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Preface

Modern research in the chemical sciences seeks not only to make useful molecules
and materials but to understand, design, and control their properties. Theory is at
the very center of this effort, providing the framework for an atomic and molecular
level description of chemical structure and reactivity that forms the basis for inter-
preting experimental data and provides guidance toward new experimental direc-
tions. We decided to edit this book for those who see the potential benefit of using
theoretical and computational chemistry but need practical insight into using the
know-how. This book aims to review the state of the art and to provide the readers
with a comprehensive and in-depth understanding of recent developments and in-
novation analysis of the subject. Drug design is an expensive and time-consuming
process. Any method that allows reducing the time and the costs of the drug devel-
opment project can have great practical value for the pharmaceutical industry.
Chapter 1 describes computational methods for calculation of protein-ligand bind-
ing affinities in structure-based drug design. Chapters 2 emphasizes understanding
(coupled) large amplitude motions, while Chapter 3 explains floppy molecules—
their internal dynamics, spectroscopy, and applications. Chapter 4 critically dis-
cusses finding regarding the mechanisms of synthetic statins phototransformation.
Artificial intelligence methods are the subjects of Chapter 5, while Chapter 6 deals
with application of enzyme kinetics modelling in food, pharmaceutical and bioetha-
nol industry. Computational approach to the study of morphological properties of
polymer/fullerene blends in photovoltaics is detailed in Chapter 7, while modeling
and assessment of the transfer effectiveness in integrated bioreactor with membrane
separation are given in Chapter 8. We believe that the large number of references, to
all significant topics mentioned, should make this book useful not only to undergrad-
uates but also to graduate students and academic and industrial researchers.

Having an idea is one thing, turning it into a book is tough, however much
satisfying!

We wish to acknowledge all contributing authors for making this book project a
success.

Iwona Gulaczyk and Bartosz Tylkowski

https://doi.org/10.1515/9783110678215-202
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Zbigniew Dutkiewicz

1 Computational methods for calculation
of protein-ligand binding affinities in
structure-based drug design

Abstract: Drug design is an expensive and time-consuming process. Any method
that allows reducing the time the costs of the drug development project can have
great practical value for the pharmaceutical industry. In structure-based drug de-
sign, affinity prediction methods are of great importance. The majority of methods
used to predict binding free energy in protein-ligand complexes use molecular me-
chanics methods. However, many limitations of these methods in describing inter-
actions exist. An attempt to go beyond these limits is the application of quantum-
mechanical description for all or only part of the analyzed system. However, the
extensive use of quantum mechanical (QM) approaches in drug discovery is still a
demanding challenge. This chapter briefly reviews selected methods used to calcu-
late protein-ligand binding affinity applied in virtual screening (VS), rescoring of
docked poses, and lead optimization stage, including QM methods based on mo-
lecular simulations.

Keywords: binding free energy, molecular docking, molecular dynamics, quantum
mechanics, semi-empirical methods, structure-based drug design

1.1 Introduction

Drug design is a complicated, long-term, and very costly task [1]. On average, it takes
10 to 15 years from the start of work on a new drug to its launch [2], and costs reach
up to $ 4 billion (for The Food and Drug Administration [FDA] approved drugs) [3].
The optimization of each lead compound selected as a hit in screening procedures
costs about $ 150 million [3], [4].

About 44% of drug discovery projects fail at preclinical studies because of diffi-
culties in identifying a ligand with desired properties (failure in ligand design) [5].
Therefore, techniques that lead the team to identify ligands with satisfactory prop-
erties more quickly and efficiently can potentially more than double the probability
of successful discovery of a preclinical drug [6].

This article has previously been published in the journal Physical Sciences Reviews. Please cite as:
Dutkiewicz, Z. Computational methods for calculation of protein-ligand binding affinities in struc-
ture-based drug design Physical Sciences Reviews [Online] 2021, 6 DOI: 10.1515/psr-2020-0034
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Any method that allows to reduce the time of research and reduce the costs of
the entire process can have great practical value. In computer-aided drug design
(CADD), many methods are used to assess the affinity of a ligand for its biological
target. Among the available techniques, methods that predict the binding mode of
small molecules with biomolecules and calculate ligand-protein affinity are of par-
ticular importance.

CADD methods can be divided into two main groups: ligand-based drug design
and structure-based drug design (SBDD). In SBDD methods, knowledge of the three-
dimensional (3D) structure of the molecular target is required. The primary source of
such structures is the Protein Data Bank (PDB). We use 3D structures of the target to
design small molecules capable of binding strongly at the active site and modulating
the biological function of the enzyme or receptor.

Affinity prediction methods that would be useful in the pharmaceutical indus-
try should not only be accurate but also allow results to be obtained for many
compounds within a reasonable time. In the early stages of drug design, when the
affinity of tens or hundreds of thousands of compounds is estimated, it is only possi-
ble to use efficient, simplified methods, which provide a good trade-off between the
needed level of accuracy and the required screening time. In the virtual screening
(VS) of large ligand libraries, fast and approximate methods of estimating affinity
are used.

Docking, as a method of VS, is successfully used to identify new hits from large
libraries of chemical compounds and to predict their binding modes and affinity.
However, VS methods are not suitable for predicting binding affinity with a high
level of accuracy, thus not allowing for satisfactory correlations between experimen-
tal and predicted affinity. Only in subsequent stages of the project, when a small
number of compounds are considered, more demanding and computationally inten-
sive, but also more accurate methods of calculating affinity can be used.

The binding affinity depends on the balance between enthalpic and entropic con-
tributions. Interactions between ligand and the residues in the binding site have a
stabilizing effect [7]. Desolvation of binding partners, entropic loss during the forma-
tion of the protein-ligand complex, and conformational changes in the interacting
partners are a source of unfavorable contributions to the binding [8]. Therefore bind-
ing affinity results from a small difference between two large values of enthalpy and
entropy.

According to the equation ΔG= −RTln Kð Þ, the difference between a millimolar
and a nanomolar inhibitor is less than 10 kcal/mol. Consequently, in order to be able
to reliably predict whether a given inhibitor will be weak or potent, the theoretical
method must correctly describe all components affecting binding affinity (such as in-
termolecular interactions, desolvation energies, changes in entropy and others) [2]. To
increase the accuracy of binding affinity estimation, several free energy-based ap-
proaches have been proposed. They are based on MD or MC simulations, including
end-state methods and so-called rigorous approaches, namely alchemical perturbation
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methods, and physical pathway methods [9], [10], [11]. Fortunately, very often in drug
design, it is sufficient to predict the relative affinity in a given series of ligands to find
more potent compounds. Such calculations, thanks to error compensation, offer better
agreement with experimental data than the prediction of absolute free energies of
binding.

The vast majority of methods used to predict binding free energy for modeling
protein-ligand interactions use classic force fields and molecular mechanics (MM)
methods. However, many limitations of these methods are known; for example, con-
ventional force fields cannot reliably describe the effects of polarization and charge
transfer. Examples of interactions that are not sufficiently described by such force
fields are also π-π, π-cation, and halogen bonds. In some cases, this may lead to an
incorrect assessment of affinity and the inability to find the right binding mode.
Also, systems containing metal cations are not correctly described by force field
methods because of the difficulties in the parameterization of metal atoms and their
ions. An attempt to go beyond these limits are new force fields taking into account
polarization like Amber ff02pol, CHARMM Drude, NEMO, SIBFA, AMOEBA, ABEEMσπ,
QMPFF and the application of quantum-mechanical description for all or only part of
the analyzed system. Currently, we can see the growing importance of quantum chem-
ical (electronic structure) methods in the study of protein-ligand interactions [12], [13],
[14], [15], which results from the increase in available computing power and the devel-
opment of quantum mechanical (QM) methods. However, the wide use of QM ap-
proaches in the drug discovery pipeline is still a demanding challenge.

This chapter briefly reviews selected methods used to calculate protein-ligand
binding affinity applied in VS, rescoring of docked poses, and lead optimization
stage, including QM methods based on molecular simulations.

1.1.1 Components of binding free energy

Experimental binding affinity can be defined by the use of equilibrium dissociation
(Kd) or binding (Kb) constants. Under equilibrium conditions, the free energy of
binding, ΔG is determined by the dissociation constant Kd of the protein-ligand, PL,
complex (PL ! P + L), as seen in the following equation:

ΔG=ΔG0 −RTlnKd (1:1)

where

Kd =
P½ � L½ �
PL½ � = 1

Kb
(1:2)

ΔG= −RTlnKb =RTlnKd (1:3)
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R is the gas constant, T temperature in Kelvin, and ΔG0 is the change in free energy
of reaction at standard conditions (all concentrations equal to 1 M, T = 298 K, pres-
sure is 1 atm).

Many experimental methods have been developed to determine ΔG [16]. In iso-
thermal titration calorimetry (ITC), we can directly measure thermodynamic energet-
ics of binding. ITC allows for a determination of ΔG and its enthalpic contribution,
ΔH. Stability shift assays allow determining the Kb constant. In turn, Kd constant can
be determined by mobility shift assays. Techniques as equilibrium dialysis, analyti-
cal size exclusion chromatography, affinity selection chromatography, analytical
ultracentrifugation, electrophoresis (capillary electrophoresis [CE], microchip elec-
trophoresis [MCE], electrophoretic mobility shift assay [EMSA]), and microscale
thermophoresis use for this purpose physical separation of ligand or protein from
the protein-ligand complex. Among spectroscopic assays, special attention de-
serves surface plasmon resonance and biolayer interferometry due to their reliable
binding affinity and kinetics data.

Binding free energy is a function of the state, which means that its value does
not depend on the path leading from the substrates to the products. Therefore, it is
possible to compare the ΔG value determined experimentally and calculated theo-
retically as the difference of free energy of reagents (protein and ligand) and free
energy of the product:

ΔGbind =ΔGPL − ΔGP +ΔGLð Þ (1:4)

where ΔGbind is the free energy of binding, ΔGPL the free energy of the protein-ligand
complex and ΔGP and ΔGL the free energies of the protein and ligand, respectively.

The free energy of binding can be decomposed into various components corre-
sponding to the specific contributions in the binding process. With the assumption,
that these contributions to the free energy of binding are additive and can be calcu-
lated separately, by combining results of these calculations, we can obtain the value
of ΔGbind. In the following discussion on specific contributions to binding free en-
ergy, we will use “master equation” proposed by Ajay and Murcko [17] in the form:

ΔGbind =ΔGint +ΔGsolv +ΔGmotion +ΔGconf (1:5)

The most obvious contribution to the binding affinity comes from the direct inter-
actions between the binding partners. The first term, ΔGint, is the binding free en-
ergy component resulting from the direct interaction between ligand and protein.
This term is dominated by enthalpy contribution resulting from van der Waals in-
teractions, electrostatic interactions, and hydrogen bonds responsible for the for-
mation of the PL complex. For most MM methods, these contributions are additive,
and therefore it is easy to determine the contributions to ΔGint from individual
atoms or groups of atoms. MM or QM can be used to calculate the energetic effects
of this type of interaction. The QM methods are particularly important in the case
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of PL complexes in which the ligand is strongly polarized, or the charge is trans-
ferred [18], [19], [20]. For almost all ligand-protein complexes, it is assumed that
direct interactions increase binding affinity.

The free energy of solvation, ΔGsolv, takes into account the effect of solvent on
the binding. When the ligand binds to the protein, both the ligand and the protein
binding site usually get rid of the water molecules. Desolvation or loss of interac-
tion with the solvent is an essential contribution to the binding free energy. For
non-polar groups, due to the positive free energy for solvation [21], it is beneficial to
dispose of the solvation layer and involve directly in van der Waals interactions.
Non-polar contacts (hydrophobic interactions) are the driving force of the binding.
In the case of polar groups, even though their desolvation is unfavorable, but it is
beneficial to engage in electrostatic interactions or the formation of hydrogen bonds.
However, the resultant contribution of polar groups to ΔGbind depends on the mutual
proportions in the value of desolvation energy and polar interactions in the complex.
It can, therefore, be beneficial, disadvantageous, or neutral. The free energy of solva-
tion also has an entropic component, ΔSsolv, which is associated with an increase in
entropy of water molecules when they are removed from the receptor binding site
and move to bulk water.

To calculate the free energy of solvation at the MM level, the Poisson-Boltzmann
(PB) equation [22], [23] or the generalized Born (GB) method [24] can be used. In both
approaches, the solvent is treated implicitly as a continuum with certain dielectric
constant (ε). In this approach, the free energy of solvation is the sum of electrostatic
(ΔGelectr) and nonpolar (ΔGn−p) contributions:

ΔGsolv =ΔGelectr +ΔGn−p (1:6)

The electrostatic part is derived from the solution of the PB/GB equation. The nonpo-
lar part is calculated on the basis of appropriate parameters regarding the size (area)
of the solvated surface and the type of atoms on it [25], [26]. ΔGn−p term allows esti-
mating the cost of forming a cavity in the solvent and the strength of interactions
between the solute and solvent (dispersion and repulsion), considering usually the
solvent-accessible surface area (SASA). In the QM approach to model solvation ef-
fects, the polarizable continuum model (PCM) [27], [28], [29] and the conductor-like
screening model (COSMO) [30] are used.

When the protein and ligand form a complex, three degrees of rotational free-
dom and three degrees of translational freedom are lost and transformed to some
extent into vibrational motions. The change in free energy resulting from this re-
striction on the free movement of the protein, ligand, and complex is designated
ΔGmotion. Entropy and internal thermal energy of the system are calculated from the
partition functions related to translation, rotation, and vibration. Calculations show
that the loss of rotational and translational degrees of freedom during complex
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formation is energetically unfavorable; however, it is partly compensated by the ap-
pearance of vibrational components (six new internal normal modes) [31].

The change in free energy resulting from conformational changes that occur
during the formation of the complex, ΔGconf depends on the conformation of the li-
gand and protein both before and after binding. ΔGconf has an enthalpic and entro-
pic component. The enthalpic part arises from a change in the internal energy of
the ligand and protein during complex formation, which can be calculated using
MM or quantum chemistry methods. Both the protein and ligand lose their confor-
mational entropy during the formation of the complex. The conformational entropy
of the ligand can be estimated based on the number of single bonds that are frozen
during binding. The estimated energy of such a process is from 0.4 to 0.9 kcal/mol
[32] for every single bond. Similarly, the loss of entropy change for side chains at
the protein binding site can be estimated.

1.2 Computational chemistry methods in binding affinity
calculations

1.2.1 Molecular mechanics

MM methods are widely used in calculations related to biomolecules. Due to the
size of protein molecules, they are incomparably faster than QM, density functional
theory (DFT) or semiempirical quantum mechanics (SQM) methods. MM treats a
molecule as a set of rigid spheres (atoms) connected by springs (bonds). Individual
types of atoms, depending on their hybridization and environment in the molecule,
must be properly parameterized. MM allows calculating the potential energy of the
molecule itself and the energies of intermolecular interactions owing to the pres-
ence of terms describing van der Waals and electrostatic interactions.

The most commonly used force fields in biomolecular simulations are CHARMM
[33], AMBER [34], and GROMOS [35], [36]. A typical form of the potential energy
function is as follows:

E =
XNbonds

i= 1

kb, i ri − r0, ið Þ2 +
XNangles

i= 1

ka, i θi − θ0, ið Þ2 +
XNdihedrals

i= 1

kϕ, i 1+ cos niϕi + δið Þ½ �+
XNatoms

i

×
XNatoms

j≠i
4εij

σij
rij

� �12

−
σij
rij

� �6
" #

+
XNatoms

i

XNatoms

j≠i

qiqj
4πε0rij

ð1:7Þ

The first and the second term describe energy change during bond stretching and
angle bending, where kb,i and ka,i are force constants for ith bond and ith angle, re-
spectively. Distance between the two atoms is denoted as ri, and r0,i is the equilibrium
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bond length. Similarly, θi is the angle between three atoms and the θ0, i is the equilib-
rium angle.

The third term accounts for the potential of dihedral angles (torsions), where
kϕ, i is the force constant for the dihedral angle, ni is the periodicity and δi is the
phase shift.

The fourth and fifth terms account for the van der Waals interactions and the
Coulombic interactions, respectively. Van der Waals interactions are described by
Lennard-Jones potential between all pairs of atoms in the molecule. Electrostatic in-
teraction energy depending on the partial atomic charges of two atoms qi and qj can
be attractive or repulsive.

The last two terms allow calculating interaction energy between different mole-
cules, for example, in protein-ligand complexes. Parameters in this empirical energy
function (Eq. (1.7)), such as force constants, equilibrium values for bond lengths and
angles, van der Waals parameters and atomic partial charges can be obtained by fit-
ting to high-level quantum calculations.

1.2.2 Quantum-mechanics methods

Major changes in computing power and the availability of quantum-chemical com-
puting software over the last two decades allowed the application of quantum me-
chanics to increasingly larger and more complex systems.

QM methods allow the accounting of the effects omitted in the description of
ligand-protein complexes by MM methods. These include ligand polarization at the
binding site, charge transfer, interactions with metals (difficult to parameterize in
MM), or covalent binding of the ligand to the protein. Parameterization of ligands,
which are usually new molecules, is also avoided. Parameters for proteins (amino
acids) are very well determined in individual force fields, while the parameters for
ligands are most often derived from CHARMM General force field [37], [38], [39],
[40] or General AMBER Force Field [41], [42]. QM methods are based on the solution
of the Schrödinger equation, which can be solved analytically only for the simplest
one-electron system. Approximate solutions should be found for all other systems;
hence a large number of such approximate quantum methods have been developed.

The Hartree-Fock (HF) method assumes that each electron interacts with the av-
erage field of all other electrons, which is a relatively crude approximation because it
omits the electron movement correlations. The easiest way to correct these shortcom-
ings can be the second-order Møller-Plesset perturbative method, which is also the
simplest theoretical method that directly takes into account dispersion interactions.
More accurate results are obtained by other methods, such as the coupled cluster
method. Currently, the so-called gold standard of this type of method is the CCSD(T)
method including a single, double, and triple excitations (treated perturbatively).
This method usually gives results with an accuracy of approximately 1 kcal/mol.
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On the other hand, HF calculations can be accelerated, up to 1000 times, by
ignoring some expressions and replacing others with empirical parameters, which
leads to semiempirical methods. Many SQM methods are based on the neglect of
diatomic differential overlap (NDDO) approximation [43]. NDDO method ignoring
a large number of two-electron integrals and assuming parameters for others, do
not manage noncovalent interactions well. There are many methods of this type
including AM1 [44], PM3 [45], RM1 [46], and PM6 [47] The semiempirical methods
usually give rather poor energies for large structures, which results from omitting
dispersion effects, as well as an inadequate description of hydrogen and halogen
bonds. Therefore, several groups have developed corrections that include omitted
or incorrectly described interactions; for example, DH [48], D2H [49], DH2X [50],
and D3H4 [51]. It turns out that the PM6-D3H4 method can reproduce the interac-
tion energies in test benchmarks with an error of less than 1 kcal/mol [51].

DFT focuses on electron density, which is a function of the three Cartesian co-
ordinates. There is a one-to-one relationship between wave function and electron
density, but the equation that needs to be solved to find the electron density for a
given system is not exactly known. That is why a very large number of functionals
were developed. Some of them contain the fraction of exchange energy from the
HF method, and they are called hybrid functionals. In general, DFT methods are
both faster and more accurate than the MP2 method. Later, there were also sug-
gestions that the results of the HF and DFT methods could be improved by incor-
porating simple empirical corrections for neglected dispersion effects. The most
commonly used corrections are DFT-D2 and DFT-D3, developed by Grimme [52],
[53], [54]. Similar results also give other approaches [55], [56], [57].

Almost all quantum-mechanical methods use atomic basis functions in calcula-
tions. The quality of the results obtained depends on the quality of the basis set. In
energy calculations, to achieve convergence, split-valence basis sets of triple or
quadruple-zeta quality are needed. Additionally, diffuse functions are required for
anions and proper consideration of dispersion. By definition, semi-empirical methods
are based on a minimal basis set. One of the fundamental problems associated with a
small atomic basis set is the fact that interacting molecules “borrow” functions from
neighboring atoms belonging to another molecule. This effect is a particular problem
when we calculate the interaction energy because it leads to an overestimation of the
binding energy. This basis-set superposition error can be limited by performing addi-
tional calculations using the so-called counterpoise correction [58].

Quantum-mechanical calculations are very time consuming, and the time of cal-
culations strongly depends on the size of the system. For example, the DFT, HF, MP2,
and CCSD(T) methods exhibit an exponential dependence on the number of basic
functions with exponents 3, 4, 5, and 7, respectively. In practice, single-point energy
calculations now allow using semiempirical methods for systems with about 10,000
atoms, DFT methods for 2000 atoms, and CCSD(T) method for about 30 atoms [14].
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1.2.2.1 QM/MM methods
In QM/MM methods, the ligand and sometimes an important part of the receptor
involved in protein-ligand binding (surrounding residues) are treated by QM while
the remainder of the system is treated by MM [59], [60] (Figure 1.1). Compared to
full QM calculations on the whole system, QM/MM methods are computationally
much more efficient. Contrary to MM force fields, which have been carefully param-
eterized for proteins, accurate parameters for novel compounds are not often avail-
able, so the QM model of the ligand can overcome these difficulties.

One of QM/MM schemes is the ONIOM approach in which the molecular system is
divided into an arbitrary number of layers, and different QM, SQM, and MM meth-
ods can be applied to different parts of the system [61].

In the combined QM/MM approach, the total energy is represented by the fol-
lowing equation:

Etotal =EQM + EMM +EQM=MM (1:8)

where EQM is the QM energy of the QM system, EMM is the MM energy of the MM
system, and EQM/MM is the interaction energy between the QM and MM systems. The

Figure 1.1: Partitioning of a system in QM/MM calculations. The QM region includes ligand
(α-naphthoflavone, ANF) and heme (both as stick model) depicted for CYP1A2 complexed with ANF
(PDB code: 2hi4).
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most common way to consider the interactions between the QM and MM systems is
electrostatic embedding (EE) when the QM system is polarized by MM point charges.
In a polarized embedding scheme, it is also possible to polarize QM and MM systems
by each other, but this requires a polarizable MM force field [62], [63].

1.2.2.2 Linear-scaling methods
QM/MM methods encounter some problems, for example, where to set boundaries
between QM and MM systems, how to deal with bonds that span both regions, and
the mutual polarization of QM and MM systems. The solution to these problems
would be to treat the entire system using QM methods.

To accelerate the most time-consuming parts of ab initio calculations (the Fock-
matrix construction and its diagonalization), several linear-scaling approaches
were developed [64], [65], [66], making possible the calculation of the electronic
structure for the full system [67]. Most linear-scaling methods were developed for
the semiempirical QM methods based on the NDDO approximation.

1.2.2.3 Fragmentation methods
Another method to speed up calculations is to divide the system into smaller frag-
ments. In the first group of such methods used in the binding free energy calcula-
tions, the energy of the entire system is calculated, and any relative energies
(binding energy) are obtained by subtracting the relevant terms. This approach is
used in the fragment molecular orbital (FMO) method [68], [69], [70], [71]. In the
FMO approach, various QM methods can be used, ranging from HF, MP2 MP3, MP4,
to CCSD(T).

In the second group of methods, the interaction energies are calculated in
dimers composed each time of the ligand and receptor fragment. This approach is
used, for example, in molecular fractionation with conjugate caps (MFCC) method
[72] and its derivatives, such as electrostatic embedding generalized molecular frac-
tionation with conjugate caps (EE-GMFCC) method [73]. The polarizable multipole
interaction with supermolecular pairs (PMISPs) method also involves MFCC calcula-
tions for the ligand and all chemical groups within 4 Å. It combines QM calculations
with a polarizable multipole description of the many-body effects at MM level [74].

1.3 Virtual screening

In SBDD, the primary purpose of docking, as a method for virtual high-throughput
screening, is to separate binders from non-binders in large compound libraries. The
binding affinity is estimated here by simplified methods, which allow quickly evalu-
ate thousands or millions of binding modes. These approximations often lead to a
situation where there are many false positive results among molecules with the
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highest scores (hits). Eliminating or reducing the number of such results is impor-
tant before proceeding to the next stages of drug design, such as hit-to-lead opti-
mization. For this purpose, re-scoring of docked poses by more advanced methods
or use in VS more accurate QM or SQM scoring functions (SFs) can be applied.

1.3.1 Classical SFs

Docking in combination with scoring is widely used in VS of large molecular data-
bases to identify new potential ligands, predict its binding mode, and estimate its
binding affinity to macromolecular target [75], [76], [77]. Fast and simplified assess-
ment methods used to evaluate ligand affinity in docking are called SFs. They are
divided into four classes: force field-based, empirical, knowledge-based, and ma-
chine-learning–based ones [78].

In force field–based SFs for evaluation of binding affinity, mainly the noncova-
lent van der Waals and the electrostatic energy terms calculated at MM level are
used. The additional term can be added for hydrogen bonding. The gas-phase poten-
tial energy is only one component of the free energy change during protein-ligand
complex formation, so force field-based SFs were augmented by terms describing
solvation energy change [79], [80]. The general functional form for this class of
SFs can be written as:

ΔGbind =ΔEvdW +ΔEelec +ΔEH − bond +ΔGsolv (1:9)

Examples of force field-based SFs are GoldScore [81], MedusaScore [82], ICM [83] and
LigandFit [84].

Empirical SFs estimate binding affinity by summing up the energetic contribu-
tions from particular physical events involved in the formation of the ligand-recep-
tor complex:

ΔGbind =
X
i

wi ·ΔGi (1:10)

where ΔGi are different energy terms, namely for hydrogen bonds, ionic and hydro-
phobic interactions, desolvation, as well as entropic effects. Weight coefficients wi for
these contributions are determined with the use of regression analysis by fitting cal-
culated ΔGbind to experimentally determined affinities for a series of PL complexes
with known X-ray structures. Unfortunately, empirical SFs do not include less
common interactions, as π-cation because they are not significant in the regres-
sion analysis. The first empirical SF (SCORE1) was developed by Böhm [85] in 1994.
Other examples of this type of SFs are AutoDock [86], ChemScore [87], LigScore [88],
and PLP [89].

The third type, knowledge-based SFs, uses pairwise statistical potentials be-
tween protein and ligand [78]:
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Pairwise potentials, ωij rð Þ, are derived from the occurrence frequency of atom pairs
i-j in a structural database (PDB) using the inverse Boltzmann relation:

ωij rð Þ= − kBTln gij rð Þ
� �

= − kBTln
ρij rð Þ
ρ*ij

" #
(1:12)

where kB is the Boltzmann constant, T is the temperature in Kelvin, ρij rð Þ is the nu-
meric density of atom pair i−j at distance r, and ρ*ij is the pair density in a reference
state where interatomic interactions are zero. If specific interatomic distances occur
more often than average distances, it indicates favorable contact between the given
atom pair. On the other hand, if distances occur less frequently are likely to de-
crease affinity. Several knowledge-based SFs have been developed, such as SMoG
[90], PMF [91], [92], [93], DrugScore [94], [95], [96], and IT-Score [97], [98], [99].

Machine-learning–based SFs are a relatively new type of methods, which
uses approaches similar to quantitative structure-activity relationship analysis to
obtain statistical models based on different descriptors that can compute binding
scores. These methods, as empirical SFs, need a training set of PL complexes with
known binding affinities and 3D structures. A few examples of machine learning-
based SFs include NNScore [100], [101], RF-Score [102], [103], SFCscoreRF [104], and
ID-Score [105].

1.3.2 QM scoring functions

In 2004 Raha and Merz [18] introduced a semiempirical SF based on the AM1
method with Amber FF96 force field dispersion term, PB implicit solvent model,
and entropy estimates. In the SQM calculations, the divide-and-conquer (D&C) lin-
ear-scaling approach [106] was used. They studied 18 carbonic anhydrase inhibi-
tors and five carboxypeptidase inhibitors obtaining a correlation of R2 = 0.69
compared to the experimental binding free energies without fitting any of the con-
tributions of the total score.

This approach was tested on the set of 57 protein-ligand complexes giving for
Total Score correlation with experimental data R2 = 0.48. When coefficients before
each term in the binding energy were fit to the experimental ΔG, giving QMScore, R2

raised to 0.53, and QMScore outperformed the other 11 tested SFs [107] for this set.
Another method based on a linear-scaling approach was introduced by Fanfrlík

et al. [108] to rescore docked ligand poses. SQM SF was used to test the HIV-1 prote-
ase (PR) and its inhibitors, cyclin-dependent kinase 2 (CDK2) with sets of structur-
ally diverse ligands, and casein kinase 2 (CK2) with halogenated ligands [108], [109],
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[110], [111]. In this score, vacuum interaction energy was calculated by the corrected
PM6 method (PM6-DH2 or PM6-DH2X). For the solvation free energy calculations,
COSMO [30], while for the ligands steered molecular dynamics (SMD) [112] methods
were used. The −TΔS term was estimated either by a rotatable bond approach or by
vibrational analysis at MM level.

This SQM SF improved docking results for a series of HIV-1 protease (HIV PR) in-
hibitors, allowing to identify correct binding poses and improve the ranking of the
ligands. A good correlation to the experimental data was obtained (R2 = 0.62) [108].
For less flexible CDK2 inhibitors, the best correlation with the experimental affinities
was obtained when only SQM interaction energy and solvation terms were included
in the final score [110]. Complexes of CK2 with halogenated inhibitors [111] were stud-
ied with the use of the PM6-DH2X method for interaction energy. However, deteriora-
tion of the correlation between calculated and experimental affinity was observed
when the entropy term was included. MM method used for entropy calculations was
not able to correctly describe halogen bonds.

Their SQM SF [113] was later simplified. The original equation included four
terms:

Score=ΔEint +ΔΔGsolv +ΔGconf − TΔS (1:13)

where ΔEint is the gas-phase interaction energy, ΔΔGsolv the change in solvation en-
ergy, ΔGconf the change in conformational free energy, and −TΔS entropy change
upon ligand binding. In the SQM/COSMO energy filter [114], only the first two domi-
nant terms were kept. ΔEint is calculated at the PM6-D3H4X level, with corrections
for dispersion and hydrogen-bonding and halogen-bonding interactions. To calcu-
late solvation effects, ΔΔGsolv, the implicit solvent model COSMO is used.

The performance of this filter was tested on four systems: acetylcholinesterase
(AChE), TNF-α converting enzyme (TACE), aldose reductase (AR), and HIV PR.
SQM/COSMO approach outperformed seven well-known empirical SFs and a phys-
ics-based AMBER/GB in discriminating binding-like poses from decoy poses pre-
senting the lowest number of false-positive solutions. Only for TACE, which is a
metalloprotein having Zn2+ coordinated by S−, false-positive solutions were ob-
tained. However, for achieving such high accuracy, a higher computational time is
needed. The SQM/COSMO filter is about 100-times slower than the statistics- and
knowledge-based SFs. Its accuracy and time requirements make it an excellent tool
for the late stages of VS.

The same set of proteins (AChE, TACE, AR, and HIV PR) was tested by SQM/
COSMO filter in which the PM6-D3H4X method was replaced by SCC-DFTB3-D3H4, a
higher-level SQM method [115]. Calculation of ΔEint at the DFTB3-D3H4 level signifi-
cantly improved results for TACE metalloprotein, eliminating false-positive solutions.

Further validation of the two SQM/COSMO filters, based on PM6-D3H4X and
DFTB3-D3H4X methods, was conducted on 17 pharmaceutically relevant protein-ligand
complexes [116]. Results were compared with classical SFs (Glide XP, AutoDock4,
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AutoDock Vina, and UCSF Dock). Both variants of the SQM/COSMO SF outperform
standard SFs, as was shown by the low number of false positives.

1.4 Rescoring of docked ligands and lead optimization

1.4.1 Single-structure approaches

One of the simplest, although approximate, approach in binding affinity calcula-
tions is to use single structures of protein-ligand complexes. These structures can
be obtained directly from docking or crystal structures; they can also be single snap-
shots from MD or MC simulations.

1.4.2 QM/MM methods

Different QM/MM methods have been used to estimate binding affinity [117], [118],
[119], [120], [121], [122]. Several researcher groups calculated solvation effects by
adding PB and SASA energy terms [123], [124], [125], [126], [127].

Approaches proposed by Merz [128] and Hobza [129] include all components re-
quired to obtain accurate energies. Hayik et al. [128] studied 23 metalloprotein-ligand
complexes using QM/MM approach, similar to their QMScore [18]. Before the energy
calculations, complexes were minimized in a vacuum. For QM systems, which in-
cluded the ligand and residues within 5 Å of the Zn ion semiempirical AM1 method
was used. Atoms outside of this region were treated with the AMBER ff99SB47
force field. Solvation effects, ΔGsolv, were calculated in the SQM/MM calculations
with the PB method and SASA term in case of nonpolar interactions. For entropy
change estimation normal mode analysis (NMA) of the QM system was performed.
However, better correlation (R2 = 0.64) with experimental data was obtained with
use only the QM energy, instead of the full QM/MM (R2 = 0.56).

Brahmkshatriya et al. [129] studied series of cyclin-dependent kinase (CDK2) in-
hibitors. They used a hybrid three-layer QM/MM approach (DFT-D/PM6-D3H4X/
AMBER) as an extension of their all-protein linear-scaling SQM method [108]. The
QM part, including the ligand and residues up to 4 Å distance, was treated with the
RI-DFT-D method (BLYP/SVP for geometry optimization and TPSS/TZVP for the sin-
gle-point energies). Complexes were optimized by QM/SQM/MM calculations, during
which the MM part was kept frozen (to speed up calculations). The semiempirical
PM6-D3H4X method was used for the part including residues within 8 Å of the li-
gand. For the remaining part of the protein AMBER force field with GB implicit
solvent model was applied. Ligand solvation energy was calculated with a more
demanding SMD model at the HF/6-31G* level. In calculations of ΔGbind besides
entropy estimate, calculated from the number of rotatable bonds in ligand hindered
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during complex formation, deformation energies of the protein and the ligand were
added. Inhibitor molecule from the crystal structure (PDB id: 2R3J) was the base for
manual modifications and modeling series of 30 congeneric inhibitors. For the modi-
fied structures good correlation with experimental data was obtained (R2 = 0.64),
while for docked molecules, a satisfactory correlation was not found.

1.4.3 Linear-scaling methods

Many groups studying protein-ligand binding affinity with linear-scaling methods
used the MOZYME approach [64] available in MOPAC package [130].

AM1 and a COSMO continuum-solvation model were employed in studies of
six ligands binding to a 33-residue RNA aptamer and six ligands binding to trypsin
[131]. Similar studies with MOZYME and COSMO were performed with the use of
AM1, PM3, PM5, and PM6 (also with PM6-DH2) methods [132], [133], [134], [135].

1.4.4 Fragmentation methods

For the first time, Kitaura applied the FMO method for binding affinity calculations
[136]. HF/STO-3G approach was used in studies with 11 estrogen receptor ligands.
Despite the omission of dispersion, solvation, and entropy effects, a good correla-
tion with experimental results was obtained (R2 = 0.70).

The significantly improved approach was used by Kitaura in a study of FK506
binding protein [137]. The ligand geometry was optimized inside the binding site
taking into account the residues within the 5.5 Å from the ligand, then the energy
was calculated at MP2/6-31G* level of theory. Solvent effects were also included
using the PB model (calculated at MM level) and SASA term.

In studies on 28 CDK2 inhibitors [138], considering in addition to FMO energy,
solvation from the PB + SASA model (at MM level), and changes in ligand entropy,
it was possible to obtain a very good correlation of results with the experiment
(R2 = 0.94).

Water molecules were considered explicitly in investigations of inhibitory di-
peptides binding to thermolysin [139]. The MP2/6-31G method was used for the cata-
lytic Zn ion, ligand and protein residues, as well as water molecules within 5 Å. The
rest of the enzyme and a solvation shell was treated at the HF/6-31G level of theory.
Entropy change was estimated from MM frequencies. This approach gave a good
correlation to the experimental affinities (R2 = 0.94). Nonetheless, absolute infini-
ties were highly overestimated.

The accurate vacuum interaction energy of the insulin dimer with 4′-hydroxyace-
tanilide at the MP2/CBS level was calculated in the overlapping-multicenter ONIOM/
FMO method [140].
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Zhang et al. [72], [73] developed the MFCC approach to calculate ligand-binding
affinities. They used this method in studies of biotin to streptavidin binding [141],
binding of benzamidine to trypsin [142] and for the interaction of efavirenz with
HIV-1 reverse transcriptase [143] employing mainly HF/3-21G method.

In calculations of the interaction energy for the binding of an inhibitor to neur-
aminidase, the MP2/6-311+G(2d, p) level of theory was used [144]. MP2 calculations
with cc-pVDZ and cc-pVTZ basis were also employed to study the interaction be-
tween p53 and the oncoprotein MDM2 [145].

A variety of DFT methods [146], [147], [148], [149], [150], [151], often with disper-
sion corrections, were applied to calculate binding affinities for several different sys-
tems. However, unlike other MFCC calculations, not all protein was used here, but
residues at a distance of 8–12 Å from the ligand, depending on the studied system.

1.4.5 Fully quantum mechanical

Ehrlich et al. [152] proposed a general, fully quantum mechanical scheme for the
computation of protein-ligand affinities. The method was applied to study the bind-
ing of FXa and TYK2 proteins with 25 and 16 ligands, respectively. In their approach,
the absolute value of ligand binding free energy is the sum of three components, the
electronic interaction energy, the entropic term, and the change in the free energy of
solvation. Calculations were performed on a subsystem with about 1000 atoms, in-
cluding the ligand and neighboring binding site residues. The subsystem was fully
optimized at the HF-3c level [153] of theory with an implicit solvent model (C-PCM)
[154]. For the interaction energy, HF-3c or PBEh-3c DFT methods were used. Entropic
contributions were calculated using a semiempirical DFTB3-D3 method [53], [155],
[156], [157], and the free energy of solvation was calculated with COSMO-RS method
[158], [159], [160]. Correlation between calculated and experimental binding free en-
ergies calculated at the HF-3C level, expressed by the Pearson correlation coeffi-
cient, is acceptable with 0.47 and 0.55 for FXa and TYK2, respectively. However, this
approach is not yet applicable in an industrial setting due to residual errors and
computational power needed for calculations.

1.4.6 End-point approaches

SFs discussed above and single-structure methods are focused exclusively on the
bound state. The end-point approaches estimate binding free energy employing simu-
lations at the bound state and also of the free ligand and the free receptor, thus for
initial and final states (end-points). These methods are placed between single-structure
approaches and rigorous free energy perturbations (FEPs) both in terms of accuracy
and calculation time. Although they are too expensive to estimate binding affinities
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for large compound libraries, they are commonly used in the pharmaceutical industry
in the hit-to-lead and lead optimization phases of drug design [161].

1.4.6.1 QM/MM-Poisson-Boltzmann Surface Area methods
The MM Poisson-Boltzmann Surface Area (MM-PBSA) and MM Generalized Born
Surface Area (MM-GBSA) methods combine the energies computed from MD simula-
tions at the MM level with either PBSA or GBSA implicit solvent model [162], [163],
[164].

MM-(PB/GB)SA makes use of MD simulations of the free ligand, free protein, and
their complex with explicit solvent molecules. After the simulations, explicit solvent
molecules are removed. Next, for each simulation frame, potential energies (MM) for
ligand, protein, and complex, as well as their solvation energies with the use of the
implicit solvent model (PB or GB) and SASA are calculated. Averaging over each tra-
jectory allows calculating the changes in mean potential and solvation energy. In this
approach general equation for binding free energy as the difference between the free
energy of PL complex and free energies of free protein and unbound ligand:

ΔGbind =GPL −GP −GL (1:14)

can be decomposed into specific contributions:

ΔGbind =ΔH −TΔS=ΔEMM +ΔGsolv −TΔS (1:15)

in which

ΔEMM =ΔEint +ΔEelec +ΔEvdW (1:16)

ΔGsolv =ΔGPB=GB +ΔGSA (1:17)

ΔGSA = γΔSASA+b (1:18)

where ΔEMM are the changes in the MM energy, ΔGsolv solvation free energy and −TΔS
change in conformational entropy upon ligand binding. ΔEMM includes the changes in
the internal energies ΔEint (from bonded terms: bond, angle and dihedral energies),
electrostatic ΔEelec and van der Waals interactions ΔEvdW. ΔGsolv is the sum of the elec-
trostatic solvation energy ΔGPB/GB, polar contribution to ΔGsolv calculated using either
the PB or GB model and the nonpolar contribution ΔGSA estimated using the SASA
[165], [166]. The change in conformational entropy −TΔS can be estimated through a
normal-mode analysis [161], [167], [168] on a set of conformational snapshots of the
free and bound molecules hence obtaining the average entropy change over these
snapshots. However, this estimation can be neglected in studies of the relative binding
free energies of similar ligands.

Replacing some terms obtained at the MM level in ΔEMM and sometimes in ΔGsolv

by values calculated with QM methods lead us to QM/MM-(PB/GB)SA approaches.
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The QM/MM-PBSA approach was applied in studies of five bromobenzimidazole
inhibitors binding to the kinase CK2 [168]. Fifty one snapshots from QM/MM molecular
dynamics simulation were used in calculations of binding free energy. Ligands
were treated by the AM1 method. Polar solvation energy was calculated from the
PB equation end entropy term was omitted. This approach gave a good correlation
with experimental data (R2 = 0.69). Eight halogen-containing inhibitors of CDK2 were
studied by a similar method, but with GB continuum solvation model. Unfortunately,
due to the lack of halogen bonds corrections results of these calculations were poor,
with a negative correlation [169].

Good results were obtained for five inhibitors of the urokinase plasminogen ac-
tivator studied by QM/MM method [170]. With the use of the 18 snapshots from MD
simulation at MM level and AM1 method for ligand and surrounding residues within
6 Å (R2 = 0.68). A correlation was even better when structures were SQM minimized
(R2 = 0.96).

QM/MM method developed to estimate free energies for reactions in proteins
[171] was also used to study the binding of six ruthenium-containing ligands to ca-
thepsin B [117]. For the ligand and the side chain of the cysteine coordinating Ru
ion, the TPSS/def2-SV(P) method was used. The estimate of ΔG calculated by QM/
MM-PBSA method gave a decent correlation for fixed protein (R2 = 0.59). The use of
snapshots from MD simulations with a fixed QM region led to a significant improve-
ment in results (R2 = 0.91).

A similar approach was used for metalloenzymes [172], [173], [174]. For the
ligand, metal ion, and selected residues, the B3LYP density functional with the
6-31G* or 6-31+G* basis set was applied. Entropy estimates were calculated from the
number of rotatable bonds restricted during complex formation, for the solvation PBSA
model was used. Accurate predictions for four inhibitors of CYP2A6 were obtained
using this approach [174]. The QM system contained heme and the inhibitor molecule;
the rest of the system was treated with MM method. Structures extracted from the 10
selected frames from the last 500 ps simulation trajectories were energy minimized.
B3LYP/6-31G(d) level of theory was used for the QM system and Amber force field
for the remaining atoms. After minimization, for each CYP2A6-inhibitor complex,
the binding free energies were calculated with the use of the QM/MM-PBSA method.
Good agreement between calculated and experimentally derived binding energies
allowed to recreate the correct order of affinity for all inhibitors.

An MM/PBSA-like approach (PMISP method) was used to calculate binding free
energies for seven ligands to avidin at the MP2/cc-pVTZ level [175]. Using for each
ligand 10 snapshots from an MD simulation (at the MM level), entropies from MM/
PBSA calculations, and the standard SASA term for nonpolar solvation, a moderate
correlation was obtained (R2 = 0.52). This result was worse than that obtained in the
MM/PBSA method (R2 = 0.96).

Also, FMO calculations have been performed on snapshots from MD simulations.
MP2/cc-pVDZ method was used in studies of trisaccharide binding to lysozyme [176].
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HF and MP2 methods with 6/31G* basis set were applied for three ligands binding to
the DJ-1 protein [177]. Unfortunately, these approaches gave considerable uncertainty
or positive binding energies.

Using the same approach as for QMScore [18], [107] Díaz et al. [178] developed
the QM-PBSA method as a linear-scaling SQM variant of MM/PBSA. This method was
used to calculate the binding affinity of benzylpenicillin and cephalosporin to the
TEM-1 β-lactamase. The binding affinity calculations were performed on 50 snap-
shots from MD simulations (at the MM level) previously minimized by QM/MM. Next
to SQM energy, solvation effects (PB and SASA term) and entropy (calculated by
an MM NMA) were taken into account. According to those results, benzylpenicillin
binds stronger to TEM-1 β-lactamase than cephalosporin.

Another linear-scaling approach, the MM/QM-COSMO method, was used to study
the binding of five tetrapeptides to the Lck SH2 domain [179]. The PM3 method was
applied for the full protein along with solvation effects calculated with the COSMO
continuum model and SASA term plus entropy correction gained from MM NMA.
Calculations were conducted on PM3 minimized 1000 snapshots from an MD simula-
tion of the complex (at the MM level). After the optimization of the COSMO atomic
radii, a remarkable good correlation with the average unsigned error of 0.7 kcal/mol
was obtained for relative binding energies.

Similarly, using linear-scaling (mozyme keyword in MOPAC), the performance
of AM1, RM1, and PM6 with the inclusion of dispersion and hydrogen-bond correc-
tions was tested [180]. The method was used to calculate binding affinities of seven
biotin analogs to avidin, nine inhibitors to blood-clotting factor Xa, and nine phe-
nol derivatives to ferritin. Authors used a strict SQM version of MM/GBSA, replacing
the ΔEelec+ΔEvdW+ΔGsolv terms by SQM calculations with COSMO solvation. The en-
tropy was estimated by an NMA at the MM level. On average, the most promising
results gave AM1-DH2 method, although better results were achieved in the stan-
dard MM/GBSA approach.

QM-PBSA approach with linear-scaling DFT-D and MM/PBSA calculations were
applied to compute the binding free energy of the eight ligands to the T4 lysozyme
double mutant L99A/M102Q, the protein which contains 2601 atoms [181]. In DFT
calculations, the GGA exchange-correlation functional PBE with corrections ac-
counting for dispersion was used. The change in entropy was calculated with MM
NMA. Solvation energies for ligands were calculated using the SMD model [112] at
the M05-2X/6-31G(d) level. By using 50 snapshots from MM MD simulations, the
RMS error in binding free energies for QM-PBSA was equal to 2.7 kcal/mol, whereas
for standard MM/PBSA, error increased to 4.0 kcal/mol.

QM/MM-GBSA method was used in the study on binding α- and β-anomers of
monosaccharides to lectin RSL [182]. The QM system consisted of monosaccharide
and seven ligand-interacting amino acid residues. In binding free energy calcula-
tions, 10 SQM methods and two DFTB Hamiltonians was combined with five GB
models. Calculations were based on selected frames from 10 ns molecular dynamics

1.4 Rescoring of docked ligands and lead optimization 19



simulations at MM level. The entropy change was estimated using NMA at MM
level. The PM6 method and its variants (PM6-D, PM6-DH+), as well as DFTB and
SCC-DFTB methods, gave the highest correlation coefficient values (R2 ≥ 0.96).
However, for VS, where thousands of compounds need to be calculated, the PM6
method is recommended as less computationally demanded than the DFTB/SCC-
DFTB approach.

1.4.6.2 Linear interaction energy method
Linear interaction energy (LIE) method requires two MD simulations with explicitly
included solvent molecules, one for the solvated ligand and the other for the sol-
vated ligand-protein complex [183]. Then the trajectories obtained in this way are
used for the calculations of the Boltzmann-averaged electrostatic and van der
Waals interaction energies of the ligand with its environment.

ΔGbind = α
�
VvdW
lig − surr

�
bound

−
�
VvdW

lig − surr

�
free

� 	
+ β

�
Vel

lig − surr

�
bound

−
�
Vel
lig − surr

�
free

� 	
+ γ

(1:19)

It denotes MD or MC averages of the van der Waals (vdW) and electrostatic (el) inter-
action energies between the ligand and its surrounding environment, either in sol-
vent (free) or in the protein (bound). The parameters α and β of this equation are
coefficients used to scale the nonpolar and polar binding energy contributions, re-
spectively. Values of α and β and offset constant γ are obtained by fitting calculated
ΔGbind to experimentally determined binding affinities for a training set of known
ligands. Therefore, an experimental ΔGbind should be available for at least several
ligands used in the simulations.

