

Data
Science
 for
Sensory

and
Consumer
Scientists

Data Science for Sensory and Consumer Scientists is a comprehensive text
book that provides a practical guide to using data science in the field of sensory
and consumer science through real-world applications. It covers key topics
including data manipulation, preparation, visualization, and analysis, as well
as automated reporting, machine learning, text analysis, and dashboard
creation. Written by leading experts in the field, this book is an essential
resource for anyone looking to master the tools and techniques of data science
and apply them to the study of consumer behavior and sensory-led product
development. Whether you are a seasoned professional or a student just
starting out, this book is the ideal guide to using data science to drive insights
and inform decision-making in the sensory and consumer sciences.
Key Features:

• Elucidation of data scientific workflow.
• Introduction to reproducible research.
• In-depth coverage of data-scientific topics germane to sensory and

consumer science.

• Examples based in industrial practice used throughout the book

Chapman
&
Hall/CRC
Data
Science
Series

Reflecting the interdisciplinary nature of the field, this book series brings
together researchers, practitioners, and instructors from statistics, computer
science, machine learning, and analytics. The series will publish cutting-edge
research, industry applications, and textbooks in data science.

The inclusion of concrete examples, applications, and methods is highly
encouraged. The scope of the series includes titles in the areas of machine
learning, pattern recognition, predictive analytics, business analytics, Big
Data, visualization, programming, software, learning analytics, data wran
gling, interactive graphics, and reproducible research.

Published Titles

Data Science: An Introduction
Tiffany-Anne Timbers, Trevor Campbell and Melissa Lee

Tree-Based Methods: A Practical Introduction with Applications in R
Brandon M. Greenwell

Urban Informatics: Using Big Data to Understand and Serve Communities
Daniel T. O’Brien

Introduction to Environmental Data Science
Jerry Douglas Davis

Hands-On Data Science for Librarians
Sarah Lin and Dorris Scott

Geographic Data Science with R: Visualizing and Analyzing
Environmental Change
Michael C. Wimberly

Practitioner’s Guide to Data Science
Hui Lin and Ming Li

Data Science and Analytics Strategy: An Emergent Design Approach
Kailash Awati and Alexander Scriven

Telling Stories with Data: With Applications in R
Rohan Alexander

Data Science for Sensory and Consumer Scientists
Thierry Worch, Julien Delarue, Vanessa Rios de Souza and John Ennis

For more information about this series, please visit:
https://www.routledge.com/Chapman–HallCRC-Data-Science-Series/book
series/CHDSS

https://www.routledge.com/Chapman%E2%80%93HallCRC-Data-Science-Series/book-series/CHDSS

Data
Science
 for

Sensory
and

Consumer
Scientists

Thierry
Worch

Julien
Delarue

Vanessa
Rios
de
Souza

John
Ennis

Designed
cover
 image:
 c©
Shutterstock,
 ID
1130063375,
anttoniart

First
edition
published
2024

by
CRC
Press

6000
Broken
Sound
Parkway
NW,
Suite
300,
Boca
Raton,
FL
33487-2742

and
by
CRC
Press

4
Park
Square,
Milton
Park,
Abingdon,
Oxon,
OX14
4RN

CRC
Press
 is
an
 imprint
of
Taylor
&
Francis
Group,
LLC

c©
2024
Taylor
&
Francis
Group,
LLC

Reasonable
 efforts
have
been
made
 to
publish
 reliable
data
and
 information,
but
 the
author

and
publisher
cannot
assume
responsibility
for
the
validity
of
all
materials
or
the
consequences

of
 their
 use.
 The
 authors
 and
 publishers
 have
 attempted
 to
 trace
 the
 copyright
 holders
 of

all
 material
 reproduced
 in
 this
 publication
 and
 apologize
 to
 copyright
 holders
 if
 permission

to
 publish
 in
 this
 form
 has
 not
 been
 obtained.
 If
 any
 copyright
 material
 has
 not
 been

acknowledged
please
write
and
 let
us
know
so
we
may
 rectify
 in
any
 future
 reprint.

Except
 as
 permitted
 under
 U.S.
 Copyright
 Law,
 no
 part
 of
 this
 book
 may
 be
 reprinted,

reproduced,
transmitted,
or
utilized
in
any
form
by
any
electronic,
mechanical,
or
other
means,

now
known
or
hereafter
 invented,
 including
photocopying,
microfilming,
and
recording,
or
 in

any
 information
storage
or
retrieval
system,
without
written
permission
 from
the
publishers.

For
permission
 to
photocopy
or
use
material
electronically
 from
 this
work,
access
www.copy

right.com
 or
 contact
 the
 Copyright
 Clearance
 Center,
 Inc.
 (CCC),
 222
 Rosewood
 Drive,

Danvers,
MA
 01923,
 978-750-8400.
For
works
 that
 are
not
 available
 on
CCC
please
 contact

mpkbookspermissions@tandf.co.uk

Trademark
notice:
Product
or
corporate
names
may
be
trademarks
or
registered
trademarks

and
are
used
only
 for
 identification
and
explanation
without
 intent
 to
 infringe.

Library
of
Congress
Cataloging-in-Publication
Data

Names:
Worch,
Thierry,
author.
 |
Delarue,
Julien,
author.
 |
De
Souza,

Vanessa
Rios,
author.
 |
Ennis,
John
M.,
author.

Title:
Data
science
 for
sensory
and
consumer
scientists
/
Thierry
Worch,

Julien
Delarue,
Vanessa
Rios
De
Souza
and
John
Ennis.

Description:
Boca
Raton
 :
CRC
Press,
2024.
 |
Series:
Chapman
&
Hall/CRC

data
science
 series
 |
 Includes
bibliographical
 references
and
 index.

Identifiers:
LCCN
2023006718
 (print)
 |
LCCN
2023006719
 (ebook)
 |
 ISBN

9780367862879
 (hardback)
 |
 ISBN
9781032384962
 (paperback)
 |
 ISBN

9781003028611
 (ebook)

Subjects:
LCSH:
Statistics--Data
processing.
 |
Food--Sensory

evaluation--Data
processing.
 |
Consumers--Research--Data
processing.
 |
R

(Computer
program
 language)

Classification:
LCC
QA276.4
 .W67
2024
 (print)
 |
LCC
QA276.4
 (ebook)
 |
DDC

519.50285--dc23/eng20230715

LC
 record
available
at
https://lccn.loc.gov/2023006718

LC
ebook
 record
available
at
https://lccn.loc.gov/2023006719

ISBN:
978-0-367-86287-9
 (hbk)

ISBN:
978-1-032-38496-2
 (pbk)

ISBN:
978-1-003-02861-1
 (ebk)

DOI:
10.1201/9781003028611

Typeset
 in
CMR10

by
SPi
Technologies
 India
Pvt
Ltd
 (Straive)

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://www.lccn.loc.gov
https://www.lccn.loc.gov
http://www.copyright.com

To Luca,

To Bella

https://taylorandfrancis.com

Contents

Preface..xiii

About the Authors...xv

1.
 Bienvenue!...1

1.1 Why Data Science for Sensory and Consumer Science?.................. 1

1.1.1 Core Principles in Sensory and Consumer Science............. 1

1.1.2 Computational Sensory Science... 7

2.
 Getting
Started...9

2.1 Introduction to R... 9

2.1.1 What Is R?.. 9

2.1.2 Why Learn R (or Any Programming Language)?.............. 9

2.1.3 Why R? .. 10

2.1.4 Why RStudio/Posit? .. 11

2.1.5 Installing R and RStudio... 12

2.2 Getting Started with R .. 12

2.2.1 Conventions... 12

2.2.2 Install and Load Packages... 13

2.2.3 First Analysis in R.. 15

2.2.4 R Scripts .. 16

2.2.5 Create a Local Project... 17

2.3 Further Tips on How to Read This Book? 18

2.3.1 Introduction to {magrittr} and the Notion of Pipes..... 19

2.3.2 Tibbles.. 21

2.3.3 Calling Variables.. 26

2.3.4 Printing vs. Saving Results... 27

2.3.5 Running Code and Handling Errors..................................... 29

2.4 Version Control/Git and GitHub .. 30

2.4.1 Git.. 30

2.4.2 GitHub.. 31

3.
 Why
Data
Science?..33

3.1 History and Definition.. 33

3.2 Benefits of Data Science... 35

3.2.1 Reproducible Research... 35

3.2.2 Standardized Reporting... 35

3.3 Data Scientific Workflow.. 36

3.3.1 Data Collection .. 36

3.3.2 Data Preparation... 37

vii

viii Contents

3.3.3 Data Analysis ... 38

3.3.4 Value Delivery .. 40

3.4 How to Learn Data Science... 41

3.5 Cautions: Don’t Do That Everybody Does 41

4.
 Data
Manipulation...43

4.1 Why Manipulating Data?.. 43

4.2 Tidying Data... 45

4.2.1 Simple Manipulations... 45

4.2.2 Reshaping Data.. 59

4.2.3 Transformation That Alters the Data 63

4.2.4 Combining Data from Different Sources 67

5.
 Data
Visualization..73

5.1 Introduction... 73

5.2 Design Principles.. 74

5.3 Table Making .. 76

5.3.1 Introduction to {flextable} ... 76

5.3.2 Introdution to {gt} ... 80

5.4 Chart Making.. 85

5.4.1 Philosophy of {ggplot2}... 85

5.4.2 Getting Started with {ggplot2}... 85

5.4.3 Common Charts... 97

5.4.4 Miscealleneous ..100

5.4.5 Few Additional Tips and Tricks ..107

6.
 Automated
Reporting...113

6.1 What and Why Automated Reporting? ..113

6.2 Integrating Reports within Analysis Scripts114

6.2.1 Excel..115

6.2.2 PowerPoint ..120

6.2.3 Word ...130

6.2.4 Notes on Applying Corporate Branding132

6.3 Integrating Analyses Scripts Within Your Reporting Tool133

6.3.1 What Is {rmarkdown}..133

6.3.2 Starting with {rmarkdown}...134

6.3.3 {rmarkdown} through a Simple Example134

6.3.4 Creating a Document Using {knitr}136

6.3.5 Example of Applications..136

6.4 To Go Further.137

ix Contents

7.
 Example
Project:
The
Biscuit
Study...139

7.1 Objective of the Test ..139

7.2 Products ...140

7.3 Sensory Descriptive Analysis ..140

7.4 Consumer Test..141

7.4.1	 Participants...141

7.4.2	 Test Design..141

7.4.3	 Evaluation..143

8.
 Data
Collection...145

8.1 Designs of Sensory Experiments ..145

8.1.1	 General Approach..145

8.1.2	 Crossover Designs..147

8.1.3	 Balanced Incomplete Block Designs (BIBD)150

8.1.4	 Incomplete Designs and Sensory Informed Designs for

Hedonic Tests..151

8.2 Product-related Designs...155

8.2.1	 Factorial Designs..155

8.2.2	 Mixture Designs...155

8.2.3	 Screening Designs ..159

8.2.4	 Sensory Informed Designs for Product Development160

8.3 Execute ...161

8.4 Import...164

8.4.1	 Importing Structured Excel File ...165

8.4.2	 Importing Unstructured Excel File166

8.4.3	 Importing Data Stored in Multiple Sheets168

9.
 Data
Preparation..171

9.1 Introduction...171

9.2 Inspect...172

9.2.1	 Data Inspection..172

9.2.2	 Missing Data...175

9.2.3	 Design Inspection ..185

9.3 Clean ...188

9.3.1	 Handling Data Type...188

9.3.2	 Converting between Types..196

10.
 Data
Analysis...199

10.1 Sensory Data...199

10.2 Demographic and Questionnaire Data...207

10.2.1 Demographic Data: Frequency and Proportion207

10.2.2 Eating Behavior Traits: TFEQ Data211

10.3 Consumer Data...217

x Contents

10.4 Combining Sensory and Consumer Data...222

10.4.1 Internal Preference Mapping ..222

10.4.2 Consumers Clustering ..225

10.4.3 Drivers of Liking..230

10.4.4 External Preference Mapping...235

11.
 Value
Delivery...239

11.1 How to Communicate? ...239

11.2 Exploratory, Explanatory, and Predictive Analysis......................241

11.3 Audience Awareness..242

11.3.1 Technical Audience ...244

11.3.2 Management..244

11.3.3 General Interest ...244

11.4 Methods to Communicate ...249

11.4.1 Consider the Mechanism ...249

11.4.2 Pick the Correct Format..250

11.5 Storytelling ..251

11.5.1 The Beginning (Context) ..252

11.5.2 The Middle (Action and Impact)..253

11.5.3 The End (Conclusion)..253

11.6 Reformulate ...254

12.
 Machine
Learning...255

12.1 Introduction...255

12.2 Introduction of the Data..257

12.3 Machine Learning Methods...257

12.4 Unsupervised Machine Learning..258

12.4.1 Dimensionality Reduction ...259

12.4.2 Clustering ..261

12.5 Supervised Learning..264

12.5.1 Workflow..265

12.5.2 Regression..265

12.5.3 Other Common Supervised ML Algorithms267

12.6 Practical Guide to Supervised Machine Learning.........................268

12.6.1 Introduction to the {tidymodels} Framework...............268

12.6.2 Sampling the Data ..269

12.6.3 Cross-Validation...269

12.6.4 Data Preprocessing {recipes}..270

12.6.5 Model Definition ..271

12.6.6 Set the Whole Process into a Workflow271

12.6.7 Tuning the Parameters...272

12.6.8 Model Training...272

12.6.9 Model Evaluation ..273

xi Contents

13.
 Text
Analysis..279

13.1	 Introduction to Natural Language Processing279

13.2	 Application of Text Analysis in Sensory and

Consumer Science ..280

13.2.1 Text Analysis as Way to Describe Products....................280

13.2.2 Objectives of Text Analysis ..281

13.2.3 Classical Text Analysis Workflow282

13.2.4 Warnings ..282

13.3 Illustration Involving Sorting Task Data...283

13.3.1 Data Preprocessing ...283

13.3.2 Introduction to Working with Strings ({stringr}).......284

13.3.3 Tokenization..284

13.3.4 Simple Transformations ...285

13.3.5 Splitting Further the Tokens ..286

13.3.6 Stopwords ..287

13.3.7 Stemming and Lemmatization...289

13.4 Text Analysis ..292

13.4.1 Raw Frequencies and Visualization293

13.4.2 Bigrams and n-grams ...298

13.4.3 Word Embedding...299

13.4.4 Sentiment Analysis..300

13.5	 To Go Further.300

14.
 Dashboards...301

14.1 Objectives ..301

14.2 Introduction to Shiny through an Example....................................302

14.2.1 What Is a Shiny Application?..302

14.2.2 Starting with Shiny...302

14.2.3 Illustration...302

14.2.4 Deploying the Application ..308

14.3	 To Go Further.308

14.3.1 Personalizing and Tuning Your Application309

14.3.2 Upgrading Tables...309

14.3.3 Building Dashboard ..310

14.3.4 Interactive Graphics..311

14.3.5 Interactive Documents ...311

14.3.6 Documentation and Books..312

15.
 Conclusion
and
Next
Steps...313

15.1	 Other Recommended Resources...313

15.2	 Useful R Packages..314

Bibliography..317

Index ..327

https://taylorandfrancis.com

Preface

Who
Should
Read
This
Book?

This book is for practitioners and students of sensory and consumer science
who want to participate in the emerging field of computational sensory science.
This book assumes little to no coding experience. Some statistical experience
will be helpful to understand the examples discussed.

How Is This Book Structured

It is important to start by saying that the aim of this book is neither to
explain in depth what the different sensory and consumer methods are nor to
explain how the data gathered from these methods should be analyzed. For
such topics, other excellent books including Lê and Worch (2018), Lawless and
Heymann (2010), Civille and Carr (2015), Stone et al., (2020) for example are
available.
Instead, the aim is to explain the workflow sensory and consumer scientists

can adopt to become more efficient and to push their analyses further. The
workflow proposed includes many steps including:

• Setting up the test both from an experimental design and an analysis
perspective (e.g. setting up projects, collaboration tools, etc.);

• Data collection and data processing through data cleaning, data
manipulation and transformation, and data analysis;

• Communication of the results (e.g. visualization, reporting, communica
tion).

How
to
Use
This
Book

This book is meant to be interactive, with the reader ideally typing and
running all of the code presented in the book. Computer languages are like
human languages in that they need to be practiced to be learned, so we
highly recommend the reader actually typing all of the code from these parts,
running it, and verifying they obtain the results shown in the book. To help

xiii

xiv Preface

with this practice, we have created a special GitHub repository1
 that contains
folders called code
 and data. Please see Chapter 2 for guidance on how to
get started with R and GitHub. In the code
folder, we have included the code
as presented in the book, while in the data
 folder we have provided the data
sets used throughout the book.2
 Our advice is to download the files and store
them on your local machine in a folder named data. This solution was adopted
throughout the book.

Acknowledgments

First and foremost, we all thank our partners for their continual support.
Arkadi Avanesyan, Bartosz Smulski and Tian Yu all contributed to the content
in various important ways. We also would like to Dr. Jacob Lahne for kindly
sharing the data set used in Chapter 13. Last but not least, we’d like to address
a warm thank you to our respective families for their patience, support,
and constant encouragement. This book would have never seen the light
without you.

1
 https://github.com/aigorahub/data
 science
 for
 sensory

2
 You
may
need
to
 load
these
 libraries
before
the
code
will
run.
Please
see
Appendix
2
 for

more
 information
on
this
topic
as
well.

https://www.github.com

About
 the
Authors

Thierry
 Worch
 is a data enthusiast who engineers Simple, Meaningful,
Automated, Reproducible, Trustworthy solutions to Sensory and Consumer
challenges at FrieslandCampina. Back in 2009, he started as a project manager
at OP&P Product Research (Utrecht, The Netherlands) before completing
his PhD in 2012 on “the Ideal Profile Analysis: from the validation to the
statistical analysis of ideal profile data” both in collaboration with Pieter
Punter (OP&P) and Sébastien Lê and Jérôme Pagès (Agrocampus-Ouest). By
the end of 2012, he joined Qi Statistics as a consultant where he ran clients’
projects, participated in reseach projects, and gave diverse trainings. During
that time, he also continued a long collaboration with Logic8 (EyeQuestion
Software) where he produced all the R-routines included in the EyeOpenR
software. By the end of 2019, he joined the Global Sensory Department of
Friesland Campina, Wageningen, The Netherlands, where he provides his
expertise in Sensory and Consumer Methods, Sensometrics, and Data Science.
Besides publishing various papers related to Sensometrics and contributing to
many books, he is also the co-author with Sébastien Lê of the book entitled
Analyzing sensory data with R (CRC Press).

Julien
 Delarue
 is an associate professor at the University of California
Davis. He received his PhD in Food Science at AgroParisTech, and his
research focuses on methods to measure sensory perception and preferences
and on their effective use in food design. He explores the role of context
in hedonic measures using immersive environments and digital technologies.
He also works to develop and validate rapid and flexible descriptive analysis
methods with application to new product development and consumer research.
Formerly a professor at AgroParisTech, France, in the food science and
technology joint research unit with INRAE and Université Paris-Saclay, he
has served as the Chair of the French Society for Sensory Analysis (SFAS)
and of the European Sensory Science Society (E3S).

Vanessa
Rios
de
Souza
is a Sr. Computational Sensory Science Consultant
at Aigora, a company whose mission is to empower sensory and consumer
science teams to implement artificial intelligence. Her role involves leading
clients’ projects related to Process Automation, Knowledge Management, New
Technologies, and Computational Analytics. Vanessa holds a PhD degree in
Food Science and has over 10 years of experience in R&D and consumer and
sensory research across multiple food product categories and functions, with
a strong background in food science and food processing. She has extensive
experience in industrial, academic, and research settings.

xv

xvi About the Authors

John
Ennis
 is the co-founder of Aigora and a world-renowned authority in
the use of artificial intelligence within sensory and consumer science. He is a
PhD mathematician who conducted his postdoctoral studies in computational
neuroscience and who has more than a dozen years of experience as a sensory
and consumer science consultant.

1

Bienvenue!

1.1
 Why
Data
Science
for
Sensory
and
Consumer
Science?

Located at the crossroads of biology, social science, and design, sensory and
consumer science (SCS) is definitely the tastiest of all sciences. On the menu
is a wide diversity of products and experiences that sensory and consumer
scientists approach through the lens of human senses. Thanks to a wide set
of refined methods, they have access to rich, complex, and mouthwatering
data. Delightedly, data science empowers them and leads them to explore
new flavorful territories.

1.1.1
 Core
Principles
 in
Sensory
and
Consumer
Science

Sensory and consumer science is considered as a pillar of food science and
technology and is essential to product development, quality control, and
market research. Most scientific and methodological advances in the field
are applied to food. This book makes no exception as we chose a cookie
formulation data set as a main thread. However, SCS widely applies to many
other consumer goods, so are the contents of this book and the principles set
out below.

Measuring
and
Analyzing
Human
Responses

Sensory and consumer science aims at measuring and understanding con
sumers’ sensory perceptions as well as the judgment, emotions, and behaviors
that may arise from these perceptions. SCS is thus primarily a science of
measurement, although a very particular one that uses human beings and
their senses as measuring instruments. In other words, sensory and consumer
researchers measure and analyze human responses.
To this end, SCS relies essentially on sensory evaluation which comprises

a set of techniques that mostly derive from psychophysics and behavioral
research. It uses psychological models to help separate signal from noise
in collected data (Lee and O’Mahony, 2004; Ennis, 2016). Besides, sensory

DOI: 10.1201/9781003028611-1 1

2
 Data
Science
 for
Sensory
and
Consumer
Scientists

evaluation has developed its own methodological framework that includes
most refined techniques for the accurate measurement of product sensory
properties while minimizing the potentially biasing effects of brand identity
and the influence of other external information on consumer perception
(Lawless and Heymann, 2010).
A detailed description of sensory methods is beyond the scope of this

book and many textbooks on sensory evaluation methods are available to
readers seeking more information. However, just to give a brief overview, it is
worth remembering that sensory methods can be roughly divided into three
categories, each of them bearing many variants:

• Discrimination tests that aim at detecting subtle differences between
products.

• Descriptive analysis (DA), also referred to as “sensory profiling”, aims at
providing both qualitative and quantitative information about products’
sensory properties.

• Affective tests. This category includes hedonic tests that aim at measur
ing consumers’ liking for the tested products or their preferences among
a product set.

Each test category generates its own type of data and related statistical
questions in relation to the objectives of the study. Typically, data from
difference tests with forced-choice procedures (e.g. triangle test, duo-trio, 2
AFC, etc.) consist of a series of binary answers (correct/failed) depending on
whether judges successfully picked the odd sample(s) among a set of three
or more samples.1
 These data are used to determine whether the number
of correct choices is above the level expected by chance (see O’Mahony and
Rousseau, 2003, for an overview of these methods, the related theories, and
experimental factors).
Conventional descriptive analysis data consist of intensity scores given by

each panelist to evaluated samples on a series of sensory attributes, hence
resulting in a product x attribute x panelist data set (Figure 1.1). Note that
depending on the DA method, quantifying means other than intensity ratings
can be used (ranks, frequency, counts, etc.). Most frequently, each panelist
evaluates all the samples in the product set. However, the use of a balanced
incomplete design can also be found when the experimenters aim to limit the
number of samples evaluated by each subject.
Eventually, data sets from hedonic tests consist of hedonic scores

(i.e. degrees of liking or preference ranks) given by each interviewed consumer
to a series of products (Figure 1.2). As in the case of DA, each consumer
usually evaluates all the samples in the product set, but balanced incomplete

1
 Other
 procedures
 like
 the
 different
 from
 control
 test
 or
 the
 degree
 of
 difference
 test

generate
rating
data.

3
Bienvenue!

FIGURE
1.1

Typical
structure
of
a
descriptive
analysis
data
set.

designs are sometimes used too. In addition, some companies favor pure
monadic evaluation of products (i.e. between-subject design or independent
group design), which obviously result in unrelated sample data sets.

FIGURE
1.2

Two-way
hedonic
data
 from
a
consumer
test
where
“n”
consumers
have
evaluated
a
series

of
products.

Sensory and consumer researchers also borrow methods from other fields,
in particular from sociology and experimental psychology. As a result, it
is now frequent to collect textual sensory data from open comments and
qualitative interviews, or sensory distances or co-occurrences from projective
and sorting tasks. Definitely a multidisciplinary area, SCS develops in many
directions and reaches disciplines that range from genetics and physiology
to social marketing, behavioral economics, and computational neuroscience.
This has diversified the types of data sensory and consumer scientists must
deal with. As in many scientific fields, the development of sophisticated
statistical techniques and access to powerful data analysis tools have played an
important role in the evolution of sensory and consumer science. Statisticians
and data analysts in SCS have developed their own field of research, coined

4
 Data
Science
 for
Sensory
and
Consumer
Scientists

Sensometrics (Schlich, 1993; Brockhoff, 2011; Qannari, 2017). Now then, what
makes sensory and consumer science special? And how does it influence the
way sensory and consumer data are handled?

Dealing
with
Human
Diversity

Sensory evaluation attempts to isolate the sensory properties of foods and
provides important and useful information about these properties to product
developers, food scientists, and managers (Lawless and Heymann, 2010).
However, one should bear in mind that these “sensory properties” actually
result from the interaction between the object (the food) and the perceiver
of that object (the consumer). In fact, we may very well consider the true
object of evaluation in SCS to be mental representations. They are nonetheless
very concrete and directly impact behaviors, health, and economic decisions
(Kahneman and Tversky, 2000). A direct consequence of this is that sensory
data depend both on the product to be evaluated and on the subjects who
evaluate the product. Because people are different, individual sensory data
are expected to differ accordingly. In its core principle, SCS recognizes the
diversity of human beings, biologically, socially, and culturally speaking, not
to mention the fact that each individual has their own personal history and
experience with products. In short, people perceive things differently and like
different things. For this reason, SCS only relies on groups of people (i.e. a
panel of judges, a sample of consumers) and never on a single individual’s
response. Yet, sensory and consumer scientists usually collect individual data
and analyze them at a refined level of granularity (individual, subgroups)
before considering larger groups (specific populations or marketing targets).
This said, sensory and consumer studies must lead to operational recommen

dations. They are used to make informed decisions on product development, to
launch a new product, and sometimes to help define food and health policies.
Data science can precisely help sensory and consumer scientists to reach those
objectives while taking diversity into account.
For measures of sensory description, sensory and consumer scientists can

manage the diversity of human responses to a certain extent by training
panels to use a consensual vocabulary, by aligning evaluated concepts, and
by calibrating the quantification of evaluations on scales (Bleibaum, 2020).
However, this won’t eliminate interindividual differences in sensitivity, sim
ply because we are genetically different, on top of differences due to age,
physiological state, illness, etc. Nowadays, as the field becomes more and
more consumer-oriented, it becomes clear that the use of several subjects in a
panel cannot be assimilated to a mere repetition of individual measurements.
Accordingly, sensory methods have been developed to allow panelists to better
express their own perceptions and to get a more accurate picture of how people
perceive products (Varela and Ares, 2012). These methods yield richer and
more complex data that require more advanced analysis techniques to extract

5
Bienvenue!

relevant and actionable information. Historically, one the first methodological
innovations in this direction has been the use of free choice profiling combined
with Generalized Procrustes Analysis (Williams and Langron, 1984). Since
then, sensory and data analysis methods have multiplied greatly (Delarue
and Lawlor, 2022). Naturally, data science has become even more crucial to
accompany this evolution.
As regards hedonic tests (liking, acceptance, preference. . .), the measure

ments are in essence subjective and participants of such tests are by definition
“untrained” consumers. A constant outcome of these tests is to find important
interindividual differences and it is very common to find consumers who have
opposite sensory preference patterns. Clustering and segmentation techniques
are thus routinely applied to consumer data. One difficulty though is to link
these differences in preferences to other consumer variables, should they be
sociodemographic, psychographic, or related to usage and attitudes. Most
often, one set of variables (e.g. demographics) is not enough to fully explain
preference patterns. In saturated and ever changing markets, however, being
able to understand individual needs and preferences is critical should one
intend to develop customized products. This makes the understanding of
consumer segments even more important. Nowadays, these segments go far
beyond sensory preferences and must take into account variables that touch
environmental awareness and sustainability dimensions.

Specificities
of
Data
Handled
in
Sensory
and
Consumer
Science

Sensory and consumer data are usually of relatively small size. Indeed, we
often deal with a number of subjects ranging between a dozen (for trained
panels) and few hundreds (for consumer hedonic tests). Of course, when
multiplied by the number of samples being evaluated by each subject, we
would get a much larger numbers of observations, but this will still be
relatively modest compared with so-called big data generated everywhere
online. The same goes with the number of variables in sensory data sets.
Sensory descriptive analysis, for example, typically relies on 10–50 attributes,
which could be seen as a lot but is in fact much less than in other fields
producing experimental data with thousands of variables like chemometrics,
genomics, etc.
This being said, it must be stressed that sensory and consumer data are very

diverse. Indeed, the need to understand perceptions and preferences often
leads sensory and consumer scientists to deal with multiple data sets, each
possibly comprising various data types (Figure 1.3). Most sensory techniques
yield quantitative (e.g. intensity, similarity, and hedonic) data collected from
rating scales or ranking tasks, but other methods would provide inter-
product distances (e.g. napping), co-occurrences (e.g. free sorting), citation
frequencies (e.g. CATA), or texts (e.g. open-ended comments, natural speech).
Besides, agreement scores from Likert scales would often be used when

6
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory studies are combined with usage and attitude surveys or psychometric
questionnaires. To add richer information, but more complexity to this picture,
experimenters are sometimes interested in the temporal dimension of sensory
measurements (by the means of methods like TI, TDS, TCATA) or may simply
aim to measure reaction times (e.g. Implicit Association Test).
Eventually, different types of data can result from the same task. For

example, this would typically be the case for free JAR that yields both
categorization data with hedonic valence and textual data (Luc et al., 2022a).
With the development of all sorts of media and data collection means, such
patterns will surely become even more frequent.

FIGURE
1.3

Sensory
and
consumer
science
studies
often
yield
multiple
data
sets
 that
may
all
 relate
 to

each
other.

As could be expected, sensory and consumer studies are often multifaceted
and collected data may all relate to each other when they apply to the same
product set and/or to the same consumers. Such links between data sets are
usually sought because they allow uncovering consumers’ motivations and
their drivers of preferences, thanks to modeling techniques (e.g. preference
mapping, PLS regression), segmentation analyses (e.g. latent variables clus
tering), and machine learning. As a prerequisite to the application of any
of these techniques though, it is critical to understand how these data are
structured and to properly handle them in a reliable and efficient manner.
Many examples of such data manipulation are given throughout this book
and specific guidance is given in Chapter 4.
Last, it is worth mentioning that sensory and consumer data are intrinsically

subjective. This is of course a good thing because the goal of any sensory study
is to capture subjects’ point of view. However, it could make some of the usual
data quality criteria useless. This is specially true for hedonic data, for which
repeatability and reference values could be questionable notions (Köster, 2003;

Bienvenue!
 7

Köster et al., 2003). Sensory and consumer scientists may nonetheless rely on
techniques allowing them to evaluate the degree of consensus of their panel
or tools like jackknife and bootstrap to evaluate the robustness of their data.

1.1.2
 Computational
Sensory
Science

We can make an analogy of the future (or maybe the present already) of the
sensory and consumer science field with other areas that advanced into the
computational field, such as computational neuroscience and computational
biology. A quick search in Wikipedia on the definition of those fields and a
little about on how those areas evolved or how the term “computational” was
introduced will make you realize that is the same path as the consumer and
sensory field is moving along.

• Computational
 neuroscience: “is a branch of neuroscience which
employs mathematical models, computer simulations, theoretical analysis
and abstractions of the brain to understand the principles that govern the
development, structure, physiology and cognitive abilities of the nervous
system. The term ‘computational neuroscience’ was introduced to provide
a summary of the current status of a field which was referred to by
a variety of names, such as neural modeling, brain theory and neural
networks.” https://en.wikipedia.org/wiki/Computational neuroscience

• Computational
 biology: is a branch of biology that “involves the
development and application of data-analytical and theoretical methods,
mathematical modelling and computational simulation techniques to the
study of biological, ecological, behavioral, and social systems. Computa
tional biology, which includes many aspects of bioinformatics and much
more, is the science of using biological data to develop algorithms or
models in order to understand biological systems and relationships.”
https://en.wikipedia.org/wiki/Statistical model

The sensory and consumer science field, although not officially named with
the term “computational”, is already expanded in this field. The way consumer
and sensory data is explored today is extremely advanced and went way
beyond the simple statistical analysis performed a few years ago using the
data collected from standard consumers or trained panel studies. Nowadays,
sensory is getting into the big data field by organizing and putting together
years of historical data into a database to answer future business questions
and extract meaningful information.
Advances in digital technologies such as the integration of biometrics to

assess consumers’ physiological and emotional responses, incorporation of
virtual, augmented, and mixed reality, and even the use of sensor technologies
(electronic noses and tongues) for sensory analysis are already widely used in

https://www.en.wikipedia.org
https://www.en.wikipedia.org

8
 Data
Science
 for
Sensory
and
Consumer
Scientists

the field. Additionally, data are being collected from different sources, such as
social media. Those advanced technologies and complex data being extracted
require much more advanced tools and computer capabilities to analyze and
get meaningful information.
Rapid data acquisition, allied with the need for flexible, customized, and fast

result interpretation, is opening a huge way for automation. The urge to deep
explore, segment products/consumers, and discover new or hidden patterns
and relationships to get the most valuable insights from the data sets is also
nurturing the implementation of Artificial Intelligence, particularly Machine
Learning.
At this point, we hope to have motivated you even more about the

importance of data science for practitioners and students of sensory and
consumer science who want to participate in the emerging field of compu
tational sensory science.
Let’s get started?

2

Getting
Started

2.1
 Introduction
to
R

2.1.1
 What
 Is
 R?

First released in 1995, R is an open-source programming language and
software environment that is widely used for statistical analyses, graphical
representations, and reporting. R was created by Ross Ihaka and Robert
Gentleman at the University of Auckland, New Zealand, and is currently
developed by the R Development Core Team (R Core Team, 2022).
R is a scripting language (not a compiled language) that runs the lines of

code or commands one by one, in order. It is one of the most popular languages
used by statisticians, data analysts, researchers, marketers, etc. to retrieve,
clean, analyze, visualize, and represent data. By the time this book is being
written, it is among the most popular programming languages in the world,
including the sensory and consumer science field.

Do you know why R is called as such? It seems that the name R has two
potential origins: It is the first letter of both Ihaka’s and Gentleman’s first
names, but also it is a play on the name of Bell Labs Software called S it
originates from (a lot of code that runs in S also run in R).

2.1.2
 Why
Learn
R
 (or
Any
Programming
Language)?

There are several reasons why you should learn R or any programming
language for that matter.
First, it gives the user a lot of control. Compared to other statistical

software, which can be seen as a black box (you do not have necessarily access
to the code that runs behind the scene) and are restricted to the features
their developers provide, R allows you to see what is happening at each step
of your analysis (you can print the code that runs behind each function to
ensure that it does what you are expecting. . .) and allows exploring any type
of analysis. This means that users are fully in control and are only limited by

DOI: 10.1201/9781003028611-2 9

10
 Data
Science
 for
Sensory
and
Consumer
Scientists

their imagination (and maybe their program skills?). A direct advantage of
this way of working helps reduce
errors, since you can run the script line by
line and see what’s happening in each step to ensure that things are working
properly the way they are meant to.
Allied to the control it provides, knowing a programming language allows

you gaining in efficiency
and speed. It may take some time at first to build
the required skills to write efficient scripts, but once acquired, it will pay you
back exponentially. A simple example showcasing this could be situations
in which you have analyzed your data, and either realized that the data
should be altered or a different project with similar type of data also needs
analyzing. In both scenarios, you would traditionally need to rerun the full
set of analyses manually, which can be time-consuming. However, with a
programming language, you can update all your tables, figures, and reports
by simply applying to the new data your previous scripts.
Such solution brings us to the next reason, which is related to abstract

thinking
 and problem-solving
 mindset. These are the two components
that are necessary to acquire good programming skills (no worries if you’re
not confident in having that in you yet; the more you program, the more
you’ll develop these skills) and thus increasing
 your
 capability
 through
continuous
 improvement. In other words, the more you play with your
data, try new things, etc., the more you’ll improve as a programmer, and
most importantly, the more diverse and flexible you’ll become. And quickly
enough, you’ll discover that each challenge can be solved in various different
ways (as you will see in 4.2.3), so be imaginative and don’t be afraid to think
outside the box.
Last but not least, it improves
 collaboration
 and allows for repro

ducible
 research
 as your analyses are made transparent to colleagues if
you decide to share your scripts with them. By embedding scripts, data sets,
and results in a single file (we also recommend adding explanations regarding
eventual decisions that were made for clarity), you and your colleagues can
always track down why you obtain certain results by simply rereading your
script or re-running the analyses. In situations in which multiple users are
collaborating on the same project, version
 control
 (see 2.4) also allows
tracking changes done by the different contributors.

2.1.3
 Why
 R?

For sensory and consumer scientists, we recommend the R ecosystem for three
main reasons.
The first reason is cultural. R has from its inception been oriented more

toward statistics than to computer science, making the feeling of programming
in R more natural (in our experience) for sensory and consumer scientists than
Python for instance. This opinion of experience is not to say that a sensory
and consumer scientist shouldn’t learn other languages (such as Python) if

11
Getting
Started

they are inclined to, or even that other tools aren’t sometimes better than
their R equivalent. Yet, to our experience, R tools are typically better suited
to sensory and consumer science than any other solutions we are aware of
(especially in programming language).
This leads to our second reason, namely availability. R provides many

tools that are suitable and relevant for sensory and consumer science purposes,
while also providing many packages (e.g. {SensoMineR} and {FactoMineR},
{SensR}, {FreeSortR}, {cata} just to name a few. . .) that have been specif
ically developed for the analysis of sensory and consumer data. If you want
to learn more about R, especially in the context of analyzing sensory and
consumer data, refer to Lê and Worch (2018).
Finally, the recent work done by the RStudio company, and especially

the exceptional work of Hadley Wickham, has lead to a very low barrier
to entry for programming within R. This is supplemented by the strong
support provided by an active online community via numerous forums and
websites, and by the several books, courses, and other educational materials
made available.

2.1.4
 Why
RStudio/Posit?

RStudio
(now renamed as Posit) is a powerful and easy way to interact with
R programming. It is an Integrated Development Environment (IDE) for R1

that comes with a multipanel window setup that provides access to all primary
things on a single screen. Such an approach facilitates writing code since all
information is available in a single window that includes a console, a script
editor that supports direct code execution, as well as tools for plotting, history,
debugging, and workplace management (see https://www.rstudio.com/2).
Besides the convenience of having all panels on a single screen, we strongly

recommend the use of Rstudio as it offers many important features that
facilitate scripting. For instance, the script editor provides many features
including autocompletion of functions/R elements, hover menus that provide
information regarding the arguments of the functions, and handy shortcuts
(see Section 2.2.4), etc. Additionally, the Environment section provides easy
access to all objects available in the console. Last but not least, RStudio works
with a powerful system of projects (see 2.2.5).

1
 Originally,
 RStudio
 was
 only
 developed
 for
 R.
 More
 recently,
 it
 has
 extended
 its
 use

for
 other
 programming
 languages
 (e.g.
 Python),
 and
 to
 accentuate
 its
 reach
 to
 other

programming
languages,
RStudio
changed
its
name
to
Posit
to
avoid
the
misinterpretation

that
 it
 is
only
dedicated
to
R.

2
 As
 we
 are
 writing
 this
 book,
 the
 name
 Posit
 is
 not
 yet
 in
 use,
 and
 the
 website
 is
 still

defined
as
rstudio.

https://www.rstudio.com

12
 Data
Science
 for
Sensory
and
Consumer
Scientists

2.1.5
 Installing
R
and
RStudio

The first step in this journey is to install R. For this, visit the R Project for
Statistical Computing3
 website. From there, follow the download instructions
to install R on your operating system. We suggest you download the latest ver
sion of R and install it with default options. Note that if you are running R 4.0
or higher, you will need to install Rtools4
.
Next, you need to install RStudio/Posit. To do so, visit the RStudio desktop

download page5
 and follow the installation instructions. Download and install
the latest version of RStudio with default options.
We then advise you to apply the following adjustments:

• Uncheck Restore .RData into the workspace at the startup (Tools >

Global Options. . .>
General)

• Select Never for Save workspace to .RData on exit (Tools >
 Global
Options. . .>
General)

• Change the color scheme to dark (e.g. “Idle Fingers”) (Tools >
Global
Options. . .>
Appearance)

• Put the console on the right (View >
Panes >
Console on Right)

Many other options are available, and we let you explore them yourself to
customize Rstudio to your own liking.

2.2
 Getting
Started
with
R

2.2.1
 Conventions

Before starting with R, it is important to talk about a few writing conventions
that will be used in this book. These conventions are those that are adopted
in most books about R.
Throughout this book, since the goal is to teach you to read and write your

own code in R, we need to refer to some R functions and R packages. In
most cases, the raw R-code that we will be writing and that we advise you to
reproduce is introduced in some special sections such as:

1 + 1

##
 [1]
 2

3
 https://www.r-project.org/

4
 https://cran.r-project.org/bin/windows/Rtools/

5
 https://rstudio.com/products/rstudio/download/

https://www.r-project.org
https://www.cran.r-project.org
https://www.rstudio.com
http:system.We

Getting
Started
 13

This section shows the code to type on top, and the results (as shown by
the R console) in the bottom. To save some space, we may not always show
the outputs of the code. Hence it is important for you to run the code to learn
it, and to understand it.
Since in most situations, providing code alone is not sufficient, we will also

provide explanation in writing. When doing so, we need to refer to R functions
and packages throughout the text. In that case, we will clearly make the
distinctions between R objects, R functions, and R packages by applying the
following rules:

• An R object will be written simply as such: name
object

• An R function will always be written by ending with ():
name
function()

• An R package will always be written between {}: {name
package}

In some cases, we may want to specify from which package a function
belongs to. Rather than calling name
function()
 from the {name
package}
package, we adopt the R terminology name
package::name
function().
This terminology is very important to know and (sometimes) to use in your
script to avoid surprises and error.
For illustration, multiple packages have a function called select(). Since

we are often interested in using the select()
 function from the {dplyr}
package, we can use dplyr::select()
 in our code to call it. The reason
for this particular writing is to avoid errors by calling the wrong select()

function. By simply calling select(), we call the select()
 function from
the last package loaded that contains a function with that name. However, by
specifying the package it belongs to (here {dplyr}), we ensure that the right
select()
 function (here from {dplyr}) is always called.

2.2.2
 Install
and
Load
Packages

The base installation of R comes with many useful packages that contain many
of the functions you will use on a daily basis. However, once you want some
more specific analyses, you will quickly feel the urge to extend R’s capabilities.
This is possible by using R packages.
An R package is a collection of functions, data sets, help files, and docu

mentation, developed by the community that extends the capabilities of base
R by improving existing base R functions or by adding new ones.
As of early 2022, there were more than 16,000 different packages available on

the CRAN alone (excluding packages that are available through other sources
such as GitHub). Here is a short list of packages that we will be consistently
using throughout this book.

14
 Data
Science
 for
Sensory
and
Consumer
Scientists

• Essential packages (or collections): {tidyverse}, {readxl}, and
{writexl}.

• Custom Microsoft office document creation: {officer}, {flextable},
{rvg}, and {openxlsx}.

• Sensory specific packages: {SensoMineR}, {FactoMineR}, and
{factoextra}.

There are many more packages available for statistical tests of all varieties,
to multivariate analysis, to machine learning, to text analysis, etc., some being
mentioned later in this book.

Due to this extensive number of packages, it is not always easy to
remember which package does what nor what are the functions that
they propose. Of course, the help file can provide such information. More
interestingly, some packages provide Cheat Sheets that aim to describe
the most relevant functions and their uses. Within RStudio, some Cheat
Sheets can be found under Help >
Cheat Sheets, but many more can be
found online.

To install a package, you can type install.packages("package
name")

in your console. R will download (an internet connection is required) the
packages from the CRAN and install it your computer. Each package only
needs to be installed once per R version.

install.packages("tidyverse")

If a script loads a package that is not yet installed, RStudio will prompt
a message on top so that you can install them directly. Also, note that if
you do not have write access on your computer, you might need IT help
to install your packages.

Once you have installed a package onto your computer, its content is
only available for use once it’s loaded. To load a package, use library

(package
name).

library(tidyverse)

A package should only be installed once; however, it should be loaded for
each new session of R. To simplify your scripting, we recommend to start

15
Getting
Started

your scripts with all the packages that you would need. So, as soon as you
open your script, you can run the first lines of code and ensure that all your
functions are made available to you.
If you forget to load a package of interest, and yet run your code, you will

get an error of the sort: Error
 in
 ...:
 could
 not
 find
 function
 "..."

Note that certain packages may no longer be maintained, and the procedure

presented above hence no longer works for those packages. This is, for instance,
the case for {sensR}, an excellent package dedicated to the analysis of
discrimination tests.

install.packages("sensR")

As you can see, running this code provides the following message: Warning

in
 install.packages
 :
 package
 ’sensR’
 is
 not
 available
 for
 this

version
 of
 R.
No worries, there is an alternative way to get it installed by using the

install
version()
 function from {remotes}. In this case, we need to
provide the version of the package to install. Since the latest version of {sensR}
is 1.5.2, we can install it as following:

remotes::install
version("sensR",
 version
 =
 "1.5.2")

Last but not least, packages are often improved over time (e.g. through
bug fixes, addition of new functions, etc.). To update some existing packages,
you can use the function update.packages()
 or simply reinstall it using
install.packages(package
name).

RStudio also proposes a section called Packages (bottom right of your
screen if you applied the changes proposed in 2.1.4) where you can see
which packages are installed, install new packages, or update already
existing packages in a few clicks.

2.2.3
 First
Analysis
 in
R

Like any language, R is best learned through examples. Let’s start
with a simple example where we analyze a tetrad test to illustrate the basic
principles.

16
 Data
Science
 for
Sensory
and
Consumer
Scientists

Suppose you have 15 out of 44 correct answers in a tetrad test. Using the
package {sensR}, 6
 it’s very easy to analyze these data:

library(sensR)

num
correct
 <- 15

num
total
 <- 44

discrim
res
 <- discrim(correct
 =
 num
correct,
 total
 =
 num
total,

method
 =
 "tetrad")

print(discrim
res)

##

##
 Estimates
 for
 the
 tetrad
 discrimination
 protocol
 with
 15
 correct

##
 answers
 in
 44
 trials.
 One-sided
 p-value
 and
 95
 %
 two-sided
 confidence

##
 intervals
 are
 based
 on
 the
 ’exact’
 binomial
 test.

##

##
 Estimate
 Std.
 Error
 Lower
 Upper

##
 pc
 0.3409
 0.0715
 0.333
 0.499

##
 pd
 0.0114
 0.1072
 0.000
 0.249

##
 d-prime
 0.2036
 0.9659
 0.000
 1.019

##

##
 Result
 of
 difference
 test:

##
 ’exact’
 binomial
 test:
 p-value
 =
 0.5141

##
 Alternative
 hypothesis:
 d-prime
 is
 greater
 than
 0

In a few lines of code, you have just analysed your tetrad test data.

2.2.4
 R
 Scripts

You may have entered the code to analyze your tetrad test data directly into
the R Console. Although this is possible, and there are many situations where
it makes sense (e.g. opening a help menu, taking a quick look at your data,
debugging a function, or maybe a simple calculation or testing), it is not the
most efficient way of working and we would recommend NOT
to do so. Indeed,
the code directly written in the console cannot be easily modified, retrieved,
or saved. Hence, once you close or restart your R session, you will lose it all.
Also, if you make an error in your code (even just a typo) or simply want
to make a small change, you will have to reenter the entire set of commands,
typing it all over again. For all those reasons (and many more), you should
write any important code into a script.
An R script is simply a text file (with the extension .R) containing R

code, set of commands (that you would enter on the command line in R)
and comments that can easily be edited, executed, and saved later for (re)use.

6
 In
the
previous
section,
we
showed
you
how
to
 install
 it!

Getting
Started
 17

You can create a new script in RStudio by clicking the New File icon in the
upper left corner of the main toolbar and then selecting RScript, by clicking
File in the main menu and then selecting New File >
R Script, or by simply
using CTRL + SHIFT + N (Windows)7. The script will open in the Script
Editor panel and is ready for text entry. Once you are done, you can save your
script by clicking the Save icon at the top of the Script Editor and open it
later to rerun your code and/or continue your work from where you left it.
Unlike typing code in the console, writing code in an R script is not being

executed. Instead, you need to send/run it to the console. There are a few
ways to do this. If you want to run a line of code, place the cursor anywhere
on the line of the code and use the shortcut CTRL + Enter. If you want
a portion of the code, select by highlighting the code of interest and run it
using the same shortcut. To run the entire script (all lines of the code), you can
click “Run” in the upper right corner of the main toolbar or use the shortcut
CTRL + SHIFT + Enter.
A few other relevant shortcuts are:

• Interrupt current command: Esc

• Navigate command history: up and lower arrows

• Attempt completion: Tab

• Call help for a function: F1
• Restart R Session: CTRL + SHIFT + F10

• Search in File: CTRL + F

• Search in All Files (within a project or folder): CTRL + SHIFT + F

• Commenting a line of code: CTRL + SHIFT + C

• Insertion of a section in the code: CTRL + SHIFT + R

• Insertion of a pipe (%>%): CTRL + SHIFT + M

There are many more shortcut options. A complete list is available within
R Studio under Tools >
Keyboard Shortcut Help (or directly using ALT +
SHIFT + K). So have a look at them, and don’t hesitate to learn by heart
the one that you use regularly as it will simplify your scripting procedure.

2.2.5
 Create
a
Local
Project

Next to scripts, working with RStudio projects will facilitate your life even
further. RStudio projects make it straightforward to divide your work into
multiple contexts, each with its own working directory, workspace, history, and
source documents. It keeps all of your files (R scripts, R markdown documents,

7
 The
 shortcuts
are
given
 for
Windows
users.
For
Mac
users,
 replace
CTRL
by
Cmd
 and

it
should
also
work.

18
 Data
Science
 for
Sensory
and
Consumer
Scientists

R functions, data, etc.) in one place. RStudio projects allow independence
between projects, which means that you can open more than one project at
the time and switch at ease between them without fear of interference (they
all use their own R session). Moreover, those projects are not linked to any
computer, meaning that the file path are linked to the project itself: While
sharing a RStudio project with colleagues, they do not need to update any
file path to make it work.
To create a new project locally in RStudio, select File >
New Project from

the main menu. Typically, a new project is created in a new directory, and
you can also transform an already existing folder on your computer into an
RStudio Project. You can also create a new project by clicking on the Project
button in the top right of RStudio and selecting New Project. . . . Once your
new project has been created, you will now have a new folder on your computer
that contains the basic file structure. You probably want to add folders to
better organize all the files and documents, such as folders for input, output,
and scripts.
For consistency, we suggest you keep the same folder structure across

projects. For example, you may create a folder that contains your scripts,
one for the data and one for exporting results from R (excel files, figures,
report, etc.). If you adopt this strategy, you may see an interest in the code
below, which automatically creates all your folders. To run this code, the {fs}
package is required. Here, 5 folders are being created:

library(fs)

fs::dir
create(path=c("code",
 "data",
 "docs",
 "output",
 "template"))

2.3
 Further
Tips
on
How
to
Read
This
Book?

In this book, we assume that the readers have already some basic knowledge
in R. If you are completely new to R, we recommend you reading “R for
Data Science” by Wickham and Grolemund8
 (2016) or looking at some
documentation online to get you started with the basics.
Just like with any spoken language, the same message can be said in various

ways. The same applies with writing scripts in R, each of us having our own
styles or our own preferences toward certain procedures, packages, functions,
etc. In other words, writing scripts is personal. Through this book, we are not
trying to impose our way of thinking/proceeding/building scripts, instead we

8
 https://r4ds.had.co.nz/

https://www.r4ds.had.co.nz

Getting
Started
 19

aim at sharing our knowledge built through past experiences to help you find
your own.
But to fully decode our message, you’ll need some reading keys. These keys

will be described in the next sections.
Note that the lines of code presented in this section do not run and are

simply presented for illustration.

2.3.1
 Introduction
 to
{magrittr}
 and
 the
Notion
of
Pipes

R is an evolving programming language that expands very rapidly.
If most additions/improvements have a fairly limited reach, the introduction

of the {tidyverse} in 2016 by H. Wickham revolutionized the way of scripting
in R for many users. At least for us, it had a large impact as we fully embraced
its philosophy, as we see its advantage for Data Science and for analyzing our
sensory and consumer data. It is, hence, no surprise that you’ll read and learn
a lot about it in this book.
As you may know, {tidyverse} is a grouping of packages dedicated to

Data Science, which includes (among others) {readr} for data importa
tion, {tibble} for data structure, {stringr} and {forcats} for handling
strings and factors, {dplyr} and {tidyr} for manipulating and tidying
data, {ggplot2} for data visualization, and {purrr} for functional program
ming. But more importantly, it also includes {magrittr}, the package that
arguably impacted most of our way of scripting by introducing the notion of
pipes (defined as %>%) as it provides code that is much easier to read and
understand.
To illustrate the advantage of coding with pipes, let’s use the example

provided by H. Wickham in his book R for Data Science. It is some code
that tells a story about a little bunny names Foo Foo: >
Little bunny Foo
Foo >
Went hopping through the forest >
Scooping up the field mice >
and
bopping them on the head.
If we were meant to tell this story though code, we would start by creating

an object name FooFoo
which is a little bunny:

foo
foo
 <- little
bunny()

To this object, we then apply different functions (we save each step as a
different object):

foo
foo
1
 <- hop(foo
foo,
 through=forest)

foo
foo
2
 <- scoop(foo
foo
1,
 up=field
mice)

foo
foo
3
 <- bop(foo
foo
2,
 on=head)

20
 Data
Science
 for
Sensory
and
Consumer
Scientists

One of the main downsides of this approach is that you’ll need to create
intermediate names for each step. If natural names can be used, this will not
be a problem, otherwise it can quickly become a source of error (using the
wrong object for instance)! Additionally, such an approach may affect your
disk memory since you’re creating a new object in each step. This can be
problematic when the original data set is large.
As an alternative, we could consider running the same code by over-writing

the original object:

foo
foo
 <- hop(foo
foo,
 through=forest)

foo
foo
 <- scoop(foo
foo,
 up=field
mice)

foo
foo
 <- bop(foo
foo,
 on=head)

If this solution looks neater and more efficient (less thinking, less typing,
and less memory use), it is more difficult to debug, as the entire code should
be rerun from the beginning (when foo
foo
was originally created). Moreover,
calling the same object in each step obscures the changes performed in each
line.
To these two approaches, we prefer a third one that strings all the functions

together without intermediate steps of saving the results. This procedure uses
the so-called pipes (defined by %>%), which takes automatically as input the
output generated by the previous line of code:

foo
foo
 %>%

hop(through
 =
 forest)
 %>%

scoop(up
 =
 field
mice)
 %>%

bop(on
 =
 head)

This code is easier to read and understand as it focuses more on the verbs
(here hop(), scoop(), and bop()) rather than the names (foo
foo
1
 or
foo
foo). It can be surprising at first, but no worries, by the time you’ve
read this book, you’ll be fully familiar with this concept.
When lines are piped, R runs the entire block at once. So how can we

understand the intermediate steps that were done or how can we fix the code
if an error occurs? The answer to these questions is simple: run back the code
bits by bits.
For instance, in this previous example, we could start by printing foo
foo

(in practice, only select foo
foo
and run this code only) only to ensure that it
is the object that we were supposed to have. If it is the case, we can then extend

21
Getting
Started

the selection to the next line by selecting all the code until (but excluding9!)
the pipe. Repeat this until you find your error or you’ve ensured that all the
steps have been performed correctly.
While reading this book, we advise you to apply this trick to each long pipe

for you to get a hand on it and to visualize the intermediate steps.

Within a pipe, it is sometime needed to call the temporary data or output
generated in the previous step. Since the current object does not exist yet
nor have a name (it is still under-construction), we need to find another
way to call it. In practice, this is very simple and can be done by using .

as we will see it extensively in Chapter 4.

Note however that although pipes are very powerful, they are not always
the best option:

• A rule of thumb suggests that if you are piping more than 10 lines of
code, you’re probably better of splitting it into 2 or more blocks (saving
results in intermediate step) as this simplifies debugging.

• If some steps require multiple inputs or provides multiple outputs, pipes
should not be used as they usually require a primary object to transform.

• The system of pipes works linearly: if your code requires a complex
dependency structure, then the pipes should be avoided.

2.3.2
 Tibbles

Within the {tidyverse}, another valuable (yet often forgotten) package
is the {tibble} package. This package aims at providing a new format to
store data.
In appearance, a tibble looks like just any other table, whether it is a matrix

or a data frame. But in the background, it is defined as an optimized version
of a data frame that kept (and extended) all the relevant parts and removed
all the unnecessary parts.
To show you the properties of a tibble, let’s load the data set called

sensochoc
 from the SensoMineR
package:

library(tidyverse)

library(SensoMineR)

data(chocolates)

9
 If
your
code
ends
up
on
a
pipe,
R
 is
expecting
additional
code
and
will
not
show
results.

This
 usually
 creates
 errors
 since
 the
 next
 piece
 of
 code
 is
 probably
 not
 matching
 the

current
pipe’s
expected
code.

22
 Data
Science
 for
Sensory
and
Consumer
Scientists

If you type sensochoc
in your R session, the entire data set will be printed,
which makes it difficult to read. Here, we opt for a simpler solution by only
showing the first lines using head()

Here and throughout the book, some of the outputs are being reduced and
only the first results are being printed (to avoid printing too much things
that may not be so relevant.). So do not panic if only a part of the outputs
is shown in the book compared to your screen.

head(sensochoc)

##
 Panelist
 Session
 Rank
 Product
 CocoaA
 MilkA

I001
 1
 1
 1 choc6
 7
 6

I002
 1
 1
 6 choc3
 6
 7

I003
 1
 1
 3 choc2
 8
 6

I004
 1
 1
 5 choc1
 7
 8

I005
 1
 1
 2 choc4
 8
 5

I006
 1
 1
 4 choc5
 7
 5

This is the typical output from a matrix()
 or data.frame()
 in R. In
particular, one can note that the first column does not have a header as it
represents the row names.
Let’s convert this table into a tibble (using as
tibble()) and look at the

output:

sensochoc
tb
 <- sensochoc
 %>%

as
tibble()

print(sensochoc
tb)

##
 #
 A
 tibble:
 348
 x
 18

##
 Panelist
 Session
 Rank
 Product
 CocoaA
 MilkA
 CocoaF

##
 <fct>
 <fct>
 <fct>
 <fct>
 <int>
 <int>
 <int>

1 1
 1
 1 choc6
 7 6
 6

2 1
 1
 6 choc3
 6 7
 2

3 1
 1
 3 choc2
 8 6
 5

4 1
 1
 5 choc1
 7 8
 8

##
 #
 ...
 with
 344
 more
 rows,
 and
 11
 more
 variables:

##
 #
 MilkF
 <int>,
 Caramel
 <int>,
 Vanilla
 <int>,

##
 #
 Sweetness
 <int>,
 Acidity
 <int>,
 Bitterness
 <int>,

##
 #
 Astringency
 <int>,
 Crunchy
 <int>,
 Melting
 <int>,

##
 #
 Sticky
 <int>,
 Granular
 <int>

23
Getting
Started

The appearance of the table looks quite different, and there are some
interesting things that can be noticed:

• The dimensions of the table are shown straight at the top.

