent to eq. (8.57). One pro-
ceeds in the same way to show the
equivalence of eqs. (8.55) and (8.58).
Observe that the second term on the
right-hand side of eq. (8.54) can be
rewritten using the identity

(γ − 1)v̂(v̂·E) =
γ2

γ + 1
β(β·E) ,

where β = v/c. This identity can be
shown writing γ2 = 1/(1 − β2), which
gives β2 = (γ2 − 1)/γ2. One can sim-
ilarly rewrite the second term on the
right-hand side of eq. (8.55).

E′‖ = E‖ , E′⊥ = γ(E⊥ + v ×B⊥) , (8.57)

and
B′‖ = B‖ , B′⊥ = γ(B⊥ − v ×E⊥/c

2) . (8.58)

Consider, for instance, a frame where we have an electric field along the
z axis, E = Eẑ, while B = 0; an observer that moves with velocity
v = vx̂ with respect to this frame will see an electric field E = γEẑ and
a non-vanishing magnetic field B = γ(v/c2)Eŷ. The latter result is at
first very surprising. Boosting an electric field we generate a magnetic
field! This is at the core of the fact that Maxwell’s equations unify
electric and magnetic phenomena into electromagnetism, and E and
B are deeply interrelated, to the extent that, with a boost, we can
generate a magnetic field from an electric field (and, conversely, we can
generate an electric field from a magnetic field). At the mathematical
level, this is expressed by the fact that E and B do not belong to two
separate representations of the Lorentz group but, rather, together fill
the component of an antisymmetric tensor Fµν , and therefore mix under
Lorentz boosts.

Physically, this can also be understood from the fact that the charge
density and the current density form a four-vector, eq. (8.9). Suppose
that in the frame K we have just an electric charge at rest at the ori-
gin. This will generate a radial electric field, but no magnetic field. In
the boosted frame K ′, however, the charge is in motion with velocity
v. It therefore produces a current j, that generates a magnetic field
perpendicular to its direction of motion.
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Exercise 8.1 Using eqs. (8.52) and (8.53), show that E2 − c2B2 and
E·B are Lorentz invariant. Try to find an explicit Lorentz-invariant
expression for E2 − c2B2.

Exercise 8.2 Compute the Lorentz-invariant quantities FµνF
µν and

Fµν F̃
µν in terms of E and B.

Exercise 8.3 Without using the covariant formalism, and rather work-
ing with E and B, show that, under the transformation (8.52, 8.53),
the full set of Maxwell’s equations (3.8–3.11), with the source terms
set to zero, is invariant (in the sense that, if the original fields satisfied
Maxwell’s equations, the transformed fields also satisfy them). Is each
Maxwell equation separately invariant? Repeat the exercise including
the source terms, taking into account that, according to eq. (8.9), cρ and
j transform as a four-vector.

Exercise 8.4 As an example of the usefulness of a covariant formalism,
consider a set of equations, involving two two-dimensional vectors a =
(ax, ay) and b = (bx, by), and two more quantities A,B, given by

Ba = Ab , εαβaαbβ = 0 , (8.59)

where the indices α, β take the values 1, 2 (or, equivalently, x, y) and
εαβ is the antisymmetric tensor in two dimensions, ε12 = −ε21 = 1,
ε11 = ε22 = 0. Show that this system of equations is invariant under
rotations in the (x, y) plane, under which a and b transform as two-
dimensional vectors, and A and B as scalars. Can you find a formalism
that explicitly shows that this system of equations actually has a much
larger symmetry, which was not apparent from eq. (8.59)? Can you
draw the analogy with our discovery of Lorentz invariance in Maxwell’s
equations?

8.6 Relativistic formulation of the
particle-field interaction

8.6.1 Covariant form of the Lorentz force equation

The final step, to obtain a fully covariant formulation of electrodynamics,
is to write also the interaction of a particle with the electromagnetic
field in a relativistic form. We therefore investigate whether there is a
covariant expression, whose spatial components give the vector equation
(3.6). To this purpose, it is useful to rewrite eq. (3.6) in terms of proper
time, using dτ = dt/γ. We also recall, from eqs. (7.122) and (7.123),
that u0 = γc, ui = γvi. Equation (3.6) can then be rewritten as

dp

dτ
= qγ (E + v ×B)

= q

(
u0

c
E + u×B

)
, (8.60)
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or, in components

dpi

dτ
= q

(
−u0

Ei

c
+ εijkujBk

)

= q
(
F i0u0 + F ijuj

)
, (8.61)

where we used eqs. (8.17) and (8.20), together with F 0i = −F i0 and
F ij = Fij . Recalling, from eq. (7.144), that pµ = (E/c, pi) (where here
we denote the energy of the particle by E , since we reserve the notation
E to the modulus of the electric field E), we recognize this as the µ = i
component of the equation

dpµ

dτ
= qFµνuν , (8.62)

or, equivalently, using eq. (7.143),

dpµ

dτ
=

q

m
Fµνpν . (8.63)

Therefore, eq. (3.6), with p interpreted as the full relativistic momen-
tum,

p = γ(v)mv , (8.64)

is the spatial component of a covariant equation, and therefore is also
valid relativistically. Explicitly, in terms of the velocity, the spatial
component of the relativistic Lorentz “force” equations (8.62) is12 12As mentioned in Note 2 on page 40,

the use of the word “force” here is an
abuse of language, since force is associ-
ated with the Newtonian concept of in-
stantaneous action, in which the force
between two particles depends on their
instantaneous positions. What makes
eq. (8.65) fully consistent with the prin-
ciples of relativity is that the force on
a particle, at time t and position x, is
expressed in terms of the electric and
magnetic fields at the same value of t
and x but, as we will see in Chapter 10,
these are determined in terms of the
“retarded position” of the source, i.e.,
the position that the source had at an
earlier time, consistent with the propa-
gation of signals at the speed of light.
A more appropriate name for eq. (8.65)
could be “the relativistic equation of
motion for a particle in an external
electromagnetic field.” We will, how-
ever, often use the common expression
“Lorentz force” even in the relativistic
setting.

d

dt
[γ(v)mv] = q (E + v ×B) . (8.65)

This covariantization also carries with it the µ = 0 component, that must
correspond to another equation that could have been derived with the
non-covariant formalism. Indeed, using again dτ = dt/γ and ui = γvi,
the µ = 0 component of eq. (8.62) reads

dE
dt

= qE·v . (8.66)

In fact, this is just eq. (7.151), that in our present notation reads dE/dt =
v·dp/dt, with dp/dt expressed through eq. (3.6). Note that only the elec-
tric field contributes to the work. This is a consequence of the fact that
the contribution to dp/dt from the magnetic field, qv×B, is orthogonal
to v, and therefore does not contribute to v·dp/dt.

This derivation shows that the Lorentz force equation, when written
in the form (3.6) with p given in terms of the velocity as in eq. (8.64),
is not just the low-velocity limit of some fully relativistic expression,
but is in fact already the spatial component of a four-vector equation,
and is therefore correct even at relativistic velocities, as the covariant
formalism makes explicit.
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8.6.2 The interaction action of a point particle

An alternative derivation of eq. (8.62), more in line with typical rea-
soning used in modern theoretical physics, is as follows. We saw in

This subsection is more advanced and
can be skipped at first reading.

eq. (7.133) that the action of a free (point-like) particle is given by

Sfree = −mc2
∫
dτ . (8.67)

Let us understand the form of the action that describes the interaction
of this particle with the electromagnetic field Aµ. Just as we did for
deriving the free action (8.67), we use symmetry principles, observing
that, in order to respect the Lorentz covariance that we have discovered
in Maxwell’s equations, also the interaction action must be Lorentz in-
variant. The variation of a Lorentz-invariant action with respect to a
four-vector dynamical variable such as xµ(τ) will then produce Lorentz-
covariant equations of motion.

The integration variable in the interaction action must therefore be
again dτ , which is the only Lorentz-invariant generalization of the inte-
gral over dt that appears in the non-relativistic action of a particle. The
interaction action must also involve the gauge potential Aµ(x), com-
puted on the trajectory xµ(τ) of the particle. To obtain a Lorentz-
invariant action we therefore need something to saturate the Lorentz
index of Aµ(x), and, for a point particle without an internal structure,
the only other four-vector that we have at our disposal is its four-velocity
uµ(τ). The simplest possibility is then a linear coupling, proportional to
uµ(τ)Aµ[x(τ)]. The interaction must also be proportional to the charge
q of the particle: if q = 0, there is no interaction between the particle
and the electromagnetic field. We are therefore led to postulating an
interaction action

Sint = q

∫
dτ uµ(τ)Aµ[x(τ)] , (8.68)

apart from an overall numerical multiplicative constant.1313At this stage, a multiplicative con-
stant could simply be reabsorbed into
q, rather than already assuming that q
is the electric charge. However, we will
see below that eq. (8.68) is indeed the
action whose equation of motion gives
the Lorentz force equation, with q iden-
tified with the electric charge without
extra multiplicative factors.

The total action S = Sfree +Sint of a point-like particle in an external
electromagnetic field can therefore be written as

S = −mc2
∫
dτ + q

∫
dτ uµ(τ)Aµ[x(τ)] . (8.69)

We can now express dτ in terms of dt using dτ = dt/γ and, correspond-
ingly, we use t and x(t) instead of xµ(τ) in the arguments of φ and A.
Using eqs. (7.122) and (7.123), as well as eq. (8.12), we get

S =

∫
dt

[
−mc2

√
1− v2(t)

c2
− qφ[t,x(t)] + qv·A[t,x(t)]

]
. (8.70)

Then, the Lagrangian is

L[x(t),v(t)] = −mc2
√

1− v2(t)

c2
−qφ[t,x(t)]+qv·A[t,x(t)] . (8.71)
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It is also interesting to observe that eq. (8.68) can be rewritten as

Sint = q

∫
dτ

dxµ(τ)

dτ

∫
d4x δ(4)[x− x(τ)]Aµ(x) . (8.72)

Exchanging the integrals over d4x and over dτ , this can be rewritten as

Sint =
1

c

∫
d4x jµ(x)Aµ(x) , (8.73)

where jµ(x) is the current defined in eq. (8.3). Observe that, in this
expression, the argument x in jµ(x) and in Aµ(x) is the generic space-
time point, while in eq. (8.71) the spatial argument was evaluated on
the position x(t) of the particle at time t.

Since a generic current jµ(x) can always be thought of as generated by
a superposition of point charges, eq. (8.73) can be taken as the general
form of the interaction of an arbitrary four-current density jµ(x) with
an external electromagnetic field.14 More explicitly, using eqs. (8.9) and 14Observe that we are considering here

the electromagnetic field as a given ex-
ternal field. We will include the dynam-
ics of the electromagnetic field at the
level of the action in Section 8.7, see in
particular eq. (8.129).

(8.13), in terms of ρ(t,x), j(t,x), φ(t,x) and A(t,x), we have

Sint =

∫
dtd3x [−ρ(t,x)φ(t,x) + j(t,x)·A(t,x)] , (8.74)

where we also used dx0 = cdt.
The action (8.73) is gauge-invariant, as long as the current jµ is con-

served. Indeed, under the gauge transformation (8.14),

Sint → Sint −
1

c

∫
d4x jµ(t,x)∂µθ

= Sint +
1

c

∫
d4x θ∂µj

µ(t,x)

= Sint . (8.75)

Note that, in the integration by parts, we dropped the boundary terms.
This can be justified, restricting to gauge functions θ(x) that go to zero
sufficiently fast at infinity (or to a localized current jµ). We see that
gauge invariance requires current conservation.15 15This is a point with important im-

plications in quantum field theory, on
which we will not elaborate further
here. See e.g., Chapter 7 of Maggiore
(2005).

The equation of motion can now be obtained from the Lagrangian
variational principle: for a system with coordinates qi(t),

d

dt

δL

δq̇i
− δL

δqi
= 0 . (8.76)

We use the Lagrangian in the form (8.71), where the role of qi(t) is
played by xi(t), while q̇i = vi. We compute the derivatives explicitly.
First of all,

δL

δvi
= −mc2 1

2

(
1− v2

c2

)−1/2 (−2vi

c2

)
+ qAi(t,x)

= γmvi + qAi(t,x)

= pi + qAi(t,x) . (8.77)
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Note that, by definition, the derivative of the Lagrangian with respect to
the velocity is the momentum conjugate to the coordinate xi. Therefore,
in the presence of an electromagnetic field, the momentum conjugate to
the coordinate xi, that we denote by P i, is not just the same as the
momentum pi = γmvi of a free particle but, rather, is given by

P = p + qA . (8.78)

We next compute

d

dt

{
pi + qAi[t,x(t)]

}
=

dpi

dt
+ q

[
∂Ai(t, x)

∂t
+
dxj(t)

dt
∂jA

i(t, x)

]

=
dpi

dt
+ q

[
∂Ai(t, x)

∂t
+ vj∂jA

i(t, x)

]
. (8.79)

Note that, for spatial indices, we do not need to be careful about the
upper/lower positioning, and we can equally well keep all of them lower
and sum over repeated lower indices. We finally compute the variation
with respect to xi:

δL

δxi
= qvj∂iAj − q∂iφ . (8.80)

(Recall that in the variation performed to obtain the equations of mo-
tion, qi and q̇i are taken as independent variables). We now write

vj∂iAj = vj(∂iAj − ∂jAi) + vj∂jAi

= vjεijkBk + vj∂jAi , (8.81)

and putting everything together, we get

0 =
dpi

dt
+ q

(
∂Ai

∂t
+ vj∂jA

i

)
− q(εijkvjBk + vj∂jA

i) + q∂iφ

=
dpi

dt
+ q

(
∂Ai

∂t
− εijkvjBk

)
+ q∂iφ , (8.82)

where we observed that the two terms proportional to vj∂jA
i canceled

among them. Therefore, the equation of motion derived from the La-
grangian (8.71) is

dp

dt
= −q

(
∇φ+

∂A

∂t

)
+ qv ×B , (8.83)

where p = γ(v)mv. Using eq. (3.83), we see that this is just the Lorentz
force equation (3.6). The fact that we have derived it from a fully
covariant action shows again that it is indeed the spatial component a
fully relativistic equation.

Finally, we can obtain the Hamiltonian from

H(P,x) = P·v − L , (8.84)

where the Lagrangian L is given by eq. (8.71) and v must be written
in terms of P and A using eqs. (7.138) and (8.78). The inversion of
eq. (7.138) gives

v = c
p√

p2 +m2c2
, (8.85)



8.7 Field-theoretical approach to classical electrodynamics 197

and therefore, in terms of P and x,

v = c
P− qA√

(P− qA)
2

+m2c2
. (8.86)

Inserting this into eq. (8.84) we get

H(P,x) = c

√
(P− qA)

2
+m2c2 + qφ , (8.87)

where the potentials A(t,x) and φ(t,x) must be computed on the posi-
tion x = x(t) of the particle.

8.7 Field-theoretical approach to classical
electrodynamics

This section is more advanced and
should be skipped at first readingThe Lagrangian formulation of classical mechanics is particularly use-

ful for understanding the relation between symmetries and conservation
laws and is also the first step toward the Hamiltonian formulation. Be-
side their intrinsic elegance, the Lagrangian and Hamiltonian formalisms
are also the natural bridge between the classical and the quantum the-
ory. Maxwell’s equations also admit a Lagrangian formulation which,
again, allows us to better understand the formal structure of the theory
and the relation between symmetries and conservation laws, and is a
prototype of a classical field theory. Furthermore, even if we will not de-
velop these aspects in this book, this field-theoretical formulation is also
the starting point for the quantization of the theory, leading to quantum
electrodynamics. In this section, we will develop such a field-theoretical
approach to classical electrodynamics. The subject is advanced, and
here we will limit ourselves to presenting briefly the main results, refer-
ring the reader to Maggiore (2005) (see in particular chapters 2 and 3)
for more detailed discussions and derivations.

8.7.1 Euler–Lagrange equations of relativistic fields

Elementary classical mechanics deals with systems with a finite number
of degrees of freedom. These are described by (generalized) coordinates
qi(t), where the index i labels all degrees of freedom of the system.
A typical example is a system of N particles in three dimensions, in
which case the index i takes the values 1, . . . , 3N . Classical field theory
generalizes this to systems with a continuous set of degrees of freedom.
In the previous chapters, we have already made frequent use of the notion
of field. In the context of electrodynamics, the most obvious examples
are the electric field E(t,x) and the magnetic field B(t,x), or the gauge
potentials φ(t,x) and A(t,x). We can here regard the variable x as
a continuous generalization of the index i in qi(t), so that we have a
dynamical degree of freedom, i.e., a function of time, associated with
each point of space.
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In a non-relativistic context, it is convenient to organize the dynami-
cal variables according to their transformation properties under spatial
rotations. For instance, the 3N degrees of freedom qi(t) of a system of
N particles in three dimensions, with i = 1, . . . , 3N , are obviously orga-
nized into a set of N vectors qa, where a = 1, . . . , N labels the particle
and, for each a, qa = (qx, qy, qz)a is a spatial vector. In the case of
fields, we have already discussed their transformation properties under
rotations in Section 7.3.6. For instance, we saw that the temperature is
an example of a field scalar under rotations, defined by the fact that it
transforms as in eq. (7.92). Another example, more pertinent to classical
electrodynamics, is the scalar gauge potential φ(t,x). In eq. (7.92), as in
all equations relative to transformations under rotations, we suppressed
the time variable t, since we were only interested in the behavior under
spatial rotations, that do not affect time. More generally, we can write
the transformation property under rotations of a scalar field, such as
φ(t,x), as

φ(t,x)→ φ′(t,x′) = φ(t,x) . (8.88)

The transformation property under rotations of a vector field, such as
the electric field, is given by eq. (7.94) or, also re-instating the time
dependence,

Ei(t,x)→ E′i(t,x
′) = RijEj(t,x) , (8.89)

and similarly for any other vector field.
In a relativistic context, we are interested in the transformation prop-

erties under Lorentz transformations, that we discussed in Section 7.3.6.
In particular, a field scalar under Lorentz transformations (that, when
the context is clear, we simply call a scalar field) transforms as in
eq. (7.101), that we rewrite here,

φ(x)→ φ′(x′) = φ(x) . (8.90)

For rotations, x′ = (t,x′) and we get back eq. (7.92). A contravariant
four-vector field V µ(x) transforms as in eq. (7.102) so, in particular, the
gauge field Aµ transforms as

Aµ(x)→ A′µ(x′) = ΛµνA
ν(x) . (8.91)

Similarly, a tensor field such as Fµν transforms as

Fµν(x)→ F ′µν(x′) = ΛµρΛ
ν
σF

ρσ(x) . (8.92)

Having introduced the basic variables of a field theory, the next step is
to define their dynamics. This can be done by extending to fields the
Lagrangian formalism of classical mechanics, and gives rise to the subject
of classical field theory. To this purpose, we begin by considering a non-
relativistic system with generalized coordinates qi(t). The Lagrangian
is a function of the coordinates qi and their time derivatives q̇i, that we
denote collectively as q(t) and q̇(t), respectively, i.e., L = L[q(t), q̇(t)].16

16More precisely, the Lagrangian is a
functional of q(t) and q̇(t), i.e., an ob-
ject that depends on the functions q(t)
and q̇(t), rather than just on a finite
number of variables. The correspond-
ing derivatives should really be defined
as functional derivatives at the level of
integrated quantities (such as the ac-
tion), with the rule

δq(t′)
δq(t)

= δ(t− t′) , (8.93)

and the standard composition rules for
derivative, so that, for instance,

δ

δq(t)

∫
dt′q(t′)j(t′)

=

∫
dt′

δq(t′)
δq(t)

j(t′)

=

∫
dt′δ(t− t′)j(t′)

= j(t) . (8.94)

In practice, this is equivalent to naively
differentiating at the level of the La-
grangian, with formal rules as

δ

δq(t)
q(t′)j(t′)→ j(t) . (8.95)

In the following, we will perform the
manipulations leading to the equations
of motion in this form.
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The action is defined as (compare to eq. (7.124), where we considered
the case of a single particle)

S =

∫
dtL[q, q̇] . (8.96)

The action principle is obtained considering the action integrated be-
tween fixed initial and final times, ti and tf , and studying its variation
under a change of the trajectory qi(t)→ qi(t)+δqi(t), with δqi(t) = 0 at
t = ti and at t = tf , i.e., we study how S varies if we change qi(t) while
keeping it fixed at the initial and final times. If qi(t) → qi(t) + δqi(t),
then q̇i(t) → q̇i(t) + d/dt[δqi(t)], i.e., δq̇i = d/dt[δqi(t)]. Therefore, the
variation of the action is

δS =

∫ tf

ti

dt
∑

i

[
δL

δqi
δqi +

δL

δq̇i
δq̇i

]

=
∑

i

∫ tf

ti

dt

[
δL

δqi
δqi +

δL

δq̇i

d

dt
δqi

]

=
∑

i

∫ tf

ti

dt

[
δL

δqi
− d

dt

δL

δq̇i

]
δqi , (8.97)

where, in the last line, we integrated d/dt by parts and used the fact
that, since δqi(t) = 0 at t = ti and t = tf , the boundary term vanishes.
The action principle states that the classical trajectory is such that,
under such a variation of the qi(t), δS = 0. Since the variations δqi are
taken to be independent, each of the terms in the sum over i in eq. (8.97)
must vanish independently and, since this must happen for an arbitrary
variation δqi(t), we must have

δL

δqi
− d

dt

δL

δq̇i
= 0 , (8.98)

for each value of i. These are the equations of motion (or Euler–Lagrange
equations) of the system. We now want to generalize the action princi-
ple from a system described by a finite number of mechanical variables
qi(t), to fields and we want to construct a Lorentz-covariant field the-
ory. To begin, we consider a single (Lorentz) scalar field φ(x). For a
non-relativistic system with generalized coordinates qi(t), we have seen
that the Lagrangian is a function of qi and ∂tqi. However, if we want
to construct a Lorentz-covariant formalism, the Lagrangian of a scalar
field cannot be a function of φ and ∂tφ, since ∂tφ is not a covariant
quantity. Rather, we must use ∂µφ which, as we saw in eq. (7.107), is a
four-vector field. Therefore, the Lagrangian of a scalar field will depend
on φ and ∂µφ. Note, however, that these quantities depend not only
on t but also on x. As mentioned previously, we can think of x as an
“index” that labels the dynamical variables of the theory, corresponding
to the index i of the variables qi(t) in classical mechanics, except that
now this label is continuous rather than discrete: we have a dynamical
variable associated with each point in space. To understand how to deal
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with this label in the continuous case, consider first the simple case of
a set of free non-relativistic particles, with masses mi and coordinates
qi(t). The Lagrangian of each one is given by Li = (1/2)miq̇

2
i , and the

total Lagrangian is

L =
∑

i

1

2
miq̇

2
i . (8.99)

In the limit in which the discrete index i becomes a continuous variable
x, the sum over i becomes an integral over d3x. These considerations
suggest to write the Lagrangian of a scalar field in the form

L =

∫
d3x cL[φ, ∂µφ] . (8.100)

The function L[φ, ∂µφ] is called the Lagrangian density (although, with
a common abuse of notation, it is often called simply the Lagrangian),
and we have defined it extracting a factor of c for later convenience. The
action is then obtained as

S =

∫
dtL

= c

∫
dt d3xL[φ, ∂µφ]

=

∫
d4xL[φ, ∂µφ] . (8.101)

Note that, in this way, we reconstructed d4x as integration measure and,
as we have seen in eq. (8.5), this is Lorentz invariant. Therefore, if we
take L[φ, ∂µφ] to be Lorentz invariant, the action will also be Lorentz
invariant. We will extend the integration over all of space-time, with
the boundary conditions on φ that it vanishes sufficiently fast both as
t → ±∞ and as |x| → ∞, so that we can neglect all boundary terms
that will emerge from integration by parts.

We now consider a variation of the field φ → φ + δφ. Then ∂µφ →
∂µφ+ δ(∂µφ) with δ(∂µφ) = ∂µ(δφ), and the variation of the action is

δS =

∫
d4x

[
δL
δφ
δφ+

δL
δ(∂µφ)

δ(∂µφ)

]

=

∫
d4x

[
δL
δφ
δφ+

δL
δ(∂µφ)

∂µ(δφ)

]

=

∫
d4x

[
δL
δφ
− ∂µ

δL
δ(∂µφ)

]
δφ , (8.102)

where, in the last line, we integrated ∂µ by parts discarding boundary
terms, given our boundary conditions at infinity. The classical evolution
of the field is defined by the condition that the classical solution of the
equations of motion is an extremum of S, i.e., is such that δS = 0 for
a generic variation δφ. This means that the quantity in bracket must
vanish. We then obtain the Euler–Lagrange equations for a relativistic
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scalar field,

δL
δφ
− ∂µ

δL
δ(∂µφ)

= 0 . (8.103)

This is the generalization of eq. (8.98) to field theory. As an example,
the simplest Lagrangian density of a real scalar field is given by17 17The overall factor −1/2 is irrelevant

for the equations of motion, but can be
fixed requiring that the corresponding
Hamiltonian, or energy density, is cor-
rectly normalized, see e.g., Section 3.3.1
of Maggiore (2005).

L = −1

2

(
∂µφ∂

µφ+ µ2φ2
)
, (8.104)

with µ a parameter with dimensions of inverse of length, as ∂µ. Then,

δL
δφ

= −µ2φ , (8.105)

while
δL

δ(∂µφ)
= −∂µφ , (8.106)

so eq. (8.103) becomes
(−2 + µ2)φ = 0 . (8.107)

This is called the Klein–Gordon equation. Searching for a solution of
the form

φ(x) = Akeikx , (8.108)

and using ∂µe
ikx = ikµe

ikx and 2eikx = −kµkµeikx, we get the condition

k2 + µ2 = 0 , (8.109)

where k2 = kµk
µ = −(k0)2 + k2. More explicitly, eq. (8.109) then reads

(k0)2 = k2 + µ2 . (8.110)

In Chapter 9 we will study in detail how similar equations for the gauge
potential (but without the µ2 term) give rise to electromagnetic wave
solutions.18 18Comparing with eq. (7.146) we see

that eq. (8.110) has a form analogous to
the dispersion relation of a relativistic
massive particle. This, however, only
becomes true in the context of quan-
tum theory. In fact, k0 and k have
dimensions of inverse length, and can
be identified with the energy and mo-
mentum of a particle only through the
quantum-mechanical relations E/c =
~k0 and p = ~k. Then, eq. (8.110)
takes the form (7.147) with the iden-
tification m = ~µ/c.

If we have several scalar fields φi(x), the Lagrangian density depends
on φi and ∂µφi for all values of the index i, and the variation with respect
to each of these fields must vanish, so eq. (8.103) simply becomes

δL
δφi
− ∂µ

δL
δ(∂µφi)

= 0 , (8.111)

for each value of the index i. Consider now a four-vector field Aν . The
Lagrangian density will be a function of Aν and its derivatives ∂µAν ,
L = L[Aν , ∂µAν ], and

S =

∫
d4xL[Aν , ∂µAν ] . (8.112)

The equations of motion are obtained requiring that the variation of the
action with respect to each of the four components of Aν vanish, and
therefore are the same as eq. (8.111), with φi replaced by Aν ,

δL
δAν

− ∂µ
δL

δ(∂µAν)
= 0 . (8.113)
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8.7.2 Lagrangian of the electromagnetic field

We now show that Maxwell’s equations can be derived from an action
principle, and we identify the Lagrangian of the electromagnetic field.
We work with a covariant formalism, using Aµ(x) as our fundamental
dynamical field. Then, we only need to show that eq. (8.23) is the
equation of motion derived from a Lagrangian since, as we have seen, the
other two Maxwell’s equations contained in eq. (8.33) are an automatic
consequence of the introduction of the gauge potentials. We consider
the Lagrangian density

L = L0 + Lint , (8.114)

where

L0 = −ε0c
4
FµνF

µν
(8.115)

is the Lagrangian of the free electromagnetic field, while

Lint =
1

c
Aµj

µ
(8.116)

describes the interaction of the gauge field with a given external current
jµ. Factorizing a term ε0c, the corresponding action is therefore19

19Recall that our metric is
ηµν = (−1, 1, 1, 1). If one uses
instead the opposite signature,
ηµν = (1,−1,−1,−1), the term
FµνFµν = ηµρηνσF ρσFµν is un-
changed because it involves two factors
of the metric, while Aµjµ = ηµνAνjµ

changes sign, so the action becomes

S = −ε0c (8.117)

×
∫
d4x

(
1

4
FµνF

µν + µ0Aµj
µ

)
.

S = ε0c

∫
d4x

(
−1

4
FµνF

µν + µ0Aµj
µ

)
. (8.118)

Note that the interaction action was already obtained in eq. (8.73). To
derive the equations of motion of this action we must compute the (func-
tional) derivatives that appear in eq. (8.113). We perform the compu-
tation in detail. We first compute the derivative of the Lagrangian with
respect to ∂µAν . In this case, only L0 contribute, since Lint depends
on Aµ but not on its derivatives.20 First of all, it is necessary to change20Note that, in eq. (8.98), δL/δqi is the

derivative with respect to qi at fixed
q̇i, while δL/δq̇i is the derivative with
respect to q̇i at fixed qi. Similarly, in
eq. (8.111) [or in eq. (8.113)] δL/δφi is
taken at fixed ∂µφi and δL/δ(∂µφi) is
taken at fixed φi.

the names of the dummy indices µ, ν in eq. (8.115), in order not to mix
them up with the indices µ, ν that appear in eq. (8.113). We then write
L0 = −(ε0c/4)FαβF

αβ . Then,

1

ε0c

δL0

δ(∂µAν)
= −1

4

δ
(
FαβF

αβ
)

δ(∂µAν)

= −1

4

δFαβ
δ(∂µAν)

Fαβ − 1

4
Fαβ

δFαβ

δ(∂µAν)
. (8.119)

We now observe that the two terms in the last line are equal, since the
indices α, β can be raised and lowered with the Minkowski metric that
commutes with the derivatives with respect to any field.21 Then

21Explicitly,

Fαβ
δFαβ

δ(∂µAν)

= ηαα′ηββ′F
α′β′ δF

αβ

δ(∂µAν)

= Fα
′β′ δ(ηαα′ηββ′F

αβ)

δ(∂µAν)

= Fα
′β′ δFα′β′

δ(∂µAν)

= Fαβ
δFαβ

δ(∂µAν)
. (8.120)

1

ε0c

δL0

δ(∂µAν)
= −1

2
Fαβ

δFαβ
δ(∂µAν)

= −1

2
Fαβ

δ (∂αAβ − ∂βAα)

δ(∂µAν)

= −Fαβ δ (∂αAβ)

δ(∂µAν)
, (8.121)
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where, in the last line, we used the fact that Fαβ is antisymmetric under
α↔ β, so,

Fαβ∂βAα = F βα∂αAβ

= −Fαβ∂αAβ , (8.122)

where we first renamed the dummy indices as α→ β and β → α and we
then used F βα = −Fαβ . We next use22

22Recall, from the discussion around
eqs. (7.104)–(7.108), that the derivative
with respect to a quantity with lower
index produces an object with upper in-
dex, so µ, ν on the right-hand side of
eq. (8.123) must be in the upper posi-
tion. Since δ

(
∂αAβ

)
/δ(∂µAν) is equal

to one if α = µ and β = ν and is
zero otherwise, the result is a product
of Kronecker deltas.

δ (∂αAβ)

δ(∂µAν)
= δµαδ

ν
β , (8.123)

and we get
1

ε0c

δL0

δ(∂µAν)
= −Fµν . (8.124)

The derivative of L with respect to Aν at fixed ∂µAν is easily evaluated:
now L0 does not contribute, since it depends only on the derivatives of
the gauge field, and the contribution only comes from Lint, which gives

1

ε0c

δLint

δAν
= µ0

(
δAµ
δAν

)
jµ

= µ0δ
ν
µ j

µ

= µ0j
ν . (8.125)

Inserting these results into eq. (8.113) we finally get

∂µF
µν = −µ0j

ν , (8.126)

and we have therefore recovered eq. (8.23). This shows that the La-
grangian given by eqs. (8.114)–(8.116) is indeed the Lagrangian of the
electromagnetic field interacting with an external current.23 In particu-

23More precisely, this shows that this is
a possible choice for such a Lagrangian.
In general, the Lagrangian that repro-
duces a given equation of motion is not
unique. In the classical mechanics of
non-relativistic systems, if we add a to-
tal time derivative to the Lagrangian in
eq. (8.96), the variational principle is
not affected, since a total time deriva-
tive in the Lagrangian gives a bound-
ary term in the action, and the vari-
ation of the action is computed keep-
ing qi(t) fixed on the boundary, i.e., at
t = ti and at t = tf . Similarly, the ad-
dition to the Lagrangian in eq. (8.101)
or in eq. (8.112) of a term of the form
∂µKµ, with Kµ an arbitrary function
of the fields, does not affect the equa-
tions of motion, because it is a (three-
dimensional) boundary term.
Also note that, at the level of
eq. (8.118), we could multiply the ac-
tion by an arbitrary multiplicative fac-
tor without affecting the equations of
motion. A simple way to fix the correct
normalization, which is indeed given by
the terms ε0c in eq. (8.118), is obtained
by also including the dynamics of the
point particles. This just amounts to
requiring that the interaction term is
normalized as in eq. (8.73), since we
already saw in Section 8.6.2 that this
gives the Lorentz force equation with
the correct numerical factors. Other-
wise, we will see in the following how
the Lagrangian determines the energy
density (or, more generally, the energy-
momentum tensor), and then one can
fix the normalization of the Lagrangian
requiring the correct normalization for
the energy density of the electromag-
netic field, which is given by eq. (3.41).
The two procedures are of course equiv-
alent, since the normalization of the en-
ergy density of the electromagnetic field
was also obtained by comparison with
the mechanical energy of point parti-
cles, see eqs. (3.39) and (3.40).

lar, we have found that the action of the free electromagnetic field is

S0 = −ε0c
4

∫
d4xFµνF

µν

=
ε0
2

∫
dtd3x

(
E2 − c2B2

)
, (8.127)

where we used eqs. (8.17) and (8.20), as well as dx0 = cdt. Observe that
the action of the free electromagnetic field is gauge invariant since, under
the gauge transformation (8.14), Fµν is invariant. The interaction term
in eq. (8.118) is also gauge invariant. Indeed, applying ∂ν to eq. (8.126),
we get

∂ν∂µF
µν = −µ0∂νj

ν . (8.128)

However, Fµν is antisymmetric in µ, ν, while the operator ∂µ∂ν is sym-
metric (as usual, we assume that it acts on differentiable functions on
which the derivatives commute). Then ∂ν∂µF

µν vanishes automatically,
and eq. (8.128) implies ∂νj

ν = 0. This is in fact nothing but the deriva-
tion of current conservation from the equations of motion, that we have
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already found in Section 3.2.1 and, in the covariant formalism, in Sec-
tion 8.1. As we have already seen in eq. (8.75), current conservation
(together with suitable boundary conditions at infinity, either on θ or
on the current), implies that the interaction action is gauge invariant.

In eq. (8.118), or in eq. (8.126), jµ is a given current; we have not
specified the dynamics of the charges that give rise to it, and in this sense
we referred to it generically as an “external” current. We can develop
the action principle further, by including the dynamics of these charges.
For instance, if we consider N classical relativistic point charges, each
one described by its world-line xµa(τ) (with a = 1, . . . , N), then, for each
charge, the current jµa will be given by eq. (8.3) (with q, xµ(τ) and uµ

replaced by qa, xµa(τ) and uµa , respectively), and the free action of these
particles will be given by eq. (7.134). Then, the total action describing
the free dynamics of N charged point particles, the free dynamics of the
electromagnetic field, and the interaction among the electromagnetic
field and the particles, is

S = −
N∑

a=1

mac
2

∫
dt

√
1− v2

a

c2
− ε0c

4

∫
d4xFµνF

µν

+
1

c

N∑

a=1

∫
d4xAµ(x)jµa (x) , (8.129)

where

jµa (x) = qa

∫
cdτ uµa(τ)δ(4)[x− xa(τ)] , (8.130)

and uµa(τ) = dxµa/dτ . Carrying out the integral over d4x in the interac-
tion term using the Dirac delta in jµa (x), we can rewrite this as

S = −
N∑

a=1

mac
2

∫
dt

√
1− v2

a

c2
− ε0c

4

∫
d4xFµνF

µν

+

N∑

a=1

qa

∫
dτ uµa(τ)Aµ[xa(τ)] . (8.131)

This is the same action that we considered in Section 8.6.2, see in partic-
ular eqs. (8.69) and (8.70), except that, there, we considered a particle in
a given external electromagnetic field, while here we have also included
the dynamics of the electromagnetic field.

Actually, the action for the free electromagnetic field that we have
found in this section is in a sense more fundamental than the point
particle action, and of the interaction term between Aµ and a point
particle. In fact, at the quantum level, the point-like approximation for
the charged particles is no longer fundamental, and one rather describes
also the particles in terms of fields. The fundamental Lagrangian then
consists of the Lagrangian (8.115) for the free electromagnetic field, the
appropriate Lagrangians for the matter fields (which depend on the spin
of the charged particles considered), and of suitable interaction terms be-
tween these matter fields and the electromagnetic field, all constructed
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so as to preserve gauge invariance (see e.g., Chapter 3 of Maggiore (2005)
for details). At distance scales sufficiently large, where the particles can
be considered point-like, these more fundamental descriptions reduce
to eq. (8.129). This has the conceptually important implication that
Maxwell’s equations, in the form (3.1)–(3.4) or in the covariant form
(8.23, 8.33), are not truly fundamental at the scale of elementary par-
ticles. There, a more fundamental description of the coupling of the
electromagnetic field to the matter field is required.24 In any case, since 24A note for the advanced reader. For

spin 1/2 particles, such as electrons and
protons, at the level of what is called
the Dirac Lagrangian, the coupling to
the electromagnetic field indeed turns
out to be of the form (8.116), with the
current jµ given in terms of the fields
describing these particles. In contrast,
for a spin-0 charged particle, an extra
interaction term, quadratic both in the
gauge fields and in the field describing
the particle, is present; see Maggiore
(2005), eqs. (3.170) and (3.174). This
extra term gives rise to a correspond-
ing extra term in the equation of mo-
tion, which then is no longer of the form
(8.23).

at these scales quantum mechanics also enters the game, the subject
is more appropriately treated directly in the context of quantum field
theory.

8.7.3 Noether’s theorem

Noether’s theorem expresses the relation between symmetries and con-
servation laws in classical field theory. We discuss it here briefly, follow-
ing closely Section 3.2 of Maggiore (2005), to which we refer the reader
for more detailed discussions and derivations.25 We consider a field the-

25When comparing the results, note
that Maggiore (2005) uses units ε0 =
µ0 = c = 1, and the opposite metric
signature ηµν = (+,−,−,−). These
conventions are the most common in
quantum field theory.

ory with fields φi(x) and action S. The notation φi(x) here is completely
generic and could refer, for instance, to a set of Lorentz scalar fields or,
as will be more relevant in our case, to the four components of the
four-vector field Aµ(x). We consider an infinitesimal transformation of
the coordinates and of the fields, parametrized by a set of infinitesimal
parameters εa, with a = 1, . . . , N , of the general form

xµ → x′
µ

= xµ + εaAµa(x) , (8.132)

φi(x) → φ′i(x
′) = φi(x) + εaFi,a(φ, ∂φ) , (8.133)

with Aµa(x) (not to be confused with the gauge field) a given function
of the coordinates, and Fi,a(φ, ∂φ) a given functional of the fields and
of their derivatives. An important distinction is between “global” and
“local” transformations. A transformation is called global if its param-
eters εa are constants; it is called local if they are taken to be arbitrary
functions of space-time, εa(x).

As an example, space-time translations are transformation in which
(both for infinitesimal and finite transformations) the coordinates change
as

xµ → x′
µ

= xµ + εµ , (8.134)

with εµ a constant (so, they are global transformations), while all fields,
independently of their properties under Lorentz transformations, trans-
form as “scalars under translations,” i.e., as

φi(x)→ φ′i(x
′) = φi(x) , (8.135)

as we have already seen in eq. (6.22) for the case of spatial translations,
see in particular the discussion in Note 3 on page 137. Equation (8.134)
can be rewritten as

xµ → xµ + ενδµν . (8.136)
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Therefore, in this case the index a in eqs. (8.132) and (8.133) is just a
Lorentz index, and we have

Aµν = δµν , Fi,ν = 0 . (8.137)

Another example is given by spatial rotations. On the spatial coordi-
nates xi, the infinitesimal form of a spatial rotation can be written as
in eq. (1.153), while x0 → x0. We can rewrite this in the form (8.132),
where the role of the index a is played by the pair of indices (i, j) that
identify the plane in which the spatial rotation is performed, and εa is
identified with the parameters ωij defined in eq. (1.149) (recall that, for
spatial rotations, we can write the spatial indices equivalently as upper
or lower indices). Then, eq. (8.132) can be written as

x0 → x0 +
∑

i<j

ωijA0
ij(x) , (8.138)

xk → xk +
∑

i<j

ωijAkij(x) , (8.139)

(where the restriction to i < j avoids a double counting, since the param-
eters ωij with i > j are fixed in terms of those with i < j by ωij = −ωji),
with2626The fact that this expression for

Akij(x), once inserted into eq. (8.139),
correctly gives eq. (1.153), can be
shown writing∑

i<j

ωij(δikxj − δjkxi)

=
∑
i<j

ωijδikxj −
∑
j<i

ωjiδikxj

=
∑
i<j

ωijδikxj +
∑
i>j

ωijδikxj

=
∑
i,j

ωijδikxj

=
∑
j

ωkjxj ,

where, for the second term, in the sec-
ond line we renamed the dummy indices
i↔ j, and we then used ωij = −ωji.

A0
ij(x) = 0 , Akij(x) = δikxj − δjkxi . (8.140)

The corresponding expression for F in eq. (8.133) depends on the type
of field considered. For a field scalar under rotations, such as the scalar
gauge potential φ, writing eq. (8.133) as

φ(x)→ φ′(x′) = φ(x) +
∑

i<j

ωijF0,ij , (8.141)

we have F0,ij = 0. For a vector field, the finite transformation was given
in eq. (7.94), so the infinitesimal transformation, written for instance for
the vector gauge potential A, is

Ak(x)→ A′k(x′) = Ak(x) + ωkjAj(x) . (8.142)

Similarly to eqs. (8.139) and (8.140), this can be written as

Ak(x)→ A′k(x′) = Ak(x) +
∑

i<j

ωijFkij [A(x)] , (8.143)

with
Fkij [A(x)] = δikAj(x)− δjkAi(x) . (8.144)

One could proceed similarly for the full set of Lorentz transformations,
but we will limit ourselves to space-time translations and spatial ro-
tations from which, as we will see, Noether’s theorem will allow us to
compute the energy, momentum, and angular momentum of a given field
theory so, in particular, of the electromagnetic field.

Equations (8.132, 8.133) define a symmetry transformation of the the-
ory if they leave the action S(φ) invariant, for any configuration of the
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fields φi. Note that we are not assuming that the fields φi satisfy the
classical equations of motion. A symmetry by definition leaves the action
invariant for every field configuration, solution or not of the equations
of motion.

Now, suppose that eqs. (8.132) and (8.133) are a global, but not a
local, symmetry of our theory, i.e., they leave the action invariant if
ε is constant, but not if we allow ε to depend on x. Then, Noether’s
theorem states that, for each value of the index a = 1, . . . , N (i.e., for
each independent parameter of the transformation), there is a conserved
current jµa , i.e., a current that satisfies

∂µj
µ
a = 0 . (8.145)

This implies the existence of a corresponding set of conserved charges

Qa =
1

c

∫
d3x j0

a . (8.146)

In fact, taking the time derivative and using eq. (8.145),

dQa
dt

=
1

c

∫
d3x ∂0j

0
a(x)

= −1

c

∫
d3x ∂ij

i
a(x) , (8.147)

and this is a boundary term, representing the flux entering and leaving
the volume of integration. In particular, if we integrate over all space
with the boundary condition that jia vanishes sufficiently fast at infinity
(or if we integrate over a finite volume with jia(x) = 0 on the boundary, so
that there is no incoming or outgoing flux), the charge Qa is conserved.
All this is identical to the conservation of the electric charge that we
first found, in a non-covariant formalism, in Section 3.2.1, and that we
found again, with the covariant formalism, in eqs. (8.10) and (8.11). The
notations “charge” and “current” in the context of the Noether theorem
are indeed borrowed from this example. However, as we have seen, the
index a here can also be a Lorentz index, as in the case of space-time
translations, or can represent a pair of antisymmetric spatial indices, as
in the case of rotations, so the Lorentz transformation properties of the
“currents” jia(x) and “charges” Qa also depend on the nature of this
index.27 27Also observe that the multiplicative

factor in front of the charge is, at this
stage, arbitrary, since, if a quantity is
conserved, multiplying it by a constant
it remains conserved. In eq. (8.146) we
have chosen a multiplicative factor 1/c,
as in eq. (8.11).

Noether’s theorem also provides an explicit expression of the currents
jµa (x), in terms of the Lagrangian density of the theory and of the func-
tions Aµa(x) and Fi,a(φ, ∂φ) that enter in eqs. (8.132) and (8.133),28

28See Section 3.2 of Maggiore (2005)
for a proof of Noether’s theorem and
a derivation of eq. (8.148).

jµa =
δL

δ(∂µφi)
[Aρa(x)∂ρφi −Fi,a(φ, ∂φ)]− LAµa(x) . (8.148)



208 Covariant formulation of electrodynamics

Energy-momentum tensor of the electromagnetic field from
Noether’s theorem

We now specialize the above machinery to translations, which are sym-
metries of Maxwell’s theory (and of all standard field theories). In this
case, we have seen that the index a is actually a Lorentz index, so the
corresponding four conserved currents jµ(ν) form a Lorentz tensor. We
define

θµν = −cjµ(ν) . (8.149)

This is the field-theory definition of the energy-momentum tensor.2929As we will see below, the factor −c
is chosen so as to eventually obtain the
same normalization as in eq. (8.34). In
particular, the minus sign is related to
our signature ηµν = (−,+,+,+). As
already mentioned, by itself Noether’s
theorem does not fix the normalization
of the conserved current; if a current is
conserved, i.e., ∂µjµ = 0, any multiple
of it is also conserved.

Then, inserting eq. (8.137) into eq. (8.148) and raising the ν index as
θµν = ηνρθµρ, we get

θµν = −c
[

δL
δ(∂µφi)

∂νφi − ηµνL
]
. (8.150)

Equation (8.145) then states that, when θµν is evaluated on a solution
of the equations of motion, it satisfies3030Observe that, at this stage, θµν is not

necessarily symmetric in µ, ν, and the
contraction of the index of the partial
derivative must be done with the first
index of θµν , while ν was the equiva-
lent of the index a in eq. (8.145). We
will see below how to “improve” the
energy-momentum tensor so that it be-
comes symmetric, when the expression
obtained from eq. (8.150) is not sym-
metric.

∂µθ
µν = 0 . (8.151)

According to eq. (8.146), the conserved charge associated with the energy-
momentum tensor is

P ν ≡ 1

c

∫
d3x θ0ν , (8.152)

and this is the definition of four-momentum in classical field theory.
A field configuration, solution of the equations of motion, carries an
energy E = P 0 and a spatial momentum P i which can be calculated
using eqs. (8.150) and (8.152).

We can now apply this to the free electromagnetic field. In this case,
eq. (8.150) becomes

θµν = −c
[

δL
δ(∂µAρ)

∂νAρ − ηµνL
]
, (8.153)

and L is given by eq. (8.115). The derivative δL/δ(∂µAρ), which appears
in eq. (8.153), was already computed in eq. (8.124), so we get

θµν = −ε0c2
[
−Fµρ∂νAρ +

1

4
ηµνFαβF

αβ

]
. (8.154)

We next write ∂νAρ = (∂νAρ − ∂ρAν) + ∂ρA
ν = F νρ + ∂ρA

ν . Then

θµν = −ε0c2
[
FµρFρ

ν +
1

4
ηµνFαβF

αβ

]
+ ε0c

2Fµρ∂ρA
ν . (8.155)

The first term in this expression is just the energy-momentum Tµν that
was already written in eq. (8.34); as we showed there, this tensor con-
tains, in a covariant form, the energy density of the electromagnetic field,
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given by T 00, the Poynting vector, given by Si = cT 0i, and the Maxwell
stress tensor T ij , and satisfies the conservation equations (8.39) that
summarizes, in a covariant form, energy conservation and momentum
conservation. In particular, in the absence of sources, which is the case
that we are considering here, on the solutions of the equations of motion
it satisfies ∂µT

µν = 0 (or, since it is symmetric in µ, ν, ∂µT
νµ = 0 and,

after renaming the indices µ↔ ν, ∂νT
µν = 0).

The extra term in eq. (8.155) is, at first sight, quite puzzling, since
it is not even gauge-invariant (also note that it is not symmetric in
µ, ν). However, using the equation of motion ∂ρF

µρ = 0 (appropriate
to the fact that we have derived θµν from Noether’s theorem using the
Lagrangian of the free electromagnetic field) we see that, under a gauge
transformation (8.14), it induces a change in θµν given by

θµν → θµν − ε0c2Fµρ∂ρ∂νθ
= θµν − ε0c2∂ρ (Fµρ∂νθ) , (8.156)

so the conserved charge [i.e., the four-momentum P ν given by eq. (8.152)]
changes as

P ν → P ν − ε0c
∫
d3x ∂ρ

(
F 0ρ∂νθ

)

= P ν − ε0c
∫
d3x ∂i

(
F 0i∂νθ

)
. (8.157)

The additional term is a total spatial derivative which integrates to zero
(assuming, as always, that the field decreases sufficiently fast at infinity
or, in a finite volume, that it vanishes at the boundary of the integration
volume), so the extra term in eq. (8.155) does not contribute to the four-
momentum (which then, in particular, is gauge invariant), and θµν gives
the same charges as the explicitly gauge-invariant tensor Tµν so, from
this point of view, they are physically equivalent.

In general, Noether’s theorem provides an explicit expression for the
conserved current, but this need not be unique. For instance, once we
have found an energy momentum tensor θµν such that ∂µθ

µν = 0, we
can consider the “improved” energy-momentum tensor

Tµν = θµν + ∂ρAρµν , (8.158)

where Aρµν is an arbitrary tensor antisymmetric in the indices ρ, µ.
This new tensor is still conserved: ∂µ∂ρAρµν = 0 because of the an-
tisymmetry in ρ, µ. Furthermore, for µ = 0, ∂ρAρ0ν = ∂iA

i0ν is a
spatial divergence, and therefore this term does not contribute to the
four-momentum (8.152) if the fields vanish sufficiently fast at infinity.
This is precisely what happened here, with Aρµν = ε0c

2FµρAν .31 We

31Indeed, using the equation of motion
∂ρFµρ = 0 appropriate to the fact that
we are working in vacuum, the term
Fµρ∂ρAν in eq. (8.155) can be rewrit-
ten as ∂ρ(FµρAν).

then need some physical input to choose the “correct” form, if we want
to define a local energy density (also see the discussion in Note 11 on
page 47); in this case, the requirement of gauge invariance selects Tµν .
In general, Aρµν can be chosen so that Tµν is symmetric in cases when
θµν is not.32

32A note for the advanced reader.
In General Relativity, the energy-
momentum tensor is defined in terms
of a functional derivative of the La-
grangian with respect to a generic met-
ric gµν . This automatically gives a
symmetric energy-momentum tensor.
In the case of electromagnetism in
curved space, after taking the deriva-
tive with respect to gµν and special-
izing gµν to the flat-space Minkowski
metric ηµν , this procedure gives pre-
cisely the tensor Tµν given in eq. (8.34).
Eventually, this can be taken as the
best way of uniquely resolving the am-
biguity in the definition of the energy-
momentum tensor.
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Angular momentum of the electromagnetic field from
Noether’s theorem

We can repeat the same procedure for the invariance under rotations,
using eqs. (8.138)–(8.144). We write the “charge” associated with rota-
tions in the (i, j) plane as Jij , so3333Once again, the overall normalization

of the charge and the current cannot be
fixed from the Noether theorem since, if
a quantity is conserved, any multiple of
it is still conserved, and we fix it so that
the result will eventually agree with the
one found in eq. (3.76). In particular,
we do not insert in eq. (8.159) a fac-
tor 1/c as in eq. (8.146). The powers
of c are actually fixed from dimensional
analysis, in this case by the requirement
of obtaining a quantity with the dimen-
sions of angular momentum.

Jij =

∫
d3x j0

ij . (8.159)

The corresponding angular momentum is then given by

Ji =
1

2
εijkJjk . (8.160)

We now specialize to the electromagnetic field, adding a subscript “em”
to the various quantities. Then eq. (8.148) gives

(jem)0
ij =

δL
δ(∂0Aν)

[
Aρij(x)∂ρAν −Fν,ij(A)

]
− LA0

ij(x) . (8.161)

From eq. (8.124), δL/δ(∂0Aν) = −ε0cF 0ν . It therefore vanishes for
ν = 0, and the only contribution comes when ν is a spatial index, that
we denote by l.34 Using eq. (8.17), δL/δ(∂0Al) = −ε0El. Furthermore,

34Incidentally, this shows that A0 is
not a real dynamical variable, since its
time derivative does not appear in the
Lagrangian. This has important impli-
cations for the Hamiltonian formalism
and for the quantization of the theory,
see Maggiore (2005), Section 4.3.2.

from eq. (8.140), A0
ij(x) = 0. Then,

(jem)0
ij = −ε0El

[
Akij(x)∂kAl −Fl,ij(A)

]
. (8.162)

Inserting the explicit expressions of Akij and Fl,ij from eqs. (8.140) and
(8.144), we get3535A note for the advanced reader. The

first term in eq. (8.163) depends only
on the transformation of the coordi-
nates, through the term Akij(x). A sim-
ilar term will appear for any field the-
ory, independently of the transforma-
tion properties of the field. Upon quan-
tization, it corresponds to the orbital
angular momentum of the field, as can
already be realized from the appearance
of the operator (xi∂j − xj∂i) which, in
quantum mechanics, is related to the
angular momentum operator,

L̂i = −i~εijkxj∂k
= −(i/2)~εijk(xj∂k − xk∂j) .

The term (EiAj − EjAi), instead,
comes from the term proportional to
Fl,ij(A) in eq. (8.162), and is there-
fore specific to the vector nature of the
field A. Upon quantization, it cor-
responds to the spin part of the to-
tal angular momentum. See Maggiore
(2005), eqs. (4.81)–(4.90).

(Jem)ij = ε0

∫
d3x [El(xi∂j − xj∂i)Al + (EiAj − EjAi)] . (8.163)

We can further manipulate the second term in this expression writing
∫
d3x (EiAj − EjAi) =

∫
d3xEl[Aj(∂lxi)−Ai(∂lxj)] , (8.164)

since ∂lxi = δli. We next integrate ∂l by parts and use the fact that, in
vacuum ∂lEl = ∇·E = 0. Then, neglecting the boundary terms,

∫
d3x (EiAj − EjAi) =

∫
d3xEl(−xi∂lAj + xj∂lAi) . (8.165)

Inserting this into eq. (8.163) and using eq. (8.160), we get

(Jem)k = ε0

∫
d3x εijkxi(∂jAl − ∂lAj)El

= ε0

∫
d3x εijkxiεjlmBmEl

= ε0

∫
d3x εijkxi(E×B)j

= ε0

∫
d3x [x×(E×B)]k . (8.166)
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This agrees with eq. (3.76). We have therefore recovered, using Noether’s
theorem, the expression for the angular momentum of the electromag-
netic field that we found in eq. (3.76) by extracting a conservation law
directly from Maxwell’s equation. The derivation from Noether’s theo-
rem emphasizes that angular momentum is the conserved quantity as-
sociated with the invariance under spatial rotations.

8.8 Solved problems

Problem 8.1. Lorentz invariance of the charge associated with a
current distribution

In eq. (8.11) we found that the electric charge associated with a generic
current distribution can be written as

Q =
1

c

∫
d3x j0(t,x) , (8.167)

and we anticipated that this expression is Lorentz invariant. This is not ev-
ident a priori, since the integral is only over the spatial variables, and the
integrand is the µ = 0 component of a four-vector. However, the Lorentz
invariance of this expression can be proven as follows.36 Equation (8.167) is 36We follow the derivation given in Sec-

tion 6 of Weinberg (1972).written with respect to a specific reference frame, let’s call it K, which uses
coordinates (t,x). We then introduce a four-vector nµ that, in this reference
frame, is given by nµ = (−1, 0, 0, 0), or, equivalently, nµ = (1, 0, 0, 0). We
next observe that eq. (8.167) can be rewritten as

Q =
1

c

∫
d4x jµ(x) ∂µ [θ(nνx

ν)] , (8.168)

where θ is the Heaviside theta function (1.67). In fact, in the K reference
frame, θ(nνx

ν) = θ(x0), so

∂µ [θ(nνx
ν)] = ∂µθ(x

0)

= δ0µ δ(x
0) , (8.169)

where δ(x0) is the Dirac delta, and we used eq. (1.70). Inserted into eq. (8.168),
eq. (8.169) gives back eq. (8.167). However, the form (8.168) is more con-
venient to study the behavior of Q under Lorentz transformations. Using
∂µj

µ = 0, we can rewrite this as

Q =
1

c

∫
d4x ∂µ [jµ(x) θ(nνx

ν)] . (8.170)

Note that, even if the current jµ(x) = jµ(t,x) is localized in space, it is not
localized in time (i.e., we are not assuming that the four-current vanishes at
t → ±∞), so the integral in eq. (8.170) can be reduced to a boundary term,
but this boundary term would be non-vanishing. We will then still keep it,
for the moment, in the form of a four-dimensional integral.

We now perform a transformation to a new reference frame K′. Then,
xµ → x′µ = Λµνx

ν , see eq. (7.43), and similarly nµ → n′µ = Λµ
νnν . Denoting

the value of the transformed charge by Q′, we therefore have

Q′ =
1

c

∫
d4x′

∂

∂x′µ
[
jµ(x′) θ(n′νx

′ν)
]
. (8.171)
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However, in eq. (8.171), x′µ is a dummy integration variable, that we can
just rename xµ (note that here we also make use of the fact that we are
integrating over all of space-time, so the integration domain is unchanged
under the transformation xµ → Λµνx

ν). Therefore, in the frame K′, the
value of the charge is

Q′ =
1

c

∫
d4x ∂µ

[
jµ(x) θ(n′νx

ν)
]
, (8.172)

and

Q′ −Q =
1

c

∫
d4x ∂µ

{
jµ(x)

[
θ(n′νx

ν)− θ(nνxν)
]}

. (8.173)

The crucial point is that the difference of theta functions in the square brackets
vanishes at t → ±∞ at fixed x; actually, for fixed |x|, it is even a function
with compact support in t, since it becomes exactly zero when x0 is sufficiently
large, so that both n′νx

ν and nνx
ν are positive, or when x0 is negative and

sufficiently large in absolute value, so that n′νx
ν and nνx

ν are both negative.
Since jµ(x) vanishes at |x| → ∞ at fixed t (because we assume that the
current is localized in space, or at least decreases sufficiently fast as |x| → ∞),
the integrand in eq. (8.173) now vanishes on the whole boundary of the four-
dimensional integration region. Therefore, now Gauss’s theorem ensures that
Q′ −Q = 0, so Q is Lorentz invariant.

Having established the Lorentz invariance of Q, we can search for an ex-
plicitly Lorentz-invariant expression that reduces to eq. (8.11) in the K frame
which uses the variables (t,x). This will then give an expression for Q valid
in any frame. To this purpose, we define a covariant four-vector d3Sµ from
the condition that, in the frame K where eq. (8.167) holds,

d3Sµ = d3x(1, 0, 0, 0) . (8.174)

In a generic frame, d3Sµ is then obtained transforming it as a covariant four-
vector. Then, eq. (8.167) can be written in an explicitly Lorentz-invariant
form as

Q =
1

c

∫
d3Sµ j

µ . (8.175)

An explicitly covariant expression from d3Sµ can be obtained as follows.37

37This part is more mathematical and
can be skipped at first reading. Proofs
and extended discussions can be found
in most textbook dealing with Rieman-
nian geometry.

First, as a simpler example, consider the integration along a one-dimensional
curve embedded in four-dimensional Minkowski space. The curve can be
parametrized in terms of a single variable ξ, so that the position in space-time
of a point along the curve is given by assigning a function xµ(ξ). For instance,
if xµ(ξ) describes the trajectory of a massive particle, a natural choice for ξ
is the proper time τ , as we discussed in Section 7.4.1. Then, for instance,
the line integral of a four-vector field V µ(x), along the curve C defined by the
function xµ(ξ), can be written as∫

C
dxµVµ(x) =

∫
C
dξ
∂xµ(ξ)

∂ξ
Vµ[x(ξ)] . (8.176)

This can be generalized to two-dimensional surfaces, or three-dimensional vol-
umes, embedded in four-dimensional Minkowski space. A two-dimensional
surface is parametrized by two parameters (ξ1, ξ2), so that the position in
four-dimensional space of the point of the surface identified by (ξ1, ξ2) is given
assigning the functions xµ(ξ1, ξ2). The two-dimensional surface element d2sµν
can then be written as

d2sµν =
1

2!
εµνρσ

∂(xρ, xσ)

∂(ξ1, ξ2)
dξ1dξ2 , (8.177)
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where ∂(xρ, xσ)/∂(ξ1, ξ2) is the Jacobian of the transformation,

∂(xρ, xσ)

∂(ξ1, ξ2)
=

∣∣∣∣∣∣
∂xρ

∂ξ1

∂xρ

∂ξ2

∂xσ

∂ξ1

∂xσ

∂ξ2

∣∣∣∣∣∣ . (8.178)

Similarly, a point in a three-dimensional volume embedded in four-dimensional
Minkowski space can be parametrized by three parameters ξ = (ξ1, ξ2, ξ3), so
that the position in four-dimensional space of the point of the surface identified
by (ξ1, ξ2, ξ3) is given by the functions xµ(ξ1, ξ2, ξ3). The volume element can
then be written, in an explicitly covariant form, as

d3Sµ =
1

3!
εµνρσ

∂(xν , xρ, xσ)

∂(ξ1, ξ2, ξ3)
dξ1dξ2dξ3 , (8.179)

where, again ∂(xν , xρ, xσ)/∂(ξ1, ξ2, ξ3) is the Jacobian of the transformation.
In the frame where the volume is parametrized by the choices x1(ξ) = ξ1,
x2(ξ) = ξ2 and x3(ξ) = ξ3, we get d3Sµ = dξ1dξ2dξ3(1, 0, 0, 0), i.e., we get
back eq. (8.174), with ξi identified with xi.

Problem 8.2. Covariance of
∫
d3xT 0ν

We can proceed similarly to show that, given an energy-momentum Tµν

that satisfies ∂µT
µν = 0, the quantity defined by

P ν =
1

c

∫
d3xT 0ν , (8.180)

is indeed a four-vector, as the notation P ν suggests. To this purpose, pro-
ceeding as in eqs. (8.168)–(8.170), we rewrite it as

P ν =
1

c

∫
d4x ∂µ [Tµν(x) θ(nx)] , (8.181)

where nx = nρx
ρ. Then, under a Lorentz-transformation, P ν → P ′ν , where

P ′ν =
1

c

∫
d4xΛνσ∂µ

[
Tµσ(x) θ(n′x)

]
, (8.182)

and we used the fact that ∂µ [Tµν(x) θ(nx)] has a single free index ν and
therefore transforms with a single matrix Λνσ. Then

P ′ν − P ν =
1

c

∫
d4x ∂µ

[
ΛνσT

µσ(x) θ(n′x)− δνσTµσ(x) θ(nx)
]
. (8.183)

We now consider an infinitesimal Lorentz transformation, Λνσ = δνσ +ωνσ, so

P ′ν − P ν =
1

c
δνσ

∫
d4x ∂µ

{
Tµσ(x)

[
θ(n′x)− θ(nx)

]}
+ωνσ

1

c

∫
d4x ∂µ

[
Tµσ(x) θ(n′x)

]
. (8.184)

The term on the right-hand side in the first line vanishes by the same argument
that we used for the electric charge: Tµν is localized in space, while the
difference of theta functions vanishes at large |x0| and fixed |x|, so Gauss’s
theorem implies that this integral is a vanishing boundary term. In the second
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line, to first order in ω we can replace n′ by n, since we have already a factor
ωνσ in front. Then,

P ′ν − P ν = ωνσ
1

c

∫
d4x ∂µ [Tµσ(x) θ(nx)]

= ωνσP
σ . (8.185)

This is precisely the transformation of a four-vector under infinitesimal Lorentz
transformation. Constructing a finite Lorentz transformation as a sequence of
infinitesimal transformations, this implies that P ν transforms as a four-vector
also under finite Lorentz transformation. Therefore P ν , defined by eq. (8.180),
is indeed a four-vector.

Similarly to eq. (8.175), we can then write it in an explicitly Lorentz-
covariant form as

P νem =
1

c

∫
d3Sµ T

µν , (8.186)

where, as in eq. (8.174), d3Sµ is defined from the condition that, in the frame
K where eq. (8.48) holds, d3Sµ = d3x(1, 0, 0, 0), and, in a generic frame, it is
obtained requiring that it transforms as a four-vector. Its covariant expression
is given in eq. (8.179).

Problem 8.3. Relativistic motion in a constant electric field

We compute here the relativistic motion of a charged particle in a constant
electric field. Setting E = Ex̂, the equation of motion (3.6), that, as we have
seen in this chapter, when supplemented by p = γ(v)mv is fully relativistic,
becomes

dp

dt
= qEx̂ . (8.187)

Setting the initial condition p(t = 0) = 0, we then have

px(t) = qEt , (8.188)

while py(t) = pz(t) = 0. Writing pi = γmvi, we therefore have vy(t) = vz(t) =
0 and, denoting vx(t) simply as v(t), eq. (8.188) becomes

mv(t)√
1− v2(t)/c2

= qEt . (8.189)

This can be solved for v(t), obtaining

v(t)

c
=

qEt√
m2c2 + (qEt)2

. (8.190)

In the limit qEt� mc this reduces to

v(t) ' qEt

m
, (8.191)

which is the non-relativistic result for a particle subject to the constant force
F = qE. However, the right-hand side of eq. (8.190) is always smaller than
one, so v(t) is always smaller than c and, as t → ∞, v(t) → c. Writing
v(t) = dx/dt, and integrating eq. (8.190) with the initial condition x(0) = 0,
gives

x(t) =
mc2

qE

(√
1 +

q2E2t2

m2c2
− 1

)
, (8.192)
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which interpolates between the non-relativistic behavior

x(t) ' 1

2
at2 , (8.193)

(with a = qE/m) at small t, and the ultra-relativistic behavior x(t) ' ct at
large t.

As we will see in Chapter 10, an accelerated particle actually radiates elec-
tromagnetic waves, and therefore loses energy. The above computation is
therefore valid only as long as the associated energy losses can be neglected.

Problem 8.4. Relativistic motion in a constant magnetic field

We next consider the motion of a massive particle in a constant magnetic
field B. The relativistic equation of motion (3.6), together with p = mγv,
now gives

m
d(γv)

dt
= qv×B . (8.194)

Taking the scalar product with v and using the fact that v·(v×B) = 0 we get

mv·d(γv)

dt
= 0 . (8.195)

This implies that

0 = v·
(
dγ

dt
v + γ

dv

dt

)
= v2

dγ

dt
+

1

2
γ
dv2

dt
. (8.196)

Using

dγ

dt
=

d

dt

(
1− v2

c2

)−1/2

=
γ3

2c2
dv2

dt
, (8.197)

eq. (8.196) becomes

γ3 dv
2

dt
= 0 , (8.198)

and therefore
dv2

dt
= 0 . (8.199)

The modulus of the velocity of a particle in a magnetic field therefore stays
constant, even in the full relativistic setting. Since the energy E is just a
function of v2 through E = γmc2, the energy is also constant. This result
could have also been obtained from the µ = 0 component of eq. (8.62), which
is given explicitly by eq. (8.66), and becomes dE/dt = 0 when E = 0.

Since v2 is constant, also γ is constant, and we can extract it from the time
derivative in eq. (8.194). Setting B = Bẑ, we then obtain

dv

dt
= ωv×ẑ , (8.200)

where

ω =
qB

γm
, (8.201)
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or, in terms of the energy E = γmc2 of the particle,

ω =
qBc2

E . (8.202)

In the non-relativistic limit, eq. (8.201) becomes

ω =
qB

m
, (non-relativistic) , (8.203)

which is also called the cyclotron frequency. In components, eq. (8.200) reads

dvx
dt

= ωvy , (8.204)

dvy
dt

= −ωvx , (8.205)

while dvz/dt = 0. The solution is vz constant, and (choosing for definiteness
the origin of time so that vx = 0 when t = 0)

vx(t) = v⊥ sinωt , (8.206)

vy(t) = v⊥ cosωt , (8.207)

where v⊥ is a constant, which represents the modulus of the velocity in the
(x, y) plane, so that v2 = v2⊥ + v2z (as we have seen, both v2 and v2z are
constant). A further integration gives

x(t) = x0 − v⊥
ω

cosωt , (8.208)

y(t) = y0 +
v⊥
ω

sinωt , (8.209)

so the particle moves with angular velocity ω, given by eq. (8.201), on a circle
in the (x, y) plane, centered in a generic point (x0, y0) and of radius r = v⊥/|ω|.
From eq. (8.201), we get

r =
mγv⊥
|q|B . (8.210)

For a given velocity v⊥ of the particle in the (x, y) plane, the larger is the values
of B, the smaller is the radius of the circle to which the particle’s motion is
confined. With a non-vanishing value of vz, we have also z(t) = z0 + vzt, and
the motion in three-dimensional space is actually helicoidal.

Just as for the motion in an electric field, we have here neglected the fact
that an accelerated particle radiates electromagnetic waves so, again, the pre-
vious computation is valid only as long as the associated energy losses can be
neglected. For a non-relativistic particle in circular motion we will compute
their effect in Problem 10.2, while the radiation emitted in the full relativistic
setting will be discussed in Section 10.6.3.
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In this chapter, we study Maxwell’s equations in the absence of sources.
We will then discover that, even in the absence of sources, there are
non-trivial solutions that describe electromagnetic waves propagating
across empty space. We will study them in the Lorenz gauge and in the
Coulomb gauge. The former treatment allows us to maintain Lorentz
covariance explicitly at each stage. However, it will be more subtle to
understand how to eliminate spurious polarizations, and remain with
the two physical polarizations that characterize electromagnetic waves.
Working in the Coulomb gauge, in contrast, we will deal from the begin-
ning with only the two physical polarizations, at the price of losing ex-
plicit Lorentz covariance in the intermediate steps. The two approaches
are complementary, technically and conceptually, and are both impor-
tant to understanding electromagnetic waves.1 We begin, however, with 1The interplay between working with

the physical degrees of freedom at the
price of losing explicit Lorentz covari-
ance, or using a Lorentz-covariant for-
malism at the price of having to deal
with spurious degrees of freedoms, is
also a recurrent theme in the quanti-
zation of electrodynamics.

a discussion of wave equations in a simpler setting, involving only a
Lorentz scalar field, rather than the full electromagnetic field.

9.1 Wave equations

Let us begin by studying an equation of the form

2f ≡
[
− 1

c2
∂2

∂t2
+ ∇2

]
f = 0 , (9.1)

for some scalar function f(x) = f(t,x). It is interesting to compare this
equation to a Laplace equation ∇2f(x) = 0. If we set the boundary
condition that f(x) vanishes as |x| → ∞, it can be proved that the only
solution of ∇2f(x) = 0 is f = 0. In order to have a non-vanishing
solution, a source term is needed, as in eq. (3.93), and in this case we
saw that (for a localized source) the solution is given by eq. (4.16). In
contrast, because of the opposite sign of the time and space derivatives,
eq. (9.10) has non-trivial solutions even in the absence of sources.

In a space-time with just one spatial dimension, the most general wave
solution can be found quite easily: consider the equation

[
− 1

c2
∂2

∂t2
+

∂2

∂x2

]
f(t, x) = 0 , (9.2)

for a function of two variables t and x. Defining x± = x ± ct and
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∂± = ∂/∂x±, this equation can be rewritten as

∂+∂−f(x+, x−) = 0 . (9.3)

The most general solution is

f(x+, x−) = f1(x−) + f2(x+) , (9.4)

for arbitrary functions f1 and f2. A function f1(x−) = f1(x − ct) de-
scribes a wave moving rightward with speed c: if this function at t = 0
has a given value in x = 0, at a subsequent time t = t0 it will have
the same value in x = ct0, so the whole function is simply translated,
and advances with speed c toward the positive direction of the x axis.
Similarly, f2(x+) describes a left-moving wave, which again travels with
speed c.

If we have a function of all three spatial variables plus time, f(t,x),
that obeys 2f = 0, there are therefore particular solutions of the form
f(t, x, y, z) = f1(x ± ct), independent of the (y, z) coordinates, that
describe a plane wavefront that moves in the x direction (leftward or
rightward) at the speed of light. To study the most general wave-like
solution, in more than one spatial dimension, it is convenient to use
Fourier analysis, that we already introduced in Section 1.5. In particular,
any function f(x) (subject to conditions such as belonging to L1(R3),
the space of functions whose absolute value is integrable over R3) can be
decomposed in a superposition of modes eik·x with coefficients f̃(k), as
in eq. (1.100), and similarly any function of time [again, belonging e.g.,
to L1(R)] can be decomposed as in eq. (1.104). For a function of the
four-dimensional coordinates xµ = (x0,x), the Fourier decomposition
can be written as in eq. (1.105) that, in a four-vector notation, reads

f(x) =

∫
d4k

(2π)4
f̃(k)eikx , (9.5)

where kµ = (k0,k) is a four-vector and kx = kµx
µ. If f(x) is real, then

f̃∗(k) = f̃(−k). For a scalar function f(x), let us search a solution of
2f = 0 by making the ansatz

f(x) = fk e
ikx , (9.6)

where fk is the amplitude (which cannot be determined by the equation,
since it is just an overall constant). We then insert eq. (9.6) into 2f = 0
to see if, and under what conditions on k, this is indeed a solution. We
observe that2

2Explicitly,

∂µe
ikx =

∂

∂xµ
eikνx

ν

= ikν
∂xν

∂xµ
eikx

= ikνδ
ν
µe
ikx

= ikµe
ikx ,

and

2eikx = ∂µ∂µe
ikx

= ∂µ(ikµe
ikx)

= −kµkµeikx

= −k2eikx .

∂µe
ikx = ikµe

ikx , (9.7)

and
2eikx = −k2eikx , (9.8)

where k2 = kµkµ. We see that eikx is a solution of 2eikx = 0 if, and
only if, k2 = 0, i.e., −(k0)2 + k2 = 0,3 so we get

3Observe that the Minkowskian signa-
ture of the wave equation was essen-
tial to have a non-trivial solution. The
same procedure applied to the equation
∇2f(x) = 0 would give k2 = 0 which,
for k2 = k21 + k2 + k23 , has only the so-
lution k = 0. The Fourier mode with
k = 0 corresponds to a solution con-
stant in space, which is eliminated (in
the sense that its coefficient fk is set to
zero) by the boundary condition that
f(x) vanishes at |x| → ∞. (k0)2 = k2 . (9.9)



9.2 Electromagnetic waves in the Lorenz gauge 219

Comparing with eq. (7.146) and identifying k0 with E/c and k with p
(apart from a common overall constant which is also needed for dimen-
sional reasons since, from eq. (9.5), kµ has dimensions of inverse length),
we see that this is formally the same as the relation between energy and
momentum of a massless particle. To develop the connection between
fields and particles the formalism of quantum field theory is really needed
so, within our classical context, we cannot push this analogy too much.4 4As already discussed in Note 18

on page 201, the correct quantum-
mechanical relations are in fact E/c =
~k0 and p = ~k, and require the re-
duced Planck constant ~ that enters in
quantum mechanics.

At the quantum field theory level, however, one indeed finds that the
quanta of a field that obeys an equation such as 2f = 0 correspond to
massless particles.

9.2 Electromagnetic waves in the Lorenz
gauge

As we have seen, the introduction of the gauge potentials and the use
of the covariant formalism has the advantage of explicitly unveiling the
Lorentz symmetry of electromagnetism. It also has the technical advan-
tage of considerably simplifying the equations. We will therefore adopt
it for our treatment of electromagnetic waves.5 We have seen that, be- 5The gauge potential Aµ also turns out

to be the fundamental quantity for de-
scribing the electromagnetic field at the
quantum level, a subject in which, how-
ever, we cannot enter in this course.

fore making any choice of gauge, the first couple of Maxwell’s equations
is given by eq. (8.28). In this form, each of the four equations (cor-
responding to ν = 0, 1, 2, 3) involves all four components of Aν . Simi-
larly, the original Maxwell’s equations in the form (3.8)–(3.11) mix the
components of E and B. However, once formulated in terms of gauge
potentials, electromagnetism is invariant under the gauge transforma-
tion (8.14), and we can fix this freedom to impose the Lorenz gauge
∂µA

µ = 0, see eq. (8.29). In this gauge, eq. (8.28) becomes simply
eq. (8.30), where the four components of Aµ are decoupled. We now set
jµ = 0, so we study this equation in the absence of sources,

2Aµ ≡
[
− 1

c2
∂2

∂t2
+ ∇2

]
Aµ = 0 . (9.10)

For the electromagnetic potential Aµ(x) the solution is slightly more
complex compared to eq. (9.6), because we must take into account that,
besides the x dependence, Aµ also carries a four-vector index. Therefore,
we rather look for elementary solutions of the form

Aµ(x) = Ak εµ(k)eikx

= Ak εµ(k)e−iωt+ik·x , (9.11)

where Ak is the amplitude and, in the last line, we defined ω from
k0 = ω/c. The four-vector εµ, called the polarization four-vector, car-
ries the Lorentz index and is normalized as |ηµνεµεν | = 1 (except in the
special case in which it is a null vector, i.e., ηµνε

µεν = 0, which will be
analyzed separately below). The dependence on x = (ct,x) is only car-
ried by the exponential. A wave with the simple temporal dependence
given in eq. (9.11) is called monochromatic, since it has just a single
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frequency. Its spatial dependence corresponds to a plane wave, i.e., a
wave that is constant in the direction transverse to the propagation di-
rection k̂. More general functions are obtained by superpositions of the
form (9.5), with arbitrary coefficients, as we will see in more details be-
low. Since plane waves extend indefinitely in the transverse direction,
they are a mathematical idealization, and realistic wave solutions are
obtained from a superposition of plane waves which results in a finite
extent in the transverse direction. Note that, since the exponential de-
pends on k, a priori, to obtain a solution, we must admit the possibility
of a dependence of εµ on k, too. Once again, the reality condition will be
taken care of by the superposition with the complex conjugate solution
A∗k[εµ(k)]∗e−ikx.

Inserting the ansatz (9.11) into eq. (9.10), εµ, which is independent of
x, simply goes through the 2 operator and, using eq. (9.8), we get again
the condition

k2 = 0 , (9.12)

just as in the scalar case discussed in Section 9.1. However, we are not
done yet, since eq. (9.10) was obtained imposing that Aµ satisfies the
Lorenz gauge condition ∂µA

µ = 0, so our ansatz must also satisfy it.
Using eq. (9.7)

∂µ[εµ(k)eikx] = ikµε
µ(k)eikx , (9.13)

and therefore we must require

kµε
µ(k) ≡ ηµνkµεν(k) = 0 . (9.14)

We see that εµ depends indeed on k: it must be orthogonal (with respect
to the scalar product defined by the metric ηµν) to kµ.