LIE free energy calculations do not take into account the protein solvation en-
ergy, and also conformational entropy of the ligand is omitted. Thus, the best corre-
lation of calculated ΔGbind with experimental values is obtained for a series of
ligands with a similar structure.

QM methods were applied in a parametrized LIE-type approach to study binding
free energies of 28 hydroxamate inhibitors to zinc-dependent matrix metalloproteinase
9 (MMP-9) [184]. The inhibitors were docked to MMP-9 using FlexX. Protein-ligand
complexes were minimized by QM/MM with the use of B3LYP hybrid functional for the
QM part and OPLS-AA force field for remaining atoms. The QM system consisted of
three His residues, one Glu residue, the ligand, and Zn ion. Next, the QM/MM opti-
mized complexes were subjected to the 200 ps MD simulation to collect data and
check their stability. However, for single point calculation of QM/MM interaction ener-
gies, time-averaged structures obtained after 5 ps simulations were used. Finally, three
terms, QM/MM energies with SASA desolvation and constant term, were fitted to the
experimental data. The FlexX scores gave no correlation (R2 = 0.04). For QM/MM opti-
mized structures, a correlation was better (R2 = 0.50). However, the highest value
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of the correlation coefficient was obtained for the QM/MM energy calculated for
the time-averaged structures with the SASA term (R2 = 0.90).

The same system was also studied with the use of a multimode approach [185].
Time-averaged structures for eight 25 ps intervals of 200 ps MD simulations of the
complex and the free ligand (at MM level) were treated as different binding modes
(mode 1, mode 2, … , mode 8). In contrast to the first approach [184], authors con-
sidered separately polar and nonpolar solvent-accessible surface obtaining addi-
tional parameter for fitting. Despite the model extension, the correlation with
experimental affinities for the QM/MM-LIE was not improved (R2 = 0.90).

Three parameter approach with only the SASA term for solvation [184] was also
used in studies of MMP-3 protein, giving similar results [186] as described previously.
The FlexX scores correlated poorly with experimental activity (R2 = 0.06). The correla-
tion was improved for QM/MM minimized structures (R2 = 0.46), achieving the highest
value (R2 = 0.90) for the model with QM/MM energies of the time-averaged structures
and SASA term. This QM/MM-LIE approach was able to capture subtle differences in
binding affinities for the most active inhibitors binding to both MMP-9 and MMP-3.

Later the method was extended to consider multispecies, different tautomeric,
and ionization states [187]. This approach was applied to 66 inhibitors (233 tautomer/
ionization species) of protein kinase (MK2). Ligands were docked into MK2 binding
site with the use of FlexiDock. Next, protein-ligand complexes were optimized by the
hybrid QM/MM ONIOM method. In the QM system were included ligands, backbone
atoms of three residues, and two other full residues (Thr206 and Asp207). The rest of
the complex was defined as MM region and treated with Amber force field. QM sys-
tem was minimized with B3LYP/6-31G(d, p) level of theory. Minimized structures
were subjected to 1 ns MD simulations. Single point QM/MM energies for time-aver-
aged structures were computed with the same methods as used for QM/MM minimi-
zation. FlexiDock scores resulted in no correlation, and the QM/MM minimized
energies with SASA gave R2 = 0.20. Finally, in the full QM/MM-LIE model, good
agreement between calculated and experimental data was achieved (R2 = 0.90).
Neglecting different tautomeric and ionization states lowered correlation to R2 = 0.66.

Another LIE-like method was developed for the study of 11 inhibitors of HIV-1 in-
tegrase [188]. The QM system (ligand) was treated with AM1 semiempirical method,
protein, and water molecules represented MM part and were described by classical
OPLS-AA force field. From 1ns QM/MM MD simulations, average interaction energies
were calculated and compared with experimental data giving quite good correlation
(R2 = 0.82).

A similar approach based on QM/MM MD simulations and the use of AM1
method for QM system was applied for the binding study of eight cyclic (arginine-
glycine-aspartate) peptides to αvβ3 integrinαβ [189]. QM system involved ligand
only, and MM part was treated with CHARMM27 force field. For each complex, 500
frames from the production run were used in further analyses. A linear fit of QM/MM
interaction energy correlated well with experimental affinity, which was expressed
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by logIC50 (R
2 = 0.89). Even better results were obtained in the three-variable model

with electrostatic, van der Waals, and SASA terms (R2 = 0.94).
The four proteins of pharmaceutical relevance: BACE1, TYK2, HSP90, and PERK

were also studied with the QM/MM-LIE method using 22, 16, 70, and 32 ligands, re-
spectively [190]. The QM/MM energies were calculated for each of the 40 snapshots
extracted from MD simulations at MM level. In binding free energy calculations,
only ligands were treated by the semiempirical AM1 method. The remaining parts of
the system were treated by OPLS force field. The good correlation between calcu-
lated binding energy and experimental affinity was obtained for each of four sys-
tems, 0.73, 0.71, 0.60, and 0.86, respectively.

1.4.7 FEP approaches

The FEP methods give the most accurate results but at the expense of computa-
tional time. The evaluation of the free energy of binding involves a large number of
intermediate states, making these methods computationally very demanding, thus
useful mainly at the lead optimization stage, where a small number of compounds
need to be ranked. One of the most rigorous methods for computing (relative) bind-
ing free energies is alchemical FEP (AP) in which the binding free-energy difference
between bound and unbound states is calculated with the use of statistical mechan-
ics analysis on the trajectories obtained in simulations at MM level. These trajecto-
ries define a thermodynamic path, which connects two end states by unphysical
(alchemical) intermediate states during the transformation of one ligand into the
other while it is bound to protein as well as is free in the solution.

The most widely used alchemical methods are FEP [191], thermodynamic inte-
gration (TI) [192], and Bennett acceptance ratio (BAR) [193], [194]. The alchemical
transformation of one state into the other is obtained with the use of a coupling pa-
rameter λ (λ = 0 for the initial state, and λ = 1 for final state). The final free-energy
difference between the two end states is a sum of the alchemical transformations
between states for which λ varies from 0 to 1.

Unlike TI and BAR, FEP, also called exponential averaging (EA) compute the
relative difference in free-energy change between the bound and unbound state of
the two ligands toward the same protein. In this method, alchemical transforma-
tions are used to transform one molecule into another structurally related one. To
use alchemical methods, we need to know the ligand binding mode. TI or BAR can
be applied to estimate the absolute binding free energy for one ligand toward pro-
tein or, in the case of FEP, calculate relative binding free energy for two or more
structurally related ligands toward the same protein [10].

Besides alchemical transformation methods for absolute binding free energy
calculations, physical pathway methods can be used. Pathway methods differ from
alchemical transformations because they are aimed at reproducing the physical
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binding pathway between unbound ligand and ligand bound to its protein target.
These methods estimate the free energy of the ligand binding mechanism and also
allow identifying the most energetically favorable bound state as the correct ligand
binding mode. Commonly used methods from this group are umbrella sampling (US)
[195], [196], SMD [197] and funnel metadynamics [198].

In FEP calculations relative binding free energies ΔΔGbind between two ligands
LA and LB are estimated with the use of a thermodynamic cycle (Figure 1.2), which
relates ΔΔGbind to the free energy of alchemically transforming LA into LB in a bound
state, ΔGb

A!Bð Þ, and when they are free in solution, ΔGf
A!Bð Þ:

ΔΔG A!Bð Þ
bind =ΔG Bð Þ

bind −ΔG Að Þ
bind =ΔGb

A!Bð Þ −ΔGf
A!Bð Þ (1:20)

where ΔGb
A!Bð Þ, and ΔGf

A!Bð Þ are estimated by FEP. The actual binding event is not
sampled, only the protein-ligand complex in solution and the solvated ligands. FEP
calculations usually are performed at the MM level of theory.

The reliability of the AP approaches depends on the similarity of the two li-
gands and also on their size [199]. Sometimes even for very similar ligands, the al-
chemical approach can fail in reproducing the experimental binding free energy
difference. The reason for this may be the not enough accurate description of inter-
actions by the MM force field [200]. Classical MM force fields used for simulations of
biomolecules involve many approximations. They omit, for example, polarization
effects, charge transfer and charge penetration. The force field employed in binding
free energy estimations can be improved by a careful parametrization of the ligand
[201] or by using a polarizable force field [202], [203].

The simplest way to improve results would be the direct use of quantum-mechani-
cal methods in alchemical simulations. However, the extensive sampling at the QM
level is not feasible due to the size of the systems, especially for a level of theory that
would guarantee high accuracy. Nevertheless, improving the energy function by
using QM or QM/MM calculations can be important for drug candidates possessing
in their molecules halogen atoms or aromatic systems. Standard MM force fields
poorly describe halogen bonds and π-π or π-cation interactions.

Figure 1.2: Thermodynamic cycle used in alchemical transformations.
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QM/MM free energy estimate can be obtained by replacing the MM potential with
QM/MM using direct alchemical QM/MM free-energy simulations. However, it is a
computationally very expensive solution. Sampling with the QM/MM Hamiltonian
can be avoided with the reference potential methods [204], [205], [206]. The free en-
ergy difference is estimated here by normal FEP simulation at the MM level, then cor-
rections resulting from changing the model from reference (MM) to QM or QM/MM
are evaluated [204], [205], [207], [208]. These additional FEP simulations are per-
formed at the endpoints of the transformation (Figure 1.3), and perturbations need to
converge in a single step (single-step EA). The QM or QM/MM free energy between
the two states can be obtained as:

ΔGQM
A!B =ΔGMM

A!B −ΔG MM!QMð Þ
A +ΔG MM!QMð Þ

B (1:21)

Another approach that enables the rigorous computation of free energies based on
ensembles generated at MM level is the non-Boltzmann BAR (NBB) [209], [210]. The
method uses the bias, as the difference between the approximate (MM energy) and
true (QM or QM/MM energy) potentials for the same geometry and use this knowl-
edge to reweight the free energy contributions to obtain the free energy for the unbi-
ased (QM or QM/MM) potential. As a result of the NBB calculations, the free energy
estimated at the QM level is obtained.

Only a few studies have been published with full FEP simulations at the QM/MM
level. Direct QM/MM-based FEP calculations were used for relative solvation and
binding free energies of the five AMP analogs complexed with human fructose-1,6-bi-
sphosphatase (FBPase) [211]. Using AM1 method for the ligand and MM for the protein
and solvent, relative binding affinities were reproduced with an error of less than
0.5 kcal/mol. The QM/MM-based FEP method required five times more CPU time than
conventional FEP, but it allowed to achieve increased accuracy. The same approach
was applied to other 22 FBPase inhibitors giving excellent results, with maximum er-
rors of 0.5 kcal/mol for SQM and less than 1 kcal/mol for MM simulations [212].

Figure 1.3: Thermodynamic cycle used in the reference-potential methods to obtain relative QM
binding energies.
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Binding free energies obtained in the FEP method based on MD simulations
within hybrid QM/MM potentials were compared with the pathway method (US) for
five ligands binding to HIV-1 reverse transcriptase [213]. The only ligand was treated
with a semiempirical AM1 method; the rest of the system was described using the
OPLS-AA force field (TIP3P model for water molecules). For each ligand, 100 ps MD
simulations were used in FEP calculations giving better agreement with experimen-
tal data than pathway method. However, both attempts overestimated the value of
binding free energy. A very similar approach with the FEP simulation at QM/MM
level was also applied to five classical AChE inhibitors [214]. In this case, the use of
QM was important due to the polarizable nature of the ligands, and calculated bind-
ing free energy reproduced the experimental order of inhibitory potency, giving a
very good correlation to the experimental data (R2 = 0.96).

The reference-potential method was applied to study the binding affinity of two
inhibitors of COX-2 [215]. Ligands differed only in the single substituent. One ligand
with -OH group was transformed into another with the –CH3 group (celecoxib). FEP
was performed at the MM level (Amber force field). For QM/MM postprocessing, only
the end-points (from MM trajectories) were used, and 3000 QM/MM single point cal-
culations were performed for λ = 0 and λ = 1. Calculations for ligand were performed
at the B3LYP/6-31G(d, p) level of theory. Results obtained in the QM/MM approach
were closer to experimental values than from MM FEP calculations.

Various approaches to QM/MM FEP have been developed, mainly using smaller
host-guest systems, they are used and tested in blind-test SAMPL (Statistical
Assessment of the Modeling of Proteins and Ligands) challenges. Binding free en-
ergy of nine cyclic carboxylate guest molecules to the octa-acid host was studied
with FEP simulations at MM level and by DFT-D3 calculations [216]. Selected snap-
shots from FEP MM simulations were reweighted at the DFT-D level. For the ligands,
a single-point TPSS-D3 calculation was performed with the def2-QZVP basis set.
The def2-TZVP basis set was applied for the host and water molecules. Although
three different approaches, which used QM energies such as single-step EA, NBB, and
extrapolation corrections, reproduced experimental data worse than FEP calculations
at the MM level.

A similar approach was used in studies of the relative binding affinity of two
synthetic disaccharide ligands to galectin-3 [217]. The BLYP-D3/def2-SV(P) calcula-
tions were used for QM system, which included the ligand, protein groups, and
water molecules within 6Å (748 or 744 atoms for the bound state and 527 or 523 for
the free state). The rest of the system was treated by an accurate polarizable multi-
pole description. Due to significant differences between potential energy surfaces at
the MM and QM level, end-point corrections based on single-step EA and NBB do
not converged properly. Only BAR calculations with QM energies, ignoring the dif-
ferences in the structures sampled at MM and QM/MM potentials, gave comparable
results as FEP simulations at MM level.
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In a series of publications, the performance of different QM/MM-FEP approaches
was also tested for smaller systems [218], [219], [220], [221]. In studies of binding free
energies of guest molecules to the octa-acid host for the QM system semiempirical
methods PM6-DH2X [218], PM6-DH+ [219], [220], [221] and dispersion-corrected den-
sity functional TPSS-D3 method [221] were applied.

1.5 Conclusions

This chapter has attempted to present the computational chemistry methods used in
protein-ligand binding affinity predictions. In binding affinity calculations, many dif-
ferent QM methods are applicable, ranging from SQM approaches, through DFT, to
advanced CCSD(T) calculations. Dispersion corrections to DFT and more accurate
semi-empirical QM approaches have significantly improved the results of calculations
for nonpolar interactions that play a very important role in protein-ligand complexes.
Moreover, QM methods include effects not considered in classical force fields as a po-
larization of the ligand, charge transfer, metal-coordination bonds, and others. With
the use of the QM approach, the parameterization of force fields for the novel com-
pounds can also be avoided. Quantum mechanical methods do not always lead to
improved calculated binding affinities. Often they give comparable or even worse re-
sults than classical MM approaches. However, continuous progress in QM methods
gives prospects for quantum chemical approaches applied to binding affinity calcula-
tions to be widespread use in drug design, on the timescale required by pharmaceuti-
cal companies.
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2 Understanding (coupled) large amplitude motions:
the interplay of microwave spectroscopy, spectral
modeling, and quantum chemistry

Abstract: A large variety of molecules contain large amplitude motions (LAMs), inter
alia internal rotation and inversion tunneling, resulting in tunneling splittings in
their rotational spectrum. We will present the modern strategy to study LAMs using a
combination of molecular jet Fourier transform microwave spectroscopy, spectral
modeling, and quantum chemical calculations to characterize such systems by the
analysis of their rotational spectra. This interplay is particularly successful in decod-
ing complex spectra revealing LAMs and providing reference data for fundamental
physics, astrochemistry, atmospheric/environmental chemistry and analytics, or fun-
damental researches in physical chemistry. Addressing experimental key aspects, a
brief presentation on the two most popular types of state-of-the-art Fourier transform
microwave spectrometer technology, i.e., pulsed supersonic jet expansion–based
spectrometers employing narrow-band pulse or broad-band chirp excitation, will be
given first. Secondly, the use of quantum chemistry as a supporting tool for rotational
spectroscopy will be discussed with emphasis on conformational analysis. Several
computer codes for fitting rotational spectra exhibiting fine structure arising from
LAMs are discussed with their advantages and drawbacks. Furthermore, a number of
examples will provide an overview on the wealth of information that can be drawn
from the rotational spectra, leading to new insights into the molecular structure and
dynamics. The focus will be on the interpretation of potential barriers and how LAMs
can act as sensors within molecules to help us understand the molecular behavior in
the laboratory and nature.

Keywords: conformational analysis, large amplitude motions, microwave spectros-
copy, molecular jet Fourier transform, rotational spectroscopy, spectral fitting.

2.1 Introduction

Since the jet-based Fourier transform microwave (FTMW) spectroscopy technique was
introduced by Balle and Flygare in 1979 [1, 2], it rapidly became popular. The com-
plexity of molecules that could be studied strongly increased with this method. In
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combination with newly developed jet sources, it shows a great potential toward even
larger and more dynamic systems, transient molecules, or weakly bounded complexes
with applications in research fields as diverse as, e.g., molecular biology, astrophys-
ics, or environmental sciences.

Rotational spectra have been always known to be related directly to molecular
structures because the most important geometry parameters they deliver are the ro-
tational constants, which reflect the mass distribution of atoms in the molecules.
Information on bond lengths and angles can be routinely obtained. However, mi-
crowave spectroscopy is today far more advanced and offers much more than just
the molecular structures. It addresses various fundamental and applied problems
in molecular physics, physical chemistry, and related fields such as astrophysics,
atmospheric sciences, or biochemistry. It answers challenging questions on confor-
mational landscapes, characters of the chemical bond, electronic surrounding of a
given nucleus, charge transfer, and internal dynamics.

The power of microwave spectroscopy in decoding molecular structures is very im-
pressive compared to other spectroscopic techniques because pure rotational transi-
tions can be observed directly within the lowest vibrational state. Furthermore, in
combination with supersonic expansion where the rotational temperature is decreased
almost to the absolute zero point (from 0.5 to 2 K), only the lowest rotational levels are
populated. This leads to a tremendous simplification of the spectra. Although impor-
tant chemical and spectroscopic information could still be obtained with static gas
cells, many problems could only be solved using supersonic jets. At the same time,
with the capability to observe spectra of even larger molecules, microwave spectros-
copy is emphasizing and consolidating the key role in yielding accurate information
on various physical and chemical objectives. Atmospheric compounds, interstellar
species, and biomolecules are targeted in many laboratory studies, which provide in-
formation on properties of molecules, clusters, and radicals, as well as offer applica-
tions directed toward atmospheric sensing or radio astronomy.

The two classical books known by almost all microwave spectroscopists are
those written by Townes and Schawlow [3] and Gordy and Cook [4]. The fundamen-
tal theoretical background of rotational spectroscopy is referred to those books and
will not be repeated here.

The effects of intramolecular dynamics cause all rotational energy levels to split
into several levels due to tunneling effects. Two prototypes of such large amplitude
motions (LAMs) are methyl internal rotation and inversion tunneling involving a dou-
ble minimum potential. These LAMs sometimes complicate the spectra that much that
their assignments were inhibited. To model the experimental spectra, theoretical tools
including correct Hamiltonian need to be developed. The theory on LAMs occurring in
rotational spectra is described in detail by Wollrab [5] and Lister et al. [6] or in re-
views, e.g., by Lin and Swalen [7]. Their group theoretical treatment using the permu-
tation inversion group can be found in a book written by Bunker and Jensen [8].
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Several computer programs are available to analyze the rotational spectra. They
are often developed by microwave spectroscopists during the investigations on their
particular molecular systems and then generalized for other molecules with similar
molecular symmetry and internal dynamics. Nevertheless, in a number of cases where
no program is available to treat the LAM problems occurring in the molecules of inter-
est, specialized codes are needed. They are either extended from an already existing
program or written newly. In those cases, group theoretical treatment is required in
addition. The rotational spectra of many molecules can be fitted by the program
SPFIT/SPCAT written by Pickett [9], often used to produce line frequencies and intensi-
ties for molecules in the astrophysical databases such as the Jet Propulsion Laboratory
(JPL) [10] or “the Cologne Database for Molecular Spectroscopy” (CDMS) [11]. Many
nonrigid molecules are also available at other astrophysical line lists and websites
such as Splatalogue [12], the Observed Interstellar Molecular Microwave Transitions
NIST database [13], and the Toyama Microwave Atlas [14].

Many programs for rotational spectroscopy dealing with LAMs are available at
the “Programs for ROtational SPEctroscopy” (PROSPE) website managed by Kisiel
[15]. Among them, the program XIAM written by Hartwig and Dreizler [16] can treat
the internal rotation effects of up to three methyl internal rotors. Other codes exist
which contain higher order perturbation terms such as the one written by Ohashi
and Hougen [17] for methylamine-like molecules, by Hougen et al. [18] and Hougen
and Kleiner [19] to deal with a number of one-top and two-top molecules [20] with
Cs and C1 symmetry, by Groner [21] to deal with one or two internal tops, or by
Ilyushin et al. [22] to treat one-top molecules with Cs and two-top molecules with C2v
symmetry [23]. Kleiner and Ilyushin use a global treatment including all the torsional
levels for a given vibrational state, an approach which is particularly successful for
low barriers or excited torsional states [18–20, 22, 23]. Internal rotations with interme-
diate to high torsional barriers can be handled by the IAMCALC program intergrating
in Pickett’s SPFIT/SPCAT suite [10] and by the spectral fitting program JB95 provided
by Plusquellic [24]. A few models for complicated interactions arising in indivi-
dual molecules have been also developed based on group theoretical approaches,
e.g., studies on the rotatory wagging coupled motions in 2-methylmalonaldehyde,
a methylamine-like molecule, by Kleiner and Hougen [25] using the hybrid model.

Density functional theory (DFT) and ab initio calculations implemented in compu-
tational programs such as Gaussian [26] or GAMESS [27] are commonly used today in
the spectroscopic community to predict i.e., the potential energy surfaces (PES) to de-
termine the conformational preferences, the molecular equilibrium structures, and
electric field gradients. Such calculations yield starting values of spectroscopic param-
eters including barrier heights for different types of LAMs to support the experimental
work.

In the present review, the theoretical or experimental background required to an-
alyze the rotational spectrum of a molecule containing one of more LAMs will not be
given in detail, as they were presented in a number of books, papers, and review

2.1 Introduction 43



papers [3, 8]. Instead, this review will summarize the modern strategy to analyze mi-
crowave spectra, how to achieve fits with standard deviations within experimental
accuracy, and serve as a guideline to study LAM systems, as outlined in Scheme 2.1.
Furthermore, it will give an overview on how to use the information coming out from
the spectrum to bring new insights on the molecular gas phase structures and dy-
namics. The focus will be on the interpretation of potential barriers and the use of
methyl internal rotors as sensors for the molecular structures.

Scheme 2.1: The general procedure for microwave spectroscopic investigations on a molecular
system.
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2.2 Spectrometer technology

With the unique ability to provide simultaneously high sensitivity and high resolu-
tion, FTMW spectroscopy based on pulsed supersonic jet expansions has become
popular in the last decades. This technique is a powerful tool for studying isolated
molecules in the gas phase. The most attractive advantages of integrating super-
sonic jet expansion in the FTMW spectrometers is the significant simplification of
observed spectra. Furthermore, the signal to noise ratio is increased due to statisti-
cal depopulation of the excited states in the molecules because of the effective cool-
ing of the sample to extremely low rotational temperature (0.5–2 K). In this review,
the two most popular molecular jet FTMW spectrometer techniques will be briefly
presented. More details can be found in the study by Grabow [28].

2.2.1 Resonator-based molecular jet FTMW (2 − 40 GHz) spectrometers: high
resolution and sensitivity but time consuming for survey spectra

In a molecular sample, the electric dipole interaction occurs while exposing to a stand-
ing wave field of the microwave radiation which propagates in a “transverse electric
magnetic”-mode of a Fabry-Pérot-type resonator formed by two spherical mirrors, typi-
cally made of aluminum, with equal curvature at a distance d. Today, resonator-based
molecular jet FTMW spectrometers in the frequency range below 26 GHz are commonly
used in many microwave laboratories and have shown their superior sensitivity and
resolving power [29, 40]. For medium-sized or large biomolecules or volatile com-
pounds important for atmospheric chemistry and biology (≥15 atoms), this fre-
quency range is suitable because of the small rotational constants. Therefore, lower
J and K rotational transitions, which can be assigned more easily, fall in this range.
Spectrometers from 26 to 40 GHz are fairly rare but extremely useful for studying
small molecules (<15 atoms) abundant in the Earth’s atmosphere or in astrophysical
objects such as molecular clouds or planetary atmospheres [41].

A diluted gas mixture of about 1% sample seeded in a rare gas at a total pressure
in the range of 50–200 kPa is expanded into the vacuum chamber which contains the
resonators. The simplest form of the nozzle consists of a circular orifice with a diame-
ter of 0.5–2.0 mm. The exit channel of the nozzle of 2 mm length is widened conically
to 4 mm. The signals appear as doublets due to the Doppler effect in the case of a co-
axial arrangement between the resonator and the molecular beam (Coaxially Oriented
Beam Resonator Arrangement [COBRA] type). The typical measurement accuracy is
about 2 kHz. Figure 2.1 depicts a typical broadband scan and a spectrum recorded at
high resolution using a COBRA-type molecular jet FTMW spectrometer [33].
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2.2.2 Chirped-pulse molecular jet FTMW spectrometers: how to reduce the time
requirements for survey spectra?

The classical versions of resonator-based molecular jet FTMW spectrometers have an
unrivaled resolution but suffer from the time requirement to acquire survey spectra
(scans) because the resonator has to be tuned mechanically for every frequency ele-
ment at rather narrow steps of less than 0.25 MHz (<10−5 cm−1), see, for example, the
figure caption of Figure 2.1 [42]. An approach to overcome this problem was devel-
oped a decade ago using the chirped-pulse (CP) method, which relies on a very short
but powerful frequency ramp signal with a band width of 1 GHz (3333 times 10−5 cm−1)
or even more, and thus can reduce the time requirements for scans dramatically [43].

The fast passage excitation arises when the frequency of an electromagnetic field
is swept through a molecular resonance in a time which is much shorter than the re-
laxation time. Despite this very short resonance time, the population of the states
changes remarkably, which leads to a detectable oscillating macroscopic polarization.
Although traditional narrow-band resonator-based spectrometers can provide better
resolution of the spectra of a target molecule, CP-FTMW spectrometers provide unpar-
alleled speed for highly complex broadband spectra arising from mixtures of reaction
products, isomers, or weakly bound molecular clusters. In many studies where opti-
mizations of the molecular jet are required, e.g., van der Waals complexes or electric
discharges to produce ions or radicals, the use of a CP machine is indispensable. It is

Figure 2.1: A typical broadband scan (left hand side) and a spectrum recorded at high resolution
(right hand side) of allyl acetate using a Coaxially Oriented Beam Resonator Arrangement
(COBRA)-type molecular jet FTMW spectrometer [33]. The broadband scan was recorded by
overlapping spectra at a step size of 0.25 MHz, where only the line positions are present.
The linewidth in the high resolution spectrum of the 404 ← 303 rotational transition, A torsional
species, is 8 kHz. The line frequency can be determined with a measurement accuracy of about
0.8 kHz [42].
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necessary to monitor a wide spectral range in real time in order to recognize changes
in the spectrum while the strength of discharge and other parameters are varied.
Furthermore, the line intensities of CP spectra are more reliable than those of a reso-
nator-based apparatus. This is an important feature for assignments of the spectra
and for conformational analysis.

With all of these advantages, CP-FTMW is the spectrometer of choice for many
scientists worldwide and has been equipped in almost all microwave spectroscopic
labs [44–59].

2.3 Quantum chemical calculations

The combination of microwave spectroscopy and quantum chemical calculations is a
powerful tool to determine the conformational landscape of medium-sized and large
molecules, as well as LAM parameters. Studies where the microwave heavy atom struc-
tures were determined experimentally, such as those on methyltetrahydrofuran [60], 2-
ethylfuran [61], and 2- and 3-nitrobenzonitrile [62], have proven that the molecular ge-
ometries can be calculated sufficiently well. In the present review, we constraint the
scope of quantum chemical calculations on geometry optimizations. They are crucial
and serve as a supporting tool for the assignment of microwave spectra by delivering
predicted values to start the assignment [63]. If the molecules are large, it is often not
possible to obtain rs geometries from the experiments, as not all isotopologues can be
observed, but geometry information can be indirectly obtained from the rotational con-
stants, which can be compared with those of the theoretical results. Like Townes and
Schawlow [3] and Gordy and Cook [4] for microwave spectroscopists, details on quan-
tum chemistry are referred to the two books written by Cramer [64] and Jensen [65].
The present review will only address the use of quantum chemistry as a supporting
tool for rotational spectroscopy.

The relation between the positions of all nuclei in a molecule and the corre-
sponding potential of the molecule can be described by the PES. Each energy mini-
mum on the PES represents a stable conformer because any change in geometry
parameters such as bond angles or lengths would lead to a conformation with a
higher energy. The absolute minimum is the energetically lowest, i.e., the most fa-
vorable, conformation of the molecule. Transition states are also present on the
maxima of the PES as saddle points. Figure 2.2 illustrates the PES of phenetole de-
pending on the rotations of the phenyl ring and the ethyl group as an example [66].
This PES describes completely the conformational landscape of phenetole.
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2.3.1 Geometry optimizations: how to start?

To calculate the stable conformers of a molecule, geometry optimizations are car-
ried out on different starting geometries computed in quantum chemical programs
like, for example, the commercially available Gaussian [26] or the freeware GAMESS
[27] where the total energy is minimized by varying the atom positions in small steps
until convergence.

As stated in Scheme 2.1, theoretical investigations can be started immediately
after deciding to study a system of interest (called molecule X in Scheme 2.1), even
before the experimental spectrum is recorded. However, several points should be
carefully thought before running the first calculation. The first point is to decide
which level of theory is most suitable to treat molecule X and how accurate the re-
sults will be. The choice of course depends on the available experimental data.

2.3.2 Method choice: be careful. Discrepancy!

Different methods are available to optimize the geometry of a molecule and find the
stable conformations. The two methods most commonly used with a reasonable
ratio between calculation time and efficiency ratio are probably the DFT method
using the B3LYP functional [67], [68] and the MP2 method [69]. They mainly differ
in their optimized quantity. While it is the electron density for DFT, the wave func-
tion is optimized by MP2. If the molecule belongs to a systematic investigation on a
molecular class, a certain level of theory is often preferred, which has yielded more

Figure 2.2: The potential energy surface (PES) of phenetole calculated at the MP2/6-311++G(d,p)
level of theory obtained by rotating the phenyl ring (dihedral angle α) and the ethyl group
(dihedral angle β) [66]. The numbers in the color code indicate the energy (in per cent) relative
to the energetic minimum Emin = −385.0444525 Hartree (0%) and the energetic maximum
Emax = −385.02509670 Hartree (100%). Two energy minima (I and II) are found on this PES.
II* is the enantiomer of II.
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reliable results in previous studies [70]. Otherwise, MP2 is usually recommended
and represents one of the most favorable methods in the microwave spectroscopic
community because of the reasonable rate between accuracy and required compu-
tational time. However, an advantage of the semiempirical B3LYP method over the
pure ab initio MP2 method is that it is much faster and more cost efficient. However,
a disadvantage of the B3LYP functional is its underestimation of intramolecular inter-
actions. As a consequence, energy minima may be overlooked during the conforma-
tional analysis [71]. This can be improved by using Grimme’s dispersion correction
[72, 73], which turned out to be quite helpful for large molecules containing internal
rotation. The case study on methyl jasmonate and zingerone, two substances pro-
duced by plants, has shown that a wrong choice of the theoretical method can lead
to misinterpretation of the experimental results (see Figure 2.3) [74].

The discrepancy between B3LYP and MP2 found in methyl jasmonate and zingerone is
not unusual and can also be observed in smaller molecules. An example is the case of
diethyl ketone, where MP2 predicts a tilt angle of about 10° for each of the ethyl group
and the corresponding symmetry is C2, while B3LYP calculates a C2v symmetry with all
heavy atoms located on the symmetry plane (see Figure 2.4) [75]. There are also more
accurate methods, for example, higher orders of perturbation theory (MP4) [76] or the
golden standard in quantum chemistry, coupled cluster calculations [77], but they are
much more expensive than the B3LYP and MP2 methods. Therefore, a conformational
analysis at a level higher than B3LYP or MP2 is not recommended. However, it might
be interesting to reoptimize the geometries of the lowest energy conformers obtained
from the PES at a higher level to predict more accurate structures.

Figure 2.3: Schematic representation of the prototype behavior of theoretical methods in the
conformational casuistry of zingerone. For details see the study by Uriarte et al. [74].
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2.3.3 Basis set choice: make a lot of tests…

The second point is to choose a suitable basis set. The Pople valence triple-zeta basis
set 6-311++G(d,p) is often used in combination with the MP2 and B3LYP methods be-
cause the valence shell electrons are described well and the diffuse functions (++) and
the polarization function (d,p) are included [78]. A set of polarizing d-functions is used
on all atoms heavier than helium, and a set of p-functions on all hydrogen and helium
atoms is included. Dunning correlation consistent basis sets, e.g., aug-cc-pVDZ and
aug-cc-pVTZ are also often chosen [79]. It is obvious that the same level of theory
should be used throughout the conformational analysis for a reasonable comparison.

For each energy minimum, harmonic frequency calculations have to be per-
formed to verify whether an optimized geometry on the PES is an energy minimum or
a saddle point (transition state). Zero-point corrections on the equilibrium energy can
also be obtained which yield the energy of the system in the vibrational ground state.

The accuracy of calculations with different methods or basis sets depends on
the system of interest X. Therefore, the method/basis set combination should be
chosen carefully before running the calculations. A level often used in the spectro-
scopic community is MP2/6-311++G(d,p), which has provided good starting values
in investigations of many small- to medium-sized molecules [80–82]. The geome-
tries and consequently the predicted rotational constants usually agree well with
the experimental values. However, the B3LYP/6-311++G(d,p) level of theory turns out
to be more reliable in some cases such as the three isomers of mono-methylanisoles
[83–85]. For some esters like ethyl valerate [86] or molecules containing aromatic
rings such as coumarin [87], quinolone [88], and isoquinoline [88], MP2/6-31G(d,p)
turns out to be a “magic level” which calculates rotational constants accidentally
closest to the experimental values and has eased significantly the assignment process.

Figure 2.4: Left hand side: a potential energy curve of diethyl ketone calculated at the MP2/
6-311++G(d,p) level of theory. Right hand side: the same potential curve calculated at the B3LYP/
6-311++G(d,p) level of theory. For details see the study by Nguyen and Stahl [75].
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It is therefore recommended for any new class of molecules to first test which combina-
tion of methods and basis set is appropriate and then apply it for all following investi-
gations in the series.

Finally, it should be mentioned that the predicted rotational constants refer to
the equilibrium structure, and the experimental rotational constants obtained
from the microwave spectrum are those of the vibrational ground state. Since the
deviations are often only about 1%, the theoretical Be values are usually compared
directly with the experimental B0 results [89]. Though this comparison is not
physically meaningful, theoretical Be values offer cost-efficient calculations with
sufficient accuracy for spectral assignment purposes. Theoretical B0 rotational
constants at the vibrational ground state can be provided by anharmonic fre-
quency calculations, which are sometimes important, for example, to determine
the semiexperimental equilibrium re

SE structure [90]. However, for the assignment
of microwave spectra, these calculations are firstly very time consuming and sec-
ondly often do not predict rotational constants in much better agreement to the
experimental values due to error compensation.

2.3.4 Estimation of the torsional barriers: still challenging

Barriers hindering the LAMs can be obtained from potential energy scans where the
LAM coordinates are varied in a certain grid while all other geometry parameters are
allowed to relax. Though geometry optimizations yield reliable results in many cases,
calculating energies still remains a challenge for today’s quantum chemistry with
even growing computational capacity. Especially, if the energy differences are small,
it is difficult to predict the conformers of lowest energy or the barriers of LAMs with a
sufficient accuracy to guide the spectral assignment [91]. Although for quantum chem-
istry, an accuracy of 1 kJ·mol−1 (approximately 84 cm−1) states energy calculations
with high quality, it is far from accurate regarding the experimental requirements. By
a change of only one cm−1 in the potential barrier, the predicted frequencies can differ
hundreds of MHz from the experimental values. However, the order of magnitude is
often given correctly and serves as a good orientation for studying the effects of LAMs
in the spectrum.

2.4 A small historical perspective on large amplitude motions

One of the first recorded rotational spectra were those of ammonia with its inver-
sion tunneling motion of the nitrogen atom through the plane spanned by the three
hydrogen atoms [92]. Ammonia thus exists in two energetically equivalent geome-
tries, which are connected by a tunneling path with the shape of a double minimum
potential [4].
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The spectra of many molecular systems are dominated by the tunneling splittings
of their LAMs. In some cases, two or more LAMs simultaneously generate tunneling
splittings, sometimes with Coriolis couplings between them. There are several types
of LAMs, but the two most frequent are the internal rotation, typically of methyl
groups, and inversion tunneling. The present review does not consider the puckering
LAMs of saturated rings and pseudorotation, as occurring, for example, in tetrahydro-
furan [93]. Furthermore, the investigations are limited to isolated molecules and do
not consider weakly bound complexes, where complex LAMs also often occur, such
as in the methyl glycidate-water complex [94].

2.4.1 Internal rotation

Internal rotation is a LAM where an internal rotor rotates with respect to the rest of the
molecule, called the frame. The internal rotor can be symmetric, e.g., a methyl group,
or asymmetric, e.g., OH, SH, NH2 groups. Depending on the symmetry of the rotor and
the frame, the number of equivalent minima of the torsional potential can be different.

2.4.1.1 Symmetric internal rotor
A threefold potential is present if the internal rotor is a group with C3 symmetry like
a methyl group attached to an asymmetric frame, as described in Equation (2.1) [4]:

V αð Þ= 1
2
V3 1− cos 3αð Þ+ 1

2
V6 1− cos 6αð Þ+ 1

2
V9 1− cos 9αð Þ... (2:1)

The height of this potential, i.e., the V3 value, can be quite different, from essen-
tially free rotation (almost 0 cm−1) to over 1000 cm−1.

The first internal rotors studied in the microwave domain were often molecules
detected in the astrophysical medium. The history of internal rotation is thus
closely related to the history of astrophysical detections.Methanol, a very important
molecule in chemistry and industry, is one of the simplest molecules undergoing
hindered internal rotation with a barrier height of about 380 cm−1, and was there-
fore studied since a long time by numerous experimental and theoretical investiga-
tions, for example, by Koehler and Dennison [95] already in 1940. The structure of
methanol has been determined in 1951 by Hughes et al. [96]; the millimeter wave
spectrum was investigated by Lees and Baker [97]. The studies were extended by De
Lucia et al. [98] in 1989 and then continued by Xu et al. [99]. Xu, Lees and their
collaborators contributed extensively to the knowledge of both microwave and in-
frared spectrum of methanol and its isotopologues.

The barrier to internal rotation of 398(14) cm−1 of another astrophysical mole-
cule, acetaldehyde, was estimated by Lin and Kilb [100] in 1956. The spectral analy-
sis was completed later by Bauder and Günthard [101], Liang et al. [102], and Maes
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et al. [103]. Methyl formate, a further important astrophysical molecule, was studied
in the microwave region in 1959 by Curl [104], who reported a barrier to methyl in-
ternal rotation of 416(14) cm−1. Later on, Plummer et al. [105], Demaison et al. [106],
Oesterling et al. [107], and Oka et al. [108] improved the spectral analysis to great
accuracy. Acetic acid, a structural isomer of methyl formate, also shows internal ro-
tation [109], [110] where the methyl torsional barrier of 174 cm−1 was determined in
1957 by Tabor [111] and later improved to be 168.16(17) cm−1 by Krischer and
Saegebarth [112]. A review of molecules with internal rotation is available in the
study by Kleiner [113].

2.4.1.2 Asymmetric internal rotor
An example among many asymmetric internal rotors is the primary amino group
–NH2. The typical example is ethyl amine for which Fischer and Botskor [114] re-
ported on the spectrum of the trans conformer in 1982 and two years later also on the
gauche conformer [115]. Another interesting example is water, which can also acts as
an asymmetric internal rotor, causing a V2 energy potential, as observed in a number
of complexes like nitric acid-water [116] or water-carbon oxide [117], but we will not
consider it further in this review.

2.4.1.3 Why is internal rotation important?
The smaller the barrier to internal rotation, the larger the splittings in the spectrum
[4] and the more complicated the spectrum analysis. Why should we care about the
laboratory analysis of those spectra? One reason is to understand the molecular struc-
ture itself which can be used to study chemical and biochemical intrinsical proper-
ties. With increasing sensitivity in atmospheric detection, internal rotors have been
frequently observed and play an even more important role in chemistry of the Earth
atmosphere though they are present only in traces as volatile organic compounds.
Another reason is that knowledge about internal rotation is essential for the detection
of molecules in the interstellar medium. More than 200 molecules have been found
in the circumstellar shells or interstellar medium. A number of them show methyl in-
ternal rotation with observable splittings. The classical example is methanol, one of
the simplest molecules showing methyl internal rotation with a barrier height of
about 380 cm−1, which was detected in Orion-A by Lovas et al. [118] in 1976. About at
the same time, Churchwell and Winnewisser [119] found methyl formate in Sgr B2
with the A-E doublet of the 110 ← 111 transition. Acetaldehyde was also found in Sgr
B2 [120] and then in two other clouds, TMC-1 and L134N [121]. Acetic acid was first
detected in the interstellar medium by Mehringer et al. [122]. Many internal rotor mol-
ecules were observed in Orion-KL such as dimethyl ether [123]. Larger molecules like
acetone [124] and ethyl methyl ether [125] have been detected as well. Most of the
identifications were enabled by the interplay between laboratory studies of rotational
spectra and observations of interstellar surveys in the microwave, submillimeter
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wave, and millimeter wave frequency ranges. The laboratory investigations yield reli-
able data such as line lists and line intensities needed for the interpretation of inter-
stellar surveys.

Only a few years ago, 215 unblended lines as well as 163 lines moderately
blended with other species of methyl acetate with its five torsional splittings arising
from two inequivalent methyl rotors were detected in the Orion cloud [126]. The de-
tection is fully secured taking into account (i) the large number of detected lines
and (ii) the fact that the systematic pattern of the lines arising from the different
internal rotation states is always present (Figure 2.5). This success was due to the
laboratory work and knowledge on the molecular transitions occurring in the mi-
crowave spectra of a two-top internal rotor.

2.4.1.4 Understanding two-top molecules toward astrophysical detections
All rotational lines of a one-top molecule split into an A and an E torsional compo-
nent. As illustrated in Figure 2.6, in the case of two nonequivalent internal rotors,
all A components split into the so-called AA-AE doublets, and all E components
into the EA-EE-EE* triplets, according to the notation by Dreizler based on the di-
rect product C 1ð Þ

3v # C
2ð Þ
3v [127]. In the spectra of molecules with two equivalent ro-

tors, AA-AE-EE-EE* quartets arise instead of quintets due to the degeneracy of the
AE and EA torsional components (see Figure 2.6). Filled circles in Figure 2.6 indicate
the nonrotating state of the rotors and round arrows symbolize the two rotating states.
If the molecular symmetry of the rest of the molecule excluding the methyl groups (so-
called the “frame”) is Cs, new labeling schemes using the semidirect products have
been introduced for both, the two inequivalent and two equivalent rotor cases. The tor-
sional species are denoted as (00), (01), (10), (11), and (12) [128], where (01) = (10) in
equivalent rotor cases [129]. The molecular symmetry groups are G36 and G18, respec-
tively. Laboratory studies on the smallest acetate, methyl acetate, first by Sheridan
et al. [130], then by Tudorie et al. [20] and Nguyen et al. [131], and the understanding of
molecular energy levels have eventually provided reliable line lists and line intensities
for the successful search and unambiguous detection of this molecule in the Orion
cloud, as shown in Figure 2.5 [126].

Figure 2.5: Selected lines (in red) of methyl acetate, CH3COOCH3, at 2 mm toward Orion-IRc2. Lines
from five different torsional states are identified. The continuous green line corresponds to all lines
already modeled from the study by Tercero et al. [126].
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There are also some other investigations on two inequivalent top Cs molecules
such as 2-acetyl-5-methyl-furan [132], ethyl methyl ketone [133], methyl propionate
[134], dimethylbenzaldehydes [135], dimethylanisoles [128, 136, 137], and 4-methyla-
cetophenone [138], but the number is still scarce. To our knowledge, so far only one
molecule with two inequivalent tops and C1 symmetry for the frame, isopropenyl ace-
tate, was reported in the literature [139]. The spectra show splittings arising from a low
barrier internal rotation of the acetyl methyl group (135.3498(38) cm−1) and a high bar-
rier internal rotation of the isopropenyl methyl group (711.7(73) cm−1).

For two equivalent methyl internal rotors, only a handful of molecules like acetone
[140], dimethyl ether [141], dimethyl diselenide [142], diethyl ketone [75], 2,5-dimethyl-
furan [143], 2,5-dimethylthiophene [129], and dimethyl sulfide [144] were reported in
the literature.

2.4.1.5 Beyond two internal rotors
Considerably fewer molecules with more than two methyl internal rotors such as
trimethyl silyl iodide (CH3)3SiI [145] and similar systems [146] and N,N-dimethylace-
tamide [147] have been studied. The number of methyl tops is three in all cases. In
N,N-dimethylacetamide, interactions between the methyl internal rotations and the
overall rotation were characterized by Coriolis-like coupling parameters, which
allowed the determination of the torsional barrier heights to be 677 cm−1 for the
C-methyl top, 237 cm−1 for the trans-N-methyl top, and 183 cm−1 for the cis-N-methyl
top [147].

Figure 2.6: Schematic splittings due to internal rotation in the rotational spectrum of molecules
with one rotor, two nonequivalent rotors, and two equivalent rotors.
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2.4.2 Inversion tunneling

An well-known inversion process is the case of ammonia, NH3, with a double mini-
mum potential tunneling pathway [92]. Nevertheless, this effect is not only found
there but also in larger and more complex molecules.

In an investigation on ethylene diamine, NH2−CH2−CH2−NH2, Marstokk and
Møllendal [148] reported two conformers, in both of which tunneling LAMs occurred
when the amino groups interchanged their donor and acceptor roles. Separately fitting
the (+) and (−) energy levels yielded quite different inversion splittings of 1.564(66)
MHz and 86.356(21) MHz for the two conformers. After theoretical improvements, a
global fit could be achieved by Merke and Coudert [149]. Hydrazine, NH2−NH2, is an-
other molecule possessing two amino groups, where three LAMs simultaneously
occur, namely an internal rotation about the N−N bond and the inversion motions asir-
ing from both amino groups. The rotational spectrum of hydranzine was first assigned
by Kasuja [150] and then improved by Tsunekawa et al. [151] as well as by Kreglewski
et al. [152] in the submillimeter wave range and in the infrared range [153], [154].
Inversion tunneling was also observed in almost all primary amines such as aniline
C6H5−NH2 [155].

Tunneling motion is also linked to many complexes like dimers as the weak van
der Waal bonds are usually quite “floppy”. In a theoretical study, Ohashi and Hougen
[156] suggested 25 tunneling motions which might occur in methanol dimers in addi-
tion to the internal rotations of the two methyl groups. The group theoretical results
had been confirmed by the experiments where Lovas et al. [157] revealed in the micro-
wave spectrum 15 different tunneling states of the a-type R-branch Ka = 0 rotational
transitions. While a considerable number of studies on molecules with internal rota-
tions are available, investigations on inversion tunneling are scarce. Furthermore, this
effect is often combined with internal rotation(s). An example is the inversion of the
two protons in the amino group found in primary amines, which is accompanied by
the internal rotation of the entire amino group. Only in a few molecules like planar
secondary amines such as dimethyl amine, CH3−NH−CH3 [158], ethyl methyl amine,
CH3−CH2−NH−CH3 [159], and diethyl amine, CH3−CH2−NH−CH2−CH3 [160], the inver-
sion tunneling of the proton is not coupled with internal rotations (though small split-
tings from methyl torsions can be resolved). In phenyl formate, the tunneling of the
phenyl ring also represents the only LAM of this molecule [161].

2.4.3 Interaction of internal rotation(s) with tunneling motion(s): from rotation
wagging to hydrogen transfer

One of the classical example is the coupling between the methyl internal rotation
and the inversion motion of the amino group in methyl amine, where the back-and-
forth motion of the amino group triggers a 60° corrective rotation of the methyl
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group, thereby resulting in six energetically equivalent molecular frameworks. The
coupling of inversion, vibration, and torsion states of methyl amine has been studied
by Gulaczyk and Kreglewski [162] and Gulaczyk et al. [163] in the infrared spectral
range and more recently the excited torsional states in the far-infrared range [164].