• By default, the printing function for tibbles only prints a predefined
number of rows (by default 10) and as many columns as the screen
allows. All other columns are informed in some text under the table.

• Although data frame converts some names (e.g. replacing spaces with .),
tibbles keep the same as in the original file.

• Numbers are also automatically formatted to 3 values after the decimal
(by default), and negative values are printed in red.

• Under the header, the type of each variable is informed. Although very
valuable, this information is not provided with matrix or data frame.

• The row names are lost, as tibbles do not have row names. In this
example, there is no information in the row names, so we can ignore
them, although we could have easily recovered them by adding
rownames
 =
 "name
 variable"
 in as
tibble()
 which would have
added them as a new column called name
 variable
to the data.

Certain packages including {SensoMineR} do not accept tibbles. Instead,
they require matrices or data frames as inputs, and use their row names
for certain analyses (see Section 10.1 for an example of PCA). Fortunately,
there is a very easy way to convert tibbles to (say) data frame through
as.data.frame()
 combined with column
to
rownames()
 to automat
ically pass the information present in a column as row names (the
complementary function rownames
to
column()
also exists).

To go further, let’s extract from sensochoc
the 4th column (Product):

sensochoc[,4]

##
 [1]
 choc6
 choc3
 choc2
 choc1
 choc4

##
 Levels:
 choc1
 choc2
 choc3
 choc4
 choc5
 choc6

By extracting a column of a data frame, the resulting output is converted
into a vector. Let’s reproduce the same extraction to sensochoctb:

sensochoc
tb[,4]

24
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 #
 A
 tibble:
 348
 x
 1

##
 Product

##
 <fct>

##
 1
 choc6

##
 2
 choc3

##
 3
 choc2

##
 4
 choc1

##
 #
 ...
 with
 344
 more
 rows

Subsetting from a tibble with []
 always returns a tibble, which is very
convenient with programming as we then know what to expect (unlike data
frame which can return a data frame or a vector depending on the situation).
Last but not least, tibbles can take as entries single elements (e.g. numbers,

characters, dates, etc.), but also lists of elements. This particular property
is very interesting since it allows combining different outputs in one table
although they may have different structures.
Let’s start with converting the table in a long format:

sensochoc
tb
 <- sensochoc
tb
 %>%

dplyr::select(-c("Session","Rank"))
 %>%

pivot
longer(-c("Panelist","Product"),
 names
to="Attributes",

values
to="Scores")

This new tibble has 4872 rows and 4 columns. Since we have 14 attributes,
that means that each attribute has 348 data points.
Let’s nest the results by Attributes:

sensochoc
tb
 <- sensochoc
tb
 %>%

nest
by(Attributes)

This new tibble has only 14 rows (one per attribute), yet the new column
called data
 contains a list of dimensions [348 rows and 3 columns]. This
corresponds to the original data.10

Let’s now run an ANOVA for each attribute:

sensochoc
tb
 <- sensochoc
tb
 %>%

mutate(ANOVA
 =
 list(aov(Scores
 ~
 Product
 +
 Panelist,
 data=data)))

We
 could
 easily
 retrieve
 the
 original
 data
 by
 simply
 using
 sensochoc
tbl
 %>%

unnest(data).

10

Getting
Started
 25

This code adds another column (called ANOVA) that contains the results
of the ANOVA model. Let’s imagine we’re interested in Acidity; Then, we
could extract the results of the anova as follows:

sensochoc
tb
 %>%

filter(Attributes
 ==
 "Acidity")
 %>%

summarize(broom::tidy(ANOVA))

##
 Warning:
 Returning
 more
 (or
 less)
 than
 1
 row
 per
 ‘summarise()‘
 group
 was
 deprecated
 in
 dplyr
 1.1.0.

##
 i
 Please
 use
 ‘reframe()‘
 instead.

##
 i
 When
 switching
 from
 ‘summarise()‘
 to
 ‘reframe()‘,
 remember
 that
 ‘reframe()‘
 always
 returns
 an

##
 ungrouped
 data
 frame
 and
 adjust
 accordingly.

##
 ‘summarise()‘
 has
 grouped
 output
 by
 ’Attributes’.
 You

##
 can
 override
 using
 the
 ‘.groups‘
 argument.

##
 #
 A
 tibble:
 3
 x
 7

##
 #
 Groups:
 Attributes
 [1]

##
 Attributes
 term
 df
 sumsq
 meansq
 stati˜1
 p.value

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 Acidity
 Prod˜
 5
 325.
 65.0
 17.1
 5.67e-15

##
 2
 Acidity
 Pane˜
 28
 917.
 32.7
 8.62
 2.88e-25

##
 3
 Acidity
 Resi˜
 314
 1193.
 3.80
 NA
 NA

##
 #
 ...
 with
 abbreviated
 variable
 name
 1:
 statistic

Since extracting the information regarding the models is also of interest, let’s
add that to our tibble as well. This can easily be done using the glance()

function from {broom}:

sensochoc
tb
 <- sensochoc
tb
 %>%

mutate(Results
 =
 list(broom::glance(ANOVA)))

Here again, if we would want to see the results for Acidity
only, then we
could extract that information as follows:

sensochoc
tb
 %>%

filter(Attributes
 ==
 "Acidity")
 %>%

summarize(Results)

##
 ‘summarise()‘
 has
 grouped
 output
 by
 ’Attributes’.
 You

##
 can
 override
 using
 the
 ‘.groups‘
 argument.

26
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 #
 A
 tibble:
 1
 x
 7

##
 #
 Groups:
 Attributes
 [1]

##
 Attributes
 logLik
 AIC
 BIC
 deviance
 nobs
 r.squa˜1

##
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <int>
 <dbl>

##
 1
 Acidity
 -708.
 1486.
 1621.
 1193.
 348
 0.510

##
 #
 ...
 with
 abbreviated
 variable
 name
 1:
 r.squared

So as we can see, the same tibble of 14 row and 4 columns contain, per
attribute, the raw data, the results of the ANOVA, as well as the overall
Results
 of each of the model. Although all these tables have completely
different structures (data
 has 348 rows and 3 columns, whereas Results

has 1 row and 6 columns), they are still related to the same objects (here
attributes). Hence, keeping them in the same tidy place facilitates follow-up
analysis by avoiding creating multiple objects and reducing the risks of error.
An example of such use of tibbles is provided in Section 10.3, in which we also
show how to use the information stored in different elements.

2.3.3
 Calling
Variables

In R, variables can be called in different ways when programming. If the
names of variables should be read from the data (e.g. “Product”, “products”,
“samples”, etc.), you will often use strings, meaning that the name used will
be defined between quotes (e.g. "Product").
Within the {tidyverse}, the names of variables that are included within a

data set are usually called as it is, without quote:

sensory
 %>%

dplyr::select(Judge,
 Product,
 Shiny)

This is true for simple names that do not contain any special characters
(e.g. space, -,
 etc.). For names that contain special characters, the use
of backticks are required (note that backticks can also be used with simple
names):

sensory
 %>%

dplyr::select(`Judge`,
 Product,
 `Color
 evenness`).

While going through this book, you’ll notice that many functions from the
{tidyverse} sometimes require quotes, and sometimes don’t. The simple way
to know whether quotes are required or not is based on its existence in the
data set or not: If the column exists and should be used, no quotes should

27
Getting
Started

be used. On the contrary, if the variable doesn’t exist and should be created,

then quotes should be used.
Let’s illustrate this through a simple example involving pivot
longer()

and pivot
wider()
 successively (see 4.2.2 for more information). For
pivot
longer(), we create two new variables, one that contains the column
names (informed by names
to) and one that contains the values (informed
by values
to). Since these variables are being created, quotes are required
for the new names. For pivot
wider(), quotes are not needed since the
names of the variables to use (names
from
and values
from) are present in
the data:

sensory
 %>%

pivot
longer(Shiny:Melting,
 names
to="Variables",

values
to="Scores")
 %>%

pivot
wider(names
from=Variables,
 values
from=Scores)

Unfortunately, this rule of thumb is not always true (e.g. separate(),
unite(), and column
to
rownames()) but you’ll quickly get familiar with
these exceptions.

2.3.4
 Printing
vs.
Saving
Results

In many examples through this book, we apply changes to certain elements
without actually saving them in an R object. This is quite convenient for
us as many changes we do are only done for pedagogic reasons, and are not
necessarily relevant for our analyses.
Here is an example of such a case (see Section 4.2.1):

sensory
 %>%

rename(Panellist
 =
 Judge,
 Sample
 =
 Product)

When you run this code, you can notice that we rename Judge
 to
Panellist, and Product
to Sample. . . at least this is what you see on screen.
However, if you look at sensory, the data set still contains the column Judge

and Product
 (Panellist
and Sample
do not exist!). This is simply because
we did not save the changes.
If we would want to save the element in a new object, we should save the

outcome in an element using <-:

28
 Data
Science
 for
Sensory
and
Consumer
Scientists

newsensory
 <- sensory
 %>%

rename(Panellist
 =
 Judge,
 Sample
 =
 Product)

Here, newsensory
 corresponds to sensory, but with the new names. Of
course, if you would want to overwrite the previous file with the new names,
you simply need to ensure that the name of the output is the same as the name
of the input (like we did with foo
foo
 in 2.3.1). Concretely, we replace here
newsensory
by sensory, meaning that the new names are saved in sensory

(so the old names Judge
 and Product
 are definitely lost). This procedure
saves computer memory and does not require you coming up with new names
all the time. However, it also means that some changes that you applied may
be lost, and if you have a mistake in your code, it is more complicated to find
and ultimately solve it (you may need to rerun your entire script).

sensory
 <- sensory
 %>%

rename(Panellist
 =
 Judge,
 Sample
 =
 Product)

To visualize the changes, you would need to type newsensory
or sensory

in R. Another (faster) way to visualize it is to put the entire block of code
between brackets: Putting code between brackets is equivalent to asking to
print the output after being run.

(sensory
 <- sensory
 %>%

rename(Panellist
 =
 Judge,
 Sample
 =
 Product))

Note that if you run all these lines of codes in R, you will get an error stating
Column
 ’Judge’
 doesn’t
 exist.
This is a good illustration of a potential
error mentioned above: We overwrote the original sensory
(containing Judge

and Product) with another version in which these columns were already
renamed as Panellist
 and Sample. So when you rerun this code, you are
trying to apply again the same changes to columns that no longer exist, hence
the error.
This is something that you need to take into consideration when overwriting

elements (in this case, you should initialize sensory
 to its original version
before trying).

29
Getting
Started

It is also worth reminding the readers that we deliberately do
not
print

each and every output generated. Instead, we advise the reader to rewrite
the code and run it in parallel as they read the book. The outputs will
then be printed on their screen. Also, in some cases, we took the liberty
to reduce the outputs (e.g. only showing the first rows and/or columns)
which can lead to some inconsistencies between what is printed in the
book and what is shown on your screen. Please be aware that this can
(and will) happen.

2.3.5
 Running
Code
and
Handling
Errors

For you to get the most out of this book, you need to understand (and
eventually adhere to) our philosophy of scripting and our way of working.
This is why we are providing you with some tips to use, if you’re comfortable
with them:

1. Create a folder for this book on your computer and create a script for
each chapter in which you retype yourself each line of code. If you work
with the online version, you could copy/paste the code to go faster, but
you may miss some subtleties.

2. Do not be discouraged when you get some errors: we all get some. At
first, this can be very frustrating, especially when you are not able to fix
them quickly. If you get stuck on an error and cannot fix it immediately,
take a break and come back later with fresh eyes, and you may solve it
then. And with time and experience, you’ll notice that you can reduce
the amount of errors and will also solve them faster (you will also learn
to understand the error messages provided by R).

3. The more code, the more difficult it is to find errors. This is true whether
you use regular R-code or pipes. The best way to solve errors in such
circumstances is to run the code line by line until you find the error and
understand why the input/output does not match the expectations.

4. In the particular case of pipes, debugging errors means that you
shouldn’t run the entire block of code, but select parts of it and run it
by adding in each run a new line. This can either be done by stopping
your selection just before the adequate %>%
 sign (as mentioned earlier)

11or by adding after the last %>%
sign the function identity().

11
 identity()
 is
 a
 function
 that
 returns
 as
 output
 the
 input
 as
 it
 is.
 This
 function
 is

particularly
useful
 in
pipes
as
you
 can
finish
your
pipes
with
 it,
meaning
 that
you
 can

put
any
line
in
comments
(starting
with
‘#’)
without
worrying
about
finishing
your
pipe

with
a
%>%.

30
 Data
Science
 for
Sensory
and
Consumer
Scientists

2.4
 Version
Control/Git
and
GitHub

Version control is a tool that tracks changes to files, especially source code
files. Using version control means that you can not only track the changes
but manage them by, for instance, describing the changes or reverting to
previous versions. This is particularly important when collaborating with
other developers.
Version control systems are simply software that helps users manage changes

to source code over time. The reasons why everyone should use version control
include backing up work, restoring prior versions, documenting reasons for
changes, quickly determining differences in versions, easily sharing code, and
developing in parallel with others.
There are many tools for Version Control out there, but Git/GitHub are

by far the most common ones. We highly recommend that you integrate
both Git and GitHub into your data science workflow. For a full review
of Git and GitHub from an R programming perspective, we recommend
Happy Git with R12
 by Jenny Bryant. In what follows, we simply provide the
minimum information needed to get you up and running with Git and GitHub.
Also, for an insightful discussion of the need for version control, please see
Bryan (2018).

2.4.1
 Git

Git is a version control system that runs locally and automatically organizes
and saves versions of code on your computer, but does not connect to the
internet. Git allows you to revert to earlier versions of your code, if necessary.
To set up Git, follow the following steps:

1) Download and install the latest version of Git. Download and install
Git with standard options (allow third party software) for Windows13

or Mac14

2) Enable Git Bash in RStudio: Go to “Tool” on the top toolbar and select
“Global Options. . . ” >
 “Terminal”. In the drop-down box for “New
terminals open”, select “Git Bash”.

3) Configure Git from Rstudio: The easiest way is to use the package
{usethis}

12
 https://happygitwithr.com/

13
 https://git-scm.com/download/win

14
 https://git-scm.com/download/mac

https://www.happygitwithr.com
https://www.git-scm.com
https://www.git-scm.com

31
Getting
Started

library(usethis)

use
git
conf
 (user.name
 =
 "your
 username",

user.email
 =
 "your
 email
 address")

2.4.2
 GitHub

GitHub is a cloud-based service that supports Git usage. It allows online
backups of your code and facilitates collaboration between team members.
While Git creates local repositories on your computer, GitHub allows users
to create remote online repositories for their code.
To set up GitHub, follow the steps below:

1) Register for a GitHub Account: To get started you can sign up for a free
GitHub account: GitHub15

We recommend you not to tie your account to your work email and to use
all lowercase to avoid confusion.

2) Create a Test Repository in GitHub

Once you log into your account, create a new repository by clicking the
green button “New”. You have to then name your repository and make some
selections. We recommend you select the option “Private” and click on the
option “Initialize this repository with a README”. The last step is to click
on “Create Repository”.
Once the repository has been created you need to copy the repository URL

to create a project in RStudio (next step). If you select the repository you
just created, click on the green button “Code” and copy the URL link.

3) Create an RStudio Project from GitHub

As we have seen, to create a new project, select “File” >
“New Project. . . ”
from the top bar menu or by clicking on the “Project” button in the top
right of RStudio and by selecting “New Project. . . ”. Select then “Version
Control” >
“Git”. Paste the repository URL link, select where you want to
save this project locally, and click “Open in new session”. Finally, click “Create
Project”.

4) Register GitHub from Studio

15
 https://github.com/

https://www.github.com

32
 Data
Science
 for
Sensory
and
Consumer
Scientists

At this point, you will be asked to log into GitHub from RStudio. You
should only have to do this once.

5) Push and Commit Changes

Once you are done with your coding, or have finished updating a series of
scripts, you can simply push or send them to GitHub, so others can see your
changes. You have to first commit and then push it to GitHub. To do so, you
can click the “Git” icon on the top menu of RStudio and select the option
“Commit”. You can select what you want to commit and describe the changes
you did. After committing your code/files, you have to push it by clicking the
option “Push”.

6) Pull Changes

In case you are working with other colleagues, a good practice is to always
pull (which means download) the latest code available (i.e. the code that your
collaborators have recently pushed) before you get started and before pushing
any changes. To do so, you can click the “Git” icon on the top menu and select
the option “Pull”.
If you’ve read this through (no worries if everything is not completely clear

yet, it will come!), and followed the different steps here, you should be ready
to learn data science for sensory and consumer scientists. Let’s get started?

3

Why
Data
Science?

In this chapter, we explain what is data science and discuss why data
science is valuable to sensory and consumer scientists. While this book
focuses on the aspects of data science that are most important to sensory
and consumer scientists, we recommend the excellent book from Wickham
and Grolemund (2016) for a more general introduction to data science.

3.1
 History
and
Definition

You may have heard that data science was called the “sexiest job of the 21st
century” by Harvard Business Review (Davenport and Patil, 2012). But what
is data science? Before we give our definition, we provide some brief history for
context. For a comprehensive survey of this topic, we recommend Cao (2017).
To begin, there was a movement in early computer science to call their field

“data science.” Chief among the advocates for this viewpoint was Peter Naur,
winner of the 2005 Turing award.1
 This viewpoint is detailed in the preface
to his 1974 book, “Concise Survey of Computer Methods,” where he states
that data science is “the science of dealing with data, once they have been
established” (Naur, 1974). According to Naur, this is the purpose of computer
science. This viewpoint is echoed in the statement, often attributed to Edsger
Dijkstr, that “Computer science is no more about computers than astronomy
is about telescopes.”
Interestingly, a similar viewpoint arose in statistics, as reflected in John

Tukey’s statements that “Data analysis, and the parts of statistics which
adhere to it, must . . . take on the characteristics of science rather than those
of mathematics” and that “data analysis is intrinsically an empirical science”
(Tukey, 1962). This movement culminated in 1997 when Jeff Wu proposed
during his inaugural lecture upon becoming the chair of the University of
Michigan’s statistics department, entitled “Statistics = Data Science?,” that
statistics should be called data science (Wu, 1997).

1
 A
prize
roughly
equivalent
 in
prestige
to
a
Nobel
prize,
but
 for
computer
science.

DOI: 10.1201/9781003028611-3 33

34
 Data
Science
 for
Sensory
and
Consumer
Scientists

These two movements2
 came together in 2001 in William S. Cleveland’s
paper “Data Science: An Action Plan for Expanding the Technical Areas in
the Field of Statistics” (Cleveland, 2001). In this highly influential monograph,
Cleveland makes the key assertion that “The value of technical work is
judged by the extent to which it benefits the data analyst, either directly
or indirectly.”
A more recent development in the history of data science has been the

realization that the standard outputs of data science such as tables, charts,
reports, dashboards, and even statistical models – can be viewed as tools
that must be used in the real world in order to be valuable. This realization
stems from the influence of the technology sector, where the field of design
has focused on improving the ease of use of websites, apps, and devices. To
quote Steve Jobs, perhaps the most influential champion of design within the
technology space: “Design is not just what it looks and feels like. Design is
how it works.”
Based on this history, we provide our definition of data
science:

Data science is the intersection of statistics, computer science, and indus
trial design.

Accordingly, we use the following three definitions of these fields:

• Statistics: The branch of mathematics dealing with the collection,
analysis, interpretation, and presentation of masses of numerical data.

• Computer
 Science: Computer science is the study of processes that
interact with data and that can be represented as data in the form of
programs.

• Industrial
 Design: The professional service of creating and develop
ing concepts and specifications that optimize the function, value, and
appearance of products and systems for the mutual benefit of both user
and manufacturer.

Hence data science is the delivery of value through the collection, processing,
analysis, and interpretation of data.

2
 It
 is
worth
noting
 that
 these
 two
movements
were
connected
by
 substantial
work
 in
 the

areas
 of
 statistical
 computing,
 knowledge
 discovery,
 and
 data
 mining,
 with
 important

work
 contributed
 by
 Gregory
 Piatetsky-Shapiro,
 Usama
 Fayyad,
 and
 Padhraic
 Smyth

among
many
others.
See
Fayyad
et
al.
(1996),
 for
example.

35
Why
Data
Science?

3.2
 Benefits
of
Data
Science

Now that we have a working definition of data science, we consider some
reasons for sensory and consumer scientists to embrace it. Many of these
reasons apply to any modern scientific discipline, yet the fact that sensory and
consumer scientists often occupy a central location in their organizations (such
as sitting between product development and marketing, for example) means
that sensory and consumer scientists must routinely create useful outputs
for consumption by a wide variety of stakeholders. Moreover, sensory and
consumer data are often diverse, so facility in data manipulation and flexibility
in data analysis are especially important skills for sensory scientists.

3.2.1
 Reproducible
Research

One of the most important ideas in data science is that of reproducible
research (cf. Peng, 2011). Importantly, reproducibility in the context of
data science does not refer to the repeatability of the experimental results
themselves if the experiment were to be conducted again. What is instead
meant by reproducible research is the ability to proceed from the input
data to the final results in reproducible steps. Ideally, these steps should be
well-documented so that any future researcher, including the researcher who
originally conducted the work, should be able to determine all choices made
in data cleaning, manipulation, and analysis that led to the final results. Since
sensory and consumer scientists often work in teams, this clarity ensures that
anyone on the team can understand the steps that led to prior results and
apply those steps to their own research going forward.

3.2.2
 Standardized
Reporting

Related to the idea of reproducible research is that of standardized reporting.
By following a data-scientific workflow, including automated reporting (see
Chapter 6), we can standardize our reporting across multiple projects. This
standardization has many benefits:

• Consistent
Formatting
When standardized reporting is used, outputs
created by a team are formatted consistently regardless of who creates
them. This consistency helps consumers of the reports – whether those
consumers are executives, clients, or other team members to quickly
interpret results.

• Upstream
Data
Consistency
Once a standardized workflow is put in
place, consistency of data formatting gains a new importance as produc
ers of the report can save significant time by not having to reformat new

36
 Data
Science
 for
Sensory
and
Consumer
Scientists

data. This fact puts pressure on the data collection procedure to become
more consistent, which ultimately supports knowledge management.

• Shared
Learning
Once a team combines standardized reporting with
tools for online collaboration such as GitHub (see Appendix 2.4), any
improvement to reporting (e.g., to a table, chart, text output, or even
to the reporting format itself) can be leveraged by all members of the
team. Thus improvements compound over time, to the benefit of all team
members.

3.3
 Data
Scientific
Workflow

A schematic of a data scientific workflow is shown in Figure 3.1 (Diagram
inspired by Wickham and Grolemund, 2016). Each section is described in
greater detail below.

FIGURE
3.1

Data
scientific
workflow.

3.3.1
 Data
Collection

Design

From the standpoint of classical statistics, experiments are conducted to test
specific hypotheses and proper experimental design ensures that the data
collected will allow hypotheses of interest to be tested (c.f. Fisher, 1935). Sir
Ronald Fisher, the father of modern statistics, felt so strongly on this topic
that he said: “To call in the statistician after the experiment is done may be
no more than asking him to perform a postmortem examination: he may be
able to say what the experiment died of.”
This topic of designed experiments, which are necessary to fully explore

causal or mechanistic explanations, is covered extensively in Lawson (2014).

Why
Data
Science?
 37

Since Fisher’s time, ideas around experimental design have relaxed some
what, with Tukey (1977) arguing that exploratory and confirmatory data
analyses can and should proceed in tandem.
Unless exploratory data analysis uncovers indications, usually quantitative

ones, there is likely to be nothing for confirmatory data analysis to consider.
Experiments and certain planned inquires provide some exceptions and

partial exceptions to this rule. They do this because one line of data
analysis was planned as a part of the experiment or inquiry. Even here,
however, restricting one’s self to the planned analysis – failing to accompany
it with exploration – loses sight of the most interesting results too frequently
to be comfortable. (Emphasis original)
In this book, we take no strong opinions on this topic, as they belong

more properly to the study of statistics than to data science. However, we
agree that results from an experiment explicitly designed to test a specific
hypothesis should be viewed as more trustworthy than results incidentally
obtained. Moreover, as we describe in Chapter 12, well-selected sample sets
support more generalizable predictions from machine learning models.

Execute

Execution of the actual experiment is a crucial step in the data science
workflow, although not one in which data scientists themselves are necessarily
involved. Even so, it is imperative that data scientists communicate directly
and frequently with experimenters so that nuances of the data are properly
understood for modeling and interpretation.

Import

Once the data are collected, they need to find their way into a computer’s
working memory to be analyzed. This importation process should be fully
scripted in code, as we detail in Chapter 8, and raw data files should never
be directly edited. This discipline ensures that all steps taken to import the
data will be understood later and that the reasoning behind all choices will be
documented. Moreover, writing code to import raw data allows for new data to
be analyzed quickly in the future as long as the data formatting is consistent.
For sensory scientists, who regularly run similar tests, a streamlined workflow
for data import and analysis both saves much time and protects against errors.

3.3.2
 Data
 Preparation

Preparing data for analysis typically involves two steps: data inspection and
data cleaning.

38
 Data
Science
 for
Sensory
and
Consumer
Scientists

Inspect

In this step, the main goal is to gain familiarity with the data. Under
ideal circumstances, this step includes reviewing the study documentation,
including the study background, sampling, design, analysis plan, screener (if
any), and questionnaire. As part of this step, the data should be inspected
to ensure they have been imported properly and relevant data quality checks,
such as checks for consistency and validity, should be performed. Preliminary
summary tables and charts should also be preformed at this step to help the
data scientist gain familiarity with the data. These steps are discussed in
further detail in Section 9.2 of Chapter 9.

Clean

Data cleaning is the process of preparing data for analysis. In this step,
we must identify and correct any errors and ensure the data are formatted
consistently and appropriately for analysis. As part of this step, we will
typically tidy our data, a concept covered in more detail in Section 4.2. It
is extremely important that any changes to the data are made in code with
the reasons for the changes clearly documented. This way of working ensures
that, a year from now, we don’t revisit our analysis to find multiple versions
of the input data and not know which version was the one used for the final
analysis.3
 We discuss data cleaning in further detail in Section 9.3.

3.3.3
 Data
 Analysis

Data analysis is one of the areas of data science that most clearly overlaps
with traditional statistics. In fact, any traditional or computational statistical
technique can be applied within the context of data science.
In practice, the dominant cultural difference between the two fields can be

summarized as:

• Statistics often focuses on advancing explicit theoretical understanding
of an area through parameter estimation within first-principle models.

• Data science often focuses on predictive ability using computational
models that are validated empirically using held-out subsets of the data.

Another cultural difference between the two fields is that data science,
evolving more directly out of computer science, has been more historically
interested in documenting the code used for analysis with the ultimate goal
of reproducible research. See Peng (2011) for more information on this topic,

3
 Anyone
working
in
the
field
for
more
than
five
years
has
almost
certainly
experienced
this

problem,
perhaps
even
with
their
own
data
and
reports.

39
Why
Data
Science?

for example. This difference is gradually disappearing, however, as statistics
more fully embraces a data scientific way of scripting analyses.
Data analysis is covered in greater detail in Chapter 10. The typical steps

of data analysis are data transformation, exploration, and modeling, which
we review below.

Transform

Data transformation is slightly different from data preparation. In data
preparation, we prepare the raw data for processing in a non-creative way,
such as reshaping existing data or storing character strings representing
dates as date formatted variables. With data transformation, we create new
data for analysis by applying functions to the raw data. These functions
can be simple transformations, such as inversions or logarithms, or can be
summary operations such as computing means and variances, or could be
complex operations such as principle components analysis or missing value
imputations. In a machine learning context (see Chapter 12), this step is often
referred to as “feature engineering.” In any case, these functions provide the
analyst an opportunity to improve the value of the analysis through skillful
choices. Data transformation is covered in more detail in Chapter 10.

Explore

Just as data transformation differs slightly from data preparation, data
exploration differs slightly from data inspection. When we inspect the data,
our goal is to familiarize ourselves with the data and potentially spot errors as
we do so. With data exploration, our goal is to begin to understand the results
of the experiment and to allow the data to suggest hypotheses for follow-up
analyses or future research. The key steps of data exploration are graphical
visualizations (covered in Chapter 5) and exploratory analyses (covered in
Chapter 10). As we will discuss later in this book, employing automated tools
for analysis requires caution; the ease with which we can conduct a wide
range of analyses increases the risk that chance results will be regarded as
meaningful. In Chapter 12, we will discuss techniques, such as cross-validation,
that can help mitigate this risk.

Model

At last we reach the modeling step of our workflow, which is the step in which
we conduct formal statistical modeling. This step may also include predictive
modeling, which we cover in Chapter 12, as mentioned above. One difference
between data science and classical statistics is that this step may feed back
into the transform and explore steps, as data scientists are typically more
willing to allow the data to suggest new hypotheses for testing (recall Tukey’s
quotation above). This step is described in further detail in Chapter 10.

40
 Data
Science
 for
Sensory
and
Consumer
Scientists

3.3.4
 Value
 Delivery

We now arrive at the final stage of the data science workflow, value delivery,
which is the stage most influenced by industrial design. Recall the definition
we provided above:

• Industrial
 Design: The professional service of creating and develop
ing concepts and specifications that optimize the function, value, and
appearance of products and systems for the mutual benefit of both users
and manufacturers.

From this perspective, our product consists of the final results as provided to
the intended audience. Consequently, we may need to adjust both the results
themselves and the way they are presented according to whether the audience
consists of product developers, marketing partners, upper management, or
even the general public. Hence, in this stage, we communicate our results and
potentially reformulate our outputs so that they will provide maximum value
to the intended audience. Although we describe value delivery in more detail
in Chapter 11, we briefly review the two steps of value delivery, communicate
and reformulate, below.

Communicate

The goal of the communication step is to exchange information stemming from
our data scientific work. Importantly, communication is a two-way street, so
it is just as important to listen in this step as it is to share results. Without
feedback from our audience, we won’t be able to maximize the impact of
our work. We discuss this topic in more detail in Section 11, and note that
automated reporting, which we cover in Chapter 6 also plays a large role in
this step by saving time in building slides that can later be spent in thinking
about the storytelling aspects of our communications.

Reformulate

In the final step of our data scientific workflow, we incorporate feedback
received during the communication step back into the workflow. This step
may involve investigating new questions and revising the way we present
results. Since we seek to work in a reproducible manner, the improvements we
make to our communication can be committed to code and the lessons these
improvements reflect can be leveraged again in the future. It is also important
to note that, as we reformulate, we may need to return all the way to the data
cleaning step, if we learn during the communication step that some aspects
of data import or initial interpretation need to be revised. Reformulation is
discussed in greater detail in Section 11.6.

41
Why
Data
Science?

3.4
 How
to
Learn
Data
Science

Learning data science is much like learning a language or learning to play
an instrument – you have to practice. Our advice based on mentoring many
students and clients is to get started sooner rather than later and to accept
that the code you’ll write in the future will always be better than the code
you’ll write today. Also, many of the small details that separate a proficient
data scientist from a novice can only be learned through practice as there are
too many small details to learn them all in advance. So, starting today, do
your best to write at least some code for all your projects. If a time deadline
prevents you from completing the analysis in R, that’s fine, but at least gain
the experience of making an RStudio project and loading the data in R.4
Then,
as time allows, try to duplicate your analyses in R, being quick to search for
solutions when you run into errors. Often simply copying and pasting your
error into a search engine will be enough to find the solution to your problem.
Moreover, searching for solutions is its own skill that also requires practice.
Finally, if you are really stuck, reach out to a colleague (or even the authors
of this book) for help.

3.5
 Cautions:
Don’t
Do
That
Everybody
Does

We have all been in situations in which, for a given study, we edited the raw
data files (e.g. removed respondents who were not present for the full study)
and saved them using a different name. Some time later, as we need to get
back to this study, or share the data with colleagues, finding the correct file
quickly becomes a challenge that may end up being time consuming.
It seems clear that such way of working is not viable, and as mentioned

earlier, raw data should never be edited. Instead, we prefer to run every data
manipulation step (e.g. removing respondents) in R by also commenting why
certain decisions are being made. This simplifies deeply the workflow, and in
the future, you will be grateful when you will reopen this file and can easily
find out what was done and why.
The same also applies for the analysis part. Documenting which analyses

and which parameters were used ensures reproducible research. If at first,
documenting your code may seem to be a loss of time, but it will pay back
later when you will access your code again later in time, as decisions taken
while you are writing your code may not be so clear anymore afterwards.

4
 We
recommend
 following
the
 instructions
 in
Appendix
2
to
get
started.

42
 Data
Science
 for
Sensory
and
Consumer
Scientists

Another important aspect is time: do not always go for the fastest or (what
seems to be) easiest solution when coding. Instead, try to find the best possible
balance between easy/fast coding and smart/efficient coding. For example, it
may seem simpler to hard-code the names of the variables as they are in your
data set than to read them from the file. However, this approach means that
your code is restricted to that particular study or to any study that exactly
fits that format. But as soon as there is a small change (e.g. a small difference
in the naming of one of the variables), it will quickly cost you a lot of time to
adapt the code to your new study.
Talking about efficiency, it is also advised to never use (through copy/paste

for instance) the same lines of code more than twice. If you apply the
same code multiple times in your analysis, or eventually across script files,
consider better alternatives such as loops and/or functions. This point is of
utmost importance as any small change in that piece of code (e.g. changing
a parameter, fixing a bug, etc.) only needs to be done once to be applied
everywhere. On the other hand, if you reproduce the same code multiple
times, you need to ensure that you correctly modified each and every part
that contains that code (and it is easy to skip some!)
Last but least, remember that coding is an endless process, as it can always

be improved. So do not hesitate to go back to your own code and update it
to make it more efficient, more flexible, more concise, etc. as you learn new
things, or as new tools are being made available.
With these preliminaries completed, and with you (hopefully) sufficiently

motivated, let’s begin learning data science!

4

Data
Manipulation

This chapter aims in introducing the {tidyverse} as you’ll learn how to
manipulate and transform your data by exploring simple (e.g. renaming
columns, sorting tables, relocating variables, etc.) to complex transformations
(e.g. transposing parts of the table, combining/merging tables, etc.). Such
transformations are done through simple examples that are relevant to Sensory
and Consumer Science.

4.1
 Why
Manipulating
Data?

In this chapter, many transformations proposed are not being saved. If you
want to apply these changes to your data set, please visit Section 2.3.4.
Moreover, some of the examples presented here emphasize the how to?, not
the why?, and are not necessarily chosen to convey a scientific meaning.
Last but not least, most functions used are from the {tidyverse}. Let’s

start with loading this package:

library(tidyverse)

In sensory science, different data collection tools (e.g. different devices,
software, methodologies, etc.) may provide the same data in different ways.
Also, different statistical analyses may require having the data structured
differently.
A simple example to illustrate this latter point is the analysis of liking data.
Let C consumers provide their hedonic assessments on P samples. To

evaluate if samples have received different mean liking scores at the population
level, an ANOVA is performed on a long thin table with 3 columns (consumer,
sample, and the liking scores), where the combination of C
× P
 is spread in
rows (cf. Table 4.1).

DOI: 10.1201/9781003028611-4 43

44
 Data
Science
 for
Sensory
and
Consumer
Scientists

TABLE
4.1

Example
of
a
table
for
an
analysis
of
variance

Consumer
 Product
 Liking

C1
 P1 6

C1
 P2 8

. . .
 . . .
 . . .

C1
 P 5

C2
 P1 8

. . .
 . . .
 . . .

c
p
C
P

L(c,p)

L(C,P)

However, to assess whether consumers have the same preference patterns
at the individual level, internal preference mapping or cluster analysis is
performed. Both these analyses require as input a short and large table with
the P products in rows and the C consumers in columns (cf. Table 4.2).

TABLE
4.2

Example
of
a
table
for
 internal
preference
mapping
or
clustering

Product
 C1
 C2
 .
. .
 . . .
 C

P1
 6
 8
 .
 .
 .
 .

P2
 8
 4
 .
 .
 .
 .

. . .
 . . .
 . . .
 .
 .
 .
 .

p
 3
 7
 .
 L(p,c)
 .
 L(p,C)

. . .
 . . .
 . . .
 .
 .
 .
 .

P
 5
 6
 .
 L(P,c)
 .
 L(P,C)

Another example of data manipulation consists of summarizing data, by for
instance computing the mean by product of the liking scores or by generating
frequency tables (e.g. distribution of the liking scores by product). In this
case, the transformation alters the data as the individual differences are lost.
Ultimately, the output table is smaller as it would only contain P rows and
2 columns (cf. Table 4.3):

TABLE
4.3

Example
of
mean
table

Product
 Liking

P1
 6.4

P2
 8.2

. . .
 . . .

p
 7.1

. . .
 . . .

P
 6.1

45
Data
Manipulation

For these reasons, it is essential to learn to manipulate data and transition
from one structure to another (when possible).

4.2
 Tidying
Data

Hadley Wickham (Wickham, 2014) defined tidy data as “data sets that are
arranged such that each variable is a column and each observation (or case)
is a row.” Depending on the statistical unit to consider and the analyses to
perform, data may need to be manipulated to be presented in a tidy form.

4.2.1
 Simple
Manipulations

We define here as simple manipulations any data transformations that can
easily be performed in other software such as Excel (using copy-paste, sorting
and filtering, creating a pivot table, etc.). However, we strongly recommend
performing any sorts of transformation in R as this will reduce the risk of
errors, typically be faster, more reliable, and will be reusable if you need to
perform the same operations on similar data in the future (including updated
versions of the current data set). Moreover, these operations will become
easier and more natural for you to use as you get familiar with them. Most
importantly, performing these transformations in R do not alter the original
data, meaning that changes can be reverted (which is not possible when you
alter the raw data directly).

Handling
Columns

Renaming Variables

Before starting transforming any data, we need data. So let’s start with
importing the biscuits sensory profile.xlsx file.1
 For importing the data, the
packages {here} and {readxl} are being used. Here, the data are being saved
in the object called sensory:

library(here)

library(readxl)

file
path
 <- here("data",
 "biscuits
sensory
profile.xlsx")

sensory
 <- read
xlsx(file
path,
 sheet
 =
 "Data")

1
 For
more
details
about
the
data
set
and/or
data
 importation,
please
see
Section
8.4.

46
 Data
Science
 for
Sensory
and
Consumer
Scientists

The first simple transformation we consider consists of renaming one or
multiple variables. This procedure can easily be done using the rename()

function from {dplyr}. In each of the examples below, we use the names()

function to show the column names (only) of the resulting data set.

sensory
 %>%

names()

##
 [1]
 "Judge"

##
 [2]
 "Product"

##
 [3]
 "Shiny"

##
 [4]
 "External
 color
 intensity"

##
 [5]
 "Color
 evenness"

In sensory, let’s rename Judge
 into Panellist
and Product
 into Sample

(here we apply transformations without saving the results, so the original data
set remains unchanged).
To do so, we indicate in rename()
that new name is replacing old name as

following: rename(newname
 =
 oldname). Additionally, we can apply multiple
changes by simply separating them with a ,:

sensory
 %>%

rename(Panellist
 =
 Judge,
 Sample
 =
 Product)
 %>%

names()

##
 [1]
 "Panellist"

##
 [2]
 "Sample"

##
 [3]
 "Shiny"

##
 [4]
 "External
 color
 intensity"

##
 [5]
 "Color
 evenness"

Alternatively, it is also possible to rename a column using its position:

sensory
 %>%

rename(Consumer
 =
 1,
 Biscuit
 =
 2)
 %>%

names()

##
 [1]
 "Consumer"

##
 [2]
 "Biscuit"

##
 [3]
 "Shiny"

##
 [4]
 "External
 color
 intensity"

##
 [5]
 "Color
 evenness"

47
Data
Manipulation

If this procedure of renaming variables should be applied on many vari
ables following a structured form (e.g. transforming names into snake case,
CamelCase, . . . , see https://en.wikipedia.org/wiki/Letter case\#Use within
programming languages for more information), the use of the {janitor}
package comes handy thanks to its clean
names()
 function and the case

parameter:

library(janitor)

sensory
 %>%

clean
names(case
 =
 "snake")
 %>%

names()

##
 [1]
 "judge"

##
 [2]
 "product"

##
 [3]
 "shiny"

##
 [4]
 "external_color_intensity"

##
 [5]
 "color_evenness"

Note that the {janitor} package offers many options, and although the
transformation is performed here on all the variables, it is possible to apply
it on certain variables only.

Reorganizing Columns

Another simple transformation consists in reorganizing the data set, either by
reordering, adding, and/or removing columns.
For reordering columns, relocate()
 is being used. This function allows

repositioning a (set of) variable(s) before or after another variable. By reusing
the sensory
 data set, let’s position all the variables starting with “Qty”
between Product
 and Shiny. This can be specified in two different ways,
either by positioning them after Product
or before Shiny:

sensory
 %>%

relocate(starts
with("Qty"),
 .after
 =
 Product)
 %>%

names()

##
 [1]
 "Judge"

##
 [2]
 "Product"

##
 [3]
 "Qty
 of
 inclusions"

##
 [4]
 "Qty
 of
 inclusions
 in
 mouth"

##
 [5]
 "Shiny"

https://www.en.wikipedia.org
https://www.en.wikipedia.org

48
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory
 %>%

relocate(starts
with("Qty"),
 .before
 =
 Shiny)
 %>%

names()

##
 [1]
 "Judge"

##
 [2]
 "Product"

##
 [3]
 "Qty
 of
 inclusions"

##
 [4]
 "Qty
 of
 inclusions
 in
 mouth"

##
 [5]
 "Shiny"

Removing/Selecting Columns

Another very important function regarding column transformation is the
select()
 function from {dplyr} (see Section 2.2.1 for a justification of the
particular writing dplyr::select()) which allows selecting a set of variables,
by simply informing the variables that should be kept in the data. Let’s limit
ourselves in selecting Judge, Product, and Shiny:

sensory
 %>%

dplyr::select(Judge,
 Product,
 Shiny)

##
 #
 A
 tibble:
 99
 x
 3

##
 Judge
 Product
 Shiny

##
 <chr>
 <chr>
 <dbl>

##
 1
 J01
 P01
 52.8

##
 2
 J01
 P02
 48.6

3 J01
 P03
 48

##
 4
 J01
 P04
 46.2

##
 #
 ...
 with
 95
 more
 rows

When a long series of variables should be kept in the same order, the use
of the :
 is used.
Let’s keep all the variables going from Cereal
 flavor
to Dairy
 flavor:

sensory
 %>%

dplyr::select(Judge,
 Product,
 `Cereal
 flavor`:`Dairy
 flavor`)

##
 #
 A
 tibble:
 99
 x
 6

##
 Judge
 Product
 ‘Cereal
 flavor‘
 RawDo˜1
 Fatty˜2
 Dairy˜3

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 P01
 24.6
 28.2
 13.8
 0

##
 2
 J01
 P02
 25.8
 28.8
 7.2
 0

3 J01
 P03
 30
 26.4
 0
 0

49
Data
Manipulation

4 J01
 P04
 16.2
 28.2
 0
 0

##
 #
 ...
 with
 95
 more
 rows,
 and
 abbreviated
 variable

##
 #
 names
 1:
 ‘RawDough
 flavor‘,
 2:
 ‘Fatty
 flavor‘,

##
 #
 3:
 ‘Dairy
 flavor‘

However, when only one (or few) variable needs to be removed, it is easier
to specify which one to remove rather than informing all the ones to keep.
Such solution is then done using the - sign:

sensory
 %>%

dplyr::select(-c(Shiny,
 Melting))

The selection process of variables can be further informed through functions
such as starts
with(), ends
with(), and contains(), which all select
variables that either starts, ends, or contains a certain character or sequence
of character. To illustrate this, let’s only keep the variables that starts with
“Qty”:

sensory
 %>%

dplyr::select(starts
with("Qty"))

##
 #
 A
 tibble:
 99
 x
 2

##
 ‘Qty
 of
 inclusions‘
 ‘Qty
 of
 inclusions
 in
 mouth‘

##
 <dbl>
 <dbl>

##
 1
 9.6
 27.6

##
 2
 10.8
 22.2

##
 3
 7.8
 10.2

4
 0
 13.2

##
 #
 ...
 with
 95
 more
 rows

Rather than selecting variables based on their names, we can also select
them based on their position (e.g. dplyr::select(2:5)
to keep the variables
that are at position 2 to 5).
Selection of variables can also be done using some rules thanks to the

where()
function. Let’s consider the situation in which we only want to keep
the variables that are nominal (or character in R), which automatically keeps
Judge
and Product:

sensory
 %>%

dplyr::select(where(is.character))

50
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 #
 A
 tibble:
 99
 x
 2

##
 Judge
 Product

##
 <chr>
 <chr>

1 J01
 P01

2 J01
 P02

3 J01
 P03

4 J01
 P04

##
 #
 ...
 with
 95
 more
 rows

dplyr::select()
 is a very powerful function that facilitates the selection
of complex variables through very intuitive functions. Ultimately, it can also
be used to relocate()
and even rename()
variables, as shown in the example
below:

sensory
 %>%

dplyr::select(Panellist
 =
 Judge,
 Sample
 =
 Product,

Shiny:Thickness,
 -contains("olor"))

More examples illustrating the use of dplyr::select()
 are provided
throughout the book. In particular, in the next Section “Handling Rows”,
another important function called across()
will be introduced. This function
allows applying the same transformation to multiple columns, allowing you to
use select() semantics inside functions such as summarise() and mutate().

Creating Columns

In some cases, new variables need to be created from existing ones. Examples
of such situations include taking the quadratic term of a sensory attribute
to test for curvature or simply considering a new variables as the sum or
the subtraction between two (or more) others. Such creation of a variable is
processed through the mutate()
 function from the {dplyr} package. This
function takes as inputs the name of the variable to create and the formula
that defines that variable.
Let’s create two new variables, one called Shiny2
 which corresponds

to Shiny
 squared up and another one called StiMelt
 which corresponds
to Sticky
 + Melting.
 Since we only use these three variables, let’s first
reduce the data set to these three variables with select()
 to improve
readability:

sensory
 %>%

dplyr::select(Shiny,
 Sticky,
 Melting)
 %>%

mutate(Shiny2
 =
 Shinyˆ2,

StiMelt
 =
 Sticky
 +
 Melting)

Data
Manipulation
 51

##
 #
 A
 tibble:
 99
 x
 5

##
 Shiny
 Sticky
 Melting
 Shiny2
 StiMelt

##
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 52.8
 37.2
 33.6
 2788.
 70.8

##
 2
 48.6
 35.4
 36
 2362.
 71.4

##
 3
 48
 37.2
 8.4
 2304
 45.6

##
 4
 46.2
 21.6
 34.2
 2134.
 55.8

##
 #
 ...
 with
 95
 more
 rows

If you want to transform a variable, say by changing its type or rewrit
ing its content, you can use mutate()
 and assign to the new variable
the same name as the original one. This will overwrite the existing
column with the new one. To illustrate this, let’s transform Product

from upper case to lower case only. This can be done by mutating
Product
 into the lowercase version of Product
 (tolower(Product)):
sensory
 %>%
 mutate(Product
 =
 tolower(Product))

mutate()
being one of the most important function from the {dplyr}

package; more examples of its use are presented throughout this book.

Since performing mathematical computations on nonnumerical columns is
not possible, conditions can easily be added through mutate()
combined with
across(). Let’s imagine we want to round all variables to 0 decimal, which
can only be applied to numerical variables. To do so, we mutate()
across()

all variables that are considered as.numeric()
(using where()):

sensory
 %>%

mutate(across(where(is.numeric),
 round,
 digits
 =
 0))

##
 i
 In
 argument:
 ‘across(where(is.numeric),
 round,
 digits
 =
 0)‘.

##
 Caused
 by
 warning:

##
 !
 The
 ‘...‘
 argument
 of
 ‘across()‘
 is
 deprecated
 as
 of
 dplyr
 1.1.0.

##
 Supply
 arguments
 directly
 to
 ‘.fns‘
 through
 an
 anonymous
 function
 instead.

##

##
 #
 Previously

##
 across(a:b,
 mean,
 na.rm
 =
 TRUE)

##

##
 # Now

##
 across(a:b,
 \(x)
 mean(x,
 na.rm
 =
 TRUE))

##
 #
 A
 tibble:
 99
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

1 J01
 P01
 53
 30
 23
 10
 23

2 J01
 P02
 49
 30
 13
 11
 13

3 J01
 P03
 48
 46
 17
 8
 14

52
 Data
Science
 for
Sensory
and
Consumer
Scientists

4 J01
 P04
 46
 46
 38
 0
 49

##
 #
 ...
 with
 95
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

In case only a selection of numerical variables should be rounded, we could
also replace where(is.numeric)
by a vector (using c()) with the names of
the variables to round.

sensory
 %>%

dplyr::select(Shiny,
 Sticky,
 Melting)
 %>%

mutate(across(c("Shiny",
 "Sticky"),
 round,
 digits
 =
 0))

Merging and Separating Columns

It can happen that some columns of a data set contain information (strings)
that cover different types of information. For instance, we could imagine
coding the name of our panelists as FirstName LastName or Gender Name,
and we would want to separate them into two columns to make the distinction
between the different information (i.e. FirstName and LastName, or Gender
and Name respectively). In other situations, we may want to merge informa
tion present in multiple columns into one.
For illustration, let’s consider the information stored in the Product Info

sheet from biscuits sensory profile.xlsx. This table includes information
regarding the biscuits, and more precisely their Protein and Fiber content
(Low or High).
After importing the data, let’s merge these two columns so that both

information is stored in one column called ProtFib. To do so, unite()
(from
{tidyr}) is used. This function takes as first element the name of the new
variables, followed by all the columns to unite, and by providing the separation
key to use between these elements (here -):

prod
info
 <- read
xlsx(file
path,
 sheet
 =
 "Product
 Info")
 %>%

unite(ProtFib,
 Protein,
 Fiber,
 sep
 =
 "-")

##
 #
 A
 tibble:
 11
 x
 3

##
 Product
 ProtFib
 Type

##
 <chr>
 <chr>
 <chr>

##
 1
 P01
 Low-Low
 Trial

53
Data
Manipulation

##
 2
 P02
 Low-High
 Trial

##
 3
 P03
 High-High
 Trial

##
 4
 P04
 High-High
 Trial

##
 #
 ...
 with
 7
 more
 rows

By default, unite()
 removes from the data set the individual variables
that have been merged. To keep these original variables, the parameter
remove
 =
 FALSE
can be used.

Although it is not relevant for combining columns, it is interesting to men
tion an additional package that can be used to combine elements together.
This package is called {glue} and provides interesting alternatives to the
usual paste()
and paste0()
 functions.

To reverse the changes (saved here in prod
info) and to separate a column
into different variables, separate()
 (from {tidyr}) is used. Similarly to
unite(), separate()
 takes as first parameter the name of the variable to
split, followed by the names for the different segments generated, and of course
the separator defined by sep.
In our example, this would be done as following:

prod
info
 %>%

separate(ProtFib,
 c("Protein",
 "Fiber"),
 sep
 =
 "-")

##
 #
 A
 tibble:
 11
 x
 4

##
 Product
 Protein
 Fiber
 Type

##
 <chr>
 <chr>
 <chr>
 <chr>

##
 1
 P01
 Low
 Low
 Trial

##
 2
 P02
 Low
 High
 Trial

##
 3
 P03
 High
 High
 Trial

##
 4
 P04
 High
 High
 Trial

##
 #
 ...
 with
 7
 more
 rows

Conditions

In some cases, the new column to create depend directly on the value(s) of one
or more columns present in the data. An example of such situations consists
of categorizing a continuous variable into groups by converting the age (in
year) of the participants into age groups. For such simple examples, some
pre-existing functions (e.g. cut()
 in this situation) can be used. However,
in other situations, predefined functions do not exist and the transformation
should be done manually using conditions.
Let’s illustrate this by converting the Shiny
variable (from sensory) from

numeric to classes. Since the scale used is a 60pt scale, let’s start by creating
a class called Low if the score is lower than 30 and High otherwise.

54
 Data
Science
 for
Sensory
and
Consumer
Scientists

Here, predefined functions (e.g. cut()) are not being used intentionally
as a manual transformation is preferred. Instead, mutate()
 is associated
to ifelse(), which works as following: ifelse(condition,
 results
 if

condition
 is
 TRUE,
 results
 if
 condition
 is
 not
 TRUE)

sensory
 %>%

dplyr::select(Shiny)
 %>%

mutate(ShinyGroup
 =
 ifelse(Shiny
 <
 30,
 "Low",
 "High"))

##
 #
 A
 tibble:
 99
 x
 2

##
 Shiny
 ShinyGroup

##
 <dbl>
 <chr>

##
 1
 52.8
 High

##
 2
 48.6
 High

3
 48
 High

##
 4
 46.2
 High

##
 #
 ...
 with
 95
 more
 rows

Let’s imagine the same variable should now be split into three levels: Low,
Medium, and High. Such additional group could be obtained by adding an
ifelse()
condition within the existing ifelse()
condition (we use 48 instead
of 40 for the upper limit to Medium
so that results are displayed on screen):

sensory
 %>%

dplyr::select(Shiny)
 %>%

mutate(ShinyGroup
 =
 ifelse(Shiny
 <
 20,
 "Low",

ifelse(Shiny
 <
 48,
 "Medium",
 "High")))

##
 #
 A
 tibble:
 99
 x
 2

##
 Shiny
 ShinyGroup

##
 <dbl>
 <chr>

##
 1
 52.8
 High

##
 2
 48.6
 High

3
 48
 High

##
 4
 46.2
 Medium

##
 #
 ...
 with
 95
 more
 rows

Since there are only three conditions in total here, only two entangled
ifelse()
 are required. This makes the code still manageable. However,
in more complex situations (say 10 different conditions are required), such
solution quickly becomes tedious to read, track, and debug if errors are
being made. Instead, the use of an alternative function called case
when()

is preferred. In the previous case, the same conditions would be written as
follows:

Data
Manipulation
 55

sensory
 %>%

dplyr::select(Shiny)
 %>%

mutate(ShinyGroup
 =
 case
when(

Shiny
 <
 20
 ~
 "Low",

between(Shiny,
 20,
 48)
 ~
 "Medium",

Shiny
 >
 40
 ~
 "High"))

##
 #
 A
 tibble:
 99
 x
 2

##
 Shiny
 ShinyGroup

##
 <dbl>
 <chr>

##
 1
 52.8
 High

##
 2
 48.6
 High

##
 3
 48
 Medium

##
 4
 46.2
 Medium

##
 #
 ...
 with
 95
 more
 rows

This provides the same results as previously, except for the exact value
48 which was assigned as High in the ifelse()
 example and to Medium in
the case
when()
 example. This is due to the way between()2
 considers its
borders.

Handling
Rows

After manipulating columns, the next logical step is to manipulate rows. Such
operations include four aspects:

1. Rearranging the rows in a logical way;

2. Selecting certain rows;

3. Filtering entries based on given variables;

4. Splitting the data into subgroups based on the entries of a given variable.

Rearranging Rows

The first step of rearranging rows is done through the arrange()
 function
from the {dplyr} package. This function allows sorting the data in the
ascending order.3
To arrange them in a descending order, the function desc()

is then required.
Let’s rearrange the data by Judge
and Product, with Judge
being sorted

in an ascending order whereas Product
is being sorted in a descending order:

2
 By
default,
between(x,
 value1,
 value2)
considers
value1
<= x
<=
value2.

3
 For
numerical
order,
this
is
simply
rearranging
the
values
from
the
lowest
to
the
highest.

For
 strings,
 the
 entries
 are
 then
 sorted
 alphabetically
 unless
 the
 variable
 is
 a
 factor
 in

which
case
the
order
of
the
 levels
 for
that
 factor
 is
being
used.

56
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory
 %>%

arrange(Judge,
 desc(Product))

##
 #
 A
 tibble:
 99
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 POpt
 4.8
 33.6
 15.6
 32.4
 13.8

##
 2
 J01
 P10
 53.4
 36.6
 11.4
 18
 10.8

3 J01
 P09
 0
 42.6
 18
 21
 36

##
 4
 J01
 P08
 0
 51.6
 48.6
 23.4
 18

##
 #
 ...
 with
 95
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

Selecting Rows

The next step is to select a subset of the data by keeping certain rows only.
If the position of the rows to keep is known, this information can be used
directly using the slice()
 function. Let’s select from sensory
 all the data
that is related to P01. A quick look at the data informs us that it corresponds
to rows 1 to 89, with a step of 11:

sensory
 %>%

slice(seq(1,
 89,
 11))

##
 #
 A
 tibble:
 9
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 P01
 52.8
 30
 22.8
 9.6
 22.8

##
 2
 J02
 P01
 44.4
 34.2
 14.4
 18.6
 43.2

##
 3
 J03
 P01
 40.2
 23.4
 9
 7.8
 49.8

##
 4
 J04
 P01
 37.8
 26.4
 15
 23.4
 15.6

##
 #
 ...
 with
 5
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

This is a manual way to select data. However, this procedure may gen
erate an erroneous subset as soon as the row order in the data changes.

57
Data
Manipulation

To avoid mistakes, a more stable procedure of filtering data is proposed in
the next paragraph.

Filtering Data

To define the subset of data, the filter()
function is being used. This function
requires providing an argument that is expressed as a test, meaning that the
outcome should either be TRUE (keep the value) or FALSE (discard the value)
when the condition is verified or not, respectively. In R, this is expressed by
the double “=” sign ==.
Let’s filter the data to only keep the data related to sample P02:

sensory
 %>%

filter(Product
 ==
 "P02")

##
 #
 A
 tibble:
 9
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 P02
 48.6
 30
 13.2
 10.8
 13.2

##
 2
 J02
 P02
 39.6
 32.4
 18
 19.8
 25.2

##
 3
 J03
 P02
 39
 18.6
 13.2
 9
 28.8

##
 4
 J04
 P02
 39.6
 41.4
 33
 25.2
 10.2

##
 #
 ...
 with
 5
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

Other relevant test characters are the following:

• !Product
 ==
 "P02"
 or Product
 !=
 "P02"
means different from, and
will keep all samples except P02;

• %in%
 my
vector
keeps any value included within the vector my
vector

(e.g. Product
 %in%
 c("P01","P02","P03")
keeps all data from P01,
P02, and P03).