Apparently, we have found that, for a given kµ, there are three in-
dependent solutions, corresponding to the three independent solutions
of eq. (9.14). For instance, with a rotation we can always set k along
the positive z axis; then, since k2 = 0, we have kz = +k0 (choosing for
definiteness k0 > 0; the case k0 < 0 can be treated in the same way)
and

kµ = k0(1, 0, 0, 1) . (9.15)

Given this form of kµ, two solutions of eq. (9.14) are immediately found,
and are given by

εµ(1)(k) = (0, 1, 0, 0) , εµ(2)(k) = (0, 0, 1, 0) , (9.16)

where the normalization factors have been chosen so that ηµνε
µεν = 1.

These are called transverse polarizations, since the corresponding spatial
vectors ε(1) = (1, 0, 0) and ε(2) = (0, 1, 0) are orthogonal, in a three-

dimensional sense, to the vector k̂ = (0, 0, 1).
The third solution, recalling the expression ηµν = (−1, 1, 1, 1) for the

metric, is
εµ(3)(k) = (1, 0, 0, 1) . (9.17)
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Notice that εµ(3)(k) ∝ kµ, and the fact that εµ(3)(k)kµ = 0 can also be seen
as a consequence of kµkµ = 0. In particular, for the spatial components,
we have ε(3) ∝ k. This is called a longitudinal polarization. The four-
vector (9.17) has zero norm, ηµνε

µεν = 0, so it cannot be normalized
imposing |ηµνεµεν | = 1. We then simply choose eq. (9.17) as our third
solution [any rescaling of it then corresponds to a redefinition of the
amplitude Ak associated with this solution in eq. (9.11)]. However, the
longitudinal polarization is non-physical and can be eliminated with a
further gauge transformation. In fact, after having reached the Lorenz
gauge ∂µA

µ = 0, we can perform a further gauge transformation

Aµ → A′µ = Aµ − ∂µθ , (9.18)

and, if we choose θ such that 2θ = 0, we still have ∂µA
′µ = 0. In

other words, the Lorenz gauge condition does not completely fix the
freedom of performing gauge transformations, and we can still make a
further gauge transformation with θ such that 2θ = 0. Working in
Fourier space, we can therefore consider a function θ(x) = aeikx, with
a an arbitrary complex constant (once again, the reality condition is
ensured by the complex conjugate term in the superposition of modes).
Requiring 2θ = 0 gives again k2 = 0. Under this gauge transformation,

Aµ → Aµ − ∂µ(aeikx) = Aµ − iakµeikx . (9.19)

Therefore, a solution proportional to kµeikx, with k2 = 0, can always be
removed with a residual gauge transformation. We can therefore set it
to zero without loss of generality.6 6If one had not noticed the existence of

this residual gauge transformation and
would have kept the solution propor-
tional to εµ

(3)
(k) in the computation of

gauge invariant quantities such as the
electric and magnetic field, one would
have found that the contributions pro-
portional to εµ

(3)
“miracolously” cancel.

This cancelation is simply due to the
fact that the εµ

(3)
(k) term can be set to

zero with a gauge transformation, and
therefore cannot affect gauge-invariant
quantities.

In conclusion, in vacuum, electromagnetic waves are described by a su-
perposition of terms of the form (9.11) and of its complex conjugate, with
k2 = 0 and kµε

µ(k) = 0. The latter condition admits as solutions the
two transverse polarizations and a longitudinal polarization εµ(k) ∝ kµ;
however, the latter can be set to zero with a residual gauge transfor-
mation, so the electromagnetic field has only two degrees of freedom,
corresponding to the two transverse polarizations. In a frame where
kµ is given by eq. (9.15), a basis for these two transverse polarization
is given by eq. (9.16). This is called the basis of linear polarizations.
Another useful basis is given by circular polarizations, defined as

εµ(+)(k) =
1√
2

(0, 1, i, 0) , εµ(−)(k) =
1√
2

(0, 1,−i, 0) . (9.20)

Given that the temporal components of these four-vector vanish, we
can more simply say that, in the frame where k = (0, 0, k), the linear
polarizations are

ê(1) = (1, 0, 0) , ê(2) = (0, 1, 0) , (9.21)

while the circular polarizations are

ê(+) =
1√
2

(1, i, 0) , ê(−) =
1√
2

(1,−i, 0) . (9.22)
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The physical polarization vectors are therefore orthogonal (in a three-
dimensional sense) to the propagation direction k̂. In Section 9.5 we will
discuss linear, circular (and elliptic) polarizations further, and we will
understand the reason for these names.

9.3 Electromagnetic waves in the
Coulomb gauge

It is interesting to compare these results with an analysis in the Coulomb
gauge, ∇·A = 0. In this case, the relevant equations are (3.93) and
(3.94) that, in vacuum, become

∇2φ = 0 , (9.23)

2A =
1

c2
∇∂φ

∂t
. (9.24)

With the boundary condition that φ vanishes at spatial infinity, the only
solution of eq. (9.23) is φ = 0. Thus, in vacuum, we can set

φ = 0 , ∇·A = 0 . (9.25)

In fact, we could have also reached this conclusion with a more complete
choice of gauge, as follows.7 First of all, starting from a generic field7We closely follow Maggiore (2005),

Section 3.5.2. configuration Aµ, we can find a gauge transformation Aµ → A′µ such
that A′0 = 0. It is given simply by

Aµ(t,x)→ A′µ(t,x) = Aµ(t,x)− ∂µ
∫ t

cdt′A0(t′,x) , (9.26)

since

A′0(t,x) = A0(t,x)− ∂t
∫ t

dt′A0(t′,x)

= 0 . (9.27)

After that, we still have the freedom of performing a gauge transforma-
tion with θ independent of t, because this does not modify the condition
A′0 = 0. We then perform a further gauge transformation which sends
A′µ into a new field A′′µ = A′µ − ∂µθ, choosing

θ(x) = −
∫

d3y

4π|x− y|
∂A′i(t,y)

∂yi
. (9.28)

Despite the dependence on time of A′i(t,y), the integral on the right-
hand side is actually independent of t. In fact, in this gauge Ei = −∂tA′i,
since A′0 = 0. Then the vacuum Maxwell equation ∂iE

i = 0 implies
∂t∂iA

′i = 0. It then follows from eq. (9.28) that ∂tθ = 0.
Furthermore, from A′′i = A′i − ∂iθ it follows that

∇ ·A′′ = ∇ ·A′ −∇2θ . (9.29)
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Using in eq. (9.28) the identity

∇2
x

( −1

4π|x− y|

)
= δ3(x− y) , (9.30)

that we derived in eq. (1.90), we get

∇2θ = ∇ ·A′ , (9.31)

and therefore ∇ ·A′′ = 0. We have therefore used the gauge freedom to
set

A0 = 0 ∇ ·A = 0 , (9.32)

(where we have eventually removed the double primes on A). This gauge
is called the radiation gauge. Note that it implies the Lorenz gauge
∂µA

µ = 0, as well as the Coulomb gauge ∇ ·A = 0. Thus, both the
Lorenz and the Coulomb gauge do not fix the gauge freedom completely.
In contrast, in the radiation gauge there is no residual gauge freedom.

In any case, whether we directly fix the radiation gauge, or else we only
fix the Coulomb gauge and then discover that φ = 0 from the solution
of eq. (9.23), we end up with eqs. (9.24) and (9.25). Since φ = 0, the
former simply becomes 2A = 0, so, in the end, A(t,x) must solve the
two equations

2A = 0 , (9.33)

∇·A = 0 . (9.34)

We can then proceed in a way completely analogous to the discussion
in Section 9.2. Working in Fourier space, the solutions of eq. (9.33) are
superpositions of

A(t,x) = Ak ê(k)eikx , (9.35)

and its complex conjugate, with k2 = 0, i.e., (k0)2 = |k|2. The quantity
Ak is the amplitude, while the polarization vector is normalized as

ê(k)·ê∗(k) = 1 , (9.36)

which becomes simply ê(k)·ê(k) = 1 if we take a real polarization vector.
Equation (9.34) requires that

ê(k)·k = 0 . (9.37)

Therefore, we again find the two transverse polarizations that we have
already found in the Lorentz gauge. The most general solution is given
by a superposition of the elementary solutions, labeled by k and by an
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index λ = 1, 2 that identifies the two independent solutions of eq. (9.37),
with arbitrary amplitudes Ak,λ,

A(t,x) =

∫
d3k

(2π)3

∑

λ=1,2

[
ê(k, λ)Ak,λe

ikx + ê∗(k, λ)A∗k,λe−ikx
]
k0=+|k| .

(9.38)
Note that the equation k2 = 0 has two solutions, k0 = ±|k|. However,
once we consider the general superposition of plane waves eikx and e−ikx,
we can limit ourselves to k0 = +|k|. For example, when k0 = −|k| we
have

(
eikx

)
k0=−|k| =

(
e−ik

0x0+ik·x
)
k0=−|k|

= exp{i|k|x0 + ik·x} . (9.39)

This is the same as a term e−ikx with k0 = +|k|, i.e.,

exp{i|k|x0 − ik·x} , (9.40)

after renaming the integration variable k into −k. As in eq. (9.11), we
define ω from ω/c = k0. Since we can restrict to k0 = +|k|, we have

ω

c
= k0 = +|k| . (9.41)

We can then rewrite eq. (9.38) more simply as

A(t,x) =

∫
d3k

(2π)3

∑

λ=1,2

[
ê(k, λ)Ak,λe

−iωt+ik·x + ê∗(k, λ)A∗k,λeiωt−ik·x
]
.

(9.42)
The vectors ê(k, λ), with λ = 1, 2, in eq. (9.42) are the two independent
solutions of k·ê(k) = 0. As a basis, we can use for instance the linear
polarizations, or the circular polarizations; for k pointing along the ẑ
direction, they are given by eq. (9.21) and eq. (9.22), respectively.

9.4 Solutions for E and B

We can now immediately read the solutions for E and B from the so-
lutions for the gauge potential. It is simpler to work in the Coulomb
gauge, where φ = 0, and A is given by eq. (9.35) together with the
condition (9.37). From eq. (3.80), and eq. (3.83) with φ = 0, we have

E = −∂A

∂t
, B = ∇×A . (9.43)

We take for A a solution of the form

A(t,x) = Ak ê(k) e−iωt+ik·x , (9.44)

with k·ê(k) = 0. We also use k = (ω/c)k̂, that follows from eq. (9.41).
Then, we get

E(t,x) = ê(k) iωAk e
−iωt+ik·x , (9.45)

B(t,x) = [k̂× ê(k)]
iω

c
Ak e

−iωt+ik·x . (9.46)
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Defining Ek = iωAk, we can rewrite this more compactly as

E(t,x) = ê(k)Ek e
−iωt+ik·x , (9.47)

cB(t,x) = [k̂× ê(k)]Ek e
−iωt+ik·x . (9.48)

As always, the actual field will be given by the real part of these complex
expressions

E(t,x) = Re
[
ê(k)Ek e

−iωt+ik·x] , (9.49)

cB(t,x) = Re
[
[k̂× ê(k)]Ek e

−iωt+ik·x
]
. (9.50)

Equations (9.47) and (9.48) show the basic features of electromagnetic
waves. Both the electric and magnetic field are transverse to the prop-
agation direction, and satisfy

cB(t,x) = k̂×E(t,x) , (9.51)

so they are orthogonal to each other, and their moduli are related by
|E| = c|B|. The dependence on space and time is through the phase
factor e−iϕ(t,x), where

ϕ(t,x) = ωt− k·x . (9.52)

Using eq. (9.41), we can write

ϕ(t,x) = −ω
c

(k̂·x− ct) , (9.53)

and we see that the surfaces of constant phase, i.e., the surfaces where
ϕ(t,x) is constant, travel at the speed of light.8 The quantity ω is the 8We will expand on this in Section 15.2,

where, beside this notion of “phase ve-
locity,” we will introduce the group ve-
locity of a wave-packet, for waves prop-
agating in a generic medium.

frequency of the wave, since the wave is unchanged under a time trans-
lation t → t + T with T = 2π/ω, while its wavelength λ is given by

λ =
2π

|k| , (9.54)

since the wave is periodic if we translate it by λ along the propagation
direction, i.e., under x → x + λk̂. The vector k, with dimensions of
inverse length, is called the wavenumber. From eqs. (9.41) and (9.54),
we have the relation

ω

c
=

2π

λ
. (9.55)

It is also useful to introduce the reduced wavelength λ− = λ/(2π), so that

λ− =
c

ω
. (9.56)

From eq. (3.44), and the fact that in any plane wave B ≡ |B| and
E ≡ |E| are related by cB = E, it follows that the energy density u(t,x)
is

u(t,x) = ε0|E(t,x)|2 . (9.57)
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Similarly, from eq. (3.56), the momentum density of an electromagnetic
wave is

g(t,x) = ε0 E(t,x)×B(t,x)

=
ε0
c
|E(t,x)|2 k̂ , (9.58)

and the Poynting vector is given by

S(t,x) = ε0c|E(t,x)|2 k̂ . (9.59)

Note that

g(t,x) =
1

c
u(t,x) k̂ , (9.60)

so the relation between the energy density and the momentum density
of a plane electromagnetic wave is the same as the relation between
energy and momentum for a massless particle (see eq. (3.73) with v =
c). This fact, that will have a full explanation in a quantum theory of
electromagnetism, can already suggest us that, at the quantum level,
an electromagnetic wave will be a collection of massless particles, the
photons.

For a monochromatic electromagnetic wave, we are typically interested
in the energy density and momentum density averaged in time over a
period of the wave, at a fixed point in space. We denote this average by
a bracket 〈. . .〉, so

〈u(t,x)〉 = ε0 〈|E(t,x)|2〉 , (9.61)

〈g(t,x)〉 =
ε0
c
〈|E(t,x)|2〉 k̂ . (9.62)

Using eq. (9.49),

E(t,x) =
1

2

[
ê(k)Ek e

−iωt+ik·x + ê∗(k)E∗k e
iωt−ik·x] , (9.63)

so

〈|E(t,x)|2〉 =
1

4
〈
[
ê(k)Ek e

−iωt+ik·x + ê∗(k)E∗k e
iωt−ik·x]

·
[
ê(k)Ek e

−iωt+ik·x + ê∗(k)E∗k e
iωt−ik·x]〉 . (9.64)

After taking the scalar product, the terms proportional to e−2iωt and
to e+2iωt average to zero, since 〈sin(2ωt)〉 = 0 and 〈cos(2ωt)〉 = 0, so
only the cross terms, which are independent of time, remain. Then, for
a monochromatic electromagnetic wave,

〈|E(t,x)|2〉 =
1

2
|Ek|2 . (9.65)

As an alternative route, rather than working with the gauge poten-
tials, we could have derived wave equations for E and B directly from
Maxwell’s equations in vacuum,

∇·E = 0 , (9.66)

∇×B− 1

c2
∂E

∂t
= 0 , (9.67)

∇·B = 0 , (9.68)

∇×E +
∂B

∂t
= 0 . (9.69)
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We take the curl of eq. (9.69), and we use

[∇× (∇×E)]i = εijk∂j(εklm∂lEm)

= (δilδjm − δimδjl)∂j∂lEm
= ∂i(∇·E)−∇2Ei . (9.70)

or, in vector form,

∇× (∇×E) = ∇(∇·E)−∇2E . (9.71)

Therefore we get

∇(∇·E)−∇2E +
∂

∂t
(∇×B) = 0 . (9.72)

Using eqs. (9.66) and (9.67) we then obtain
(
− 1

c2
∂2

∂t2
+ ∇2

)
E = 0 , (9.73)

i.e., 2E = 0. Similarly, taking the curl of eq. (9.67) and using eqs. (9.68)
and (9.69), we get (

− 1

c2
∂2

∂t2
+ ∇2

)
B = 0 . (9.74)

Note, however, that eqs. (9.73) and (9.74) are a consequence of the full
Maxwell’s equations (9.66)–(9.69), but are not equivalent to them. The
general solution of eqs. (9.73) and (9.74) is a superposition of plane
waves of the form

E(t,x) = Ek e
−iωt+ik·x , (9.75)

B(t,x) = Bk e
−iωt+ik·x , (9.76)

with ω/c = k but Ek and Bk independent, and arbitrary. Once we put
these solutions back into the full set of Maxwell’s equations, eq. (9.66)
further imposes

k·Ek = 0 , (9.77)

while eq. (9.68) gives
k·Bk = 0 . (9.78)

Finally, eq. (9.67) gives

k×Bk +
ω

c2
Ek = 0 , (9.79)

which, using ω/c = k, becomes

Ek = −ck̂×Bk , (9.80)

while eq. (9.69) gives the equivalent equation

cBk = k̂×Ek . (9.81)

We have therefore recovered the solution (9.47), (9.48).9

9In Note 19 on page 395 we will show
that, actually, this result can have been
obtained using just eqs. (9.67) and
(9.69), rather than the full set of vac-
uum Maxwell’s equation.
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9.5 Polarization of light

Consider a monochromatic wave propagating along the z direction, so
k̂ = ẑ, with Ek = E real, and consider the basis of the linear polariza-
tions (9.21), ê(1) = x̂, ê(2) = ŷ. Since these are real, for a wave linearly
polarized along the x̂ axis eq. (9.49) gives

E(t,x) = E cos(ωt− kz) x̂ , (9.82)

and eq. (9.50) gives cB(t,x) = E cos(ωt− kz) ŷ. Thus, as a function of
time (for given z), the electric field oscillates along a fixed direction in
the (x, y) plane, which in this case is the x̂ axis, and the magnetic field
along the orthogonal direction in the (x, y) plane, in this case the ŷ axis,
and similarly as a function of z at fixed t, as illustrated in Fig. 9.1. In
the same way, for a wave linearly polarized along the ŷ axis,

E(t,x) = E cos(ωt− kz) ŷ , (9.83)

and cB(t,x) = −E cos(ωt − kz) x̂. So, in these cases, the electric field
(as well as the magnetic field) oscillates along a fixed direction. This
is the origin of the name “linear polarization.” A combination with
real coefficients of the solutions (9.82) and (9.83) gives a solution that
oscillates along a generic direction in the (x, y) plane.

B

E

k̂

x

y

z

Fig. 9.1 A linearly polarized electro-
magnetic wave.

E
k̂

x

y

z

Fig. 9.2 A circularly polarized elec-
tromagnetic wave.

Consider now the polarizations vectors (9.22). In this case, ê(+) =

(x̂ + iŷ)/
√

2. Then eq. (9.49) gives

E(t,x) = E
1√
2

[cos(ωt− kz) x̂ + sin(ωt− kz) ŷ] . (9.84)

This represents a vector that, as t increases for fixed z, rotates counter-
clockwise in the (x, y) plane, describing a circle; hence, the name circular
polarization. Equivalently, as z increases for fixed t, it rotates clockwise
in the (x, y) plane, as illustrated in Fig. 9.2. With respect to the wave
propagating along the +ẑ direction, this is called a right circular polar-
ization. Similarly, with ê(−) the polarization vector rotates clockwise in
the (x, y) plane as t increases for fixed z, and describes left circular po-
larization. The corresponding magnetic field is given by eq. (9.48), and
rotates so as to remain orthogonal to E, in the (x, y) plane transverse
to the propagation direction k̂.

The most general case, for a monochromatic wave propagating along
the +ẑ axis, is given by

E(t,x) = Re
[
(E1x̂ + E2ŷ)e−i(ωt−kz)

]
, (9.85)

where E1 and E2 are arbitrary complex quantities. Writing

E1 = A1e
−iδ1 , E2 = A2e

−iδ2 , (9.86)

with A1, A2, δ1 and δ2 real, and using the notation ϕ = ωt− kz, we get

E(t,x) = Ex(t, z)x̂ + Ey(t, z)ŷ , (9.87)
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where

Ex(t, z) = A1 cos(ϕ+ δ1) , (9.88)

Ey(t, z) = A2 cos(ϕ+ δ2) , (9.89)

and the dependence on (t, z) enters through ϕ. With simple trigonome-
try, we then find

Ex
A1

sin δ2 −
Ey
A2

sin δ1 = cosϕ sin δ , (9.90)

Ex
A1

cos δ2 −
Ey
A2

cos δ1 = sinϕ sin δ , (9.91)

where δ = δ2 − δ1. Squaring the two terms and summing them, we get

(
Ex
A1

)2

+

(
Ey
A2

)2

− 2

(
Ex
A1

)(
Ey
A2

)
cos δ = sin2 δ . (9.92)

This is the equation of an ellipse in the (Ex, Ey) plane, with semi-axes
A1 and A2. Correspondingly, light is said to be elliptically polarized, see
Fig. 9.3.
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Êx

Êy

k̂

x

y

z

Fig. 9.3 An elliptically polarized
electromagnetic wave.

For δ = π/2 (or, more generally, for δ = mπ/2 with m = ±1,±3, . . .),
we get (

Ex
A1

)2

+

(
Ey
A2

)2

= 1 , (9.93)

so the semi-axes are aligned with the Ex and Ey axes. If, furthermore,
A1 = A2, the ellipse becomes a circle, and we get back circular polar-
ization. If, instead, δ = mπ with m = 0,±1,±2, . . . we get

(
Ex
A1

)2

+

(
Ey
A2

)2

± 2

(
Ex
A1

)(
Ey
A2

)
= 0 , (9.94)

(with the plus sign for m odd and the minus for m even) so that

(
Ex
A1
± Ey
A2

)2

= 0 , (9.95)

and therefore
Ey
Ex

= ∓A2

A1
, (9.96)

is fixed. Therefore, the electric field does not rotate in the (Ex, Ey)
plane, and we get back linear polarization.

9.6 Doppler effect and light aberration

We have seen that the space and time dependence of a monochromatic
electromagnetic wave is given by the factor eikx (and its complex con-
jugate), where

kµ = (k0,k) =
ω

c
(1, k̂) . (9.97)
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While the speed of light c is the same for all observers, the frequency ω
and the propagation direction k̂ depend on the observer, in a way deter-
mined by the fact that kµ is a four-vector. As we will see in this section,
this gives rise to the relativistic Doppler effect and to the aberration of
light.

To fix the geometry, consider a source S, such as a star, and let Ks

denote an inertial frame comoving with the star. In this frame the star
therefore has zero velocity. We denote by (ts,xs) the coordinates of
the source in this frame, and by n̂s the unit vector from the origin of
this reference frame, toward the star. Consider now a second reference
frame Kobs, moving with uniform velocity v with respect to Ks. In
this frame, the star has a velocity vs = −v. We fix the origins of the
two reference frames so that, at a given time t0, they coincide, and we
call Oobs an observer that sits at the origin of the frame Kobs. We
denote by (tobs,xobs) the coordinates of this frame, and by n̂obs the unit
vector from the observer to the source, in this frame, at the given time
considered. From eqs. (7.22) and (7.23), written for a boost in a generic
direction, the coordinates of the source in the two frames are related by

x0
obs = γs(x

0
s + βs·xs) , (9.98)

x‖,obs = γs(x‖,s + βsx
0
s) , (9.99)

x⊥,obs = x⊥,s , (9.100)

where γs = γ(vs), and we have spilt the vector part of the equation into
the components parallel and perpendicular to βs, x = x⊥+ x‖β̂s. Note
that we have chosen the signs so that, if the source is at rest in the frame
Ks, it moves in the direction +β̂s in the frame Kobs.

In the reference frame Ks, the four-momentum of the light that prop-
agates from the source to the origin of the coordinate system is

kµs =
ωs
c

(1,−n̂s) . (9.101)

Note that n̂s is defined to point from the observer toward the source,
while light propagates from the source to the observer, so k̂s = −n̂s. In
the reference frame Kobs, the four-momentum of the light emitted from
the source and received at time t0 by the observer Oobs is

kµobs =
ωobs

c
(1,−n̂obs) . (9.102)

The four-momenta kµobs and kµs are related by a Lorentz transformation,
completely analogous to eqs. (9.98)–(9.100). Splitting again the vector
part into the components parallel and perpendicular to βs = vs/c, we
have

k0
obs = γs

(
k0
s + βs·ks

)
, (9.103)

k‖,obs = γs
(
k‖,s + βsk

0
s

)
, (9.104)

k⊥,obs = k⊥,s . (9.105)
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The inversion of these equations gives

k0
s = γs

(
k0

obs − βs·kobs

)
, (9.106)

k‖,s = γs
(
k‖,obs − βsk0

obs

)
. (9.107)

This could be easily checked analytically, but in fact we can more simply
observe that all relations between the quantities in the frame Ks and
the corresponding quantities in the frame Kobs can be inverted by re-
placing βs with −βs since, if Ks moves with velocity vs with respect to
Kobs, then Kobs moves with velocity −vs with respect to Ks. Inserting
eqs. (9.101) and (9.102) into eq. (9.106) gives

ωs = γsωobs (1 + βs·n̂obs) . (9.108)

Therefore

ωobs =
ωs

γs (1 + βs·n̂obs)
. (9.109)

This equation gives the frequency ωobs, as measured by the inertial ob-
server Oobs for which the source has a velocity vs, as a function of the
intrinsic frequency of the source ωs (i.e., the frequency measured by an
inertial observer for which the source is at rest), of the velocity vs of
the source in the frame of Oobs, and of the direction of the source, n̂obs,
again as measured by the observer Oobs. Using the explicitly expression
for γ(vs) and writing βs·n̂obs = βs cos θobs (where βs = |βs| > 0), we
can rewrite it as

ωobs = ωs
(1− β2

s )1/2

1 + βs cos θobs
. (9.110)

This change of frequency between a frame comoving with the source
and a frame where the source has non-zero velocity is called the Doppler
effect.

In the limit βs � 1 we can expand eq. (9.110) in powers of βs. The
terms of order βs and β2

s are called the first-order and the second-order
Doppler effect, respectively. The first-order Doppler effect is given by

ωobs ' ωs (1− βs cos θobs) . (9.111)

If the source is moving away from the observer, cos θobs > 0 and then
ωobs < ωs. One conventionally says that the frequency of light is red-
shifted (this nomenclature, of course, had its origin in the shift of the
frequency of visible light, but is now universally used just to mean that
the frequency decreases). Conversely, if the source comes toward the
observer, cos θobs < 0 and ωobs > ωs, i.e., light is “blueshifted.”

Note, however, that for θobs = π/2, i.e., for a source moving in a
direction orthogonal to the line of sight of the observer, there is no first-
order effect, and

ωobs = ωs (1− β2
s )1/2 (cos θobs = 0) . (9.112)



232 Electromagnetic waves in vacuum

This is called the transverse Doppler effect, and always corresponds to
a redshift.

Next consider the relation between n̂s and n̂obs. The relation between
the components of n̂s and n̂obs parallel to β is obtained by inserting
eqs. (9.101) and (9.102) into eq. (9.107). Writing

n̂‖s = cos θs , (9.113)

n̂
‖
obs = cos θobs , (9.114)

and using eq. (9.109), we get

cos θs =
cos θobs + βs

1 + βs cos θobs
. (9.115)

Again, this can be inverted by exchanging the labels “obs” and “s” and
replacing βs → −βs,

cos θobs =
cos θs − βs

1− βs cos θs
. (9.116)

Equation (9.116) also implies that

sin θobs =
sin θs

γs(1− βs cos θs)
, (9.117)

and

tan θobs =
sin θs

γs(cos θs − βs)
. (9.118)

Equation (9.116) shows that the direction in which the observers K and
K ′ see the source are not the same. This phenomenon is called the
aberration of light.

The Doppler and aberration effects already exist in Galilean Relativ-
ity, i.e., when the transformation between coordinates of inertial frames
is given by eq. (7.1). For sound waves, the Doppler effect is the familiar
change of pitch of the siren of an ambulance from when it approaches
to when it recedes from us.10 A familiar example of aberration can be

10In this case, of course, the role of the
speed of light is played by the speed of
sound (in the rest frame of the medium
where the wave propagates).

given by the tracks left by the rain on the window of a moving train,
which have an inclination with respect to the vertical due to the velocity
of the train. In both cases, these effects can be derived as a consequence
of the non-relativistic composition law for velocities, as follows.Obs

θ

x2vsx1

|vs|T

d

Fig. 9.4 The geometric setting of the
Doppler effect discussed in the text.

For the Doppler effect consider a source that, in its rest frame, emits
signals with a period T , and therefore a frequency ωs = 2π/T . As
illustrated in Fig. 9.4, in the observer frame the source moves at velocity
vs and, at time t1, is in the position x1. At time t2 = t1 + T it will be
in the position

x2 = x1 + vs(t2 − t1)

= x1 + vsT , (9.119)
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and, as we see from Fig. 9.4, to reach an observer (located at a distance
much larger than vsT ), light must travel an extra distance

d = vsT cos θ , (9.120)

or, in vector form,
d = vs·n̂obsT . (9.121)

Therefore, the difference in the time of arrival of two signals emitted at
times t and t+ T is

Tobs = T +
d

c
= T (1 + βs·n̂obs) , (9.122)

and therefore ωobs ≡ 2π/Tobs is related to ωs ≡ 2π/T by

ωobs =
ωs

1 + βs·n̂obs
. (9.123)

This agrees with eq. (9.109), except for the factor 1/γs which is a purely
relativistic effect and is simply due to the time dilatation effect that we
studied in Section 7.2.3: for the observer, the clock on the star goes
slower, and therefore it emits the second signal only after a time ∆t =
2πγs/ωs, rather than 2π/ωs. This reproduces the correct factor 1/γs in
eq. (9.109). Note in particular that, in the non-relativistic computation,
there is no transverse Doppler effect.

The non-relativistic expression for the aberration can be computed
similarly. Consider a frame at rest with respect to the source, in which
light has speed c (of course, if we assume Galilean Relativity, the speed
of light becomes frame dependent) and let

n̂s = (cos θs, sin θs, 0) , (9.124)

be the unit vector toward the source in this frame. In this frame, the
velocity of a light signal emitted at the source and reaching the origin
of the reference is given by the vector

cs = (−c cos θs,−c sin θs, 0) . (9.125)

In the observer frame, where the source moves away from the observer
with velocity vs along the positive direction of the x axis, using the
Galilean composition of velocities we would have

cobs = (−c cos θs + vs,−c sin θs, 0) . (9.126)

Therefore, the prediction of Galilean Relativity is that light will be seen
to arrive from an angle θobs such that

tan θobs =
c sin θs

c cos θs − vs
=

sin θs
cos θs − βs

. (9.127)

This agrees with eq. (9.118), except again for the factor 1/γs, which is
therefore a purely relativistic effect.
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In this chapter we study the electromagnetic fields generated by mov-
ing charges. At the mathematical level, a fundamental tool is provided
by the Green’s functions of the d’Alembertian operator, in particular
the retarded Green’s function, that we introduce in Section 10.1. We
will then be able to study the field generated by charges with arbitrary
motion, and we will discover that, when a charge is accelerated, it pro-
duces electromagnetic waves. We will then study in detail the radiation
emitted in different situations.

10.1 Advanced and retarded Green’s
function

To solve radiation problems we use the Green’s function method, that
we have already introduced in Section 4.1.2 for the case of the Laplace
operator. Here, however, the relevant operator is the d’Alembertian op-
erator (3.88) and, as we will see, the situation is richer because it admits
different Green’s functions. We define the Green’s functions G(x, x′) of
the d’Alembertian as the solutions of the equation1

1Different conventions exist in the lit-
erature for the normalization and over-
all sign of the Green’s function. Some-
times the Green’s functions of the
d’Alembertian are rather defined as the
solutions of

2xG(x;x′) = −4πδ(4)(x− x′) ,

to reabsorbe a factor −1/(4π) that we
will find in eq. (10.24) below. Also
notice that we are using the signature
(−,+,+,+), so that 2 = −(1/c2)∂2t +
∇2. Sometimes the Greens function is
defined by 2xG(x;x′) = δ(4)(x − x′),
using, however, the opposite signature
(+,−,−,−), so 2 = (1/c2)∂2t − ∇2;
this definition then differs from ours by
an overall sign.

2xG(x;x′) = δ(4)(x− x′) , (10.1)

or, more explicitly
[
− ∂2

∂(x0)2
+ ∇2

x

]
G(x0,x;x′0,x′) = δ(x0 − x′0)δ(3)(x− x′) . (10.2)

Once found a Green’s function, a particular solution of an equation such
as

2f(x) = j(x) (10.3)

is given by

f(x) =

∫
d4x′G(x;x′)j(x′) , (10.4)

as can be checked by applying 2x to both sides.2 The most general 2This is valid as long as the integral
converges. After having found the ex-
plicit form of the Green’s function, we
will discuss the corresponding bound-
ary conditions that need to be imposed
on j(x).

solution of eq. (10.3) is then obtained adding the most general solution
fhom(x) of the homogeneous equation 2f = 0, so that

f(x) = fhom(x) +

∫
d4x′G(x;x′)j(x′) . (10.5)
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Notice that the use of different Green’s functions can be reabsorbed into
a different choice of solution of the homogeneous equation. Indeed, let
G1(x;x′) and G2(x;x′) be two different Green’s functions, and define

f1(x) =

∫
d4x′G1(x;x′)j(x′) , (10.6)

f2(x) =

∫
d4x′G2(x;x′)j(x′) . (10.7)

Then f2(x) = fhom(x) + f1(x), where

fhom(x) =

∫
d4x′ [G2(x;x′)−G1(x;x′)]j(x′) . (10.8)

Since

2xfhom(x) =

∫
d4x′ [δ(4)(x− x′)− δ(4)(x− x′)]j(x′)

= 0 , (10.9)

the solutions f2(x) and f1(x) indeed differ by a solution of the homoge-
neous equation. Observe that, in the case of the Laplacian studied in
Section 4.1.2, the homogeneous equation ∇2φ = 0 (with the boundary
condition that φ vanishes at infinity, that was the physically relevant one
in the setting of electrostatics) only has the solution φ = 0, and therefore
the Green’s function was unique. In contrast, as we saw in Chapter 9, an
equation such as 2f(x) = 0 has non-vanishing solutions, corresponding
to plane waves, that are the physically relevant solutions in a radiation
problem. The physically correct boundary conditions must therefore be
such to allow for the possibility of these solutions, and the choice of
the homogeneous solution, or, equivalently, of the appropriate Green’s
function, reflects these boundary conditions.

We use the Green’s function technique to compute the electromagnetic
field generated by a generic current jµ. It is convenient to work in the
Lorenz gauge ∂µA

µ = 0, so the equation to be solved is eq. (8.30). Given
a Green’s function G(x;x′) of the d’Alembertian operator, a particular
solution of the inhomogeneous equation is then

Aµ(x) = −µ0

∫
d4x′G(x, x′)jµ(x′) , (10.10)

subject, again, to suitable boundary conditions on jµ(x), such that the
integral converges.

The problem, therefore, amounts to computing the Green’s functions
of the d’Alembertian operator. Without loss of generality, we can set
x′ = 0 and solve the equation

2xG(x) = δ(4)(x) . (10.11)

A convenient way to solve this equation is to perform a Fourier transform
only with respect to x0, writing

G(x0,x) =

∫ +∞

−∞

dk0

2π
e−ik0x

0

G̃(k0,x) . (10.12)
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Then, eq. (10.2) becomes

∫ +∞

−∞

dk0

2π
e−ik0x

0

(∇2 + k2
0)G̃(k0,x) =

∫ +∞

−∞

dk0

2π
e−ik0x

0

δ(3)(x) ,

(10.13)
where, on the left-hand side, we inserted eq. (10.12), and, on the right-
hand side, we used the integral representation (1.76) of δ(x0). Therefore,
inverting the Fourier transform with respect to k0, we get

(∇2 + k2
0)G̃(k0,x) = δ(3)(x) . (10.14)

The problem is now reduced to computing the Green’s function of the
three-dimensional operator (∇2 + k2

0), which is called the Helmholtz
operator. To compute this Green’s function we observe that eq. (10.14)
is invariant under rotations around the origin, where the Dirac delta sits,
and therefore G̃(k0,x) depends on x only through r = |x|. We define
f(r) from

G̃(k0, r) = − 1

4πr
f(k0, r) . (10.15)

Extracting explicitly a factor 1/r is convenient because, from eq. (1.90),
the Laplacian of 1/r produces the Dirac delta. Then [suppressing, for
notational simplicity, the argument k0 from f(k0, r)],

∇2

[
1

r
f(r)

]
= −4πδ(3)(x)f(0) +

1

r
f ′′(r) , (10.16)

where f ′ = df/dr.3 From this we get 3The explicit computation goes as fol-
lows:

∇2

[
1

r
f(r)

]
= ∂i∂i

[
1

r
f(r)

]
=

(
∇2 1

r

)
f(r) + 2

(
∂i

1

r

)
∂if

+
1

r
∇2f . (10.17)

To compute ∇2f we use the expression
for the Laplacian in spherical coordi-
nates, eq. (1.26), while, to compute the
term ∂i(1/r)∂if , we use ∂ir = ni, see
eq. (6.12), so that(

∂i
1

r

)
∂if = −

1

r2
ni f

′(r)ni

= −
1

r2
f ′(r) ,

since nini = 1. Then, from eq. (1.90)

∇2

[
1

r
f(r)

]
= −4πδ(3)(x)f(r)

−
2

r2
f ′(r) +

1

r3
(2rf ′ + r2f ′′)

= −4πδ(3)(x)f(0) +
1

r
f ′′(r) .

(∇2 + k2
0)G(x) = δ(3)(x)f(0)− 1

4πr
(f ′′ + k2

0f) , (10.18)

and therefore, to solve eq. (10.14), we must require f(0) = 1 and

f ′′ + k2
0f = 0 . (10.19)

The most general solution of this equation is

f(r) = Aeik0r +Be−ik0r , (10.20)

and the condition f(0) = 1 fixes A+B = 1, so the most general solution
of eq. (10.14) is

G̃(k0,x) = − 1

4πr

[
Aeik0r + (1−A)e−ik0r

]
. (10.21)

There are therefore two independent solutions, that can be taken to be

G̃±(k0,x) = − 1

4πr
e±ik0r . (10.22)

We have therefore found the Green’s functions of the Helmholtz operator
(10.14), and we see that, for k0 6= 0, there are two independent Green’s
functions. For k0 = 0, these two solutions become identical, and reduce



238 Electromagnetic field of moving charges

to the unique Green’s function of the Laplace operator, eq. (4.15). This
is as expected, since the Helmholtz operator reduces to the Laplace
operator when k0 = 0. Inserting eq. (10.22) into eq. (10.12) we get

G±(x0,x) = − 1

4πr

∫ +∞

−∞

dk0

2π
e−ik0(x0∓r)

= − 1

4π|x|δ(x
0 ∓ |x|) . (10.23)

The result for a generic second argument x′, that we had set to zero,
can be obtained from the fact that the Green’s function G(x;x′) is ac-
tually a function only of x− x′, because of invariance under space-time
translation. Using furthermore ct instead of x0, we get

G±(t,x; t′,x′) = − 1

4π|x− x′|δ [c(t− t′)∓ |x− x′|] .

(10.24)
The corresponding inhomogeneous solutions for Aµ, from eq. (10.10)
(using dx0 = cdt and δ(ct) = (1/c)δ(t) to write the final result in terms
of t rather than x0), are

[Aµ(t,x)]
±

=
µ0

4π

∫
dt′d3x′

jµ(t′,x′)
|x− x′| δ [t′ − (t∓ |x− x′|/c)] . (10.25)

Consider first the solution [Aµ(t,x)]
+

. Performing the integral over dt′

with the help of the Dirac delta we see that

[Aµ(t,x)]
+

=
µ0

4π

∫
d3x′

jµ(t− |x− x′|/c,x′)
|x− x′| . (10.26)

Therefore, [Aµ(t,x)]
+

depends on the value of the current jµ(t′,x′) only
on the past light cone of the space-time point (t,x), i.e., on the points
(t′,x′) from which a signal, traveling at the speed of light, could arrive at
(t,x). The Green’s function G+(t,x; t′,x′) is called the retarded Green’s
function. The retardation effect expresses the fact that a change in the
source at a point x′ at time t′ cannot affect instantaneously the value of
the field at a different point x. Rather, its effect will be felt only at a
subsequent time t = t′+|x−x′|/c, so that t−t′ is equal to the time taken
by light to travel from x′ to x. This is consistent with Special Relativity,
and follows from the relativistic structure of the d’Alembertian.

The other solution is

[Aµ(t,x)]
−

=
µ0

4π

∫
d3x′

jµ(t+ |x− x′|/c,x′)
|x− x′| , (10.27)

and depends on the value of the current jµ(t′,x′) only on the future light
cone. The corresponding Green’s function G−(t,x; t′,x′) is called the
advanced Green’s function. Retarded and advanced Green’s functions
will be also denoted as Gret and Gadv, respectively.4

4Having found the explicit form of the
Green’s functions, we can also check
that the integrals in eqs. (10.26) and
(10.27) both converge if, for all times t′,
the source is localized in space, i.e., for
all t′, jµ(t′,x′) has compact support in
x′. Less stringent conditions could also
be used, depending on the problem.
For instance, to have a well-defined re-
tarded solution (10.26) at a given time
t, it is sufficient that jµ(t′,x′) is lo-
calized in space for all times t′ ≤ t.
In practice, in most physical situations,
jµ(t′,x′) has compact support in x′ for
all values of t′, and also switches off if
t′ → −∞.

First of all, we can check the static limit of these solutions. In the
static limit, [Aµ(t,x)]

+
and [Aµ(t,x)]

−
become identical, since jµ(t′,x′)
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loses the dependence on the first argument, so jµ(t ∓ |x − x′|/c,x′) =
jµ(x′). Then, using j0(x′) = cρ(x′), together with eqs. (8.12) and (8.27),
we see that the µ = 0 component of eq. (10.26) reduces to the static so-
lution (4.16) for the scalar potential, while the vector part of eq. (10.26)
reduces to the static solution (4.92) for the vector potential.

However, whenever there is an actual time dependence, the solutions
are different and, in this case, the advanced solution [Aµ(t,x)]

−
is phys-

ically unacceptable. At first, one might think that this is due to the fact
that, since its value at time t depends on what the source will do in the
future, this solution violates causality.5 Actually, the reason why this so- 5To be more precise, the gauge po-

tential is not directly observable, so
it could a priori be acausal, as long
as the corresponding electric and mag-
netic fields turned out to be causal. An
example of this behavior will be dis-
cussed in Section 11.1.2. However, for
the gauge potential (10.27), the corre-
sponding electric and magnetic fields
would also depend on the behavior of
the sources on the future light cone.

lution is physically unacceptable is somewhat more subtle and is rather
related to the possibility of imposing natural boundary conditions, as
we now discuss. Using the retarded Green’s function, the most general
solution of eq. (8.30) can be written as

Aµ(t,x) = Aµin(t,x)− µ0

∫
d4x′Gret(x, x

′)jµ(x′) (10.28)

= Aµin(t,x) +
µ0

4π

∫
d3x′

jµ(t− |x− x′|/c,x′)
|x− x′| ,

where Aµin(t,x) is a general solution of the homogeneous equation. The
physical meaning of Aµin(t,x) can be seen by taking the limit t → −∞.
In this case, also the argument t−|x−x′|/c of jµ(t−|x−x′|/c,x′) goes
to −∞ and, if we assume that the source is localized in time, in this
limit jµ(t− |x−x′|/c,x′) goes to zero, for all x and x′, and the integral
vanishes. Therefore, Aµin(t,x) represents the initial value of Aµ(t,x),
at t→ −∞ and x arbitrary. Notice that the same argument cannot be
made for the limit t→ +∞, for all values of the arguments x of Aµ(t,x).
In particular, we might wish to study the behavior of Aµ(t,x) as t→∞
while r = |x| also goes to infinity, in such a way that t−r/c stays fixed at
a given value, that we denote by tu, smaller than the time at which the
source eventually switches off. Then, in this limit jµ(t − |x − x′|/c,x′)
goes to a non-vanishing value jµ(tu,x

′), so it can contribute to Aµ(t,x).
If instead we use the advanced Green’s function, we can write the

solution as

Aµ(t,x) = Aµout(t,x)− µ0

∫
d4x′Gadv(x, x′)jµ(x′) (10.29)

= Aµout(t,x) +
µ0

4π

∫
d3x′

jµ(t+ |x− x′|/c,x′)
|x− x′| ,

where, again, Aµout(t,x) is a general solution of the homogeneous equa-
tion. The same argument now shows that Aµout(t,x) is the value of
Aµ(t,x) at t→ +∞, for all x. We can rewrite this solution as

Aµ(t,x) = Aµout(t,x)− µ0

∫
d4x′ [Gadv(x, x′)−Gret(x, x

′)]jµ(x′)

−µ0

∫
d4x′Gret(x, x

′)jµ(x′) . (10.30)
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We now define

Aµrad(t,x) = −µ0

∫
d4x′ [Gret(x, x

′)−Gadv(x, x′)]jµ(x′) . (10.31)

This is a solution of the homogeneous equation 2Aµ = 0, by the same
argument used in eqs. (10.6)–(10.9). Then, eq. (10.30) can be rewritten
as

Aµ(t,x) = Aµout(t,x)−Aµrad(t,x)−µ0

∫
d4x′Gret(x, x

′)jµ(x′) . (10.32)

Since both Aµout(t,x) and Aµrad(t,x) are solutions of the homogeneous
equation, also their difference is a solution of the homogeneous equation,
so eq. (10.32) is of the form (10.28), with

Aµin(t,x) = Aµout(t,x)−Aµrad(t,x) . (10.33)

So, the apparently acausal solution (10.29) has been rewritten in terms
of the retarded Green’s function. This shows that the problem, with the
advanced solution, is not the apparent acausality. The advanced solu-
tion can be rewritten as an integral that depends only on the behavior
of the source on the past light cone. The real problem is in the meaning
of the associated homogeneous solution. As we have seen, when we use
the retarded solution (10.28), the associated homogeneous solution is the
value of the field at t→ −∞. It is easy to specify a physically meaningful
expression for Aµin(t,x). For instance, setting Aµin(t,x) = 0 describes a
situation where, at t→ −∞, there was no incoming radiation. A system
of charges, accelerated by their mutual interactions, will then produce
an outgoing radiation that can be computed by setting Aµin(t,x) = 0 in
eq. (10.28). In contrast, if we write the solution in the form (10.29),
we must specify the function Aµout(t,x), which has the meaning of the
limit of the solution Aµ(t,x) for t → +∞. First of all, this is not what
we typically want to do. In general, we want to specify initial condi-
tions and see how a system evolves, rather than specifying the desired
final outcome of the evolution. Furthermore, there is no way of specify-
ing meaningful final conditions. For instance, a mathematically simple
choice such as Aµout(t,x) = 0 corresponds, physically, to a situation in
which, at t→ −∞, there was radiation coming from spatial infinity and
impinging on a system of charges, perfectly tuned so that the charges of
the system, accelerated both by their mutual interactions and by the in-
coming electromagnetic wave, emit outgoing electromagnetic waves that
perfectly cancel among each other, leaving a total vanishing outgoing ra-
diation field. Such an initial condition is acceptable mathematically, but
not physically.6 A physically meaningful solution can only be specified

6One can make a parallel with the sit-
uation in which a glass falls from a ta-
ble and breaks into pieces on the floor,
with its initial mechanical energy dis-
sipated into heat, which is a form of
radiation. The time-reversed solution,
where radiation is focused on the pieces
of glass scattered on the floor, in such
a precise way that they jump back on
the table and reassemble into a glass,
is a mathematically legitimate solution
but, physically, it is meaningless.

writing the solution in the form (10.28), using the retarded Green’s func-
tion, and specifying the initial field Aµin(t,x) in a way that corresponds
to realistic settings, such as no incoming radiation, i.e., Aµin(t,x) = 0, or
any other physically realistic choice, such as a given laser pulse arriving
on a system of charges.
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We therefore write the physically relevant solution for Aµ as

Aµ(t,x) = Aµin(t,x) +
µ0

4π

∫
d3x′

jµ(t− |x− x′|/c,x′)
|x− x′| , (10.34)

where Aµin(t,x) is a solution of the homogeneous equation describing the
incoming field. If we are only interested in the field generated by the
source, we can simply set Aµin(t,x) = 0.7

7As a byproduct of this analysis ob-
serve, from eq. (10.33), that

Aµrad(t,x) = Aµout(t,x)−Aµin(t,x) ,
(10.35)

is the difference between the outgoing
and the incoming field, and therefore
can be interpreted as the radiation gen-
erated by the system. We see, from
eq. (10.31), that it is obtained from the
combination GA = Gret − Gadv. We
will find this combination again in Sec-
tion 12.3.5, when we will discuss radia-
tion reaction.

Observe that eq. (10.11) is explicitly Lorentz invariant, because both
the 2 operator and δ(4)(x) are Lorentz invariant.8 In the form (10.24) it

8As we have already seen in eqs. (8.4)

and (8.5), the invariance of δ(4)(x) fol-
lows from the fact that

∫
d4x δ(4)(x) =

1, together with the fact that, under a
Lorentz transformation xµ → Λµνxν ,
d4x → (det Λ) d4x and det Λ = 1, so
d4x is Lorentz invariant.

is not evident how G+ and G− behave under Lorentz transformations,
but in fact they are invariant. This can be seen using the property (8.7)
of the delta function, that implies that

δ(x2) = δ
[
(x0)2 − |x|2

]

=
1

2|x| [δ(x
0 − |x|) + δ(x0 + |x|)] . (10.36)

The expression in the last line is not yet the combination that appears in
the retarded or advanced Green’s functions. However, we can multiply
this by a theta function, defined in eq. (1.67), to obtain9 9We are using the fact that, for |x| 6= 0,

δ(x0−|x|) has its support at x0 strictly
positive, where θ(x0) = 1, so

θ(x0)δ(x0−|x|) = δ(x0−|x|) , (10.37)

and similarly θ(x0)δ(x0 + |x|) = 0. All
these relations, however, become ill-
defined at |x| = 0 or at x0 = 0, even
in the sense of distributions, and can
give ambiguous results. For instance,
when x = 0, multiplying both sides of
eq. (10.37) by a regular function f(x0)
and integrating, the left-hand side gives∫ ∞

−∞
dx0 θ(x0)δ(x0)f(x0)

=

∫ ∞
0

dx0 δ(x0)f(x0) ,

and this is an ill-defined integral, since
x0 = 0 is at border of the integra-
tion domain, and the result depends
on the sequence of functions chosen
to define the Dirac delta. In con-
trast, on the right-hand side we get∫∞
−∞ dx0 δ(x0)f(x0), which is always

well-defined and equal to f(0). There-
fore, care must be taken in some situ-
ation when using the explicitly covari-
ant form of the Green’s functions. In
Section 12.3.5 we will provide a care-
ful treatment of these covariant expres-
sions and of their derivatives.

θ(x0)δ(x2) =
1

2|x|δ(x
0 − |x|) , (10.38)

θ(−x0)δ(x2) =
1

2|x|δ(x
0 + |x|) . (10.39)

In general, the sign of x0 is not invariant under Lorentz transformations.
However, if x0 > 0 and x2 = 0, the event (x0,x) is on the light-cone of the
event (x0 = 0,x = 0). Then, x0 will remain positive under any Lorentz
boost (since the velocity v0 of the boost is always restricted to be strictly
smaller than c). This can be seen from the Lorentz transformation
(7.22). Setting for definiteness x = (x, 0, 0), the condition (x0)2−x2 = 0
gives x = ±x0 and, under a Lorentz boost, x0 → x′0 = γ(x0 +βx) . Since
|x| = x0 and |β| < 1, x′0 remains positive. We can also see it graphically
from Fig. 7.1 on page 161, where the events in the future of the boosted
observer are given by the part of the (x0, x) plane that lies above the
line t′ = 0, and contains all points with x0 > 0 which lie on the light
cone of the observer at the origin.

Therefore, the combinations θ(x0)δ(x2) and, similarly, θ(−x0)δ(x2),
are explicitly Lorentz invariant. In terms of them, the advanced and
retarded Green’s functions (10.23) can be written as

G±(x) = − 1

2π
θ(±x0)δ(x2) , (10.40)

or, reinstating the second argument,

G±(x;x′) = − 1

2π
θ[±(x0 − x′0)] δ[(x− x′)2] . (10.41)
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10.2 The Liénard–Wiechert potentials

We now compute the fields generated by a point charge q moving with
arbitrary velocity. The corresponding charge and current densities are
given by eqs. (8.1) and (8.2) or, in covariant notation, by eq. (8.3). We
perform first the computation for the potential A0 = φ/c. Plugging
eq. (8.1) into eq. (10.25) and using the sign corresponding to retarded
Green’s function, we get

φ(t,x) =
q

4πε0

∫
dt′d3x′

δ(3)[x′ − x0(t′)]
|x− x′| δ

(
t′ − t+

|x− x′|
c

)
.

(10.42)
We denote the trajectory of the particle by x0(t), and its velocity by

v(t) =
dx0(t)

dt
. (10.43)

We are interested in the field generated by the charge itself, so we have
set to zero the solution of the homogeneous equation. Rather than
performing first the integral over dt′ to reach the form (10.26), for a
point charge it is convenient to carry out first the integral over d3x′

with the help of δ(3)[x′ − x0(t′)]. This gives

φ(t,x) =
q

4πε0

∫
dt′

1

|x− x0(t′)|δ
(
t′ − t+

|x− x0(t′)|
c

)
. (10.44)

We now define retarded time tret as the solution of the equation

tret +
|x− x0(tret)|

c
= t , (10.45)

so the Dirac delta in eq. (10.44) is satisfied for t′ = tret. Note that
eq. (10.45) is an implicit definition of tret as a function of t and x,

tret = tret(t,x) . (10.46)

Retarded time has a clear physical meaning. If we imagine that the
charge continuously emits light signals toward an observer in x, then
the signal that reaches the observer at time t was emitted by the charge
at an earlier time tret, when the charge was at the position x0(tret), such
that the observation time t is equal to the emission time tret plus the
time |x−x0(tret)|/c taken by the light signal to reach x from the position
x0(tret). Also note that, for the observer in x, x0(tret) is the apparent
position of the charge at time t. It is useful to define

R(t,x) = x− x0(t) , (10.47)

and R = |R|, so that eq. (10.45) reads

tret +
1

c
R(tret,x) = t . (10.48)
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To compute the integral over t′ in eq. (10.44) we define

f(t′) ≡ t′ − t+
|x− x0(t′)|

c

= t′ − t+
R(t′)
c

, (10.49)

[where, for notational simplicity, in the intermediate steps we omit the
argument x in R(t′,x)], and we observe that the equation f(t′) = 0 has
just a single solution at t′ = tret.

10 Therefore 10The fact that t′ = tret is a solution
of f(t′) = 0 follows from the definition
(10.45) of tret. This solution is unique
because, for a physically acceptable tra-
jectory x0(t), such that |dx0/dt| < c,
at fixed x retarded time tret(t,x) is a
monotonically increasing function of t.

δ[f(t′)] =
1

|df/dt′|δ(t
′ − tret) . (10.50)

From eq. (10.49),
df

dt′
= 1 +

1

c

dR(t′)
dt′

. (10.51)

We now use11 11The explicit computation goes as fol-
lows:

dR(t′)
dt′

=
1

2R(t′)
d

dt′
R2(t′)

=
1

2R(t′)
d

dt′
[
x2 + x2

0(t′)− 2x·x0(t′)
]

=
1

2R(t′)

[
2x0(t′)·v(t′)− 2x·v(t′)

]
= −

1

R(t′)
v(t′)·R(t′) .

dR(t′)
dt′

= − 1

R(t′)
v(t′)·R(t′) . (10.52)

Then eq. (10.44) gives (reinstating the argument x in R)

φ(t,x) =
q

4πε0

∫
dt′

1

R(t′,x)

1

1− 1
R(t′,x)

v(t′)
c ·R(t′,x)

δ(t′ − tret)

=
q

4πε0

1[
R(t′,x)− v(t′)

c ·R(t′,x)
]
|t′=tret(t,x)

. (10.53)

From eqs. (8.2) and (10.25), exactly the same computation gives A, with
qv(tret) instead of q at the numerator, and µ0 instead of 1/ε0 in front.

In conclusion, the potentials generated by a charge on an arbitrary
trajectory x0(t) and velocity v(t) = dx0/dt, are given by

φ(t,x) =
1

4πε0

(
q

R− v
c ·R

)

ret

, (10.54)

and

A(t,x) =
µ0

4π

(
qv

R− v
c ·R

)

ret

, (10.55)

where the subscript “ret” in these expressions indicates that, to get
the potentials at time t and position x, the right-hand sides must be
evaluated at the retarded time tret(t,x), defined by eq. (10.45), i.e., in
eqs. (10.54) and (10.55), R = R(tret(t,x),x). These are the Liénard–
Wiechert potentials.12 Also note that the velocity that enters in eq. (10.53) 12Found by Alfred-Marie Liénard in

1898 and, with an independent method,
by Emil Wiechert in 1900.

is

v(t′)|t′=tret(t,x) =
dx0(t′)
dt′

∣∣
t′=tret(t,x)

=
dx0(tret)

dtret
, (10.56)
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i.e., is the velocity computed with respect to the natural time variable,
tret, of an observer located at the position of the charge, rather than
with respect to the time t of the distant observer that measures the field
produced.

It can be useful to define also the quantity Ra(t,x) from

Ra(t,x) = x− x0[tret(t,x)] , (10.57)

so that, comparing with eq. (10.47),

Ra(t,x) = R(tret(t,x),x) . (10.58)

Note that −Ra = x0(tret) − x is the apparent position of the source,
with respect to an observer in x (the subscript “a” in Ra indeed stands
for “apparent”). It depends on x both explicitly, and through the de-
pendence of tret on x. We also define the retarded velocity vr(t,x) as

vr(t,x) =
dx0(t′)
dt′

∣∣
t′=tret(t,x)

=
dx0(tret)

dtret
. (10.59)

Therefore, eqs. (10.54) and (10.55) can be written as

φ(t,x) =
1

4πε0

q

Ra(t,x)− vr(t,x)·Ra(t,x)/c
, (10.60)

and

A(t,x) =
µ0

4π

qvr(t,x)

Ra(t,x)− vr(t,x)·Ra(t,x)/c
. (10.61)

Observe that, in the Liénard–Wiechert potentials, the gauge potentials
are related by

A(t,x) =
vr(t,x)

c2
φ(t,x) . (10.62)

It can be useful to write Ra in terms of its modulus Ra and the unit
vector R̂a ≡ Ra/Ra. Then, in particular, eq. (10.60) reads

φ(t,x) =
q

4πε0

1

Ra(t,x)

[
1

1− vr(t,x)·R̂a(t,x)/c

]
. (10.63)

If the terms in brackets were not there, this would just be a “retarded
Coulomb potential,” in which the instantaneous position of the source is
replaced by its retarded position. The emergence of the extra velocity-
dependent term in brackets, that came out from the computation, can
also be understood considering the simpler case of a particle moving
with constant speed, and performing a Lorentz boost of the Coulomb
potential, as we discuss in Section 10.3.
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10.3 Fields of charge in uniform motion

In the simple case of a charge moving with constant speed, the general
formalism based on the Liénard–Wiechert potentials is not really neces-
sary. To compute the field generated by this source it is much simpler to
observe that the result can be obtained by performing a Lorentz boost
from the inertial frame where the charge is at rest to the inertial frame
where it has speed v = vx̂. Consider first a frame Ks (the “source”
frame) where the charge is at rest at the origin, and denote the coordi-
nates in this frame by (ts,xs). The potentials φs and As in this frame
are given by

φs(ts,xs) =
1

4πε0

q√
x2
s + y2

s + z2
s

, (10.64)

As(ts,xs) = 0 . (10.65)

Let K be a frame, with coordinates (t,x), such that, at t = 0, the
charge is at the origin with velocity v = vx̂. The relation between the
coordinates of the two frames are given by eqs. (7.24) and (7.25), that
we rewrite here in the notation

t = γ
(
ts +

v

c2
xs

)
, (10.66)

x = γ(xs + vts) . (10.67)

These relations can be inverted to give

ts = γ
(
t− v

c2
x
)
, (10.68)

xs = γ(x− vt) , (10.69)

while y = ys and z = zs. So, in particular,

x2
s + y2

s + z2
s = γ2(x− vt)2 + y2 + z2 . (10.70)

Similarly, since A0 = φ/c and A are the components of a four-vector,
the potentials transform as

φ = γ [φs + v(Ax)s] , (10.71)

Ax = γ
[
(Ax)s +

v

c2
φs

]
, (10.72)

while Ay = (Ay)s and Az = (Az)s. We use the label “s” for the source
frame, and we reserve φ and A for the fields in the observer frame. Note
that these are the transformations of the potentials at the same space-
time point P , whose coordinates will have different numerical values in
different frames. Since As = 0, for φ(t,x) we get

φ(t,x) = γφs(ts,xs)

=
1

4πε0

γq√
x2
s + y2

s + z2
s

. (10.73)
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We now make use of the fact that (t,x) and (ts,xs) refer to the same
space-time point seen in two different Lorentz frame, so are related by
eqs. (10.68) and (10.69), and therefore by eq. (10.70). We then obtain

φ(t,x) =
1

4πε0

γq√
γ2(x− vt)2 + y2 + z2

. (10.74)

Similarly,

Ax(t,x) = γ
v

c2
φs

=
1

4πε0c2
qγv√

x2
s + y2

s + z2
s

=
µ0

4π

qγv√
x2
s + y2

s + z2
s

, (10.75)

while Ay = Az = 0. Since v = vx̂, in vector form we have

A(t,x) =
µ0

4π

qγv√
γ2(x− vt)2 + y2 + z2

.
(10.76)

It is instructive to rederive these results using the Liénard–Wiechert po-
tentials. We therefore set x0(t) = vt, with v = vx̂, in eqs. (10.54) and
(10.55). For a generic trajectory, the main technical difficulty, when ap-
plying the general formalism based on the Liénard–Wiechert potentials,
is to solve eq. (10.45) to get tret as a function of t and x. However, for
a uniform motion, this can be performed analytically. Equation (10.45)
in this case gives

c2(t− tret)
2 = |x− vtretx̂|2

= (x− vtret)
2 + y2 + z2 . (10.77)

This is a second-order equation in tret, or equivalently in (t−tret), whose
solution can be written as1313The plus sign in front of the square

root is fixed by the fact that, for v =
0, this expression reduces to t − tret =
+r/c.

c(t− tret) = γ2 v

c
(x− vt) + γ

√
γ2(x− vt)2 + y2 + z2 . (10.78)

Note that, from eq. (10.48), R(tret) = c(t − tret) and therefore, for uni-
form motion,

R(tret) = γ2 v

c
(x− vt) + γ

√
γ2(x− vt)2 + y2 + z2 , (10.79)

while1414Explicitly,

v

c
·R(tret) =

v

c
x̂·R(tret)

=
v

c
[x− x0(tret)]

=
v

c
(x− vtret)

=
v

c
[(x− vt) + v(t− tret)]

=
v

c
(x− vt) +

v2

c2
R(tret) .

v

c
·R(tret) =

v

c
(x− vt) +

v2

c2
R(tret) . (10.80)

Therefore

R(tret)−
v

c
·R(tret) =

(
1− v2

c2

)
R(tret)−

v

c
(x− vt)

=
1

γ2
R(tret)−

v

c
(x− vt)

=
1

γ

√
γ2(x− vt)2 + y2 + z2 , (10.81)
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where, in the second line, we used eq. (10.79). Then, eq. (10.54) gives

φ(t,x) =
1

4πε0

γq√
γ2(x− vt)2 + y2 + z2

, (10.82)

and eq. (10.55) gives

A(t,x) =
µ0

4π

qγv√
γ2(x− vt)2 + y2 + z2

. (10.83)

We have therefore recovered eqs. (10.74) and (10.76).
We can now compute the corresponding expressions for the electric

and magnetic fields. Using eq. (3.83), we get

E(t,x) =
q

4πε0
γ

x− x0(t)

{γ2[x− x0(t)]2 + y2 + z2}3/2
, (10.84)

where x0(t) = (vt, 0, 0) is the position of the charge at time t. We can
rewrite the result using R(t,x) = x − x0(t), see eq. (10.47), which, for
the case of uniform motion, becomes R(t,x) = x− vt. We also define θ
as the angle between R̂ and v̂, so that

x− x0(t) = R(t,x) cos θ , (10.85)

and
y2 + z2 = R2(t,x) sin2 θ . (10.86)

Then eq. (10.84) can be rewritten as

E(t,x) =
q

4πε0

γ

[1 + (γ2 − 1) cos2 θ]3/2
R̂(t,x)

R2(t,x)
, (10.87)

or, equivalently, writing cos2 θ = 1− sin2 θ and using the explicit expres-
sion of γ in terms of v, as

E(t,x) =
q

4πε0

1− v2/c2

[1− (v2/c2) sin2 θ]3/2
R̂(t,x)

R2(t,x)
. (10.88)

Similarly, using eq. (3.80), we get

B(t,x) =
1

c2
v ×E(t,x) . (10.89)

Several aspects of this result are noteworthy:

(1) The electric field is directed radially with respect to the instan-
taneous position of the charge, i.e., is in the direction of R =
x − x0(t). The fact that the field at time t depends on the in-
stantaneous position x0(t) of the charge at the same time t, rather
than on the position at retarded time, is not a sign of action at
a distance. Simply, having specified that the motion is at con-
stant speed for all times, the future position of the charge can be
perfectly predicted or, in other words, the position of the charge
at retarded time tret determines the position of the charge at the
subsequent time t.
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(2) The modulus of the electric field is not spherically symmetric: in
particular, if, in eq. (10.87) we set θ = 0, i.e., y = z = 0 and
x− x0(t) = R, the modulus of the electric field becomes

E =
q

4πε0

1

γ2R2
, (θ = 0) , (10.90)

so the field in the direction of motion is reduced by a factor 1/γ2

compared to the Coulomb field of a charge at rest. On the other
hand, if we set θ = π/2, i.e., y2 + z2 = R2 and x − x0(t) = 0, we
get

E =
q

4πε0

γ

R2
, (θ =

π

2
) , (10.91)

so the field at a right angle with respect to the direction of motion
is enhanced by a factor γ compared to the Coulomb field.

(3) The lines of B circulate around the direction of motion, as for a
steady current. The modulus of B is stronger at a right angle to
the motion and is reduced as we approach the direction of motion,
both because of the behavior of E, and because of the sin θ factor
coming from the vector product v ×E,

B =
1

c2
vE sin θ

=
µ0

4π

γqv

R2

sin θ

[1 + (γ2 − 1) cos2 θ]3/2
, (10.92)

or, equivalently,

B =
µ0

4π

qv

R2

(1− v2/c2) sin θ

[1− (v2/c2) sin2 θ]3/2
. (10.93)

In particular, B vanishes at θ = 0, i.e., on the direction of motion.

(4) In the limit of an ultra-relativistic charge, γ � 1, the electric and
magnetic fields are concentrated within a small angle δθ around
θ = π/2. Indeed, the limit γ � 1 at fixed θ has two regimes. If θ
is fixed and different from ±π/2, so that cos θ 6= 0, eventually in
the limit γ →∞ also γ2 cos2 θ � 1, and

γ

[1 + (γ2 − 1) cos2 θ]3/2
= O

(
1

γ2

)
. (10.94)

Correspondingly, for the modulus of the electric field we have

E =
1

4πε0

q

R2
×O

(
1

γ2

)
, (10.95)

which is smaller than the Coulomb potential of a non-relativistic
particle by a factor γ2. Consider, however, the situation in which
we send at the same time γ → ∞ and θ → π/2. Writing θ =
(π/2) + δθ, to first order we have cos θ ' −δθ, and, for γ → ∞
and δθ → 0,

γ

[1 + (γ2 − 1) cos2 θ]3/2
' γ

[1 + (γδθ)2]3/2
. (10.96)
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If the limit γ →∞ and δθ → 0 is taken so that γδθ stays finite, say
γδθ <∼O(1), then, rather than reproducing the behavior (10.94),
this expression grows as γ, and

E =
1

4πε0

q

R2
×O (γ) . (10.97)

This is larger by a factor O(γ) compared to the Coulomb poten-
tial of a non-relativistic particle. Therefore, there are two regimes,
separated by the region γδθ = O(1). For γδθ � 1 we are in the
regime (10.95) and E is very small (compared to the Coulomb po-
tential of a static charge), while, for γδθ <∼O(1), E is very large.
The electric field of an ultra-relativistic particle is therefore fo-
cused in a small region, with opening angle δθ ∼ 1/γ, in the plane
transverse to the velocity of the charge.

10.4 Radiation field from accelerated
charges

The fields generated by a charge in arbitrary motion can now in principle
be obtained inserting eqs. (10.60) and (10.61) into the expression of E
and B in terms of the gauge potentials, eqs. (3.83) and (3.80). The com-
putation, however, still involves some subtleties; the main point, when
taking the derivatives with respect to t and x of the gauge potentials,
is to correctly account for the dependence on t and on x that enters
implicitly through tret(t,x). To this purpose, we first compute ∂tret/∂t
(at constant x) by differentiating eq. (10.48). We use Ra(t,x) defined
in eq. (10.57), so that R(tret,x) = Ra(t,x). Then

∂tret

∂t
+

1

c

∂

∂t
Ra(t,x) = 1 . (10.98)

We next observe that15

15Explicitly,

∂

∂t
Ra(t,x) =

1

2Ra(t,x)

∂

∂t
R2
a(t,x)

=
1

2Ra(t,x)

∂

∂t
|x− x0(tret)|2

=
1

2Ra(t,x)

∂

∂t

×
[
x2 + x2

0(tret)− 2x·x0(tret)
]

= −
x− x0(tret)

Ra(t,x)
·
dx0(tret)

dt

= −R̂a(t,x)·
dx0(tret)

dtret

∂tret

∂t

= −R̂a(t,x)·
(
dx0(t′)
dt′

)
t′=tret

∂tret

∂t

= −R̂a(t,x)·vr(t)
∂tret

∂t
,

where, in the last line, we used the def-
inition (10.59) of vr(t).

∂

∂t
Ra(t,x) = −R̂a(t,x)·vr(t)

∂tret

∂t
. (10.99)

Inserting this into eq. (10.98) and solving for ∂tret/∂t we get

∂tret

∂t
=

1

1− R̂a(t,x)·vr(t)/c
. (10.100)

We proceed in the same way to compute ∂itret(t,x). Differentiating
eq. (10.48) with respect to ∂i, at constant t, we get16

16This is obtained similarly, writing

−c∂itret = ∂iRa

=
1

2Ra(t,x)
∂i |x− x0[tret(t,x)] |2

=
1

2Ra(t,x)
∂i
{
x2 + x2

0[tret(t,x)]

−2x·x0[tret(t,x)]
}

=
1

2Ra(t,x)

{
2xi +

dx2
0(tret)

dtret
∂itret

−2[x0(tret)]i − 2x·
dx0(tret)

dtret
∂itret

}
= (R̂a)i +

[x0(tret)− x]·vr(t)
Ra(t,x)

∂itret

= (R̂a)i − R̂a·vr(t)∂itret .

−c∂itret = (R̂a)i − R̂a·vr(t)∂itret , (10.101)

and therefore

∇tret = −1

c

R̂a

1− R̂a·vr(t)/c
. (10.102)
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Using eqs. (10.100) and (10.102), one can explicitly compute all spatial
and temporal derivatives of the quantities Ra(t,x) and vr(t,x) that ap-
pear in eqs. (10.60) and (10.61) and obtain E and B from eqs. (3.80) and
(3.83). The rest of the computation is long, but in principle straightfor-
ward. The result for the electric field can be written as

E(t,x) = Ev(t,x) + Erad(t,x) . (10.103)

The term Ev depends on the retarded position and velocity of the charge
(the subscript v indeed stands for “velocity”), and is given by

Ev(t,x) =
1

4πε0

q

R2
a

R̂a − vr/c

γ2(1− R̂a·vr/c)3
, (10.104)

where, for notational simplicity, here and in the following equations, we
do not explicitly write that Ra and R̂a are actually functions of (t,x),
and that vr is a function of t.

The term Erad, in contrast, depends on the retarded position, velocity,
and acceleration of the charge, and is given by

Erad(t,x) =
1

4πε0

q

Ra

[v̇r × (R̂a − vr/c)]× R̂a

c2(1− R̂a·vr/c)3
, (10.105)

where

v̇r =
dvr(t

′)
dt′

|t′=tret (10.106)

=
d2x0(tret)

d2tret
, (10.107)

and, in the second line, we used eq. (10.59). The subscript “rad” in Erad

stands for “radiation,” for reasons that we will discuss below. The result
for the magnetic field can be written as

B(t,x) =
1

c
R̂a ×E(t,x) . (10.108)

Therefore, it can also be split into two terms,

B(t,x) = Bv(t,x) + Brad(t,x) , (10.109)

where

Bv(t,x) =
1

c
R̂a ×Ev(t,x) (10.110)

depends only on retarded position and velocity, while

Brad(t,x) =
1

c
R̂a ×Erad(t,x) (10.111)
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depends also on the retarded acceleration. Performing explicitly the
vector products, and using µ0 instead of ε0, we get

Bv(t,x) =
µ0

4π

q

R2
a

vr × R̂a

γ2(1− R̂a·vr/c)3
, (10.112)

and

Brad(t,x) =
µ0

4π

q

Ra

(vr×R̂a)(v̇r·R̂a) + c(1− R̂a·vr/c)v̇r×R̂a

c2(1− R̂a·vr/c)3
.

(10.113)
Note that the first term in the numerator of eq. (10.113) depends on
the component of the acceleration parallel to R̂a, while the second on
the component transverse to R̂a. For v(t) = v, constant, Erad vanishes,
while Ev reduces to the result given in eq. (10.84).17 17This can be shown using eq. (10.81)

to write the denominator in eq. (10.104)
in the form given in eq. (10.84) while,
for the numerator, we observe that, for
constant v,

Ra −Ravr/c
= x− x0(tret)− c(t− tret)v/c
= x− [x0(tret) + v(t− tret)]
= x− x0(t) , (10.114)

where, for constant v, we have used
Ra(t) = R(tret) = c(t − tret) from
eq. (10.79).

A crucial difference between the two terms in eq. (10.103) is their
behavior at large distances from the source. If Ra → ∞, Ev decays
as 1/R2

a, just as the Coulomb field, to which it reduces in the non-
relativistic limit. From eq. (10.110), the same 1/R2

a behavior at large
Ra then holds for Bv. Therefore, in the absence of acceleration, the
Poynting vector (3.34) decays as 1/R4

a. The total flux radiated at large
distances is given by the right-hand side of eq. (3.35); since ds = R2

adΩ
and |S| ∼ 1/R4

a, the flux at infinity vanishes. This part of the field is
therefore known as the non-radiative part (or the induction part). In
contrast, Erad and Brad decay only as 1/Ra at large distances. Their
combined contribution to the Poynting vector then goes as 1/R2

a, and
the flux at infinity is non-vanishing. This means that energy is radiated
away at infinity, and this part of the field is called radiative. We will
compute the radiated power, in a full relativistic setting, in Section 10.6,
after having first studied the non-relativistic limit in Section 10.5, and
we will then discuss the radiation field in greater detail in Chapter 11.

From eq. (10.111) we see that Brad is orthogonal to both Erad and
R̂a. Similarly, because of eq. (10.110), Bv is orthogonal to both Ev and
R̂a. However, for the radiative field, we see from eq. (10.105) that even
Erad is orthogonal to R̂a. Therefore, in the radiative part of the elec-
tromagnetic field, E, B, and R̂a form an orthogonal system of vectors,
and eq. (10.111) then implies

c|Brad| = |Erad| . (10.115)

In contrast, we see from eq. (10.104) that Ev is not orthogonal to R̂a

(actually, in the non-relativistic limit, it becomes exactly parallel to R̂a,
and reduces to the radial Coulomb field), and then eq. (10.110) implies
that

c|Bv| < |Ev| , (10.116)

with Bv vanishing in the limit vr → 0, as we see from eq. (10.112).
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10.5 Radiation from non-relativistic
charges. Larmor formula

Now consider the field generated by a non-relativistic particle that moves
in a bounded region of space. In this case, in eq. (10.57), |x0(tret)| < d
for some length-scale d so, in the limit |x| → ∞, also |Ra| → ∞. Then,
from eqs. (10.103)–(10.105), to lowest order in v/c and lowest order in
1/Ra the electric field becomes

E(t,x) ' Erad(t,x)

' 1

4πε0c2
q

Ra
[a(tret)× R̂a]× R̂a , (10.117)

where we have written the retarded acceleration v̇r as a(tret).
We now observe that, given any vector V and any unit vector n̂, we

can always write

V = n̂(n̂·V) + [V − n̂(n̂·V)]

= V‖(n̂) + V⊥(n̂) , (10.118)

where

V‖(n̂) ≡ n̂(n̂·V) , (10.119)

V⊥(n̂) ≡ V − n̂(n̂·V) . (10.120)

The vector V‖(n̂) is the projection of V in the direction of n̂, while
V⊥(n̂) is transverse to n̂, since

n̂·[V − n̂(n̂·V)] = (n̂·V)− (n̂·V)

= 0 , (10.121)

Using eq. (1.9) we see that we can also rewrite V⊥(n̂) in the form

V⊥(n̂) = −n̂×(n̂×V) , (10.122)

or, equivalently,
V⊥(n̂) = −(V×n̂)×n̂ . (10.123)

We then decompose a(tret) into its parts orthogonal and parallel with
respect to R̂a,

a(tret) = a⊥(tret) + a‖(tret) . (10.124)

In eq. (10.117) the term a‖(tret) gives a vanishing contribution when

taking the vector product with R̂a, while, from eq. (10.123),
[
a⊥(tret)× R̂a

]
× R̂a = −a⊥(tret) . (10.125)

Therefore, to lowest order in v/c and lowest order in 1/Ra,

E(t,x) ' − 1

4πε0c2
q

Ra(t)
a⊥[t−Ra(t)/c] . (10.126)
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Note that qx0(t) is the dipole moment d(t) of the charge, so eq. (10.126)
can be rewritten as

E(t,x) ' − 1

4πε0c2
1

Ra(t)
d̈⊥[t−Ra(t)/c] . (10.127)

We see that, to lowest order in v/c, the radiation field is generated by
the dipole moment of the charge.18 18As we discussed below eq. (6.21), the

value of the dipole moment of a sys-
tem with non-vanishing total charge
changes if we shift the origin of the co-
ordinate system: if x0(t) → x0(t) + s,
with s a constant vector, then d →
d+ qs. However, the extra term is con-
stant in time, and does not affect d̈.

Two main features of this result are:

(1) As we already remarked, at large distances the field generated by
an accelerated charge decays as 1/Ra. It is therefore a radiative
field, contrary to the Coulomb field of a static charge, or of a charge
in uniform motion, that decays as 1/R2

a.

(2) For a non-relativistic charge moving in a bounded region, |x0(t)| <
d, the electric field at a point x, with |x| � d, is proportional (and
opposite) to the component of the acceleration (computed at re-
tarded time) transverse to the line of sight from the observer at
x to the apparent position of the charge. In particular, a charge
accelerating in straight line does not emit radiation in that direc-
tion. More generally, a non-relativistic charge does not radiate in
the direction of its apparent acceleration.

We also observe that, in the limit |x| � d,

Ra(t,x) = x− x0[tret(t,x)]

' x− x0(t)

= R(t,x) , (10.128)

since the distance |x−x0(t)| is very large compared to d, while |x0(t)| and
|x0[tret(t,x)]| are both smaller than d. Therefore, in the limit of large
distances from the source, to leading order eq. (10.126) is equivalent to

E(t,x) ' − 1

4πε0c2
q

R(t)
a⊥[t−R(t)/c] , (10.129)

or, more explicitly,

E(t,x) ' − 1

4πε0c2
q

|x− x0(t)| ẍ0⊥

(
t− |x− x0(t)|

c

)
. (10.130)

Note that R(t,x) = |x−x0(t)| is the distance between the point x where
we compute the fields and the instantaneous position of the source.