Another interesting example where a methyl internal rotation interacts with an-
other LAM, the proton tunneling, is 2-methylmalonaldehyde. Similar to the case of
malonaldehyde, the hydrogen transfer in 2-methylmalonaldehyde is accompanied by
tautomeric rearrangements of single and double bonds [165], but the additional con-
sequence is a rotation of the methyl group by 60°. Chou and Hougen [166] developed
a tunneling-rotation Hamiltonian based on the G12

m molecular symmetry group to
perform global fits of several isotopologues with root-mean-square deviations close
to measurement accuracy [167].

The microwave spectrum of pinacolone also caused surprises with splittings aris-
ing from the acetyl methyl group in A-E doublets coupled with the oscillation LAM of
the tert-butyl group with splittings into the vt = 0 and 1 states [168]. The same prob-
lems occur in the spectrum of acetanilide [169], where the internal rotation of the ace-
tyl methyl group interacts with the tunneling motion of the phenyl ring, which is tilted
out of the acetyl plane and a double minimum potential is present. Probably, there are
more cases where such coupled LAMs are observed, but the number of publications
on those systems is still very limited. According to Scheme 2.1 in the Introduction sec-
tion, such “problematic”molecules require extensive measurements and spectral anal-
ysis, as well as very often new program code to fit their spectra. All of these usually
inhibit the way to publication. On the other hand, they are ideal systems for the devel-
opment of new group theory, as well as for testing the Hamiltonian and theoretical
models.

2.5 Spectral modeling

2.5.1 Global fits of rotational spectra with LAMs: the way to achieve standard
deviations within experimental accuracy

Treating the microwave spectrum of a rigid rotor is a classical approach where a rigid
rotor Hamiltonian Hr supplemented by centrifugal distortion terms HCD is sufficient
for a fit of high quality. Many programs are available to treat rigid rotor spectra, con-
sidering even higher J and K transitions, as well as several vibrational excited states.
The programs most frequently used in the high resolution spectroscopic community
for this type of molecules are probably SPFIT/SPCAT [9], XIAM in its rigid rotor mode
[16], JB95 [24], AUTOFIT [170], etc. A number of softwares for rigid or nonrigid mole-
cules are available with examples of input/output files at the PROSPE website [15].

The microwave spectrum of a molecule undergoing methyl internal rotation
features splittings of each rotational transition into torsional components and can
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no longer be treated using a rigid rotor model. In comparison to the large number
of rigid rotor programs, only a few programs have been developed to deal with the
effects of internal rotations.

2.5.1.1 The SPFIT/SPCAT (IAMCALC) package
A fitting and prediction program very convenient and familiar to many spectroscop-
ists is the SPFIT/SPCAT package of Pickett with addition of the front-end program
IAMCALC [10], as described for the case of propane, a two-top molecule with high tor-
sional barriers [171]. The Mathieu function was used to generate a set of parameters
connecting torsional sublevels (vt = 0, 1, 2, A, E). The theoretical model takes into ac-
count interactions between the lowest torsional states. This package is also often used
in the astrophysical communities, as well as for the JPL [10] and CDMS databases [11].

2.5.1.2 The XIAM code
Another program popularly used to model rotational spectra with spittings arising
from up to three symmetric internal rotors, typically methyl groups, is XIAM, written
by Hartwig and Dreizler [16]. Geometry parameters like the rotational and centrifugal
distortion constants as well as internal rotation parameters such as the V3 and higher
potential terms, the angles between the internal rotor axes with the principal axes,
the moment of inertia of the internal rotors, some top-top potential, and kinetic cou-
pling terms can be fitted. In addition, XIAM uses a first-order approximation to treat
the hyperfine structures arising from nuclear quadrupole interactions of one nucleus.
The fit quality is often quite satisfactory in the cases of nuclei with small quadrupole
moments such as 14N.

The rigid frame-rigid top Hamiltonian for an asymmetric molecule with a methyl
top in the principal axis system can be written as follows:

H =AP2
a +BP2

b +CP2
c + F pα − ρaPa − ρbPb − ρcPc

� �2 +V αð Þ (2:2)

where Pg (g = a, b, c) are the components of the total rotational angular momentum
and pα is the internal rotation angular momentum associating with the torsion angle
α. The relations between the rotational constants A, B, C of the molecule, the rota-
tional constant F of the internal rotor, and the ρg components of the ρ vector to the
principal moments of inertia Ig of the molecule and to the moment of inertia of the
top Iα can be expressed as follows:

A= ħ2

2Ia
,B= ħ2

2Ib
, C= ħ2

2Ic
, F = ħ2

2rIα
, ρg =

λgIα
Ig

, r = 1−
X
g

λ2g
Iα
Ig

(2:3)

where λg = cos< i, gð Þ are the direction cosines of the internal rotation axis i of the top.
The program XIAM uses a combined axis method where the internal rotation

problem is first set up in the principal axis system. For each individual internal
rotor, the Hamiltonian matrix is transformed into a rho axis system to eliminate the
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Coriolis coupling terms which occur in Equation (2.2). In the rho axis system, the
eigenvalues are calculated in the product basis of planar rotor functions for the tor-
sion and symmetric top functions for the overall rotation. Subsequently, the eigen-
value matrix is transformed back to the principal axis system.

The XIAM code is very user-friendly and offers a reasonable compromise of ac-
curacy and speed of the calculations because of suitable basis transformations and
matrix factorization. Therefore, it rapidly became one of the programs most fre-
quently used to fit rotational spectra of many molecules where internal rotations
take place. However, a known weakness of XIAM is the treatment of methyl torsions
with low barrier heights, for example, in 3-pentyn-1-ol [172], vinyl acetate [173], and
N-ethylacetamide [174], where in the fits standard deviations within measurement
accuracy cannot be achieved.

2.5.1.3 The BELGI code
The program BELGI, initially written by Kleiner et al. [18], is also popularly used to deal
with internal rotation problems. The Hamiltonian is written in the Rho Axis Method
(RAM) as follows:

HRAM =Hr +HCD +HT +Hint (2:4)

where Hr is the rotational Hamiltonian, HCD is the centrifugal distortion Hamiltonian,
HT is the torsional Hamiltonian, and Hint consists of higher order torsional-rotational
interaction terms:

HR =ARAMP2
a +BRAMP2

b +CRAMP2
c +Dab PaPb +PbPað Þ,

HT = F pα − ρPað Þ2 +V αð Þ.
(2:5)

Dab is an out-of-plane parameter arising from the use of a nonprincipal system. The
relation between the rotational constants A, B, C in the principal axis system is
given in Equation (2.2), and the constants in the rho axis system in Equation (2.5)
are obtained by diagonalizing the 3 × 3 matrix of the RAM rotational constants [175].

There are two versions of BELGI for molecules with a Cs frame symmetry, BELGI-
Cs for one internal rotor [18] and BELGI-Cs-2Tops for two internal rotors of C3v symme-
try [20], as well as BELGI-C1 for one rotor and a C1 frame symmetry [19]. BELGI-Cs was
tested extensively on acetaldehyde [176, 177]. Later, spectra of other molecules like
acetic acid [178, 179] and 13C-methyl formate (H13COO−CH3) [180] were treated with
this program as well. The BELGI-CS-2Tops code was applied to methyl acetate [20,
131], ethyl methyl ketone [133], methyl propionate [134], and dimethylbenzaldehyde
[135]. Unlike XIAM, BELGI-Cs and BELGI-C1 use only the RAM method.

The program BELGI in its recently developed hyperfine versions BELGI-Cs-hyper-
fine and BELGI-C1-hyperfine [181], as well as BELGI-Cs-2Tops-hyperfine [182], includes
weak nuclear quadrupole coupling using a first-order perturbation approximation
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and has proved its predictive power for a number of molecules such as N-tert-butyla-
cetamide (Cs, one-top) [181], N-ethylacetamide (C1, one-top) [174, 181], 3‐nitrotoluene
(Cs, one-top) [183], and 4,5-dimethylthiazole [182].

2.5.1.4 The RAM36 code
Similar approaches are utilized by the program RAM36, written by Ilyushin et al. [22],
currently existing in a version for fitting a V6 potential with its application on e.g., tol-
uene [22], as well as 3,5- and 2,6-difluorotoluene [184]. The combination of 14N quadru-
pole coupling and methyl internal rotation can be handled with the program RAM36
but so far only for molecules with Cs symmetry, for example, in the case of nitrometh-
ane with a V6 potential [185] or N-methylformamide with a V3 potential [186]. RAM36
is very fast and uses a procedure which allows the user to choose various higher order
terms and to achieve fits for very high J values.

2.5.1.5 The ERHAM code
A further program often applied to treat rotational spectra of molecules with up to two
internal rotors and Jmax = 120 is ERHAM, written by Groner [21]. The C3v symmetry of
internal rotors restricted in XIAM and BELGI is not applied for ERHAM. In molecules
with one rotor or two nonequivalent rotors, the frame symmetry can be Cs or C1, as
well as C2, C2v, or Cs for two equivalent rotor cases. The physical meaning of the fitted
parameters is not as clear as in XIAM, BELGI, or RAM36, because ERHAM sets up and
solves an effective rotational Hamiltonian. For example, the rotational barrier is not a
fit parameter and needs to be extracted. On the other hand, ERHAM is very fast and
therefore advantageous in fitting large data sets. The fit quality is usually quite satis-
factory with standard deviation close to experimental accuracy. Dimethyl ether was
the first molecule fitted by ERHAM, first by its author [187] and then by Endres et al.
[188] Another two-top molecule with equivalent rotors, acetone, was also extensively
studied with ERHAM [140]. A large number of one-top molecules have been treated,
such as methyl carbamate [189], pyruvic acid [190], methyl formate [191], pyruvonitrile
[192], methyl isobutyl ketone [193], as well as molecules with two inequivalent rotors
like isopropenyl acetate [139].

2.5.1.6 The PAM-C2v-2tops code
A further program written explicitly for molecules with two equivalent methyl rotors
and a C2v symmetry at equilibrium is PAM-C2v-2tops, written by Ilyushin and Hougen
[23]. PAM-C2v-2tops was applied first to acetone [23, 194], then to 2,5-dimethylfuran
[143]. It uses a two-dimensional potential function and can fit rotational transitions of
different torsional states simultaneously. Under group theoretical considerations, the
program is based on the G36 permutation-inversion group. PAM-C2v-2tops utilizes the
principal axis method and applies a two-step diagonalization procedure. The two-top
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torsion-rotational Hamiltonian matrix under the full G36 permutation-inversion group
is split into four submatrices under the G9 permutation-inversion group, corresponding
to the (00), (01), (11), and (12) symmetry species, for blockwise diagonalization. These
(00), (01), (11), and (12) blocks represent the (A1 # A2 # A3 # A4), G, (E3 # E4), and
(E1 # E2) symmetry species in G36, respectively.

2.5.2 Separate fits of LAM species: quick check of the assignments

With the use of supersonic expansion, torsional symmetry species in the vibrational
ground state (vt = 0) can be observed. The excited states are no longer populated be-
cause of the very low rotational temperature of the jet. Consequently, it is often not
possible to determine the contributions of higher order terms (V6, V9 …) in the poten-
tial function of Equation (2.1). Simultaneously fitting the potential terms and mo-
ments of inertia of the internal rotors often fails. It is also difficult to determine the
potential or kinetic coupling terms in the cases of coupled internal rotors. Checking
the assignments and finding new lines become very difficult and time-consuming
tasks using a global fit. For these purposes, fitting the different symmetry species sep-
arately and treating them as individual species without any coupling with each other
turn out to be helpful. This is a method which is known to work usually well for the
A species where a semirigid rotor Hamiltonian supplemented by centrifugal distor-
tion corrections, H =Hr +HCD, is sufficient to obtain a fit with standard deviation
close to the measurement accuracy, even for molecules where the barriers to methyl
internal rotation are lower than 10 cm−1, such as 3-pentyn-1-ol (fit A in Table 2.2 of
the study by Eibl et al. [172]).

By adding effective terms in the Hamiltonian, taking into account the E species
lines and using a model including a number of interactions within the torsional
bath, a standard deviation close to measurement accuracy of 2 kHz can be achieved.
In the above mentioned example on 3-pentyn-1-ol, the global fit was performed
with the program BELGI-C1 with a standard deviation of 1.5 kHz [172]. However,
such global fits only work with relatively well-assigned data sets. The initial assign-
ment of torsional excited species (E species for one-top molecules, (01), (10), (11),
and (12) for two-top molecules, and so on) is often performed with the program
XIAM. This procedure is very time consuming and uncertain because of the large
standard deviation of the XIAM fit, especially for low barrier cases. Furthermore,
with more than two rotors, no effective Hamiltonian programs are available to
check the assignment. Checking the assignments with combination difference loops
is not always possible.
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2.5.2.1 Test case 1: a very low barrier (10 cm−1) with C1 symmetry
The question to be addressed is how to get a good prediction for all torsional species to
ease the assignment purpose. As mentioned, this works well for the torsional ground
state (A or (00) species and so on) which can be fitted separately with H =Hr +HCD.
However, such separate fit can be done for any other symmetry species if angular mo-
mentum operators of odd power, e.g., Pa , Pb, P

2Pa, are included in the Hamiltonian. A
computer code, called “Separately Fitting Large Amplitude Motion Species (SFLAMS)”,
was written for this purpose [138]. The main part of the Hamiltonian implemented in
SFLAMS has the following form:

H =AP2
a +BP2

b +CP2
c +QapαPa +QbpαPb +QcpαPc (2:6)

where all terms are of even order. If the Qapα, Qbpα, and Qcpα terms are substituted
by the expectation value hEjpαjEi of pα and become Q′a,Q′b,Q′c, the power of some
terms in the Hamiltonian becomes odd. The expectation value is obviously zero for
the A species. A similar approach was applied in the program JB95 [24] and a pro-
gram written by Ohashi et al. [195] to fit separately the five torsional species of
N-methylacetamide. Under the time-reversal operation, the odd power terms of the
angular momentum components Pa, Pb, and Pc change sign. The Q′a,Q′b,Q′c coeffi-
cients enclose numerical expectation values of an odd power of the torsional angular
momentum operators of the methyl group (pα), making the torsion-rotational
Hamiltonian effective. Nevertheless, pα would also change sign under time reversal
as the odd power Pa, Pb, and Pc operators would do if they were included explicitly
in the Hamiltonian. The cancelation of sign changes makes the Hamiltonian invariant
as it should be.

Coming back to the example on 3-pentyn-1-ol mentioned above: while the pro-
gram SFLAMS was applied, the standard deviation of 2.3 kHz was obtained for 51 A
species lines by fitting only the three rotational and five quartic distortion constants.
A similar standard deviation of 3.2 kHz could be obtained for 36 E species lines by
adding the q, r, and s parameters, which are Q′a,Q′b,Q′c, respectively, in Equation (2.6)
and some higher odd order parameters such as qJ, qJK, rK etc. (see Table 2.1).

2.5.2.2 Test case 2: a four-top molecule
The use of SFLAMS is best demonstrated in the case of 2,3,4,5-tetramethylthio-
phene, a molecule featuring four methyl rotors, two of which are in close proximity
to the sulfur atom and are equivalent. The other two are also equivalent (see
Figure 2.7). Group theoretical treatment has shown that there are 25 torsional spe-
cies for this molecule, among them 13 species could be assigned [196]. A typical
spectrum is illustrated in the left hand-side of Figure 2.8. No global fit could be
made due to the lack of suitable program. Separate two-top and three-top fits were
carried out with the program XIAM, but the results of all those fits are not satisfac-
tory as they do not reach the experimental accuracy [196].
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Figure 2.7: The four-top molecule 2,3,4,5-tetramethylthiophene. The two upper tops φ1 and φ2 as
well as the two bottom tops φ3 and φ4 are equivalent [196]. The preliminary torsional barriers are
given.

Table 2.1: Molecular parameters of the A and the E species of 3-pentyn-1-ol obtained with the
program SFLAMS.

-Pentyn--ol A -Pentyn--ol E

Par.a Unit Valuesb Par.a Unit Valuesb Operatorc

A GHz .() A GHz .() Pa


B GHz .() B GHz .() Pb


C GHz .() C GHz .() Pc


DJ kHz .() DJK kHz .() P

DJK kHz −.() DK MHz −.() PPa


DK kHz .() d MHz −.() Pa


d kHz .() q GHz .() Pa
d kHz .() qJ kHz −.() PPa
Nd

 qJK kHz −.() PPa


rmse kHz . qK MHz −.() Pa


r GHz .() P+ + P−
rJ kHz −.() P (P+ + P−)
rK MHz .() {Pa

, (P+ + P−)}
rKK MHz −.() {Pa

, (P+ + P−)}
s GHz .() P− − P+
Nd



rmse kHz .

aWatson’s S reduction and Ir representation were used.
bStandard errors in parentheses are in the units of the last digit.
cThe product of the parameter and operator from a given row yields the term actually used in the
Hamiltonian.
dNumber of line.
eRoot-mean-square deviation of the fit.
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Using SFLAMS, the torsional species are fitted well separately with standard de-
viations close to measurement accuracy. From the q and r parameters, the symme-
try species could be unambiguously assigned. For example, the q and r values of
the (0101) species should be the sum of the q and r values of the (0001) and (0100)
species, respectively (see Table 2.2). A small deviation occurs because this sum rule
does not take into account the higher order terms connecting to q and r.

Figure 2.8: Left hand side: Splittings due to internal rotation in the rotational spectrum of 2,3,4,5-
tetramethylthiophene with two pairs of equivalent rotors. Right hand side: The 25 allowed b-type
transitions using a scheme similar to that given in Figure 2.6 [196].

Table 2.2: The rotational constants, q, r parameters, and the root-mean-square deviations of some
assigned species of 2,3,4,5-tetramethylthiophene obtained with the program SFLAMS [138].

Per. Unit () () () () ()

A GHz . . . . .
B GHz . . . . .
C GHz . . . . .
q MHz . . . . .
r MHz . . . . .
rms kHz . . . . .

Per. Unit () () () ()

A GHz . . . .
B GHz . . . .
C GHz . . . .
q MHz . . . .
r MHz . . . .
rms kHz . . . .
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SFLAMS and all effective programs fitting separately the torsional states yield
very precise predictions for spectral assignment purposes. Extracting the barrier
heights from the q, r, and (if allowed by symmetry) s parameters or vice versa is
possible. However, it is currently performed manually and only for certain one-rotor
cases. The use of global approaches taking all states into account simultaneously
and allowing a direct determination of the potential barrier is thus complementary to
this so-called “local” approach.

2.6 Variety of large amplitude motions in molecules and their
applications

This section gives an overview of different molecular classes, each of which features
an individual character on LAMs. The information deduced from the interpretation
of the microwave spectra is discussed, mainly the barrier heights but also their ap-
plications on structure determinations.

2.6.1 Challenges in internal rotation problems: some examples

2.6.1.1 Torsional barriers in acetates: low (100–150 cm−1) and predictable
The barriers to internal rotation of the acetyl methyl group in acetates (acetic acid es-
ters), CH3-COO-R, have been thoroughly studied. Almost all acetates investigated so
far can be divided into three classes, as illustrated in Figure 2.9. Class I encloses α,β-
saturated acetates, where the barrier to internal rotation is usually around 100 cm–1.
Examples are n-alkyl acetate from methyl acetate [131] up to n-hexyl acetate [175,
197–200]. Even in the cases of isopropyl acetate [201] and isoamyl acetate [202] where
the alkyl chain is branched, or when a double bond is present at the end of the alkyl
chain as in allyl acetate [42], the barrier height seems to be almost unaffected.

Class II comprises α,β-unsaturated acetates where the C=C double bond is located
in the COO plane. The torsional barrier increases from 100 to 150 cm–1 due to extended
conjugation over the C=C bond. Vinyl acetate [173] and the E and the Z isomer of buta-
dienyl acetate [203] are two representatives in this class. The two molecules have
proven that when the number of conjugated double bonds is augmented, there is no
further increase in the barrier height of the acetyl methyl torsion. The configuration of
the conjugated double bond system does not influence the barrier significantly, either,
since the value of this parameter remains almost the same in the E and Z isomers of
butadienyl acetate [203].

Finally, class III contains α,β-unsaturated acetates where the double bond is
not located in the COO plane. Since the molecule is not planar, the conjugation is
less effective than that in the molecules in class II, and the torsional barrier is
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around 135 cm–1. Two typical examples of class III are isopropenyl acetate [139]
and phenyl acetate [204].

2.6.1.2 Torsional barriers in acetamides: yet unpredictable
The barrier to internal rotation of a methyl group varies strongly but generally could
be divided in three classes. Molecules with torsional barriers higher than 600 cm–1

belong to the first class with ethane as the classical example (∼1000 cm–1) [205].
The second class comprises molecules with intermediate barrier heights from about
200 to 600 cm–1. A vast number of one- or two-top molecules like o-methylanisole [83],
2,5-dimethylfuran [143], and methyl methacrylate [206] fall in this class. Splittings aris-
ing from the internal rotation(s) are typically up to some hundreds of MHz. In most
cases, taking into account the V3 term and the internal rotor position(s) is sufficient to

Figure 2.9: Torsional barriers of the acetyl methyl group in acetates (in cm–1). Class I: (1) Methyl
acetate [131], (2) ethyl acetate [175], (3) n-propyl acetate [197], (4) n-butyl acetate [198], (5) n-pentyl
acetate [199], (6) n-hexyl acetate [200], (7) isopropyl acetate [201], (8) isoamyl acetate [202], and
(9) allyl acetate [42]. Class II: (10) Vinyl acetate [173], (11) E-butadienyl acetate [203], and (12)
Z-butadienyl acetate [203]. Class III: (13) Isopropenyl acetate [139] and (14) preliminary results of
phenyl acetate [204].
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model the rotational spectrum with high accuracy. Finally, the last class contains mol-
ecules where the methyl group(s) undergo(es) internal rotation(s) with barrier heights
lower than 200 cm–1, with a subclass of very low barriers (say < 30 cm–1). The torsional
splittings can be in the order of several GHz, making the assignment of the rotational
spectra challenging. In many cases, high order terms are required in the Hamiltonian
to model the spectra to experimental accuracy. In the previous section on acetates, a
classification can be reliably predicted (see Figure 2.9). This is not yet the case of acet-
amides, where a summary is given in Figure 2.10.

We now focus on the the acetyl methyl group in Figure 2.10. This group in acetamide
has a remarkably low barrier of 25 cm–1 [207]. Probably, the electronic configuration
from the amide bond with two hydrogen atoms attached to the nitrogen atom influen-
ces the V3 potential of the methyl group on the other side of the carbonyl group. If one
of these hydrogen atoms are substituted, secondary acetamides are obtained, where
the barrier is higher than the value found for acetamide, but still low, and varies be-
tween 65 and 75 cm–1, depending on the type of the substituent. While the acetyl
methyl group in N-tert-butylacetamide has a barrier to internal rotation of approxi-
mately 65.6 cm–1 [181], the respective values of N-methylacetamide [195] and N-ethyla-
cetamide [174] are both about 73.5 cm–1. Currently, there is no conclusive explanation
for this difference.

It is quite impressive that the substitution of one hydrogen atom leads to a dif-
ference of approximately 50 cm–1 in barrier height between acetamide and the sec-
ondary acetamides. If both hydrogen atoms in acetamide are substituted, the effect
is even greater as the barrier height increases by an order of magnitude. For all tert-
acetamides, the barriers are high, in the order of 500–800 cm–1 [91, 147, 208].
Because the substituents are well-separated from the acetyl methyl group by the

Figure 2.10: Torsional barriers of the acetyl methyl group in acetamides (in cm–1). (1) Acetamide
[207], (2) N-methylacetamide [195], (3) N-ethylacetamide [174], (4) N-tert-butylacetamide [181], (5)
N,N-dimethylacetamide [147], (6) two conformers of N,N-diethylacetamide [91], and (7) N-
methyldiacetamide [208].
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amide moiety (C=O)N, the reason is probably electronic rather than steric effects.
Obviously, the electronic situation is quite special in amides, where information on
the electron density can be transferred more easily through the amide bond to the
acetyl methyl rotor.

2.6.1.3 Essentially free internal rotation of the propynyl methyl group: very low
(<10 cm−1), very challenging

Many torsional barriers were accurately determined by using microwave spectros-
copy, but only a few studies concern molecules where the barriers are lower than
30 cm–1. Acetamide, mentioned previously in Section 2.6.1.2, represents a typical ex-
ample where the barrier height of the threefold potential is 25 cm–1 [207]. Surprisingly,
the number of very low barrier investigations does not increase much in the modern
ages of microwave spectroscopy. Probably, the reason is the challenge in assigning
and fitting rotational spectra of molecules with very low torsional barriers, which are
in addition hard to calculate by quantum chemistry. As a consequence of the small
number of available studies, the barrier heights cannot be predicted by chemical intu-
ition, either. In some cases such as trans-methyl nitrite [209] or m-fluorotoluene [210],
the comparable values of the threefold and sixfold potential terms complicated the
spectral analysis.

The barrier to internal rotation of the two methyl groups in ethane is high, at
around 1000 cm–1 [205]. But if a C≡C triple bond is inserted as a spacer to separate the
methyl groups, as in 2-butyne (dimethylacetylene), CH3−C≡C−CH3, it is assumed that
the molecule exhibits two essentially free methyl internal rotations [211]. Though dime-
thylacetylene cannot be investigated by microwave spectroscopy due to the lack of a
permanent dipole moment, the basic concepts of this chemical bonding suggest that a
methyl group connected to an acetylene fragment CH3−C≡C−R (called the propynyl
methyl group) features an extremely low torsional barrier (V3 < 10 cm–1). This assump-
tion was confirmed by dimethylacetylene-d3 (molecule (1) in Figure 2.11) [212] and
methylsilylacetylene (2) [213], two molecules related to dimethylacetylene possessing a
barrier to methyl internal rotation of 5.62(16) and 3.77(70) cm–1, respectively. Very low
V3 potentials of 1.00900(42) and 2.20(12) cm–1 were observed for 2-butynoic acid (9)
(when R = COOH) [214] and tetrolyl fluoride (8) (R = COF) [215], respectively.

The torsional barrier of the propynyl methyl group increases to 6.93(9) cm–1 in
2-butynol (4) (R = CH2OH) [217]. Currently, the largest value for this group was ob-
served in 1-chloro-2-butyne (3) (R = CH2Cl), for which Solwijk and van Eijck [216]
reported a V3 potential of 10.05(9) cm–1. Three further alkynols, 3-pentyn-1-ol (5)
[172], 3-pentyn-2-ol (6) [218], and 4-hexyn-3-ol (7) [219], were studied to find out the
effects of the alkyl length on the torsional barrier of the propynyl methyl group.
From the results summarized in Figure 2.11, we found a trend that the barrier height
decreases slightly by longer alkyl chain. The barrier height of 2-butynol (4) [217]
does not fit in this trend, but the authors have reported a lot of fitting difficulties.
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Therefore, the barrier of 6.93(9) cm–1 might not be as exact as the barriers observed
for 3-pentyn-1-ol (5), 3-pentyn-2-ol (6), and 4-hexyn-3-ol (7).

The microwave spectrum of 2-butynoic acid has given the lowest barrier height
ever analyzed with a RAM Hamiltonian (1.00900(42) cm–1) [214]. The questions are as
follows: Is it still possible to lower this barrier? Can we deduce how structural changes
affect the methyl torsional barrier? From the study on the alkynols mentioned above,
where a decreasing trend by longer alkyl chain was observed, two molecules were in-
vestigated where the COOH group in 2-butynoic acid was lengthened to a methoxylate
(COO−CH3) (10) and an ethoxylate group (COO−CH2−CH3) (11). The barrier of 0.4690
(36) cm–1 found in methyl-2-butyonate (10) [218] provides a new record in low V3 po-
tential, proving that the methyl group is a good sensor of the molecular structure. For
the two conformers of ethyl-2-butyonate (11), the internal rotation of the propynyl
methyl group is quasi free. A V3 potential could not be fitted and therefore was fixed
to zero in fits with root-mean-square deviation within the measurement accuracy [218].

2.6.2 Sensing the molecular conformations of natural substances by internal
rotors

2.6.2.1 Acetyl methyl torsion in honey bee pheromones: is the barrier height 180
or 240 cm–1?

Previous sections have shown that the barriers to methyl internal rotation can be
linked to functional groups and other structural characteristics of the molecules,
making the methyl group a spectroscopic “detector” of the structure. This is quite
important if we want to understand eventually the structure and intrinsic properties

Figure 2.11: Torsional barriers of the propynyl methyl group (in cm–1). (1) Dimethylacetylene-d3
[212], (2) methylsilylacetylene [213], (3) 1-chloro-2-butyne [216], (4) 2-butynol [217], (5) 3-pentyn-1-
ol [172], (6) 3-pentyn-2-ol [218], (7) 4-hexyn-3-ol [219], (8) tetrolyl fluoride [215], (9) 2-butynoic acid
[214], (10) methyl-2-butyonate [218], and (11) ethyl-2-butyonate [218].
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of larger and more complicated molecules, such as those present in natural sub-
stances produced by the plants or biomolecules.

A series of saturated methyl alkyl ketones, naturally present in the honey bee
pheromone cocktail, were investigated, starting from ethyl methyl ketone (butan-2-
one) to octan-2-one. Except for ethyl methyl ketone, at least two conformers are
present in the microwave spectra. One of the two features a Cs structure, where all
heavy atoms are located on a symmetry plane, and the other one exhibits C1 sym-
metry, where the γ-carbon atom of the alkyl chain is bent in a nearly synclinal posi-
tion. While different conformations possess almost the same barrier height in the
cases of n-alkyl acetates (see Section 2.6.1.1), this is not the situation found for
methyl alkyl ketones where a scheme with two different classes can be drawn, as
summarized in Figure 2.12.

The first class comprises of ketones with a Cs structure where the barrier height is
always around 180 cm–1. Examples are ethyl methyl ketone [133], the Cs conformer
of pentan-2-one [220], hexan-2-one [221], heptan-2-one [222], and octan-2-one [223].
Even, if the alkyl chain is branched, as in the case of methyl neopentyl ketone, the
barrier height seems to be almost unaffected [224].

Figure 2.12: Torsional barriers of the acetyl methyl group in methyl alkyl ketones (in cm–1). (1) Ethyl
methyl ketone [133], (2) pentan-2-one [220], (3) hexan-2-one [221], (4) heptan-2-one [222], (5)
octan-2-one [223], (6) methyl neopentyl ketone [224], (7) methyl isobutyl ketone [193], and allyl
acetone [225].
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The second class contains molecules with C1 symmetry and a higher torsional bar-
rier of approximately 240 cm−1. The C1 conformer of pentan-2-one [220], heptan-2-one
[222], octan-2-one [223], two C1 conformers of hexan-2-one [221], allyl acetone [225], and
methyl isobutyl ketone [193] belong to this class. Within each class, the same trend as
found for the propynyl group containing molecules (Section 2.6.1.3) also applies, i.e., a
slight decrease of the barrier height by longer alkyl chain [223]. This trend is more pro-
nounced in the Cs than in the C1 series (see Figure 2.12).

2.6.2.2 Conformational determination by internal rotor in lavender oil
Linalool, illustrated in Figure 2.13, is an acyclic monoterpene. With its agreeable, flo-
ral, and refreshing scent, linalool is an important component in several essential oils
of plants e.g., lavender (40%), coriander (70%), and ho-leaf (80%). The large size
and open chain of linalool offer a rich conformational landscape with hundreds of
possible conformers [226]. Among them, finally only one is observed in the jet-cooled
microwave spectrum, which is shown in the lower trace of Figure 2.14. Compared to
the spectrum in the same spectral range of the natural product “essence de laven-
din”, purchased in the Provence, France (see the upper trace of Figure 2.14), almost
all lines of the linalool spectrum are present with very similar intensity in the spec-
trum of lavender oil. This shows that high resolution spectroscopy can be applied to
study the chemical compounds used in olfaction as an analytic tool and to determine
the compounds that play an important role for the scent of a perfume.

Figure 2.13: The globular geometry of the lowest energy conformer of linalool in two different views
(A and B) corresponding to the respective Newman projections given in the upper trace. The three
methyl groups are labeled with numbers; two of them show resolvable torsional splittings in the
experimental spectrum.
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A standard opinion is that a comparison of the experimental rotational constants
and those calculated by quantum chemistry is sufficient to validate the molecular
structure. Nevertheless, in the case of linalool, due to the large number of conformers
with low energy, the calculated rotational constants of three conformers close in en-
ergy are very similar. All of them are in good agreement with the experimentally de-
duced constants. In order to identify the observed conformer, the angles between the
methyl internal rotor axis and the principal axes provided decisive information, since
those of only one conformer (that given in Figure 2.13) agree with the experimental
ones. Therefore, the internal rotation analysis is crucial for structure determinations
in large molecules.

2.6.3 Coupled internal rotations

Coupled internal rotations are reported much more rarely. The present section will
give an example on a systematic investigation of six isomers of dimethylanisole
given in Figure 2.15 [204].

2.6.3.1 From no trouble…
The only member in the family which does not cause fitting troubles is 3,4-dimethy-
lanisole (molecule (5) in Figure 2.15) [128]. It is also the only isomer which exists as

Figure 2.14: Upper trace: the spectrum of essence de lavendin (lavender oil). Lower trace: the
linalool spectrum. The intensities are given in a logarithmic scale and in arbitrary units.
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two conformers in the microwave spectrum, called syn and anti, with different ori-
entations of the methoxy group. The torsional barrier of the methyl group in the
methoxy moiety –OCH3 (called the methoxy methyl group) is high enough that its
internal rotation splittings are not observable with the resolution of the experimen-
tal setup. This is in agreement with the study on anisole, which can be treated as a
rigid rotor [227]. The coupled LAMs in 3,4-dimethylanisole is therefore a two-top
problem, where the methyl groups at the meta- and para-position relative to the
methoxy group are the two internal rotors. Because they are in close proximity, ste-
ric hindrance causes an intermediate barrier between 400 and 550 cm−1 for both
methyl tops which can be modeled well without any top-top coupling term in the
Hamiltonian.

Figure 2.15: Torsional barriers of the methyl groups in six isomers of dimethylanisole (in cm–1).
(1) 2,3-Dimethylanisole [136], (2) 2,4-dimethylanisole [137], (3) 2,5-dimethylanisole [204], (4)
2,6-dimethylanisole [204], (5) 3,4-dimethylanisole [128], and (6) 3,5-dimethylanisole [204]. For
each compound, “o”, “m”, or “p” corresponds to the barrier height of the methyl group in the
ortho-, meta-, or para-position relative to the –OCH3 methoxy group, respectively. “–OCH3”
corresponds to the barrier height of the methoxy methyl group, which is only determinable in
2,6-dimethylanisole (4).
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2.6.3.2 …to some troubles
Two other isomers, 2,4- (2) [137] and 2,5-dimethylanisole (3) [204], feature an interme-
diate and a low barrier height. Also in these cases, splittings from the internal rotation
of the methoxy methyl group are not observable. The immediate V3 potential of about
450 cm−1 found for the o-methyl group is similar in both molecules and probably also
arises from steric hindrance from the neighboring methoxy group. The methyl rotor at
the para or meta position of 2,4- or 2,5-dimethylanisole, respectively, possesses a
much lower barrier height of less than 70 cm−1 (see Figure 2.15) and is thus a challenge
for the fitting process. The top-top coupling term multiplying (1 − cosα1)(1 − cosα2) and
higher order effective parameters are required in the Hamiltonian to achieve standard
deviation close to measurement accuracy [137, 204]. The spectral assignments are
quite extensive because every frequency has to be verified by combination difference
loops to assure a correct assignment.

2.6.3.3 …and a lot of troubles
Since the 3,4-isomer is a “no-trouble-case” due to steric hindrance of the two neigh-
boring methyl groups, which increases the barrier heights to intermediate values,
one tends to assume that 2,3-dimethylanisole (1), also featuring two neighboring
methyl groups, would not cause any fitting troubles, either. This assumption finally
turns out to be wrong. In 2,3-dimethylanisole (1), while the V3 potential of 519 cm−1

of the m-methyl group is intermediate and can be treated well, the surprisingly low
barrier to internal rotation of about 27 cm−1 of the methyl group at the ortho-posi-
tion cannot be captured correctly with the XIAM program [136]. Assuming that a
methoxy group and a methyl group are similar, then the o-methyl group, featuring
a C3v symmetry, would experience potentials on a frame with C2v symmetry, similar
to the cases of toluene [22] or nitromethane [185], where the V3 contribution of the
potential vanishes and only a small V6 term exists. In the case of 2,3-dimethylani-
sole, the frame symmetry is out of balance from C2v, resulting in a small V3 term of
about 27 cm−1. This very low V3 potential term is challenging for the spectral analy-
sis. The situation gets even worse in the case of 3,5-dimethylanisole (6), where both
ring methyl groups undergo internal rotation with low torsional barriers [204].

2.6.3.4 But also some nice surprise: lowering the torsional barrier by sterical
hindrance

Sterical hindrance is known to increase the barrier to methyl internal rotation because
the methyl torsion is not only hindered quantum mechanically but also mechanically
if a bulky group is present in close proximity of the methyl group. However, there are
exceptions.

In all five isomers of dimethylanisole mentioned previously, slittings due to the
internal rotation of the methoxy methyl group have never been observed. This is in
agreement with the experimental results of anisole, as well as the high torsional
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barriers of over 1000 cm−1 predicted by quantum chemistry. All these isomers have
a common structural feature: the methoxy group is always located on the phenyl
ring plane, which is at the same time the symmetry plane.

The situation changes in 2,6-dimethylanisole (4): because of steric hindrance
caused by the two methyl groups occupying both ortho-positions of the phenyl ring,
the methoxy group located between them is forced to tilt out of the phenyl plane by
90°. The molecular symmetry is still Cs, but the symmetry plane is now perpendicular
to the plane containing the phenyl ring, and the two ring methyl groups are equiva-
lent [204] (see Figure 2.15). This extraordinary orientation of the methoxy methyl
group in 2,6-dimethylanisole has decreased its torsional barrier height from over 1000
to 457 cm−1, and torsional splittings become resolvable. Therefore, this isomer surpris-
ingly presents a three-top problem with a total of 10 torsional species. The potential
barriers of the two equivalent methyl groups are approximately 200 cm−1 [204].

2.6.4 Inversion tunneling

As mentioned in Section 2.4 on Large amplitude motions, much less investigations
have been reported on inversion tunneling motions than on internal rotations. In
addition, inversion tunneling is often combined with internal rotation. Only in very
few molecules like planar secondary amines, the inversion tunneling of the proton
at the nitrogen atom is not accompanied by internal rotation. This section will focus
on a series of such molecules, starting from dimethyl amine [158], then ethyl methyl
amine [159], and diethyl amine [160].

The c-component of the dipole moment changes sign, while the b-component
retains its sign during the proton inversion (see Figure 2.16). Therefore, tunneling
splittings are observed in the spectrum for all c-type transitions, which are twice
the separation between the lowest symmetric and antisymmetric inversion energy
levels. The values of these splittings are given in Figure 2.17. A trend can be easily
recognized that the splittings decrease in larger molecules.

Phenyl formate also features a pure inversion tunneling motion, which is the
tunneling of the phenyl ring [161]. At the beginning, phenyl formate was expected as
a normal rigid-rotor molecule, but a rigid-rotor model has failed completely to repro-
duce its microwave spectra with a root-mean-square deviation of 3 MHz while the
measurement accuracy was 2 kHz. Quantum chemical calculations have hinted that
some state other than the ground state is populated in the molecular jet, as a conse-
quence of the ring tunneling quantum effect. This low-lying vt = 1 tunneling state is
calculated to lie at 48.24 GHz (1.6 cm−1) above the vt = 0 ground state, corresponding
to tunneling splittings in the order of about 100 GHz for all c-type transitions. For a
comparison, the largest splittings observed for the secondary amines illustrated in
Figure 2.18 are 2.6459 GHz, as found in dimethyl amine [158]. The splittings arising for
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b-type transitions due to Coriolis interaction are up to 100 MHz, three order of magni-
tude larger than those found in the the secondary amines, as depicted in Figure 2.18.

2.7 Conclusions

A large variety of molecular systems with applications in diverse research fields
from molecular biology, astrophysics to environmental sciences contain LAMs.
Studying them at the molecular level is an extremely lively field. The focus of the
present review was on two types of LAMs which frequently occur: internal rotation

Figure 2.16: The potential energy curve describing the inversion tunneling at the nitrogen atom of
diethyl amine. θ is the angle of the NH bond against the NCC plane. Inset: Horizontal lines indicate
the lowest torsional energy levels vt = 0, 1, 2, 3, which are doubly degenerated. The two versions of
the equilibrium geometry given in the lower trace correspond to the two energy minima of the
nitrogen tunneling process. The two equilibrium structures on the lower figure show that the dipole
moment, indicated as a red arrow, changes sign in the c-direction upon proton tunneling.

Figure 2.17: Tunneling splittings of c-type transitions in secondary amines (in MHz). (1) Dimethyl
amine [158], (2) ethyl methyl amine [159], and (3) diethyl amine [160].
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and inversion tunneling. The combination of molecular jet Fourier transform micro-
wave spectroscopy, spectral modeling, and quantum chemical calculations is particu-
larly successful in decoding complex spectra with LAMs and providing reference data
for astrophysical research, atmospheric chemistry, or general applications in physical
chemistry.

The two most popular types of state-of-the-art Fourier transform microwave
spectrometer technology based on pulsed supersonic jet expansions are resonator-
based and chirped-pulse spectrometers. The former version is commonly used in
many microwave laboratories and has shown its superior sensitivity and resolving
power but suffers from the time requirement to acquire survey spectra because the
resonator has to be tuned mechanically for every frequency element at rather narrow
steps of less than 0.25 MHz. The latter version relies on a very short but powerful fre-
quency ramp signal with a band width of 1 GHz and thus provides unparalleled
speed for scans with more reliable line intensities.

The use of quantum chemistry using programs such as Gaussian or GAMESS as a
supporting tool for rotational spectroscopy is becoming very popular. The most com-
mon methods used by many microwave spectroscopic labs is the DFT method using

Figure 2.18: Upper figure, left hand side: A portion from 8000 to 16000 MHz of the survey spectrum
of phenyl formate (upper trace) compared to the theoretical spectrum (lower trace) predicted using
the program SPFIT/SPCAT. Transitions of the vt = 0 ground state are marked in blue, those of the
vt = 1 excited state in red. Right hand side: The frequency range from 12100 to 12400 MHz in an
enlarged scale, capturing the vt = 0 and vt = 1 components of the 413 ← 303 transition which are
separated by 62 MHz due to Coriolis interactions. Lower figure: Two versions of the equilibrium
geometry corresponding to the two energy minima of the ring tunneling process.
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the B3LYP functional and the MP2 method, along with the Pople valence triple-zeta
basis set 6-311++G(d,p). Conformational analysis performed by calculating potential
energy surfaces and geometry optimizations is sufficiently accurate to start the spec-
tral assignment. In the contrary, predicting the barriers of LAMs, corresponding to
calculations of energy, is not yet sufficiently accurate to satisfy experimental require-
ments and needs experimental values for benchmark calculations.

Several computer codes for global fits of rotational spectra with splittings aris-
ing from LAMs have been developed along the last four or five decades, such as,
not exhaustively SPFIT/SPCAT, IAMCALC, JB95, XIAM, BELGI, RAM36, PAM-C2v-
2tops, and ERHAM, just to mention some of them. A local approach such as in the
SFLAMS code for separately fitting the LAM species can ease the assignments of the
microwave spectra, especially when problems with a large number of internal ro-
tors (> 3) and low torsional barriers have to be conquered, and it is still challenging
to model the splittings in a global approach. Some “problematic”, yet unsolved
cases remain where the internal rotation(s) interact(s) with tunneling motion(s) or
with other small amplitude vibrations. Theoretical developments and new codes
are needed for those cases.

Some examples on chemical aspects and comparison of barrier heights in sys-
tematic investigations on acetates, amides, propynyl group containing molecules,
ketones, and dimethylanisoles as well as the inversion tunneling in secondary
amines and phenyl formate have given information about how LAMs can help us to
understand molecular structures and conformations in nature. Applications of
LAMs on conformational determinations are only at their beginning on natural
substances and biomolecules where they can provide unique “sensors” of the mo-
lecular structure. There is no doubt that many future investigations toward this
direction will be performed.
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Iwona Gulaczyk and Marek Kręglewski
3 Floppy molecules—their internal dynamics,

spectroscopy and applications

Abstract: Floppy molecules can be defined as molecules performing large ampli-
tude vibrations (LAVs). There are different types of LAVs among which the most
common are inversion and internal rotation. Molecules with LAVs have been of
great interest for a very long time since their dynamic, geometry and molecular
spectra were very often considered as a challenge. In the review, we present an out-
line of the history and development of various theoretical approaches concerning
molecules with LAVs. Different types of LAVs are described with the emphasis on
inversion tunneling (wagging) and internal rotation (torsion). Furthermore, strate-
gies for building explicit and effective Hamiltonians are given and explained in de-
tail using a hydrazine molecule, which is an exemplary molecule performing three
LAVs—two inversions and one internal rotation. Since floppy molecules play a sig-
nificant role in numerous areas as chemistry, pharmacy, astrophysics, biology, agri-
culture etc., we also provide an overview of their applications.

Keywords: a hydrazine molecule, effective Hamiltonian, explicit Hamiltonian, high
resolution spectroscopy, large amplitude vibrations

3.1 Introduction

The study of rotational and vibration–rotational spectra of isolated molecules in a
gas phase is of fundamental importance for determining the geometry of the mole-
cule in various vibrational states, the shape of the multidimensional potential sur-
face, the magnitude of the dipole moment, detection at distant locations etc.
Moreover, these analyses help to generate accurate models for ab initio quantum
mechanical calculations, and many of the results have also interdisciplinary char-
acter. For instance, precise spectroscopic standards are necessary for astrophysical
research, automatic control of atmospheric pollutants, or stimulation of chemical
reactions through laser beams. Both theoretical and experimental studies on the
spectroscopy of molecules with large amplitude vibrations (LAVs) have special sig-
nificance in this research. It is very important to find the appropriate methods of
describing these molecules for kinetics of chemical reactions, the study of molecules
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vibrationally excited by high temperature, determining the structure of weakly
bound Van der Waals complexes, or the structure of molecules in excited electronic
states. However, none of the above-mentioned goals can be achieved without an ap-
propriate theory that will allow a correct interpretation of the vibration–rotational
spectra of the molecules of interest.

For more than 70 years molecular spectroscopy along with other methods has
been able to characterize the structures and shapes of molecules, both rigid and non-
rigid. The nonrigid molecules play a significant role in such varied areas as biological
activity, energy transfer, or chemical reactivity. The development of theory [group
theoretical methods and potential energy surfaces (PES)] was essential to understand
the unique and often very complex spectra of many so called floppy molecules.

Classically, molecules can be treated as almost rigid structures rotating in
space. Their vibrational motion causes structural deformations, but these dis-
placements are rather small in comparison to the bond lengths and angles in a
molecule. In such a case, one can assume that vibrations of a molecule are only
weakly coupled with its rotation, thus the standard way of treating the rotation–
vibration interaction is by using an effective rotational Hamiltonian, which is ob-
tained by a perturbation theory. For molecules that are “floppy”, because perform
LAVs, nuclear displacements caused by LAV can be the size of linear dimensions
of the equilibrium structure, thus vibration and rotation cannot be treated sepa-
rately, and the classic approach for the rotation–vibration data fails. Instead, spe-
cial formalisms or methods have to be implemented to describe dynamics of such
molecules. For instance, the LAVs have to be described by curvilinear coordi-
nates, which make difficult to generate quantum-mechanical Hamiltonian. The
couplings between LAVs and rotation are very strong, what is reflected in a strong
coupling between the rotational and vibrational moment of inertia. Although
small amplitude vibrations theory is not much older than the LAV theory, the lat-
ter was developed much later and for the first time was described in a systematic
way in a work by Hougen, Bunker and Johns (HBJ) [1]. This method will be de-
scribed in more details in the next paragraph.