In some cases, the tests to perform are more complex as they require multiple
conditions. There are two forms of conditions:

• &
 (read and) is multiplicative, meaning that all the conditions need to
be true (Product
 ==
 "P02"
 &
 Shiny
 >
 40);

• | (read or) is additive, meaning that only one of the conditions needs to
be true (Product
 ==
 "P03"
 | Shiny
 >
 40).

58
 Data
Science
 for
Sensory
and
Consumer
Scientists

This system of condition is particularly useful when you have missing values
as you could remove all the rows that contain missing values for a given
variable. Since we do not have missing values here, let’s create some by
replacing all the evaluations for Shiny
 that are larger than 40 by missing
values. This is done here using ifelse(), which takes three arguments (in
this order): the test to perform (here Shiny
 >
 40), the instruction if the test
passes (here replace with NA), and the instruction if the test doesn’t pass (here
keep the value stored in Shiny).

sensory
na
 <- sensory
 %>%

dplyr::select(Judge,
 Product,
 Shiny)
 %>%

mutate(Shiny
 =
 ifelse(Shiny
 >
 40,
 NA,
 Shiny))

In a second step, we filter out all missing values from Shiny. In practice,
this is done by keeping all the values that are not missing:

sensory
na
 %>%

filter(!is.na(Shiny))

This procedure removed 20 rows since the original table had 99 rows and 3
columns, whereas the filtered table only has 79 rows and 3 columns.

Splitting Data

After filtering data, the next logical step is to split data into subsets based
on a given variable (e.g. by gender). For such purpose, one could consider
using filter()
by applying it to each subgroup. In a previous example, this is
what we have done when we filtered data for sample P02
only. Of course, the
same procedure can be performed until all the other subgroups are created.
However, this solution becomes tedious as the number of samples increases.
Instead, we prefer to use split()
which takes as arguments the data and the
column to split from:

sensory
 %>%

split(.$Product)

This function creates a list of n elements (n being the number of samples),
each element corresponding to the data related to one sample. Such list can
then be used in automated analyses by performing on each sub-data through
the map()
 function, as it will be illustrated in Section 10.

Data
Manipulation
 59

4.2.2
 Reshaping
Data

Reshaping the data itself is done through pivoting which allows transitioning
from a long and thin table to a short and wide table and vice versa.
To illustrate this, let’s start with a fictive example in which we have

three consumers providing their liking scores for two products. This table
corresponds to a long and thin format (cf. Table 4.4):

TABLE
4.4

Fictive
example
shaped
 in
a
 long
thin
formats

Consumer
 Product
 Liking

C1

C1

C2

C2

C3

C3

P1

P2

P1

P2

P1

P2

8

5

9

6

7

4

Let’s imagine we need to restructure the data where products are displayed
in rows and consumers in columns. This corresponds to the short and wide
format (cf. Table 4.5):

TABLE
4.5

Fictive
example
restructured
 in
a
short
wide
format

Product
 C1
 C2
 C3

P1
 8
 9
 7

P2
 5
 6
 4

As we will see in the following section, it is very easy to transition from
one version to another thanks to pivot
longer()
and pivot
wider(), both
being functions from {tidyr}.

Pivoting
Longer

Currently, our sensory
 data table is a table in which we have as many
rows as Judge x Product, the different attributes being spread across mul
tiple columns. However, in certain situations, it is relevant to have all
the attributes stacked vertically, meaning that the table will have Judge x
Product x Attributes rows. Such simple transformation can be done with
pivot
longer()
which takes as inputs the attributes to pivot, the name of
the variables that will contain these names (names
to), and the name of the
column that will contain their entries (values
to)

60
 Data
Science
 for
Sensory
and
Consumer
Scientists

With pivot
longer()
 and any other function that requires selecting
variables, it is often easier to deselect variables that we do not want to
include rather than selecting all the variables of interest. Throughout the
book, both solutions are being considered.

sensory
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Score")

##
 #
 A
 tibble:
 3,168
 x
 4

##
 Judge
 Product
 Attribute
 Score

##
 <chr>
 <chr>
 <chr>
 <dbl>

##
 1
 J01
 P01
 Shiny
 52.8

##
 2
 J01
 P01
 External
 color
 intensity
 30

##
 3
 J01
 P01
 Color
 evenness
 22.8

##
 4
 J01
 P01
 Qty
 of
 inclusions
 9.6

##
 #
 ...
 with
 3,164
 more
 rows

This transformation converts a table of 99 rows and 34 columns into a table
containing 3168 (99 × 32) rows and 4 columns. In the pivoted table, the names
of the variables (stored here in Attribute) are in the same order as presented
in the original table.
In case the attribute names are following a standard structure, say

“attribute name modality” as is the case in sensory
 for some attributes, an
additional parameter of pivot
longer()
becomes handy as it can split the
Attribute
variable just created into say Attribute
and Modality.
To illustrate this, let’s reduce sensory
 to Judge, Product, and all the

variables that end with odor or flavor (all other variables being discarded).
After pivoting the subset of columns, we automatically split the attribute
names into Attribute
 and Modality
 by informing the separator between
names (here, a space):

sensory
 %>%

dplyr::select(Judge,
 Product,

ends
with("odor"),
 ends
with("flavor"))
 %>%

pivot
longer(-c(Judge,
 Product),

names
to
 =
 c("Attribute",
 "Modality"),

values
to
 =
 "Score",
 names
sep = " ")

##
 #
 A
 tibble:
 693
 x
 5

##
 Judge
 Product
 Attribute
 Modality
 Score

61
Data
Manipulation

##
 <chr>
 <chr>
 <chr>
 <chr>
 <dbl>

##
 1
 J01
 P01
 Fatty
 odor
 6.6

##
 2
 J01
 P01
 Roasted
 odor
 15.6

##
 3
 J01
 P01
 Cereal
 flavor
 24.6

##
 4
 J01
 P01
 RawDough
 flavor
 28.2

##
 #
 ...
 with
 689
 more
 rows

This parameter combines both the power of pivot
longer()
 and
separate()
 in one unique process.
Note that more complex transformations through the use of regular expres

sions (and the names
pattern
 option) can be considered. More information
on regular expression is provided in Section 10.2.2.

It can happen that with pivot
longer(), further transformation per
formed on the long and thin table may not maintain their original order
(usually, the names are reordered alphabetically). If you don’t want such
reordering to happen because it would impact the desired outcome, there
is a simple workaround that ensures that the order is kept. The solution
simply consists in transforming the newly created variable as a factor
which takes as levels the order of the elements as they were in the original
data (use fct
inorder()
to maintain the order as shown in the data). An
example is shown in the following code:

sensory
 %>%

dplyr::select(Judge,
 Product,
 Shiny,
 Salty,
 Bitter,
 Light)
 %>%

pivot
longer(-c("Judge",
 "Product"),

names
to
 =
 "Variable",
 values
to
 =
 "Score")
 %>%

mutate(Variable
 =
 fct
inorder(Variable))

Other examples using this trick will be used throughout this book
(e.g. see Section 5.4.5)

As an alternative to pivot
longer(), the package called {reshape2}
provides a function called melt()
which pivots automatically the entire set of
numerical variables, the qualitative variables being considered as id variables.
If performed on a matrix with row names, the new table will have two columns
containing the row and column names.

library(reshape2)

melt(sensory)

62
 Data
Science
 for
Sensory
and
Consumer
Scientists

Pivoting
Wider

The complementary/opposite function to pivot
longer()
is pivot
wider().
This function pivots data horizontally, hence reducing the number of rows and
increasing the number of columns. In this case, the two main parameters to
provide is which column will provide the new columns to create (name
from),
and what are the values to use to fill this table (values
from).
From the previous example, we could set names
from
 =
 Attribute
 and

values
from
 =
 Score
to return to the original format of sensory. However,
let’s reduce the data set to Product, Judge, and Shiny
only, and let’s pivot
the Judge
and Shiny
columns:

sensory
 %>%

dplyr::select(Judge,
 Product,
 Shiny)
 %>%

pivot
wider(names
from
 =
 Judge,
 values
from
 =
 Shiny)

##
 #
 A
 tibble:
 11
 x
 10

##
 Product
 J01
 J02
 J03
 J04
 J05
 J06
 J07

##
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 P01
 52.8
 44.4
 40.2
 37.8
 43.8
 43.2
 44.4

##
 2
 P02
 48.6
 39.6
 39
 39.6
 33.6
 38.4
 25.8

##
 3
 P03
 48
 36
 35.4
 15
 37.2
 33
 16.2

##
 4
 P04
 46.2
 36
 48
 38.4
 47.4
 37.8
 27

##
 #
 ...
 with
 7
 more
 rows,
 and
 2
 more
 variables:

##
 #
 J08
 <dbl>,
 J09
 <dbl>

This procedure creates a table with as many rows as there are products,
and as many columns as there are panelists (+1 since the product information
is also in a column).
These procedures are particularly useful in consumer studies, since

pivot
longer()
 and pivot
wider()
 allow restructuring the data for
analysis such as ANOVA (pivot
longer()
output) and preference mapping
or clustering (pivot
wider()
structure).
It is important to notice that the pivot
wider()
 format potentially con

tains more data. Let’s imagine the sensory test was performed following an
incomplete design, meaning that each panelist did not evaluate all the samples.
Although the long and thin structure would not show missing values (the
entire rows without data being removed), the shorter and larger version would
contain missing values for the products that panelists did not evaluate. If the
user wants to automatically replace these missing values with a fixed value,
say, it is possible through the parameter values
fill
 (e.g. values
fill=0

would replace each missing value with a 0). Additionally, after pivoting the
data, if multiple entries exist for a combination row-column, pivot
wider()

will return a list of elements. In the Section 4.2.3, an example illustrating such
situation and how to handle it will be presented.

Data
Manipulation
 63

4.2.3
 Transformation
That
Alters
 the
Data

In some cases, the final table to generate requires altering the data, by
(say) computing the mean across multiple values or counting the number
of occurrences of factor levels for instance. In other words, we summarize the
information, which also tend to reduce the size of the table. It is hence no
surprise that the function used for such data reduction is called summarise()

(or summarize(), both notation work) and belongs to the {dplyr} package.

Introduction
to
Summary
Statistics

In practice, summarise()
 applies a function (whether it is the mean()
 or a
simple count using n()
 for instance) on a set of values. Let’s compute the
mean on all numerical variables of sensory:

sensory
 %>%

summarise(across(where(is.numeric),
 mean))

##
 #
 A
 tibble:
 1
 x
 32

##
 Shiny
 Exter˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4
 Print˜5
 Thick˜6

##
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 23.9
 33.7
 28.2
 20.6
 23.3
 40.7
 25.5

##
 #
 ...
 with
 25
 more
 variables:
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,

##
 #
 ‘Roasted
 flavor‘
 <dbl>,

##
 #
 ‘Overall
 flavor
 persistence‘
 <dbl>,
 ...

As can be seen, the grand mean is computed for each attribute. It can
also be noticed that all the other variables that were not involved have been
removed (e.g. Judge
and Product
as they are not numerical variables).
If multiple functions should be applied, we could perform all the transfor

mation simultaneously as following:

sensory
 %>%

summarise(across(where(is.numeric),
 list(min
 =
 min,
 max
 =
 max)))

##
 #
 A
 tibble:
 1
 x
 64

##
 Shiny_min
 Shiny_max
 Externa˜1
 Exter˜2
 Color˜3
 Color˜4

##
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 0
 54
 6.6
 55.2
 6.6
 53.4

##
 #
 ...
 with
 58
 more
 variables:

64
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 #
 ‘Qty
 of
 inclusions_min‘
 <dbl>,

##
 #
 ‘Qty
 of
 inclusions_max‘
 <dbl>,

##
 #
 ‘Surface
 defects_min‘
 <dbl>,

##
 #
 ‘Surface
 defects_max‘
 <dbl>,

##
 #
 ‘Print
 quality_min‘
 <dbl>,

##
 #
 ‘Print
 quality_max‘
 <dbl>,
 ...

In this example, each attribute is duplicated with min
and max
to provide
the minimum and maximum values for each attribute.

It would be a good exercise to restructure this table using pivot
longer()

with names
sep
 followed by pivot
wider()
 to build a new table that
shows for each attribute (in rows) the minimum and the maximum in two
different columns.

By following the same principles, many other functions can be performed,
whether they are built-in R or created by the user.
Here is a recommendation of interesting descriptive functions to consider

with summarise():

• mean(), median()
 (or more generally quantile()) for the mean and
median (or any other quantile);

• sd()
and var()
 for the standard deviation and the variance;

• min(), max(), range()
 (provides both the min and max) or
diff(range())
(for the difference between min and max);

• n()
and sum()
 for the number of counts and the sum, respectively.

Introduction
to
Grouping

It can appear that the interest is not in the grand mean, but in the mean
per product (say), or per product and panelist (for test with duplicates). In
such cases, summarize()
 should aggregate set of values per product or per
product and panelist, respectively. Such information can be passed on through

4group
by().

sensory
 %>%

group
by(Product)
 %>%

summarise(across(where(is.numeric),
 mean))
 %>%

ungroup()

We
 strongly
 recommend
 you
 to
 ungroup()
 blocks
 of
 code
 that
 includes
 group
by()

once
 the
 computations
 are
 done
 to
 avoid
 any
 unexpected
 results.
 Otherwise,
 further

computations
may
be
done
on
the
groups
when
 it
should
be
performed
on
the
 full
data.

4

65
Data
Manipulation

##
 #
 A
 tibble:
 11
 x
 33

##
 Product
 Shiny
 Exter˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4
 Print˜5

##
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 P01
 41.9
 26.2
 15.8
 15.5
 27.7
 37.7

##
 2
 P02
 39.1
 29.5
 20.3
 14
 20.5
 39.5

##
 3
 P03
 30.5
 43.6
 30.7
 17.6
 18.6
 43.3

##
 4
 P04
 42.6
 43.3
 37.7
 15.1
 32.8
 30.3

##
 #
 ...
 with
 7
 more
 rows,
 26
 more
 variables:

##
 #
 Thickness
 <dbl>,
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,

##
 #
 ‘Roasted
 flavor‘
 <dbl>,
 ...

This procedure creates a tibble with 11 rows (product) and 33 columns
(32 sensory attributes + 1 column including the product information) which
contains the mean per attribute for each sample, also known as the sensory
profiles of the products.

In some cases, the data should not be aggregated across rows, but by
rows. It is then important to specify that each computation should be
done per row by using rowwise()
prior to performing the transformation.
For instance, if we would want to extract the minimum between Shiny,
Salty, and Bitter, we could write the following code:

sensory
 %>%

dplyr::select(Judge,
 Product,
 Shiny,
 Salty,
 Bitter)%>%

rowwise()%>%

mutate(Min
 =
 min(Shiny,
 Salty,
 Bitter))

Illustrations
of
Data
Manipulation

Let’s review the different transformations presented here by generating the
sensory profiles of the samples through different approaches.5

In the previous example, we’ve seen how to obtain the sensory profile using
summarise()
 across()
 all numerical variables. In case a selection of the
attributes should have been done, we could use the same process by simply
informing which attributes to transform:

It
 is
 important
 to
 realize
 that
any
data
manipulation
 challenge
 can
be
 tackled
 in
many

different
ways,
so
don’t
be
afraid
to
think
out
of
the
box
when
solving
them.

5

66
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory
 %>%

group
by(Product)
 %>%

summarise(across(Shiny:Melting,
 mean))
 %>%

ungroup()

The list of attributes to include can also be stored in an external vector:

sensory
attr
 <- colnames(sensory)[5:ncol(sensory)]

sensory
 %>%

group
by(Product)
 %>%

summarise(across(all
of(sensory
attr),
 mean))
 %>%

ungroup()

A different approach consists of combining summarise()
 to pivot

longer()
 and pivot
wider(). This process requires summarizing only one
column by Product and Attribute:

sensory
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Scores")
 %>%

mutate(Attribute
 =
 fct
inorder(Attribute))
 %>%

group
by(Product,
 Attribute)
 %>%

summarise(Scores
 =
 mean(Scores))
 %>%

pivot
wider(names
from
 =
 Attribute,
 values
from
 =
 Scores)
 %>%

ungroup()

Here, we transformed Attribute
 into a factor using fct
inorder()
 to
ensure that the double pivoting procedure maintains the original order.
Without this line of code, the final table would have the columns reordered
alphabetically.

As you can see, R provides the following message: summarise()
 has
grouped output by ‘Product’. You can override using the .groups
 argu
ment. This message is just informative, and can be hidden by adding the
following code at the start of your script: options(dplyr.summarise.

inform
 =
 FALSE).

What would happen if we would omit to summarise()
the data in between
the two pivoting functions? In that case, we also remove the column Judge

since the means should be computed across panelists. . .

Data
Manipulation
 67

sensory
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Scores")
 %>%

dplyr::select(-Judge)
 %>%

pivot
wider(names
from
 =
 Attribute,
 values
from
 =
 Scores)

As can be seen, each variable is of type list in which each cell contains
dbl
 [9]: This corresponds to the scores provided by the nine panelists to
that product and that attribute. Since we would ultimately want the mean
of these nine values to generate the sensory profiles, a solution comes directly
within pivot
wider()
 through the parameter values
fn
which applies the
function provided here on each set of values:

sensory
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Scores")
 %>%

dplyr::select(-Judge)
 %>%

pivot
wider(names
from
 =
 Attribute,
 values
from
 =
 Scores,

values
fn
 =
 mean)

Through this simple example, we’ve seen that the same results can
be obtained through different ways. It is important to keep this in mind
as you may find the solution to your own challenges by simply considering
different paths.

4.2.4
 Combining
Data
 from
Different
Sources

It often happens that the data to analyze is stored in different files, and need
to be combined or merged. Depending on the situations, different solutions
are required.

Binding
Vertically

Let’s start with a simple example where the tables match in terms of variables
and should be combined vertically. To illustrate this situation, the data stored
in the file excel-scrap.xlsx is used. This file contains a fictive example in
which 12 assessors evaluated 2 samples on 3 attributes in triplicate, with
each replication being stored in a different sheet.
The goal here is to read the data stored in the different sheets and to

combine them vertically in one unique file for further analysis. Let’s start
with importing the data:

68
 Data
Science
 for
Sensory
and
Consumer
Scientists

path
 <- file.path("data",
 "excel
scrap.xlsx")

session1
 <- read
xlsx(path,
 sheet
 =
 1)

session2
 <- read
xlsx(path,
 sheet
 =
 2)

session3
 <- read
xlsx(path,
 sheet
 =
 3)

To combine the tables vertically, we could use the basic R function rbind().
However, we prefer to use bind
rows()
from {dplyr} since it better controls
for the columns by ensuring that the order is respected. Moreover, if one of the
tables contains a variable that the other don’t, this variable will be kept and
filled in with missing values when the information is missing. Additionally,
bind
rows()
 allows keeping track of the origin of the data through the
parameter .id. This is of particular interest in this example since a new
Session
 column can be created (and used) to distinguish between tables.
This process is used to avoid losing such useful information, especially since it
is not directly available within the data: If it were, the parameter .id
could
have been ignored.
This solution works fine, especially since there were only three files to

combine. Ultimately, we would prefer to automate the reading process so that
all the files are directly imported and combined. This more efficient solution
is presented in Section 8.4.3.

Binding
Horizontally

In other cases, the tables to combine contain different information (variables)
on the same entities (rows) and the tables should be merged horizontally. To
do so, a first solution consists in using the functions cbind()
({base}) and/or
bind
cols()
 ({dplyr}). However, some of these functions require that the
tables to combine must already have the rows in the exact same order (no
check is being done) and must be of the same size.
If that is not the case, merging tables should be done using merge()

({base}) or preferably through the different *
join()
 functions from
({dplyr}). For illustration, let’s consider these two tables to merge
(Tables 4.6 and 4.7):

TABLE
4.6

Tables
used
to
 illustrate
the

different
mergeing
options

Product
 Var1

A 1

B 2

C 3

69
Data
Manipulation

TABLE
4.7

Tables
used
to
 illustrate
the

different
mergeing
options

Product
 Var2

A 1

B 2

D 4

Depending on the merging degree to consider between tables X and Y, there
are four different *
join()
versions to consider:

• full
join()
 (illustrated in Table 4.8) keeps all the cases from X and
Y regardless whether they are present in the other table or not (in case
they are not present, missing values are introduced) [it corresponds to
merge(all=TRUE)];

TABLE
4.8

Illustration
of
the
 ‘full
 join()’
option

Product
 Var1
 Var2

A

B

C

D

1

2

3

1

2

4

• inner
join()
 (illustrated in Table 4.9) only keeps the common cases,
that is, cases that are present in both X and Y [corresponds to
merge(all=FALSE)];

TABLE
4.9

Illustration
of
the
 ‘inner
 join()’
option

Product
 Var1
 Var2

A
 1
 1

B
 2
 2

• left
join()
 (illustrated in Table 4.10) keeps all the cases from X
[corresponds to merge(all.x=TRUE,
 all.y=FALSE)];

70
 Data
Science
 for
Sensory
and
Consumer
Scientists

TABLE
4.10

Illustration
of
the
 ‘left
 join()’
option

Product
 Var1
 Var2

A
 1 1

B
 2 2

C 3

• right
join()
 (illustrated in Table 4.11) keeps all the cases from Y
[corresponds to merge(all.x=FALSE,
 all.y=TRUE)];

TABLE
4.11

Illustration
of
the
 ‘right
 join()’
option

Product
 Var1
 Var2

A

B

D

1

2

1

2

4

• anti
join()
(illustrated in Table 4.12) only keeps the elements from X
that are not present in Y (this is particularly useful if you have a tibble
Y of elements that you would like to remove from X).

TABLE
4.12

Illustration
of
the
 ‘anti
 join()’

option

Product
 Var1

C
 3

The merging procedure requires the users to provide a key, that is, a (set
of) variable(s) used to combine the tables. For each unique element defined
by the key, a line is being created. When needed, rows of a table are being
duplicated. Within the different *
join()
 functions, the key is informed by
the by
parameter, which may contain one or more variables with the same or
different names.
For illustration, let’s use the data set called biscuits consumer test.xlsx,

which contains three tabs:

file
path
 <- here("data",
 "biscuits
consumer
test.xlsx")

excel
sheets(file
path)

71
Data
Manipulation

##
 [1]
 "Biscuits"
 "Time
 Consumption"

##
 [3]
 "Weight"

The three sheets contain the following information, which need to be
combined:

• Biscuits: The consumers’ evaluation of the 10 products and their assess
ment on liking, hunger, etc. at different moments of the test.

• Time Consumption: The amount of cookies and the time required to
evaluate them in each sitting.

• Weight : The weight associated to each cookie.

Let’s start by combining Time Consumption and Weight so that we can
compute the total weight of biscuits eaten by each consumer in each sitting.
In this case, the joining procedure is done by Product
since the weight is only
provided for each product. The total weight eaten (Amount) is then computed
by multiplying the number of cookies eaten (Nb
 biscuits) by Weight:

time
 <- read
xlsx(file
path,
 sheet
 =
 "Time
 Consumption")

weight
 <- read
xlsx(file
path,
 sheet
 =
 "Weight")

consumption
 <- time
 %>%

full
join(weight,
 by
 =
 "Product")
 %>%

mutate(Amount
 =
 `Nb
 biscuits`
 *
 Weight)

As can be seen, the Weight
information stored in the Weight sheet has been
replicated every time each sample has been evaluated by another respondent.
The next step is then to merge this table to Biscuits. In this case,

since both data set contain the full evaluation of the cookies (each consumer
evaluating each product), the joining procedure needs to be done by Judge

and Product
 simultaneously. A quick look at the data shows two important
things:

1. In Biscuits, the consumer names only contain the numbers whereas in
consumption, they also contain a J
 in front of the name: This needs to
be fixed as the names need to be identical to be merged, else they will be
considered separately and missing values will be introduced. In practice,
this will be done by mutating Consumer
and by pasting a J
 in front of
the number using the function paste0().

2. The names that contain the product (Samples
 and Product) and
consumers (Consumer
 and Judge) information are different in both
data sets. We could rename these columns in one data set to match
the other, but instead we will keep the two names and inform it

72
 Data
Science
 for
Sensory
and
Consumer
Scientists

within full
join(). This is done through the by
parameter as follows:
"name
 in
 dataset
 1"
 =
 "name
 in
 dataset
 2"

biscuits
 <- read
xlsx(file
path,
 sheet
 =
 "Biscuits")
 %>%

mutate(Consumer
 =
 str
c("J",
 Consumer))
 %>%

full
join(consumption,

by
 =
 c("Consumer"
 =
 "Judge",
 "Samples"
 =
 "Product"))

The three data sets are now flawlessly joined into one that can be further
manipulated and/or analyzed.
Since dplyr 1.1.0 release, a new option called ‘multiple’ has been introduced.

This option controls the behaviour of *
join()
 functions when one value
from one table matches multiple values from the other table (e.g. our example
joining time and weight). If multiple is set to “All” (by default), the values are
being repeated for each possible association. Yet, depending on the situation,
it is possible to prompt an error, a warning, or to return a table with only one
value (whether it is the first/last match, or any matching value) when values
should not be duplicated.

5

Data
Visualization

One of the main goal of data analysis is to produce results. Although infor
mative, such results are only impactful if they can be well-communicated.
It is hence of utmost importance to present them in a neat way, often
through visuals. In this chapter, two forms of visuals (namely tables and
graphs) are being generated using R. Although some design principles are
being tackled, the aim of this chapter is to mainly focus on the how to?
rather than on the design itself. Although R already comes with tools
for building and printing tables and graphs, we opt for using additional
packages ({flextable} and {gt} for tables, {ggplot2} for graphs) as they
provide more flexibility and possibilities.

5.1
 Introduction

Tables and graphs are the two fundamental vehicles to communicate informa
tion clearly and effectively. They are useful visual elements to summarize
and organize information to show patterns and relationships. Tables and
graphs allow the audience/reader to easily and quickly get a clear idea of the
data findings, make comparisons, get insights from it and ultimately, draft
conclusions without much effort.
The best medium of communication, whether a table, a bar chart, a line

chart, or a radar plot, will highly depend on the type of data, the amount of
data to be displayed (e.g. number of attributes or samples), and the purpose
of the analysis.
Usually, tables are meant to be read, so they are ideal when you have data

that cannot be easily presented by other communication elements or when
the data require more specific attention. However, if you encounter a situation
where you have a very long and/or wide table, (which is common in sensory

DOI: 10.1201/9781003028611-5 73

74
 Data
Science
 for
Sensory
and
Consumer
Scientists

and consumer studies), other vehicle of communication should be considered.
The same remark also applies to graphical visualization, and if you have very
little data to display, tables might be best suited.
Sometimes (if not often) you have to play with your data, and test displaying

it as a table or different types of graphs, before deciding which one suits
best. As practical advice, do not hesitate to ask colleagues for feedback
as having an external point of view often helps. Remember, to select the
best way to communicate your data, you must understand the needs of your
audience, the purpose for which various forms of display can be effectively
used, but also the strengths and weaknesses of each type of data representation
considered.

5.2
 Design
Principles

Regardless of the way you decide to display your data, you must under
stand visual perception and its application in graphical communication. It
is important to spend some time with the design and aesthetic aspects of
your visualization. You should be able to recognize smart design by becoming
familiar with some aspects and examples of great design. Inattention to visual
design such as tables with improper alignment of numbers and excessive use
of lines and fill colors can greatly diminish their effectiveness. In other words,
when used adequately, design should help you communicate your results by
clarifying it and not distract your audience from it.
Some important pre-attentive aspects that you should be aware of will

be presented in this section, but to read more about visual perception
and graphical communication, as well as some examples of great design,
we strongly recommend Storytelling with Data by Cole Nussbaumer Knaflic
(Knaflic, 2015) and Show me the Number: Designing Table and Graphs to
Enlighten by Stephen Few (Few, 2012).
Since a picture is worth a thousand words, let’s demonstrate the difference

between pre-attentive and attentive processing using an example provided by
Stephen Few in his book Show me the Number: Designing Table and Graphs to
Enlighten. First, take a look at the numbers below and determine, as quickly
as you can, how many times the number 5 appears:

98734979027513649782316497802316487415113697412369846321
12346879231648791300023665698774646821397486248797964312
12369874474578962341680021364789613469174312679812439612
12332146987412361789461230502135467980213648126498731203

75
Data
Visualization

This appears to be a tedious task and it most likely took you a few minutes
because it involved attentive
processing. The list of numbers did not have
any hint (also called pre-attentive attributes) that could help you to easily
distinguish the number 5 from the other numbers. Hence, you are forced to
perform a sequential search throughout the whole list.
Let’s do it again, but now using the list of numbers below:

98734979027513649782316497802316487415113697412369846321
12346879231648791300023665698774646821397486248797964312
12369874474578962341680021364789613469174312679812439612
12332146987412361789461230502135467980213648126498731203

This time the task is much easier and you can count the number of times the
number 5 appears much faster. This is because we used the pre-attentive

attribute
 of color to distinguish number 5, distinguishing it from the rest.
This example shows in an easy way the power of pre-attentive attributes
for effective visual communication. As stated by Cole Nussbaumer Knaflic
in her book Storytelling with Data, when we use pre-attentive attributes
strategically, we enable our audience to see what we want them to see before
they even know they are seeing it!
The various pre-attentive attributes that can be used to draw your audi

ence’s attention quickly and create a visual hierarchy of information include
attributes
of
 form, such as line length, line width, orientation, shape, size,
added marks, and enclosure, attributes
 of
 color, which would be hue and
intensity, and also spatial position and motion. Some of the strategies for
a smart design for graphical communication described by Cole Nussbaumer
include:

• Highlight
 the
 important
 stuff
 – use tools such as bold, italics,
underlining, uppercase text, color, and different sizes to draw your
audience’s attention to what you want them to focus on.

• Eliminate
distractions
– while some elements should be highlighted,
unnecessary or irrelevant items or information should be identified to be
cut or de-emphasized to minimize your audience’s distraction. Get rid of
noncritical data or components, things that wouldn’t change the main
message, and summarize when details are not needed. When a piece of
information is necessary to come along with your visualization but is
not really message-impacting, you should de-emphasize it – light gray
usually works well for that purpose.

Now the main stage is set, let’s focus on how to build nice tables and graphs
in R.

76
 Data
Science
 for
Sensory
and
Consumer
Scientists

5.3
 Table
Making

By default, R allows printing matrices or data frames as tables. However,
these tables cannot be customized and are only informative. An example of a
table can be shown here:

##
 Name
 col
 1
 Name
 col
 2
 Name
 col
 3

Name row 1
 1
 3
 5

Name row 2
 2
 4
 6

To extend table customization, dedicated packages are required. For illustra
tion, the sensory data (stored in biscuits sensory profile.xlsx) is used. Before
starting, let’s first load the usual libraries.

library(tidyverse)

library(readxl)

library(here)

Let’s imagine we want to communicate the sensory profiles of the 11 biscuits
in a few attributes including Shiny, Sweet, Sour, Bitter, and Salty. The
first step consists of transforming the data to create such results (see 4.2.3 for
more details).

file
path
 <- here("data","biscuits
sensory
profile.xlsx")

mean
sensory
 <- readxl::read
xlsx(file
path,
 sheet="Data")
 %>%

select(Product,
 Shiny,
 Sweet,
 Sour,
 Bitter,
 Salty)
 %>%

group
by(Product)
 %>%

summarize(across(.cols
 =
 where(is.numeric),.fns
 =
 mean))

5.3.1
 Introduction
 to
{flextable}

Now the correct table has been created, let’s represent it in a neater way
using our first dedicated package called {flextable}. Before going too
deep in designing the table, let’s simply apply the flextable()
 function to
mean
sensory
(after loading {flextable} first):

library(flextable)

flex
table
 <- mean
sensory
 %>%

flextable()

77
Data
Visualization

As you can see, the table is being printed in the Viewer section of RStudio.
Table 5.1 is already better designed, although it is still quite overcrowded that
could benefit from some additional design work to look nicer.

TABLE
5.1

Basic
flextable

A first simple improvement consists of reducing the number of decimals
(colformat
double()), changing the font size (fontsize(), not visible in
our output) and type (bold()
or italic()), and aligning the text (align())
for instance (Table 5.2).

flex
table
design
 <- flex
table
 %>%

colformat
double(digits
 =
 2)
 %>%

fontsize(size
 =
 10,
 part
 =
 "all")
 %>%

bold(bold
 =
 TRUE,
 part
 =
 "header")
 %>%

italic(j =
-1,
 italic
 =
 TRUE,
 part
 =
 "body")
 %>%

align(align
 =
 "center",
 part
 =
 "all")

TABLE
5.2

Flextable
–
aesthetics
 improvements

78
 Data
Science
 for
Sensory
and
Consumer
Scientists

As can be seen, the function names are very intuitive, and so are the options.
In particular, it is interesting to see that most functions allow applying changes
to the entire table (part
 =
 "all"), the header only (part
 =
 "header"), or
the body only (part
 =
 "body"). And even within a part, it is possible to
make a sub-selection by selecting the rows (i) or columns (j) to include or
exclude. Here, all the text in the body is set in italic except for the product
names, hence the option j=-1
(read exclude the first column).
After presenting some of the basic aesthetic options, let’s go one step further

and play around with coloring. For instance, let’s imagine we would change
the header background and text color, and would want to call the audience’s
attention by highlighting the optimized formulation. We can also change
the colour of the outer lines of the table using fp
border()
 from {officer}
(Table 5.3). The following code could be used to do this (results are not being
saved):

flex
table
design
 %>%

bg(bg
 =
 "black",
 part
 =
 "header")
 %>%

color(color
 =
 "white",
 part
 =
 "header")
 %>%

fontsize(size
 =
 13,
 part
 =
 "header",
 i =
1)
 %>%

color(i =
11,
 color
 =
 "orange",
 part
 =
 "body")
 %>%

color(i =
1:10,
 color
 =
 "grey70",
 part
 =
 "body")
 %>%

add
header
lines(values
 =
 "Sensory
 Profile
 of
 11
 biscuits")
 %>%

border
remove()
 %>%

border
outer(border=officer::fp
border(color="darkorange",
 width=2))
 %>%

fix
border
issues()

TABLE
5.3

Flextable
–
coloring
function

79
Data
Visualization

Alternatively, we could decide to be more sober by applying other pre-
attentive attributes (Table 5.4). For instance, the size of the table can be
adjusted and an horizontal line can be added to delimit the optimal sample
from the other. For the latter part, customization of the line can be made
using the function fp
border()
 from the {officer} package.1

library(officer)

flex
table
design
 %>%

hline(i=10,
 border=fp
border(color="grey70",
 style="dashed"))
 %>%

autofit()

TABLE
5.4

Flextable
–
 line
customization

In some situations, applying some design options might mess up the
appearance of your table, in particular its border lines. If that should happen
to you, just apply the function fix
border
issues()
at the end of your code
to solve it.
Lastly, you can use conditional formatting if you want to highlight some

specific values (e.g. values for Sweet
 that are below 20 should be colored in
blue, and above 30 in red), as in the example below (Table 5.5):

color
code
 <- ifelse(mean
sensory$Sweet
 <=
 20,
 "blue",

ifelse(mean
sensory$Sweet
 >=
 30,
 "red",
 "black"))

flex
table
design
 %>%

color(j=~Sweet,
 color=color
code)

More
 information
regarding
the
{officer}
package
are
provided
 in
Section
6.2.2.
1

80
 Data
Science
 for
Sensory
and
Consumer
Scientists

TABLE
5.5

Flextable
–
conditional
formatting

Other illustrations of the use of {flextable} are provided in Section 6.2.2.
For curious readers who want to get a deeper look into all the possibilities

provided by this package, we refer them to the book Using the flextable R
package2
 by David Gohel and to Flextable gallery3
 for inspiration.

5.3.2
 Introdution
 to
{gt}

As an alternative to {flextable}, the {gt} package can also be considered
as it also produces nice-looking tables for reports or presentations. Let’s first
install (if needed) and load the {gt} package.

library(gt)

Focusing now on the consumer study (biscuits consumer test.xlsx), let’s dis
play a table with the average number of biscuits (for each variant) consumers
ate and their corresponding eating time. To do so, we first need to transform
the time columns (expressed as min and s) to a double format and express
them in minutes. Then, we can group them by product to get the average for
the time spent and the number of biscuits eaten.

file
path
 <- here("data","biscuits
consumer
test.xlsx")

2
 https://ardata-fr.github.io/flextable-book/index.html

3
 https://ardata.fr/en/flextable-gallery/

https://www.ardata-fr.github.io
https://www.ardata.fr

81
Data
Visualization

mean
consumer
 <- readxl::read
xlsx(file
path,

sheet="Time
 Consumption")
 %>%

dplyr::select(Product,
 `Time
 (min)`,
 `Nb
 biscuits`)
 %>%

separate(`Time
 (min)`,
 c("Min",
 "Sec"),
 sep="min")
 %>%

mutate(across(c("Min","Sec"),
 as.numeric))
 %>%

mutate(Time
 =
 Min+Sec/60)
 %>%

group
by(Product)
 %>%

summarise(across(c("Time",
 "Nb
 biscuits"),
 mean,
 na.rm
 =
 TRUE))
 %>%

ungroup()

Now that the data are ready, we can display it with some basic adjustments
to make it look nicer (Table 5.6).

TABLE
5.6

gt
Table

mean
consumer
 %>%

gt
 ()
 %>%

cols
align(align
 =
 "center",
 columns
 =
 everything())
 %>%

fmt
number(columns
 =
 c("Time",
 "Nb
 biscuits") ,
decimals
 =
 2)
 %>%

tab
header(title
 =
 md("**Cons.
 time
 and
 nb.
 of
 biscuits
 eaten**"),

subtitle
 =
 md
 ("*Average
 taken
 from
 99
 consumers*"))

Note that we used Markdown to style the title and subtitle by wrapping the
values passed to the title or subtitle with the md()
 function. In Markdown,
text
writes the text in bold and *text*
 in italic.
The {gt} package offers several resources to make beautiful tables. Let’s

illustrate this by focusing on the average number of biscuits eaten only since

82
 Data
Science
 for
Sensory
and
Consumer
Scientists

the average consumption time is very similar across products. The idea is
to use pre-attentive attributes for the audience to clearly see which samples
were the most popular (i.e. the most eaten) and which one were not. Let’s
first prepare the data and calculate the overall time consumption considering
all products.

mean
consumer
2
 <- mean
consumer
 %>%

dplyr::select(- "Time")
 %>%

arrange(desc
 (`Nb
 biscuits`))

Now that the data are ready, we can display using a similar style as before in
which we add some color-code to accentuate products’ consumption. We will
also add a note
to the table that expresses the average time used to consume
the biscuits. So let’s start with creating the table:

note
 <- str
c("Avg.
 consumption
 time:
 ",

round(mean(mean
consumer$Time),2),
 "
 min")

consumption
 <- mean
consumer
2
 %>%

gt
 ()
 %>%

cols
align(align
 =
 "center",
 columns
 =
 everything())
 %>%

fmt
number(columns
 =
 "Nb
 biscuits"
 ,
 decimals
 =
 2)
 %>%

tab
header(title
 =
 md
 ("**Number
 of
 biscuits
 eaten**"),

subtitle
 =
 md
 ("*Average
 taken
 from
 99
 consumers*"))
 %>%

tab
source
note(source
note
 =
 note)

Now, let’s color code the cells based on the average number of biscuits eaten.
To color code, the range of average number of biscuits eaten is required.
Then, we can use the col
numeric()
 function from the {scales} package
to generate the colors of interest (in practice, we provide the color for the
minimum and maximum, and the function generates automatically all the
colors in between to create the gradient).

library(scales)

nb
range
 <- range(mean
consumer
2$`Nb
 biscuits`)

consumption
 %>%

data
color(columns=`Nb
 biscuits`,

colors=col
numeric(c("#FEF0D9","#990000"),

domain=nb
range,
 alpha=0.75))

83
Data
Visualization

Applying this strategy of coloring the number of biscuits eaten according to
their range makes the table nicer and easier to get insights from (Table 5.7).
In our case, we can quickly see the groups of products based on their average
consumption: Product 10 is the most eaten, followed by a group that includes
products 5, 2, and 1. At last, samples 8 and 4 are the least-consumed samples.

TABLE
5.7

gt
Table
–
coloring
function

Although the package {gt} proposed some nice features, additional options
are provided by its extension package called {gtExtras} which provides addi
tional themes, formatting capabilities, opinionated diverging color palette,
extra tools for highlighting values, possibility of embedding bar plots in the
table, etc. For more information, please check gtExtras.4

To illustrate one of the possible use of {gtExtras}, let’s twist the previous
table as following: Since each consumer was provided with a maximum of 10
biscuits, let’s transform the average consumption into percentages. We can
then recreate the previous table in which we also add a bar chart based on
the percentages (Table 5.8):

https://jthomasmock.github.io/gtExtras/
4

https://www.jthomasmock.github.io

84
 Data
Science
 for
Sensory
and
Consumer
Scientists

library(gtExtras)

mean
consumer
2
 %>%

mutate(`Nb
 biscuits
 (%)`
 =
 100*(`Nb
 biscuits`/10))
 %>%

gt
 ()
 %>%

cols
align(align
 =
 "center",
 columns
 =
 everything())
 %>%

fmt
number(columns
 =
 "Nb
 biscuits"
 ,
 decimals=2)
 %>%

tab
header(title
 =
 md
 ("**Number
 of
 biscuits
 eaten**"),

subtitle
 =
 md
 ("*Average
 taken
 from
 99
 consumers*"))
 %>%

tab
source
note(source
note
 =
 note)
 %>%

gt
plt
bar
pct(`Nb
 biscuits
 (%)`,
 scaled=TRUE)

TABLE
5.8

gtExtra
Table

In this section, due to their simplicity and flexibility, we emphasized the
use of {flextable} and {gt} to build beautiful tables for your reports.
However, there are other alternatives including {kable} and {kableExtra},
or {huxtable} for readers that are not yet fully satisfied.

85
Data
Visualization

5.4
 Chart
Making

“A picture is worth 1000 words”. This saying definitely applies to Statistics as
well, since visual representation of data often appears clearer than the values
themselves stored in a table. It is hence no surprise that R is also a powerful
tool for building graphics.
In practice, there are various ways to build graphics in R. In fact, R itself

comes with an engine for building graphs through the plot()
 function. An
extensive description can be found in R Graphics by Murrell (2011). Due to
its philosophy, its simplicity, and the point of view adopted in this book, we
will limit ourselves to graphics built using the {ggplot2} package.

5.4.1
 Philosophy
of
{ggplot2}

{ggplot2} belongs to the {tidyverse} and was developed by H. Wickham
and colleagues at RStudio. It is hence no surprise that a lot of the procedures
that we are learning throughout this book also applies to {ggplot2}. More
generally, building graphics with {ggplot2} fits very well within the pipes
(%>%) system from {magrittr}. In fact, {ggplot2} works with its own piping
system that uses the +
symbol instead of %>%.
In practice, {ggplot2} is a multi-layer graphical tool, and graphics are built

by adding layers to existing graphs. The advantage of such procedure is that
ggplot
objects are not fixed: They can be printed at any time, and can still be
improved by adding other layers if needed. To read more about {gglot2} and
its philosophy, please refer to A Layered Grammar of Graphics5
 by Hadley
Wickham.
Note that since building graphics is limited to one’s imagination, it is not

possible to tackle each and every possibility offered by {ggplot2} (and its
extensions). For that reason, we prefer to focus on how {ggplot2}works, and
by using as illustration throughout the book examples of graphics that are
useful in Sensory and Consumer Science. This should be more than sufficient
to get you started, and should cover 90% of your daily needs. Still, if that
should not be sufficient, we invite you to look into the online documentation

6or to references such as The R Graph Gallery.

5.4.2
 Getting
Started
with
{ggplot2}

To use {ggplot2}, it needs to be loaded. This can either be done directly
using:

library(ggplot2)

5
 http://vita.had.co.nz/papers/layered-grammar.pdf

6
 https://r-graph-gallery.com/

http://www.vita.had.co.nz
https://www.r-graph-gallery.com

86
 Data
Science
 for
Sensory
and
Consumer
Scientists

However, as said before, this step is not always needed since it is part of
{tidyverse}: At the start of this chapter, when we loaded the {tidyverse}
package, we also loaded {ggplot2}.
To illustrate the use of {ggplot2}, both the sensory data

(biscuits sensory profile.xlsx) and the number of biscuits eaten by each
respondents (biscuits consumer test.xlsx) are used. Although these files have
already been loaded in Section 5.3, let’s reload them:

file
path
 <- here("data","biscuits
sensory
profile.xlsx")

p
info
 <- readxl::read
xlsx(file
path,
 sheet="Product
 Info")
 %>%

dplyr::select(-Type)

sensory
 <- readxl::read
xlsx(file
path,
 sheet="Data")
 %>%

inner
join(p
info,
 by="Product")
 %>%

relocate(Protein:Fiber,
 .after=Product)

file
path
 <- here("Data","biscuits
consumer
test.xlsx")

Nbiscuits
 <- readxl::read
xlsx(file
path,
 sheet="Time
 Consumption")
 %>%

mutate(Product
 =
 str
c("P",
 Product))
 %>%

rename(N
 =
 `Nb
 biscuits`)

To initiate a graph, the function ggplot()
 is called. Since the data to be
used are stored in sensory, ggplot()
 is applied on sensory:

p
 <- ggplot(sensory)

Running this line of code generates an empty graphic stored in p. This is
logical since no layers have been added yet. So let’s imagine we want to look
at the overall relationship between Sticky
 and Melting. To evaluate this
relationship, a scatter plot with Sticky
 in the X-axis and Melting
 in the Y-
axis is created (Figure 5.1). To do so, two types of information are required:

• the type of visual (here a scatter point);
• the information regarding the data to plot (what should be represented).

Such information can be provided as such:

p
 +
 geom
point(aes(x=Sticky,
 y=Melting))

This code adds a layer that consists of points (defined by geom
point())
in which the X-axis coordinates are defined by Sticky
 and the Y-axis
coordinates by Melting, as defined through aesthetics (or aes()). This layer
is added to the already existing graph p.

87
Data
Visualization

0

10

20

30

40

10 20 30 40 50

M
el

tin
g

Sticky

FIGURE
5.1

Scatter
plot.

Introduction
to
Aesthetics

In the previous example, one can notice that many points are being printed.
This surprising result is logical since sensory
contains the raw sensory data,
meaning that there are as many points as there are assessors evaluating
products.
Let’s color the points per products to see if we can see any patterns. Since

the color code is specific to the data (more precisely to Product), it should
be informed within the aesthetics by adding colour=Product
within aes()

(Figure 5.2):

p
 +
 geom
point(aes(x=Sticky,
 y=Melting,
 colour=Product))

As you can see, any parameters provided within aes()
may depend on a
variable (e.g. colour
 in the previous example). If for any reasons, a specific
setting should uniformly be applied to all the elements of the graph, then it
should be defined outside aes().
Let’s illustrate this by providing a simple example in which we change the

type of the dots from circle to square using pch
and increase their size using
cex
(Figure 5.3):

p
 +
 geom
point(aes(x=Sticky,
 y=Melting,
 colour=Product),
 pch=15,
 cex=5)

88
 Data
Science
 for
Sensory
and
Consumer
Scientists

40

Product
P0130
P02
P03
P04

10 20 30 40 50
Sticky

M
el

tin
g

20

10

0

P05
P06
P07
P08
P09
P10
POpt

FIGURE
5.2

Scatter
plot
with
emphasis
on
the
color
through
aes().

40

Product
P0130
P02
P03
P04

10 20 30 40 50
Sticky

M
el

tin
g

20

10

0

P05
P06
P07
P08
P09
P10
POpt

FIGURE
5.3

Scatter
plot
with
emphasis
on
the
type
of
dots
through
pch
and
cex.

89
Data
Visualization

Regardless of the products, all the points are now shown as large squares.
Depending on the geom
*()
 function considered, different parameters

should be informed within aes(). Here is a list of the most common aes()

you would use:

• x, y, z, provides the coordinates on the X, Y, Z dimensions, respectively;

• colour/color, fill
controls for the color code7
 that is being applied to
the different elements of a graph;

• group
 makes the distinction between points that belong to different
groups8;

• text, label
prints text/labels on the graph;

• size
 controls the size of the element (this should preferably be used
with numerical variables).

It may not be clear yet on how those aesthetics work, but don’t worry, many
examples illustrating the use of these various types of aesthetics are provided
throughout the book.

Introduction
to
geom_*()
Functions

Since {ggplot2} is a multi-layer graph, let’s add another layer. For example,
the name/code of the panelists associated to each point can be printed.
Such procedure is done through the use of another geom
*()
 function in

geom
text()9
 which requires in aes()
the position of the labels (x
and y) as
well as the label
 itself.
To avoid having the label overlapping with the point, the text is slightly

shifted vertically using nudge
y. For simplicity, let’s rebuild the graph from
the start (Figure 5.4):

ggplot(sensory)+

geom
point(aes(x=Sticky,
 y=Melting,
 colour=Product))+

geom
text(aes(x=Sticky,
 y=Melting,
 label=Judge),
 nudge
y=1)

One interesting remark is that some information required in aes()
is being
repeated across the different geom
*()
used. Such writing can be simplified by

7
 You
can
also
use
alpha
to
control
for
the
transparency
of
the
elements
by
defining
values

between
0
(completely
transparent)
to
1
(no
transparency).

8
 Note
that
colour
and
fill
are
specific
cases
of
groups
as
they
additionally
provide
a
visual

cue
on
the
groups
through
the
color
code.

9
 Try
using
geom
label()
 instead
of
geom
text()
 to
see
the
difference
between
these
two.

90
 Data
Science
 for
Sensory
and
Consumer
Scientists

FI
G

U
R

E

5.

4

S
ca

tt
er

p
lo
t

w
it
h

e
m
p
h
a
si
s

o
n

t
h
e

in
fo
rm

a
ti
o
n

d
is
p
la
y
ed

t
h
ro
u
g
h

g
e
o
m

p
o
i
n
t
(
)

a
n
d

g
e
o
m

t
e
x
t
(
)
.

91
Data
Visualization

providing the aes()
 information that applies to all geom
*()
 to the original
ggplot()
call.10
 The previous code hence can be simplified to:

p

<- ggplot(sensory,
 aes(x=Sticky,
 y=Melting,
 label=Judge))+

geom
point(aes(colour=Product))+

geom
text(nudge
y=1)

With this new code, you’ll notice that:

• x
 and y
 are automatically applied to both geom
point()
 and
geom
text();

• although label
is only relevant for geom
text(), it can still be provided
at the beginning as it will be ignored by geom
point();

• colour
 should only be provided within geom
point()
 else the text
would also be colored according to Product
 (which we do not want
here);

•	 nudge
y
 is defined outside aes()
as it applies to all the text.

Since the graphics look at the relationship between two quantitative vari
ables, let’s add another layer to the previous graph that shows the regression
line (Figure 5.5):

line
p
 <- p +

geom
smooth(method=lm,
 formula="y~x",
 se=FALSE)

This code adds a regression line to the graphic. It is built using the lm()

engine in which the simple linear regression model y∼x
is fitted. This result is
somewhat surprising since we have not run any regression yet, meaning that
geom
smooth()
 is performing this analysis in the background by itself.
In practice, most geom
*()
 function comes with a statistical procedure

attached to it. This means that on the raw data, the geom
*()
 function calls
its stat
*()
 function that runs the corresponding analysis. In the previous
example, geom
smooth()
calls stat
smooth().
Let’s illustrate this concept again using another example: Bar chart that is

applied on the data stored in Nbiscuits. Here, we want to see the distribution
(through bar charts) of the number of biscuits eaten per consumer. A quick
look at the data shows that some respondents ate portions of the cookies. To

Intrinsically,
this
is
what
is
done
with
sensory
which
is
only
mentioned
within
ggplot()

and
 is
not
repeated
across
the
different
geom
*()
 functions.

10

M
el

tin
g

40

30

20

10

0

J01
J01

J01

J01 J01

J01

J01

J01J01

J01

J01

J02

J02

J02

J02

J02

J02

J02

J02

J02

J02

J02

J03
J03

J03 J03

J03J03

J03

J03

J03

J03J03
J04

J04

J04

J04
J04

J04 J04
J04

J04

J04
J04J05

J05

J05

50J 50J

J05 J05
J05

J05

J05

J05

J06

J06

J06

J06

J06

J06
J06J06

J06

J06

J06

J07

J07

J07

J07

J07J07

J07

J07

J07

J07

J07

J08

J08

J08 J08

J08

J08

J08

J08

J08

J08
J08

J09J09

J09

J09

J09

J09

J09

J09

J09

J09

J09

10 20 30 40 50
Sticky

Product
P01

P02

P03

P04

P05

P06

P07

P08

P09

P10

POpt

92
 Data
Science
 for
Sensory
and
Consumer
Scientists

FIGURE
5.5

Scatter
plot
with
regression
 line
through
geom
smooth().

simplify the analysis, let’s consider the total number of entire cookies eaten:
If a respondent has eaten say 3.5 biscuits, it will be rounded down to 3 full
cookies.

Nbiscuits
 <- Nbiscuits
 %>%

mutate(N =
floor(N))

To create such distribution, a first solution consists of counting for each
product how many respondents ate 0 biscuit, 1 biscuit, 2 biscuits, etc. This
is automatically done using geom
bar
 and stat="count". The parameter
position="dodge"
 is used to get the results per biscuit side by side rather
than stacked up vertically (value by default) (Figure 5.6):

bar
p
 <- ggplot(Nbiscuits,
 aes(x=N,
 fill=Product))
 +

geom
bar(stat="count",
 position="dodge")

93
Data
Visualization

co

un
t

0.0 2.5 5.0 7.5 10.0
N

30

Product
P1
P10

20 P2
P3
P4
P5
P6

10 P7
P8
P9

0

FIGURE
5.6

Bar
chart
displaying
the
distribution
using
geom
bar().

In the background, this corresponds to grouping the data by Product,
summarizing the results by counting N, and then performing geom
bar()
 in
which no transformation is required (we set stat="identity")11:

Nbiscuits
 %>%

count(Product,
 N)
 %>%

ggplot(aes(x=N,
 y=n,
 fill=Product))+

geom
bar(stat="identity",
 position="dodge")

As can be seen, these two graphics are identical.

Making
Graphs
Pretty

In the two previous graphs generated (stored in line
p
 and bar
p), some
features can be changed to produce clearer visualizations. Currently, the
background is gray with vertical and horizontal white lines, the legend is

This
code
could
even
be
simplified
by
using
geom
col()
which
corresponds
to
geom
bar()

with
stat="identity"
as
default.

11

94
 Data
Science
 for
Sensory
and
Consumer
Scientists

positioned on the right side, the axis is defined based on the data itself (and
so are the axis titles), there is no title, etc. All these points (and many more)
can be modified, as it will be shown in this section.
Let’s start with a quick win by completely changing the overall appearance

of the graphic. To do so, predefined themes with preset backgrounds (with or
without lines, axis lines, etc.) can be applied. The two themes we use the most
are theme
minimal()
and theme
bw()
(see Complete themes12
 for a complete
list of predefined themes.)
Let’s start with improving bar
p
using theme
minimal()
(Figure 5.7):

bar
p
 <- bar
p+

theme
minimal()

co
un

t

0.0 2.5 5.0 7.5 10.0
N

30

Product
P1

P10
20 P2

P3

P4

P5

P6
10 P7

P8

P9

0

FIGURE
5.7

Bar
chart
with
emphasis
on
the
display
through
theme().

Rather than using predefined themes (or to complement predefined themes),
the different parameters of the graph can be controlled through theme().
Let’s modify the axes by changing their names and by applying more logical

breaks. For instance, the limits of the x-axis can be extended to −1 and 11 to
ensure that all the histograms are visible, else R removes some and returns a
warning: Removed 10 rows containing missing values (Figure 5.8).

hhttps://ggplot2.tidyverse.org/reference/ggtheme.html
12

hhttps://www.ggplot2.tidyverse.org

N
um

be
r o

f R
es

po
nd

en
ts

30

10

20

Product
P1

P10

P2

P3

P4

P5

P6

P7

P8

P9

0

None 1 2 3 4 5 6 7 8 9 All of them
Number of Biscuits eaten

95
Data
Visualization

bar
p
 <- bar p
 +

scale
x
continuous(name="Number
 of
 Biscuits
 eaten",

breaks=seq(0,10,1),

labels=c("None",
 1:9,
 "All
 of
 them"),

limits=c(-1,11))+

ylab("Number
 of
 Respondents")

FIGURE
5.8

Bar
chart
with
emphasis
on
the
display
through
scale
x
continuous()
and
ylab().

Last but not least, a title is being added to the graph using ggtitle()

(Figure 5.9):

bar
p
 <- bar p
 +

ggtitle("Distribution
 of
 the
 number
 of
 biscuits
 eaten",

"(Results
 are
 split
 per
 biscuit
 type)")

Let’s apply a similar transformation to line
p. Here, we are aiming a more
realistic plot using Cartesian coordinates, a nice theme, no legend, and a title
to the graph (Figure 5.10).

0

10

20

30

None 1 2 3 4 5 6 7 8 9 All of them
Number of Biscuits eaten

N
um

be
r o

f R
es

po
nd

en
ts

Product
P1

P10

P2

P3

P4

P5

P6

P7

P8

P9

(Results are split per biscuit type)
Distribution of the number of biscuits eaten

Relationship between Melting and Sticky
Stickier biscuits tend to be less melting.

M
el

tin
g

50

40

30

20

10

0

J01
J01

J01

J01 J01

J01

J01

J01J01

J01
J01

J02

J02

J02
J02

J02

J02

J02
J02

J02

J02

J02

J03
J03

J03 J03
J03J03

J03

J03

J03

J03J03
J04

J04

J04

J04 J04

J04 J04
J04

J04

J04
J04J05

J05

J05
50J 50J

J05 J05J05

J05

J05

J05

J06

J06
J06

J06

J06

J06
J06J06

J06
J06

J06
J07

J07

J07

J07

J07J07
J07

J07
J07

J07

J07

J08

J08

J08 J08

J08

J08

J08
J08

J08

J08J08

J09J09

J09
J09

J09

J09

J09

J09

J09

J09

J09

0 10 20 30 40 50
Sticky

96
 Data
Science
 for
Sensory
and
Consumer
Scientists

FIGURE
5.9

Bar
chart
with
emphasis
on
the
display
through
ggtitle().

FIGURE
5.10

Scatter
 plot
 with
 emphasis
 on
 the
 display
 through
 theme(),
 scale
*
continuous(),

coord
fixed(),
ggtitle()
and
guides().