Actually, in the limit in which r ≡ |x| � d, to lowest order we can
simply neglect altogether the term x0(t) in R(t) and replace R(t) with r,
which is the distance of the point x to a fixed origin, that it is convenient
to choose inside the region where the motion of the source is localized.
Then, we can write simply

E(t, r) ' − 1

4πε0c2
q

r
a⊥(t− r/c) , (10.131)
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or

E(t, r) ' − 1

4πε0c2
1

r
d̈⊥(t− r/c) . (10.132)

In terms of µ0, we can also write this as

E(t,x) = −µ0

4π

1

r
d̈⊥(t− r/c) . (10.133)

In Section 11.2 we will see in detail how eq. (10.132) emerges as the
lowest-order term in a systematic expansion in v/c, with higher-order
terms parametrized by time derivatives of higher and higher multipole
moments.

The notation d⊥ is useful to stress that, physically, only the com-
ponent of d transverse to the line of sight contributes. For explicit
computations, however, it can be more useful to leave it in the original
form (10.117), in terms of a triple vector product. In the approximation
in which we replace Ra by x = rn̂, from eq. (10.122) we have

d⊥ = −n̂× (n̂× d) . (10.134)

Then, we can rewrite eq. (10.127) as

E(t,x) ' 1

4πε0c2
1

r
n̂× [n̂× d̈(tret)] , (10.135)

where, in the same approximation, tret = t− (r/c). Another useful form
of this result is obtained using the identity (1.9),

E(t,x) ' − 1

4πε0c2
1

r

{
d̈(tret)− [n̂·d̈(tret)]n̂

}
. (10.136)

From eq. (10.135) we also see that the modulus of the electric field can
be written as

|E| ' 1

4πε0c2
1

r
|n̂× d̈(tret)| . (10.137)

For the magnetic field, to leading order we get

B(t,x) ' − 1

4πε0c3
1

r
n̂× d̈(tret) , (10.138)

where we used eq. (10.108) (with R̂a replaced by n̂) and eq. (10.135),
and we expanded the triple vector product using eq. (1.9). Using µ0

instead of ε0 in the expression for the magnetic field,

B(t,x) ' − µ0

4πc

1

r
n̂× d̈(tret) . (10.139)
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We next compute the power radiated. Using eq. (10.108), with R̂a

replaced by n̂, for the Poynting vector (3.34) we get

S =
1

µ0c
|E|2 n̂ . (10.140)

In eq. (3.35) we saw that the energy flowing per unit time out of a
volume V is given by

∫
∂V

ds·S (note that the energy flowing out of the
volume is given by this expression with the plus sign so that, when∫
∂V

ds·S is positive, according to eq. (3.35) the energy inside the volume
V decreases). For the volume V we take a sphere of large radius r, so
ds = r2dΩ n̂. Since the energy flowing out per unit time is the power P
radiated, we see that the power dP radiated at time t through a surface
at distance r from the source and within an infinitesimal solid angle dΩ
is

dP (t; θ, φ) =
1

µ0c

µ2
0

(4π)2

1

r2
|n̂× d̈(tret)|2 r2dΩ

=
µ0

(4π)2c
|n̂× d̈(tret)|2dΩ . (10.141)

Therefore, the angular distribution of the radiated power is

dP (t; θ, φ)

dΩ
=

µ0

(4π)2c
|n̂× d̈(tret)|2 . (10.142)

At a given time t, we choose polar coordinates with the polar axis in the
direction of d̈(tret), so |n̂× d̈(tret)| = |d̈(tret)| sin θ. Then,

dP (t; θ)

dΩ
=

µ0

(4π)2c
|d̈(tret)|2 sin2 θ . (10.143)

Note that the angular distribution is independent of φ, because the set-
ting is invariant under rotations around the direction of d̈(tret). We can
rewrite this in terms of ε0, as19

19We give the most important results
both in terms of µ0 and in terms of
ε0. In the latter case, factorizing a fac-
tor 4πε0 allows us to quickly pass from
SI units to Gaussian units, just setting
4πε0 = 1, see Appendix A for details.

dP (t; θ)

dΩ
=

1

4πε0

1

4πc3
|d̈(tret)|2 sin2 θ . (10.144)

The integration over the solid angle is performed using
∫ 2π

0

dφ

∫ 1

−1

d cos θ sin2 θ = 2π × 4

3
. (10.145)

We then obtain Larmor’s formula, either in the form

P (t) =
µ0

6πc
|d̈(tret)|2 , (10.146)

or, in terms of ε0, as20,21

20Observe that this is the power radi-
ated instantaneously at time t, through
a sphere of fixed radius r, and has been
obtained neglecting altogether |x0(t)|
with respect to r. Correspondingly, we
have approximated tret = t − (r/c).
If one wants to integrate the power
(10.148) over a given period of time,
one must make sure that the condition
|x0(t)| � r is valid all along the time
period considered; if not, one must go
back to eq. (10.127) and take into ac-
count the actual time dependence of
Ra(t). However, if we are interested in
the formal limit r →∞, the issue does
not arise.

21An alternative derivation, useful also
in the generalization to higher mul-
tipoles that we will study in Sec-
tion 11.2.2, is obtained starting from
eq. (10.132) and using the expression
(10.120) for the transverse part of a vec-
tor. This gives, for the power,

P =
1

4πε0

1

4πc3

∫
dΩ
∣∣∣d̈− n̂(d̈·n̂)

∣∣∣2
tret

=
1

4πε0c3

∫
dΩ

4π

[
|d̈|2 − (d̈·n̂)2

]
tret

=
1

4πε0c3

[
|d̈|2 − d̈id̈j

∫
dΩ

4π
n̂in̂j

]
tret

.

(10.147)

The remaining angular integral can be
performed using eq. (6.49), and we get
eq. (10.148).

P (t) =
1

4πε0

2

3c3
|d̈(tret)|2 . (10.148)
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10.6 Power radiated by relativistic sources

10.6.1 Relativistic generalization of Larmor’s
formula

After having discussed the power radiated in the non-relativistic limit,
we now go back to the general results of Section 10.4, and we compute
the radiated power in the full relativistic setting. The most straightfor-
ward approach consists in taking the electric and magnetic fields in the
radiation zone from eqs. (10.105) and (10.108). For the Poynting vector
(3.34), at time t and position x, we then find

S(t,x) =
1

µ0c
|E(t,x)|2 R̂a

= ε0c

(
q

4πε0

)2
R̂a

R2
a

∣∣∣[v̇r × (R̂a − vr/c)]× R̂a

∣∣∣
2

c4(1− R̂a·vr/c)6
, (10.149)

where, to keep the notation simple, we have omitted the arguments (t,x)
in Ra(t,x) and R̂a(t,x), and the argument t in vr(t) and v̇r(t). Given
the time t and position x at which we observe the radiation, and given
the trajectory x0(t) of the particle, eq. (10.45) determines the time tret

at which the radiation was emitted, and therefore the position x0(tret)
of the particle at the time of emission. By definition of Ra(t,x), the
distance between this position and the observation point, |x− x0(tret)|,
is equal to Ra(t,x), see eq. (10.57). Now consider a sphere of radius
Ra(t,x) centered on the position x0(tret) of the particle at time of emis-
sion. The power radiated per unit solid angle through this sphere is

dE
dtdΩ

= S·R2
aR̂a

=
1

4πε0

1

c3
q2

4π

∣∣∣[v̇r × (R̂a − vr/c)]× R̂a

∣∣∣
2

(1− R̂a·vr/c)6
, (10.150)

where we denote by E the energy in the electromagnetic field. On the
left-hand side, we have explicitly written the radiated power in the form
dE/dt, to stress that this is the energy per unit time interval dt. This is
the time relevant for the distant observer, located at a distance Ra from
the charge. This is the quantity that we have denoted simply by P in
the previous chapters,

P =
dE
dt
. (10.151)

When it is useful to stress that this is the power measured by the dis-
tant observer, we will call it the “received” power, and we will use the
notation Pr.

However, from the point of view of the charge that emits the radiation,
dE/dtret is more relevant, since this determines the rate at which the
charge loses energy, with respects to the time measured by an observer
located at the instantaneous position of the charge (and at rest with
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respect to the distant observer); in particular, tret is related to the proper
time τ of the charge by dτ = dtret/γ(v), where v is the instantaneous
velocity of the charge, with respect to this observer. We call this the
“emitted” power, and we denote it by Pe,

Pe =
dE
dtret

. (10.152)

The relation between d/dt and d/dtret, for fixed value of the point x
where the radiation field is observed, was already computed in eq. (10.100).
Then,

Pe = (1− R̂·vr/c)Pr . (10.153)

Which quantity is most appropriate, among Pe and Pr, depends on the
physical situation considered. In the rest of this section we will focus on
Pe (using the more explicit notation dE/dtret, for clarity) which, as we
will see, is Lorentz invariant and has an elegant expression that makes
its Lorentz invariance explicit.

Using eq. (10.153), and expressing the result in terms of tret by using
R(tret,x) instead of Ra(t,x) [see eq. (10.58)],

dE
dtretdΩ

=
1

4πε0

1

c3
q2

4π

∣∣∣[v̇r × (R̂− vr/c)]× R̂
∣∣∣
2

(1− R̂·vr/c)5
, (10.154)

where R̂ = R̂(tret,x). Note that everything here is expressed in terms
of tret rather than t, since, as we saw in eqs. (10.59) and (10.107), vr =
dx0(tret)/dtret and v̇r = d2x0(tret)/d

2tret.
The integration over the angles can now be performed, writing R̂ =

(sin θ cosφ, sin θ sinφ, cos θ), and gives

dE
dtret

=
1

4πε0

2q2

3c3
γ6

[
|v̇r|2 −

|vr×v̇r|2
c2

]
, (10.155)

which we can also write as

dE
dtret

=
1

4πε0

2q2

3c3
γ6

[
a2 − |v×a|2

c2

]

t=tret

, (10.156)

where a = v̇ and a = |a|. In the limit v/c → 0 we have γ → 1, while
the second term in the bracket is suppressed by a factor (v/c)2 with
respect to the first. Then, writing q2a2 = q2|ẍ0|2 = |d̈2|, we recover
the Larmor formula (10.148) [note that, in the limit v/c→ 0, Pe is the
same as Pr ≡ P , as we see from eq. (10.153)]. In this sense, eq. (10.156)
is also referred to as the relativistic Larmor formula. Observe that the
factor γ6 means that the power radiated by a relativistic charge is highly
enhanced, compared to the non-relativistic case.

We can rewrite eq. (10.156) expanding22

22This is obtained by writing

|v×a|2 = (εijkvjak) (εilmvlam),

and using

εijkεilm = δjlδkm − δjmδkl.|v×a|2 = v2a2 − (v·a)2 . (10.157)
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Then
dE
dtret

=
1

4πε0

2q2

3c3
γ6

[
a2

γ2
+

(v·a)2

c2

]

t=tret

. (10.158)

We can also use v·a = vdv/dt,23 to rewrite this as23This follows from

v·
dv

dt
= vi

dvi

dt
=

1

2

d

dt
(vivi)

=
1

2

d

dt
(v2) = v

dv

dt
.(10.159)

Note that dv/dt = d|v|/dt and, of
course, this in general different from
a ≡ |a| = |dv/dt|. As we see from
eq. (10.159), the equality dv/dt = a im-
plies v·a = va and therefore only holds
when v and a are parallel.

dE
dtret

=
1

4πε0

2q2

3c3
γ6

[
a2

γ2
+
v2

c2

(
dv

dt

)2
]

t=tret

. (10.160)

Another useful form is obtained by decomposing a into its component
parallel and transverse to v, as in eq. (10.118), a = a‖ + a⊥. Then
a2 = a2

‖ + a2
⊥, where a‖ = |a‖| and a⊥ = |a⊥|, while v·a = va‖, so

eq. (10.158) becomes

dE
dtret

=
1

4πε0

2q2

3c3
γ4
(
a2
⊥ + γ2a2

‖

)
t=tret

. (10.161)

An alternative and elegant derivation of the relativistic Larmor formula
is obtained if one realizes that dE/dtret is a Lorentz-invariant quantity.
To show this, consider an inertial frame K where the charge is instan-
taneously at rest at a given value tret of retarded time (defined with
respect to a far observer at rest with respect to K), so v(tret) = 0, al-
though v̇(tret) 6= 0 since the charge is accelerating. In the frame K, we
denote by dE the energy emitted by the charge in the interval between
tret and tret + dtret (and which will therefore be seen by the distant ob-
server in the interval between t and t + dt), and by dPem the radiated
momentum. However, in the limit v/c→ 0, and therefore for a particle
instantaneously at rest, the radiation is given by the electric dipole term.
The symmetry of the dipole radiation implies that the momenta carried
away by the radiation in opposite directions are equal in magnitude and
opposite in direction, so the momentum radiated in the interval between
tret and tret + dtret vanishes, dPem = 0.

Let K ′ be a boosted frame, where the instantaneous velocity of the
charge is v0, and let t′ret be the retarded time measured in this frame.
As we have shown in Solved Problem 8.2, the energy and momentum of
the electromagnetic field form a four-vector so, from eq. (7.49), in the
frame K ′ the radiated energy is

dE ′ = γ(v0) (dE + β·dPem) . (10.162)

However, since dPem = 0, we simply have dE ′ = γ(v0)dE . At the same
time, at the position x = 0 where the particle instantaneously sits in
the K frame, the transformation of the “local” time variables tret is
dt′ret = γ(v0)dtret. Therefore, dE ′/dt′ret = dE/dtret, so dE/dtret is Lorentz
invariant.

We now use the fact that, in the K frame where the charge is instan-
taneously at rest, the radiated power is given by the non-relativistic Lar-
mor formula (10.148): indeed, given that in this frame v = 0, the higher-
order corrections in v/c are identically zero, and the non-relativistic
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Larmor formula becomes exact. Then, to find the radiated power in a
generic boosted frame, it is sufficient to find a Lorentz-invariant expres-
sion that reduces to the Larmor formula (10.148) in the instantaneous
rest frame of the particle.24 To this purpose, we consider the Lorentz-

24The uniqueness of this covariantiza-
tion procedure is ensured by the fact
that, given the value of a quantity in a
frame, in this case the power in the rest
frame, and its transformation proper-
ties under Lorentz transformation, the
value in any other Lorentz frame is
uniquely determined.

invariant quantity

dpµ
dτ

dpµ

dτ
= −

(
dp0

dτ

)2

+

(
dp

dτ

)2

, (10.163)

where τ is the proper time of the radiating charge and pµ is its rela-
tivistic four-momentum, so p0 = γ(v)mc and p = γ(v)mv. It is very
natural to consider the quantity in eq. (10.163), when looking for a
Lorentz-invariant expression that reproduces eq. (10.160). Indeed, a
point particle, without internal structure, is only characterized by its
four-momentum pµ and by its proper time τ . The invariant pµp

µ is
equal to −m2c2, so it is just a fixed number, independent of the velocity
and acceleration of the particle, while pµdp

µ/dτ = (1/2)d(pµp
µ)/dτ = 0.

Therefore, the only quantity that can be formed, which is quadratic in
the velocities and accelerations, is (dpµ/dτ) (dpµ/dτ). Writing dp0/dτ
and dpi/dτ in terms of dv/dτ and dvi/dτ , where as usual v = |v|, we
get25

25Explicitly, dγ/dτ = (γ3/c2)vdv/dτ ,
so

dp0

dτ
=
mγ3

c
v
dv

dτ
, (10.164)

while

dpi

dτ
=
mγ3

c2
v
dv

dτ
vi+mγ

dvi

dτ
. (10.165)

Therefore

1

m2

dpν

dτ

dpν

dτ
= −

γ6

c2
v2
(
dv

dτ

)2

+
γ6

c4
v4
(
dv

dτ

)2

+ γ2
(
dvi

dτ

)2

+2
γ4

c2
v2
(
dv

dτ

)2

=
γ4v2

c2

(
dv

dτ

)2

+ γ2
(
dvi

dτ

)2

,

where, in the second line, we used
vidvi/dτ = vdv/dτ , see eq. (10.159).
Using dτ = dtret/γ, see the discus-
sion following eq. (10.150), we get
eq. (10.166).

1

m2

dpν
dτ

dpν

dτ
= γ6

[
1

γ2

(
dvi(t)

dt

)2

+
v2

c2

(
dv(t)

dt

)2
]

t=tret

. (10.166)

Comparing with eq. (10.160), we see that

dE
dtret

=
1

4πε0

2q2

3m2c3

(
dpν
dτ

dpν

dτ

)
. (10.167)

Equation (10.167) therefore provides an expression for the power radi-
ated by a point charge in an arbitrary relativistic motion, equivalent to
eq. (10.156), but written in an explicitly Lorentz-invariant form. Using
dτ = dtret/γ, and recalling that u0 = γc, we can rewrite eq. (10.167) as

dE
dτ

=
1

4πε0

2q2

3m2c4

(
dpν
dτ

dpν

dτ

)
u0 . (10.168)

We then recognize that this is the µ = 0 component of a covariant
equation,

dPµem

dτ
=

1

4πε0

2q2

3m3c5

(
dpν
dτ

dpν

dτ

)
pµ , (10.169)

where Pµem = (E/c,Pem) is the four-vector describing the electromag-
netic energy and momentum, radiated by a charge with four-momentum
pµ and four-velocity uµ = pµ/m. The spatial components of this equa-
tion give the radiated momentum.26

26It should be stressed that these
results have been obtained assuming
that the charge that radiates is ex-
actly point-like, since we have used
the Liénard–Wiechert potentials, which
make use of eqs. (8.1) and (8.2). So,
while eqs. (10.167) and (10.169) might
look as “exact” results valid for ar-
bitrary relativistic motion, one should
bear in mind that they are exact only in
this, highly idealized, approximation.
As we will see in Section 11.2, for an
extended charge distribution the radia-
tion emitted has a further dependence
on all its higher-order charge and cur-
rent multipoles, which give contribu-
tions suppressed by higher powers of
v/c. So, while in the non-relativistic
limit the leading term is indeed given
by the non-relativistic Larmor formula
(10.148), the exact result at all orders
in v/c is given by eq. (10.167) only
in the approximation when one models
the charge distribution as point-like.



260 Electromagnetic field of moving charges

10.6.2 Acceleration parallel to the velocity

We now go back to eq. (10.154), to discuss in more detail the angular
dependence in some simple cases. In this subsection we consider the
situation in which the acceleration is parallel (or antiparallel) to the
velocity. We then write

v = vv̂ , a = av̂ , (10.170)

and we define θ from R̂·v̂ = cos θ, so θ is the angle between the velocity
and the direction of observation. The case where v and a are anti-parallel
can be included choosing v > 0 and a < 0.27 Then, in the numerator of27Note that, in contrast, we always

keep v > 0, otherwise we have to
change correspondingly the definition
of θ, if we want θ to remain the an-
gle between acceleration and velocity.
When v = 0, we define θ from R̂·â =
cos θ, so the case v = 0 is obtained as
the limit v → 0 with a > 0.

eq. (10.154),28

28Explicitly,

[v̇ × (R̂− v/c)]× R̂

= a[v̂ × (R̂− βv̂)]× R̂

= a(v̂ × R̂)× R̂

= a
[
(v̂·R̂)R̂− (R̂·R̂)v̂

]
= a(cos θR̂− v̂) ,

where β = v/c, and we used v̂ × v̂ = 0
and eq. (1.10).

[v̇ × (R̂− v/c)]× R̂ = a(cos θR̂− v̂) . (10.171)

Therefore
∣∣∣[v̇ × (R̂− v/c)]× R̂

∣∣∣
2

= a2(cos2 θ + 1− 2 cos2 θ)

= a2 sin2 θ . (10.172)

The angular distribution of the radiated power is then given by

dPe,parallel(tret)

dΩ
=

1

4πε0

q2a2

4πc3
sin2 θ

(1− β cos θ)5
, (10.173)

where Pe(tret) = dE/dtret is the “emitted” power, see eq. (10.152), and
the subscript “parallel” stresses that this result is valid when a is parallel
(or antiparallel) to v. This distribution is very peculiar, for β → 1.
Indeed, in the forward direction, i.e., at θ = 0, the radiation emitted
vanishes exactly because of the sin2 θ in the numerator. However, for β
close to one, the denominator strongly enhances the radiation at small
angles. Therefore, the distribution has a peak at a value of θ non-
vanishing but very small and (taking into account that the distribution
is invariant under rotations around the direction of the acceleration) the
radiation is focused into a narrow cone close to the forward direction.
Fig. 10.1 shows the function

f‖(θ) =
sin2 θ

(1− β cos θ)5
, (10.174)

for β = 0, β = 0.6 and β = 0.9. The maximum of the right-hand side of
eq. (10.173), as a function of θ, is given by

cos θmax =
−1 +

√
1 + 15β2

3β
. (10.175)

Inverting the relation γ2 = 1/(1 − β2) we have β2 = 1 − 1/γ2, so, for
large γ,

β = 1− 1

2γ2
+O

(
1

γ4

)
. (10.176)
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Inserting this into eq. (10.175) and expanding the numerator and the
denominator to first order in 1/γ2, we get

cos θmax ' 1− 1

8γ2
, (γ � 1) . (10.177)

This confirms that, for large γ, the peak of the distribution is at an angle
θmax such that cos θmax is very close to one, i.e., θmax is very close to
zero. Writing cos θmax ' 1− (1/2)θ2

max, we get

Fig. 10.1 A polar plot of the func-
tion f‖(θ) for β = 0 (upper panel),
β = 0.6 (middle panel), and β = 0.9
(lower panel). The direction of a
(and, when non-zero, of v) is shown
by the arrows. All plots are un-
changed if we invert the direction of
the acceleration. The full distribu-
tions in three-dimensional space are
rotationally symmetric around the
horizontal axis, corresponding to the
fact that the distributions are inde-
pendent of the polar angle φ. Note
the difference in scales between the
three panels.

θmax ' ±
1

2γ
+O

(
1

γ2

)
. (10.178)

The angular width of the peak is also of order 1/γ. Indeed, in the limit
θ � 1 and γ � 1 we can write

sin2 θ

(1− β cos θ)5
' θ2

(1− β + βθ2/2)5

' 32γ8 θ2γ2

(1 + θ2γ2)5
, (10.179)

where, in the second line, we used eq. (10.176) (note that we made no
assumption on the product θγ). Therefore

dPe,parallel(tret)

dΩ
' 1

4πε0

8q2a2

πc3
γ8 θ2γ2

(1 + θ2γ2)5
, (γ � 1, θ � 1) .

(10.180)
From this expression, we can verify again that the maximum is at
θγ = 1/2, and we see that the width ∆θ of the distribution is of or-
der 1/γ. Therefore, when the acceleration is parallel to the velocity,
and the particle is highly relativistic, the radiation is focused into a
very narrow cone in the direction of motion, peaked at an opening angle
θmax ' 1/(2γ), and with a width of order 1/γ.

Observe that the case of acceleration antiparallel to the velocity can
be simply obtained replacing a → −a in eq. (10.170). However, since
eq. (10.173) is unchanged under a → −a, the result is the same when
the particle is accelerated or decelerated in the direction of its velocity.
The latter situation typically takes place when a relativistic electron
hits a target, that rapidly decelerates it. The corresponding radiation,
that classically is described by eq. (10.173), is called bremsstrahlung, or
“braking radiation.” More generally, bremsstrahlung takes place because
of the acceleration of a charge in the Coulomb field of another charge
and is also called free-free emission.

The integration of eq. (10.173) over the solid angle is given by an
elementary integral,

∫ 1

−1

d cos θ

∫ 2π

0

dφ
sin2 θ

(1− β cos θ)5
= 2π

∫ 1

−1

dx
1− x2

(1− βx)5

=
8π

3

(
1

1− β2

)3

=
8π

3
γ6 . (10.181)
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Therefore, the emitted power radiated instantaneously when the accel-
eration is parallel (or anti-parallel) to the velocity is

Pe,parallel =
1

4πε0

2q2a2

3c3
γ6 . (10.182)

For γ → 1 this reduces to the Larmor’s formula (10.148), as it should.
We could have also obtained this result from eq. (10.160), using the fact
that, when the acceleration is parallel to the velocity, dv/dt ≡ d|v|/dt
becomes the same as a ≡ |dv/dt|.

Instead of expressing the power in terms of the acceleration, it can
be useful to express it in terms of |dp/dt|, i.e., of the force applied to
the particle in order to accelerate it (equivalently, we could use dp/dτ =
γdp/dt). Proceeding as in eq. (10.164) and using the fact that, when the
acceleration is parallel to the velocity, the modulus of the acceleration
is related to the modulus of the velocity by a = dv/dt, we have2929Explicitly,

1

m

dp

dt
=

d(γv)

dt

=
dγ

dt
v + γ

dv

dt

=
γ3v2

c2
a+ γa

= γ3a ,

dp

dt
= mγ3a , (10.183)

and therefore ∣∣∣∣
dp

dt

∣∣∣∣ = γ3ma , (a ‖ v) . (10.184)

Using this to eliminate a in favor of |dp/dt| from eq. (10.182), we get

Pe,parallel =
1

4πε0

2q2

3m2c3

∣∣∣∣
dp

dt

∣∣∣∣
2

. (10.185)

10.6.3 Acceleration perpendicular to the velocity

We next consider the case in which the acceleration is perpendicular
to the velocity, as for a particle accelerated in a circular ring, which
is a common situation in particle accelerators. In this case we set the
instantaneous velocity v along the z axis, and the acceleration a along
the x axis, so

v = vẑ , a = ax̂ . (10.186)

We define the polar angles θ, φ with respect to the ẑ axis, so the generic
direction of observation is given by

R̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ . (10.187)

Note that we still have
R̂·v̂ = cos θ , (10.188)

as in the setting of the previous subsection. However, now the numerator
of eq. (10.154) depends also on the φ angle: carrying out the triple vector
product,

[x̂× (R̂− βẑ)]× R̂ = [sin2 θ cos2 φ− (1− β cos θ)]x̂

+ sin2 θ sinφ cosφ ŷ + sin θ cosφ(cos θ − β)ẑ , (10.189)
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and, taking the modulus squared and combining the various terms,

∣∣∣[x̂× (R̂− βẑ)]× R̂
∣∣∣
2

= (1−β cos θ)2− (1−β2) sin2 θ cos2 φ . (10.190)

Inserting this into eq. (10.154) and writing 1− β2 = 1/γ2, we get

dPe,circ(tret)

dΩ
=

1

4πε0

q2a2

4πc3
1

(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
,

(10.191)
where we added the subscript “circ” to the emitted power Pe to stress
that this is the result when, instantaneously, a ⊥ v, so, in particular,
for a circular motion.

Fig. 10.2 A polar plot of the func-
tion f⊥(θ) for β = 0 (upper panel,
the same as the upper panel in
Fig. 10.1, with the acceleration now
set on the vertical axis), β = 0.6
(middle panel), and β = 0.9 (lower
panel). The direction of a (and,
when non-zero, of v) is shown by the
arrows. All plots are unchanged if
we invert the direction of the accel-
eration. Note the difference in scales
between the three panels.

In Fig. 10.2 we show, for β = 0, 0.6, and 0.9, the function

f⊥(θ) =
1

(1− β cos θ)3

[
1− (1− β2) sin2 θ

(1− β cos θ)2

]
, (10.192)

that, according to eq. (10.191), determines the distribution dPcirc/dΩ in
θ, in the plane φ = 0.

Integrating eq. (10.191) over the solid angle, we get

Pe,circ =
1

4πε0

2q2a2

3c3
γ4 . (10.193)

Comparing with eq. (10.182) we see that, for fixed acceleration a, the
power radiated when the acceleration is parallel to the velocity is larger
than that radiated in a circular motion, by a factor γ2. However, it
is usually more significant to compare the power radiated for a fixed
external force. To this purpose, similarly to eq. (10.184), we can rewrite
Pcirc expressing a in terms of dp/dt. For circular motion, the modulus v
of the velocity does not change (so γ does not change) and dp/dt = γma,
so ∣∣∣∣

dp

dt

∣∣∣∣ = γma , (a ⊥ v) . (10.194)

Using this to eliminate a in favor of |dp/dt| from eq. (10.193), we get

Pe,circ =
1

4πε0

2q2

3m2c3
γ2

∣∣∣∣
dp

dt

∣∣∣∣
2

. (10.195)

Comparing with eq. (10.185) we see that, at fixed |dp/dt|, the situation
is opposite and now Pe,circ is larger than Pe,parallel by a factor γ2. There-
fore, much more external power is needed to overcome radiation losses
in circular accelerators, compared to linear accelerators.

In the non-relativistic limit β → 0, eq. (10.191) becomes

dPe,circ(tret)

dΩ
' 1

4πε0

q2a2

4πc3
(
1− sin2 θ cos2 φ

)
. (10.196)
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The radiation emitted in the non-relativistic limit by a charged particle
in a circular or quasi-circular orbit (which, in practice, is obtained when
the particle is moving in the plane perpendicular to an external magnetic
field) is called cyclotron radiation. The limit β → 1 (i.e., γ → ∞) of
eq. (10.191) defines instead synchrotron radiation.30 Once again, as β →

30The cyclotron is a particle accelera-
tor, invented by E. Lawrence in 1929–
1930, where the charged particles are
kept in an outward-bound spiral orbit
by a magnetic field, and are acceler-
ated by a time-varying electric field.
The fast temporal variation of the elec-
tric field is synchronized with the out-
ward inspiral motion of the particle,
so that the particles undergo several
cycles of acceleration. This is possi-
ble only as long as the particle is non-
relativistic, and the frequency for the
motion in a magnetic field, which in
general is given by ω = qB/mγ [see
eq. (8.201)], reduces to ω = qB/m
and becomes independent of the veloc-
ity (and is indeed called the cyclotron
frequency). To keep accelerating the
particles when they become relativistic,
the most successful solution turned out
to be to keep the particle in a circu-
lar orbit of fixed radius by increasing
the magnetic field during the accelera-
tion phase; this led to the synchrotron.
Cyclotrons were the most powerful par-
ticle accelerators until the 1950s, when
they were superseded by synchrotrons
(and other variants of the idea, such as
synchrocyclotrons), but are still used
in medical applications. Currently,
the largest accelerator in the world is
the Large Hadron Collider (LHC) at
CERN, which is a synchrotron-type ac-
celerator.

1, the radiation is focused into a narrow forward cone, because of the
focusing effect of the denominator. Note, however, that now eq. (10.191)
is non-vanishing for θ = 0. Just as we have done for eq. (10.180), we
can expand eq. (10.191) for γ → ∞ and θ → 0, without the need of
assuming anything for the product θγ, writing

1− β cos θ ' 1− β
(

1− θ2

2

)

' 1

2γ2
(1 + θ2γ2) , (10.197)

where we used eq. (10.176). Then, for γ � 1 and θ � 1, eq. (10.191)
becomes

dPe,circ(tret)

dΩ
' 1

4πε0

2q2a2

πc3
γ6

(1 + θ2γ2)3

[
1− 4θ2γ2 cos2 φ

(1 + θ2γ2)2

]
, (10.198)

[to be compared with eq. (10.180)], so now the maximum is at θ = 0,
while the width of the distribution is again ∆θ ∼ 1/γ, as is also seen
from Fig. 10.2. Observe that, for θγ > 0, the term in brackets vanishes
when

1 + (θγ)2 = 2(θγ)| cosφ| . (10.199)

Solving the second-degree equation (10.199) with respect to θγ, gives

θγ = | cosφ| ±
√

cos2 φ− 1 . (10.200)

This has real solutions only if cos2 φ = 1, and then θγ = 1, so the
distribution vanishes for θ = 1/γ and φ = 0 or φ = π.

In Fig. 10.3 we show a zoom of the the middle panel of Fig. 10.2,
where β = 0.6 and cosφ = 1, that shows that the distribution indeed
vanishes at a critical value of θ, and also has a smaller lobe, mostly in
the backward direction, but partially tilted forward.

Fig. 10.3 A zoom of the middle
panel of Fig. 10.2, with β = 0.6.

10.7 Solved problems

Problem 10.1. Dipole oscillating along the z axis

As a first simple application, we compute the radiation emitted by an elec-
tric dipole with charge q, oscillating with amplitude a along the z axis,

d(t) = qaẑ cosωst . (10.201)

We assume aωs � c, so the non-relativistic formulas of Section 10.5 apply.
We compute the radiation in the direction n̂, given in terms of θ and φ by

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) . (10.202)
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Then, using eq. (10.136),

E(t,x) =
qaω2

s

4πε0c2
1

r
cos[ωs(t− r/c)]

×[−x̂ sin θ cos θ cosφ− ŷ sin θ cos θ sinφ+ ẑ sin2 θ] . (10.203)

First of all observe that, in the dipole approximation, E(t,x) oscillates in time
at a frequency ω equal to the frequency ωs of the source. We also observe that
the electric field vanishes on the z axis, i.e., for θ = 0. The same holds for
the magnetic field, since cB = n̂ × E. Clearly, there is no radiation in this
direction since there is no acceleration of the source transverse to the z axis.
In the (x, y) plane we have θ = π/2, and we see from eq. (10.203) that E is
linearly polarized along the ẑ axis. For the angular distribution of the power
radiated, eq. (10.144) gives

dP

dΩ
(t) =

1

4πε0

q2a2ω4

4πc3
cos2[ω(t− r/c)] sin2 θ , (10.204)

where we used the fact that the frequency of the source, ωs, is the same as the
frequency ω at which the electric field oscillates. If we perform a time average
over one period, using

1

2π

∫ 2π

0

dα cos2 α =
1

2
, (10.205)

the factor cos2[ω(t− r/c)] is replaced by 1/2, and

〈dP
dΩ
〉 =

1

4πε0

q2a2ω4

8πc3
sin2 θ . (10.206)

Performing the angular integral, we get

〈P 〉 =
1

4πε0

q2a2ω4

3c3
. (10.207)

Observe that, in the dipole radiation from a periodic source with frequency
ωs, the radiated power grows as ω4

s (which, for dipole radiation, is the same as
ω4, with ω the frequency of the radiation). This is due to the fact that each
derivative brings a factor of ωs, so d̈ ∝ ω2

s and P ∝ d̈2 ∝ ω4
s .

Problem 10.2. Radiation emitted by a non-relativistic charge in
circular orbit

As the next application, we consider a charged particle moving counter-
clockwise on a circular orbit of radius a in the (x, y) plane, with frequency ωs
(for instance, the particle could be kept in a circular orbit by the action of an
external magnetic field). We assume again that the velocity v = ωsa � c, so
we can use the non-relativistic approximation to the particle motion, and we
can use Larmor’s formula, which is valid to lowest order in v/c. We write

x0(t) = a(cosωst, sinωst, 0) , (10.208)

so
d̈(t) = −qaω2

s(cosωst, sinωst, 0) . (10.209)

The radiative part of the electric field is obtained again from eq. (10.136), and
we compute the radiation emitted in the direction of the unit vector n̂, given



266 Electromagnetic field of moving charges

in terms of the polar angles θ, φ by eq. (10.202). Then, eq. (10.136) gives

Ex(t, r, θ, φ) =
qaω2

s

(4πε0)c2r

[
cosωstret − sin2 θ cosφ cos(ωstret − φ)

]
, (10.210)

Ey(t, r, θ, φ) =
qaω2

s

(4πε0)c2r

[
sinωstret − sin2 θ sinφ cos(ωstret − φ)

]
, (10.211)

Ez(t, r, θ, φ) = − qaω2
s

(4πε0)c2r
sin θ cos θ cos(ωstret − φ), (10.212)

where as usual, to leading order in a/r retarded time becomes tret = t− (r/c).
First of all, we observe that, just as in the case of a dipole oscillating along the
z axis, the frequency ω at which the electric field oscillates is the same as the
frequency ωs at which the source rotates. As we will see in more generality in
Section 11.2, for dipole radiation the frequency of the electromagnetic waves
generated by a monochromatic source is indeed always equal to the frequency
of the source (as we will see, in general this is no longer true for the radiation
generated by higher-order multipoles).

Along the positive ẑ axis, where θ = 0, we get (writing henceforth ω instead
of ωs)

E(t, r, θ = 0) =
qaω2

(4πε0)c2r
(cosωtret, sinωtret, 0) . (10.213)

Therefore, in this direction, light is circularly polarized, with the electric field
rotating counterclockwise with respect to the +ẑ direction. This corresponds
to right circularly polarized light, see eq. (9.84). At θ = π, the result for E
is still given by eq. (10.213). However, now the propagation direction is −ẑ
and, with respect to this propagation direction, eq. (10.213) is left circularly
polarized light. If we rather set θ = π/2, so that we look at the radiation
emitted in the (x, y) plane, from eqs. (10.210)–(10.212) we get

E(t, r, θ =
π

2
, φ) =

qaω2

(4πε0)c2r
sin(ωtret − φ)(− sinφ, cosφ, 0) . (10.214)

Therefore, in this case the electromagnetic radiation is linearly polarized along
the direction of the tangent vector to a circle in the (x, y) plane (oriented
toward the counterclockwise direction).

To compute the radiated power we first observe, from eq. (10.209) that

|d̈(t)|2 = q2a2ω4
s (10.215)

is actually independent of time. Then, according to eq. (10.144), the radiated
power is also time-independent, and given by

dP (θ)

dΩ
=

1

4πε0

q2a2ω4

4πc3
sin2 θ , (10.216)

where we used ωs = ω to write the power in terms of the frequency of the
radiation. The sin2 θ dependence of the power is typical of dipole radiation,
as we see from the general result (10.144). Performing the angular integral,

P =
1

4πε0

2q2a2ω4

3c3
. (10.217)

Note that this is twice as large as the result in eq. (10.207), corresponding to
the fact that a circular motion in the (x, y) plane can be seen as a superposition
of two oscillators, one oscillating along the x axis and one along the y axis.
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Problem 10.3. Radiative collapse of a classical model of the hydro-
gen atom

Historically, the problem of the radiation emitted by a charge in a circular
orbit was also important to show the inadequacy of a classical model of the
atom. Consider a classical model of the hydrogen atom, with the electron
moving in a circular orbit around the proton. The system radiates electro-
magnetic energy to infinity according to eq. (10.217). This energy must be
taken from the mechanical energy Emech of the system, which therefore must
decrease, according to31 31In Section 12.3.3 we will provide a

more accurate justification of this con-
servation equation.

P = −dEmech

dt
. (10.218)

The mechanical energy is given by

Emech =
1

2
mv2 − 1

4πε0

e2

r
, (10.219)

where r is the relative distance between the electron and the proton and m
the reduced mass. Actually, since mp ' 2000me, to good approximation we
can take the proton at rest at the origin, and m ' me.

For an electron in a circular orbit of radius r we have v = ωr and the
modulus of the acceleration a is |a| = ω2r, so F = ma gives Kepler’s law

ω2 =
e2

4πε0

1

mr3
. (10.220)

Then

Emech =
1

2
mω2r2 − 1

4πε0

e2

r

= − 1

4πε0

e2

2r
, (10.221)

which is the result, familiar from elementary classical mechanics, that in the
Coulomb potential the kinetic energy is 1/2 of the absolute value of the po-
tential energy. Note that the total energy is negative, as it should for a bound
state. In order to balance the energy radiated, Emech must decrease, i.e., must
become more negative, so, according to eq. (10.221), r gets smaller until,
eventually, the electron collapses on the nucleus.

The radiated power (10.217) has been computed under the assumption that
the electron is kept by an external force on an exactly circular orbit. In
the case of the (classical!) hydrogen atom, we have just seen that r will
actually decrease to compensate for the emitted radiation, so r = r(t). Still,
eq. (10.217) remains a good approximation to the actual radiated power as
long as the induced radial velocity ṙ is much smaller, in absolute value, than
the tangential component of the velocity, i.e., as long as |ṙ| � ωr; furthermore,
the use of eq. (10.217) is justified as long as the motion is non-relativistic, so
ωr � c. We will check the validity of these conditions a posteriori. Let us
compute the evolution of r(t) in this regime. Combining eq. (10.217) (with
q = −e) with eqs. (10.218) and (10.221) we get

2e2ω4r2

3c3
= − d

dt

(−e2
2r

)
. (10.222)

Using eq. (10.220) we can rewrite it as

ṙ = −4

3

1

m2c3

(
e2

4πε0

)2
1

r2
. (10.223)
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This integrates to

r3 = r3(0)− 4

m2c3

(
e2

4πε0

)2

t , (10.224)

where r(0) is the value of the radius at t = 0, that we take equal to the
Bohr radius of the hydrogen atom, rB ' 0.53 × 10−8 cm. Therefore, in this
approximation, the electron collapses on the nucleus in a time

τ =
1

4
(mc2rB)2

(
4πε0
e2

)2
rB
c
. (10.225)

We could directly plug in the numbers, and find τ ' 1.5× 10−11 s. Actually,
it is more instructive to rewrite eq. (10.225) introducing some combinations
that enter at the quantum level, even if our computation is purely classical.
An important combination is the fine structure constant, already introduced
in eq. (5.34),

α =
1

4πε0

e2

~c
. (10.226)

This quantity is dimensionless, and, numerically, α ' 1/137. We borrow from
quantum mechanics the information that the Bohr radius is given by

rB =
1

α

~
mc

. (10.227)

Therefore, we have the identity

mc2rB

(
4πε0
e2

)
=

1

α2
, (10.228)

and eq. (10.225) can be rewritten as

τ =
1

4α4

rB
c
. (10.229)

Note that rB/c is the time that light takes to cross the size of the atom. It
is an extremely small number, about 0.53 × 10−10m/(3 × 108 m/s) ' 1.8 ×
10−19 s. Even if τ is enhanced, with respect to this, by a factor 1/α4 '
(137)4, we still get the very small value ∼ 10−11 s given previously. This
means that, in classical electromagnetism, atoms are unstable to emission of
electromagnetic radiation, and would collapse in about 10−11 s! One can
check, from the previous expressions, that the conditions |ṙ| � ωr and ωr �
1 both break down only at r ' α2rB , so, when the size of the atom has
become about 5× 10−5rB , which is already of order of the size of the nucleus.
Therefore, the conclusion on the collapse of the atom is not an artifact of these
approximations (furthermore, a relativistic particle radiates away energy even
faster).

This instability to emission of electromagnetic radiation is one of several
difficulties of a classical model of the atom and shows that, at these scales,
classical physics is inadequate. As we now know, at these scales the correct
description is provided by quantum mechanics.
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In the previous chapter we discussed the radiation generated by a point-
like charge, with arbitrary motion. We now expand on the previous
discussion, studying the radiation generated by a localized, but otherwise
generic, distribution of charges and currents. This will also provide
the basis for the multipole expansion of the radiation field, that we
will present in Section 11.2, while in Section 11.3 we will give a first
simple discussion of relevant scales defining the near and far zone. The
dynamics of relativistic particles in the near zone will be discussed in
more detail in Chapter 12, where we will tackle the rather technical
issue of how relativistic effects, and the back-reaction due to the emitted
radiation, affect the dynamics of the sources in the near zone.

11.1 Far zone fields for generic velocities

11.1.1 Computation in the Lorenz gauge

We begin by computing the radiation emitted by a generic charge dis-
tribution. In this subsection we perform the computation in the Lorenz
gauge (we will compare with the computation in the Coulomb gauge in
Section 11.1.2). We therefore start from eq. (10.34),

Aµ(t,x) =
µ0

4π

∫
d3x′

jµ(t− |x− x′|/c,x′)
|x− x′| , (11.1)

where we have set to zero the solution of the homogeneous equation,
representing incoming radiation, since we want to compute the radiation
produced by the current jµ. Note that eq. (11.1) is valid for sources with
arbitrary velocities, since we have used the exact (retarded) Green’s
function of the d’Alembertian. As in Chapter 6, we denote by d the
size of the spatial region in which the source is localized. Therefore, in
eq. (11.1), jµ(tret,x

′) vanishes for |x′| > d, so the integration variable x′

is effectively limited to |x′| < d. We write, as usual, |x| = r and x = rn̂,
and we use the large r expansion (6.3). We are interested only in the
radiation field, that decays as 1/r. Then, in eq. (11.1) we can replace
1/|x − x′| simply by 1/r, since the subsequent terms of the expansion
will give contributions of order 1/r2 and higher. In contrast, in the
argument of jµ we must also keep the next term, which does not vanish
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for r →∞. Thus,

Aµ(t,x) =
µ0

4π

1

r

∫
d3x′ jµ

(
t− r

c
+

n̂·x′
c
,x′
)

+O
(

1

r2

)
. (11.2)

We now perform a Fourier transform with respect to time, writing

ρ(t,x) =

∫
dω

2π
e−iωt ρ̃(ω,x) , (11.3)

j(t,x) =

∫
dω

2π
e−iωt j̃(ω,x) . (11.4)

Then, restricting to the 1/r term, and recalling eqs. (8.9) and (8.12),

φ(t,x) =
1

4πε0

1

r

∫
d3x′

∫
dω

2π
ρ̃(ω,x′) e−iω[t−(r/c)+n̂·x′/c] , (11.5)

A(t,x) =
µ0

4π

1

r

∫
d3x′

∫
dω

2π
j̃(ω,x′) e−iω[t−(r/c)+n̂·x′/c] . (11.6)

From these expressions it is clear why, in the exponential, we could not
neglect the term n̂·x′, that comes from eq. (6.3). Even if r � |n̂·x′|,
still the fact that, inside a phase, ωr/c is much larger than ωn̂·x′/c is a
priori irrelevant, since phases are defined only modulo 2π.1 In contrast,1We will see in Section 11.2 that,

for non-relativistic sources, the integral
gets a significant contribution only for
values of the integration variable ω such
that the term ωn̂·x′/c is indeed small,
and we will be able to expand the ex-
ponential in powers of it. For generic
source velocities, however, this term
must be kept in its full form.

the term O(d2/r) in eq. (6.3) goes to zero as r → ∞, and is therefore
negligible even in the phase.

We can now compute the electric field in the far zone, using eq. (3.83).
Let us compute first ∇φ. Recalling that x = rn̂, in eq. (11.5) the ∇
operator acts on the factor 1/r in front, as well as on the factors r and
n̂ in the exponential. Again, we are only interested in the part of E that
decreases as 1/r. The derivative of the overall 1/r factor gives a term
proportional to 1/r2, and we can neglect it. Similarly,

∂i e
−iωn̂·x′/c = − iω

c
(∂inj)x

′
j e
−iωn̂·x′/c , (11.7)

and22Explicitly,

∂inj = ∂i

(xj
r

)
=

δij

r
−
xj

r2
∂ir

=
1

r

(
δij −

xixj

r2

)
=

1

r
(δij − ninj) ,

where we used eq. (6.12).

∂inj =
1

r
(δij − ninj) . (11.8)

Therefore, when combined with the overall 1/r factor in front of the
exponential, the term obtained from ∂inj gives again an overall contri-
bution of order 1/r2 as r →∞. The only contribution to the radiation
field therefore comes from the derivative of the factor r in the exponen-
tial. Notice that this factor is a consequence of the retardation effect. If
it were not for this retardation term, there would be no 1/r term in the
electric field, and therefore no radiation at infinity. Using

∂ie
iωr/c = (iω/c)(∂ir) e

iωr/c

= (iω/c)ni e
iωr/c , (11.9)

where we used again eq. (6.12), we see that, to order 1/r,

∇φ(t,x) =
1

4πε0

1

r

∫
d3x′

∫
dω

2π

iω

c
n̂ ρ̃(ω,x′) e−iω[t−(r/c)+n̂·x′/c] .

(11.10)
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The computation of ∂A/∂t is straightforward and, keeping again only
the 1/r terms, we get

E(t,x) =
1

4πε0

1

r

∫
d3x′

∫
dω

2π

iω

c2
e−iω[t−(r/c)+n̂·x′/c]

×
[
j̃(ω,x′)− cn̂ρ̃(ω,x′)

]

=
1

4πε0c2
1

r

∫
dω

2π
e−iω[t−(r/c)]iω

∫
d3x′e−iωn̂·x

′/c
[
j̃(ω,x′)− cn̂ρ̃(ω,x′)

]

=
1

4πε0c2
1

r

∫
dω

2π
e−iω[t−(r/c)]iω

[
j̃(ω, ωn̂/c)− cn̂ρ̃(ω, ωn̂/c)

]
, (11.11)

where, in the last equality, we expressed the result in terms of the full
Fourier transform with respect to both time and space,

ρ(t,x) =

∫
dω

2π

d3k

(2π)3
e−iωt+ik·x ρ̃(ω,k) , (11.12)

j(t,x) =

∫
dω

2π

d3k

(2π)3
e−iωt+ik·x j̃(ω,k) , (11.13)

see eq. (1.105). The inversion of these Fourier transforms gives

ρ̃(ω,k) =

∫
dtd3x eiωt−ik·x ρ(t,x) , (11.14)

j̃(ω,k) =

∫
dtd3x eiωt−ik·x j(t,x) , (11.15)

see eq. (1.106). We now observe that the continuity equation (3.22),
written in Fourier space (for ω and k generic), becomes

ωρ̃(ω,k) = k·̃j(ω,k) . (11.16)

In eq. (11.11), however, k and ω are related by k = ωn̂/c, and in this
case the continuity equation gives

cρ̃(ω, ωn̂/c) = n̂·̃j(ω, ωn̂/c) . (11.17)

Then, we get

E(t,x) =
1

4πε0c2
1

r

∫
dω

2π
e−iω[t−(r/c)]iω

×
{

j̃

(
ω,
ωn̂

c

)
− n̂

[
n̂·̃j
(
ω,
ωn̂

c

)]}
. (11.18)

According to eq. (10.120), the expression in braces is just the component
of the vector j̃(ω, ωn̂/c) transverse to the momentum k = ωn̂/c or,
equivalently, to the unit vector n̂,

j̃⊥

(
ω,
ωn̂

c

)
≡ j̃

(
ω,
ωn̂

c

)
− n̂

[
n̂·̃j
(
ω,
ωn̂

c

)]
. (11.19)

Using eq. (10.122), we can also rewrite it in the equivalent form

j̃⊥

(
ω,
ωn̂

c

)
= −n̂×

[
n̂×j̃

(
ω,
ωn̂

c

)]
. (11.20)



272 Radiation from localized sources

Then, the 1/r part of the electric field generated by a localized source
can be written as

E(t,x) =
1

4πε0c2
1

r

∫
dω

2π
e−iω[t−(r/c)] iω j̃⊥(ω, ωn̂/c) . (11.21)

We finally observe that iωe−iωt = −∂te−iωt. Then, transforming back
to j(t,x),

E(t,x) = − 1

4πε0c2
1

r
∂t

∫
dω

2π
e−iω[t−(r/c)]

×
∫
d3x′dt′ eiωt

′−iωn̂·x′/c j⊥(t′,x′) . (11.22)

We can carry out the integrals over dω and dt′, writing

E(t,x) = − 1

4πε0

1

c2r
∂t

∫
d3x′dt′ j⊥(t′,x′)

∫
dω

2π
e−iω(t−r/c−t′+n̂·x′/c)

= − 1

4πε0

1

c2r
∂t

∫
d3x′dt′ j⊥(t′,x′) δ[t′ − (t− r/c+ n̂·x′/c)] .

(11.23)

We therefore arrive at our final result,

E(t,x) = − 1

4πε0c2
1

r
∂t

∫
d3x′ j⊥(t− r/c+ n̂·x′/c,x′) , (11.24)

or, in terms of µ0,

E(t,x) = −µ0

4π

1

r
∂t

∫
d3x′ j⊥(t− r/c+ n̂·x′/c,x′) . (11.25)

We see that the radiation field is generated by the time-varying compo-
nent of the current transverse to the line of sight. The only approxima-
tion made to arrive at this result is that we have kept just the term that
at large distances decreases as 1/r, while we have made no assumption
on the motion of the charges, that can be fully relativistic. This gener-
alizes the result found in Section 10.5, e.g., eq. (10.131), where we found
that, to lowest order in v/c, and for a single point charge, the radiative
component of the electric field is generated by the component of the
acceleration of the charge transverse to the line of sight. Note also that
t− r/c+ n̂·x′/c is just tret, in the large r limit that we have used.

The magnetic field B = ∇ × A can be computed similarly, from
eq. (11.6). Writing Bi = εijk∂jAk, again the only term proportional to
1/r is obtained when ∂j acts on the factor eiωr/c in eq. (11.6), while the
action on 1/r and on the factor n̂ that appears in e−iωn̂·x

′/c gives terms
of order 1/r2. Using eq. (11.9), we get

B(t,x) =
µ0

4π

1

r

∫
d3x′

∫
dω

2π

iω

c
n̂× j̃(ω,x′) e−iω[t−(r/c)+n̂·x′/c]

=
µ0

4π
n̂×

[
1

r

∫
d3x′

∫
dω

2π

iω

c
j̃(ω,x′) e−iω[t−(r/c)+n̂·x′/c]

]
. (11.26)
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Comparing with the first line in eq. (11.11) (and using n̂× j̃ = n̂× j̃⊥)
we see that, in the far region,

cB = n̂×E . (11.27)

Once again, observe that this is valid for sources with arbitrary velocities,
i.e., is an exact result for the 1/r part of the electric and magnetic fields.

It can also be useful to observe, from eq. (11.21), that the Fourier
transform with respect to time of E(t,x) is given by

Ẽ(ω,x) =
1

4πε0

iω eiωr/c

c2r
j̃⊥(ω, ωn̂/c) , (11.28)

and, correspondingly,

B̃(ω,x) =
µ0

4π

iω eiωr/c

cr
n̂× j̃⊥(ω, ωn̂/c) , (11.29)

where we recall that x = rn̂.

11.1.2 Computation in the Coulomb gauge

It is instructive to repeat the computation in the Coulomb gauge, where
the potentials obey eqs. (3.93) and (3.94). Let us start from φ. For a
time-independent ρ(x), we found the solution in eq. (4.16), using the
Green’s function of the Laplacian. This is immediately generalized to a
source ρ(t,x), since the Laplacian only acts on the spatial coordinates,
so the solution of eq. (3.93) with a time-dependent source ρ(t,x) is

φ(t,x) =
1

4πε0

∫
d3x′

ρ(t,x′)
|x− x′| . (11.30)

In the large r limit,

φ(t,x) =
1

4πε0

Q

r
+O

(
1

r2

)
, (11.31)

where Q is the total charge of the system. Therefore, the leading term in
∇φ goes as 1/r2 and does not contribute to the radiation field.3 Indeed,

3Furthermore, this contribution is time
independent, since, for a system of
charges moving in a bounded region,
without charges flowing through the
boundary coming from (or escaping to)
infinity, the total charge is conserved.
The first time-dependent term in the
expansion of eq. (11.30) for large r
comes from the dipole 4πε0φ(t,x) =
Q/r + d(t)·r̂/r2 + . . .. The first time-
dependent term in φ is therefore pro-
portional to 1/r2, and contributes to a
time-dependent term O(1/r3) in E.

we already remarked above that the 1/r term in the electric field comes
from the retardation effect that is responsible for the term eiωr/c in
eqs. (11.5) and (11.6). In the Coulomb gauge, where φ satisfies a Laplace
equation, φ(t,x) is determined by ρ(t,x′) at the same time t, i.e., is an
instantaneous, rather than a retarded, solution. Correspondingly, there
is no contribution from φ to the radiation at infinity.4

4One might be puzzled by the fact that
φ(t,x) is determined by the instanta-
neous, rather than retarded, value of
the charge density, since this seems to
violate the postulate of Special Relativ-
ity that information cannot be trans-
mitted faster than the speed of light.
However, one should not forget that
the gauge potentials are not directly
observable quantities. The observable
quantities are the electric and mag-
netic fields. Since these are gauge in-
variant we already know, before per-
forming it explicitly, that the compu-
tation of E and B in the Coulomb
gauge will give the same result that
we found in the previous section in the
Lorenz gauge. In particular, the elec-
tric field at large distances will be given
by eq. (11.24), where indeed the electric
field at time t depends on the behavior
of the source at time tret (that, in the
large r limit, we have approximated by
t− r/c+ n̂·x′/c).

Let us turn now to eq. (3.94). Using eq. (11.30) together with the
conservation equation (3.22), we get5

5Explicitly,

(4πε0)
∂

∂t
φ(t,x)

=

∫
d3x′

1

|x− x′|
∂tρ(t,x′)

= −
∫
d3x′

1

|x− x′|
∇x′ ·j(t,x′)

=

∫
d3x′

(
∇x′

1

|x− x′|

)
·j(t,x′)

= −
∫
d3x′

(
∇x

1

|x− x′|

)
·j(t,x′)

= −∇·
∫
d3x′

1

|x− x′|
j(t,x′) ,

where we integrated ∇x′ by parts us-
ing the fact that we are considering a
source localized in space, so j(t,x) has
compact spatial support.

∂

∂t
φ(t,x) = − 1

4πε0
∇·
∫
d3x′

j(t,x′)
|x− x′| . (11.32)

Plugging eq. (11.32) into eq. (3.94) we get

2A = −µ0

{
j(t,x) + ∇

[
∇·
∫
d3x′

1

4π|x− x′| j(t,x
′)

]}
. (11.33)
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We now use the decomposition of a vector field into its longitudinal and
transverse parts. As discussed in detail in Solved Problem 11.1, a general
vector field V(x) can be decomposed as

V(x) = V⊥(x) + V‖(x) , (11.34)

where

V⊥(x) = ∇×
[
∇×

∫
d3x′

V(x′)
4π|x− x′|

]
, (11.35)

V‖(x) = −∇
[
∇·
∫
d3x′

V(x′)
4π|x− x′|

]
. (11.36)

The decomposition is such that ∇·V⊥ = 0 and ∇ × V‖ = 0, and
defines the transverse and longitudinal components of the vector field.
In Fourier space, eqs. (11.35) and (11.36) become

Ṽ⊥(k) = Ṽ(k)− k̂
[
k̂·Ṽ(k)

]
, Ṽ‖(k) = k̂

[
k̂·Ṽ(k)

]
, (11.37)

and these quantities satisfy k·Ṽ⊥(k) = 0, k × Ṽ‖(k) = 0 (see Solved
Problem 11.1 for details). So, eq. (11.33) can be written as

2A = −µ0

[
j(t,x)− j‖(t,x)

]
, (11.38)

and, since j(t,x) = j⊥(t,x) + j‖(t,x),

2A = −µ0j⊥(t,x) . (11.39)

Notice that this equation is consistent with the fact that we have derived
it in the Coulomb gauge ∇·A = 0, precisely because, on the right-hand
side, the source satisfies ∇·j⊥ = 0.6 Therefore, the quantity denoted by

6Observe that the quantity

j̃⊥(ω, ωn̂/c) that appeared in the
Lorenz gauge computation, and that
was defined in eq. (11.19), is the
transverse part of j̃(ω, ωn̂/c) with
respect to the unit vector n̂, i.e., it
satisfies

n̂·̃j⊥(ω, ωn̂/c) = 0 . (11.40)

This is just the Fourier transform, with
respect to both time and space, of the
condition

∇·j⊥(t,x) = 0 , (11.41)

that defines the quantity j⊥(t,x) that
appears in eq. (11.35). In fact, from
eq. (11.40) we get

0 = n̂·̃j⊥(ω, ωn̂/c)

=

∫
d3x′dt′ eiωt

′−iωn̂·x′/c

×n̂·j⊥(t′,x′)

=
ic

ω

∫
d3x′dt′ eiωt

′

×
[
∇x′e

−iωn̂·x′/c
]
·j⊥(t′,x′)

= −
ic

ω

∫
d3x′dt′ eiωt

′−iωn̂·x′/c

×∇x′ ·j⊥(t′,x′) , (11.42)

where in the last line we have integrated
by parts, assuming that j⊥(t′,x′) is lo-
calized. Therefore, n̂·̃j⊥(ω, ωn̂/c) = 0
is equivalent to ∇x·j⊥(t,x) = 0.
There is actually a subtlety for ω = 0,
since, from eq. (11.42), the vanishing of
∇x′ ·j⊥(t′,x′) only implies the vanish-
ing of ωn̂·̃j⊥(ω, ωn̂/c), and this is auto-
matically satisfied if ω = 0, without the
need of imposing n̂·̃j⊥(ω, ωn̂/c)|ω=0 =
0. However, a Fourier mode with k =
ωn̂/c = 0 corresponds to a spatially
constant term, which is eliminated by
the boundary condition that j(t,x) is
localized in space.

j⊥(t,x) in the previous section is precisely the divergence-less part of
the vector field j(t,x), defined as in eq. (11.35).

Equation (11.39) can be solved using the Green’s function method.
As in eq. (11.1), we use the retarded Green’s function (10.24) of the
d’Alembertian, so

A(t,x) =
µ0

4π

∫
d3x′

j⊥(t− |x− x′|/c,x′)
|x− x′| . (11.43)

Performing the Fourier transform of j⊥ with respect to time, we can
rewrite this as

A(t,x) =
µ0

4π

∫
d3x′

∫
dω

2π
e−iω(t−|x−x′|/c) j̃⊥(ω,x′)

|x− x′| . (11.44)

We next take the large r limit, keeping only the terms that will con-
tribute to the 1/r part, so

A(t,x) =
µ0

4π

1

r

∫
d3x′

∫
dω

2π
e−iω(t−r/c+n̂·x′/c) j̃⊥(ω,x′)

=
µ0

4π

1

r

∫
dω

2π
e−iω(t−r/c)

∫
d3x′ e−iωn̂·x

′/c j̃⊥(ω,x′)

=
µ0

4π

1

r

∫
dω

2π
e−iω(t−r/c)j̃⊥(ω, ωn̂/c) . (11.45)
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Finally, we have seen that, in the Coulomb gauge, the term −∇φ does
not contribute to order 1/r, so keeping only the term O(1/r) we get

E(t,x) = −∂A

∂t

=
µ0

4π

1

r

∫
dω

2π
e−iω[t−(r/c)] iω j̃⊥(ω, ωn̂/c) (11.46)

=
1

4πε0c2
1

r

∫
dω

2π
e−iω[t−(r/c)] iω j̃⊥(ω, ωn̂/c) . (11.47)

This agrees with eq. (11.21) [and therefore also with eq. (11.24)], as it
should for a gauge invariant quantity computed in two different gauges.

11.1.3 Radiated power and spectral distribution

As we saw in eq. (3.35), the energy radiated per unit time through an
infinitesimal surface ds is given by ds·S, where S is the Poynting vec-
tor, given by eq. (3.34). We consider a sphere at large distance from
the region where the source is localized, with its origin inside the lo-
calization region, so ds = r2dΩ n̂, where n̂ is the unit normal in the
radial direction, and we take the large r limit. For the electric field we
then use eq. (11.25), which is exact as far as the term 1/r is concerned
while, for the magnetic field, we have seen the 1/r contribution is given
by eq. (11.27). Then, to order 1/r2, the exact result for the Poynting
vector is

S =
1

µ0c
E2n̂

=
µ0

16π2c

1

r2

∣∣∣∣∂t
∫
d3x′ j⊥(tret,x

′)

∣∣∣∣
2

n̂ , (11.48)

or, in terms of ε0,

S =
1

4πε0

1

4πc3r2

∣∣∣∣∂t
∫
d3x′ j⊥(tret,x

′)

∣∣∣∣
2

n̂ . (11.49)

The power dE/dt radiated in the solid angle dΩ is obtained performing
the scalar product with ds = r2dΩ n̂,7 so 7Observe that here we are considering

the power per unit time t, rather than
per unit retarded time tret, i.e., the “re-
ceived” power P , see eq. (10.151) and
the discussion below it. Observe also
that we denote the energy by E, reserv-
ing the symbol E for the modulus of the
electric field.

dE
dtdΩ

=
µ0

16π2c

∣∣∣∣∂t
∫
d3x′ j⊥(tret,x

′)

∣∣∣∣
2

, (11.50)

or, in terms of ε0,

dE
dtdΩ

=
1

4πε0

1

4πc3

∣∣∣∣∂t
∫
d3x′ j⊥(tret,x

′)

∣∣∣∣
2

. (11.51)
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Consider now a source that acts only for a finite amount of time. In this
case, the total radiated energy per unit angle is finite, and is given by

dE
dΩ

=

∫ +∞

−∞
dt

dE
dtdΩ

=
1

4πε0

1

4πc3

∫ +∞

−∞
dt

∣∣∣∣∂t
∫
d3x′ j⊥(tret,x

′)

∣∣∣∣
2

. (11.52)

We now use the fact that, given a square-integrable function f(t), we
have the identity8

8Explicitly,∫ +∞

−∞
dt |f(t)|2

=

∫ +∞

−∞
dt

∫ +∞

−∞

dω

2π
f̃(ω)e−iωt

×
∫ +∞

−∞

dω′

2π
f̃∗(ω′)eiω

′t

=

∫ +∞

−∞

dω

2π

dω′

2π
f̃(ω)f̃∗(ω′)

×
∫ +∞

−∞
dt ei(ω

′−ω)t

=

∫ +∞

−∞

dω

2π

dω′

2π
f̃(ω)f̃∗(ω′)

×2πδ(ω′ − ω)

=

∫ +∞

−∞

dω

2π
|f̃(ω)|2 ,

∫ +∞

−∞
dt |f(t)|2 =

∫ +∞

−∞

dω

2π
|f̃(ω)|2 , (11.53)

which is known as the Plancherel theorem.9 If, furthermore, f(t) is real,

9In the physics literature, it is also of-
ten called the Parseval theorem. More
accurately, the Parseval theorem is a
discrete version of this result, based on
Fourier series rather than on Fourier in-
tegrals.

then f̃(ω) = f̃∗(−ω), so |f̃(ω)|2 = |f̃(−ω)|2, and eq. (11.53) can be
written as ∫ +∞

−∞
dt [f(t)]2 = 2

∫ ∞

0

dω

2π
|f̃(ω)|2 . (11.54)

We can apply this to the real (vector) function

f(t) ≡ ∂t
∫
d3x′ j⊥(tret,x

′) , (11.55)

that appears in eq. (11.51). (Note that this function is real; the modulus
that appears in eq. (11.51) refers, of course, to the modulus in the sense
of vectors, |f |2 = fifi). Its Fourier transform is given by10

10Explicitly,

f̃(ω) =

∫ +∞

−∞
dt eiωt

×∂t
∫
d3x′ j⊥(tret,x

′)

= −
∫ +∞

−∞
dt (∂te

iωt)

×
∫
d3x′ j⊥(tret,x

′)

= −iω
∫ +∞

−∞
dt eiωt

×
∫
d3x′ j⊥(tret,x

′)

= −iω
∫
d3x′

∫ +∞

−∞
dt

×eiω(tret+r/c−n̂·x′/c) j⊥(tret,x
′)

= −iωeiωr/c
∫
d3x′e−iωn̂·x

′/c

×
∫ +∞

−∞
dtret e

iωtret j⊥(tret,x
′)

= −iωeiωr/c j̃⊥(ω, ωn̂/c) ,

where we have used the expression of
tret valid at large r, tret = t − r/c +
n̂·x′/c, to express t in terms of tret,
and then the fact that, at fixed x′,∫+∞
−∞ dt =

∫+∞
−∞ dtret.

f̃(ω) = −iωeiωr/c j̃⊥(ω, ωn̂/c) . (11.56)

Then, from eqs. (11.52), (11.54), and (11.56),

dE
dΩ

=
1

4πε0

1

2πc3

∫ ∞

0

dω

2π
ω2 |̃j⊥(ω, ωn̂/c)|2 . (11.57)

Note that the Fourier modes j̃⊥ are complex, and |̃j⊥|2 is now a notation
for |(̃j⊥)i(̃j⊥)i|, i.e., we take the modulus square of the vector and the
modulus of the complex number. We can rewrite eq. (11.57) in the form

dE
dΩdω

=
1

4πε0

1

4π2c3
ω2 |̃j⊥(ω, ωn̂/c)|2 , (11.58)

or, in terms of µ0,

dE
dΩdω

=
µ0

16π3c
ω2 |̃j⊥(ω, ωn̂/c)|2 . (11.59)

This gives the total energy radiated by the source, per unit solid angle
and unit frequency, i.e., the energy spectrum per unit solid angle. The
total energy spectrum is obtained integrating over the solid angle,

dE
dω

=
µ0

16π3c
ω2

∫
dΩ |̃j⊥(ω, ωn̂/c)|2 . (11.60)
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Observe that the angular dependence, over which we integrate, enters
through the unit vector in the radial direction, n̂. In polar coordinates,
dΩ = d cos θdφ, and

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) . (11.61)

Writing the result in terms of j̃⊥ gives a nicely compact expression.
Furthermore, we see from eq. (11.28) that the direction of Ẽ(ω,x) is the
same as that of j̃⊥, so this expression also allows us to easily read the
polarization of the radiation. Two alternative expressions, however, can
also be useful. First, using eq. (11.20) and observing that, for any vector
v,

|n̂×(n̂×v)| = |n̂×v| , (11.62)

we can rewrite eq. (11.58) as11 11Note that we have defined the spec-
tral density dE/dωdΩ as the quantity
that gives the total radiated energy per
unit solid angle, when integrated over
dω from ω = 0 to ω = ∞ (rather than
from −∞ to +∞), see eq. (11.57). This
is also called a “one-sided spectral den-
sity.” If one rather uses a “two-sided
spectral density,” which is the quan-
tity that gives the the total radiated
energy per unit angle when integrated
over dω from ω = −∞ to ω =∞, then
eq. (11.58) is replaced by

dE
dΩdω

=
1

4πε0

1

8π2c3
ω2 |̃j⊥(ω, ωn̂/c)|2 ,

(11.63)
and eq. (11.65) is replaced by

dE
dΩdω

=
1

4πε0

1

8π2c3
(11.64)

×ω2

∣∣∣∣n̂×j̃

(
ω,
ωn̂

c

)∣∣∣∣2 .

dE
dΩdω

=
1

4πε0

1

4π2c3
ω2

∣∣∣∣n̂×j̃

(
ω,
ωn̂

c

)∣∣∣∣
2

. (11.65)

Alternatively, we can rewrite the result in terms of j̃ and ρ̃, using
eq. (11.19) and observing that the continuity equation in momentum
space, eq. (11.16), gives

n̂·̃j(ω, ωn̂/c) = cρ̃(ω, ωn̂/c) , (11.66)

and therefore

j̃⊥(ω, ωn̂/c) = j̃(ω, ωn̂/c)− n̂cρ̃(ω, ωn̂/c) . (11.67)

[We have indeed simply undone the passages that led from eq. (11.11)
to eq. (11.18)]. Then, suppressing temporarily for notational simplicity
the argument (ω, ωn̂/c),

|̃j⊥|2 = (̃j− n̂cρ̃)·(̃j− n̂cρ̃)∗

= |̃j|2 + c2|ρ̃|2 − 2Re [cρ̃∗n̂·̃j] . (11.68)

From eq. (11.67), together with n̂·̃j⊥ = 0, it follows that

n̂·̃j = cρ̃ , (11.69)

and therefore eq. (11.68) becomes

|̃j⊥|2 = |̃j|2 − c2|ρ̃|2 . (11.70)

Therefore, we can also rewrite eq. (11.59) as

dE
dΩdω

=
µ0

16π3c
ω2
(
|̃j(ω, ωn̂/c)|2 − c2|ρ̃(ω, ωn̂/c)|2

)
, (11.71)

or, in terms of ε0,

dE
dΩdω

=
1

4πε0

1

4π2c3
ω2
(
|̃j(ω, ωn̂/c)|2 − c2|ρ̃(ω, ωn̂/c)|2

)
. (11.72)
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11.2 Low-velocity limit and multipole
expansion of the radiation field

We now go back to the expression for the large-r limit of the gauge
potentials. We work in the Lorenz gauge, so we use eqs. (11.5) and
(11.6), that we rewrite here, inverting the order of the integrals, as,

φ(t,x) =
1

4πε0

1

r

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ ρ̃(ω′,x′) e−iω

′n̂·x′/c, (11.73)

A(t,x) =
1

4πε0c2
1

r

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ j̃(ω′,x′) e−iω

′n̂·x′/c.(11.74)

We have put a prime also over ω, to stress that it is an integration
variable. To obtain these expressions we had assumed that the source,
given in general by a distribution of moving charges, is localized in a
region of space |x′| < d, and we kept only the leading term in the limit
r � d, which is O(1/r). On the other hand, the computation of this 1/r
term was exact. In particular, we made no assumption on the velocity
of the particles that creates this distribution of charge and current. We
now consider the case in which the velocities of the charges are non-
relativistic, v � c.

Consider first the case in which the source performs a simple har-
monic motion, with angular frequency ωs confined to a region of size d;
for instance, a point charge in a circular orbit of radius d and angular
frequency ωs. The typical velocity v of such a charge is of order ωsd and
the condition v/c� 1 becomes

ωsd

c
� 1 . (11.75)

More generally, a source with more complex internal motions will be
characterized by a superposition of Fourier modes, and will generate a
distribution of charge density and current density which is not monochro-
matic, but rather described by ρ̃(ω′,x′) and j̃(ω′,x′). The non-relativistic
limit is applicable when the Fourier modes ρ̃(ω′,x′) and j̃(ω′,x′) are
sizable only for values of ω′ such that ω′d/c � 1, and go quickly to
zero for larger values of ω′. This means that only values of ω′ such that
ω′d/c� 1 contribute significantly to the integrals over dω′ in eqs. (11.73)
and (11.74).12 At the same time, the integration over d3x′ in eqs. (11.73)

12Note that here we are only con-
cerned with the “internal motions” of
the source, i.e., a superposition of pe-
riodic motions, with non-zero frequen-
cies ω′, localized within a bounded re-
gion of space (for which, therefore, the
Fourier transform is well defined). Any
bulk motion of the center-of-mass of the
source can then be included perform-
ing first the computation of the elec-
tromagnetic field in a reference frame
where the center-of-mass is at rest, and
then performing a boost, similarly to
what we did in Section 10.3 for a point
charge.

and (11.74) is restricted to the region |x′| < d, since the source is local-
ized. Therefore, the term ω′n̂·x′/c, that appears in the exponentials in
eqs. (11.73) and (11.74), is always much smaller than one (in absolute
value) whenever the rest of the integrand is sizable, and we can expand
the exponentials in powers of it. As we will see, this gives rise to an
expansion in time-dependent (or “radiative”) multipoles.

Before entering into the technicalities of this expansion, let us better
understand its physical meaning. As we will confirm below with the
explicit computation, the frequency ω of the radiation emitted by a
source whose motion has a typical frequency ωs, will also be of order of
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ωs (with a numerical coefficient of order one that depends on the order
of the multipole expansion, see below; we already saw in Problems 10.1
and 10.2 that, for dipole radiation, ω = ωs) and therefore ω ∼ ωs ∼ v/d.
In terms of the reduced wavelength λ− = c/ω defined in eq. (9.56), this
means

λ− ∼ c

v
d . (11.76)

In a non-relativistic system we have v � c, and therefore the reduced
wavelength of the radiation emitted is much larger than the size of the
system that generates it:

non-relativistic sources =⇒ λ− � d . (11.77)

When the reduced wavelength is much larger than the size of the system,
we expect that we do not need to know the internal motions of the
source in all its details, and only the coarse features of the distribution
of the charge and current densities, as encoded in their lowest multipole
moments, should be relevant. This physical intuition will be confirmed
by the computation that we perform below, where we will verify that
the expansion in powers of ω′n̂·x′/c gives rise to an expansion in time-
dependent multipole moments. We will then compare with the expansion
in static multipole moments that we performed in Chapter 6.

We now perform explicitly the expansion of the scalar and vector
potentials.13 From eq. (11.73), 13Note that, if we are interested only

in the electric and magnetic fields, we
could directly perform the expansion in
powers of ω′n̂·x′/c on the electric field,
starting from eq. (11.22), and recover
the magnetic field in the far region from
eq. (11.27). However, the structure of
the expansion is somewhat clearer, con-
ceptually, starting from the gauge po-
tentials. Furthermore, especially at the
quantum level, one can be interested in
the multipole expansion of the gauge
potentials themselves.

φ(t,x) =
1

4πε0

1

r

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ ρ̃(ω′,x′)

×
[

1− iω′

c
n̂ix
′
i +

1

2

(−iω′
c

)2

n̂in̂jx
′
ix
′
j + . . .

]
. (11.78)

The first term gives simply the total charge q of the source,

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ ρ̃(ω′,x′)

=

∫
d3x′

∫
dω′

2π
e−iω

′(t−r/c)ρ̃(ω′,x′)

=

∫
d3x′ ρ(t− r/c,x′)

= q(t− r/c) . (11.79)

However, we assumed that the motion of the source is localized inside
a finite volume, so no charges are escaping to infinity (or coming from
infinity). Therefore the charge is actually time independent,

q(t− r/c) = q . (11.80)

The second term in the expansion is related to the time derivative of the
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electric dipole of the charge distribution. Indeed,

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ ρ̃(ω′,x′)

(−iω′
c

)
n̂ix
′
i

=
n̂i
c

∂

∂t

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ ρ̃(ω′,x′)x′i

=
n̂i
c

∂

∂t

∫
d3x′ ρ(t− r/c,x′)x′i

=
n̂i
c

∂

∂t
di(t− r/c) , (11.81)

where the time-dependent electric dipole moment of a charge distribu-
tion is defined by

d(t) =

∫
d3x′ ρ(t,x′)x′ , (11.82)

which generalizes the definition (6.8) that we introduced for the static
case.14 The third term of the expansion can be transformed as follows:14One should not confuse the compo-

nents of the dipole moment, that we de-
note by di, with the size of the system,
that we denote by d.

∫
dω′

2π
e−iω

′(t−r/c)
∫
d3x′ ρ̃(ω′,x′)

(−iω′
c

)2

n̂in̂jx
′
ix
′
j

=
n̂in̂j
c2

∂2

∂t2

∫
d3x′ ρ(t− r/c,x′)x′ix′j . (11.83)

The result therefore depends on the second moment of the charge dis-
tribution,

Dij(t) ≡
∫
d3x′ ρ(t,x′)x′ix

′
j . (11.84)

Actually, just as in the static case, it is also convenient to introduce the
quadrupole moment of the charge distribution, which is defined by

Qij(t) =

∫
d3x′ ρ(t,x′)

(
3x′ix

′
j − δij |x′|2

)
. (11.85)

Equation (11.85) is the generalization of eq. (6.18) to a time-dependent
charge density. Comparing eqs. (11.84) and (11.85),

Dij(t) =
1

3
Qij(t) +

1

3
δij

∫
d3x′ |x′|2 ρ(t,x′) . (11.86)

For the moment, we will however write the result in terms of Dij , which
gives a more compact expression. Putting together the various terms,
we get

φ(t,x) =
1

4πε0

1

r

[
q +

1

c
n̂iḋi(t− r/c) +

1

2

n̂in̂j
c2

D̈ij(t− r/c) + . . .

]
.

(11.87)

.
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The analogous expansion for A is obtained from eq. (11.74).

Ai(t,x) =
1

4πε0c2
1

r

[∫
d3x′ji(t− r/c,x′)

+
n̂j
c

∂

∂t

∫
d3x′ji(t− r/c,x′)x′j + . . .

]
.

(11.88)
The electric field in the radiation zone is obtained inserting these ex-
pressions for the gauge potentials in eq. (3.83), and the magnetic field
in the radiation zone is then obtained from eq. (11.27). We are only
interested in the terms O(1/r) in E, and in the corresponding terms in
B, since these are the only ones that give a contribution O(1/r2) to the
Poynting vector and therefore to the radiation flux at infinity. Let us
begin by considering the contribution of ∇φ to E. When the gradient
acts on the overall 1/r factor in eq. (11.87) it produces a term O(1/r2),
which does not contribute to the radiation field. Then, in particular, the
Coulomb term proportional to q/r in eq. (11.87) does not contribute to
the radiation field, and

∇φ =
1

4πε0

1

r
∇
[

1

c
n̂iḋi(t− r/c) +

1

2

n̂in̂j
c2

D̈ij(t− r/c) + . . .

]
+O

(
1

r2

)
.