3.2 Large amplitude vibrations (LAVs)

In the first part of this chapter, we shall introduce the reader to a handful of infor-
mation about different theoretical approaches for treating molecules with LAV and
show how these theories and models developed over the years. In the second part,
examples of various types of large amplitude motions are presented with particular
emphasis on inversion and internal rotation.

First studies of systematic theoretical description of LAV were introduced for
triatomic molecules. There are two main methods that have been extensively ap-
plied to molecules in which there are several LAVs. These are: (i) the HBJ method
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[1] and its extensions to the multivibration case; (ii) the slow tunneling formalism
developed by Hougen [2], which became the effective tool for the interpretation of
high-resolution spectra of many molecules.

3.2.1 Theories involving LAVs

First studies on vibration–rotation spectroscopy of polyatomic molecules were pub-
lished in the 1930s of the previous century. In 1936, Wilson and Howard [3] presented
a general vibration–rotation theory of molecules on the assumption that the amplitude
of vibrations is small. Soon Darling and Dennison derived a correct quantum-mechani-
cal approach [4], and in 1951, Nielsen [5] developed formulas that enabled phenome-
nological interpretation of vibration–rotational spectra. Nevertheless, all those
theories failed when it came to analysis of spectra of molecules with LAVs. There were
two main reasons for that. First, the assumption that vibrations are not coupled
strongly with rotation, and second, that expansion of a potential function can be given
as a power series. In molecules with LAVs, vibrations cannot be treated separately
from rotation and power series expansions converge very slowly. Simultaneously with
a general theory on vibrations and rotation, studies appeared where rotation was cou-
pled with LAVs, but other vibrations were neglected. Classic examples of that were
studies of inversion in ammonia [6], internal rotation in ethane [7] and methanol [8].
Of course, the approximation of the potential energy with a power series for this type
of internal motion of molecules was subject to very large errors.

Nevertheless, for many years, no general theory has been proposed to analyze ro-
tation–vibration spectra of molecules that perform large amplitude motions. It did not
mean that the spectra of such molecules were not analyzed at all. Spectroscopists
used a Wilson’s method [9] to interpret vibrational spectra. For analysis of bands cor-
responding to excited LAVs or analysis of rotational spectra, the approximation of
semi rigid molecule was used. This method assumed that a molecule performs either a
LAV only or rotates. The other vibrations were neglected. It turned out that this as-
sumption was not correct, since LAV is strongly coupled to overall rotation of a mole-
cule, much more than other vibrations, and separately it is neither possible to explain
a spectrum of LAV nor rotational spectrum of a molecule performing LAV. The first
work devoted to the vibration–rotation problem in a symmetric quasilinear three-atom
molecule was the one by Thorson and Nakagawa [10]. A disadvantage of their method
was that that the vibration–rotational Hamiltonian did not include terms responsible
for rotation around axes perpendicular to the molecular skeleton and did not take into
account the dependence of a reduced mass for a bending mode on a coordinate of this
vibration. It should be underlined at this point that studies of three-atom molecules
performing a large amplitude bending vibration led later to the HBJ approach in 1970
(HBJ) [1]. Another attempt was made by Freed and Lombardi [11], who developed the
complete Hamiltonian for any three-atom molecule with LAV. In their approach a
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molecular coordinate system coinciding with the principal axes was applied instead of
a system that minimizes vibrational angular momentum. Consequently, some of the
Coriolis terms were too high. Kirtman [12], [13] analyzed couplings between harmonic
vibrations and internal rotation as well as with rotation of a whole molecule imple-
menting a perturbation theory. Thanks to the all mentioned above approaches, it was
possible to explain many spectral features of the molecules with LAVs. Unfortunately,
all those methods considered just one LAV. A general LAV theory was presented in
1968 by Meyer and Günthard [14]. In the Hamiltonian, each vibration could be defined
as a LAV. Two molecular coordination systems were presented, i.e., principal axis sys-
tem (PAS) and internal motion axis system (IMAS). In the first one, the deviation mo-
ments were minimized, whereas in the second Coriolis interaction terms. This model
was too general, thus its application to LAVs was confined. Similar objections were
directed to the models of Quade [15] and Louck [16].

All the above examples of different approaches showed clearly that it was ex-
tremely difficult to create the vibration–rotational theory for molecules performing
LAVs, which were general and precise enough at the same time. In 1970, HBJ pre-
sented a model based on a three-atomic molecule with a large amplitude bending
mode [1]. This work was a sort of compilation and an expansion of earlier theories
by Hougen [17], [18], [19] and Bunker [20, [21] concerning internal rotation in dime-
thylacetylene. A fundamental assumption of this theory is based on an appropriate
choice of coordinates in a molecular coordination system and a transformation of
these coordinates into laboratory system. In other words, this theory applied two
types of internal coordinates: curvilinear coordinates to describe LAVs of a mole-
cule and linear coordinates for other vibrations, and the coupling between rotation
and LAVs was treated explicitly. Thus, the vibration–rotational Hamiltonian in the
HBJ approach treated explicitly LAVs, SAVs and rotation. Eq. (3.1) shows the trans-
formation of the system of laboratory, ri, to molecular coordinates:

Ri =R+ S− 1 χ,Θ,ϕð Þ ai ρð Þ+di½ � (3:1)

where Ri is represented by a 3 × 1 column vector containing the laboratory-fixed
Cartesian coordinates of the ith atom. R is a 3 × 1 column vector containing the lab-
oratory-fixed Cartesian coordinates of the center of mass of the nuclei. S(χ, θ, ϕ)
represents a 3 × 3 direction cosine matrix, which transforms from laboratory-fixed
(X, Y, Z) to molecule-fixed (x, y, z) Cartesian coordinates and which is given as a
function of rotational variables (the Eulerian angles χ, θ, ϕ). ai ρð Þ is a 3 × 1 column
vector that contains the molecule-fixed Cartesian coordinates of a reference posi-
tion of the ith atom, and di is a 3 × 1 column vector containing the molecule-fixed
Cartesian coordinates of the vibrational displacement of the ith atom from its refer-
ence position and is used to describe the small amplitude vibrations only.

Since the above equation contains seven redundant coordinates on the right-
hand side, seven constraint equations must be given. This can be done in different
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ways. Some constraints will be more appropriate than others because they will
eliminate or minimize certain quantities in the kinetic energy operator. The problem
of choosing the coordinate system and minimizing the coupling in the Hamiltonian
has been the subject of many considerations up to now. The study by Hougen et al.
[1], apart from Eckart’s conditions, which situate a center of molecular system in
the center of a molecule, proposed the following conditions:
a) Eckart condition that locates the origin of the molecular system in the center of

mass X
i

midi =0 (3:2)

b) Eckart’s condition that eliminates a coupling between SAVs and rotationX
i

miai ×di =0 (3:3)

c) Sayvetz’s condition that minimizes a coupling between SAVs and LAVs

X
i

mi ∂ai=∂ρ ·di =0 (3:4)

These conditions were generated and fulfilled for a triatomic molecule. Eckart’s
conditions define the orientation of the axes of the molecular coordinate system
such that the Coriolis terms for the selected internal coordinates become zero at
some point. Thus, Eckart’s axes do not eliminate Coriolis terms in the entire range
of variables, only locally.

Since LAV generates an angular momentum, it is desirable that the coupling
with the rotational angular momentum is minimized. This can be obtained through
modifying the position of the molecule in a molecular axis system in a function of ρ
using the Eckart condition for LAV:X

i

miai × ∂ai=∂ρ=0 (3:5)

The HBJ theory proposed the rotation–vibrational Hamiltonian for a triatomic mole-
cule by expanding its terms into a Taylor series of linear normal coordinates repre-
senting small vibrations. A similar Hamiltonian for the NH3 molecule, in which the
inversion was treated as LAV, was derived by Papoušek [22].

In the HBJ theory, an important role plays the rigid model, which is obtained by
neglecting small amplitude vibrations and which is treated as a zero-order approxi-
mation. The rigid model can be then improved by applying the perturbation theory,
yielding the effective nonrigid Hamiltonian. The effective Hamiltonian makes it possi-
ble to calculate the bending-rotational energy levels in a particular vibrational state.

The HBJ method could be then successfully applied to different types of mole-
cules: linear, bent, symmetric tops, asymmetric tops and to various types of LAVs
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32]. Different versions of a nonrigid
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bending Hamiltonian were presented for a triatomic molecule by Bunker et al. [33],
[34], [35], [36], [37], [38], [39] and by Jensen [40], and a very similar Hamiltonian for
inversion proposed Špirko et al. [28], [41], [42]. Applicability of the HBJ method was
extensively tested on other molecules with LAVs, more complex than just three-atom
systems and of lower symmetry. For instance, the generalized HBJ method was ap-
plied to describe a coupling between internal rotation and inversion in methylamine
[43]. The vibration–inversion–torsion–rotational Hamiltonian was derived, taking
into account two LAVs: inversion and torsion (rigid and semirigid model). Redundant
coordinates were removed using conditions presented by Eqs. (3.2)–(3.4). Due to the
C3v symmetry of the methyl group, the elements of the inverted tensor of moment of
inertia were functions of the inversion variable only. This made it possible to solve the
problem in two stages: to solve a pure inversion problem by the numerical Numerov–
Cooley integration method, and then the full equation by the variational method.
Rovibrational transitions were calculated, and a two-dimensional potential function
was determined by fitting to experimental data. Strong interactions between LAVs
were observed too.

In one of other works a rotational structure was calculated in excited electronic
state of formaldehyde [44]. The HBJ approach was also applied to molecules with
two LAVs, which belonged to quasisymmetric top molecules (QSTs) [45], [46], [47].
Dynamic of molecules, which have quasilinear skeletons with one or two tops of C3v
symmetry attached, has not been understandable for a very long time. The correct
Hamiltonian for such molecules was presented for the first time in 1983 [48]. The
subject of the study was a disilane ether molecule, (SiH3)2O, with three LAVs: two
torsions and a bending. It turned out that spectra of QST molecules can be inter-
preted properly only when couplings between rotation, internal rotation and bend-
ing vibration are treated explicitly. The Hamiltonian developed could be applied
successfully to molecules with a bent skeleton and with one or two symmetric tops
and to quasilinear molecules [49], [50]. The approach used in those works was simi-
lar to the one for methylamine [43].

Another proposal of the nonrigid bending Hamiltonian, in which both large
and small amplitude vibrations are described by curvilinear coordinates, was given
by Quade [15], [51], [52]. He proposed a transformation to a special coordinate sys-
tem (R and T transformation) eliminating Coriolis coupling terms and obtaining an
effective one-dimensional Hamiltonian for LAVs.

Szalay [53] showed how to minimize the coupling between LAV and rotation for
a single LAV. Asymmetric vibrations of the ring (small amplitude vibrations) were
neglected. Therefore, only one dynamic variable (LAV) was used to calculate the
elements of the tensor of inertia, freezing all other vibrations (a rigid model) and
eliminating all Coriolis terms in the entire range of this variable.

An interesting, completely numerical approach to the problem of LAVs was pro-
posed by Pyka et al. (PFM theory) [54]. All vibrations were described by curvilinear
coordinates. On the basis of adiabatic separation of small and LAVs, an effective
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method for solving the vibration–rotational problem in a disilocyclobutane molecule
was presented. Coordinate transformations enabling the elimination of kinetic cou-
pling between large and small vibrations were also discussed in this study.

The problem of minimizing the coupling between rotation and vibration in a tri-
atomic molecule (HDO) was raised in the study by Makarewicz and Łodyga [55], where
the self-consisted field method SCF [56], [57] was used to the approximate separation
of stretching vibrations, bending and rotation. Unlike other studies, the axes that elim-
inate Coriolis terms (called internal axes) were not assumed to be optimal axes. To de-
scribe the molecule, the Jacobi coordinates [58] and a moving coordinate system were
used, and a direction of this system was determined by the following condition:

ϑ2 = −Aϑ (3:6)

where ϑ is an internal axis and a parameter A describes orientation of a molecular
system (varies from 0 to 1). For A = 0, the axis is parallel to the bond r1, whereas for
A = 1 it is parallel to r2, and for A = 0.36, for internal axis system. Results showed
that the molecular coordinate system that eliminates the Coriolis coupling (internal
axis system) minimizes the errors of calculated transition energies. The molecular
axes have a different orientation in each excited state of stretching vibrations.

3.2.2 Types of large amplitude vibrations

There are various types of Large Amplitude Vibrations (LAVs). In general, LAVs are
vibrations, which cannot be described approximately with harmonic potentials.
The PESs of these vibrations often have two or more minima and distances between
energy levels are usually very small. The LAVs are usually of the lowest-frequency
vibrations in a molecule. In MW spectroscopy, LAVs can be displayed through the
splitting of rotational lines, in IR and Raman spectra by hot bands appearance as
well as many combination bands, and in low energy Raman spectra or far infrared
(FIR) by well-developed absorption bands corresponding to excited LAVs. Some in-
formation about LAVs can be also provided by NMR analysis (especially bending
modes of aromatic rings and pseudorotation) or by electron diffraction.

How do we define “floppy” molecules? For many molecules, such as ammonia
NH3 or the water dimer (H2O)2, it is not possible to describe their dynamics on the
basis of the equilibrium structure, because they undergo various so called tunnel-
ing motions such as the umbrella motion in NH3 or internal rotation of methyl
group in methylamine or in ethyl radical. Such molecules with large amplitude mo-
tions are called nonrigid or simply “floppy”. Thus, “floppy” molecules are those
which perform one or more LAVs. Such molecules cannot be described by harmonic
potentials, their PESs have at least two minima or are very broad and LAVs are
strongly coupled with rotation of a molecule. It should be underlined that the anal-
ysis of high-resolution spectra of nonrigid molecules is often a challenge. The
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spectra are usually very tangled and complicated since the rovibronic transitions
are additionally split by tunneling motions. In order to fit such spectra, very often
the Hamiltonian has to be either adapted or invented.

3.2.2.1 Inversion
In both, theory and experiment, the most common LAV is inversion and the best
known molecular inversion is the “umbrella-like” bending vibration in ammonia mol-
ecule, NH3 [6], [59], [60], [61]. Ammonia molecule has a pyramidal shape, where LAV
pushes nitrogen atom through the plane formed by three hydrogen atoms. A poten-
tial of inversion is usually described by a symmetric or asymmetric function with two
minima, which means that a molecule can occur in two configurations. First models
did not take into account the change of the reduced mass during inversion and used
the value of the reduced mass calculated for the equilibrium configuration instead
[62]. Originally, the inversion coordinate in ammonia was defined as a distance be-
tween nitrogen atom from a plane of three hydrogen atoms, but later a curvilinear
coordinate was introduced. This coordinate described the inversion motion as a si-
multaneous change of three HNH angles [61], [62], [63] or as a change of an angle
between 3-fold axis and one of the bonds [25], [27], [28]. Figure 3.1 presents the am-
monia molecule with the inversion coordinate defined using the last definition.

There are many other molecules performing inversion like NH2D, ND3 or H2CO in the
excited electronic state [64]. In the latter, the inversion coordinate is defined as an
angle between the HCH plane and a CO bond, what makes the HCH angle constant
during inversion motion [24]. Since the inversion barrier in ammonia is relatively high,
the splitting of the lowest energy levels is very small in comparison to the formalde-
hyde molecule, where this splitting is comparable with higher energy levels. Inversion
occurs also in more complex molecules like methylamine [43], [65], methylhydrazine
[66] or hydrazine [67]. As far as a hydrazine molecule is concerned, inversion problem
will be presented and discussed in more detail in the following parts.

Proton tunneling may be similar to inversion-like vibration. Malonaldehyde, 2-
methylmalonaldehyde or tropolone are exemplary molecules, where this kind of

Figure 3.1: Inversion coordinate, ρ, in ammonia.
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LAV appears. Figure 3.2 illustrates a 2-methylmalonaldehyde molecule with a defi-
nition of its proton tunneling coordinate [68].

3.2.2.2 Internal rotation (torsion)
Internal rotation (torsion) can be described as a rotation of one part of the molecule
(top) around a single bond with respect to the rest of the molecule (frame). The barriers
hindering this rotation can vary within a very wide range, from zero (free rotation) to a
few thousand cm−1. A hindered internal rotation is a torsional vibration. Molecules per-
forming internal rotation can be classified according to a symmetry of a rotor, which
can be symmetric or asymmetric, and to a number of tops. For one top, a potential
function describing internal rotation can be presented by the following expression:

Vn τð Þ=
X

m
Vm=2 1− cos mnτð Þ½ � (3:7)

where τ is a torsional angle, Vm are potential constants and n denotes multiplicity
of the top axis. The expansion of the function depends on symmetry of the top,
whether it is symmetric or asymmetric.

One can distinguish molecules with one top, which is symmetric along with sym-
metric frame (e.g., CH3CH3), symmetric top with asymmetric frame (e.g., CH3OH,
CH3CHO) or asymmetric top and frame (e.g., C6H5CH = CH2). Of course, there are mol-
ecules with two tops, for instance (CH3)2X-type molecules like (CH3)2S, (CH3)2CH2 or
even with more tops: e.g., (CH3)3N, (CH3)2NSiH3. The most known and developed the-
ories and methods for spectral analysis are these for molecules with a single top.
Spectra analyses of molecules with more tops are much more complex, since tor-
sional motions are usually strongly coupled. There were many review papers devoted
to internal rotation [69], [70], [71]. We would like to mention a very interesting work
by Tsuboi et al. [72], where in order to analyze a torsional band of ethylamine, a sys-
tem of two coupled tops had to be implemented. This approach allowed to determine
successfully an energy difference between trans and gauche conformers. Flaud et al.
[73] focused on H2O2, several torsional bands centers were determined using the tor-
sional Hamiltonian: BYYJ2Y +V2 γð Þ, where V2 is a potential given by Eq. (3.7) and γ is a

Figure 3.2: Definition of a proton tunneling coordinate, ρ, in 2-methylmalonaldehyde.
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dihedral angle between two H–O–O planes. Another work [74] presented an interest-
ing problem of three internal rotations in a CH2(OH)COOCH3 molecule. The properties
of three-dimensional system were derived on the basis of the results for one- and
two-dimensional systems calculated by a method proposed by Meyer [75].

There are numerous molecules performing both LAVs: inversion and torsion.
One of such molecules is 5-methyltropolone, in which proton tunneling occurs
along with internal rotation of a methyl top (Figure 3.3). Other examples of mole-
cules performing both inversion and torsion motions are hydrazine and methyl-
amine. In hydrazine, N2H4, there are three large amplitude motions altogether: two
inversion motions of two equivalent amino groups, NH2, and a torsion around the
N–N axis. Methylamine, CH3NH2, has two LAVs, an inversion of the amino group
and a torsion of a methyl group.

3.2.2.3 Bending vibration of quasilinear molecules
A bending vibration of quasilinear molecules (e.g., CH2, HCNO) is another type of LAV.
The bending vibration of quasilinear molecules is usually described by a cylindrical
potential with a minimum for a nonlinear configuration. This type of LAV possesses
two degrees of freedom, i.e., it is described by two perpendicular Cartesian coordi-
nates, and is doubly degenerate (Figure 3.4a). They can be transformed to radial coor-
dinates, α and φ, where α describes a bending angle, whereas φ a free rotation of a
molecule around its axis (Figure 3.4b). There are molecules which, apart from bending
vibration, perform also other vibrations, especially the internal rotation of the CH3

group. They are called QST with a general formula MH3NCX. In case of these mole-
cules, the main problem was to determine whether the four-atom MNCX skeleton was
linear or bent on the nitrogen atom. It turned out that due to the low stiffness of the
skeleton, these molecules cannot be considered neither as symmetric top molecules
(which requires a linear skeleton), nor as asymmetric top molecules (with a perma-
nently bent skeleton). Another group of molecules with low-frequency bending vibra-
tion of a heavy skeleton are molecules with two symmetric tops, for instance (SiH3)2O
[48], [76], or quasilinear polyatomic molecules like C3O2 [77], [78].

Figure 3.3: Proton tunneling and internal rotation in 5-methyltropolone.
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3.2.2.4 Ring puckering
Apart from inversion and torsion, which are the most common, there are also other
types of LAVs. One of them is ring puckering, which is defined as an out-of plane
bending vibration appearing in many ring molecules with small number of atoms
(four-, five- or six-membered rings). Ring puckering produces two forms of a mole-
cule and is described by symmetric or asymmetric potential with two minima.
Figure 3.5 presents ring puckering motions in cyclobutane and cyclopentane. This
type of vibration occurs in four-membered ring molecules, in five-membered with
one double bond in a ring or in six-membered with two double bonds in a ring. In
1984, Mills [79] showed that a separation of LAVs from other vibrations is not al-
ways a good approximation. In the following years, several papers appeared that
were devoted to studying couplings between different vibrations in ring molecules.
For instance, Egawa et al. [80], [81] determined a two-dimensional potential func-
tion taking into account a coupling between a ring-bending vibration and a ring-
scissoring. Tecklenberg and Laane [82] studied ring-bending and ring-twisting in
asymmetric six-membered rings, whereas Laane analyzed four- and five-ring mole-
cules [83]. Study of bending vibration in a molecule (CH2)3NH [84], in which a hy-
drogen atom next to nitrogen can be either in axial or equatorial position, showed

Figure 3.5: Ring puckering in cyclobutane and cyclopentane.

Figure 3.4: Two types of coordinates in degenerate bending vibration of linear molecule AB2:
a) linear Cartesian coordinates and b) curvilinear radial coordinates.
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that the same FIR data can be interpreted using a potential with two minima and of
small asymmetry, or with potential with one minimum but of a high asymmetry. A
conclusion can be drawn that as far as molecules performing LAVs are concerned,
one should be careful with potential calculations based on vibrational data only.

3.2.2.5 Pseudorotation in a five-membered ring
In 1947, Kilpatrick et al. [85] studied the thermodynamic properties of cyclopentane
and in order to explain its abnormally high entropy, they had to assume a new type
of vibration. It was an out-of-plane bending vibration of the ring in which the atoms
moved the way that the phase of the bending vibration rotated around the ring. This
type of motion, resulting from the superposition of two vibrations in which the
atoms’ movements are perpendicular to the plane of the ring, has been called pseu-
dorotation. The vibration components are shown in Figure 3.6. Torsion in a five-mem-
bered ring makes the A-axis of the ring bending to connect sequentially different
pairs of atoms. Pseudorotation can be free (potenial equals zero) or hindered.

3.2.2.6 Berry pseudorotation
LAVs may appear also in molecules of MF5 type with trigonal bipyramid structure
of D3h symmetry, e.g., PF5. This vibration is based on the intramolecular exchange
of axial and equatorial fluorine atoms (Figure 3.7). The possibility of this ex-
change was first noticed by Berry [86], [87], and vibration is called Berry pseudor-
otation. Figure 3.7 presents a schematic view of a Berry pseudorotation. Since
atoms 5 and 6, according to the numbering adopted in Figure 3.7, can tilt both in
the x and y directions, the vibration is doubly degenerate, and can be described
using the same formalism as for pseudorotation.

In this review, we present our experience with one “floppy” molecule: hydra-
zine. In the following paragraphs, we will focus therefore on the explicit and effec-
tive Hamiltonians built for this molecule. Before we come to this, we would like to
remind briefly permutation–inversion (PI) group theory, which is essential for high-
resolution molecular spectroscopy.

Figure 3.6: Z-axis shifts of the ring atoms for two out-of-plane vibrations R1 and R2.
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3.3 Permutation–inversion group theory

For spectra assignment of nonrigid molecules and for their selection rules develop-
ment, it is necessary to apply a group theory. A group theory is used in quantum me-
chanics to determine selection rules, to assign symmetry to energy levels, or to
calculate the overall shape of tunneling splitting in molecules with the LAVs. The
size of tunneling splittings depends on the barrier height of a particular LAV, which
may be calculated from ab initio methods. Having the barrier heights calculated, one
can predict the LAV-vibration–rotation levels and finally the spectrum of a molecule.

There are two group theories used in high-resolution molecular spectroscopy:
the point group theory and the PI group theory. The molecular point group symme-
try is used for rigid molecules with one equilibrium configuration only, where no
tunneling is observed between configurations. Thanks to a group theory, spectra
can be analyzed by labeling the energy levels with irreducible representations of
the corresponding symmetry group [88], [89], [90].

For nonrigid molecules, a point group symmetry is not sufficient, since such mol-
ecules have more than one equilibrium configuration. Instead, PI group is applied to
describe their symmetries, thus the complete nuclear permutation inversion (CNPI)
group is created [91], [92]. The invariance group of the molecular Hamiltonian is a
basis on which the PI group theory was developed. In the PI groups, the symmetry
elements consists of the permutations of identical nuclei and inversion in the center
of mass [90].

Let us recall quickly how the PI groups work. For this, we take the ammonia
molecule as an example. As already mentioned in a previous paragraph, the ammo-
nia molecule performs so called umbrella motion. Its equilibrium structure is de-
scribed by C3v point-group symmetry, but the inversion motion transition state is
described by D3h symmetry. If the symmetry of ammonia was to be confined to the
point-group symmetry, it would be problematic by which symmetry group its en-
ergy levels should be named, C3v or D3h. A PI symmetry group provides a solution
for this situation and helps to label the energy levels explicitly. Thus, a PI group for

Figure 3.7: A schematic view of the equatorial-axial exchange during a Berry pseudorotation in a
XY5 type of molecule.
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NH3 consists of 12 symmetry elements: E, (12), (13), (23), (123), (132), E*, (12)*, (13)*,
(23)*, (123)* and (132)*. E is the identity element, which does not change anything,
symmetry operation (12) denotes the replacement of hydrogen 1 by hydrogen 2, sim-
ilarly symmetry operations (13) or (23). The operation (123) is the cyclic permutation
of three atoms and should be understood in the following way: hydrogen 1 is re-
placed by hydrogen 2, whereas hydrogen 2 is replaced by hydrogen 3, and finally
hydrogen 3 is replaced by hydrogen 1. The asterisk describes the inversion in the
center of mass. In ammonia, there are six permutation operations and six PI opera-
tions (all the operations with an asterisk).

In 1963, Longuet-Higgins introduced the Molecular Symmetry (MS) group as a
group of permutation and permutation-inversion (PI) operations of all particles and
spins, subject to the condition of “feasibility” [91]. The concept of the MS (or PI)
group was presented using the examples of the following molecules: CH3BF2 [93], B
(CH3)3, CH3CH3 [94], [95] and NH2NH2 [96]. Before the PI group was invented, many
molecules with internal rotation and other LAVs had been studied like NH3, H2O2,
CH3OH, CH3NO2 [71 and the references therein]. What is interesting that Longuet-
Higgins did not mention any of these works in his approach. The first who con-
nected the PI group with one of these studies was Watson [97], [98], [99].

Feasibility is essential for PI group theory considerations [90], [91]. It may happen
that some group operations are not feasible due to the resolution of certain molecular
spectra and therefore they are not important in their analysis. Let us explain this fact
using again ammonia molecule along with phosphine, NH3 and PH3, respectively.
Both molecules are described by C3v molecular symmetry and CNPI group of PH3 is
similar to NH3. It was already mentioned that in order to describe the symmetry of am-
monia properly one needs to use the CNPI group. It consists of 12 elements and six
irreducible representations (A

′
1,A

′′
1 ,A

′
2,A

′′
2 ,E

′,E′′
). For the phosphine molecule, there

are only three irreducible representations instead of six (A
′
1 +A

′′
2 ,A

′′
2 +A

′
2,E

′ +E
′′
). This

difference can be explained by the fact that for phosphine tunneling between two
frameworks was not resolved experimentally and all the symmetry operations respon-
sible for inversion motion can be left out and treated as unfeasible.

In some cases, the CNPI group is the same as the MS group, for instance in
water molecule (a rigid molecule). All the CNPI group operations are feasible. The
MS group is a subgroup of the CNPI group, which includes only feasible operations.
The unfeasible operations are essential in molecules that tunnel through energy
barrier. The point group and the CNPI group may be isomorphic. Isomorphism
means that the elements of one group are mapped onto the elements of another
group in such a way that the multiplication laws of both groups are not infringed.
Examples of isomorphic point groups are: D6, C6v, D3h and D3d. Although these
point groups are isomorphic, their symmetry operators do not affect the functions
of the vibrational and rotational coordinates in the same way.

Since only one particular nonrigid molecule is considered in this review in de-
tail, which is a hydrazine (N2H4) molecule, in further discussions we will focus only
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on the symmetry of this molecule. If a reader is interested more in history and wide
applications of the PI group theory, we recommend an article by Groner on MS
group for LAVs [100], in which not only historical context is very interesting and
widely presented, but also nomenclature and notation is fully described as well as
an alternate labeling for molecular group is introduced.

3.4 Rovibrational Hamiltonian for a floppy molecule

If a full rovibrational problem, which takes into account small amplitude vibrations,
LAVs and rotation, can be reduced to a smaller system, the obtained Hamiltonian is
called effective. Thus, if SAVs are removed, we gain the effective Hamiltonian for
LAVs and rotation. The examples of such reduction are studies presented in literature
studies [33], [34], [35], [36], [37], [38], [39], [40], where for three-atom molecules, the
original HBJ Hamiltonian was reduced to an effective rotational-bending Hamiltonian
including terms from small vibrations (nonrigid model). If we go on with this reduc-
tion, the effective rotational Hamiltonian can be obtained, although it is not always
possible due to strong couplings between LAVs and rotation. In order to get the effec-
tive Hamiltonian for LAVs, a separation of coordinates in the Schrödinger equation
should be done. In the mentioned studies, the following methods for separation of
variables can be distinguished: Van-Vleck’s transformation (used in the HBJ ap-
proach, in its extensions and Quade’s method [15]), adiabatic method (applied in
PFM approach [54]) and self-consistent field method [55], [56]. As a result of the re-
duction, small vibration parameters appear in the effective Hamiltonian. Thus, the
obtained Hamiltonian is effective for a LAV in each vibrational state of other vibra-
tions in a form of a parametric equation that is easy to apply to the analysis of ex-
perimental data or theoretical calculations.

If a molecule with small vibrations only is considered and undergone the reduc-
tion, then in effect, the effective rotational Hamiltonian of Watson is obtained [101].
This Hamiltonian (Watsonian) contains higher powers of J, and its coefficients de-
pend on parameters of small vibrations. For higher terms of the Watsonian, this rela-
tion is not explicitly derived because is too complicated. However, the Hamiltonian
can be used to fit the experimental data by treating the Hamiltonian constants as the
parameters of the fit. Obviously, the information about small vibrations is con-
tained in the obtained parameters, but cannot be extracted.

A similar idea for solving a rovibrational problem was used by Hougen for a
hydrazine molecule [2]. It was shown there how to obtain an effective rotational
Hamiltonian for molecules performing LAVs. In the theory of slow tunneling
through barriers, the full wave function is built from local functions, which over-
lap and give the tunneling parameters. The effective parameters that are obtained
by fitting to spectroscopic data depend on the parameters of LAVs, but this infor-
mation cannot be extracted explicitly. They only determine the splittings in the
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spectrum. It should be mentioned at this point that Groner [102] succeeded in get-
ting the dependence of such parameters on the parameters of LAVs, but only for a
simple case with one LAV. Although there is still a possibility of extending it to
two LAVs.

First time, a tunneling formalism was applied by Dalton [103]. It was used to ana-
lyze a MW spectrum of PF5, where a Berry pseudorotation occurs. However, Hougen’s
formalism became the basis for spectra interpretation of many systems, like dimers in
a gas phase, Van der Waals complexes and also molecules performing LAVs. The ap-
proach was applied to H2O2 [104], methylamine CH3NH2 [105] and CH3NHD [106]. A
formalism derived for methylamine was adapted to acetaldehyde, in which inversion
was blocked [107]. An analysis of (HF)2 [108] was performed assuming that LAVs take
place in a plane. An extension of the internal axis method was proposed by Hougen in
case of a tunneling over high barriers. This theory was used for water dimer [109],
[110], ammonia dimer [111] as well as methanol-water system [112]. The latter is pretty
complex, since two molecules are bonded via hydrogen bond, around which they
can rotate, whereas a donor can be exchanged, i.e., once it can be methanol and
then water. In addition, an internal rotation can take place in methanol, thus there
are from 5 to 7 LAMs possible in this system.

The Hougen’s tunneling formalism was extensively used in analyses of many
spectra of complex systems. The main advantage of the formalism is that the problem
can be solved easily and a relatively large number of fitting parameters is obtained,
which describe the spectral splittings as a result of tunneling between configurations.
This makes a spectrum analysis very precise. As a disadvantage, one can take a situa-
tion, where the minima corresponding to equivalent configurations are not deep
enough. In addition the fitting parameters have no clear physical meaning.

In general, the first step to develop rovibrational Hamiltonian (either explicit or
effective Hamiltonian) for a floppy molecule, is to describe its symmetry using the
PI group. As mentioned in Section 3.3, there are two group theories used in high-
resolution molecular spectroscopy, i.e., the point group theory and the PI group
theory. The point group symmetry is used for rigid molecules, i.e., the molecules
with one equilibrium configuration and is extensively described in many spectro-
scopic text books [88], [89], [90], [113]. As for the PI group, it is used to describe a
symmetry of nonrigid molecules since the point group symmetry cannot be applied
to molecules with more than one equilibrium configuration. In the PI groups, the
symmetry elements consist of the permutations of identical nuclei with or without
inversion [90]. Once internal rotation or inversion is feasible in a molecule, the PI
theory must be applied. Table 3.1 presents all the required steps that are needed to
build a rovibrational Hamiltonian.

After the symmetry of a molecule has been determined, in the second step of
building a rovibrational Hamiltonian of both types (explicit and effective), small and
large coordinates must be defined. It is known that it is not correct to use linear coor-
dinates for description of LAVs. No single linear coordinate can correctly describe
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large changes in a configuration of a molecule (such as inversion or internal rotation)
without involving large changes in the values of other linear coordinates at the
same time. On the other hand, it is much easier to develop a quantum-mechanical
Hamiltonian using linear coordinates, since the elements of metric tensor are not
the functions of coordinates. It is not a case with curvilinear coordinates. Thus, one
should use a minimum number of curvilinear coordinates for LAVs description, and
other vibrations should be described with linear coordinates.

Speaking technically, a set of mathematical equations describes the correspon-
dence between coordinates in the laboratory fixed Cartesian axis system and molecular
coordinates. The equations define the molecule-fixed coordinates, their transformation
properties under the symmetry operations are clear, the symmetry of basis set func-
tions can be determined, and finally rovibrational Hamiltonian operators with appro-
priate symmetry can be created.

The subsequent three operations in developing rovibrational Hamiltonian are dif-
ferent for explicit and effective Hamiltonian. As far as explicit Hamiltonian is con-
cerned, transformation of coordinates in the PI group is conducted whereas for
effective Hamiltonian transformation of configurations. In effect, either Hamiltonian
in vibrational and rotational coordinates is obtained, if it is developed explicitly, or
effective group-theoretical Hamiltonian. Then the symmetrized rovibrational basis
functions and linear combinations of configurations are built for explicit and effective
Hamiltonians, respectively. In the next step matrix elements are calculated for both
types of Hamiltonians, and the eigenvalues are properly labeled. The final results are
different for explicit and effective Hamiltonians, since for the first one geometry and
potential function is an explicit outcome, whereas for effective Hamiltonian rovibra-
tional and tunneling parameters.

Table 3.1: Instructions for derivation of explicit and effective Hamiltonians.

Explicit rovibrational Hamiltonian Effective Hamiltonian

Permutation–inversion group of a molecule
Definition of small and large amplitude coordinates
Differences between linear and curvilinear coordinates
Transformations of coordinates in the PI group Transformations of configurations in

the PI group
Hamiltonian in vibrational and rotational coordinates Effective group-theoretical

Hamiltonian
Symmetrized rovibrational basis functions Symmetrized linear combinations of

configurations
Calculation of the Hamiltonian matrix elements
Labels (assignment of quantum numbers) on eigenvalues
Results: geometry and potential function Results: rovibrational and tunneling

parameters
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It is worth mentioning at this point that Jon Hougen presented similar strategies
and recipes for advanced applications of PI groups to molecules with large ampli-
tude motions in a very accessible and pedagogical way [114]. In this article, there
are clear instructions divided into particular steps for the PI operations applica-
tions, or for determining the correct PI group. The Hougen’s strategies concern a
rotational problem only.

Summarizing, there are different ways to analyze rovibrational structure of mol-
ecules performing LAVs of various type like inversion, torsion or ring puckering.
Some of them start from potential surfaces for LAVs, the other apply effective
Hamiltonians, where tunneling splittings play a main role. Whatever method is cho-
sen, one should solve the following problems. First of all, a symmetry of a molecule
with LAVs should be defined by the PI molecular group. Then, the internal coordi-
nates should be chosen and transformed in the symmetry group. Hamiltonian
should be derived in the chosen coordinates and afterward the Hamiltonian matrix
elements are calculated in a symmetrized basis set. As for the methods starting
from geometry and potential surface for LAVs, internal dynamic of molecules are
better described, whereas fitting results to experimental data are worse.

In the following sections, we would like to present the application of the steps
gathered in Table 3.1 to one floppy molecule, hydrazine.

3.5 Hydrazine molecule

The hydrazine molecule, N2H4, performs three LAVs: inversion (an umbrella motion)
of the amino group, –NH2, at each end of the molecule and an internal rotation (tor-
sion) of the two amino groups about the N–N bond. As Table 3.1 suggests, in order to
develop either explicit or effective Hamiltonian for hydrazine, one should find a PI
group for a molecule. Thus, the equilibrium structure of hydrazine [115] belongs to
the point group C2, which contains only two symmetry operations. The PI group for
hydrazine evolved gradually from a group of order 8 [96], [116], containing all nuclear
permutation operations which do not destroy the original N[3]H[1]H[2] and N[4]H[5]H[6]

amino groupings (numbering as in Figure 3.8) in the molecule, through order 16 and
up to 32. Longuet-Higgins introduced a group of order 16 for hydrazine [91], contain-
ing the eight permutations and the eight PI operations which do not destroy the origi-
nal amino groupings. Finally, a group of order 32 was introduced by Papoušek et al.
[117] and Merer and Watson [118] what was necessary to describe properly symmetry
properties of rotational and vibrational functions. It is this double group of the
Longuet-Higgins PI group G 2ð Þ

16 that is used for hydrazine. The double PI group is gen-
erated by the operations a, b, c and d, where d operator is just responsible for a dou-
ble group of the Longuet-Higgins PI group G16. The PI group symmetry generators of
the G 2ð Þ

16 group are defined by the following PI operations:
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a= 34ð Þ 1526ð Þ*

b= 34ð Þ 15ð Þ 26ð Þ
c= E*

d= double group

(3:8)

Concluding, the 16-element group is a subgroup of G 2ð Þ
16 , the pure permutation group

G8 is a subgroup of G16 and the equilibrium geometry point group C2 is a subgroup of
G8. The character table of the group G 2ð Þ

16 is presented in Table 3.2. In a ground elec-
tronic state, the rotation–inversion–torsion functions belong to one of 10 first species
and some rotation or inversion–torsion functions belong to the last four species.

There are three large amplitude coordinates in hydrazine, i.e., ρ1, ρ2 and τ.
The first two describe the inversion motions of two amino groups and the third
one describes internal rotation of the two amino groups around the N–N bond.
Figure 3.8 presents a schematic view of hydrazine with definitions of these three
LAVs. Inversion is presented as a motion around a local mass center of the NH2

group. The upper view shows a location of the molecular coordination system for
N2H4 as well as a definition of inversion coordinates, ρ1 and ρ2. These curvilinear
coordinates are defined as the angles between the HNH angle bisector and the
axis passing through the local centers of mass of both amino groups. The lower
view of Figure 3.8 presents an equilibrium configuration of a molecule along with

Figure 3.8: A schematic view of hydrazine in the molecular axis system with large amplitude
motion coordinates: two inversion coordinates, ρ1 and ρ2, and an internal rotation coordinate, τ.
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Table 3.2: The character table of a G 2ð Þ
16 group.

e d a d a d c cd ac acd b ab bd abd bc abc abc bcd a a ad ad ac ac acd
acd

ab ab abd
abd

abc abc
abcd abcd

Nuclear spin
weights

A+
1g               

A+
2u       − − − −   − − 

A−
1u     − −   − −  −  − 

A−
2g     − − − −    − −  

B+
1g           − − − − 

B+
2u       − − − − − −   

B−
1u     − −   − − −  −  

B−
2g     − − − −   −   − 

E+   − −  −         

E−   − − −          

E  −  −    −       –
E  −  −   −        –
Eg  − −       −     –
Eu  − −      −      –
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a definition of the torsional coordinate, τ, which is an angle between x axis of a
molecular system and a plane of a straightened amino group NH2 (ρ1 = ρ2 = 0).
This torsional coordinate is measured counterclockwise to the upper right hydro-
gen atom. The angle τ is a half of a torsional angle. The molecular axis system
shown in Figure 3.8 is chosen assuming the following issues: its origin is in the
center of mass of the molecule, the z axis of the system is collinear with the axis
passing through the centers of mass of two amino groups, atoms 1 and 5 have a
positive value of coordinate x for τ = 0, and finally, for ρ1 = ρ2 = 0, the atoms 1
and 6 have positive values of coordinate y while atoms 2 and 5 are negative, on
condition that τ has small positive value.

In order to define a set of vibration–rotation coordinates for hydrazine in terms
of the laboratory-fixed Cartesian coordinates of the component N and H atoms, the
extension of Eq. (3.1) is considered:

Ri =R+ S− 1 χ, θ,φð Þ ai τ, ρ1, ρ2ð Þ+di½ �i= 1, . . ., 6 (3:9)

where the reference configuration ai τ, ρ1, ρ2ð Þ is a function of three curvilinear
coordinates.

So far, instructions presented above are the same for constructing both explicit
and effective Hamiltonian of hydrazine. The next step is going to be different for
explicit and effective Hamiltonians, so they will be described separately.

3.5.1 Explicit rovibrational Hamiltonian for hydrazine

For the explicit Hamiltonian, the molecular coordinates are transformed using the
PI symmetry group. Table 3.3 presents transformations of rovibrational coordinates.

Table 3.3: Transformations of rovibrational coordinates for hydrazine within the PI group G 2ð Þ
16 .

Transformations of rotational and LAV coordinates

E a b c d

χ χ + π=2 − χ − χ χ + π
θ θ π − θ π − θ θ
φ φ φ+ π φ+ π φ
τ − τ + π=2 τ − τ + π τ + π
ρ1 ρ2 −ρ2 −ρ1 ρ1
ρ2 −ρ1 −ρ1 −ρ2 ρ2
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The rotation–inversion–torsion Hamiltonian for hydrazine, where small ampli-
tude vibrations are neglected, can be written as:

Hrit =
1
2
μ
1
4
X
αβ

Jαμαβμ
− 1
2Jβμ

1
4 +V τ, ρ1, ρ2ð Þ

α, β= x, y, z, τ, ρ1, ρ2

(3:10)

Jx, Jy, Jz are components of the total angular momentum operator and

Jη = −
iħ∂
∂η

, for η= τ, ρ1, ρ2 (3:11)

are operators of the torsion and inversion momenta. μαβ are elements of the inverse
of the moment of inertia tensor defined below in Eq. (3.17).

V(τ, ρ1, ρ2) is a three-dimensional inversion–torsion potential function, which
is written in the form:

V τ, ρ1, ρ2ð Þ=Vi ρ1ð Þ+Vi ρ2ð Þ+Vii ρ1, ρ2ð Þ+Vt τð Þ+Vit τ, ρ1, ρ2ð Þ (3:12)

Each term of this function is expanded into a Fourier series:

Vi ρkð Þ= a0 + a1cosρk + a2cos2ρk + a3cos3ρk + a4cos4ρk k = 1, 2 (3:13)

Vii ρ1, ρ2ð Þ=V22cos2ρ1cos2ρ2 (3:14)

Vt τð Þ=V4cos4τ+V8cos8τ (3:15)

Vit τ, ρ1, ρ2ð Þ=V222sin2ρ1sin2ρ2cos2τ (3:16)

Vi ρkð Þ is a periodic function with two symmetric minima, which describes “single”
inversion, i.e., the inversion motion of one amino group in a molecule (Eq. [3.13]).
Eq. (3.14) presents coupling between two inversions, Vii ρ1, ρ2ð Þ The “pure” torsion
is described by a periodic function Vt τð Þ in Eq. (3.15), and finally, a function
Vit τ, ρ1, ρ2ð Þ expresses coupling between torsion and two inversion motions, re-
spectively (Eq. [3.16]). The form of the components of the potential energy is a re-
sult of the symmetry properties of trigonometric functions within G 2ð Þ

16 group [118].
In order to obtain the rotation–torsion energy levels and the wavefunctions, one

has to solve the Hamiltonian in Eq. (3.10). It is not trivial, since the elements of the
tensor μ = I−1 are functions of large amplitude coordinates, τ, ρ1, ρ2 The tensor μ is
given by Eq. (3.17), in which three parts of the matrix can be distinguished. The first
part stands for rotation and is characterized by elements Ixx, Ixy … up to Izz. The next
group of elements corresponds to torsion and is presented by all the inertia elements
including τ in their indices, i.e., Iτx, Iτy, etc. The last part of elements relates to inver-
sion and these elements have indices including ρ, i.e., Ixρ1 , Ixρ2 , , Iyρ1 etc.
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μ=

Ixx Ixy Ixz Ixτ Ixρ1 Ixρ2
Iyx Iyy Iyz Iyτ Iyρ1 Iyρ2
Izx Izy Izz Izτ Izρ1 Izρ2
Iτx Iτy Iτz Iττ Iτρ1 Iτρ2
Iρ1x Iρ1y Iρ1z Iρ1τ Iρ1ρ2 Iρ1ρ2
Iρ2x Iρ2y Iρ2z Iρ2τ Iρ2ρ1 Iρ2ρ2

2
6666666664

3
7777777775

�1

(3:17)

The Hamiltonian must be fully symmetric, thus each element of the tensor μ be-
longs to the same symmetry species as the corresponding operator. These elements
can be expanded into a Fourier series [118].

A set of basis functions for the rotation–inversion–torsion energies consists of
products of inversion, torsion and rotational symmetry functions [117], [118]. In a zeroth
approximation, a purely torsional Hamiltonian can be expressed in the following form:

Ht =
1
2
μττJ

2
τ +Vt τð Þ (3:18)

where the potential function is given by Eq. (3.15). The Schrödinger equation with
the Hamiltonian presented by Eq. (3.18) is a Mathieu equation, which can be solved
analytically. The symmetrized basis functions can be presented by:

Ψt = jmi=
X
m

cm Nm eimτ ± e− imτ� �� �
(3:19)

where cm is the expansion coefficient and Nm is a normalization factor. If a “pure”
torsional function is considered, it has four equivalent minima, and hence the cal-
culated torsional energy levels have the structure of quartets.

Similarly, the zero-order Hamiltonian for pure inversion can be described as:

Hi =
1
2
μρ1ρ1 J

2
ρ1
+Vi ρ1ð Þ (3:20)

where the potential function is presented by Eq. (3.13) and the Schrödinger equa-
tion with above Hamiltonian can be solved in the same way as the torsional equa-
tion. The inversion function basis set is given by:

Ψi1 = jv1i=
X
n

cn Nm einρ1 ± e− inρ1
� �� �

Ψi2 = jv2i=
X
n

cn Nm einρ2 ± e− inρ2
� �� � (3:21)

Finally, the rotational function basis set has a form:

Ψr = jJ,Ki (3:22)
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and the rotational Hamiltonian is presented by the following expression:

Hr =
1
4

μxx +μyy
� �

J2 + J2z
� �

+ 1
2
μzzJ

2
z (3:23)

Therefore, the inversion–torsion–rotational basis functions can be written in the
following form:

Ψrii =ΨrΨtΨi1Ψi2 = jJ, kijmijν1ijν2i (3:24)

where J, k, m, ν1, ν2 are the appropriate quantum numbers.
The basis functions from Eq. (3.24) are used to build the functions of a given

symmetry that belongs to the irreducible representations of the G 2ð Þ
16 group [118]. In

Table 3.4, symmetrized rotational, torsional and inversion functions are gathered.

Specific form of rotation–inversion–torsion symmetry functions depends on parity
of quantum numbers and symmetry species to which they belong. These functions
are presented and described in detail in the study by Łodyga et al. [118]. The rota-
tion–inversion–torsion energy levels Erit are obtained by diagonalization of the
Hamiltonian matrix. Each rotation–inversion–torsion matrix element is a sum of
the matrix elements that correspond to the terms of the Fourier expansion in large
amplitude coordinates of an appropriate element μαβ.