97
Data
Visualization

line
p
 <- line
p
 +

theme
bw()+

scale
x
continuous(breaks=seq(0,50,10),
 limits=c(0,60))+

scale
y
continuous(breaks=seq(0,50,10),
 limits=c(0,60))+

coord
fixed()+

ggtitle("Relationship
 between
 Melting
 and
 Sticky",

"Stickier
 biscuits
 tend
 to
 be
 less
 melting.")+

guides(colour="none")

5.4.3
 Common
 Charts

You have now an overview of the basics of {ggplot2} and its philosophy.
You’ll find plenty of other examples throughout this book to help you develop
your skills in building graphics in R.
Since making an exhaustive list of plots that are relevant in sensory and

consumer science is out of the scope of this book, it is not going to be further
developed here. Yet, here is a summary of the geom
*()
 that are commonly
used:

• Scatter points:
–
 geom
point(): create a scatter point (see example Section 5.4.2)

• Line charts:
–
 geom
line(): create a line that connects points;

–
 geom
smooth(): add a regression line (see example Section 5.4.2);

–
 geom
hline()
 (resp. geom
vline()): add a horizontal (resp. ver
tical) line using yintercept
(resp. xintercept);

–
 geom
segment(): draw a segment going from (x;y) to
(xend;yend).13

• Bar charts:
–
 geom
col()
 and geom
bar(): produce bar charts by either using

the raw values or by computing the frequencies first (see example
Section 5.4.2);

–
 geom
histogram()
 and geom
freqpoly(): work in a similar way
as geom
bar()
 except that it divides the x axis into bins before
counting the number of observation in each bin and either represent
it as bars (geom
histogram) or lines (geom
freqpoly()).

• Distribution:
–
 geom
density(): build the density plot;

–
 geom
boxplot(): build the well-known boxplot;

This
 function
 can
 also
 be
 used
 to
 draw
 arrows
 through
 the
 parameter
 arrow
 and
 the

function
of
that
same
name
arrow().

13

98
 Data
Science
 for
Sensory
and
Consumer
Scientists

–
 geom
violin(): application of geom
density()
 displayed in
geom
boxplot()
 fashion.

• Text and Labels:
–
 geom
text
 and geom
label: add text to the graph (see example

Section 5.4.2);

–
 the package {ggrepel} provides alternative functions

(geom text repel() and geom label repel()) that reposition

labels to avoid overlapping (repel stands for repulsive).

• Rectangles14:
–
 geom
tile(), geom
rect: create area either using its center point

(geom
tile()) or its four corner (geom
rect()) defined by xmin,
xmax, ymin, and ymax;

–
 geom
raster(): high-performance alternative to geom
tile()/
geom
rect
where all the tiles have the same size.

Besides geom
*(), a lot of graphical parameters can further be controlled.
This includes of course the theme()
and the aes():

• For predefined themes, see example;

• axis
parameters including their title (axis.title), text (axis.text),
ticks (axis.ticks), line (axis.line), and all sublevels.

• legend
parameters including their position (legend.position), direc
tion (legend.direction), text (legend.text, legend.title), design
of the box (legend.box, legend.background), etc.

• panel
 parameters including their background (panel.background),
grid lines (panel.grid), border (panel.border), etc.

• plot
parameters including different titles (plot.title, plot.subtitle,
plot.caption), background (plot.backgorund), etc.

Most of these parameters can be controlled at different levels of granularity:

• overall (e.g. panel.grid);
• more detailed (e.g. panel.grid.major
and panel.grid.minor);

• most detailed (e.g. panel.grid.major.x, panel.grid.major.y, etc).

Depending on whether the option to modify is some text, a line, or a
rectangle, element
text(), element
line(), or element
rect()
 would

14
 In
sensory
and
consumer
science,
this
will
often
be
used
for
building
surface
plot
responses

(e.g.
 external
preference
map),
and
hence
 is
associated
 to
geom
contour()
 to
 show
 the

different
 lines.

Relationship between Melting and Sticky
Stickier biscuits tend to be less melting.

50

40

30

20

10

0

0 10 20 30 40 50

Sticky

J01
J01

J01

J01 J01

J01

J01

J01J01

J01
J01

J02

J02

J02
J02

J02

J02

J02
J02

J02

J02

J02

J03
J03

J03 J03
J03J03

J03

J03

J03

J03J03
J04

J04

J04

J04 J04

J04 J04
J04

J04

J04
J04J05

J05

J05
50J 50J

J05 J05J05

J05

J05

J05

J06

J06
J06

J06

J06

J06
J06J06

J06
J06

J06
J07

J07

J07

J07

J07J07
J07

J07
J07

J07

J07

J08

J08

J08 J08

J08

J08

J08
J08

J08

J08J08

J09J09

J09
J09

J09

J09

J09

J09

J09

J09

J09

M
el

tin
g

99
Data
Visualization

be, respectively, used to control them. These functions provide general
(e.g. color) as well as specific options (e.g. family
 and face
 for text,
linetype
 for lines) to each type.
Note that if some elements should be left blank, element
blank()
can be

used regardless of the nature of the element.
Let’s illustrate these concepts using our previous graph stored in line
p.

Here, the goal is to remove the grid line, to replace the x and y axis lines by
arrows, and to reposition the axis titles to the far end of the axis so that it is
next to the arrow head (Figure 5.11).

line p
 +

theme(panel.grid=element
blank(),

panel.border=element
blank(),

axis.line=element
line(arrow
 =
 arrow(ends
 =
 "last",

type
 =
 "closed")),

axis.title=element
text(hjust=1))

FIGURE
5.11

Scatter
plot
with
emphasis
on
the
display
through
theme().

Similarly to the theme, aesthetics can also be adjusted. In previous exam
ples, the x-axis in bar
p
was adjusted by setting limits, providing breaks, and
replacing the values by certain labels using scale
x
continuous(). Most

100
 Data
Science
 for
Sensory
and
Consumer
Scientists

aesthetic parameters can be controlled by equivalent functions for which the
name is using the following structure scale
nameaes
typescale, where:

• nameaes corresponds to any aesthetics including x, y, colour
 or fill,
alpha, etc.

• typescale corresponds to the type of scale, where it is continuous,
discrete, or manual
(among others).

Such functions fully control how the corresponding aesthetic should behave,
by providing the correspondence between a variable level and (say) its color.
In the graph saved in bar
p, remember that we filled in the bar chart using
the product information. Let’s imagine that we are particularly interested in
biscuit P3
and want to compare it to the rest of the biscuits. We propose to
make P3
stand out by filling it in orange and setting all the other biscuits in
the same gray tone (Figure 5.12).
Such procedure can be done using scale
fill
manual().

bar p
 +

scale
fill
manual(values=c("P1"="gray50",
 "P2"="gray50",

"P3"="darkorange",
 "P4"="gray50",

"P5"="gray50",
 "P6"="gray50",

"P7"="gray50",
 "P8"="gray50",

"P9"="gray50",
 "P10"="gray50"))

When multiple aesthetics are being used, the legend might become
overwhelming or redundant. It is possible to turn off some of these visuals
within the scale
*()
 functions or by using guides()
 and by setting
nameaes=’none’
as shown in the line
p
example.

5.4.4
 Miscealleneous

Structuring
the
Axis

By default, ggplot()
 generates plot that fits the data and that fits within
the output screen. This means that some graphics might not be perfectly
representing the data due to some distortion. In a previous example (line
p),
the dimensions were made comparable through coord
fixed().
Other transformations can be performed. For instance, the graphic can be

transposed using coord
flip()
as in the following example (Figure 5.13):

bar
p
 +
 coord
flip()

30

Distribution of the number of biscuits eaten

(Results are split per biscuit type)

Product
P1

None 1 2 3 4 5 6 7 8 9 All of them
Number of Biscuits Eaten

N
um

be
r o

f R
es

po
nd

en
ts

20

10

0

P10

P2

P3

P4

P5

P6

P7

P8

P9

(Results are split per biscuit type)
Distribution of the number of biscuits eaten

9
All of them

Product
P1

N
um

be
r o

f B
is

cu
its

 e
at

en 8

7

6

5

4

3

2

1

P10

P2

P3

P4

P5

P6

P7

P8

P9

None

0 	 10 20 30
Number of Respondents

101
Data
Visualization

FIGURE
5.12

Bar
chart
with
emphasis
on
the
display
through
scale
fill
manual().

FIGURE
5.13

Bar
chart
with
emphasis
on
the
display
through
coord
flip().

102
 Data
Science
 for
Sensory
and
Consumer
Scientists

Summary
Through
an
Example:
Spider
Plots

To conclude this section, and summarize most concepts presented in this
chapter, let’s introduce the well-known spider plots. The use of such plots are
quite polarizing among analysts and the reason of this choice here is purely
educational, as 1.
there are no predefined options in {ggplot2} that provide
such charts and 2.
they present some interesting challenges.
Let’s start with deconstructing a spider-plot: a spider plot is a line chart

presented in a circular way. So let’s start with building a line chart of our
sensory profiles (the means are considered here). For more clarity, only two of
the samples (P03
and POpt) are represented.

sensory
mean
 <- sensory
 %>%

pivot
longer(Shiny:Melting,

names
to="Variables",
 values
to="Scores")
 %>%

mutate(Variables
 =
 fct
inorder(Variables))
 %>%

group
by(Product,
 Variables)
 %>%

summarize(Mean
 =
 mean(Scores))
 %>%

ungroup()
 %>%

filter(Product
 %in%
 c("P03",
 "POpt"))

spider
line
 <- sensory
mean
 %>%

ggplot(aes(x=Variables,
 y=Mean,
 colour=Product,
 linetype=Product))+

geom
point(pch=20,
 cex=3)+

geom
line(aes(group=Product),
 lwd=1)+

theme
minimal()+

xlab("")+

scale
y
continuous(name="",
 labels=NULL,
 limits=c(0,50))+

scale
colour
manual(values=c("P03"="darkorange",
 "POpt"="grey50"))+

scale
linetype
manual(values=c("P03"="solid",
 "POpt"="dashed"))

Next step is to represent this line chart in a circular way (Figure 5.14). This
can be done using coord
polar():

spider
line
 +
 coord
polar()

This already looks like a spider plot! However, a closer look at it highlights
a point that needs improvement: There is no connection between the last
attribute (Melting) and the first one (Shiny).

Shiny
External color intensity

Color evenness
Qty of inclusions

Surface defects

Print quality

Thickness

Color contrast

Overall odor intensity

Fatty odor

Roasted odor

Cereal flavor

RawDough flavor
Fatty flavor

Dairy flavor
Roasted flavor

Overall flavor persistence
Salty

Sweet
Sour

Bitter

Astringent

Warming

Initial hardness

Brittle

Crunchy

Fatty in mouth

Light

Dry in mouth
Qty of inclusions in mouth

Sticky

Product

P03

POpt

Melting

103
Data
Visualization

FIGURE
5.14

Line
charts
using
coord
polar().

To counter this, the following two-fold solution is proposed:

1. Associate each attribute to its position (e.g. Shiny
 is 1, External

color
 intensity
 is 2, until Melting
which would be 32);

2. Duplicate the last attribute (Melting) and associate it to position 0.

var
 <- levels(sensory
mean$Variables)

sensory
mean
pos
 <- tibble(Variables
 =
 c(var[length(var)],
 var),

Position
 =
 0:length(var))
 %>%

full
join(sensory
mean,
 var
pos,
 by="Variables")

The previous graph is then rebuilt by forcing the position of the attributes
on the x-axis using Position
 (Variables
 is used for the labels) (Figure
5.15). Here position 0 is voluntarily omitted (breaks
 =
 1:length(var)
and
labels
 =
 var), meaning that only the labels going from 1 to the last variable
are being showed. However, the x-axis is forced to go from 0 to the number
of attributes (limits
 =
 c(0,
 length(var))).

Shiny
External color intensity

Color evenness
Qty of inclusions

Surface defects

Print quality

Thickness

Color contrast

Overall odor intensity

Fatty odor

Roasted odor

Cereal flavor
RawDough flavor

Fatty flavor
Dairy flavor

Roasted flavor
Overall flavor persistence

Salty
Sweet

Sour

Bitter

Astringent

Warming

Initial hardness

Brittle

Crunchy

Fatty in mouth

Light
Dry in mouth

Qty of inclusions in mouth
StickyMelting

P03 POpt

104
 Data
Science
 for
Sensory
and
Consumer
Scientists

spider
plot
 <- sensory
mean
pos
 %>%

ggplot(aes(x=Position,
 y=Mean,
 colour=Product,
 linetype=Product))+

geom
point(pch=20,
 cex=2)+

geom
line(aes(group=Product),
 lwd=1)+

theme
minimal()+

scale
x
continuous(name="",
 breaks=1:length(var),

labels=var,
 limits=c(0,length(var)))+

scale
y
continuous(name="",
 labels=NULL,
 limits=c(0,50))+

scale
colour
manual(values=c("P03"="darkorange",
 "POpt"="grey50"))+

scale
linetype
manual(values=c("P03"="solid",
 "POpt"="dashed"))+

coord
polar()+

theme(legend.position
 =
 "bottom",
 legend.title
 =
 element
blank())

FIGURE
5.15

Spider
plot.

By using this trick, the connection between the first and last attributes is
established.

Combining
Plots

When multiple plots should be generated using the same pattern on subset
of data, it is possible to generate them automatically using facet
wrap()

105
Data
Visualization

or facet
grid(). The difference between these two functions rely on the
number of variables to use for the split: In facet
wrap(), the graphics are
vectorized, meaning that each element of the split is represented independently.
For facet
grid(), however, the graphics is represented in a matrix, meaning
that two blocks of split variables are required, one for the columns and one
for the rows.
An example of facet
wrap()
 is provided in Section 10.2.2.
For these two functions, the parameter scales
is particularly interesting as

it allows each separate graph to use its own axis scales (free
or individually
using free
x/free
y) or not (fixed).
To go further, consider also the function facet
trelliscope()
 from the

{trelliscopejs} package. This function generates the same type of graphs as
facet
wrap()
or facet
grid()
with some powerful twists. After generating
the plots, they are still editable thanks to an interactive menu that controls for
the Grid, Labels, Filter, and Sort. For example, the number of plots to show per
row/column can be adjusted and tables with descriptive statistics (e.g. mean,
minimum, maximum) can be added under each graph, etc. Moreover, readers
that are familiar with the interactivity of {plotly} can make great use of
it through the as
plotly
 =
 TRUE
parameter, which is then applied to each
individual graph!
Such procedure is very handy to produce multiple graphs all at once. . .

when the data allow it. When multiple plots are being generated separately
(using different data set or producing different types of plots), it can still be
relevant to combine them all in one. To perform such collage, the package
{patchwork} becomes handy.
{patchwork} is a package that allows combining ggplot()
 graphs using

mathematical operations. To add two elements next to each others, the + sign
is used. To add two elements on top of each others, they should be separated
using /. This operation can be combined with ()
to generate fancier collage.
Let’s illustrate this by creating a plot with spider
plot
 on the left side

and bar
p
on the right side on top of line
p.

library(patchwork)

p
 <- spider
plot
 +
 (bar
p
 /
 line
p)

A general title can be added, as well as tag levels (handy for publications!),
using plot
annotation()
(Figure 5.16).

p
 +
 plot
annotation(title
 =
 "Example
 of
 ’ggplots’
 I’ve
 learned
 today",

tag
levels=’a’)

106
 Data
Science
 for
Sensory
and
Consumer
Scientists

ex

a
m
p
le
s.

5.

16 p
lo
t

FI

G
U

R
E

M
u
lt
ip
le

Data
Visualization
 107

5.4.5
 Few
Additional
Tips
and
Tricks

Combining
Data
Transformation
and
{ggplot2}
Grammar

Both {tidyverse} and {ggplot2} use pipes to combine lines of code or layers.
However, the pipes themselves are defined differently since {maggritr} uses
%>%
 whereas {ggplot2} uses +. It is, however, possible to combine both
systems one after each other, but just remember to switch from %>%
 to +

as you transition from data transformation/tidying to building your graph
(see Chapter 4).

Ordering
Elements
in
a
Plot

When building a graph using categorical variables, {ggplot2} tends to
represent the different levels in alphabetical order, especially if the variable
is defined as character. Such situations can make the graph more difficult
to read, as the categories may not be presented in a logical order (e.g. fall,
spring, summer, and winter instead of spring, summer, fall, and winter). To
ensure that the elements are in the right order, either consider transforming
the variables into factors (using factor()
 by indicating the levels order of
your choice or through fct
inorder()
to keep the order from the file, Chapter
4) or by using a position variable as in the spider
plot
example. The former
option also works for ordering elements in the legend.
If the order of the elements should be changed within the charts (simple

changes such as reverting the order), it can be done directly within the
geom
*()
 function. This is, for instance, the case with the stacked bar
chart, in which the order may be reverted using the parameter position
 =

position
fill(reverse
 =
 TRUE)
(suggesting here that the split was defined
through fill
 in aes()).

Fixing
Overlapping
Axis
Text

When ggplot()
are being built using categorical variables, the labels used on
the x-axis are often overlapping (some of the labels being then unreadable).
A first good/easy solution consists of reducing the size of the label and/or
shortening them as long as it does not affect its readability. However, this
might not always be possible or sufficient, and other adjustments are required.
Let’s use spider
line
as illustration to show three possible solutions.
The first option consists of using theme()
and rotating the labels (here at

45 degrees, but use 90 degrees to get the names vertically) (Figure 5.17). Note
that by default, ggplot()
 centers the labels: to avoid having them crossing
the x-axis line, they are being left-centered using hjust=1:

spider
line
 +

theme(axis.text.x
 =
 element
text(angle=45,
 hjust=1))

108

Shin
y

Exte
rna

l c
olo

r in
ten

sit
y

Colo
r e

ve
nn

es
s

Qty
of

inc
lus

ion
s

Surf
ac

e d
efe

cts

Prin
t q

ua
lity

Thic
kn

es
s

Colo
r c

on
tra

st

Ove
ral

l o
do

r in
ten

sit
y

Fatt
y o

do
r

Roa
ste

d o
do

r

Cere
al

fla
vo

r

Raw
Dou

gh
 fla

vo
r

Fatt
y f

lav
or

Dair
y f

lav
or

Roa
ste

d f
lav

or

Ove
ral

l fl
av

or
pe

rsi
ste

nc
e
Salt

y
Swee

t
Sou

r
Bitte

r

Astr
ing

en
t

Warm
ing

Ini
tia

l h
ard

ne
ss
Britt

le

Crun
ch

y

Fatt
y i

n m
ou

th
Lig

ht

Dry
in

mou
th

Qty
of

inc
lus

ion
s i

n m
ou

th
Stic

ky

Melt
ing

Product
P03

POpt

Data
Science
 for
Sensory
and
Consumer
Scientists

FIGURE
5.17

Spider
plot
fixing
overlapping
through
theme
 ().

A second option consists in dodging one every two labels along the X-axis
(Figure 5.18). This option works fine, especially when the labels are not too
long. In our example, unfortunately, some overlap can still be seen. Note that
this option is accessible within scale
x
discrete(), but not within theme()

as we would expect:

spider
line
 +

scale
x
discrete(guide
 =
 guide
axis(n.dodge
 =
 2))

The last option consists of transposing the graph using coord
flip(). This
solution works well since labels on the y-axis are written horizontally. However,
this option is not always suitable due to conventions: If it is recommended for
bar charts, it may not be for line charts, for instance.

Exporting
Graphs

There are various ways to save or export ggplot()
charts. To save these plots
to your computer in various formats (e.g. png, pdf, etc.), ggsave()
 is used.
By default, ggsave()
exports the last plot built and saves it in the location
defined by filename, in the format defined by device
(additional information
regarding the width, height, dpi, etc. can also be configured).

Data
Visualization
 109

d
i
s
c
r
e
t
e
(
)
.

x

s
c
a
l
e

th

ro
u
g
h

v
er
la
p
p
in
g

o

x
in
g

5.
18
fi

FI
G

U
R

E
 p
lo
t

S
p
id
er

110
 Data
Science
 for
Sensory
and
Consumer
Scientists

For instance, the spiderplot
generated earlier15
 can be saved as follows:

ggsave(filename="spiderplot.png",
 plot=spiderplot,
 device="png")

As an alternative, ggplot()
graphs can also be exported in PowerPoint or
Word through the {rvg} package (see Section 6.2.2).

Additional
Libraries

{ggplot2} is a very powerful tool for data visualization. By default, it offers a
very large variety of possibilities, which should cover most situations that you
would encounter. If not, a quick internet search will most likely find extensions
in alternative packages that will provide you with solutions.
To help you further, here is a nonexhaustive list of relevant packages:

• {ggcharts}: This package provides nice and clear alternatives to
some {ggplot2} options through simple functions in one line of
code, including bar
chart(), line
chart(), lollipop
chart(), and
dumbbell
chart()
 just to name a few.

• {graffify}: This package extends {ggplot2} by providing nice and easy
functions to help data visualization and linear models for ANOVA. For
example, it generates one function bar chart with error bars through
plot
scatterbar
sd()
 or simultaneous box-plot and scatter plot
through plot
scatterbox().

• {factoextra}: Although {FactoMineR} generates its graphs in
{ggplot2} and in base R, {factoextra} is a great extension as it is
easy to use and provides a wide variety of options to customize your
plots.

• {ggcorrplot}: There are many packages that propose to visualize
graphically tables of correlations. However, we particularly like this one
for its simplicity.

• {ggwordcloud}: It is a great package for building word-clouds as it
provides a large degree of control. With this package, the words can
either be positioned randomly or by matching a predefined shape, etc.
But more interestingly, words can also be positioned semi-randomly,
hence giving more interpretation power to the final results (for more
information, please visit (see ggwordcloud).16

15
 Since
spiderplot
 is
not
the
 last
plot
generated,
 it
needs
to
be
defined
 in
plot.

16
 https://lepennec.github.io/ggwordcloud/

https://www.lepennec.github.io

111
Data
Visualization

• {ggraph}: This package provides neat solutions to build network visual
ization in {ggplot2}.

• {performance}: This package provides predefined graphs that allow you
to evaluate the quality of your models through the single check
model()

function. See also {ggside} if you want to print on the margin of
your regression plot the marginal distributions (or density plot) of your
different categories.

To learn more about {ggplot2} basics, we recommend two additional
sources of information:

• {esquisse}: After loading the package, run the function esquisser().
This command opens a window in which you can select your data set
(the data set should be available within you R environment), the type
of plot to build, and all the relevant information to build your plot
(which variable to be used as X-axis, Y-axis, etc.) through an user-
friendly interface. Ultimately, the graph is being generated, but more
importantly, the code used to generate the plot is provided. This is hence
an educational tool to learn build graphs with {ggplot2}.

• from Data to Viz 17
 provides a wide gallery of graphics sorted by the
type of data that you have. Each graphic proposed is illustrated with
an example provided in R (often in {ggplot2}) and in Python. This
website is hence inspirational and educational both at the same time!

https://www.data-to-viz.com/
17

https://www.data-to-viz.com

https://taylorandfrancis.com

6

Automated
Reporting

Learning a programming language is not only useful for the freedom it
provides, it also increases largely the speed of the analysis thanks to the
reusability of the code. When many projects are built using the same
base (e.g. similar questionnaires), the same analyses are often performed,
also leading to similar reports. Automating the analysis process is simple
by applying the same code to different data sets. But what about the
reports? Should a new report be built manually for each project? In this
section, we will show you how to build your own report directly from
your code next to your analyses (or integrate your analysis within your
reporting process). Such procedure has three main benefits: 1) build a
new standardized report automatically for each new data set analyzed, 2)
mass-produce slides automatically, and 3) save time for the interpretation
of the results and the storytelling.

6.1
 What
and
Why
Automated
Reporting?

Effective communication of results is among the essential duties of sensory
scientists. . . and so is data collection, data preparation, data analysis, etc.
Worst, the sometimes tedious mechanics of report production together with
the sheer volume of data that many scientists must process combine to make
reporting design and nice storytelling an afterthought in too many cases.
Although this should preferably not be happening, it is necessary sometimes
as presentation deadlines approach and time becomes limited. Add to this
work-load some last-minute changes due to either a change in the data, in the
analysis, or maybe an error (e.g. copy/paste the wrong column, etc.) you have
just detected. . . how can we be sure that the latest version of the report is fully
up-to-date and that all the results/conclusions are correct? As the statistical
software (e.g. R) is often separated from the reporting tool (e.g. Microsoft
Office), it is easy to miss to transfer updated outputs (e.g. values, tables,
figures, etc.) to the report, hence creating inconsistencies.

DOI: 10.1201/9781003028611-6 113

114
 Data
Science
 for
Sensory
and
Consumer
Scientists

Let’s consider another scenario, in which all the preliminary steps have been
successfully done. After a week of analyses and reporting, you present your
report to your manager or clients and they come with a question such as: “Can
we deep-dive into the results by looking at a particular group of consumers
(e.g. gender split, or cluster split)?” Do you feel like going through the entire
process again?
How would you feel if we would tell you that there is a way to build your

report while running the analysis, by using the same script file? This means
that in few clicks, say after updating the data to analyze (e.g. filter to the
target group of consumers only), your report gets automatically regenerated
with all the newly updated results. Such solution seems ideal since it increases
efficiency while reducing errors due to manual processing of results. More
importantly, this gain in time and effort allows you designing nicer slides and
building a better story.

6.2
 Integrating
Reports
within
Analysis
Scripts

In this section, let’s integrate our report building process within our data
analysis. By doing so, we do not focus on building a story yet. Instead, we
improve our way of working by exporting directly all the statistical outputs
that could1
 be useful for our future storytelling. By doing so, we increase
efficiency (especially if code can be reused for other studies) by killing two birds
with one stone: We simultaneously run our analysis, create usable content for
our final presentation, while reducing errors due to manual processing.
Since Microsoft Office is often the tool used for sharing results, we will focus

our attention in exporting results to Excel, PowerPoint, and Word.
As usual, let’s start by loading the general package that we would need for

our analyses (more specific packages being mentioned later.)

library(tidyverse)

library(here)

library(readxl)

Note that in this chapter on automated reporting, some results (tables and
figures) that are being created in one of the section may be reused in subsequent
sections. In case you do not read this chapter linearly, you might get errors as

1
 We
 say
 could
 as
we
are
 in
a
process
of
mass-exportation
of
 results,
most
of
 them
being

used
 for
building
the
story
although
they
may
not
be
kept
 in
the
final
deck.

Automated
Reporting
 115

you might be calling objects that do not exist yet in your environment. If that
should be the case, read through the previous sections to find the code where
these elements are being generated, run it, and resume your read.

6.2.1
 Excel

Although Excel is not our preferred tool for automated reporting, it is still one
of the major ways to access and share data. Most data collection software offer
the possibility to export data and results in Excel, while most data analysis
software accept Excel format as inputs. With the large use of Excel, it is
no surprise that many colleagues and/or clients like to share data and results
using spreadsheets. It is even less a surprise that R provides multiple solutions
to import/export results from/to Excel.
For importing Excel files, we have already presented the package {readxl}

among others (see Section 8.4). For exporting results, two complementary
packages (yet again, among others!) in terms of ease of use and flexibility in
the outcome are proposed: {writexl} and {openxlsx}.
As its name suggests, {writexl} is dedicated to exporting tables to Excel

through the write
xlsx()
 function. Its use is very simple as it only takes as
inputs the table (or list of tables)2
 to export to the file specified in the path

parameter.
Let’s illustrate this by using our biscuits sensory profile.xlsx file: Let’s

imagine that we would like to reduce our data set by only considering products
that are high in Protein:

file
path
 <- file.path("data",
 "biscuits
sensory
profile.xlsx")

product
info
 <- readxl::read
xlsx(path=file
path,
 sheet="Product
 Info",

range="A1:D12",
 col
names=TRUE)

high
prot
 <- product
info
 %>%

filter(Protein
 %in%
 "High")
 %>%

pull(Product)

high
prot
data
 <- readxl::read
xlsx(path=file
path,
 sheet="Data")
 %>%

filter(Product
 %in%
 high
prot)

We then export this data into an excel sheet called export.xlsx that will be
contained in our folder called output3:

2
 List
of
tables
will
generate
multiple
sheets
within
the
same
spreadsheet,
one
table
being

placed
 in
each
sheet.

3
 If
 the
output
 folder
does
not
exist,
 this
code
will
 return
an
error
 so
make
 sure
 to
create

one.

116
 Data
Science
 for
Sensory
and
Consumer
Scientists

library(writexl)

write
xlsx(high
prot
data,
 path="output/export.xlsx",
 col
names=TRUE)

The export of tables using {writexl} is intuitive and easy, yet simplistic as
it does not allow formatting the tables (except for some minor possibilities for
the header) nor does it allow exporting multiple tables within the same sheet.
For more advanced exporting options, the use of {openxlsx} is preferred as
it allows more flexibility in structuring and formatting the Excel output.
With {openxlsx}, the procedure starts with creating a workbook object

(e.g. wb) using createWorkbook(). We can add worksheets to wb
 through
addWorksheet().

library(openxlsx)

wb
 <- openxlsx::createWorkbook()

addWorksheet(wb,
 sheetName
 =
 "Mean",
 gridLines
 =
 FALSE)

Note that with addWorksheet(), it is possible to control the appearance of
the worksheet:

• show/hide grid lines using gridLines;
• color the sheet using tabColour;
• change the zoom on the sheet through zoom;

• show/hide the tab using visible;
• format the worksheet by specifying its size (paperSize) and orientation

(orientation).

On a given worksheet, any table can be exported using writeData()
 or
writeDataTable(), which controls where to write the table through the
startRow
and startCol
options.
Let’s imagine we want to compute the sensory profiles of the products,

and we want to export that into Excel. Rather than simply exporting the
results, we want to customize the output by applying the Excel style named
TabelStyleLight9 :

#
 Creating
 the
 Sensory
 Profiles
 with
 some
 Product
 Information

p
info
 <- readxl::read
xlsx(file
path,
 sheet
 =
 "Product
 Info")
 %>%

dplyr::select(-Type)

sensory
 <- readxl::read
xlsx(file
path,
 sheet="Data")
 %>%

117
Automated
Reporting

inner
join(p
info,
 by="Product")
 %>%

relocate(Protein:Fiber,
 .after=Product)

senso
mean
 <- sensory
 %>%

pivot
longer(Shiny:Melting,

names
to="Attribute",
 values
to="Score")
 %>%

dplyr::select(-Judge)
 %>%

pivot
wider(names
from=Attribute,
 values
from=Score,

values
fn=mean)

#
 Add
 the
 table
 to
 the
 Excel
 Sheet

writeDataTable(wb,
 sheet="Mean",
 x=senso
mean,

startCol=1,
 startRow=1,

colNames=TRUE,
 rowNames=FALSE,

tableStyle="TableStyleLight9")

At any time, you can visualize the Excel file that is being produced without
exporting it yet using openXL(). This function comes very handy as it allows
you checking that the output looks like what you would wish for.

openXL(wb)

As can be seen, writeData()
 and writeDataTable()
 give us a lot of
control on our export. For instance, we can:

• control where to print the data by using startRow
 and startCol
 (or
alternatively xy: xy
 =
 c("B",12)
prints the table starting in cell B12),
hence allowing exporting multiple tables within the same sheet;

• include the row names and column names through rowNames
 and
colNames;

• format the header using headerStyle
 (incl. color of the text and/or
background, font, font size, etc.);

• apply a specific style to our table using tableStyle;
• shape the borders using predefined solutions through borders, or cus

tomizing them with borderStyle
and borderColour;

• add a filter to the table using withFilter;
• convert missing data to “#N/A” or any other string using keepNA
and

na.string.

Rather than using some predefined formatting as was the case with
tableStyle, let’s consider some more advanced options in which we control
(almost) everything. Let’s start with setting up the formatting style we would
like to apply:

118
 Data
Science
 for
Sensory
and
Consumer
Scientists

#
 Pre-define
 options
 to
 control
 the
 borders

options("openxlsx.borderColour"
 =
 "#4F80BD")

options("openxlsx.borderStyle"
 =
 "thin")

#
 Automatically
 set
 Number
 formats
 to
 1
 value
 after
 the
 decimal

options("openxlsx.numFmt"
 =
 "0.0")

#
 Change
 the
 font
 to
 Calibri
 size
 10

modifyBaseFont(wb,fontName
 =
 "Calibri",
 fontSize
 =
 10)

#
 Header
 Style
 (blue
 background,
 top/bottom
 borders,
 text
 centered/bold)

headSty
 <- createStyle(fgFill="#DCE6F1",
 border="TopBottom",

halign="center",
 textDecoration="bold")

Note that many more formatting options can be configured through:

• options()
to predefine number formatting, border colors and style, etc.;

• modifyBaseFont()
to define the font name and font size;

• freezePane()
to freeze the first row and/or column of the table;

• createStyle()
to predefine a style or addStyle()
to apply the styling
to selected cells;

• setColWidths()
to control column width;

• conditionalFormatting()
 to format cells based on predefined condi
tions.

Let’s export again the sensory profiles in a second sheet after applying these
formatting options:

addWorksheet(wb,
 sheetName
 =
 "Mean
 (manual
 formatting)",
 gridLines
 =
 FALSE)

freezePane(wb,
 sheet=2,
 firstRow=TRUE,
 firstCol=TRUE)

writeData(wb,
 sheet=2,
 x=senso
mean,

startCol=1,
 startRow=1,

colNames=TRUE,
 rowNames=FALSE,

headerStyle=headSty)

You’ll notice that the same table is now presented in a different way (use
openXL(wb)
to view it).
Let’s now consider a third export of the sensory profiles, with an additional

twist: for a given variable (i.e. column), the value is colored in red (resp. blue)
if it is higher (resp. lower) than its mean. To do so, we need to use conditional
formatting.

Automated
Reporting
 119

Let’s start with creating two predefined parameters called pos
style
(red)
and neg
style
 (blue) using createStyle()
 that we will use to color the
different cells. Let’s also compute the overall mean per attribute.

#
 Styles
 for
 conditional
 formatting

pos
style
 <- createStyle(fontColour
 =
 "firebrick3",

bgFill
 =
 "mistyrose1")

neg
style
 <- createStyle(fontColour
 =
 "navy",

bgFill
 =
 "lightsteelblue")

#
 Compute
 the
 overall
 mean

overall
mean
 <- senso
mean
 %>%

summarize(across(where(is.numeric),
 mean))

Let’s then create a new worksheet in which we print the data of interest:

addWorksheet(wb,
 sheetName
 =
 "Conditional
 Formatting",
 gridLines=FALSE)

writeDataTable(wb,
 sheet=3,
 x=senso
mean,

startCol=1,
 startRow=1,
 colNames=TRUE,
 rowNames=FALSE)

Finally, we color the cells according to the rules that were defined earlier. To
do so, the decision whether pos
style
or neg
style
should be used is defined
by the rule
parameter from the conditionalFormatting()4
 function.

#
 Adding
 formatting
 to
 the
 second
 column

for
 (v
 in
 1:ncol(overall
mean)){

conditionalFormatting(wb,
 sheet=3,
 cols=v+3,

rows=1+1:nrow(senso
mean),

rule=paste0(">",
 overall
mean[1,v]),

style=pos
style)

conditionalFormatting(wb,
 sheet=3,
 cols=v+3,

rows=1+1:nrow(senso
mean),

rule=paste0("<",
 overall
mean[1,v]),

style=neg
style)

}

Few comments regarding this code:

• We want to run this for each sensory attribute, hence the for
 loop
that goes from 1 to the number of columns stored in overall
mean

4
 In
 conditionalFormatting(),
 you
 can
 specify
 to
 which
 rows
 and
 cols
 the
 formatting

applies.

120
 Data
Science
 for
Sensory
and
Consumer
Scientists

(overall
mean
 only contains the overall mean scores for the sensory
attributes);

• senso
mean
however contains three extra columns: Product, Protein,
and Fiber
hence the parameter cols
 =
 v
 +
 3;

• We apply the formatting to all the rows except the header, hence
rows
 =
 1
 +
 1:nrow(senso
mean);

• Finally, we apply pos
style
 (resp. neg
style) if the value is
larger (resp. lower) than the overall mean for that attribute using
rule
 =
 paste0(">",
 overall
mean[1,v])
 (resp. rule
 =
 paste

0("<",
 overall
mean[1,v])).

Once the spreadsheet is complete, we export the results using
saveWorkbook()
 by specifying the name of the workbook (wb) and
its path through file. In case such workbook already exists, it can be
overwritten using overwrite=TRUE.

saveWorkbook(wb,
 file="output/export2.xlsx")

For more information regarding {openxlsx}, please visit https://rdrr.io/
cran/openxlsx/.

6.2.2
 PowerPoint

Creating
a
PowerPoint
Deck

Throughout the years, PowerPoint became one of the main supports for
presenting results, whether it is in academia, in conference, or in companies.
It is hence important to show how reports can be generated in PowerPoint
from R. Many solutions exist, however, the {officer} package is used here as
its application is vast while still remaining easy to use.

{officer} contains a conflicting function with {readxl} in read
xlsx().
To ensure you use the right function, call the function from the package
of interest (e.g. readxl::read
xlsx()).]

With {officer}, the procedure starts with creating a PowerPoint object
(pptx
obj) using the read
pptx()
 function.

library(officer)

pptx
obj
 <- read
pptx()

https://www.rdrr.io
https://www.rdrr.io

121
Automated
Reporting

A blank deck is set up with the Office Theme. To use a custom theme and
custom slides, a predefined deck from PowerPoint software can be used as
input. Let’s import the example.pptx template that we created for you:

pptx
obj
custom
 <- read
pptx(file.path("data",
 "example.pptx"))

The content of the template can be inspected through layout
summary():

pptx
obj
 %>%

layout
summary()

##
 layout
 master

##
 1
 Title
 Slide
 Office
 Theme

##
 2
 Title
 and
 Content
 Office
 Theme

##
 3
 Section
 Header
 Office
 Theme

##
 4
 Two
 Content
 Office
 Theme

##
 5
 Comparison
 Office
 Theme

##
 6
 Title
 Only
 Office
 Theme

##
 7
 Blank
 Office
 Theme

As can be seen by layout
summary(), the default template imported (also
called master, which is defined here as Office Theme) proposes seven types of
slides including Title Slide, Title and Content, Section Header, Two Content,
Comparison, Title Only, and finally Blank. The example.pptx template has 11

5different types of slides and contains custom master slides called Integral.
Each of these slides present some predefined properties (e.g. a box for text

of tables/images, a header, etc.). Let’s look at the properties of Title and
Content using layout
properties():

pptx
obj
 %>%

layout
properties()
 %>%

filter(name
 ==
 "Title
 and
 Content")
 %>%

as
tibble()

##
 #
 A
 tibble:
 5
 x
 13

##
 master_˜1
 name
 type
 id
 ph_la˜2
 ph
 offx
 offy

##
 <chr>
 <chr>
 <chr>
 <chr>
 <chr>
 <chr>
 <dbl>
 <dbl>

5
 It
 is
 out
 of
 the
 scope
 of
 this
 book
 to
 describe
 how
 to
 build
 your
 own
 custom
 master

slides.
However,
a
quick
internet
search
will
provide
you
with
all
the
information
that
you

would
need.

122
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 1
 Office
 T˜
 Titl˜
 body
 3
 Conten˜
 "<p:˜
 0.5
 1.75

##
 2
 Office
 T˜
 Titl˜
 dt
 4
 Date
 P˜
 "<p:˜
 0.5
 6.95

##
 3
 Office
 T˜
 Titl˜
 ftr
 5
 Footer˜
 "<p:˜
 3.42
 6.95

##
 4
 Office
 T˜
 Titl˜
 sldN˜
 6
 Slide
 ˜
 "<p:˜
 7.17
 6.95

##
 #
 ...
 with
 1
 more
 row,
 5
 more
 variables:
 cx
 <dbl>,

##
 #
 cy
 <dbl>,
 rotation
 <dbl>,
 fld_id
 <chr>,

##
 #
 fld_type
 <chr>,
 and
 abbreviated
 variable
 names

##
 #
 1:
 master_name,
 2:
 ph_label

This code provides more details about the elements available in each type of
slides, including their identifiers and positions on the slide. This information
is required to export content in some specific elements.

Unfortunately, {officer} does not provide a function similar to
openxlsx::openXL()
 that allows visualizing the file that is currently
being built. Instead, the document needs to be saved on the disk using
the print()
function, which takes as entries the PowerPoint file to export
(here pptx
obj) and its output location.

Adding/Moving/Removing
Slides

With {officer}, various actions can be done on the slides. The first logical
action consists in adding a new slide to a presentation, in which we will
later on export some text, tables, figures, etc. Such action can be done using
add
slide(), in which the type of slide and the master6
 are informed:

master
 <- "Office
 Theme"

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 ’Title
 and
 Content’,
 master
 =
 master)

This code adds slide of type Title and Content to your deck.
Additional operations on the slides themselves can be done. In particular,

you can reorganize your deck by changing the orders of your slides
using move
slide(), delete slides that are no longer needed through
remove
slide(), or modify a preexisting slides by making it active using
on
slide()
(by default, the last slide created is the active one).
For example, let’s add another slide of type Two Content :

pptx
obj
 <- pptx
obj
 %>%

add
slide("Two
 Content",
 master=master)

In
practice,
a
unique
template
can
contain
slides
 from
different
masters.
6

123
Automated
Reporting

In case we would want to move this slide to eventually be first, the following
code is used:

pptx
obj
 <- pptx
obj
 %>%

move
slide(index=2,
 to=1)

Ultimately, this slide (now positioned as first slide) can be removed (by
default, index=NULL
and the active slide is deleted):

pptx
obj
 <- pptx
obj
 %>%

remove
slide(index=1)

Positioning
Information
on
the
Slide

On a given slide, any type of content (text, graph, table, etc.) can be exported.
To do so, we need to inform where to write what.
As we will see in the next sections, the what can be any R element including

simple text, tables, figures, etc. So let’s ignore it for the moment and let’s focus
on where.
To inform where to print elements on the slide, the function ph
with()

(ph stands for placeholder) is used. In practice, ph
with()
 comes with the
parameter location, which takes as input a placeholder location object
predefined by the function ph
location()
 or one of its derivative, one of
the most useful one being ph
location
type(). To do so, simply provide
the name stored in the column type from the layout
properties()
output
presented before, as following:

my
data
 <- c("My
 functions
 are:",
 "ph
with",
 "ph
location
type")

pptx
obj
 <- pptx
obj
 %>%

ph
with(value
 =
 "My
 first
 title",

location
 =
 ph
location
type(type
 =
 "title"))
 %>%

ph
with(value
 =
 my
data,

location
 =
 ph
location
type(type
 =
 ’body’))

This code adds a title (“My first title”) and the text stored in my
data
 to
the body of the slide (Title and Content) created previously.
Other predefined alternatives to ph
location()
 include:

• ph
location
fullsize()
 to produce an output that covers the entire
slide;

124
 Data
Science
 for
Sensory
and
Consumer
Scientists

• ph
location
left()
 and ph
location
right()
 to write in the
left/right box in Two Content types of slide;

• ph
location
label()
 is similar to ph
location
type()
except that it
uses the label rather than the type.

For a full control of the position where to print your element,
ph
location()
 is used as it allows specifying the exact location (for left/
top/width/height, units are expressed in inches):

my
data2
 <- "My
 new
 text
 positioned
 using
 ph
location()"

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 master)
 %>%

ph
with(value
 =
 my
data2,

location
 =
 ph
location(left=2,
 top=2,
 width=3,
 height=1))

To visualize the different steps done so far, let’s save the results on our
computers in an object called my export.pptx stored in the folder output :

print(pptx
obj,
 "output/my
 export.pptx")

Exporting
Text

In the previous section, we already exported text to slides. Let’s go a bit
deeper in the process by also showing how to format the text.
By default, each new text item added to a PowerPoint via {officer} is a

paragraph object. To further format the paragraph, three main functions are
being used:

• fpar()
(formatted paragraph) creates the paragraph;

• ftext()
 (formatted text) allows editing the text before pasting into
paragraphs. ftext()
 requires a second argument called prop
 which
contains the formatting properties;

• block
list()
allows us to wrap multiple paragraphs together.

Additionally, the text itself can be formated (font, size, color, etc.) using
fp
text(). Let’s go through an example to illustrate the use of these
functions:

125
Automated
Reporting

#
 Formatting
 option

my
prop
 <- fp
text(color
 =
 "red",
 font.size
 =
 14)

#
 First
 line
 of
 text,
 formatted

my
text
 <- ftext("First
 Line
 in
 Red",
 prop
 =
 my
prop)

#
 text
 into
 a
 paragraph

my
par
 <- fpar(my
text)

#
 other
 empty
 paragraph
 to
 introduce
 an
 empty
 line

blank
line
 <- fpar("")

#
 second
 line
 of
 text,
 unformatted

my
par2
 <- fpar("Second
 Line")

#
 Final
 block
 with
 the
 two
 lines
 of
 text
 separated
 by
 the
 empty
 line

my
list
 <- block
list(my
par,
 blank
line,
 my
par2)

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 master)
 %>%

ph
with(value
 =
 my
list,

location
 =
 ph
location
type(type
 =
 "body"))

Again, if you want to visualize the results, simply print the results as earlier:

print(pptx
obj,
 target
 =
 "output/my
 export.pptx")

This adds an additional slide to our previous PowerPoint deck with our
formatted text.
The last element of formatting to consider is the hierarchy in bullet points.

Let’s add a slide containing three bullet points with a hierarchy so that the
first and third lines are the primary points and the second line is a secondary
point. Such hierarchy is informed using the level
list
 parameter, which
informs the hierarchy of each element:

text1
 <- fpar("FIRST
 SENTENCE")

text2
 <- fpar("second
 sentence")

text3
 <- fpar("THIRD
 SENTENCE")

my
data
 <- block
list(text1,
 text2,
 text3)

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 master)
 %>%

ph
with(value
 =
 my
data,
 level
list
 =
 c(1,2,1),

location
 =
 ph
location
type(type
 =
 ’body’))

126
 Data
Science
 for
Sensory
and
Consumer
Scientists

Exporting
Tables

After exporting formatted text to slides, let’s export tables.
This can be done by rendering a data frame rather than text as ph
with()

7accepts it and exports it in a default format. Let’s use a subset of senso
mean
for illustration:

ft
data
 <- senso
mean
 %>%

dplyr::select(Product,
 Salty,
 Sweet,
 Sour,
 Bitter)
 %>%

mutate(across(where(is.numeric),
 round,
 2))

pptx
obj
 <- read
pptx()
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 master)
 %>%

ph
with(value
 =
 ft
data,
 location
 =
 ph
location
type(type
 =
 "body"))

Although this solution works fine, it does not allow formatting the table
as much as we would want. Instead, we prefer to use another package called
{flextable} (see Section 5.3.1 for an introduction) which was developed by
the same author as {officer}.
Remember that with {flextable}, the procedure starts with creating a

flextable object (here ft
table) using the flextable()
 function.

library(flextable)

ft
table
 <- ft
data
 %>%

arrange(Product)
 %>%

flextable()

This table can be customized in various ways such as:

• align()
and rotate()
controls for the text alignment and its rotation;

• bold()
and italic()
writes the text in bold and italic;

• font()
and fontsize()
controls the font type and the size to use;

• color()
 and bg()
 allows changing the color of the text and the
background.

All these functions require informing the rows (parameter i) and the
columns (j) as well as the part
 ("body", "header", "footer", or "all")
to modify.

7
 senso
mean
was
built
 in
Section
6.2.1.

127
Automated
Reporting

Additionally, further formatting can be applied to the table itself through
the following functions:

• height()
& width()
control the row height and column width;

• border
outer(), border
inner(), border
inner
h()
 and border

inner
v()
help design the table by adding borders;

• autofit()
and padding()
are used to control the final size of the table.

For illustration, let’s apply some of these functions to ft
table:

ft
table
 <- ft
table
 %>%

fontsize(size
 =
 11)
 %>%

#
 Formatting
 the
 header

font(fontname
 =
 "Roboto",
 part
 =
 "header")
 %>%

color(color
 =
 "white",
 part
 =
 "header")
 %>%

bold(part
 =
 "header")
 %>%

align(align
 =
 "center",
 part
 =
 "header")
 %>%

bg(bg
 =
 "#324C63",
 part
 =
 "header")
 %>%

#
 Formatting
 the
 body

font(fontname
 =
 "Calibri",
 part
 =
 "body")
 %>%

bg(i =
1:nrow(ft
data),
 bg
 =
 "#EDEDED")
 %>%

#
 Formatting
 the
 last
 row
 of
 the
 table

bold(i =
nrow(ft
data),
 j =
1:ncol(ft
data))
 %>%

italic(i =
nrow(ft
data),
 j =
~Product+Salty+Sweet+Sour+Bitter)
 %>%

color(i =
 nrow(ft
data),
 j =
~Sour,
 color
 =
 "red")
 %>%

color(i =
 nrow(ft
data),
 j =
~Sweet,
 color
 =
 "orange")
 %>%

autofit()

#
 Set
 up
 the
 border
 style

my
border
 <- fp
border(color
 =
 "black",
 style
 =
 "solid",
 width
 =
 1)

ft
table
 <- ft
table
 %>%

border
outer(part
 =
 "all",
 border
 =
 my
border)
 %>%

border
inner(part
 =
 "body",
 border
 =
 fp
border(style
 =
 "dashed"))
 %>%

width(j =
1,
 width
 =
 1.2)

This is just an overview of the most relevant and used functions in
{flextable}, yet there are more possibilities. To go further, you can also
consider the following functions (among many more):

• merge()
merges vertically or horizontally cells with the same content;

• compose(), as
chunk(), and as
paragraph()
 work hand in hand to
create more complex text formatting (e.g. sentence with parts of the
text colored differently or with sub/superscript);

• style()
applies a set of formatting properties to the same selection of
the rows/columns.

128
 Data
Science
 for
Sensory
and
Consumer
Scientists

Finally, to export a flextable table to a PowerPoint deck, simply export it
as we have seen before:

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 master)
 %>%

ph
with(value
 =
 ft
table,

ph
location(left
 =
 2,
 top
 =
 2,
 width
 =
 4))

Exporting
Plots

The last type of R outputs to export to PowerPoint are figures. Before showing
how to export them, let’s build a simple bar chart from senso
mean
 using
{ggplot2}:

chart
to
export
 <- senso
mean
 %>%

dplyr::select(Product,
 Salty,
 Sweet,
 Sour,
 Bitter)
 %>%

arrange(Product)
 %>%

pivot
longer(Salty:Bitter,

names
to
 =
 ’Attribute’,
 values
to
 =
 ’Value’)
 %>%

ggplot(aes(x =
Product,
 y =
Value,
 fill
 =
 Attribute))
 +

geom
col(position
 =
 ’dodge’)+

xlab("")+

theme
bw()

To export any ggplot2 object to PowerPoint, the package {rvg} is required.
This package provides two graphic devices that produce Vector Graphics
outputs in DrawingML format for Microsoft PowerPoint with dml
pptx()
and
for Microsoft Excel with dml
xlsx(), meaning the graphics is being “rebuilt”
in PowerPoint or Word. To simplify, the generic dml()
 function is used, and
depending on the output format, the corresponding function is being called.

library(rvg)

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 master)
 %>%

ph
with(value
 =
 dml(ggobj
 =
 chart
to
export),

location
 =
 ph
location
type(type
 =
 ’body’))

With {rvg}, the graphics are being rebuilt in PowerPoint, meaning that
they are completely editable. It is hence possible to change color, rewrite
text, move labels, etc.

Automated
Reporting
 129

To go further, the {mschart} package creates the graphs directly in
PowerPoint or Word. These graphics have then the advantage to be
interactive. However, this package is only limited to simple graphics (such as
line chart, bar charts, etc.)
To produce such interactive graphs, ggplot2
 graphs are not needed.

Instead, functions such as ms
barchart()
are called to produce them.

library(mschart)

mydata
 <- senso
mean
 %>%

dplyr::select(Product,
 Salty,
 Sweet,
 Sour,
 Bitter)
 %>%

arrange(Product)
 %>%

pivot
longer(Salty:Bitter,

names
to
 =
 ’Attribute’,
 values
to
 =
 ’Value’)

#
 Building
 the
 barchart
 using
 ms
barchart()

my
barchart
 <- ms
barchart(data=mydata,
 x="Product",
 y="Value",

group="Attribute")

#
 The
 chart
 is
 a
 PowerPoint
 native
 object

#
 It
 can
 be
 viewed
 using
 the
 preview
 option
 in
 print

print(my
barchart,
 preview
 =
 TRUE)

##
 *
 "ms_barchart"
 object

##

##
 *
 original
 data
 [44,3]
 (sample):

##
 Product
 Attribute
 Value

##
 1
 P01
 Salty
 5.100

##
 2
 P01
 Sweet
 22.200

##
 3
 P01
 Sour
 0.000

##
 4
 P01
 Bitter
 8.000

##
 5
 P02
 Salty
 2.933

##

##
 *
 series
 data
 [11,5]
 (sample):

##
 Product
 Bitter
 Salty
 Sour
 Sweet

##
 1
 P01
 8.000
 5.100
 0
 22.2

##
 2
 P02
 4.933
 2.933
 0
 15.8

##
 3
 P03
 7.800
 4.667
 0
 10.4

##
 4
 P04
 4.267
 3.600
 0
 16.6

##
 5
 P05
 6.733
 5.867
 3
 21.0

#
 To
 add
 the
 object
 to
 a
 PPT
 slide,
 officer’s
 ph
with()
 function
 is
 used

pptx
obj
 <- pptx
obj
 %>%

add
slide(layout
 =
 "Title
 and
 Content",
 master
 =
 "Office
 Theme")
 %>%

ph
with(value
 =
 my
barchart,

location
 =
 ph
location
type(type
 =
 "body"))

130
 Data
Science
 for
Sensory
and
Consumer
Scientists

Now the full deck is being created, let’s save it one last time using print():

print(pptx
obj,
 target
 =
 "output/my
 export.pptx")

If you open the PowerPoint just exported, on the final slide, you’ll find
the bar chart generated by {mschart}. By clicking the graph, you’ll find a
“funnel” icon on the right side, which allows you filter attributes or products,
hence making your graph interactive.
At last, {officer} also allows you adding images that are stored on

your computer into a PowerPoint deck. This can be done through the
external
img()
 function, which takes as input the location of the file.
Like for any other graph, simply apply this function within ph
with()
 by
specifying the location where to print the image.

6.2.3
 Word

The process for building Word document directly from R is very similar to
the one for PowerPoint, since it is also handled though {officer}.
To start a new Word document, the read
docx()
 function is being used.

Since Word documents are more text oriented than PowerPoint, blocks of text
are defined as paragraph. To introduce a new paragraph, the body
add
par()

function is called. Note that paragraphs are automatically separated by line
breaks:

docx
obj
 <- read
docx()
 %>%

body
add
par(value
 =
 "My
 Text",
 style
 =
 "Normal")
 %>%

body
add
par(value
 =
 "Other
 Text",
 style
 =
 "Normal")
 %>%

body
add
par(value
 =
 "Conclusion",
 style
 =
 "Normal")

Here again, the results can be exported to your computer using print():

print(docx
obj,
 target
 =
 "output/my
 export.docx")

Of course, it is not required to use the default formatting options from
the word document in use. Instead, we can format it directly from R
using body
add
fpar()
 to add a formatted text paragraph, or apply
predefined styles to the previous function suggested (as is the case here with
style
 =
 "heading
 1"
to set the text as a title of level 1).

131
Automated
Reporting

my
format
 <- fp
text(font.family
 =
 ’Calibri’,
 font.size
 =
 14,

bold
 =
 TRUE,
 color
 =
 ’blue’)

my
text
 <- ftext(’Here
 is
 another
 example
 of
 text’, my
format)

my
par
 <- fpar(my
text)

docx
obj
 <- read
docx()
 %>%

body
add
par(value
 =
 "Document
 Title",
 style
 =
 "heading
 1")
 %>%

body
add
par(value
 =
 "",
 style
 =
 "Normal")
 %>%

body
add
fpar(my
par,
 style
 =
 "Normal")

To export tables or figures, additional functions including body
add
table()

(for tables) and body
add
gg()8
 (for ggplot()
figures) are used. These can
be combined to body
add
caption()
to add a caption to your table/figure:

table
num
 <- run
autonum(seq
id
 =
 "tab",

pre
label
 =
 "Table
 ",
 bkm
 =
 "tables")

figure
num
 <- run
autonum(seq
id
 =
 "fig",

pre
label
 =
 "Figure
 ",
 bkm
 =
 "figures")

docx
obj
 <- docx
obj
 %>%

body
add
par(value
 =
 "Exporting
 Tables",

style
 =
 "heading
 2")
 %>%

body
add
par(value
 =
 "",

style
 =
 "Normal")
 %>%

body
add
par(value
 =
 "Here
 is
 my
 first
 table:",

style
 =
 "Normal")
 %>%

body
add
par(value
 =
 "",

style
 =
 "Normal")
 %>%

body
add
table(value
 =
 head(mtcars)[,1:4],

style
 =
 "table
template")
 %>%

body
add
caption(block
caption("My
 first
 table.",

style="centered",

autonum=table
num))
 %>%

body
add
par(value
 =
 "Exporting
 Figures",

style
 =
 "heading
 2")
 %>%

body
add
par(value
 =
 "",

style
 =
 "Normal")
 %>%

body
add
par(value
 =
 "Here
 is
 my
 first
 figure:",

style
 =
 "Normal")
 %>%

body
add
par(value
 =
 "",

style
 =
 "Normal")
 %>%

body
add
gg(value
 =
 chart
to
export)
 %>%

body
add
caption(block
caption("My
 first
 figure.",

style="centered",

autonum=figure
num))

Note
that
body
add
img()
and
body
add
plot()
can
also
be
used.
8

132
 Data
Science
 for
Sensory
and
Consumer
Scientists

As can be seen, body
add
caption()
is combined to block
caption()
and
have some automated numbering, as defined previously using table
num
 for
tables and figure
num
 for figures.
Unlike a PowerPoint file that contains separate slides, a word document is

a continuous object. Hence, to emphasize a break and add content to a new
page, body
add
break()
 needs to be called. Additionally, tables of content
can be generated using body
add
toc():

docx
obj
 <- docx
obj
 %>%

body
add
break()
 %>%

body
add
par(value
 =
 "Conclusion",
 style
 =
 "heading
 1")
 %>%

body
add
break()
 %>%

body
add
par("Table
 of
 Contents",
 style
 =
 "heading
 1")
 %>%

body
add
toc(level
 =
 2)

Finally, let’s export this last version of the word document to visualize it:

print(docx
obj,
 target
 =
 "output/my
 export.docx")

As can be seen, it is possible to format a nice report in Word directly from R,
that integrates text, tables, figures, and more. For more information regarding
{officer} and on how to export results to Word and PowerPoint, please visit
https://ardata-fr.github.io/officeverse/index.html.

It is worth mentioning that {officer} also allows extracting information
from existing reports (Word and PowerPoint). It is, however, outside the
scope of this book and will not be further described.