(11.89)
Similarly, from eq. (11.8) we see that when the gradient acts on the
factors n̂i, n̂in̂j , and so on, that appear inside the brackets, it generates
an extra 1/r term, so that, overall, the corresponding contribution to E
is again O(1/r2). Therefore, we only need to apply the gradient to the
multipole moments,

∇φ =
1

4πε0

1

r

[
1

c
n̂i∇ḋi(t− r/c) +

1

2

n̂in̂j
c2

∇D̈ij(t− r/c) + . . .

]

+O
(

1

r2

)
. (11.90)

The multipole moments depend on the spatial variables only through r
and, for a generic function f(t− r/c), we have

∇f(t− r/c) = n̂ ∂rf(t− r/c)
= − n̂

c
∂tf(t− r/c) , (11.91)

so in this case the gradient does not produces extra factors of 1/r. Then

−∇φ =
n̂

4πε0

1

r

[
1

c2
n̂id̈i(t− r/c) +

1

2

n̂in̂j
c3

...
D ij(t− r/c) + . . .

]

+O
(

1

r2

)
. (11.92)

There is, therefore, an infinite series of terms contributing to the electric
field at order 1/r, generated by the higher and higher multipoles. These
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contributions correspond to an expansion in powers of v/c. In fact, for
a source with a generic structure, for dimensional reasons each higher-
order multipole carries one more power of the only length-scale in the
problem, which is the typical size d of the system. For instance, the
monopole is just the total electric charge q; apart from dimensionless
numbers, the electric dipole di is of order qd, the quadrupole Qij is of
order qd2, etc. Furthermore, each time derivative produces one power
of the typical frequency of the system, so, for instance, ḋi(t − r/c) ∼
ωsqd ∼ qv, where v ∼ ωsd is the typical velocity of the internal motions
of the source. Similarly, d̈i(t− r/c) ∼ ω2

sqd ∼ qv2/d, and
...
D ij(t− r/c) ∼

ω3
sqd

2 ∼ qv3/d. Then, we see that, in eq. (11.92),

1

c2
n̂id̈i(t− r/c) ∼

q

d

v2

c2
, (11.93)

1

c3
n̂in̂j

...
D ij(t− r/c) ∼

q

d

v3

c3
, (11.94)

and so on: each further term in the bracket has one more time derivative,
giving an extra ωs factor; an extra factor d coming simply because each
subsequent multipole moment has an extra power of xi in its definition;
and an extra factor 1/c from the expansion of e−iω

′n̂·x′/c leading, overall,
to an extra factor of order ωsd/c ∼ v/c with respect to the previous term.

Similar estimates can be applied to the contribution of A to the elec-
tric field. From eq. (11.88),

−∂A

∂t
= − 1

4πε0

1

r

[
1

c2
∂t

∫
d3x′ j(t− r/c,x′)

+
n̂j
c3
∂2
t

∫
d3x′j(t− r/c,x′)x′j + . . .

]
. (11.95)

We now observe that j is of order qv, so, in order of magnitude,

1

c2
∂tj(t− r/c,x′) ∼

ωsqv

c2
∼ q

d

v2

c2
, (11.96)

and
n̂j
c3
∂2
t j(t− r/c,x′)x′j ∼

ω2
sqvd

c3
∼ q

d

v3

c3
, (11.97)

and so on for the higher-order terms. In summary:

• The structure of the multipole expansion of the radiation field is
quite different from the multipole expansion of the static fields
studied in Chapter 6. In the static case, we were interested in
the fields at distances r large compared to the size d of the sys-
tem, and we wanted to compute the corrections, subleading in d/r,
with respect to the leading Coulomb term. These corrections are
parametrized by the multipoles of the source, which in this case
are time-independent and are therefore often called the static mul-
tipoles. For instance, the electric dipole produces a contribution
to the scalar potential φ of order 1/r2, see eq. (6.9), compared to
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the 1/r behavior of the Coulomb potential. In terms of the electric
field, the leading term is the Coulomb term proportional to 1/r2

and the expansion in static multipoles has the general structure

E ∼ q

r2

[
1 +O

(
d

r

)
+O

(
d2

r2

)
+ . . .

]
. (11.98)

In contrast, in the multipole expansion of the radiation field, the
gauge potentials and the electric and magnetic field receive an
infinite series of contributions from all multipoles, already at order
1/r, associated with terms of higher and higher order in v/c. As
we have seen in eqs. (11.93) and (11.96), this expansion starts from
order v2/c2, and vanishes in the static limit v = 0. Schematically,
for the electric field

E ∼ 1

r

q

d

[
O
(
v2

c2

)
+O

(
v3

c3

)
+ . . .

]
. (11.99)

For static fields v/c → 0, and therefore the 1/r term vanishes,
leaving us with the expansion (11.98) that starts from order 1/r2.

• The multipoles that appear in the expansion of the radiation field
are functions of retarded time t − r/c, and are sometimes called
“radiative multipoles,” to distinguish them from the static multi-
poles that enter in the expansion of the static fields. It is precisely
the dependence on retarded time (and therefore, eventually, the
fact that light travels at a finite speed) that is responsible for the
appearance of the 1/r terms in the radiation field. Electromagnetic
radiation is a property of a relativistic theory.

• The would-be leading term in the expansion of the scalar poten-
tial (11.87) is the Coulomb term [1/(4πε0)] (q/r). However, this
term does not depend on time, and gives no contribution to the
1/r part of the electric field at infinity. The leading term to the
radiation field at infinity coming from the scalar potential is there-
fore the dipole term, while the leading contribution from the vec-
tor potential is given by the term proportional to the current in
eq. (11.88). Comparing their contributions to the electric field,
we see that these two terms are of the same order in v/c, compare
eqs. (11.93) and (11.96). Indeed, we will see in the next section that
both terms can be expressed in terms of the electric dipole. The
next-to-leading terms are given by the electric quadrupole term in
eq. (11.87) and the term involving ji(t− r/c,x′)x′j in eq. (11.88),
which are both suppressed by an extra power of v/c, compared to
the leading terms.

Having understood the general structure of the multipole expansion
of the radiation field, in the next subsections we will study in detail the
leading and next-to-leading terms.
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11.2.1 Electric dipole radiation

As we have seen, since the term proportional to q/r in eq. (11.87) does
not depend on retarded time, when taking its gradient to compute E we
get only a contribution of order 1/r2, which therefore does not contribute
to the radiation field. The terms giving the leading contributions to the
radiation field are obtained setting

φ(t,x) =
1

4πε0

1

cr
n̂iḋi(t− r/c) , (11.100)

and, from eq. (11.88),

Ai(t,x) =
1

4πε0

1

c2r

∫
d3x′ji(t− r/c,x′) . (11.101)

This expression for Ai can be rewritten in terms of ḋi by making use
of the obvious identity ∂kxi = δki and using the conservation equation
(3.22),

∫
d3x ji(t,x) =

∫
d3x jk(t,x)∂kxi

= −
∫
d3xxi∂kjk(t,x)

= +∂t

∫
d3x ρ(t,x)xi

= ḋi(t) . (11.102)

In the second line we integrated by parts, discarding the boundary term
because the source is localized. Note that these are the same manipula-
tions that we used in eq. (6.31), except that there we were considering
the static case, so the time derivative vanished. Therefore, to leading
order in v/c,

Ai(t,x) =
1

4πε0

1

c2r
ḋi(t− r/c) . (11.103)

We see that both φ and A, to this order in v/c, are determined by the
time derivative of the electric dipole. The corresponding radiation is
therefore called dipole radiation.

The corresponding contributions to the electric field, keeping only the
terms O(1/r), are given by

−∇φ =
n̂

4πε0

1

c2r
n̂id̈i(t− r/c) , (11.104)

as we have already computed in eq. (11.92), and

−∂A

∂t
= − 1

4πε0

1

c2r
d̈(t− r/c) . (11.105)

Therefore, for dipole radiation

E(t,x) = −∂A

∂t
−∇φ

= − 1

4πε0

1

c2r

{
d̈(tret)− n̂ [n̂·d̈(tret)]

}
. (11.106)
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We have therefore recovered eq. (10.136), as the lowest-order term in an
expansion in v/c. We can then rewrite this result in the equivalent forms
(10.132) or (10.135). Observe also that the retarded time that appears
in these formulas is tret = t − r/c, where r is the distance to the fixed
origin of the coordinate system, which has been set inside the region
where the source is localized. The variation of the delay across different
points of the sources, which is expressed by the factors e−iω

′n̂·x′/c in
eqs. (11.73) and (11.74), has been already taken into account, to this
order in v/c, by the expansion of the exponential.

The radiative part of the magnetic field is given by cB = n̂×E, since,
for the 1/r part of the electromagnetic field, eq. (11.27) is an exact re-
lation valid to all orders in v/c. The situation is therefore completely
analogous to that discussed in Section 10.5, with the only distinction
that, in Section 10.5, which was only concerned with the lowest-order
term for large distances and small velocities, one could have used differ-
ent equivalent forms for the distance to the source and for retarded time,
compare for instance eqs. (10.127), (10.130), and (10.131). In contrast,
in the context of the systematic multipole expansion discussed here, the
only natural choice is to use r for the distance to the source and, corre-
spondingly, t − (r/c) for retarded time. In particular, for the Poynting
vector we write

S =
1

µ0c
E2n̂

=
1

4πε0

1

4πc3r2

∣∣∣d̈⊥(t− r/c)
∣∣∣
2

n̂ . (11.107)

Then, the power per solid angle dP/dΩ radiated in the dipole approxi-
mation is written as

dP

dΩ
=

1

4πε0

1

4πc3

∣∣∣d̈⊥(t− r/c)
∣∣∣
2

, (11.108)

and the total radiated power is

P (t) =
1

4πε0

2

3c3
|d̈(t− r/c)|2 , (11.109)

compare with eqs. (10.144) and (10.148). We have therefore rederived
the Larmor formula (10.148), as the lowest-order term in a systematic
expansion in v/c of the 1/r contribution to the electric and magnetic
fields.

11.2.2 Radiation from charge quadrupole and
magnetic dipole

We now look at the next-to-leading term. For φ, this is given by the sec-
ond moment of the charge distribution, denoted by Dij , see eq. (11.87),
while for Ai it is given by the term proportional to ji(t − r/c,x′)x′j in
eq. (11.88). We can rewrite the latter in a physically more transparent
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form with a straightforward generalization to the time-dependent case
of the manipulations performed in eqs. (6.33) and (6.34),

∫
d3x ji(t,x)xj =

∫
d3xxjjk(t,x)∂kxi

= −
∫
d3xxi∂k[xjjk(t,x)] (11.110)

= −
∫
d3xxijj(t,x) + ∂t

∫
d3x ρ(t,x)xixj ,

where, again, we have used ∇·j = −∂tρ. Therefore
∫
d3x [ji(t,x)xj + jj(t,x)xi] = Ḋij(t) . (11.111)

We then split ji(t,x)xj into its symmetric and antisymmetric parts,
∫
d3x ji(t,x)xj =

1

2

∫
d3x [ji(t,x)xj + jj(t,x)xi]

+
1

2

∫
d3x [ji(t,x)xj − jj(t,x)xi] , (11.112)

and we define the antisymmetric tensor

mij(t) =
1

2

∫
d3x [xijj(t,x)− xjji(t,x)] . (11.113)

The magnetic dipole mi(t) is then defined as

mi =
1

2
εijkmjk(t) , (11.114)

and therefore

m(t) =
1

2

∫
d3x x×j(t,x) . (11.115)

Equation (11.114) can be inverted, as usual, as mij = εijkmk. Therefore
∫
d3x ji(t,x)xj =

1

2
Ḋij(t)− εijkmk(t) . (11.116)

Equations (11.115) and (11.116) generalize eqs. (6.36) and (6.37) to the
time-dependent case.

Therefore, including only the leading and next-to-leading order in v/c,
φ is given by eq. (11.87), while, A is obtained from eq. (11.88),

Ai(t,x) =
1

4πε0c2
1

r
(11.117)

×
[
ḋi(t− r/c) +

1

2c
D̈ij(t− r/c)n̂j +

1

c
εijkṁj(t− r/c)n̂k

]
,

where we used eq. (11.102) for the leading term. We now write

Dij(t) =
1

3
Qij(t) + δijf(t) , (11.118)
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where f(t) can be read from eq. (11.86). Then, up to next-to-leading
order,

(4πε0)φ(t,x) =
q

r
+

1

rc
n̂iḋi(t− r/c) +

n̂in̂j
6rc2

Q̈ij(t− r/c)

+
f̈(t− r/c)

2rc2
, (11.119)

(4πε0c
2)Ai(t,x) =

1

r
ḋi(t− r/c) +

1

6rc
Q̈ij(t− r/c)n̂j

+
1

rc
εijkṁj(t− r/c)n̂k +

f̈(t− r/c)
2rc

n̂i .

(11.120)

We next observe that

∂iḟ(t− r/c) = [∂tḟ(t− r/c)]∂i(t− r/c)
= − n̂i

c
f̈(t− r/c) , (11.121)

so,

∂i
ḟ(t− r/c)

2r
= − n̂i

2rc
f̈(t− r/c) +O

(
1

r2

)
. (11.122)

Therefore, to the order 1/r at which we are working, we can rewrite

φ(t,x) =
1

4πε0

[
q

r
+

1

rc
n̂iḋi(t− r/c) +

n̂in̂j
6rc2

Q̈ij(t− r/c)
]

+
∂

∂t

[
ḟ(t− r/c)
(4πε0)2rc2

]
(11.123)

Ai(t,x) =
1

4πε0c2

[
1

r
ḋi(t− r/c) +

1

6rc
Q̈ij(t− r/c)n̂j

+
1

cr
εijkṁj(t− r/c)n̂k

]

−∂i
[
ḟ(t− r/c)
(4πε0)2rc2

]
. (11.124)

Comparing with eq. (3.86), we see that the extra terms proportional to
ḟ corresponds to a gauge transformation with

θ(t, r) =
ḟ(t− r/c)
(4πε0)2rc2

. (11.125)

Since gauge-equivalent potentials give the same electric and magnetic
fields, we can simply drop these extra terms, and write

φ(t,x) =
1

4πε0

1

r

[
q +

1

c
n̂iḋi(t− r/c) +

n̂in̂j
6c2

Q̈ij(t− r/c)
]
, (11.126)

Ai(t,x) =
1

4πε0c2
1

r

[
ḋi(t− r/c) +

1

6c
Q̈ij(t− r/c)n̂j

+
1

c
εijkṁj(t− r/c)n̂k

]
. (11.127)
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Note also that, again to leading order in 1/r,

2θ =
2f(t− r/c)

2rc
+O

(
1

r2

)

= O
(

1

r2

)
, (11.128)

since 2f(t−r/c) = 0. Therefore, under this gauge transformation, as far
as the 1/r terms are concerned, the gauge potentials Aµ remain in the
Lorenz gauge (that we have used in the computations of this section),
see the discussion below eq. (9.18).

As we have already discussed, the term q/r in φ does not contribute
to the radiation field, so the leading term is given by the contribution of
a time-varying dipole, both in φ and A. We see that, at next-to-leading
order, the radiation is generated by the time variation of the quadrupole
moment of the charge distribution, and of the magnetic dipole moment.

The expansion could in principle be carried out to generic order. We
already understand, from the computation at this order, that there will
be two families of multipole moments that contribute: the multipole
moments of the charge distribution, such as the charge dipole, charge
quadrupole, and so on; and the multipole moments of the current dis-
tribution, of which the magnetic moment is the lowest-order term.

From the gauge potentials we can now compute the electric field up
to next-to-leading order. Introducing the vector

Qi ≡ Qij n̂j , (11.129)

the result is

E(t,x) =
1

4πε0c2
1

r

[
n̂× (n̂× d̈) +

1

6c
n̂× (n̂×

...
Q) +

1

c
n̂× m̈

]

t−r/c
,

(11.130)
where the subscript indicates that all quantities on the right-hand side
must be evaluated at t − r/c. To lowest order, we recover the dipole
electric field, in the form given in eq. (10.135). The magnetic field in
the radiation zone is then obtained, as usual, from cB = n̂ × E. The
power radiated, integrated over the solid angle, can be obtained with a
computation analogous to that in eq. (10.147). It can be more convenient
to use eq. (1.9) to rewrite E as

E(t,x) = − 1

4πε0c2
1

r

{
[d̈− n̂(d̈·n̂)] +

1

6c
[
...
Q − n̂(

...
Q·n̂)] +

1

c
m̈× n̂

}

t−r/c
.

(11.131)
We can then compute |E|2 and integrate it over the solid angle. Re-
calling that Qi = Qij n̂j contains a factor of n̂, we see that, when we
integrate over dΩ (and make use of n̂·n̂ = 1), most of the integrals
can be performed with the identity (6.49), except for the square of the
quadrupole, that has up to four n̂ factors. These can be performed with
the identity

∫
dΩ

4π
n̂in̂j n̂kn̂l =

1

15
(δijδkl + δikδjl + δilδjk) . (11.132)
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Similarly to eq. (6.49), this identity can be obtained most efficiently by
first fixing the tensor structure from symmetry arguments: the right-
hand side must be a tensor, symmetric in all its pairs of indices, con-
structed with combinations of two occurrences of δij . The overall co-
efficient is then obtained by contracting among them the indices (i, j)
and (k, l). Note that the integral over dΩ of an odd number of n̂ fac-
tors, such as

∫
dΩni or

∫
dΩninjnk vanishes because the integrand is

odd under n̂ → −n̂ (and the integration over the sphere, for each n̂,
contains also −n̂). In this way we see immediately that the mixed term
between the electric dipole and the magnetic dipole, and between the
electric dipole and the quadrupole vanish. The mixed term between the
quadrupole and the magnetic dipole, after integration over the angles,
becomes proportional to εijkQijmk, which vanishes because Qij is sym-
metric. Therefore, the radiated power separates into an electric dipole
term, an electric quadrupole term, and a magnetic dipole term, without
mixed terms. The remaining computation is straightforward, and gives

P (t) =
1

4πε0

[
2

3c3
|d̈|2 +

1

180c5
...
Q ij

...
Q ij +

2

3c5
|m̈|2

]

t−r/c
. (11.133)

The first term was already obtained in eq. (11.109). As we already saw in
the estimates above eqs. (11.93) and (11.94),

...
Q ij is smaller than d̈i by a

factor O(v). Also, the magnetic dipole is smaller than the electric dipole
by a factor O(v), as we can see comparing their respective definitions,
eqs. (11.82) and (11.115) and recalling eq. (3.26) (which is valid for a
point charge but extends to a charge distribution, with v the typical
velocities of internal motions).15 Then, we see that both the electric 15We will see this in more details in

eqs. (12.92) and (12.93).quadrupole and the magnetic dipole contributions to the radiated power
are smaller by a factor O(v2/c2), with respect to the power radiated by
the electric dipole. This is, of course, as expected, since we have seen
that the expansion in radiative multipoles is an expansion in powers
of v/c, and the terms in eq. (11.133) are quadratic in the multipole
moments.

For a point charge evolving on a prescribed trajectory x0(t), inserting
eq. (8.1) into eq. (11.85), we get

Qij(t) = q
[
3x0i(t)x0j(t)− |x0(t)|2δij

]
. (11.134)

Consider, for example, a charge performing a simple harmonic motion
along the z axis, with amplitude A,

x(t) = ẑA cos(ωst) . (11.135)

Then, the only non-vanishing components of Qij are

Q11 = −qA2 cos2 ωst , (11.136)

Q22 = −qA2 cos2 ωst , (11.137)

Q33 = 2qA2 cos2 ωst . (11.138)

Since cos2 ωst = [1 + cos(2ωst)]/2, the time-dependent part, that con-
tributes to the derivatives

...
Q in eq. (11.131) oscillates as cos(2ωst), and

therefore the quadrupole radiation is at a frequency ω = 2ωs.
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11.3 Near zone, far zone and induction
zone

In the previous section we have studied the large r limit, assuming that r
is sufficiently large, so that only the terms order of 1/r must be retained,
and the 1/r2 terms can be neglected. In this region, we have found that
the radiation field is given by plane waves, with the electric and magnetic
field transverse to the propagation direction, sourced by the time-varying
multipole moment.

Now we ask how large must r be so that this expansion is valid.
Consider for instance the scalar potential φ. From the form (11.126),
that was already obtained keeping only the term O(1/r), we see that
the various terms in the expansion have the form F (t− r/c)/r, such as
ḋi(t − r/c)/r, Q̈ij(t − r/c)/r, and so on, multiplied by factors n̂i. The
electric field is obtained from ∇φ. In particular, this produces terms of
the form

∂

∂r

F (t− r/c)
r

= −F (t− r/c)
r2

+
1

r

∂

∂r
F (t− r/c) . (11.139)

Writing u = t− r/c,
∂

∂r
F (t− r/c) =

dF (u)

du

∂u

∂r

= −1

c

dF (u)

du
, (11.140)

while

∂

∂t
F (t− r/c) =

dF (u)

du

∂u

∂t

=
dF (u)

du
, (11.141)

and therefore,
∂

∂r
F (t− r/c) = −1

c

∂

∂t
F (t− r/c) . (11.142)

If the typical frequency of the system is ωs, ∂tF is of order ωsF . There-
fore, in order of magnitude,

1

r

∂

∂r
F (t− r/c) ∼ ωs

cr
F (t− r/c) . (11.143)

Therefore, the term F (t− r/c)/r2 in the right-hand side of eq. (11.139)
can be neglected with respect to the second term if

1

r2
� ωs

cr
, (11.144)

and therefore r � c/ωs. Since the frequency ω of the radiation emitted
is also of order ωs, we can write this as

r � c

ω
= λ− . (11.145)
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This defines the far zone, or radiation zone. Under this condition, all
other contributions of order 1/r2 to the electric field can be neglected.
In particular, we can neglect also the terms O(1/r2) in eq. (11.2) coming
from the expansion of 1/|x− x′| to higher order,

1

|x− x′| =
1

r
+O

( |x′|
r2

)
. (11.146)

Upon integration over the source, the last term becomes O(d/r2), where
d (not to be confused with the dipole moment) is the size of the source.
This term is negligible, with respect to the 1/r terms that we have keep,
as long as d/r � 1. As we saw in eq. (11.76), the reduced wavelength
λ− is of order (c/v) d, so, λ− ≥ d (and, for non-relativistic source, λ− �
d). Therefore, in the far zone r � λ−, the condition r � d is also
automatically satisfied, so also the 1/r2 from eq. (11.146) are negligible.

From these estimates we see that the region outside a source of size
d and typical frequency ωs, which emits radiation with a reduced wave-
length λ− = c/ω ∼ c/ωs, can be separated into a far region,

r � λ− , (far region) , (11.147)

and a near region,

r � λ− , (near region) . (11.148)

For non-relativistic sources we have d � λ−, and one can further intro-
duce the near outer region, defined by

d ≤ r � λ− , (near outer region) , (11.149)

i.e., that part of the near region which is outside the source. The inter-
mediate region r ∼ λ− is called the induction region. In the far region, as
we have seen, the multipole expansion has the form (11.126), (11.127),
and consists of terms of the form 1/r times functions of retarded time
t − r/c. In contrast, in the near region the situation is reversed, and
retardation effects are negligible. This means that, to lowest order, we
can approximate eq. (11.1) as

Aµ(t,x) ' µ0

4π

∫
d3x′

jµ(t,x′)
|x− x′| , (11.150)

where we have replaced t−|x−x′|/c with t in the first argument of jµ.16 16In Chapter 12 we will see how to im-
prove systematically over this approxi-
mation.

In the near outer region, where retardation effects are negligible and
furthermore r � d, we can then expand 1/|x−x′| as in eq. (6.4), or, more
generally, as in eq. (6.26). For a generic time-dependent source, we then
recover the multipole expansion for static fields, described in Chapter 6,
except that the source term jµ(x′) is replaced by jµ(t,x′), with the
gauge potentials and electromagnetic fields following the instantaneous
time behavior of the sources. For instance,

φ(t,x) =
1

4πε0

∫
d3x′

ρ(t− |x− x′|/c,x′)
|x− x′|

' 1

4πε0

∫
d3x′

ρ(t,x′)
|x− x′| . (11.151)
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Performing the same steps as in the multipole expansion of static fields,
in the near outer region we then get

φ(t,x) =
1

4πε0

[
q

r
+
nidi(t)

r2
+
ninjQij(t)

2r3
+ . . .

]
, (11.152)

which is the same as eq. (6.20), except that di and Qij are replaced by
di(t) and Qij(t), and similarly for the higher-order multipoles. In the
same way, for the vector potential in the near region we get

A(t,x) =
µ0

4π

∫
d3x′

j(t− |x− x′|/c,x′)
|x− x′|

' µ0

4π

∫
d3x′

j(t,x′)
|x− x′| , (11.153)

whose expansion, in the near outer region, gives the magnetic dipole
term plus terms that depend on higher-order magnetic multipoles,

A(t,x) =
µ0

4π

m(t)×x

r3
+ . . . , (11.154)

which is the same as eq. (6.38) with m replaced by m(t).
Equations (11.152) and (11.154) are the generalization of eqs. (6.20)

and (6.38), respectively, from static sources to time-dependent sources in
their near outer region. In the induction region, the spatial and time de-
pendence of the fields gradually evolve from that of the near outer region
to that of the far region, and no comparatively simple approximation to
eq. (11.1) is possible.

11.4 Solved problems

Problem 11.1. Decomposition of a vector field into transverse and
longitudinal parts

In this Solved Problem we discuss the decomposition of a vector field into its
transverse and longitudinal parts, also known as the Helmholtz decomposition
(or Helmholtz theorem). We used this decomposition in Section 11.1.2 in the
computation of the radiation field performed in the Coulomb gauge, but this
is, more generally, a useful mathematical tool.

In eq. (10.118) we saw how to decompose a vector into its longitudinal and
transverse parts. This decomposition can be generalized to a vector field V(x),
writing

V(x) = V‖(x) + V⊥(x) , (11.155)

where

V‖(x) = −∇
[
∇·
∫
d3x′

V(x′)

4π|x− x′|

]
, (11.156)

V⊥(x) = ∇×
[
∇×

∫
d3x′

V(x′)

4π|x− x′|

]
, (11.157)
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as long as the integral over d3x′, in eqs. (11.156) and (11.157) converges (writ-
ing d3x′ = r′2dr′dΩ we see that this is ensured if V(x) vanishes faster than
1/|x|2 as |x| → ∞). Indeed, using eq. (1.7), we see that, in components

V⊥,i(x) = ∂i∂j

∫
d3x′

Vj(x
′)

4π|x− x′| −∇2

∫
d3x′

Vi(x
′)

4π|x− x′| . (11.158)

Then, using eq. (1.91),

V⊥,i(x) = Vi(x) + ∂i∂j

∫
d3x′

Vj(x
′)

4π|x− x′| . (11.159)

On the other hand, in components eq. (11.156) reads

V‖,i(x) = −∂i∂j
∫
d3x′

Vj(x
′)

4π|x− x′| , (11.160)

so, eq. (11.155) indeed holds. The usefulness of this decomposition comes from
the fact that, since V⊥ is the curl of a vector field and V‖ is the gradient of
a scalar field, they satisfy

∇×V‖ = 0 , (11.161)

∇·V⊥ = 0 . (11.162)

Eqs. (11.155)–(11.157) therefore provide the decomposition of the vector field
V(x) into its curl-free and divergence-less parts. This decomposition is used
in many contexts in physics, so it can be useful to elaborate on it a bit further.
First of all, note that V‖(x) and V⊥(x) are non-local functionals of V(x), in
the sense that their value in x depends on the values of V(x′) for all x′, and
not only on the value of V(x′) and of a finite number of its derivatives at
x′ = x. They are indeed given by a convolution with the Green’s function
(4.15) of the Laplacian. These relations become, however, local in Fourier
space. In fact, using eq. (1.91), we see that eq. (11.160) implies

∇2V‖,i(x) = ∂i∂jVj . (11.163)

Writing

V(x) =

∫
d3k

(2π)3
Ṽ(k)eik·x , (11.164)

and similarly for V‖(x) and V⊥(x), eq. (11.163) becomes

−k2Ṽ‖,i(k) = −kikj Ṽj(k) , (11.165)

where k2 ≡ |k|2. Therefore (for k 6= 0),

Ṽ‖,i(k) =
kikj
k2

Ṽj(k) . (11.166)

Writing Ṽ⊥,i(k) = Ṽi(k)− Ṽ‖,i(k), it also follows that

Ṽ⊥,i(k) =

(
δij − kikj

k2

)
Ṽj(k) . (11.167)

In terms of the unit vector k̂ = k/k, eqs. (11.166) and (11.167) read

Ṽ‖(k) = k̂
[
k̂·Ṽ(k)

]
, (11.168)
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and
Ṽ⊥(k) = Ṽ(k)− k̂

[
k̂·Ṽ(k)

]
. (11.169)

Comparing with eqs. (10.119) and (10.120) we see that Ṽ‖(k) is the compo-
nent of Ṽ(k) parallel to k, while Ṽ⊥(k) is the component of Ṽ(k) transverse
to k. Then, Ṽ⊥(k) is called the transverse part of Ṽ(k) (since it is transverse
to k) and Ṽ‖(k) is also called the longitudinal part of Ṽ(k). Note that Ṽ‖(k)
and Ṽ⊥(k) are determined by Ṽ(k) with the same value of k, i.e., in wavenum-
ber space these relations are local. In wavenumber space, eqs. (11.162) and
(11.161) become

k× Ṽ‖(k) = 0 , k·Ṽ⊥(k) = 0 , (11.170)

and the validity of these relations can be immediately checked from the explicit
form (11.168,11.169). Another useful form of the decomposition is obtained
observing that17

17Equation (11.172) can be shown as
follows:[
∇x ×

∫
d3x′

V(x′)
4π|x− x′|

]
i

= εijk∂j

∫
d3x′

Vk(x′)
4π|x− x′|

= εijk

∫
d3x′ Vk(x′)

∂

∂xj
1

4π|x− x′|

= −εijk
∫
d3x′ Vk(x′)

∂

∂x′j
1

4π|x− x′|

= εijk

∫
d3x′

∂Vk(x′)
∂x′j

1

4π|x− x′|
,

where, in the last line, we integrated by
part and we observed that, by assump-
tion, V(x) vanishes faster than 1/|x|2
as |x| → ∞ (so that the integral in
eqs. (11.157) and (11.156) converges),
and therefore the boundary term van-
ishes. Similar manipulations can be
used to prove eq. (11.171).

∇·
∫
d3x′

V(x′)

4π|x− x′| =

∫
d3x′

∇x′ ·V(x′)

4π|x− x′| , (11.171)

∇x ×
∫
d3x′

V(x′)

4π|x− x′| =

∫
d3x′

∇x′ ×V(x′)

4π|x− x′| . (11.172)

Therefore, introducing the notation

f(x) = ∇·V(x) , w(x) = ∇×V(x) , (11.173)

the decomposition (11.155)–(11.156) can be rewritten as1818Observe that we could have derived
directly the decomposition (11.174)
without passing through eqs. (11.156)
and (11.157). The procedure is almost
equivalent, except that the bound-
ary conditions to be imposed are
slightly different: the integrals in
eq. (11.174) converge if both (∇·V)(x)
and (∇×V)(x) go to zero faster than
1/|x|2 as |x| → ∞. Furthermore,
the uniqueness theorem discussed in
Solved Problem (4.1.5), eqs. (4.45)–
(4.47), ensure that this decomposition
is unique as long as V(x) goes to zero
as |x| → ∞. Therefore, eq. (11.174)
is valid if V(x) goes to zero (with any
speed) as |x| → ∞, and (∇·V)(x)
and (∇×V)(x) go to zero faster than
1/|x|2. In contrast, the decomposition
(11.155)–(11.156) assumes that V(x)
goes to zero faster than 1/|x|2, which
is more restrictive.

V(x) = −∇
(∫

d3x′
f(x′)

4π|x− x′|

)
+∇×

(∫
d3x′

w(x′)

4π|x− x′|

)
. (11.174)

Recall that, in Solved Problem 4.1.5, we proved that, inR3, a vector field V(x)
is determined uniquely by its curl and its divergence (under the assumption
that it vanishes sufficiently fast at infinity). Equation (11.174) shows explicitly
how to compute it, in terms of its divergence f(x) and its curl w(x).

Applying this decomposition to the vector gauge potential A, we can write

A(x) = A⊥(x) + A‖(x)

= A⊥(x)−∇α , (11.175)

where, using w(x) ≡∇×A(x) = B(x),

A⊥(x) = ∇×
(∫

d3x′
B(x′)

4π|x− x′|

)
, (11.176)

and

α =

∫
d3x′

(∇·A)(x′)

4π|x− x′| . (11.177)

Under a gauge transformation (3.86), A transforms as A → A −∇θ. Since
the additional term is a gradient, it is reabsorbed into a transformation of
α(x),

A⊥(x) → A⊥(x) , (11.178)

α(x) → α(x) + θ(x) . (11.179)

This shows that α(x), and therefore A‖(x), is a pure gauge degree of freedom,
that can be set to zero with a gauge transformation. In contrast, A⊥(x) is
gauge invariant. This was clear already from eq. (11.176), where A⊥(x) is
written in terms of the magnetic field B, which is gauge invariant.19

19Note that all the results of this de-
composition are also valid for time-
dependent fields, simply replacing A(x)
by A(t,x), since the time variable never
enter any of these equations.



Post-Newtonian expansion
and radiation reaction 12

12.1 Expansion for small retarda-
tion 295

12.2 Dynamics to order (v/c)2 298

12.3 Self-force and radiation reac-
tion 312

In this chapter we focus more closely on the dynamics in the near zone,
r � λ−. As we have discussed in Section 11.3, in the near zone, in the
lowest-order approximation, retardation effects can be neglected, and the
electromagnetic field depends on the instantaneous value of the sources.
In this limit, we recover the Newtonian dynamics. We now want to un-
derstand how to systematically improve over this zero-th order approxi-
mation, performing a systematic expansion for small retardation effects.
This will give rise to the so-called post-Newtonian (PN) expansion.1 We 1The name “PN expansion” is bor-

rowed from the corresponding expan-
sion that is performed in General Rel-
ativity, where it corresponds to an ex-
pansion beyond the Newtonian gravi-
tational potential (see e.g., Chapter 5
of Maggiore (2007) or Poisson and Will
(2014) for an introduction). We will use
this terminology also in the context of
electrodynamics, to denote, more gen-
erally, the expansion beyond Newto-
nian dynamics. Both in electrodynam-
ics and in gravity, the Newtonian dy-
namics is obtained in the formal limit
c → ∞ and, as we will see, the PN
expansion corresponds to an expansion
in powers of (v/c), with v the typ-
ical velocity of the inner motions of
the source. Since in electrodynam-
ics the Newtonian dynamics is gov-
erned by the Coulomb potential, in this
case, instead of “post-Newtonian ex-
pansion,” the name “post-Coulombian
expansion” is sometimes used, see e.g.,
Chapter 12 of Poisson and Will (2014).

will then study the back-reaction problem: a system of charges that
emits electromagnetic radiation at infinity loses energy, and this affects
the dynamics of the particles in the near zone. This will manifest itself
through “radiation-reaction” forces in the near region. In this context,
we will also have to deal with divergences that appear for point charges.
We will see that a conceptually clean treatment of the problem only
emerges by using renormalization techniques, typical of quantum field
theory, despite our purely classical context (we already found a similar
situation in Section 5.2.2). This chapter treats advanced subjects and
some parts are very technical, and is meant for advanced readers.

12.1 Expansion for small retardation

We first discuss how to set up, in general, the expansion for small retar-
dation effects, while in the subsequent sections we will explicitly perform
the computation of the first leading terms. To this purpose, we start
from eq. (11.1), that we rewrite here separately for the scalar and vector
potentials, in the form

φ(t,x) =
1

4πε0

∫
d3x′

ρ(t− |x− x′|/c,x′)
|x− x′| , (12.1)

A(t,x) =
1

4πε0

1

c2

∫
d3x′

j(t− |x− x′|/c,x′)
|x− x′| . (12.2)

As we have seen, these equations are exact, in the sense that they are
valid for arbitrary velocities of the internal motions of the source, and
only assume that the source is localized, i.e., that ρ(t,x) and j(t,x) have
compact support in x (or, more generally, that they decrease sufficiently
fast as |x| → ∞, so that the integrals converge). We also recall that
these expressions have been derived fixing the Lorenz gauge, ∂µA

µ = 0.
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The PN expansion is an expansion for small retardation effects, that
improves systematically on the approximation used in eqs. (11.151) and
(11.153), where retardation effects were simply neglected. This is ob-
tained by expanding the charge density and current distribution in eqs. (12.1)
and (12.2) as

ρ(t− |x− x′|/c,x′) = ρ(t,x′)− |x− x′|
c

∂tρ(t,x′)

+
1

2

( |x− x′|
c

)2

∂2
t ρ(t,x′) + . . . , (12.3)

and22As we will see below, at a given PN
order we actually need to expand the
current only up to two terms less than
the charge.

j(t− |x− x′|/c,x′) = j(t,x′)− |x− x′|
c

∂tj(t,x
′) + . . . . (12.4)

If we denote by ωs the typical frequency of the source, each time deriva-
tive brings a factor of order ωs, so eqs. (12.3) and (12.4) are actually an
expansion in the parameter ωs|x−x′|/c. As we have seen in Chapter 11,
ωs is of order of the typical frequency ω of the radiation emitted, and
ω/c = 1/λ−. Therefore, the expansion is valid as long as |x − x′| � λ−.
On the other hand, x′ is an integration variable that, for a localized
source, is restricted to values |x′| < d; since λ− = (c/v)d, we have d� λ−
for the non-relativistic sources that we consider in the PN expansion.
Therefore, the condition |x − x′| � λ− is equivalent to the condition
|x| ≡ r � λ−. In conclusion, the PN expansion is valid in the near zone,
r � λ−, and breaks down in the far zone. In particular, the PN approxi-
mation cannot be used to compute directly the radiation field at infinity
(although, as we will see, it can be used to compute how the emission
of radiation at infinity affects the dynamics of the charges in the near
zone).

From the above discussion we see that the PN approximation is valid
in the near region r � λ−, without any assumption on the relative values
of r and d. In the outer near region, d� r � λ−, we could combine the
PN expansion with a multipole expansion, analogous to the expansion in
static multipoles of Chapter 6. However, a main application of the PN
expansion is that it allows us to compute the electromagnetic fields in the
inner near region, i.e., in the region where the charges are localized, r <
d � λ−. In turn, this allows us to compute how a set of charges evolves
under their mutual interaction, beyond the Newtonian approximation.
Therefore, in this case no multipole expansion can be performed. Below
we will examine the general form of the PN expansion, valid also in the
inner near region.

In the inner near region, the expansion in eqs. (12.3) and (12.4) ac-
tually becomes an expansion in powers of v/c. In fact, in the inner
near region both |x| and |x′| are of order d, so the expansion parameter
ωs|x − x′|/c becomes of order ωsd/c ∼ v/c. In general, a term sup-
pressed by a factor (v/c)2n, with respect to the Newtonian dynamics,
is called a term of order nPN, with half-integer PN orders representing
odd powers of v/c; e.g., the 1PN order gives corrections of order (v/c)2
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Fig. 12.1 The different expansion regimes discussed in the text.

to the Newtonian result, while the 1.5PN term is suppressed by (v/c)3.
This notation, which is standard in the context of the PN expansion, is
also useful because, as we will see below, “half-integer” PN orders are
associated with radiation reaction, and this notation allows us to single
them out more clearly.

In the previous chapters we have examined several different approxi-
mations to eqs. (12.1) and (12.2) and, to put the PN expansion in the
correct perspective, it is useful to recall and compare them. It is conve-
nient to display the different regimes in the plane (v/c, r), as in Fig. 12.1,
where v is the typical velocity of the internal motions of the source, and
r is the distance at which we compute the electromagnetic field. In this
plane, an important region is determined by the condition r ' λ−. As we
saw in eq. (11.76), λ− is of order (c/v)d, so this corresponds to r ' (c/v)d.
This region is shown in Fig. 12.1 as a shaded thick curve, which diverges
for v/c → 0 and decreases as v/c increases, until it reaches the value
r ' d when v/c → 1. The part of the plot well above this curve is the
far region (or far zone) r � λ−, while that well below it is the near region
(or near zone). The shaded part r ' λ− is the induction region, where
the transition between the near and the far regions takes place. We have
further marked, on the vertical axis, the value r = d, that separates the
inner near region from the outer near region.

In Chapter 6 we considered static sources, and we performed an ex-
pansion for r � d. Within the plot in Fig. 12.1, a perfectly static
source corresponds to v/c = 0 and therefore to the vertical axis. In
this case, the “near” zone extends all the way up to spatial infinity and,
for r � d, the appropriate tool is the expansion in static multipoles,
as in eqs. (6.20) and (6.30). Clearly, the assumption of exactly static
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sources is an idealization. A system of interacting charges will undergo
accelerations because of their mutual interactions and will have non-
zero velocities. If we denote by ωs the typical order of magnitude of the
frequencies of such motions, this system will generate electromagnetic
waves with typical frequency ω ' ωs (as we have seen, with numerical
coefficients of order one that depend on the multipole involved), and the
corresponding value of λ− is equal to c/ω ' c/ωs, and is finite, so the
expansion in static multipoles is actually only valid for d� r � c/ωs.

For generic, non-zero values of v/c, at r � λ−, i.e., above the shaded
curve in Fig. 12.1, we are in the far zone, and retardation effects are
crucial: as we have seen in Section 11.1, they are responsible for the
presence of terms in the electric and magnetic fields that decrease only
as 1/r, i.e., of the radiation field. The appropriate treatment here is
the one developed in Section 11.1 for sources with arbitrary velocity.
If, furthermore, v/c � 1, we can perform an expansion in radiative
multipoles, as we discussed in Section 11.2.

In the part of the plot below the shaded curve we are in the near
zone, r � λ−. On the vertical axis, at v/c = 0, we have the Newtonian
dynamics. As we have seen, if furthermore r � d we can expand in
static multipoles, while for r ≤ d we must deal with the exact New-
tonian dynamics. As we move away from the vertical axis, while still
staying in the near zone, as long as v/c � 1 retardation effects can be
included perturbatively, using the PN expansion that we will discuss in
this chapter. If, furthermore, r � d, we can combine the PN expansion
with a multipole expansion.

12.2 Dynamics to order (v/c)2

After these general considerations, we are ready to perform the explicit
computation of the first non-trivial corrections to the Newtonian dy-
namics of a system of point charges, which, as we will see, correspond
to the 1PN order. For the scalar potential, we insert eq. (12.3) into
eq. (12.1). This gives

φ(t,x) = φN (t,x) + φ0.5PN(t,x) + φ1PN(t,x) + . . . , (12.5)

where33Once extracted from the integral, the
time derivative in eq. (12.7) becomes a
total time derivative d/dt given that, in
this case, the integral is independent of
x, while for the 1PN and higher-order
terms it remains a partial time deriva-
tive ∂t.

φN (t,x) =
1

4πε0

∫
d3x′

ρ(t,x′)
|x− x′| , (12.6)

φ0.5PN(t,x) = − 1

4πε0

1

c

d

dt

∫
d3x′ ρ(t,x′) , (12.7)

φ1PN(t,x) =
1

4πε0

1

2c2
∂2
t

∫
d3x′ ρ(t,x′)|x− x′| . (12.8)

The term φN (t,x) is just the instantaneous Coulomb potential that de-
scribes the Newtonian dynamics, with the potential φN at time t deter-
mined by the charge density at the same value of t, while φ0.5PN(t,x)
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and φ1PN(t,x) are 0.5PN correction and the 1PN correction, respec-
tively. Observe that, in practice, the order at which a given term enters
the PN expansion can be read simply from the powers of 1/c in front
of it. So, for, instance, φ1PN(t,x) in eq. (12.8) has an explicit factor
1/c2. In any computation, such as in the equations of motion a system
of point particles that we will do below, the required powers of v will
appear automatically for dimensional reasons, so this term will give a
correction of order v2/c2 to the Newtonian result.

We next observe that φ0.5PN(t,x) actually vanishes because, for a
localized system of charges, the total charge

Q =

∫
d3x′ ρ(t,x′) , (12.9)

is conserved, so dQ/dt = 0. Therefore, there is no 0.5PN correction to
the scalar potential.

For the vector potential we can perform the same expansion, plugging
eq. (12.4) into eq. (12.2). However, because of the explicit 1/c2 term
in eq. (12.2), the expansion at 1PN order is obtained using simply the
lowest-order term in eq. (12.4),

A1PN(t,x) =
1

4πε0

1

c2

∫
d3x′

j(t,x′)
|x− x′| . (12.10)

We now specialize to a system of point charges. In this case the charge
density and current distributions are given by

ρ(t,x) =

N∑

a=1

qaδ
(3)[x− xa(t)] , (12.11)

j(t,x) =

N∑

a=1

qava(t)δ(3)[x− xa(t)] . (12.12)

The action of a single charged point particle interacting with an ex-
ternal electromagnetic field was already given in eq. (8.70). We find
it useful to write the interaction term in the form (8.74), as an inte-
gral over dt and d3x; we will indeed see below that some aspects of the
computation are clearer if we deal with the fields φ(t,x) and A(t,x) at
a generic space-time point, rather than with the fields φ[t,xa(t)] and
A[t,xa(t)] evaluated on the particle trajectory. Furthermore, we recall
that eq. (8.74) gives the interaction of a given charge and current den-
sity with an external electromagnetic field. To stress this, we rewrite
eq. (8.74) in the notation

Sint =

∫
dtd3x [−ρ(t,x)φext(t,x) + j(t,x)·Aext(t,x)] . (12.13)

When we are interested in the interaction between a set of point charges,
it is natural to assume that the a-th charge is subject to the potentials
generated by all other charges, except the a-th charge itself. Therefore,
we will exclude self-interaction terms, analogous to the self-energy terms
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discussed and subtracted in Section 5.2.2. It should be acknowledged
that this is a somewhat “ad hoc” prescription. In Section 12.3.2 we will
come back to these self-force terms, and we will give a deeper discussion
of why, in the present computation, in which we work to 1PN order,
they can indeed be discarded. Then, for a system of point charges, the
action (8.70) becomes

S = Sfree + Sint , (12.14)

where

Sfree = −
N∑

a=1

mac
2

∫
dt

√
1− v2

a(t)

c2
, (12.15)

and

Sint =
1

2

N∑

a=1

∫
dtd3x [−ρa(t,x)φa,ext(t,x) + ja(t,x)·Aa,ext(t,x)] ,

(12.16)
where ρa, ja are the charge and current density of the a-th particle,

ρa(t,x) = qaδ
(3)[x− xa(t)] , (12.17)

ja(t,x) = qava(t)δ(3)[x− xa(t)] , (12.18)

while φa,ext, Aa,ext are the gauge potentials generated by all other par-
ticles, except the a-th particle itself, which therefore are seen as “exter-
nal” gauge potential by the a-th charge. So, for instance, the function
φ1,ext(t,x) is the scalar potential generated, at the point x and at time
t, by the particles 2, . . . , N , which have positions x2(t), . . . ,xN (t); the
function φ2,ext(t,x) is the potential generated by the particles 1, 3, . . . , N ,
with positions x1(t), x3(t), . . . ,xN (t), and so on. Note that the time
dependence of φa,ext(t,x) and Aa,ext(t,x) enters through the time de-
pendence of the position of the other particles xb(t), with b 6= a, that
generate the potential felt by the particle a. Similarly to eq. (5.9), the
overall factor 1/2 in front of eq. (12.16) compensates for the double
counting of the particles pairs.

It is useful at this point to recall that the interaction action (12.13)
is invariant under the gauge transformation (3.86), that, in the present
notation, reads

Aext(t,x) → Aext(t,x)−∇θ , (12.19)

φext(t,x) → φext(t,x) +
∂θ

∂t
. (12.20)

As we saw in eq. (8.75), this is a consequence of the conservation equation
∂µj

µ = 0, or equivalently, of eq. (3.22). Indeed, under the transforma-
tion (12.19), (12.20), the interaction action (12.13) changes as

Sint → Sint +

∫
dtd3x

[
−ρ(t,x)

∂θ

∂t
− j(t,x)·∇θ

]

= Sint +

∫
dtd3x θ(t,x)

[
∂

∂t
ρ(t,x) + ∇·j(t,x)

]
, (12.21)
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where we integrated by parts discarding the boundary term, using the
fact that the system of charges is localized in space. The term in bracket
then vanishes, because of eq. (3.22). We now observe that, in eq. (12.16),
we can perform a gauge transformation independently on each term of
the sum, i.e., for each (φa,ext,Aa,ext). Indeed, if we transform

Aa,ext → Aa,ext −∇θa , (12.22)

φa,ext(t,x) → φa,ext(t,x) +
∂θa
∂t

, (12.23)

with an independent gauge function θa for each a, the a-th term in the
sum in eq. (12.16) changes as

∫
dtd3x [−ρa(t,x)φa,ext(t,x) + ja(t,x)·Aa,ext(t,x)]

→
∫
dtd3x [−ρa(t,x)φa,ext(t,x) + ja(t,x)·Aa,ext(t,x)]

+

∫
dtd3x θa(t,x)

[
∂

∂t
ρa(t,x) + ∇·ja(t,x)

]
, (12.24)

and for each particle separately the term in bracket vanishes, as we saw
in eq. (3.30).4 We will make use of this extended gauge freedom below.

4The implicit assumption is that we
have a set of charges that interact
among them electromagnetically, but
retain their individuality; for instance,
they do not merge together, and they
do not decay into other charged par-
ticles, because of electromagnetic or
other interactions.

12.2.1 The gauge potentials to 1PN order

We can now compute explicitly the expression for the gauge potential
to 1PN order. We consider first the scalar potential φa,ext(t,x). For
the Newtonian term, using eq. (12.6), and eq. (12.11) with the self-term
excluded, we get

φa,ext(t,x)|N =
1

4πε0

∫
d3x′

∑

b 6=a
qbδ

(3) [x′ − xb(t)]
1

|x− x′|

=
1

4πε0

∑

b 6=a

qb
|x− xb(t)|

, (12.25)

which, of course, is just the Newtonian potential already computed in
eq. (5.8), except that now the particles that generate this potential have
coordinates xb(t), functions of time.

For the 1PN term, from eq. (12.8),5

5Observe that, even if, eventually, in
eq. (12.16) φa,ext(t,x) is multiplied by
ρa(t,x), which is given by eq. (12.17)
and therefore is proportional to δ(3)[x−
xa(t)], still, in eq. (12.26) we cannot yet
replace x by xa(t). In eq. (12.26), the
∂2t operator acts only on xb(t) and not
on x, since φa,ext(t,x) is the potential
at a generic point x in space, with a
time-dependence due to the fact that
it is generated by a set of charges qb,
with b 6= a, on time-dependent trajec-
tories xb(t). If one would replace x =
xa(t) in eq. (12.26) before taking the
time derivatives, one would make a mis-
take, introducing spurious time deriva-
tives of the function xa(t). Similar con-
siderations hold for the gauge trans-
formations that we will perform below
on φa,ext(t,x) and Aa,ext(t,x), with a
gauge function θa(t,x) that will also
depend on t and x through |x− xb(t)|,
see eq. (12.29). When we take the time
derivative and spatial gradient of such
a function, we must make clear the dis-
tinction between the x dependence and
the t dependence, which is not possible
if we replace from the start x by xa(t).
For these reasons, it is necessary to
perform the computation starting from
the expression (12.16) of the interac-
tion action, without yet performing the
integral over d3x with the use of the
delta functions δ(3)[x− xa(t)] which is
present in ρa(t,x) and ja(t,x).

φa,ext(t,x)|1PN =
1

4πε0

1

2c2
∂2
t

∫
d3x′ ρ(t,x′)|x− x′|

=
1

4πε0

1

2c2

∑

b6=a
qb∂

2
t

∫
d3x′ δ(3) [x′ − xb(t)] |x− x′|

=
1

4πε0

1

2c2

∑

b6=a
qb∂

2
t |x− xb(t)| . (12.26)

Therefore, to 1PN order, in the Lorenz gauge in which we are working,

φa,ext(t,x) =
1

4πε0

∑

b6=a
qb

[
1

|x− xb(t)|
+

1

2c2
∂2
t |x− xb(t)|

]
. (12.27)
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Similarly, plugging eq. (12.12) into eq. (12.10), and discarding again the
term with b = a, we find, again to 1PN order,

Aa,ext(t,x) =
1

4πε0

1

c2

∑

b6=a
qbvb(t)

∫
d3x′ δ(3) [x′ − xb(t)]

1

|x− x′|

=
1

4πε0

1

c2

∑

b6=a

qbvb(t)

|x− xb(t)|
. (12.28)

If now one just proceeded by computing explicitly the second time
derivative of |x−xb(t)| in eq. (12.27), one would find terms that depend
on the accelerations d2xb/dt

2, and therefore the corresponding interac-
tion action (12.16) would also appear to depend on the accelerations of
the particles, leading to equations of motion involving time derivatives of
order higher than the second. As we will discuss in Section 12.2.3, such
a dependence on higher-order derivatives is in principle unavoidable at
higher orders in the PN expansion; however, it can be eliminated, or-
der by order in the PN expansion, expressing these higher derivatives in
terms of the positions and velocities, by using the equations of motion to
lower orders. While this procedure becomes necessary to higher orders
of the PN expansion, at the 1PN order at which we are working it is
much simpler to observe that these higher-derivative terms can be elim-
inated with a gauge transformation of the form (12.22, 12.23), choosing
as gauge function

θa(t,x) = − 1

4πε0

1

2c2

∑

b 6=a
qb∂t|x− xb(t)| . (12.29)

This function is chosen so as to eliminate the term involving ∂2
t in

eq. (12.27), since, under this gauge transformation,

φa(t,x) → φa(t,x) + ∂tθa

= φa,ext(t,x)− 1

4πε0

1

2c2

∑

b6=a
qb∂

2
t |x− xb(t)| . (12.30)

Therefore, in the new gauge,

φa,ext(t,x) =
1

4πε0

∑

b 6=a

qb
|x− xb(t)|

, (12.31)

which is just the Newtonian potential. In other words, this gauge is
chosen so that φa,ext(t,x)|1PN = 0, which has been possible because the
term φa,ext(t,x)|1PN in eq. (12.26) is a total time derivative. Under this
gauge transformation Aa,ext(t,x) picks an extra term,

Aa,ext(t,x) → Aa,ext(t,x)−∇θa(t,x) (12.32)

=
1

4πε0

1

c2

∑

b6=a
qb

[
vb(t)

|x− xb(t)|
+

1

2
∂t∇|x− xb(t)|

]
.

We next use

∇|x− xb(t)| =
x− xb(t)

|x− xb(t)|
, (12.33)
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and6 6The explicit computations go as fol-
lows. Equation (12.33) is obtained
writing

∇|x− xb(t)| =
∇|x− xb(t)|2

2|x− xb(t)|

=
∇ [x·x− 2x·xb(t) + xb(t)·xb(t)]

2|x− xb(t)|

=
x− xb(t)

|x− xb(t)|
, (12.34)

while eq. (12.36) follows from

∂t

[
x− xb(t)

|x− xb(t)|

]
= −

vb(t)

|x− xb(t)|

−
x− xb(t)

|x− xb(t)|2
∂t|x− xb(t)| ,

and last terms is computed writing

∂t|x− xb(t)| =
∂t|x− xb(t)|2

2|x− xb(t)|

=
∂t [x·x− 2x·xb(t) + xb(t)·xb(t)]

2|x− xb(t)|

= −
[x− xb(t)] ·vb(t)
|x− xb(t)|

. (12.35)

∂t

[
x− xb(t)

|x− xb(t)|

]
= − vb(t)

|x− xb(t)|
+

x− xb(t)

|x− xb(t)|3
{[x− xb(t)] ·vb(t)} .

(12.36)
So, in the new gauge,

Aa,ext(t,x) =
1

4πε0

1

2c2

∑

b 6=a
qb

vb(t)

|x− xb(t)|
(12.37)

+
1

4πε0

1

2c2

∑

b 6=a
qb

x− xb(t)

|x− xb(t)|3
{[x− xb(t)] ·vb(t)} .

From this expression, we can verify explicitly that

∇·Aa,ext(t,x) = 0 , (12.38)

and therefore we have simply reached the Coulomb gauge (3.92) for each
of the Aa,ext, at 1PN order. So, we started from the general expression
for the gauge potentials in the Lorenz gauge, where eqs. (12.1) and (12.2)
hold; we have computed them explicitly to 1PN order, and we have then
performed a gauge transformation that puts these expressions for the
gauge potentials in the Coulomb gauge. Note that, since ∇·Aa,ext = 0
but ∂tφa,ext 6= 0, these potentials no longer satisfy the Lorenz gauge
condition ∂µA

µ
a = 0. Equivalently, one could have performed the PN

expansion working from the start in the Coulomb gauge (which can be
done to all orders in the PN expansion), using eq. (3.93) for φa,ext,
sourced by ρa,ext ≡

∑
b 6=a ρb. This immediately gives eq. (12.31), in

fact to all PN orders. We can then insert this expression for φa,ext into
eq. (3.94) and solve it in an expansion for small retardation effect. To
1PN, only the lowest-order term of this expansion is needed, and gives
eq. (12.37).

12.2.2 Effective dynamics of a system of point
charges

Equations (12.31) and (12.37) allow us to eliminate the gauge fields
in terms of the variables xa(t) and va(t) which describe the charged
particles, up to 1PN order. This process can in principle be carried out
to all orders in the PN expansion. In this way, in the near region the
coupled dynamics of the electromagnetic field and the charged particles
can be expressed entirely in terms of the degrees of freedom xa(t), va(t)
describing the charged particles, with all these variables evaluated at the
same value t of time, as in Newtonian mechanics.

The elimination of φ(t,x) and A(t,x) in favor of xa(t), va(t) could in
principle be performed either at the level of the action or at the level of
the equations of motion and, naively, one might think that the two pro-
cedures should be equivalent. Further reflection, however, shows that,
at least at a generic order of the PN expansion, this cannot be the case.
If we perform the elimination at the level of the action, starting from



304 Post-Newtonian expansion and radiation reaction

eq. (12.16), we eventually end up with a dynamics described by an ac-
tion, and therefore a Lagrangian, that depends only on the position and
velocities of the particles [we will see in Section 12.2.3 how higher-order
derivatives, that in principle can also appear at a generic order of the
PN expansion, can be re-expressed order by order in the expansion in
terms of the positions and velocities xa(t) and va(t)]. Such a Lagrangian
has no explicit time dependence and therefore the corresponding Hamil-
tonian is automatically conserved on the solutions of the equations of
motion.7 Therefore, a Lagrangian description cannot catch dissipative7The proof is a standard result from

classical mechanics: given a system
with generalized coordinates qi(t) and
Lagrangian L(qi, q̇i) (with no explicit
time dependence), the conjugate mo-
mentum is pi = δL/δq̇i and the Hamil-
tonian is H = piq̇i−L, while the equa-
tion of motion is

d

dt

δL

δq̇i
−
δL

δqi
= 0 .

In terms of pi, this means that ṗi =
δL/δqi. Then

dH

dt
= ṗiq̇i + piq̈i −

dL

dt

=
δL

δqi
q̇i + piq̈i −

dL

dt
.

However

d

dt
L(qi, q̇i) =

δL

δqi

dqi

dt
+
δL

δq̇i

dq̇i

dt

=
δL

δqi
q̇i + piq̈i ,

and therefore dH/dt = 0.

terms, i.e., terms that describe the decrease of the energy of the system.
However, we know that, beyond some PN order, dissipative terms must
be present, to account for the energy lost by the system of charges to
electromagnetic radiation. To obtain them, we cannot work at the level
of the Lagrangian, but we must rather work at the level of the equations
of motion, starting from the Lorentz force equation (8.83), which is the
equation of motion derived from the full Lagrangian (8.71), and elim-
inate the electric and magnetic fields from it, using their expressions
obtained from the solution of the gauge potentials in terms of xa(t),
va(t), order by order in the PN expansion. This procedure produces the
full answer, including both conservative and dissipative terms.

In this section we explicitly carry out the elimination of the gauge
potentials at 1PN order, both at the level of the equations of motion
and at the level of the Lagrangian, and we will find that, to this order,
the two procedures are equivalent, and that the dynamics is conservative.
As we will see in Section 12.3.3, dissipative terms start from 1.5PN order.
Beyond 1PN order, one must therefore work at the level of equations of
motion, in order to obtain the full result including the conservative and
the dissipative terms.

Effective dynamics from the Lorentz force equation

We begin by performing the explicit computation using the equations of
motion (8.83). We observe that

(v ×B)i = [v × (∇×A)]i
= εijkεklmvj∂lAm

= vj∂iAj − vj∂jAi , (12.39)

where we used the identity (1.7). Then, the Lorentz force equation (8.83)
can be written as

d

dt
(γamava) = (12.40)

(
−qa∇xφa,ext − qa

∂Aa,ext

∂t
+ qava,j∇xA

j
a,ext − qavja∂jAa,ext

)

x=xa(t)

,

where γa = γ(va) and we have stressed that, in the force acting on the a-
th particle, the electric and magnetic fields are evaluated on the position
of the particle, i.e., for x = xa(t) (and we recall that spatial indices can
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be equivalently written as upper or lower indices). Using

d

dt
Aa,ext[t,xa(t)] =

∂Aa,ext[t,xa(t)]

∂t
+
dxja(t)

dt

[
∂Aa,ext(t,x)

∂xj

]

x=xa(t)

=

[
∂Aa,ext(t,x)

∂t
+ vja∂jAa,ext(t,x)

]

x=xa(t)

, (12.41)

we see that eq. (12.40) can be rewritten as

d

dt
{γamava + qaAa,ext[t,xa(t)]}

=
[
−qa∇xφa,ext(t,x) + qava,j∇xA

j
a,ext(t,x)

]
x=xa(t)

.(12.42)

For consistency with the fact that we are working to 1PN order, we also
expand the left-hand side as in eq. (12.67) keeping only the correction
v2
a/c

2, so we write

d

dt

{(
1 +

v2
a

2c2

)
mava + qaAa,ext[t,xa(t)]

}

=
[
−qa∇xφa,ext(t,x) + qava,j∇xA

j
a,ext(t,x)

]
x=xa(t)

. (12.43)

On the right-hand side, φa,ext and Aja,ext are given by eqs. (12.31) and
(12.37), respectively. After having computed their gradients with respect
to the variable x [using eq. (12.33)], we finally set x = xa(t).

It is now convenient to use the notation

φa(x1, . . . ,xN ) =
1

4πε0

∑

b 6=a

qb
|xa(t)− xb(t)|

, (12.44)

and

Aa(x1, . . . ,xN ; v1, . . .vN ) =
1

4πε0

1

2c2

∑

b 6=a
qb

vb(t)

|xa(t)− xb(t)|
(12.45)

+
1

4πε0

1

2c2

∑

b6=a
qb

xa(t)− xb(t)

|xa(t)− xb(t)|3
{[xa(t)− xb(t)] ·vb(t)} ,

which automatically takes into account that the gauge potentials are
evaluated at x = xa(t) and treats them symmetrically with respect to
the positions (and velocities) of all particles. We also introduce the
notation

rab(t) = xa(t)− xb(t) , (12.46)

and rab = |rab|, r̂ab/rab, so that

φa(x1, . . . ,xN ) =
1

4πε0

∑

b6=a

qb
rab

, (12.47)

and

Aa(x1, . . . ,xN ; v1, . . .vN ) =
1

4πε0

1

2c2

∑

b 6=a

qb
rab

[vb + r̂ab(r̂ab·vb)] .

(12.48)
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Then, eq. (12.43) reads

d

dt

[(
1 +

v2
a

2c2

)
mava + qaAa(x1, . . . ,xN ; v1, . . .vN )

]
= −∇aφa

+

N∑

b6=a

qaqb
r2
ab

va(r̂ab·vb) + vb(r̂ab·va)− r̂ab [(va·vb) + 3(r̂ab·va)(r̂ab·vb)]
8πε0c2

.

(12.49)

Observe that the quantity inside d/dt on the left-hand side is just the
conjugate momentum (expanded to 1PN order), compare with eq. (8.78).
More explicitly, eq. (12.49) reads

d

dt



(

1 +
v2
a

2c2

)
mava +

1

4πε0

1

2c2

∑

b 6=a

qaqb
rab

[vb + r̂ab(r̂ab·vb)]




=
1

4πε0

N∑

b6=a

qaqb
r2
ab

(12.50)

×
[
r̂ab +

va(r̂ab·vb) + vb(r̂ab·va)− r̂ab [(va·vb) + 3(r̂ab·va)(r̂ab·vb)]
2c2

]
.

These are the 1PN equations of motion for a set of charged particles.

The Darwin Lagrangian

We now perform the elimination of the gauge fields in terms of xa(t),
va(t) at the level of the action, again at 1PN level. This is done inserting
eqs. (12.31) and (12.37) into eq. (12.16), and carrying out the integrals
over d3x with the help of the Dirac deltas present in ρa and ja. The
result is

Sint =
1

8πε0

N∑

a=1

N∑

b 6=a

∫
dt
qaqb
rab

[
−1 +

va·vb + (r̂ab·va)(r̂ab·vb)
2c2

]
.

(12.51)
Since we are working to 1PN order, i.e., corrections up to order (v/c)2

to the Newtonian result, we also expand the square-root in eq. (12.15)
keeping only the (v/c)2 correction to the Newtonian kinetic energy,

−mac
2

√
1− v2

a

c2
= −mac

2 +
1

2
mav

2
a +

1

8
ma

v4
a

c2
+ . . . . (12.52)

As far as we are interested in using the Lagrangian to derive the equa-
tions of motion, the term −mac

2 is a constant, and can be dropped (of
course, if we rather want to compute the Hamiltonian and therefore the
energy, this gives the rest energy of the particle). Then, summing up,
we get the Lagrangian of a system of point charges, up to 1PN order,

L = LN + L1PN , (12.53)
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where the Newtonian term is

LN =

N∑

a=1

1

2
mav

2
a −

1

8πε0

N∑

a=1

N∑

b 6=a

qaqb
rab

, (12.54)

and the 1PN correction is

L1PN =

N∑

a=1

mav
4
a

8c2
+

1

4πε0

1

4c2

N∑

a=1

N∑

b6=a

qaqb
rab

[va·vb + (r̂ab·va)(r̂ab·vb)] .

(12.55)

The total Lagrangian up to 1PN order is called the Darwin Lagrangian.8 8After Charles Galton Darwin (grand-
son of the great Charles Darwin), who
first wrote it in 1920.

From eqs. (12.44) and (12.48), we see that we can also rewrite the result
as

LN =

N∑

a=1

[
1

2
mav

2
a −

1

2
qaφa(x1, . . . ,xN )

]
, (12.56)

and

L1PN =

N∑

a=1

mav
4
a

8c2
+

1

2

N∑

a=1

qava·Aa(x1, . . . ,xN ; v1, . . .vN ) . (12.57)

Note that, in the Coulomb gauge that we are using, φa is a purely
Newtonian term, with no 1PN correction, while Aa is a purely 1PN
term.

We can now check that eq. (12.49) is indeed the equation of motion
derived from the Darwin Lagrangian. To keep the notation simple, we
perform the computation explicitly limiting ourselves to the case N = 2.
Then,

LN =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

1

4πε0

q1q2

r12
, (12.58)

L1PN =
1

8c2
(m1v

4
1 +m2v

4
2)

+
1

4πε0

1

2c2
q1q2

r12
[v1·v2 + (r̂12·v1)(r̂12·v2)] . (12.59)

We now compute the equation of motion, for instance taking the vari-
ation with respect to the variables of the first particle, separating the
Newtonian and the 1PN terms,

[
d

dt

(
δLN
δv1

)
− δLN

δx1

]
+

[
d

dt

(
δL1PN

δv1

)
− δL1PN

δx1

]
= 0 . (12.60)

In the case of two particles we use the simpler notation r12 = rn̂. The
variations with respect to x1 are computed using

∂

∂xi1

1

r
= −ni

r2
, (12.61)
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and (as in eq. (11.8) with x replaced by x1 − x2)

∂ni

∂xj1
=

1

r
(δij − ninj) . (12.62)

The Newtonian term gives the standard result,

d

dt

(
δLN
δv1

)
− δLN

δx1
=

d

dt
(m1v1)− q1q2

4πε0

n̂

r2
, (12.63)

while

d

dt

(
δL1PN

δv1

)
=

d

dt

{
m1v

2
1

2c2
v1 +

1

4πε0

1

2c2
q1q2

r
[v2 + n̂(n̂·v2)]

}
, (12.64)

and

δL1PN

δx1
=

1

4πε0

q1q2

r2

1

2c2
(12.65)

×{v1(n̂·v2) + v2(n̂·v1)− n̂ [(v1·v2) + 3(n̂·v1)(n̂·v2)]} .
Plugging these expressions into eq. (12.60), we recover eq. (12.50) for
the case a = 1 and N = 2. The computation for generic N is analogous.

This shows that the equations of motion at 1PN order, given in
eq. (12.50) and obtained by eliminating from the Lorentz force equation
the electric and magnetic field in terms of the variables xa(t), va(t) that
describe the charges, can also be derived from a Lagrangian (obtained by
eliminating the gauge fields at the level of the action describing the cou-
pled dynamics of the charges and the electromagnetic field). Therefore,
the corresponding 1PN Hamiltonian, whose explicit form we will com-
pute below, is conserved on the solution of the equations of motion, see
Note 7 on page 304, and the dynamics up to 1PN order is conservative.

The Hamiltonian to 1PN order

To complete the discussion of the dynamics at 1PN order, we compute
the corresponding Hamiltonian. To this purpose, we first compute the
conjugate momentum Pa, that we already introduced in eq. (8.78) for a
generic vector potential. In the present case, from eqs. (12.53)–(12.55),

Pa ≡ δL

∂va
(12.66)

=

(
1 +

v2
a

2c2

)
mava +

1

4πε0

1

2c2

N∑

b6=a

qaqb
rab

[vb + r̂ab(r̂ab·vb)] .

Comparing with eq. (12.48), we see that this is just the same as

Pa =

(
1 +

v2
a

2c2

)
mava + qaAa,ext[t,xa(t)] , (12.67)

in agreement with eq. (8.78) (with p = γmv expanded to second order
in v/c). The Hamiltonian is then computed from

H =

N∑

a=1

Pa·va − L , (12.68)
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where va is written in terms of Pa inverting eq. (12.66). To the 1PN
order at which we are working, this can be done writing eq. (12.66) as

va =
Pa

ma
− v2

a

2c2
va −

1

4πε0

1

2c2

N∑

b 6=a

qaqb
marab

[vb + r̂ab(r̂ab·vb)] , (12.69)

and substituting, in terms proportional to 1/c2, the lowest-order relation
va = Pa/ma, since the terms neglected are of higher order. This gives

va =
Pa

ma
− P 2

a

2m3
ac

2
Pa −

1

4πε0

1

2c2

N∑

b 6=a

qaqb
mambrab

[Pb + r̂ab(r̂ab·Pb)] .

(12.70)
Plugging this into eqs. (12.68) and (12.55) we get

H =

N∑

a=1

P 2
a

2ma

(
1− P 2

a

4m2
ac

2

)
+

1

8πε0

N∑

a=1

N∑

b 6=a

qaqb
rab

(12.71)

− 1

8πε0

1

2c2

N∑

a=1

N∑

b6=a

qaqb
mambrab

[Pa·Pb + (r̂ab·Pa)(r̂ab·Pb)] .

In particular, for a two-body system,

H =
P 2

1

2m1

(
1− P 2

1

4m2
1c

2

)
+

P 2
2

2m2

(
1− P 2

2

4m2
2c

2

)

+
1

4πε0

q1q2

r

[
1− P1·P2 + (r̂·P1)(r̂·P2)

2m1m2c2

]
, (12.72)

where r = r12. An alternative derivation is obtained using eq. (8.87),
that, for a single particle in an external potential, we rewrite in the form

H = mc2

√
1 +

(
P− qA
mac

)2

+ qφ , (12.73)

where the potentials φ and A must be computed on the position x(t) of
the particle. Expanding the square root to second order9 9With the obvious notation

(P− qA)4 = [(P− qA)2]2.

H = mc2 +
(P− qA)

2

2m
− (P− qA)

4

8m3c2
+ . . .+ qφ . (12.74)

The first term is the energy associated with the rest-mass, which, in a
non-relativistic context, we subtract. To 1PN order, the Hamiltonian
of the a-th particle, in the fields φa,ext, Aa,ext generated by the other
particles, is therefore

Ha =
P 2
a

2ma
− P 4

a

8m3
ac

2
+ qaφa,ext −

qa
ma

Pa·Aa,ext , (12.75)

where we subtracted the rest mass contribution, and we took into ac-
count the fact that the vector potential Aa,ext generated by the non-
relativistic charges qb (with b 6= a) is proportional 1/c2, see eq. (12.37)



310 Post-Newtonian expansion and radiation reaction

and therefore, to 1PN order, it contributes only through the cross prod-
uct with Pa in the expansion of the quadratic term. To this order, the
total Hamiltonian is therefore

H =

N∑

a=1

[
P 2
a

2ma
− P 4

a

8m3
ac

2
+

1

2
qaφa,ext −

qa
2ma

Pa·Aa,ext

]
,

(12.76)
where, as before, the factors of 1/2 compensate the double counting
of the interaction term: otherwise, e.g., the term in the Hamiltonian
proportional to q1q2/r12 would be counted once when we compute the
energy of particle 1 in the potential generated by particle 2, and once
when we compute the energy of particle 2 in the potential generated
by particle 1. In this expression, the potentials φa,ext and Aa,ext must
be evaluated on the position of the a-th particle, i.e., they are given,
more precisely, by φa[t,xa(t)] and Aa,ext[t,xa(t)]. Reading them from
eqs. (12.31) and (12.37), with x replaced by xa(t), and using, at this
order, va = Pa/ma, vb = Pb/mb, we get back eq. (12.71).

12.2.3 Reduction of order of the equations of
motion

As we discussed after eq. (12.28), in general, in the PN expansion, we
find terms with derivatives higher than the second in the Lagrangian.
In the Lorenz gauge, we see from eqs. (12.1)–(12.4) that, at nPN or-
der, φ contains times derivatives of the positions of the particles up to
∂2n
t and A starts to contribute from 1PN and, at nPN order, contains

times derivatives up to ∂2n−2
t . At the 1PN level, we were able to elim-

inate the higher-order derivatives with a gauge transformation to the
Coulomb gauge. However, this is no longer possible at higher orders. To
eliminate a term proportional to ∂2n

t in φ with a gauge transformation
φ→ φ+ (1/c)∂tθ, we need terms proportional to ∂2n−1

t in θ. Then, the
same gauge transformation applied to the vector potential, A→ A−∇θ,
induces terms proportional to ∂2n−1

t in A (that adds up to the derivatives
up to ∂2n−2

t that were already present in A before the gauge transfor-
mation), so, even if we can eliminate altogether higher-order derivatives
from φ choosing the Coulomb gauge, beyond 1PN order, second- and
higher-order derivatives of xa(t) remain in A, and therefore in the La-
grangian. Correspondingly, the equations of motion will be of order
higher than second, involving third time derivatives of the position, as
well as higher and higher time derivatives as we increase the PN order.
At first one might think that this is very problematic, since the evo-
lution would no longer be determined by giving, as initial conditions,
the initial positions and velocities of the particles; even worse, at each
new order of the PN expansion we would need more and more initial
conditions, involving higher and higher time derivatives of the position.
Furthermore, higher-order differential equations are typically plagued by
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all kind of instabilities. Actually, this catastrophe is only apparent, and
the equations of motion can be systematically reduced to second-order
equations, at each order of the PN expansion. As a schematic example
of this “reduction-of-order” procedure, consider an equation of the form

q̈ = f0(q, q̇) +
1

c2
f1(q, q̇)

...
q +O

(
1

c4

)
, (12.77)

for some dynamical variable q(t). Taking a time derivative of this equa-
tion gives

...
q =

d

dt
f0(q, q̇) +

1

c2
d

dt
[f1(q, q̇)

...
q ] +O

(
1

c4

)
. (12.78)

We can then use this to replace
...
q on the right-hand side of eq. (12.77),

which gives

q̈ = f0(q, q̇)

+
1

c2
f1(q, q̇)

{
d

dt
f0(q, q̇) +

1

c2
d

dt
[f1(q, q̇)

...
q ] +O

(
1

c4

)}

+O
(

1

c4

)
. (12.79)

However, to order 1/c2, this is the same as

q̈ = f0(q, q̇) +
1

c2
f1(q, q̇)

d

dt
f0(q, q̇) +O

(
1

c4

)
, (12.80)

in which, on the right-hand side, only derivatives up to q̈ enter. So, in
practice, to order 1/c2, we can simply use the zeroth-order equation of
motion q̈ = f0(q, q̇) to compute the term

...
q in eq. (12.77), since the

latter is already multiplied by 1/c2. Observe that q̈ also appears on the
right-hand side of eq. (12.80), since

d

dt
f0(q, q̇) =

∂f0

∂q
q̇ +

∂f0

∂q̇
q̈ . (12.81)

Then, solving for q̈, the equation can then be re-arranged in the form

q̈ = f0(q, q̇) +
1

c2
g1(q, q̇) +O

(
1

c4

)
, (12.82)

with a different functions g1(q, q̇), given explicitly by

g1(q, q̇) = f1(q, q̇)

[
f0(q, q̇)

∂f0

∂q̇
+
∂f0

∂q
q̇

]
. (12.83)

This kind of procedure can be carried out order by order, keeping the
equations of motion always of second order.

As a related application of this reduction-of-order procedure, observe,
from eq. (12.48), that Aa,ext[t,xa(t)] depends on vb(t), for all b 6= a.
Then, on the left-hand side of eq. (12.49) appear also the accelerations
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dvb/dt of all particles, so it might look that, even if the equations are just
of second order, still the equation of motion of the a-th particle involves
the acceleration of all other particles, giving rise to a very complicated
coupled set of equations. However, since, in eq. (12.49), dvb/dt (with
b 6= a) only appears in a term of order 1/c2, it can be replaced by its
expression computed using the equations of motion for the b-th particle
at Newtonian order, so as a function of positions only. So, in the end, the
acceleration of the a-th particle depends on the position and velocities
of all other particles, but not on their accelerations.

12.3 Self-force and radiation reaction

This section is very advanced and
should definitely be skipped at first
reading.

In the previous section, when computing the conservative dynamics of a
system of point particles up to 1PN order, we have excluded “self-force”
terms, claiming that, for a system of particles, eq. (12.13) must be re-
placed by eq. (12.16), in which the charge qa feels the effect of the fields
generated by the charges qb with b 6= a, but is not subject to the force
produced by its own field. While this might sound eminently reasonable,
it must be acknowledged that this is an “ad hoc” prescription, that we
have super-imposed on the formalism. In reality, Maxwell’s equations
instruct us to compute the electric and magnetic fields generated by the
total charge and current densities, and then these electric and magnetic
fields act on the charges according to the Lorentz force [in its relativistic
form, (8.62), or (8.65)]. In Section 12.3.2 we will perform the compu-
tation of the 1PN dynamics including these self-force terms and we will
show that, up to 1PN, the various self-force contributions either vanish
or can be reabsorbed into a redefinition (more technically, a “renormal-
ization”) of the mass of the particle. On the one hand, this will confirm
the results of the previous section, putting them on a firmer conceptual
ground. On the other hand, these results will pave the way for the study
of radiation reaction at 1.5PN order in Section 12.3.3, where we will see
that the inclusion of self-force terms is necessary to get the correct result.
If one would simply discard them by hand, one would not get the energy
loss to radiation corresponding to the Larmor formula. These self-energy
terms are therefore absolutely real and, beyond the 1PN level (where, a
posteriori, the naive approach of throwing them away turns out to give
the correct answer) they must be included. In Section 12.3.4 we will see
how to obtain radiation reaction to all orders from a covariantization of
the 1.5PN result and finally, in Section 12.3.5, we will show how mass
renormalization and radiation reaction can be obtained from a single,
fully covariant, computation, that gets rid completely of any notion of
extended electron.