Three large amplitude motions in a hydrazine molecule give rise to a multiple
splitting of each rotational level into sublevels. Each energy level is labeled accord-
ing to an irreducible representation of the double PI group G 2ð Þ

16 . In the ground state,
the largest splitting is caused by inversion [119]. Two inversions give rise to triplets.
Subsequent splitting is caused by torsion. Concluding, each rotational level splits
into six subleveles for K = 0 (two of A symmetry, two of B symmetry and two degen-
erate of E symmetry) or 12 sublevels for K > 0 (four of A symmetry, four of B symme-
try and four of E symmetry).

The rotation–inversion–torsion Hamiltonian was used to reproduce the ob-
served splitting in the spectrum for J = 0 [118]. The obtained parameters of potential
function were fitted to experimental data, which correspond to inversion–torsional
energy levels as well as to the torsional–inversion splitting presented in Table 3.5.
Figure 3.9 shows a scheme of inversion–torsion energy levels for hydrazine.

Table 3.4: Symmetrized rotational, torsional and inversion functions for hydrazine.

Function Notation Expression Symmetry species

Rotational jJ,K ± i NK jJ,Ki± − 1ð ÞJjJ,Ki
� �

A+
1g,A−

2g,B+
1g,B−

2g, Eg

Torsional jm± i Nm jmi± j−mið Þ A+
1g,A−

1u,B+
1g,B−

1u, E1

Inversion jv1, v ±
2 i Nυ jυ1 1ð Þ, υ2 2ð Þi± jυ2 1ð Þ, υ1 2ð Þið Þ A+

1g,A+
2u,B+

1g,B+
2u, E −
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The properties of the potential can be demonstrated by presenting some of its 1D
and 2D plots. Figure 3.10 presents the 1D torsional potential function for N2H4 con-
structed on the basis of the following expression:

Vt τð Þ=V2sin2ρeq1 sin2ρeq2 cos2τ+V4cos4τ+V8cos8τ (3:25)

Table 3.5: Experimental data of hydrazine, energy levels and torsional and inversion splitting.

Inv-tors level Energy [cm−] Torsional splitting [cm−] Inversion splitting [cm−]

GS  . .
ν7 . . .
2ν7 . . .
3ν7 . . .
ν6 . . .
ν12 . . .

Figure 3.10: The 1D torsion potential of hydrazine.

Figure 3.9: Inversion–torsion energy levels for hydrazine.
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This 1D potential was calculated by fixing the wagging coordinates at their
equilibrium values which is ρeq1 = ρeq2 = 49.8

Figure 3.11 shows how the local minima are connected through the saddle
points in a 2D space of the inversion coordinates (ρ1, ρ2). The plots were generated
using the potential expression:

Vi ρ1, ρ2ð Þ= a0 +
X2
k = 1

a1cosρk + a2cos2ρk + a3cos3ρk + a4cos4ρkð Þ

+V22cos2ρ1cos2ρ2 +V222sin2ρ1sin2ρ2cos2τ
eq

(3:26)

The plots were drawn for τeq = 45° (on the left-hand side) and for τeq =0° (on the
right-hand side).

It is worth mentioning at this point that Łodyga and Makarewicz [120] applied
high-level ab initiomethods to describe spectroscopic properties of hydrazine like ge-
ometries, anharmonic vibrations and torsion-wagging (TW) multiplets. To describe
the splitting pattern caused by tunneling in TW states, the 3D PES for the large ampli-
tude TW modes was built and characterized. This 3D PES was then used to construct
numerically a Hamiltonian, which was used to solve the vibrational problem for TW
coupled motion. The obtained frequencies were very precise and helped in assign-
ment problems mentioned earlier in the literature studies. The energy barriers to the
tunneling of the symmetric and antisymmetric inversion vibrations agreed well with
the empirical values. In Table 3.6, the obtained potential function parameters are col-
lected in terms of torsional and inversion barriers or angles.

3.5.2 Effective rovibrational Hamiltonian for hydrazine

In this section, the effective Hamiltonian for hydrazine will be explained, which is a
very helpful tool in spectral analysis. Since its parameters do not always have an
obvious physical meaning, it is rather not possible to use them for description of

Figure 3.11: The 2D inversion–inversion potential of hydrazine.
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interactions and dynamics of molecular modes. Such information can be obtained
from spectra using an explicit Hamiltonian, discussed in the previous section, with
a PES, which is expressed by empirical parameters.

In order to derive an effective Hamiltonian for a molecule like hydrazine, the first
three steps presented in Table 3.1 are the same as for the explicit Hamiltonian.
Hydrazine in its equilibrium configuration can appear in eight nonsuperimposable
conformations. There are three large amplitude motions in the molecule (one internal
rotation about the N–N bond and inversion of the NH2 group at either end), each hav-
ing two equivalent equilibrium positions, thus 23 gives eight frameworks. Figure 3.12
shows an initial conformation of hydrazine together with a conformation obtained
after one exemplary transformation is applied. This is transformation a corresponding
to the PI operation (34) (1526)* presented in its matrix form. The same effect can be
achieved through the large amplitude coordinate transformations (τ → −τ + π/2,
ρ1 → ρ2, ρ2 → −ρ1). In Figure 3.13, all eight conformations are displayed. The conforma-
tions cannot be superimposed through a rotation in space. The first conformation can
be transformed into another one through a proper change of LAV coordinates τ, ρ1, ρ2.
The slow tunneling model was presented and described in detail by Hougen [2], thus
we will only summarize its main features in order to give a reader a basic idea.

In the slow tunneling model, the assumption is made that a molecule spends
most of its time vibrating in the vicinity of one of these eight frameworks presented
in Figure 3.13, and it tunnels from one conformation to another from time to time
only. This assumption is important since it requires that the splittings caused by
tunneling motion are small in comparison to differences between vibrational energy
levels in equilibrium conformation. For hydrazine, it is true in its ground state and
in the first excited torsional state. Once the number of frameworks is determined for
a given molecule (eight for hydrazine), one should define the vibration–rotation en-
ergy functions for one of the conformations. For hydrazine two types of vibrational
functions can appear: symmetric or antisymmetric with respect to the rotation
around the C2 axis which is equivalent to the a2b symmetry operation of the PI
group. These two functions are denoted as A or B type, respectively. The vibrational
function for the ground state is of A type and for the first excited torsional state of B
type.

Table 3.6: Potential function parameters obtained from ab initio methods for hydrazine [120].

Torsional barrier (trans)  cm−

Torsional barrier (cis)  cm−

Inversion barrier (one NH group)  cm−

Inversion barrier (both NH groups)  cm−

Inversion barrier in cis configuration  cm−

Torsional equilibrium angle .°
Inversion equilibrium angle .°
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Figure 3.12: Definition of the localized (slightly distorted) conformation (ρ1 = 44°, ρ2 = 46°) for
hydrazine.
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Figure 3.13: The eight nonsuperimposable equilibrium frameworks of hydrazine.
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Since the basis functions are defined as products of vibrational and rotational
functions, it is necessary to analyze both functions separately. The effect of the d
symmetry operator on the whole vibration–rotation function is simply an identity
operation, but the rotational and torsional parts behave differently. The d operation
always rotates the molecule by π in the molecular axis systems and every conforma-
tion has its superimposable partner rotated by π which are denoted as A and A′ or B
and B′, respectively Figure 3.14. Finally, we can conclude that for the ground state
we shall deal with 16 frameworks of A and A′ symmetry and for the antisymmetric
inversion state with 16 frameworks of B and B′ symmetry.

Since the diagonal matrix elements for nonprimed and primed functions are iden-
tical the basis functions are built as combinations of both functions j1i+ j1′i� �

or
j1i− j1′i� �

, where j1i is nonprimed function localized in the conformation 1. In this
method, the explicit form of inversion–torsion functions is not important, only their
symmetry properties matter. Combinations of inversion–torsion functions localized in
eight nonsuperimposable configurations belong to the following symmetry species:
A+
1g ,A−

1u,B+
1g ,B−

1u,E +,E −,Eg ,Eu, E1. The rotational functions are of A+
1g ,A−

2g ,B+
1g ,B−

2g ,Eg

Figure 3.14: Exemplary transformation of two inversion–torsional functions in hydrazine.
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symmetry. Thus, the rotation–inversion–torsional functions are of symmetry:
A+
1g ,A−

2g ,B+
1g,B−

2g ,A−
1u,A+

2u,B−
1u,B+

2u, E + ,E − . Below in Eq. (3.27), an example of a sym-
metrized function is given for J = even and K = odd of A+

1g symmetry:

jA+
1g K ≥0, Jð Þi= 1ffiffiffi

2
p jE +ð Þ

g itwjJ,K −ð Þi+ − 1ð Þ
K − 1ð Þ
2 ijE −ð Þ

g i
tw
jJ,K +ð Þi

	 

jE +ð Þ

g i

= 1
2
j1i− j2i+ j3i− j4i½ �jE −ð Þ

g i= 1
2
j5i− j6i− j7i+ j8i½ �

(3:27)

where jE +ð Þ
g i and jE −ð Þ

g i are vibrational, and jJ,K +ð Þi and jJ,K −ð Þi are rotational
functions.

A phenomenological rotational Hamiltonian operator, H, is built in a way that
it contains symmetry of permitted products of purely rotational operators and coef-
ficients, i.e., functions of the large and small vibrational coordinates. The rovibra-
tional effective Hamiltonian is presented in the following form:

H=
X8
n= 1

Hn =
X8
n= 1

hn + hnjJ2 + hnkJ
2
z + hnjjJ4 + hnjkJ

2J2z + hnkkJ
4
z +

f n J2+ + J2−
� �

+ gn i J2+ − J2−
� �� �

+ qnJz +

dn J4+ + J4−
� �

+ pn i J4+ − J4−
� �� �

+

rn+ J + + rn− J −½ �+ sn+ JzJ + + J + Jzð Þ+ sn− JzJ − + J − Jzð Þ½ �

(3:28)

The sum runs over eight nonsuperimposable configurations of hydrazine.
The subscript n indicates the number of a framework which interacts with the

framework 1. Thus, matrix elements of the Hamiltonian in Eq. (3.28), can be written
in the form h1jHjni, where (n = 1) corresponds to no tunneling motion, i.e., to the
effects within a single framework 1. The (n = 2) term corresponds to inversion of
both NH2 groups, (n = 3) to internal rotation, (n = 4) to inversion of both amino
groups and internal rotation, (n = 5) to inversion of one amino group, (n = 6) to in-
version of the other amino group, (n = 7) to inversion of one of the amino group and
internal rotation, and (n = 8) to inversion the other amino group and internal rota-
tion. According to symmetry, processes (n = 5) and (n = 6) are energetically equiva-
lent, so are (n = 7) and (n = 8). In the end, only matrix elements with n = 1, 2, 3, 4, 5
and 7 should be taken into account explicitly.

The quantities from Eq. (3.28) hnv hnj, hnk, fn, gn, qn, dn etc. represent numerical
constants for a vibrational state of hydrazine. The quantities J and K are the usual
total angular momentum quantum numbers and their projection along the a axis of
the prolate near symmetric top. The Hamiltonian matrix is built from products of
rotational and inversion–torsion function. Eq. (3.29) gives an example:

hinv.torsjqnjinv.torsihrotĵJzjroti (3:29)
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The symmetry allows to reduce all configuration interactions to basic <1|n> (n = 2, 3,
4, 5, 7) interactions and to determine, which of these interactions are zero for every
term in the effective Hamiltonian.

To conclude, the formalism of Hougen [2] was originally developed to account
for the observed microwave spectra of the ground state of hydrazine [119]. A few
years later, this theory was used to assign and fit the spectrum of the torsional
band of N2H4 [121]. It was a test whether the effective Hamiltonian would be also
suitable for a state where the torsional splitting is much higher than in the ground
state. The fitting results were satisfactory as well as in the second torsional state
[122]. The effective Hamiltonian did not succeed in a global analysis of the antisym-
metric amino-wagging band of hydrazine (ν12) [123], although the inversion tunnel-
ing frequency was much smaller than the antisymmetric vibrational frequency and
it could be treated as a high barrier case. It seemed that failure of a global fit was
caused by perturbing states located close to the ν12 state. The antisymmetric band
of hydrazine was reanalyzed a few years later and the effective parameters were cal-
culated separately for each value of K′ using the Hougen-Ohashi phenomenological
Hamiltonian [2], [124]. The same Hamiltonian was used to fit the observed transi-
tions in the N–N stretching band (ν5) of hydrazine [125]. As a result, the effective
parameters were obtained as well as the torsional and inversion splittings. The
most intense bands in the IR spectrum of hydrazine between 700 and 1200 cm−1

were assigned to wagging motions of two NH2 groups [126]. The weaker band ap-
pearing at lower frequency was assigned as symmetric wagging band (ν6) and a
stronger doublet at 933–966 cm−1 as antisymmetric wagging band (ν12) [127]. The
analysis of the symmetric amino-wagging band (ν6) revealed a strong Fermi-type
perturbation between this band and the third excited torsional band (3ν7) [128]. It
turned out that the structure of tunneling splittings was different from the one that
was originally assumed for an unperturbed vibrational state. The best candidate for
a perturber of the ν6 state would be the ν12 state, since it is located very close to the
symmetric wagging and even overlaps partly. According to the results obtained in
work [129], where the effective Hamiltonian for coupling between inversion–torsion
states of hydrazine was studied, only states of the same vibrational symmetry can
interact with each other through anharmonic resonances. The matrix elements for
A–A- and A–B-type interactions were derived, and it was shown that most of the
resulting matrix elements for A-B-type coupling vanish. Thus, the best perturbing
state was concluded the third excited torsional state (3ν7), which is symmetric with
respect to the rotation about the C2 axis of hydrazine and can interact with the sym-
metric wagging state. This is an A–A type of interaction [129] and therefore a Fermi-
type coupling is permitted. One can look back at Figure 3.9, where all three men-
tioned states are presented. Although at the beginning, the third excited torsional
state seemed to be located not close enough in energy to the ν6 state, the torsional
splitting is so strong that its lower part of energy levels can take part in the interac-
tion (a dotted line in Figure 3.9).
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As it turned out later, the 3ν7 state was calculated not that far away from the ν6
state. Unfortunately, no experimental data were available for the 3ν7 and its posi-
tion as well as structure had to be estimated using 3D PES for hydrazine [118].
Applying a rotation–torsion–inversion Hamiltonian, it was possible to reproduce
the inversion–torsional splitting for the J = 0 sublevels. Parameters of the inver-
sion–torsion potential function have been fitted to the band centers and splittings
for the ground, first and second torsional, and symmetric and antisymmetric inver-
sion states of hydrazine (Table 7 in the study by Łodyga et al. [118]). The geometric
parameters were taken from the microwave data, so the predicted position for the
perturber was at 830 cm−1 and for the symmetric inversion state at 780 cm−1. The
theoretical results obtained from the 3D model were used as a starting point for the
subsequent analysis of the dyad symmetric inversion/third excited. The analysis of
the symmetric inversion state is a nice example of how the explicit and effective
Hamiltonians complement each other.

3.6 Floppy molecules applications

Hydrazine is mainly used as a foaming agent in the preparation of polymer foams,
but is also applied as a precursor to polymerization catalysts, pharmaceuticals and
agrochemicals. Besides, it is used in various rocket fuels as well as to prepare gas
precursors for air-bags. Hydrazine is also used as a long-term storable propellant on
board space vehicles, such as the NASA Dawn probe to Ceres and Vesta. The F-16
fighter jet, NASA Space Shuttle and U-2 spy plane use hydrazine to fuel their emer-
gency power units [130]. Hydrazine’s role in pharmacy is a precursor to many phar-
maceutical compounds. It involves conversion of hydrazine to heterocyclic rings
such as pyrazoles or pyridazines. Hydrazine compounds combined with other agri-
cultural chemicals such as insecticides, fungicides or herbicides can be effective in
agriculture.

Many floppy molecules have astrophysical importance. A list of such molecules
is very long, thus we would like to mention just some of them like ammonia, metha-
nol, ethylene, formamide, acetylaldehyde etc. One of such molecules is methyl-
amine, CH3NH2, which is the simplest primary alkylamine. It is considered as a
precursor of the simplest amino acid glycine. It has been detected as a constituent
in the interstellar medium for the first time in 1974 at 3.5 cm [131] and at 3 cm [132]
bands. Interstellar methylamine was also detected in a spiral galaxy with a high
redshift of 0.89 [133] and in cometary samples of the Stardust mission [134]. The
analysis of the molecular dynamics of the interstellar molecules appeared to be nec-
essary for understanding the frequencies and intensities of the observed spectra in
the laboratory and in interstellar space.

Apart from molecules described above, there is a group of large molecules with
conjugated π-systems that play an important role in natural processes and can be
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used in different materials of technological usage [135], [136], [137], [138], [139],
[140]. The structure of these molecules is determined mainly by a balance between
the electronic forces governing the π-system and the steric forces between non-
bonded atoms in the molecule. To such molecules belong, for instance, biphenyl,
benzophenone or cis-stilbene. If the molecules are electronically excited, the forces
responsible for π-system change, and one can notice the difference between the
structures of the ground state and the excited state. The vibrations caused by elec-
tronic excitation are usually considered to be slow and can lead to structural
isomerization. For instance, once cis-stilbene molecule gets relaxed to the ground
electronic state, two parallel photoisomerization reactions take place in its lowest
excited singlet state [141], [142], [143].

Most recent and spectacular application of floppy molecules considers them
as candidates for achieving optoelectronic molecular devices without skeletal rear-
rangement or bond breaking [144]. For this purpose, specific floppy molecules are
used, usually the molecules that consist of two benzene or benzene-like rings, and
which rotate relative to each other. In the paper by Baldea [144], a mechanism is
proposed for the photoinduced switching of such molecules from a nonplanar con-
formation to the planar one with neither skeletal rearrangement nor bond breaking
or significant molecular length changes. Since the planar conformation has a
higher conductance than the nonplanar one, it acts as ON state of the molecular
switch, whereas the nonplanar as OFF state of the molecular switch. To such mole-
cules belong azobenzene or diarylethene. For diarylethene, for instance, the open
and most stable as well as less-conjugated conformation corresponds to a low con-
ductance and it can be considered as the OFF state of the molecule. Once the mole-
cule is exposed to ultraviolet radiation, it is driven from this OFF state to a less
stable closed structure, which is more conjugated and more conducting (ON state of
the switch). Shining with visible light can toggle back the molecule to the insulating
open state [145]. A similar switching between ON and OFF states was observed in
azobenzene [146], [147], [148], [149], [150], where once the molecule is illuminated,
it can switch reversibly from cis to trans conformations. Ultraviolet radiation toggles
the more stable and more conjugated trans isomer into the cis one, which is less
stable and less conjugated. Then shining with visible light toggles back the cis iso-
mer into the trans.

Some molecules adsorbed at interfaces may exhibit unique behavior that can
be very different from molecules in bulk situations [151]. This uniqueness consid-
ered in the context of molecular electronics, can be explained by the fact that in
contrast to the fixed density in bulk cases, molecules in a monolayer self-assembled
(SAM) on a substrate electrode have a density that can be varied and controlled.
SAMs are based on floppy molecules consisting of two rings that can easily rotate
relative to each other. Thus, their molecular conformation can be tuned by varying
the density of the adsorbate.

126 3 Floppy molecules—their internal dynamics, spectroscopy and applications



To conclude, we believe that although dynamics and molecular spectra of mol-
ecules performing large amplitude motions are often very complex, the study of
large amplitude motions will continue to be of great interest to molecular physics,
chemistry or astrophysics in the future.
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4 Computational studies on statins photoactivity

Abstract: Statins are popular drugs widely prescribed to control hypercholesterolae-
mia and to prevent cardiovascular diseases. Synthetic statins constitute a group of
pharmaceuticals which are very sensitive to exposure to light in both UVA and UVB
ranges. Light, by causing drugs degradation, can essentially change their pharma-
ceutical properties leading even to the loss of therapeutic activity and/or to the for-
mation of deleterious photoproducts. Drugs which exhibit photochemical reactivity
may elicit undesired adverse effects. A detailed understanding of mechanisms in-
volved in molecular basis of these effects origin is very important for evaluating the
photobiological risk associated with therapy in which drugs prone to exposure to
light are involved. In this work we critically discussed finding regarding the mecha-
nisms of synthetic statins phototransformation. We showed inconsistency of some
previously reported facts and revised earlier presented studies. We also completed
the lack of information on pitavastatin photobehaviour. This all together resulted in
proposal of new schemes for the statins photodecomposition. We reviewed data de-
rived from both experimental and computational methods. Studies of photochemi-
cal problems by the use of theoretical methods enable getting insight into areas of
some fascinating events that experimental techniques can touch only indirectly.
Besides effect of light, phenomenon of statins’ sensitivity to pH and resulting impli-
cations were discussed. Statins undergo pH-dependent interconversion between
their pharmacologically active hydroxy acid and inactive lactone forms, and it was
shown that for both forms, drugs’ interactions should be considered. Knowledge of
the statins interconversion mechanisms is important for understanding how differ-
ences in the structures of their molecules can affect the drugs’ activity.

Keywords: computational chemistry, HMG-CoA reductase inhibitors, lactonization,
photodegradation, statins

4.1 Introduction

Photostability of drugs became an important topic in the field of pharmaceutical
research. The number of drugs being photochemically instable is steadily increas-
ing, and photoinstability remains one of the major pathways of drugs decomposi-
tion. Photosensitivity of drugs can have severe medicinal consequences, may result
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in potency loss, in altered efficacy as well as in adverse biological effects. This is
because drugs decomposition also involves generation of reactive oxygen species or
energy transfer. These processes can in turn contribute to formation of diverse pho-
toproducts which are able to interact with biomolecules and thus constitute a
source of various side effects. Studies of the mechanisms of photochemical reac-
tions and identification of photodegradation products are essential for establishing
conditions of safe and efficient treatment. They may also provide information on
the mode of stabilization of the active ingredients in a drug product.

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors known
as statins belong to the group of drugs which are susceptible to light exposure.
Lovastatin, pravastatin and simvastatin are derived from fungal metabolites [1], while
fluvastatin (FLV), atorvastatin (ATV), pitavastatin (PTV) and rosuvastatin (RSV)
(Figure 4.1.1) are fully synthetic compounds [2].

Molecules of synthetic statins consist of two structural components; a dihydroxy-
heptanoic or heptenoic acid unit and a central ring system with lipophilic substituents
[3] (Figure 4.1.1). The dihydroxy acid component is essential for the drugs’ activity;
only the linear forms of statins are biologically active; however, in vivo δ-lactone
forms of drugs are enzymatically hydrolysed to the corresponding β-hydroxy acids [4].

Statins act by blocking biosynthesis of cholesterol. This leads to the increase in
the number of high affinity low-density lipoprotein (LDL) receptors and thus LDL and
cholesterol blood levels decrease [2[, [3], [4]. Due to the structural similarity to 3-hy-
droxy-3-methylglutaryl coenzyme A (HMG-CoA), (Figure 4.1), statins competitively in-
hibit HMG-CoA reductase which catalyses the conversion of HMG-CoA to mevalonate,
the rate-limiting step in de novo cholesterol synthesis [5]. Although mechanism of ac-
tion is common for all statins, differences in the compounds’ structures may contrib-
ute to differences in potency of HMG-CoA reductase inhibition [4]. Statins are very
sensitive to light, possess the ability to absorb UV radiations in both UVA and UVB
ranges and exhibit high photochemical reactivity [6], [7], [8],[9], [10]. Upon expo-
sure to light, a variety of drugs can elicit undesired effects such as phototoxicity,
photoallergy or even photocarcinogenicity [11], [12], [13]. To evaluate the photobi-
ological risk of a therapy with photosensitive drug, it is necessary to elucidate the
mechanisms involved. Such mechanisms are often very complex; however, photo-
physical and photochemical studies are important for understanding the key early
events resulting in potential drug phototoxicity.

A very intriguing statins’ feature is also their pH sensitivity in vivo. 3,5-Diol moieties
of the statins’ heptenoic and heptanoic acid side chains undergo reversible pH-depen-
dent lactonization [14], [15]. At the physiological and higher pH, lactone form is unsta-
ble and hydrolyses yielding the β-hydroxy acid form. Under acidic conditions,
intramolecular esterification leads to the formation of lactone. In vivo both forms co-
exist in equilibrium, and it was shown that for both forms, drugs’ interactions should
be considered [16], [17]. Studies on the statins interconversion mechanisms may help in

136 4 Computational studies on statins photoactivity



understanding how differences in the structures of the molecules affect the drugs’
activity.

The primary focus of this review is to critically summarize the recent findings
regarding the statins photodegradation and lactonization. The work mainly deals
with mechanisms responsible for statins’ transformations and includes studies per-
formed with use of computational chemistry methods which often enable to explore
such areas of photochemical processes that experiment can touch only indirectly.

4.2 Photochemistry of rosuvastatin and pitavastatin

One serious consequence of the presence in the synthetic statins’ structures of conju-
gated aromatic ring systems is the compounds’ susceptibility to light-induced decom-
position. In the rosuvastatin molecule, the pyrimidine ring bonded to fluorophenyl
moiety and conjugated with the heptenoic acid side chain constitutes a centre of the
lipophilic unit. In pitavastatin, the pyrimidine ring is replaced by a pyridine one.
Molecules of both compounds contain similar π-electron systems which are involved
in photodegradation processes. Upon exposure to light, the statins undergo photo-
lysis that leads to the formation of analogous sets of photoproducts [6], [9], [11],
[18], (Figure 4.2.1, 4.2.2).

The photochemical behaviour of rosuvastatin in water under solar and UV ir-
radiation was studied by Astarita et al. [18]. The statin was found to decompose

 

Figure 4.1.1: Structures of statins and HMG-CoA. Fluvastatin, rosuvastatin, pitavastatin,
atorvastatin and pravastatin are presented in their linear β-hydroxy acid forms, while simvastatin
and lovastatin in their cyclic β-hydroxy-δ-lactone forms.
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completely after 4 days of exposure to sunlight and after 8 h of irradiation with a
500 W UV lamp. Regardless of the irradiation source formation of the same photoprod-
ucts was confirmed by TLC and NMR analyses. Irradiation of RSV under argon atmo-
sphere resulted in the identification of RSV1 and RSV2. RSV1 (diastereomeric mixture)
was determined as rosuvastatin main and primary photoproduct. Its photostability was
evaluated by irradiation with solar light. After 3 days most of the starting material was
transformed into RSV2 and RSV3 indicating that these compounds are the secondary
photoproducts of rosuvastatin. On the basis of these findings, it was proposed that
photochemical electrocyclization is the main light-induced reaction leading to the for-
mation of RSV1 through undetected intermediate [18], (RSVI1, Scheme 4.2.1). This sug-
gestion was based on the fact that this kind of cyclization is a characteristic reaction
for o-vinylbiphenyl compounds [19], [20] to which rosuvastatin could be considered to
belong. Support for the intermediate formation can be derived from a transient absorp-
tion spectrum of RSV obtained in laser flash photolysis experiments [11]. The spectrum
showed a long-lived individuum that was assigned to the intermediate of RSV cycliza-
tion. The intermediate associated with RSV cyclization must be considered as a mix-
ture of two diastereomeric 8a,9-dihydrophenanthrenes. Each of them contains a
novel stereogenic centre. Due to loss of aromaticity, these intermediates are unstable
and undergo a thermal intramolecular [1], [5] sigmatropic hydrogen shift to yield two
diastereomers of RSV1. Absolute configurations (Figure 4.2.3) of the diastereomeric
photoproducts in the forms of their lactones were determined by combination of cal-
culation method with data obtained from spectroscopic and spectrometric studies [6].

RSV2 and RSV3 were proposed to arise from benzylic radical (RSVI2, Scheme
4.2.1), generated by photo-induced cleavage of the bond between the heptenoic
acid side chain and the carbon atom of the RSV1 newly formed ring [18]. RSV2 can
be afforded by abstraction of a hydrogen radical from a side-chain radical fragment
or other surrounding molecule, while RSV3 can be formed by the loss of hydrogen
radical. RSV3 was also thought to be produced by photooxidation of RSV2; how-
ever, this hypothesis was not verified by experimental studies. Alternatively, both
secondary photoproducts of RSV were assumed to arise from the benzylic radical
disproportionation [18] (Scheme 4.2.1).

Figure 4.2.1: Structures of rosuvastatin photoproducts.
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Interesting results were provided by investigations aimed at photobehaviour of
RSV1 [11]. It was found that deactivation pathways of singlet excited state of the
compound may occur via fluorescence, phosphorescence or intersystem crossing.
Moreover, laser flash photolysis studies revealed a triplet–triplet energy transfer
from the RSV1 triplet excited state to thymidine, resulting in the formation of the
nucleoside cyclobutane dimers. Investigations of RSV1-mediated oxidation charac-
ter performed with the using of tryptophan indicated that an electron transfer pro-
cess giving rise to the tryptophanyl radical as well as singlet oxygen-mediated
oxidation takes place [11].

Findings regarding photophysical characterization of RSV and pathways sug-
gested for its photochemical transformation as well as photoproducts formation are
summarized in Scheme 4.2.2.

Phototransformation of pitavastatin was examined by Grobelny et al. [9]. The stud-
ies resulted in identification of four photoproducts, whose structures were suggested
on the basis of HRMS spectra obtained for these compounds [9] (Figure 4.2). Due to
similarities in structures of the respective RSV and PTV photoproducts, it seems that
analogous mechanisms are responsible for both statins photodegradation. However,
the lack in the scientific literature of comprehensive studies devoted to the statin pho-
tobehaviour made impossible to verify this thesis. For this reason, recently in our labo-
ratory, studies aimed at clarifying photophysical and photochemical properties of

Figure 4.2.2: Proposed structures of pitavastatin photoproducts.

Figure 4.2.3: Absolute configuration of two diastereomers of RSV1 in the form of lactones.
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pitavastatin were undertaken [21]. Our attention was focused on elucidating mecha-
nisms responsible for pitavastatin primary photoproducts formation. In our investiga-
tions both experimental and computational methods were used.

On the basis of data obtained from transient absorption spectroscopy, it was
found that PTV in its excited singlet state (1PTV*) undergoes an intersystem crossing
yielding the excited triplet state 3PTV* which was, however, generated with a low
efficiency due to the fact that the statin exhibits fluorescent properties. This finding
was confirmed by nanosecond laser flash photolysis (LFP).

LEP revealed also that long-lived intermediate (most likely I1a or I1b) is formed
directly from PTV being in its excited singlet state. This intermediate was supposed
to be a precursor of PTV primary photoproduct 1a (or PTV1b, see Scheme 4.2.3). On

Scheme 4.2.1: Mechanisms proposed for RSV photoproducts formation.
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the basis of these results, it can be concluded that upon excitation PTV yields both
singlet and triplet states, which undergo different, parallel reactions.

Interestingly, PTV was shown to generate the triplet state. This finding confirms
that PTV being in its excited singlet state undergoes not only conversion to the in-
termediates I1a/I1b, but also an intersystem crossing to the excited triplet state
(Scheme 4.2.3). This observation is in the perfect agreement with the results ob-
tained from studies performed using nanosecond LFP and femtosecond transient
absorption spectroscopy techniques. Determination of quantum yield of 1O2

* gener-
ation by PTV was challenging because formation of the primary photoproduct was
observed immediately after exposure of the statin solution to the light. However,
the initial value of the yield was estimated to be 0.33 ± 0.03. Moreover, it was found
that singlet oxygen is generated not only by PTV but likely also by a photoproduct
1a (or 1b) formed in the photoreaction [21].

The structure of PTV primary photoproduct (PTV1a, Figure 4.2.2) was previously sug-
gested by Grobelny et al. We assumed the structure, but also proposed an alternative
one (1b, Figure 4.2.4). This proposition was made basing on the fact that in the literature

Scheme 4.2.3: Photochemical transformation of pitavastatin [21].

Scheme 4.2.2: Photochemical transformation of rosuvastatin and its primary photoproduct.
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there are examples of different organic systems containing cyclopropane ring which are
thermally and photochemically instable [22].

In silico studies revealed that the structure 1b is characterized by about 15 kcal/mol
lower energy comparing to the 1a. Formation of 1b was considered by mechanism
via diradical species (Scheme 4.2.4) in triplet and/or singlet state

Mechanisms of both compounds, 1a and 1b formation were examined by the
use of quantum-chemical methods. The details can be found in the reference [21].

4.3 Photochemistry of fluvastatin

Photobehaviour of fluvastatin is determined by the presence in its molecule of
π-electron system derived from indol ring bonded to fluorophenyl moiety and con-
jugated with the acid side chain. Photostability of FLV was examined in water as
well as in methanol solutions, upon exposure to solar and UV irradiation generated
by a 500 W high-pressure Mercury lamp [7] and two HPW 125 Philips lamps [12], and
the statin was found to exhibit high photochemical reactivity expressed by formation
of a range of photoproducts (Figure 4.3.1).

Scheme 4.2.4: Mechanism of 1b formation [21].

Figure 4.2.4: An alternative structure proposed for pitavastatin primary photoproduct.
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However, reports on the FLV photostability are inconsistent. Investigations of
Mielcarek et al. resulted in the identification of Z-isomer of fluvastatin and FLV1
(Figure 4.3.1), as two photoproducts detected after 2 min of exposure to light at
λ = 365 nm [23, 24]. It should be noted that formation of these compounds was deter-
mined only on the basis of HPLC-MS studies. In the work of Cermola et al., the FLV1
was also found to be fluvastatin degradation product. However, the study refers to
results received after 1 h of the statin exposure to light at λ > 300 nm and under
these conditions formation of additional to FLV1 photoproducts was reported [7]
(Figure 4.3.1, FLV2-FLV5). Moreover, the authors did not propose fluvastatin Z-isomer
to be involved in the drug photodecomposition and found that FLV1 was the only
photoproduct formed under argon atmosphere. In their study photostability of FLV1,
FLV3 and FLV4 was also evaluated by irradiating of these compounds for 4 h with
UV light (λ > 300 nm). On the basis of NMR analysis, the authors indicated that FLV1
was converted to FLV3, FLV4 and FLV5, while FLV3 and FLV4 were stable under the
applied conditions. Prolonged irradiation of FLV3 and FLV4 resulted in the slow de-
composition of the former compound, while FLV4 remained unchanged. One can re-
flect on the fact why FLV2 was not subjected to stability studies. The photoproducts’
structures presented by Cermola et al. were determined by spectroscopic methods.
Fluvastatin photodegradation was investigated also by Viola et al. with respect to the
drug phototoxicity. In their study formation of almost the same set of photoproducts
as reported by Cermola et al. was observed except FLV3 which was not identified [12].

Recently, the detailed kinetic studies on fluvastatin photodegradation were un-
dertaken by our research group. We focused our attention on fluvastatin primary pho-
tochemistry and applied both experimental and computational methods to get insight
into the possible mechanisms responsible for the drug photoproducts formation [25].

Figure 4.3.1: Structures of fluvastatin photoproducts.
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Upon a few seconds of exposure of air-saturated aqueous solution of FLV to UV light
(355 nm, OPSL CW laser, 10 mW reaching the sample), a significant decrease in ab-
sorption was observed suggesting the statin fast photodegradation. After 60 s of irra-
diation with light at λ = 355 nm and 10 mW power, FLV1 and two diastereomers of
FLV2 (FLV2a, FLV2b) were identified as FLV primary photoproducts. Using transient
absorption spectroscopy technique, a transient individuum assigned to the intermedi-
ate state 1FLVI1* (Scheme 4.3.1) was observed. It was also found that generation of
singlet oxygen is not involved in the drug photodecomposition indicating that the ex-
cited triplet state of fluvastatin is not populated efficiently. On the basis of these find-
ings, we proposed the scheme for FLV photochemical transformation (Scheme 4.3.1).
This scheme shows that in the excited S1* state fluvastatin can afford FLV1 but can
also yield an intermediate 1FLVI1* which under anaerobic conditions can be converted
back to FLV but may also undergo intersystem crossing forming 3FLVI1*. This inter-
mediate exhibits a lifetime sufficiently long to undergo reaction with oxygen yielding
FLVI2, then FLVI3 and finally two diastereomers of FLV2.

Based on the literature data referring to photochemical behaviour of o-vinylbiphenyl
compounds, Cermola et al. suggested pathways expected for fluvastatin photoprod-
ucts formation. FLV1 was assumed to be formed by photochemical electrocycliza-
tion followed by a thermal sigmatropic [1], [5] hydrogen shift, the mechanism
analogous to that presented in scheme 1 for formation of RSV1. We investigated this
mechanism theoretically using the density functional theory (DFT) methods and
our studies support this mechanism. We found and analysed two reaction pathways
for cyclization leading to FLV1 formation in which two fluvastatin conformers dif-
fering in the orientation of the acid side chain with respect to the fluorobenzene ring
are involved [25]. The pathway in which fluvastatin conformer with the heptenoic

Scheme 4.3.1: Fluvastatin photochemical transformation.
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acid chain situated in front of the fluorobenzene ring is involved was proposed to
be the favourable reaction route because this conformer was characterized by ca.
7 kcal/mol lower relative energy compared to the second possible one having the
acid chain placed behind the fluorobenzene ring [25]. To get a deeper insight into
the mechanism leading to the formation of FLV1, we performed further calcula-
tions in order to find avoided crossings or conical intersections between ground
and excited states. The obtained results suggest that indeed after FLV is excited, it
relaxes its geometry and may then through CI/AC reach the geometry of the
ground state TS1 structure and further intermediate A.I1 (Figure 4.3.2).

It was proposed that diastereomeric FLV2a and FLV2b are formed by oxygen addition
to fluvastatin followed by rearrangement of the resulted diepoxidic intermediate [7]. It
was also suggested that singlet oxygen is involved in the fluvastatin photooxygenation,

Figure 4.3.2: Energy profile of mechanism for A.I1 formation – an intermediate leading to FP1
formation (pathway A). The red rectangle presents the energy profile of mechanism for A.I1 model
fragment formation [25].
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but it was not excluded that other oxygenating species instead of singlet oxygen
are responsible for the diepoxide generation. Contrary to these suggestions, we
found that the lifetime of the excited singlet 1FLV* was too short for the reaction
with oxygen (or any other efficient bimolecular reaction); therefore, we proposed
entirely new mechanism for arising of FLV2 (Scheme 4.3.2).

This mechanism assumes valence isomerization of fluvastatin and formation of the
intermediate FLVI1 which is involved in photooxygenation leading to FLV2a and
FLV2b. This mechanism is in good agreement with experimental data which indi-
cate that the transient absorption does not decay to the initial value confirming the
existence of a relatively long-lived species (FLVI1) that is able to undergo a bimo-
lecular reaction. DFT calculations showed that from two possible routes for reaction
with oxygen, addition up to the flat intermediate FLVI1* ring was energetically more
favourable [25].

Formation of FLV3, FLV4 and FLV5 was proposed as depicted in Scheme 4.3.3.

4.4 Photochemistry of atorvastatin

Atorvastatin (ATV) molecule contains pyrrole ring having two phenyl substituents,
and π-electron system of these moieties is the major factor that determines photo-
reactivity of the statin.

It was reported that sunlight irradiation of atorvastatin aqueous solution leads
to the formation of four photoproducts (ATV1–ATV4, Figure 4.4.1), those structures
were elucidated by NMR and MS techniques [8].

Scheme 4.3.2: Mechanisms proposed for FLV2 formation [26].
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The obtained results indicate that photoproducts ATV1 and ATV2 arose from oxi-
dation of the pyrrole moiety followed by an alkyl or an aryl shift with a lactam ring
formation. ATV3 is a lactone form of ATV2 yielded by lactonization of the γ-hydrox-
yacid chain, while ATV4 is the ATV2 derivative afforded by photochemical electro-
cyclization followed by oxidation under aerobic conditions of an initially formed
intermediate. The same photoproducts were shown to be formed upon ATV exposure
to UV irradiation generated by a 500 W high-pressure Mercury lamp [8]. Oxygen in-
volvement in the ATV phototransformation was confirmed by the fact that the drug
left unaltered after irradiation carried out under argon atmosphere. Results of ATV
photodegradation studies performed in the presence of radical inhibitor, singlet oxy-
gen quencher and singlet oxygen sensitizer suggested that the drug may undergo
singlet oxygen–mediated photooxygenation [8]. On the basis of these findings and
literature data, Cermola et al. proposed a plausible mechanistic explanation of ATV1
and ATV2 formation [8] (Scheme 4.4). As it is shown in the scheme, energy transfer

Scheme 4.3.3: Mechanisms proposed for FLV3, FLV4 and FLV5 formation.
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from the excited ATV molecule to oxygen gives rise to singlet oxygen which may un-
dergo addition to the ATV pyrrole moiety yielding intermediates ATVI1a and ATVI2a
which evolve to oxiranes ATVI1b and ATVI2b. ATV1 and ATV2 are formed after mi-
gration of aryl and alkyl group respectively. It should be stressed that the oxiranes
were not detected in experimental studies, and this fact was explained by probable
rearrangement of ATVI1b and ATVI2b to the corresponding carbonyl compounds [8].
Support for involvement of the oxiranes in ATV oxidation was provided by using di-
methyldioxirane, a known epoxidizing agent for various unsaturated compounds, in
reaction with ATV. Indeed after 4 h, ATV1 and ATV2 were detected in the reaction
mixture [8].

Findings reported by Cermola et al. were evaluated in the later study which dealt
with ATV photophysical properties [13]. To elucidate mechanism of ATV photolysis,
steady-state and time-resolved spectroscopic experiments were performed to get in-
sight into generation and behaviour of ATV-related excites states [13]. Transient ab-
sorption spectrum obtained from LFP studies exhibited two maxima at λ = 360 and
580 nm, and monoexponential decay (τ = 41 μs), on which oxygen had no significant
influence. Based on these observations it was concluded that the detected long-lived
individuum does not correspond to the triplet–triplet transition of ATV, and the drug
direct involvement in singlet oxygen generation was ruled out. Taking into account
these results and considering atorvastatin photochemistry, the transient spectrum

Figure 4.4.1: Structures of atorvastatin photoproducts [26].
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was assigned to trans-dihydrophenanthrene, the intermediate (ATVI3, Scheme 4.4.2)
of the stilbene-like photocyclization.

This assignment is in agreement with the literature data [27], [28] which show
that absorption spectra of related species exhibit two maxima in the region 300–360
and 440–640 nm, and with the earlier reported ATV photoreactivity resulted in isola-
tion and structural characterization of ATV4 [8]. Photochemical formation and behav-
iour of ATV4 were investigated in detail, and ATVI4 (Scheme 4.4.2) was proposed to

Scheme 4.4.1: Mechanistic explanation of ATV1 and ATV2 formation [26].
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be a real (first-stage) singlet oxygen sensitizer which after self-sensitization would be
oxygenated to ATV4 [13]. This hypothesis was confirmed by photolysis of ATV in dea-
erated methanol in the presence of iodine as oxidant. Under these conditions forma-
tion of ATVI4 was detected by HPLC-MS analysis. However, due to the intermediate
nonpersistence caused by its instability under air, ATVI4 seems to be a very poor
photosensitizer, while ATV4 appears to be a good candidate for such activity. Indeed
the ability of ATV4 to sensitize singlet oxygen was confirmed by spin trapping experi-
ments, through conversion of TEMP (2,2,6,6-tetramethylpiperidine) to the stable free-
radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl). Thus, it was demonstrated
that ATV4 behaves as an efficient singlet oxygen photosensitizer giving rise to oxida-
tion of biomolecules (for example, tryptophan) and also atorvastatin [13]. Oxidation
of ATV leads to the formation of ATV1 and ATV2 and is in agreement with the nature
of the steady-state photolysis products, resulting from photooxidation of the pyrrole
moiety [8].

On the basis of all these results, scheme illustrating ATV photochemical trans-
formations can be proposed (Scheme 4.4.3).

Scheme 4.4.2: ATV photocyclization leading to the formation of intermediate ATVI3.

Scheme 4.4.3: Atorvastatin photochemical transformation.
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Photochemistry of ATV was also evaluated with respect to influence of the
phenolic hydroxyl group of ortho hydroxy atorvastatin metabolite [29] (ATV-OH,
Figure 4.4.2). Based on similarity between the transient absorption spectra obtained
for ATV and ATV-OH, and on the finding that, like for ATV, transient absorption of
ATV-OH was not quenched by oxygen, it was concluded that the same kind of inter-
mediates are formed upon direct excitation of ATV and ATV-OH [29]. It was also dem-
onstrated that singlet oxygen reactivity towards ATV-OH is almost the same like for
ATV indicating that the presence of the ATV-OH phenolic group does not affect the
reaction. This fact was explained by the results of theoretical calculations which
showed that introduction of the hydroxyl group to ATV structure did not change its
electron density [29].

4.5 Effect of pH

Statins undergo pH-dependent interconversion between their pharmacologically ac-
tive hydroxy acid and inactive lactone forms, both forms are found in human
plasma after the drugs administration [14], [15], [30], and in case of many statins
the lactone form is as abundant as the hydroxy acid form [16], [17]. Moreover, most
of the metabolites of statins present in human plasma were hypothesized to be gen-
erated by interconversion of lactone metabolites which are formed by CYP3A4 [17]
(cytochrome P450). Crystal structures of the catalytic portion of human HMG-CoA
reductase bound to six different statins clearly indicate that linear forms of statins
are predisposed for binding to the enzyme, as the terminal carboxylate group forms
salt bridges with Lys692 and Lys735, while the δ hydroxy group serves as a charge-
assisted hydrogen bond donor to Glu559 and as a hydrogen bond acceptor from
Lys691 [4], [31]. Although only the linear forms reduce cholesterol levels, drug inter-
actions should be considered for both acid and lactone forms of statins as these
forms exhibit different behaviour in terms of inhibitory effects on CYPs metabolic
activities and MDR1 (multidrug resistance protein 1) transporting activity [16], [17].

Figure 4.4.2: Atorvastatin ortho hydroxy metabolite.
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Indeed atorvastatin and rosuvastatin in their acid forms have no or minimal effects
on CYP2C9 or CYP3A4/5 activities, while their lactone forms were elucidated to in-
hibit CYP2C9 or CYP3A4/5 activities, and reported drug interactions of these statins
were explained by the action of their lactone forms generated in the body, not by
that of the acid forms present in the medicines [16]. The lactone forms of statins are
more lipophilic than the corresponding acid forms, and the lipophilicity is thought
to be one of the important factors having impact on the inhibitory effects [16]. This
is not surprising as the affinity for CYPs is defined by lipophilicity [16].

The kinetics of the interconversion and the equilibrium between these two
forms were studied experimentally as a function of pH, buffer concentration and
temperature at a fixed ionic strength of 0.5 M for the case of atorvastatin [32]. The
dependence of the observed rate constants for lactone formation and hydrolysis, k1
and k2, respectively, and the associated equilibrium constant, Keq, on pH is pre-
sented in Table 4.5.1.

It was showed that the acid-catalysed reaction is reversible (Scheme 4.5.1), while
the base-catalysed can be treated as an irreversible process [32]. At pH < 6, an equi-
librium favouring the hydroxy acid form was established, whereas at pH > 6 the
equilibrium was not detectable and greatly favoured the hydroxy acid form [32].
The acid-catalysed lactone hydrolysis of several HMG-CoA reductase inhibitors in-
cluding lovastatin and simvastatin was studied earlier at pH 2, and reversibility of
the process was demonstrated [33].

Table 4.5.1: The pH dependencies of the rate constants for lactone formations (k1) and hydrolysis
(k2) and the associated equilibrium constant (Keq) at 80 °C and μ = 0.5 M [32].

Reaction medium pH k k Keq

HCl . .a .a .a

HCl . . . .
HCl . . . .
Formate buffer . . × 

−
. × 

−
.

Formate buffer . . × 
−

. × 
−

.
Formate buffer . . × 

−
. × 

−
.

Acetate buffer . . × 
−

. × 
−

.
Acetate buffer . . × 

−
. × 

−
.

Acetate buffer . . × 
−

. × 
−

.
Phosphate buffer . . × 

−
. × 

−
.