6.2.4
 Notes
on
Applying
Corporate
Branding

You may have noticed that we have been consistent with our approach
to export results to reports, regardless of the final output: We start with
predefining our styling parameters that we then apply to our different tables,
slides, paragraphs, etc. This is not a formal rule, yet we strongly recommend
you adopting this way of working. Indeed, by creating your different styling
parameters at the start of your script file, these lines of code do not interfere
with your analyses. At a later stage, you will thank yourself for keeping a
well-structured code as it gains in clarity, and hence facilitates debugging
your code in case of error or changes.
To go one step further, we would recommend you storing all these styling

parameters in a separate file you load any time you need them through

https://www.ardata-fr.github.io

133
Automated
Reporting

source(). This process reduces the size of your script file, hence increasing
its clarity, while harmonizing all your exports by centralizing your formatting
code in one unique place. The last point is crucial since any changes only need
to be done once, and yet will be applied to all your reports.
As we have seen, {officer} gives you the opportunity to import predefined

templates (PowerPoint or Word). This is very valuable as your report can
easily match your corporate style.
Ultimately, to ensure optimal efficiency, we advise you to spend a bit more

time when constructing your report by ensuring that as many details are being
taken care of, so that later on, you can spend more time in the story building
part and less on the analysis and slide generation. For instance, don’t be afraid
of mass-exporting results, as it is easier to remove slides, tables, or figures (in
case they are not needed for your story) than it is to regenerate them at a
later stage (if missing).

6.3

 Integrating
Analyses
Scripts
Within
Your

Reporting
Tool

As we have just seen, we can generate reports in the Microsoft Office Suite
directly from our R script. Although the results are being showed, the script
used to reach these results is completely hidden. Of course, we could add them
as text, but the logic would suggest that the researcher can just get back to
the script to decode how certain outputs have been obtained.
Let’s now change our way of thinking by proposing an alternative in which

we integrate our R analysis directly within a reporting tool. For that, we need
to introduce another useful package for reporting and document building:
{rmarkdown}.

6.3.1
 What
 Is
 {rmarkdown}

Markdown is an ecosystem specific to text document, in which authors script
their reports by controlling various features including:

• paragraphs and inline formatting (e.g. bold, italic, etc.);

• (section) headers;
• blocks (code or quotations);
• (un)numbered lists;

• horizontal rules;
• tables and figures (including legends);

134
 Data
Science
 for
Sensory
and
Consumer
Scientists

• LaTeX math expressions, formulas, and theorems;

• links, citations, and footnotes.

Limiting the creation of a Markdown document to this list of elements is
more an advantage than a drawback as it suffices to create technical and
non-technical documents while still keeping it simple.
In practice, R Markdown provides an authoring framework for data science,

as it can be used for saving/documenting/executing code and generating high-
quality reports. Once the document is being created, you can then compile it
to build it in the output format of your choice (e.g. word, pdf, html, etc.)

6.3.2
 Starting
 with
{rmarkdown}

To start, you need to install the {rmarkdown} package using the
install.packages()
 function. To load this package, just type
library(rmarkdown). If you intend to build your report in pdf, you
also need to install a LaTeX library. For its simplicity, we recommend you
installing the TinyTeX library using install.packages("tinytex").
Let’s start with a simple example that is provided by RStudio. To start a

RMarkdown document, click File >
New File >
R Markdown. . . This opens a
new window in which you can inform the name of your file, the author name,
and the type of report to create (HTML, PDF, or Word). Once set, click OK.
A new script file of type .Rmd opens.
In this document, there are three components: metadata, text, and code.
The document starts with the metadata. It is easily recognizable as it starts

and ends with three successive dashes (---), and its syntax is YAML (YAML
Ain’t Markup Language). In this part, information regarding the properties
of the final document is being stored. This includes (among other) the title,
authorship, date, export format, etc. of the final document.
Be aware that indentation matters in YAML, so follow the rules to ensure

that your document compiles correctly.
Right after the metadata is the body of document. The syntax for the text

is Markdown, and the main features will be presented in Section 6.3.3. Within
the body, computer code can be added, either as a chunk, or within the text.

6.3.3
 {rmarkdown}
 through
a
Simple
Example

To illustrate the use of {rmarkdown}, let’s consider this simple document
(inspired from Yihuie Xie, J. J. Allaire, & Garrett Grolemund (2019). R Mark
down. The Definitive Guide. CRC Press) entitled RMarkdown example.Rmd
and stored in the directory of this book.
The top of the document contains the metadata, which (in our case) will

generate the report in an HTML document.

135
Automated
Reporting

Next, we have a first chunk of code that sets the main options on how the
code should be handled. If all the code chunks are handled in the same way, it
is handy to set it at the start. However, when different chunks of code should
be handled differently, it may be easier to define for each section how it should
be handled.
There are mainly four ways to handle code.

The first way is defined here on the code chunk header as
include
 =
 FALSE9: include
 always run the code, yet it allows
printing (include
 =
 TRUE) or not (include
 =
 FALSE) the code and
its outputs in the final document.

The second option is echo. In this code chunk, we automatically set
that all the code chunk should be defined as echo
 =
 TRUE, which means
that the code will run and be printed (together with its output) in the
document. This seems very similar to include, yet it differs from it as
echo
 =
 FALSE
runs the code, prints the outputs, but not the code.

If you only want to show some code without running it, the eval

parameter is used (eval
 =
 FALSE
means that the code will be displayed
but will not run). This is useful for displaying example code or for
disabling large or time-consuming chunk of codes without having to set
it up as comment.

Last, we can control whether outputs should be shown or hidden using
results
 (printed output) and fig.show
 (plots). By default, the results
are shown, unless it is set as results
 =
 "hide"
or fig.show
 =
 "hide".

The document then continues with a section header, which starts with #.
The hierarchy of headers is defined by the number of adjacent # (for a header
of level 3, starts the header with ###).
In this section, a first paragraph is being written. This is plain text, except

for two particular words, one written between two “‘” (backticks) and one
written between two double “*” (stars). Here, the backticks are used to write
text in R font (or as we will see later, to render results from R), whereas
the double stars write the text in bold (double “ ” (underscore) could also be
used). For italic, one single star (or one single underscore) is used.
For the following section and subsections, we introduce numbered and

unnumbered list of elements. For numbered list, it starts with a number
followed by a . (numbers will be incremented automatically). For unnumbered
lists, you can either start with a “-” (dash), or with “*” (star) for bullet points.
For sub-lists, indent your marker by pressing the Tab key.
In the next section called Analysis, we are running our first lines of code.

When
set
manually,
this
 is
where
you
should
 indicate
how
to
handle
each
chunk
of
code.
9

136
 Data
Science
 for
Sensory
and
Consumer
Scientists

The first code chunk runs a regression model. In the text under the second
chunk of code, we are retrieving automatically a value from R by including
a r at the starts of two backticks followed by the element to retrieve. In our
final report, this code will automatically be replaced by the value 3.93.
The second code chunk shows how the results can be printed, either directly

from R or in a nicer way using the knitr::kable()
 function.
Finally, the last code chunk of this section creates a plot with a caption

that is automatically numbered.

6.3.4
 Creating
a
Document
Using
{knitr}

Once the document is ready, you can neat it using the knit
button. This will
create the report in the format of interest (here HTML).

6.3.5
 Example
of
Applications

{rmarkdown} is a very powerful tool for building report, in particular in the
context of reproducible research since it allows sharing code and running
analyses within the report (part of the text around the code can justify the
decisions made in terms of analyses to ensure transparency). The latter point
is particularly interesting since any change in the data will automatically
provide updated results throughout the report, without you having to change
them manually.
Its applications are various and can go from report to teaching material,

publication, or even books (this book has been written in {rmarkdown} and
its extension {bookdown}), emails, websites, dashboards, surveys, etc. Even
more interestingly, {rmarkdown} can also be combined to {shiny} to build
interactive reports, dashboards, or teaching materials in which users would
(say) import their data set, select the variables to analyze through buttons,
chose which analyses and which options to perform, and the results will
automatically be generated accordingly.
For more information on {rmarkdown} and related packages, please see:

• Bookdown https://bookdown.org/yihui/bookdown/
• R Markdown https://bookdown.org/yihui/rmarkdown/

• R Markdown Cookbook https://bookdown.org/yihui/rmarkdown
cookbook/

As mentioned earlier, R Markdown can also be used to generate
other types of documents, including presentations. This can be done
directly from the {rmarkdown} package using ioslides presentation
(output:
 ioslides
presentation
 in the metadata), Slidy presentation

https://www.bookdown.org
https://www.bookdown.org
https://www.bookdown.org
https://www.bookdown.org

137
Automated
Reporting

(output:
 slidy
presentation), or PowerPoint presentation (output:

powerpoint
presentation
 with reference
doc:
 my-styles.pptx
 to
apply your own template) just to name a few. It can also be done using
additional packages such as {xarigan}.

6.4
 To
Go
Further.
.
.

If R allows you saving time by creating your report within your R-script or by
running your analysis within your report document, it cannot communicate
the presentation to your partners/clients for you. However, if the report is
very standard (say only key results, tables or figures) or running routinely
(say in quality control), R could automatically run the analysis as soon as
new data is available, build the report, and send it automatically to you, your
manager, or your colleagues and partners by email.
Such process can be done thanks to the {blastula} package.

https://taylorandfrancis.com

7

Example
Project:
The
Biscuit
Study

7.1
 Objective
of
the
Test

The data set that we use as a main example throughout this book comes from a
sensory study on biscuits. The study was part of the project BISENS funded
by the French National Research Agency (ANR, programme ALIA 2008).
These biscuits were developed for breakfast consumption and specifically
designed to improve satiety.
The study was conducted in France with 107 consumers who tested a total

of 10 biscuit recipes (including 9 experimental products varying in their fiber
and protein contents, as fibers and proteins are known to increase satiety).
The study aimed to measure the liking for these biscuits, its link with

eaten quantities, and the evolution of hunger sensations over ad libitum
consumption. All the volunteers therefore participated to 10 morning sessions
in order to test every product (one biscuit type per session). After they
completed all the sessions, they also filled a questionnaire about food-related
personality traits such as cognitive restraint and sensitivity to hunger.
Parallel to this, a panel of nine trained judges performed a quantitative

descriptive analysis of the biscuits. They evaluated the same 10 products
as well as an additional product whose recipe was optimized for liking and
satiating properties.
Data from the biscuit study are gathered in three Excel files that can be

accessed here https://github.com/aigorahub/data science for sensory:

• biscuits consumer test.xlsx

• biscuits sensory profile.xlsx
• biscuits traits.xlsx

DOI: 10.1201/9781003028611-7 139

https://www.github.com

140
 Data
Science
 for
Sensory
and
Consumer
Scientists

7.2
 Products

In total, 11 products were considered in this study. They are all breakfast
biscuits with varying contents of proteins and fibers (Table 7.1). Products P01
to P09 are prototypes whereas product P10 is a standard commercial biscuit
without enrichment. The 11th product Popt is an additional optimized biscuit
that has been evaluated only by the trained panel for descriptive analysis.

TABLE
7.1

Product
set
for
the
biscuit
study

Product
 Protein
 Fiber
 Type

P01
 Low
 Low
 Trial

P02
 Low
 High
 Trial

P03
 High
 High
 Trial

P04
 High
 High
 Trial

P05
 High
 Low
 Trial

P06
 High
 Low
 Trial

P07
 Low
 High
 Trial

P08
 High
 Low
 Trial

P09
 High
 High
 Trial

P10
 Low
 Low
 Commercial
product

POpt
 High
 Low
 Optimized
trial

7.3
 Sensory
Descriptive
Analysis

A panel of 9 trained judges evaluated the 11 products on 32 sensory attributes
(8 attributes for aspect, 3 for odor, 12 for flavor, and 9 for texture).
Judges had received thorough training for the wider biscuit product category

over more than six months on common vocabulary following conventional
descriptive analysis standards (ISO11035, 1995; ISO8586, 2012). Evaluation
was performed in sensory booths in triplicates, although only individual means
are available in this data set.
For each product, the judges reported the perceived intensity of each

attribute using unstructured linear scales on a computer screen. Intensities
were automatically converted by the acquisition system into a score ranging
from 0 to 60. These data are stored in biscuits sensory profile.xlsx.

In summary, the sensory data have 99 observations (11 Products
×

9 Judges) and 34 variables (Judge and Product identifiers + 32 attributes).

141
Example
Project:
The
Biscuit
Study

7.4
 Consumer
Test

7.4.1
 Participants

107 women who were all regular consumers of breakfast biscuits participated
in the test. The biscuits traits.xlsx file gives information about their Body
Mass Index (BMI) (Q4–Q6) and their socio-demographics (Q7–Q11: marital
status, household, income, occupation, and highest degree).
This file also gives participants’ answers to a self-assessment question

naire (Q12–62) that evaluates eating behavioral traits with emphasis on the
tendency to control food intake cognitively. The questionnaire comprises a
series of assertions about various eating situations in the respondent’s daily
life (e.g. “How. . . .” answer Y/N”). Resulting scores are loaded into three
factors: cognitive restraint (conscious restriction of food intake in order to
control body weight or to promote weight loss), disinhibition (or emotional
eating), and susceptibility to hunger (or uncontrolled eating, i.e. tendency
to eat more than usual due to a loss of control over intake accompanied by
feelings of hunger). This questionnaire is thus known as the Three-Factor
Eating Questionnaire (TFEQ) (Stunkard and Messick, 1985) and is one of the
most commonly used questionnaires to evaluate eating behaviors in relation
to overweight or obesity (Blundell et al., 2010). Calculation of these factors is
detailed in Chapter 10.

In summary, the data stored in biscuits traits.xlsx have 107 observations
and 62 variables giving multiple information about the consumers, includ
ing their sociodemographics, BMI, and TFEQ answers. Variable codes,
names, and meaning are listed in the second sheet “Variables”, with their
corresponding levels in the third sheet “Levels”.

7.4.2
 Test
 Design

The presentation order of the different products was randomized across the
panel. Again, consumers evaluated one biscuit type per day/session.
The design of the sessions is summarized in Figure 7.1 with main measured

variables. After they first rated their appetite sensations using visual analog
scales (VAS), the participants tasted and rated one biscuit for liking. They
were then served with a box of the same biscuits for ad libitum consumption
(with a maximum of 10 biscuits), followed by a new questionnaire regarding
their liking, pleasure, and appetite sensations.

142
 Data
Science
 for
Sensory
and
Consumer
Scientists

FI
G

U
R

E

7.

1
G
en

er
a
l

d
es
ig
n

f
o
r

th

e

co

n
su

m
er

t
es
t

o
f

th

e

b
is
cu

it

s
tu

d
y.

P
a
rt
ic
ip
a
n
ts

w
er
e

se
rv
ed

w
it
h

a

d
iff
er
en

t

se
t

o
f

b
is
cu

it
s

ev

er
y

s
es
si
o
n
.

Example
Project:
The
Biscuit
Study
 143

7.4.3
 Evaluation

The liking was measured with two different scales:

1. with a horizontally oriented unstructured linear scale (i.e. VAS) anchored
with “I don’t like this biscuit at all” (left end) and “I like this biscuit a
lot” (right end) at two different times: after the first bite and at the end
of their consumption.

2. with a vertically oriented semantic nine-point hedonic scale when stop
ping their consumption.

VAS scales are frequently used in nutrition studies (Stubbs et al., 2000),
whereas the nine-point hedonic scale is more popular in sensory and consumer
science (Peryam and Pilgrim, 1957; Wichchukit and O’Mahony, 2015).
Once done, the participants were asked about the reason(s) why they

stopped eating (6 potential reasons rated with Likert scales ranging from
strongly disagree to strongly agree). They were also asked how much they
would like to eat other types of foods (11 food items rated using a VAS).
The time spent in the booth and the number of biscuits eaten by each

participant were recorded by the experimenters, as well as the type of drink
they selected and the approximate volume they drank during each session.
These data are stored in biscuits consumer test.xlsx, in the second tab named
Time Consumption.

In summary, the consumer test data have 1070 observations
(10 Products
× 107 Consumers) and 32 variables (including Consumer
and Product identifiers). The biscuits consumer test.xlsx file also
includes one sheet with consumption time and the number of biscuits that
consumers ate, and a sheet indicating the average weight for each product.

https://taylorandfrancis.com

8

Data
Collection

Before any statistical analysis and vizualizations, robust data need to be
collected. This important step often requires a proper experimental design,
that is, an experimental design that would assure relevant and meaning
ful data are obtained with maximum efficiency to answer our research
questions. This chapter approaches all the required steps to reach such
goal, from setting up the test (e.g. estimation of the number of panelists,
design of sensory evaluation sessions and design of experiments), to the
collection of data (through valuable execution tips) and its importation in
a statistical software (R, here).

8.1
 Designs
of
Sensory
Experiments

Like with any other chapter, let’s start by loading the {tidyverse}.

library(tidyverse)

8.1.1
 General
Approach

Sensory and consumer science relies on experiments during which subjects
usually evaluate several samples one after the other. This type of procedure
is called “monadic sequential” and is common practice for all three main cat
egories of tests (difference testing, descriptive analysis, and hedonic testing).
The main advantage of proceeding this way is that responses are within-
subjects (data can be analyzed at the individual level) so that analysis and
interpretation can account for inter-individual differences, which is a constant
feature of sensory data.

DOI: 10.1201/9781003028611-8 145

146
 Data
Science
 for
Sensory
and
Consumer
Scientists

However, this type of approach also comes with drawbacks1
 as it may imply
order effects and carry-over effects (Macfie et al., 1989). Fortunately, most of
these effects can be controlled with a proper design of experiment (DoE).
A good design ensures that order and carry-over effects are not confounded
with what you are actually interested to measure (most frequently, the
differences between products) by balancing these effects across the panel.
However, it is important to note that the design does not eliminate these
effects and that each subject in your panel may still experience an order and
a carry-over effect, as well as boredom, sensory fatigue, etc.
Before going any further into the design of sensory evaluation sessions, it

is important to first estimate the number of panelists needed for your study.
For that, you may rely on common practices. For instance, most descriptive
analysis studies with trained panelists are typically conducted with 10–20
judges, whereas 100 participants is usually considered as a minimum for
hedonic tests. Of course, these are only ballpark numbers and they must be
adjusted to the characteristics of the population you are interested in and to
the specifics of your study objectives. In all cases, a power analysis would be
wise to make sure that you have a good rationale for your proposed sample
size, especially for studies involving consumers. The {pwr} package provides a
very easy way to do that, as shown in the example code below for a comparison
between two products on a paired basis (such as in monadic sequential design).
Note that you need to provide an effect size (expressed here by Cohen’s d,
which is the difference you aim to detect divided by the estimated standard
deviation of your population).

library(pwr)

pwr.t.test(n=NULL,
 sig.level=0.05,
 type="paired",

alternative="two.sided",
 power=0.8,
 d=0.3)

##

##
 Paired
 t
 test
 power
 calculation

##

##
 n = 89.15

##
 d = 0.3

##
 sig.level
 =
 0.05

##
 power
 =
 0.8

##
 alternative
 =
 two.sided

##

##
 NOTE:
 n
 is
 number
 of
 pairs

Market
researchers
would
argue
that
evaluating
several
products
in
a
row
doesn’t
usually

happen
 in
 real
 life
 and
 that
 proceeding
 this
 way
 may
 induce
 response
 biases.
 They

thus
advocate
 the
use
of
pure
monadic
designs
 in
which
participants
are
only
given
one

sample
 to
 evaluate.
This
 corresponds
 to
 a
between-group
design
 that
 is
 also
 frequently

used
 in
 fields
where
 only
 one
 treatment
 per
 subject
 is
 possible
 (drug
 testing,
 nutrition

studies,
etc.).

1

147
Data
Collection

For discrimination tests (e.g. tetrad, 2-AFC, etc.), the reader may also refer
to the {sensR} package and its discrimSS()
 function for the sample size
calculation in both difference or similarity testing contexts.

8.1.2
 Crossover
 Designs

For any sensory experiment that implies the evaluation of more than one
sample, first-order and/or carry-over effects should be expected. That is to
say, the evaluation of a sample may affect the evaluation of the next sample
even though sensory scientists try to lower such effects by asking panelists
to pause between samples and use of appropriate mouth-cleansing techniques
(drinking water, eating unsalted crackers, or a piece of apple, etc.). The use
of crossover designs is thus highly recommended (Macfie et al., 1989).
Williams’s Latin-Square designs offer a perfect solution to balance carry

over effects. They are very simple to create using the williams()
 function
from the {crossdes} package. For instance, if you have five samples to test,
williams(5)
 would create a 10x5 matrix containing the position at which
each of three samples should be evaluated by 10 judges (the required number
of judges per design block).
Alternately, the WilliamsDesign()
 function in {SensoMineR} allows you

to create a matrix of samples (as numbers) with numbered Judges
 as row
names and numbered Ranks
as column names. You only have to specify the
number of samples to be evaluated, as in the example below for five samples.

library(SensoMineR)

wdes
5P10J
 <- WilliamsDesign(5)

##
 Rank
 1
 Rank
 2
 Rank
 3
 Rank
 4
 Rank
 5

##
 Judge
 1
 3
 2
 5
 4
 1

##
 Judge
 2
 2
 4
 3
 1
 5

##
 Judge
 3
 4
 1
 2
 5
 3

##
 Judge
 4
 1
 5
 4
 3
 2

##
 Judge
 5
 5
 3
 1
 2
 4

##
 Judge
 6
 1
 4
 5
 2
 3

##
 Judge
 7
 5
 1
 3
 4
 2

##
 Judge
 8
 3
 5
 2
 1
 4

##
 Judge
 9
 2
 3
 4
 5
 1

##
 Judge
 10
 4
 2
 1
 3
 5

Suppose you want to include 20 judges in the experiment, you would then
need to duplicate the initial design.

wdes
5P20J
 <- do.call(rbind,
 replicate(2,
 wdes
5P10J,
 simplify=FALSE))

rownames(wdes
5P20J)
 <- paste("judge",
 1:20,
 sep="")

148
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 Rank
 1
 Rank
 2
 Rank
 3
 Rank
 4
 Rank
 5

##
 judge1
 3
 2
 5
 4
 1

##
 judge2
 2
 4
 3
 1
 5

##
 judge3
 4
 1
 2
 5
 3

##
 judge4
 1
 5
 4
 3
 2

##
 judge5
 5
 3
 1
 2
 4

##
 judge6
 1
 4
 5
 2
 3

##
 judge7
 5
 1
 3
 4
 2

##
 judge8
 3
 5
 2
 1
 4

##
 judge9
 2
 3
 4
 5
 1

##
 judge10
 4
 2
 1
 3
 5

##
 judge11
 3
 2
 5
 4
 1

##
 judge12
 2
 4
 3
 1
 5

##
 judge13
 4
 1
 2
 5
 3

##
 judge14
 1
 5
 4
 3
 2

##
 judge15
 5
 3
 1
 2
 4

##
 judge16
 1
 4
 5
 2
 3

##
 judge17
 5
 1
 3
 4
 2

##
 judge18
 3
 5
 2
 1
 4

##
 judge19
 2
 3
 4
 5
 1

##
 judge20
 4
 2
 1
 3
 5

The downside of Williams’s Latin square designs is that the number of
samples (k) to be evaluated dictates the number of judges. For an even number
of samples you must have a multiple of k judges and a multiple of 2k judges
for an odd number of samples.
As the total number of judges in your study may not always be exactly

known in advance (e.g. participants not showing up to your test, extra
participants recruited at the last minute), it can be useful to add some
flexibility to the design. Of course, additional rows would depart from the
perfectly balanced design, but it is possible to optimize them using Federov’s
algorithm thanks to the optFederov()
function of the {AlgDesign} package,
by specifying augment
 =
 TRUE. For example we can add three more judges
to the Williams Latin square design that we just built for nbP = 5 products
and 10 judges, hence leading to a total number of nbP = 13 judges. Note
that this experiment is designed so that each judge will evaluate all the
products; therefore, the number of samples per judge (nbR) equals the number
of products (nbP).

library(AlgDesign)

nbJ=13

nbP=5

nbR=nbP

wdes
5P10J
 <- WilliamsDesign(nbP)

tab
 <- cbind(prod=as.vector(t(wdes
5P10J)),

149
Data
Collection

judge=rep(1:nbJ,each=nbR),

rank=rep(1:nbR,nbJ))

optdes
5P13J
 <- optFederov(~prod+judge+rank,
 data=tab,
 augment=TRUE,

nTrials=nbJ*nbP,
 rows=1:(nbJ*nbP),

nRepeats
 =
 100)

xtabs(optdes
5P13J$design)

##
 rank

##
 judge
 1
 2
 3
 4
 5

 1
 1 3 4 2 5

 2
 3 2 1 5 4

 3
 2 5 3 4 1

 4
 5 4 2 1 3

 5
 4 1 5 3 2

 6
 5 2 4 3 1

 7
 4 5 1 2 3

 8
 1 4 3 5 2

 9
 3 1 2 4 5

 10 2 3 5 1 4

 11 1 3 4 2 5

 12 3 2 1 5 4

 13 2 5 3 4 1

In the code above, xtabs()
 is used to arrange the design in a table format
that is convenient for the experimenter.
Note that it would also be possible to start from an optimal design and

expand it to add one judge at a time. The code below first builds a design for
5 products and 13 judges and then adds one judge to make the design optimal
for 5 products and 14 judges.

nbJ=13

nbP=5

nbR=nbP

optdes
5P13J
 <- optimaldesign(nbP,
 nbP,
 nbR)$design

tab
 <- cbind(prod=as.vector(t(optdes
5P13J)),

judge=rep(1:nbJ,each=nbR),

rank=rep(1:nbR,nbJ))

add
 <- cbind(prod=rep(1:nbP,nbR),

judge=rep(nbJ+1,nbP*nbR),

rank=rep(1:nbR,each=nbP))

optdes
5P14J
 <- optFederov(~prod+judge+rank,
 data=rbind(tab,add),

augment=TRUE,
 nTrials=(nbJ+1)*nbP,

rows=1:(nbJ*nbP),
 nRepeats
 =
 100)

150
 Data
Science
 for
Sensory
and
Consumer
Scientists

8.1.3
 Balanced
 Incomplete
Block
Designs
 (BIBD)

Sensory and consumer scientists may sometimes consider using incomplete
designs, that is, experiments in which each judge evaluates only a subset
of the complete product set (Wakeling and MacFie, 1995). In this case, the
number of samples evaluated by each judge remains constant but is lower than
the total number of products included in the study.
You might want to choose this approach, for example, if you want to

reduce the workload for each panelist and limit sensory fatigue, boredom,
and inattention. It might also be useful when you cannot “afford” a complete
design because of sample-related constraints (limited production capacity,
very expensive samples, etc.). The challenge then is to balance sample
evaluation across the panel as well as the context (i.e. other samples) in which
each sample is being evaluated. For such a design, you thus want each pair of
products to be evaluated together the same number of times.
The optimaldesign()
function of {SensoMineR} can be used to search for

a Balanced Incomplete Block Design (BIBD). For instance, let’s imagine that
10 panelists are evaluating 3 out of 5 possible samples. The design can be
defined as follows:

incompDesign1
 <- optimaldesign(nbPanelist=10,

nbProd=5,

nbProdByPanelist=3)

incompDesign1$design

##
 Rank
 1
 Rank
 2
 Rank
 3

##
 Panelist
 1
 4
 1
 5

##
 Panelist
 2
 3
 2
 5

##
 Panelist
 3
 3
 5
 4

##
 Panelist
 4
 5
 4
 2

##
 Panelist
 5
 5
 3
 1

##
 Panelist
 6
 1
 2
 3

##
 Panelist
 7
 1
 4
 2

##
 Panelist
 8
 4
 1
 3

##
 Panelist
 9
 2
 3
 4

##
 Panelist
 10
 2
 5
 1

BIBD are only possible for certain combinations of number of treatment
(products), number of blocks (judges), and block size (number of samples
per judge). Note that optimaldesign()
will yield a design even if it is not
balanced but it will also generate contingency tables allowing you to evaluate
the design’s orthogonality and how well balanced are order and carry-over
effects.

151
Data
Collection

You can also use the {crossdes} package to generate a BIBD with this sim
ple syntax: find.BIB(trt,
 b,
 k,
 iter), with trt
 the number of products
(here 5), b
the number of judges (here 10), k
the number of samples per judge
(here 3), and iter
 the number of iteration (30 by default). Furthermore,
the isGYD()
 function evaluates whether the incomplete design generated is
balanced or not. If the design is a BIBD, you may then use williams.BIB()

to combine it with a Williams design to balance carry-over effects.

library(crossdes)

incompDesign2
 <- find.BIB(trt=5,
 b=10,
 k=3)

isGYD(incompDesign2)

williams.BIB(incompDesign2)

Incomplete balanced designs also have drawbacks. First, from a purely
statistical perspective, they are conducive to fewer observations and thus
to a lower statistical power. Product and Judge effects are also partially
confounded even though the confusion is usually considered as acceptable.

8.1.4

 Incomplete
Designs
and
Sensory
 Informed
Designs

for
Hedonic
Tests

One may also be tempted to use incomplete balanced block designs for hedonic
tests. However, proceeding this way is likely to induce framing bias. Indeed,
each participant will only see part of the product set which would affect their
frame of reference if the subset of the products they evaluate only covers a
limited area of the sensory space.
Suppose you are designing a consumer test of chocolate chip cookies in

which a majority of cookies are made with milk chocolate while a few
cookies are made with dark chocolate chips. If a participant only evaluates
samples that have milk chocolate chips, this participant will not know about
the existence of dark chocolate and will potentially give very different scores
compared to what they would have if they had a full view of the product
category.
To reduce the risks incurred by the use of BIBD, an alternative strategy is

to use a sensory informed design. Its principle is to allocate each panelist a
subset of products that best cover the sensory diversity of the initial product
set. Of course, this supposes that one has sensory data to rely on in the first
place. Such data could derive from conventional descriptive analysis but rapid
methods such as free sorting or napping could suffice. Practically, covering the

152
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory diversity amounts to maximizing the sensory distance between drawn
products. Franczak et al. (2015) suggest an iterative algorithm to build such
a design.
Ben Slama et al. (1998) have also proposed to select D-optimal subsets of

products as a way to reduce the number of products in preference mapping
studies.2

Selecting a D-optimal subset of products can be easily done with the
Federov algorithm. Let’s take, for example, the cocktail data set from the
{SensoMineR} package. It contains a sensory descriptive analysis of 16
cocktails (senso.cocktail). Now, let’s pretend that we want to conduct
a hedonic test on these cocktails in the view of performing a preference
mapping. Asking each consumer to evaluate all 16 cocktails may be considered
to be too much (even if they don’t contain alcohol!). We will thus use the
optFederov()
 function of {AlgDesign} to select a D-optimal subset of, say,
8 cocktails. For that, we first need to run a PCA on the full sensory data.
Then we use the coordinates of the products on the principal components
(PC) to build our design. Here, we only pick the first two PC dimensions,
but the analyst could select other dimensions that are deemed relevant to
describe the product set (but keep in mind that increasing the number of
dimensions will require a higher minimum number of products to be able to
fit the corresponding models).

library(SensoMineR)

data(cocktail)

cocktail
pca
 <- senso.cocktail
 %>%

PCA(graph
 =
 FALSE)

Prod
coord
 <- cocktail
pcaindcoord[,1:2]

Assuming a full quadratic model for the preference mapping (see section
10.4.4), we can now use optFederov()
 to select a D-optimal subset of the
desired number of products (here ntrials=8). The resulting selection will
maximize the determinant of the information matrix (X’X) corresponding to
the quadratic model. However, we can also decide to specify products that we
want to be kept in the selection. Here, let’s impose the selection of products
7 and 13.

2
 See
 also
 Rivière
 et
 al.
 (2006),
 for
 an
 interesting
 comparison
 of
 this
 approach
 with

an
 adaptive
 sequential
 consumer
 test
 for
 preference
 analysis
 using
 Kano’s
 model
 of

satisfaction.

153
Data
Collection

library(AlgDesign)

Dopt
des
 <- optFederov(~quad(.),
 Prod
coord,
 nTrials=8,

criterion="D",

augment
 =
 TRUE,

rows
 =
 c(7,13))

The resulting selection is listed in Dopt
des$rows
 and can be highlighted
on the PCA score plot using {factoextra} and the col.ind
 =
 argument
(Figure 8.1).

library(factoextra)

Prod
coord
 <- Prod
coord
 %>%

as
tibble()
 %>%

rownames
to
column("Product")
 %>%

mutate(DOpt
subset
 =
 ifelse(Product
 %in%
 Dopt
des$rows,

"selected",
 "others"))

fviz
pca
ind(cocktail
pca,

geom.ind
 =
 c("point",
 "text"),

pointsize
 =
 3,

labelsize
 =
 4,
 repel
 =
 TRUE,

col.ind
 =
 Prod
coord$DOpt
subset,

palette
 =
 c("#949494",
 "#00AFBB"),

legend.title
 =
 "Subset",

show.legend.text
 =
 FALSE,

mean.point
 =
 FALSE

)

If needed, the coordinates of the D-optimal selection Dopt
des$design
can
be exported as a tibble and displayed with flextable
(Table 8.1):

library(flextable)

Subset
coord
 <- Dopt
des$design
 %>%

as
tibble()
 %>%

mutate("Product"
 =
 factor(Dopt
des$rows),
 .before=1)

Subset
table
 <- flextable(Subset
coord)
 %>%

colformat
double(digits
 =
 2)

Individuals – PCA

D
im

2
(2

4.
1%

)

1

6 72

4

11
Subset3 2 158 others50

selected

9 13
10

–2
14

12 16

–5.0 –2.5 0.0 2.5
Dim1 (53.2%)

154
 Data
Science
 for
Sensory
and
Consumer
Scientists

FIGURE
8.1

Highlighted
D-optimal
selection
of
products
on
the
sensory
map.

TABLE
8.1

Basic
flextable

Product
 Dim.1
 Dim.2

1
 0.99
 3.51

4
 −4.63
 1.68

7
 1.49
 1.89

8
 0.08
 0.48

12
 −4.21
 −2.72

13
 3.99
 −0.70

15
 4.31
 0.55

16
 1.38
 −3.30

Finally, it could be useful to calculate the determinant of the information
matrix (assuming a quadratic model):

Xopti
 =
 model.matrix(~
 quad(.),
 Dopt
des$design)

det(t(Xopti)%*%Xopti)

##
 [1]
 3.414e+11

155
Data
Collection

In itself, this value is not really telling. However, it can be compared to the
determinant of the information matrix (X’X) for another subset (e.g., without
the forced selection of two products, or a subset of different size) and see by
how much it has improved or deteriorated. The determinant could also be
used in an optimization loop to define complementary subsets to be allocated
to different consumers or groups of consumers.

8.2
 Product-related
Designs

Because of their contribution to product development, sensory and consumer
scientists often deal with DoE other than sensory designs strictly speaking (see
for instance Gacula, 2008). Sensory-driven product development is indeed very
frequent and implies strong interconnection between the measure of sensory
responses and the manipulation of product variables (e.g. ingredients) or
process variables (e.g. cooking parameters) (for a review, see Yu et al., 2018).
In order to get the most of sensory experiments, it is thus essential to

ensure that the products or prototypes to be tested will be conducive to
sound and conclusive data. First and foremost, as in any experimental science,
one wants to avoid confounding effects. In addition to this and to put it more
generally, the goal of DoE is to define which trials to run in order to be able to
draw reliable conclusions without spending time and resources on unnecessary
trials. In other words, one seeks maximum efficiency. This is especially critical
in sensory science to limit the number of products to be evaluated and to keep
panelists’ workload under control.

8.2.1
 Factorial
Designs

Full factorial designs are of course commonly used and their application is
usually straightforward. They won’t be detailed here. However, it is worth
noting that when the number of factors increases, the corresponding number
of trials can quickly become daunting (e.g., 2k
 trials for a two-level design
with k factors). Thus, always in the view of sparing experimental resources,
incomplete, and fractional designs are frequently used.
Several strategies can be used to define which experiments to conduct (Dean

et al., 2017; Lawson, 2014; Rasch et al., 2011). One option would be to build an
optimal design thanks to the {AlgDesign} or the {OptimalDesign} packages
that calculate the experimental designs for D, A, and I criteria. An example
is given below in the case of a mixture design but would apply to regular
factorial designs as well.

8.2.2
 Mixture
 Designs

In many projects (e.g. in the food industry, in the personal care indus
try), optimizing a product’s formula implies adjusting the proportions of its

156
 Data
Science
 for
Sensory
and
Consumer
Scientists

ingredients. In such cases, the proportions are interdependent (the total sum
of all components of a mixture must be 100%). Therefore, these factors (the
proportions) must be treated as mixture components. Mixture designs are
usually represented using ternary diagrams.
The {mixexp} package offers a very convenient way to do this. In addition

to creating the design, DesignPoints()
allows to display the corresponding
ternary diagram. Below is the example of a simplex-lattice design for three
components and three levels obtained thanks to the function SLD
(Figure 8.2):

library(mixexp)

mdes
 <- SLD(fac=3,
 lev=3)

DesignPoints(mdes)

x1

0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2 0.8

0.6

0.4

0.2

Fr
ac

tio
n

x2

Fraction
x1

x2 x3

Fraction x3

FIGURE
8.2

Ternary
diagram
of
a
simplex-lattice
mixture
design
with
three
components.

Suppose that we want to adjust a biscuit recipe to optimize its sensory
properties, we can design an experiment in which the proportion of ingredients
vary. Let’s play with butter, sugar, and flour. All three combined would
account for 75% of the dough recipe and the remaining 25% would consist
of other ingredients that we won’t modify here (eggs, milk, chocolate, etc.).
Besides, not any amount of these three ingredients would make sense (a biscuit
with 75% of butter is not a biscuit, even in Brittany). We thus need to add

157
Data
Collection

constraints (ex: butter varies between 15 and 30% of this blend, sugar varies
between 25 and 40%, and flour varies between 30 and 50%). Given this set
of constraints (defined by uc
 for the upper contraints and lc
 for the lower
constraints), we can use mixexp::Xvert
 to find the extreme vertices of our
design (by also including a edge centroid using ndm=1):

mdes2
 <- Xvert(nfac=3,
 uc=c(.30, .40, .50),
 lc=c(.15, .25, .30),

ndm
 =
 1,
 plot
 =
 FALSE)
 %>%

mutate(across(where(is.numeric),
 round,
 digits
 =
 3))

However, this design implies creating 11 mixtures, which is more than
needed to apply a Scheffé quadratic model (Lawson and Willden, 2016). To
reduce the number of mixtures and still allow fitting a quadratic model, we
can use the optFederov()
 function from {AlgDesign} to select a D-optimal
subset. Here, let’s limit to nine products (nTrials=9) (Figure 8.3).

MixBiscuits
 <- optFederov(~
 -1+x1+x2+x3+x1:x2+x1:x3+x2:x3+x1:x2:x3,

mdes2,
 nTrials=9)

DesignPoints(MixBiscuits$design,
 axislabs
 =
 c("Butter","Sugar","Flour"),

pseudo
 =
 TRUE)

x1

0.36 0.42 0.48 0.54

0.49

0.43

0.37

0.31 0.39

0.33

0.27

0.21

Fr
ac

tio
n

Su
ga

r Fraction
Butter

x2 x3

Fraction Flour

FIGURE
8.3

D-optimal
mixture
design
with
constrained
 factors.

158
 Data
Science
 for
Sensory
and
Consumer
Scientists

Once the design is built, it could be desirable to randomize the order in
which each sample is being made to avoid further biases. Suppose that we
obtain average liking scores for our nine biscuits as given in Table 8.2 and
stored in Bmixt:

Bmixt
 <- MixBiscuits$design
 %>%

as
tibble()
 %>%

dplyr::select(-4)
 %>%

mutate(Product
 =
 LETTERS[1:9],
 .before=x1)
 %>%

mutate(scores
 =
 c(7.5,
 5.4,
 5.5,
 7.0,
 6.0,
 8.0,
 5.8,
 6.8,
 7.9))
 %>%

rename("Butter"=x1,
 "Sugar"=x2,
 "Flour"=x3,
 "Liking"=scores)

TABLE
8.2

Average
 liking
scores
obtained
for
the
biscuits
from

the
mixture
design

Product
 Butter
 Sugar
 Flour
 Liking

A
 0.300
 0.250
 0.450
 7.5

B
 0.150
 0.400
 0.450
 5.4

C
 0.300
 0.400
 0.300
 5.5

D
 0.250
 0.250
 0.500
 7.0

E
 0.150
 0.350
 0.500
 6.0

F
 0.300
 0.325
 0.375
 8.0

G
 0.225
 0.400
 0.375
 5.8

H
 0.200
 0.300
 0.500
 6.8

I
 0.230
 0.330
 0.440
 7.9

Once the data are collected we can use the mixexp::MixModel()
 function
to fit a linear model and mixexp::ModelPlot()
to draw a contour plot. This
simple code would allow to get a contour plot that shows where would be the
optimal area for the biscuit formulation (Figure 8.4).

Regardless of the construction of the mixture design, ternary diagrams
are easy to plot with packages such as {ggtern} or {Ternary}. {ggtern}
is particularly interesting since it builds on {ggplot2} and uses the same
syntax.

invisible(

capture.output(res
 < MixModel(Bmixt,
 response="Liking",

mixcomps=c("Butter","Sugar","Flour"),

model=4)))

X1

-10
-8

-6
-4

-2
0 2

2

2

4

4

4

6
6

6

8

0.36 0.42 0.48 0.54

0.37

0.31

0.33

Su
ga

r Butter

0.39

0.43 0.27

0.49 0.21

X2 X3

Flour

159
Data
Collection

ModelPlot(model
 =
 res,

dimensions
 =
 list(x1="Butter",
 x2="Sugar",
 x3="Flour"),

lims
 =
 c(0.15,0.30,0.25,0.40,0.30,0.50),
 constraints
 =
 TRUE,

contour
 =
 TRUE,
 cuts
 =
 12,
 fill
 =
 TRUE,
 pseudo
 =
 TRUE,

axislabs
 =
 c("Butter",
 "Sugar",
 "Flour"))

FIGURE
8.4

Modeled
 liking
displayed
as
a
contour
plot
on
the
ternary
diagram.

According to these data, the optimal biscuit would have 31% of sugar,
27% of butter, and 42% of flour, and would reach a predicted liking score
larger than 8.

8.2.3
 Screening
Designs

Product development is not a monolithic process and in the early stages
of a project it could be extremely useful to use a design of experiment in
combination with sensory evaluation to identify most influential factors of
interest (Mao and Danzart, 2007; Pineau et al., 2019). Factorial and mixture
designs belong to the product developers’ essential toolkit and could serve this
purpose. In practice however, they can only include a relatively limited number
of factors. By contrast, fractional factorial designs (aka screening designs) are
extremely efficient at dealing with many factors, pending some sacrifices on
the estimation of interactions and quadratic effects. If, for example, we want
to estimate the effect of 5 factors and assume that three- and four-factor

160
 Data
Science
 for
Sensory
and
Consumer
Scientists

interactions are negligible, we can then build a 25-1
 design (of, thus, 16 trials
instead of 32) in which main effects are confounded with four-way interactions,
and two-factor interactions are confounded with three-factor interactions. This
design can be easily obtained with the {FrF2} package, with this simple
command:

library(FrF2)

FrF2(nruns=16,
 nfactors=5,
 randomize=FALSE)

To reduce the number of trials even further, we can go as in the example
below with a quarter fraction 2k-2
 design, in which each effect that can be
estimated is confounded with three other interactions.

FrF2(nruns=8,
 nfactors=5,
 randomize=FALSE)

Although fractional designs are only scarcely used, studies have shown that
they could greatly contribute to sensory-led development of food (Baardseth
et al., 2005; Modi and Prakash, 2008; Rytz et al., 2017; Pineau et al., 2019)
as well as non-food product (Dairou et al., 2003).
For higher number of factors, Plackett-Burman designs are the most com

monly used fractional factorial designs. They can be easily obtained with the
pb()
 function of the {FrF2} package. For example, FrF2::pb(12)
 yields a
12-trial design that allows to test the effects of 11 factors.

8.2.4
 Sensory
 Informed
Designs
 for
Product
Development

Eventually, it is worth mentioning that, in some cases, sensory properties
themselves can be used as factors and thus be implemented in a DoE. In
this line of thinking, Naes and Nyvold have suggested that working this way
would leave more scope for creativity (Naes and Nyvold, 2004). Naturally,
this implies that product developers (1) have access to the measure of
these properties and (2) can control the level of these properties and their
interactions. These requirements are rarely met in food development but can
be more easily implemented in some nonfood applications (see for example
Petiot, 2022).
A specific application consists of using the sensory information available to

make a selection of a subset of products, as described above (section 8.1.4).

161
Data
Collection

8.3
 Execute

Sir Ronald Fisher famously said in his presidential address to the first Indian
statistical congress (1938): “To consult the statistician after an experiment is
finished is often merely to ask him to conduct a post-mortem examination. He
can perhaps say what the experiment died of.”
Hopefully, the sections above would have helped sensory and consumer

scientists designing their experiment in a way that would warrant them
relevant and meaningful data that are obtained with maximum efficiency.
Fisher continues: “To utilise this kind of experience the statistician must be

induced to use his imagination, and to foresee in advance the difficulties and
uncertainties with which, if they are not foreseen, his investigations will be
beset.” Fortunately, we can spare the reader some of these imagination efforts
and reiterate the fundamental principles of sensory evaluation that should
help avoiding major pitfalls.3

• Individual
evaluation

Probably the most important requirement for the validity of sensory
measurements is to perform individual evaluation. Sensory responses are
very easily biased when judges can communicate. When this happens,
observations cannot be considered independent which would rule out
most statistical tests. Although this principle is generally accepted and
correctly applied, some situations may be more challenging in this regard
(such as project team meetings, b2b sample demonstration, tasting
events, etc.). Individual evaluation is usually ensured by the use of
partitioned sensory booths, but it can also be achieved by other means
(table-top partitions, curtains, separate tables, or separate rooms). There
are some cases, in consumer research, where interactions between sub
jects are allowed or even encouraged because they correspond to real-
life situations. But these are exceptions to the rule, and in such cases,
observations are to be considered at the group level.

• Balanced
order
effects
and
treatments

We already discussed the importance of balancing the evaluation order
for first-order and carry-over effects (Section 8.1.2). We cannot overstate
how necessary this precaution is to get valid data. On top of having to
deal with such effects, sensory scientists sometimes want to test how
products are perceived (or liked) under different conditions (e.g. blind
vs. branded, with/without nutritional information, in the lab vs. at
home, etc.). Choice must then be made between a within-group design

3
 For
a
more
detailed
description
of
these
principles,
we
refer
the
reader
to
comprehensive

sensory
evaluation
textbooks.
See
 for
 instance
Lawless
and
Heymann
(2010);
Civille
and

Carr
(2015);
and
Stone
et
al.
(2020).

162
 Data
Science
 for
Sensory
and
Consumer
Scientists

(in which participants evaluate the products under different conditions)
and a between-group design (in which participants evaluate the product
under one condition only). As often in consumer science, there is no
perfect experiment and these two options have pros and cons. For
instance, the within-group design would be more powerful and would
allow data analysis at the individual level, but it would be more likely
to induce response biases. Note that in both cases, participants must
be randomly assigned to one group (corresponding either to a given
condition or to the order in which each condition is being experienced if
the study follows a within-group design).

• Blind
evaluation
and
controlled
evaluation
conditions

The primary goal of most sensory tests is to measure panelists’ responses
based on sensory properties only, without the interference of other
variables that are seen as sources of potential biases. For this reason,
tests are most frequently conducted on a blind-labeled basis without
any information regarding the samples being tested (product identity,
brand, price, nutritional facts, claims, etc.). Samples are thus usually
blind labeled with random three-digit codes. This way, focus is placed
on sensory perception and not on memory or expectations. Even infor
mation about the presence of duplicates or about the total number of
products included in the design could induce biases. However, it is not
always possible to hide all information (e.g., when the brand is printed
directly on the product). It should also be noted that information is
sometimes included as part of the study design to precisely evaluate the
effect of that information. Besides, when sensory evaluation is used for
market research goals, evaluation of the full mix can be preferred.

Along the same lines and always in the view of collecting accurate and
repeatable data, sensory scientists strive to control evaluation conditions.
Sensory booths serve this purpose as they allow individual evaluation
under controlled and standardized conditions. Nevertheless, for con
sumer tests (especially for hedonic tests), researchers may value the role
of context in judgment construction and decision-making, and thus seek
to contextualize their experimental setup for gains in ecological validity
(Galiñanes Plaza et al., 2019).4

• Separate
affective
 from
analytical
tasks

For sensory evaluation, a clear distinction is usually made between
analytical measurements (whereby emphasis is placed on description
of sample characteristics or on differences and similarities between
samples) and affective measurements (whereby focus is placed on liking,
preferences, and emotions that may derive from the consumption of a

4
 Sensory
and
consumer
research
facilities
such
as
 living
 labs
or
 immersive
spaces
are
used

in
efforts
to
better
account
 for
the
role
of
context
without
compromising
on
control.
For

more
 information
on
this
topic,
see
Meiselman
(2019).

163
Data
Collection

product). Because the tasks involved in these two types of measurements
are very different, the general recommendation is to conduct them
separately (and most often, with different people). Proceeding otherwise
would risk inducing cognitive biases and collecting skewed – or even
meaningless – data. For example, if the goal of a study is to measure how
much consumers like a given set of food products, it wouldn’t make sense
to ask trained panelists to rate their liking for the products they have
been trained to describe. They can certainly do it, but their judgment
of the products is likely to be changed by that training and by their
extensive exposure to the product. Therefore, they can no longer be
considered normal consumers. This is relatively commonsense. However,
the risk of biases can sometimes be more subtle. Indeed, it might be
tempting to ask consumers to give their liking for samples and, within the
same session, to describe the same samples for a number of attributes. By
doing so, you risk changing participants’ mindset (e.g. by over-focusing
on specific attributes) and thus altering liking scores (Popper et al., 2004
and Prescott et al., 2011). There is much debate though about which
type of descriptive tasks would actually lead to biased responses (Jaeger
et al., 2015). With this in mind, experimenters might still consider
conducting combined measurements for product optimization, especially
to get rough estimates of product specifications to target, in the first
stage of product development. In this objective, Just-about-right (JAR)
scales or the Ideal Profile Method (IPM) are very popular tasks. They
provide a very direct way to optimize products’ sensory characteristics
(Rothman and Parker, 2009 and Worch et al., 2013). Alternately, one
might expect that “untrained” consumers cannot be used for descriptive
analysis. However in the past few decades, the development of descriptive
methods that do not require training and that can be achieved in a single
session has made consumer-based descriptive analysis possible, reliable,
and endorsed (Varela and Ares, 2012; Ares and Varela, 2017; and Pineau
et al., 2022).

• Sample
availability

An obvious, but essential, condition for conducting sensory evaluation
is to have samples available for testing. It is surprising to see how many
sensory studies fail simply because the experimenters have not antic
ipated the production of experimental samples in sufficient quantities
or procurement of commercial products. Especially, remember that for
many sensory tests, samples are needed for training in addition to the
evaluation itself. No data analysis can make up for a lack of samples,
no matter how sophisticated it may be. We therefore strongly advise
experimenters to review their need for samples when they design a study
and, if they do not make the samples themselves, to discuss with their
clients or project teams (R&D, pilot plant, suppliers, etc.) to ensure that
samples will be available over the course of the study.

164
 Data
Science
 for
Sensory
and
Consumer
Scientists

• Regulations
 for
studies
with
human
subjects

Running a sensory or a consumer study implies working with human
subjects at some point (online surveys and simple passive observation
count!). Therefore, experimenters must ensure that their protocol com
plies with local and international rules. Most often, research projects
should be approved by an Institutional Review Board (IRB) or an
appropriate ethical committee. As far as data are concerned, it is also
important to ensure that data collection, use, and storage comply with
applicable regulations such as EU’s General Data Protection Regulation
(GDPR) or the California Consumer Privacy Act (CCPA).

• Quantification

Finally, it is critical that sensory and consumer scientists anticipate
what type of analysis they will conduct in accordance with the exact
information they are looking for and thus define what data type and
scaling method they will adopt (see OMahony, 1986, and Lawless and
Heymann, 2010). The means of quantification (counts, sorting, ranking,
scaling, mapping, reaction time, etc.) has usually been set long before
execution, when the study was designed. When time comes to run the
tests, the experimenter will have to rely on a proper and reliable way
to collect data. Nowadays, commercial sensory software solutions allow
to collect any type of data, including temporal information. However,
in some cases, the experimenter may choose to ask panelists to use
paper and pencil, or just to give a verbal answer, or to arrange the
samples physically on a bench. Care must then be taken to ensure proper
coding scheme and data entry. At this stage, it is important to keep as
much information as possible on the experimental details, such as who
evaluated which sample, in which order, at what time, etc. It is usually
advised to try to enter data in a single spreadsheet with one column per
variable and one line per observation, but in some rare cases, it might
be more convenient to enter each panelist’s data in separate tabs. This
could be the case, for example, for methods like free sorting or napping.
Note that entering data is prone to mistakes and typos, especially when
entered manually into a spreadsheet. In the next sections, we will see
how to import data from that spreadsheet into R (Section 8.4) and how
to check for outliers and missing values (Section 9.2.2).

8.4
 Import

It is a truism, but to analyze data we first need data. If the data are already
available in R, then the analysis can be performed directly. However, in most
cases, the data are stored outside the R environment and need to be imported.

165
Data
Collection

In practice, the data might be stored in as many formats as one can imagine,
despite how it ends up being a fairly common solution (.txt file, .csv file, or
.xls(x) file) or software specific (e.g. Stata, SPSS, etc.).
Since it is very common to store the data in Excel spreadsheets (.xls(x))

due to its simplicity, the emphasis is on this solution. Fortunately,
most generalities presented for Excel files also apply to other formats
through base::read.table()
 for .txt files, base::read.csv()
 and
base::read.csv2()
 for .csv files or through the {read} package (which is
part of the {tidyverse}).
For other (less common) formats, you may find alternative packages that

would allow importing your files in R. Particular interest can be given to the
package {rio} (rio stands for R Input and Output) which provides an easy
solution that:

1. Handles a large variety of files,

2. Guess the type of file it is,

3. Provides tools to import, export, and convert almost any type of data
format, including .csv, .xls(x), or data from other statistical software
such as SAS (.sas7bdat and .xpt), SPSS (.sav and .por), or Stata (.dta).

Similarly, the package {foreign} provides functions that allow importing
data stored from other statistical software (incl. Minitab, S, SAS, Stata,
SPSS, etc.).
Although Excel is most likely one of the most popular way of storing

data, there are no {base} functions that allow importing such files directly.
Fortunately, many packages have been developed for that purpose, including
{XLConnect}, {xlsx}, {gdata}, and {readxl}. Due to its convenience and
speed of execution, we will focus on {readxl}.

8.4.1
 Importing
Structured
Excel
File

First, let’s import the biscuits sensory profile.xlsx workbook using
readxl::read
xlsx()
 by informing as parameter the location
 of the
file and the sheet
 where it is stored. For convenience, we are using the
{here}5
 package to retrieve the path of the file (stored in file
path).
This file is said to be structured as all the relevant information is

already stored in the same sheet in a structured way. In other words, no
decoding is required here, and there are no “unexpected” rows or columns
(e.g. empty lines, or lines with additional information regarding the data that
is not data):

5
 The
package
{here}
 is
very
handy
as
 it
provides
an
easy
way
to
retrieve
your
file’s
path

(within
your
working
directory)
by
simply
giving
the
name
of
the
file
and
folder
in
which

they
are
stored
 in.

166
 Data
Science
 for
Sensory
and
Consumer
Scientists

• The first row within the Data sheet of biscuits sensory profile.xlsx con
tains the headers;

• From the second row onward, only data are being stored.

Since this data will be used for some analyses, it is assigned data to an R
object called sensory.

library(here)

file
path
 <- here("data","biscuits
sensory
profile.xlsx")

library(readxl)

sensory
 <- readxl::read
xlsx(file
path,
 sheet="Data")

To ensure that the importation went well, it is advised to print sensory

after importation. Since {readxl} has been developed by Hadley Wickham
and colleagues, its functions follow the {tidyverse} principles and the data
thus imported are stored in a tibble. Let’s take advantage of the printing
properties of a tibble
to evaluate sensory:

sensory

##
 #
 A
 tibble:
 99
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 P01
 52.8
 30
 22.8
 9.6
 22.8

##
 2
 J01
 P02
 48.6
 30
 13.2
 10.8
 13.2

##
 3
 J01
 P03
 48
 45.6
 17.4
 7.8
 14.4

##
 4
 J01
 P04
 46.2
 45.6
 37.8
 0
 48.6

##
 #
 ...
 with
 95
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

sensory
 is a tibble with 99 rows and 34 columns that includes the Judge

information (first column, defined as character), the Product
 information
(second column, defined as character), and the sensory attributes (third
column onward, defined as numerical or dbl).

8.4.2
 Importing
Unstructured
Excel
File

In some cases, the data are not so well organized/structured, and may need
to be decoded. This is the case for the workbook entitled biscuits traits.xlsx.

167
Data
Collection

In this file:

• The variables’ name have been coded and their corresponding names
(together with some other valuable information we will be using in
Chapter 10) are stored in a different sheet entitled Variables ;

• The different levels of each variable (including their code and correspond
ing names) are stored in another sheet entitled Levels.

To import and decode this data set, multiple steps are required:

1. Import the variables’ name only;

2. Import the information regarding the levels;

3. Import the data without the first line of header, but by providing the
correct names (obtained in the step 1);

4. Decode each question (when needed) by replacing the numerical code
with their corresponding labels.

Let’s start with importing the variables’ names from biscuits traits.xlsx
(sheet Variables)

file
path
 <- here("data","biscuits
traits.xlsx")

var
names
 <- readxl::read
xlsx(file
path,
 sheet="Variables")

##
 #
 A
 tibble:
 62
 x
 5

##
 Code
 Name
 Direction
 Value
 ‘Full
 Question‘

##
 <chr>
 <chr>
 <chr>
 <dbl>
 <chr>

##
 1
 Q1
 Living
 area
 <NA>
 NA
 <NA>

##
 2
 Q2
 Housing
 <NA>
 NA
 <NA>

##
 3
 Q3
 Judge
 <NA>
 NA
 <NA>

##
 4
 Q4
 Height
 <NA>
 NA
 <NA>

##
 #
 ...
 with
 58
 more
 rows

In a similar way, let’s import the information related to the levels of each
variable, stored in the Levels sheet. A deeper look at the Levels sheet shows
that only the coded names of the variables are available. In order to include
the final names, var
names
 is joined (using inner
join).

var
labels
 <- readxl::read
xlsx(file
path,
 sheet="Levels")
 %>%

inner
join(dplyr::select(var
names,
 Code,
 Name),

by=c(Question="Code"))

168
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 #
 A
 tibble:
 172
 x
 4

##
 Question
 Code
 Levels
 Name

##
 <chr>
 <dbl>
 <chr>
 <chr>

##
 1
 Q1
 1
 Urban
 Area
 Living
 area

##
 2
 Q1
 2
 Rurban
 Area
 Living
 area

##
 3
 Q1
 3
 Rural
 Area
 Living
 area

##
 4
 Q2
 1
 Apartment
 Housing

##
 #
 ...
 with
 168
 more
 rows

Ultimately, the data (Data) are imported by substituting the coded names
with their corresponding names. This process can be done by skipping reading
the first row of the data that contains the coded header (skip=1), and by
passing Var
names
as header or column names (after ensuring that the names’
sequence perfectly match across the two tables!).
Alternatively, you can import the data by specifying the range in which the

data is being stored (here ‘range=“A2:BJ108”“).
The data now have the right headers, however, each variable is still coded

numerically. This step to convert the numerical values with their correspond
ing labels is described in Chapter 9.