First, however, in Section 12.3.1 we compare two different general
frameworks that can be used to address these problems, either based on
an extended classical model of the electron, or using regularization and
renormalization techniques borrowed from quantum field theory.
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12.3.1 Classical extended electron models vs.
regularization schemes

The basic problem that we will have to face, when dealing with self-
forces, is related to the assumption of exactly point-like charges. As
we already saw in Section 5.2.2, this leads to a divergent expression
for the self-energy of the particle. Historically, the problem has been
first tackled trying to build a classical model of an extended electron.
However, no consistent and convincing classical electron model has ever
emerged, despite significant effort, starting already from works of Abra-
ham, Lorentz, and Poincaré at the beginning of the 20th century. In
the Abraham–Lorentz–Poincaré model, the electron was modeled as a
uniformly charged spherical shell. However, hypothetical mechanical
forces must be introduced to stabilize the electron against the elec-
trostatic repulsion among its parts. Even when this is done, and the
forces are chosen so as to render stable a configuration with spherical
symmetry, the model still turns out to be unstable under non-spherical
perturbations.10 Furthermore, and most importantly, these hypothetical 10See Pearle (1982) for a review of

these approaches, and Damour (2017)
for a historical discussion of the con-
tribution of Poincaré to the extended
electron model.

stabilizing mechanical forces do not correspond to anything in Nature.
We now understand that a consistent theory of the structure of elemen-
tary particles can only be obtained in the framework of quantum field
theory.

Here we will then take a different approach to the problem, inspired
indeed by quantum field theory, in which these divergences are dealt
with by using renormalization theory.11 In this approach, one starts by 11It is interesting to observe that this

approach was already advocated by
Dirac (1938), when the understand-
ing of the divergences in quantum field
theory was still quite limited. From
Dirac’s 1938 paper: “We shall retain
Maxwell’s theory to describe the field
right up to the point-singularity which
represents our electron and shall try to
get over the difficulties associated with
the infinite energy by a process of direct
omission or subtraction of unwanted
terms, somewhat similar to what has
been used in the theory of the positron.
Our aim will be not so much to get a
model of the electron as to get a simple
scheme of equations that can be used
to calculate all the results that can be
obtained from experiment.”

regularizing the theory, which means that we introduce a length-scale `
that smooths out the divergences so that, to begin with, we deal with
well-defined mathematical expressions. For instance, in Section 5.2.2,
we regularized the self-energy of a charge distribution by removing the
Fourier modes with wavenumber |k| > π/`, see eqs. (5.27)–(5.31). Reg-
ularization must be understood just as a mathematical step. It is not
meant to correspond, in any way, to a physical model of an extended
classical electron, and physical results are only obtained in the limit
`→ 0. This eliminates any concern about the the need for hypothetical
stabilizing mechanical forces, or on the stability of the extended electron
model under perturbations. The issue, now, rather becomes how to take
the limit `→ 0 so as to recover finite results. This is obtained realizing
that, once we need to introduce a cutoff ` in the theory, the various
parameters that we have introduced at the level of the action (or, in
our classical context, of the equations of motion), such as the mass and
charge of the particle, are not yet the observable quantities, but rather
just parameters that enter in the intermediate steps of the computation
(“bare parameters”, in the field theory jargon), that can a priori also
depend on this cutoff. For instance, the action (7.133) must be replaced
by

Sfree = −m0(`)c2
∫
dτ + . . . . (12.84)

where we admit that the parameter previously denoted by m and in-
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terpreted as the mass, could a priori also depend on `, and is not yet
the physical, observed, mass. To stress this change of perspective, we
denote it by m0 instead of m, and we call it the “bare” mass. The dots
in eq. (12.84) indicate that we also admit the possibility of adding extra
terms with a different structure, that we will discuss below. The crucial
point is that m0(`) is not observable. A charged particle, with charge
qa, always comes with its own electric field and, as we saw in eq. (5.31),
this produces a self-energy term [1/(4πε0)](q2

a/`). Therefore, the total
rest-energy of a particle, labeled by an index a, is

Ea,rest = m0,a(`)c2 +
1

4πε0

q2
a

`
. (12.85)

This means that the actual observable mass of the particle, that we call
the “renormalized” mass, is given by

ma = m0,a(`) +
1

4πε0c2
q2
a

`
. (12.86)

The logic of renormalization is that the bare mass m0,a(`) must be seen
as a quantity which is completely in our hands when we define the theory,
and which is chosen so that it cancels the divergence of the self-energy
term for `→ 0, leaving us with a finite result for the renormalized mass,
equal to the observed value. By themselves, the two separate terms on
the right-hand side of eq. (12.86) have no physical meaning. They both
separately diverge in the limit `→ 0, just in a way that their divergences
cancel in the sum, and their value before removing the cutoff depends
on the regularization scheme that we have chosen. Only their sum is
physical, and finite.1212Notice, in particular, that m0,a(`) =

ma − [1/(4πε0c2)]q2a/` goes to minus
infinity as ` → 0+ so, for ` suffi-
ciently small, it is negative. Most of
the confusion, in some literature, comes
from interpreting m0,a(`) as a “me-
chanical mass”, and the term propor-
tional to q2a/` as an “electromagnetic
mass.” This nomenclature is already
misleading, since it implicitly suggests
that these two quantities have, sep-
arately, an intrinsic physical meaning
(typically leading these texts to state-
ments such as that a negative “mechan-
ical” mass is unacceptable). In the logic
of renormalization, which is the stan-
dard tool of quantum field theory, nei-
ther of them has any separate physi-
cal meaning. Their value, and even
their sign, depends on the regulariza-
tion scheme used, and only their sum is
physically meaningful.

It should be stressed that this point of view, based on renormalization,
is not just an optional possibility, when dealing with the divergences that
appear in the point particle limit. At the scale of elementary particles,
eventually quantum mechanics and quantum field theory enter the game.
At that level, divergences such as that discussed above are unavoidable,
and can only be cured through renormalization. The mass renormaliza-
tion discussed above will then automatically take place, together with
the renormalization of other parameters (such as the electron charge).
From this perspective, the attempts at constructing a classical extended
model of the electron, where the self-energy term is interpreted as an
actual finite physical contribution to the total mass, looks futile. At the
quantum level, the self-energy term will anyhow be divergent, and this
divergence can only be cured through renormalization.

This quantum field theory approach also allows us to clarify another
aspect that has plagued the attempts at constructing classical extended
models of the electron, which is related to Lorentz invariance. A charged
shell which is spherical in its rest frame would be deformed, by the
Lorentz contraction, from the point of view of a boosted observer. There-
fore a rigid extended model, such as that based on a rigid charged shell
initially devised by Abraham in 1903–1904, is not Lorentz invariant. As
a result, the self-energy contribution to the energy and the correspond-
ing self-contribution to the momentum (obtained from the momentum
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associated with the electromagnetic field of the particle, in a frame where
it has a velocity v) do not form a four-vector. For a rigid charged shell of
radius b, whose center-of-mass moves with four-velocity uµ = (γc, γv),
the self-energy and self-momentum due to the electromagnetic field of
the particle are given by13 13See eqs. (7.16) and (11.29) of Pearle

(1982).

pµem =
1

4πε0

e2

2bc2
uµ +

1

4πε0

1

3

e2

2bc2

(
v2/c2√

1 + (v/c)2
,v

)
. (12.87)

Note that the four-vector notation pµem here is an abuse of notation, since,
on the right-hand side, the term proportional to uµ is a four-vector,
but the second term, written giving explicitly its temporal and spatial
components, is not. Poincaré, in 1905–1906, added suitable mechanical
stresses, which produce a “mechanical energy and momentum.” Also
these, separately, do not form a four-vector, but can be chosen so as to
cancel exactly the second term in eq. (12.87). So, adding this to the
mechanical four-momentum m0u

µ of the center of mass, in the Poincaré
model the extended electron has a total mechanical four-momentum

pµmech = m0u
µ − 1

4πε0

1

3

e2

2bc2

(
v2/c2√

1 + (v/c)2
,v

)
. (12.88)

The sum of the two terms, pµ = pµem + pµmech, is a four-vector, that is
interpreted as the total four-momentum of the extended electron,

pµ =

(
m0 +

1

4πε0

e2

2bc2

)
uµ , (12.89)

so that Lorentz invariance is recovered. Apart from the fact that this
model turns out to be unstable under non-spherical perturbations, and
therefore eventually is not viable even classically, within our modern
perspective it is clear that the whole construction is very artificial and
has nothing to do with the actual description of an elementary particle
in quantum field theory.

However, what Poincaré did can be reinterpreted, in the framework of
renormalization in quantum field theory, as follows. When one regular-
izes a theory, the symmetries of the original action may or may not be
respected by the regularization process. For instance, if we regularize the
Dirac deltas in eqs. (12.17) and (12.18) using an extended rigid model
of the electron, our regularization breaks Lorentz invariance since, as we
have discussed, a rigid spherical electron is not consistent with Lorentz
invariance. The same happens if we regularize the action of a point
particle by imposing a cutoff on the Fourier modes, restricting to modes
with |k| < π/`. Again this is not a Lorentz-invariant condition, since the
value of the wavenumber k, and of its modulus, changes under a Lorentz
boost, so the above condition can only be valid in a specific frame. In
general, there is nothing wrong with using a regularization that breaks
one of the symmetries of the theory, and this is commonly done in quan-
tum field theory computations. Simply, in this case one must admit that



316 Post-Newtonian expansion and radiation reaction

the bare quantities (that, we should remember, are not physical observ-
ables, but just mathematical entities that we choose at our will) do not
have to respect that symmetry either, and will rather be adjusted so as
to recover that symmetry at the level of renormalized quantities. So,
for instance, if we start from the point-particle action (12.84), that in
this context is called the “bare” action, and we use a regularization that
breaks Lorentz invariance, we must admit the presence of other terms
[“counterterms,” in the quantum field theory jargon, indicated generi-
cally by the dots in eq. (12.84)], that do not need to respect Lorentz
invariance, and that will be adjusted so as to recover Lorentz invariance
at the level of the renormalized theory. So, what Poincaré actually did,
from this perspective, is equivalent to starting from the bare action that
corresponds to the Abraham model of the electron, interpreted now just
as a form of regularization of a point charge (that breaks Lorentz invari-
ance), and adding to it a counterterm which is also not Lorentz invariant,
and is adjusted so as to obtain Lorentz invariance for the renormalized
quantities.

In Section 12.3.2 we will perform a similar but conceptually more
transparent computation, as follows. We will start from the charge and
current density of a point-particle, and we will regularize them by im-
posing a cutoff |k| < π/` over the wavenumbers of their Fourier modes.
This will be the equivalent of an extended classical electron model, since
it amounts to smoothing out, over a distance of order `, the Dirac deltas
in eqs. (12.17) and (12.18), except that we make it clear that this is just a
regularization, and the limit `→ 0 must be taken in the end, so it should
not be interpreted as an actual model of a classical extended electron.
As we already mentioned, this regularization breaks Lorentz invariance.
We will then compute explicitly the corresponding divergences in the
self-energy and in the self-momentum (which would provide the result
analogous to eqs. (12.88) and (12.89) with our regularization of the point
particle, rather than with the Abraham–Lorentz–Poincaré model) and
we will then show how to renormalize the theory with a simple non-
Lorentz-invariant counterterm, so as to recover Lorentz invariance for
the renormalized quantities.

The use of a renormalization scheme that involves counterterms that
are not Lorentz invariant might be unfamiliar even to many advanced
readers.14 However, there is no need to break Lorentz invariance with the

14In quantum field theory, a cutoff over
wavenumbers, |k| < Λ (or over mo-
menta, where, at the quantum level,
the momentum p is related to the
wavenumber k by p = ~k), is typ-
ically used only for qualitative dis-
cussions, precisely because it breaks
Lorentz invariance, and for actual com-
putations in general one prefers to use
other schemes, such as Pauli–Villars
or dimensional regularization, to avoid
the need of dealing with counterterms
that do not respect Lorentz invariance.
However, there are situations where
it is necessary to use a regularization
that breaks Lorentz invariance. In
particular, for non-perturbative com-
putations in quantum chromodynamics
(the fundamental theory of strong in-
teractions), the best regularization con-
sists in putting the theory on a space-
time lattice (furthermore, rotating from
Minkoswki to Euclidean space). In this
case the full (Euclidean) Lorentz invari-
ance is broken to a subgroup of dis-
crete rotations and, to recover Lorentz
invariance in the continuum limit, one
must introduce counterterms that are
not Lorentz invariant, and only respect
this smaller symmetry group. There
are also more complex situations, where
a symmetry broken by the regulariza-
tion is not recovered when the cutoff is
removed. This gives rise to quantum
field theory anomalies, but these will
not concern us here.

regularization. After working out mass renormalization with the above
regularization, that breaks Lorentz invariance (and that corresponds to
the naive idea of an extended classical electron model), in Section 12.3.5
we will show how to regularize and renormalize the divergences associ-
ated with point particles in a fully Lorentz-invariant manner, recovering
mass renormalization in a way that maintains Lorentz symmetry mani-
fest at each stage. The latter procedure will be completely in line with
standard quantum field theory computations, and is in fact the best
starting point for including also quantum effects.



12.3 Self-force and radiation reaction 317

12.3.2 Self-energy and mass renormalization

In this subsection we extend the discussion of Section 12.2, including
now also the self-forces, for a collection of charges modeled as extended
charge distributions. As discussed above, in the case of elementary par-
ticles this must be considered merely as a regularization, and we are
only interested in taking eventually the point-particle limit, eliminating
the divergences through the renormalization procedure. Some aspects
of the formalism, however, can also be useful for actual macroscopic
bodies, where the extended charge distribution is really the physical dis-
tribution of the body, rather than a mathematical trick for regularizing
a point particle.15 So, in the following each particle will be described 15A very similar formalism is useful

in Newtonian gravity (with the charge
density replaced by the mass density)
to describe self-gravitating objects, see
Damour (1987) for pioneering work and
Poisson and Will (2014) for recent text-
book discussion.

by a generic charge density ρa(t,x), localized in a volume Va(t) (whose
position changes in time because the position of the particle changes),
that we take small compared to the overall volume in which is localized
the system of charges. We assume that the volumes Va corresponding
to the different charges are non-overlapping during the whole time span
for which we follow the time evolution, i.e., that the particles do not
merge (nor disintegrate). This assumption was already implicit in the
computation of Section 12.2, see Note 4 on page 301. The position of the
a-th charged body is then defined by its “center-of-charge” coordinate

xa(t) =
1

qa

∫
d3x ρa(t,x)x . (12.90)

Note that the integration is actually only over the volume Va(t) where
the particle is localized, but we can extend it to all of space, because
anyhow ρa(t,x) vanishes outside Va(t). This has the advantage that the
time dependence of xa(t) enters only through ρa(t,x). The velocity and
acceleration of the particles are given by va(t) = dxa/dt and a(t) =
d2xa/dt

2. Using the continuity equation (3.30),

dxia
dt

=
1

qa

∫
d3x ∂tρa(t,x)xi

= − 1

qa

∫
d3x

[
∂kj

k
a(t,x)

]
xi

= +
1

qa

∫
d3x jka(t,x)∂kx

i

=
1

qa

∫
d3x jia(t,x) , (12.91)

where we integrated by parts (neglecting the boundary term since ρa is
localized) and we used ∂kx

i = δik. Therefore

va(t) =
1

qa

∫
d3x ja(t,x) . (12.92)

In the point-like limit, using eqs. (12.17) and (12.18), eqs. (12.90) and
(12.92) correctly reduce to the position and velocity of a point charge.
The simplest model of a current distribution consistent with eq. (12.92)
is given by

ja(t,x) = ρa(t,x)va(t) . (12.93)
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This corresponds to a charge distribution that moves with a veloc-
ity va(t), without superimposed internal motions. Taking a different
modelization would simply complicate the explicit computation, adding
terms that vanish when, at the end of the computation, we eventually
take the point-particle limit. We will therefore assume the form (12.93)
of the current density, for our extended model of the current and charge
distribution.

We regularize the theory by putting a cutoff |k| < π/`, i.e., setting to
zero all Fourier modes ρ̃(t,k) of the charge distribution with wavenumber
higher that π/`, as we already did in Section 5.2.2. In coordinate space
this corresponds to smoothing the Dirac delta, with most of its support
being concentrated up to a distance of order ` from its center. The point-
like limit is recovered as ` → 0. As we already mentioned, this is not a
Lorentz-invariant regularization, since the value of |k| changes under a
Lorentz boost, so the condition |k| < π/` is not Lorentz invariant.

With this regularization, the contribution of the self-field of the parti-
cle to its rest energy was already computed in Section 5.2.2 and is given
by the second term on the right-hand side of eq. (12.85). This self-
energy contribution is reabsorbed into a mass renormalization, given
in eq. (12.86). We now compute the contribution of the self-field of
the particle to its spatial momentum, to understand how the full four-
momentum renormalizes. To this purpose, we consider the equation of
motion of a charge and current distribution written in the form of the
Lorentz “force” equation (3.68). For a single extended object, we rewrite
it as

dpa
dt

=

∫

V

d3x (ρE + j×B) . (12.94)

The crucial point is that, in the relation pa = γ(va)mava, the mass must
again be taken as a bare parameter, that depends on the cutoff and that
will be adjusted so as to obtain the desired value for the renormalized
mass. Furthermore, since our regularization breaks Lorentz invariance,
this bare parameter is a priori different from the one that enters in the
energy, and that we denoted by m0,a(`) in eq. (12.86). We will then
denote it by m̃0,a(`).16 Then, including also the self-force term that we16We will see below how to obtain these

different bare masses for the energy
and momentum from the addition of
a non-Lorentz-invariant counterterm in
the action.

have omitted in our treatment in Section 12.2, the equation of motion
of the a-th particle becomes

d

dt
[γ(va)m̃0,a(`)va] = Fa,ext

+

∫
d3x [ρa(t,x)Ea(t,x) + ja(t,x)×Ba(t,x)] , (12.95)

where Fa,ext is the contribution to the equation of motion of the a-th
particle from the other particles, while Ea and Ba are the electric and
magnetic fields generated by the a-th particle itself. In Section 12.2 we
studied this equation with only Fa,ext on the right-hand side, and we
threw away by hand the self-force, i.e., the effect of Ea and Ba on the
a-th particle itself. The new aspect of this computation is that we now
take it into account explicitly, and we will see how, eventually, the result
of Section 12.2 can be justified.
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These self-fields are given by

Ea = −∇φa − ∂tAa , (12.96)

Ba = ∇×Aa , (12.97)

where φa and Aa are, respectively, the scalar and vector potentials gen-
erated by the particle a. From eqs. (12.1) and (12.2), in the Lorenz
gauge they are given by

φa(t,x) =
1

4πε0

∫
d3x′

ρa(t− |x− x′|/c,x′)
|x− x′| , (12.98)

Aa(t,x) =
1

4πε0

1

c2

∫
d3x′

ja(t− |x− x′|/c,x′)
|x− x′| . (12.99)

We consider first the contribution to the self-force in eq. (12.95) coming
from the electric field, up to 1PN order. Expanding eq. (12.98) up to
1PN, and working in components, the contribution of the scalar potential
to the right-hand side of eq. (12.95) is

∫
d3x ρa(t,x) [−∂iφa(t,x)] = − 1

4πε0

∫
d3xd3x′ ρa(t,x)

×∂i
[
ρa(t− |x− x′|/c,x′)

|x− x′|

]

= − 1

4πε0

∫
d3xd3x′ ρa(t,x)

×∂i
[
ρa(t,x′)
|x− x′| −

1

c
∂tρa(t,x′) +

|x− x′|
2c2

∂2
t ρa(t,x′) + . . .

]
. (12.100)

The first term of this expansion is the Newtonian self-force, since it is the
only term that survives in the limit c → ∞ (even when we will include
the contribution due to A, since A starts from order 1/c2). However,
computing explicitly the derivative ∂i = ∂/∂xi,

∫
d3xd3x′ ρa(t,x)∂i

ρa(t,x′)
|x− x′| = −

∫
d3xd3x′ ρa(t,x)

xi − x′i
|x− x′|3 ρa(t,x′) ,

(12.101)
and this expression vanishes, independently of the functional form of the
charge density ρa(t,x), since the integrand is odd under the exchange
x↔ x′ (while, since the integrals in d3x and d3x′ can be extended to all
R3, the integration domain is invariant under such exchange). Therefore,
the Newtonian self-force vanishes, for any extended charge distribution.

Consider now the second term in the expansion in eq. (12.100). This
is formally a term of order 0.5PN, since it is proportional to 1/c, but
again it vanishes, simply because ∂i is the derivative with respect to x,
and it acts on ∂tρa(t,x′), which depends on x′ but not on x. The third
term, which is a 1PN correction, requires a more involved computation.
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We manipulate it as follows:
∫
d3x ρa(t,x) [−∂iφa(t,x)]1PN

= − 1

4πε0

1

2c2

∫
d3xd3x′ ρa(t,x) (∂i|x− x′|) ∂2

t ρa(t,x′)

= − 1

4πε0

1

2c2

∫
d3xd3x′ ρa(t,x)

xi − x′i
|x− x′|∂t

(
−∂j

k
a(t,x′)
∂x′k

)

= − 1

4πε0

1

2c2

∫
d3xd3x′ ρa(t,x)

(
∂

∂x′k

xi − x′i
|x− x′|

)
∂tj

k
a(t,x′)

=
1

4πε0

1

2c2

∫
d3xd3x′ ρa(t,x)∂tj

k
a(t,x′)

× 1

|x− x′|

[
δik −

(xi − x′i)(xk − x′k)

|x− x′|2
]
, (12.102)

where, to go from the second to the third line, we used the continuity
equation (3.30), and in the next line we integrated ∂/∂x′k by parts.

The 1PN contribution to the electric field coming from Aa is obtained
neglecting retardation in ja(t− |x− x′|/c,x′) in eq. (12.99), since Aa is
already proportional to 1/c2, so is given by

−∂tAka(t,x) = − 1

4πε0

1

c2

∫
d3x′

∂tj
k
a(t,x′)
|x− x′| . (12.103)

Putting together the contribution from −∇φa and the contribution of
−∂tAa to the electric field Ea, we find that, at 1PN order,

[∫
d3x ρa(t,x)Eia(t,x)

]

1PN

=

= − 1

4πε0

1

2c2

∫
d3xd3x′ ρa(t,x)∂tj

k
a(t,x′)

× 1

|x− x′|

[
δik +

(xi − x′i)(xk − x′k)

|x− x′|2
]
. (12.104)

The above steps are valid for a generic function j(t,x). We now insert
the modelization (12.93). Then, in eq. (12.104),

∂tja(t,x′) = ρa(t,x′)v̇a(t) + [∂tρa(t,x′)] va(t)

= ρa(t,x′)v̇a(t)− [∇x′ ·ja(t,x′)] va . (12.105)

The second term on the right-hand side is of order v2
a, since ja is pro-

portional to va, so

∂tja(t,x′) = ρa(t,x′)v̇a(t) +O
(
v2
a

)
. (12.106)

We insert this into eq. (12.104) and we limit ourselves to the contribu-
tions linear in va. This will be sufficient to understand how renormaliza-
tion works for the spatial momentum, and can in principle be extended
order by order to include higher powers of va (in the explicitly covariant
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computation that we will perform later, all these higher-order terms will
be automatically included). Then, we get

[∫
d3x ρa(t,x)Eia(t,x)

]

1PN

=

= − 1

4πε0

1

2c2
v̇ja(t)

∫
d3xd3x′ ρa(t,x)ρa(t,x′)

× 1

|x− x′|

[
δij +

(xi − x′i)(xj − x′j)
|x− x′|2

]
. (12.107)

It is convenient to choose ρ(t,x) so that it is spherically symmetric, i.e.,
invariant under rotations around the center of the distribution, defined
by eq. (12.90).17 Then, by symmetry, the integral in eq. (12.107) can

17Recall that ρ(t,x) is just a regular-
ization of the Dirac delta. Our regular-
ization has been defined by the condi-
tion that the Fourier modes with |k| >
π/` vanish, and this condition is in-
variant under spatial rotations. We
are now further requiring that the non-
vanishing Fourier modes ρ̃(t,k) actu-
ally depend only on |k|, rather than of
the full vector k, so as to give a ro-
tationally invariant distribution ρ(t,x).
This assumption is just useful to sim-
plify the computation. In any case,
any deviation from spherical symmetry
would give vanishing contribution when
removing the cutoff and approaching
the Dirac delta distribution, which is
spherically symmetric.

only be proportional to δij , since, if ρa(t,x) and ρa(t,x′) are spheri-
cally symmetric, there are no privileged directions inside the integral.18

18We can check this explicitly, choos-
ing a reference frame so that, at a
given time t, xa(t) = 0, so rota-
tions around xa are the same as ro-
tations around the origin of the refer-
ence frame. Then, a spherically sym-
metric function ρa(t,x) is invariant un-
der any transformation that leaves |x|
invariant; one such transformation is
x = (x, y, z)→ (−x, y, z). If, in the in-
tegral in eq. (12.107), we transform si-
multaneously x = (x, y, z)→ (−x, y, z)
and x′ = (x′, y′, z′) → (−x′, y′, z′),
the factors ρa(t,x), ρa(t,x′) are invari-
ant. Also |x − x′| is invariant, since
|x − x′|2 = (x − x′)2 + (y − y′)2 +
(z − z′)2 is unchanged if, simultane-
ously, x → −x and x′ → −x′. In con-
trast, the term (xi − x′i)(xj − x′j) with
i = 1 and j 6= 1 changes sign; there-
fore, the part of the integrand propor-
tional to (xi−x′i)(xj−x′j) is odd under
this transformation, and its contribu-
tion to the integral vanishes. Similarly,
all other terms with i 6= j vanish. When
i = j, in contrast, the result is indepen-
dent of the value of i, again because of
rotational symmetry: the integral with
i = j = 1, which involves (x − x′)2, is
the same as that with i = j = 2, which
involves (y−y′)2 or that with i = j = z,
which involves (z − z′)2.

Therefore, in the integrand, we can replace

(xi − x′i)(xj − x′j)→
1

3
|x− x′|2 δij , (12.108)

and we get
[∫

d3x ρa(t,x)Ea(t,x)

]

1PN

= − 1

4πε0

2

3

v̇a(t)

c2

∫
d3xd3x′

ρa(t,x)ρa(t,x′)
|x− x′| .

(12.109)
If we replace here ρa(t,x) and ρa(t,x′) by Dirac deltas, the integral
diverges. However, this is the same integral that we met in Section 5.2.2,
and with our regularization in which we set to zero the Fourier modes
with |k| < π/`, it is given by [compare eqs. (5.25) and (5.31)]

1

2

∫
d3xd3x′

ρa(t,x)ρa(t,x′)
|x− x′| =

q2
a

`
. (12.110)

Inserting eq. (12.110) into eq. (12.109), we get
[∫

d3x ρa(t,x)Ea(t,x)

]

1PN

= −4

3

(
1

4πε0

q2
a

`

)
v̇a(t)

c2
. (12.111)

Since we are limiting ourselves to terms linear in va, the contribution
of the term ja ×Ba in eq. (12.95) can be neglected, since Ba, as Aa, is
proportional to ja and therefore ja×Ba is quadratic in ja and therefore
in va. Then, to linear order in va, the equation of motion (12.95) reads

m̃0,a(`)v̇a = −4

3

(
1

4πε0

q2
a

`

)
v̇a
c2

+ Fa,ext . (12.112)

We can rewrite this as[
m̃0,a(`) +

4

3

(
1

4πε0c2

)
q2
a

`

]
v̇a = Fa,ext , (12.113)

and we see that the self-force term can be reabsorbed into a renormal-
ization of the mass, choosing the bare parameter m̃0,a(`) so that

ma = m̃0,a(`) +
4

3

(
1

4πε0c2

)
q2
a

`
, (12.114)
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where ma is the observed value of the mass of the charged particle, say
of the electron.

Note that the self-field contribution to the momentum differ by a
factor of 4/3 from the self-field contribution to the rest energy, resulting
in the different 4/3 factor between the second term on the right-hand
sides of eqs. (12.86) and (12.114). As we already anticipated, within
the renormalization logic, there is nothing surprising about it. Simply,
we have broken Lorentz invariance with the regularization, and we must
then use two different bare parameters m0,a(`) and m̃0,a(`), associated
with energy and to momentum, respectively, in order to recover the same
value of the renormalized mass ma.

The conclusion of this section is that the “naive” treatment of Sec-
tion 12.2, in which the self-energy term where simply discarded when
studying the 1PN dynamics, eventually gives the correct result because,
when the self-energy terms are correctly taken into account, to 1PN
order they can just be reabsorbed into a renormalization of the mass.
This requires first a regularization of the theory. If, as we have done
in this section, we use a regularization that breaks Lorentz invariance,
then we must use two different bare mass terms for energy and for spa-
tial momentum, in order to reabsorbe the divergences. However (despite
the fact that the extra 4/3 factor between eqs. (12.86) and (12.114) has
created often confusion, to the extent of being called “the infamous 4/3
factor”) within a proper approach based on regularization and renormal-
ization this is just a minor technical point, of no special consequence.
In Section 12.3.5 we will show how to regularize and renormalize the
theory in a fully Lorentz-covariant manner, and then a single bare mass
term will be sufficient to renormalize the four-momentum.

To conclude this section we observe that, in the classical theory that
we are considering, we can equivalently discuss renormalization at the
level of the equations of motion, as we have done, or at the level of the
action. To make contact with the quantum field theory treatment, where
one rather works at the level of the action, it is useful to show explicitly
the form of a bare action that corresponds to the introduction of two
different bare mass terms for the rest energy and for spatial momentum.
Consider the bare action (suppressing for simplicity the label a of the
particle)

Sbare = −m0(`)c2
∫
dτ − 1

2
[m0(`)− m̃0(`)]

∫
dt v2

+q

∫
dτ uµ(τ)Aµ[x(τ)] . (12.115)

The first and third terms were already given in eq. (8.69). The first
term describes the action of a free particle, with m now replaced by a
bare parameter m0(`), and the third describes its interaction with the
electromagnetic field.19 In particular, the third term is responsible for19In a full quantum setting, also the

charge q should be replaced by a bare
parameter q0(`) and renormalized, al-
though this will not concern us at the
classical level.

the form (8.1, 8.2) of the charge and current densities (or, equivalently,
of the covariant expression (8.3) for jµ), as we saw in eq. (8.73). Sup-
plemented with the regularization |k| < π/` on the Fourier modes of the
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Dirac delta, this action was the starting point of our computation. The
second term in eq. (12.115) is proportional to the non-relativistic action
of a free particle and is therefore a counterterm which is not Lorentz-
invariant. The corresponding Lagrangian, limiting ourselves to the free
part, is

L = −m0(`)c2
√

1− v2

c2
− 1

2
[m0(`)− m̃0(`)]v2 . (12.116)

Keeping the terms up to order v2 (which are enough to compute the rest
energy and the term in the momentum linear in the velocity), we have

L = −m0(`)c2 +
1

2
m̃0(`)v2 +O(v4) . (12.117)

Therefore the bare rest energy is still Erest = m0(`)c2, while, to linear
order in v, the bare momentum of a free particle is p = δL/δv = m̃0(`)v.

12.3.3 Radiation reaction at 1.5PN order

As we have discussed in Section 12.1, the radiation field itself cannot be
computed within the PN expansion: radiation appears in the far zone,
while the PN expansion is only valid in the near zone. However, the
PN expansion allows us to study the dynamics of the system of charges
in the near zone so, from the PN expansion, we must be able to see
that the mechanical energy of the system of charges decreases, so as to
compensate for the energy that is carried away by the electromagnetic
waves radiated by the system. In Section 12.2 we found that, up to 1PN
order, the dynamics of a system of point particles is conservative. The
existence of dissipative effects can be found by pushing the PN expansion
up to 1.5PN order, i.e., up to terms proportional to 1/c3. This could
have already been anticipated from the fact that the power radiated by
a non-relativistic charge is proportional 1/c3, as we see from Larmor’s
formula (10.148), while its relativistic generalization (10.156) has a more
complicated dependence on c that, again, when expanded in powers of
1/c, starts with the O(1/c3) Larmor’s term.

In this section we then compute the 1.5PN contribution to the gauge
potentials, and therefore to the equations of motion. In Section 12.3.4
we will show how a covariantization of the result gives the expression
for radiation reaction to all orders, leading to the so-called Abraham–
Lorentz–Dirac (ALD) equation. In Section 12.3.5 we will finally show
how mass renormalization and the ALD equation can be derived in a
unified treatment, with mass renormalization obtained from an explicitly
Lorentz-invariant computation.

Given that we are looking for dissipative terms, it will be important to
compute the effect on the equations of motion starting from the Lorentz
force equation, rather than working at the level of the action. We then
expand eqs. (12.1) and (12.2) to 1.5PN order, and insert them in the
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equations of motion. The 1.5PN contributions are

φ1.5PN(t,x) = − 1

4πε0

1

6c3
∂3
t

∫
d3x′ ρ(t,x′)|x− x′|2 , (12.118)

A1.5PN(t,x) = − 1

4πε0

1

c3
d

dt

∫
d3x′ j(t,x′) . (12.119)

Using eq. (11.102), the vector potential can also be rewritten in terms
of the electric dipole moment d(t) as

A1.5PN(t,x) = − 1

4πε0

1

c3
d̈(t) . (12.120)

Note that A1.5PN(t,x) actually depends only on t, and is independent
of x. To compute the corresponding electric field we observe that

∇φ1.5PN = − 1

4πε0

1

6c3
∂3
t

∫
d3x′ ρ(t,x′)2(x− x′)

= − 1

4πε0

1

3c3
∂3
t [Qx− d(t)]

=
1

4πε0

1

3c3
...
d(t) , (12.121)

where we observed that the term Qx is independent of time and gives
zero when we apply ∂t to it. Then

E1.5PN(t,x) = −∇φ1.5PN − ∂tA1.5PN

=
1

4πε0

2

3c3
...
d(t) . (12.122)

For the magnetic field we have B1.5PN(t,x) = 0 since A1.5PN is inde-
pendent of x, and therefore ∇×A1.5PN = 0. Putting these expressions
in the Lorentz force equation, we get the 1.5PN contribution to the
equation of motion on the a-th particle,

(
dpa
dt

)

1.5PN

=
1

4πε0

2qa
3c3

...
d(t) , (12.123)

where, as usual, pa = γamava. Combining this with eq. (12.50), we can
write the equation of motion, up to 1.5PN order, in the form

ma
dva
dt

= (FN + F1PN + F1.5PN)a , (12.124)

where

(FN )a = − 1

4πε0

N∑

b6=a

qaqb
r2
ab

r̂ab , (12.125)

is the Newtonian force on the a-th particle, (F1PN)a is obtained collect-
ing all the terms proportional to 1/c2 in eq. (12.50), and

(F1.5PN)a =
1

4πε0

2qa
3c3

...
d(t) . (12.126)
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The notation in eq. (12.124) is suggestive of the Newtonian equation of
motion F = ma. The analogy, however, is purely formal. For instance,
in F1PN we have collected all terms proportional to 1/c2 in eq. (12.50),
including the term that comes from the expansion of γa in p = γamava,
which has nothing to do with the interaction of the a-th particle with
the other particles. This notation, however, will be useful in the steps
that we perform below.

We now compute how the energy changes in time. First of all, we must
define energy in this context. This is done by looking at the conservative
part of the dynamics (as obtained eliminating the gauge fields in favor
of xa(t) and va(t) at the level of the action), so that we can define a
Lagrangian and the corresponding Hamiltonian. In our case, since we
are working up to 1.5PN order, the conservative dynamics include the
terms up to 1PN order, and the Hamiltonian is given by eq. (12.71). We
can then write the Hamiltonian as

H = HN +H1PN , (12.127)

where

HN =

N∑

a=1

P 2
a

2ma
+

1

8πε0

N∑

a=1

N∑

b 6=a

qaqb
rab

, (12.128)

while H1PN can be obtained writing Pa as in eq. (12.66), and then
collecting the terms 1/c2 terms in eq. (12.71). So, the corresponding
energy is

E = EN + E1PN , (12.129)

where the Newtonian part is given by the usual form

EN =
N∑

a=1

1

2
mav

2
a + U , (12.130)

with the potential energy U given by

U =
1

8πε0

N∑

a=1

N∑

b6=a

qaqb
rab

, (12.131)

while E1PN can be written in terms of positions and velocities (rather
than positions and momenta) by using eq. (12.66) in HN (and using
simply Pa = mava in H1PN) and collecting the terms proportional to
1/c2. We now write

dE

dt
=

d

dt

[
N∑

a=1

1

2
mav

2
a + U

]
+
dE1PN

dt

=

N∑

a=1

d(mava)

dt
·va +

dU

dt
+
dE1PN

dt

=

N∑

a=1

(FN + F1PN + F1.5PN)a ·va +
dU

dt
+
dE1PN

dt
, (12.132)
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where, in the last line, we used eq. (12.124). The crucial point, now, is
that, as we have seen, the dynamics up to 1PN order is conservative, so
E = EN + E1PN is conserved if we use the equations of motion up to
1PN order, i.e., dE/dt = 0 when F1.5PN is not included in the equation.
Therefore,

N∑

a=1

(FN + F1PN)a ·va +
dU

dt
+
dE1PN

dt
= 0 . (12.133)

Then, eq. (12.132) gives

dE

dt
=

N∑

a=1

(F1.5PN)a ·va . (12.134)

Note that, formally, (F1.5PN)a ·va is the same as the work that would
be made by a Newtonian force F1.5PN on the non-relativistic particle a,
in the context of non-relativistic mechanics. Once again, the analogy
is purely formal, and comes from the fact that we have written the
equation of motion, including non-relativistic corrections up to order
(v/c)3, in the form (12.124), where FN +F1PN formally plays the role of
a conservative Newtonian force while F1.5PN of a dissipative force.20,2120Indeed, in all standard textbook

derivations, after having obtained
eq. (12.123), it is simply stated, with-
out much explanation, that the term
F1.5PN on the right-hand side is a force,
that makes a work Wa = (F1.5PN)a ·va
on the particle a. While this eventu-
ally leads to the correct answer, with-
out the more explicit steps that we have
performed it would be unclear why one
should use a non-relativistic formula
such as W = F·v in our relativistic
context. The derivation that we have
provided also makes it clear that the
energy that appears in dE/dt, when we
compute radiation reaction up to 1.5PN
order, is the energy obtained from the
conservative part of the dynamics up to
1PN order.
21One might ask what happens if we
rather insert eqs. (12.118) and (12.120)
into the action (12.16), and carry
out the same steps that we did in
eqs. (12.51)–(12.55) when we computed
the 1PN Lagrangian. The result is that
the resulting 1.5PN contribution to the
Lagrangian is a total time derivative,
and therefore does not affect the equa-
tions of motion. As we already dis-
cussed, the dissipative term cannot be
obtained from a Lagrangian, and we
must rather eliminate the gauge fields
at the level of the equations of motion.

Inserting eq. (12.126) into eq. (12.134) we get

dE

dt
=

1

4πε0

2

3c3
...
d(t)·

N∑

a=1

qava(t) . (12.135)

However, qava = ḋa, and
∑N
a=1 ḋa = ḋ, where d is the total dipole

moment of the system. Therefore, we can rewrite eq. (12.135) as

dE

dt
=

1

4πε0

2

3c3
...
d·ḋ

=
1

4πε0

2

3c3

[
d

dt
(ḋ·d̈)− |d̈|2

]
. (12.136)

The second term in eq. (12.136) corresponds precisely to minus the en-
ergy radiated by the Larmor formula, eq. (10.148), and reproduces the
fact that the energy of the system decreases because it radiates elec-
tromagnetic waves. To deal with the first term, different options are
possible. One possibility is to average this equation over a time T . De-
noting this average with angular brackets, we have, in particular,

〈 d
dt

(ḋ·d̈)〉 =
1

T

∫ T/2

−T/2
dt

d

dt
(ḋ·d̈) . (12.137)

The right-hand side vanishes if d(t) is a periodic function with period
T , or if we send T → ∞ with ḋ(t) that vanishes for t → ±∞. In that
cases, we get

〈dE
dt
〉 = − 1

4πε0

2

3c3
〈|d̈|2〉 . (12.138)
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In this way, energy conservation is recovered, at least in an averaged
form: eq. (12.138) shows that the energy of the system of charges de-
creases, exactly in such a way to compensate (when averaged over one
period of the source motion) the energy radiated in electromagnetic
waves, which, to the order 1/c3 to which we are working, is given by
the Larmor formula (10.148).22 22Note that, in the Larmor formula

(10.148), we used t to denote the time
of a distant observer, and tret was the
retarded time, i.e., the time at which
the radiation was produced, which cor-
responds to the variable that we are de-
noting by t here.

The need for a time averaging, however, is not really satisfying; classi-
cally, we expect that energy conservation should be valid instantaneously
(and should not be restricted to periodic motions, or to situations where
the source becomes static as t → ±∞ and energy conservation is only
recovered as an average over a time T → ∞). However, we can get rid
of the averaging procedure if we define

E1.5PN = − 1

4πε0

2

3c3
ḋ·d̈ (12.139)

= − 1

4πε0

2

3c3

N∑

a,b=1

qaqbv̇a·v̈b .

Since this quantity is proportional to 1/c3, we can interpret it as a
1.5PN contribution to the energy. Recalling that, on the left-hand side
of eq. (12.136), E = EN + E1PN, we can then rewrite eq. (12.136) as

d

dt
(EN + E1PN + E1.5PN) = − 1

4πε0

2

3c3
|d̈|2 . (12.140)

In this way, the 1.5PN dynamics produces both a conservative term, that
contributes to the energy and is localized in the near region, and the
dissipative term that describes the loss of energy to radiation escaping
at infinity.23 23Observe that, for a conservative sys-

tem, described by a Lagrangian, there
is a natural and unique definition of the
energy, in terms of the Hamiltonian cor-
responding to the given Lagrangian. As
we have seen (see Note 7 on page 304),
this Hamiltonian is automatically con-
served on the solutions of the equa-
tions of motion. For a dissipative sys-
tem there is no such unique definition
of energy. However, having at our dis-
posal an energy balance condition such
as eq. (12.140), the natural definition is
to include in the energy all terms that
appear inside the time derivative on the
left-hand side of eq. (12.140).
Also note that E1.5PN is itself a total
time derivative, since eq. (12.139) can
be rewritten as

E1.5PN = −
1

4πε0

1

3c3
d

dt
|ḋ|2 .

(12.141)

It is interesting to observe that the energy balance equation (12.140)
has been obtained using eq. (12.126) for the force (F1.5PN)a acting on
the a-th particle and, in this expression, the dipole moment d is the
one obtained from the total charge density ρ, without excluding the
contribution from the a-th particle itself, on which the force acts. In this
way we correctly recovered the power radiated to order 1/c3, as given by
Larmor’s formula. If we had excluded the self-term by hand, as we did
when computing the 1PN dynamics in Section 12.2, in eq. (12.126) d(t)
would have been replaced by

∑
b 6=a db(t), i.e., by d(t)− da(t), and this,

when inserted into eq. (12.134), would not have reproduced correctly the
Larmor formula. Rather, on the right-hand side of eq. (12.140), instead
of |d̈|2, we would have found the combination (|d̈|2 −∑a |d̈a|2). We
see that the self-energy terms are indeed physical, and are needed to
obtain the correct radiation reaction force. In the computation to order
1PN that we performed in Section 12.2 we had arbitrarily thrown them
away. However, this “mistake” turned out to be without consequences
because, as we have shown in Section 12.3.2, once one includes them,
their contribution to the 1PN dynamics can just be reabsorbed into a
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mass renormalization. We see, however, that at 1.5PN order they give
a finite contribution, which is essential to recover the correct energy
balance equation. Also note that, since this 1.5PN contribution is finite,
we could compute it without specifying a regularization procedure.

Another comment concerns the fact that radiation reaction first ap-
pears at order 1/c3, i.e., is associated with an odd power of 1/c. This
is related to time reversal invariance. As we showed in Section 3.4,
Maxwell’s equations are invariant under time reversal. However, as we
already discussed (see in particular Note 39 on page 86), the symmetries
of the equations are not necessarily the same as the symmetries of their
solutions. The other option is that we have a family of solutions, that
transform into each other under the given symmetry transformation. In
the case of a discrete transformation such as time reversal, t → −t,
this means that we could have two solutions, that transform into each
other under time reversal. This is indeed what happens when solving an
equation such as 2Aµ = 0, since, as we have seen in Section 10.1, the
d’Alembertian operator has two Green’s functions, the advanced and the
retarded ones, that are exchanged under time reversal, as we see from
eq. (10.24). In our computations we have explicitly broken time reversal
invariance by selecting, for physical reasons, the retarded Green’s func-
tion. Consider now a system of charges, evolving under their mutual
interaction. As we have seen, they will emit outgoing electromagnetic
waves and, correspondingly, they lose energy. The time-reversal of this
solution is obtained “running the film backward,” and corresponds to the
rather strange situation in which incoming electromagnetic radiation im-
pinges on the system of charges and pumps energy into it, furthermore
exactly canceling any outgoing radiation generated by these accelerated
charges (just as, in the original setting, there was no incoming radiation
on the system). In practice, this is a solution that we will never observe
in Nature because it requires incredibly fine-tuned initial conditions on
the incoming radiation, but still it is a solution of Maxwell’s equations
coupled to the sources. Exchanging the retarded with the advanced so-
lution must therefore result in a change of sign of the radiation-reaction
force, since, in the time-reversed situation, it will have to describe an
energy gain rather than an energy loss. However, the exchange of the ad-
vanced and retarded Green’s functions (10.24) can be formally obtained
with the replacement c → −c. This means that the radiation-reaction
force is necessarily associated with odd powers of 1/c, i.e., with half-
integer orders of the PN expansion. As we saw, the scalar potential
vanishes at 0.5PN order because of charge conservation, and the vector
potential starts from 1PN order, so the first order at which radiation
reaction could have appeared is 1.5PN, as indeed we have found.2424In gravity, as described by Gen-

eral Relativity, dipole radiation is ab-
sent and the leading term in the ra-
diated power is given by the (mass)
quadrupole radiation, and is propor-
tional to 1/c5. Correspondingly, also
the back-reaction force starts at 2.5PN
order. See Maggiore (2007), Sec-
tion 5.1.7.

12.3.4 The Abraham–Lorentz–Dirac equation

In eq. (12.126) we found the radiation reaction force at leading order in
v/c, which turned out to be the 1.5PN order. As we saw, this repro-
duces the energy lost to electromagnetic waves by a system of charges,
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as predicted by Larmor’s formula (10.148). However, we found in Sec-
tion 10.6.1 that Larmor’s formula is just the power radiated to lowest
non-trivial order in v/c, and the full result for the power radiated by a
point charge, to all orders in v/c, is given by eq. (10.156), or, in covariant
form, by eq. (10.169). It must therefore be possible to find an expression
for the radiation reaction force, valid to all orders in v/c, which corre-
sponds to the full energy loss (10.156). To obtain it, one could compute
explicitly the exact self-field generated by a particle, to all orders in
v/c. We will follow this route in Section 12.3.5, where we will see that
this is indeed possible but the computation, while instructive, is quite in-
volved. A much simpler procedure, that we follow in this section, consists
in looking for a covariant generalization of eqs. (12.124) and (12.126).
We focus on a given single particle a, and we rewrite eqs. (12.124) and
(12.126) separating the total dipole moment d(t) =

∑N
b=1 db(t)(t) as

d(t) = da(t) +
∑N
b6=a db(t), and we reabsorb the term

∑N
b 6=a db into the

external force exerted on particle a. Then, writing da(t) = qaxa(t), so
that

...
da(t) = qav̈a(t), we rewrite eqs. (12.124) and (12.126) as

d

dt

[(
1 +

v2
a

2c2

)
mava

]
=

1

4πε0

2q2
a

3c3
d2va
dt2

+ Fext , (12.142)

where we also included the expansion of γ(va) to order v2
a/c

2, that in
eq. (12.124) was formally included in F1PN, back to where it belongs, as
a multiplicative factor for mava.

We now proceed with the covariantization. In the absence of the
backreaction force, the covariantization of eq. (12.142) is just given by
eq. (8.62) with Fµν = Fµνext, i.e.,

mau̇
µ = qaF

µν
ext[xa(τ)]ua,ν , (12.143)

where the dot denotes the derivative with respect to τ , and we have
written explicitly that, in the Lorentz force equation, Fµνext(x) must be
evaluated on the particle world-line. We next observe that, on the right-
hand side of eq. (12.142), d2via/dt

2 is naturally covariantized as the spa-
tial component of üµa , where the dot denotes the derivative with respect
to proper time τa of the particle. However, this covariantization is not
unique, since any expression of the form üµa + αuµa , with α an arbitrary
function of uνa, u̇

ν
a, ü

ν
a and possibly of higher-order derivatives, is such

that its µ = i component that reduces to d2via/dt
2 in a frame where the

particle a is instantaneously at rest. This leads us to

mau̇
µ
a =

1

4πε0

2q2
a

3c3
[üµa + α(uνa, u̇

ν
a, ü

ν
a, . . .)u

µ
a ] + qaF

µν
ext[xa(τ)]ua,ν .

(12.144)
Since uµa is the only four-vector whose spatial components vanish in the
rest frame of the charge, no further freedom is possible. The function
α(uν , u̇ν , üν , . . .) can then be fixed by observing that, taking the deriva-
tive with respect to τ of the relation uµu

µ = −c2, it follows the identity
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uµu̇
µ = 0. Then, multiplying eq. (12.144) by ua,µ, we get the condition

0 = ua,µ [üµa + α(uνa, u̇
ν
a, ü

ν
a, . . .)u

µ
a ]

= ua,µü
µ
a − c2α(uνa, u̇

ν
a, ü

ν
a, . . .) , (12.145)

and therefore

α(uνa, u̇
ν
a, ü

ν
a, . . .) =

1

c2
uνaüa,ν . (12.146)

Inserting this into eq. (12.144), we finally get

mau̇
µ
a =

1

4πε0

2q2
a

3c3

(
üµa +

uνaüa,ν
c2

uµa

)
+ qaF

µν
ext[xa(τ)]ua,ν . (12.147)

We can rewrite eq. (12.147) in an equivalent form by taking one more
derivative of the identity uµu̇

µ = 0, to get u̇µu̇
µ + uµü

µ = 0, and there-
fore

uµü
µ = −u̇2 , (12.148)

so eq. (12.147) can also be rewritten as2525Observe that the relative sign among
the two terms in parenthesis depends
on our signature ηµν = (−,+,+,+).
With the opposite signature, in
eq. (12.147) one would have the
combination

[
üµa − (uνaüa,ν/c

2)uµa
]
,

and in eq. (12.149) would appear the
combination

[
üµa + (u̇2a/c

2)uµa
]
.

mau̇
µ
a =

1

4πε0

2q2
a

3c3

(
üµa −

u̇2
a

c2
uµa

)
+ qaF

µν
ext[xa(τ)]ua,ν .

(12.149)
Equivalently, eq. (12.147) can also be written as

mau̇
µ
a =

1

4πε0

2q2
a

3c3

(
ηµν +

uµau
ν
a

c2

)
üa,ν + qaF

µν
ext[xa(τ)]ua,ν ,

(12.150)
which explicitly displays the tensor structure (ηµν + uµau

ν
a/c

2), which is
transverse to ua,µ. Equation (12.150), or any of its equivalent forms, is
called the Abraham–Lorentz–Dirac (ALD) equation. Its non-relativistic
limit, including both corrections of order 1/c2 and 1/c3, is given by
eq. (12.142). Actually, in the non-relativistic limit, if one is interested in
the energy loss of the particle, one can keep only the leading dissipative
effect, which is the term 1/c3, neglecting the correction of order 1/c2 to
the conservative dynamics, and write

ma
dva
dt

=
1

4πε0

2q2
a

3c3
d2va
dt2

+ Fext , (12.151)

which is called the Abraham–Lorentz equation.26 In terms of the four-

26Equation (12.151) was first found by
Lorentz, while the relativistic expres-
sion was first found by Abraham in
1904, so the year before Einstein’s first
paper on Special Relativity. Despite
the fact that Special Relativity was yet
to be formulated, he could get a rela-
tivistic result by using Maxwell’s equa-
tions (which, as we now know, im-
plicitly contain Special Relativity!), see
Rohrlich (2000) for a historical discus-
sion. The covariant form of the equa-
tion was first explicitly derived by Dirac
in 1938. In Section 12.3.5 we will pro-
vide a covariant derivation, conceptu-
ally along the lines of Dirac’s deriva-
tion, although somewhat different tech-
nically.

momentum pµa , and writing explicitly the dot as d/dτ , eq. (12.149) reads

dpµa
dτ

=
1

4πε0

2q2
a

3mac3
d2pµa
dτ2

− 1

4πε0

2q2
a

3m3
ac

5

(
dpa,ν
dτ

dpνa
dτ

)
pµa

+
qa
ma

Fµνext[xa(τ)]pa,ν . (12.152)
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Comparing with eq. (10.169) we see that the second term,

Fµrad ≡ −
1

4πε0

2q2
a

3m3
ac

5

(
dpa,ν
dτ

dpνa
dτ

)
pµa , (12.153)

is precisely the negative of the four-momentum radiated by a point parti-
cle, to all orders in v/c. This term, therefore, is a dissipative term in the
equation of motion, that accounts for the loss of energy to electromag-
netic waves, exactly in v/c. Fµrad is therefore called the radiation-reaction
“force” (of course, it is a four-vector, but, following common usage, we
will refer to it as a force, rather than as a “four-force”). The first term,

FµSchott ≡
1

4πε0

2q2
a

3mac3
d2pµa
dτ2

, (12.154)

is called the Schott term. The total self-force, due to the particle self-
field, is therefore the sum of the radiation-reaction term and of the Schott
term,

Fµself = Fµrad + FµSchott . (12.155)

We observe that the Schott term is a total time derivative, so eq. (12.152)
can be rewritten as

d

dτ

(
pµa −

1

4πε0

2q2
a

3mac3
dpµa
dτ

)
= Fµrad +

qa
ma

Fµνext[xa(τ)]pa,ν . (12.156)

To make contact with the discussion of Section 12.3.3, we consider the
first non-vanishing contributions in the non-relativistic limit. Equa-
tions (12.153) and (12.154) give

F 0
Schott =

1

4πε0

2q2
a

3c4
(
v̈a·va + v̇2

a

)
+O

(
1

c6

)
, (12.157)

F 0
rad = − 1

4πε0

2q2
a

3c4
v̇2
a +O

(
1

c6

)
, (12.158)

and

FSchott =
1

4πε0

2q2
a

3c3
v̈a +O

(
1

c5

)
, (12.159)

Frad = O
(

1

c5

)
. (12.160)

Therefore, to lowest order in v/c, the spatial component of eq. (12.152)
becomes

dpa
dt

=
1

4πε0

2q2
a

3c3
v̈a + Fext , (12.161)

and reproduces the Abraham–Lorentz equation (12.151). Note that, in
this equation, to lowest order, only the Schott term contributes. For the
temporal component, writing qava = ḋa, we get

dEa
dt

=
1

4πε0

2

3c3

[(...
da·ḋa + d̈2

a

)
− d̈2

a

]
+ Fext·va . (12.162)
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Inside the bracket, the two terms d̈2
a cancel, giving back the first line of

eq. (12.136) (with
...
d·ḋ replaced by

...
da·ḋa, and all the terms involving

the other particles reabsorbed in the work Fext·va made by the external
force acting on the a-th particle). However, we see that the two sep-
arate contribution from F 0

Schott and F 0
rad correspond to the separation

made in the second line of eq. (12.136). In particular, F 0
Schott is a total

time derivative, and produces the term that we denoted as E1.5PN in
eq. (12.140).

Until this point, everything appears to work very nicely. Pushing
the PN expansion up to 1.5PN order, in Section 12.3.3 we have found
a radiation-reaction force that describes the loss of energy to electro-
magnetic waves, as predicted by the Larmor formula. In this section, we
have found a covariantization of this result, that has provided an (appar-
ently) exact equation, the ALD equation, that describes the self-force to
all orders in v/c, and we have seen that it includes a radiation-reaction
force that reproduces the loss of energy given by the exact relativistic
formula (10.169), plus conservative terms that generalize to all orders
the 1.5PN contribution to the energy, E1.5PN, found in eq. (12.140).
Further examination of the ALD equation, however, reveals an apparent
pathology. The problem is already present in the non-relativistic limit
given by the Abraham–Lorentz equation, so let us discuss it first in this
simpler setting. Introducing the timescale

τa =
1

4πε0

2q2
a

3mac3
, (12.163)

we can rewrite eq. (12.151) as

ma

(
dva
dt
− τa

d2va
dt2

)
= Fext . (12.164)

This equation is of second order in va(t), i.e., of third order in xa(t)
and therefore, to be solved, requires initial conditions on the position,
velocity and acceleration. This is already in contrast with the normal
situation in classical mechanics. Furthermore, consider this equation
when Fext = 0. Then, eq. (12.164) has the obvious solution dva/dt =
0, as we aspect for a free particle not subject to any external force.
However, it is also satisfied if the acceleration aa = dva/dt satisfies

daa
dt

=
1

τa
aa , (12.165)

and this, beside aa = 0, also has the exponentially growing solution

aa(t) = aa(0)et/τa . (12.166)

This solution describes a charged particle that accelerates even in the
absence of an external force, and this acceleration even grows exponen-
tially in time. Such a “self-accelerating” solution is obviously unphysical.
One could simply exclude such solutions by hand (or, e.g., imposing the
boundary condition that the acceleration does not diverge as t → ∞).
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However, it is possible to modify directly the Abraham–Lorentz equation
so that this solution simply does not appear. To this purpose, we recall
from eq. (5.32) that, for an electron with charge q = −e, the quantity

r0 =
1

4πε0

e2

mec2
(12.167)

is called the classical electron radius. Numerically, its value is r0 '
2.8 × 10−15 m, and therefore it represents a scale typical of the realm
of elementary particle physics. The timescale τa introduced above, for
an electron, becomes τ0 = (2/3)(r0/c). It is therefore of order of the
time that light takes to travel across such a small length-scale scale and,
numerically, is of order 6 × 10−24 s. The second term in parenthesis in
eq. (12.164) is comparable to the first only if the typical time-scale over
which the velocity changes in time is of order τa, otherwise it is much
smaller. Such fast variations, implying relativistic speeds over subatomic
distances, necessarily belong to the domain of relativistic quantum me-
chanics and quantum field theory. In all situations where a classical
treatment is justified, the term τav̈a in eq. (12.164) is much smaller
than v̇a. We can then use a perturbative approach, analogous to the
reduction of order discussed in Section 12.2.3: to zero-th order we just
neglect the radiation reaction term, writing simply mav̇a = Fext. We
then use this equation to compute v̈a, so that mav̈a = Ḟext, and we
plug it into eq. (12.164). This gives

ma
dva
dt

= Fext + τa
dFext

dt
. (12.168)

Now, if Fext = 0, the only solution is dva/dt = 0. In the range of validity
of classical electrodynamics, eq. (12.168) is equivalent to eq. (12.164).

The same problem appears in the full relativistic ALD equation, and
the same solution applies. To lowest order eq. (12.150) gives

mau̇
ν
a = qaF

νσ
ext[xa(τ)]ua,σ . (12.169)

Using this to compute üνa, we get

üνa =
qa
ma

(∂ρF
νσ
ext)x=xa(τ) u

ρ
aua,σ +

q2
a

m2
a

ηρσF
νσ
ext[xa(τ)]F ραext[xa(τ)]ua,α .

(12.170)
Inserting this into eq. (12.150) and using the definition (12.163), we get

mu̇µa = qaF
µν
extua,ν + τa

[
qa(∂ρF

µσ
ext)u

ρ
aua,σ (12.171)

+
q2
a

ma
FµρextF

ext
ρσ u

σ
a +

q2
a

mac2
(F ext
ρσ u

σ
a)(F ρνextua,ν)uµa

]
,

where it is understood that Fµνext and ∂ρF
µσ
ext must be computed on the

particle world-line. This is called the Landau–Lifshitz form of the ALD
equation.27 It is the covariant generalization of eq. (12.168), to all orders 27See Landau and Lifschits (1975), Sec-

tion 76.in v/c, and correctly reproduces the fact that u̇µa = 0 when Fµνext = 0.
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12.3.5 Covariant derivation of mass
renormalization and radiation reaction

In the previous sections we have seen that, at 1PN order, the self-field
of a particle produces a divergent contribution, that must be regularized
and is eventually reabsorbed into a mass renormalization while, at 1.5PN
order, appears a radiation-reaction force, to which the particle self-field
gives a finite contribution (that, indeed, we could compute without the
need of introducing a regularization). We have then seen how to com-
pute radiation reaction exactly, to all orders in v/c, by covariantizing
the lowest-order result. In the computation of mass renormalization, we
used a regularization scheme that breaks Lorentz invariance (and that
mimics an extended classical electron model), but we recovered Lorentz
invariance at the level of renormalized quantities, by introducing a coun-
terterm that is not Lorentz invariant. In this section we show that it is
possible to deal with the mass renormalization with a regularization that
respects Lorentz invariance and, by the same computation, to obtain the
ALD equation from a direct evaluation of the self-field on the particle
world-line, without appealing to a covariantization of the lowest-order
result.

We start from the Lorentz-covariant equation of motion (8.62) for a
point particle of charge qa, whose world-line is given by xµa(τ), and we
rewrite it separating explicitly the contribution of the external field and
of the self-field of the particle,

ma,0(`)
duµa(τ)

dτ
= qaF

µν
a,self [xa(τ)]ua,ν(τ) + qaF

µν
ext[xa(τ)]ua,ν(τ) .

(12.172)
We have also anticipated that the mass that appears on the left-hand
side of this equation is still a bare mass, with ` the corresponding cutoff,
and we have stressed that Fµνa,self and Fµνext must be computed on the
particle world-line. We then focus on the contribution of the self-field,
which is given by

Fµνa,self = ∂µAνa,self − ∂νAµa,self , (12.173)

where Aµa,self is the gauge field generated by the a-th particle itself. From
eq. (10.10),

Aµa,self(x) = − 1

ε0c2

∫
d4x′Gret(x− x′)jµa (x′) , (12.174)

where Gret(x−x′) is the retarded Green’s function, that we write in the
explicitly Lorentz-invariant form (10.41),

Gret(x− x′) = − 1

2π
θ(x0 − x′0) δ[(x− x′)2] . (12.175)

The four-current jµa (x) associated with a point particle was given in
eq. (8.3), that we rewrite here as

jµa (x) = qa

∫ ∞

−∞
cdτ ′ uµa(τ ′)δ(4)[x− xa(τ ′)] . (12.176)
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Inserting eq. (12.176) in eq. (12.174), we get

Aµa,self(x) = − qa
ε0c

∫ ∞

−∞
dτ ′ uµa(τ ′)

∫
d4x′Gret(x− x′)δ(4)[x′ − xa(τ ′)] .

(12.177)
If we now carry out the integral over d4x′ using δ(4)[x′ − xa(τ ′)] we get

Aµa,self(x) = − qa
ε0c

∫ ∞

−∞
dτ ′Gret[x− xa(τ ′)]uµa(τ ′) , (12.178)

and (as we will see explicitly in the following computation), if we fi-
nally evaluate this expression in xµ = xµa(τ), we find a divergence in
Aµa,self [xa(τ)], or in the corresponding result for Fµνa,self [xa(τ)], when the
integration variable τ ′ is equal to τ , due to the Dirac delta on the past
light cone that appears in eq. (12.175). From this point of view, the
origin of the divergence that we found in Section 12.3.2 is therefore the
“collision” between the term δ(4)[x′ − xa(τ ′)] in the current (12.176),
and the term δ[(x − x′)2] in the Green’s function. We therefore need
to regularize eq. (12.177). The computation that we have described in
Section 12.3.2 was based on the idea of regularizing the current jµa (x)
given in eq. (12.176), replacing δ(4)[x′−xa(τ ′)] with a smoothed version
of the Dirac delta, which, in practice, we did by expanding it in Fourier
modes and setting to zero the modes with |k| > π/`. This regularization
corresponds to the intuitive idea of an extended classical electron model,
although we have repeatedly stressed that it must only be considered as
a regularization scheme, and the limit ` → 0 must eventually be taken,
canceling the divergence against an `-dependence of the bare parame-
ters. As we have discussed, this regularization is not Lorentz invariant,
but Lorentz invariance is recovered for the renormalized quantities by
introducing two different bare masses for the temporal and spatial com-
ponents of pµ or, equivalently, by adding to the bare action a counterterm
which is not Lorentz invariant (and, in fact, is simply proportional to
the non-relativistic action of a free particle).

An alternative procedure, that we will follow in this section, consists
in regularizing the retarded Green’s function in eq. (12.175), rather than
the current jµ(x). As we will see, this can be done preserving explicitly
Lorentz invariance for the divergent part, so that a single bare mass
term will be sufficient to reabsorb the divergences in the spatial and in
the temporal components of the equation of motion.

Using eq. (12.178) for Aµa,self(x), with the retarded Green’s function
suitably regularized, we write

Fµνa,self(x) = − qa
ε0c

∫ ∞

−∞
dτ ′
{
∂µGret[x− xa(τ ′)]uνa(τ ′)

−∂νGret[x− xa(τ ′)]uµa(τ ′)
}

(12.179)

= − qa
ε0c

∫ ∞

−∞
dτ ′

[
ηµβuνa(τ ′)− ηνβuµa(τ ′)

]
∂βGret[x− xa(τ ′)]

= − qa
ε0c

(ηµβηνα − ηνβηµα)

∫ ∞

−∞
dτ ′ ua,α(τ ′)∂βGret[x− xa(τ ′)] .
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Then, evaluating Fµνa,self(x) on the particle world-line,

Fµνa,self [xa(τ)] = − qa
ε0c

(ηµβηνα − ηνβηµα)

×
∫ ∞

−∞
dτ ′ ua,α(τ ′) (∂βGret[x− xa(τ ′)])x=xa(τ) . (12.180)

After evaluating this expression explicitly, with a given regularization,
we will insert it in eq. (12.172) and, as we will see, we will obtain a term
which diverges when we remove the regularization, which is reabsorbed
in a mass renormalization, and a finite contribution that gives the self-
force term of the ALD equation (12.149).

To regularize Gret, it is convenient to introduce first the symmetric
and antisymmetric combinations of the retarded and advanced Green’s
functions,

GS(x) =
1

2
[Gret(x) +Gadv(x)] , (12.181)

GA(x) =
1

2
[Gret(x)−Gadv(x)] , (12.182)

so
Gret(x) = GS(x) +GA(x) . (12.183)

Using the covariant expressions (10.40) for the retarded and advanced
Green’s functions, we see that

GS(x) = − 1

4π
δ(x2) . (12.184)

Since this quantity depends only on the Lorentz-invariant variable x2, it
is easy to regularize it in a Lorentz-invariant manner, simply replacing
the Dirac delta by any of its regularizations discussed in Section 1.4, so
we replace eq. (12.184) by

GS(x) = − 1

4π
δreg(x2) . (12.185)

We will use, for definiteness, the gaussian regularization (1.55), that we
rewrite here in the notation

δreg(z) =
1√
2π a

e−z
2/(2a2) , (12.186)

with a a regularization parameter to be eventually sent to zero.
For the antisymmetric combination, a proper treatment involves some

subtlety. Using eq. (10.40),

GA(x) = − 1

4π
ε(x0)δ(x2) , (12.187)

where ε(x0) = θ(x0) − θ(−x0). However, the product of a distribution
such as θ(x0), or ε(x0), and a distribution such as δ(x2) = δ[(x0)2−|x|2],
is ill defined on the tip of the light cone, where |x| = 0. As will be clear
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from the following computation, this is exactly the region from where
all the result for the self-field comes, and a naive computation using
eq. (12.187), even with δ(x2) replaced by δreg(x2), would eventually lead
to ill-defined expressions (as we will see in Note 30 on page 341 and in
Note 33 on page 343). In order to deal with this expression in a clean
way, we then proceed as follows. We begin by recalling the identity,
valid in the sense of distributions,

lim
ε→0+

1

x± iε = P
1

x
∓ iπδ(x) , (12.188)

where the symbol P denotes the principal part. We now introduce a
time-like four-vector ηµ = ε(1, 0, 0, 0), with ε→ 0+, and we consider the
combination xµ − iηµ = (x0 − iε,x). Then, to O(ε),

(x− iη)2 = −(x0 − iε)2 + x2

= x2 + 2iεx0 . (12.189)

Since ε > 0, 2εx0 is an infinitesimal quantity whose sign is the same as
that of x0. Therefore, from eq. (12.188),

lim
η→0+

1

(x− iη)2
= P

1

x2
− iπε(x0)δ(x2) , (12.190)

where the limit η → 0+ is defined by sending ε→ 0+ in ηµ = ε(1, 0, 0, 0),
and ε(x0) (not to be confused with the infinitesimal constant ε; both
notations are standard and we do not change either of them) is the sign of
x0, i.e., ε(x0) = θ(x0)−θ(−x0). Similarly, to O(ε), (x+iη)2 = x2−2iεx0,
and therefore

lim
η→0+

1

(x+ iη)2
= P

1

x2
+ iπε(x0)δ(x2) . (12.191)

Taking the difference of eqs. (12.191) and (12.190), the principal part
cancels and we get

lim
η→0+

[
1

(x+ iη)2
− 1

(x− iη)2

]
= 2iπε(x0)δ(x2) . (12.192)

Therefore, the combination ε(x0)δ(x2) has the representation

ε(x0)δ(x2) = − i

2π
lim
η→0+

[
1

(x+ iη)2
− 1

(x− iη)2

]
. (12.193)

We will then use this expression, with finite η, as a regularization of the
whole combination ε(x0)δ(x2), defining

[
ε(x0)δ(x2)

]
reg

= − i

2π

[
1

(x+ iη)2
− 1

(x− iη)2

]
, (12.194)

and we will then take the limit η → 0+ only at the end of the computa-
tion. Note that this regularization formally breaks Lorentz invariance,
since, if the four-vector ηµ has the form ηµ = ε(1, 0, 0, 0) in a reference
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frame, it will have a different form in a boosted frame. Therefore, the
previous computation implicitly assumes a given reference frame. How-
ever, in the limit ε→ 0+, we expect Lorentz invariance to be recovered.
We will check this point in the following.

From eq. (12.187), the regularized Green’s function GA(x) can then
be written as

GA(x) = − 1

4π

[
ε(x0)δ(x2)

]
reg

=
i

8π2

[
1

(x+ iη)2
− 1

(x− iη)2

]
. (12.195)

We are now ready to carry out the computation.28 We consider first the28Observe that we are using two dif-
ferent regulators for GS and for GA.
This is justified because the computa-
tion of the contribution from GS and
from GA are completely independent,
and the former will turn out to be di-
vergent, while the latter will be finite
when we send the regulator to zero.

contribution of GS to Fµνa,self [xa(τ)], defining

Fµνa,S [xa(τ)] ≡ − qa
ε0c

(ηµβηνα − ηνβηµα) (12.196)

×
∫ ∞

−∞
dτ ′ ua,α(τ ′) (∂βGS [x− xa(τ ′)])x=xa(τ) ,

whereGS is the regularized Green’s function (12.185). From eq. (12.185),
GS(x−x′) is actually a function only of the combination w = (x−x′)2,
so

∂βGS(x− x′) =
[
∂β(x− x′)2

] d

dw
GS(w)

= − 1

2π
(x− x′)β

dδreg(w)

dw
, (12.197)

and therefore

(∂βGS [x− xa(τ ′)])x=xa(τ) = − 1

2π
[xa(τ)− xa(τ ′)]β

×
(
dδreg(w)

dw

)
|w=wa(τ,τ ′) , (12.198)

where wa(τ, τ ′) ≡ [xa(τ)− xa(τ ′)]2. Then,

Fµνa,S [xa(τ)] = − qa
2πε0c

(ηµβηνα − ηνβηµα) (12.199)

×
∫ ∞

−∞
dτ ′ ua,α(τ ′) [xa(τ ′)− xa(τ)]β

(
dδreg(w)

dw

)
|w=wa(τ,τ ′) .

We now expand the integrand around τ ′ = τ . Even if the integration is
over τ ′ ∈ [−∞,∞], we will see in a moment that, when we remove the
regularization and δreg(w)→ δ(w), only a finite number of terms in the
expansion (in fact, only one term) gives a non-vanishing contribution, so
the expansion will provide us with the full answer. Writing τ ′ = τ + σ,
we have

ua,α(τ ′) = ua,α(τ) + σu̇a,α(τ) +
1

2
σ2üa,α(τ) +O(σ3) , (12.200)
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and

xa,β(τ + σ)− xa,β(τ) = σua,β(τ) +
1

2
σ2u̇a,β(τ) +

1

6
σ3üa,β(τ) +O(σ4) .

(12.201)
Then,

(ηµβηνα − ηνβηµα)ua,α(τ ′) [xa(τ ′)− xa(τ)]β

=
1

2
σ2 [uµa(τ)u̇νa(τ)− uνa(τ)u̇µa(τ)] +

1

3
σ3 [uµa(τ)üνa(τ)− uνa(τ)üµa(τ)]

+O(σ4) , (12.202)

where we used uµu
µ = −c2 and uµu̇

µ = 0 (which follows applying d/dτ
to uµu

µ = −c2). Note that the term linear in σ canceled because it is
proportional to ua,α(τ)ua,β(τ) which, upon contraction with (ηµβηνα −
ηνβηµα), gives zero.

To expand the derivative of the Dirac delta in eq. (12.199) we observe,
from eq. (12.201), that

wa(τ, τ ′) = −c2σ2 +O(σ4) . (12.203)

Then, apart from term that will give a vanishing contribution when we
remove the regularization,29 29The vanishing of these terms is a

consequence of the property (1.60) of
the Dirac delta, so that, for instance
δ(x + x2) = δ(x)/|1 + x|, which is
the same as δ(x). For the regularized
Dirac delta, we can write δreg(x+x2) =
δreg(x)/[1 +O(x)]. One can then check
the effect of these corrections on the fi-
nal result, writing(

dδreg(w)

dw

)
|w=−c2σ2+O(σ4)

=
1

1 +O(σ2)

(
dδreg(w)

dw

)
|w=−c2σ2 .

Then, repeating the computation that
we will carry out below, in eq. (12.208),
one would find that σn+2 is replaced by
σn+2/[1 + O(σ2)], and, in the second
line of eq. (12.208), we would get

−
a(n−3)/2

√
2π

∫ ∞
0

du
u(n+1)/2

1 + c1au
e−u

2/2,

for some constant c1. We would then
confirm that, in the limit a → 0, all
terms with n ≥ 4 are vanishing, and
the term n = 2 still gives the same
divergent contribution proportional to
a−1/2, and even the same finite part,
since a−1/2[1 + O(a)] goes to a−1/2.
Analogous considerations hold for the
manipulations leading to eq. (12.205).

(
dδreg(w)

dw

)
|w=wa(τ,τ ′) =

(
dδreg(w)

dw

)
|w=−c2σ2 . (12.204)

We now introduce z = −w/c2 and we use the properties δ(−z) = δ(z)
and δ(c2z) = (1/c2)δ(z) that, apart at most for terms that vanish as
we remove the regularization, also hold for the regularized Dirac delta
[independently of the specific choice (12.186)]. We then get

(
dδreg(w)

dw

)
|w=wa(τ,τ ′) = − 1

c4

(
dδreg(z)

dz

)
|z=σ2 . (12.205)

Since τ is fixed, in eq. (12.199) the integral in dτ ′ is the same as an inte-
gral in dσ. Then, inserting eqs. (12.202) and (12.205) into eq. (12.199),
we are left with the evaluation of integrals of the form

An =

∫ ∞

−∞
dσ σn

(
dδreg(z)

dz

)
|z=σ2 , (12.206)

for n ≥ 2. For n odd, these integrals vanish by parity since dδreg(z)/dz is
evaluated in z = σ2, so at a point that does not change under σ → −σ.
For n even, we write

An = 2

∫ ∞

0

dσ σn
(
dδreg(z)

dz

)
|z=σ2 , (12.207)

since the integrand is even in σ. It is now necessary to carry out the in-
tegral using an explicit regularization of the Dirac delta and remove the
regularization only afterwards. If, instead, we removed the regulariza-
tion inside the integral, we would end up with a derivative of the Dirac
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delta evaluated at the boundary of the integration domain, which is an
ill-defined quantity. Using, for definiteness, the regularization (12.186),

An = − 2√
2π a3

∫ ∞

0

dσ σn+2e−σ
4/(2a2)

= − 1√
2π
a(n−3)/2

∫ ∞

0

duu(n+1)/2e−u
2/2 , (12.208)

where, in the second line, we introduced u = σ2/a. We now observe
that, among the values of n even and such that n ≥ 2, in the limit
a → 0, An diverges for n = 2, while it vanishes for all n ≥ 4. We also
note that the regularization parameter a has the same dimensions as
z = −(x − x′)2/c2, so is a length squared over c2. To make contact
with our previous notation, we then write it as a = `2/c2, where ` is
a regularization parameter with dimensions of length, so removing the
regularization corresponds to sending ` → 0. Then, from eq. (12.208),
A2 = a2c/`, where a2 is a dimensionless constant (whose precise value,
in this case, is a2 = −21/4Γ(5/4)/

√
2π, but has no special meaning since

it depends on the regularization used).
Therefore, since only n = 2 contributes, the result for Fµνa,S [xa(τ)], to

all orders in the expansion in σ, is

Fµνa,S [xa(τ)] =
qa

4πε0c4
a2

`
[uµa(τ)u̇νa(τ)− uνa(τ)u̇µa(τ)] , (12.209)

apart from terms that vanish as ` → 0. We now insert this into the
equation of motion (12.172), and use the identities uνa(τ)ua,ν(τ) = −c2
and u̇νa(τ)ua,ν(τ) = 0. Then, we get

ma,0(`)
duµa(τ)

dτ
=

q2
a

4πε0c2
a2

`

duµa
dτ

+ qaF
µν
a,A[xa(τ)]ua,ν(τ)

+qaF
µν
ext[xa(τ)]ua,ν(τ) . (12.210)

We can rewrite this as
[
ma,0(`)− q2

a

4πε0c2
a2

`

]
duµ

dτ
= qaF

µν
a,A[xa(τ)]ua,ν(τ)

+qaF
µν
ext[xa(τ)]ua,ν(τ) , (12.211)

and we see that the divergence is reabsorbed in a renormalization of the
mass,

ma = ma,0(`)− q2
a

4πε0c2
a2

`
, (12.212)

so that we simply have

dpµ

dτ
= qaF

µν
a,A[xa(τ)]ua,ν(τ) + qaF

µν
ext[xa(τ)]ua,ν(τ) , (12.213)

with pµ = mau
µ. Note that, having preserved Lorentz invariance in the

regularization, the spatial and temporal components of pµ renormalize
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in the same way, and the divergence is reabsorbed into a single bare
mass term.