Phosphate buffer . – . –
Phosphate buffer . – . –
Borate buffer . – 

a,b –
Borate buffer . – 

a,b –
Borate buffer . – 

a,b –

a Extrapolated from the corresponding Arrhenius relationship.
b Buffer catalysis was observed, and these values represent the buffer-independent rate constants.
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The lactonization-hydrolysis mechanism of atorvastatin was later investigated
theoretically using the DFT method and the obtained results fully supported the pre-
viously reported findings [31]. Four reaction pathways connecting both forms of the
statin were found and analysed. Interconversions under acidic conditions as one-step
processes were determined as unfavourable under physiological conditions due to
high (35 kcal mol−1) activation energy barriers [31]. Other reaction pathways with no
intermediates were characterized by significantly lower activation energy barrier.
Thus reaction leading from the hydroxy acid form of atorvastatin to the correspond-
ing lactone form went through energy barrier of about 19 kcal mol−1. The reverse reac-
tion was endoergic and had activation energy barrier of 23 kcal mol−1 [31]. The overall
equilibrium in the presence of carboxylic acid was slightly shifted towards the lacto-
nization (exoergic reaction), which is in agreement with the experimental data.
Under basic conditions the hydroxy acid form was found to be much more stable.
The activation energy barrier calculated for the hydrolysis reaction was less than
10 kcal mol−1, while for the lactone formation it nearly amounted to 28 kcal mol−1

[31]. Shifting of the lactonization-hydrolysis equilibrium towards the atorvastatin car-
boxylate salt is in line with the experimental findings [32, 33].

The mechanism of the hydroxy acid–lactone interconversion of fluvastatin under
both acidic and basic conditions was also subjected to theoretical studies [34]. Similar
to the case of atorvastatin, one-step, direct interconversion between these two forms
observed in an acidic environment occurred to be unfavourable due to the high acti-
vation barrier (>40 kcal mol−1) [34]. Other obtained pathways presented more proba-
ble solutions. The activation barriers under acidic conditions were slightly higher
than for atorvastatin (22 leading towards lactone and 28 kcal mol−1 for the reverse re-
action) [31]. Under basic conditions the activation energy barrier for the hydrolysis
was significantly lower (9 kcal mol−1) than for the reverse reaction (28 kcal mol−1)

Scheme 4.5.1: Proposed mechanism for the acid-catalysed lactonization of the hydroxy acid form
and acid-catalysed hydrolysis of the lactone form of atorvastatin [32].

4.5 Effect of pH 153



resulting in shifting the equilibrium towards the hydroxy acid form [34]. Results ob-
tained from the DFT-based investigation of the hydroxy acid–lactone interconversion
of fluvastatin also fully supported findings derived from experimental measurements
on the pH-dependent character of the reaction.

Results of the theoretical studies performed for atorvastatin and fluvastatin sug-
gest that in basic conditions the lactone form of the former is less stable by about
18 kcal mol−1. Moreover, activation energy barriers for hydrolysis were found in
vacuo to be 6 and 10 kcal mol−1 for FLV and ATV, respectively [31, 34]. In the mildly
acidic conditions the energy span of the lactonization reaction was slightly smaller
for ATV (about 19 kcal mol−1) compared to that for FLV (22 kcal mol−1). This is most
likely due to the more flexible dihydroxy acid side chain of ATV. The lack of a double
bond between carbon atoms in this chain causes the molecule of ATV to be more flex-
ible than the molecule of FLV. Thanks to its flexibility and lower activation barriers
for lactonization and hydrolysis reactions, the ATV molecule can adopt more chemi-
cal structures and conformers more easily than FLV [31].

4.6 Summary and conclusions

Statins, since their discovery in the 1970s by Japanese microbiologist Akira Endo,
have become popular drugs widely prescribed to control hypercholesterolaemia and
to prevent cardiovascular diseases [35], [36], [37]. This is due to their high effective-
ness and relatively few side effects. These compounds, however, especially synthetic
statins whose molecular structures are based on conjugated bonds systems, are very
prone to exposure to light in both UVA and UVB ranges. Among the synthetic statins,
rosuvastatin, atorvastatin and fluvastatin exhibit phototoxicity which is thought to be
mediated by their photoproducts formed according to common mechanism that as-
sumes photochemical electrocyclization followed by sigmatropic hydrogen shift [7],
[11], [13]. Statins of natural origin, although not being chromophores of UVA, strongly
potentiate the UVA-induced damage towards cultured human keratinocytes [38].

In this work, on the basis of the data derived from both experimental and compu-
tational methods, we critically discussed finding regarding the mechanisms of syn-
thetic statins phototransformation. We showed inconsistency of some previously
reported facts and revised earlier presented studies. We also completed the lack of
information on pitavastatin photobehaviour. This all together resulted in proposal of
new schemes for the statins photodecomposition.

We also discussed the phenomenon of statins’ sensitivity to pH and resulting im-
plications. Apart from being used to treat lipid disorders, statins were shown to ex-
hibit activities promising for the fight against other diseases [39, [40], [41], [41], [44].
Together with development of new therapeutic targets, interactions with other drugs
deserve particular attentions. In this context influence of pH on statins’ structures
and properties should be carefully considered in order to understand the impact of
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structural differences on the drugs’ activity and to predict the possible drug interac-
tions which are important determinants of safety for patients.
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Maciej Staszak

5 Artificial intelligence in the modeling of chemical
reactions kinetics

Abstract: The work presents a selection of recent papers in the field of modeling
chemical kinetics by the use of artificial intelligence methods. Due to the fact that
kinetics of the chemical reaction is the key element of industrial reactor design and
analysis, the work is focused on the presentation of the quality of modeling, the
assembly of neural network systems and methods of training required to achieve
acceptable results. The work covers a wide range of classes of chemical processes
and modeling approaches presented by several authors. Because of the fact that the
methods of neural networks training require huge amounts of data, many approaches
proposed are intrinsically based on classical kinetics modeling like Monte Carlo
methods, quantum ab initio models or classical Arrhenius-like approaches using
mass balance rate equations. The work does not fully exhaust the area of artificial
intelligence because of its very broad scope and very fast evolution, which has
been greatly accelerated recently. However, it is a contribution to describing the
current state of science in this field.

Keywords: artificial neural network, chemical kinetics, machine learning

5.1 Concise and brief description of the artificial intelligence
methods

Machine learning (ML) is a subset of artificial intelligence (AI), which provides sys-
tems with the ability to automatically learn and improve the expected response in
terms of modeling, based on experimental, training data [1]. Deep learning is a subset
of machine learning that uses neural networks to analyze various factors in a similar
way to the human learning process (Figure 5.1). The key idea of ML is that it is possi-
ble to create algorithms that execute the learning process using training data and cre-
ate predictions and generalizations based on it. The AI system is at the most basic
level built of neural networks, which in turn are built of neurons, connected by
weights and typically formed into layers.

Machine learning systems are trained on properly prepared sets of samples,
measurements, experiments which are formed as sets of data [2]. The selection of
specific characteristics of the material presented to the learning process is an
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important, preliminary element of learning. The main goal is to present the data
properly and to extract the most influential parameters due to the course of the pro-
cess analyzed. It is an important element in the case of supervised learning, when
there are teaching data and data set separately for validation of the taught network.
During the learning process, the neural network learns, i.e., it conducts conver-
gence to the right solution. The validation set is then used to take the appropriate
test of the quality of the learning achieved. In the case of unsupervised learning,
networks are taught using unmarked input data. The algorithm of unsupervised
learning is designed to see patterns and relationships on its own.

It is possible to realize the learning process using different algorithms. Depending
on the algorithm, the accuracy or speed of convergence is different. It is possible to
combine different algorithms in order to achieve better results, it is team learning.
There are a number of approaches based on how neural networks are taught. Machine
learning algorithms are usually divided into four groups (Figure 5.2): supervised learn-
ing [3], unsupervised learning [4], semi-supervised learning [5] and reinforcement
learning [6].

The process of supervised learning consists of presenting the data of the training
agent, which contains the input information and the required output response. The
network that has passed the learning process is then tested using a validation kit that
checks whether the learned attribute or property is correct. If training outcomes are
unsatisfactory, the learning process is repeated; either using the networks modified
learning settings or using additional data. The learning process continues until the
model reaches the desired accuracy level of the learners’ data. This type of learning is
commonly used for classification and regression. During unsupervised learning, only
data is presented without additional information about the requirements for the ex-
pected solution or learning result. This is to enable the neural network to search for
patterns independently. Unsupervised learning is often used to divide data into groups
according to similarity. Unsupervised learning is used for in-depth data analysis.

Figure 5.1: The framework of artificial intelligence approaches.
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Many times the neural network has the ability to recognize patterns that are unnotice-
able to people because of the inability to process such large amounts of numerical
data. The operator does not know a priori what he is trying to find, but surely there
are some patterns and the system can detect them. Semisupervised algorithms imple-
ment the learning process of neural networks, so that the input data is a mixture of
marked and unmarked samples. The neural network is designed to find hidden pat-
terns that will allow you to organize the data and make predictions on your own with
some requirements for the expected result. Reinforcement learning on the other hand
is an ML area that involves taking appropriate action to maximize rewards in a given
situation. It is used to find the best possible behavior or to determine the path to take
in a specific situation. Reinforcement learning differs from supervised learning in that
in supervised learning, the learners’ data are marked accordingly, i.e., they have a
matching answer key, while in reinforcement learning no answer key data is used, but
the procedure of reinforcement learning decides what to do to perform a given task.
In the absence of a set of training data, it is obliged to learn from its experience.
Reinforcement learning is the process of making decisions in a sequential way. This
means that the state at the output of the neural network depends on the state of the
current input, and the next input depends on the output of the previous step.

Figure 5.2: Types of machine learning methods.
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5.2 Kinetics of chemical reactions in industrial applications

One of the central elements of the chemical reaction nature is how fast it runs. The
research on the kinetics of chemical processes has been conducted for a long time
and in classical approaches addresses the problem in the form of appropriate math-
ematical equations. Kinetics, in other words, the rate of chemical reaction, is typi-
cally described by well-known models: power law, Langmuir–Hinshelwood [7],
Eley–Rideal [8], Mars–van Krevelen [9] or Michaelis–Menton [10] to name just the
most popular (see Table 5.1). In some cases researchers may also use own approaches
specified and suited precisely to select chemical reaction system, many times it is a
closed form or some analytic expression for black-box model which renders the na-
ture of chemical reaction kinetics without explaining its mechanism.

Table 5.1: Selection of most common kinetic models used for chemical reactions.

Name Model Description

Power law r = −
dC
dt

= kCn General kinetics typical for homogenous
reactions;
k – rate constant,
n – exponential coefficient, sometimes
stoichiometric one.

Langmuir–
Hinshelwood

r = −
dCA

dt
= kC2

S
K1K2CACB

1+K1CA +K2CBð Þ2
General kinetics for superficial reactions, two
reactants A and B adsorb and react at a surface;
CS – is the concentration of all sites,
Ki – adsorption constant,
k – rate constant.

Eley–Rideal r = −
dCA

dt
= kCSCB

K1CA

K1CA + 1
General kinetics for superficial reactions, one
reactant A adsorbs and reacts with other in the
fluid phase;
CS – is the concentration of all sites,
Ki – adsorption constant,
k – rate constant.

Mars–van
Krevelen

r = −
dC
dt

= kredC
n1 · koxCn2

kredC
n1 + koxC

n2
Oxidation, hydrodesulfurization, NOx removal;
kred – reduction rate constant,
kox – oxidation rate constant,
ni – parameters

Michaelis–
Menton

r = −
dC
dt

= rmaxC
KM +C

Enzymatic reactions;
rmax – maximum feasible rate,
KM – Michaelis constant.
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Anyway, the mathematical formulation of kinetic model is required to calculate
the time evolution of reactants concentrations. From a design point of view, kinetics
is of fundamental importance when estimating the volume and/or shape of the
chemical reactor. Also the knowledge of kinetics is particularly important when de-
signing reactor control systems.

In addition to mass law effect presented, rate of chemical reaction can change
under pressure. The rate coefficients and the products of many reactions running in
the gaseous phase and at high temperatures change when an inert gas is added to
the reaction mixture. The effects of such processes are called fall-offs. These phe-
nomena are caused by exothermic or endothermic reactions occurring faster than
the heat transfer process, which means that the reacting molecules do not have
Boltzmann energy distribution. Increased pressure increases the rate of heat trans-
fer between the reacting molecules and the rest of the system, which causes the
fall-off effect to decrease. The values of rate constants k are typically estimated by
researchers in the temperature-dependent form of Arrhenius equation with fre-
quency and beta factor, and activation energies provided.

From the industrial point of view, the kinetics of the chemical reaction is a key
data necessary for design, analysis and optimization tasks. In classical design meth-
ods, the knowledge of reaction kinetics allows to determine the required volume of
reaction volumes, either in zero-dimensional approach as for a tank reactor or in
one-dimensional approach in case of column or tubular apparatus. In the increas-
ingly used finite element methods such as computational fluid dynamics (CFD), the
knowledge of the chemical reaction kinetics allows to design the appropriate reactor
geometry and optimize it in terms of performance or operating time under given con-
ditions. It follows that the ability to calculate source expressions of balance equa-
tions is crucial and the calculation time plays a very important role here. In many
cases, taking into account the course of a chemical reaction whose rate, and thus
time constant, is significantly different from the rates of other concurrent processes,
makes the problem poorly or ill conditioned from a numerical point of view. Such a
negative effect of solving stiff numerical problems, causes that the time required to
get a solution to the design or optimization task increases significantly, even when
using computers with very efficient architecture. In order to remove such problems,
researchers look for solutions and possibilities in the field of machine learning.

5.3 Reasons for artificial intelligence models use in chemical
kinetics

Taking into account the fact that classical kinetic models are sufficient, it would
seem that there is no greater need to model the paths and rates of a chemical reaction
using other methods. Artificial neural network methods do not explain the arising
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phenomena, but only present them in the form of black-box responses. However,
classical models, even those containing physicochemical interpretable constants of
rate or equilibrium constants, provide opportunities to perform wide generalization.
When deep machine learning techniques are used, additional possibilities of creating
more general models, capable of predicting the paths of reactions for which they
were not originally trained, open up. The ability of an artificial neural network to
learn a single kinetics for a selected reaction would not contribute much to design or
research applications. On the other hand, the ability to create generalizations, to find
distant relationships, and to bind apparently distant processes and phenomena makes
it possible to create a single neural network, using deep learning, that would not only
be able to give an answer about the reactions it learned in the course of training but
also about those it did not know originally. Such broadly conceived deep machine
learning has only become available in recent years, mainly due to the enormous ad-
vances in computer hardware. Deep learning requires a huge amount of computational
effort, which until a few years ago was not widely available. An additional benefit of
using artificial neural networks is that it is a kind of data storage, understood as knowl-
edge of the kinetics of various chemical reactions compressed in the form of weights
on the dendrites of neurons of the artificial network. Existing machine learning plat-
forms bring artificial intelligence models to common use, not only in industrial or aca-
demic applications but especially in common homebrew applications. MLNET
framework [11] from Microsoft, TensorFlow [12] from Google or Keras [13] from Open-
ended Neuro-Electronic Intelligent Robot Operating System (ONEIROS) project to name
only a few, allow not only to create deep learning systems on their own but also to
exchange already trained network models between users. Collections of pretrained arti-
ficial neural networks operate using Open Neural Network Exchange (ONNX) format
[14], which constitutes so called open AI ecosystem, are widely understood (in the
sense of compatibility) and shared between various neural networks frameworks and
platforms. In this way, the application of neural networks and deep learning algo-
rithms in the field of chemical reaction kinetics brings enormous cognitive potential.
The teaching of neural networks, especially the algorithms of reinforced learning,
seems to be an excellent direction for further research in this area. A certain limitation
in this regard may be the demand for a large amount of data for the neural network to
train, which in principle, should come only from the experiment. However, experimen-
tal investigation in this area is a research field that has already been perfectly mastered
in a wide class of chemical reactions.
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5.4 Selection of recent papers on artificial intelligence methods
in prediction of kinetics of various chemical processes

5.4.1 Neural network training with Arrhenius kinetics for equilibrium reactions

The method presented in [15] reflects the calculation of the source term in the form
realized by means of an artificial neural network, which allows to interpret the
equations as a series of connected neural layers. The structure of neural network
reflects the process by means of process variables, namely the concentrations and
temperatures. The neural network output on the other hand is defined as the resul-
tant source terms set (Figure 5.3).

The interpretation realized by means of an artificial neural network allows to replace
parts of the classically formulated kinetic model by a trained, approximate approach
by means of an artificial neural network. Authors use additional, open source software
Cantera [16] to obtain training data for neural network. The main goal is to use an ap-
proximate approach using a neural network in order to reduce computational costs (or
increase speed) compared to accurate kinetic models. In this work, the neural network
proxy model has been trained as a substitute for the calculation of speed and balance
constants. The use of trained artificial neural networks (ANNs) in this way eliminates
the input dependence on the concentration vector of NS dimensional species, which
greatly simplifies the training process and allows to maintain certain physical charac-
teristics during the source calculation (i.e., the Arrhenius form for the forward course
constants). Thanks to zero-dimensional simulations of automatic ignition and detona-
tion in a one-dimensional channel model based on several mechanisms of different

Figure 5.3: Neural network which resembles the reaction system; forward, backward and net
reactions system terms.
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complexity, the results finally showed the feasibility of this approach for complex non-
linear approaches. The authors concluded that the acceleration achieved by approxi-
mate ANNs of speed and equilibrium constants depended both on the approximate
ANN architecture and on the complexity of the chemical mechanism. For simple reac-
tion mechanisms, the advantage of the neural network over the kinetic accurate model
was ultimately less noticeable because the upper limit of acceleration is achieved by
the neural network, and in this context is limited by the number of components and
the amount of running chemical reactions. This is clearly due to the simplicity of the
original kinetic model, which can be calculated very efficiently. However, for complex
reaction mechanisms, the realistic acceleration achieved by the neural network in rela-
tion to the exact form of the kinetic model is significant. In general, the analysis has
shown that the computational advantage provided by approximate models realized by
artificial neural networks can be significant. On the other hand, learned neural net-
works used to replace the individual algorithms of the original kinetic models, should
not be interpreted as just a proper acceleration technique.

5.4.2 Catalytic cracking

Predicting and understanding the fluid catalytic cracking (FCC) process in a real in-
dustrial environment is still difficult because of its huge complexity that is influenced
by many extremely non-linear and interrelated factors. In the Yang et al. work [17] a
hybrid predictive framework for FCC was developed, integrating a data-driven deep
neural network with a physical kinetic model, powered by an appropriate amount of
high quality data from the modem FCC automated process. The results show that the
hybrid model exhibits the best predictions for all assessment criteria, such as average
absolute percentage error, Pearson’s coefficient and standard deviation. Authors as-
sure that a data-driven hybrid, deep learning process with a mechanical kinetics
model creates a better approach to quickly predict and optimize complex response
processes such as FCC.

A standard neural network was proposed as a representative of data-only mod-
els. In this case the neural network consisted of four layers, which authors classify
as deep neural networks (DNN). Compared to a simple neural network, the essence
of DNN provides higher level of abstraction and the ability to learn more beneficial
features through a greater number of hidden layers and massive training data to
ultimately improve the accuracy of classification or prediction. DNN presented con-
tained inputs for six elements, i.e., weight percent of components in the crude oil
(saturates, aromatic, resins and asphalt), weight of carbon residues and microactivity
index. The output layer was a vector built up by weight of five industrial products:
diesel, petrol, LPG, dry gas and coke (Figure 5.4).

In turn, the physicochemical model was developed on the basis of the eight
lumped kinetics schemes. In this model, raw materials were lumped into saturated
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hydrocarbon (HS), aromatic hydrocarbon (HA), resin and phosphate (HR) solids,
and the products were lumped into lumps on a gas pipeline, diesel, liquefied petro-
leum gas, dry gas and coke, from which eight lumped reaction network was formed.
The following assumptions were applied for the complex FCC reaction system:
– All reactions are irreversible first order.
– Plug flow reactor condition has been assumed.
– The same catalyst activity applied for all reactions are.
– Deactivation of the catalyst during the reaction is only related to the catalyst

residence time.

Raw data was gathered from the industrial FCC unit at a petrochemical plant in
China. In particular, the operational variables and material properties data analyzed
in this study come from the Distributed Control System and Laboratory Information
Management System installed at the FCC plant. The collected data are arranged in a
key-value pair format, where a time stamp and a corresponding value were recorded
as key and value. The initial database was created on the basis of the such a layout,
which is then prepared based on the modeling needs.

In summary, the hybrid model proposed by authors, effectively embeds the
physically relevant lumped kinetics model in the data-driven deep neural network
model, allowing for better data correlation based on a clear reflection of the

Figure 5.4: DNN model for catalytic cracking.
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physical process rules. It is suggested that such approach applies not only to
FCC, but can be widely used in other complex processes and chemical reaction
engineering.

5.4.3 Photochemical reactions

Time-resolved spectroscopes play an essential role in explaining the basic mecha-
nisms of light-induced processes, in particular the study of relaxation models for elec-
tronically excited particles. Determining such models on the basis of experimentally
obtained data in the temporal and spectral domain often presents a numerical chal-
lenge and is often not free from ambiguity. Kollenz et al. [18] demonstrate the analysis
of time domain laser spectroscopy data using a deep learning neural network to get
the right relaxation kinetic model. The presented Deep Kinetic Spectroscopy Network
(DeepSKAN) can predict kinetic models consisting of up to five excitation states, re-
sulting in 103 possible different classes of kinetic models (Figure 5.5).
By indicating the probabilities for each path of the top-k models normalized by total
probabilities, relaxation paths can be determined for a given data set. Authors as-

sure that architecture and training by the use of DeepSKAN is resistant to experi-
mental noise and typical preanalysis errors such as time-zero corrections. The
application of DeepSKAN to experimental data has been demonstrated for three dif-
ferent photoinduced processes: transient absorption of retinal isomerization, tran-
sient infrared relaxation spectroscopy of photoactivated DRONPA and transient
absorption of dynamics in lycopene.

The key problem in the application of spectroscopy is to propose the kinetic
model, explaining how the molecular system develops after light excitation. These
models include transitions between electron states in transient absorption

Figure 5.5: Model of reaction paths and activation states.
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spectroscopy and time resolved fluorescence spectroscopy or transitions between
vibration states in the time domain of infrared spectroscopy.

The DeepSKAN was developed in Python (v. 3.6) based on the open source libra-
ries Keras (v. 2.2.4) and TensorFlow (v. 1.13.1) for deep learning and the NVIDIA driver
CUDA (v. 10.1) for GPU acceleration and optimization. Authors provided versions of
the free software language, frameworks and drivers used, although it is typical that
newer will also suit for the tasks presented.

The authors proposed a network architecture similar to that which is typically
used in image processing. In this case two image axes encode physical spatial di-
mensions of the image. As a result, neural convolution neural networks (CNNs) use
symmetric filters analyzing both axes equally, by using square convolution kernels.
In contrast, time resolved data image representations define an affine space where
axes with two different time-encoded dimensions (probe delay) and spectral infor-
mation (e.g., probe wavelength, wavenumber, etc.) are used. Therefore, the infor-
mation obtained by convolution along each axis is different; convolution along a
time axis can reveal velocity constants, while convolution along a spectral axis can
reveal individual spectrum contributions. In time-resolved spectroscopy, the spec-
tra of a given state and changes in population in that state are independent.

Authors proposed a way of managing in the case of small, experimental data
set which could be too small to obtain high quality results. In such case, the au-
thors propose to use a set of data on simulated transient state absorption signals so
that the neural network can be trained successfully. For each training case, the ki-
netic model must be preselected by randomized choice. A system with five states
(one base state and four excited states) results in a total of 20 possible reaction
paths, giving 220 different possible kinetic models. The number of models and the
complexity of the predictive task has been considerably reduced by using the fol-
lowing assumptions:
– The kinetic model is acyclical – no loops in the transition paths.
– There is only one initial populated state.
– Each state can split into up to two other states.

This resulted in reduction to 103 physically feasible kinetic models that the network
could select from the data presented. The first two assumptions are physically moti-
vated, because no molecular system is able to excite from a base state without a
pump pulse (typically generated by a high-powered laser). The third assumption
was applied for practical reasons, because in most situations it is technically impos-
sible to differentiate between a branch up to two states from a branch up to three or
more states. Branching to three or more states is also very seldom detected for mo-
lecular systems.

The authors have demonstrated the use of a deep learning toolkit to address com-
plex spectroscopic problems. The presented modeling method guarantees simplification

5.4 Selection of recent papers on artificial intelligence methods 169



of the initial analysis of complex spectroscopic data with the potential to improve objec-
tivity by reducing dependence on user input.

5.4.4 Laminar and turbulent combustion modeling

Applicability of the artificial neural network was tested for flame computation by
following cases:
– Laminar flame with syngas mixture was used with the fuel which includes CO2

and H2O as diluents in a CO–H2 fuel mixture.
– Methane-air laminar flames with five reacting species (CH4, O2, CO2, H2O, N2).
– Syngas-air flames taking into account flame–turbulence interaction.

Artificial neural network for kinetic modeling of reactive flow simulation by the large
eddy simulation CFD model (LES) was introduced. The emphasis was placed on re-
placing stiff ordinary differential equations (ODE) with ANN solutions for chemical
kinetics calculations. The type of reverse propagation of ANN code was developed
and tested in laminar and turbulent methane/air precombustion and synthesis/air
gas processes. ANN is trained using independent preflame calculations and then
used as described in LES model for CFD flow simulation. The results indicate that the
accuracy of ANN predictions for turbulent flow calculations is highly dependent on
the initial training data set. If the ANN is well trained, it can successfully predict
chemical status using less memory than a conventional tabular method and in a
more computationally efficient way than stiff ODE solvers. Direct numerical simula-
tion (DNS) of flows for large Reynolds number values is not yet easily feasible be-
cause the mesh resolution dictated by the solution’s methodology still generates
huge computational demand. In the field of reactive flow calculations, a great effort
has been put into capturing time-dependent processes by LES calculations. In order
to capture changes in the species composition of state spaces due to chemical reac-
tions, a stiff nonlinear ODE system should be resolved like backward differentiation
Gear’s predictor-corrector method or an implicit Runge–Kutta method of fifth order.

Authors use LES approach with a mixing and combustion model as a frame for
the flow calculations. For this purpose, Favre-filtered Navier Stokes equations for
continuity, momentum, total energy and preservation of the components were fully
compressible, dynamic and multicomponent.

∂�ρ
∂t

+ ∂

∂xi
�ρ~ui�½ =0 (5:1)

momentum:
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total energy:

∂

∂t
�ρ~E
� �

+ ∂

∂xj
�ρ~uj~E + ~uj�p+ �qj − ~ui�τij +Hsgs

j

h i
=0 (5:3)

components conservation:

∂

∂t
ρ ~Yk
� �

+ ∂

∂xj
ρ~uj ~Yk − �ρ�Dk

∂ ~Yk

∂xj
+ϕsgs

i, k + θsgsi, k

" #
= �Rk (5:4)

Here ~ represents the averaging Favre operator and is scaled with the use of den-
sity, where overbar means spatial filtration with a top-hat filter. Subgrid (sgs) shear
stress τsgsij

� �
, subnet viscosity Hsgs

i

� �
, subnet diffusion flux θsgsjm

� �
appear as a result

of the filtering operation and are also modeled. The rate at which the k component
is formed/consumed is taken into account by the variable Rk.

The classical formulation for chemical reactions analyzed by the authors was
defined by mass balance of reactive components expressed by kinetic equations:
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k
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v′′k, i
k (5:5)

and

Rk =
XNreact

i= 1

vk, iqi (5:6)

Typical Arrhenius type equation is used for temperature dependence modeling.
Authors derive kinetic data by using PREMIX module of CHEMKIN [19].

In this particular study, a multilayer type of artificial neural network perceptron
(MLP-ANN) was used to replace chemical kinetics calculations. For data training, a
back propagation algorithm is used which is essentially based on a gradient de-
scent procedure. For an MLP-ANN back-propagation training procedure, the algo-
rithm generally consists of two parts:
– forward propagation of the input data,
– back-propagation of the error.

Training data was submitted into the network into randomly selected neurons of
the input layer to avoid unfavorable memorization of a particular input pattern and
to achieve generalization about the nature of the process, not the network setup.
The authors selected a specific ANN architecture adjusted to each case separately,
which was done on a basis of a compromise between number of hidden layers,
number of neurons on each layer and the ANN error value achieved.

Authors highlight difference between the use of rigid ODE solvers ANN where the
latter is very time-efficient and the memory effective. It is important to mention that
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the article focuses on determining the reliability of ANN forecasts, which is highly
dependent on the training procedure. For premixed flames, the ANN can be trained
based on a laminar premixed flame solution but such approach is not very effective
for turbulence calculations as turbulence disturbs the composition state space locally.
Authors provided also tests approach that gave better results as shown in the case of
turbulent, premixed methane and syngas-air flames. As long as the composition state
space is covered by a sufficient number of chemical states which can be used as train-
ing data set, the ANN can be successfully used to replace stiff ODE solvers.

5.4.5 Enzymatic reaction kinetics

The study [20] investigated the usefulness of ANN to assess the rate of enzymatic
reactions. The study was conducted on the basis of a model reaction, the enzymatic
hydrolysis of maltose, catalyzed by the enzyme amyloglucosidase. The influence of
substrate (maltose) and product (glucose) concentration on the rate of enzymatic
reaction was studied. The reaction (5.7) taken into account reads:

Maltose +H2O!Amyloglucosidase
2Glucose (5:7)

Enzymatic hydrolysis of maltose was performed in 5 ml of reaction solution (phosphate
buffer, 100 mM, pH 5.5). The reaction solution was heated to 37 °C using a water con-
tinuous stirred batch reactor, the reaction was started by adding amyloglucosidase en-
zyme to the solution. Data on the dynamics of the concentrations C were obtained by
measuring the amount of glucose produced during the enzymatic reaction. Transient
experimental data were adjusted to Boltzmann’s function and then transformed into a
differential form (5.8) characterizing the kinetics of the reaction.

−
dC
dt

= A1 −A2ð Þe t − t0ð Þ=Δx

Δx 1+ e t − t0ð Þ=Δx� �2 (5:8)

The selection of the Boltzmann’s function and its derivative was justified by its popu-
larity in the field of biochemistry to render the kinetics of accuracy required. The A1,
A2, t0 and Δx were the coefficients to be fitted based on experimental transient evolu-
tion of concentrations during enzymatic reaction. In this way the model described by
the classical speed equation was obtained. The model built in this way served as a
training set for teaching the neural network. Data obtained from seven time courses
were used to train ANN, and another set of data obtained from eight time courses
was used to test the trained network.

The artificial neural network was built with The Neural Network Toolbox of
MATLAB software. The feedforward neural network was formed, which consists of
three neurons in the input layer, four neurons in the hidden layer and one neuron
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in the output layer. Neural network inputs are maltose concentration, glucose con-
centration and initial glucose concentration, and system output is the rate of reac-
tion. The network was trained until the square mean value between the training set
values and the outputs was less than 1·10−4. Authors report that the determination
coefficient (R2) showed good correlation between the estimated and experimental
data sets for both the training (0.992) and the validation data (0.965). In the further
part of the study the estimated ANN data were used in the numerical solution of the
batch reactor modeling equation to obtain time evolution of concentrations. The au-
thors present the use of ANN for estimating the kinetics of the reaction, pointing
out some relevant advantages. First of all, ANN estimates the reaction rate without
using any kinetic model equation. Secondly, estimating the reaction rate without
the use of a kinetic model eliminates the risk resulting from the wrong choice of the
kinetic model. Thirdly, the use of ANN requires smaller amount of experimental
data than conventional kinetic model with similar accuracy. This is due to the gen-
eral feature of neural networks, i.e., the ability to generalize. Fourthly, when using
ANN, there is no need to derive kinetic model. As a result, the classical kinetic
model does not impose any limitations on the actual experimental analysis of the
kinetics of the reaction system. On the other hand ANN does not provide any expla-
nation on physicochemical nature of the process.

5.4.6 Deep learning based on quantum modeling of chemical reactions paths

Data on the activation energy of chemical reactions are difficult to access due to the
complexity of the implementation of experimental studies, especially in the case of
reactions that are characterized by high rates. Prediction of activation energy is use-
ful for computer-aided generation of reaction mechanisms and planning of organic
synthesis. The authors [21] propose a deep learning model for prediction of activa-
tion energy of selected reactions and geometry of product molecules. The neural
network model is trained on a new, diverse set of quantum chemistry reaction data
for the gaseous phase. The authors have developed a deep learning model to pre-
dict activation energies for a wide range of reaction types, which does not depend
on any additional input data and requires only graphical representation of the re-
agents. Such a model represents a deep learning neural network built to estimate
kinetics by automatically generating the reaction mechanism and allows for the
quantitative ranking of candidates for possible reactions. Data based on large-scale
quantum chemistry calculations were used. The authors rightly state that high per-
formance experiments are also beginning to become a valuable source of new data.

The authors use the directed message passing neural network (D-MPNN) method
to predict molecular properties. The D-MPNN maintains two representations for infor-
mation placed on the bond between the atoms v and w: one of the atoms v to (mtvw)
and one of the atoms w to (mtwv). Consequently, instead of aggregating information
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from adjacent atoms, D-MPNN aggregates information from adjacent bonds. The
information about each bond is updated based on all other, that is, not belong-
ing to a given bonded atom, incoming information about bonds. Because of this
structure, with the information located on the bonds and the distinction between
the two directions of the bond messages, the D-MPNN has more control over the
information flow through the molecule and therefore can build more informative
molecular representations [22].

The D-MPNN constructs the learned representation of the molecule by transfer-
ring information between the elements of the chart using information related to
atomic bonds. Binding information contains characteristics of the atom, such as
atomic number, and the initial properties of the bond, using a neural network. The
neural network iteratively updates the geometry of the molecules by using informa-
tion from adjacent bonds. Since the mapping of atoms between substrate and product
is known, the difference between all atoms of products and substrates is calculated
to obtain so-called fingerprints of atomic differences. In the next step each fingerprint
is used by the same neural network to create a reaction path encoding. The final
stage of the process is the reading phase, in which the network learns the linear com-
bination of elements in the encoding of the reaction to obtain the estimated activa-
tion energy.

The model is trained using a dataset for the gaseous phase of elementary atomic
reactions obtained from Density Functional Theory (DFT) calculations with appropri-
ately adopted functional databases. These data include a set of organic chemistry re-
actions with carbon, hydrogen, nitrogen and oxygen atoms.

A promising application of this model is to enable the discovery of new species
of reactions in large set of possible chemical mechanisms. Reaction candidates can
be generated from each molecule in given mechanism by systematically changing
the bonds to calculate potential products. The deep learning model can then evalu-
ate which candidates have the lowest barriers and justify further evaluation. This
process of discovering the reaction would be done without initial template struc-
tures, while the software for generating conventional reaction mechanisms relies
on such templates to limit acceptable chemistry.

In order to assess whether the model’s chemical reaction acquisition is chemi-
cally justified, molecule encoding has been embedded in two-dimensional space
using the stochastic neighbor t-SNE method. This method is a nonlinear and unsu-
pervised technique used primarily for the exploration and visualization of multidi-
mensional data [23]. The activation energies gradients analyzed by the authors
indicate that the model has learned to organize reactions that were not presented to
the model during training, in a correct way that correlates with chemical reactivity.
Moreover, different regions identified by neural network in the chemical space rep-
resenting the reactions correspond to different types of reactions. Since the types of
reactions are defined by the types of bonds, the reactions within each type are asso-
ciated with many different functionalities and chemical properties; nevertheless,
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the model learns to group reactions of the same type into individual, separate subsets.
The authors additionally tested the situation if the model behaves correctly when dif-
ferent functional groups are present in a given compound. The effects of replacing hy-
drogen atoms with substituent containing different functional groups were analyzed
and model predictions were verified using DFT quantum calculations. This analysis in-
dicated that the neural network model correctly identifies the fact that the replacement
of an electronegative group near the reaction center has a strong impact on activation
energy, while the replacement of any functional group far from the reaction center of a
given reaction does not significantly affect activation energy. The authors conclude
that activation energies for various gaseous phase organic chemistry reactions can be
accurately predicted using the deep learning method.

5.4.7 Coupling microscale kinetics and macroscale chemistry using AI Random
Forest algorithms, catalysis on RuO2(110) surface

The coupling of reactor models with the heterogeneous nature of the chemical reaction
requires simultaneous consideration of phenomena from atomic level to reactor level.
This includes orders of magnitude of differences both spatially and temporally, making
direct coupling impractical from a calculation point of view. In addition, however, the
strong nonlinearity and stiffness of the resulting equation systems require specific nu-
merical procedures related to the reactive source members in the macroscale governing
equations. One of the classical approaches to modeling kinetics at the microscale for
subsequent use at the macroscale is the Monte Carlo method. Unfortunately, Monte
Carlo methods, whose basic concept is to use randomness to solve problems that can
be deterministic in principle, are very demanding due to the calculation load.

Machine learning techniques (ML) can overcome these limitations because they
are specifically designed to work with large dimensional data sets. The authors [24]
have proposed collaborative learning methods and ANNs for effective tabulation and
regression of response rate and turnover frequency. In particular, collaborative learn-
ing methods, such as Random Forest (RF), have been recognized as an effective solu-
tion to overcome the limitations of mean-field or Monte Carlo kinetic models.

In order to approximate the computationally intensive kinetic models of the first
principles in the catalytic way, the authors suggest using a design procedure to gen-
erate a training set for machine learning algorithms using an RF ensemble learning
method. The proposed methodology was used to array mean field and kinetic models
of Monte Carlo kMC in order to combine them with reactor simulations in CFD tech-
nique. The trained Machine Learning algorithms with the results of the procedure are
then incorporated into both macroscopic reactor models and computational fluid dy-
namics simulations. First, the plug flow reactor model is used to make a direct com-
parison with the full classical kinetic model solution. Secondly the CFD simulation of
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the complex three-dimensional geometry is calculated using a tabular kMC model for
the oxidation of CO on ruthenium oxide.

The authors verified the proposed approach using the process of CO oxidation on
the surface of RuO2(110) catalyst. In this model a grid representation of the active
surface was used, taking into account different types of sites, i.e., bridge and cus
(coordinatively unsaturated sites). The simulations used a grid consisting of 20 × 20
surface sites (200 bridge and 200 cus) and periodic boundary conditions proposed in
[25]. The kMC model takes into account all elementary processes that can occur on
the grid: dissociative adsorption of oxygen, associative desorption of oxygen, unimo-
lecular adsorption and desorption of carbon oxide together with surface reactions ac-
cording to the Langmuir–Hinshelwood CO + O model. Readsorption of CO2 together
with surface diffusion of CO and O are not taken into account due to high partial
pressure of the components under consideration. For a given set of operating condi-
tions (i.e., CO, O2 partial pressures and temperature), the result of the simulation
with the classic kMC is a steady state catalytic turnover frequency and the corre-
sponding surface coverage distribution. For data from the classical kMC model, turn-
over frequency and corresponding ranges are tabulated using ExtraTrees. Such a
model can be included in simulation calculations combining the chemistry of the re-
action catalyzed on the surface with the reactor size scale.

Machine learning methods were developed in order to carry out effective and accu-
rate discovery learning (process where the neural network determines rules by exam-
ples presented). The RF algorithm is a machine learning method used mainly for
classification or regression problems. As a tabulation/interpolation method, RF
presents the ability to effectively handle large data sets with a large number of input
dimensions (i.e., independent variables), called descriptors. Here, simulation data from
complex kinetic systems, e.g., the classical kMC model, which depend on several de-
scriptors, such as partial pressure and temperature, are tabulated. RF model shows
good tabular and regression parameters even for relatively small training datasets.

The authors have included the kMC kinetic model with the first principles into
the CFD simulation with the tabular turnover frequency ExtraTrees, enabling cou-
pling between the exact chemistry description at microscale and process size scale
in the reactor. The authors conclude that the simulation of CO oxidation on a com-
plex three-dimensional open-cell foam geometry shows promising possibilities of
artificial intelligence methods in predicting the concentrations of components in
the gaseous phase and on the surface during the course of complex surface-cata-
lyzed chemical reactions.

5.4.8 Hydrogen oxidation

In the paper [26] authors use a deep learning of the ANN feedforward type to model
the H2 oxidation reaction. The machine learning algorithm was adapted to this
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case, in such a way which enabled to act as a universal approximation, improving
in areas of high nonl inearity, noise and background signal bias. This approach al-
lows for flexibility in both network architecture and loss functions, as well as for
scalability on modern architectures. The primary goal of implementing a deep neu-
ral network is to approximate functions f:x → y based on input x and output y. After
selecting function f, the network weights are adjusted by a process called stochastic
gradient descent in which the model:
– iteratively performs predictions on randomly selected sets of training examples,
– determines the quality of the prediction using the L loss function,
– updates parameter weights in a process called back propagation.

This process is repeated until the learning error is at an acceptable minimum. The
trained model can then be used to generate predictions for data the network has
not seen. In case of investigated training data, the authors use in particular the
training autoregression function f:(Tt, pt, Yt) → (Tt+Δt, pt+Δt, Yt+Δt) for a specific
period of time Δt for hydrogen oxidation reaction.

The authors proposed to assembly network architecture of 12 jointly trained sub-
networks, one for each variable, namely temperature, pressure and each of the 10 re-
agents. Each subnetwork consists of two densely connected hidden layers (every
input is connected to every output) with 30 neurons per layer. During the training,
authors also apply the uniform regulation of L1 (lasso − absolute penalty value) and
L2 (ridge − square penalty value) in each node to prevent overturning and encourage
more generalized function. The term “penalty” or tuning parameter denoted by the
authors by θ, but in many other sources by λ [27], was introduced to avoid undesir-
able limitation of the prediction of the neural network only to the datasets for which
it was trained. This is particularly important for the integration of transient series of
values: if the network is not immune to small errors in the input data, errors will
spread, and time evolution will deviate from proper solution. Both L1 and L2 normali-
zation encourage small parameter weights, but L1 normalization has the additional
quality of reducing insignificant parameters to zero.

The authors use the Cantera open-source library [16] to generate a synthetic,
combustion of H2/O2 mixtures data using the Westbrook H2-air reaction mechanism
[28]. The size of the data set and parameter space were different for each experiment.
The network is trained for the initial and final process conditions: temperature T,
pressure p and concentration of the components Y = (Y0, … Yk). Neural network is
trained more efficiently and effectively when data is normalized and scaled to a small
range, so authors used logarithmic normalization for their input states.

The neural network has been implemented using the TensorFlow [12] machine
learning library. In order to improve the neural network predictive ability of free
radicals, which have very low concentrations compared to major species, subnet-
works of species have been trained independently over 100 epochs (a single use of
all the teaching cases contained in the training set). The full network was trained
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for 1000 epochs in a collection of 400 examples each. The training sets were re-
shaped and selected before each epoch to facilitate training and avoid local min-
ima. The data set was randomly divided into training, test and validation sets
containing 80, 10 and 10% of data respectively.

The authors validated their model in the H2 oxidation reaction, testing its accu-
racy and effectiveness in stiff regimes. Authors state that the neural network model
was built using equally spaced values across the parameter space, and some regions
of the teaching space are more problematic to model than others. Consequently the
prediction accuracy was lower close the boundary of the training set which was par-
ticularly visible at low temperatures.

5.5 Summary

Although quite a few of the cases presented above claim to use deep learning tech-
niques it seems to be a bit of exaggeration, at least at the neural network cognitive
level. Deep neural network refers more to the cognitive capabilities of the artificial
intelligence than to the way it is assembled. Although it is obvious that deep learn-
ing demands that the network construction is made of higher number of layers and
neurons. Each case presented although was successful to show the potential of
trained neural network prediction in typical engineering and design calculations.
The real deep learning algorithms allows to make huge generalizations, which
should be understood in regards of chemical kinetics, as recognition of hidden pat-
terns, reaction paths, finding relations difficult to catch by traditional models and
finally ability to predict kinetics for chemical reactions that the network was never
trained for. In the case of reinforced training it extends the possibilities to teach the
artificial intelligence system also to recognize and predict paths for even different
classes of chemical processes which were not presented in the course of training
process. Taking into consideration that some successful neural network applica-
tions were already done to solve the Schrödinger equation [29] to create mapping
between a confining electrostatic potential and the ground-state energy, kinetic en-
ergy, and first excited state of a bound electron, such model-based reinforcement
training could be implemented by incorporating selected quantum models. As a
typical example, the chemical reaction path determinable based on well-known ab
initio transition state theory calculations [30] could be interpreted and considered
as training set for artificial neural network modeling.

Future perspective for modeling the chemical reactions paths and rates by arti-
ficial intelligence systems is promising. Artificial neural network might be under-
stood in simple picture as a huge set of regression variables, which in fact are
weights on the neurons of the neural layers, to be adjusted during the training pro-
cess. Thus the ability of neural network to generate comprehensive and generalized
responses to given problem allows to create predictions even for the chemical and
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physical systems it was not trained. Such behavior resembles human brain functions
in its fundamental cognitive roles. The process of training the neural network is bur-
dened with huge calculation work and demand for big training datasets. However
the use of already trained neural model is fast. Therefore, the main obstacle in this
field is the requirement to use huge training datasets and training time.
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6 Modelling of enzyme kinetics: cellulose
enzymatic hydrolysis case

Abstract: Enzymes as industrial biocatalysts offer numerous advantages over tradi-
tional chemical processes resulting on improvements in process economy and envi-
ronmental sustainability. Because enzymes are extensively used in different industrial
areas, the enzyme kinetics is an important factor for industry as it is able to estimate
the extent of substrate conversion under known conditions and evaluate reactor per-
formance. Furthermore, kinetic modelling is useful in the analysis, prediction, and op-
timization of an enzymatic process. Thus, kinetic modelling is a powerful tool for
biochemical reaction engineering. In addition to the aforementioned, in the industrial
technology, modelling together with simulation play a key role because they help to
understand how a system behaves under specific conditions, and thus they allow sav-
ing on costs and lead times. Enzymatic conversion of renewable cellulosic biomass
into biofuels is at the heart of advanced bioethanol production. In the production of
bioethanol from cellulosic biomass, enzymatic hydrolysis of cellulose to fermentable
sugars accounts for a large portion (~30%) of the total production costs. Therefore, a
thorough understanding of enzymatic hydrolysis is necessary to create a robust model
which helps designing optimal conditions and economical system. Nevertheless, it is
a challenging task because cellulose is a highly complex substrate and its enzymatic
hydrolysis is heterogeneous in nature, and thus the whole process of cellulose conver-
sion to glucose involves more steps than classical enzyme kinetics. This chapter
describes the bases of enzyme kinetic modelling, focussing on Michaelis-Menten
kinetics, and presents the models classification based on the fundamental ap-
proach and methodology used. Furthermore, the modelling of cellulose enzymatic
hydrolysis is described, also reviewing some model examples developed for cellu-
lose hydrolysis over the years. Finally, the application of enzyme kinetics modelling
in food, pharmaceutical and bioethanol industry is presented.
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6.1 Introduction

Kinetic modelling is a powerful tool for biochemical reaction engineering. The useful
model provides guidance in the design process or enables a better understanding of
the phenomena and interactions. With appropriate utilization of the models, the reac-
tion can be improved ahead of testing and go into the test laboratory with higher con-
fidence to achieve successful results. Once the model is built, it is used to design,
optimize, operate and control the reactors, and further to scale up the whole indus-
trial process. In addition, modelling and simulation together play a key role in the
industrial technology because they help understanding how a system behaves under
specific conditions, and thus they allow saving on costs and lead times [1], [2].

Enzymes, as industrial biocatalysts, offer numerous advantages over traditional
chemical processes resulting in improvements in process economy and environmen-
tal sustainability. Thus, enzyme catalysis has been implemented in several indus-
tries, such as food and pharmaceutical, with recent trends for biofuel production [3].
The constantly growing demand for food, pharmaceutical and biofuel products re-
quires the development of tailor-made, low-cost products manufactured by sustain-
able processes and for this reason, modelling plays an important role in these sectors
of industry. One of the key elements of enzyme kinetics modelling is the grouping of
model compound reaction pathways and kinetics into a prediction of a real system.
However, in practice, this procedure might not be so simple [4]. For example, in the
case of cellulose, the most abundant and sustainable biopolymer that enzymes can
degrade into soluble sugars, the reaction mechanism and the morphology of cellu-
losic biomass are very complex, resulting in difficulties in the reaction modelling [5].