Datasets sometimes include a sub-header with extra information regarding
the levels of a factor. In such a case, a similar approach should be
used: 1. Start with importing the first n rows of the data that contain
this information using the parameter n
max
 from readxl::read
xlsx. 2.
From this subset, extract the column names. 3. For each variable (when
information is available), store the additional information as a list of tables
that contain the code and their corresponding label. 4. Reimport the data
by skipping these n rows and by manually informing the headers.

8.4.3
 Importing
Data
Stored
 in
Multiple
Sheets

Sometimes, the data to be analyzed are stored in different files or in different
sheets within the same file. This would typically occur if a test involving the
same samples is repeated over time, or has been run simultaneously in different
locations, or simply for convenience for the person who manually collected the
data.
Since the goal here is to highlight the possibilities in R to handle such

situations, we propose to use a small fake example where 12 panelists evaluated
2 samples on 3 attributes in 3 sessions, each session being stored in a different
sheet in excel scrap.xlsx.
A first approach to tackle this problem could be to import each file

separately and to combine them together using the bind
rows()
 function
from the {dplyr} package. However, this solution is not optimal since it is very

169
Data
Collection

tedious when a larger number of sheets is involved, and it is not automated
since the code will no longer run (or be incomplete) when the number of
sessions changes.
Instead, we prefer to fully automate the importation. To do so, let’s first

introduce excel
sheets()
 from {readxl}: this function provides the name
of all the sheets that are available in the file of interest in a list. Then, through
map()
 from the {purrr} package, we apply read
xlsx()
 to all the elements
one by one of obtained with excel
sheets().

path
 <- file.path("data",
 "excel
scrap.xlsx")

files
 <- path
 %>%

excel
sheets()
 %>%

set
names(.)
 %>%

map(~readxl::read
xlsx(path,
 sheet
 =
 .))

As can be seen, this procedure creates a list of tables, with as many elements
as there as sheets in the excel file.

As an alternative, consider using import
list()
from {rio} as it imports
automatically all the sheets from a spreadsheet with one single command.

To convert this list of data tables into one unique data frame, we first
extend the previous code and enframe()
 it by informing that the separation
was based on Session. Once done, the data (stored in data) are still nested
in a list and should be unfolded. Such operation is done with the unnest()

function from {tidyr}:

files
 %>%

enframe(name
 =
 "Session",
 value
 =
 "data")
 %>%

unnest(cols
 =
 c(data))

##
 #
 A
 tibble:
 72
 x
 6

##
 Session
 Subject
 Sample
 Sweet
 Sour
 Bitter

##
 <chr>
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>

##
 1
 Session
 1
 J1
 P1
 46.6
 82.6
 25.5

##
 2
 Session
 1
 J2
 P1
 1.28
 60.1
 13.9

##
 3
 Session
 1
 J3
 P1
 29.1
 48.5
 62.8

##
 4
 Session
 1
 J4
 P1
 29.9
 79.2
 52.7

##
 #
 ...
 with
 68
 more
 rows

This procedure finally returns a tibble with 72 rows and 6 columns, ready
to be analyzed!

170
 Data
Science
 for
Sensory
and
Consumer
Scientists

Few additional remarks regarding the last set of code: 1. Instead of
enframe(), we could have used reduce()
 from {purrr}, or map()
com
bined with bind
rows(). However, both these solutions have the draw
backs that the information regarding the Session
would be lost since it is
not part of the data set itself. 2. The functions enframe()
and unnest()

have their alter-ego in deframe()
and nest()
which aim at transforming a
data frame into a list of tables and in nesting data by creating a list-column
of data frames. 3. In case the different sets of data are stored in different
excel files (rather than different sheets within a file), we could apply a
similar procedure by using list.files()
 (instead of excel
sheets())
from the {base} package, together with pattern
 =
 "xlsx"
 to limit the
search to Excel files present in a predefined folder. Such a solution becomes
handy when many similarly structured files are stored in the same folder
and need to be combined.

9

Data
Preparation

After importing the data, the next crucial step is to ensure that the data
as they are now available are of good quality and are the correct repre
sentation of reality. As an example, during importation, software (such as
R) tends to guess (from reading the file) the nature of each variable. If
such guess is correct in 99% of cases, there are situations in which it is
erroneous. Ignoring such errors can have huge consequences on the final
results and conclusions. The goal of this section is hence to perform some
pre-check of the data and to prepare them for future analyses.

9.1
 Introduction

Data Preparation, which consists of data inspection and data cleaning, is a
critical step before any further Data Manipulation or Data Analysis. Having
a good data preparation procedure ensures a good understanding of the data
and avoids what could be very critical mistakes.
To illustrate the importance of the later point, let’s imagine a study in

which the samples are defined by their three-digit code. During importation,
R would recognize them as number and hence define the Product column
as numerical. Without inspection and correction, any ANOVA that include
the product effect would be replaced by a linear regression (or analysis of
covariance) which of course does not provide the results required (although the
analysis would run without error). Worst, if this procedure is automated and
the p-value associated to the product effect is extracted, the conclusions would
rely on the wrong analysis! A good data preparation procedure is therefore
essential to avoid such unexpected results.
So what does data preparation consist of and how does it differ from data

manipulation? There is clearly a thin line between data preparation (and
particularly data cleaning) and data manipulation, as both these steps share
many procedures (same applies to data manipulation and data analysis for

DOI: 10.1201/9781003028611-9 171

172
 Data
Science
 for
Sensory
and
Consumer
Scientists

instance). Although there are multiple definitions for each step, we decided
to follow the following rule:
Data Preparation includes all the steps required to ensure that the data

match their intrinsic nature. These steps include inspecting the data at hand
(usually through simple descriptive statistics of the data as a whole) and
cleaning the data by eventually correcting importation errors (including the
imputation of missing data). Although some descriptive statistics are being
produced for data inspection, these analyses have no interpretation value
besides ensuring that the data are in the right range or following the right
distribution. For instance, with our sensory data, we would ensure that all
our sensory scores are included between 0 and 100 (negative scores would not
be permitted) but we would not look at the mean or the distribution of the
score per product which would belong to data analyses as it would often lead
to interpretation (e.g. P01 is sweeter than P02).
Data Manipulation is an optional step that adjusts or converts the data

into a structure that is usable for further analysis. This, of course, may lead
to interpretation of the results as it may involve some analyses.
The Data Analysis step ultimately converts the data into results (through

values, graphics, tables, etc.) that provide more insights (through interpreta
tion) about the data.
The data used in this chapter correspond to the biscuits sensory profile.xlsx

that you already imported in Chapter 8 but have few missing values. This
new data set is stored in biscuits sensory profile with NA.xlsx.
As usual, we start this chapter by loading the main packages we need and

by importing this data set:

library(tidyverse)

library(readxl)

library(here)

file
path
 <- here("data","biscuits
sensory
profile
with
NA.xlsx")

sensory
 <- read
xlsx(file
path,
 sheet="Data")

9.2
 Inspect

9.2.1
 Data
 Inspection

To inspect the data, different steps can be used. First, since read
xlsx()

returns a tibble, let’s take advantage of its printing properties to get a feel of
the data:

Data
Preparation
 173

sensory

##
 #
 A
 tibble:
 99
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 P01
 52.8
 30
 22.8
 9.6
 22.8

##
 2
 J01
 P02
 48.6
 30
 13.2
 10.8
 13.2

##
 3
 J01
 P03
 48
 45.6
 17.4
 7.8
 14.4

##
 4
 J01
 P04
 46.2
 45.6
 37.8
 0
 48.6

##
 #
 ...
 with
 95
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

Other informative solutions consist of printing a summary of the data
through summary()
or glimpse():

summary(sensory)

##
 Judge
 Product
 Shiny

##
 Length:99
 Length:99
 Min.
 :
 0.0

##
 Class
 :character
 Class
 :character
 1st
 Qu.:
 9.3

##
 Mode
 :character
 Mode
 :character
 Median
 :21.0

##
 Mean
 :23.9

##
 3rd
 Qu.:38.4

##
 Max.
 :54.0

##
 External
 color
 intensity
 Color
 evenness

##
 Min.
 :
 6.6
 Min.
 :
 6.6

##
 1st
 Qu.:27.0
 1st
 Qu.:19.5

##
 Median
 :34.8
 Median
 :26.4

##
 Mean
 :33.7
 Mean
 :28.2

##
 3rd
 Qu.:42.6
 3rd
 Qu.:37.2

##
 Max.
 :55.2
 Max.
 :53.4

##
 Qty
 of
 inclusions

##
 Min.
 :
 0.0

##
 1st
 Qu.:13.8

##
 Median
 :19.8

##
 Mean
 :20.6

##
 3rd
 Qu.:29.1

##
 Max.
 :40.8

174
 Data
Science
 for
Sensory
and
Consumer
Scientists

glimpse(sensory)

##
 Rows:
 99

##
 Columns:
 10

##
 $
 Judge

##
 $
 Product

##
 $
 Shiny

##
 $
 ‘External
 color
 intensity‘

##
 $
 ‘Color
 evenness‘

##
 $
 ‘Qty
 of
 inclusions‘

##
 $
 ‘Surface
 defects‘

##
 $
 ‘Print
 quality‘

##
 $
 Thickness

##
 $
 ‘Color
 contrast‘

<chr>

<chr>

<dbl>

<dbl>

<dbl>

<dbl>

<dbl>

<dbl>

<dbl>

<dbl>

"J01",
 "J01",
 "J01˜

"P01",
 "P02",
 "P03˜

52.8,
 48.6,
 48.0,
 ˜

30.0,
 30.0,
 45.6,
 ˜

22.8,
 13.2,
 17.4,
 ˜

9.6,
 10.8,
 7.8,
 0.˜

22.8,
 13.2,
 14.4,
 ˜

48.6,
 54.0,
 49.2,
 ˜

38.4,
 35.4,
 25.8,
 ˜

37.8,
 40.2,
 17.4,
 ˜

These functions provide basic yet relevant views of each variable present in
the data, including their types, the range of values, means, and medians, as
well as the first values of each variable.
Such a view might be sufficient for some first conclusions (e.g. Are my

panelists considered as numerical or nominal data? Do I have missing values?),
yet it is not sufficient to fully ensure that the data are ready for analysis. For
the latter, more extensive analyses can be performed automatically in different
ways. These analyses include looking at the distribution of some variables or
the frequencies of character levels.
A first solution comes from the {skimr} package and its skim()
 function.

When applying it to data, an automated extended summary is directly
printed on screen by separating character
type variables from numeric
type
variables:

library(skimr)

skim(sensory)

Another approach consists of generating automatically an html report with
some predefined analyses using create
report()
 from the {DataExplorer}
package.

library(DataExplorer)

create
report(sensory)

175
Data
Preparation

Unless specified otherwise through output
file, output
dir, and
output
format, the report will be saved as an html file on your active
directory as report.html. This report provides many statistics on your data,
including some simple statistics (e.g. raw counts, percentages), informs you
on the structure of your data, as well as on potential missing values. It also
generates graphics to describe your variables (e.g. univariate distribution,
correlations, and PCA).

Note that the analyses performed to build this report can be called directly
within R. For instance, introduce()
 and plot
intro()
 generate the
first part of the report, whereas plot
missing()
and profile
missing()

provide information regarding missing data just to name those.

9.2.2
 Missing
 Data

From the data inspection described in Section 9.2.1, it can be seen that the
data set contains missing values. For instance, the attribute Light
 has one
detected missing value. There are different ways in which we can handle such
missing values. But first, let’s try to find out where these missing values are
and what impact they may have on our analyses (are they structured or
unstructured, etc.)

Visualization
of
Missing
Values

A first approach to inspect and visualize where the missing values are is by
representing them visually. To do so, the {visdat} package provides a neat
solution as it represents graphically the data by highlighting where missing
values are located (Figure 9.1). Such visual representation is obtained using
the vis
miss()
 function:

library(visdat)

sensory
 %>%

vis
miss()

As can be seen, missing values are only present in few variables. However,
Sour
contains up to 10% of missing data, which can be quite critical in some
situations.
If we would want to dig deeper and assess for which (say) products data

are missing, we could recreate the same plots per product. The following code
would generate that for you:

Ju
dg

e (
0%

)

Prod
uc

t (0
%)

Shin
y (

0%
)

Exte
rna

l c
olo

r in
ten

sit
y (

0%
)

Colo
r e

ve
nn

es
s (

0%
)

Qty
of

inc
lus

ion
s (

0%
)

Surf
ac

e d
efe

cts
 (0

%)

Prin
t q

ua
lity

 (0
%)

Thic
kn

es
s (

0%
)

Colo
r c

on
tra

st
(2.

02
%)

Ove
ral

l o
do

r in
ten

sit
y (

0%
)

Fatt
y o

do
r (1

.01
%)

Roa
ste

d o
do

r (0
%)

Cere
al

fla
vo

r (0
%)

Raw
Dou

gh
 fla

vo
r (0

%)

Fatt
y f

lav
or

(2.
02

%)

Dair
y f

lav
or

(0%
)

Roa
ste

d f
lav

or
(0%

)

Ove
ral

l fl
av

or
pe

rsi
ste

nc
e (

0%
)

Salt
y (

0%
)

Swee
t (0

%)

Sou
r (1

0.1
%)

Bitte
r (0

%)

Astr
ing

en
t (0

%)

Warm
ing

 (0
%)

Ini
tia

l h
ard

ne
ss

 (0
%)

Britt
le

(2.
02

%)

Crun
ch

y (
0%

)

Fatt
y i

n m
ou

th
(1.

01
%)

Lig
ht

(1.
01

%)

Dry
in

mou
th

(0%
)

Qty
of

inc
lus

ion
s i

n m
ou

th
(0%

)

Stic
ky

 (0
%)

Melt
ing

 (0
%)

0

25

50

75

100

O
bs

er
va

tio
ns

Missing Present
(0.6%) (99.4%)

176
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory
 %>%

split(.$Product)
 %>%

map(function(data){
vis
miss(data)

})

FIGURE
9.1

Visualization
of
missing
values
 in
the
sensory
data
set
using
visdat::vismiss().

Of course, this approach could also be applied per panelist for instance.
Once we have investigated where the missing values are located, we can

go further by understanding if there are some sorts of relationship between
missing values. In other words, are the missing values random? Or are they
somewhat structured? To answer these questions, the {naniar} package
provides an interesting function called gg
miss
upset()
 which studies the
relationship between missing values (Figure 9.2):

library(naniar)

sensory
 %>%

gg
miss
upset()

It seems here that the only connection between NAs is observed between
Light
and Color
 contrast.

177
Data
Preparation

10

2 2

1 1

0

3

6

9

In
te

rs
ec

tio
n

Si
ze

Sour_NA

Brittle_NA

Fatty flavor_NA
Color contrast_NA

Light_NA

5.0 2.5 0.010.0 7.5
Set Size

FIGURE
9.2

Visualization
 of
 the
 pattern
 of
 missing
 values
 in
 the
 sensory
 data
 thanks
 to

naniar::gg
miss
upset().

Such a relational structure can also be visualized in a scatter plot using the
geom
miss
point()
 function from the same package (Figure 9.3):

ggplot(sensory,
 aes(x=Product,
 y=Sour))+

geom
miss
point()

Here, the relationship between Product
and Sour
is shown. Such a plot may
help decide what to do with missing values, whether it is ignoring, removing,
or predicting them.

Ignoring
Missing
Values

A first solution to handle missing values is to simply ignore them, as many
analyses handle them well. For instance, an ANOVA could be run for such
attributes, and results are being produced:

broom::tidy(aov(Light
 ~
 Product
 +
 Judge,
 data=sensory))

178
 Data
Science
 for
Sensory
and
Consumer
Scientists

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 POpt

Product

10

missing

Missing

5
 Not Missing

0

So
ur

FIGURE
9.3

Visualization
of
missing
values
 for
Sour
with
geom
miss
point().

##
 #
 A
 tibble:
 3
 x
 6

##
 term
 df
 sumsq
 meansq
 statistic
 p.value

##
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 Product
 10
 2379.
 238.
 4.73
 2.71e-5

##
 2
 Judge
 8
 4100.
 513.
 10.2
 1.16e-9

##
 3
 Residuals
 79
 3975.
 50.3
 NA
 NA

This solution may work fine when the number of missing values is small,
but be aware that it can also provide erroneous results in case they are not
handled the way the analyst expects them to be handled.
For some other analyses, ignoring the presence of missing values may simply

provide unwanted results. To illustrate this, let’s compute the simple mean
per product for Light

sensory
 %>%

group
by(Product)
 %>%

summarise(Light
 =
 mean(Light))
 %>%

ungroup()

Data
Preparation
 179

##
 #
 A
 tibble:
 11
 x
 2

##
 Product
 Light

##
 <chr>
 <dbl>

##
 1
 P01
 29.6

##
 2
 P02
 30.9

##
 3
 P03
 28.3

4 P04
 NA

##
 #
 ...
 with
 7
 more
 rows

As can be seen, missing values for P04
 are conducive to a mean defined
as NA.

Removing
Missing
Values

To force the mean to be computed, we must inform R to remove any
observation containing missing values beforehand. Such procedure can be
done manually by simply filtering out any missing data (here for Sour) before
running the analysis:

sensory
 %>%

filter(!is.na(Sour))

##
 #
 A
 tibble:
 89
 x
 34

##
 Judge
 Product
 Shiny
 Externa˜1
 Color˜2
 Qty
 o˜3
 Surfa˜4

##
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 J01
 P01
 52.8
 30
 22.8
 9.6
 22.8

##
 2
 J01
 P02
 48.6
 30
 13.2
 10.8
 13.2

##
 3
 J01
 P03
 48
 45.6
 17.4
 7.8
 14.4

##
 4
 J01
 P04
 46.2
 45.6
 37.8
 0
 48.6

##
 #
 ...
 with
 85
 more
 rows,
 27
 more
 variables:

##
 #
 ‘Print
 quality‘
 <dbl>,
 Thickness
 <dbl>,

##
 #
 ‘Color
 contrast‘
 <dbl>,

##
 #
 ‘Overall
 odor
 intensity‘
 <dbl>,

##
 #
 ‘Fatty
 odor‘
 <dbl>,
 ‘Roasted
 odor‘
 <dbl>,

##
 #
 ‘Cereal
 flavor‘
 <dbl>,
 ‘RawDough
 flavor‘
 <dbl>,

##
 #
 ‘Fatty
 flavor‘
 <dbl>,
 ‘Dairy
 flavor‘
 <dbl>,
 ...

However, this latter solution is not always satisfactory as it also deletes
actual data. Indeed, as a result, the data set went from 99 to 89 rows. This
means that existing data were removed for corresponding observations, even
for variables that did not have missing values.
Therefore, we prefer another alternative which consists in removing missing

values within the analysis procedure (here mean()) through the parameter
na.rm=TRUE:

180
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory
 %>%

group
by(Product)

summarise(Light
 =

ungroup()

##
 #
 A
 tibble:
 11
 x
 2

##
 Product
 Light

##
 <chr>
 <dbl>

##
 1
 P01
 29.6

##
 2
 P02
 30.9

##
 3
 P03
 28.3

##
 4
 P04
 40.7

%>%

mean(Light,
 na.rm=TRUE))
 %>%

##
 #
 ...
 with
 7
 more
 rows

Using na.rm=TRUE
 is equivalent to removing the missing values from the
data before performing the analysis, but only for the variable of interest.
A similar approach consists in first rotating (using pivot
longer()) the data
before removing missing values:

sensory
 %>%

pivot
longer(Shiny:Melting,

names
to="Variables",
 values
to="Scores")
 %>%

filter(!is.na(Scores))
 %>%

group
by(Product,
 Variables)
 %>%

summarize(Means
 =
 mean(Scores))
 %>%

ungroup()
 %>%

pivot
wider(names
from
 =
 Variables,
 values
from
 =
 Means)
 %>%

dplyr::select(Product,
 Sour,
 Light)

##
 ‘summarise()‘
 has
 grouped
 output
 by
 ’Product’.
 You
 can

##
 override
 using
 the
 ‘.groups‘
 argument.

##
 #
 A
 tibble:
 11
 x
 3

##
 Product
 Sour
 Light

##
 <chr>
 <dbl>
 <dbl>

1 P01
 0
 29.6

2 P02
 0
 30.9

3 P03
 0
 28.3

4 P04
 0
 40.7

##
 #
 ...
 with
 7
 more
 rows

This solution seems satisfactory as the means were computed without
using na.rm=TRUE
 for both Sour
and Light
(who contained missing values).
However, its use is limited since converting the data to its original format

181
Data
Preparation

(i.e. performing pivot
wider()
 after pivot
longer()
 without computing
the mean in between) will reintroduce the missing values.1

It should be noted that a consequence of removing missing values is data
unbalance. For example, we can observe this for Light
and Sour, by printing
the number of panelists who evaluated each product:

sensory
 %>%

pivot
longer(Shiny:Melting,
 names
to="Variables",
 values
to="Scores")
 %>%

filter(!is.na(Scores),

Variables
 %in%
 c("Light","Sour"))
 %>%

group
by(Product,
 Variables)
 %>%

count()
 %>%

ungroup()
 %>%

pivot
wider(names
from=Variables,
 values
from=n)

##
 #
 A
 tibble:
 11
 x
 3

##
 Product
 Light
 Sour

##
 <chr>
 <int>
 <int>

1 P01
 9
 8

2 P02
 9
 7

3 P03
 9
 8

4 P04
 8
 8

##
 #
 ...
 with
 7
 more
 rows

Here, for example, the only missing value detected for Light
 is related to
P04. For Sour, P02, P07, and P09
only have seven observations out of nine.
The solution of blindly removing missing values is a solution that you may

sometime use. However, it is not the only strategy, and we can consider other
approaches that are more in-line with the nature of the data.
Rather than removing the missing values only, we could consider removing

blocks of data, whether it is attributes, products, or panelists that present
missing data. This solution is particularly handy when tests are performed
in multiple sessions and some respondents did not manage to attend them
all. It can then be relevant to remove completely those respondents from
your data.
The procedure presented below show the procedure on how to remove

attributes with missing data, but could easily be adapted to panelists or
products:

Missing
values
do
not
need
to
be
visible
to
exist:
Incomplete
designs
are
a
good
example

showing
that
although
the
data
do
not
have
empty
cells,
 it
does
contain
a
 lot
of
missing

data
(the
samples
that
were
not
evaluated
by
each
panelist).

1

182
 Data
Science
 for
Sensory
and
Consumer
Scientists

sensory
long
 <- sensory
 %>%

pivot
longer(Shiny:Melting,

names
to="Variables",
 values
to="Scores")

attr
rmv
 <- sensory
long
 %>%

filter(is.na(Scores))
 %>%

pull(Variables)
 %>%

unique()

sensory
clean
 <- sensory
long
 %>%

filter(!(Variables
 %in%
 attr
rmv))
 %>%

pivot
wider(names
from=Variables,
 values
from=Scores)

This procedure removed the 7 attributes that contained missing values
(and stored in attr
rmv), leading to a table with 99 rows and 29 columns
(instead of 36).

Imputing
Missing
Values

Rather than removing missing data, another strategy consists of imputing
missing values. Here again, many strategies can be considered, starting with
replacing them with a fixed value. Such an approach is usually not the most
suitable one, yet it can be relevant in certain cases. For instance, in a CATA
task, missing values are often replaced with 0s (not ticked).
To replace missing values with a fixed value, replace
na()
 can be used.

When applied to a tibble, this function requires you defining which columns
to apply it to and which values to use (each column being treated separately)
using list().
For convenience, let’s apply it to sensory
by replacing missing values for

Sour
by the value 888
and for Light
with 999
(we use these extreme values
to track changes more easily):

sensory
 %>%

replace
na(list(Sour
 =
 888,
 Light
 =
 999))
 %>%

dplyr::select(Judge,
 Product,
 Sour,
 Light)

##
 #
 A
 tibble:
 99
 x
 4

##
 Judge
 Product
 Sour
 Light

##
 <chr>
 <chr>
 <dbl>
 <dbl>

1 J01
 P01
 0
 22.8

2 J01
 P02
 0
 21

3 J01
 P03
 0
 20.4

4 J01
 P04
 0 999

##
 #
 ...
 with
 95
 more
 rows

Data
Preparation
 183

When dealing with intensity scales, it is more frequent to replace missing
values by the mean score for that product and attribute. When the test
is duplicated, the mean provided by the panelist
× product
× attribute

combination across the different repetitions available is even preferred as it
maintains individual variability within the scores.
This approach is a two-step process:

1. Compute the mean (since we do not have duplicates, we use the mean
per product);

2. Combine it to the data.

For simplicity, sensory
long
 is used as the starting point:

prod
mean
 <- sensory
long
 %>%

group
by(Product,
 Variables)
 %>%

summarize(Mean
 =
 mean(Scores,
 na.rm=TRUE))
 %>%

ungroup()

##
 ‘summarise()‘
 has
 grouped
 output
 by
 ’Product’.
 You
 can

##
 override
 using
 the
 ‘.groups‘
 argument.

sensory
long
 %>%

full
join(prod
mean,
 by=c("Product","Variables"))
 %>%

mutate(Scores
 =
 ifelse(is.na(Scores),
 Mean,
 Scores))
 %>%

dplyr::select(-"Mean")
 %>%

pivot
wider(names
from=Variables,
 values
from=Scores)
 %>%

dplyr::select(Judge,
 Product,
 Sour,
 Light)

##
 #
 A
 tibble:
 99
 x
 4

##
 Judge
 Product
 Sour
 Light

##
 <chr>
 <chr>
 <dbl>
 <dbl>

1 J01
 P01
 0
 22.8

2 J01
 P02
 0
 21

3 J01
 P03
 0
 20.4

4 J01
 P04
 0
 40.7

##
 #
 ...
 with
 95
 more
 rows

As can be seen, the missing value associated to J01
 for Light
and P04
has
been replaced by 40.7. In fact, any missing values related to P04
and Light

would automatically be replaced by 40.7
here. For other products (and other
attributes), their respective means would be used.
When the model used to impute missing values is fairly simple (here, replac

ing by the mean corresponds to a simple 1-way ANOVA), the imputation can

184
 Data
Science
 for
Sensory
and
Consumer
Scientists

be done directly through the impute
lm()
function from the {simputation}
package. To mimic the previous approach, the one-way ANOVA is being used.2

Here, missing data for both Sour
and Light
are being imputed independently
using the same model:

library(simputation)

sensory
 %>%

impute
lm(Sour
 +
 Light
 ~
 Product)
 %>%

dplyr::select(Judge,
 Product,
 Sour,
 Light)

##
 #
 A
 tibble:
 99
 x
 4

##
 Judge
 Product
 Sour
 Light

##
 <chr>
 <chr>
 <dbl>
 <dbl>

1 J01
 P01
 0
 22.8

2 J01
 P02
 0
 21

3 J01
 P03
 0
 20.4

4 J01
 P04
 0
 40.7

##
 #
 ...
 with
 95
 more
 rows

As can be seen, this procedure provides the same results as before, but with
fewer steps!
In some situations, implementing missing values using such ANOVA (or

regression) model can lead to aberrations. It is for instance the case when the
imputed values falls outside the scale boundaries. To avoid such situations,
{simputation} also provides other more advanced alternatives including
(among others) impute
rf()
which uses random forest to impute the missing
values.
Last but not least, imputation of missing values could also be done in a

multivariate way, by using the structure of the data (e.g. correlation) to predict
the missing values. This is the approach proposed in the {missMDA} package.
Since our data are numeric, the imputation is done through PCA with the
imputePCA()
 function. Note that here, the imputed values are stored in the
object .$completeObs
(here, sensory
 is used):

library(missMDA)

imputePCA(sensory,
 quali.sup=1:4,
 method="EM")$completeObs
 %>%

dplyr::select(Judge,
 Product,
 Sour,
 Light)

2
 It
is
worth
noticing
that
the
individual
differences
could
also
be
included
by
simply
adding

the
Judge
effect
 in
the
model.

http:package.To

Data
Preparation
 185

##
 #
 A
 tibble:
 99
 x
 4

##
 Judge
 Product
 Sour
 Light

##
 <chr>
 <chr>
 <dbl>
 <dbl>

1 J01
 P01
 0
 22.8

2 J01
 P02
 0
 21

3 J01
 P03
 0
 20.4

4 J01
 P04
 0
 33.7

##
 #
 ...
 with
 95
 more
 rows

In this case, it can be seen that the missing value for J01 × P
04 × Light

has been replaced by the value 33.7.

Limitations

As we have seen, there are different ways to implement missing values,
and the different algorithms will likely impute them with different values.
Consequently, the overall results can be affected and there is no way to know
which solution is the most suitable for our study. Still, it is recommended
to treat the missing values and to chose the right strategy that is the most
adapted to the data.
However, since most imputation methods involve modeling, applying them

to variables with a high missing values rate can introduce bias in the data.
Let’s consider a situation in which assessors are evaluating half the product
set using a BIB. This means that, by design, half of the data are missing.
By imputing the missing values, each prediction is proportionally based on
one unique value. And ultimately, any further analyses on this data would be
based on half measured and half fictive data.

9.2.3
 Design
 Inspection

The next point of interest – quite specific to sensory and consumer data –
is to ensure that the design is well balanced, and correctly handles the first-
order and carry-over effects. This step is particularly important for those who
analyze the data but were not involved from the start in that study (and
hence were not involved in the test set-up).
Let’s show a simple procedure that would check part of the quality of a

design. Since our data set stored in biscuits sensory profile.xlsx does not con
tain any information regarding the experimental design, let’s use sensochoc

from {SensoMineR} instead.
To load (and clean) the data, let’s run these lines of code:

library(SensoMineR)

data(chocolates)

186
 Data
Science
 for
Sensory
and
Consumer
Scientists

dataset
 <- sensochoc
 %>%

as
tibble()
 %>%

mutate(across(c(Panelist,
 Session,
 Rank,
 Product),
 as.character))

The data consist of 6 products (Product) evaluated by 29 panelists
(Panelist) in duplicates (Session). The presentation order is stored in
Rank.
To evaluate whether the products have been equally presented at each

position, a simple cross-count between Product
and Rank
 is done. This can
be done using the xtabs()
 function:

xtabs(~Product
 +
 Rank,
 data=dataset)

##
 Rank

Product
 1 2 3 4 5 6

##
 choc1
 9
 9 10
 9 11 10

##
 choc2 11
 9
 9 11
 7 11

##
 choc3
 9 11 10
 9
 9 10

##
 choc4
 9 10
 9 10 10 10

##
 choc5 11
 8 11 10 10
 8

##
 choc6
 9 11
 9
 9 11
 9

Such a table can also be obtained using group
by()
 and count()
 to get
the results in a tibble:

dataset
 %>%

group
by(Product)
 %>%

count(Rank)
 %>%

ungroup()
 %>%

pivot
wider(names
from=Rank,
 values
from=n)

As we can see, the design is not perfectly balanced, as choc2
is evaluated 11
times in the 1st, 4th, and 6th position, but only 7 times in the 5th position.
To make sure that the design is well balanced in terms of carry-over effect,

we need to count how often each product is tested before each of the other
products. Since this information is not directly available in the data, it needs
to be added.
Let’s start with extracting the information available, i.e. the order of each

product for each panelist and session:

187
Data
Preparation

current
 <- dataset
 %>%

dplyr::select(Panelist,
 Product,
 Session,
 Rank)
 %>%

mutate(Rank
 =
 as.numeric(Rank))

An easy way to add the Previous
 product information as a new column
in the data is by replacing Rank
by Rank
 +
 1
 in current
 (all new positions
larger than the number of products are filtered).

previous
 <- current
 %>%

rename(Previous
 =
 Product)
 %>%

mutate(Rank
 =
 Rank
 +
 1)
 %>%

filter(Rank
 <=
 length(unique(dataset$Product)))

These new data are merged to current
by Panelist, Session, and Rank:

cur
prev
 <- current
 %>%

left
join(previous,
 by=c("Panelist",
 "Session",
 "Rank"))

As can be seen, the products that are evaluated first get NA
 in Previous,
and for each rank r (r >
1), Previous
gets the product that was evaluated at
rank r−1.
To evaluate whether the carry-over effect is well-balanced, the only thing

left to do is cross-count Product
 and Previous
 (here, the results are split
per Session):

cur
prev
 %>%

group
by(Session,
 Product,
 Previous)
 %>%

count()
 %>%

ungroup()
 %>%

mutate(Product
 =
 factor(Product,

levels=paste0("choc",
 1:6)),

Previous
 =
 factor(Previous,

levels=c("NA",paste0("choc",
 1:6))))
 %>%

arrange(Previous)
 %>%

pivot
wider(names
from=Previous,
 values
from=n,
 values
fill=0)
 %>%

arrange(Product)
 %>%

split(.$Session)

188
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 $‘1‘

##
 #
 A
 tibble:
 6
 x
 9

##
 Session
 Product
 choc1
 choc2
 choc3
 choc4
 choc5
 choc6

##
 <chr>
 <fct>
 <int>
 <int>
 <int>
 <int>
 <int>
 <int>

1 1
 choc1
 0 5 6 4 5 5

2 1
 choc2
 3 0 5 6 4 5

3 1
 choc3
 5 4 0 5 6 5

4 1
 choc4
 5 5 5 0 4 5

##
 #
 ...
 with
 2
 more
 rows,
 and
 1
 more
 variable:

##
 #
 ‘NA‘
 <int>

##

##
 $‘2‘

##
 #
 A
 tibble:
 6
 x
 9

##
 Session
 Product
 choc1
 choc2
 choc3
 choc4
 choc5
 choc6

##
 <chr>
 <fct>
 <int>
 <int>
 <int>
 <int>
 <int>
 <int>

1 2
 choc1
 0 4 5 5 6 4

2 2
 choc2
 3 0 5 5 6 5

3 2
 choc3
 5 4 0 6 5 4

4 2
 choc4
 5 5 5 0 4 6

##
 #
 ...
 with
 2
 more
 rows,
 and
 1
 more
 variable:

##
 #
 ‘NA‘
 <int>

As expected, the table shows that a product is never evaluated twice in a row
(the diagonal contains 0s). Here again, the design is not optimal since choc1

has been evaluated three times before choc2
 and six times before choc5
 in
the first session.

The last column defined as NA
refers to the number of time that products
did not have a product tested before. In other words, this indicates that
they were evaluated first.

9.3
 Clean

As mentioned in the introduction of this chapter, there is a thin line between
Data Inspection and Data Manipulation, as both steps share many common
features. Here, we are limiting ourselves on handling variables and their type.
For a full overview, we encourage the readers to look at Chapter 4 to see other
ways to handle data.

9.3.1
 Handling
Data
Type

The data used in this section are stored in bisuits traits.xlsx. So let’s start
with importing it in R:

Data
Preparation
 189

file
path
 <- here("Data",
 "biscuits
traits.xlsx")

demo
var
 <- read
xlsx(file
path,
 sheet="Variables")
 %>%

dplyr::select(Code,
 Name)

demo
lev
 <- read
xlsx(file
path,
 sheet="Levels")
 %>%

dplyr::select(Question,
 Code,
 Levels)
 %>%

inner
join(demo
var,
 by=c("Question"="Code"))
 %>%

dplyr::select(-Question)

demographic
 <- read
xlsx(file
path,
 sheet="Data",
 skip=1,

col
names=unlist(demo
var$Name))

In R, the variables can be of different types, going from numerical to nominal
to binary, etc. This section aims at presenting the most common types (and
their properties) used in sensory and consumer studies and at showing how
to transform a variable from one type to another.
Remember that when your data set is stored in a tibble (as is the case here),

the type of each variable is provided as sub-header when printed on screen.
This eases the work of the analyst as the variables’ type can be accessed at
any moment. In case the data are not in a tibble, the use of the str()
function
becomes handy as it provides this information (here we limit ourselves to the
first five columns).

str(demographic[,1:5])

##
 tibble
 [107
 x
 5]
 (S3:
 tbl_df/tbl/data.frame)

##
 $ Living area: num [1:107] 1 1 2 1 1 1 1 1 3 1 ...

##
 $ Housing
 : num [1:107] 1 1 2 2 1 1 1 1 2 2 ...

##
 $
 Judge
 :
 chr
 [1:107]
 "J48"
 "J61"
 "J60"
 "J97"
 ...

##
 $
 Height
 :
 num
 [1:107]
 1.45
 1.6
 1.62
 1.6
 1.69
 1.62
 1.58
 1.6
 1.56
 1.67
 ...

##
 $
 Weight
 :
 num
 [1:107]
 43
 65
 52
 60
 70
 56
 62
 55
 55
 53
 ...

In sensory and consumer research, the four most common types are:

• Numerical (incl. integer [int], decimal [dcl], and double [dbl]);

• Logical [lgl];
• Character [char];
• Factor [fct].

R still has plenty of other types, for more information please visit:
https://tibble.tidyverse.org/articles/types.html

https://www.tibble.tidyverse.org

190
 Data
Science
 for
Sensory
and
Consumer
Scientists

Numerical
Data

Since a large proportion of sensory research is quantitative, it is no surprise
that our data are often dominated with numerical variables. In practice,
numerical data include integers (non-fractional number, e.g. 1, 2, −16, etc.)
or decimal values (or double, e.g. 1.6, 2.333333, −3.2, etc.).
By default, when reading data from an external file, R converts any

numerical variables to integer unless decimal points are detected, in which
case it is converted into double.

Binary
Data

Another common type that seems to be numerical in appearance, but that
has additional properties is the binary type. Binary data are data that take
two possible values (TRUE
or FALSE), and are often the results of a test (e.g. is
x>3? Or is MyVar
numerical?). A typical example of binary data in sensory and
consumer research is data collected through Check-All-That-Apply (CATA)
questionnaires.

Intrinsically, binary data are numerical, TRUE being assimilated
to 1 and FALSE to 0. If multiple tests are being performed, it is
possible to sum the number of tests that pass using the sum()
 function,
as shown in the simple example below: #
 Generate
 10
 random
 values

between
 1
 and
 10
 (uniform
 distribution)
x
 <- runif(10,
 1,
 10)

#
 Test
 whether
 the
 values
 generated
 are
 strictly
 larger
 than

5
test
 <- x>5
#
 Counting
 the
 number
 of
 values
 strictly
 larger

than
 5
sum(test)

Nominal
Data

Nominal data are any data that are defined through text or strings. Note that
nominal data would occur when variables are defined with numbers, although
they do not have a numerical meaning. This is for instance the case when the
respondents or samples are identified through numerical codes. But since the
software cannot guess that those numbers are identifiers rather than numbers,
the variables should be declared as nominal. The procedure explaining how
to convert the type of the variables is detailed in Section 9.3.2.
For nominal data, two particular types of data are of interest:

• Character or char;
• Factor or fct.

Variables defined as character or factor take strings as input. However, these
two types differ in terms of structure of their levels:

191
Data
Preparation

• For character, there are no particular structures, and the variables can
take any values (e.g. open-ended question);

• For factor, the inputs of the variables are structured into levels.

To evaluate the number of levels, different procedures are required:

• For character, one should count the number of unique elements using
length()
and unique();

• For factor, the levels and the number of levels are directly provided by
levels()
and nlevels().

Let’s compare a variable set as factor
 and character
by using a simple
made-up example:

example
 <- demographic
 %>%

dplyr::select(Judge)
 %>%

mutate(Judge
fct
 =
 as.factor(Judge))

summary(example)

##
 Judge
 Judge_fct

##
 Length:107
 J1
 :
 1

##
 Class
 :character
 J10
 :
 1

##
 Mode
 :character
 J100
 :
 1

##
 J101
 :
 1

##
 J103
 :
 1

##
 J105
 :
 1

##
 (Other):101

#unique(example$Judge)

length(unique(example$Judge))

##
 [1]
 107

#levels(example$Judge
fct)

nlevels(example$Judge
fct)

##
 [1]
 107

192
 Data
Science
 for
Sensory
and
Consumer
Scientists

Although Judge
 and Judge
fct
 look the same, they are structurally
different, and those differences play an important role that one should
consider when running certain analyses or for building tables and graphs.

The number of levels of a variable is directly read from the data when set
as character, and its levels’ order matches the way they appear in the data
(or sometimes are rearranged in alphabetical order). This means that any
data collected using a structured scale will often lose their natural order.
When set as factor, the factor levels (including their order) are informed,

and do not depend necessarily on the data itself: If a level has never been
selected, or if certain groups have been filtered, this information is still present
in the data. In our case, the levels are read from the data and are reordered
alphabetically (note that J10
and J100
appear before J2
 for instance.)
To illustrate this, let’s rearrange the levels from Judge
fct
 by ordering

them numerically in such a way J2
 follows J1
rather than J10.

example
 <- demographic
 %>%

dplyr::select(Judge)
 %>%

mutate(Judge
fct
 =
 factor(Judge,
 str
sort(Judge,
 numeric=TRUE)))

levels(example$Judge
fct)[1:10]

##
 [1]
 "J1"
 "J2"
 "J3"
 "J4"
 "J5"
 "J6"
 "J7"
 "J8"

##
 [9]
 "J9"
 "J10"

Now the levels are sorted. Let’s then filter respondents by only keeping J1
to J20. We then rerun the previous code that counts the number of elements
in each variables:

example
reduced
 <- example
 %>%

filter(Judge
 %in%
 paste0("J",1:20))

#
 unique(example
reduced$Judge)

length(unique(example
reduced$Judge))

##
 [1]
 19

#
 levels(example
reduced$Judge
fct)

nlevels(example
reduced$Judge
fct)

Data
Preparation
 193

##
 [1]
 107

After filtering some respondents, it can be noticed that the variable set as
character only contains 19 elements (J18
doesn’t exist in the data), whereas
the column set as factor still contains the 107 entries (most of them not having
any recordings).

example
reduced
 %>%

count(Judge,
 .drop=FALSE)

##
 #
 A
 tibble:
 19
 x
 2

##
 Judge
 n

##
 <chr>
 <int>

1 J1
 1

2 J10
 1

3 J11
 1

4 J12
 1

##
 #
 ...
 with
 15
 more
 rows

example
reduced
 %>%

count(Judge
fct,
 .drop=FALSE)

##
 #
 A
 tibble:
 107
 x
 2

##
 Judge_fct
 n

##
 <fct>
 <int>

1 J1
 1

2 J2
 1

3 J3
 1

4 J4
 1

##
 #
 ...
 with
 103
 more
 rows

This property can be seen as an advantage or a disadvantage depending on
the situation:

• For frequencies, it may be relevant to remember all the options, including
the ones that may never be selected and to order the results logically
(use of factor).

• For hypothesis testing (e.g. ANOVA) on a subset of data, the Judge

variable set as character
would have the correct number of degrees of
freedom (18 in our example), whereas the variable set as factor would
still use the original count (so 106 here)!

The latter point is particularly critical since the analysis is incorrect and
will either return an error or (worse!) return erroneous results!

194
 Data
Science
 for
Sensory
and
Consumer
Scientists

Last but not least, variables defined as factor allow having their levels
being renamed (and eventually combined) very easily. Let’s consider the
Living
 area
 variable from demographic
 as an example. From the original
excel file, it can be seen that it has three levels, 1
corresponding to urban area,
2
to rurban area, and 3
to rural area. Let’s start by renaming its levels:

example
 =
 demographic
 %>%

mutate(Area
 =
 factor(`Living
 area`,
 levels=c(1,2,3),

labels=c("Urban",
 "Rurban",
 "Rural")))

levels(example$Area)

##
 [1]
 "Urban"
 "Rurban"
 "Rural"

nlevels(example$Area)

##
 [1]
 3

table(example$`Living
 area`,
 example$Area)

##

##
 Urban
 Rurban
 Rural

##
 1
 72
 0
 0

2
0
12
0

##
 3
 0
 0
 23

As can be seen, the variable Area
is the factor version (including its labels)
of Living
 area. Let’s now regroup Rurban
and Rural
together under Rural,
and change the order to ensure that Rural
appears before Urban:

example
 =
 demographic
 %>%

mutate(Area
 =
 factor(`Living
 area`,
 levels=c(2,3,1),

labels=c("Rural",
 "Rural",
 "Urban")))

levels(example$Area)

##
 [1]
 "Rural"
 "Urban"

195
Data
Preparation

nlevels(example$Area)

##
 [1]
 2

table(example$`Living
 area`,
 example$Area)

##

##
 Rural
 Urban

1
 0 72

2 12
 0

3 23
 0

This approach of renaming and reordering factor levels is very important as
it can simplify the readability of tables and figures. Some other transforma
tions can be applied to factors thanks to the {forcats} package. Particular
attention should be given to the following functions:

• fct
reorder()/fct
reorder2()
and fct
relevel()
reorder the levels
of a factor;

• fct
recode()
renames the factor levels (as an alternative to factor()

used in the previous example);

• fct
collapse()
 and fct
lump()
 aggregate different levels together
(fct
lump()
regroups automatically all the rare levels);

• fct
inorder()
uses the order read in the data (particularly useful with
pivot
longer()
 for instance);

• fct
rev()
reverses the order of the levels (particularly useful in graphs).

Although it has not been done here, manipulating strings is also possible
through the {stringr} package, which provides interesting functions such as:

• str
to
upper()/str
to
lower()
 to convert strings to uppercase or
lowercase;

• str
c()
to combine and str
sub()
to subset strings;

• str
trim()
and str
squish()
remove white spaces;

• str
extract(), str
replace(), or str
split()
 extract, replace, or
split strings or part of the strings;

• str
sort()
to order alphabetically (or by respecting numbers, as shown
previously) its elements.

Many of these functions will be used later in Chapter 13.

196
 Data
Science
 for
Sensory
and
Consumer
Scientists

9.3.2
 Converting
between
Types

Since each variable type has its own properties, it is important to be able to
switch from one to another if needed. This can be critical (converting from
numerical to character or factor and reversely) or purely practical (converting
from character to factor and reversely).
In the previous section, we have already seen how to convert from character

to factor. Let’s now consider two other conversions, namely:

• from numerical to character/factor;

• from character/factor to numerical.

The conversion from numerical to character or factor is simply done using
as.character()
 and as.factor(), respectively. An example in the use of
as.character()
 and as.factor()
 was provided in the previous section
when we converted the Respondent
 variables to character and factor. The
use of factor()
 was also used earlier when the variable Living
 area
 was
converted from numerical to factor (called Area) with labels.

as.factor()
 only converts into factors without allowing to chose the
order of the levels nor to rename them. Instead, factor()
should be used
as it allows specifying the levels
(and hence the order of the levels) and
their corresponding labels.

To illustrate the conversion from character to numeric, let’s start with
creating a tibble with two variables, one containing strings made of numbers
and another one containing strings made of text.

example
 <- tibble(Numbers
 =
 c("2","4","9","6","8","12","10"),

Text
 =
 c("Data","Science","4","Sensory",

"and","Consumer","Research"))

The conversion from character to numerical is straightforward and requires
the use of the function as.numeric():

example
 %>%

mutate(NumbersN
 =
 as.numeric(Numbers),
 TextN
 =
 as.numeric(Text))

##
 Warning:
 There
 was
 1
 warning
 in
 ‘mutate()‘.

##
 i
 In
 argument:
 ‘TextN
 =
 as.numeric(Text)‘.

##
 Caused
 by
 warning:

197
Data
Preparation

##
 !
 NAs
 introduced
 by
 coercion

##
 #
 A
 tibble:
 7
 x
 4

##
 Numbers
 Text
 NumbersN
 TextN

##
 <chr>
 <chr>
 <dbl>
 <dbl>

1 2
 Data
 2
 NA

2 4
 Science
 4
 NA

3 9
 4
 9 4

4 6
 Sensory
 6
 NA

##
 #
 ...
 with
 3
 more
 rows

As can be seen, when strings are made of numbers, the conversion works
fine. However, any non-numerical string character cannot be converted and
hence returns NAs.
Now let’s apply the same principle to a variable of the type factor. To do

so, the same example in which the variables are now defined as factor is used:

example
 <- example
 %>%

mutate(Numbers
 =
 as.factor(Numbers))
 %>%

mutate(Text
 =
 factor(Text,
 levels=c("Data","Science","4","Sensory",

"and","Consumer","Research")))

Let’s apply as.numeric() to these variables:

example
 %>%

mutate(NumbersN
 =
 as.numeric(Numbers),
 TextN
 =
 as.numeric(Text))

##
 #
 A
 tibble:
 7
 x
 4

##
 Numbers
 Text
 NumbersN
 TextN

##
 <fct>
 <fct>
 <dbl>
 <dbl>

1 2
 Data
 3
 1

2 4
 Science
 4
 2

3 9
 4
 7 3

4 6
 Sensory
 5
 4

##
 #
 ...
 with
 3
 more
 rows

We can notice here that the outcome is not really what was expected. The
numbers 2-4-9-6-8-12-10 become 3-4-7-5-6-2-1, and Data-Science-4-Sensory
and-Consumer-Research becomes 1-2-3-4-5-6-7. The rationale behind this
conversion is that the numbers do not reflect the string itself, but the position
of that level in the factor level order.
To properly convert numerical factor levels to number, the variable should

first be converted into character:

198
 Data
Science
 for
Sensory
and
Consumer
Scientists

example
 %>%

mutate(Numbers
 =
 as.numeric(as.character(Numbers)))

##
 #
 A
 tibble:
 7
 x
 2

##
 Numbers
 Text

##
 <dbl>
 <fct>

1
 2 Data

##
 2
 4
 Science

3
 9 4

##
 4
 6
 Sensory

##
 #
 ...
 with
 3
 more
 rows

As can be seen, it is very important to verify the type of each variable (and
convert it if needed) to ensure that the data are processed as they should
be. Since each type has its own advantages and drawbacks, it is convenient to
regularly switch from one to another. Don’t worry, you will quickly familiarize
with this as we will be doing such conversions regularly in the next sections.

10

Data
Analysis

Although the data-science workflow suggests a clear separation between
data manipulation and data analysis, in practice such separation is not
that obvious. Indeed, most analyses require data manipulation. In fact,
some data transformation can be seen as a part of both data transforma
tion and data analysis. Yet, this section is somewhat more dedicated to the
analysis of data by 1) presenting how some of the most common analyses
in sensory and consumer science are performed, 2) integrating the analysis
part to your script, and most importantly 3) providing applications and
extensions (or alternatives) to all the procedures presented in Chapters 4
and 5. With that in mind, the emphasis is not on the results and inter
pretation of the results, but on the path to get such results. For practical
reasons, this chapter is divided in three subsections, one dedicated to the
sensory data, one to the consumer data, and one combining both.

10.1
 Sensory
Data

As one may expect, this chapter is mostly built around the {tidyverse}:

library(tidyverse)

library(here)

library(readxl)

Let’s start with the analysis of our sensory data stored in
biscuits sensory profile.xlsx.

file
path
 <- here("data",
 "biscuits
sensory
profile.xlsx")

p
info
 <- readxl::read
xlsx(file
path,
 sheet
 =
 "Product
 Info")
 %>%

DOI: 10.1201/9781003028611-10 199

200
 Data
Science
 for
Sensory
and
Consumer
Scientists

dplyr::select(-Type)

sensory
 <- readxl::read
xlsx(file
path,
 sheet
 =
 "Data")
 %>%

inner
join(p
info,
 by
 =
 "Product")
 %>%

relocate(Protein:Fiber,
 .after
 =
 Product)

Typically, sensory scientists first seek to determine whether there are
differences between samples for the different attributes. This is done through
Analysis of Variance (ANOVA) and can be achieved using the lm()
or aov()

functions.
Let’s start by running the ANOVA for the attribute Sweet. Since the test

has not been duplicated, a two-way ANOVA (including the Product and
Assessor effects) without interaction is used. This is done using the following
code:

sweet
aov
 <- lm(Sweet
 ~
 Product
 +
 Judge,
 data
 =
 sensory)

anova(sweet
aov)

##
 Analysis
 of
 Variance
 Table

##

##
 Response:
 Sweet

##
 Df
 Sum
 Sq
 Mean
 Sq
 F
 value
 Pr(>F)

##
 Product
 10
 2654
 265
 7.27
 4.5e-08

##
 Judge
 8
 4451
 556
 15.25
 2.3e-13

##
 Residuals
 80
 2918
 36

##
 --
##
 Signif.
 codes:

##
 0
 ’***’
 0.001
 ’**’
 0.01
 ’*’
 0.05
 ’.’
 0.1
 ’
 ’
 1

The results provided here by anova()
 are not very convenient as the
output is not stored in a matrix or a data frame. We will illustrate later
how to apply the tidy()
 function from {broom} to tidy the statistical
output from most testing/modelling functions into a user-friendly tibble.

We could duplicate this code for each single attribute, but this would be
quite tedious for a large number of attributes. Moreover, this code is sensitive
to the way the variables are named and hence might not be suitable for
other data sets. Instead, we propose two solutions, one using split()
 in
combination with map()
 and one involving nest
by()
 to run this analysis
automatically.
For both these solutions, the data should be stored in the long and thin

form, which can be obtained using pivot
longer():

201
Data
Analysis

senso
aov
data
 <- sensory
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Score")

From this structure, the first approach consists of splitting the data by
attribute. Once done, we run the ANOVA for each subset (the model is then
defined as Score
 ~
 Product
 +
 Judge) automatically using map(), 1
 and we
extract the results of interest using the {broom} package.
Ultimately, the results can be combined again using enframe()
 and

unnest().

senso
aov1
 <- senso
aov
data
 %>%

split(.$Attribute)
 %>%

map(function(data)
 {

res
 <- broom::tidy(anova(lm(Score
 ~
 Product
 +
 Judge,
 data
 =
 data)))

return(res)

}) %>%

enframe(name
 =
 "Attribute",
 value
 =
 "res")
 %>%

unnest(res)

The second approach uses the advantage of tibbles and nests the analysis
by attribute (meaning the analysis is done for each attribute separately, a bit
like group
by()). In this case, we store the results of the ANOVA in a new
variable called mod.
Once the analysis is done, we extract the info stored in mod
by converting

it into a tibble using {broom} and restructure it using reframe():

senso
aov2
 <- senso
aov
data
 %>%

nest
by(Attribute)
 %>%

mutate(mod
 =
 list(lm(Score
 ~
 Product
 +
 Judge,
 data
 =
 data)))
 %>%

reframe(broom::tidy(anova(mod)))
 %>%

ungroup()

The two approaches return the exact same results:

##
 #
 A
 tibble:
 96
 x
 7

##
 Attribute
 term
 df
 sumsq
 meansq
 stati˜1
 p.value

##
 <chr>
 <chr>
 <int>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

##
 1
 Astringent
 Prod˜
 10
 870.
 87.0
 1.62
 1.16e- 1

1
 The
map()
 function
applies
the
same
 function
to
each
element
of
a
 list
automatically:
 It

is
hence
equivalent
to
a
for()
 loop,
but
 in
a
neater
and
more
efficient
way.

202
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 2
 Astringent
 Judge
 8
 5041.
 630.
 11.7
 6.94e-11

##
 3
 Astringent
 Resi˜
 80
 4302.
 53.8
 NA
 NA

##
 4
 Bitter
 Prod˜
 10
 1005.
 101.
 3.95
 2.11e- 4

##
 #
 ...
 with
 92
 more
 rows,
 and
 abbreviated
 variable
 name

##
 #
 1:
 statistic

Let’s dig into the results by extracting the attributes that do not show
significant differences at 5%. Since the tidy()
 function from {broom} tidies
the data into a tibble, all the usual data transformation can be performed.
Let’s filter only the Product
effect under term, and let’s order the p.value

decreasingly:

res
aov
 <- senso
aov1
 %>%

filter(term
 ==
 "Product")
 %>%

dplyr::select(Attribute,
 statistic,
 p.value)
 %>%

arrange(desc(p.value))
 %>%

mutate(p.value
 =
 round(p.value,
 3))

res
aov
 %>%

filter(p.value
 >=
 0.05)

##
 #
 A
 tibble:
 4
 x
 3

##
 Attribute
 statistic
 p.value

##
 <chr>
 <dbl>
 <dbl>

##
 1
 Cereal
 flavor
 1.22
 0.294

##
 2
 Roasted
 odor
 1.40
 0.193

##
 3
 Astringent
 1.62
 0.116

##
 4
 Sticky
 1.67
 0.101

As can be seen, the products do not show any significant differences at
5% for 4 attributes: Cereal
 flavor
 (p=0.294), Roasted
 odor
 (p=0.193),
Astringent
(p=0.116), and Sticky
(p=0.101).
Rather than showing the results in a table, let’s visualize them graphically

as a bar chart by representing the F-values (Figure 10.1). The attributes are
ordered decreasingly and color-coded based on their significance:

res
aov
 %>%

mutate(Signif
 =
 ifelse(p.value
 <=
 0.05,
 "Signif.",
 "Not
 Signif."))
 %>%

mutate(Signif
 =
 factor(Signif,

levels
 =
 c("Signif.",
 "Not
 Signif.")))
 %>%

ggplot(aes(x=reorder(Attribute,
 statistic),
 y=statistic,

fill=Signif))
 +

geom
bar(stat
 =
 "identity")
 +

Sensory Attributes

(The attributes are sorted based on F-values (product))

Initial hardness
Shiny

Dairy flavor
External color intensity

Thickness
Brittle

Crunchy
Overall odor intensity

Sweet
Color evenness

Overall flavor persistence
Fatty flavor
Fatty odor

Color contrast Signif
Light

Print quality Signif.RawDough flavor

Qty of inclusions

Sour
 Not Signif.
Bitter

Fatty in mouth
Roasted flavor

Dry in mouth
Salty

Warming
Surface defects

Qty of inclusions in mouth
Melting

Sticky
Astringent

Roasted odor
Cereal flavor

0 5 10 15 20 25
F-values

203
Data
Analysis

scale
fill
manual(values
 =
 c("Signif."
 =
 "forestgreen",

"Not
 Signif."
 =
 "orangered2"))
 +

ggtitle("Sensory
 Attributes",

"(The
 attributes
 are
 sorted
 based
 on
 F-values
 (product))")
 +

theme
bw()
 +

xlab("")
 +

ylab("F-values")
 +

coord
flip()

FIGURE
10.1

Sensory
attributes
 ranked
by
decreasing
F-values
of
 the
product
 effect
 in
 their
 respective

ANOVA.

The evaluated biscuits appear to differ the most (top five attributes)
for Initial
 hardness, Shiny, Dairy
 flavor, External
 color
 intensity,
and Thickness.