We next turn our attention to the contribution from Fµνa,A, which de-
pends on the anti-symmetric combination (12.187) of the retarded and
advanced Green’s functions. We define

Fµνa,A[xa(τ)] ≡ − qa
ε0c

(ηµβηνα − ηνβηµα) (12.214)

×
∫ ∞

−∞
dτ ′ ua,α(τ ′) (∂βGA[x− xa(τ ′)])x=xa(τ) ,

where GA is the regularized Green’s function (12.195). Then

∂βGA(x) = − i

4π2

[
(x+ iη)β

[(x+ iη)2]2
− (x− iη)β

[(x− iη)2]2

]
. (12.215)

We now observe that, as in eq. (12.189), to first order in ε

[(x− iη)2]2 = (x2 + 2iεx0)2

= x2(x2 + 4iεx0)

= x2(x− 2iη)2 , (12.216)

and similarly for [(x + iη)2]2. Then, apart from terms O(η) that will
eventually give no contribution when we eventually take the limit η → 0+

(and redefining η → η/2, given that anyhow it is a parameter used only
to take the limit η → 0+),

∂βGA(x) = − i

4π2

xβ
x2

[
1

(x+ iη)2
− 1

(x− iη)2

]
. (12.217)

Comparing with eq. (12.194), we see that

∂βGA(x) =
1

2π

xβ
x2

[
ε(x0)δ(x2)

]
reg

. (12.218)

If we remove the regularization at this stage, we therefore get30

30Observe that, if one removes the
regularization already in eq. (12.195),
writing formally

GA(x) = −
1

4π
ε(x0)δ(x2) ,

and attempts to compute ∂βGA from
this expression, one is confronted with
ill-defined expressions, and it is not pos-
sible to get eq. (12.221) in any clean
way. A regularization of the full com-
bination ε(x0)δ(x2) is necessary to per-
form a proper computation.
As a check of eq. (12.218) observe, from
eq. (12.195), that it can be rewritten as

∂βGA = −
2xβ

x2
GA . (12.219)

Then, using ∂βxβ = 4,

∂β∂βGA = −
8GA

x2
+ 4xβ

xβ

(x2)2
GA

−2
xβ

x2

(
−2

xβ

x2
GA

)
= −8

GA

x2
+

4GA

x2
+

4GA

x2
= 0 .

(12.220)

Therefore 2GA = 0, as it should, since
GA is the difference of two Green’s
functions. Note that the above manip-
ulations become ill-defined at x2 = 0.
However, the validity of 2GA = 0 for
all values of xµ, including when x2 = 0,
can be proven using the regularized ex-
pression (12.215), and sending η → 0+

only at the end.

∂βGA(x) =
1

2π

xβ
x2

ε(x0)δ(x2) . (12.221)

However, we still need to keep ∂βGA in the regularized form (12.217),
in order to properly carry out the integral over τ ′ in eq. (12.214). In
eq. (12.214) we need ∂βGA(x) evaluated in x = xa(τ)− xa(τ ′), that we
prefer to write as −[xa(τ ′)− xa(τ)]. Equation (12.214) then becomes

Fµνa,A[xa(τ)] = − qa
ε0c

i

4π2
(12.222)

×
∫ ∞

−∞
dτ ′ (ηµβηνα − ηνβηµα)ua,α(τ ′) [xa(τ ′)− xa(τ)]β

1

[xa(τ ′)− xa(τ)]2

[
1

(xa(τ ′)− xa(τ)− iη)2
− 1

(xa(τ ′)− xa(τ) + iη)2

]
.
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We now write τ ′ = τ + σ and we expand in powers of σ. The expansion
of the term in the second line is given by eq. (12.202). To expand the
term in the third line, we begin by observing that, working up to O(σ2)

[xa(τ ′)− xa(τ)− iη]2 = (σua(τ)− iη)2

= −c2(σ2 − 2iεσu0/c2) . (12.223)

For a physical trajectory u0 = dx0/dτ > 0, and therefore, defining
ε′ = 2εu0/c2 (so that ε → 0+ corresponds to ε′ → 0+), and finally
renaming ε′ as ε,

1

(xa(τ ′)− xa(τ)− iη)2
− 1

(xa(τ ′)− xa(τ) + iη)2

= − 1

c2

(
1

σ2 − iεσ −
1

σ2 + iεσ

)

= −2iπ

c2
[
ε(σ)δ(σ2)

]
reg

, (12.224)

where, with the same steps leading to eq. (12.194),

[
ε(σ)δ(σ2)

]
reg

= − i

2π

[
1

σ2 − iεσ −
1

σ2 + iεσ

]
. (12.225)

Finally, [xa(τ ′)−xa(τ)]2 = −c2σ2 +O(σ4). Then, eq. (12.222) becomes

Fµνa,A[xa(τ)] = − qa
ε0c

i

4π2

∫ ∞

−∞
dσ
{1

2
σ2 [uµa(τ)u̇νa(τ)− uνa(τ)u̇µa(τ)]

+
1

3
σ3 [uµa(τ)üνa(τ)− uνa(τ)üµa(τ)] +O(σ4)

}

×2iπ

c4
1

σ2 +O(σ4)

[
ε(σ)δ(σ2)

]
reg

=
qa

4πε0c

1

c4

∫ ∞

−∞
dσ
[
ε(σ)δ(σ2)

]
reg

{
[uµa(τ)u̇νa(τ)− uνa(τ)u̇µa(τ)]

+
2

3
σ [uµa(τ)üνa(τ)− uνa(τ)üµa(τ)] +O(σ2)

}
. (12.226)

We are therefore led to evaluate the integrals

Bn =

∫ ∞

−∞
dσ σn

[
ε(σ)δ(σ2)

]
reg

, (12.227)

with n ≥ 0. From eq. (12.225),
[
ε(σ)δ(σ2)

]
reg

is an odd function of
σ, and therefore, Bn vanishes for n even. For n odd and n ≥ 3 we can
remove the regularization, replacing

[
ε(σ)δ(σ2)

]
reg

by ε(σ)δ(σ2), and we

get Bn = 0.31 Therefore, the only finite contribution comes from n = 1,

31This can be shown writing δ(σ2) =
δ(σ)/(2|σ|) and using ε(σ)|σ| = σ.
Then, for n odd and n ≥ 3,

Bn =
1

2

∫ ∞
−∞

dσ σn−1δ(σ) , (12.228)

and all these integral vanish.
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and is given by

B1 =

∫ ∞

−∞
dσ σ

[
ε(σ)δ(σ2)

]
reg

= 2

∫ ∞

0

dσ σ

(
− i

2π

)(
1

σ2 − iεσ −
1

σ2 + iεσ

)

= − i
π

∫ ∞

0

dσ σ
2iεσ

σ4 + ε2σ2

=
2

π
ε

∫ ∞

0

dσ
1

σ2 + ε2
. (12.229)

Writing σ = εt, ε cancels and

B1 =
2

π

∫ ∞

0

dt
1

t2 + 1

= 1 . (12.230)

Therefore, eq. (12.226) gives the exact result for Fµνa,A[xa(τ)],

Fµνa,A[xa(τ)] =
qa

4πε0c

1

c4
2

3
[uµa(τ)üνa(τ)− uνa(τ)üµa(τ)] . (12.231)

Note that this result is finite, contrary to Fµνa,A[xa(τ)] that was divergent,
see eq. (12.209). Also observe that the result is fully covariant for the fi-
nite part as well, so, even if our regularization (12.194) breaks Lorentz in-
variance through the introduction of a fixed four-vector ηµ = ε(1, 0, 0, 0),
Lorentz invariance is recovered as ε → 0+, i.e., when the regularization
is removed.32,33 We now plug this into eq. (12.210) and we observe that,

32This is an unavoidable consequence
of the fact that the result that we have
found for Fµνa,A[xa(τ)] is finite. In quan-
tum field theory, there are situations,
known as anomalies, where a symme-
try broken by the regularization is not
recovered when the regularization is re-
moved, but this only happens when fac-
tors of order ε describing the correction
to the result when the cutoff is removed
combine with terms of order 1/ε from
divergences, to produce a finite result.

33It is also interesting to observe that,
if we had not been careful to regu-
larize the product ε(x0)δ(x2), instead
of eq. (12.229) we would have now
found the formal expression B1 =∫∞
−∞ dσ σ ε(σ)δ(σ2) . In the literature,

this has been manipulated writing it as
B1 = 2

∫∞
0 dσ σ δ(σ2), since the inte-

grand is even and, for σ > 0, ε(σ) =
1. For σ > 0 we also have δ(σ2) =
(1/2σ)δ(σ), so we end up with B1 =∫∞
0 dσ δ(σ) . However, this integral is

ill-defined, and has been typically dealt
with by introducing a prescription on
δ(σ) only at this stage, such as replac-
ing it with δ(σ− ε), with ε > 0, so that
the integral becomes equal to one. At
this level, such a prescription is com-
pletely arbitrary and is only motivated
by the desire to obtain the ALD equa-
tion with the correct coefficient 2/3,
that we already know from the deriva-
tion performed using the the covari-
antization (or from the non-relativistic
limit (12.126), where it is just the factor
2/3 that appears in Larmor’s formula).
Our computation shows how the cor-
rect prescription emerges automatically
by regularizing the product ε(x0)δ(x2)
and always working with regularized
quantities.

from uνuν = −c2 it follow, by taking a derivative with respect to τ , that
uν u̇ν = 0 and, taking one more derivative, uν üν = −u̇ν u̇ν ≡ −u̇2. Then

Fµνa,A[xa(τ)]ua,ν(τ) =
qa

4πε0

2

3c3

[
üµa(τ)− u̇2(τ)

c2
uµ(τ)

]
, (12.232)

and eq. (12.213) becomes

dpµ

dτ
=

1

4πε0

2q2
a

3c3

[
üµa(τ)− u̇2

a(τ)

c2
uµa(τ)

]
+ qaF

µν
ext[xa(τ)]ua,ν(τ) .

(12.233)
We have therefore recovered the ALD equation (12.149). The derivation
of this section, although technically more involved, has the advantage
of unifying the results of the previous sections in a single, conceptually
clean, framework. Mass renormalization comes from the symmetric com-
bination of the advanced and retarded Green’s functions, which gives a
divergent contribution, so it requires a regularization (that, for the sym-
metric combination of Green’s functions, can be performed in a fully
Lorentz-invariant manner), while the self-force term in the ALD equa-
tion is due the anti-symmetric combination of the advanced and retarded
Green’s functions, and is a finite contribution.
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Until now we have studied the equations of electromagnetism “in vac-
uum,” in the sense that the source terms, when they were not absent al-
together (as when we studied the propagation of electromagnetic waves),
were due to localized charge distributions, often even idealized as point
charges, and we were interested in the electromagnetic field outside the
sources. We now begin our study of electromagnetic fields in materials.
At a microscopic level, the electromagnetic field has large variations, for
instance near atoms in a solid, and it depends on a myriad of details.
However, to understand the behavior of a material on larger scales, we
do not need to know all these short-distance details. For instance, in a
typical solid, there will be large fluctuations of the electromagnetic field
at the atomic scale, i.e., at the scale of the Bohr radius, rB ∼ 10−8 cm.
However, we are typically interested in the collective behavior of the
system on a macroscopic scale, say, for instance, 1 cm. We can then
choose a scale L intermediate between the atomic and the macroscopic
scale, for instance L ∼ 100rB ∼ 10−6 cm, and average the electric and
magnetic fields over such a scale. This results in “smoothed-out” fields,
that govern the behavior of the material at such larger scales.

This is a standard approach in physics: in general, it would be im-
possible to describe any physical system if we needed to know all details
of what happens at short-distance scales. Furthermore, as we go to
shorter and shorter scales, we encounter new phenomena and new phys-
ical laws; for instance, at some point, going toward the atomic scale,
classical physics must give way to quantum mechanics, and if we look
even closer and closer into atoms and nuclei we enter the regime of rel-
ativistic quantum field theory, we discover new interactions, and so on.
The basic approach is therefore to develop an effective theory, valid at
the length-scales at which we are interested, in which all short-distance
details are taken into account in an “average” manner. Another impor-
tant aspect is that our ignorance of the physical laws at short scales
should be encoded into an effective description, involving a few phe-
nomenological parameters that can be fixed by comparison with exper-
iments; it is true that, for describing material media, we cannot really
dispense with quantum mechanics (we have seen for instance in Prob-
lem 10.2 that a classical model of the atom miserably fails, collapsing
in about 10−11 s because of emission of electromagnetic radiation); still,
at least at a first level of analysis, we do not want to enter into all the
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details of the quantum-mechanical interactions at short distances, and
we want to have an effective classical description of the property of a
material.

13.1 Maxwell’s equations for macroscopic
fields

As a first step let us see how, from the fundamental, “microscopic”,
Maxwell’s equations, we can derive equations governing the behavior of
smoothed fields. We denote by Emicro(t,x) and Bmicro(t,x) the micro-
scopic electric and magnetic field, respectively, and by ρmicro(t,x) and
jmicro(t,x) the microscopic charge and current densities. In this nota-
tion, Maxwell’s equations (3.8)–(3.11) read

∇·Emicro =
1

ε0
ρmicro , (13.1)

∇×Bmicro −
1

c2
∂Emicro

∂t
= µ0jmicro , (13.2)

∇·Bmicro = 0 , (13.3)

∇×Emicro +
∂Bmicro

∂t
= 0 . (13.4)

We now smooth out these fields, performing a spatial average with the
help of a smoothing function s(x). The smoothed electric and magnetic
fields, that we denote by E and B, are defined by

E(t,x) =

∫
d3x′ s(x− x′)Emicro(t,x′) , (13.5)

B(t,x) =

∫
d3x′ s(x− x′)Bmicro(t,x′) . (13.6)

The exact form of the function s(x−x′) is not important; the important
point is that it is approximately constant for |x − x′| smaller than the
smoothing scale L, vanishes quickly for |x − x′| � L, and is a smooth
function on the scale L. We normalize it by

∫
d3x′ s(x) = 1 , (13.7)

so that eqs. (13.5) and (13.6) represent an average of the microscopic
fields over a region of linear size of order L, centered around the point
x. Note that, in terms of the spatial Fourier transform, eq. (13.5) reads

Ẽ(t,k) = s̃(k)Ẽmicro(t,k) . (13.8)

The fact that s(x) is a smooth function of the spatial scale L means that
its Fourier modes with |k| � 1/L are very small. Therefore, another way
of thinking to this smoothing procedure is to say that the role of s̃(k) is
to suppress the Fourier modes with large |k| in Ẽ(t,k).
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We similarly define the smoothed out, or macroscopic, charge and
current density,

ρ(t,x) =

∫
d3x′ s(x− x′)ρmicro(t,x′) , (13.9)

j(t,x) =

∫
d3x′ s(x− x′)jmicro(t,x′) . (13.10)

It is now straightforward to derive the equations satisfied by the macro-
scopic fields. Consider for instance eq. (13.1) and apply the smoothing
to both sides,
∫
d3x′ s(x− x′)∇x′ ·Emicro(t,x′) =

1

ε0

∫
d3x′ s(x− x′)ρmicro(t,x′) .

(13.11)
The integral on the right-hand side is just the macroscopic charge density
ρ(t,x). On the left-hand side, integrating by parts, we write
∫
d3x′s(x− x′)∇x′ ·Emicro(t,x′) = −

∫
d3x′ [∇x′s(x− x′)]·Emicro(t,x′)

=

∫
d3x′ [∇xs(x− x′)]·Emicro(t,x′)

= ∇x·
∫
d3x′ s(x− x′)Emicro(t,x′)

= ∇x·E(t,x) . (13.12)

In other words, the averaging procedure commutes with the operation
of taking the divergence. We therefore get the macroscopic Maxwell
equation ∇x·E(t,x) = (1/ε0)ρ(t,x). The same manipulations can be
performed on all other equations, so we finally find the full set of macro-
scopic Maxwell’s equations

∇·E =
1

ε0
ρ , (13.13)

∇×B− 1

c2
∂E

∂t
= µ0j , (13.14)

∇·B = 0 , (13.15)

∇×E +
∂B

∂t
= 0 . (13.16)

The result looks extremely simple: the macroscopic electric and mag-
netic field satisfy the same Maxwell’s equations as the microscopic fields,
with the microscopic charge and current densities replaced by their
macroscopic counterparts.1 The simplicity of this result, however, is

1As a historical note, this averaging
procedure is due to Lorentz. How-
ever, his path was in the reverse or-
der. He started from Maxwell’s equa-
tions, as they had been empirically
established at the macroscopic level,
and realized that the theory could
also be applied to the microscopic do-
main, with the macroscopic equations
derived, through this averaging proce-
dure, from the more fundamental mi-
croscopic equations.

deceptive. In reality, to use these equations, we must have a model
for the macroscopic charge and current densities, and this is where the
real difficulty resides. The huge variety and complexity of materials in
condensed matter physics emerges from the variety of behaviors of the
macroscopic charge and current densities. A detailed study belongs to a
course of condensed matter physics. However, a broad classification of
the simplest situations is possible, and will be discussed in the following
sections.



348 Electromagnetic fields in material media

13.2 The macroscopic charge density: free
and bound charges

We begin with the macroscopic charge density. A first useful distinction,
for the electric charges in a material, is between those that are free to
move and those that are bound to atoms or molecules. In particular, in a
metal, some of the electrons are free to move, and this is what gives them
their conduction properties. In insulators, free charges can be externally
added (by “doping” them), so also for them this distinction is useful.

Let us consider the effect of bound charges in a simple case such an en-
semble of molecules, where the interaction between individual molecules
is weak. Each molecule is electrically neutral; however, its electric dipole
moment will in general be non-vanishing. We denote by P the elec-
tric dipole moment per unit volume, obtained averaging the individual
dipoles of the molecules over a given macroscopic volume (i.e., a vol-
ume with a linear size L much larger than the atomic scale, but small
compared to the scales at which we will measure the smoothed fields;
e.g., L ∼ 100rB ∼ 10−6 cm as in the discussion above). The vector P is
known as the polarization vector. In general, P is a function of the point
x around which we take a spatial average and, because of the smoothing
implied by the spatial average, it only varies significantly on the scale
L. From the multipole expansion (11.152), we see that a dipole moment
d(t) located at the point x′ generates in the point x a potential

φ(t,x) =
1

4πε0

d(t)·(x− x′)
|x− x′|3 . (13.17)

Therefore, a distribution of electric dipoles with electric dipole moment
density P(t,x) within a material body of finite volume V generates a
potential22Observe that eq. (11.152) is valid also

in the near outer region, i.e., as long as
we are outside the source. Therefore,
given a small volume d3x′ � L3, which
contains an electric dipole P(t,x′)d3x′,
it can be used to compute the field out-
side it and, in the limit in which d3x′ is
actually infinitesimal, it gives the cor-
rect result everywhere. Note that, by
construction, P(t,x′) is smooth already
on a scale L, much larger than the
linear size of the infinitesimal volume
d3x′.

φ(t,x) =
1

4πε0

∫

V

d3x′
P(t,x′)·(x− x′)
|x− x′|3 . (13.18)

We now observe, from eq. (4.19), that

x− x′

|x− x′|3 = ∇x′
1

|x− x′| . (13.19)

Then, integrating by parts,

φ(t,x) =
1

4πε0

∫

V

d3x′P(t,x′)·∇x′
1

|x− x′| (13.20)

= − 1

4πε0

∫

V

d3x′
∇x′ ·P(t,x′)
|x− x′| +

1

4πε0

∫

∂V

d2s′·P(t,x′)
|x− x′| .

Comparison with the second line of eq. (11.151) shows that a spatially-
varying polarization vector generates a near-region field equal to that
produced by a charge density

ρpol(t,x) = −∇·P(t,x) , (13.21)
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as well as a surface charge density, on the boundary of the material,
given by

σpol = n̂s·P(t,x) , (13.22)

where n̂s is the outer normal to the surface element d2s. Since this
charge density arises from electric dipoles, each of which is electrically
neutral, if we integrate this total charge over a volume V , we must find
that the net charge inside the volume plus that on the surface is zero.
Indeed, using Gauss theorem,

∫

V

d3x ρpol(t,x) = −
∫

V

d3x∇·P(t,x)

= −
∫

∂V

d2s n̂s·P(t,x) , (13.23)

and this is precisely minus the surface integral of the surface charge
(13.22). These volume and surface charges are present, despite the fact
that each dipole is neutral, because of the different way in which the
dipoles arrange themselves spatially, as in the schematic example shown
in Fig. 13.1.
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Fig. 13.1 A schematic example of
a distribution of dipoles resulting
in a volume charge density and a
surface charge density. The dotted
squares correspond to the volumes
of size L used to smooth out the
charge distribution. The gradient of
the dipole distribution (here repre-
sented by the variation of the num-
ber of dipoles straddling through ad-
jacent volumes in the vertical direc-
tion) induces a net charge in the vol-
umes in the interior of the mate-
rial (the sum over the net charges
in each horizontal block of cell is
marked explicitly), which is com-
pensated by the surface charge. If
∇·P = 0 (which, in the above pic-
ture, can be obtained if a constant
number of dipoles straddles across
two neighboring vertical cells), then
the charges inside the volume com-
pensate exactly inside each cell, and
we only have a surface charge, that
integrates to zero.

13.3 The macroscopic current density

A similar analysis can be performed for the current density. In the
simplest modelization, one writes

j = jfree + jpol + jmag . (13.24)

The term jfree is the current carried by the electrons and ions that are
not bound to each other and move under the action of electromagnetic
fields, whose density is given by ρfree. It satisfies a separate conservation
equation

∂ρfree

∂t
+ ∇·jfree = 0 , (13.25)

that expresses the fact that the variation in time of the density of free
charges at a point x, or, more precisely, in a small volume centered at
x, is given by the flux of free charges flowing through it.3 In solids, jfree

3At the mathematical level, eq. (13.25)
is a local equation, so one could take
an infinitesimally small volume. Recall,
however, that the whole macroscopic
description implies a coarse graining
over volumes larger that the atomic
size, say over regions of size L ∼ 102rB ,
as discussed at the beginning of this
chapter. Therefore, equations such as
(13.25) and all similar equations be-
low, must always be understood as
smoothed over such small volumes.

is relevant in conductors and semiconductors.
The second term in eq. (13.24) is the current generated by a time-

dependent polarization density. According to eq. (13.21),

∂ρpol

∂t
= −∇·∂P

∂t
, (13.26)

Therefore, defining a current density

jpol(t,x) =
∂P(t,x)

∂t
, (13.27)
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we also have the separate conservation equation

∂ρpol

∂t
+ ∇·jpol = 0 . (13.28)

Physically, jpol describes the fact that the configuration of dipoles can
evolve in time, and then the charge density associated with it, as the one
shown in Fig. 13.1, evolves with time and therefore generates a current.

The third term, called the magnetization current, is due to the density
of magnetic dipoles in the materials, which, at the microscopic level, can
be due either to the motion of the electrons in atoms, or to the magnetic
moments associated with the spin of the electrons and of the nuclei. Its
treatment is analogous to that of the density of electric dipole in the
previous subsection. To compute the vector potential generated in the
near zone by a magnetic dipole at the origin we use eq. (11.154). Then,
the vector potential generated in the near zone by a magnetic dipole
density M(t,x) (also called the magnetization) in a material of finite
volume V is given by

A(t,x) =
µ0

4π

∫

V

d3x′
M(t,x′)× (x− x′)

|x− x′|3

=
µ0

4π

∫

V

d3x′M(t,x′)×∇x′
1

|x− x′| . (13.29)

Integrating by parts, we get44The integration by parts is performed
more clearly working in components
and observing that, for any differen-
tiable function f(x),∫

V
d3x εijkMj∂kf

= −
∫
V
d3x εijk(∂kMj)f

+

∫
∂V

d2skεijkMjf

=

∫
V
d3x εijk(∂jMk)f

+

∫
∂V

d2skεijkMjf .(13.30)

A(t,x) =
µ0

4π

∫

V

d3x′
∇x′ ×M(t,x′)
|x− x′| +

µ0

4π

∫

∂V

d2s′
M(t,x′)× n̂′s
|x− x′| .

(13.31)
Comparing with eq. (11.153) we see that a magnetic dipole density is
effectively equivalent to a magnetization current

jmag(t,x) = ∇×M(t,x) , (13.32)

and a surface current density

Kmag(t,x) = M(t,x)×n̂s , (13.33)

where, again, n̂s is the outer normal to the surface element d2s. Observe
that, being a curl,

∇·jmag = 0 , (13.34)

so there is no time-varying charge associated with it in a conservation
equation. This is a consequence of the fact that Gauss’ law (3.3) implies
that there are no magnetic charges, so jmag can only be generated by
magnetic dipoles.

A possible extension of the simple modelization (13.24) takes into
account the effect of convection, i.e., the transport of charges in gases
and liquids through bulk motions of the fluid. Examples of situations
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where this takes places are provided by molten metals and plasmas, by
convective motions in the interior of stars, or by clouds carrying free
electrons that move through the atmosphere under the action of winds.
In general, if ρ(t,x) is the density of a fluid (density of mass, or of
charge) and u(t,x) is its velocity field, the corresponding convective
current is jconv(t,x) = ρ(t,x)u(t,x). Free charges can be transported
by convective motions, and this gives rise to the convective current

jconv,free(t,x) = ρfree(t,x)u(t,x) . (13.35)

The total flow of free charges is therefore described by the current

jfree(t,x) = jcond,free(t,x) + jconv,free(t,x) , (13.36)

where jcond,free is the contribution from electric conduction, for which
earlier, in the absence of convection, we used the notation jfree(t,x). The
difference between jcond,free and jconv,free is that the former is generated
by free charges moving under the action of electric fields, while the latter
is due to free charges moving under the action of mechanical forces. The
continuity equation for the free charges reads5

5As we will see below eq. (13.42), this
continuity equation is actually a con-
sequence of Maxwell’s equation, just
as the conservation equation for free
charges discussed in Section 3.2.1.

∂ρfree

∂t
+ ∇· [jcond,free(t,x) + jconv,free(t,x)] = 0 , (13.37)

and expresses the fact that the variation in time of the density of free
charges in a small volume is given by the flux of free charges flowing
through it either because of conduction, or because of convection.6

6Polarization charges, being bound
to the molecules, can also be trans-
ported by convective motions. The
corresponding convective current
is jconv,pol(t,x) = ρpol(t,x)u(t,x),
and can be further added to the
right-hand side of the macroscopic
Ampère–Maxwell equation. Note that
∇·jconv,pol = 0. This can be shown
observing that the continuity equation
for the polarization charge now reads

∂tρpol + ∇·
[
jcond,pol + jconv,pol

]
= 0 ,

(13.38)
where jcond,pol is given by eq. (13.27).
However, from eqs. (13.21) and (13.27),
we have ∂tρpol + ∇·jcond,pol = 0 auto-
matically, and therefore

∇·jconv,pol = 0.

13.4 Maxwell’s equations in material
media

We now have all the elements for writing Maxwell’s equations in material
media. We start from Gauss’s law (13.13), and we write the source term
as ρ = ρfree + ρpol.

7 Then, using eq. (13.21), 7The notation ρfree is quite conven-
tional. However, more precisely, this
refers to any other source of charge,
not related to the neutral dipoles inside
the material. For instance, it could re-
fer to an external charge that we have
placed inside an otherwise neutral di-
electric, as in Solved Problem 13.1, or
to charges external to the material, that
contribute to the electric field inside it.

ε0∇·E = ρfree + ρpol

= ρfree −∇·P . (13.39)

It is convenient to define the electric displacement vector D as

D = ε0E + P , (13.40)

so that Gauss’s law can be rewritten as

∇·D = ρfree . (13.41)

We proceed similarly for the Ampère–Maxwell equation (13.14). Using
eq. (13.24), together with eqs. (13.27) and (13.32), we get

∇×B− 1

c2
∂E

∂t
= µ0

(
jfree +

∂P

∂t
+ ∇×M

)
, (13.42)
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where, if we also include convection, jfree is given by eq. (13.36). Note
that, taking the divergence of eq. (13.42) and using eqs. (8.27) and
(13.39), one gets the continuity equation (13.37), as expected.

Similarly to what we have done for the electric dipole contribution in
Gauss’s law, the magnetization current can be reabsorbed into a redefi-
nition of the magnetic field,

H =
1

µ0
B−M . (13.43)

Then, using also eq. (13.40) to eliminate E in favor of D, eq. (13.42)
becomes

∇×H− ∂D

∂t
= jfree . (13.44)

Thus, the two Maxwell’s equations involving the sources can be rewrit-
ten more naturally in terms of D and H.8 The full set of macroscopic8Note that there is no universal con-

vention on the nomenclature of these
fields. In some books H is called the
“magnetic field” and B the magnetic
induction. This reflects the historical
development, when it was not yet un-
derstood that B is a more fundamental
entity than H. We will rather follow the
alternative convention of calling B the
magnetic field, while H will be called
simply, the “H” field.
Also note that H does not have the
same dimensions as B, since µ0 is not
dimensionless. Rather, from eq. (13.44)
we see that ∇ × H has the same di-
mensions as jfree. Recalling that jfree is
a current per unit surface [see the dis-
cussion below eq. (2.21)], we see that,
in the SI system, H has dimensions of
a current divided by a length, and is
therefore measured in A/m. Similarly,
from eq. (13.41), in the SI system D is
measured in C/m2.

Maxwell’s equations in material media therefore reads

∇·D = ρfree , (13.45)

∇×H− ∂D

∂t
= jfree , (13.46)

∇·B = 0 , (13.47)

∇×E +
∂B

∂t
= 0 . (13.48)

Observe that, in the second pair of Maxwell’s equations, still enter B
and E rather than H and D. Also note that, for instance, in general
∇·H 6= 0, since ∇·M needs not be zero. So, in general, there is no
vector potential whose curl gives H, and therefore no scalar potential in
terms of which we could express the D field.

As a first simple application, consider electrostatics in materials. In
this case, the two equations to be solved are

∇·D = ρfree , ∇×E = 0 . (13.49)

Using eq. (13.40), we can rewrite them as

∇·D = ρfree , ∇×D = ∇×P . (13.50)

Comparing with eqs. (4.1) and (4.2) we see that the equations governing
electrostatics in material are not just obtained replacing E with D/ε0
(and ρ with ρfree) in eq. (4.1), since eq. (4.2) states that ∇×E = 0 while,
from eq. (13.50), ∇ × D 6= 0. This also implies that we cannot write
D as the gradient of a scalar function. However, we have already seen
in Solved Problem 11.1 that a vector field is determined uniquely by its
divergence and its curl, through Helmholtz’s theorem in the form given
in eq. (11.174). From (13.50) we can therefore immediately write the
solution for D,

D(x) = −∇
(∫

d3x′
ρfree(x′)

4π|x− x′|

)
+ ∇×

(∫
d3x′

(∇×P)(x′)
4π|x− x′|

)
,

(13.51)
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to be compared with eq. (4.22) in the vacuum case. Using eq. (13.40)
we can rewrite this solution in terms of E, as

E(x) = − 1

4πε0
∇
(∫

d3x′
ρfree(x′)
|x− x′|

)
(13.52)

+
1

4πε0
∇×

(∫
d3x′

(∇×P)(x′)
|x− x′|

)
− 1

ε0
P(x) .

In vacuum (in the sense used here, i.e., in the absence of bound charges or
any other complexity due to a macroscopic material) we have P = 0 and
ρ = ρfree, and we recover of course eq. (4.18) or, equivalently, eq. (4.22).
In Solved Problem 13.1 we will apply these results to the case of the
interface between two simple linear dielectrics.

We can proceed similarly for magnetostatics. In this case the two
equations to be solved are

∇·B = 0 , ∇×H = jfree . (13.53)

Using eq. (13.43), we can rewrite them as

∇·H = −∇·M , ∇×H = jfree . (13.54)

Using again eq. (11.174), the general solution for H is

H(x) = ∇×
(∫

d3x′
jfree(x′)

4π|x− x′|

)
+∇

(∫
d3x′

(∇·M)(x′)
4π|x− x′|

)
, (13.55)

or, in terms of B,

B(x) =
µ0

4π
∇×

(∫
d3x′

jfree(x′)
|x− x′|

)
(13.56)

+
µ0

4π
∇
(∫

d3x′
(∇·M)(x′)
|x− x′|

)
+ µ0M(x) .

When the magnetization vanishes and jfree is the same as the total cur-
rent j, we recover eq. (4.94).

13.5 Boundary conditions on E, B, D, H

When we have boundaries between different materials, or between a
material and the vacuum, to complete the specification of a problem we
must also assign the boundary conditions. To this purpose, consider a
cylinder of infinitesimal height h straddling the boundary surface be-
tween two media, and let A be the area of the faces of the cylinder, with
the upper face lying in medium 2 and the lower face in medium 1, as in
Fig. 13.2. From eq. (13.45), Fig. 13.2 An infinitesimal cylinder

across the boundary between two
media.

∫

V

d3x∇·D =

∫

V

d3x ρfree , (13.57)

x
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where V is the volume of the cylinder. For definiteness, let us take the
z axis along the height of the cylinder, so

∫

V

d3x =

∫

A

dxdy

∫ +h/2

−h/2
dz . (13.58)

In the limit h→ 0, we have
∫ +h/2

−h/2
dz ρfree = σfree , (13.59)

where σfree is the surface density of free charges. If, furthermore, we
take A sufficiently small, so that σfree can be taken constant over A,99Note, however, that a formal math-

ematical limit A → 0 is not physi-
cally meaningful. The area A must still
be larger than O(L2), where L is the
length-scale introduced above to define
the macroscopic equations of motion.
The same is implicit for the formal limit
h→ 0 used below.

then ∫

A

dxdy

∫ +h/2

−h/2
dz ρfree = Aσfree . (13.60)

On the left-hand side of eq. (13.57), in the limit h→ 0 we have
∫

V

d3x∇·D =

∫

A

dxdy

∫ +h/2

−h/2
dz ∂zDz

+

∫ +h/2

−h/2
dz

∫

A

dxdy (∂xDx + ∂yDy)

= A[Dz(2)−Dz(1)] +O(h) , (13.61)

where Dz(2) is the value of Dz as we approach the boundary from the
medium 2, and Dz(1) is the value when we approach the boundary from
the medium 1. Therefore, sending h → 0 with A sufficiently small so
that σfree is constant over it (but still

√
A much larger than h), we find

Dz(2)−Dz(1) = σfree . (13.62)

For a boundary with a normal n̂ (pointing from the medium 1 toward
the medium 2) in a generic direction, rather than along ẑ, we then have

n̂·(D2 −D1) = σfree . (13.63)

Applying the same reasoning to eq. (13.47), we get instead

n̂·(B2 −B1) = 0 . (13.64)

To get the boundary conditions for E and D we consider a one-dimensional
loop C with the longer side L parallel to the boundary and the shorter
side, of length h, straddling across the two materials, as in Fig. 13.3. In-
tegrating eq. (13.48) over a two-dimensional surface S bounded by this
loop, we get

x

z

h

L

2

1

Fig. 13.3 An infinitesimal loop
across the boundary between two
media.

0 =

∫

S

ds·
[
∇×E +

∂B

∂t

]

=

∫

S

ds·∇×E +
∂

∂t

∫

S

ds·B . (13.65)



13.5 Boundary conditions on E, B, D, H 355

Let us take again the z axis in the direction of the normal to the interface,
which in this case corresponds to the short side of the loop, and the x
axis in the direction of the loop, so the long side of the loop goes from
x = −L/2 to x = L/2, at fixed y and z. The normal to the surface ds is
therefore along the y direction, so ds·B = dxdzBy. Since By is finite at
the surface, its surface integral vanishes as h→ 0. Then, using Stokes’s
theorem (1.38), in the limit h→ 0 we get

0 =

∫

S

ds·∇×E

=

∫

C=∂S

d` ·E

=

∫ L/2

−L/2
dxEx(x, y, z = −h/2) +

∫ h/2

−h/2
dz Ez(x = L/2, y, z)

+

∫ −L/2

L/2

dxEx(x, y, z = h/2) +

∫ −h/2

h/2

dz Ez(x = −L/2, y, z)

= −
∫ L/2

−L/2
dx [Ex(x, y, z = h/2)− Ex(x, y, z = −h/2)]

+

∫ h/2

−h/2
dz [Ez(x = L/2, y, z)− Ez(x = −L/2, y, z)] . (13.66)

The last integral vanishes as h → 0, since the electric field is finite on
the boundary, while, taking L sufficiently small so that the variation of
the field with x can be neglected, we get

0 = L
[
Ex(x, y, z → 0+)− Ex(x, y, z → 0−)

]
, (13.67)

and therefore Ex is continuous across the boundary. The same argument
could be made for a loop in the (y, z) plane, leading to the conclusion
that also Ey is continuous, so the electric field transverse with respect
to the normal to the interface is continuous. For a generic normal n̂, not
necessarily oriented along z (again with the convention that it points
from the medium 1 toward the medium 2), we can write this as

n̂× (E2 −E1) = 0 . (13.68)

Finally, we can repeat the same argument for eq. (13.46). Now the
integral of D over ds vanishes because D is finite on the boundary (just
as the integral of B in the previous computation). We define the surface
current of free charges as

Kfree =

∫ +h/2

−h/2
dz jfree , (13.69)

(for an interface whose normal is along the z axis, with dz replaced by
n̂·dx for generic n̂). Then, with the same computations as before, we
get

n̂× (H2 −H1) = Kfree . (13.70)
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13.6 Constitutive relations

Finally, in order to make use of eqs. (13.45)–(13.48), we need to know
how D and H are related to the fundamental fields E and B (i.e., to
have a model for P and M). These are called constitutive relations,
and it is at this stage that the great variety of materials enters. It
should be stressed that such relations are not fundamental, contrary
to Maxwell’s equations in vacuum. Rather, they are phenomenological
relations, assumed to catch the main properties of a material, at least
for some range of parameters (such as the strength or frequency of the
electric field). We now discuss some common constitutive relations.

13.6.1 Dielectrics

A dielectric is defined as a material with no (or very little) free charges.
Since the electric conductivity is given by the free charges, dielectrics
are insulators. A linear dielectric material is defined by the condition
that the polarization P induced by an applied electric field E is linear
in E. In its simplest form, this means that

P(t,x) = ε0χeE(t,x) , (13.71)

for some constant χe, which is called the electric susceptibility.10 From10The factor ε0 has been inserted in
eq. (13.71) so that χe is a dimension-
less quantity.

eq. (13.40), this implies that

D(t,x) = εE(t,x) , (13.72)

where the permittivity of the material, denoted by ε, is given by

ε = ε0(1 + χe) . (13.73)

The dielectric constant (or relative permittivity) of the material is defined
as εr = ε/ε0,11 so11The dielectric constant in the SI sys-

tem is often also denoted by κe. εr = 1 + χe . (13.74)

This constitutive relation implies a simple relation between the polar-
ization charges and the free charges of the medium: from eqs. (13.71)
and (13.72),

P(t,x) =
χe
εr

D(t,x) . (13.75)

Using eqs. (13.21) and (13.45), we then obtain

ρpol(t,x) = −χe
εr

∇·D(t,x)

= − χe
1 + χe

ρfree(t,x) . (13.76)

Observe that the density of bound charges has the sign opposite to that
of the free charges, and vanishes if ρfree = 0. For a perfect insulator there
are no free charges, so also ρpol = 0. Therefore, in a linear dielectric,
all polarization charge resides on the surface of the material.12 Note

12The situation is the same as illus-
trated in Fig. 13.1, except that, if
ρfree = 0, we have ∇·D = 0 and then,
for a linear dielectric, also ∇·P = 0. In
the absence of a gradient of the polar-
ization vector, the dipole charges inside
the volume cancel each other, and only
the surface charge remains.



13.6 Constitutive relations 357

also that χe is always positive because an external static electric field
induces an electric dipole moment in the same direction, so P has the
same direction as E. Therefore, in all materials described by eq. (13.72),
εr > 1.

A simple constitutive relation such as eq. (13.72) is, however, only
valid for quasi-static fields. More generally, actual linear dielectrics are
described by a constitutive relation of the form

D̃(ω) = ε(ω)Ẽ(ω) , (13.77)

where D̃(ω) and Ẽ(ω) are the Fourier modes of D(t) and E(t), respec-
tively and, as it is customary in these equations, we have omitted the
tilde over the Fourier transform of ε(t) (the fact that ε(ω) is the Fourier
transform is anyhow clear from its argument ω). In Section 14.2 we will
discuss the form of this relation in the time domain and the constraints
imposed by causality on the function ε(ω), while in Section 14.3 we will
develop a simple explicit model for ε(ω).

Fig. 13.4 (Relative) permittivity
function εr(ω) for water, as a func-
tion of frequency f = ω/(2π), for
different temperatures from T =
0 ◦C to T = 100◦C [with lower tem-
peratures corresponding to higher
values of εr(ω = 0)]. Solid lines
correspond to the real part, dashed
lines to the imaginary part. From
Andryieuski et al. (2015) (Creative
Commons Attribution 4.0 Interna-
tional).

Note that ε(ω), being the Fourier transform of a real function, is a
complex function. We will refer to ε(ω) as the permittivity function of
the material, and to εr(ω) ≡ ε(ω)/ε0 as the relative permittivity function
(or the dielectric function) of the material. The permittivity ε defined
in eq. (13.72) is the limit of the permittivity function for ω → 0, i.e., for
static fields and, similarly, the dielectric constant εr = ε/ε0 is the limit
of the dielectric function εr(ω) for ω → 0. As an example, Fig. 13.4
shows the real and imaginary parts of the dielectric function of water,
at different temperatures. The dielectric constant εr ≡ εr(ω = 0) can
take values over a broad range.13

13For example, for water, as we see
from Fig. 13.4, εr has a significant
dependence on the temperature, and
ranges from about εr ' 88 at 0◦ C,
to εr ' 55 at 100◦ C, with εr ' 80
at 20◦ C. However, in its gaseous state,
at 110◦ C and 1 atm, it drops to εr '
1.012. For air at 1 atm, εr ' 1.00054,
which becomes 1.0548 at 100 atm. For
some special materials, εr can reach
values of order 103−104 (e.g., 2×103 for
Barium Titanate and larger than 104

for Calcium Copper Titanate). We will
see in eq. (13.104) that the capacitance
of a capacitor filled with a dielectric
is enhanced by a factor εr compared
to the vacuum case. Then, materials
with such a huge dielectric constant can
make super-capacitors.

In anisotropic materials, eq. (13.72) generalizes to Di = εijEj , so
the permittivity is promoted to a spatial tensor εij , and the dielectric
constant becomes a tensor (εr)ij ≡ εij/ε0. Correspondingly, eq. (13.77)
has the anisotropic generalization

D̃i(ω) = εij(ω)Ẽj(ω) . (13.78)

As with any phenomenological relation, eqs. (13.72), (13.77), or (13.78)
have a finite range of validity. In particular, the assumption of linear
response breaks down when the external field E exceeds a critical thresh-
old, leading to dielectric breakdown. Beyond this critical field, current
flows in the material and the insulator becomes conductive. For instance,
for air, when the electric field exceeds about 106 V/m, the air molecules
become ionized and air becomes a conductor. Lightning occurs when
there is a sufficient build-up of electric charges between the clouds and
the ground, so that the threshold value of the electric field is exceeded.
Then, air becomes conductor along a path where the charges flow from
the cloud to the ground. In Solved Problems 13.1 we will examine some
simple examples of electrostatics in dielectrics.
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13.6.2 Metals

In metals, there are both bound and free charges. The effect of bound
charges is still described, in a linear approximation, by eq. (13.77), [or
by its generalizations (13.78)], that we now write as

D̃(ω) = εb(ω)Ẽ(ω) , (13.79)

where the subscript “b” in εb(ω) stresses that this is the contribution of
the bound electrons. The free electrons, in contrast, generate a current
density jfree. The simplest constitutive relation describing the current
generated by the free electrons is Ohm’s law, which states that the steady
current of free charges generated by an applied static electric field is
given by

jfree = σE , (13.80)

where σ is called the conductivity. Similarly to eq. (13.72), this relation
only holds in the static limit, and can be generalized to a frequency-
dependent relation, as

j̃free(ω) = σ(ω)Ẽ(ω) . (13.81)

Again, we can generalize to anisotropic media, writing (j̃free)i(ω) =
σij(ω)Ẽj(ω), and such linear relations are valid only up to a maximum
value of the electric field. When we use the frequency-dependent con-
ductivity, we will use the notation

σ(ω = 0) ≡ σ0 , (13.82)

for the zero-frequency, or “d.c.” conductivity (in contrast to the fre-
quency dependent, or “a.c.”, conductivity). In Section 14.4 we will study
in detail a simple model for σ(ω).

Let us now consider the pair of Maxwell’s equations in matter in-
volving the sources, eqs. (13.45) and (13.46). We perform the Fourier
transform with respect to time only, writing for instance

ρfree(t,x) =

∫ ∞

−∞

dω

2π
e−iωtρ̃free(ω,x) , (13.83)

and similarly for all other quantities. Then, eqs. (13.45) and (13.46)
become

∇·D̃(ω,x) = ρ̃free(ω,x) , (13.84)

∇× H̃(ω,x) + iωD̃(ω,x) = j̃free(ω,x) , (13.85)

while the continuity equation (13.25) becomes

−iωρ̃free(ω,x) + ∇·̃jfree(ω,x) = 0 . (13.86)

Then, eq. (13.84) can be written as

∇·D̃(ω,x) =
1

iω
∇·̃jfree(ω,x) . (13.87)
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We now use the constitutive relations (13.79) and (13.81), and eqs. (13.87)
and (13.85) become, respectively,

ε(ω)∇·Ẽ(ω,x) = 0 , (13.88)

∇× H̃(ω,x) + iω ε(ω)Ẽ(ω,x) = 0 , (13.89)

where

ε(ω) ≡ εb(ω) + i
σ(ω)

ω
. (13.90)

We see that the response function of a metal is not determined sepa-
rately by the two functions εb(ω) and σ(ω), but only by their combi-
nation (13.90) (apart from a function that relates H to B, that will be
introduced in Section 13.6.3, and that can be set to one in many typical
situations). The function ε(ω)/ε0, with ε(ω) defined by eq. (13.90), is
called the dielectric function of a metal. The two terms in eq. (13.90)
describe the separate contributions of the bound and free electrons. The
fact that they combine into a single function is a reflection of the fact
that (at least within a classical description) bound electrons oscillate
around their equilibrium position with a set of oscillation frequencies
ωi, and a free electron can just be seen as a bound electron with a
frequency ω0 = 0, or anyhow ω0 much smaller than the other typical
frequency scales in the problem, which can be simply added to the set
of all other bound electrons. We will see this explicitly in Section 14.5,
where we use an explicit model for σ(ω) and εb(ω).

13.6.3 Diamagnetic and paramagnetic materials

Similar to the case of dielectrics, in many materials the magnetization
M is linearly proportional to the external magnetic field B. Because of
eq. (13.43), a linear relation between M and B implies a linear relation
between M and H. One then defines the magnetic susceptibility χm
from

M = χmH . (13.91)

This is the simplest constitutive relation for magnetic matter. Equa-
tion (13.43) then implies a linear relation also between B and H, which
is written as

B = µH , (13.92)

where
µ = µ0(1 + χm) . (13.93)

The constant µ is called the (magnetic) permeability of the material. Just
as in the case of the dielectric constant (or relative electric permittivity)
εr = ε/ε0, one defines the relative magnetic permeability as µ/µ0.14

14When the dielectric constant ε0/ε0
is denoted by κe, the relative perme-
ability µ/µ0 is denoted by κm. Note
that some texts, such as Garg (2012),
reserve the name “magnetic permeabil-
ity” to µ/µ0 rather than to µ.

Note that, for historical reasons, eqs. (13.91) and (13.92) are written as
if H were the fundamental field and B the derived field, while we now
understand that the opposite is true.
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For a medium such that the constitutive relation is given by eq. (13.91),
and in static situation, so that ∂D/∂t = 0, combining eqs. (13.32) and
(13.46) we find a relation between the magnetization current and the
current of the free electrons,

jmag(t,x) = χmjfree , (13.94)

to be compared to eq. (13.76) for the dielectric case. Contrary to the
electric case, however, χm can be either positive or negative. When
χm > 0 the material is called paramagnetic, while when χm < 0 is called
diamagnetic. Paramagnetism arises from the fact that an external mag-
netic field orients already pre-existing magnetic dipole moments, due e.g.
to the spin of the electrons. The pre-existing magnetic moments align
with the external magnetic field, so χm > 0. Diamagnetism is instead
due to the magnetic dipoles induced by the external magnetic field. As
we will show in Solved Problem 13.3, the magnetic moment induced in
an atom by an external magnetic field is in fact in the direction opposite
to the magnetic field.

13.7 Energy conservation

Performing on Maxwell’s equations in material bodies, eqs. (13.45)–
(13.48), the same manipulations that we performed on the vacuum
Maxwell’s equations in Section 3.2.2, we find
∫

V

d3x

(
E·∂D

∂t
+ H·∂B

∂t

)
+

∫

V

d3xE·jfree = −
∫

∂V

ds·(E×H) ,

(13.95)
that reduces to eq. (3.35) in vacuum, where D = ε0E and H = µ−1

0 B.
The term on the right-hand side gives the generalization of the Poynting
vector to material media,

S = E×H . (13.96)

The term E·jfree is still the work made on the system of charges by the
electric field. Note, however, that the first term on the left-hand side
of eq. (13.95) is no longer a total derivative, at least in general. This is
not surprising, because energy balance in a medium must now include
dissipative processes such as the production of heat. If however the
medium is linear, i.e., D = εE and B = µH, and dispersion-less, so that
ε and µ are independent of time, we can rewrite eq. (13.95) as

d

dt

1

2

∫

V

d3x
(
εE2 + µ−1B2

)
+

∫

V

d3xE·jfree = − 1

µ

∫

∂V

ds·(E×B) ,

(13.97)
and we can therefore identify the energy density the electromagnetic
field inside the material with

u =
1

2
(εE2 + µ−1B2)

=
1

2
(εE2 + µH2) , (13.98)
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while the Poynting vector (13.96) can also be written as

S =
1

µ
E×B , (13.99)

to be compared with the expression in vacuum, eq. (3.34).

13.8 Solved problems

Problem 13.1. Electrostatics of dielectrics

We discuss here some aspects of electrostatics of a simple dielectric, with
the constitutive relation (13.72), D(t,x) = εE(t,x), with ε constant. In this
case, inside the dielectric, eq. (13.49) becomes

∇·E =
1

ε
ρfree , (13.100)

∇×E = 0 . (13.101)

The situation is therefore formally identical to eqs. (4.1) and (4.2), with ε0
replaced by ε. So, for instance, if we place a single point charge q inside an
infinite dielectric medium, instead of eq. (4.7) we will get

E =
1

4πε

q

r2
r̂ . (13.102)

Formally, this is the same as the field that would be generated, in vacuum,
by a charge q/εr. Since εr ≡ ε/ε0 > 1, this means that the charge is screened,
compared to the vacuum situation. Physically, what happens is that the
presence of the charge q partially orients the dipoles around it so that, on
average, any sphere centered around q, beside the charge q itself, also contains
an excess of charges of opposite sign, coming from the dipoles, which therefore
partially screens it.

Similarly, for a parallel-plate capacitor filled with a dielectric, proceeding
as in Solved Problems 4.3, we see that the electric field outside the plates
vanishes. The electric field inside the capacitor that, in the vacuum case is
given by eq. (4.153), is now given by15 15For instance, one can repeat the

computation performed in eqs. (4.139)–
(4.141), summing over the contribution
to the electric field of the individual
surface element of each plate. The
computation is then formally the same,
with ε0 replaced by ε.

E =
σ

ε
ẑ , (13.103)

where ẑ is the unit normal to the plates. Therefore, for a parallel-plate capac-
itor, the capacitance C becomes

C =
εA

d
, (13.104)

so it is larger by a factor εr compared to the value in eq. (4.158). Filling a
capacitor with a dielectric with large dielectric constant is therefore a way of
increasing its capacitance.

Inside the dielectric eq. (13.71), together with eq. (13.101) and the assump-
tion that ε (and therefore χe) is constant, implies

∇×P = 0 . (13.105)

Naively, one might then think that, in eq. (13.51), only the integral involving
ρfree contributes. Actually, this is no longer true when we consider a realistic
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situation in which the dielectric has a finite extent and therefore a boundary.
Consider, for simplicity, the situation in which there is a flat boundary, iden-
tified with the plane z = 0, separating the region with z < 0, filled with a
dielectric with permittivity ε1, from that with z > 0, which is filled with a
dielectric with permittivity ε2. Even if ε1 and ε2 are constant, the permittivity
changes abruptly at the interface. We can write

ε(z) = ε1 + (ε2 − ε1)θ(z) , (13.106)

where, as usual, θ(z) is the Heaviside theta function. Combining eqs. (13.71),
(13.73), and (13.101), we then obtain1616Explicitly, in components

(∇×P)i = εijk(∂jε)Ek , (13.107)

where, we used eq. (13.101). Then, us-
ing eq. (13.106),

∂jε = δj3
dε(z)

dz
= ẑj(ε2 − ε1)δ(z) .

From eq. (13.73), we have

(ε2 − ε1)E = (ε0χe,2 − ε0χe,1)E

= P2 −P1 ,

where P2 and P1 are the polarization
vectors of the two dielectrics. Then,

εijk(∂jε)Ek = (ε2 − ε1)δ(z)εijkẑjEk

= δ(z)εijkẑj(P2 −P1)k .

∇×P = δ(z) ẑ×(P2 −P1) , (13.108)

and the integral in the second term in eq. (13.51) can be rewritten as∫
d3x′

(∇×P)(x′)

4π|x− x′| =

∫
S

dx′dy′
ẑ×(P2 −P1)(x′)

4π|x− x′| , (13.109)

where S is the (x′, y′) plane. For a generic curved boundary surface S, with
surface element d2s′ = d2s′n̂s(x

′), this generalizes to∫
d3x′

(∇×P)(x′)

4π|x− x′| =

∫
S

d2s′
n̂s(x

′)×(P2 −P1)(x′)

4π|x− x′| . (13.110)

In particular, if the medium 1 is a dielectric with polarization P1 = P and
the medium 2 is the vacuum (so that n̂s is the outer normal to the surface of
the dielectric), eq. (13.51) becomes

D(x) = −∇
(∫

d3x′
ρfree(x

′)

4π|x− x′|

)
−∇×

(∫
S

d2s′
n̂s(x

′)×P(x′)

4π|x− x′|

)
. (13.111)

If we have an ensemble of dielectrics, labeled by an index i, embedded in free
space, we must include the contribution from all their boundaries, so

D(x) = −∇
(∫

d3x′
ρfree(x

′)

4π|x− x′|

)
−∇×

(∑
i

∫
Si

d2s′
n̂s(x

′)×P(x′)

4π|x− x′|

)
.

(13.112)

Problem 13.2. Magnetostatics of simple magnetic matter

We can discuss the magnetostatics of simple magnetic matter in a com-
pletely analogous manner, with the constitutive relation (13.92), B = µH,
where µ is a constant. In this case, inside the material, eq. (13.53) becomes

∇·B = 0 , (13.113)

∇×B = µ jfree . (13.114)

The situation is therefore formally the same as eqs. (4.67) and (4.68), with µ0

replaced by µ, and j by jfree. Equations (13.91), (13.92), and (13.93) imply
that

M =
χm

1 + χm

1

µ0
B

' χm
1

µ0
B , (13.115)
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where we used |χm| � 1. Inside the material, i.e., as far as we do not cross
boundaries between different magnetic materials or between a magnetic ma-
terial and the vacuum, µ (and therefore χm) is constant. Then eqs. (13.113)
and (13.115) imply that

∇·M = 0 . (13.116)

This is analogous to eq. (13.105) in the electrostatic case. Just as in the
electrostatic case, this is no longer true at the boundaries between different
material, where χm changes discontinuously. Proceeding as in eq. (13.106),
we can consider a planar interface at z = 0, where

χm(z) = χm,1 + (χm,2 − χm,1)θ(z) . (13.117)

Then, using eq. (13.115) together with ∇·B = 0, we get17 17Explicitly,

∇·M =
dχm

dz

1

µ0
ẑ·B

= δ(z)(χm,2 − χm,1)
1

µ0
ẑ·B

= δ(z) ẑ·(M2 −M1) .

∇·M = δ(z) ẑ·(M2 −M1) . (13.118)

Then, proceeding as in eqs. (13.108)–(13.112), we find that, for an ensemble
of magnetic materials embedded in vacuum, eq. (13.55) becomes

H(x) = ∇×
(∫

d3x′
jfree(x

′)

4π|x− x′|

)
+∇

(∑
i

∫
Si

d2s
(n̂s·M)(x′)

4π|x− x′|

)
. (13.119)

Problem 13.3. Diamagnetism

In this Solved Problem we show that an external magnetic field induces,
in a classical atom, a magnetic dipole in the opposite direction, leading to
diamagnetism. To illustrate the effect, consider an electron with charge −e
[recall that e > 0 in our conventions, see eq. (2.4)] kept in a circular orbit
of radius r by the Coulomb interaction with a nucleus of charge Ze, in a
purely classical description.18 We take the orbit to be in the (x, y) plane, and 18As we saw in the derivation of

eq. (10.225), a purely classical descrip-
tion actually leads to the paradox that
the electron would collapse on the nu-
cleus on a very short timescale, because
of the emission of radiation. A first-
principle computation should therefore
be performed within quantum mechan-
ics. However, the classical computa-
tion that we present here is already
sufficient to understand the sign and
the typical size of the perturbation in-
duced by a weak magnetic field, on an
equilibrium state determined quantum-
mechanically.

the electron moving counterclockwise. In the absence of magnetic field, the
electron rotates with frequency ω0 (taken positive by definition) given by

meω
2
0r =

1

4πε0

Ze2

r2
, (13.120)

i.e.,

ω0 = +

(
1

4πε0

Ze2

mer3

)1/2

. (13.121)

Since the motion is counterclockwise, the angular momentum of the electron is
in the positive z direction, with Lz = +meω0r

2. Then, according to eq. (6.43)
with qa = −e, the magnetic moment of the electron due to its orbital motion
is in the negative z direction,

(mz)0 = −1

2
eω0r

2 , (13.122)

where the subscript 0 in (mz)0 stresses that this is the result in the absence
of magnetic field. We now add a magnetic field along the positive z direction,
B = Bẑ. Using the Lorentz force equation (3.5), the total force acting on the
electron becomes

F = − 1

4πε0

Ze2

r2
r̂− ev×B . (13.123)

For an electron that moves counterclockwise in the (x, y) plane, and a magnetic
field B along the positive z axis, we have v×B = vBr̂, so the Lorentz force
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has the same inward radial direction as the Coulomb force, and the rotation
frequency ω is now determined by the positive solution of

meω
2r =

1

4πε0

Ze2

r2
+ eBωr . (13.124)

This can be rewritten as
ω2 = ω2

0 + 2ωωL , (13.125)

where ω0 is given by eq. (13.121) and

ωL ≡ eB

2me
, (13.126)

is called the Larmor frequency. Note that ωL > 0. In the limit ωL � ω0,
i.e., for magnetic fields that do not exceed a (rather large) critical value, the
solution of this equation for ω is

ω ' ω0 + ωL . (13.127)

Since both ω0 and ωL are positive, the effect of the magnetic field is to in-
crease to rotation frequency, corresponding to the fact that, in our setting,
the Lorentz force has the same inward radial direction as the Coulomb force.
The resulting magnetic moment is therefore

mz = −1

2
eωr2

' (mz)0 − 1

2
eωLr

2

= (mz)0 − e2r2

4me
B , (13.128)

or, in vector form,

m = m0 − e2r2

4me
B . (13.129)

Therefore, the induced magnetic moment is opposite to the magnetic field.
Consider now a collection of atoms with random orientations, in an external
magnetic field. The orbital magnetic moment m0 averages to zero, since the
orientations of the atoms are random, while the term induced by the magnetic
field has a non-vanishing average value, obtained replacing in eq. (13.129) r2 by
〈r2⊥〉, where r⊥ is the projection of the orbital radius on the plane orthogonal
to the magnetic field. If the number of atoms per unit volume is n, the
magnetization is therefore

M = −ne
2〈r2⊥〉
4me

B , (13.130)

and therefore, using eqs. (13.91)–(13.93), the magnetic susceptibility is given
by

χm
1 + χm

= −µ0
ne2〈r2⊥〉

4me
. (13.131)

Numerically, |χm| is always a very small number, typically of order 10−6−10−5

for paramagnets and 10−3 for diamagnetic materials. Then, eq. (13.131) can
be written more simply as

χm ' −µ0
ne2〈r2⊥〉

4me
. (13.132)
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As we have mentioned in Section 13.6, the response of a material, and
therefore the corresponding constitutive relation, is in general frequency
dependent, as in eqs. (13.77) or (13.81). In this chapter, we will first see
how such frequency dependence is significantly constrained by causality
and other general principles. We will then discuss explicit models for
the frequency dependence of the response functions of dielectrics and of
conductors.

14.1 General properties of σ(ω), ε(ω)

To illustrate general properties of the frequency dependence of the re-
sponse functions, we begin with the relation j̃free(ω) = σ(ω)Ẽ(ω). First
of all, from the fact that jfree(t) and E(t) are real functions, it follows that
their Fourier transforms satisfy j̃∗free(ω) = j̃free(−ω) and Ẽ∗(ω) = Ẽ(−ω),
and therefore

σ∗(ω) = σ(−ω) . (14.1)

We separate σ(ω) into its real and imaginary parts,

σ(ω) = σR(ω) + iσI(ω) . (14.2)

Then eq. (14.1) implies that (for real values of ω)

σR(ω) = σR(−ω) , σI(ω) = −σI(−ω) . (14.3)

The same relations hold for ε(ω). Another property, this one specific to
σ(ω), follows from the fact that, according to eq. (13.95), the work made
on the free charges of the material by the electric field is

dE
dt

=

∫

V

d3xE·jfree . (14.4)

This energy is dissipated by the free electrons through collisions in the
material, so the energy dissipated per unit volume and unit time is

dE
dV dt

= E·jfree , (14.5)
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and the energy per unit volume dissipated from t = −∞ to t = +∞ is1
1Explicitly:∫ +∞

−∞
dtE(t)·jfree(t)

=

∫ +∞

−∞
dt

∫ +∞

−∞

dω′

2π
Ẽ(ω′)e−iω

′t

·
∫ +∞

−∞

dω

2π
σ(ω)Ẽ(ω)e−iωt

=

∫ +∞

−∞

dω

2π

dω′

2π
σ(ω)Ẽ(ω)·Ẽ(ω′)

×
∫ +∞

−∞
dt e−i(ω+ω

′)t

=

∫ +∞

−∞

dω

2π

dω′

2π
σ(ω)Ẽ(ω)·Ẽ(ω′)

×2πδ(ω + ω′)

=

∫ +∞

−∞

dω

2π
σ(ω)Ẽ(ω)·Ẽ(−ω) .

dE
dV

=

∫ +∞

−∞
dtE(t)·jfree(t)

=

∫ +∞

−∞

dω

2π
[σR(ω) + iσI(ω)] Ẽ(ω)·Ẽ(−ω) . (14.6)

The term Ẽ∗(ω)Ẽ(−ω) is an even function of ω, and therefore using
eq. (14.3), the integral involving σI(ω) vanishes, while that over σR is
twice the integral from ω = 0 to ω = ∞. Using also Ẽ∗(ω) = Ẽ(−ω),
we finally get

dE
dV

= 2

∫ +∞

0

dω

2π
σR(ω)|Ẽ(ω)|2 . (14.7)

By the second law of thermodynamics, the dissipated heat must be pos-
itive, for an arbitrary function Ẽ(ω). Therefore, for each Fourier mode,
we must have σR(ω)|Ẽ(ω)|2 > 0, so

σR(ω) > 0 . (14.8)

Another rather general property of σ(ω) is that it goes to zero as ω →∞.
This is a consequence of the fact that, if an electric field oscillates with
a frequency much higher than the natural frequencies of the microscopic
medium, the electrons cannot follow its oscillations, and no bulk move-
ment, giving rise to a macroscopic current, is induced. In Section 14.4
we will check this behavior on a simple but explicit microscopic model
for σ(ω). In fact, we will see that both σR(ω) and σI(ω) go to zero as
ω →∞, but σR(ω) goes to zero faster than σI(ω).

Analogous considerations can be made for ε(ω). As in eq. (14.3), the
reality of ε(t) implies that

εR(ω) = εR(−ω) , εI(ω) = −εI(−ω) . (14.9)

It is convenient to introduce also χe(ω) from

ε(ω)

ε0
= 1 + χe(ω) , (14.10)

which generalizes eq. (13.73), so that eq. (13.77) reads

D̃(ω) = ε0Ẽ(ω) + ε0χe(ω)Ẽ(ω) . (14.11)

or, equivalently, from the Fourier transform of eq. (13.40),

P̃(ω) = ε0χe(ω)Ẽ(ω) . (14.12)

Writing χe(ω) = χe,R(ω)+iχe,I(ω), from eq. (14.9), χe,R(ω) = χe,R(−ω)
and χe,I(ω) = −χe,I(−ω). If the frequency of the external electric field
is too high, it cannot induce a net polarization in the material, so χe(ω)
goes to zero as ω → ∞, and correspondingly ε(ω)/ε0 goes to one. We
will check this behavior on an explicit microscopic model in Section 14.3.
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14.2 Causality constraints and
Kramers–Kronig relations

We next consider the constraints imposed by causality. Fourier trans-
forming eq. (13.81) we get2 2Explicitly:

jfree(t) =

∫ +∞

−∞

dω

2π
j̃free(ω)e−iωt

=

∫ +∞

−∞

dω

2π
σ(ω)Ẽ(ω)e−iωt

=

∫ +∞

−∞

dω

2π

∫ +∞

−∞
dt′′σ(t′′)eiωt

′′

×
∫ +∞

−∞
dt′E(t′)eiωt

′
e−iωt

=

∫ +∞

−∞
dt′dt′′σ(t′′)E(t′)

×δ(t′ + t′′ − t)

=

∫ +∞

−∞
dt′σ(t− t′)E(t′) .

jfree(t) =

∫ +∞

−∞
dt′σ(t− t′)E(t′) . (14.13)

If σ were a generic function of time, this equation would mean that the
value of jfree(t) at a given time t is determined by the applied electric
field E(t′) at all possible values of t′, both in the past, t′ < t, and in the
future, t′ > t. This clearly violate causality. We therefore discover that a
relation such as eq. (13.81) only makes sense, physically, if σ(t− t′) = 0
for t′ > t, i.e., if the function σ(t) vanishes when its argument t is
negative:

σ(t) = 0 if t < 0 . (14.14)

Then, eq. (14.13) becomes

jfree(t) =

∫ t

−∞
dt′ σ(t− t′)E(t′) , (14.15)

consistent with causality. Equation (14.15) implies that the relation
between jfree(t) and E(t) is non-local in time: the value of jfree at time t
depends not only on the value of E (and, possibly, of a finite number of
its derivatives) at time t, but rather on the whole past history, i.e., on
the whole behavior of E(t′) at t′ < t. On physical grounds, we expect
that σ(t− t′) will go to zero sufficiently fast as t′ → −∞, i.e., that σ(t)
goes to zero sufficiently fast when its argument t → +∞, so that the
response of the system only retains a memory of the recent past. In the
limit in which σ(ω) becomes independent of the frequency, σ(t) becomes
proportional to a Dirac delta, σ(t−t′) ∝ δ(t−t′), and eq. (14.13) becomes
local in time. Any frequency dependence in σ(ω) will, however, result
in a relation between jfree(t) and E(t) which is non-local in time.

The condition (14.14) can be translated into a condition on σ(ω), as
follows. First of all, we observe that

σ(ω) ≡
∫ +∞

−∞
dt σ(t)eiωt

=

∫ +∞

0

dt σ(t)eiωt , (14.16)

since the integrand vanishes for t < 0. This equation can be used to
define σ(ω) for complex values of ω. Writing ω = ωR + iωI ,

σ(ω) =

∫ +∞

0

dt σ(t)eiωRte−ωIt . (14.17)
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In the upper half-plane, ωI > 0, the integral is strongly convergent, since
also t ≥ 0. Therefore the integral is well defined. This reasoning does
not hold at ωI = 0, and we then assume that σ(ω) has no singularity
also on the real axis.3 In that case, we can conclude that the function3We will check whether this is true on

explicit examples, and we will then see
how to amend the arguments below,
when σ(ω) or ε(ω) have poles on the
real axis, see also Note 6 on page 370.

σ(ω) is analytic in the upper half-plane.

R

I

ω

ω′

C

Fig. 14.1 The integration contour in
the complex ω′ plane discussed in
the text.

This analyticity can be used to prove the Kramers–Kronig relations,
as follows. We consider the integral

∮

C

dω′
σ(ω′)
ω′ − ω , (14.18)

where ω is real and the contour C is shown in Fig. 14.1. Since σ(ω′) is
analytic in the upper half-plane, and the contour avoids the singularity
in ω′ = ω, the integrand is analytic everywhere inside C and therefore,
by the Cauchy theorem, the integral vanishes. As we discussed above,
for physical reasons σ(ω) must go to zero as |ω| → ∞ on the real axis,
and this extends to the whole upper half-plane, thanks to the factor
e−ωIt in eq. (14.17) (note that, in eq. (14.17), the integration domain is
over t ≥ 0). Therefore σ(ω′)/(ω′ − ω) goes to zero faster than 1/|ω′| as
|ω′| → ∞ on the upper half plane, and therefore the contribution from
the semi-circle at infinity vanishes. The integral on the real axis, with the
small semi-circle excluded, is just the definition of the principal part of
the integral, while the integral over the small semicircle, by the Cauchy
theorem, is −iπ (where the minus is due to the fact that the semicircle
is followed clockwise) times the residue of the function σ(ω′)/(ω′ − ω)
in ω′ = ω, which is just σ(ω). Then,

P

∫ +∞

−∞
dω′

σ(ω′)
ω′ − ω − iπσ(ω) = 0 , (14.19)

where the symbol P denotes the principal part. Separating into the real
and imaginary parts, we get

σR(ω) =
1

π
P

∫ +∞

−∞
dω′

σI(ω
′)

ω′ − ω , (14.20)

σI(ω) = − 1

π
P

∫ +∞

−∞
dω′

σR(ω′)
ω′ − ω . (14.21)

These relations (together with similar ones obtained for other functions
such as ε(ω), see later) are examples of Kramers–Kronig relations,4 or4Found by Ralph Kronig in 1926, and

Hans Kramers in 1927. dispersion relations. Note that the knowledge of σR(ω) over the whole
real axis fixes σI(ω), and vice versa. We can rewrite eq. (14.21) in the
form

σI(ω) = − 1

π
P

∫ 0

−∞
dω′

σR(ω′)
ω′ − ω −

1

π
P

∫ ∞

0

dω′
σR(ω′)
ω′ − ω

= − 1

π
P

∫ ∞

0

dω′′
σR(−ω′′)
−ω′′ − ω −

1

π
P

∫ ∞

0

dω′
σR(ω′)
ω′ − ω

= − 1

π
P

∫ ∞

0

dω′ σR(ω′)

(
1

ω′ − ω −
1

ω′ + ω

)

= −2ω

π
P

∫ ∞

0

dω′
σR(ω′)
ω′2 − ω2

, (14.22)
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where, in the second line, we have introduced the variable ω′′ ≡ −ω′
in the first integral, we have then used σR(−ω′′) = σR(ω′′), and we
finally renamed the integration variable ω′′ as ω′. Performing the same
manipulations on eq. (14.20) we see that the Kramers–Kronig relations
can be rewritten as

σR(ω) =
2

π
P

∫ ∞

0

dω′
ω′σI(ω′)
ω′2 − ω2

, (14.23)

σI(ω) = −2ω

π
P

∫ ∞

0

dω′
σR(ω′)
ω′2 − ω2

. (14.24)

From these relations, we can try to extract the high-frequency limit
ω → ∞ of σR(ω) and σI(ω). Actually, the point is somewhat delicate
mathematically, since also the integration region of ω′ ranges up to in-
finity. Consider first the limit ω → ∞ of eq. (14.24). Let us assume
that σR(ω′) goes to zero sufficiently fast as ω′ → ∞ so that, for large
ω, the integral in eq. (14.24) gets most of its contribution from the inte-
gration region ω′ � ω. In the limit ω → ∞ we can then try to replace
1/(ω′2 − ω2) by −1/ω2 inside the integral, which gives

σI(ω) ' 2

πω

∫ ∞

0

dω′ σR(ω′) , (ω →∞) . (14.25)

This way of extracting the large frequency limit can be correct only if
σR(ω) goes to zero faster than 1/ω at large ω, so that the integral in
eq. (14.25) converges. As we will see, this is the case in the explicit
microscopic models that we will study in Section 14.4, where σR(ω) ∼
1/ω2 at large ω. Therefore σI(ω) goes to zero as 1/ω, with a coefficient
determined by the integral of σR(ω′) over all frequencies. Relations of
this form are called sum rules.5 5Note that we cannot extract the

high-frequency limit of σR(ω) in the
same way as we did in eq. (14.25).
If we would naively take the limit
ω → ∞ by replacing 1/(ω′2 − ω2)
with −1/ω2 inside the integral in
eq. (14.23), we would get that, at
large ω, σR(ω) is equal to −2/(πω2)
times

∫∞
0 dω′ ω′σI(ω′). However, hav-

ing already found from eq. (14.25) that
σI(ω′) goes as 1/ω′ at large ω′, we see
that this integral does not converge,
and keeping the term ω′2 in 1/(ω′2 −
ω2) is essential for the convergence. We
will see, however, that in the explicit
model of Section 14.4 σR(ω) still goes
as 1/ω2 at high frequencies.

Another useful sum rule is obtained setting ω = 0 in eq. (14.23). This
gives the static conductivity, i.e., σR(ω = 0), as an integral over all
frequencies of the imaginary part,

σR(ω = 0) =
2

π

∫ ∞

0

dω′
σI(ω

′)
ω′

. (14.26)

Observe that the property (14.3) implies that, as ω → 0, σI(ω) vanishes
at least as ω (or, more generally, as an odd power of ω), and therefore
the integral in eq. (14.26) converges.

Similar considerations can be performed for ε(ω). From eq. (14.11),
going back into the time domain, we get

D(t) = ε0E(t) + ε0

∫ +∞

−∞
dt′χe(t− t′)E(t′) . (14.27)

Therefore, causality implies again that χe(t) = 0 for t < 0, so that
eq. (14.27) becomes

D(t) = ε0E(t) + ε0

∫ t

−∞
dt′χe(t− t′)E(t′) . (14.28)
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Similarly to what we found for σ(ω), the condition χe(t) = 0 for t >
0 implies that the Fourier transform χe(ω) is analytic in the upper-
half plane (apart, possibly, from poles on the real axis, that for the
moment we assume that are not present).6 We can then repeat the above6This is not always the case for func-

tions that describe the response of a
material. For instance, for metals we
see from eq. (13.90) that the permit-
tivity function ε(ω), and therefore also
the corresponding expression for χe(ω),
has a pole at ω = 0, since σ(ω) has
a finite value at ω = 0 (equal to the
static conductivity σ0). In general, if
a function f(ω) has a simple pole at
ω = ω̄, of the form f(ω) ' f0/(ω − ω̄)
for ω → ω̄, one can write the disper-
sion relation for the function g(ω) =
f(ω)− f0/(ω− ω̄), from which the pole
has been subtracted, and derive the
Kramers–Kronig relations for g(ω); this
is equivalent to modifying the contour
C in Fig. 14.1 with another semi-arc in
the upper half plane, so as to avoid also
the pole of the function f(ω).

derivation and find the corresponding Kramers–Kronig relations,

χe,R(ω) =
2

π
P

∫ ∞

0

dω′
ω′χe,I(ω′)
ω′2 − ω2

(14.29)

χe,I(ω) = −2ω

π
P

∫ ∞

0

dω′
χe,R(ω′)
ω′2 − ω2

. (14.30)

In terms of the dielectric function εr(ω) = 1+χe(ω) these can be rewrit-
ten as7

7Observe that we could not have writ-
ten the Kramers–Kronig relations di-
rectly in terms of εr(ω), because εr(ω)
goes to one, rather than to zero, as
|ω| → ∞, and therefore the integral on
the semi-circle at infinity, in the con-
tour shown in Fig. 14.1, does not van-
ish. The dispersion relation must be
written in terms of a function that van-
ishes at infinity, i.e., χe(ω) = εr(ω)−1.
When rewritten in terms of εr(ω) as in
eqs. (14.31) and (14.32), this is called a
subtracted dispersion relation. Another
example of subtracted dispersion rela-
tion is given by the subtraction of a pole
on the real axis, discussed in Note 6.

εr,R(ω) = 1 +
2

π
P

∫ ∞

0

dω′
ω′εr,I(ω′)
ω′2 − ω2

, (14.31)

εr,I(ω) = −2ω

π
P

∫ ∞

0

dω′
εr,R(ω′)− 1

ω′2 − ω2
, (14.32)

where we wrote εr(ω) = εr,R(ω) + iεr,I(ω). We will see in Section 14.3
that the extraction of the high-frequency limit from these formulas in-
volves some subtlety.

14.3 The Drude–Lorentz model for ε(ω)

We now consider a simple classical model for the permittivity ε(ω) of
a dielectric, named after Drude and Lorentz. Consider a single elec-
tron bound to an atom or a molecule, in the presence of an external
electric field E(t). The simplest classical description corresponds to a
damped harmonic oscillator, with frequency ω0 and damping constant
γ0. Denoting by x0(t) its position, the equation of motion is

ẍ0 + γ0ẋ0 + ω2
0x0 = −eE(t)

me
. (14.33)

One should be aware that this classical description is a gross simplifi-
cation, and the underlying description of the behavior of the electrons
is necessarily quantum-mechanical.8 Still, this simple classical model is8This is particularly important for

semiconductors, where the absence of
conduction in the static limit is due to
filled bands rather than to a localiza-
tion of the electrons around individual
atoms.

useful for a first understanding. Performing the Fourier transform of
eq. (14.33) we get

(
−ω2 − iωγ0 + ω2

0

)
x̃(ω) = −eẼ(ω)

me
. (14.34)

The dipole moment of the bound electron is d(t) = −ex(t), so d̃(ω) =
−ex̃(ω) and, using eq. (14.34),

d̃(ω) =
e2

me

1

ω2
0 − ω2 − iωγ0

Ẽ(ω) . (14.35)
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Denoting by nb the number of bound electrons per unit volume, the
polarization P(t) (i.e., the electric dipole moment per unit volume) is
then given by

P̃(ω) =
nbe

2

me

1

ω2
0 − ω2 − iωγ0

Ẽ(ω) . (14.36)

Then, from eq. (14.12),

χe(ω) =
ω2
p

ω2
0 − ω2 − iωγ0

, (14.37)

where we have defined

ω2
p =

nbe
2

ε0me
, (14.38)

and the dielectric function is given by

εr(ω) ≡ ε(ω)

ε0
= 1 +

ω2
p

ω2
0 − ω2 − iωγ0

. (14.39)

Observe that ωp has dimensions of a frequency. For reasons that will
become clear in Section 15.3.2, it is called the plasma frequency of the
material (even when, as in this case, the material is a dielectric rather
than a plasma).