Enzymatic conversion of renewable cellulosic biomass into biofuels is at the
heart of advanced bioethanol production. In the production of bioethanol from cel-
lulosic biomass, enzymatic hydrolysis of cellulose to fermentable sugars accounts
for a large portion (~30%) of the total production costs. Therefore, a thorough un-
derstanding of enzymatic hydrolysis is necessary to create a robust model which
helps to design optimal conditions and economical systems [6]. Nevertheless, it is a
challenging task because cellulose is a highly complex substrate and its enzymatic
hydrolysis is heterogeneous in nature, and thus the whole process of cellulose con-
version to glucose involves more steps than classical enzyme kinetics [7], [8]. In ad-
dition, the cellulose hydrolysis mechanism is greatly affected by several factors,
such as enzyme characteristics (adsorption, inhibition, synergism, activity, compo-
sition), substrate characteristics (degree of polymerization, crystallinity, accessible
surface area, hemicellulose and lignin content) and operating conditions (pH, tem-
perature and agitation) [5], [7], [8], [9], [10]. Including all of them into a kinetic
model of enzymatic cellulose hydrolysis is one of the most challenging subjects in
engineering for this process. In this scenario, mechanistic models are very useful
because they take account of the mechanisms through which changes occur in the
reaction system. Usually, it is desirable that a mechanistic model incorporates key
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information about the comprehension of the process while, on the other hand, not
being too complex in an attempt to capture overall phenomena [8].

This chapter describes the bases of enzyme kinetic modelling, focusing on
Michaelis-Menten (M-M) kinetics, and presents the models classification based on
the fundamental approach and methodology used. Furthermore, the modelling of
cellulose enzymatic hydrolysis is described, also reviewing some model examples
developed for cellulose hydrolysis over the years. Finally, the application of enzyme
kinetics modelling in food, pharmaceutical and bioethanol industry is presented.

6.2 Modelling of enzyme kinetics

Because enzymes are extensively used in different industrial areas, the enzyme ki-
netics is an important factor for industry as it is able to estimate the extent of sub-
strate conversion under known conditions and evaluate reactor performance. In
addition, mathematical modelling is useful in the analysis, prediction and optimisa-
tion of an enzymatic process. Since the most famous M-M kinetics model was devel-
oped, the biochemistry has advanced tremendously, and then enzymes kinetics
modelling has become an important factor for developing any enzymatic industrial
processes. Since then, different modelling approaches have been developed for en-
zyme kinetics. This section describes the principles and importance of M-M kinetics
in modelling of enzymatic reactions, methodologies developed over the years and
models classification based on the fundamental approach and methodology used.

6.2.1 The Michaelis-Menten kinetic

Enzymes are highly specific catalysts for biochemical reactions that show a high selec-
tivity for a single reactant, or substrate. Enzyme reactions are modelled as a multistep
mechanism (Figure 6.1), where first, the enzyme (E) and substrate (S) bind to each
other to form the enzyme-substrate complex (ES). Then, the substrate is transformed
into the product(s), giving enzyme-product complex (EP). Finally, the product(s) dis-
sociates from the enzyme, releasing the enzyme to react again [11].

This enzymatic reaction is schematically described within the following multi-
step mechanism (Equation (6.1)):

E + S⇄
kf

kr
ES ⇄

kcat

kcatr
EP ⇄

kdis

kasoc
E +P (6:1)

where kf, kr, kcat, kcatr, kdis, kasoc are forward rate constant, reverse rate constant,
catalytic rate constant, catalytic revers rate constant, dissociation constant and as-
sociation constant, respectively.

6.2 Modelling of enzyme kinetics 183



However, because the rate of catalysis is measured by observing formation of
the product, most of the models of biochemical systems use the simplified form of
the reaction, where the catalytic step and product dissociation is condensed into a
single, irreversible step (Equation (6.2)) [11], [12]:

E + S⇄
kf

kr
ES!kcatE + P (6:2)

The simplified form of the reaction, known as M-M enzyme-catalysed model, de-
scribes reversible binding of E and S into the ES complex, and irreversible conversion
of the complex into the product (P) and the free E. The model was proposed in 1913
by Leonor Michaelis and Maud Leonora Menten, who published their work about the
reaction kinetics of the enzyme invertase [13]. They investigated a quantitative theory
of enzyme kinetics and proposed a mathematical model for it. In their original analy-
sis, Michaelis and Menten based their equation on the assumption that the substrate,
the concentration of which greatly exceeds the enzyme, is in an instantaneous equi-
librium with the complex (equilibrium approximation), thus there is no change in the
substrate concentration (dS/dt = 0). This simplification results in the following equa-
tion describing the rate of enzymatic reactions (Equation (6.3)):

υ= d P½ �
dt

= Vmax S½ �
Kd + S½ � (6:3)

where Kd = kr/kf is the dissociation constant of the complex ES, Vmax = kcat[E]0 is the
maximum reaction velocity and [E]0 is the initial enzyme concentration.

Their work was further developed by G.E. Briggs and J.B.S. Haldane, who formu-
lated a slightly different assumption (quasi-steady-state approximation) in 1925 [14],
whereby the concentration of the complex is set to be constant over small time scales.
They assumed that after initiation of the reaction, the ES complex is in equilibrium
(dES/dt = 0). This results on the final form of the M-M equation (Equation (6.4)):

υ= d P½ �
dt

= Vmax S½ �
KM + S½ � (6:4)

Figure 6.1: Model of enzymatic reaction. S–substrate, E–enzyme, ES–enzyme-substrate complex,
EP–enzyme-product complex, P1, P2–products.
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where KM = kr + kcat/kf is the Michaelis constant, roughly the dissociation constant
of the complex.

Therefore, the final form of M-M kinetics (Equation (6.4)) adopts the Briggs-
Haldane quasi-steady-state assumption. The M-M model is one of the simplest and
best-known approaches to enzyme kinetics. The equation has been used to predict
the rate of product formation in enzymatic reactions for more than a century and is
still widely considered today a starting point in modelling enzymatic activity.
Although, other models of the same type and often based on the same assumptions
also exist, they are frequently faced consolidated scepticism [15]. Furthermore, it
must be pointed out that the assumption of irreversibility in the M-M model
(Equation (6.2)) is only true when the concentration of substrate greatly exceeds the
enzyme or the energy released in the reaction is very large. In situations where nei-
ther of these two conditions hold, the M-M equation breaks down, and more com-
plex modelling approaches taking the reversibility of the reaction into account
must be done [12], [13], [14], [15]. In addition, besides reversibility, in some cases, it
is necessary to include the effects of enzyme inhibition in the model. There are sev-
eral types of inhibition: competitive (binding to the same site as the substrate), non-
competitive or allosteric (binding to a different site) and uncompetitive (binding
only to the ES complex). Including the inhibition effects to M-M model, the follow-
ing equations (Equations (6.5)–(6.7)) are obtained [11]:
– Competitive inhibition

υ= d P½ �
dt

= Vmax S½ �
S½ �+KM 1+ I

KI

� � (6:5)

where KI = kri/kfi is enzyme-inhibitor dissociation constant, kfi and kri are forward
inhibitor rate constant and reverse inhibitor rate constant, respectively.
– Allosteric (noncompetitive) inhibition

υ= d P½ �
dt

= Vmax S½ �
S½ �+KMð Þ 1+ I

KI

� � (6:6)

– Uncompetitive inhibitions

υ= d P½ �
dt

= Vmax S½ �
KM + S½ � 1+ I

KI

� � (6:7)

6.2.2 Modelling over the years

As described by Galanakis et al. [4], enzyme kinetics modelling arises from the late
60s, when the theory of subsite mapping was developed to describe proteases
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activity. The subsite theory postulates that the active site of an enzyme consists of
several subsites which are responsible for binding the substrate, and one catalytic
site which is responsible for hydrolysing the bond. The theory was developed to ex-
plain the strong dependence of Michaelis constant and maximal reaction rate on the
chain length of the polymers [16]. Thereafter, subsite theory was also used to describe
the enzymatic hydrolysis of polysaccharides and, in this case, amino acid chain was
replaced with a glucose unit [16], [17], [18]. As the subside theory explains the depen-
dence of Michaelis constant on the polymer length, the models based on subside
mapping usually include the M-M equation.

At the same time, other models of polysaccharides enzymatic hydrolysis based
on M-M equation which additionally included inhibition [19], [20], [21] and reversibil-
ity [20], [22]. Parameters of kinetics were developed. The reversibility and inhibition
parameters were not described adequately via subsite mapping [4]. The presented
models, developed on M-M equation or subsite mapping and M-M equation, are both
deterministic. The deterministic models predict the average behaviour of the system
and offered satisfactory solutions on time, but they ignore random variation.

The dramatic increase of kinetics equations for more complex biological sys-
tems (with different input variables) that needs multireaction kinetics model and
the complexity of data processing in practice, forced the scientists to try different
approaches. In particular, stochastic models such as Monte Carlo (MC) were devel-
oped for this purpose because they can capture different sources of unexplained
variation in the behaviour of the system [23], [24].

More recently, empirical models based on artificial neural network were also
applied for polysaccharides enzymatic hydrolysis [25], [26]. The multivariable neu-
ral networks method lets model large data in a complex system involving many pa-
rameters and performs correlations without requiring mechanistic assumptions of
how the output depends on the inputs.

6.2.3 Classification of models

Galanakis et al. classified enzyme kinetics models into three major groups (deter-
ministic, empirical and stochastic) in accordance with the implemented methodol-
ogy [4], described in the abovementioned section. On the other hand, one of the
methods of distinguishing between types of models is to consider the level of under-
standing on which the model is based. In this case, as Figure 6.2 shows, models are
divided into mechanistic (they take account of the mechanisms through which
changes occur) and empirical (no account is taken of the mechanism by which
changes to the system occur). In addition, depending on the biological question ad-
dressed, mechanistic models can be further subdivided into deterministic (when
only the average behaviour of the system is of interest) and stochastic (when unex-
plained variation in the behaviour of the system matters too) [27].
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As presented in Figure 6.2, there are two types of modelling approaches, empiri-
cal and mechanistic modelling. Empirical models describe relations between the vari-
ables in an experimental data set using mathematical correlations without requiring
detailed knowledge of an underlying mechanism of the system. Because empirical
models do not incorporate any knowledge or hypotheses about the inner structural
connectivity of the system, they are also known as extrinsic. Thus, an empirical
model usually can only accurately predict conditions represented by the data set that
was used to build the model. Nevertheless, the empirical models are easy to develop
and are useful in enzyme characterization and substrate preparation. By contrast,
mechanistic models incorporate an underlying mechanism of the system by which
changes in the system are thought to occur, giving initial conditions and future sys-
tem behaviour can be predicted. Mechanistic models are a mathematical formulation
of the internal operation of a system in terms of its constituent parts and mecha-
nisms. As these models address the underlying dynamics of the process, they can be
extensively used in every stage. Mechanistic models are developed from the reaction
mechanisms, mass transfer considerations and other physical parameters that affect
the extent of enzymatic hydrolysis. Thus, these models are quite useful in describing
the reaction mechanism of enzymatic hydrolysis of cellulosic biomass [27], [28].

Mechanistic models differ in their complexity based on the intended use of the
model and the type of outcome they predict. Thereby, mechanistic models can be fur-
ther subdivided into either deterministic or stochastic. In deterministic models, re-
sults are fully determined by the parameter values chosen and the initial conditions.
Thus, a given parameter set will always yield the same model output every time the
model is run. By contrast, stochastic models yield different results each time when
initialized with the same parameters and initial conditions. This is because determin-
istic models ignore random variation, and always predict the same outcome from a
given starting point. On the other hand, the stochastic models involve inherent ran-
domness and may predict the distribution of possible outcomes. Therefore, determin-
istic models describe the average behaviour of a system, while the average of multiple
stochastic realizations tends to approximate the deterministic solution [27].

Figure 6.2: Classification of enzyme kinetics models.
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6.3 Modelling of cellulose enzymatic hydrolysis

Cellulose is the most abundant and sustainable biopolymer that can be degraded
into soluble sugars. In general, cellulose is the major component of lignocellulosic
biomass. Enzymatic conversion of renewable cellulosic biomass into biofuels is at
the heart of advanced biofuels production. However, the complex heterogeneous re-
action mechanism involved in cellulose enzymatic hydrolysis and the complicated
morphology of biomass make the modelling of enzymatic hydrolysis challenging.
Therefore, this section describes in detail the mechanism of cellulose hydrolysis
and review some examples of the models developed for cellulose hydrolysis over
the years.

6.3.1 Cellulose hydrolysis

As presented in Figure 6.3, cellulose is a linear, long-chain polymer consisting of
D-glucose molecules linked by β-1,4 bonds, with cellobiose as the smallest repetitive
unit. In the cellulose structure, the chains are in layers, held together by van der Waals
forces with intramolecular and intermolecular hydrogen bonds being present. Cellulose
present in lignocellulose is composed of crystalline and amorphous structures, each
showing different water solubility and digestibility on enzymatic attack. However, the
cellulose structure strongly depends on the biomass origin and therefore can widely
vary in chain length and degree of interaction between the chains [9], [29]. This physi-
cal arrangement and structural properties of cellulose that affect surface availability
and accessibility of cellulose glycosidic bonds are thus a critical consideration for pre-
dicting hydrolysis kinetics [29].

Figure 6.3: Molecular structure of a cellulose.
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The enzyme capable to hydrolyse the complex cellulose structure into simple
glucose monomer is called cellulase. Cellulase refers to a group of three main en-
zymes that hydrolyse β-1,4 glycosidic bonds in cellulose, which are endoglucanase
(endo-β-1,4-glucanase), exoglucanase (exo-β-1,4-glucanase) and β-glucosidase.
Figure 6.4 shows the model representation of the different enzymes action modes
during cellulose hydrolysis. As presented in Figure 6.4, endoglucanase internally
cleaves cellulose chains with random actions on β-1,4 glycosidic bonds that leads
to binary breakages without any position preference. The endoglucanase therefore
increases the availability of cellulose chain ends, which is a substrate for exogluca-
nase. Although endoglucanase can act on cellulose of different degrees of crystal-
linity, primarily acts on amorphous regions of native cellulose. On the other hand,
exoglucanase processively cleaves only glycosidic bonds in the chain ends of cellu-
lose to release cellobiose (a disaccharide). Dependently on the exoglucanase type,
CBH-I and CBH-II, they cut off cellulosic polymers from reducing and nonreducing
chain ends, respectively. Exoglucanase acts directly towards crystalline cellulose,
displacing individual cellobiose chains from the surface of crystalline regions, mak-
ing it accessible for β-glucosidase action. Then, β-glucosidase hydrolyses cellobiose
into glucose monomers [9], [29], [30]. All three enzyme classes must be present in
the system to produce glucose efficiently. Therefore, the cellulose hydrolysis in-
volves the synergistic action of endoglucanase, exoglucanase, and β-glucosidases,
and sometimes, if present, also exoglucosidase. Exoglucosidase forms glucose via a
non-β-glucosidase pathway that acts at the end of the polysaccharide chain remov-
ing successive glucose units (Figure 6.4). It must be added that some fungal species
can produce exoglucosidase (exo-β-1,4-glucosidase); however, it is not commonly

Figure 6.4: Model representation of different enzymes action modes during cellulose hydrolysis.
Re, reducing end; NRe, nonreducing end.
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present in cellulase preparations. Although the presence of exoglucosidase is not
usual, if it is in the system, it must be taken into consideration for modelling hydro-
lysis kinetics [9].

The enzymatic hydrolysis of cellulosic is therefore a multistep, heterogeneous
process characterised by an insoluble reactant (cellulose) and a soluble catalysts
(enzymes). Figure 6.5 shows the reaction scheme, where the reaction actually oc-
curs in two phases: solid and liquid. In the solid phase (heterogeneous reaction),
insoluble cellulose is initially broken down at the solid-liquid interface (with enzyme
adsorption/desorption) via the synergistic actions of the enzymes (endoglucanase/
exoglucanase). Endoglucanase attacks the internal glucosidic bonds randomly, and
exoglucanase cleaves cellobiose and releases it into the solution. This initial degra-
dation in solid phase is then accompanied by liquid-phase hydrolysis (homogenous
reaction) of soluble cellobiose into glucose by the action of β-glucosidase [30], [31].

Because the cellulose hydrolysis consists of various reactions in different phases
(Figure 6.5), the model of cellulose hydrolysis should take into account the multireac-
tion system in which different reactions are modelled; heterogeneous reactions for cel-
lulose breakdown to cellobiose and homogeneous reaction for cellobiose hydrolysis
to glucose. Moreover, because cellulose is a highly complex substrate and its enzy-
matic hydrolysis is heterogeneous in nature, the whole process of cellulose conver-
sion to glucose involves more steps than classical enzyme kinetics. The major
steps, described by Bansal et al. [7], are as follows:
1. Adsorption of cellulases onto cellulose via the binding domain.
2. Location of a bond susceptible to hydrolysis on the cellulose surface (chain end

for exoglucanase, cleavable bond for endoglucanase).
3. Formation of ES complex (binding of a molecule of cellulose in the active side

of the catalytic domain).
4. Hydrolysis of the β-glucosidic bond and simultaneous forward sliding of the en-

zyme along the cellulose chain.
5. Desorption of cellulases from the cellulose and their transfer to liquid phase or

repetition of step 4 or steps 2/3 if only the catalytic domain detaches from the
chain.

6. Hydrolysis of cellobiose to glucose by β-glucosidase (classical homogenous en-
zyme kinetic).

Figure 6.5: Reaction scheme of cellulose hydrolysis occurring in two phases.
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The accordance with the abovementioned description of hydrolysis steps, ad-
sorption of enzymes on the cellulose plays an important role in cellulose hydroly-
sis, as it is the initiation step. Thus, the kinetic model of cellulose hydrolysis
should include the adsorption step. Nevertheless, the M-M–based models, devel-
oped initially for homogenous reaction (such as the action of β-glucosidase on sol-
uble cellulose), have been used by many authors to describe the whole hydrolysis
process, neglecting the adsorption step, and the models have in general worked
satisfactorily [7], [9], [10]. However, some models attempting to predict reducing
sugar production over extended batch reactions have encountered difficulties and
discrepancies, mainly due to changing reaction dynamics caused by changing
substrate structure and loss of enzyme activity [9]. It is therefore important that a
kinetic model incorporates vital information about the whole cellulose hydrolysis
steps. Because cellulose hydrolysis is a heterogeneous reaction, the classic M-M
kinetics is inadequate to explain the action of cellulases (i.e., endoglucanase and
exoglucanase) on insoluble cellulose. The overall rate depends on the amount of
adsorbed cellulases. In general, adsorption model based on Langmuir adsorption
isotherm has been extensively used in modelling of cellulose hydrolysis [7], [31],
[32]. Considering the homogenous and heterogeneous reactions, the cellulose hy-
drolysis should be modelled by both M-M and Langmuir kinetics, respectively. In
addition, there are other factors related to both, enzyme characteristics (adsorp-
tion, inhibition, synergism, activity, composition) and substrate characteristics
(degree of polymerization, crystallinity, accessible surface area, hemicellulose
and lignin content), which affect the hydrolysis of cellulose [5], [7], [9], [10].
Including all of them into a kinetic model of enzymatic cellulose hydrolysis is one
of the most challenging subjects in engineering for this process. Over the past dec-
ades, many models of enzymatic hydrolysis of cellulose have been developed and
efforts to enhance understanding of this reaction have been made. These works
are found in four main reviews about modelling of enzymatic cellulose hydrolysis,
which were published over past years [7], [29], [32], [33]. In the next section, we
review some examples of the models developed for cellulose hydrolysis over the
years. On the other hand, in Section 6.4, kinetic models developed for different
lignocellulosic biomass (the real biomass containing cellulose) are presented.

6.3.2 Model examples used in cellulose hydrolysis

As stated in Section 6.2.3 there are two principal approaches to model enzymatic
hydrolysis, empirical and mechanistic. Over the years, various empirical models
have been developed to simulate the enzymatic hydrolysis of cellulose [7], [32], [33].
These empirical models have been generally used to correlate hydrolysis either
with the structural properties of the substrate or with time. They can help in quanti-
fying the effects of various substrates and enzyme properties on hydrolysis. They
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can be simple to construct but require large sets of experimental data. Nevertheless,
empirical models lack a theoretical foundation and cannot be applied beyond the
range of the data under which they were developed. Therefore, they do not provide
any insight into the mechanistic details of the process [6], [7]. Because the mecha-
nism of cellulose hydrolysis is very complex and it is still not well known, more re-
cent works have emphasized on developing detailed mechanistic models that are
solved numerically or stochastically rather than empirically. Thus, this section fo-
cuses only on the mechanistic models, which include the factors that ought to be
taken into consideration in establishing a comprehensive mechanistic kinetic model.
Table 6.1 provides a list of some mechanistic models published in the literature over
the years, along with their methodology and factors affected the rate of hydrolysis.

As reviewed previously [7], [32], different models have been developed for cellu-
lose hydrolysis since 1975. They were usually based on one of the two methodologies:
M-M or Langmuir adsorption (Ads). In 1984, Holtzapple et al. [34] developed a gener-
alized mechanistic model for enzymatic cellulose hydrolysis termed the Holtzapple–
Caram–Humphrey-1 (HCH-1) model. The HCH-1 model is a modified M-M model
which additionally includes an adsorption step, noncompetitive inhibition by glucose
and a parameter that describes the fraction of insoluble substrate available to bind
with enzyme. The inclusion of these parameters makes the model more appropriate
for heterogeneous cellulose hydrolysis than the M-M model. This was confirmed by
good agreement with experimental data, which appeared better than older models
based on M-M or Langmuir adsorption [34]. Furthermore, in an additional study, the
model was extended including the noncompetitive inhibition by cellobiose [35].
Recently, the HCH-1 model has been used to describe the hydrolysis of lime-pre-
treated corn stover with the purpose to determine the inhibition pattern, which in the
initial model was assumed to be noncompetitive [5]. The study identified a noncom-
petitive inhibition pattern by glucose for the corn stover–cellulase reaction system,
thereby validating the assumptions of the HCH-1 model. This result confirmed that
the HCH-1 model is able to predict well not only the hydrolysis of pure cellulose sub-
strate [34], but also lignocellulosic substrate [5]. More recently, the HCH-1 was modi-
fied to extend its application to integrated enzymatic hydrolysis for long-term process
(i.e., 10 days). The modified model accounts for stochastic MC method for sensitivity
analysis. Excellent fits to the data were obtained for the model that uses the mix of
enzymes without the need to model each enzyme component individually. Moreover,
the sensitivity analyses not only determine the parameters which have greater influ-
ence on results, but also can provide direction for further modification of the HCH-1
model to apply it to different lignocellulose biomass [6].

The first stochastic model for hydrolysis of insoluble polysaccharides was de-
veloped by Fenske et al. in 1999 [24]. This model used MC simulations for an en-
zyme mix of endo and exoglucanases, evaluating the synergistic action. Despite the
results proved that autosynergism is occurred, it was a theoretical study and the re-
sults were not validated experimentally. Anyway, this model did not capture the
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Table 6.1: Mechanistic models of cellulose enzymatic hydrolysis.

Substrate feature Enzyme Methodology Inhibition No of presented
equations

Reference

Solka Floc, ASA T. viride + β-glycosidase Ads, modified M-M Noncompetitive by glucose  []

Solka Floc, ASA T. viride + β-glycosidase Ads, modified M-M Noncompetitive by glucose and
cellobiose

 []

Textile cotton waste,
pretreated cellulose pulp

T. viride (endo + exo),
A. niger (β-glycosidase)

M-M Evaluation of inhibition type by
cellobiose and glucose

 []

Cellodextrins
DP

β-glycosidase M-M Competitive by glucose  []

Cellulosea, ASA Cellulasea, (end + exo), S Ads, MC Type of inhibition was not specified. []

α-cellulose, ASA + (A, C) T. reesei + β-glycosidase Ads, M-M Competitive by glucose and
cellobiose

 []

Avicel, ASA T. reesei (CelA)
−exoglucanase

M-M Evaluation of inhibition type by
cellobiose

 []

α-cellulose, A Spezyme CP (Genencor),
(endo + exo + β-glycosidase)

Ads Noncompetitive by cellobiose and
glucose (endo/exo), Competitive
by glucose (β-glycosidase)

 []

Lime-pretreated corn
stover, ASA

T. reesei + β-glycosidase Same model as
Holtzapple et al. []

Noncompetitive by glucose  []
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Table 6.1 (continued)

Substrate feature Enzyme Methodology Inhibition No of presented
equations

Reference

Cellulosea, DP, ASA Multiple enzymes, S Ads, M-M Competitive by glucose and
cellobiose

 []

Cellulosea, ASA + (A, C),
DP

Cellulasea (exo + endo +
β-glycosidase), S

MC Type of inhibition was not specified.  []

Cellulosea, A, ASA, DP Cellulasea (exo + endo +
β-glycosidase), S

Ads, M-M, MC Noncompetitive by cellobiose and
glucose

 []

α-cellulose (C) Novozymes Cellic (CTec)
(endo + exo + β-glycosidase)

Modified model of
Holtzapple et al. [],
MC

Noncompetitive by glucose  []

aTheoretical study. A, amorphous structure; Ads, Langmuir adsorption; ASA, accessible surface area; C, crystalline structure; DP, degree of polymerisation;
MC, Monte Carlo; M-M, Michaelis-Menten; S, synergism.
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actual structural properties of cellulose and multi enzyme dynamics. Latterly, more
comprehensive stochastic model of cellulose hydrolysis based on MC technique was
developed by Kumar and Murthy [39]. The model captured the most important
structural properties of cellulose (crystallinity, degree of polymerization, accessibil-
ity) and enzyme (mode of actions, synergism, inhibition), and showed qualitative
and quantitative agreement with experimental data. In addition, the model was ef-
fective in capturing the dynamic behaviour of cellulose hydrolysis during action of
individual as well as multiple enzymes. The major advantage of this model is that it
can be applied for different substrates, different enzyme characteristics and differ-
ent reaction conditions after performing independent characterization experiments
[39]. Niu et al. [30] also proposed a detailed mechanistic model based on stochastic
approach. However, in this case the model was developed for amorphous cellulose
and noncompetitive inhibition, so the cellulose structure and inhibition pattern
were fixed.

As presented in Table 6.1, in most cases, inhibition is either competitive [9],
[36], [38] or noncompetitive [5], [6], [30], [34], [35]. It can also be a combination of
both [28]. Beltrame et al. [21] investigated the inhibition pattern for endo and exo-
glucanase on the hydrolysis of textile cotton and cellulose pulp. Uncompetitive and
competitive inhibition on endoglucanase and exoglucanase, respectively, appeared
to occur for both substrates. More recently, Bezerra and Dias [37] tested eight different
M-M models of inhibition by cellobiose to establish the mode of inhibition on exoglu-
canase (Trichoderma reesei (Cel7A)) during cellulose hydrolysis. It was found that
cellulose hydrolysis follows a model that takes into account competitive inhibi-
tion on exoglucanase by cellobiose, agreeing with Beltrame’s result. Nevertheless,
it was stated that the discrepancy between different types of inhibition reported is
a result of enzyme concentration and enzyme/substrate concentration ratio,
source of cellulase enzyme complex, and/or the hydrolysis time over which the
experiments were conducted [5], [9].

6.4 Industrial applications

Kinetic modelling is a powerful tool for biochemical reaction engineering. At the
industrial level, the usual purpose of modelling is to improve process efficiency
and/or to provide a quantitative basis for process design, control and optimisation.
In addition, modelling together with simulation play a key role in the industrial
technology because they help to understand how a system behaves in specific con-
ditions, and thus they allow reducing costs and lead times. In other words, if a com-
pany wants to introduce a new technology which was tested successfully in a
laboratory, it is more useful and cheaper to develop a simulation model of the sys-
tem and evaluate the costs and benefits of such new solution first than to buy and
implement the new solution directly in a plant. This allows saving on money and
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time in case the new technology does not work as expected once scaled up. Therefore,
modelling and simulation techniques contribute together to simplification and eco-
nomic favouring of the design, realization, tests and running a live operation of control
systems [1], [2].

Enzymes as industrial biocatalysts offer numerous advantages over traditional
chemical processes, therefore they have been implemented in foods, pharmaceutical
and biofuel industry, among others. The constantly growing food and pharmaceutical
industry and increasing demand for their products require the development of tailor-
made, low-cost products manufactured by sustainable processes and for this reason,
modelling plays an important role in these sectors of industry. Enzyme kinetics
modelling has found a broad range of applications in the enzymatic hydrolysis of
milk proteins as it is an important process in the food industry that improves the
functional properties and reduces allergenicity. Empirical model based on artificial
neural networks was successfully used to predict the degree of hydrolysis of skimmed
goat milk proteins with subtilisin and trypsin as a function of the operating condi-
tions, namely the reaction temperature, the enzyme-substrate ratio and the time of
hydrolysis. Significant correlation between degree of hydrolysis predicted using the
models and degree of hydrolysis obtained under experimental conditions was
achieved [40]. On the other hand, the hydrolysis of milk protein has been also pre-
dicted by stochastic model. In the study by Gao et al. [41], stochastic model based on
MC technique was performed for enzymatic hydrolysis of lactose with β-galactosidase
for the purpose of real-time applications and the model predicted the reaction kin-
etics with good accuracy [41]. Empirical model has been also successfully applied in
the production of pharmaceuticals such as L-carnitine. Canovas et al. [42] proposed a
model which describes all the activities of different enzymes involved in the biotrans-
formation of crotonobetaine into L-carnitine, and was successfully implemented in
batch and continuous membrane reactor [42]. Furthermore, the authors optimized
the model for a continuous reactor and experimentally verified the predicted optimal
parameter profiles. The optimization gave 90% increase in the L-carnitine production
rate resulting also in a complete coincidence between the theoretical and the experi-
mental findings [43]. Another pharmaceutical product of a great importance which
production was empirically modelled is lactic acid. Lactic acid is also widely used in
food and biodegradable plastics manufacturing which is nowadays even a bigger
market for lactic acid than pharmaceutical and food industry. Bioconversion of paper
mill sludge to lactic acid was modelled using simultaneous saccharification and fer-
mentation (SSF) process which combined the enzymatic hydrolysis of paper mill
sludge into glucose and the fermentation of glucose into lactic acid in one reactor.
The proposed model of one-step process fitted satisfactorily with the experimental
data, thus the SSF is a good choice for bioconversion of waste cellulosic materials to
lactic acid [44].

Treatment of byproducts produced in food, agriculture or paper industry is another
important area of kinetics modelling applicability as real substrates (i.e., byproducts)
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do not show the same characteristic as pure ones and usually they need to be pre-
treated before use. For this reason, predicting optimal conditions can improve conver-
sion efficiency. Many examples exist in the literature, that is, optimisation of model for
enzymatic hydrolysis of cellulose from differently pretreated dairy manures [45], from
apple pomace [46], from sugarcane bagasse and straw [8], [10], [47], from corn stover
[48], [49], and optimization of model for SSF of rice straw [50] or paper mill sludge
[44], [51].

Recently, the enzyme kinetic modelling has been widely used in the bioethanol
industry. Bioethanol is one of the most promising alternatives to petroleum fuel.
However, to be more competitive, all stages of its production process must be sim-
ple, inexpensive, efficient and easy to control. In the production of bioethanol from
cellulosic biomass, enzymatic hydrolysis of cellulose to fermentable sugars accounts
for a large portion (~30%) of the total production costs; therefore, a thorough under-
standing of enzymatic hydrolysis is necessary to help design optimal conditions and
economical systems [6]. Although different models were applied for cellulose hydro-
lysis, as described in Section 6.3.2, from an industrial point of view, it is also neces-
sary to develop a kinetic model being able to describe the process as realistically as
possible. In this context, modelling should be focused on the enzymatic hydrolysis of
lignocellulosic biomass, where cellulose is combined with hemicellulose and lignin,
rather than on the model substrate (i.e., cellulose), as real substrates do not show the
same characteristics as pure cellulose [52]. However, modelling the enzymatic hydro-
lysis of lignocellulosic materials is probably one of the most challenging subjects in
bioreactor engineering due to the complexity of the reaction process, influenced by a
number of hydrolysis conditions. Although empirical models for prediction of enzy-
matic hydrolysis of lignocellulosic biomass can also be found in the literature [46],
[53], the mechanistic models have been studied preferably. During the last two deca-
des, many efforts have been made to understand the reaction mechanism and de-
velop a suitable model for lignocellulosic biomass hydrolysis to support advanced
bioethanol production [5], [8], [10], [45], [47], [48], [49], [52], [54]. The first model that
included also competitive xylose inhibition besides glucose and cellobiose inhibition
was proposed by Kadam et al. [48]. The direct conversion of cellulose to glucose by
exo-β-glucosidase and the temperature effect as well as the reactivity substrate were
also incorporated in this model. It was one of the most complete mechanistic models
for enzymatic hydrolysis of lignocellulosic biomass which presented a multireaction
kinetics model for batch enzymatic hydrolysis of pretreated corn stover. This model
has been experimentally verified [48], [49], evaluated in applications of simulation
and optimization process [49], [52], [55], extensively analysed statistically [54], and
adapted, with some improvements, to model the enzymatic hydrolysis of pretreated
sugarcane straw [10]. Angarita et al improved the model taking into account the con-
version of hemicellulose to xylose and lignin content. The model was able to predict
with reasonable accuracy the concentration of glucose formed in a batch enzymatic
hydrolysis of sugarcane straw at high-solids concentration [10]. More recently, also
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based on Kadam’s model, a comprehensive stochastic model was developed to quan-
tify the overall impact of uncertain model parameters associated with the acid pre-
treatment and enzymatic hydrolysis. Because bioethanol can be produced from
different feedstock, the influence of variability in feedstock composition, among
others, was studied. The stochastic simulations showed evidently the expected influ-
ence of variability in feedstock composition and kinetic parameters on the product
yield, which could also affect the optimal batch time. The stochastic model also dem-
onstrated that pre-treatment and hydrolysis of lignocellulosic biomass are affected by
several uncertainties, which must be systematically considered for a robust process
design [52]. All publications reviewed previously are about the modelling of lignocel-
lulosic biomass hydrolysis to fermentable sugars because this step accounts for a
large portion of the total bioethanol production costs. The next step in bioethanol
production is a fermentation. Besides, the two process steps (i.e., hydrolysis and fer-
mentation) can also be performed simultaneously and is called SSF. For industrial
application, the one-step process is preferable as it reduces operating cost because of
the lower number of reactors needed. It has been estimated that the capital invest-
ment can be reduced by more than 20 % with SSF compared with separate hydrolysis
and fermentation processes [56], [57]. Therefore, several kinetic models describing
SSF [50], [56], [58] or cofermentation (SSCF) [51], [55], [57] have been proposed for dif-
ferent reactor configurations: batch [50], [51], [56], [57], [58], fed-batch [55], [57] and
continuous [55], [56], [58]. The important issue was to demonstrate that the process
under SSF is beneficial particularly when high product ethanol concentration is de-
sired. The operating time of SSF process was reduced in comparison with the one
needed for the two-step process [50].

6.5 Conclusions

Enzymes as industrial biocatalysts offer numerous advantages over traditional
chemical processes resulting on improvements in process economy and environ-
mental sustainability. Because enzymes are extensively used in different industrial
areas, the enzyme kinetics is an important factor for industry as it is able to esti-
mate the extent of substrate conversion under known conditions and evaluate reac-
tor performance. In addition, mathematical modelling is useful in the analysis,
prediction and optimisation of an enzymatic process.

In enzymatic process modelling, there are two main approaches empirical and
mechanistic. Empirical models describe relations between the variables in an experi-
mental data set using mathematical correlations without requiring detailed knowledge
of an underlying mechanism of the system. Empirical models are replaced by mecha-
nistic models when more knowledge about the process mechanisms, through which
changes in the system occur, is needed. Among mechanistic models, deterministic
models are easier and faster to apply and readily lend themselves to computer
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applications. However, in some cases, for more complex biological systems with
different input variables stochastic models are more accurate.

Cellulase hydrolysis is one of the most complex biological reaction. The com-
plex heterogeneous reaction mechanism involved in cellulose enzymatic hydrolysis
and the complicated morphology of biomass make enzymatic hydrolysis difficult to
model. Classical homogenous enzyme catalysis is modelled by M-M kinetics and
heterogeneous catalysis by Langmuir kinetics. Considering the heterogeneous and
homogenous reactions that occur during the entire process, the cellulose hydrolysis
should be modelled by both, Langmuir and M-M kinetics. In addition, other factors
related to enzyme characteristics (adsorption, inhibition, synergism, activity, com-
position) and substrate characteristics (degree of polymerization, crystallinity, ac-
cessible surface area, hemicellulose and lignin content), which affect the hydrolysis
of cellulose, should be included in the model. In addition, to scale up to the indus-
trial level, it is important to model the deviation of the process from ideal condi-
tions. Thus, stochastic modelling is recommended because it involves inherent
randomness, thus may predict the distribution of possible outcomes.
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7 Computational approach to the study of
morphological properties of polymer/fullerene
blends in photovoltaics

Abstract: Organic solar cells have the ability to transform solar energy efficiently
and have a promising energy balance. Producing these cells is economical and
makes use of methods of printing using inks built on solvents that are well-matched
with a variety of cheap materials like flexible plastic or paper. The primary materi-
als used to manufacture organic solar cells include carbon-based semiconductors,
which are good light absorbers and efficient charge generators. In this article, we
review previous research of interest based on morphology of polymer blends used
in bulk heterojunction (BHJ) solar cells and introduce their basic principles. We fur-
ther review computational models used in the analysis of surface behavior of poly-
mer blends in BHJ as well as the trends in the field of polymer surface science as
applied to BHJ photovoltaics. We also give in brief, the opportunities and chal-
lenges in the area of polymer blends on BHJ organic solar cells.

Keywords: polymer blends, morphology, computational, bulk heterojunction, pho-
tovoltaics

7.1 Introduction

Sun is primarily the source of non-polluting energy, but we have not managed to
utilize it fully. Most solar devices in use today are not economically viable because
the cost of manufacturing the inorganic semiconductor solar devices is very high.
As a result, scientists got the motivation to develop organic photovoltaic (OPV)
structures as well as devices because they cost less and are flexible and easy to ob-
tain. The easiness of fabricating OPVs forms the foundation of future competitive
engineering methods. One of the successful techniques of manufacturing OPVs is
the solution-processed BHJ photovoltaic cells (PCs). BHJ is a state-of-the-art device,
which blends conjugated (electrical conducting) polymers closely with soluble ful-
lerene byproducts. Over the last decade, scientists have succeeded to refine the
Power Conversion Efficiency (PCE) of the polymer BHJ PCs from 4% to above 10%
[1–4]. Shortly after the discovery of BHJ PCs, the quantity of the scientific journals
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in this field continued to increase with a significant percentage of the publications
dealing with the morphological structure of the BHJ PCs. Figure 7.1 shows the trend
of the publications in the areas of knowledge of BHJ PCs in terms of their efficiency,
morphological properties, blend-surface segregation and computational models,
over the last decade. The trends clearly indicate progressive research and a promis-
ing future for these devices.

The basic working principle of the BHJ PC is presented in Figure 7.2. The contact area
between the donor and acceptor organics is large, a configuration that enables the ex-
cited hole–electron pair (exciton) to reach the donor–acceptor boundary and separate
before recombination takes place. The donor material absorbs the solar radiations to
produce excitons, which then travel to the donor–acceptor interface, where they sepa-
rate because of the difference in the energy levels of the organics. Electrons in the
higher energy states move through the acceptor and move out through the cathode.
Holes move from end to end of the donor material to the anode. Control of morphology
of donor/acceptor blend is important in order to allow large charge generating inter-
face, to suppress loss of excitons and to ensure good percolation pathways for trans-
portation of holes and electrons to the anode and cathode respectively [5].

The general efficiency of this kind of PC is much lower compared to that of inor-
ganic PCs [6]. Properties of materials making up the active layer of the polymer

Figure 7.1: Trend of the publications in the area of knowledge of efficiency, morphology and
surface segregation of blends in BHJ PCs from web of science (searched by the key words: “Bulk
heterojunction photovoltaic cell + efficiency” (Red), “Morphology + Efficiency” (Blue), “Morphology
+ surface segregation” (Green) and “Computational models” (White).
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cells are the primarily the efficiency limiting factors. An ideal polymer solar cell has
high charge carrier mobility and a wide-ranging absorption in the range of the solar
band that enhances absorption of radiations from the sun and also achievable in
terms of production, despite low efficiency levels [7]. However, there are certain ex-
perimental [5, 8, 9] and computational [10–12] methods suitable to improve the effi-
ciency of the device such as morphology optimization of its active layer. This
process involves optimization of the horizontal phase-separated morphology, a per-
pendicular scattering of the constituents making the composite film as well as the
vertical phase gap. Deibel and Dyakonov [13] suggested that good control of the sur-
face segregation is very crucial for developing an efficient BHJ. Therefore, a good
choice of the solvent and the strengthening of the solution treated polymer help to
produce an inner structure with better-quality detachment of the immobile elec-
tron–hole pair and the resulting charge transference [14, 15]. For improved charge
collection in the photoactive region of BHJ device, thermal annealing must be done
effectively. Studies by Jo et al. [1] and Kumar et al. [15] revealed that different time-
dependent annealing treatments achieve different nanoscale BHJ morphologies.
The different time-dependent annealing treatments produce various levels of device
performance and efficiencies as presented in Figure 7.3.

The curves also show that solar cells fabricated without annealing treatments
performed poorly. The annealing process achieves a better-quality blend morphol-
ogy, which further results in increased induced photon-to-current conversion effi-
ciency (IPCE) of the solar cells. Morphological properties of polymer solar cells are

Figure 7.2: Schematic representation of working mechanism of bulk heterojunction photovoltaic
cell (a): 1- Incident photon radiation creates an exciton, 2- Hole diffusion toward anode, 3- Hole
trapped in an isolated acceptor molecule, 4- Free electron moves toward cathode. Red/blue region
represents acceptor/donor blend (b): Donor/acceptor system showing energy levels, HOMO-
highest occupied molecular orbital, LUMO-lowest unoccupied molecular orbital, EAD-electron
affinity in donor molecule, EAA- electron affinity in acceptor molecule.
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therefore imperative to their functioning. Several studies have also investigated the
contribution of film thickness to segregation, for instance, a study by Verploegen
[16], proved that after annealing thin films of polymer:fullerene in the ratio of 1:3 at
160°C, they displayed dewetting [17–19]. Segregation is a condition where the do-
nors (polymers) are in excess at the region near the substrate, and the acceptors
(fullerenes) are in excess near the top surface of the device. Such distribution of
components is critical in avoidance and control of charge carrier seepage. However,
from the studies reviewed herein, the results relating to the surface separation con-
tradict. Nevertheless, most of the studies tend to agree with the annealing results in
increased concentration of the acceptors near the cathode. Such results are impera-
tive in the process of improving the efficiency of BHJ organic PCs.

In the past few years, computational modeling has attracted attention in accel-
erating the exploration for proficient conjugated photovoltaic materials [20]. By pre-
diction and extrapolation, it provides information about physical properties of the
BHJ PC and factors that affect the performance. Indeed, it is possible to improve
absorption of light, chain conformations, electron configurations, operation, as well
as properties essential in the design of these devices, through computational model-
ing. In the next section of this review, we explore computational models on surface
segregation and morphology of the polymer blends in BHJ PCs. The blends used com-
prise of mixtures of linear chain polymers and fullerene derivatives whose chain ar-
chitecture is basically cyclic.

Figure 7.3: (a) Performance of BHJ organic PCs having P3HT: PCBM energetic layers with different
hardening processes that depend on time. (b) Incident Photon-to-Current Conversion Efficiency
(IPCE) bands of P3HT: PCMB BHJ PCs with different hardening treatments [1].
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7.2 Computational models for polymer blends in BHJ PCs

7.2.1 Course-grained model

For a period of time now, the study of structural, morphological and dynamic prop-
erties of cyclic and linear polymers have shown an increasing trend owing to the
nature of their chain architecture. Lack of chain ends in cyclic polymers, for in-
stance, results in enormous topological limitations; this has generated great interest
in the investigation of properties such as local density, radius of gyration, diffusion
and percolation of the polymer chains. Experimental studies have been conducted
on linear and branched polymers in dilute solutions [21–25]. Computational work
has also been done on the behavior of the polymers at the surface and in the bulk
of cyclic/linear blends [26–29]. A study by Cates and Deutsch [30] indicated that cy-
clic polymers approximate Gaussian in their short chain range and the linear poly-
mers display conformational statistics in their long chain regimes. It was found that
as the chain length changes the radius of gyration varies as in the expression below;

1
3

≤ R2
g ⁓N2v ≤

1
2

(7:1)

where R2
g is the square radius of gyration, N is the total number of atoms and v is a

constant. A Gaussian chain possesses an exponent equal to 1. Thus, it turned out
that size scaling of a ring polymer generally depends on the simulation model [31],
which has activated the quest of many researchers to find a better understanding of
polymer scaling properties.

Polymer organic PCs stand out as the cheap and large-scale-manufacture tech-
nology for the future. However, the current efficiency of organic PCs is too low for
economic viability. There is great need to increase the current efficiency from about
11% to levels comparable with other technologies. Computational models can play
a significant role in making these devices achieve the desired effectiveness. There
are several computational models for conducting polymer blends. The coarse-grained
(C-G) models hosted by molecular dynamic simulations of small systems have been
used to study the morphology of the photoactive layer of BHJ PCs [32–34]. Do et al.
[33] and Huang et al. [34] developed C-G models of P3HT/PCBM (poly(3-hexylthio-
phene)/[6,6]-phenyl C61-butyric acid methyl ester) blend in which P3HT monomers
were represented by three centers of mass:- of the thiophene ring, that of the first
three side-chain methyl groups and that of the carbons of the last three side-chain
methyl groups. In this model, the center of mass of PCBM represented a single bead.
The main aim of this C-G model was to examine the structural formation and dynam-
ics of the polymer/fullerene blend used in BHJ at a microstructure scale. The struc-
tures with C-G sites are represented in Figure 7.4.

Starting from a perfect polymer atomistic model, the C-G model is configured at
temperatures close to 600 K in order to accommodate fluid state and also avoid
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solidification of the fullerene molecule. By Boltzmann inversion iterative procedure,
the positions of centers of mass (sites) are set to give a general atomistic system
having non-bonded polymer-fullerene particles, bond angles and two-faced polymer
distribution [26]. Varying weight ratios of 12-mers P3HT were conveniently chosen for
the atomistic system at normal pressure. Polymer–polymer C–G interactions were op-
timized in simulations of P3HT:P3HT at T = 550 K. Then Polymer–fullerene and fuller-
ene–fullerene C–G interactions were optimized as P3HT-PCBM and PCBM-PCBM,
respectively, in simulations of 1.85:1 w/w P3HT: PCBM at the same temperature.

7.2.2 The bead-spring model

The other important model is the bead-spring model [35, 36]. Very recently, re-
searchers [37, 38] have extensively used this model to study the behavior of linear-
cyclic polymer blends at the polymer/air interface using molecular dynamics (MD)
simulations. Linear and cyclic polymers were modeled as monomers each of mass m,
and sharing common boundaries. The connections form open or closed loops which
interact via springs while centers of mass of the monomers act as the interaction
beads, see Figure 7.5.

The dynamics of bead-and-spring in this model is achieved by summing the ex-
ternal forces at the center of mass of the monomer using the expression;

F = Ff + FE + FB (7:2)

Figure 7.4: Chemical structures with C-G sites (a) Polymer; poly(3-hexylthiophene)-(P3HT), (b)
Fullerene; [6,6]-phenyl C61-butyric acid methyl ester (PCBM)[26].
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where, Ff = − m
ℶ

� �
V, FB =

ffiffiffiffiffiffiffiffiffi
kBTm
Δtℶ

q
, and FE, are the Stokes’ drag, the Brownian force

and the effective spring force respectively. The factor ℶ=0.5 represents the damping
factor, V the velocity of the bead, while T the temperature of solvent molecules
colliding with the beads during the Brownian motion. The time-step is represented
by Δt, while kB is the Boltzmann constant. A combination of two potentials; the
finitely extensible nonlinear elastic (FENE) [35] and Weeks–Chandler–Andersen
(WCA) [39] were used in this model. Interactions between the beads were approxi-
mated by Lennard–Jones (LJ) potential at a limit expanse of rc = 2.5 σ. All simula-
tions were done using LAMMPS package [40]. For the time step, they used:

Δt =0.005τ; with τ=σ
ffiffiffiffi
m
ϵ

r
and temperature T = ϵ=kB

ϵ and σ are the energy and distance parameters for LJ potentialð Þ
A2=τ damping factor of the Langevin thermostat was used to maintain constant tem-
perature and pressure in all the simulations. The total potential was obtained by com-
bining FENE and LJ potentials;
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where, σ and 2 are LJ parameters related by K = 30 2 =σ2 and r0 = 3=2σ gives the max-
imum bond size while r is the inter-bead separation. Figure 7.6 shows that the LJ and
FENE potentials restrict the lower and upper limits of bond lengths, respectively,
between the adjacent monomers.