As an alternative, the decat()
 function from the {SensoMineR} package
would do the same job as it automatically performs ANOVAs on a set
of attributes (presented in subsequent columns). Additionally, it also
performs some t-tests that highlight which samples are significantly more
(or less) intense than the average for each attribute.

.

204
 Data
Science
 for
Sensory
and
Consumer
Scientists

Once the significant differences have been checked, a follow-up analysis con
sists of visualizing these differences in a multivariate way. Such visualization is
often done through Principal Component Analysis (PCA). In practice, PCA is
performed on the mean sensory profiles. Let’s start with building such a table:

senso
mean
 <- sensory
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Score")
 %>%

dplyr::select(-Judge)
 %>%

pivot
wider(names
from
 =
 Attribute,
 values
from
 =
 Score,

values
fn
 =
 mean)

The resulting table is then submitted to PCA. R proposes many solutions to
run such analysis, including the prcomp()
and princomp()
functions from the
{stats} package. However, we prefer to use PCA()
from the {FactoMineR} as
it is more complete and proposes many options that are very useful in sensory
and consumer science (e.g. it generates the graphics automatically and allows
projecting supplementary individuals and/or variables).
It should, however, be noted that the PCA()
 function does not accept

tibbles. Instead, the table should be stored in a matrix or data frame
format that contains the observation names (here the product names) as
row names. Fortunately, a tibble can be easily converted into a data frame
(as.data.frame()) and the Product
 column can be moved to row names
(column
to
rownames(var="Product")).
Note that these data also contain two qualitative variables, Protein
 and

Fiber. They should thus either be removed prior to running the analysis
or (better!) be projected as supplementary variables through the quali.sup

parameter from PCA(). Finally, since POpt
 is an optimized product whose
sensory description was later added to the data set, let’s not include it in the
analysis per se (it is not contributing to the construction of the dimensions).
Instead, we recommend to project it as a supplementary observation (through
ind.sup) to illustrate where it would be located in the initial space.

library(FactoMineR)

senso
pca
 <- senso
mean
 %>%

arrange(Product)
 %>%

as.data.frame()
 %>%

column
to
rownames(var
 =
 "Product")
 %>%

PCA(.,
 ind.sup
 =
 nrow(.),
 quali.sup
 =
 1:2,
 graph
 =
 FALSE)

Since we set the option graph=FALSE, the PCA plots are not yet being gen
erated. Although PCA()
can generate the plots either in {base} R language or

205
Data
Analysis

in {ggplot2}, we prefer to use a complementary package called {factoextra}
which recreates most plots from {FactoMineR} (and some other packages) as
a ggplot()
 object. This comes in very handy as you can benefit from the
flexibility offered by ggplot().
The score plot (i.e. the product map) from PCA()
 is created through

fviz
pca
ind(), whereas the representation of variable loadings is created
with fviz
pca
var(). Eventually, fviz
pca
biplot()
is used to produce the
so-called biplot.
To illustrate this, let’s display the product map by coloring the

products using the supplementary variables (Protein
 and Fiber
 content)
(Figure 10.2). This can easily be done through the habillage
 parameter
from fviz
pca
ind(), which can either take the name of the qualitative
variable (e.g. "Protein") or a numerical value indicating its position
(e.g. 2).

library(factoextra)

fviz
pca
ind(senso
pca,
 habillage
 =
 "Protein",
 repel
 =
 TRUE,
 mean.point
 =
 FALSE)

fviz
pca
ind(senso
pca,
 habillage
 =
 2,
 repel
 =
 TRUE,
 mean.point
 =
 FALSE,

palette
 =
 c("#FF8C00",
 "#949494"))

fviz
pca
var(senso
pca)

fviz
pca
biplot(senso
pca)

Here, repel=TRUE
uses geom
text
repel()
 from {ggrepel} (rather than
geom
text()
 from {ggplot2}) to avoid having labels overlapping.
On the first dimension, P10
is opposed to P09
and P03
as it is more intense

for attributes such as Sweet
and Dairy
 flavor, for example, and less intense
for attributes such as Dry
 in
 mouth
and External
 color
 intensity. On
the second dimension, P08and P06
are opposed to P02
and P07
as they score
higher for Qty
 of
 inclusions, and Initial
 hardness, and score lower for
RawDough
 flavor
and Shiny. POpt
 is located between P05
and P06.

Many more visualizations can be produced. Among others, let’s mention:
* Scree plot showing the evolution of the eigenvalues across dimensions to
help decide how many dimensions to consider;
* The representation of the product space on other dimensions (by default,
dimension 1 and dimension 2 are shown);
* Representations of the (product or attribute) space in which the contri
bution or quality of representation of the elements are showcased.

For more information regarding the various options offered by
{factoextra}, see Kassambara (2017b).

206
 Data
Science
 for
Sensory
and
Consumer
Scientists

FI
G

U
R

E

10

.2
D
is
p
la
y

o
f

P
C
A

p
lo
ts

u
si
n
g

f
a
ct
oe
xt
ra
.

207
Data
Analysis

10.2
 Demographic
and
Questionnaire
Data

The biscuits traits.xlsx file contains descriptive (i.e. demographic) information
regarding the consumers and their food-related behavioral traits (i.e. psycho
metric TFEQ data, see Chapter 7 for more information). This file has three
tabs denoted as Data, Variables, and Levels:

• Data contains the data, which is coded;

• Variables provides information (e.g. name, information) related to the
different variables present in Data;

• Levels provides information about the different levels each variable
can take.

Let’s start with importing this data set. The importation is done in multiple
steps as follows:

file
path
 <- here("Data",
 "biscuits
traits.xlsx")

excel
sheets(file
path)

##
 [1]
 "Data"
 "Variables"
 "Levels"

demo
var
 <- read
xlsx(file
path,
 sheet
 =
 "Variables")
 %>%

dplyr::select(Code,
 Name)

demo
lev
 <- read
xlsx(file
path,
 sheet
 =
 "Levels")
 %>%

dplyr::select(Question,
 Code,
 Levels)
 %>%

inner
join(demo
var,
 by
 =
 c("Question"
 =
 "Code"))
 %>%

dplyr::select(-Question)

demographic
 <- read
xlsx(file
path,
 sheet
 =
 "Data",
 skip
 =
 1,

col
names
 =
 unlist(demo
var$Name))

10.2.1
 Demographic
Data:
Frequency
and
Proportion

For this demographic data file, let’s start by having a look at the partition of
consumers for each of the descriptive variables. This is done by computing
the frequency and proportion (in percentage) attached to each level of
Living
 area, Housing, Income
 range, and Occupation. To obtain such a
table, let’s start by selecting only the columns corresponding to these variables
together with Judge.

208
 Data
Science
 for
Sensory
and
Consumer
Scientists

Since data from surveys and questionnaires are often coded (here, answer
#6 to question Q10
means Student, while answer #7 to the same question
means Qualified worker), they first need to be decoded. In our case, the key
to decode the data is stored in demo
lev.
Different strategies can be used to decode the data. One straight-forward

strategy consists in automatically decoding each variable using mutate()
and
factor(). Another approach is considered here: Let’s start with building
a long thin tibble with pivot
longer()
 that we merge to demo
lev
 by
Question
 and Response
 using inner
join(). We prefer this solution here
as it is simpler, faster, and independent of the number of variables to decode.
Once done, we can aggregate the results by Question
and Levels
(since we

want to use the level information, not their code) and compute the frequency
(n()) and the proportion (N/sum(N)).2

library(formattable)

demog
reduced
 <- demographic
 %>%

dplyr::select(Judge,
 `Living
 area`,
 Housing,

`Income
 range`,
 `Occupation`)
 %>%

pivot
longer(-Judge,

names
to
 =
 "Question",
 values
to
 =
 "Response")
 %>%

inner
join(demo
lev,
 by
 =
 c("Question"
 =
 "Name",

"Response"
 =
 "Code"))
 %>%

group
by(Question,
 Levels)
 %>%

summarize(N =
n())
 %>%

mutate(Pct
 =
 percent(N
 /
 sum(N),
 digits
 =
 1L))
 %>%

ungroup()

Bar plots and histograms are a nice way to visualize proportions and to
compare them over several variables. Such plots can be obtained by splitting
demog
reduced
 by Question
 and by creating them using either N
 or Pct

(we are using Pct
 here). For simplicity, let’s order the levels decreasingly
(reorder) and represent them horizontally (coord
flip()). Of course, such
graphs are automated across all questions using map()
(Figures 10.3 to 10.6):

demog
reduced
 %>%

split(.$Question)
 %>%

map(function(data)
 {

var
 <- data
 %>%

pull(Question)
 %>%

unique()

2
 We
use
the
package
{formattable}
 to
print
the
results
 in
percentage
using
one
decimal.

As
an
alternative,
we
could
have
used
percent()
 from
the
{scales}
package.

Housing

House 68.2%

Apartment 31.8%

0.0 0.2 0.4 0.6

Income range

2000–4000 46.7%

1200–2000 40.2%

<1200 10.3%

>4000 2.8%

0.0 0.1 0.2 0.3 0.4

209
Data
Analysis

FIGURE
10.3

Bar
plots
showing
the
respondent
distributions
 for
the
various
demographic
variables.

FIGURE
10.4

Bar
plots
showing
the
respondent
distributions
 for
the
various
demographic
variables.

Living area

Urban Area 67.3%

Rural Area 21.5%

Rurban Area 11.2%

0.0 0.2 0.4 0.6

Occupation
Public Service

Unemployed
Intermediate (Public Service)

Student
Employee (Shop)

Middle Management
Manager (Public Service)

Technician
Merchant
Manager

Qualified Worker
Intermediate (Private)

Personal Service
Non-qualified Worker

Liberal
Former Employee

Artisan 0.9%

10.3%

0.9%

2.8%

12.1%

0.9%

3.7%

6.5%

3.7%

9.3%

0.9%
1.9%

16.8%

2.8%

10.3%

3.7%

12.1%

0.00 0.05 0.10 0.15

210
 Data
Science
 for
Sensory
and
Consumer
Scientists

FIGURE
10.5

Bar
plots
showing
the
respondent
distributions
 for
the
various
demographic
variables.

FIGURE
10.6

Bar
plots
showing
the
respondent
distributions
 for
the
various
demographic
variables.

211
Data
Analysis

ggplot(data,
 aes(x =
reorder(Levels,
 Pct),
 y =
Pct,
 label
 =
 Pct))
 +

geom
bar(stat
 =
 "identity",
 fill
 =
 "grey50")
 +

geom
text(aes(y =
Pct
 /
 2),
 colour
 =
 "white")
 +

xlab("")
 +

ylab("")
 +

ggtitle(var)
 +

theme
bw()
 +

coord
flip()

})

10.2.2
 Eating
Behavior
Traits:
TFEQ
Data

In the same data set, consumers also answered some questions that reflect
their relation to food (Stunkard and Messick, 1985). These questions can be
categorized into three groups (also known as factors):

• Disinhibition (variables starting with D);

• Restriction (variables starting with R);
• Sensitivity to Hunger (variables starting with H).

In order to analyze these three factors separately, we first need to select the
corresponding variables. As we have seen earlier, such selection could be done
by combining dplyr::select()
to starts
with("D"), starts
with("R"),
and/or starts
with("H"). However, this solution is not satisfactory as it also
selects other variables that would start with any of these letters (e.g. Housing).
Instead, let’s take advantage of the fact that variable names have a recurring

pattern (they all start with the letters D, R, or H, followed by a number) to
introduce the notion of regular expressions.
Regular expressions are coded expressions that allow finding patterns in

names. In practice, generating a regular expression can be quite complex as
it is an abstract concept which follows very specific rules. Fortunately, the
package {RVerbalExpression} is a great assistant as it generates the regular
expression for you thanks to understandable functions. To create a regular
expression using {RVerbalExpression}, we should first initiate it by calling
the function rx()
 to which any relevant rules can be added. In our case,
the variables must start with any of the letter R, D, or H, followed by a
number (or more, as values go from 1 to 21). This can be done using the
following code:

library(RVerbalExpressions)

212
 Data
Science
 for
Sensory
and
Consumer
Scientists

rdh
 <- rx()
 %>%

rx
either
of(c("R",
 "D",
 "H"))
 %>%

rx
digit()
 %>%

rx
one
or
more()

rdh
 is defined as (R|D|H)+ which corresponds to the regular expression .
we were looking for. We can then reduce (through dplyr::select()) the
table to the variables that fit our regular expression by using the function
matches().

demographic
 %>%

dplyr::select(matches(rdh))

For each variable, let’s create a frequency table. Although we could use
already built-in functions, let’s customize our table (including raw frequency
and percentages) as we want by creating our own function (called here
myfreq()):

myfreq
 <- function(data,
 info)
 {

var
 <- unique(unlist(data$TFEQ))

info
 <- info
 %>%

filter(Name
 ==
 var)

res
 <- data
 %>%

mutate(Response
 =
 factor(Response,
 levels
 =
 info$Code,

labels
 =
 info$Levels))
 %>%

arrange(Response)
 %>%

group
by(Response)
 %>%

summarize(N =
n())
 %>%

mutate(Pct
 =
 percent(N
 /
 sum(N),
 digits
 =
 1L))
 %>%

ungroup()

return(res)

}

We then apply this function to each variable separately using map()
after
pivoting all these variables of interest (pivot
longer()) and splitting the
data by TFEQ
question:

213
Data
Analysis

TFEQ
freq
 <- demographic
 %>%

dplyr::select(Judge,
 matches(rdh))
 %>%

pivot
longer(-Judge,
 names
to
 =
 "TFEQ",
 values
to
 =
 "Response")
 %>%

split(.$TFEQ)
 %>%

map(myfreq,
 info
 =
 demo
lev)
 %>%

enframe(name
 =
 "TFEQ",
 value
 =
 "res")
 %>%

unnest(res)
 %>%

mutate(TFEQ
 =
 factor(TFEQ,
 levels
 =
 unique(

str
sort(.$TFEQ,
 numeric=TRUE))))
 %>%

arrange(TFEQ)

From this table, histograms representing the frequency distribution for each
variable can be created. But let’s suppose that we only want to display
variables related to Disinhibition (Figure 10.7). To do so, we first need
to generate the corresponding regular expression (only selecting variables
starting with “D”) to filter the results before creating the plots:

d
 <- rx()
 %>%

rx
find("D")
 %>%

rx
digit()
 %>%

rx
one
or
more()

TFEQ
freq
 %>%

filter(str
detect(TFEQ,
 d))
 %>%

ggplot(aes(x =
Response,
 y =
Pct,
 label
 =
 Pct))
 +

geom
bar(stat
 =
 "identity",
 fill
 =
 "grey50")
 +

geom
text(aes(y =
Pct
 /
 2),
 colour
 =
 "white")
 +

theme
bw()
 +

theme(axis.text
 =
 element
text(hjust
 =
 1,
 angle
 =
 30))
 +

facet
wrap(~TFEQ,
 scales
 =
 "free")

Structured questionnaires such as the TFEQ are very frequent in sensory
and consumer science. They are used to measure individual patterns as
diverse as personality traits, attitudes, food choice motives, engagement, social
desirability bias, etc. Ultimately, the TFEQ questionnaire consists of a set of
structured questions whose respective answers combine to provide a TFEQ
score (actually, three scores, one for Disinhibition, one for Restriction, and
one for sensitivity to Hunger). These TFEQ scores translate into certain food
behavior tendencies.
However, computing the TFEQ scores is slightly more complicated than

adding the scores of all TFEQ questions together. Instead, they follow certain
rules that are stored in the Variables spreadsheet in biscuits traits.xlsx. For
each TFEQ question, the rule to follow is provided by Direction
and Value

and works as follows: if the condition provided by Direction
 and Value
 is

214
 Data
Science
 for
Sensory
and
Consumer
Scientists

FI
G

U
R

E

10

.7
F
re
q
u
en

cy

d
is
tr
ib
u
ti
o
n
s

fo
r

d
is
in
h
ib
it
io
n
-r
el
a
te
d

v
a
ri
a
b
le
s

o
n
ly
.

Data
Analysis
 215

met, then the respondent gets a 1, else a 0. Ultimately, the TFEQ score is the
sum of all these evaluations.
Let’s start by extracting this information (Direction
and Value) from the

Variables sheet for all the variables involved in the computation of the TFEQ
scores. We store this in var
drh.

var
rdh
 <- read
xlsx(file
path,
 sheet
 =
 "Variables")
 %>%

filter(str
detect(Name,
 rdh))
 %>%

dplyr::select(Name,
 Direction,
 Value)

This information is added to demographic.

TFEQ
 <- demographic
 %>%

dplyr::select(Judge,
 matches(rdh))
 %>%

pivot
longer(-Judge,
 names
to
 =
 "DHR",
 values
to
 =
 "Score")
 %>%

inner
join(var
rdh,
 by
 =
 c("DHR"
 =
 "Name"))

Since we need to evaluate each assessors’ answer to the TFEQ questions,
we create a new variable TFEQValue
 which takes a 1 if the corresponding
condition is met or a 0 otherwise. Such approach is done through mutate()

combined with a succession of intertwined ifelse()
 functions.3

TFEQ
coded
 <- TFEQ
 %>%

mutate(TFEQValue
 =
 ifelse(Direction
 ==
 "Equal"
 &
 Score
 ==
 Value,
 1,

ifelse(Direction
 ==
 "Superior"
 &
 Score
 >
 Value,
 1,

ifelse(Direction
 ==
 "Inferior"
 &
 Score
 <
 Value,
 1,
 0)

)

))
 %>%

mutate(Factor
 =
 ifelse(str
starts(.$DHR,
 "D"),
 "Disinhibition",

ifelse(str
starts(.$DHR,
 "H"),
 "Hunger",
 "Restriction")

))
 %>%

mutate(Factor
 =
 factor(Factor,
 levels
 =
 c("Restriction",

"Disinhibition",

"Hunger")))

Ultimately, we compute the TFEQ score by summing across all TFEQValue

per respondent, by maintaining the distinction between each category. Note
that the final score is stored in Total, which corresponds to sum across
categories:

3
 The
 function
 ifelse()
 takes
 three
 parameters:
 1.
 the
 condition
 to
 test,
 2.
 the
 value

or
code
to
run
 if
the
condition
 is
met,
and
3.
the
value
or
code
to
run
 if
the
condition
 is

not
met.

Distribution of the Individual TFEQ-factor Scores

0.12

0.09

0.06

0.03

0.00

0 5 10 15 20
TFEQ Score

Factor

Disinhibition
Hunger
Restriction

216
 Data
Science
 for
Sensory
and
Consumer
Scientists

TFEQ
score
 <- TFEQ
coded
 %>%

group
by(Judge,
 Factor)
 %>%

summarize(TFEQ
 =
 sum(TFEQValue))
 %>%

mutate(Judge
 =
 factor(Judge,
 levels
 =
 unique(

str
sort(.$Judge,
 numeric
 =
 TRUE))))
 %>%

arrange(Judge)
 %>%

pivot
wider(names
from
 =
 Factor,
 values
from
 =
 TFEQ)
 %>%

mutate(Total
 =
 sum(across(where(is.numeric))))

##
 ‘summarise()‘
 has
 grouped
 output
 by
 ’Judge’.
 You
 can

##
 override
 using
 the
 ‘.groups‘
 argument.

Such results can then be visualized graphically, for instance by representing
the distribution of TFEQ
score
 for the three TFEQ factors (Figure 10.8):

TFEQ
score
 %>%

dplyr::select(-Total)
 %>%

pivot
longer(-Judge,
 names
to
 =
 "Factor",
 values
to
 =
 "Scores")
 %>%

ggplot(aes(x =
Scores,
 color
 =
 Factor))
 +

FIGURE
10.8

Visualization
of
the
distributions
of
the
TFEQ
 factors
 for
the
consumer
panel.

217
Data
Analysis

geom
density(lwd
 =
 1.5,
 key
glyph
 =
 "path")
 +

xlab("TFEQ
 Score")
 +

ylab("")
 +

guides(color
 =
 guide
legend(override.aes
 =
 list(linetype
 =
 1)))
 +

ggtitle("Distribution
 of
 the
 Individual
 TFEQ-factor
 Scores")
 +

theme
bw()

10.3
 Consumer
Data

The analysis of consumer data usually involves the same type of analysis as
the ones for sensory data (e.g. ANOVA, PCA, etc.), but the way the data are
being collected (absence of repetitions) and their underlying nature (affect
vs. descriptive) require some adjustments.
Let’s start by importing the consumer data that are stored in

biscuits consumer test.xlsx. Here, we import two spreadsheets, one with
the consumption time and number of biscuits (stored in Nbiscuit) and one
with different consumer evaluations of the samples (stored in consumer).

file
path
 <- here("Data",
 "biscuits
consumer
test.xlsx")

Nbiscuit
 <- read
xlsx(file
path,
 sheet
 =
 "Time
 Consumption")
 %>%

mutate(Product
 =
 str
c("P",
 Product))
 %>%

rename(N
 =
 `Nb
 biscuits`)

consumer
 <- read
xlsx(file
path,
 sheet
 =
 "Biscuits")
 %>%

rename(Judge
 =
 Consumer,
 Product
 =
 Samples)
 %>%

mutate(Judge
 =
 str
c("J",
 Judge),
 Product
 =
 str
c("P",
 Product))
 %>%

inner
join(Nbiscuit,
 by
 =
 c("Judge",
 "Product"))

Similar to what we did with the sensory data, let’s start with computing
the mean liking scores per product after the first bite (1stbite
liking) and
at the end of the evaluation (after
liking).

consumer
 %>%

dplyr::select(Judge,
 Product,
 `1stbite
liking`,
 `after
liking`)
 %>%

group
by(Product)
 %>%

summarise(across(where(is.numeric),
 mean))

##
 #
 A
 tibble:
 10
 x
 3

218
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 Product
 ‘1stbite_liking‘
 after_liking

##
 <chr>
 <dbl>
 <dbl>

##
 1
 P1
 6.30
 6.26

##
 2
 P10
 7.40
 7.57

##
 3
 P2
 5.53
 5.38

##
 4
 P3
 3.94
 3.49

##
 #
 ...
 with
 6
 more
 rows

A first glance at the table shows that there are clear differences between the
samples (within a liking variable), but little difference between liking variables
(within a sample).
Of course, we want to know if differences between samples are significant.

We thus need to perform a two-way ANOVA (testing for the product effect
and also taking into account the individual differences) followed up by a paired
comparison test (here Tukey’s HSD). For the latter, the {agricolae} package
is a good solution, as it is simple to use and has all its built-in tests working
in the same way.

library(agricolae)

liking
start
 <- lm(`1stbite
liking`
 ~
 Product
 +
 Judge,
 data
 =
 consumer)

liking
start
hsd
 <- HSD.test(liking
start,
 "Product")$groups
 %>%

as
tibble(rownames
 =
 "Product")

liking
start
hsd

##
 #
 A
 tibble:
 10
 x
 3

##
 Product
 ‘1stbite_liking‘
 groups

##
 <chr>
 <dbl>
 <chr>

1 P10
 7.40 a

2 P1
 6.30 b

3 P5
 5.78 b

4 P2
 5.53 bc

##
 #
 ...
 with
 6
 more
 rows

liking
end
 <- lm(`after
liking`
 ~
 Product
 +
 Judge,
 data
 =
 consumer)

liking
end
hsd
 <- HSD.test(liking
end,
 "Product")$groups
 %>%

as
tibble(rownames
 =
 "Product")

At both evaluation times, the Tukey’s HSD test shows significant differences
in liking between samples (at a 5% risk).
To further compare the liking assessment of the samples after the first bite

and at the end of the tasting, the results obtained from liking
start
hsd

P10 P1 P5 P2 P7 P6 P3 P9 P8 P4

6

Moment
4 Start

End

2

0

Li
ki

ng

219
Data
Analysis

and liking
end
hsd
 are combined. We then represent the results in a bar
chart (Figure 10.9):

list(Start
 =
 liking
start
hsd
 %>%
 rename(Liking
 =
 `1stbite
liking`),

End
 =
 liking
end
hsd
 %>%
 rename(Liking
 =
 `after
liking`))
 %>%

enframe(name
 =
 "Moment",
 value
 =
 "res")
 %>%

unnest(res)
 %>%

mutate(Moment
 =
 factor(Moment,
 levels
 =
 c("Start",
 "End")))
 %>%

ggplot(aes(x =
reorder(Product,
 -Liking),
 y =
Liking,
 fill
 =
 Moment))+

geom
bar(stat
 =
 "identity",
 position
 =
 "dodge")+

xlab("")+

theme
bw()

FIGURE
10.9

Bar
 chart
 for
 the
 the
 comparison
of
mean
 liking
 scores
at
 the
first
bite
and
at
 the
 end
of

the
evaluation.

As can be seen, the pattern of liking scores across samples is indeed very
stable across the evaluation, particularly in terms of rank. At the individual
level, such linear relationship is also observed (here for the first 12 consumers)
(Figure 10.10):

En
d

10.0

7.5

5.0

2.5

0.0

10.0

7.5

5.0

2.5

0.0

10.0

7.5

5.0

2.5

0.0

J1 J2 J3 J4

J5 J6 J7 J8

J9 J10 J11 J12

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.00.0 2.5 5.0 7.5 10.00.0 2.5 5.0 7.5 10.0
Start

220
 Data
Science
 for
Sensory
and
Consumer
Scientists

consumer
 %>%

dplyr::select(Judge,
 Product,
 Start
 =
 `1stbite
liking`,

End
 =
 `after
liking`)
 %>%

filter(Judge
 %in%
 str
c("J",
 1:12))
 %>%

mutate(Judge
 =
 factor(Judge,
 levels
 =
 unique(

str
sort(.$Judge,
 numeric
 =
 TRUE))))
 %>%

ggplot(aes(x = Start,

 y =
End))
 +

geom
point(pch
 =
 20,
 cex
 =
 2)
 +

geom
smooth(method
 =
 "lm",
 formula
 =
 "y~x",
 se
 =
 FALSE)
 +

theme
bw()
 +

facet
wrap(~Judge)

FIGURE
10.10

Faceted
 scatterplots
 showing
 the
 linear
 relationship
between
overal
 liking
at
 the
first
bite

vs.
end
of
the
tasting
 for
the
first
12
consumers.

For your own curiosity, we invite you to recreate the same graph by com
paring the Liking score at the end of the evaluation (after
liking) with
the liking score measured on the 9pt categorical scale (end
liking
 9pt)
and to reflect on the results obtained. Are the consumers consistent in
their evaluations?

221
Data
Analysis

Another interesting relationship to study involves the liking scores4
 and
the number of cookies eaten by each consumer. We could follow the same
procedure as before, but prefer to add here a filter to only show consumers
with a significant regression line at 5%.
Let’s start by creating a function called run
reg()
that runs the regression

analysis of the number of biscuits (N) in function of the liking score (Liking):

run
reg
 <- function(df)
 {
output
 <- lm(N
 ~
 Liking,
 data
 =
 df)

return(output)

}

After transforming the data, we apply this function to each consumer
separately.
Here, we take advantage of the flexibility of tibbles as it allows storing

results as list by saving three sorts of outputs per consumer:

• data
contains the individual data;

• lm
obj
 corresponds to the results of the linear model (obtained with
‘run reg()“);

• glance
contains some general results of the model incl. R2, p-value, etc.

These three output contain completely different information for the same
analysis (here regressions). The fact that tibbles allow storing output as
list is very handy since all the results are tidied in one unique R object,
which can then easily be accessed by unfolding the output needed.

N
liking
reg
 <- consumer
 %>%

dplyr::select(Judge,
 Product,
 Liking
 =
 `end
liking
 9pt`, N)
%>%

mutate(Liking
 =
 10
 - Liking)
 %>%

group
by(Judge)
 %>%

nest()
 %>%

ungroup()
 %>%

mutate(lm
obj
 =
 map(data,
 run
reg))
 %>%

mutate(glance
 =
 map(lm
obj,
 broom::glance))

We
would
 like
 to
 remind
 the
 reader
 that
 the
 liking
 scores
measured
 on
 the
 categorical

scale
was
 reverted
 since
1
defined
“I
 like
 it
a
 lot”
and
9
“I
dislike
 it
a
 lot”.
To
 simplify

the
readability,
this
scale
 is
reverted
so
that
1
corresponds
to
a
 low
 liking
score
and
9
to

a
high
 liking
score
(in
practice,
we
will
take
as
value
10
–
score
given).

4

222
 Data
Science
 for
Sensory
and
Consumer
Scientists

Since we only want to represent consumers with a significant regression line,
we unfold the results stored in glance
so that we can access the p.value
of
each regression.

N
liking
 <- N
liking
reg
 %>%

unnest(glance)
 %>%

filter(p.value
 <=
 0.05)
 %>%

arrange(p.value)
 %>%

mutate(Judge
 =
 fct
reorder(Judge,
 p.value))
 %>%

unnest(data)

Ultimately, the relationship between the liking score and the number of
biscuits eaten is represented in a line chart (Figure 10.11):

ggplot(N
liking,
 aes(x =
Liking,
 y =
N))
 +

geom
point(pch
 =
 20,
 cex
 =
 2)
 +

geom
smooth(method
 =
 "lm",
 formula
 =
 "y~x",
 se
 =
 FALSE)
 +

theme
bw()
 +

scale
y
continuous(labels
 =
 label
number(accuracy
 =
 1))
 +

ggtitle("Number
 of
 Biscuits
 vs.
 Liking",

"Consumers
 with
 a
 signif.
 (5%)
 regression
 model
 are
 shown.")
 +

facet
wrap(~Judge)

10.4
 Combining
Sensory
and
Consumer
Data

10.4.1
 Internal
Preference
Mapping

Now that we have analyzed the sensory and the consumer data separately, it
is time to combine both data sets and analyze them conjointly. A first analysis
that can then be performed is the internal preference mapping, that is, a PCA
on the consumer liking scores in which the sensory attributes are projected as
supplementary (Figures 10.12 and Figure 10.13).
Such analysis is split into three steps:

1. The consumer data are reorganized in a wide format with the samples
in rows and the consumers in columns;

2. The sensory mean table is joined to the consumer data (make sure that
the product names perfectly match in the two files);

3. A PCA is performed on the consumer data, with the sensory descriptors
being projected as supplementary variables.

223
Data
Analysis

FI
G

U
R

E

10

.1
1

C
o
n
su

m
er
s

sh

o
w
in
g

a

s
ig
n
ifi
ca

n
t

re
la
ti
o
n
sh

ip

b
et
w
ee
n

t
h
ei
r

li
k
in
g

s
co

re
s

a
n
d

t
h
e

n
u
m
b
er

o
f

b
is
cu

it
s

th

ey

a
te
.

Individuals – PCA

5.0

2.5

0.0

–2.5

–5.0

P04
P08

P09 P06
P01

P05
P07P03

P02

P10

Protein

a Protein_High

a Protein_Low

D
im

2
(1

2.
9%

)

–10 –5 0 5 10
Dim1 (44.6%)

FIGURE
10.12

Internal
preference
mapping
(PCA
score
plot
of
consumer
data).

224
 Data
Science
 for
Sensory
and
Consumer
Scientists

consumer
wide
 <- consumer
 %>%

separate(Product,
 into
 =
 c("P",
 "Number"),
 sep
 =
 1)
 %>%

mutate(Number
 =
 ifelse(nchar(Number)
 ==
 1,

str
c("0",
 Number),
 Number))
 %>%

unite(Product,
 P,
 Number,
 sep = "")
 %>%

dplyr::select(Judge,
 Product,
 Liking
 =
 `end
liking
 9pt`)
 %>%

mutate(Liking
 =
 10
 - Liking)
 %>%

pivot
wider(names
from
 =
 Judge,
 values
from
 =
 Liking)

data
mdpref
 <- senso
mean
 %>%

inner
join(consumer
wide,
 by
 =
 "Product")

res
mdpref
 <- data
mdpref
 %>%

as.data.frame()
 %>%

column
to
rownames(var
 =
 "Product")
 %>%

PCA(.,
 quali.sup
 =
 1:2,
 quanti.sup
 =
 3:34,
 graph
 =
 FALSE)

fviz
pca
ind(res
mdpref,
 habillage
 =
 1)

225

D

im
2

(1
2.

9%
)

Variables - PCA

1.0

0.5

0.0

-0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0
Dim1 (44.6%)

External color intensity

Color evenness Overall odor intensity

Roasted odor

Cereal flavor
Fatty flavor

Roasted flavor

Overall flavor persistence

Sweet

Astringent

Crunchy

Dry in mouth

Melting

Data
Analysis

fviz
pca
var(res
mdpref,
 label
 =
 "quanti.sup",

select.var
 =
 list(cos2
 =
 0.5),
 repel
 =
 TRUE)

FIGURE
10.13

Internal
preference
mapping
 (PCA
 loadings
of
 consumer
data
with
 sensory
descriptors
as

supplementary
variables).

As can be seen, the consumers are quite in agreement as all the black arrows
are pointing in a similar direction. Overall, they seem to like biscuits that are
sweet, with cereal flavor, and fatty/dairy flavor and odor, and dislike biscuits
defined as astringent, dry in mouth, uneven, and with dark external color.

10.4.2
 Consumers
 Clustering

Even though the data show a fairly good agreement between consumers, let’s
cluster them in more homogeneous groups based on liking.

226
 Data
Science
 for
Sensory
and
Consumer
Scientists

There are various solutions for clustering depending on the type of distance
(similarity or dissimilarity), the linkage (single, average, Ward, etc.), and of
course the algorithm itself (e.g. AHC, k-means, etc.).
Here, we opt for Agglomerative Hierarchical Clustering (AHC) with

Euclidean distance (dissimilarity) and Ward criterion, as it is a fairly
common approach in Sensory and Consumer research. Such analysis can be
done using stats::hclust()
or cluster::agnes().

Before computing the distance between consumers, it is advised to center
their liking scores (subtracting their mean liking scores to each of their
individual scores) in order to group consumers based on their respec
tive preferences, rather than on their scale usage (otherwise, consumers
who scored high on all samples are grouped together and separated
from consumers who scored low on all samples, which isn’t so much
informative). Some researchers recommend to also scale the liking scores.
Both transformations can be done automatically using the scale()5

function.

Let’s start with computing the Euclidean distance between each pair of
consumers by using the dist()
 function.

consumer
dist
 <- consumer
wide
 %>%

as.data.frame()
 %>%

column
to
rownames(var
 =
 "Product")
 %>%

scale(.,
 center
 =
 TRUE,
 scale
 =
 FALSE)
 %>%

t(.)
 %>%

dist(.,
 method
 =
 "euclidean")

The AHC is performed using the hclust()
 function and the
method
 =
 "ward.D2"
parameter, which is the equivalent to method
 =
 "ward"

for agnes(). To visualize the resulting dendrogram, we can use the
factoextra::fviz
dend()
 function (here we propose to visualize the
two-clusters solution by setting k=2) (Figure 10.14):

res
hclust
 <- hclust(consumer
dist,
 method
 =
 "ward.D2")

fviz
dend(res
hclust,
 k =
2)

scale()
 allows
 centering
 (center=TRUE)
 and
 standardizing
 (scale=TRUE)
 data

automatically
 in
columns,
hence
generating
z-scores.

5

227
Data
Analysis

FI
G

U
R

E

10

.1
4

A
g
g
lo
m
er
a
ti
v
e

h
ie
ra
rc
h
ic
a
l

cl
u
st
er
in
g

o
f

co

n
su

m
er
s’

c
en

te
re
d

l
ik
in
g

s
co

re
s.

228
 Data
Science
 for
Sensory
and
Consumer
Scientists

An interesting option to visualize clusters and proposed by fviz
dend()

is the phylogenic representation (type="phylogenic"). We invite you to
give it a try to see how it represents the clusters as an alternative to the
classical dendrogram tree.

The two clusters solution looks satisfactory, so we can cut the tree at this
level (using cutree()), hence generating a group of 74 and a group of 33
consumers.

res
clust
 <- cutree(res
hclust,
 k =
2)
 %>%

as
tibble(rownames
 =
 "Judge")
 %>%

rename(Cluster
 =
 value)
 %>%

mutate(Cluster
 =
 as.character(Cluster))

res
clust
 %>%

count(Cluster)

##
 #
 A
 tibble:
 2
 x
 2

##
 Cluster
 n

##
 <chr>
 <int>

1 1
 74

2 2
 33

Lastly, we can compare visually the preference patterns of the two clusters
by representing in a line chart the average liking score for each product
provided by each cluster (Figure 10.15).

mean
cluster
 <- consumer
 %>%

separate(Product,
 into
 =
 c("P",
 "Number"),
 sep
 =
 1)
 %>%

mutate(Number
 =
 ifelse(nchar(Number)
 ==
 1,

str
c("0",
 Number),
 Number))
 %>%

unite(Product,
 P,
 Number,
 sep = "")
 %>%

dplyr::select(Judge,
 Product,
 Liking
 =
 `end
liking
 9pt`)
 %>%

mutate(Liking
 =
 10
 - Liking)
 %>%

full
join(res
clust,
 by
 =
 "Judge")
 %>%

group
by(Product,
 Cluster)
 %>%

summarize(Liking
 =
 mean(Liking),
 N =
n())
 %>%

mutate(Cluster
 =
 str
c(Cluster,
 " (", N,
")"))
 %>%

ungroup()

ggplot(mean
cluster,
 aes(x =
Product,
 y =
Liking,

colour
 =
 Cluster,
 group
 =
 Cluster))
 +

geom
point(pch
 =
 20)
 +

geom
line(aes(group
 =
 Cluster),
 lwd
 =
 2)
 +

9

8

7

6
Cluster

5 1 (74)

2 (33)
4

3

2

1

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10

Av
er

ag
e

Li
ki

ng
 S

co
re

229
Data
Analysis

xlab("")
 +

scale
y
continuous(name
 =
 "Average
 Liking
 Score",

limits
 =
 c(1,
 9),
 breaks
 =
 seq(1,
 9,
 1))
 +

theme
bw()

FIGURE
10.15

Average
 liking
scores
of
the
two
consumer
clusters.

It appears that cluster 1 (74 consumers) particularly likes P10, P01, and P05,
and has a fairly flat liking pattern otherwise. On the other hand, cluster 2
(33 consumers) expressed strong rejections toward P04
and P08, and liked P10

and P01
the most.
The fact that both clusters agree on the best samples (P10
and P01) goes

with our original observation from the Internal Preference Mapping that the
panel of consumers is fairly homogeneous in terms of preferences.

In {FactoMineR}, the HCPC()
 function also performs AHC but takes
the results of a multivariate analysis as a starting point (HCPC stands
for Hierarchical Clustering on Principal Components). This would typ
ically be the results of the PCA performed on the Consumer(rows) ×
Product(columns) matrix of liking scores, in which the scores are (at least)
centered in row. Although results should be identical in most cases, it can

230
 Data
Science
 for
Sensory
and
Consumer
Scientists

happen that results slightly diverge from agnes()
and hclust()
as it also
depends on the number of dimensions kept in the multivariate analysis and
on the treatment of in-between clusters consumers. But more interestingly,
HCPC()
 offers the possibility to consolidate the clusters by performing
k-means on the solution obtained from the AHC (consol=TRUE).

10.4.3
 Drivers
 of
 Liking

Combining sensory and consumer data collected on the same products allows
understanding which sensory properties of the products drive the consumers’
liking and disliking. Such evaluation can be done at the panel level, at a
subgroup level (e.g. clusters, users vs. non-users, gender, etc.), or even at the
individual level. Unless stated otherwise, the computations will be done for
cluster 1, but could easily be adapted to other groups if needed.

Correlation

Let’s start by evaluating the simplest relationship between the sensory
attributes and overall liking by looking at correlations. Here, we are
combining the average liking score per cluster to the sensory profile of the
products. The correlations are then computed using the cor()
 function:

data
cor
 <- mean
cluster
 %>%

dplyr::select(-N)
 %>%

pivot
wider(names
from
 =
 Cluster,
 values
from
 =
 Liking)
 %>%

inner
join(senso
mean
 %>%

dplyr::select(-c(Protein,Fiber)),
 by="Product")
 %>%

as.data.frame()
 %>%

column
to
rownames(var
 =
 "Product")

res
cor
 <- cor(data
cor)

Various packages can be used to visualize these correlations. We opt here
for ggcorrplot()
 from the {ggcorrplot} package as it provides many
interesting visualization options based on {ggplot2} (Figure 10.16). This
package also provides the function cor
pmat()
which computes the p-value
associated with each correlation. This matrix of p-value can be used to hide
correlations that are not significant at the level defined by the parameter
sig.level.

library(ggcorrplot)

res
cor
pmat
 <- cor
pmat(data
cor)

231
Data
Analysis

ggcorrplot(res
cor,
 type
 =
 "full",
 p.mat
 =
 res
cor
pmat,

sig.level
 =
 0.05,
 insig
 =
 "blank",

lab
 =
 TRUE,
 lab
size
 =
 1.5)

FIGURE
10.16

Matrix
of
pairwise
correlations
between
attributes.

The average liking scores for cluster 1 (defined as 1
 (74)) are positively
correlated with Overall
 odor
 intensity, Fatty
 odor, Cereal
 flavor,
Fatty
 flavor, Dairy
 flavor, Overall
 flavor
 persistence, Salty, Sweet,
Warming, Fatty
 in
 mouth, and Melting. They are also negatively correlated
to External
 color
 intensity, Astringent, and Dry
 in
 mouth. Finally,
it can be noted that the correlation between clusters is high with a value
of 0.72.

232
 Data
Science
 for
Sensory
and
Consumer
Scientists

Linear
and
Quadratic
Regression

Although the correlation provides a first good idea of which attributes are
linked to liking, it only measures linear relationships and it does not allow
for inference. To overcome these limitations, linear and quadratic regressions
are used.
Let’s start by combining the sensory data to the average liking score per

product for cluster 1. To simplify the analysis, all the sensory attributes are
structured in the longer format.

data
reg
 <- mean
cluster
 %>%

filter(Cluster
 ==
 "1
 (74)")
 %>%

dplyr::select(-N)
 %>%

inner
join(senso
mean
 %>%

dplyr::select(-c(Protein,
 Fiber)),
 by
 =
 "Product")
 %>%

pivot
longer(Shiny:Melting,

names
to
 =
 "Attribute",
 values
to
 =
 "Score")
 %>%

mutate(Attribute
 =

factor(Attribute,

levels=colnames(senso
mean)[4:ncol(senso
mean)]))

Both the simple linear regression and the quadratic regression are then run
on Liking
per attribute:

To add a quadratic model, two options are possible: 1. In data
reg, we
could add a column (using mutate()) called Score2
 that is defined as
Score2
 =
 Scoreˆ2. The model for the quadratic regression is then
defined as Liking
 ~
 Score
 +
 Score2; 2. The quadratic model is
informed directly using the poly()
 function by informing which
polynomial degrees to consider (here 2). For its concision, we opt for the
second option.

res
reg
 <- data
reg
 %>%

nest
by(Attribute)
 %>%

mutate(lin
mod
 =
 list(lm(Liking
 ~
 Score,
 data=data)),

quad
mod
 =
 list(lm(Liking
 ~
 poly(Score,
 2),
 data=data)))

We extract the attributes that are significantly linked to liking (at 5%,
and we accept 6% for quadratic effects). To do so, the results stored in
lin
mod
 and quad
mod
 need unfolding (summarize()) and restructuring
(broom::tidy()).

233
Data
Analysis

lin
 <- res
reg
 %>%

reframe(broom::tidy(lin
mod))
 %>%

ungroup()
 %>%

filter(term
 ==
 "Score",
 p.value
 <=
 0.05)
 %>%

pull(Attribute)
 %>%

as.character()

quad
 <- res
reg
 %>%

reframe(broom::tidy(quad
mod))
 %>%

ungroup()
 %>%

filter(term
 ==
 "poly(Score,
 2)2",
 p.value
 <=
 0.06)
 %>%

pull(Attribute)
 %>%

as.character()

These attributes are then represented graphically against the liking Scores
(Figure 10.17).

library(ggrepel)

df
 <- data
reg
 %>%

filter(Attribute
 %in%
 unique(c(lin,
 quad)))

p
 <- ggplot(df,
 aes(x =
Score,
 y =
Liking,
 label
 =
 Product))
 +

geom
point(pch
 =
 20,
 cex
 =
 2)
 +

geom
text
repel()
 +

theme
bw()
 +

facet
wrap(~Attribute,
 scales
 =
 "free
x")

Let’s now add a regression line to the model. To do so, geom
smooth()
 is
being used with as method
 =
 lm
combined to formula
 =
 ’y
 ~
 x’
for linear
relationships, and formula
 =
 ’y
 ~
 x
 +
 I(xˆ2)’
for quadratic relationships
(when both the linear and quadratic models are significant, the quadratic
model is used).

lm.mod
 <- function(df,
 quad)
 {

ifelse(df$Attribute
 %in%
 quad,
 "y~x+I(xˆ2)",
 "y~x")

}

We apply this function to our data by applying to each attribute (here we
set se=FALSE
to remove the confidence intervals around the regression line):

P01
P02

P03P04
P05 P06

P07

P08

P09

P10

P01

P03
P04

P05
P06

P10

P01P03 P05
P07

P09
P10

P01

P02 P03
P04

P05 P06

P07
P08

P09

P10

P01
P05

P10

P01
P03 P07
P09

P10

P01

P02 P03
P04

P05

P06
P07

90P 80P

P10

P01
P02

P03 P04

P05

P06
P07

P08
P09

P10

P01

P02
P05

P09

P10

P01

P04
P06

90P 80P

P10

P01
P02

P03
P04 P05

P06

90P 80P70P

P10

P01P02

P03 P04
P05P06P07

P08

P09

P10

P01P02

P03
P04 P05P06P07

P08 P09

P10

P01

P03

P10

Dry in mouth Melting

Sweet Astringent Warming Fatty in mouth

Fatty flavor Dairy flavor Overall flavor persistence Salty

External color intensity Overall odor intensity Fatty odor Cereal flavor

10 15 20 25 30 9 12 15 15 20 25 4 8 12

5 10 15 10 20 30 20 25 30 35 4 6 8

20 25 30 35 40 45 15 20 25 30 35 5 10 22 24 26 28

Li
ki

ng

7
6
5

7
6
5

7
6
5

7
6
5

40 44 48 15 18 21 24
Score

234
 Data
Science
 for
Sensory
and
Consumer
Scientists

FIGURE
10.17

Regression
of
 liking
on
sensory
atttributes
taken
separately.

p
smooth
 < by(

df,
 df$Attribute,

function(x)
 geom
smooth(data
 =
 x,
 method
 =
 lm,

formula
 =
 lm.mod(x,
 quad
 =
 quad),

se
 =
 FALSE)

)

p
 +
 p
smooth

All attributes except Astringent
 are linearly linked to liking. For
Astringent, the curvature is U-shaped: This does not show an effect
of saturation as it would have been represented as an inverted U-shape.
Although the quadratic effect shows a better fit than the linear effect, having
a linear effect would have been a good predictor as well in this situation.
Such an approach to regression is quite straightforward, however it must

be applied and interpreted with caution because of potential multicollinearity
among predictor variables. One way around this issue is to take all the sensory
attributes together and perform a regression on principal components as
described in Section 10.4.4. Another option would be to run a partial least
square regression (see also Section 12.5).

Data
Analysis
 235

10.4.4
 External
Preference
Mapping

Ultimately, one of the goals of combining sensory and consumer data is to
find areas within the sensory space that are best liked by consumers. Since
this approach is based on modeling and prediction, it may suggest areas of
the sensory space with high acceptance potential which are not yet filled in by
existing products. This would thus open doors to new product development.
To perform such an analysis, one option is to use External Preference

Mapping (PrefMap) (Schlich and McEwan, 1992; Danzart, 1998; and Danzart
et al., 2004).6

To run the PrefMap analysis, the carto()
 function from {SensoMineR} is
being used. This function takes as parameters the sensory space to consider
(stored in senso
pcaindcoord, here we will consider dimension 1 and
dimension 2), the table of liking scores (as stored in consumer
wider), and the
model to consider (here we consider the quadratic model, so we use regmod=1).
For convenience, we run the analysis on the full panel since consumer
wider

is (almost) already structured as needed.
Note that carto()
requires a matrix or data frame with row names for the

analysis. Thus, the data need to be slightly adapted (we also need to ensure
that the products are in the same order in both files).

senso
 <- senso
pcaindcoord[,
 1:2]
 %>%

as
tibble(rownames
 =
 "Product")
 %>%

arrange(Product)
 %>%

as.data.frame()
 %>%

column
to
rownames(var
 =
 "Product")

consu
 <- consumer
wide
 %>%

arrange(Product)
 %>%

as.data.frame()
 %>%

column
to
rownames(var
 =
 "Product")

nconso
 =
 ncol(consu)

library(SensoMineR)

PrefMap
 <- carto(Mat
 =
 senso,
 MatH
 =
 consu,
 regmod
 =
 1,

graph.tree
 =
 FALSE,
 graph.corr
 =
 FALSE,

graph.carto
 =
 TRUE)

From this map, we can see that the optimal area (dark red) is located on
the positive side of dimension 1, between P01, P05, and P10
 (as expected by
the liking score).

6
 For
 more
 information
 on
 the
 principles
 of
 PrefMap,
 please
 refer
 to
 MacFie
 (2007),

Meullenet
et
al.
(2008),
and
Lê
and
Worch
(2018).

236
 Data
Science
 for
Sensory
and
Consumer
Scientists

Preference mapping

–5 0 5 10

–4

–2

0
2

D
im

 2

P01P02

P03

P04

P05

P06

P07

P08
P09 P10

Dim 1

Let’s now rebuild this plot using {ggplot2}.
The sensory space is stored in senso, whereas the response surface plot

information is split between:

• PrefMap$f1: contains the coordinates on dimension 1 in which predic
tions have been made;

• PrefMap$f2: contains the coordinates on dimension 2 in which predic
tions have been made;

• PrefMap$nb.depasse: contains the number of consumers at each point
of the space that would accept a product located at that point. This
matrix is defined in such a way that PrefMap$f1
 links to the rows of
the matrix, and PrefMap$f2
links to the columns. Note that this counts
should be transformed into percentages by dividing each count by the
number of consumers who are involved in the test (defined earlier as
nconso)

Last but not least, POpt
 (whose coordinates are stored in
senso
pca$ind.sup$coord) can be projected on that map in order
to see how this optimized sample is considered in terms of consumers’
preference.
Let’s start with preparing the data by transforming everything back into a

tibble:

senso
 <- senso
 %>%

as
tibble(rownames
 =
 "Product")

senso
sup
 <- senso
pca$ind.sup$coord
 %>%

as
tibble(rownames
 =
 "Product")

237
Data
Analysis

dimnames(PrefMap$nb.depasse)
 <- list(round(PrefMap$f1,
 2),

round(PrefMap$f2,
 2))

PrefMap
plot
 <- PrefMap$nb.depasse
 %>%

as
tibble(rownames
 =
 "Dim1")
 %>%

pivot
longer(-Dim1,

names
to
 =
 "Dim2",
 values
to
 =
 "Count")
 %>%

mutate("Preference
 (%)"
 =
 Count
 *
 100
 /
 nconso)
 %>%

mutate(across(where(is.character),
 as.numeric))

To build the plot, different layers involving different source of data (senso,
senso
sup, and PrefMap
plot
 that is) are required. Hence, the initiation of
the plot through ggplot()
does not specify any data. Instead, the data used
in each step are included within the geom
*()
 of interest. In this example,
geom
tile()
(coloring) and geom
contour()
(contour lines) are used to build
the surface plot (Figure 10.18).

ggplot()
 +

geom
tile(data
 =
 PrefMap
plot,
 aes(x =
Dim1,
 y =
Dim2,

fill
 =
 `Preference
 (%)`,

color
 =
 `Preference
 (%)`))
 +

geom
contour(data
 =
 PrefMap
plot,
 aes(x =
Dim1,
 y =
Dim2,

z
 =
 `Preference
 (%)`),

breaks
 =
 seq(0,
 100,
 10))
 +

geom
hline(yintercept
 =
 0,
 lty
 =
 2)
 +

geom
vline(xintercept
 =
 0,
 lty
 =
 2)
 +

geom
point(data
 =
 senso,
 aes(x =
Dim.1,
 y =
Dim.2),

pch
 =
 20,
 cex
 =
 3)
 +

geom
text
repel(data
 =
 senso,
 aes(x =
Dim.1,
 y =
Dim.2,

label
 =
 Product))
 +

geom
point(data
 =
 senso
sup,
 aes(x =
Dim.1,
 y =
Dim.2),

pch
 =
 20,
 col
 =
 "white",
 cex
 =
 3)
 +

geom
text
repel(data
 =
 senso
sup,
 aes(x =
Dim.1,
 y =
Dim.2,

label
 =
 Product),

col
 =
 "white")
 +

scale
fill
gradient2(low
 =
 "blue",
 mid
 =
 "white",
 high
 =
 "red",

midpoint
 =
 50)
 +

scale
color
gradient2(low
 =
 "blue",
 mid
 =
 "white",
 high
 =
 "red",

midpoint
 =
 50)
 +

xlab(str
c("Dimension
 1(",
 round(senso
pca$eig[1,
 2],
 1),
 "%)"))
 +

ylab(str
c("Dimension
 2(",
 round(senso
pca$eig[2,
 2],
 1),
 "%)"))
 +

ggtitle("External
 Preference
 Mapping
 applied
 to
 the
 biscuits
 data",

"(The
 PrefMap
 is
 based
 on
 the
 quadratic
 model)")
 +

theme
bw()

-4

238
 Data
Science
 for
Sensory
and
Consumer
Scientists

External Preference Mapping applied to the biscuits data

(The PrefMap is based on the quadratic model)

4

P06 P10
P09 P082

D
im

en
si

on
 2

(2
1.

5%
)

-2

POpt
Preference (%)

P03
0 75

P05
50P07
25P02

P01

P04

0 5
Dimension 1(35.6%)

FIGURE
10.18

Plot
of
the
External
Preference
Mapping
using
ggplot2.

As can be seen, POpt
 is quite far from the optimal sensory area suggested
by the PrefMap. This suggests that prototypes with higher success chances
could be developed.

11

Value
Delivery

Most of this book focus on handling data through the procedure of
data cleaning, transformation, analyses, or representation. This makes
sense since the aim is to present data science in the context of sensory
and consumer research. But these steps may be irrelevant if analysts or
reseachers are not able to communicate their findings efficiently. Effective
communication is as much important as any other step and so, we will
guide you through that, providing some valuable tips and practical exam
ples. This chapter approaches important topics to help you reach the goal
of successful communication, from understanding the distinction between
different analysis and audience awareness to methods to communicate, the
art of storytelling, and ultimately, reformulate.

11.1
 How
to
Communicate?

Sensory and consumer scientists often act as consultant whether it be for
their own company or for customers. Being able to communicate effectively is
perhaps one of the most important skills they should master. Communication
is a simple act of transferring information and although undervalued by many,
plays a key role in any business’s success. Let’s start this chapter reminding
that there are different ways to communicate, and this process usually includes
a combination of two or more types of languages, which are:

• Vocal
 – the language produced by articulate sounds. It is the language
used in clients’ meetings and presentations for instance.

• Non-verbally
– is related to the body language, gestures, and the tone
and pitch of the voice.

• Written
– is the representation of a spoken language in a writing system,
like proposals, technical documents, or final reports.

DOI: 10.1201/9781003028611-11 239

240
 Data
Science
 for
Sensory
and
Consumer
Scientists

• Visual
 – is the communication using visual elements, such as the
visual quality of presentations or other written documents, including
formatting, logo, colors, figures, plots, etc.

It is through effective communication that you will bring potential clients’
attention and interest in your company and the services you provide, that will
make you truly understand your clients’ needs, gain their trust, and provide
the right solutions that will ultimately bring to a long-term partnership. Effi
cacious communication will be responsible for keeping a friendly relationship
and your clients’ commitment throughout the project development and will
also help you to properly convey the outcomes of a project in a way that
will at least meet (or better surpass) your clients’ expectations and opens
possibilities for follow-up engagements and/or recommendations.
The ability to communicate accurately, clearly, and as intended is definitely

something that consultants should not overlook because although it seems
straightforward, it involves a number of skills that may take several years of
practice to master. You will find plenty of materials on the Internet and books
to help you to understand better and develop your very basic skills for effective
communication. We will not focus on that in this chapter, but it is worth
highlighting some important aptitudes for vocal communication, which may
configure one of the most powerful types of communication with your client:

• Confidence: Being confident makes you to be seen as an expert on the
topic and as having the situation under control. The audience will be
more likely to trust, believe, be connected, and give credit to a confident
person.

• Passion
 and
 Enthusiasm: Be passionate about what you do and
convinced/enthusiastic about the solution you provide. The audience
can easily capture that on your vocal and non-verbal language and will
be much more interested if they can see and feel your passion.

• Ability
 to
 be
 succinct. No matter how interesting you feel about a
topic, you must know that the audience will lose interest after some time,
especially if there is a lot of technical and detailed information. Be aware
that the attention span of your audience is not long, so use your time
wisely during the presentation, keeping it short and at the point.

• Feeling. This is a skill that definitely one needs time to master, but it
is crucial that you pick what is going on with your client, if they seem
to be understanding and following you or if they seem to be confused or
not sure about what you are talking about.

In this chapter, we focus on four topics that we believe any successful
consultant should have in mind which are: Exploratory, Explanatory, and
Predictive Analysis; Audience Awareness; Method to Communicate; and
Storytelling.

241
Value
Delivery

11.2
 Exploratory,
Explanatory,
and
Predictive
Analysis

As a consultant in the field, you are likely in a position where you get data
from your client and review it, do the analyses, and ultimately, convey the
results. And here is where it is important to make a clear distinction between
exploratory and explanatory analysis. Exploratory
 analysis
 is the stage
where you dig into the data, get to understand them, figure out patterns
and things that may be interesting or important to highlight. Explanatory

analysis
 is the ability, from the learning from the previous step, to select
and/or reorganize your data (by remaking your tables, plots, or charts) in a
way you can easily convey the message to your audience, and ultimately make
them understand and focus on the things that are worthy. Let’s discuss that
a little bit more.
The hard work starts once you get the data. This is the time you will likely

analyze it in multiple ways, make several plots, and look at the data from
multiple angles. This is what we call, exploratory analysis! After understand
ing all the analysis, it may be tempting to show the audience everything, all
the steps, decisions, different plots, and approaches you have taken, but do

not
 do
 that. You do not want to overload your audience making them go
through the same tough path you went. Instead of showing your handwork,
the robustness of your analysis, and building up your credibility, you have to
make your audience confused, bored, and lacking interest.
Once you have done all the hard work on data analysis, it is the moment

to take some time to stand back and look at the key findings and the
message(s) you want to convey. It is important to keep in mind that there
is always a balance to find between presenting quantified, accurate, and
credible information (i.e. with sufficient details) and presenting information
that makes sense, is relevant, and that is easily readable and understandable.
This challenging phase is what we call explanatory analysis! This is the
moment when you need to use your ability to translate an extensive, detailed,
and complex version of your data analysis to a more concise/holistic version,
to a version that will easily and clearly convey the message, and highlight the
main points. Keep in mind that the explanatory analysis has to be tailored
according to your audience (as discussed in Section 11.3), which means that
the way you present the data analysis and the level of details provided vary if
you are presenting it to a group of experts in the field, including statisticians
and mathematicians or in a lecture for a very diverse audience, as in a
conference for instance. You need to find the right balance!
Some examples in the field to exemplify the two extremes (too complicated

or too simple):

• Factorial maps – The overuse of factorial maps is a common practice in
the sensory and consumer science field. It is a great tool to explore

242
 Data
Science
 for
Sensory
and
Consumer
Scientists

data, to make or confirm hypotheses, but may not be the best to
communicate since not so many people can correctly read and interpret
them. Therefore, a good approach would be to initially work with
the factorial map to interpret and draw conclusions, but then, find
another way through tables or alternative charts (that may be simpler
to understand) to communicate the findings to your audience.