A simple improvement of this model, that takes better into account, at
least at a heuristic level, the quantum description of the bound electrons,
is based on the fact that an electron in the ground state of an atom can
be excited to a discrete set of energy levels, corresponding to a set of
absorption frequencies ωi and friction constants γi, with probability fi.
We can then improve eq. (14.39), writing

εr(ω) = 1 + ω2
p

N∑

i=1

fi
ω2
i − ω2 − iωγi

, (14.40)

where, for definiteness, we included N oscillator levels (possibly, with
N →∞). The constants fi are called the “oscillator strengths” and, as
we will see below, the Kramers–Kronig relations enforce the condition

N∑

i=1

fi = 1 . (14.41)

In a classical description, one could then think to the fi as the fraction of
electrons in the i-th state, in which case one would expect 0 ≤ fi ≤ 1. In
a full quantum treatment of the atom, that here we have rather modeled
simply as a classical damped oscillator, eqs. (14.40) and (14.41) still hold,
but the interpretation of the oscillator strengths fi is different, and they
no longer satisfy 0 ≤ fi ≤ 1.9

9In a full quantum treatment, the os-
cillator strengths are related to the
transition between quantum states of
the atom. If the atom is in a quan-
tum state n, the oscillator strength
fi should actually written as fin, and
is determined by transition probabil-
ity between the given state n and a
generic atomic state i 6= n, multiplied
by a factor that contains the energy
difference Ei − En. Therefore, “ab-
sorption oscillator strengths,” obtained
from transitions to states i with Ei >
En, are positive, while “emission os-
cillator strengths” are negative. Equa-
tion (14.41) still hold, and, in the quan-
tum context, is called the Thomas–
Reiche–Kuhn sum rule, although the
standard normalization of the quantum
oscillator strengths is such that it is
rather written as

∑
i 6=n fin = Z, where

Z is the total number of electrons in the
atoms. In the classical treatment, it is
common to reabsorb Z in a rescaling of
the fi, as we have done. Note, however,
that now individual oscillator strengths
can be negative, and as a consequence
the sum rule (14.41) no longer enforces
fi ≤ 1, either. For a discussion of
the Drude–Lorentz model in quantum
context, see e.g., Dressel and Grüner
(2002), in particular Section 6.1. For
a discussion of oscillator strengths in
a quantum context and the Thomas–
Reiche–Kuhn sum rule, see also Chap-
ter 10 of Rybicki and Lightman (1979).
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For bound electrons, all ωi are strictly positive, and this description
is appropriate for a dielectric. We will see later that, in a conductor, the
contribution of the free electrons can be described by the same expres-
sion, with the addition of electrons in a state with ωi = 0.

It is instructive to check that these results satisfy the general prop-
erties discussed in Sections 14.1 and 14.2. We use for simplicity the
expression for ε(ω) given in eq. (14.39), but this could be repeated for
eq. (14.40). Separating the real and imaginary parts, we get (for ω real)

εr,R ≡
εR(ω)

ε0
= 1 + ω2

p

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2γ2

0

, (14.42)

εr,I ≡
εI(ω)

ε0
= ω2

pγ0
ω

(ω2
0 − ω2)2 + ω2γ2

0

. (14.43)

We see that εr,R(ω) = εr,R(−ω) and εr,I(ω) = −εr,I(−ω), as required by
the reality of εr(t). Note that εr,R(ω) − 1, and therefore χe,R(ω), can
be either positive or negative. However, from eq. (14.39), in the static
limit0.0 0.2 0.4 0.6 0.8 1.0

ω/ωp

−100

0

100

200

ε(
ω

)/
ε 0

Fig. 14.2 The functions εR(ω)/ε0
(solid line) and εI(ω)/ε0 (dashed
line) from eqs. (14.42) and (14.43),
as a function of ω/ωp. We have
set for definiteness ω0 = 0.2ωp and
γ0 = 0.1ω0 = 0.02ωp.

εr = 1 +
ω2
p

ω2
0

> 1 , (14.44)

where εr ≡ ε(ω = 0)/ε0. A plot of εr,R(ω) and εr,I(ω) is shown in
Fig. 14.2.10

10Comparing with Fig. 13.4 on
page 357 we see that the dielectric
permittivity of water is not reproduced
by the Drude–Lorentz model. This
is due to the fact that the damped
harmonic oscillator model that we
have considered describes the dipole
moment induced by an external electric
field, see eq. (14.35). In contrast, water
molecules have a permanent electric
dipole, i.e., are polar molecules. The
generation of a polarization vector P is
then due to the fact that the molecules
align themselves with the applied
electric field, and is not described by
eq. (14.33).

The poles of χe(ω) in the complex plane are given by the solution of
the equation ω2 + iωγ0 − ω2

0 = 0, i.e., by

ω± = ±
√
ω2

0 − (γ0/2)2 − iγ0

2
. (14.45)

If ω0 > γ0/2, the square root root is real. In any case, there are two poles,
both in the lower half-plane (even when ω0 ≤ γ0/2). Therefore χe(ω)
is analytic in the upper half-plane. As discussed in Section 14.2, these
analyticity properties in the complex ω-plane are related to causality:
consider the electric susceptibility in the time domain,

χe(t) =

∫ +∞

−∞

dω

2π
χe(ω)e−iωt . (14.46)

Note that the integral converges at ω → ±∞, since at large |ω| we have
χe(ω) ∝ 1/ω2, see eq. (14.37), and χe(ω) has no singularity on the real
axis, so the integral is well defined. For t < 0 we can close the contour in
the upper half-plane, since the factor e−i(ωR+iωI)t = e−iωRteωIt ensures
the vanishing of the integral on the semi-circle at infinity when ωI → +∞
and t < 0. Then, since χe(ω) is analytic in the upper half-plane, χ(t) = 0
for t < 0, as required by causality. For t > 0, closing the contour in the
lower half plane and picking the residue of the two poles, we find that
(for ω0 > γ0/2) χe(t) is a (real) superposition of terms proportional to
e−iω+t and e−iω−t, i.e., is proportional to

χ±e (t) ∝ e±it
√
ω2

0−(γ0/2)2 e−(γ0/2)t . (14.47)
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From eq. (14.28), the memory of the past behavior of E(t) therefore
vanishes exponentially, with a decay time τ = 2/γ0. More generally, in
the model (14.40), the i-th term in the sum contributes with a decay
time τi = 2/γi.

From the explicit result (14.42), (14.43) we can extract the high-
frequency limit of the dielectric function,

εr,R(ω)− 1 = −ω
2
p

ω2
, (14.48)

εr,I(ω) =
ω2
pγ0

ω3
, (14.49)

so, to lowest non-trivial order, εr(ω)− 1 is real, and

εr(ω) = 1− ω2
p

ω2
+O

(
1

ω3

)
. (14.50)

It is interesting to compare these asymptotic behaviors to those that can
be extracted from the Kramers–Kronig relations (14.31, 14.32). In the
large ω limit, eq. (14.32) gives

εr,I(ω) =
2

πω

∫ ∞

0

dω′ [εr,R(ω′)− 1] +O
(

1

ω3

)
, (ω →∞) ,

(14.51)
where we assumed that εr,R(ω′) − 1 goes to zero sufficiently fast at
large ω′, so that the integral in eq. (14.51) converges, and we could then
replace 1/(ω′2−ω2) by −1/ω2 inside the integral. Apparently, this seems
to indicate that εr,I(ω) goes as 1/ω at large ω while, from the explicit
result (14.49), we know that it rather goes as 1/ω3. The solution of
this apparent discrepancy is that, for the function (14.42), the integral
in eq. (14.51) not only converges, but in fact even vanishes, leaving the
O(1/ω3) term as the leading one.11 So, also from the Kramers–Kronig

11The proof is non-trivial. Using
eq. (14.42), the integral in eq. (14.51)
is proportional to the integral

I(u0) ≡
∫ ∞
0

du
1− u2

(1− u2)2 + u20u
2
,

where u = ω′/ω0 and u0 = γ0/ω0.
At first sight, it is not at all obvious
that this integral vanishes, furthermore
for all values of u0. Actually, a direct
computation of the primitive of the in-
tegrand it is quite involved, and it is
much simpler to show that the contri-
bution to the integral from the integra-
tion region 0 < u < 1, where the in-
tegrand is positive, cancels against the
contribution from 1 < u <∞, where it
is negative. To this purpose, we write
I(u0) = I1(u0) + I2(u0), where

I1(u0) =

∫ 1

0
du

1− u2

(1− u2)2 + u20u
2
,

I2(u0) =

∫ ∞
1

du
1− u2

(1− u2)2 + u20u
2
.

In I1 we make the transformation of
variables u = tanh η, which gives

I1(u0) =

∫ ∞
0

dη
1

1 + u20 sinh2 η cosh2 η
.

In I2 we write u = 1/ tanh η, and we
get I2 = −I1, so, indeed, I1 + I2 = 0
for all u0.

relations we find that, for large ω, the leading term in εI(ω) is of order
1/ω3. Then, eq. (14.31) shows that

εr,R(ω)− 1 ' − 2

πω2

∫ ∞

0

dω′ ω′εr,I(ω
′) , (ω →∞) , (14.52)

where, thanks to the 1/ω′3 asymptotic behavior of εI(ω
′), the integral

converges at large ω′, so, in eq. (14.31), in the large ω limit we could
replace 1/(ω′2 − ω2) by −1/ω2. This result is in agreement with the
explicit result (14.48). Inserting the asymptotic behavior (14.48) into the
left-hand side of eq. (14.52) we see that, independently of the damping
details, and therefore of the precise form of the function εr,I(ω), we have
the sum rule ∫ ∞

0

dω ωεr,I(ω) =
π

2
ω2
p . (14.53)

This is known as the f -sum rule. If we apply it to the more complicated
model (14.40), the f -sum rule enforces the condition

∑N
i=1 fi = 1.12

12Again, the proof is not completely
obvious. Inserting eq. (14.43) into
eq. (14.53) we get

π

2
=

N∑
i=1

fi

∫ ∞
0

du
u2

(u2i − u2)2 + u2
,

where u = ω/γi and ui = ωi/γi. De-
spite its appearance, the integral is ac-
tually independent of ui, and equal to
its value in ui = 0, which is π/2. This
can be shown (with some manipula-
tions) using formula 2.161.3 of Grad-
shteyn and Ryzhik (1980), and can also
be directly checked numerically.

Observe that, for eq. (14.39), the Kramers–Kronig relations are auto-
matically satisfied, as we saw above. This follows from the fact that
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eq. (14.39) has been obtained from an explicit causal model, expressed
by eq. (14.33), and therefore the constraints due to causality are au-
tomatically satisfied. In contrast, in our classical context, eq. (14.40)
is simply an ansatz, not derived by an explicit causal equation of mo-
tion, and therefore the Kramers–Kronig relations provide a non-trivial
constraint.

Some aspects of these results are more general than the specific Drude–
Lorentz model that we have discussed. In particular, the fact that,
to lowest order, the asymptotic behavior (14.50) is independent of γ0

follows from the fact that, at sufficiently large frequencies, the details of
the damping mechanism, represented by the term −iωγ0 in eq. (14.34),
become irrelevant, since in any case the inner dynamics of the atom or
molecule cannot follow the fast oscillations of the external field.

14.4 The Drude model of conductivity

We next consider a simple microscopic model of the conductivity σ(ω),
the Drude model (or Drude–Sommerfeld model). Again, the model is
purely classical, and treats the free electrons of a conductor as a non-
interacting gas of classical electrons. A more realistic treatment would
involve quantum mechanics and considerations of the band structure of
the solid, and rather belongs to a condensed matter course. However,
just as for the Drude–Lorentz model of ε(ω), the simple classical de-
scription that we present here is already useful for a first understanding.
The basic physics is quite simple. The free electrons inside a material
are accelerated by the external electric field. The collisions with the ions
of the material, however, provide a friction term that opposes the ac-
celeration. In an average sense, the equation of motion of an electron is
then given by eq. (14.33), where now ω0 = 0, since there is no restoring
force. The friction constant γ0 is written as 1/τ , and τ is identified with
the typical time between collisions. Then, the average velocity v̄(t) of
the electrons is governed by the equation

dv̄(t)

dt
+

1

τ
v̄(t) = −eE(t)

me
. (14.54)

We write
jfree(t) = −enf v̄(t) , (14.55)

where nf is the number density of free electrons (with charge −e). From
eq. (14.54) it then follows that

djfree

dt
+

1

τ
jfree(t) =

nfe
2

me
E(t) . (14.56)

We have also assumed that the electric field is spatially constant over
the relevant length-scale, which in this case is the mean free path of the
electrons between collisions.13 Performing the Fourier transform, this

13More precisely, after performing the
Fourier transform as in eq. (14.57), we
assume that, at the frequency ω of in-
terest, the Fourier mode Ẽ(ω) can be
taken to be spatially constant. We will
come back to this assumption at the
end of Section 15.3.1, when we discuss
the anomalous skin effect.

gives

−iωj̃free(ω) +
1

τ
j̃free(ω) =

nfe
2

me
Ẽ(ω) , (14.57)
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and therefore j̃free(ω) = σ(ω)Ẽ(ω) with

σ(ω) =
nfe

2τ

me

1

1− iωτ . (14.58)

Defining, as in eq. (13.82), σ0 ≡ σ(ω = 0), eq. (14.58) can also be
rewritten as

σ(ω) =
σ0

1− iωτ , (14.59)

where

σ0 =
nfe

2τ

me
. (14.60)

Separating the real and imaginary parts (for ω real), we get

σR(ω) = σ0
1

1 + ω2τ2
, (14.61)

σI(ω) = σ0
ωτ

1 + ω2τ2
. (14.62)

We can again check that the general properties discussed in Section 14.1
are satisfied. The reality condition (14.3) is obviously satisfied, and
also the condition (14.8), which is a consequence of the second law of
thermodynamics. Let us now check the Kramers–Kronig relations. We
start from eq. (14.24), that we rewrite in the form [compare with the
third line in eq. (14.22)]

σI(ω) = − 1

π
P

∫ ∞

0

dω′ σR(ω′)

(
1

ω′ − ω −
1

ω′ + ω

)

= −σ0

π
P

∫ ∞

0

dω′
1

1 + ω′2τ2

(
1

ω′ − ω −
1

ω′ + ω

)
. (14.63)

We take for definiteness ω > 0. Then, the second term in the parenthesis
has no pole, so there the principal value prescription is unnecessary.
Introducing u = ω′τ and u0 = ωτ , we must then compute

P

∫ ∞

0

dω′

1 + ω′2τ2

(
1

ω′ − ω −
1

ω′ + ω

)

= P

(∫ ∞

0

du

1 + u2

1

u− u0

)
−
∫ ∞

0

du

1 + u2

1

u+ u0

= lim
ε→0+

(∫ u0−ε

0

du

1 + u2

1

u− u0
+

∫ ∞

u0+ε

du

1 + u2

1

u− u0

)

−
∫ ∞

0

du

1 + u2

1

u+ u0
, (14.64)

where, in the last equality, we have used the definition of principal value.
These integrals can be computed analytically,14 and the result is

14The explicit computation is as fol-
lows. For the first two integrals, tak-
ing into account that u0 > 0, ε > 0
and ε < u0 (since we want to eventu-
ally take the limit ε → 0+ with u0 a
fixed positive constant), we have∫ u0−ε

0

du

1 + u2
1

u− u0
= −

f1(u0, ε)

2(1 + u20)
,

and∫ ∞
u0+ε

du

1 + u2
1

u− u0
=

f2(u0, ε)

2(1 + u20)
,

where

f1(u0, ε) = log
[
1 + (u0 − ε)2

]
+2u0 tan−1(u0 − ε)− 2 log ε+ 2 log u0 ,

f2(u0, ε) = log
[
1 + (u0 + ε)2

]
+2u0 tan−1(u0 + ε)− 2 log ε− πu0 .

As expected, as ε → 0+, the two inte-
grals are separately divergent, as log ε,
corresponding to the fact that, as ε →
0+, the integration region approaches
a pole singularity 1/(u−u0). However,
their sum has a finite limit, equal to

−
2 log u0 + πu0

2(1 + u20)
.

The third integral in eq. (14.64) is also
elementary and requires no regulariza-
tion,∫ ∞
0

du

1 + u2
1

u+ u0
=
−2 log u0 + πu0

2(1 + u20)
.

Then, putting everything, we get
eq. (14.65).

1

π
P

∫ ∞

0

dω′

1 + ω′2τ2

(
1

ω′ − ω −
1

ω′ + ω

)
= − ωτ

1 + ω2τ2
. (14.65)
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Inserting this into eq. (14.63) we indeed obtain a result for σI(ω) that
agrees with that given in eq. (14.62), confirming that the Kramers–
Kronig relation (14.24) is satisfied, as it should. We can similarly check
eq. (14.23).

Several other interesting properties can be explicitly checked from the
explicit expression (14.58). In particular we see that, in the complex
ω plane, the function σ(ω) has a single pole at ω = −i/τ . This pole
is in the lower half-plane and therefore σ(ω) is analytic in the upper
half-plane, as we expected from the general discussion in Section 14.2.
Let us then compute the function σ(t) that enters in eq. (14.13). We
write

σ(t) =

∫ +∞

−∞

dω

2π
σ(ω)e−iωt

= σ0

∫ +∞

−∞

dω

2π

1

1− iωτ e
−iωt . (14.66)

Writing ω = ωR+ iωI , we have e−iωt = e−iωRteωIt. Therefore, for t < 0,
we can close the contour in the upper half-plane ωI > 0, where there is
no singularity, and the integral vanishes. Therefore σ(t) = 0 for t < 0, in
agreement with eq. (14.14). For t > 0 we close instead the contour in the
lower half-plane. Picking the residue at the pole according to the Cauchy
theorem (and taking into account a minus sign because the integration
contour runs clockwise, see Fig. 14.3), and writing σ0 explicitly as in
eq. (14.60),

R

I
ω

ω = − i

τ

Fig. 14.3 The integration contour in
the complex ω plane for t > 0. The
black dot denotes the position of the
pole.

σ(t) =
nfe

2τ

me
(−2πi)Resω=−i/τ

[
1

2π

1

(−iτ)(ω + i/τ)
e−iωt

]

=
nfe

2

me
e−t/τ . (14.67)

Then, eq. (14.15) becomes

jfree(t) =
nfe

2

me

∫ t

−∞
dt′ e−(t−t′)/τ E(t′) . (14.68)

This shows that, in the Drude model, the value of the current at time t is
determined by the value of the electric field at all times t′ < t, weighted
with an exponential factor that, basically, tells us that the correlation
takes place only over a time interval t − t′ of order τ . The value of
the electric field at very early times t′, such that t − t′ � τ , has an
effect that is exponentially suppressed. In other words, the system has a
“memory” of order τ , i.e., of order of the typical collision time. This is
completely analogous to the result that we found in eq. (14.47) for the
electric susceptibility.

Finally, we can study the high-frequency limit. From eqs. (14.61) and
(14.62), in the limit ωτ � 1,

σR(ω) ' σ0

ω2τ2
, (14.69)

σI(ω) ' σ0

ωτ
. (14.70)
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Therefore, both the real and imaginary parts go to zero, as expected
from the general argument discussed at the end of Section 14.1, but σR
goes to zero faster than σI , so that in the high-frequency limit the func-
tion σ(ω) becomes purely imaginary. Note also that, using eq. (14.60), in
eq. (14.70) τ cancels. This signals that, in the high-frequency limit, the
details of the relaxation mechanisms are no longer relevant, to O(1/ω).
This is due to the fact that, when driven at such a high frequency, the
motion of the electrons reverses many times before they have a chance
to collide, and this is the dominant mechanism that suppressed the gen-
eration of a bulk movement, that would otherwise lead to a macroscopic
current.

The sum rule (14.25) is also easily checked,

σI(ω) ' 2

πω

∫ ∞

0

dω′ σR(ω′) (ω →∞) ,

=
2σ0

πω

∫ ∞

0

dω′
1

1 + ω′2τ2

=
σ0

ωτ
, (14.71)

which correctly reproduces eq. (14.70).

14.5 The dielectric function of metals

As already discussed in Section 13.6.2, in metals we have both free and
bound electrons, whose contributions combine into a single response
function ε(ω), the dielectric function of metals, given by eq. (13.90). To
understand the physical meaning of this response function, we use the
Drude–Lorentz model (14.40) for the contribution of the bound elec-
trons, and the Drude model (14.58) for σ(ω). We now denote by εb(ω)
the contribution from the bound electron, that we write as

εb(ω)

ε0
= 1 +

nbe
2

ε0me

N∑

i=1

(fb)i
ω2
i − ω2 − iωγi

, (14.72)

where, for reasons that will become clear soon, we have now denoted by
(fb)i the quantities that were denoted by fi in eq. (14.40), and we used
the explicit expression nbe

2/ε0me for the quantity that was denoted as
ω2
p in eq. (14.38). Note that

N∑

i=1

(fb)i = 1 . (14.73)

This gives, for the full dielectric function εr(ω) = ε(ω)/ε0 of a metal,

εr(ω) = 1− nfe
2

ε0me

1

ω2 + iωτ−1
+
nbe

2

ε0me

N∑

i=1

(fb)i
ω2
i − ω2 − iωγi

, (14.74)

where nf and nb are the number densities of free and bound electrons,
respectively. We now introduce the total number density of electrons,
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n = nf + nb, while the plasma frequency, in the presence of both free
and bound electrons, is defined as

ω2
p =

ne2

ε0me
. (14.75)

We also define f0 = nf/n, fi = (nb/n)(fb)i and γ0 = 1/τ . Then,
eq. (14.74) can be rewritten as

εr(ω) = 1− ω2
pf0

ω2 + iωγ0
+ ω2

p

N∑

i=1

fi
ω2
i − ω2 − iωγi

= 1 + ω2
p

N∑

i=0

fi
ω2
i − ω2 − iωγi

, (14.76)

where, in the last line, we included in the sum the index i = 0, with
ωi=0 ≡ 0 and γi=0 ≡ γ0 = 1/τ . Note also that

N∑

i=0

fi = f0 +
N∑

i=1

fi

=
nf
n

+
nb
n

N∑

i=1

(fb)i = 1 . (14.77)

We see that the contribution of the free electrons to ε(ω) is formally the
same as the contribution of bound electrons with characteristic frequency
ωi = 0, corresponding to the fact that, for free electrons, there is no
restoring force.

Observe that, because of the factor

1

ω2 + iωτ−1
= −iτ

(
1

ω
− 1

ω + iτ−1

)
, (14.78)

for metals the function εr(ω), beside a pole in the lower half-plane at
ω = −iτ−1, also has a pole on the real axis at ω = 0. As we see from
eq. (13.90), this holds in general, simply because, for a metal, the d.c.
conductivity σ0 6= 0, and is not specific to the model (14.76). It is
therefore an example of the situation, discussed in Note 6 on page 370,
in which the Kramers–Kronig relations hold for the function from which
the pole on the real axis has been subtracted. To subtract the pole, we
must consider the function

g(ω) ≡ εr(ω)− iσ0

ε0ω
. (14.79)

Writing g(ω) = gR(ω) + igI(ω), we have gR(ω) = εr,R(ω) and gI(ω) =
εr,I(ω)−(σ0/ε0ω). Then, the derivation of the Kramers–Kronig relations
(14.31) and (14.32) goes through, with εr(ω) replaced by g(ω), and we
obtain15

15In eq. (14.80), for ω 6= 0 the contri-
bution to the integral proportional to
(σ0/ε0) vanishes, using the definition of
principal value of the integral,

P

∫ ∞
0

dω′

ω′2 − ω2

≡ limε→0+

(∫ ω−ε

0
+

∫ ∞
ω+ε

)
dω′

ω′2 − ω2

=
1

2ω
limε→0+[

log

∣∣∣∣ω′ − ωω′ + ω

∣∣∣∣ω−ε
0

+ log

∣∣∣∣ω′ − ωω′ + ω

∣∣∣∣∞
ω+ε

]
= 0 .

This term must, however, be kept to
get the correct limit for ω → 0 since, ac-
cording to eq. (14.81), ωεI(ω)−(σ0/ε0)
vanishes as ω2 as ω → 0, ensuring that
the integral in eq. (14.80) is well defined
also for ω → 0 [compare with the dis-
cussion below eq. (14.26) for σ(ω)].
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εr,R(ω) = 1 +
2

π
P

∫ ∞

0

dω′
ω′εr,I(ω′)− (σ0/ε0)

ω′2 − ω2
, (14.80)

εr,I(ω) =
σ0

ε0ω
− 2ω

π
P

∫ ∞

0

dω′
εr,R(ω′)− 1

ω′2 − ω2
. (14.81)

For metals, it is often a good first approximation to neglect the contri-
bution of the bound electrons, setting nb = 0, i.e., f0 = 1 and fi = 0
for i ≥ 1. The plasma frequency is then given in terms of the number
density of free electrons,

ω2
p =

nfe
2

ε0me
. (14.82)

In this case, from eq. (14.60), we can also write the plasma frequency in
terms of the conductivity at zero frequency σ0 = σ(ω = 0) and of τ , as

ω2
p =

σ0

ε0τ
. (14.83)

In this limit, we also find convenient to introduce the notation16 16The subscript “p” in γp (which is
more commonly denoted simply as γ),
stresses its analogy with ωp, since they
are both properties of the metal, or, as
in Section 15.3.2, of a plasma. These
quantities are strictly related, and can
appear as the real and imaginary parts
of a complex frequency, in the combi-
nation ±ωp − i(γp/2), see eq. (15.56).

γp ≡
1

τ
. (14.84)

Then, setting f0 = 1 and fi = 0 for i ≥ 1, eq. (14.76) can be rewritten
as

εr(ω) = 1− ω2
p

ω2 + iωγp
. (14.85)

The relation between ωp and γp allows us to classify the materials as
good or bad conductors. As we will see in Section 15.3.2, for ωpτ �
1, i.e., ωp � γp, a spatial distribution of electrons perturbed from its
uniform equilibrium state can oscillates freely for many cycles, with little
damping. Therefore, these materials are good conductors. In contrast,
for ωp � γp we have a poor conductor.17 17Writing eq. (14.83) in the form

ωp(ωpτ) = σ0/ε0 we see that the con-
dition ωpτ � 1 is equivalent to

σ0

ε0
� ωp . (14.86)

The model (14.76), that assumed a non-interacting gas of classical
electrons, can be improved including interactions and a quantum me-
chanical treatment. Several of these effects, such as the effect of the
band structure of the material (i.e., the interaction of the electrons with
the lattice of ions), as well as the interaction of the electrons among them
and with the coherent vibration of the lattice (described, at the quantum
level, by phonons), can be modeled by replacing the electron mass me

in eq. (14.82) by an effective mass m∗. This leaves the functional form
(14.76) unchanged (if we neglect a frequency dependence that actually
appears in m∗), although the determination of ωp from the properties
of the material is now more complicated, and ωp does not depend only
on the number density n of the electrons. Furthermore, the net contri-
bution from the positive ion cores is modeled, phenomenologically, with
a constant ε∞, so that eq. (14.76) becomes

εr(ω) = ε∞ −
ω2
pf0

ω2 + iωγ0
+ ω2

p

N∑

i=1

fi
ω2
i − ω2 − iωγi

. (14.87)
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Fig. 14.4 The prediction of the Drude–Lorentz model for the real and imag-
inary parts of ε(ω) for gold, using a logarithmic scale on the horizontal axis
and a linear scale on the vertical axis, and emphasizing a region of frequencies
of order ωp.

For the free electron gas ε∞ = 1 while, for typical metals, ε∞ ' 1− 10.
This reflects the fact that the natural oscillation frequencies of the ions
are much larger than that of the bound electrons and, at least at optical
and UV frequencies, we are not yet in the limit of ω much larger than
all natural frequencies ωi of the system; the constant ε∞ takes into
account, phenomenologically, the effect of these high-frequency modes.
Separating the real and imaginary parts, we get
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Fig. 14.5 As in Fig. 14.4, on a much
larger range of frequencies, and on
a log-log scale. Note that now, be-
cause of the log-log scale, we plot
|εR(ω)|; εR(ω) is negative at small ω,
and changes sign in correspondence
of the downward spikes. The first
spike is made of two very close spikes
not distinguishable in the figure, so,
εR(ω) has five zeros, correspond-
ing to the five frequencies ωi that
we have included; including higher
modes would produce more struc-
ture and further downward spikes
at higher frequencies. At large ω,
εR(ω)→ ε∞ > 0. In contrast, εI(ω)
is always positive.

εr,R(ω) = ε∞ −
ω2
pf0

ω2 + γ2
0

+ ω2
p

N∑

i=1

fi(ω
2
i − ω2)

(ω2
i − ω2)2 + ω2γ2

i

, (14.88)

εr,I(ω) =
ω2
pγ0f0

ω(ω2 + γ2
0)

+ ω2
pω

N∑

i=1

fiγi
(ω2
i − ω2)2 + ω2γ2

i

. (14.89)

Observe that, because of the contribution of the free electrons, the imag-
inary part εr,I(ω) diverges as 1/ω as ω → 0. The real part, in contrast,
saturates to a constant; in particular, if γ0 � ωp, as is typically the case,
the contribution from the free electrons to the real part saturates to the
value −f0(ωp/γ0)2, which is negative, and large in absolute value. At
high frequencies, εr,I(ω) vanishes as 1/ω3, and εr(ω) becomes real. In
Fig. 14.4 we show the prediction of the Drude–Lorentz model for εr,R(ω)
and εr,I(ω), using the values of ωp, f0, γ0, and the first five values of fi,
ωi and γi in the case of a metal such as gold,18 on a log-linear scale

18In Figs. 14.4 and 14.5 we used ωp =

13.8×1015 s−1, γ0 = 0.0058×1015 s−1,
f0 = 0.760 and, for i = 1, . . . 5,

fi = {0.024, 0.010, 0.071, 0.601, 4.384}
ωi = {0.630, 1.261, 4.510, 6.538, 20.234}

×1015 s−1 ,

γi = {0.366, 0.524, 1.322, 3.789, 3.363}
×1015 s−1 ,

and ε∞ = 1.2, from Rakić et al. (1998).

and a relatively small a range of frequencies of the order of the plasma
frequency, to emphasize the structures in this range of frequencies. In
Fig. 14.5 we show the result on a much larger frequency range and a
log-log scale that emphasizes the asymptotic behaviors.



Electromagnetic waves in
material media 15

15.1 Electromagnetic waves in di-
electrics 381

15.2 Phase velocity and group ve-
locity 384

15.3 Electromagnetic waves in
metals 386

15.4 Electromagnetic waves in
waveguides 394

In Chapter 9 we studied electromagnetic waves propagating in vac-
uum. In this chapter we study how electromagnetic waves are affected
by the properties of the medium in which the propagate, described
by frequency-dependent constitutive relations such as those studied in
Chapter 14, or by non-trivial boundary conditions, as in the case of
electromagnetic waves propagating in waveguides.

15.1 Electromagnetic waves in dielectrics

We first consider the propagation of electromagnetic waves in dielectric
materials. Since we want to consider generic dispersive media, we look
for monochromatic wave solutions of the form

E(t,x) = Ẽ(ω,k)e−iωt+ik·x , B(t,x) = B̃(ω,k)e−iωt+ik·x , (15.1)

and we write

D̃(ω,k) = ε(ω)Ẽ(ω,k) , B̃(ω,k) = µ(ω)H̃(ω,k) , (15.2)

where ε and µ are assumed to depend on ω but not on k.1 We admit 1A further generalization of the consti-
tutive relations that we have studied in
Chapter 14 can be obtained admitting
also a k dependence in the functions
describing the response of the material,
e.g., writing D̃(ω,k) = ε(ω,k)Ẽ(ω,k).

a priori that both ω and k in the ansatz (15.1) could be complex. A
frequency ω = ωR + iωI , with imaginary part ωI < 0, corresponds to an
excitation that has been set up at an initial time, and then decreases ex-
ponentially in time, while ωI > 0 corresponds to a solution that increases
exponentially in time, which can be obtained if the medium pumps en-
ergy into the electromagnetic wave, leading to an amplification.2 2As we discussed in Note 9 on page 371,

in the context of the quantum Drude–
Lorentz model, the oscillator strengths
fi that appear in eq. (14.40) can be
positive or negative, and negative val-
ues correspond to “emission oscillator
strengths”, where an excited electron
makes a transition to a lower energy
state. This leads to pumping energy
into the electromagnetic wave; a partic-
ularly important example is the mech-
anism that gives rise to lasers.

A complex k, in contrast, corresponds to a solution that decreases
or increases exponentially in space, from a given surface that will be
typically a boundary of the material, where boundary conditions are
set. The appropriate solution will then be selected by imposing suitable
boundary conditions. For instance, in a semi-infinite medium which
extends from x = 0 to x =∞, for a wave propagating in the positive x
direction we would require that the solution goes to zero as x → +∞,
which selects the decreasing solution. Note that, at this stage, ω and k
are independent variables, that enter the ansatz (15.1). The dispersion
relation of the electromagnetic waves in the material, i.e., the relation
between ω and k, will be obtained by requiring that the ansatz indeed
satisfies Maxwell’s equations.
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For dielectrics, we also set to zero the density of free charges and cur-
rents. The computation is then quite similar to that of the propagation
of electromagnetic waves in vacuum studied in Chapter 9. Inserting the
ansatz (15.1) into Maxwell’s equations in material media, eqs. (13.45)–
(13.48), we get

ε(ω)k·Ẽ(ω,k) = 0 , (15.3)

k× B̃(ω,k) = −ω n
2(ω)

c2
Ẽ(ω,k) , (15.4)

k·B̃(ω,k) = 0 , (15.5)

k× Ẽ(ω,k) = ωB̃(ω,k) , (15.6)

where we have defined the refraction index n(ω) from

n(ω) = c
√
ε(ω)µ(ω) . (15.7)

Note that n(ω) is dimensionless; in vacuum, ε(ω)µ(ω) becomes ε0µ0,
which is equal to 1/c2 [recall eq. (8.27)], and therefore n(ω) = 1. Using
ε0µ0 = 1/c2 we can also rewrite eq. (15.7) as

n2(ω) =
ε(ω)µ(ω)

ε0µ0

= εr(ω)µr(ω) , (15.8)

where, as usual, εr(ω) = ε(ω)/ε0 and µr(ω) = µ(ω)/µ0.
For the study of electromagnetic waves in dielectrics, we can as-

sume that ε(ω) never vanishes, as we will discuss in more detail below
eq. (15.58). Therefore, eq. (15.3) is equivalent to k·Ẽ(ω,k) = 0. Taking
the vector product of eq. (15.6) with k [which, in coordinate space, cor-
responds to taking its curl, as we did in the derivation of eqs. (9.73) and
(9.74)] and using eq. (1.9), together with k·Ẽ(ω,k) = 0 and eq. (15.4),
we get

−k2Ẽ(ω,k) = ωk× B̃(ω,k)

= −ω
2

c2
n2(ω)Ẽ(ω,k) , (15.9)

where k2 = k·k.3 Similarly, from the curl of eq. (15.4), we get3Note that in this section k will denote
the modulus of the three-dimensional
vector k, so k2 = |k|2 [or, more pre-
cisely, for complex k, k2 = (kR +
ikI)·(kR + ikI)]; in contrast, in a rel-
ativistic context, such as in Chapter 9,
we used the notation k2 for kµkµ.

k2B̃(ω,k) =
ω2

c2
n2(ω)B̃(ω,k) . (15.10)

We therefore find the dispersion relation

k2 =
ω2

c2
n2(ω) . (15.11)

In vacuum, where n(ω) = 1, we recover the dispersion relation (9.41).
Since ω is now implicitly fixed in terms of k by the condition (15.11), to
label the solutions we can use just k, rather than the pair (ω,k).4 We

4We assume that, for each k, the solu-
tion for ω exists (otherwise there is no
plane wave solution) and is unique. If
there are several solutions, one can ap-
ply the analysis that follows to each of
them.
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then introduce the simpler notations

Ek = Ẽ(ω(k),k) , Bk = B̃(ω(k),k) . (15.12)

Recalling that we eventually take the real part, we can summarize the
ansatz as

E(t,x) = Re
[
Eke

−iω(k)t+ik·x
]
, (15.13)

B(t,x) = Re
[
Bke

−iω(k)t+ik·x
]
, (15.14)

where ω(k) is given by eq. (15.11). Equation (15.11) is a necessary
condition for having a solution, but it is not yet sufficient. To find the
full set of conditions on the ansatz, we plug eqs. (15.13) and (15.14) into
Maxwell’s equations (15.3)–(15.6). From eq. (15.3) (having assumed
that ε(ω) never vanishes) and eq. (15.5) we get

k̂·Ek = 0 , k̂·Bk = 0 . (15.15)

This shows that, just as for the electromagnetic waves in vacuum, for
electromagnetic waves in dielectrics E and B are orthogonal to the prop-
agation direction. Finally, using eq. (15.11), eq. (15.6) can be rewritten
as

cBk = n(ω) k̂×Ek , (15.16)

and the same condition comes from eq. (15.4). This tells us that, just
as in vacuum, E and cB are orthogonal to each other, but now their
modulus is different, compare with eq. (9.51). We have therefore shown
that the ansatz (15.13)–(15.14) is indeed a solution of the full set of
Maxwell’s equations, under the conditions (15.11), (15.15), and (15.16),
and therefore dielectric materials sustain the propagation of monochro-
matic electromagnetic waves.

Observe that, in a dispersive medium, ε(ω) and µ(ω) are necessarily
complex. Indeed, from the Kramers–Kronig dispersion relation (14.31)
we see that, if εr,I(ω) = 0 for all ω, then εr,R = 1 independently of
the frequency. Therefore, a non-trivial frequency dependence of εR(ω)
implies that, at least for some frequencies, εI(ω) 6= 0, and similarly
for µ(ω). Therefore n(ω) in eq. (15.7) is complex, and the dispersion
relation (15.11) is also complex. As a consequence, eq. (15.11) can in
general have solutions with both ω and k complex, ω = ωR + iωI and
k = kR + ikI . The simplest solutions correspond to ω real. In this case
the temporal evolution is just an undamped oscillation. Solutions with
ωI > 0 disappear exponentially in time and are therefore less relevant
to the free propagation, while solutions with ωI < 0 are exponentially
growing and represent instabilities, where energy is pumped into the
electromagnetic wave. In any case, since n(ω) is complex, even for ω
real the corresponding value of k, obtained from eq. (15.11), is in general
complex. We write5

5In the literature, another common no-
tation is n(ω) = η(ω) + iκ(ω). The
real part, nR(ω) or η(ω), is called the
real refractive index, while the imagi-
nary part, nI(ω) or κ(ω), is also called
the extinction coefficient.n(ω) = nR(ω) + inI(ω) , (15.17)
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and k = kR + ikI . Recalling that k2 = k·k = (kR + ikI)·(kR + ikI),
eq. (15.11) separates into two equations for the real and the imaginary
parts,

|kR|2 − |kI |2 =
ω2

c2
[
n2
R(ω)− n2

I(ω)
]
, (15.18)

kR·kI =
ω2

c2
nR(ω)nI(ω) . (15.19)

The solution (15.13), for ω real, can then be rewritten as

E(t,x) = Re
[
Eke

−iω(k)t+ikR·x−kI ·x
]
, (15.20)

and the same for B(t,x). The term e−iω(k)t+ikR·x gives the phase of
the field, while the term e−kI ·x affects its amplitude and describes the
attenuation of the wave as it propagates in the material. Note that the
surfaces of constant phase are perpendicular to kR while the surfaces of
constant amplitude are perpendicular to kI . Thus, unless kR and kI
are parallel, these two surfaces are different. Solutions where kR and kI
are not parallel are called inhomogeneous plane waves.

In the simpler case of homogeneous plane waves, where kR and kI are
parallel, we can write kR = kRk̂, kI = kI k̂, and eqs. (15.18) and (15.19)
give

kR =
ω

c
nR(ω) , (15.21)

kI =
ω

c
nI(ω) . (15.22)

15.2 Phase velocity and group velocity

We next discuss two distinct notions of velocity related to the propaga-
tion of electromagnetic waves. We neglect absorption, so we set kI = 0,
kR = k and k = |k|. Setting kI = 0 in eq. (15.20), we have

E(t,x) = Re
[
Ek e

−iϕ(t,x)
]
, (15.23)

where the phase ϕ is given by

ϕ(t,x) = ω(k)t− k·x , (15.24)

and the dependence of ω on k is given by the inversion of eq. (15.11).
The surfaces of constant phase therefore travel at the velocity vp = vpk̂,
where

vp(k) =
ω(k)

k
. (15.25)

Using eq. (15.21) (and setting nR = n since we are neglecting all imagi-
nary parts), the phase velocity can be written as

vp(ω) =
c

n(ω)
, (15.26)
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Usually, n(ω) > 1, so vp(ω) < c. In some situations, however, n(ω) can
be smaller than one. This is the case, for instance, for a dielectric de-
scribed by the Drude-Lorenz model, where εr(ω) is given by eq. (14.39).
For a dielectric we can set µ(ω) = µ0 so, from eq. (15.8), n2(ω) = εr(ω).
Therefore, in the approximation in which all imaginary parts are ne-
glected we have n2(ω) = εr,R(ω), and we see from eq. (14.42) that this
becomes smaller than one for ω > ω0.6 This, however, is not in con- 6Actually, we see from Fig. 14.2 that for

ω just above the resonance frequency
ω0, εR(ω)/ε0 even becomes negative.
Note, however, that this happens pre-
cisely when εI(ω)/ε0 is large and we
cannot neglect the imaginary parts.

flict with the postulates of Special Relativity, because monochromatic
waves simply do not carry information. In order to transmit informa-
tion, we must modulate the signal by superposing plane waves into wave
packets.7 The relevant question, therefore, is whether wave packets can

7An alternative argument is that a
purely monochromatic plane wave is
just a mathematical idealization. In-
deed, from a basic properties of the
Fourier transform, if we denote by ∆t
the duration of a signal and by ∆ω
the spread in frequencies of its Fourier
transform, we have ∆t∆ω>∼ 1. Any
physical signal that we observe has a
finite temporal duration and therefore
its Fourier transform is necessarily non-
vanishing over an interval of frequencies
∆ω>∼1/∆t.

transmit information at speed greater than c. According to eq. (15.26),
Fourier modes with different values of ω travel at a different phase veloc-
ity. To understand the consequences of this, we consider a superposition
of plane waves with different wavenumbers k,

E(t,x) =

∫
d3k

(2π)3
Ẽ(k) e−iω(k)t+ik·x , (15.27)

where, to be more general, we have assumed that ω depends not only on
the modulus k = |k|, but on the full vector k, which could happen, in
general, in anisotropic materials, and we take k and ω(k) real. Actually,
nothing in our considerations will depend on the vector nature of the
electric field, and we can more simply study a relation of the form

f(t,x) =

∫
d3k

(2π)3
f̃(k) e−iω(k)t+ik·x , (15.28)

for some function f , which could represent a component of the electric
field, or an actual scalar function, in which case our analysis would
apply also to other kind of waves, such as sound waves. If the function
f̃(k) is completely generic, each Fourier mode will travel at a different
velocity, the spatial shape of the signal will be quickly distorted by
the propagation, and there is little that can be said in full generality.
If, however, f̃(k) is sharply peaked around a wavenumber k0, we can
expand the frequency as

ω(k) ' ω(k0) + (k− k0)i

(
∂ω(k)

∂ki

)

k=k0

+ . . .

= ω0 + (k− k0)· (∇kω)k=k0
+ . . . , (15.29)

where ω0 ≡ ω(k0). Then

f(t,x) ' e−iω0t+ik0·x
∫

d3k

(2π)3
f̃(k) ei(k−k0)·(x−vgt) , (15.30)

where
vg = (∇kω)k=k0

(15.31)

is called the group velocity. For an isotropic medium, where ω depends
only on k = |k|, using eq. (1.23) with r replaced by k we see that the
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group velocity is in the direction k̂ of the propagation, and its modulus
is given by

vg(k) =

(
dω(k)

dk

)

k=k0

. (15.32)

Equation (15.30) shows that, apart from an overall phase e−iω0t+ik0·x

(that disappears in quadratic quantities such as |f |2, so in our case in the
energy density of the electromagnetic field, which is given by |E|2), in the
approximation in which we stop the expansion in eq. (15.29) to linear or-
der, the shape of the wavepacket remains the same and is just translated
in space at a velocity vg. The group velocity is therefore the quantity
relevant to the transport of energy by a packet of electromagnetic waves.
Note, however, that this only holds in the approximation where f̃(k) is
sharply peaked around a wavenumber k0, which justifies the expansion
(15.29). Using k = (ω/c)n(ω) and writing dω/dk = (dk/dω)−1, we get

vg(ω) =
c

n(ω) + ω dn(ω)
dω

. (15.33)

For normal dispersion we have n(ω) > 1 and dn/dω > 0. Then vg(ω) <
vp(ω) < c. It is possible, however, to have dn/dω negative, and large
in absolute value. An example is given again by the Drude–Lorentz
model (14.39), or by its generalization (14.40): as before, we write
n2
R(ω) = εr,R(ω). Then, from Fig. 14.2 on page 372 we see that, just

above the resonance frequency ω0, the derivative of εr,R(ω) becomes
negative, and large in absolute value. This behavior is called anomalous
dispersion and, formally, can give rise to a group velocity larger than
c, or even negative. However, again, this simply means that, in such
regions, the approximation (15.29) becomes invalid (furthermore, as al-
ready mentioned in Note 6, in this regime absorption is large and we
cannot neglect it), and the concept of group velocity loses its meaning.
The actual evolution of a wavepacket in this regime is more involved,
and cannot be captured, even approximately, by a single quantity such
as a velocity.

15.3 Electromagnetic waves in metals

We now study electromagnetic waves in conducting materials. We start
again from Maxwell’s equations in material media, eqs. (13.45)–(13.48).
The difference with the treatment for dielectrics of Section 15.1 is that
now we must include the density of free charges and currents, ρfree and
jfree. We already worked out the corresponding expression for Maxwell’s
equations that depends on the sources in eqs. (13.88) and (13.89), where
ε(ω) is the dielectric function for metals, given by eq. (13.90). We look
for a monochromatic plane wave solution of the form (15.1). The full
set of Maxwell’s equations (13.88), (13.89), (13.47), and (13.48) then
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becomes

ε(ω)k·Ẽ(ω,k) = 0 , (15.34)

k× B̃(ω,k) + ωε(ω)µ(ω)Ẽ(ω,k) = 0 , (15.35)

k·B̃(ω,k) = 0 , (15.36)

k× Ẽ(ω,k)− ωB̃(ω,k) = 0 . (15.37)

Consider first eq. (15.34). There are two branches of solutions. One
is obtained setting k·Ẽ(ω,k) = 0. This solution is transverse to the
propagation direction, just as we found for electromagnetic waves in vac-
uum, as well as for electromagnetic waves in dielectrics. We will study
this solution in Section 15.3.1. There is, however, another possibility:
eq. (15.34) is automatically satisfied, without imposing the transver-
sality condition on E, at a special value ω̄ of the frequency, given by
the solution of the equation ε(ω̄) = 0. We will study this solution in
Section 15.3.2.8 8We will discuss after eq. (15.58) why,

in dielectrics, the corresponding solu-
tion obtained setting ε(ω) = 0 does
not correspond to a propagating elec-
tromagnetic wave.

15.3.1 Transverse EM waves

In this section we study the solution of eq. (15.34) obtained requir-
ing that k·Ẽ(ω,k) = 0. In this case, the electric field is transverse to
the propagation direction. Equation (15.37) tells us that B̃(ω,k) is or-
thogonal to Ẽ(ω,k), and eq. (15.36) tells us that it is also orthogonal
to the propagation direction. We therefore have the same situation as
the electromagnetic waves in vacuum, or in dielectrics, with the elec-
tric and magnetic fields orthogonal to the propagation direction and to
each other. The dispersion relation ω(k) can be obtained combining
Maxwell’s equations, just as we did for dielectrics. Taking the vector
product of eq. (15.37) with k and using eqs. (1.9), (15.34), and (15.35),
we get

−k2Ẽ(ω,k) = ωk× B̃(ω,k)

= −ω2ε(ω)µ(ω)Ẽ(ω,k) . (15.38)

Then, the dispersion relation is

ω2ε(ω)µ(ω) = k2 , (15.39)

which, of course, is the same as eq. (15.11) (recalling the definition
(15.7) of the refraction index), except that now ε(ω) is the dielectric
function appropriate for a metal, given in eq. (13.90). Let us consider
the consequences of this dispersion relation, studying first the low- and
high-frequency limits. We limit ourselves to ω real. However, since the
function ε(ω) is complex, the corresponding solution for k will in general
be complex, k = kR + ikI .

In the low-frequency limit ωτ � 1, i.e., ω � 1/τ ≡ γp, eq. (13.90)
gives ε(ω) ' iσ0/ω, where, as usual, σ0 = σ(ω = 0) is the (zero-
frequency) conductivity, while µ(ω) ' µ(ω = 0) ≡ µ becomes the same
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as the static permeability of the material. Then eq. (15.39) gives (taking
the square root with positive imaginary part)

k ' 1 + i√
2

√
σ0µω , (15.40)

and therefore in this limit the imaginary part of k is

kI =
(σ0µω

2

)1/2

. (15.41)

Setting the propagation direction along the positive x axis, and the
vacuum-metal interface at x = 0, at x > 0 the amplitude of the wave
therefore decreases as e−kIx = e−x/δskin , where δskin = 1/kI is called the
skin depth.9 From eq. (15.41),9Of course, in this setting, in which

we are considering a wave propagat-
ing into a metal along the positive x
direction, we have chosen the solution
for kI with positive imaginary part, so
as to have an exponentially decreasing
amplitude. The solution of eq. (15.39)
with kI = −(σ0µω/2)1/2 is eliminated
by the boundary condition that the cor-
responding solution for the electromag-
netic wave does not diverges as x→∞.
If we rather consider a setting with
the metal at x < 0 and a left-moving
wave coming from positive x, we would
choose the other solution for kI , kI =
−(σ0µω/2)1/2, to ensure that the elec-
tromagnetic wave does not diverge as
x→ −∞.

δskin(ω) =

(
2

σ0µω

)1/2

, (ω � γp) . (15.42)

Furthermore, for non-magnetic materials, we can approximate µ ' µ0.
For instance, for copper, µ/µ0 ' 0.999994. Then, writing µ ' µ0 =
1/(ε0c

2), we get

δskin(ω) = c

(
2ε0
σ0ω

)1/2

, (ω � γp) . (15.43)

To get an idea of typical numbers, in copper at 20 ◦C the collision time
is τ ' 2.4 × 10−14 s, so γp ' 4.2 × 1013 s−1. The condition ω �
γp is therefore satisfied for f � γp/(2π) ' 6 THz. In terms of λ =
c/f , this corresponds to λ � 50µm, i.e., wavelengths longer than the
mid infrared.10 In this regime, we can apply eq. (15.43). The static10For orientation, in terms of wave-

lengths, the far UV ranges from 10 to
200 nm, middle UV is 200–300 nm and
near UV 300–380 nm. With longer
wavelengths we enter the visible range,
from violet (380–450 nm) to red (625–
750 nm, i.e., 0.625 to 0.75 µm). Then
come the near infrared (NIR, about
0.75 to 2.5 µm), middle infrared (MIR,
2.5–10 µm), and far infrared (FIR,
10 µm–1 mm). From 1 mm to about
1 m we are in the domain of mi-
crowaves.

conductivity of Cu at 20 ◦C is σ0 ' 5.96× 107 S/m.11 From eqs. (2.12),

11The unit of conductivity in the SI
system was discussed in Note 49 on
page 96, see in particular eq. (4.188).

(2.13), and (4.188) we see that σ0/ε0 has dimensions of s−1, i.e., has the
same dimensions as a frequency, and, for Cu at 20 ◦C, we get σ0/ε0 '
6.73× 1018 s−1. Setting for instance as a reference value f = 10 GHz, in
the microwave region, we get

δskin(ω) ' 0.65µm

(
10 GHz

ω/(2π)

)1/2

, (Cu,
ω

2π
� 6 THz) . (15.44)

Also observe that, from eq. (14.83), in copper at room temperature, the
plasma frequency is ωp ' 1.7×1016 s−1, or fp = ωp/(2π) ' 2.7×1015 Hz.
The corresponding wavelength is λp = 2πc/ωp ' 110 nm, in the far UV.

We next consider the high frequency limit. There are two frequency
scales in the problem, γp = 1/τ and ωp. As mentioned below eq. (14.85),
good conductors are characterized by the property ωp � γp (as we have
seen above, in copper ωp ' 1.7 × 1016 s−1 and γp ' 4.2 × 1013 s−1).
Therefore, there are two different regimes at ωτ � 1, namely γp � ω �
ωp and ω � ωp. We will study the full behavior below. For the moment,
we focus on the very high frequency regime ω � ωp. Then, plugging
eq. (14.85) into eq. (15.39) (with µ(ω) ' µ0), and keeping the leading
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correction in ω2
p/ω

2 both in the real and in the imaginary part of ω2ε(ω),
we get

kc = ω

(
1− ω2

p

2ω2

)
+ i

γpω
2
p

2ω2
. (15.45)

Writing k = kR + ikI , eq. (15.45) gives

ω2 ' ω2
p + k2

Rc
2 , (15.46)

and

kIc =
γp
2

(ωp
ω

)2

. (15.47)

Equation (15.46) is the dispersion relation of transverse electromagnetic
waves in a metal in the limit ω � ωp, i.e., for kRc � ωp.

12 Equa- 12The reader familiar with quantum
mechanics can observe that, in quan-
tum mechanics, the energy E of a parti-
cle is related to its frequency by E = ~ω,
and the momentum p is related to the
(real part of the) wavenumber k by p =
~k. Then, the above dispersion relation
takes the form E2 = m2

pc
4 + p2c2, with

mpc2 = ~ωp. This is the dispersion re-
lation of a massive particle with mass
mp, see eq. (7.147). In this sense, in
a conductor, the photon becomes mas-
sive.

tion (15.47) shows that, in the limit ω � ωp, kIc is much smaller than
the frequency scale γp given by the inverse of the collision time, and goes
to zero as ω/ωp →∞. Therefore, metals become almost transparent to
electromagnetic waves for ω much larger than their plasma frequency.
For metals, typical values of ωp are in the UV. For instance, for Cu we
have seen that ωp is in the far UV. For alkali metals the plasma frequency
is even smaller; for instance, for thin films of Cesium the transparency
already starts in the violet part of the visible spectrum.

Actually, using the simple model (14.85) for the dielectric function
of a metal (and setting µ(ω) = µ0), it is not difficult, and instructive,
to study the dispersion relation (15.39) for ω generic, rather than only
in the limiting cases ω � γp and ω � ωp. Inserting eq. (14.85) into
eq. (15.39) we get

k2c2 = ω2 − ω2ω2
p

ω2 + iωγp
. (15.48)

Writing k = kR + ikI and separating eq. (15.39) into its real and imagi-
nary parts, the resulting equations can be combined into a second degree
equation for the variable k2

I , whose solution is

2k2
I (ω)c2 =

ω

ω2 + γ2
p

{[
ω2(ω2 − ω2

p + γ2
p)2 + ω4

pγ
2
p

]1/2− ω(ω2 − ω2
p + γ2

p)
}
.

(15.49)
The corresponding solution for kR(ω) is given by13 13In the literature, eq. (15.46) is some-

time used to argue that there is no so-
lution for kR for ω < ωp. However,
this is incorrect because eq. (15.46) only
holds for ω � ωp and, as we see from
the exact solution (15.49, 15.50), kR(ω)
is non-vanishing for all values of ω.
Note also that the right-hand side of
eq. (15.49) is always positive, so kI(ω)
is well defined for all values of ω.

kR(ω) =
ω2
pγp

2c2
ω

(ω2 + γ2
p)kI(ω)

. (15.50)

In Fig. 15.1 we plot (on a log-log scale) the corresponding skin depth
δskin(ω) = 1/kI(ω), using the values of ωp and γp appropriate for cop-
per at room temperature. We see that there are indeed three distinct
regimes: at ω � γp, δskin(ω) decreases as 1/

√
ω, in agreement with

eq. (15.43). From eq. (15.49), in this regime

δskin(ω) ' c (2γp)
1/2

ωpω1/2
, (ω � γp) , (15.51)
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Fig. 15.1 The skin depth δskin(ω) for the simple model (14.85), using the
values of σ0 and τ for copper at room temperature. The corresponding values
of γp and ωp are indicated by the horizontal dotted lines. The bands of the
electromagnetic spectrum corresponding to the values of ω are also indicated
(the label “v” stands for “visible”). The smaller ticks in the IR and UV regions
correspond to the subdivision of the IR into far, middle, and near IR (from
left to right), and similarly for the subdivision of the UV into near, middle
and far UV (again from left to right).

which, upon use of eq. (14.83), is the same as eq. (15.43). The solution
for δskin(ω) then flattens in the region γp<∼ω<∼ωp and, as we approach
the plasma frequency, it raises sharply. When ω � ωp, δskin(ω) eventu-
ally grows as ω2, in agreement with eq. (15.47) so, for instance, metals
can be quite transparent to X-ray radiation. Note, however, that, apart
from the fact that have we used the very simplified model (14.85) for the
response function, at a more fundamental level the classical analysis used
to produce Fig. 15.1 breaks down for X-ray radiation. In this regime a
full quantum treatment, based on (coherent and incoherent) Compton
scattering, becomes necessary, see also the discussion in Section 16.2.

It should be observed, at this point, that the above computation as-
sumes the validity of Ohm’s law in the form (13.81), and of the Drude
model of conductivity. As can be seen from the derivation in Sec-
tion 14.4, this in turn assumes that, at the frequency ω of interest, the
electron mean free path ` inside the conductor is small compared to the
length-scale over which the corresponding Fourier mode of the electric
field varies, which is given precisely by the skin depth δskin(ω). This as-
sumption indeed entered when we assumed that, in eq. (14.57), we could
neglect the x dependence of electric field mode Ẽ(ω,x). From Fig. 15.1
we see that δskin(ω) becomes quite low in the regime γp � ω � ω, and
in this domain this assumption can fail even at room temperatures (and
even more at low temperatures, where the mean free path can increase
significantly).14 In this case, we are in the regime of the anomalous skin

14For instance, for copper at room tem-
perature, the electrons mean free path
is ` ' 4.2×10−8 m, while at λ = 10µm
(corresponding to ω ' 1.88 × 1014 s−1

and ω/γp ' 4.5), eq. (15.49) gives
δskin ' 1.8 × 10−8 m, so for these fre-
quencies the assumption ` � δskin(ω)
breaks down.

effect. In this regime the relation between the current and the electric
field is more complicated, and is rather given by an integral relation of
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the form

j̃free(ω,x) =

∫
d3x′σ(ω,x− x′)Ẽ(ω,x′) . (15.52)

Upon performing the Fourier transform also with respect to x, this gives

j̃free(ω; k) = σ(ω,k)Ẽ(ω,k) . (15.53)

The determination of the kernel σ(ω,x− x′) is then more complicated,
and requires solving a Boltzmann kinetic equation for the non-equilibrium
part of the electron distribution function in phase space.

Several other approximations must be improved before comparing
Fig. 15.1 to the behavior of an actual metal. In particular, by using
eq. (14.85), we have neglected the contribution from bound electrons
and, more fundamentally, all our treatment, based on the Drude model,
has been purely classical, and has neglected the interaction between the
electrons. A full quantum treatment, including the effect of the band
structure of the metals, belongs to a solid-state course. However, the
simple model that we have discussed in this section already gives a first
useful orientation.

15.3.2 Longitudinal EM waves and plasma
oscillations

We next investigate the other branch of solutions of eq. (15.34), which
exists if there is a value ω̄ of ω such that ε(ω̄) = 0. First of all, we observe
that such a solution is physically possible. Using for instance the simple
model (14.85) for the response function, the equation ε(ω̄) = 0 becomes

ω̄2 + iω̄γp − ω2
p = 0 , (15.54)

whose solutions are

ω̄ = ±
√
ω2
p −

(γp
2

)2

− iγp
2
. (15.55)

For metals ωp � γp, so eq. (15.55) simplifies to

ω̄ ' ±ωp −
i

2
γp . (15.56)

Therefore, at this special frequency, beside the “usual” transverse elec-
tromagnetic waves, there is also a solution of eq. (15.34) where E is
longitudinal,

Ẽ(ω = ω̄,k) = Ẽk k̂ . (15.57)

If we insert this expression into the other Maxwell’s equations we see
that, since k̂× k̂ = 0, eq. (15.37) requires that, on this solution, B = 0.
Then, eq. (15.36) is trivially satisfied and, taking into account that
ε(ω̄) = 0, also eq. (15.35) is satisfied. We have therefore found a longi-
tudinal electromagnetic wave, in which the electric field has the form

E(t,x) = e−γpt/2Re
[
Ẽk e

−iωpt+ik·x
]

k̂ , (15.58)
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i.e., performs oscillations at the plasma frequency, with an amplitude
that is exponentially damped in time (since γp = 1/τ > 0), and is ori-
ented in the propagation direction k, while B = 0. Metals are charac-
terized by the condition ωp � γp. Therefore, the wave (15.58) performs
a large number of oscillations before being significantly damped.

One might ask why we did not consider this solution for dielectrics.
Again, one would have a longitudinal solution if there were a frequency
ω̄ such that ε(ω̄) = 0 in eq. (15.3). If we use the model (14.39) for
the dielectric constant, the equation ε(ω̄) = 0 becomes the same as
eq. (15.54), with ω2

p replaced by ω2
0 +ω2

p and γp replaced by γ0. However,
while a good conductor is characterized by the condition ωp � γp, for
a dielectric or a poor conductor we are rather in the opposite limit, in
which ωp is at most of the same order as γp (and the typical frequency
ω0 for an electron bound in an atom is also in general in the UV, of the
same order as ωp). Any wave oscillating as in eq. (15.58) would therefore
get damped on a timescale of at most a few cycles of oscillations, and
therefore does not describe an actual wave propagating in the medium.1515Actually, for ωp < γp/2, there is not

even a real part in eq. (15.55), and the
solution for ω̄ becomes purely imagi-
nary.

Note that the Fourier modes Ẽ(ω = ω̄,k), in eq. (15.58), all oscillate
at the same plasma frequency ωp (and have the same decay time), inde-
pendently of k, so the dispersion relation of these modes is ω(k) = ωp,
independent of k. This is due to our simplified modeling of the response
functions σ(ω), which we have taken independent of k.1616A non-trivial dispersion relation

would emerge from a hydrodynami-
cal treatment of the oscillating elec-
tron fluid, see Section 10.8 of Jackson
(1998), and leads to a dispersion rela-
tion ω2(k) = ω2

p+3〈v2〉k2, where 〈v2〉 is
the average square velocity of the elec-
trons, related to the temperature by
me〈v2〉 = 3kT .

We now discuss the physics behind the longitudinal solution. From
eq. (14.82) we see that, if nf = 0, then ωp = 0 and there are no oscilla-
tions. These oscillations must therefore be related to oscillations of the
free charges in the medium, and disappear if there are no free charges.
Note that this is different from what happens to the transverse elec-
tromagnetic waves that, according to eq. (15.39), in the limit nf = 0,
where ε(ω) = ε0, have the standard dispersion relation of electromag-
netic waves in vacuum, ω = |k|c, see eq. (9.41).1717Recall that, in this computation, we

have also set µ(ω) = µ0. Consider a metal, in which the positively charged ions are, to a first
approximation, fixed, while the electrons are free to move. In an equi-
librium situation, the macroscopic charge density ρions(x) of the ions
and the macroscopic charge density ρf (x) of the free electrons are time-
independent, and are equal and opposite at each (coarse-grained) point
in space, ρions(x) = −ρf (x), so the medium is overall electrically neutral.
Suppose now that, either because of statistical fluctuations or because
of an external disturbance, some electrons are removed from a region
and accumulate into another. Then, the electrons density is lowered
in the first region and correspondingly enhanced in the second region.
The first region will therefore be overall positively charged, because the
positive ion charge density will no longer be fully compensated by the
electron charge density, while the second will have an overall negative
charge. As a result, there will be a net electric field, pointing from the
positively charged region toward the negatively charged region. Under
the action of this electric field, all the free electrons of the material will
move, and in particular the “cloud” of excess electrons will move back
toward the region where there is a net positive charge. If collisions with
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the ions are negligible, it will arrive there with a significant velocity and
will swing on the opposite side. The force from the positively charged
region will then attract it back, so this cloud of electrons performs a
series of oscillations around the fixed position of the positively charged
region. Eventually, these oscillations will be damped by the collisions.
The electric field generated by these charge inhomogeneities points from
the positively charged region toward the electron cloud and is therefore
aligned with the direction of motion of the electron cloud (and opposite
to it). It is therefore a longitudinal electric field, that points in the same
direction as that along which there is a spatial inhomogeneities, i.e.,
along the direction of the wavenumber k of the Fourier mode, and oscil-
lates together with the oscillations of the free electron, passing through
zero at the moment when the electron cloud passes over the position of
the positively charged region, since there the total charge densities of
electrons and ions momentarily compensate each other. We therefore
have a natural mechanism for creating an oscillating longitudinal elec-
tric field. The same can happen in a plasma, where the positive and
negative charges can both move freely. In this case, a cloud of excess
positive charges and a cloud of excess negative charges would oscillate
around their common center of mass. These oscillations are then called
plasma oscillations (even in the case of metals).

We now compute the frequency of these oscillations, using the Drude
model, and we will show that we get precisely the plasma frequency
computed above. We consider for definiteness the situation appropriate
to a metal, where the ions are fixed and the free charges are provided
only be the free electrons, but the argument can be generalized to the
case of a plasma, where both the ions and electrons are free to move.
We start from eq. (14.56), that we recall here,

(
∂

∂t
+

1

τ

)
jfree(t,x) =

nfe
2

me
E(t,x) , (15.59)

[where, compared to eq. (15.59), we have written ∂jfree/∂t instead of
djfree/dt since now we are considering an inhomogeneous situation where
jfree = jfree(t,x)] and we observe that, in this case, E is not a fixed ex-
ternal electric field, but rather is generated by the positive and negative
charges in the metal. It therefore satisfies

∇·E(t,x) =
1

ε0
ρ(t,x) , (15.60)

where ρ(t,x) = ρions(x) + ρfree(t,x); note that we have taken a static
distribution of ions, as appropriate to a metal, while the electrons pro-
vide the freely moving charges and, in this out-of-equilibrium situation,
have a time-dependent density. In a homogeneous equilibrium situa-
tion, the positive and negative charge densities are independent of time,
and compensate each other, so the total density vanishes. However, in
the presence of spatial fluctuations, the two densities no longer com-
pensate each other at each point, even if the total charges, i.e., their
spatial integrals, are equal and opposite. The charge density and the
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current density of the free electrons are related by the continuity equa-
tion ∇·jfree = −∂ρfree/∂t. However, since ρions is independent of time,
we can write it as well as ∇·jfree = −∂ρ/∂t. Taking the divergence of
eq. (15.59), we therefore get

−
(
∂

∂t
+

1

τ

)
∂ρ

∂t
=
nfe

2

ε0me
ρ . (15.61)

On the right-hand side we recognize the square of the plasma frequency,
eq. (14.82), so we can rewrite eq. (15.61) as

(
∂2

∂t2
+

1

τ

∂

∂t
+ ω2

p

)
ρ = 0 . (15.62)

Notice that, in our approximations, this equation is independent of x,
i.e., is the same for all spatial Fourier modes. Looking for a solution
ρ(t) ∝ e−iω̄t we get the condition on ω̄,

ω̄2 + i
ω̄

τ
− ω2

p = 0 , (15.63)

which is the same as eq. (15.54) (identifying as usual γp = 1/τ), and
therefore has the same solutions, given in eq. (15.55). We have therefore
understood that the longitudinal solution of Maxwell’s equations in a
conductor, found above, is due to the damped oscillations of the charge
inhomogeneities.

It could be puzzling the fact that, in plasma oscillations, no magnetic
field is generated, since the oscillating electron cloud generates a current.
However, from the Ampère–Maxwell law in materials, eq. (13.46), we
know that there are two contributions to the magnetic field, one coming
from the time derivative of D and the other from the current of the
free charges. In Fourier space, these two contributions are given by the
terms proportional to D̃(ω,x) and to j̃free(ω,x) in eq. (13.85), and they
combine to give the term proportional to ε(ω)Ẽ(ω,x) in eq. (13.89). We
see that the condition ε(ω) = 0 imposes that these two contributions
cancel among them, and therefore there is no magnetic field.

15.4 Electromagnetic waves in waveguides

The range of wavelengths of microwaves is about λ ∼ 1 mm to 1 m,
corresponding to frequencies f = c/λ from 300 MHz (for λ = 1 m) to
300 GHz (for λ = 1 mm), and ω = 2πf from about 2× 109 s−1 to about
2×1012 s−1.18 Such wavelengths cannot be transported to large distances18In radio-frequency engineering, mi-

crowaves are rather defined, more re-
strictively, as electromagnetic waves
with wavelength between 3 mm to
0.3 m, corresponding to the range 1–
100 GHz.

with ordinary ac circuits, since, when the dimensions of the circuit be-
come larger than the wavelength, the radiative losses become very large,
and an alternative is provided by waveguides, i.e., hollow metallic pipes.
Electromagnetic waves can propagate inside such waveguides, and the
difference with respect to vacuum propagation comes from the boundary
conditions that must be imposed on the fields on the surface of the pipe.
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15.4.1 Maxwell’s equations in a waveguide

Consider first Maxwell’s equations inside the waveguide. Since there are
no sources, inside we just have the usual Maxwell’s equations in vacuum
(we assume that a good vacuum is made inside the waveguide; otherwise
one should simply include the corresponding dielectric constant), that
we write again here

∇·E = 0 , (15.64)

∇×B− 1

c2
∂E

∂t
= 0 , (15.65)

∇·B = 0 , (15.66)

∇×E +
∂B

∂t
= 0 . (15.67)

Observe that, for fields that are time-dependent, as electromagnetic
waves, eq. (15.64) is implied by eq. (15.65). In fact, taking the divergence
of eq. (15.65) and using ∇·(∇×B) = 0, we obtain ∂t(∇·E) = 0, which,
for a field with a time-dependence e−iωt with ω 6= 0, implies ∇·E = 0.
Similarly, eq. (15.66) is implied by eq. (15.67). Therefore, for time-
dependent fields in vacuum, it is sufficient to consider just eqs. (15.65)
and (15.67).19 19Indeed, it is instructive to see

how the solution for electromag-
netic waves in vacuum, that we
found in eqs. (9.70)–(9.81) using all
four Maxwell’s equations, could have
been obtained using only eqs. (15.65)
and (15.67): inserting the ansatz
E(t,x) = Ek e

−iωt+ik·x and B(t,x) =
Bk e

−iωt+ik·x (where, for the mo-
ment, ω and k are independent) into
eqs. (15.65) and (15.67) we get

k×Bk + (ω/c2)Ek = 0 , (15.68)

k×Ek − ωBk = 0 . (15.69)

Solving for Bk in eq. (15.69), plugging
it into eq. (15.68) and expanding the
resulting triple vector product, we get

(ω2 − k2c2)Ek + k2c2(Ek·k̂)k̂ = 0 .
(15.70)

Separating Ek into its transverse and
longitudinal parts, Ek = Ek,⊥+Ek,‖k̂,
we get

(ω2 − k2c2)Ek,⊥ + ω2Ek,‖k̂ = 0 .
(15.71)

Since Ek,⊥ and k̂ are orthogonal, if
ω 6= 0 we get the two separate condi-
tions ω2 − k2c2 = 0 and Ek,‖ = 0, i.e.,
the dispersion relation in vacuum, and
the condition Ek,‖ = 0 that, before, we
had derived using ∇·E = 0. The same
treatment can be made for the mag-
netic field, solving for Ek in eq. (15.68)
and plugging it into eq. (15.69).

We set the longitudinal direction of the waveguide along the z axis.
The boundary conditions break the translation invariance in the (x, y)
plane and give a non-trivial structure to the solution in the x and y
directions, so we look for a solution in the form of a wave propagating
along the z direction, with a generic dependence on the (x, y) variables,

E(t,x) = E(x, y)e−iωt+ikz , (15.72)

B(t,x) = B(x, y)e−iωt+ikz . (15.73)

On functions of this form, ∂t → −iω and ∂z → ik. Then, writing
explicitly the equations in components, eq. (15.65) becomes

iω

c2
Ex − ikBy = −∂yBz , (15.74)

iω

c2
Ey + ikBx = ∂xBz , (15.75)

∂xBy − ∂yBx = − iω
c2
Ez , (15.76)

and similarly eq. (15.67) gives

iωBx + ikEy = ∂yEz , (15.77)

−iωBy + ikEx = ∂xEz , (15.78)

∂xEy − ∂yEx = iωBz . (15.79)

We now observe that eqs. (15.74) and (15.78) are two algebraic equations
for the two variables Ex, and By, and similarly eqs. (15.75) and (15.77)
are two algebraic equations for the two variables Ey, and Bx. The trans-
verse components of the fields are therefore determined algebraically, in
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terms of the derivatives of the longitudinal components Ez and Bz. The
solution of these algebraic equations is

γ2Ex = ik∂xEz + iω∂yBz , (15.80)

γ2Ey = ik∂yEz − iω∂xBz , (15.81)

γ2Bx = ik∂xBz −
iω

c2
∂yEz , (15.82)

γ2By = ik∂yBz +
iω

c2
∂xEz , (15.83)

where we have defined

γ2 ≡
(ω
c

)2

− k2 , (15.84)

(not to be confused with the Lorentz boost factor, also conventionally
denoted by γ). Observing that

ẑ×∇ = ẑ× (x̂∂x + ŷ∂y + ẑ∂z)

= ŷ∂x − x̂∂y , (15.85)

we can rewrite this more compactly as

γ2Ei = ik∂iEz − iω(ẑ×∇)iBz , (15.86)

γ2Bi = ik∂iBz +
iω

c2
(ẑ×∇)iEz , (15.87)

where the index i run over the two values {x, y}. The remaining equa-
tions to be satisfied are eqs. (15.76) and (15.79). Inserting eqs. (15.82)
and (15.83) into eq. (15.76) we get

(∂2
x + ∂2

y + γ2)Ez(x, y) = 0 , (15.88)

which is a Helmholtz equation in two dimensions, of the type already
encountered (in three dimensions) in eq. (10.14). Similarly, inserting
eqs. (15.80) and (15.81) into eq. (15.79) we get

(∂2
x + ∂2

y + γ2)Bz(x, y) = 0 . (15.89)

The problem is therefore reduced to solving eqs. (15.88) and (15.89).
The solution for Ez(x, y) and Bz(x, y) will then determine all other com-
ponents through eqs. (15.86) and (15.87) (as long as γ2 6= 0, see below).
To solve eqs. (15.88) and (15.89), we must specify the boundary condi-
tions for Ez and Bz on the boundary of the vacuum region that we have
considered, i.e., on the boundary between the vacuum and the inner
surface of the conductor that makes the hollow pipe. We discuss this in
the next subsection.

15.4.2 Boundary conditions at the surface of
conductors

To study the boundary conditions at the interface between vacuum and
a conductor, we begin by observing that eqs. (13.64) and (13.68) are
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valid even when the media (1) and (2) are the vacuum and a conductor,
respectively, since they have been derived from the Maxwell’s equations
(13.47) and (13.48), that do not depend on the sources. Therefore,
the tangential components of E and the normal component of B are
continuous across the surface separating the vacuum (or a dielectric)
from a conductor. However, as we discussed in Section 4.1.6, in the
absence of an external applied voltage a conductor quickly reaches an
equilibrium situation where any external field is screened, so that inside
a conductor there is no current flowing, and E = 0. In the absence
of currents (and neglecting magnetic dipoles at the atomic scale, so
excluding the case of ferromagnets) there is no magnetic field either, so
inside a conductor, in a static situation, E = B = 0. Then, eqs. (13.64)
and (13.68) tell us that, approaching the boundary from the vacuum
side, the tangential components of E and the normal component of B
vanish, so the boundary conditions for a waveguide are

n̂×E = 0 , n̂·B = 0 . (15.90)

To solve eqs. (15.88) and (15.89), we need to extract from this the bound-
ary conditions on Ez and Bz. Consider for instance a point on the
boundary where the normal n̂ is along the x direction (recall that the
longitudinal axis of the waveguide has been set along the ẑ direction).
Then eq. (15.90) gives, on the boundary, Ey = Ez = 0 and Bx = 0 and
therefore

Ey = Ez = 0 , Bx = 0 . (15.91)

The boundary condition for Ez is therefore Ez = 0. For Bz, we use
eqs. (15.81) and (15.82). Near the boundary, where Ey = 0 and Bx = 0,
they become

ik∂yEz − iω∂xBz = 0 , (15.92)

ik∂xBz −
iω

c2
∂yEz = 0 , (15.93)

which can be combined to give

γ2∂xBz = 0 . (15.94)

Therefore (unless γ = 0), we have the boundary condition ∂xBz = 0.
More generally, for n̂ generic rather than in the x̂ direction, we get
n̂·∇Bz = 0.

15.4.3 TE, TM, and TEM modes

In conclusion, we have to solve the eigenvalue equation

−(∂2
x + ∂2

y)Ez(x, y) = γ2Ez(x, y) , (15.95)

with the boundary condition

(Ez)|S = 0 , (15.96)
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and the eigenvalue equation

−(∂2
x + ∂2

y)Bz(x, y) = γ2Bz(x, y) , (15.97)

with the boundary condition

n̂·(∇Bz)|S = 0 , (15.98)

where we have taken the z axis as the propagation direction and n̂ is
the normal to the boundary S of the waveguide. These two equations
and boundary conditions are independent of each other. The trans-
verse components of the electric and magnetic field are then found from
eqs. (15.86) and (15.87). We can distinguish three classes of solutions.

TE modes. These are solutions with Ez = 0, which trivially satisfies
eq. (15.95) and the boundary condition (15.96), and Bz 6= 0. Observe,
from eq. (15.86), that, even if Ez = 0, as long as Bz 6= 0, Ex and Ey are
non-zero. In these solutions, therefore, the electric field is transverse,
hence the name TE (for “transverse electric”), while the magnetic field
has both transverse and longitudinal components. Equation (15.97) with
the boundary condition (15.98) is an eigenvalue equation, that has so-
lutions only for a discrete set of values of γ2. From eq. (15.84), the
corresponding dispersion relation is

ω2 = (k2 + γ2)c2 , (15.99)

where k ≡ kz is a continuous variable, corresponding to the fact that we
have assumed a straight infinite waveguide along the z direction, while
γ2 plays the role of k2

x + k2
y and takes discrete values because of the

boundary conditions in the x and y directions, exactly as it happens for
the vibration modes of a string. Since Ez = 0, eqs. (15.86) and (15.87)
simplify to

γ2Ei = −iω(ẑ×∇)iBz , (15.100)

γ2Bi = ik∂iBz . (15.101)

TM modes. These are the solutions with Bz = 0 and Ez 6= 0, so
now the magnetic field is transverse, while the electric field has both
transverse and longitudinal components. From eqs. (15.86) and (15.87),
the transverse component are given by

γ2Ei = ik∂iEz , (15.102)

γ2Bi =
iω

c2
(ẑ×∇)iEz . (15.103)

The dispersion relation is again eq. (15.99). However, the eigenvalues
γ2 are, in general, different from those of the TE modes, since γ2 is
determined by eq. (15.97) with the boundary condition (15.98), which
is different from the boundary conditions for the TE modes.

TEM modes. Finally, one can search for a solution transverse both in
the electric and magnetic fields, Ez = Bz = 0. From eqs. (15.86) and
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(15.87), we see that a non-vanishing solution for the transverse fields is
possible only if γ2 = 0, so the dispersion relation becomes

ω = kc , (15.104)

as in vacuum. In this case, eqs. (15.86) and (15.87) become trivial iden-
tities 0 = 0 and do not allow us to determine the transverse component.
To determine them, we must rather go back to Maxwell’s equations.
Consider first eqs. (15.65) and (15.67), in the form (15.74)–(15.79). Set-
ting Ez = Bz = 0 and ω = kc, eqs. (15.74) and (15.75) give

cBx = −Ey , cBy = Ex , (15.105)

and the same conditions are obtained from eqs. (15.76) and (15.77).
Equations (15.78) and (15.79) give

∂xEy − ∂yEx = 0 , ∂xBy − ∂yBx = 0 . (15.106)

The remaining equations are the divergence equations (15.64) and (15.66)
that, setting Ez = Bz = 0, become

∂xEx + ∂yEy = 0 , ∂xBx + ∂yBy = 0 . (15.107)

We therefore have two two-dimensional fields E(x, y) and B(x, y) that
satisfy

∇T ·E = 0 , ∇T × E = 0 , (15.108)

where ∇T = x̂∂x+ ŷ∂y is the two-dimensional gradient in the transverse
plane, and similarly ∇T ·B = ∇T × B = 0. A theorem states that, if
a two-dimensional vector field E satisfies ∇T ·E = ∇T × E = 0 in a
simply connected domain, then E = 0. However, this is no longer true
if the domain is not simply connected (i.e., if there are closed curves
that cannot be deformed continuously to a point). So, for instance,
we can take as waveguide a coaxial cable, made of an inner cylindrical
conductor whose radius, in the transverse plane, is r1, and an outer
hollow conductor of radius r2 > r1, so, in the transverse plane, the
waveguide consists of the region r2

1 < x2 + y2 < r2
2. In this case, it is

possible to have non-zero solutions for Ex, Ey (and, similarly, for Bx, By),
with Ez = Bz = 0, corresponding to modes in which both the electric
and the magnetic fields are transverse, called TEM modes.