In their analysis on adsorption properties of cyclic-linear polymer blends at
the interface in a low cyclic chain length regime, Megnidio et al. [38] further ob-
served that as the distance from the interface increases, the local density of either

species ρi =
Ni, slice

V , tends to the value of density in the bulk, ρ0i =
N0
i
V . Here,

Figure 7.5: Sketch of configurations of the bead-and-spring nature of (a) linear and (b) cyclic
polymer chains.
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i≡ c cyclicð Þ, l linearð Þ, Ni, slice is the number of particles of polymer species i in a slice
of thickness σ perpendicular to the interface and Vslice is the volume of this slice.
A similar observation was made with the local composition of linear polymers
that migrate to the interface [37];

c= Nl, slice
Nc, slice +Nl, slice

(7:4)

which, also corresponds to the value in the bulk c0 =N0
l =N

0
c +N0

l as presented in
Figure 7.7.

Figure 7.6: FENE and LJ potentials [38].

Figure 7.7: (a) Linear polymer local composition as a function of distance from interface. (b) Particle
density of linear polymers as a function of distance from interface (inset: region very close to
interface [38].
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In BHJ OPV applications, the active layer is a blend of two components as dis-
cussed earlier in this section, namely; a conjugated hole-conveying polymer and a
solvable fullerene in form of linear and cyclic chains respectively. Since the two
components have different surface energies as well as the energies of integration,
nanoscale phase separation occurs after casting the solutions to form the film. A
study conducted by Kong et al. [41], concluded that surface segregation occasion-
ally occurs during the first evaporation stage of the host solvent. Further in their
study, Pellicane et al. [37] and Megnidio et al. [38] observed that the total energy per
cyclic monomer is greater than that of linear for the entire distance from the surface
of the blend as in Figure 7.8. Due to their low flexibility the cyclic chains pack
much less than the linear chains and show less number of pair interactions among
the beads in their shorter chain length regime. This explains why linear polymers
achieve lower interfacial free energy in addition to minimizing their surface energy
more than cyclic [42] as well as optimizing their entropy by exposing the chain ends
[37, 38]. Enrichment of linear polymers at the interface also arises from entropy –
and enthalpy – resulting processes. However, the total energy per bead for both lin-
ear and cyclic polymers is nearly the same.

Figure 7.8: Energy per monomer of linear and cyclic chains as a function of distance from interface
[37].
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7.2.3 Process-device model

As discussed previously, the processes that affect the effectiveness of the polymer-
fullerene solar cells include generation rate of excitons, their diffusion rate and the
dissociation of the excitons at the donor/acceptor crossing point. Ray et al. [43]
noted that most of the developed models fail to capture the mechanism of the pri-
mary BHJ solar cells. Instead, the study used a model that relates the efficiency of
the cell to the useful parameters of the organic material. Taking the exciton genera-
tion rate to be Gex and the diffusion rate to be Dex, the simple model becomes;
Lex =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dexτex

p
, within the range of 10 to 20 nm. With this model, we only realize an

acceptable level of efficiencies when the donor–acceptor polymer blends get phase-
segregated through the annealing process. Therefore, any photo-excited excitons
get to the donor/acceptor boundary within a length that is approximately equal to
Lex, despite their point of location [43].

In this section, we explore the model of the random morphology and the regu-
lar structure with its role in refining the effectiveness of the BHJ polymer–fullerene
photovoltaic solar cells. We also echo that 3D simulations of polymer phase separa-
tion predict optimal film thickness and maximum annealing time.

Ray et al. [43] provided a clear description of the spinodal segment separation
as a product of the annealing interval by using Cahn–Hilliard (C–H) equation, i. e.

∂∅
∂t

=Mo ∇2 ∂f
∂∅

+ 2k∇4∅
� �

(7:5)

The contest flanked by the entropy of conjoining polymers having chain lengths NA

and NB as well as the energy of interaction of the pairs of the material1 represents
the primary cause of the spinodal phase segregation. Here,∅ is the polymer–fullerene
volume fraction. The quantitative expression of free energy density function contain-
ing these factors is illustrated in eq. (7.6);

f = kBT
v3

∅ ln ∅ð Þ
NA

+ 1−∅ð Þ ln 1−∅ð Þ
NB

+ χ∅ 1−∅ð Þ
� �

(7:6)

The parameter Mo in eq. 7:5ð Þ is the diffusion parameter at absolute temperature T
and volume v, which depends on the solvent, Boltzmann factor kB is also taken into
consideration in this expression. Together with the gradient energy coefficient k,
Mo affect the moving part of the entire process. This moving part determines the
rate at which the mixture reaches the lowest level of the free energy curve. Ray et
al. [43] also noted that the active layer morphology of BHJ has an average domain
widthW(ta) determined by the Lifshitz-Slyozov law [44], given as:

1 Flory Parameter x represents the interaction energy between the material pairs.
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The polymer–fullerene morphology in BHJ organic PCs at any given time ta allows
only a small part of the photo-excited electron/hole excitons to disperse to the charge
extrication zone before recombining. The solution of the three-dimensional exciton
diffusion law given below gives the relation of exciton flux (Jex) to the morphology of
the film. Considering the case where t tends to infinity t ! ∞ð Þ and at a photon ab-
sorption coefficient α, the solution of the equation gives the stable situation of total
exciton nexð Þ fluctuation for each unit space of the interfacial area on the morpholo-
gies resulting from different annealing instants.

∂nex
∂t

=Dex∇2nex −
nex
τex

+G0e− αz (7:8)

One of the solutions to eq. (7.8) is the carrier diffusion term eq. (7.9) which repre-
sents the hole–electron (h–e) transport in the blend.

Dh, e∇2nh, e −
nh, e
τh, e

+Gh− e =0 (7:9)

For a case that every exciton is entering the interfacial regions gets detached, into a
hole–electron (h–e) pair, and the charge carriers reach the electrodes, the limit of
the maximum current varies depending on the thickness of the film. Therefore, the
computational models could be extrapolated to present practical methods that
could be used to predict morphology and improve efficiency of the current organic
devices.

7.3 Importance of morphological properties in the development
of BHJ PCs

BHJ is currently one of the most efficient ways to construct polymer solar cells. It in-
volves mixing of the polymers having excess electrons and fullerides with a small
percentage of electrons. This method of construction allows scientist to study the
composition of polymeric active film that would result to the highest PCE. Currently,
the PCE achieved in organic PCs is close to 11% [5, 45, 46]. A study by Liang et al.
[7, 47] explored the performance of polymer PCs and found that open-circuit voltage
(Voc), short-circuit current (Jsc) and the fill factor (FF) are primary parameters that de-
termine the working of the polymer PCs. The study related the three parameters with
the following equation:

PCE = Voc × Jsc × FFð Þ
Ip ×M
	 
 (7:10)
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The parameter Ip represents the power density and M accounts for the mismatch
factor. An ideal structure of BHJ achieves the highest value of PCE. However, the
structure of the typical BHJ organic solar cell should have a form that allows a
broad absorption. It should also have a high hole mobility, energy levels that match
to the fulleride and be compatible with the fulleride [48–52]. It is however hard to
have a blueprint of a polymer that meets all the above qualities. Since the already
developed polymer solar cells have issues related to the nature of the materials,
their structure and morphological properties remain the most important factors to
check in order to achieve better performing BHJ organic PCs. Some BHJ device
structures and respective optimized parameters as well as PCEs obtained in various
studies over the last decade are summarized in Table 7.1.

7.4 Past, current and future trends in the application of polymer
interfaces in BHJ PCs

The discovery of electrical conduction on conjugated polymer by Alan Heeger,
Alan, MacDiarmid and Hideki Shirawaka who won a noble price for chemistry in
2000, marked the beginning of use of organic polymers in the fabrication of pho-
tonic and optoelectronic devices [53, 54]. Since then, intensive research efforts were
carried out to be able to produce efficient and thin film flexible organic molecule-
based photovoltaic devices. Until the discovery of BHJ structural design in the mid-
1990s, the PCE of ordinary organic PCs remained low (<1%) because of low charge
mobility and exciton dissociation efficiency due to the short exciton life time in
most organic semiconductors [55]. The BHJ technology is defined by ultrafast
charge transfer process between the polymer and fullerene molecules (Figure 7.9)
resulting in efficient exciton dissociation process which makes possible the fabrica-
tion of more efficient, low-cost and stable PC devices [56].

7.4.1 Conjugated polymers used in BHJ PCs

Investigations have shown that in the presence of certain dopants, some conjugated
polymers, notably polyacetylene, poly(sulfur nitride) and Poly(isothianaphthalene)
[66], could be made highly conducting. In their study of the Al/polyacetylene/graphite
PC, Weinberger et al. [67] reported low Voc of only 0.3 V and quantum efficiency (QE)
of 0.3%. In the early 1990s, Scott et al. [68] had observed that poly(p-phenylene vinyl-
ene) (PPV) in the ITO/PPV/Al LEDs and PCs had a Voc value of 1 V and PCE of 0.1% in
white light. Investigations with different polythiophenes as the active material in the
cell reported equally low Voc, QE and low efficiencies owing to relaxation of delo-
calized excitons in the energy gap, which in turn resulted in large spectral shift
and limited attainable voltage and PCE [69]. The quest to have better PCE saw
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Table 7.1: Summary of reported optimized parameter and PCE of BHJ PCs (chemical structures and names of polymers can be obtained from respective
references).

Year Device structure Jsc (mA/cm) Voc (V) FF (%) PCE (%) Ref.

 ITO/PEDOT:PSS/PCPDTBT:PCBM/Al . .  . []

 ITO/PEDOT:PSS/PCPDTBT/PCBM/Br/Al . .  . []

 ITO/PEDOT:PSS/PBDTTT-CF:PCBM/Ca/Al . .  . []

 ITO/PEDOT:PSS/PTB:PCBM/Ca/Al . .  . []

 ITO/PEDOT:PSS/PBDTTT-C-T:PCBM/Ca/Al . .  . []

 ITO/PEDOT:PSS/PBDTTPD:PCMB/BCP/Al . .  . []

 ITO/PEDOT:PSS /PDTP-DFBT:PCBM/MoO/Ag . .  . []

 ITO/PEDOT:PSS/ PBDT-TS:PCBM/Mg/Al . .  . []

 ITO/ZnO/PNTzT:PCBM /MoOx//Ag . .  . []

 ITO/ZnO/GEN-/PEDOT:PSS/ZnO/PEO/PTB-Th/MoOx/
Ag (polymer tandem cell)

. .  . []

 ITO/ZnO(LiCO)/PTB:PCBM/PEDOT:PSS/MoO/Ag . .  . []

 ITO/ZnO/PffBTT-OD:PCBM/MoOx/Al . .  . []
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further investigations in other conjugated polymers (see Figure 7.10) as candi-
dates in PCs. The bi-continuous architecture of electron acceptor and electron
donor materials in BHJ PCs provides largely dispersed acceptor/donor interfaces,
thereby allowing excitons to dissociate into free charge carriers and increasing
the PCE to above 2% [70]. In their computational study on pentacene-based or-
ganic molecules and derivatives blended with fullerene acceptors in a BHJ PC
model, Pramanik et al. [71] performed calculations on density functional theory/
time dependent-density functional theory (DFT/TDDFT) and obtained optoelec-
tronic properties which revealed that this model offered type II band alignment.
They also estimated the relative positions of HOMO and LUMO for pentacene di-
acid as −5.16 eV and −3.08 eV, respectively. By introducing different functional
groups and combining with a good acceptor like fullerene one may expect a type
II band alignment, which is one of the most important criteria in determining the
performance of PCs.

7.4.2 Inverted structure BHJ PCs

Currently, more attention lies on the solution processed inverted BHJ PCs, (Figure 7.11
shows comparison between conventional and inverted PCs). The inverted structure
has emerged a better candidate to remedy the bottleneck of low air stability arising
from use of metal anodes of low work function [72]. It is reported that one section of
the active layer has a high concentration on the transparent conducting oxide (cath-
ode) side and the other has a high concentration on the metal oxide (anode) side. This
is a favorable condition for the process of charge transport in photovoltaic devices [73,
74]. The inverted structure is compatible with roll-to-roll device fabrication and exhib-
its an excellent environmental stability and its performance has reached more than 11

Figure 7.9: Simulated phase segregated morphology of polymer-fullerene blend – 3D view.
Polymer – bright regions and fullerene – bark regions[43].
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% PCE through careful tailoring of their energy levels, energy gaps and mixing deriva-
tives of polymers and fullerenes [73–75].

7.4.3 Challenges and opportunities

The main challenges in the realization of thin film organic solar cells today is stability
of the polymer in an ambient environment and the low efficiency of the devices. The
other challenges associated with organic BHJ devices include, but are not limited to,
low external QE due to insufficient absorption by the photoactive layer, degradation
and decrease in performance with time arising from temperature fluctuations. Presence
of impurities in different photoactive polymer combinations (see Table 7.1) also affects

Figure 7.11: A general comparison of BHJ PC designs; (a) Conventional, (b) Inverted.

Figure 7.10: Molecular structures of some conjugated polymers used in BHJ PCs; (a) trans-
polyacetylene (PA), (b) Resonance poly(sulfur nitride) (SNX), (c) Poly(p-phenylene vinylene) (PPV),
(d) Poly(2-methoxy-5-(20-ethylhexyloxy)-1,4-phenylvinylene) (MEH–PPV), (e) Poly(3-alkylthiophene)
(P3AT).
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interfacial charge carrier generation rate and diffusion length of excitons [70, 76, 77].
Present day research has found out that BHJ PCs suffer charge-carrier mobility imbal-
ance resulting in space charge build-up since mobility of holes is always a step lower
than that of electrons. Consequently, this results in low FF and PCE [4]. In order to
overcome these difficulties, the photoactive layer should be made thin enough to pre-
vent recombination of charge carriers. This may however be unfavorable for the ab-
sorption process in the device. Prediction from different simulation results has shown
that, to obtain a PC with improved FF, external QE and PCE, balanced carrier mobility
must be achieved. Appropriate compositions in the photoactive layer must accurately
be computed to obtain a good balance point.

Based on PCE figures of Table 7.1, the future appears bright for computational
and experimental scientists whose research is inclined toward film morphology of
dynamic layers of BHJ PCs. The emerging trend in a number of studies is the use of
transparent metal oxides (MOx) as superior category of interface materials having
exceptional optical lucidity, good electrical conductivity and bendable work utility
[4, 13, 78, 79]. Recent research has also embraced hybrid tandem PC by stacking an
organic cell on top of an inorganic cell. The hybrid device can absorb higher energy
photons without energy loss caused by thermalization and hence operate at higher
voltages [80, 81]. The future of these devices lies in achieving a level of efficiency
equal or even higher than that of stand-alone inorganic photovoltaic devices [75]. It
is expected that this technology will provide cheap or entirely new devices having
mechanical stability, impact resistance and excellent optical transparency.

7.5 Conclusion

This article has reviewed available literature on polymer/fullerene BHJ PCs.
Considerable progress has been made in understanding the properties of polymer/
fullerene BHJ PCs. Most studies have revealed the importance of the role played by
polymeric materials blending the photoactive layer, their interaction during phase
separation and their relation to performance of the devices. The wide range of con-
jugated polymers being synthesized with fullerene makes the study of morphologi-
cal properties difficult to accomplish. Computational models have been developed
to help elucidate the choice of best material combination during synthesis, since
most experimental processes are largely based on trial-and-error approach. With
such models, it is has become easy to predict the morphology of BHJ devices; be-
sides the intrinsic utility of these models, the charge transport process in some
organic material is complex and in most cases may only be modeled numerically
[43, 82].

There are numerous opportunities for refining the productivity of the BHJ car-
bon-based photovoltaic devices. Adjustment of the morphological properties of the
BHJ organic devices is currently a viable method of improving the present low-
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energy levels of these devices. Proper adjustment and controlling of segregation in
BHJ organic PCs hold a great opportunity to improve the effectiveness of the devi-
ces. The current level of efficiency is only about 11%, which is not economically
viable for industrial production. Current computational models predict that it is
possible to attain higher levels of efficiency that are comparable to those of the sili-
con-based photovoltaic devices. However, the knowledge available about the effect
of morphological conditions of the devices on their effectiveness is contradicting.
Processing of BHJ PCs, characterization and designing of the instrument, optical
modeling, electrical modeling and accurate categorization of PCE and external QE
have become a challenge, nevertheless some new technology such as, inverted BHJ,
tandem, tandem-hybrid and ternary PCs have emerged to pave way to better cell
performance.

Notes

Flory Parameter x represents the interaction energy between the material pairs.
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8 Modeling and assessment of the transfer
effectiveness in integrated bioreactor with
membrane separation

Abstract: Integrating a reaction process with membrane separation allows for effec-
tive product removal, favorable shifting of the reaction equilibrium, overcoming
eventual inhibitory or toxic effects of the products and has the advantage of being
energy and space saving. It has found a range of applications in innovative biotech-
nologies, generating value-added products (exopolysaccharides, antioxidants, car-
boxylic acids) with high potential for separation/ concentration of thermosensitive
bioactive compounds, preserving their biological activity and reducing the amount of
solvents and the energy for solvent recovery. Evaluating the effectiveness of such in-
tegrated systems is based on fluid dynamics and mass transfer knowledge of flowing
matter close to the membrane surface – shear deformation rates and shear stress at the
membrane interface, mass transfer coefficients. A Computational Fluid Dynamics
(CFD)-based approach for assessing the effectiveness of integrated stirred tank biore-
actor with submerged membrane module is compiled. It is related to the hydrody-
namic optimization of the selected reactor configuration in two-phase flow, as well as
to the concentration profiles and analysis of the reactor conditions in terms of reaction
kinetics and mass transfer.

Keywords: computational fluid dynamics, effectiveness, integration of processes,
mass transfer, membrane bioreactor

8.1 Introduction

The advantage of the integrated bioreactor with membrane separation is its ability
to separate products with sufficient difference in molecular mass from complex sys-
tems with varying concentrations and composition. The research interest in the
field includes innovative membrane bioreactor (MBR) designs, less energy con-
sumption, effective membrane fouling control (rotating, baffled, vibrating etc.) and
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beneficial economic estimates [1–7]. In side-stream MBRs, the quality of mixing in
the reactor vessel and the fouling conditions in the membrane section (the shear
stress field to its surface) are clearly distinguished, whereas a submerged mem-
brane bioreactor (sMBR) is a hybrid vessel with flow characteristics affected both by
the turbulence promoter (aeration and/or mixer) and the membrane module.

The integrated membrane reactors compete successfully with conventional con-
tinuous reactors with suspended biomass and agitation [8], the sMBR being of spe-
cial interest [3, 9, 10]; the latter includes creating conditions for high product
quality at reduced energy consumption and reduced amounts of the solvents used
[11], as well as beneficial economic estimates such as lower operating costs of the
integrated operation [12, 13]. Innovative MBR designs attempt the use of submerged
membrane module sMBRs to achieve better membrane performance, less energy
consumption, effective and green/sustainable fouling control. The importance of
stirred sMBRs is increasing in parallel with the integrated processing of value-
added molecules where retention and concentration of biocatalysts promote contin-
uous hybrid operation. Examples of such operation in presence of components with
high fouling potential are reported [3, 14].

The CFD’s potential for application in a sMBR is most often realized in hydrody-
namic studies, especially concerning membrane fouling and aeration [15]. Recent
publications report CFD combined hydrodynamic and mass transfer simulation of
membrane modules with different configuration and stirred sMBRs [16, 17].

8.1.1 Scope of application

Membrane modules immersed in the bioreactor, or side-stream ones connected in
recycle [18–20] have been used in different biotechnological processes for separa-
tion of thermally unstable products, including in two-phase systems [21]. They have
proven their efficiency in biological treatment of waste flows with high content and
variety of organic contaminants, as well as an effective barrier against many active
pharmaceutical ingredients, pesticides, alkylphenols from production of nonionic
surfactants and other endocrine disrupters and resistant to degradation organic pol-
lutants [22–27]. The design of this type of integrated reactors is the subject of further
analysis and classification [28, 29] for biofuels production [12, 30–32] for separating
the products of the trans-esterification (mono-, di- and triglycerides, free glycerol
and unreacted excess methanol); separation of carboxylic acids from industrial fer-
mentation [33–37] including continuous ones [38–40]; separation of amino acids
and peptides – e.g., of L-glutamic acid from the fermentation broth by a sequence
of membranes [41]; p-nonylphenol removal under nitrifying conditions [42] in a
sMBR using tubular membrane module.

Attractive applications of the sMBR are found in microbial operation [43, 44].
The sMBR configuration was studied and discussed on the example of production
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and recovery of proteins, surfactants, polysaccharides and metabolites [45]; fructo-
oligosaccharides [46]; emulsion-stabilizing exopolysaccharides by production ori-
ented Antarctic yeast process [47, 48] etc. Integration of the bioreactor with mem-
brane separation in submerged configuration is developing in new directions such as
submerged osmotic MBRs, membrane electrobioreactors, photocatalytic MBRs, re-
verse osmosis (RO) or forward osmosis (FO) membrane bioreactors [9, 49, 50]. Some
examples, illustrating the diversity of applications, are summarized in Table 8.1

8.1.2 Research trends

The current trends concerning basic research in the area of integrated bioreactors
with membrane separation can be summarized as follows:

The engineering part of the reactor design including membrane separation,
its optimal geometry and conditions for the integrated process [68] have been the
subject of considerable scientific interest. The comparative study itself of the hydro-
dynamics in membrane bioreactors of both configurations – inside submerged ver-
sus outside submerged membranes (i.e., side-stream ones connected in recycle) – is
an object of CFD modeling [69]. The latter is also important in scale-up methodolo-
gies for MBR [70].

Recent developments in membrane separation technology and increased imple-
mentation of various membrane techniques for water purification and recovery of
value-added products bring attention to the immersed modular systems in stirred
tanks [69]. Combined knowledge on the performance of the integrated systems, based
on the fluid flow in stirred tank reactors and the separation dynamics of immersed
membranes, is needed. At condition of negligible effect of permeation on the hydro-
dynamics in the vicinity of the membrane surface, the impeller-induced cross-flow
was examined [71]. In the CFD simulations, the rate-of-deformation tensor was tar-
geted, as determined by the local gradients of the component velocities near the
membrane interface [71]. CFD was applied to demonstrate the effect of reactor config-
urations (the relative position between membrane and impeller, effect of impeller de-
sign) on the fluid flow pattern in submerged membrane reactors [72]. Continuous
perfusion-based bioprocessing in disposable vessels has extended the importance of
membranes onto a research related to single-use bioreactors [47, 72, 73].

Fouling reduction has been searched by different means for turbulence in-
tensification; stirred vessels with turbulent impellers and aeration have been
proposed [74–77]. The need of fouling control is an important condition for
proper production using membranes in submerged configuration [78]. The es-
sential means for fouling mitigation are related to hydrodynamics and fouling
problems have been analyzed in view of the shear level at the membrane sur-
face. The relation between flux and shear stress created by stirring are usually
qualitatively defined [70, 71], or limits of influence are considered, where
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Table 8.1: Application area of sMBR.

Application area Membrane
process

Membrane module sMBR design and operation details Reactor
volume

Water treatment
Oily WW [] MF PVDF hollow fiber Pendulum type oscillation  L
Landfill leachate [] UF PVDF hollow fiber Periodic feeding and intermittent aeration  L
Fruit-juice industry WW [] UF PES flat plate Aerated tank  L
Yogurt production WW [] MF Flat-plate No data Industrial

( m/d)
Paper mill WW [] MF Hollow fiber Continuously fed, aerated tank  L
Coal gasification WW [] MF Flat sheet (chlorinated polyvinyl

chloride)
Long-term bio-augmented (CHOH, granular activated
carbon, inorganic carbon added)

 L

Phenol-contaminated
saline water []

UF Four tubular membranes Extractive MBR (triphasic, aeration) No data

Potable WW reuse [] FO Cellulose triacetate with embedded
polyester mesh

Osmotic MBR Pilot scale

High strength WW
treatment for water
reclamation []

MF Polyethylene hollow fiber Sponge-sMBR, aeration  L

Secondary WW effluents
for water reclamation[]

UF Flat sheet (PS) Gravity-driven sMBR Lab

Heavy metals removal
from synthetic industrial
WW []

FO Flat-sheet, dense non-porous
cellulose triacetate membrane

Osmotic membrane bioreactor, aerated . L

Production of soluble
microbial products []-

MF Flat sheet (chlorinated polyethylene) Anaerobic, baffled, recycle biogas used for mixing,
fouling control;

 L
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Digestion of molassa
treating of bio-refinery
sidestreams []

MF Flat plate chlorinated polyethylene Anaerobic, magnetically induced membrane vibration,
with biogas recirculation

 L

Sodium gluconate
production []

MF Tubular (ceramic) Fermentor + membrane module coupled in recycle
mode

 L

Continuous hydrolysis of
lignocellulosic biomass, [],
[]

UF Flat sheet placed at the bottom of the
reactor (PES)

Stirred tank reactor (pitched blade impeller) with
bottom placed membrane

. L

Phenol hydrogenation to
cyclohexanone []

MF Tubular ceramic (a-AlO) Stirred tank bioreactor with L-shaped membrane tube  L

Syngas fermentation [],
[]

MF Hollow fiber (polysulfone) Stirred ( Rushton turbines) sMBR with full cell
retention

 L

FO, forward osmosis; MBR, membrane bioreactor; MF, microfiltration; PES, polyethersulfone; PVDF, polyvinylidene fluoride; sMBR, submerged membrane
bioreactor; UF, ultrafiltration; WW, wastewater.
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membrane fouling could be effectively controlled by shear stress [79]. Using
combined impeller and membrane designs allows application in highly viscous
and complex fluids where both interface and transport problems occur [80].
Complex hydrodynamics in sMBR may lead to restricted fluid mobility and
cause difficulties in both the fermentation reaction and the product recovery.
Depending on the input variables, unfavorable hydrodynamic conditions could
be generated in the integrated processing vessels that have to be revealed in
advance to avoid problems of inefficient product recovery [81]. In a stirred
sMBR, shear control on fouling should be balanced with shear effect on cell
viability, so that turbulence-promoted membrane should assure reduced fouling
and in the same time avoid the risk for cell physiological damage [47].

Mass transfer investigations are focused on the following:
a) Sherwood number expressions, accounting for a concentration dependent vis-

cosity and the effect of the transmembrane pressure drop; prediction of the
steady state permeate flux, as well as the transient flux decline profile [82].
Exploring the effect of fouling-layer thickness on mass transfer numerically is
an important step in the search of reliable Sh number correlations accounting
for the fouling-layer thickness and including the Re and Sc numbers [83].

b) Concentration polarization (CP) phenomena leading to reduced permeate flux,
which is a major problem in membrane separation and remains in the focus of
the mass transfer studies and modeling. Because of the accumulation of re-
tained solutes, reversibly and immediately occurring, the driving force for fil-
tration decreases and the permeating solvent meats an increasing transport
resistance. The solute distribution within the CP layer and the effect of the in-
creased concentration at the membrane interface has been solved both for
steady- and unsteady-state conditions [84]; in dead-end (stirred and unstirred)
[85] and cross-flow filtration modes [84]; alone or coupled with the membrane
layer [86] or gel layer growth on the membrane surface [87]. Fluid dynamic
modeling was applied to analyze the mass transfer characteristics in nanofiltra-
tion including CP [88]. Examples with reverse osmosis simulations and experi-
mental validation show that the used CFD models properly predict both
permeate flux and the evolution of the polarization layer [84]. The effects of
variable permeate flux, boundary layer thickness and rejection coefficients on
the concentration profile close to the membrane surface are discussed in the
case of nanofiltration of polyphenols from natural extracts [89].

c) Gas presence, which is an effective tool to solve problems related to CP and
fouling in the integrated process [20]. In a typical sMBR, enhanced shear stress
on the deposited cake layer is achieved through upward blowing of air bubbles.
A significant variation of the permeate flux with the rate of air blowing is ob-
served and explained by the created shearing stress at the membrane surface.
At higher aeration rates, increased back transport of foulants occurs thus re-
sulting in reduced CP and rate of cake layer formation [90]. The use of a gas/
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liquid two-phase flow leads to enhanced mass transfer [91], the sMBR being of
special interest [76]. Local Sherwood numbers and shear stress distributions at
the membrane surface around bubbles at different gas velocities were ap-
proached by CFD simulations [92]. Optimum operation conditions for sub-
merged in aerated bioreactor membrane modules are searched [20] in direction
of positioning of the membrane modules; gas/liquid ratio; bubble size; trans-
membrane pressure; obtaining sufficient wall shear stress to create friction on
the membrane surface. In the case of stirred sMBR, the effect of gas flow on
shear at various tip velocities of the stirrer is studied together with the sparging
intensity and rheology influence [47]. The gas phase was found to reduce wall
shear, but to increase shear uniformity.

d) Mass transfer coefficients

The mass transfer and the shear stress distribution at the membrane surface are
two main factors directly affecting the effective membrane operation. Models, cou-
pling hydrodynamic and mass transfer calculations, are found, such as the ones
proposed for NF in a slit-type channel [93] and applied to NF and RO in a spacer-
filled channel [94]; the models of a polarization layer, during RO in a slit-type chan-
nel [84] and in a roto-dynamic filtration system [95]. Fluid to membrane mass trans-
fer coefficients are obtained by combined hydrodynamic and mass transfer
modeling, based on shear stress distribution along the membrane surface [96] and
the relation between shear stress and mass transfer coefficient [97, 98]. The latter
was applied in CFD study of submerged hollow fiber [98] and tubular [17] mem-
brane module. The relation of mass transfer coefficient to the velocity field in the
viscous sublayer near the wall was used, as proposed by Reiss and Hanratty [99]
and widely used in membrane studies by the electrochemical technique [100] for
measuring shear rate at the membrane surface.

This study presents an overview of the flow and mass transfer characteristics in
a stirred sMBR with in-line tubular membrane module and the development of eval-
uation method for assessing the integrated process effectiveness based on CFD
modeling and simulation. The impeller is considered as prospective turbulence pro-
moter in a process involving production and recovery of value-added biomass from
non-Newtonian viscous biofluids. The effectiveness of the integrated process is de-
fined as the ratio of the product spatial-average mass transfer coefficient to the
value determined at maximum product proliferation rate in the film at the feed side
of the membrane.

8.2 Research results

To be able to discriminate between effective processing, a detailed study of the sMBR
flow behavior and species transport is required. Both issues come down to evaluation
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of mass transfer rate across the membrane interface. The research analysis has been
exemplified by a dynamic membrane filtration system of a stirred sMBR illustrated in
Figure 8.1. Details of component size have been reported elsewhere [17, 47].

8.2.1 Flow behavior

Velocity and shear stress distribution inside the example bioreactor and at the ex-
ample membrane surface were studied depending on the impeller geometry and
mixing intensity [70, 101]. The characteristics of the impeller and stirring conditions
are given in Table 8.2. Simulation and computer visualization of the flow behavior
using a Reynolds-averaged Navier-Stokes model and CFD methodology were used
at different mixing conditions, thus allowing enhanced access of the retentate fluid
to the membrane surface, as well as possible low membrane fouling potential re-
lated to microfiltration practice.

Vis-à-vis the conventional six flat-blade impeller (Figure 8.2, case 2RT) im-
poses predominantly radial circulation across the membrane interface, whereas
the curved blades (Figure 8.2, case 2 MV) produce a multivortex mixed radial and
axial flow pattern of the backswept type accompanied by different flow velocity
distribution along the membrane-fluid interface. In case of gas presence, change
of the flow structure occurs due to the tendency of the air to propagate around the
impellers, which hinders the mixing at higher rpm. The same sparger position
leads to central and peripheral gas hold-up zones for RT impeller and predomi-
nantly central gas hold-up zones around the BS impellers. Consequently, the dif-
ferent structure of gas dispersion influences the shear force [101], the focus being
improved velocity gradient and enhanced shear profile close to the membrane [81].

Figure 8.1: An example of bioreactor setup schematic including the tubular membrane module and
alternative impeller designs: a. configuration 2RT with dual six flat-blade impeller (RT);
b. configuration 2 MV equipped with dual backswept (BS) impeller.
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Table 8.2: Details on the stirred tank submerged membrane bioreactor used in this study.

Type of
impeller,
Figure .

Geometry Liquid viscosity Gas presence Stirring velocity
Re number

Spec. power
input P/Vr

Radial, six
flat-blade

T = . m
D/T = /
a =  mm

Power-law fluid
n = .–.,
K = .–.
Pa sn

No – rpm
Re = (.–)⋅

.– W/dm

Radial, six
flat-blade,
dual
impeller,

T = . m
D/T = .
h/D = .
h/D = .
h/D = .
a =  mm

Power-law fluid
. < n < .
K = .–.
Pa sn

Nonaerated
Aerated
.– dm/
min

– rpm
Re = (.–)⋅

.– W/dm

Curved-
blade
backswept,
dual
impeller

T = . m
D/T = .
h/D = .
h/D = .
h/D = .
a =  mm

Power-law fluid
n = .,
K = .–.
Pa sn

Nonaerated
Aerated
. dm/min

– rpm
Re = (.–)⋅

.–. W/dm

.–. W/dm

Figure 8.2: Impeller view and iso-surfaces of gas hold-up 10%, liquid hold-up 90 % and liquid
velocity 0.2 m/s in a stirred reactor compared at close values of specific input power: a. case 2RT –
radial flat-blade (RT) impeller 400 rpm, 1.5 W/dm3; b. Case 2 MV – curved-blade (BS) impeller
750 rpm, 1.35 W/dm3.
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Figure 8.3 illustrates the effect of stirring velocity and gas presence on the aver-
age bulk and membrane surface shear rate. The values of the latter at 400 rpm are
used as comparison base. As expected, stirring velocity has an important effect,
stronger at the membrane surface, where more than 3-fold increase is observed in
the range of the studied stirring intensities (400 to 750 rpm). At the same time, the
average bulk shear rate is increased by a factor of 1.7. The gas phase is found to
reduce both bulk and wall shear, but to increase shear uniformity [47]. The negative
effect on the membrane mean near-wall shear rate is proved by the comparison,
shown in Figure 8.3, as well as by calculations at two different gas flow rates [47].
The explanation is found in the fact that increasing the gas volume fraction de-
creases the contact of the liquid at the membrane-liquid interface, as well as in flow
structural changes. As can be seen from Figure 8.3, the reduction is in the order of
0.73–0.75 times for the bulk shear rate vs. 0.80–0.93 for the wall shear rate; a closer
analysis of the shear distribution along the tubular membrane surface showed im-
proved longitudinal shear uniformity [47].

8.2.2 Species transport

Depending on the specific hydrodynamic resistance considered, the separate steps of
mass transfer across the membrane surface – external (this study), internal pore dif-
fusional [102] or in-channel one [97] are to be considered. Referring to the sMBR stud-
ied recently [17], the membrane boundary layer size δ has been identified before
evaluation of specific mass transfer rate, km. δ is an important variable constituting

Figure 8.3: Average bulk and membrane surface shear rate.
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the mass transfer driving force, namely, the concentration gradient at the membrane
surface. Concentration profiles at the retention side of the tubular membrane of
Figure 8.1 were elaborated by CFD; a plot summary is illustrated in Figure 8.4.
Results calculated at position facing the impeller discharge and dimensionless axial
distance Z = 2z/T = 0.625 are presented. Moderate gas flow rate of 1 vvm are sup-
posed, stirring intensities 400, 600 and 750 rpm and a power-law fluid (consistency
coefficient K = 0.02 Pa sn to 0.1 Pa sn, flow index n = 0.78) are included. The analysis
of the solute mass fraction profiles in the boundary layer radially to the membrane
surface also includes the interimpeller and subsurface sMBR area (at high mixing
rate of 750 rpm).

The liquid velocity and contact at the membrane are the major variables affect-
ing the concentration boundary layer δc and the respective membrane mass transfer
performance at the retention side. The first one is illustrated by the concentration
profiles at different stirring intensities. The liquid contact at the membrane is af-
fected by the gas present and was discussed previously [17] for gas flow rates 1 to
2 vvm. It was shown that within the range of the aeration rates used in practice, the
impact of gas velocity (approx. 0.5−1 cm/s) is low compared with the impeller-in-
duced liquid velocity (0.5−2 m/s). Furthermore, at these stirring and gas flow veloc-
ities, the regime is closer to uniform gas distribution and δc is affected mainly by
liquid velocity and only partially by gas velocity. Deviations from the aforemen-
tioned due to gas bypass and larger local gas hold-up variations may be observed at
high stirring intensities (750 rpm) and high gas flow rates in the subsurface and in-
terimpeller sections (Figure 8.4 and [17]).

The results [17] showed that the product transport rate was maximal in case of
mixing intensity of 750 rpm, gas flow rate of 1 vvm and water-like fluid that exhib-
ited minor boundary layer thickness of 20 μm.

8.2.3 Mass transfer

Membrane mass transfer analyses rely on the relationship between membrane
shear stress and mass transfer rate, as derived by Reiss and Hanratty [99, 103]
based on their proposed electrochemical diffusion experiments; the latter lead to a
formulation binding up shear rate _γ and liquid film mass transfer coefficient, km in
the recurrent relationship:

km =0.862
__γD2
eff

de

 !1
3

In a separate study, a range of km values at a variety of conditions were determined
for the bioreactor. Combined with the contours of linear velocity at four horizontal
cross sections, the spatial transfer characteristic of the tubular membrane based on
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retention-side area-averaged parameter km is visualized by CFD in Figure 8.5. The
case of high mixing intensity of 750 rpm with minor boundary layer thickness of
20 μm (depicted in Figure 8.4) was found to produce the maximum specific mass
transfer rate of km ⁓16 ⋅ 10−5 m/s.

8.3 Discussion

The results obtained were interpreted in the context of membrane effectiveness.

8.3.1 Inference on immersed membrane effectiveness

There are numerous studies and publications devoted to mass transfer, yet unique
parameter to represent MBR mass transfer effectiveness and thus to serve for compar-
ison of various MBR units has been hardly pointed out or highlighted. Membrane
mass transfer has been studied by various parameters, most often the flux being the
target value [104, 105]. The solute flux is related to diffusivity and the mass transfer
driving force – the concentration differences and the thickness of the transfer limiting
stagnant layers across the membrane interface – the one at the feed side of the

Figure 8.4: An overview of the mass transfer driving force at various conditions: results at
dimensionless axial distance Z = 2z/T = 0.625, impeller position and water-like fluid: 1 – 750 rpm,
2 – 400 rpm, 5 – 600 rpm, 6 – viscous fluid, 400 rpm, 3 – 750 rpm, subsurface position, 4 – 750 rpm,
interimpeller position.

238 8 Modeling and assessment of the transfer effectiveness



Figure 8.5: Contours of km spatial z-distribution along membrane surface showing membrane mass
transfer relative to impeller positions and relative to the vessel bulk fluid velocity contours at a.
400 rpm, 1.5 vvm; b. 750 rpm and 1 vvm.
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membrane, the one through the membrane pores and the one at the permeate side.
Thus, the concentration differences and the thickness of the relevant layers have
been analyzed. Most simply, the relationship J = km ln(Δwm/Δwb) has been derived
and put forward the concentration differences [(wm−wp)/(wb−wp)] and the mass trans-
fer coefficient, km (m/s), as important variables [97]. In advance, both the nondimen-
sional concentration boundary layer [106] and km [107–110] have been preferred
parameters, but there were also others. Studies deal also with permeability coefficient
[111], permeation velocity or boundary layer thickness [106], permeate flux [112], pore
diffusion transfer coefficient [102], even with diffusion limiting electrical current in-
tensity [113]. Studying the energy efficiency, the permeate processing cost of mem-
brane designs was assessed by flux and specific Sherwood number [104, 114].

Mass transfer effectiveness has been discussed rarely. It has been represented
as flux enhancement parameter ϕ formulated as a ratio of flux with impact on flux
without impact [112]; permeate flux enhancement factor [115]; mass transfer en-
hancement parameter, for example, by a function of diffusion-limited current en-
hancement in flat-sheet membranes [113]. In other studies, [116] permeate flux
enhancement at the feed side of the membrane has been measured and mass trans-
fer enhancement factor E has been formulated as Sherwood number ratio [117].
Referring to FO and being limited to specification for water, the authors have
pointed out that a membrane-characteristic parameter has to be selected and they
refer to flux ratio [105].

Referring to sMBR hydrodynamics and assuming that CFD has the modeling po-
tential to determine shear rate _γ and km in various most complicated cases using
also the relationships between flux J and km and the recurrent relationship between
km and _γ [97, 100, 118], it looks most pertinent to characterize membrane effective-
ness by km. But there is also another argument to support this inference. Referring
to the work of Reiss [101, 103] quoted in previous studies [98, 113, 118], shear rate
appears to be the most appropriate flow parameter that could be directly related to
the local rate of mass transfer. Consequently, using km helps to outline the hydrody-
namic perspective of the MBR unit.

Because effectiveness is defined as the degree of achievement of the target
value, one should formalize it to occur as extreme specific mass transfer rate of the
membrane module considered. Table 8.3 contains km values obtained in various
sMBR studies related to mass transfer; the overview allows assessing the differences
in the species transport potentials of the various MBR units.

Deduced from Table 8.3, shear rates and corresponding km values are extreme
in dynamic cross-flow filtration (DCF) units that perform shear-enhanced filtration.
Assuming the effectiveness Eff to be defined as the degree of achievement of the tar-
get value, it should be formulated in relative units, that is, as a ratio of km values.
The proper way should be to take the ratio of a local value of km,i corresponding to
the local velocity gradient, and an extreme value km, max, determined as the maxi-
mum desirable target value attainable at the most favorable performance conditions.
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Table 8.3: Overview of specific mass transfer rate data reported in recent MBR studies.

Ref Separation system studied Reference conditions km,
m/s

Remark

[, ] Gas-sparged UF/vertical tubular
module

Turbulent liquid film Re >  ⋅⋅− − ⋅− Calculated: Correlation for
turbulent falling film flow

[] Gas-sparged UF/vertical tubular
module

Physical modeling of tubular air-lift MBR;
Re⁓– (UL⁓ . m/s; UG⁓⋅ m/s)
(Sh⁓, D = ⋅− m/s)

⁓.−

.−

Sh⁓

Measured and calculated

[] Stirred cell UF/dead-end bottom
membrane

Dextran  kDa
Dextran  Da

⁓ ⋅−

⁓ ⋅−
Calculated: Reiss eqn.

[] Cross-flow system UF Dextran  kDa
Dextran  Da

.⋅−

.⋅−
Calculated:film model- based
relationships

[] Stirred cell, flat bottom membrane Re⁓– (. m.s up to . m/s) ⋅−–⋅− Reported measurement and CFD
Sh⁓–

[] Spacer-filled channels of spiral
wound membrane module

Re⁓– ⋅−–.⋅− Calculated from Sh number,
reported CFD and measurements

[] Unobstructed channel at the feed
side of a membrane module

Electro-osmotic flow with permeation,
Re⁓–

⁓ ⋅− CFD

[] Spacer-filled membrane modules Laminar flow, Re⁓– ⋅−–⋅− CFD
[] Spacer-filled membrane modules Laminar flow, Re⁓– ⋅−–.⋅− CFD
[] Dual impeller sMBR/vertical

tubular module
Re⁓⋅–⋅ ⋅−–.⋅− CFD

[] Spiral wound module; spacer-filled
channels

Re⁓– ⋅−–⋅− CFD

[, ] Rotating disc system,  rpm
Vibrating system VSEP . Hz

_γ⁓1.5⋅104–4.6⋅105 1/s
_γ⁓1.12⋅104–1.5.104 1/s

.⋅−–⋅−

.⋅−–.⋅
Calculated using Reiss equation

sMBR, submerged membrane bioreactor; UF, ultrafiltration.
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This way a value of Eff could be assigned to the various zones of the membrane mod-
ule, and what is more, if based on a widely accepted standard, one could compare
the effectiveness Eff of different membrane vessels.

As being inferred from Table 8.3, shear rates and corresponding km values are
extreme in DCF systems, for example, rotating disc membrane units that perform
shear-enhanced filtration. In so far that the highest mass transfer coefficients are
characteristic for DCF systems [122] and in view of their high reported shear rates of
the order of 105 s−1, one could expect the highest km values to be of the order of
5⋅10−4 m/s. Such km values should be characteristic for 100% effectiveness of mem-
brane reactors. However, as pointed out by the author [122], the result is obtained at
the cost of enhanced energy consumption, for example, specific energy consumption
up to 30 kWh/m3 for RDM (rotating disc membranes) compared with less than
10 kWh/m3 in the case of the example sMBR of this study.

In this study, we have assumed km to be the parameter that characterizes the
mass transfer effectiveness by taking the ratio of the product local or spatial-aver-
age mass transfer coefficient to the value determined at maximum product prolif-
eration rate in the film at the feed side of the membrane, Eff = km,i/km, max. As seen
by the concentration profiles and the km values determined in Figure 8.4 and
Table 8.3, an almost negligible concentration boundary layer thickness and high-
est mass transfer rate correspond to the most rigorous mixing hydrodynamics,
that is, impeller speed of 750 rpm and position facing the impeller discharge,
angle of attack 0°. At such conditions, the thickness of the boundary layer is mini-
mal (ca. 2⋅10−5 m), km is at the maximum of 1.6⋅10−4 m/s and effectiveness is
marked as 100%. After the spatial distribution of local km, the effectiveness is
spread in parallel to km, as illustrated along four exploration lines in Figure 8.6.
Comparing these data of agitated sMBR with sMBR promoted by bubbling or airlift
effectiveness at such conditions, it is found to be higher than the one of airlift or
other units that exhibit lower km values of the order of 10−5 m/s (cf. Table 8.3). As
an extension of Figure 8.5, the membrane mass transfer effectiveness of the partic-
ular stirred sMBR in water-like biofluid (e.g., feed apparent viscosity 6.7 mPa s) at
400 rpm and 1 vvm is shown to vary vertically and angularly in Figure 8.7.
Figure 8.8 contains a summary of overall effectiveness Eff – values at various con-
ditions. The results can be used to determine permeate fluxes and compare the
energy efficiency of various DCF systems.

8.4 Conclusion

Based on an analysis of previous and present studies of fluid dynamics and mass
transfer, a unified approach to formulate membrane effectiveness to mass transfer is
proposed. It is formulated as fraction of a maximum achievable specific mass trans-
fer rate assumed to be the target value for the particular system. The study suggests
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the implementation of a three-step procedure for evaluation of the mass transfer po-
tential, including (1) CFD evaluation of membrane area spatial shear rate distribu-
tion, (2) CFD analysis of species transport to uncover the component mass transport
resistances allowing for marking down the maximum achievable specific mass trans-
fer rate, and (3) determination and mapping of membrane mass transfer effective-
ness Eff parameter ratio. Once obtained, the CFD-generated Eff parameter allows
comparison of various membrane systems or extension of the studies to determine
membrane systems energy efficiency. The case of study is exemplified by agitated
sMBRs with immersed tubular membrane module and the concept is illustrated by
contour plots and X–Y plots allowing comparison of different DCF systems.

Figure 8.6: Formulation of mass transfer effectiveness Eff as partial maximum specific mass
transfer rate, km. Example axial variation of effectiveness Eff along the four exploration lines shifted
at 90 degrees from one another: line 1 at 0° facing the impeller discharge, line 2 at 90°, line 3 at
180°, and 4 at 270°.
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Figure 8.8: Overall membrane-average effectiveness at various Reynolds number, apparent
viscosity and aeration rate: ● no gas, ○ gassed.

Figure 8.7: Vertical and angular variation of membrane mass transfer effectiveness in water-like
(e.g., of apparent viscosity 6.7 mPa s) feed at impeller speed 400 rpm, gas flow rate 1 vvm shown
as a. contours facing the impeller; b. X–Y plots corresponding to four levels and four angular
positions.
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