Example: rectangular waveguide. As an example, consider a waveg-
uide whose transverse section is a rectangle 0 < x < a, 0 < y < b. Being
simply connected, TEM modes do not exist. The TE modes are the
solution of eq. (15.97), with the boundary conditions

∂Bz
∂x

(x = 0, y) =
∂Bz
∂x

(x = a, y) = 0 , (15.109)

∂Bz
∂y

(x, y = 0) =
∂Bz
∂y

(x, y = b) = 0 . (15.110)

The eigenfunctions are characterized by two integers (m,n), and are

(Bz)mn = Bmn cos
(mπ
a
x
)

cos
(nπ
b
y
)
, (15.111)
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with Bmn constant, and the corresponding eigenvalues are

γ2
mn =

(mπ
a

)2

+
(nπ
b

)2

. (15.112)

The corresponding modes are denoted as TEmn. The TE and TM modes
are solutions only if γ2 6= 0, since otherwise eqs. (15.80)–(15.83) degen-
erate to 0 = 0 identities and one must rather resort to Maxwell equation
in the original form; as we have seen, this gives the condition for the
TEM modes, which are absent in a rectangular waveguide. Therefore,
the case m = n = 0 is excluded, and, taking a < b, the lowest TE mode
is the mode TE01.

Similarly, the TM modes are the solutions of eq. (15.95) with Ez van-
ishing on the boundaries,

Ez(x = 0, y) = Ez(x = a, y) = 0 , (15.113)

Ez(x, y = 0) = Ez(x, y = b) = 0 . (15.114)

The solutions are

(Ez)mn (x, y) = Emn sin
(mπ
a
x
)

sin
(nπ
b
y
)
. (15.115)

The corresponding eigenvalues are again given by eq. (15.112), but now
m ≥ 1 and n ≥ 1, since otherwise the solution vanishes. Hence, the
lowest TM mode is the mode TM11.

From the dispersion relation

ω2
mn = k2c2 + γ2

mnc
2 (15.116)

it follows that, in the waveguide, the minimum frequency that can prop-
agate is ω = cγ01 = cπ/b, and therefore the wavelength λ = 2πc/ω
must be less than 2b. Since k is a continuous variable, all frequencies
above this limiting value, i.e., all wavelength λ < 2b can propagate in
the waveguide.

Exercise. Compute the electric and magnetic fields in the transverse
plane for the TE01 and TM11 modes in a rectangular waveguide.
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In this chapter we discuss the scattering of electromagnetic waves by
charged particles. We will examine separately the scattering from free
electrons and that from electrons bound in atoms or molecules.

16.1 Scattering cross-section

We begin by defining the scattering cross-section, which provides a quan-
titative way of describing the outcome of a scattering process. The
cross-section is defined, at a fundamental level, with reference to colli-
sions between particles. Consider a beam of particles of type 1, with
number density n1 and velocity v1, impinging on a target made of par-
ticles of type 2 and number density n2, in the frame where the particles
of type 2 are at rest. This could be the case, for instance, of a beam
of electron impinging on a block of material. The number of scattering
events, dN , that take place in a volume dV of the material in a time
interval dt must be proportional to the incoming flux n1v1 and to the
density of targets n2. The proportionality constant is, by definition, the
cross-section σ,

dN = σv1n1n2 dV dt . (16.1)

Dimensional analysis shows immediately that σ has the dimensions of an
area. At a more detailed level, we can consider the number (dN/dΩ)dΩ
of particles scattered within an infinitesimal solid angle dΩ = d cos θdφ
centered around a given direction, identified by polar angles (θ, φ), and
define the differential cross-section dσ/dΩ by

dN

dΩ
=
dσ(θ, φ)

dΩ
v1n1n2 dV dt , (16.2)

so that the total cross-section σ is obtained from

σ =

∫
dΩ

dσ(θ, φ)

dΩ
. (16.3)

Consider a monochromatic beam of particles, i.e., a beam where all
incoming particles have the same energy E. Then En1v1 is the incoming
energy flux. Consider first for simplicity elastic scattering, where the
incoming particle is scattered from a fixed center, so that its final energy
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is the same as the initial energy. Then, multiplying by E and integrating
over the volume of the target, eq. (16.1) gives

EdN = σ En1v1dt

∫
n2 dV , (16.4)

where, with a slight abuse of notation, we keep the same symbol dN
for what is now the number of scattering events differential with re-
spect to dt (rather than with respect to dtdV ). We now observe that
EdN/dt = d(EN)/dt is the scattered energy per unit time, i.e., the scat-
tered power, while En1v1 is the incoming energy flux, and N2 =

∫
n2 dV

is the number of targets. Therefore, the cross-section is equal to the ratio
of the scattered power P to the incident energy flux I, per unit target.
Therefore, if we consider a wave impinging on a single target,

σ =
P

I
, (16.5)

or, more generally,

dσ(θ, φ)

dΩ
=

1

I

dP (θ, φ)

dΩ
. (16.6)

We can take this as the definition of the classical cross-section for the
elastic scattering of an electromagnetic wave impinging on a single target
(the underlying reason being that, at a fundamental level, an electro-
magnetic wave can be seen as a collection of particles, the photons).
Elastic scattering in this case corresponds to the fact that the frequency
ω of the scattered electromagnetic wave is the same as the frequency ωin

of the incoming radiation (due to the fact that the energy of a photon is
related to its frequency by the quantum-mechanical relation E = ~ω).

More generally, the incoming energy could be partly absorbed and
dissipated into heat in the material, and partly re-radiated, not neces-
sarily at the same frequency as that of the incoming wave. The radiated
power will therefore have a frequency spectrum,

P =

∫
dω
dP (ω)

dω
, (16.7)

and correspondingly we can define the scattering cross-section, differen-
tial with respect to frequency, dσ/dω,

dσscatt(ω)

dω
=

1

I

dP (ω)

dω
, (16.8)

as well as the cross-section differential both with respect to frequency
and to solid angle,

dσscatt(ω; θ, φ)

dωdΩ
=

1

I

dP (ω; θ, φ)

dωdΩ
. (16.9)

The absorption part, in contrast, will be determined by the term j·E in
eq. (3.35). If we denote by Pabs the energy absorbed per unit time by
the material, we can similarly define an absorption cross-section from

σabs =
Pabs

I
. (16.10)
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For the absorbed energy there is no quantity corresponding to the angles
(θ, φ) of the emitted radiation, and therefore no sense in which we can
consider the differential with respect to the solid angle, as in eq. (16.6).
However, we can still consider the power absorbed per unit frequency,
and therefore the frequency spectrum

dσabs(ω)

dω
=

1

I

Pabs(ω)

dω
. (16.11)

For an incoming electromagnetic wave, the incident energy flux is given
by the Poynting vector (9.59).

16.2 Scattering on a free electron

We now consider an electromagnetic wave impinging on a free electron
initially at rest. The electromagnetic field of the wave accelerates the
electron, that therefore emits radiation in all directions. In the classical
picture, this is the origin of the scattered wave. The action of the wave
on the electron is determined by the Lorentz force (3.6). We assume that
the electric field of the wave is not too large, so that the motion induced
on the electron remains non-relativistic; we can then neglect the term
v×B compared to E, since in an electromagnetic wave |B| = |E|/c, and
v/c � 1. In this non-relativistic limit, the acceleration of the electron
is then given by

meẍ(t) = −eE[t,x(t)] , (16.12)

where x(t) is the electron position. To understand the limit of validity
of this approximation, consider for instance a field E(t,x) = Ex̂ cos(ωt)
that does not change appreciably in space in the region over which
the electron performs its oscillatory motion. Then the integration of
eq. (16.12), with initial condition x(t = 0) = 0 and ẋ(t = 0) = 0, gives

ẋ(t) = − eE

meω
sin(ωt) , x(t) =

eE

meω2
[cos(ωt)− 1] . (16.13)

The assumption of non-relativistic motion of the electron is therefore
satisfied if the electric field is such that

eE

meω
� c . (16.14)

For instance, for visible light with λ = 500 nm, this limiting field cor-
responds to 6 × 1012 V/m, which is a quite large field that can only be
obtained with picosecond laser pulses. In turn, this implies that

x0 ≡
eE

meω2
� c

ω
=

1

k
. (16.15)

This means that the amplitude x0 of the oscillations is such that kx0 �
1. It is therefore consistent to set eik·x ' 1 in the expression (9.49) of
the electric field of the propagating wave, and write simply

E(t) = Re
[
ê(k)Ek e

−iωt] . (16.16)
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The dipole moment of the electron is d = −ex, so eq. (16.12) gives

d̈(t) =
e2E(t)

me
. (16.17)

Consider for instance an incoming electromagnetic wave linearly polar-
ized along the ê direction, so that E = Eê. The radiated power per unit
solid angle by a non-relativistic electron is given by Larmor’s formula
(10.144),

dP (t; θ)

dΩ
=

1

4πε0

1

4πc3
e4E2

m2
e

sin2 θ , (16.18)

where θ is the polar angle measured from the ê axis. The incident energy
flux I = |S| of the incoming wave is given by eq. (10.140), which, using
µ0 = 1/(ε0c

2), can be rewritten as

I = cε0E
2 . (16.19)

Therefore,

dσ

dΩ
= r2

0 sin2 θ , (16.20)

where we have defined the classical electron radius11We already met this combination in
Note 8 on page 106 in the context
of the electron self-energy, as well as
in eq. (12.167), in the context of the
Abraham–Lorentz equation.

r0 =
1

4πε0

e2

mec2
. (16.21)

Integrating over the angles as in eq. (10.145) we get the Thomson cross-
section σT ,

σT =
8π

3
r2
0 . (16.22)

Notice that the frequency of the radiated electromagnetic wave is the
same as the frequency of the incoming wave: an incoming wave oscil-
lating at the frequency ω induces an oscillatory motion of the free elec-
tron again at the frequency ω, see eq. (16.13). In turn, as we see from
eq. (10.131), this motion generates dipole radiation at the frequency ω.
Therefore, the incident and scattered waves have the same frequency.

It should be observed that, in quantum mechanics, this result is mod-
ified at sufficiently large frequencies, and the frequency of the scattered
wave is lower than that of the incoming wave. This is a simple conse-
quence of energy-momentum conservation, once we borrow from quan-
tum mechanics the information that, at the quantum level, an electro-
magnetic wave with frequency ω is a collection of particles, the photons,
with energy E = ~ω and momentum k = ~(ω/c)k̂. Consider the scatter-
ing process of a photon on an electron initially at rest. Take for instance
the (x, y) plane as the scattering plane, with the photon coming along
the x axis, and denote by θ the scattering angle of the final photon in
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the (x, y) plane, see Fig. 16.1. Then, the initial four momentum of the
photon is kµ = (Eγ ,k) with

Eγ = ~ω , k =
~ω
c

(1, 0, 0) , (16.23)

and the initial four-momentum of the electron is pµ = (Ee,p) with

x

y

θ

ψ

e-

e-

γ

γ

Fig. 16.1 The geometry of the
Compton scattering described in the
text.

Ee = mec
2 , p = 0 . (16.24)

The final four-momentum of the photon is k′µ = (E′γ ,k
′), where

E′γ = ~ω′ , k′ =
~ω′

c
(cos θ, sin θ, 0) , (16.25)

corresponding to a scattering angle θ in the (x, y) plane, and a generic
frequency ω′ that we will determine using energy-momentum conserva-
tion. The final four-momentum of the electron is p′µ = (E′e,p

′), with

E′e =
√
m2
ec

4 + |p′|2c2 , p′ = |p′|(cosψ, sinψ, 0) , (16.26)

where we denoted by ψ the angle at which the electron recoils with
respect to the direction of the incoming photon, see again Fig. 16.1.
From energy conservation we have E′2e = (Ee + Eγ − E′γ)2, which gives

|p′|2c2 = ~2(ω − ω′)2 + 2mec
2~(ω − ω′) , (16.27)

while momentum conservation along the x and y axes gives, respectively

~ω = ~ω′ cos θ + c|p′| cosψ , (16.28)

0 = ~ω′ sin θ + c|p′| sinψ , (16.29)

We therefore have three equations for three variables ω′, |p′|, and ψ, for
a given scattering angle θ. Solving the equations, we get

ω − ω′ =
~

mec2
ωω′(1− cos θ) . (16.30)

This shows that ω′ ≤ ω for all scattering angles, with the equality satis-
fied only for forward scattering, θ = 0. This is due to the fact that, be-
cause of the momentum carried by the photon, the electron recoils in the
scattering process (except for θ = 0, where the photon is re-emitted in
the same direction), and therefore acquires some kinetic energy. There-
fore, part of the energy of the initial photon is transferred to the elec-
tron, and the final photon has a smaller energy. Equation (16.30) can
be written in a slightly more elegant form in terms of the wavelengths
λ = 2πc/ω and λ′ = 2πc/ω′, as

λ′ − λ =
2π~
mec

(1− cos θ) . (16.31)
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This shift in the wavelength is known as the Compton effect, and the
length-scale

rC =
~
mec

(16.32)

is called the Compton radius of the electron. We see that the effect
becomes important when the reduced wavelength λ− = λ/(2π) of the
incoming radiation is of order of rC . Numerically, rC ' 4 × 10−11 cm,
and the corresponding wavelengths are in the domain of X rays.

Therefore, the classical Thomson scattering formula is valid for fre-
quencies small (i.e., wavelengths large) compared to those of X rays.
When ω becomes of order c/rC , i.e., when the energy ~ω of the incom-
ing photon becomes of order of the rest energy of the electron mec

2,
the classical formula is no longer valid. Historically, the Compton ex-
periment of scattering of X rays on electrons, that was first carried out
between 1919 and 1922, was crucial to show that, at the quantum level,
light can behave as particles, leading to the concept of particle-wave
duality.

16.3 Scattering on a bound electron

We now consider the scattering of an electromagnetic wave on an electron
bound in an atom or in a molecule. A complete description requires
quantum mechanics, taking into account the discrete energy level of
the bound electron. Furthermore, just as for the scattering on a free
electron, if the frequency of the electromagnetic wave is in the X-ray
regime or larger, we should also take into account the quantum nature of
the electromagnetic field, which eventually requires the use of quantum
field theory. Here we discuss the purely classical computation, in which
both the electron and the electromagnetic field are treated classically.

Within such a classical approach, a simple description can be obtained
by modeling the bound electron as a damped harmonic oscillator with
natural frequency ω0 and damping constant γ0, forced by the external
field due to a monochromatic electromagnetic wave with frequency ω,
similarly to what we already did in Section 14.3 when we developed
the Drude–Lorentz model for the dielectric constant. As in the case of
the free electron, we assume that the amplitude E = |E| of the electric
field satisfies eq. (16.14), so that the motion of the electron under the
action of the electromagnetic wave remains non-relativistic. We can then
write a Newtonian equation of motion for the electron, using the Lorentz
force, and we can neglect the effect of the magnetic field. We have also
seen that, for electric fields that satisfy eq. (16.14), the amplitude of
the oscillations is such that kx0 � 1 (for a free electron, and therefore
even more so for a bound electron). We can then approximate eik·x ' 1
in the expression (9.49) of the electric field of the wave, which is then
given simply by eq. (16.16). The equation of motion of the electron,
with position x0(t), in the presence of the external field E(t) of the
electromagnetic wave, is therefore the one that was already written in
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eq. (14.33), with E(t) given by eq. (16.16),

ẍ0 + γ0ẋ0 + ω2
0x0 = − e

me
Re
[
ê(k)Ek e

−iωt] . (16.33)

We take the propagation direction of the electromagnetic wave along the
x axis, k̂ = x̂, and we consider a linearly polarized wave with ê(k) = ẑ
and Ek = E0 real. Then, eq. (16.33) becomes

z̈0(t) + γ0ż0(t) + ω2
0z0(t) = −eE0

me
Re
[
e−iωt

]
. (16.34)

Searching the solution in the form

z(t) = Re
[
z̃(ω)e−iωt

]
, (16.35)

we get

z̃(ω) =
eE0

me

1

ω2 + iωγ0 − ω2
0

, (16.36)

so,

z(t) =
eE0

me
Re

[
e−iωt

ω2 + iωγ0 − ω2
0

]
. (16.37)

The z component of the dipole moment is given by dz(t) = −ez(t), and
then

d̈z(t) =
e2E0ω

2

me
Re

[
e−iωt

ω2 + iωγ0 − ω2
0

]

=

(
e2E0ω

2

me

)
(ω2 − ω2

0) cosωt− ωγ0 sinωt

(ω2 − ω2
0)2 + ω2γ2

0

. (16.38)

Note that the dipole oscillates at the frequency ω of the incoming wave
so, again, classically the scattered wave has the same frequency as the in-
coming wave. Using the Larmor formula (10.144), the radiated power is
obtained from [d̈z(t)]

2. Rather than the power radiated instantaneously,
it is convenient to consider the power averaged over one period of os-
cillation, which better corresponds to what can be actually measured.
When we average over one period T = 2π/ω we get

〈cos2(ωt)〉 =
1

T

∫ T

0

dt cos2(ωt)

=
1

2π

∫ 2π

0

dα cos2 α

=
1

2
. (16.39)

Similarly 〈sin2(ωt)〉 = 1/2, while 〈sin(ωt) cos(ωt)〉 = 0. Therefore,

〈[d̈z(t)]2〉 =
1

2

(
e2E0

me

)2
ω4

(ω2 − ω2
0)2 + ω2γ2

0

, (16.40)

and the average radiated power, per unit solid angle, is

dP (θ)

dΩ
=

1

4πε0

1

8πc3

(
e2E0

me

)2
ω4

(ω2 − ω2
0)2 + ω2γ2

0

sin2 θ , (16.41)
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where θ is the polar angle measured from the z axis. Since we have
averaged the power over one cycle, we also average the incident flux
over one cycle, and we extend the definition (16.5) to σ = 〈P 〉/〈I〉.
Equation (9.59) gives

〈I(t)〉 =
1

2
ε0cE

2
0 . (16.42)

The differential scattering cross-section is therefore

dσscatt(ω; θ)

dΩ
= r2

0

ω4

(ω2 − ω2
0)2 + ω2γ2

0

sin2 θ , (16.43)

where we have used the definition (16.21) of the classical electron radius,
and we wrote explicitly as an argument the frequency of the incident
wave. If we set ω0 = γ0 = 0, we recover the result for a free electron,
eq. (16.20), as it should be. Integrating over the angles, we find the total
scattering cross-section

σscatt(ω) =
8π

3
r2
0

ω4

(ω2 − ω2
0)2 + ω2γ2

0

. (16.44)

A plot of the cross-section (16.44) is shown in Fig. 16.2, for γ0/ω0 = 0.4.
Several aspects of this result are noteworthy. At low frequencies, ω �

ω0, we have

σscatt(ω) ' 8π

3
r2
0

(
ω

ω0

)4

, (ω � ω0) . (16.45)

At low frequencies, the cross-section is therefore proportional to ω4.
In contrast, when the frequency ω of the electromagnetic matches the
natural frequency ω0 of the oscillator, we are in the resonance condition
and

0 1 2 3 4

ω/ω0

0

1

2

3

4

5

6

7

σ
(ω

)/
σ
T

Fig. 16.2 The cross-section σ(ω),
normalized to the Thompson cross-
section σT , as a function of ω/ω0,
for γ0/ω0 = 0.4.

σscatt(ω = ω0) =
8π

3
r2
0

(
ω0

γ0

)2

. (16.46)

For γ0 � ω0, the cross-section is therefore greatly enhanced with respect
to the Thompson cross-section σT = (8π/3)r2

0. Close to the resonance
we can approximate

σscatt(ω) =
8π

3
r2
0

ω4

(ω − ω0)2(ω + ω0)2 + ω2γ2
0

' 8π

3
r2
0

ω4
0

(ω − ω0)2(2ω0)2 + ω2
0γ

2
0

=
2π

3
r2
0

ω2
0

(ω − ω0)2 + (γ0/2)2
. (16.47)

From this expression we see that the resonance condition is maintained
in a narrow range of frequencies ∆ω ∼ γ0/2 centered around ω0. The
peak at ω = ω0 is an example or resonant scattering, or of a resonance.
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Finally, at large frequencies, i.e., when ω � ω0 and ω � γ0, the cross-
section goes to the Thompson cross-section σT = 8πr2

0/3, corresponding
to the limit of scattering on a free particle.

As we have discussed in the free particle case, at sufficiently high
frequencies, when ~ω becomes of order mec

2, the classical computation
is no longer valid. A full relativistic quantum computation shows that,
beyond that value, σ(ω) decreases as log(ω)/ω.

A beautiful consequence of this computation is that it allows us to ob-
tain at least a first understanding (due to Lord Rayleigh, 1871) of why
the sky is blue, and why the Sun at sunset looks redder than at noon.
Light in the visible spectrum has a frequency that is not high enough
to excite electronic transitions in the molecules, so we are in the regime
ω � ω0, where ω0 is the natural resonance frequency of a molecule. At
the same time, ω is much larger than the typical vibrational frequencies
of the molecules, which means that the vibrational modes of the nuclei in
the molecules cannot follow the fast oscillations of the electromagnetic
field, so these modes are not excited, and can be neglected. Another
important aspect is that air is sufficiently diluted, with respect to the
wavelength of visible light, that the molecules scatter light independently
of each other and the computation performed previously, where we con-
sidered the scattering from a single charge, applies. The opposite limit,
in which a whole ensemble of charges is set into oscillation coherently
by the incoming electromagnetic wave, would have required a different
computation. So, for scattering of visible light by the atmosphere we
are in the situation where eq. (16.45) holds. Compare for instance the
scattering cross-section for light at λ = 450 nm, in the blue region of
the visible spectrum, to that of light at λ = 650 nm (red). We have

(
ωblue

ωred

)4

=

(
λred

λblue

)4

' 4.35 , (16.48)

so the cross-section for scattering of blue light is about four times larger
than for red light. When we look at the sky, in a direction different
from that of the Sun, our eyes receive light that was emitted by the
Sun and then scattered toward us by some molecules in the atmosphere.
Since blue light is preferentially scattered toward us, we see a blue color.
Conversely, at sunset, light must travel through a longer path in the at-
mosphere, compared to the path when the Sun is at the Zenith. Since,
traveling through the atmosphere, blue photons are preferentially re-
moved, we see a redder Sun. Sunset seen from astronauts orbiting the
Earth is even redder because the path length through the atmosphere is
doubled.2

2See e.g., https://www.esa.int/

ESA_Multimedia/Images/2010/02/

Scattered_sunlight.

https://www.esa.int/ESA_Multimedia/Images/2010/02/Scattered_sunlight




Electrodynamics in
Gaussian units A
In this appendix we translate the main results and equations of the text into
Gaussian units. The conceptual relation between SI and Gaussian units has
been discussed in detail in Section 2.2, where we have seen that the crucial
difference is that, in the SI system, the unit of current (or the unit of charge)
is a fourth independent base unit, with respect to the units of length, time,
and mass while, in the Gaussian system, it is a derived unit. As we dis-
cussed in Section 2.2, there are actually two variants of the Gaussian system,
unrationalized Gaussian units (often referred simply as Gaussian units) and
“rationalized Gaussian” (or Heaviside–Lorentz) units. Rationalized Gaussian
units are the most common (if not universal) choice in quantum field theory.
In this context, one normally sets also c = 1 (and even ~ = 1, but ~ does not
appear in our classical equations). As we saw in Section 2.2, the conversion
from SI to rationalized Gaussian units is performed with the formal replace-
ments given in eq. (2.46). If we furthermore set c = 1, the conversion from
SI units to rationalized Gaussian units is therefore trivially performed, simply
by making in the SI equations the formal replacements

ε0 → 1 , µ0 → 1 , c→ 1 . (A.1)

We will therefore not consider rationalized Gaussian units further; unrational-
ized Gaussian units, in contrast, are often used as an alternative to the SI in a
classical context, therefore keeping c explicit. Furthermore, there are extra 4π
factors, so the conversion is less trivial, and in this appendix we write explic-
itly most of the main formulas of the main text in (unrationalized) Gaussian
units.1 1This appendix can also be used as a

compact summary of the main equa-
tions in the book; they are written here
in Gaussian units, but always with a
reference to the equation number of the
corresponding SI equation in the main
text. This allows the reader to quickly
find also the desired SI equation.

As we have seen, the actual relation between charges and fields in Gaussian
and SI system is given by eqs. (2.25), (2.32), and (2.33), that we recall here

qgau =
qSI√
4πε0

. (A.2)

Egau =
√

4πε0 ESI , Bgau =

√
4π

µ0
BSI . (A.3)

In the Gaussian system, the gauge potentials are introduced from

Bgau = ∇×Agau , (A.4)

Egau = −∇φgau − 1

c

∂Agau

∂t
. (A.5)

Comparing with the definition of the gauge potentials in the SI system, given
in eqs. (3.80) and (3.83), and using eq. (A.3), as well as ε0µ0 = 1/c2, we get
the following relation for the gauge potentials,

φgau =
√

4πε0 φSI , Agau =

√
4π

µ0
ASI . (A.6)
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We have also seen in eq. (2.38) that, independently of the actual relation
between quantities in these systems, expressed by the equations given above,
a quicker way of passing from the equations in the SI system to those in
Gaussian units is to perform the replacements

ε0 → 1

4π
, µ0 → 4π

c2
, E→ E B→ B

c
, (A.7)

(without changing ρ and j), since this formally transforms Maxwell’s equations
in the SI system into Maxwell’s equations in the Gaussian system.2 For the2The inverse path, from Gaussian to SI

equations, is less straightforward. Once
we set ε0 to a dimensionless value, to re-
store it back requires an input from di-
mensional analysis. To go from Gaus-
sian to SI it is therefore better to use
the actual relations (A.2, A.3).

gauge potentials, the corresponding formal replacement are3

3See, however, eq. (A.99) for the defini-
tion of Aµ in terms of φ and A in Gaus-
sian units, and eq. (A.86) for the defini-
tion of the magnetic dipole in Gaussian
units.

φ→ φ , A→ A

c
. (A.8)

In this way, all the equations that we have written in the book can be imme-
diately translated to Gaussian units. In any case, we find it useful to collect
together some of the most important results, as a quick reference. We orga-
nize this collection of results according to the chapters of the main text where
they have been first given in SI units. We henceforth drop the subscript “gau”
from all quantities. It is understood that all the formulas in the rest of this
Appendix are written in (unrationalized) Gaussian units.

Chapter 3

In Gaussian units, Maxwell’s equations (3.1)–(3.4) read

∇·E = 4πρ , (A.9)

∇×B− 1

c

∂E

∂t
=

4π

c
j , (A.10)

∇·B = 0 , (A.11)

∇×E +
1

c

∂B

∂t
= 0 . (A.12)

In integrated form, they become

ΦE(t) = 4πQ(t) , (A.13)∮
∂S

d` ·B(t,x) =
4π

c
I(t) +

1

c

dΦE(t)

dt
(A.14)

ΦB(t) = 0 , (A.15)∮
∂S

d` ·E(t,x) = −1

c

dΦB(t)

dt
, (A.16)

compare with eqs. (3.12), (3.19), (3.16), and (3.21), where we still have

ΦE(t) ≡
∫
∂V

ds ·E(t,x) , (A.17)

ΦB(t) ≡
∫
∂V

ds ·B(t,x) (A.18)

and

QV (t) =

∫
V

d3x ρ(t,x) , (A.19)

I(t) =

∫
S

ds · j(t,x) . (A.20)
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In a non-relativistic setting, where the notion of force makes sense, the Lorentz
force equation (3.5) becomes

F = q
(
E +

v

c
×B

)
, (A.21)

or, in a fully relativistic setting,

dp

dt
= q

(
E +

v

c
×B

)
. (A.22)

compare with eq. (3.6). The continuity equation for the electric charge still
keeps the form (3.22),

∂ρ

∂t
+ ∇·j = 0 , (A.23)

while the Poynting vector and energy conservation, that in SI units are given
by eqs. (3.34) and (3.35), become, respectively,

S =
c

4π
(E×B) , (A.24)

and
d

dt

∫
V

d3x
E2 + B2

8π
+

∫
V

d3xE·j = −
∫
∂V

ds·S . (A.25)

Therefore, the energy density of the electromagnetic field, eq. (3.43), becomes

u(t,x) =
1

8π
(E2 + B2) . (A.26)

The momentum density is

g =
1

c2
S

=
1

4πc
(E×B) , (A.27)

compare with eqs. (3.56) and (3.57), so the electromagnetic field enclosed in
a volume V carries a momentum

Pem(t) =

∫
V

d3xg(t,x)

=
1

4πc

∫
V

d3x (E×B)(t,x) , (A.28)

compare with eq. (3.67). The Maxwell stress tensor (3.64) becomes

Tij =
1

4π

[
1

2
(E2 +B2)δij − EiEj −BiBj

]
, (A.29)

while the time derivative of the mechanical momentum associated with a
charge and current density in an electromagnetic field, eq. (3.68), becomes

dPmech

dt
=

∫
d3x

(
ρE +

1

c
j×B

)
. (A.30)

The angular momentum of the electromagnetic field is

Jem =
1

4πc

∫
d3xx×(E×B) , (A.31)

to be compared with eq. (3.76), while eq. (3.79) becomes

dJmech

dt
=

∫
V

d3xx×
(
ρE +

1

c
j×B

)
. (A.32)
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The gauge potentials are introduced from

B = ∇×A , (A.33)

E = −∇φ− 1

c

∂A

∂t
, (A.34)

compare with eqs. (3.80) and (3.83). In terms of them, the two Maxwell’s
equations that do not depend on the sources are automatically satisfied, while
those that depend on the source, that in the SI system are given by eqs. (3.84)
and (3.85), become

∇2φ+
1

c

∂

∂t
(∇ ·A) = −4πρ , (A.35)

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A +

1

c

∂φ

∂t

)
= −4π

c
j . (A.36)

The gauge transformation (3.86) reads

A→ A′ = A−∇θ , (A.37)

φ→ φ′ = φ+
1

c

∂θ

∂t
. (A.38)

The Lorenz gauge (3.89) is now defined from

∇ ·A +
1

c

∂φ

∂t
= 0 , (A.39)

and, in this gauge, eqs. (A.35) and (A.36) become

2φ = −4πρ , (A.40)

2A = −4π

c
j , (A.41)

compare with eqs. (3.90) and (3.91). The Coulomb gauge still reads ∇·A = 0
and, in this gauge, eqs. (A.35) and (A.36) become

∇2φ = −4πρ , (A.42)

2A = −4π

c
j +

1

c
∇∂φ

∂t
, (A.43)

compare with eqs. (3.93) and (3.94).

Chapter 4

Poisson’s equation (4.3) becomes

∇2φ = −4πρ . (A.44)

The solution can be written in terms of the Green’s functions of the Laplacian
as

φ(x) = −4π

∫
d3x′G(x− x′)ρ(x′) , (A.45)

and, given that the Green’s function of the Laplacian is still given by eq. (4.15),
we get

φ(x) =

∫
d3x′

ρ(x′)

|x− x′| , (A.46)

to be compared with eq. (4.16). The corresponding electric field is

E(x) =

∫
d3x′ ρ(x′)

x− x′

|x− x′|3 , (A.47)
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to be compared with eq. (4.20) and, for a point charge, the Coulomb force
reads

F =
q1q2
r2

r̂ , (A.48)

[as we already wrote in eq. (2.23)], to be compared with eq. (2.6). For the
electric field on the surface of a conductor, eq. (4.54) becomes

n̂·E = 4πσ , (A.49)

while eq. (4.60) becomes

dpa
dt

=
1

4π

∫
∂Va

d2s

[
(E·n̂)E− 1

2
E2n̂

]
. (A.50)

The basic equations of magnetostatics are

∇×B =
4π

c
j , (A.51)

∇·B = 0 , (A.52)

compare with eqs. (4.67) and (4.68), and the integrated forms are∮
C
d` ·B(x) =

4π

c
I , (A.53)∮

S

ds ·B(t,x) = 0 , (A.54)

compare with eqs. (4.70) and (4.71). The magnetic field generated by an
infinite straight wire, eq. (4.79), now reads

B(ρ, ϕ, z) =
2I

cρ
ϕ̂ . (A.55)

Equation (4.91) becomes

∇2A = −4π

c
j , (A.56)

whose solution is

A(x) =
1

c

∫
d3x′

j(x′)

|x− x′| , (A.57)

compare with eq. (4.92). The corresponding solution for B is

B(x) =
1

c

∫
d3x′

j(x′)×(x− x′)

|x− x′|3 , (A.58)

compare with eq. (4.95). For a thin wire these become, respectively,

A(x) =
I

c

∮
C
d`

1

|x− x(`)| , (A.59)

and

B(x) =
I

c

∮
C
d`× x− x(`)

|x− x(`)|3 , (A.60)

compare with eqs. (4.104) and (4.105). Equations (4.109) and (4.110) become,
respectively,

F =
I

c

∮
C

d`×B , (A.61)

and

F =
1

c

∫
d3x j(x)×B(x) . (A.62)
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The force between two parallel wires, eq. (4.112), becomes

dF2

d`
= −2I1I2

c2d
ρ̂ , (A.63)

while eqs. (4.118) and (4.119) become, respectively,

F1 = − 1

c2

∫
d3xd3x′ j1(x)·j2(x′)

x− x′

|x− x′|3 , (A.64)

and

F1 = −I1I2
c2

∮
C1

∮
C2
d`1·d`2 x(`)− x(`′)

|x(`)− x(`′)|3 . (A.65)

Equation (4.134) becomes

1

c

dΦB
dt

= −
∮
C(t)

d` ·
(
E +

v

c
×B

)
. (A.66)

Chapter 5

The electrostatic energy of a static system of point charges, eq. (5.7), becomes

(EE)p.p. =
1

2

N∑
a=1

N∑
b 6=a

qaqb
|xa − xb|

. (A.67)

The electrostatic potential felt by the a-th point charge because of the inter-
action with all other charges is

φa(x1, . . .xn) =
N∑
b 6=a

qb
|xa − xb|

, (A.68)

compare with eq. (5.8), so eq. (A.67) can also be written as

(EE)p.p. =
1

2

N∑
a=1

qaφa , (A.69)

so eq. (5.9) is unchanged. Eqs. (5.43)–(5.45), valid for a set of conductors,
also stay unchanged. For a continuous charge distribution

EE =
1

2

∫
d3x ρ(x)φ(x) , (A.70)

=
1

2

∫
d3xd3x′

ρ(x)ρ(x′)

|x− x′| , (A.71)

compare with eqs. (5.15) and (5.16). The corresponding expressions for the
magnetic energy are

EB =
1

2c

∫
d3x j(x)·A(x) (A.72)

=
1

2c2

∫
d3xd3x′

j(x) · j(x′)
|x− x′| , (A.73)

compare with eqs. (5.52) and (5.53). For a set of loops, eq. (5.61) becomes

EB =
1

2c

N∑
a=1

IaΦB,a . (A.74)
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The mutual inductances and self-inductances are now defined from

1

c
ΦB,a =

N∑
b=1

LabIb , (A.75)

to be compared with eq. (5.63), so that we still have

EB =
1

2

N∑
a=1

LabIaIb , (A.76)

as in eq. (5.67). The flux through loop a of the magnetic field Bb generated
by loop b is still given by eq. (5.64),

(ΦB)a,b =

∫
Sa

ds ·Bb

=

∮
Ca
d`a·Ab[x(`a)] . (A.77)

Inserting here the expression for Ab obtained from eq. (A.59),

Ab[x(`a)] =
Ib
c

∮
Cb
d`b

1

|x(`a)− x(`b)|
, (A.78)

we get

(ΦB)a,b =
Ib
c

∮
Ca

∮
Cb

d`a · d`b
|x(`a)− x(`b)|

, (A.79)

and therefore eq. (A.75) gives

Lab =
1

c2

∮
Ca

∮
Cb

d`a · d`b
|x(`a)− x(`b)|

, (A.80)

to be compared with eq. (5.66).

Chapter 6

The expansion in electric multipoles is obtained writing

φ(x) =
1

r

∫
d3x′ ρ(x′)

[
1 +

n̂·x′
r

+O
(
d2

r2

)]
, (A.81)

compare with eq. (6.5). The electric dipole moment is still defined as in
eq. (6.8). Then, the electric dipole term of the potential is

φdipole(x) =
d·n̂
r2

, (A.82)

and the corresponding electric field is [compare with eq. (6.13)]

Edipole =
3(d·n̂)n̂− d

r3
. (A.83)

The expansion of the scalar potential up to the electric quadruple term is

φ(x) =
q

r
+
nidi
r2

+
ninjQij

2r3
+ . . . , (A.84)

where the quadrupole Qij is still defined by eq. (6.18). The expansion in
magnetic multipoles is obtained expanding eq. (A.57) as

A(x) =
1

cr

∫
d3x′ j(x′)

[
1 +

n̂·x′
r

+O
(
d2

r2

)]
. (A.85)
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The magnetic dipole moment is now defined as

m =
1

2c

∫
d3x x×j(x) , (A.86)

with an extra factor 1/c compared to eq. (6.36). Then, for a closed loop of
current,

m =
I

2c

∮
C

x×d` , (A.87)

and for a closed planar loop,

m =
IA

c
n̂ , (A.88)

while, for a charged particle,

m =
qa

2mac
La , (A.89)

compare with eqs. (6.41)–(6.43). With this definition of magnetic moment,
the vector potential and magnetic field generated by a magnetic dipole are,
respectively,

Adipole(x) =
m×x

r3
, (A.90)

and

Bdipole =
3(m·n̂)n̂−m

r3
, (A.91)

to be compared with eqs. (6.38) and (6.40). For a point-like electric dipole,
eq. (6.53) becomes

E =
3(d·n̂)n̂− d

r3
− 4π

3
d δ(3)(x) , (A.92)

while, for a point-like magnetic dipole, eq. (6.58) becomes

B =
3(m·n̂)n̂−m

r3
+

8π

3
m δ(3)(x) . (A.93)

Observe that, thanks to the extra factor 1/c in eq. (A.86), there is no explicit
factor of c in eq. (A.93).

The mechanical potential for the electric dipole still keeps the form (6.61),

(UE)dipole(x) = −d·Eext(x) , (A.94)

while the electric dipole-dipole interaction (6.92) becomes

(UE)dipole−dipole =
d1·d2 − 3(d1·r̂)(d2·r̂)

r3
+

4π

3
d1·d2δ

(3)(r) . (A.95)

Similarly, we still have44The extra factor of c in eq. (A.86) is
indeed inserted so that there is no ex-
plicit factor of c in eq. (A.96). (ÛB)dipole(x) = −m·Bext(x) , (A.96)

as in eq. (6.98), while eq. (6.105) becomes

(ÛB)dipole−dipole =
m1·m2 − 3(m1·n̂)(m2·n̂)

r3
− 8π

3
m1·m2 δ

(3)(r) . (A.97)
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Chapter 8

In Gaussian units, the four-current jµ is still written

jµ = (cρ, j) , (A.98)

as in eq. (8.9). Replacing formally A → A/c, see eq. (A.8), eq. (8.12) would
become Aµ = (φ/c,A/c). However, it is convenient to get rid of the overall
1/c factor, and define Aµ as

Aµ = (φ,A) . (A.99)

Fµν is still given by Fµν = ∂µAν−∂νAµ, as in eq. (8.15), where, however, now
Aµ is related to the scalar and vector potential as in eq. (A.99). Therefore,
instead of eq. (8.16), we have

F 0i = ∂0Ai − ∂iA0

= −1

c
∂tA

i − ∂iφ , (A.100)

and therefore, comparing with the expression of E in terms of A and φ in the
Gaussian system, given in eq. (A.34), we get

F 0i = Ei , (A.101)

without the factor 1/c that appears in eq. (8.17). For the (ij) components,
we still get Fij = εijkBk, as in eq. (8.20). Then eq. (8.21) becomes

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (A.102)

We see that the Gaussian system treats the electric and magnetic fields on
the same footing as components of Fµν , without an extra factor of 1/c in
the electric field, which is more natural from the point of view of Lorentz
covariance.

In terms of this Fµν , the first pair of Maxwell’s equation, that in Gaussian
units have the form (A.9, A.10), becomes

∂µF
µν = −4π

c
jν . (A.103)

Comparing with eq. (8.23) we see that, in the covariant formalism, the passage
from SI to Gaussian equations can be formally performed using, together with
the replacements ε0 → 1/(4π), µ0 → 4π/c2, already given in eq. (A.7), also
the replacement

Aµ → 1

c
Aµ , (A.104)

(and therefore also Fµν → Fµν/c). This is a consequence of having rescaled
Aµ by an overall factor of c compared to the SI definition, as discussed above
eq. (A.99). Then, eq. (8.28) becomes

2Aν − ∂ν(∂µA
µ) = −4π

c
jν , (A.105)

while the Lorenz gauge condition remains ∂µA
µ = 0, so, in the Lorenz gauge,

eq. (A.105) becomes

2Aµ = −4π

c
jµ . (A.106)
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The definition (8.31) of F̃µν , as well as the second pair of Maxwell’s equation
(8.33), are unchanged.

The energy-momentum tensor of the electromagnetic field, eq. (8.34), be-
comes

Tµν = − 1

4π

(
FµρFρ

ν +
1

4
ηµνF ρσFρσ

)
. (A.107)

and, in terms of the electric and magnetic fields

T 00 =
1

8π
(E2 +B2) = u , (A.108)

T 0i =
1

4π
εijkEjBk =

1

c
Si , (A.109)

[compare with eqs. (8.36) and (8.37)], where the energy density u and the
Poynting vector S in the Gaussian system were already given in eqs. (A.26)
and (A.24). Equation (8.39) becomes

∂νT
µν = −1

c
Fµνjν . (A.110)

Its µ = 0 component still gives

∂tu+ ∇·S = −E·j , (A.111)

as in eq. (8.41); however, now u, S and E are the quantities in the Gaussian
system. The µ = i component, instead, becomes

∂gi
∂t

+ ∂jTij = −
(
ρE +

1

c
j×B

)
i

, (A.112)

where gi = T 0i/c. Note the extra factor 1/c in front of the current in
eq. (A.112), compared to eq. (8.44), completely analogous to the extra 1/c
factor in eq. (A.21) compared to eq. (3.5).

The transformation of E and B under boosts, eqs. (8.57) and (8.58), become

E′‖ = E‖ , E′⊥ = γ(E⊥ +
v

c
×B⊥) , (A.113)

and
B′‖ = B‖ , B′⊥ = γ(B⊥ − v

c
×E⊥) . (A.114)

The covariantization of the Lorentz force equation in Gaussian units, eq. (A.22),
gives

dpµ

dτ
=
q

c
Fµνuν , (A.115)

to be compared with eq. (8.62). The interaction action (8.68) becomes

Sint =
q

c

∫
dτ uµ(τ)Aµ[x(τ)] , (A.116)

and eq. (8.71) becomes

L[x(t),v(t)] = −mc2
√

1− v2(t)

c2
− qφ[t,x(t)] +

q

c
v·A[t,x(t)] . (A.117)

Equations (8.73) and (8.74) become

Sint =
1

c2

∫
d4x jµ(x)Aµ(x) , (A.118)

=

∫
dtd3x

[
−ρ(t,x)φ(t,x) +

1

c
j(t,x)·A(t,x)

]
, (A.119)
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and the conjugate momentum P (8.78) becomes

P = p +
q

c
A , (A.120)

while the Hamiltonian (8.87) becomes

H(P,x) = c

√
(P− qA/c)2 +m2c2 + qφ . (A.121)

In Gaussian units, the Lagrangian density of the free electromagnetic field,
eq. (8.115) [see also eq. (8.127)], becomes

L0 = − 1

16πc
FµνF

µν (A.122)

=
1

8πc
(E2 −B2) , (A.123)

while, as we already saw in eq. (A.118), the interaction Lagrangian density
(8.116) becomes5 5Observe that we have defined the La-

grangian density L so that it gives the
action upon integration over d4x, see
eq. (8.101). If, instead, one defines it
so that

S =

∫
dtd3xL ,

then eqs. (A.122) and (A.126) become

L0 = −
1

16π
FµνF

µν , (A.124)

and

Lint =
1

c
Aµj

µ . (A.125)

Also observe [as already discussed be-
fore eq. (8.117)] that, if one uses
the opposite metric signature to ours,
L0 is still given by eq. (A.124)
while eq. (A.125) becomes Lint =
−(1/c)Aµjµ. In this way, we get the
Lagrangian density given in eq. (12.85)
of Jackson (1998).

Lint =
1

c2
Aµj

µ . (A.126)

The frequency at which a charged particle rotates in a magnetic field, eqs. (8.201)
and (8.202), is given by

ω =
qB

γmc
=
qBc

E , (A.127)

so the cyclotron frequency (8.203) becomes

ω =
qB

mc
. (A.128)

Chapter 9

Equation (9.10) remains 2Aµ = 0 also in Gaussian units, and therefore the
discussion of the solutions goes through without changes. Similarly, also the
radiation gauge is still defined by the conditions A0 = 0,∇·A = 0, so all the
equations of Section 9.3 are unchanged.

In terms of the electric and magnetic field, the wave solution (9.47, 9.48)
becomes

E(t,x) = ê(k)Ek e
−iωt+ik·x , (A.129)

B(t,x) = [k̂× ê(k)]Ek e
−iωt+ik·x . (A.130)

and eq. (9.51) becomes

B(t,x) = k̂×E(t,x) , (A.131)

so, in particular, now |B| = |E|. Using eqs. (A.26) and (A.27) we find that
the energy density of an electromagnetic wave is

u(t,x) =
|E|2
4π

, (A.132)

and the momentum density is

g =
|E|2
4πc

k̂ , (A.133)

to be compared with eqs. (9.57) and (9.58).
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Chapter 10

The Green’s functions are still defined by eq. (10.1), so the solution of eq. (A.106)
is

Aµ(x) = −4π

c

∫
d4x′G(x, x′)jµ(x′) , (A.134)

which replaces eq. (10.10). The retarded and advanced Green’s functions are
still given by eq. (10.24). The retarded solution then reads

Aµ(t,x) = Aµin(t,x) +
1

c

∫
d3x′

jµ(t− |x− x′|/c,x′)
|x− x′| , (A.135)

to be compared with eq. (10.34). Using eqs. (A.98) and (A.99), we see that in
the static limit eq. (A.135) reduces correctly to eqs. (A.46) and (A.57). The
Liénard–Wiechert potentials (10.54) and (10.55) become

φ(t,x) =

(
q

R− v
c
·R

)
ret

, (A.136)

and

A(t,x) =

(
qv/c

R− v
c
·R

)
ret

. (A.137)

For a charge in uniform motion, eqs. (10.88) and (10.89) become

E(t,x) = q
1− v2/c2

[1− (v2/c2) sin2 θ]3/2
R̂(t,x)

R2(t,x)
, (A.138)

B(t,x) =
1

c
v ×E(t,x) . (A.139)

The electric field of accelerated charges can be written as in eq. (10.103), where
now Ev and Erad are given by

Ev(t,x) =
q

R2
a

R̂a − vr/c

γ2(1− R̂a·vr/c)3
, (A.140)

Erad(t,x) =
q

Ra

[v̇r × (R̂a − vr/c)]× R̂a

c2(1− R̂a·vr/c)3
, (A.141)

instead of eqs. (10.104) and (10.105), while eq. (10.108) becomes

B(t,x) = R̂a ×E(t,x) . (A.142)

Then, writing B = Bv + Brad as in eq. (10.109),

Bv(t,x) =
1

c

q

R2
a

vr × R̂a

γ2(1− R̂a·vr/c)3
, (A.143)

and

Brad(t,x) =
1

c

q

Ra

(vr×R̂a)(v̇r·R̂a) + c(1− R̂a·vr/c)v̇r×R̂a

c2(1− R̂a·vr/c)3
, (A.144)

to be compared with eqs. (10.112) and (10.113). To lowest order in v/c and
in 1/r, the electric field becomes

E(t, r) ' − 1

c2
1

r
d̈⊥(t− r/c) (A.145)

=
1

c2
1

r
n̂× [n̂× d̈(tret)] , (A.146)
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to be compared with eqs. (10.132) and (10.135), while eq. (10.139) becomes

B(t,x) ' − 1

c2
1

r
n̂× d̈(tret) . (A.147)

The power radiated per unit solid angle is

dP (t; θ)

dΩ
=

1

4πc3
|d̈(tret)|2 sin2 θ , (A.148)

and its angular integral gives

P (t) =
2

3c3
|d̈(tret)|2 (A.149)

which is Larmor’s formula in Gaussian units, compare with eqs. (10.144) and
(10.148). The relativistic Larmor’s formula (10.156) or (10.161) becomes

dE
dtret

=
2q2

3c3
γ6

[
a2 − |v×a|2

c2

]
t=tret

(A.150)

=
2q2

3c3
γ4 (a2⊥ + γ2a2‖

)
t=tret

, (A.151)

and its covariantization (10.169) becomes

dPµem
dτ

=
2q2

3m3c5

(
dpν
dτ

dpν

dτ

)
pµ . (A.152)

The power radiated when the acceleration and the velocity are parallel be-
comes

dPe,parallel(tret)

dΩ
=
q2a2

4πc3
sin2 θ

(1− β cos θ)5
, (A.153)

compare with eq. (10.173), while, when they are orthogonal, is

dPe,circ(tret)

dΩ
=
q2a2

4πc3
1

(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
, (A.154)

compare with eq. (10.191). Finally, in Gaussian units, the fine structure con-
stant is written as

α =
e2

~c
, (A.155)

to be compared with eq. (10.226). In the rationalized Gaussian units more
commonly used in quantum field theory, α = e2/(4π~c), or simply α = e2/(4π)
if one also uses units ~ = c = 1.

Chapter 11

Equation (11.24), which gives the electric field at order 1/r in a large distance
expansion, but for arbitrary velocities of the source, becomes

E(t,x) = − 1

c2r
∂t

∫
d3x′ j⊥(t− r/c+ n̂·x′/c,x′) , (A.156)

while eq. (11.27) becomes, as usual, B = n̂×E. Equation (11.39) becomes

2A = −4π

c
j⊥(t,x) . (A.157)

The radiated power, again exact in the velocities of the source, is

dE
dtdΩ

=
1

4πc3

∣∣∣∣∂t ∫ d3x′ j⊥(tret,x
′)

∣∣∣∣2 , (A.158)
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to be compared with eq. (11.51), and the frequency spectrum, eqs. (11.60),
(11.65), and (11.72), becomes

dE
dΩdω

=
1

4π2c3
ω2 |̃j⊥(ω, ωn̂/c)|2 (A.159)

=
1

4π2c3
ω2
∣∣∣n̂×j̃ (ω, ωn̂/c)

∣∣∣2 (A.160)

=
1

4π2c3
ω2
(
|̃j(ω, ωn̂/c)|2 − c2|ρ̃(ω, ωn̂/c)|2

)
. (A.161)

In the low-velocity limit, the multipole expansion of the gauge potentials,
eqs. (11.126) and (11.127), becomes66Recall that, in the translation from SI

to Gaussian units of equation involving
the magnetic dipole, one must also take
into account the extra factor of c be-
tween the definitions (6.36) and (A.86).

φ(t,x) =
1

r

[
q +

1

c
n̂iḋi(t− r/c) +

n̂in̂j
6c2

Q̈ij(t− r/c)
]
, (A.162)

Ai(t,x) =
1

rc

[
ḋi(t− r/c) +

1

6c
Q̈ij(t− r/c)n̂j + εijkṁj(t− r/c)n̂k

]
.

The corresponding electric field, eq. (11.130), becomes

E(t,x) =
1

c2r

[
n̂× (n̂× d̈) +

1

6c
n̂× (n̂×

...
Q) + n̂× m̈

]
t−r/c

, (A.163)

and the radiated power, eq. (11.133), becomes

P (t) =

[
2

3c3
|d̈|2 +

1

180c5
...
Q ij

...
Q ij +

2

3c3
|m̈|2

]
t−r/c

. (A.164)

Note that the definition (A.86) of the magnetic dipole in the Gaussian system
“hides” a factor of 1/c in m, so it is less explicit, but of course still true,
that the electric quadrupole and magnetic dipole contributions to the power
are both proportional to 1/c5, compared to the leading electric dipole term,
which is proportional to 1/c3.

Chapter 12

To 1PN order, the expression for the gauge potentials in the Coulomb gauge,
given in eqs. (12.31) and (12.37), becomes

φa,ext(t,x) =
∑
b 6=a

qb
|x− xb(t)|

, (A.165)

Aa,ext(t,x) =
1

2c

∑
b 6=a

qb
vb(t)

|x− xb(t)|
(A.166)

+
1

2c

∑
b6=a

qb
x− xb(t)

|x− xb(t)|3
{[x− xb(t)] ·vb(t)} ,

so eqs. (12.47) and (12.48) read

φa(x1, . . . ,xN ) =
∑
b 6=a

qb
rab

, (A.167)

Aa(x1, . . . ,xN ; v1, . . .vN ) =
1

2c

∑
b 6=a

qb
rab

[vb + r̂ab(r̂ab·vb)] . (A.168)
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The Darwin Lagrangian (12.54, 12.55) reads L = LN + L1PN where

LN =

N∑
a=1

1

2
mav

2
a −

1

2

N∑
a=1

N∑
b 6=a

qaqb
rab

, (A.169)

L1PN =

N∑
a=1

mav
4
a

8c2
+

1

4c2

N∑
a=1

N∑
b 6=a

qaqb
rab

[va·vb + (r̂ab·va)(r̂ab·vb)]. (A.170)

To 1PN order, the conjugate momentum (12.66) is given by

Pa =

(
1 +

v2a
2c2

)
mava +

1

2c2

N∑
b 6=a

qaqb
rab

[vb + r̂ab(r̂ab·vb)] , (A.171)

which can be written as

Pa =

(
1 +

v2a
2c2

)
mava +

qa
c

Aa,ext[t,xa(t)] , (A.172)

with Aa,ext[t,xa(t)] given by eq. (A.166). The 1PN Hamiltonian (12.71, 12.76)
becomes

H =

N∑
a=1

P 2
a

2ma

(
1− P 2

a

4m2
ac2

)
+

1

2

N∑
a=1

N∑
b 6=a

qaqb
rab

− 1

4c2

N∑
a=1

N∑
b 6=a

qaqb
mambrab

[Pa·Pb + (r̂ab·Pa)(r̂ab·Pb)] (A.173)

=

N∑
a=1

[
P 2
a

2ma
− P 4

a

8m3
ac2

+
1

2
qaφa,ext − qa

2mac
Pa·Aa,ext

]
. (A.174)

The energy balance equation (12.140) now reads

d

dt
(EN + E1PN + E1.5PN) = − 2

3c3
|d̈|2 , (A.175)

where

EN =
N∑
a=1

1

2
mav

2
a +

1

2

N∑
a=1

N∑
b6=a

qaqb
rab

, (A.176)

E1.5PN = − 2

3c3
ḋ·d̈ , (A.177)

and E1PN is obtained using eq. (A.171) and then collecting the terms 1/c2 in
eq. (A.173). The Abraham–Lorentz–Dirac equation (12.150) becomes

mau̇
µ
a =

2q2a
3c3

(
ηµν +

uµau
ν
a

c2

)
üa,ν +

qa
c
Fµνext[xa(τ)]ua,ν , (A.178)

while the Abraham–Lorentz equation (12.151) reads

ma
dva
dt

=
2q2a
3c3

d2va
dt2

+ Fext . (A.179)

The radiation-reaction four-force is still written as Fµself = Fµrad+FµSchott, where
now

Fµrad = − 2q2a
3m3

ac5

(
dpa,ν
dτ

dpνa
dτ

)
pµa , (A.180)

FµSchott =
2q2a

3mac3
d2pµa
dτ2

. (A.181)
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The Landau–Lifshitz form of the ALD equation is

mu̇µa =
qa
c
Fµνextua,ν + τa

[qa
c

(∂ρF
µσ
ext)u

ρ
aua,σ (A.182)

+
q2a

mac2
FµρextF

ext
ρσ u

σ
a +

q2a
mac4

(F ext
ρσ u

σ
a)(F ρνextua,ν)uµa

]
.

where τa = 2q2a/(3mac
3).

Chapter 13

In Gaussian units eqs. (13.21) and (13.22) remain unchanged because in this
case we do not have the factors 1/(4πε0) neither in the Gaussian versions of
eqs. (13.18) and (13.20), nor in the Gaussian version of eq. (11.151), so we
still have

ρpol(t,x) = −∇·P(t,x) , σpol = n̂s·P(t,x) . (A.183)

Similarly, eq. (13.27) still holds while, reproducing the steps in eqs. (13.29)–
(13.32) taking into account the definition (A.86) of the magnetic dipole (that,
as we already remarked, has a different factor of c with respect to the SI
system), eqs. (13.32) and (13.33) become

jmag(t,x) = c∇×M(t,x) , Kmag(t,x) = cM(t,x)×n̂s . (A.184)

The displacement vector is now defined as

D = E + 4πP , (A.185)

to be compared with eq. (13.40), while the H field is defined as

H = B− 4πM , (A.186)

to be compared with eq. (13.43). In Gaussian units, the full set of Maxwell’s
equations in material media then reads

∇·D = 4πρfree , (A.187)

∇×H− 1

c

∂D

∂t
=

4π

c
jfree , (A.188)

∇·B = 0 , (A.189)

∇×E +
1

c

∂B

∂t
= 0 , (A.190)

to be compared with eqs. (13.45)–(13.48). We observe that we can pass from
Maxwell’s equations in the SI system to Maxwell’s equations in the Gaussian
system extending the formal replacements (A.7) as follows:

ε0 → 1

4π
, µ0 → 4π

c2
, E→ E B→ B

c
, (A.191)

D→ 1

4π
D , H→ c

4π
H , (A.192)

while leaving ρfree and jfree unchanged. Furthermore, supplementing these
replacements with

P→ P , M→ cM , (A.193)

we see that, taking into account eqs. (A.191) and (A.192), eqs. (13.40) and
(13.43) go into eqs. (A.185) and (A.186), respectively. We stress, once again,
these these are just formal rules to get a quick translation of formulas from
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SI to Gaussian units. The actual relations between quantities in the two
systems are given by eqs. (2.25), (2.32), and (2.33). Since the electric dipole
is proportional to the electric charge, eq. (2.25) also implies that

Pgau =
1√

4πε0
PSI , (A.194)

and therefore,7 7Explicitly,

Dgau ≡ Egau + 4πPgau

=
√

4πε0 ESI +
4π
√

4πε0
PSI

=

√
4π

ε0
(ε0ESI + PSI)

=

√
4π

ε0
DSI .

Dgau =

√
4π

ε0
DSI . (A.195)

Similarly, since the magnetic dipole is proportional to the current, and there-
fore to the charge, using again eq. (2.25), and furthermore including the extra
factor of 1/c between eqs. (6.36) and (A.86), we get

Mgau =
1√

4πε0

1

c
MSI =

√
µ0

4π
MSI , (A.196)

and then8,9

8Explicitly,

Hgau ≡ Bgau − 4πMgau

=

√
4π

µ0
BSI − 4π

√
µ0

4π
MSI

=
√

4πµ0

(
1

µ0
BSI −MSI

)
=

√
4πµ0 HSI .

9From Maxwell’s equations
eqs. (A.187)–(A.190), and eqs. (A.185)
and (A.186), we see that in the Gaus-
sian system, E,D,P,B,H, and M all
have the same dimensions. In contrast,
in the SI system we already saw
after eq. (2.33) that, dimensionally,
[BSI] = [ESI]/[v], i.e., there is an extra
factor of 1/c in BSI. Similarly, we
see from eq. (13.40) that in the SI
system D has the same dimensions
as P, but these are different from the
dimensions of E because there is an
extra factor of ε0 and, from eq. (13.43),
in the SI system H has the same
dimensions as M, but the relation with
the dimensions of B involve a factor
1/µ0.

Hgau =
√

4πµ0 HSI . (A.197)

The equations governing the electrostatics of materials are

∇·D = 4πρfree , ∇×D = 4π∇×P , (A.198)

compare with eq. (13.50), and therefore eqs. (13.51) and (13.52) become, re-
spectively,

D(x) = −∇
(∫

d3x′
ρfree(x

′)

|x− x′|

)
+ ∇×

(∫
d3x′

(∇×P)(x′)

|x− x′|

)
, (A.199)

E(x) = −∇
(∫

d3x′
ρfree(x

′)

|x− x′|

)
+ ∇×

(∫
d3x′

(∇×P)(x′)

|x− x′|

)
− 4πP(x) .

(A.200)
The equations governing the magnetostatics of materials are

∇·H = −4π∇·M , ∇×H =
4π

c
jfree , (A.201)

so the general solution for H and B are

H(x) =
1

c
∇×

(∫
d3x′

jfree(x
′)

|x− x′|

)
+ ∇

(∫
d3x′

(∇·M)(x′)

|x− x′|

)
, (A.202)

B(x) =
1

c
∇×

(∫
d3x′

jfree(x
′)

|x− x′|

)
+ ∇

(∫
d3x′

(∇·M)(x′)

|x− x′|

)
+ 4πM(x) ,

(A.203)
compare with eqs. (13.55) and (13.56). The boundary conditions (13.63) and
(13.70) become, respectively,

n̂·(D2 −D1) = 4πσfree , n̂× (H2 −H1) =
4π

c
Kfree . (A.204)

For a linear dielectric, the electric susceptibility χe is defined by

P(t,x) = χeE(t,x) , (A.205)

to be compared with eq. (13.71). Then, from eq. (A.185),

D(t,x) = εE(t,x) , (A.206)
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where the dielectric constant ε is given by

ε = 1 + 4πχe , (A.207)

to be compared with eq. (13.73). Note that, in the Gaussian system, there is
no distinction between the permittivity and the dielectric constant (or relative
permittivity). Writing eq. (13.72) as DSI = εSIESI and eq. (A.206) as Dgau =
εgauEgau, and using eqs. (2.32) and (A.195) we see that

εSI/ε0 = εgau , (A.208)

so εgau is the same as the relative permittivity, or dielectric constant, of the
SI system. Then, comparing eqs. (13.73) and (A.207), written as

εSI = ε0[1 + (χe)SI] , (A.209)

εgau = 1 + 4π(χe)gau , (A.210)

we see that χe is dimensionless both in the SI and Gaussian systems but the
respective numerical values are different,

(χe)SI = 4π(χe)gau . (A.211)

In the Gaussian system, eq. (13.76) becomes

ρpol(t,x) = −χe
ε
∇·D(t,x)

= − 4πχe
1 + 4πχe

ρfree(t,x) . (A.212)

We now turn to conductive matter. In the SI system the conductivity is
defined by Ohm’s law (4.183), jSI = σSIESI. Similarly, in the Gaussian system
it is defined by jgau = σgauEgau. Combining eq. (2.32) with

jgau =
1√

4πε0
jSI , (A.213)

which follows from eq. (2.25), we obtain10

10As we saw in Note 49 on page 96, in
the SI system conductivities are mea-
sured in siemens per meter (S/m); us-
ing eq. (4.188) and comparing with the
dimensions of ε0, given in eqs. (2.12)
and (2.13), we see that σgau has dimen-
sions of inverse time, so is measured in
s−1.

σgau =
σSI

4πε0
. (A.214)

For metals, eqs. (13.88) and (13.89) become

ε(ω)∇·Ẽ(ω,x) = 0 , (A.215)

∇× H̃(ω,x) +
iω

c
ε(ω)Ẽ(ω,x) = 0 , (A.216)

where

ε(ω) ≡ εb(ω) + i
4πσ(ω)

ω
, (A.217)

to be compared with eq. (13.90).11

11Observe that, for the bound elec-
trons, in Gaussian system eq. (A.207)
holds so, explicitly writing the label
“gau,” eq. (A.217) reads

εgau(ω) = 1 + 4π(χe)gau(ω)

+i
4πσgau(ω)

ω
, (A.218)

while, from eqs. (13.90) and (13.73)

εSI(ω)/ε0 = 1 + (χe)SI(ω)

+i
σSI(ω)/ε0

ω
. (A.219)

Using eqs. (A.211) and (A.214) we get
back eq. (A.208), confirming the consis-
tency of these relations.

We next consider magnetic matter. In Gaussian units the magnetic suscep-
tibility χm and the magnetic permeability µ are still defined from

M = χmH , B = µH , (A.220)

as in eqs. (13.91) and (13.92). Then, from eq. (A.186), in Gaussian units

µ = 1 + 4πχm , (A.221)
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to be compared with eq. (13.93). Proceeding as in the derivation of eq. (A.211),
we obtain

(χm)SI = 4π(χm)gau . (A.222)

Energy conservation in materials reads

1

4π

∫
V

d3x

(
E·∂D

∂t
+ H·∂B

∂t

)
+

∫
V

d3xE·jfree = − c

4π

∫
∂V

ds·(E×H) ,

(A.223)
to be compared with eq. (13.95). The term on the right-hand side gives the
generalization of the Poynting vector to material media,

S =
c

4π
E×H . (A.224)

For a simple linear medium with D = εE and B = µH, the energy density of
the electromagnetic field is

u =
1

8π

(
εE2 + µH2) , (A.225)

to be compared with eq. (13.98). The Larmor frequency (13.126) becomes

ωL ≡ eB

2mec
, (A.226)

and eq. (13.132) becomes χm = −ne2〈r2⊥〉/4mec
2.

Chapter 14

In Gaussian units, the relation between the dielectric constant and the electric
susceptibility is given by eq. (A.207), so its frequency dependent generaliza-
tion, which in SI units is given by eq. (14.10), becomes

ε(ω) = 1 + 4πχe(ω) , (A.227)

while eq. (14.12) becomes

P̃(ω) = χe(ω)Ẽ(ω) . (A.228)

Equation (14.28) becomes

D(t) = E(t) + 4π

∫ t

−∞
dt′χe(t− t′)E(t′) . (A.229)

The plasma frequency (14.38) is now given by

ω2
p =

4πnbe
2

me
, (A.230)

and, in the Drude–Lorentz model, we have

χe(ω) =
nbe

2

me

1

ω2
0 − ω2 − iωγ0

, (A.231)

and therefore

ε(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωγ0

. (A.232)

The conductivity in the Drude model is given by

σ(ω) =
nfe

2τ

me

1

1− iωτ , (A.233)
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which is formally the same as eq. (14.58). Note that this is consistent with
eq. (A.214), given the relation between the charges in SI and Gaussian units,
eq. (A.2).

The dielectric function of metals, which in SI units is given in eq. (14.76),
is still formally given by

ε(ω) = 1 + ω2
p

N∑
i=0

fi
ω2
i − ω2 − iωγi

, (A.234)

where, however, now ω2
p = 4πne2/me.

Chapter 15

Searching for a monochromatic wave solutions of the form (15.1), Maxwell’s
equations in material media, eqs. (A.187)–(A.190), give

ε(ω)k·Ẽ(ω,k) = 0 , (A.235)

k× B̃(ω,k) = −ω
c
n2(ω)Ẽ(ω,k) , (A.236)

k·B̃(ω,k) = 0 , (A.237)

k× Ẽ(ω,k) =
ω

c
B̃(ω,k) , (A.238)

where the refraction index n(ω) is now defined from1212Recall that, in Gaussian units, ε(ω)
and µ(ω) are dimensionless, see e.g.,
eqs. (A.210) and (A.221), so n(ω) re-
mains dimensionless also in Gaussian
units.

n(ω) =
√
ε(ω)µ(ω) . (A.239)

The dispersion relation (15.11) remains unchanged, and therefore also eqs. (15.18)
and (15.19), while eq. (15.16) is replaced by

Bk = n(ω) k̂×Ek . (A.240)

The dispersion relation (15.39) becomes

ω2ε(ω)µ(ω) = k2c2 . (A.241)

The expression (15.43) for the skin depth becomes

δskin(ω) =
c√

2πσ0ω
, (ω � γp) . (A.242)

The equations of Section 15.4.1 for the propagation in waveguides are trans-
formed into Gaussian units with the usual replacement B→ B/c.

Chapter 16

Most results of this chapter are independent of whether one uses SI or Gaussian
units, except eqs. (16.18) and (16.19) that in Gaussian units read, respectively

dP (t; θ)

dΩ
=

1

4πc3
e4E2

m2
e

sin2 θ , (A.243)

and I = cE2/4π. Therefore eq. (16.20) still holds, with the classical electron
radius defined as

r0 =
e2

mec2
. (A.244)

Similarly, eqs. (16.41) and (16.42) become

dP (θ)

dΩ
=

1

8πc3

(
e2E0

me

)2
ω4

(ω2 − ω2
0)2 + ω2γ2

0

sin2 θ , (A.245)

and 〈I(t)〉 = cE2/4π. so eq. (16.44) still holds, again with the classical electron
radius given by eq. (A.244).
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Action of a free relativistic particle,
179–180

Ampère law, 44, 71
Ampère–Maxwell law, 40
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Angular momentum of electromagnetic

field, 51
from Noether’s theorem, 210

Anomalous dispersion, 386

Biot–Savart law, 78
Bohr radius, 268
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Capacitance, 89
Circulation of a vector field, 5
Classical electron radius, 106, 333, 404,
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Coefficients of capacitance, 90
Coefficients of potential, 90
Compton effect, 406
Compton radius, 106, 406
Conductivity, 95, 96, 358
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Conductors

electrostatics, 66–68
energy, 108

Conserved charge, 44, 184
Lorentz invariance, 211–213

Constitutive relations, 356–360
Continuity equation, 44
Contravariant four-vectors, 166, 168
Convective current, 351
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collision time, 388
conductivity, 388

coulomb, 28
Coulomb force, 28, 58

from surface integral, 69–70
Coulomb gauge, 54, 222, 414
Coulomb potential, 58, 115
Covariant four-vectors, 168
Cross-section, 401
Curl
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of a vector field, 3

Current conservation, 43
covariant, 184, 203

Cyclotron, 264
Cyclotron frequency, 216, 421
Cyclotron radiation, 264

D field, 351
in Gaussian units, 426
relation between SI and Gaussian, 427

d’Alembertian, 54
Darwin Lagrangian, 307
Diamagnetism, 360, 363–364
Dielectric constant, 356, 371, 428, 429
Dielectric function, 357

of metals, 359
of water, 357

Dielectrics, 356–357
linear, 356

Dipole energy
in external electric field, 144
in external magnetic field, 151

Dipole moment
electric, 134
magnetic, 140, 418

Dipole-dipole interaction
electric, 149
magnetic, 152

Dirac delta, 7–12
Dirichlet boundary conditions, 65
Dispersion relation

relativistic particles, 47, 181
Displacement current, 44
Divergence

in cylindrical coordinates, 4
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of a vector field, 3
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Doppler effect, 229–232
non-relativistic, 232
transverse, 232

Drude model of conductivity, 374
Duality symmetry of Maxwell’s

equations, 56

Earnshaw’s theorem, 63
Electric dipole moment, 134, 135, 280

Electric dipole radiation, 284–285
Electric displacement vector, 351

in Gaussian units, 426
relation between SI and Gaussian, 427

Electric field
1/r term for arbitrary source

velocities, 272
at the surface of a conductor, 67
in terms of gauge potentials, 53
of accelerated charge, 249–251
of charge in uniform motion, 245–249
of generic charge distribution, 60
of infinite charged plane, 86
of parallel-plate capacitor, 89
of point-like dipole, 143
of spherical charge distribution, 88

Electric multipoles, 133–139
Electric permittivity

of materials, 356
of vacuum, 28–29

Electric susceptibility, 356
in Gaussian units, 427
relation between SI and Gaussian, 428

Electromagnetic waves
Coulomb gauge, 222–224
energy density, 225
in material media, 381–400
Lorenz gauge, 219–222
momentum density, 226
solutions for E and B, 224–227

Electromotive force, 43, 85
motional, 85

Electron charge, 28
Electronvolt (eV), 93
Electrostatics, 57–70

energy, 99–108
in materials, 352–353
of dielectrics, 361–362

Energy density of electromagnetic field,
45–48

in Gaussian units, 413
in materials, 360–361

in Gaussian units, 429
Energy of continuous charge distribution,

101
Energy spectrum of radiation, 276
Energy-momentum tensor

conservation, 189
electromagnetic field, 188–190
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Equipotential surface, 66
esu, 32
Euler–Lagrange equations, 199

for fields, 201
Extinction coefficient, 383

f -sum rule, 373
Far zone, 290–292
Farad, unit of capacitance, 89
Faraday’s cage, 68
Faraday’s law, 40

integrated form, 43
Field concept, 39
Fine structure constant, 35, 106, 268

in Gaussian units, 423
Flux of a vector field, 5
Four-momentum, 180–182
Four-vector current, 183–184
Four-velocity, 178
Fourier transform, 13–14

convolution theorem, 13
four-dimensional, 218

Galilean Relativity, 156
Gauge potentials, 52–55

as four-vector, 185
Gauge theory, 52
Gauge transformation, 53, 185

residual, 221
Gauss’s law, 40

integrated form, 42
Gauss’s theorem, 7
Gaussian units, 31–37, 411–430

rationalized, 34, 411
Gradient

in cylindrical coordinates, 4
in polar coordinates, 4

Green’s function
advanced, 238
d’Alembertian, 235–241, 336–338
Helmholtz operator, 238
Laplacian, 60
method, 59
retarded, 238

Green’s identities, 64
Green’s reciprocity relation, 130
Group velocity, 385
Group, definition, 19
Gyromagnetic ratio, 153

H field, 352
in Gaussian units, 426

Heaviside theta function, 10
Heaviside–Lorentz units, 34, 411
Helmholtz decomposition, 292
Helmholtz operator, 237
henry (H), SI unit of inductance, 98, 113

Inductance, 113
Induction, 83–85

Induction zone, 290–292
Inertial frames, 155
Inhomogeneous plane waves, 384
Invariant tensors

Lorentz group, 170
rotation group, 18

Ionic crystal, 91–93
Irrotational vector fields, 7

Joule heating, 96

Klein–Gordon equation, 201
Kramers–Kronig relations, 367–370, 375,

378, 383

Lagrangian
and equations of motion, 195
non-relativistic particle, 179
of the electromagnetic field, 202, 421
particle coupled to electromagnetic

field, 194
relativistic particle, 180

Laplacian
in cylindrical coordinates, 4
in polar coordinates, 4
of 1/r, 12
of vector field, 4

Larmor formula, 252–255, 285, 423
covariant form, 259
relativistic, 256–259, 423

Larmor frequency, 153, 364
in Gaussian units, 429

Larmor precession, 152
Legendre transform, 121, 179
Lenz law, 83
Levi–Civita tensor, 2
Liénard–Wiechert potentials, 242–244,

422
Light cone, 162
Light-like interval, 157
Line integral, 5
Lorentz boost, 160
Lorentz contraction, 165
Lorentz force, 30, 40

covariant form, 193
in Gaussian units, 33
relativistic, 40, 47, 193

Lorentz group, 166–177
Lorentz transformations, 159–162

infinitesimal, 172
of electromagnetic fields, 190–191

Lorenz gauge, 54, 219, 223, 414

Madelung’s constant, 92
Madelung’s sum, 92
Magnetic dipole moment, 140

in Gaussian units, 418
non-relativistic particle, 141

Magnetic dipole radiation, 285–289
Magnetic field

of a solenoid, 94–95
in terms of vector potential, 52
of a point-like dipole, 143
of a straight wire, 71–76
of accelerated charge, 249–251
of charge in uniform motion, 245–249
of generic current density, 76–78

Magnetic multipoles, 139–141
Magnetic permeability

of materials, 359
in Gaussian units, 428

of vacuum, 29
Magnetic susceptibility, 359

in Gaussian units, 428
relation between SI and Gaussian, 429

Magnetization, 350
Magnetization current, 350

in Gaussian units, 426
Magnetostatics, 71–82

energy, 109–112
in materials, 353
of simple magnetic matter, 362–363

Maxwell’s equations, 30, 40, 41
covariant form, 186–188
in Gaussian units, 33, 412
in material media, 351–352

in Gaussian units, 426
in rationalized Gaussian units, 34

Maxwell’s stress tensor, 49
in electrostatics, 69

Metals, 358–359
Momentum of electromagnetic field,

48–51
Multipole expansion

of radiation field, 278–289
of static fields, 133–152

Multipoles
dependence on the origin, 137–138
electric, 133–139
expansion in STF tensors, 138–139
magnetic, 139–141
radiative, 283

Natural units, 36
Near zone, 290–292
Neumann boundary conditions, 65
Noether theorem, 205–207

and angular momentum, 210–211
and energy-momentum tensor, 208–209

ohm, 96
Ohm’s law, 95, 358
Oscillator strengths, 371

Paramagnetism, 360
Parity transformation, 55
Parseval theorem, 276
Permittivity

of materials, 356
of vacuum, 28–29
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Photon mass, limits, 15
Plancherel theorem, 276
Plasma frequency, 371, 378, 379

in Gaussian units, 429
Point particles

charge density, 44
current density, 44
interaction with electromagnetic field,

194
relativistic action, 180

Poisson’s equation, 55, 57, 414
Polarization four-vector of EM waves,

219
Polarization of light

circular, 221, 228
elliptic, 229

Polarization vector of EM waves
longitudinal, 221
transverse, 220

Polarization vector of materials (P),
348–349

relation between SI and Gaussian, 427
Post-Newtonian expansion, 295–312

1.5PN order, 323–328
1PN Hamiltonian, 308–310
1PN order, 298–310

Poynting vector, 45
in materials, 360, 429

Poynting’s theorem, 45
Proper time, 163

Quadrupole moment, 136
energy in external electric field, 146
reduced, 136

time-dependent, 280
Quadrupole radiation, 285–289

Radiated power
electric dipole, 285
for arbitrary source velocities, 275–277

Radiation gauge, 223
Radiation reaction, 312–343
Rapidity, 160, 182
Refraction index, 382, 430
Regularization of divergences, 105
Relative permittivity, 356
Representations of groups, 19

equivalent, 20
reducible, 21–24

Resistance, 96
Resistivity, 96
Resonance, 408
Resonant scattering, 408
Retarded time, 242

Schott term, 331
Self-force, 312–343
SI units, 27–31
siemens, 96
Skin depth, 388
Skin effect, 388–391

anomalous, 390
Space-like interval, 157
Spontaneous symmetry breaking, 86
statcoulomb, 32
STF tensors, 136
Stokes’s theorem, 5
Superposition principle, 89, 100

Synchrotron, 264
Synchrotron radiation, 264

Tensors, 16–18
decomposition in irreducible

representations, 23–24
Theorem for curl-free fields, 7
Theorem for divergence-free fields, 7
Thomas–Reiche–Kuhn sum rule, 371
Thomson cross-section, 404
Time dilatation, 163
Time reversal, 56
Time-like interval, 157
Torque

electric dipole in external field, 146
electric quadrupole in external field,

146
magnetic dipole in external field, 151

Transverse-longitudinal decomposition of
vector fields, 292

Vector potential, 52
volt, 30

Wave equation, 217–219
Wavelength, 225

UV/visible/IR/microwaves, 388
Wavenumber, 225
Work done by Lorentz force, 47, 193
World-line of a particle, 178

Yukawa potential, 15
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