• Spider Plots – This is the other extreme when consultants can fail but
not because they present a very complex and extensive analysis, but
because they decide to show the data in such an easy way that puts at
risk important information that should be captured. The use of spider
plots is still a common practice that many people can easily understand,
but the problem is that this analysis is so simple that it can mask sensory
complexity.

It is worth noticing that there is a third type of analysis in the data science
field, predictive
 analysis. This is a hot topic in the area that involves
techniques such as data modeling, machine learning, AI, and deep learning.
Instead of being focused on exploring or explaining the data, predictive
analysis is concerned with making successful predictions, in ensuring that the
predictions are accurate. Examples of this approach include face recognition
and text-speech transcription. Eventually, some models can be studied to
provide insights, but this is not always the case.

11.3
 Audience
Awareness

One of the most important things about being a successful consultant is
Audience Awareness! No matter how good you, your team, and the service
or product your company offers, if you fail to communicate with your target
audience, the message will not get through. Knowing the audience, who the
target people are is the cornerstone of any successful business. Knowing your
audience makes you be better able to connect to with them.
In order to know your audience, you must gather some information about

them beforehand, such as:

• Background: Do they have a sensory science background? Statistical
background? Do they have experience in data science, including R
language? Do they have experience in automated reporting dashboards,
machine learning, etc? If so, are they juniors, specialists, or seniors?

• Role: What is the role your audience play in the project? Are they the
decisions makers? Are they the final users of a dashboard, for instance?

243
Value
Delivery

• Vocabulary: Will your audience understand very technical terms or do
you need to use simplified terms to convey the same message? This topic
is closely related to the audience’s background.

• Expectations: What is your audience expecting in a presentation or
final report? A short summary of the project’s outcomes? A detailed
explanation of the statistical analysis including appendixces with further
details? Recommendations for follow-up projects? Interpretation and
conclusion of the analysis?

In general, according to the profile, the audience will likely fall into one
of the three categories: Technical
 Audience, Management
 (Decisions

Makers), and General
 Interest. There is no magical formula on how to
deal exactly with each of these types of audience, but in general, based on
our experience, we must highlight that the key differences are in the focus,
language, level of technical and detailed information you need to provide for
each of those target public. In general, it tends to be necessary a higher level
of details and technical information and a lower level of the big picture once
you move from your general interest audience to the management and further
down to the technical audience (Figure 11.1). We will further discuss the main
differences between each audience above.

FIGURE
11.1

Trade-off
curve
based
on
 the
 level
of
 technical
details
and
 the
big
picture
 for
each
 type
of

audience.

244
 Data
Science
 for
Sensory
and
Consumer
Scientists

11.3.1
 Technical
Audience

The technical audience refers to the ones who will likely have a significant
background and experience in or related to the field you are providing
consulting service (e.g. Sensory Scientists, Statisticians, Data Analysts, Data
Architecture, or your client’s IT group). They are the team that will likely
be working closely with you throughout the project development, at different
stages. This type of audience is usually more exigent and/or engaged and
because of their expertise in the field, will likely be expecting a presentation,
report, or any other technical document in a higher level of details and with
a more technical vocabulary; otherwise, you will sound that you are not an
expert in the topic. This audience usually needs a lower sense of the big picture
of the project, which means, that they are less interested in the details like the
timelines, main outcomes, etc. But be aware, it is very important to still be
able to distinguish between different technical audience (e.g. don’t use sensory
technical language to talk to the IT team).

11.3.2
 Management

Although a person in a management position (e.g. Sensory Manager or
Director and Principal/Senior Scientist) likely has a broad experience and
background in the field, they tend to be more interested in the whole picture,
which means timelines, progress of the project, potential issues, outcomes,
applicability, next steps, etc. A person in a management position has many
other projects and roles in a company and will not have time to be involved
in the details. Instead, they likely designate a team (your technical audience)
to be closely involved. In this case, you should be more concise in a meeting,
presentation, or report, for instance. It is advised to keep a certain level of
technical language, but it is better to present things in a simpler way and
in a lower level of details than you would do for the technical audience.
Additionally, the focus should be different, since as we mentioned, this
audience is likely to be more interested in the whole picture instead of the
specifics of the project.
Another distinct type of audience that falls into the management audience

would be the executives, as a VP of Research & Regulatory, for instance.
This public is not necessarily from the field and has even less time and/or
background to absorb the specifics. The focus should be the same (whole
picture) but with even fewer technical details. The approach and language of
this audience tend to be closer to the general interest.

11.3.3
 General
 Interest

The general audience usually refers to the ones that are likely the final users or
are somehow related, contributed, or are interested in the project. In this way,

245
Value
Delivery

this public is usually the least interested in the details and the most interested
in the whole picture. The general audience usually refers to a larger group of
people with different backgrounds and distinct levels of expertise, for instance,
an R&D internship, a Chemistry Researcher, and a Senior Sensory Specialist
can be all final users of a dashboard you developed. In this case, to make
sure everyone follows you in a training (say), you must use less technical
language and a lower level of details, otherwise you will lose part of your
audience’s attention. But at the same time, you may need to consider covering
things that sound obvious to you; you ought to be careful about not skipping
topics assuming that everyone knows about that or using certain terms and
expressions considering that is evident for all. This can be the most challenging
audience to deal with due to its diversity, but in a meeting, training session,
or presentation, you should be very attentive and use your feeling to capture
what is going on and maybe change your position to better connect with the
audience.
A valuable tip shared by Cole Nussbaumer, in her book Storytelling with

data (Knaflic, 2015), is to avoid general audiences, such as the technical and
management team at the same time, or general audience such as “anyone
related to the field that might be interested in the project”. Having a broad
audience will put you in a position where you can not communicate effectively
to any of them as you would be if the audience was narrowed down.

• Example

We will use the PCA biplot from the biscuits sensory study shown in
Chapter 10 (Figure 11.2) and point out the main differences in the approach
according to the audience. As a quick reminder, 11 breakfast biscuits with
varying contents of proteins and fibers were evaluated in this study. Products
P01
 to P09
 are prototypes, product P10
 is a standard commercial biscuit
without enrichment, and the 11th product (Popt) is an additionally optimized
biscuit.
Let’s picture a situation where the R&D team has been developing multiple

trials for the biscuit formulation, changing the concentration/ratio of protein
and fiber, with the objective to have a product with a sensory profile as
close as possible to the commercial biscuit. For this exercise, your role as a
consultant was to support the R&D team designing the study and conducting
the analysis and ultimately analyzing and interpreting the results to make the
final conclusion.
We will not go deep into the interpretation since it’s not the focus of this

example, but rather point out the approach we would recommend for each
type of audience as shown in Figure 11.3.
Following those recommendations, your PCA for the management or general

audience may look like Figure 11.4.

246
 Data
Science
 for
Sensory
and
Consumer
Scientists

FI
G

U
R

E

11

.2
P
C
A

b
ip
lo
t

b
is
cu

it

s
tu

d
y.

247
Value
Delivery

FIGURE
11.3

Exemplification
of
the
approach
for
each
type
of
audience.

248
 Data
Science
 for
Sensory
and
Consumer
Scientists

FI
G

U
R

E

11

.4
P
C
A

b
ip
lo
t

b
is
cu

it

s
tu

d
y

m
o
d
ifi
ed

.

249
Value
Delivery

Note that the PCA was simplified for a more straightforward understanding:

• the PCA variance explanation and grid lines were removed,

• attributes were slightly moved to avoid overlap,

• the samples and attributes with lower interest were given a lighter color,

• the attributes and samples we want our audience to focus their attention
were given a different, stronger color,

• pictures and a more appealing description were used instead of the
samples codes

• some strategies as to circle the important area/group of samples and
attributes helps the audience to focus on what we deem most important
to extract from this analysis were adopted.

In this example, the idea may be to highlight the audience that the
optimized formulation is in fact closer to the commercial one, and to increase
even more this similarity, some attributes, like sour, salty, overall flavor
persistence, fatty flavor, and fatty in mouth, have to be increased.

11.4
 Methods
to
Communicate

How will you communicate to your audience? Are you going to deliver a live
presentation? Are you going to present a proposal in a live meeting? Or will
the communication be a written document you will send through email?
What is the format you will be using to communicate? Word, Excel, or

PowerPoint? Are you going to send the document in PDF format? Are you
going to present a dashboard? Are you going to share R Scripts?
As we will discuss in more detail later, the way and the format you use to

communicate to your clients or audience have a huge impact on successful
communication, and you should be well aware of that!

11.4.1
 Consider
 the
Mechanism

You should be aware that the primary method or mechanism you use to com
municate strongly affect the way your audience effectively gets the information
and so you should tailor it accordingly. One of the most important aspects is
related to the amount of control you have over the audience, how they get the
information, and hence the level of details needed (Knaflic, 2015).
In a live presentation, for instance, you are in full control. You can answer

questions your audience may have, you can slow down and go into a particular
detail you deem important, or you can speed up over repetitive, obvious, or

250
 Data
Science
 for
Sensory
and
Consumer
Scientists

not-so-important topics. In short words, you are the expert there and so, you
can easily provide effective communication, and because of that, you don’t
need to overcrowd your slides or any other document and divert or lose your
audience’s attention with unnecessary information. You can, for instance, just
show a plot or graph and a very simple interpretation or bullet points because
you are covering vocally the nuances and details about that.
In the case the communication is done through a written document in a

non-live situation, you have much less control over your audience, on how
they will take the information, and on whether they will get the main point.
In this situation, you need to be more careful and likely provide a higher level
of details to answer or clarify potential questions or doubts your audience
may have. In this situation, showing a plot or graph and just a very simple
interpretation or bullet points is likely not enough.
It can be a great idea to merge those two formats, when possible, where you

can give time to the audience to consume the information on their own for a
while and give the topic thought and a moment where you can discuss it in a
live situation, not in this order necessarily. So, for example, let’s pretend you
have to present a proposal for a client. Instead of sending a dense document
to explain all the details and just wait for the client’s response, you can make
a more concise document, easier to go through if you have a live moment with
the client. You can for instance present the proposal initially in a live meeting,
where you cover in general all the important topics and details and then send
the written document to the client.

11.4.2
 Pick
 the
Correct
Format

The second point of this topic on the method of communication is related
to the correct format to pick. There are certainly many ways for you to
communicate with your client – word, excel, or PowerPoint whether in pdf
format or not, dashboard, or even scripts – but surely one is the most suitable.
Again, there is no universal answer for the best format to pick since it may vary
according to clients’ requests and the type of project you are dealing with.
But there is one thing you should always follow, unless strictly necessary,
do not share documents in an editable format. You may use Word to write
proposals or final reports, Excel for plots or tables, and PowerPoint for live
presentations, and that is totally fine, but never share that in the editable
format. We always recommend saving in pdf format to share with your client
or audience and this is because of two simple reasons. First, the pdf format
cannot be modified! You definitely do not want to take the risks of others
changing your document, which can lead to misunderstanding, putting you in
a delicate situation. Second, the pdf format preserves document formatting
which means that it retains the intended format if the file is viewed online
or printed. In short words, it is very unprofessional to share documents in
editable format.

251
Value
Delivery

You may be wondering, so in what type of situation would you share an
editable format? When would you share a document in Word, PowerPoint,
or Excel? In the situation where you are working with a partner for instance.
So, for example, a project that you are working on involves multiple partners
in a common report or presentation. In this case, it may be convenient to
share the Word or PowerPoint document for each of the partners to include
their inputs. After the document is ready, make sure you carefully review the
formatting and save it in pdf before sending it out to the client.
There are two other formats that may be common in the sensory data science

field, which are dashboards and scripts. If you are developing a graphical user
interface for your client, you need to deploy the dashboard at some point to a
server for your client to be able to access it. The deployment can be done in two
ways: web-based, as a simple client web page, or locally, as a locally installed
desktop application. The choice should be based on the client’s preference.
The last method of communication that is fairly common in the field is R

or any other programming language script. It is very common that the client
requests the scripts used for a specific project, the text file containing the set
of commands and comments you used, for instance, to develop an automated
analysis reporting dashboard. You can share the repository where the scripts
are hosted, or you can zip the scripts and share them with your clients. The
details should be discussed with the client’s IT team since each company has
a particular preference. As the scripts should always be available under the
client’s requests, you should be careful to not display sensitive or confidential
information by reusing codes or throughout the comments.

11.5
 Storytelling

There are basically two ways to communicate with our audience, the first
is called conventional rhetoric. A PowerPoint full of facts, filled with bullet
points and statistics with a presenter with a formal and memorized speech and
using the same voice tone, would be the best way to illustrate the conventional
rhetoric style. This way to communicate, which drove the businesses of the
past, has a more analytical approach, where statistics, charts, metrics would
be dumped on the audience and left to them to digest. There is no need to
say that this approach is completely outdated, it clearly fails to stimulate the
audience’s attention or evoke their energy or emotions. The second way to
communicate, which is the last topic we want to cover in this chapter and
also happens to be a critical skill for any successful consultant, is through
storytelling! Storytelling is something that we all know, from an early age
we were introduced to the notion of narrative structure, which means a clear
beginning, middle, and end. The ability of one going throughout this structure

252
 Data
Science
 for
Sensory
and
Consumer
Scientists

to tell us a story is what makes a book, play, or movie grab our attention and
evoke our emotional responses, is what makes it interesting! In short words,
storytelling is one of the most powerful and effective ways to attract people’s
attention because we were taught to communicate with stories throughout
history. This universal language that everyone can understand has the power
to truly engage your audience because it translates abstract facts, numbers,
and plots into compelling pictures; it inspires, motivates, and drives actions
because it taps into people’s emotions.
As described in the book Once Upon an Innovation, by Jean Storlie and

Mimi Sherlock (Storlie and Sherlock, 2020), the left side of our brain is linked
to more logical and analytical thinking, including data processing, number
handling, and statistical interpretations. The right side is linked to expression,
emotional intelligence, and imagination, and in our context, will be the part
of our brain that will capture the big picture, that will turn data and facts
into possibilities and innovative ideas. If you as a consultant overwhelms your
audience with analytics you will reduce their capacity for big picture thinking,
you will shut down their capability to generate novel ideas and solutions. We
are not saying that numbers, plots, and facts are not important, but that they
should be presented in a story narrative format, in a way that will be able to
light up the right side of the brain, and this stimulation of both paths is what
trigger unexpected and novel solutions, inspire support and drive changes.
In a real situation, you as a consultant have many pieces of information

that you have collected throughout the journey with a client, from the very
first communication until the end of a project. You have valuable infor
mation about your client company’s situation, challenges and issues, needs,
expectations, potential solutions and/or failed attempts, and final outcomes.
Storytelling is the master of tying all together and articulating it into the
context of a story in a creative way to engage and persuade your audience.
A good story allows you to successfully connect with your audience, it makes
your audience understand, reflect, and act in a way that plots, numbers, and
facts altogether simply can’t.
You may be wondering. How exactly should I construct a story? What

should be covered in each piece of the narrative? We will provide here a
summary of the pieces of a good story and the specifics based on our experience
and also on the books Storytelling with Data by Cole Nussbaumer (Knaflic,
2015) and Beyond Bullet Points by Cliff Atkinson (Atkinson, 2018). Both
books dedicate a good part to Storytelling, making them a great resource on
this topic.

11.5.1
 The
Beginning
 (Context)

The key piece of any story is the context, the description of the situation,
and surrounding details. This first step is the moment to set up the essential
information or background on the topic you will be covering to get everyone on

253
Value
Delivery

common ground. You should initially spend time to make sure your audience
clearly understands the context, why this is important or necessary, and why
they are there before diving into actions or results. Subsequently, you will
raise the challenges or problems and propose some recommended solutions. It
is at this very first step that you will first grab your audience’s attention. If
you fail at this moment, it is very unlikely that you will recover their interest
in the subsequent steps.
For live presentations, it is strongly recommended to use the first few

minutes to be an icebreaker to make everyone feel more comfortable and create
a more friendly environment. In order to do so, you can start introducing
yourself in case you have not met everyone yet, you can have a conversation
and talk about the latest news, ask about how they and their families are
doing, etc. The second piece of advice is to start the presentation by stating
bullets of the main points that will be covered, so your audience will have
awareness of what you will be talking about.

11.5.2
 The
Middle
 (Action
and
 Impact)

Now is when you get to the crux of your story, it is at this moment that
you will explain your solutions or actions and highlight the impacts. You
will continue it in a way you will convince your audience of the solution you
are proposing or make them clearly understand, agree, and be excited about
the outcomes and possibilities of a solution you worked on. You should be
careful to retain your audience’s attention addressing how they can be part
and/or benefit from the solution you are referring to. In the case of a live
presentation, pose always confidently, show enthusiasm about what you are
talking about, and watch out for hidden clues, try to constantly catch your
audience’s response/feedback through their expressions and body language.
The content to build out your story at this moment is very dependent on the

context of the situation, but from a consultant perspective, it will be likely the
moment you will further develop the situation or problem covering relevant
information, show some data to illustrate the situation, discuss potential
solutions to address a particular topic or present the outcomes of your project.

11.5.3
 The
End
 (Conclusion)

This is the moment you close your story; it is when you should tie it back to
the beginning to somehow recap the problem, highlight the basic idea, and
conclude the story. You should finish your presentation in an impactful way,
reemphasizing and repeating your main point, what you want to stick deeply
in your audience’s mind. Once more, the content at the end of the story can
be somehow dependent on the context of the situation, but in a consulting
world, it would likely include a conclusion of the topic and also next steps and
further recommendations.

254
 Data
Science
 for
Sensory
and
Consumer
Scientists

11.6
 Reformulate

Something important to keep in mind is the follow-up process after a report is
sent or a presentation is delivered. The ability to receive feedback and refor
mulate is undoubtedly a very important and sometimes challenging skill that
consultants seeking success should be aware of. It may be challenging since
some consultants can be reluctant to feedback because of a misconception that
they are the experts in the field and hence, their approach is the best. So, one
of the most important rules, regardless of the expertise and knowledge you
have in the field, is to be humble! Consultants must understand the idea that:
1) you need to make your client pleased unless you have a strong reason not
to do so like ethical reasons or statistical rules and 2) your point of view can
be biased over time and your client’s request may indeed improve the clarity
of an outcome for instance. Or, you can simply be wrong, miss something,
and have not taken the best approach. It happens! So, be open to feedback
and be prepared to reformulate!
Sometimes the client feedback is something very minor, to adjust the scale

of a plot, match the color with the company’s palette, or change the type of
plot. In other cases, the feedback will demand a bit more time. It is common
that the way you deemed best to present the outcomes is not that clear from
your client’s view or the set of data or plots you selected did not convey the
message you were expecting or in an extreme situation, your client does not
agree or ask you to redo an experiment or procedure. In this case, you will
need to dedicate more time to address your client’s request.
Regardless of the situation, you should be motivated and be open-minded

to your client’s feedback and afterward carefully work on that to tackle it
all at once. You definitely want to avoid a situation where your report or
presentation be back and forth with your client. It is recommended that you
make all possible changes and prepare a convincing explanation for the things
that you strongly do not agree with or have a solid reason not to do so. Ideally,
you should get back to your client as soon as possible highlighting the changes
that were made and explaining the ones not addressed.

12

Machine
Learning

Artificial Intelligence (AI) and Machine Learning (ML) have gained a lot
of attention in recent years. With the increase in data availability, data
storage, and computing power, many techniques that were just dreams
back then are now easily accessible and used. And of course, the sensory
and consumer science field is not an exception to this rule as we start seeing
more and more ML applications although in our case, we do not have Big
Data per se, but we do have diverse data! For many of us, AI and ML seems
to be a broad and complex topic. This assertion is true, and in fact it would
deserve a whole book dedicated just to it. However, our intention in this
chapter is to introduce and demystify the concept of ML, by: (1) explaining
the differences between supervised and unsupervised ML models, (2)
proving that you were already doing it long ago, perhaps without knowing,
(3) extending it to more advanced techniques, (4) highlighting its main
applications in the field. To do so, some basic code and steps will be
provided to the reader to get familiar with such approach. Throughout
this chapter, some more specialized resources are provided for those who
have the courage and motivation to dig deeper into this topic.

12.1
 Introduction

Machine Learning is currently a hot topic in the sensory and consumer science
field. It is one of the most game-changing technological advancements to
support consumer packaged goods companies in the development of new
products, playing a considerable role in speeding up the R&D process (and
at the same time reducing the costs). In today’s fast-moving and increasingly
competitive corporate world, companies that are embracing, adopting, and
opening their minds to digital transformation and artificial intelligence (AI),
moving toward the age of automation, are not one but many steps ahead of
their competitors.

DOI: 10.1201/9781003028611-12 255

256
 Data
Science
 for
Sensory
and
Consumer
Scientists

Machine Learning (ML) is a branch of AI, which is based on the idea
that systems can learn from data and that has the capability to evolve.
Generally speaking, ML refers to various programming techniques that are
able to process large amounts of data and extract useful information from it.
It refers to data analysis methods that build intelligent algorithms that can
automatically improve through the experience gained from the data and can
identify patterns or make decisions with minimal human intervention, without
being explicitly programmed. ML focuses on using data and algorithms to
mimic the way humans learn, gradually improving their accuracy.
Defining the objectives or the situation where ML would bring value is the

very first step of the process. Once that is clear, the next step is to collect data
or dig into historical data sets to understand what information is available
and/or has to be obtained. The data vary according to the situation, but it
may refer to product composition or formulation, instrumental measurements
(e.g. pH, color, rheology, GC-MS, etc.), sensory attributes (e.g. creaminess,
sweetness, bitterness, texture, consistency, etc.), consumer behavior (e.g.
consumption frequency, use situation, dietary constraints, etc.), demographics
(e.g. age, gender, size of household, etc.), and consumer responses (e.g. liking,
CATA questions, JAR questions, etc.) just to name a few.
First of all, it should be stressed that the size of the data set and its quality

are very important as they impact directly the model’s robustness. Here are
general recommendations (to be adapted to each situation, data type, and
objectives):

• The higher the number of statistical units the better, with 12–15
being the minimum recommended when statistical units correspond to
samples.

• The number of measurements (instrumental, sensory, and/or consumer
measurements) and the number of consumers evaluating the products are
also very relevant to the model’s quality. In practice, a minimum of 100
participants is usually recommended for consumer tests, which deemed
sufficient to apply ML (although here again, the more the better). For
data quality, the variability of the samples is one of the most important
aspects (besides the standardization of data collection). The larger the
variability between samples, the broader the space the model covers.
Additionally, it is strongly recommended to capture the consumers’
individual differences, not only through demographic information
but also through perception (including rapid sensory description
methods, Just About Right (JAR) or Ideal Profile Method (IPM)).
Eventually, within-subject design (i.e. sequential monadic design)
provides better quality models as they allow accounting for individual
response patterns.

257
Machine
Learning

12.2
 Introduction
of
the
Data

For this section, we use the wine data set from the {rattle}. 1
 This data set
consists of the results of a chemical analysis of wines grown in a specific area
of Italy. In total, the results of 13 chemical analyses (e.g. alcohol, malic acid,
color intensity, phenols, etc.) are provided for 178 samples that represent three
types of wines.

library(tidyverse)

library(rattle)

wine
 <- rattle::wine
 %>%

as
tibble()

12.3
 Machine
Learning
Methods

The notion of ML is vast, as it covers a large variety of analyses. In fact, ML
algorithms are often classified based on the goals of their analysis. Three main
groups are often considered:

• Unsupervised Learning:

Unsupervised ML aims at finding structure within the data. Input are
unlabeled data, meaning that no output values are yet known. In this case, the
algorithms operate independently from any information about the data to find
patterns and trends. For instance, this is achieved by learning from the data
distribution the features that distinguish between statistical entities using
similarity and dissimilarity measurements. Such ability to discover unknown
patterns in the data makes such algorithms ideal for exploratory analysis. In
Sensory and Consumer Science, the best known Unsupervised ML techniques
are Principal Component Analysis (PCA) for dimensionality reduction and
hierarchical cluster analysis (e.g. for consumer segmentation).

• Supervised Learning:

Supervised ML is arguably the most popular type of ML: When people
talk about ML, they often refer to Supervised techniques. Supervised ML

https://rdrr.io/cran/rattle.data/man/wine.html
1

https://www.rdrr.io

258
 Data
Science
 for
Sensory
and
Consumer
Scientists

takes labeled data as input, meaning that the statistical entities are defined
by one or more output variables. The aim of the algorithm is then to a
find a mapping function that connects the input variables with those output
variables. Ultimately, the ML model aims to explain output variables using
the input variables. A common situation requiring Supervised ML in Sensory
and Consumer Science consists of predicting consumer responses (e.g. lik
ing) using sensory descriptions, analytic data, demographics, or any other
information. ML models provide insights on how to improve product per
formance and allow predicting consumer responses of new prototypes or
products. Another common situation is to use Supervised ML to predict the
sensory profile of products using formulation data (i.e. ingredients and process
parameters).

• Semi-supervised Learning:

Semi-supervised ML is not an ML approach per se. Instead, it is a com
bination of both Unsupervised and Supervised approaches. It first aims to
create an output variable using Unsupervised techniques and then to explain
or use this output variable using other information through Supervised ML.
A good example of semi-supervised approach consists of defining clusters
of consumers based on liking (unsupervised) and to characterize these clus
ters using demographic data using decision trees for instance (supervised).
External Preference Mapping is another example since it first reduces the
dimensionality of the sensory data through PCA (unsupervised) and then
uses these dimensions to explain the consumers’ liking scores using regressions
(supervised).

A forth type of Machine Learning is called Reinforcement Learning that
relies on feedback provided to the machine. It is a technique that enables
an agent to learn through trial and error from its own actions and
experiences. Reinforcement Learning is commonly used in some tech
applications (e.g. gaming and robotics), especially when large data
sets are available. Such approach has little reach in sensory and consumer
science at the moment. Therefore, we are not going to develop it
further here.

12.4
 Unsupervised
Machine
Learning

In sensory and consumer science, unsupervised learning models are mainly
used for Dimensionality Reduction and for Clustering.

Machine
Learning
 259

12.4.1
 Dimensionality
Reduction

Dimensionality reduction is a technique used to transform a high dimensional
space into a lower dimensional space that still retains as much information
as possible. In practice, the original high-dimensional space involves many
variables that are correlated with each other, but that could be summa
rized by latent variables or principal components, which are orthogonal to
each other.2

Most frequently, dimensionality reduction is performed for the following
reasons:

• Summarizing data (and removing redundant features);

• 2D or 3D visualization of the data (most important information);

• Finding latent variables and untangling initial variables;
• Preprocessing data to then reduce training time and computational

resources;

• Improving ML algorithms accuracy by removing the lower dimensions
(the one containing less information) often considered as noise;

• Avoiding problems of over-fitting.

Some of these approaches were presented earlier in this book, in particular in
Chapter 10. However, there are numerous dimensionality reduction methods
that can be used depending on the data at hand. The most common and
well-known methods used in the sensory and consumer science are the ones
that apply linear transformations, including Principal Components Analysis
(PCA), Factor Analysis (FA), and derivatives such as (Multiple) Correspon
dence Analysis, Multiple Factor Analysis, etc.
Let’s apply this technique to the wine
data. To get familiar with the data,

we can first visualize the information on a 2D plot and then reduce the data
set to the first two dimensions only.
Since the different variables represent analytical measures that are defined

using different scales, a standardized PCA is performed. This is the default
option in PCA()
 from {FactoMineR}(scale.unit=TRUE):

library(FactoMineR)

res
pca
 <- PCA(wine,
 quali.sup=1,
 scale.unit=TRUE,
 graph=FALSE)

2
 When
 all
 the
 principal
 components
 are
 considered,
 none
 of
 the
 information
 present
 in

the
raw
data
is
lost
and
their
representation
is
simply
shifted
from
an
unstructured
high-
dimensional
space
to
a
structured
 lower -dimensional
space.

260
 Data
Science
 for
Sensory
and
Consumer
Scientists

The results of the PCA (Figure 12.1) can be visualized using {factoextra}:

library
 (factoextra)

fviz
pca
biplot(res
pca,
 repel=TRUE,
 label="var",

col.var="red",
 col.ind="black")

PCA – Biplot

4

2

0

–2

–4
–2.5 0.0 2.5

Dim1 (36.2%)

Alcohol

Malic Ash

Alkalinity

Magnesium

Phenols

Flavanoids

Nonflavanoids
Proanthocyanins

Color

Hue

Dilution

Proline

D
im

2
(1

9.
2%

)

FIGURE
12.1

PCA
Biplot.

The first plane of the PCA suggests that there are three distinct groups
of wines. Let’s define them mathematically using cluster analysis. For this
process, we propose to reduce the full data to its first two components
only. This approach is used here to illustrate how PCA can be used as a
preprocessing step. Additionally, such preprocessing can help detecting clearer
patterns in the data, as we will see in Section 12.4.2.

wine
reduced
 <- as
tibble(res
pcaindcoord[,1:2])

261
Machine
Learning

Note that such use of PCA as a preprocessing step was already done
earlier in Section 10.4.4 when the sensory space was reduced to its first
two dimensions before performing the external preference mapping.

12.4.2
 Clustering

Clustering is a technique used when dealing with high-dimensional data to
discover groups of observations that are similar to each other (or different
from each other). In other words, it is a method that groups unlabeled data
based on their similarities and differences in a way that objects with strong
similarities are grouped together and are separated from objects to whom
they have little to no similarities.
Again, a very common application in S&C Science is to segment consumers

based on a variety of factors such as shopping or usage behavior, attitudes,
interests, and preferences. As consumers being associated in the same market
segment tend to respond similarly, segmentation is a key strategy for compa
nies to better understand their consumers and tailor effectively their products
or marketing approaches for the different target groups. Similarly, it is also
used to classify products in homogeneous groups based on their analytical,
sensory, and/or consumer description in order to analyze the product offer
and identify different segments on the market.
There are many clustering approaches and algorithms. They can be

categorized into different types including exclusive (e.g. k-means), hierarchical
(see Section 10.4.2 for an example), and probabilistic (e.g. Gaussian Mixture
Model). The first two are most widely used and well known in the
sensory field.
Although agglomerative hierarchical clustering (HAC) is more common

in sensory and consumer research, an example illustrating such approach
was already provided in Section 10.4.2. For that reason, here we propose to
present another approach using k-means. K-means clustering is a popular
unsupervised machine learning algorithm for partitioning a given data set in
a way that the total intra-cluster variation is minimized. Both approaches
(HAC and k-means), however, differ in their ways of forming clusters.
For instance, the algorithm of k-means requires the user to prespecify the
number of clusters to be created, whereas HAC produces a tree (called
dendrogram) which helps visualizing the data hierarchical structure and
deciding on the optimal number of clusters. Detailed information about
clustering methods and analysis can be found in the book Practical Guide
to Cluster Analysis in R: Unsupervised Machine Learning by Alboukadel
Kassambara (Kassambara, 2017a).
In order to cluster our wines, let’s start with defining the optimal number

of clusters (k) to consider. This can be done using fviz
nbclust()
 from

Optimal number of clusters

To
ta

l w
ith

in
 S

um
 o

f S
qu

ar
e 1000

500

1 2 3 4 5 6 7 8 9 10
Number of clusters k

262
 Data
Science
 for
Sensory
and
Consumer
Scientists

{factoextra}. This function creates a graph that represents the variance
within the clusters (Figure 12.2). In this representation, the bend (also called
elbow) indicates the optimal number of clusters; any additional cluster beyond
that point has less value.

fviz
nbclust(wine
reduced,
 kmeans,
 method
 =
 "wss")

FIGURE
12.2

Optimal
number
of
clusters.

Here, the optimal solution consists of defining three clusters.
Next, the k-means algorithm starts with randomly selecting k (here 3)

centroids. In order to reproduce our results (despite the randomness), we
propose to initially set a seed (through set.seed
 ()).3
 Otherwise, it is
recommended to set within kmeans()
a number of random sets, that is, the
number of times (here 20) R will try different random starting assignments.
Increasing this number yields more stable results.

set.seed()
fixes
random
selections
so
that
they
can
easily
be
reproduced.
3

263
Machine
Learning

set.seed(123)

wine
kmeans
 <- kmeans(wine
reduced,
 centers=3,
 nstart=20)

Finally, the results (Figure 12.3) can be visualized using fviz
cluster()

from {factoextra}:

fviz
cluster(list(data=wine
reduced,
 cluster=wine
kmeans$cluster),

ellipse.type="norm",
 geom="point",
 stand=FALSE)

Cluster plot

2

cluster
10
2

3

-2

-4
-2.5 0.0 2.5

Dim.1

D
im

.2

FIGURE
12.3

Cluster
plot.

In the resulting plot, the three clusters are clearly separated, as can be seen
by their little to no overlap.

An interesting suggestion is to run the same analysis on the full data (here,
we limited it to the first two dimensions of the PCA) and to compare the
results.

264
 Data
Science
 for
Sensory
and
Consumer
Scientists

When applying such clustering techniques, one may sometimes encounter
very atypical variables that could be deemed noisy. This may occur when
analyzing consumer hedonic data and finding few consumers who have
an atypical response pattern. This may create enough “noise” in the data
to blur the main data structure and affect the outcome of the k-means
algorithm. To solve this problem, Vigneau et al. (2016) have developed
strategies to segment consumers while setting aside atypical or irrelevant
consumers. This can be achieved by using either a noise cluster where to
dump “irrelevant” consumers or a sparse latent variable (Sparse LV) strategy.
Both strategies have been implemented in the {ClustVarLV} package and can
be selected using “kplusone” or “sparselv” parameters in the CLV
kmeans()

function.
It should be noted that, in sensory and consumer science, it is increasingly

more frequent to aim to cluster panelists, based not only on one variable
(i.e. their liking for a series of products) but also on sets of several variables
(i.e. their description of products for a series of attributes or their responses
to a full online questionnaire) or even on distance matrices (as obtained from
a free sorting task, for example). Segmentation strategies would also apply to
such data.
For instance, Cariou and Wilderjans have developed an approach for cluster

ing around latent variables for three-way data (CLV3W). This approach that
is implemented in {ClustVarLV} could be used to detect panel disagreement in
three-way conventional sensory profiling data (Wilderjans and Cariou, 2016)
or to segment consumers based on multi-attribute product evaluation, by
removing the non-negativity constraint to the CLV3W()
 procedure (Cariou
and Wilderjans, 2018). As for free sorting and projective mapping data, the
CLUSTATIS partitioning algorithm could be applied using {ClustBlock}
(Llobell et al., 2019, 2020).

12.5
 Supervised
Learning

There are many ways to carry out Supervised ML, which again would require
an entire book dedicated just to it. In this section, we will introduce you to
the basics, which should give you a nice kick-start for your own analysis.
For those who want to learn more on this topic, we recommend reading
Hands-On Machine Learning with R4
 by Bradley Boehmke and Brandon and
Tidy Modeling with R5
 by Max Kuhn and Sylvia Silge for more in-depth
information.

4
 https://bradleyboehmke.github.io/HOML

5
 https://www.tmwr.org/

https://www.bradleyboehmke.github.io
https://www.tmwr.org

Machine
Learning
 265

12.5.1
 Workflow

In sensory and consumer science, supervised learning is commonly carried out
using a regression type of analysis, where for instance consumer ratings are
used as output (target) and product information (i.e. sensory profiles and/or
analytical measurement) are used as input. The goal of the analysis is then
to explain (and sometime predict) the (say) liking scores using the sensory
information about the products.
To do so, models are initially trained using a subset of the data (called

training set). Once obtained, the model is then tested and validated on
another part of the data (called test set and validation set).6
Once this process
is done, the model can be continuously improved, discovering new patterns
and relationships as it trains itself using new data sets.

12.5.2
 Regression

Regression methods approximate the target variable7
 with (usually linear)
a combination of predictor variables. There are many regression algorithms
varying by type of data they can handle, type of target variable, and additional
aspects such as the ability to perform dimensionality reduction. The most
relevant methods for sensory and consumer science will be presented here.

• Linear
regression:

The simplest and most popular variant is linear regression in which a
continuous target variable is approximated as linear combination of predictors
in a way that the sum of squares of the errors (SSE) is minimized. It can
be, for example, used to predict consumer liking of a product based on
its sensory profile, but the user has to keep in mind that linear regression
can in some cases return predicted values outside the reasonable range
of target values. This can be addressed by capping the predictions to a
desired range. Functions in R to apply linear regression are: lm()
and glm()

or parsnip::linear
reg()
 %>%
 parsnip::set
engine("lm")
when using
the {tidymodels} workflow.

• Logistic
regression:

Logistic regression is an algorithm which – by use of logistic transformation –
allows to apply the same approach as linear regression to cases with binary

6
 It
 is
 common
practice
 to
 split
 the
data
 so
 that
 the
model
 is
built
by
using
 70%
 of
 the

data,
 the
 remaining
30%
being
used
 for
 testing
and
validation.
 It
 is
however
 important

to
use
separate
data
 for
these
steps
to
avoid
any
over-fitting.

7
 This
is
a
bit
of
simplification
since
in
some
cases,
it
is
some
transformations
of
combination

of
predictors
that
approximate
the
target
variable,
as
 in
 logistic
regression
 for
example.

266
 Data
Science
 for
Sensory
and
Consumer
Scientists

target variables. It can be used in R with glm(family
 =
 "binomial")

or parsnip::logistic
reg()
 %>%
 parsnip::set
engine("glm")
 when
using the {tidymodels} workflow.

• Penalized
regression:

Often, the data used for modeling contain a lot of (highly correlated)
predictor variables. In such cases of multicolinearity, linear and/or logistic
regression may become unstable and produce unreasonable results. This can
be addressed through the use of so-called penalized regression. Instead of
minimizing pure error term, the algorithm minimizes both the error and the
regression coefficients at the same time. This leads to more stable predictions.
There are three variations of penalized regression and all of them can be

accessed via glmnet::glmnet()
(β
 is set of regression coefficients and λ
is a
parameter to be set by user or determined from cross-validation):

• Ridge regression (L2 penalty) minimizes SSE
+ λ
�

|β|2
 and drives the
coefficients to smaller values;

• Lasso regression (L1 penalty) minimizes SSE
+λ
�

|β| and forces some
of the coefficients to vanish, which allows some variable selection;

• Elastic-net regression is a combination of the two previous variants

SSE
+ λ1

�
|β| + λ2

�
|β|2
.

Penalized regression can also be ran in the {tidymodels} workflow using
parsnip::linear
reg()
 %>%
 parsnip::set
engine("glmnet").

• MARS:

One limitation of all above-mentioned methods is that they assume lin
ear relationship between the predictor and the target variables. Multivari
ate adaptive regression spline (MARS) addresses this issue by modeling
non-linear relationship with piece wise linear function. This gives a nice
balance between simplicity and ability to fit complex data, for example,
Λ-shaped once where there is a maximal point from which function decreases
in both directions. In R, this model can be accessed via earth::earth()

function.

• PLS:

In case of single and multiple target variables, partial least squares (PLS)
regression can be applied. Similarly to PCA, PLS looks for components that
maximizes the explained variance of the predictors, while simultaneously
maximizing their correlation to the target variables. PLS can be applied with

267
Machine
Learning

lm()
 by specifying multiple targets or in the {tidymodels} workflow with
plsmod::pls()
 %>%
 parsnip::set
engine("mixOmics").

12.5.3
 Other
Common
Supervised
ML
Algorithms

Additional Supervised ML techniques include:

• K-nearest
neighbors

A very simple, yet useful and robust algorithm that works for both numeric
and nominal target variables is K-nearest neighbors. The idea is that for
every new observation to predict, the algorithms find K closest points in the
training set and use either their mean value (for numeric targets) or the most
frequent value (for nominal targets) as prediction. This algorithm can be
used with kknn::kknn()
 function or in the {tidymodels} workflow with
parsnip::nearest
neighbor()
 %>%
 parsnip::set
engine("kknn").

• Decision
trees

Decision tree algorithms model the data by splitting the training set into
smaller subsets in a way that each split is done by a predictor variable
so that it maximizes the difference in target variable between the subsets.
One important advantage of decision trees is that they can model complex
relationships and interactions between predictors. To use decision tree
in R, rpart::rpart()
 or in the {tidymodels} workflow parsnip::

decision
tree()
 %>%
 parsnip::set
engine("rpart")
can be used.

• Black
boxes

The black boxes algorithm includes models for which the structure is too
complex to directly interpret relationship between predictor variables and a
value predicted by the model. The advantage of such models is their ability to
model more complicated data than in case of interpretable models, but they
have a greater risk of overfitting. Also, the lack of clear interpretation may
not be acceptable in some business specific use cases.

• Random
 forests

A random forest is a set of decision trees, each one trained on a random
subset of observations and/or predictors. The final prediction is then obtained
by averaging the individual trees’ predictions. By increasing the number of
trees, we also increase the precision of the results. The random forest algorithm
hence minimizes some of the limitations of a decision tree algorithm, by for
instance reducing the risks of overfitting and increasing its precision.

268
 Data
Science
 for
Sensory
and
Consumer
Scientists

12.6
 Practical
Guide
to
Supervised
Machine
Learning

Now that we have a general idea of the purpose of Supervised ML approach,
let’s build a simple machine learning model in the context of a sensory and
consumer study. But before doing that, let’s introduce the {tidymodels}
framework.

12.6.1
 Introduction
 to
 the
{tidymodels}
 Framework

R contains many fantastic systems for building machine learning models.
For various reasons that will be explained here, we propose to use the
{tidymodels}8
 framework for our analysis.
Similar to the {tidyverse}, {tidymodels} is a collection of packages

dedicated to modeling. It contains packages such as {rsample} (general
resampling infrastructure), {yardstick} (performance metrics), {recipes}
(preprocessing and feature engineering steps for modeling), {workflows} (mod
eling workflow), {broom} (tidy statistical objects), and {parsnip} (fitting
models) just to name a few. Yet, the similarity between {tidymodels} and
{tidyverse} does not end there since {tidymodels} is built (and uses) on
the {tidyverse}, hence being the perfect extension for modeling data.
Besides modeling data, {tidymodels} aims at tidying the process of mod

eling data. Such process is done at different levels:

• Tidying the entire modeling workflow by integrating the different steps
(including data preparation, model fitting, and data prediction) into
simple functions ({parnsip}).

• Tidying (by standardizing) the inputs and outputs for the different
Machine Learning algorithms.9

• Tidying the models so that the outputs can be easily extracted and used.

• Providing all the relevant functions required for modeling in one unique
collection of packages.

Regardless of the algorithm used, the typical modeling approach used by
{tidymodels} is as follows:

1. Split your data into training and test set (including sets for Cross-
Validation);

8
 https://www.tidymodels.org/

9
 To
 avoid
 reinventing
 the
 wheel
 and
 to
 be
 more
 flexible,
 {tidymodels}
 allows
 calling

ML
 algorithm
 from
 various
 packages
 in
 a
 standardized
way,
 even
when
 those
 packages

often
require
the
data
to
be
structured
 in
a
different
way,
use
different
names
 for
similar

parameters,
etc.

https://www.tidymodels.org

269
Machine
Learning

2. Build a recipe by informing the model and any preprocessing step
required on the data;

3. Define the model (and its parameter) to consider;

4. Create a workflow by combining the previous step together;

5. Run your model;

6. Evaluate your model;

7. Predict new values.

For more information, we refer the readers to Tidy Modeling with R10
 by
Max Kuhn and Julia Silge.
Let’s load the {tidymodels} package:

library(tidymodels)

12.6.2
 Sampling
 the
Data

As mentioned earlier, an important step consists of splitting the data into
a training and testing set. To do so, the function initial
split()
 is used.
This function takes as input the original data and returns the information
on how to make the different partitions. In practice, such partition could be
obtained completely randomly by simply specifying the proportion of data
in each partition (here prop=0.7
 meaning that 70% of the data are in the
training set and the rest being in the test set). However, we can provide
constraints so that the structure of the original data is respected. In our case,
Type
contains three levels which may not be perfectly balanced. By specifying
strata=Type, we ensure that the different splits respect the original data in
terms of proportions for Type.
After the initial
split(), the training()
and testing()
functions are

used to obtain the training and testing subsets.

wine
split
 <- initial
split(data=wine,
 strata="Type",
 prop=0.7)

wine
train
 <- training(wine
split)

wine
testing
 <- testing(wine
split)

12.6.3
 Cross-Validation

Cross-validation (CV) is an important step for checking the model quality. To
allow performing CV, additional sets of data are required. These sets of data

https://www.tmwr.org/
10

https://www.tmwr.org

270
 Data
Science
 for
Sensory
and
Consumer
Scientists

can be obtained through the resampling method before building the model.
In practice, for each new set of data, a subset is used for building the model,
the other subset being then used to measure the performance of such model
(similar to the training and testing set defined earlier). However, in this case,
the resampling is only performed on the training set defined earlier.
To generate such sets of data, the vfold
cv
function is used. Here we start

with a five-fold cross-validation first. Again, strata=Type
to a conduct strat
ified sampling to ensure that each resample is created within the stratification
variable.

wine
cv
 <- wine
train
 %>%

vfold
cv(v=5,
 strata=Type)

12.6.4
 Data
 Preprocessing
{recipes}

The {recipes} package contains a rich set of data manipulation tools which
can be used to preprocess the data and to define roles for each variable
(e.g. outcome and predictor). To add a recipe, the function recipe()
is used.
This function has two arguments: a formula and the data (here wine
train).
Any variable on the left-hand side of the tilde (~) is considered the model
outcome. In our example, we want to use a machine learning model to predict
the type of the wine; therefore, Type
would be the target on the left-hand side
of the ~. On the right-hand side of the tilde are the predictors. One can write
out all the variables, but an easier option is to use the dot (.) to indicate all
other variables as predictors.

model
recipe
 <- wine
train
 %>%

recipe(Type
 ~
 .)

In this instance, we do not need to preprocess further any of the variables
present in the data. Yet, if it was the case, we could use the various step
*()

functions, which then perform any transformation required on the declared
variables including:

• step
log()
 for a log transformation;

• step
dummy()
 to transform categorical data into dummy variables
(useful to combine with functions such all
nominal
predictors(),
starts
with(), matches(), etc.);

• step
interact()
creates interaction variables;

• step
num2factor()
converts numeric variables to factor;

271
Machine
Learning

• step
scale()
scales numeric variables;

• step
pca()
converts numeric data into 1 or more principal components,
etc.

It should be noted that, by default, any of the preprocessing performed
here on the trained data set is also applied adequately on the test set.
For instance, with step
scale(), the mean and standard deviation are
computed on the training data and are then applied on the test data (the
means and standard deviation are not recomputed from the test set).

12.6.5
 Model
Definition

Once the model formula is defined and the instructions for the data preprocess
ing is set, we need to decide which type of ML algorithm should be used. Let’s
consider the random forest classifier for the wine data using rand
forest()

(the algorithm proposed by the {ranger} package is used here). This function
has three hyper-parameters (mtry,
 trees,
 and
 min
n) which can be tuned
to achieve the best possible results.
Model tuning is the process of finding the optimal values for those param

eters. In order to find the best hyper-parameter combinations, we need to
define a search range for each of them. When we choose the family of the
model we want to use (rand
forest
 in this example), we have to let the
machine know that a given parameter (mtry,
 trees,
 min
n) is not defined
explicitly and will be tuned instead. To achieve such a result, we must use the
function tune().

rf
spec
 <- rand
forest(

mtry
 =
 tune(),

trees
 =
 tune(),

min
n =
tune())
 %>%

set
mode("classification")
 %>%

set
engine(engine
 =
 "ranger")

12.6.6
 Set
 the
Whole
Process
 into
a
Workflow

Finally, we combine the model and the recipe into a single workflow():

rf
wf
 <- workflow()
 %>%

add
recipe(model
recipe)
 %>%

add
model(rf
spec)

272
 Data
Science
 for
Sensory
and
Consumer
Scientists

12.6.7
 Tuning
 the
Parameters

In the previous section, placeholders for tuning hyper-parameters were cre
ated. It is time to define the scope of the search and to choose the method for
searching the parameter space. To do so, grid
regular()
can be used:

params
grid
 <- rf
spec
 %>%

parameters()
 %>%

update(mtry
 =
 mtry(range
 =
 c(1,2)),

trees
 =
 trees(range
 =
 c(10,200)))
 %>%

grid
regular(levels=5)

Now that the hyper-parameter search range is defined, let’s look for the
best combination using the tune
grid()
function. The cross-validation set is
used for this purpose, so that the data used for training the model has not
been used yet.

tuning
 <- tune
grid(rf
wf,
 resamples=wine
cv,
 grid=params
grid)

The autoplot()
function is called to take a quick look at the tuning
object
(Figure 12.4).

autoplot(tuning)

Ultimately, the best combination of parameters is obtained using the
select
best()
function. Such paramaters are defined based on the quality of
the model, which can be estimated through a various metrics. Here we decided
to use roc
auc
 (Area Under the Receiver Operating Characteristic Curve),
as it provides a reliable estimate of the quality of the model.

params
best
 <- select
best(tuning,
 "roc
auc")

12.6.8
 Model
Training

The best parameters can be applied to our model, and the final model can
be trained using the entire training set. This is done using the fit()
 function
that we apply to our workflow.

Randomly Selected Predictors: 1 # Randomly Selected Predictors: 2

0.99

0.98

0.97

0.96

0.95

0.94

1.0000

0.9975

0.9950

0.9925

accuracy
roc_auc

Minimal Node Size

 2

11

21

30

40

50 100 150 200 50 100 150 200
Trees

273
Machine
Learning

FIGURE
12.4

Tuning
plot.

final
model
 < rf
wf
 %>%

finalize
workflow(params
best)
 %>%

fit(wine
train)

12.6.9
 Model
Evaluation

A very important part in building machine learning models is to assess the
quality of the model. A first approach consists of applying the model thus
obtained on the testing data set (wine
testing), which the model has not
seen yet.
To do so, the predict()
 function is used. The predict()
 function of

{tidymodels} allows adding in an easy way the predictions obtained from
models to the original data. This procedure allows comparing the predictions
with the actual data:

obs
vs
pred
 <- wine
testing
 %>%

bind
cols(predict(final
model,
 .))

274
 Data
Science
 for
Sensory
and
Consumer
Scientists

Here, obs
vs
pred
 is a data frame which contains both the actual wine
type (Type) and the predicted wine type (.pred
class). Comparing these
two variables allow judging the quality of the model. Such comparison can
be done through a confusion matrix (Figure 12.5). A confusion matrix is
a table where each row represents instances in the actual class, while each
column represents the instances in a predicted class. From the autoplot()

function, it appears that the predictions were almost perfect (only two wines
were wrongly classified).

cm
 <- conf
mat(obs
vs
pred,
 Type,
 .pred
class)

autoplot(cm,
 type
 =
 "heatmap")

18

0

0

0

20

2

0

0

153

2

1

Pr
ed

ic
tio

n

1 2 3
Truth

FIGURE
12.5

Confusion
matrix.

There are several ways to look into the model quality, with the approach
and model metrics highly dependent on the situation/type of model used.
In our case, as we have a multiclass classification, we can besides use the
confusion matrix, to check the model accuracy. Classification accuracy is
a metric that summarized the fraction of predictions our model got right
(somehow it brings similar information we get from the confusion matrix). We
have to first organize the data to have the model predictions. Then we can
directly calculate the accuracy and also kappa accuracy, using the functions
accuracy
 ()
and kap
 (). Kappa (kap()) is a similar measure to accuracy(),

Machine
Learning
 275

but is normalized by the accuracy that would be expected by chance alone. It
can be very useful when one or more classes have large frequency distributions.

obs
vs
pred
prob
 <- bind
cols(wine
testing
 %>%

select(Type),

predict(final
model,

wine
testing,

type
 =
 "prob"))
 %>%

mutate(Type
 =
 as.factor(Type))

accuracy(obs
vs
pred,
 truth
 =
 "Type",
 estimate
 =
 ".pred
class")

##
 #
 A
 tibble:
 1
 x
 3

##
 .metric
 .estimator
 .estimate

##
 <chr>
 <chr>
 <dbl>

##
 1
 accuracy
 multiclass
 0.964

kap(obs
vs
pred,
 truth
 =
 "Type",
 estimate
 =
 ".pred
class")

##
 #
 A
 tibble:
 1
 x
 3

##
 .metric
 .estimator
 .estimate

##
 <chr>
 <chr>
 <dbl>

##
 1
 kap
 multiclass
 0.945

The accuracy and Kappa accuracy of our model is extremely high (>
0.94),
emphasizing its great model performance.
A simple and easy way to have a higher level understanding on what vari

ables play the most important role in our model (wine classification) is through
the Feature Importance plot. To create this plot, we need to first create an
object known as explainer
from the tidymodels workflow, using the function
explain
tidymodels
 from the package {DALEXtra}. This function will take
as argument: the model to be explained, the data to be used to calculate the
explanations which should be passed without a target column (wine
train

removing the columns Type) and the numeric vector with outputs/scores (y).
The explainer
object can be then used to create the Feature Importance plot
(Figure 12.6) using the function variable
importance.
The interpretation is very straightforward, in the way that variables are

conveniently ordered according to their importance. The higher the cross-
entropy loss after permutations, the more important the variable is to, in our
case, decide to which group each wine belong to. So, for example, if color is
permuted (spoil the variable), it turns out that the model will be more than
2.5 times worse than the one with the correct color variable. In summary,

276
 Data
Science
 for
Sensory
and
Consumer
Scientists

cross-entropy loss after permutations measures how much the permutation of
a variable would impact the model performance. The higher the impact, the
most important the variable.

library(DALEXtra)

library(modelStudio)

data
to
explain
 <- wine
train

explainer
 <- explain
tidymodels(model
 =
 final
model,

data
 =
 data
to
explain
 %>%

select(-Type),

y =
data
to
explain$Type)

var
imp
 <- variable
importance(explainer,

loss
function
 =
 loss
cross
entropy,

type
 =
 "ratio")

plot(var
imp)

Feature Importance

created for the workflow model

workflow

Color

Flavonoids

Proline

Alcohol

Dilution

Phenols

Hue

Proanthocyanidins

Magnesium

Malic

Nonflavonoids

Alkalinity

Ash

1.0 1.5 2.0 2.5
Cross-entropy loss after permutations

FIGURE
12.6

Feature
 importance.

277
Machine
Learning

Building a machine learning model may seem complicated at first since
there are many steps and important things to watch out for. Although we
presented here a simple example, for one specific situation of classification,
you will realize that this way of working (typical modeling approach showed)
is highly applicable to other situations. Again, the main idea of this chapter
is to open your mind, provide you with the basics, and ultimately motivate
you to seek and learn more about machine learning!

https://taylorandfrancis.com

13

Text
Analysis

In the previous chapters, most transformations and analyses were per
formed on simple data, that is, data that represent something very specific,
understandable, predictable, and stand-alone. For numerical variables
(e.g. sensory attributes), one data entry is simply a number often defined
within a range. For categorical variables or factors, each data entry is a
predefined entry (e.g. product names or a category for a given variable)
chosen from a list of possible options. But there are situations where the
data are intrinsically more complex and less structured. A good illustration
of such complex situation is text analysis. Before collecting the data, we do
not know explicitly what kind of information we will get (with open-ended
questions, respondents are free to say/write whatever they want!). In that
case, each data entry (from words, to sentences, to paragraphs. . .) is more
messy as it may contain relevant and less-informative elements. The goal
of the analysis is then to extract the relevant information from the data
and to summarize it automatically. In this section, we will show you how
such data can be processed and how information can be extracted.

13.1
 Introduction
to
Natural
Language
Processing

Humans exchange information through the use of languages. There is of course
a very large number of different languages, each of them having their own
specificity. The science that studies languages per se is called linguistics: It
focuses on areas such as phonetics, phonology, morphology, syntax, semantics,
and pragmatics.
Natural Language Processing (NLP) is a subfield of linguistics, computer

science, and artificial intelligence. It connects computers to human language
by processing, analyzing, and modeling large amounts of natural language
data. One of the main goals of NLP is to understand the contents of documents

DOI: 10.1201/9781003028611-13 279

280
 Data
Science
 for
Sensory
and
Consumer
Scientists

and to extract accurately information and insights from those documents. In
Sensory and Consumer Research, we often refer to NLP when we talk about
Text Analysis.
Since the fields of linguistics and NLP are widely studied, a lot of documen

tations are already available online. The objective of this chapter is to provide
sufficient information for you to be familiar with textual data and to give you
the keys to run the most useful analyses in Sensory and Consumer Research.
For those who would like to dive deeper into NLP, we recommend reading

Silge and Robinson (2017), Bécue-Bertaut (2019), and Hvitfeldt and Silge
(2021) for more advanced techniques.

13.2

 Application
of
Text
Analysis
 in
Sensory
and

Consumer
Science

13.2.1
 Text
Analysis
as
Way
 to
Describe
Products

In recent years, open-ended comments have gained interest as it is the fastest,
safest, and most unbiased way to collect spontaneous data from participants
(Piqueras-Fiszman, 2015).
Traditionally, most SCS questionnaires relied primarily on closed questions,

to which open-ended questions were added to uncover the consumers’ reasons
for liking or disliking products. In practice, these open-ended questions
were positioned right after liking questions and aimed at providing some
understanding about why a product may or may not be liked and to give the
participants a chance to reduce their frustration by explaining their responses
to certain questions. As a result of such practices, these questions were usually
not deeply analyzed.
With the development of the so-called rapid and consumer-oriented descrip

tive methods, the benefits of open-ended questions became more apparent
as they provide a new way to uncover sensory perception. In practice,
respondents are asked to give any terms that describe their sensory perception
in addition to their quantitative evaluation of the products by means of
intensity rating or ranking (e.g. Free Choice Profile, Williams and Langron,
1984; Flash Profile, Delarue and Sieffermann, 2004), or similarities and
dissimilarities assessment (e.g. Free Sorting Task, Cadoret et al., 2009; Ultra
Flash Profile, Perrin et al., 2008). Since the textual responses are now an
integral part of the method, their analysis can no longer be ignored.
The importance of open-ended questions increased further as it has been

shown that respondents can reliably describe in their own words their full

Text
 Analysis
 281

experience (perception, emotion, or any other sort of association) with prod
ucts. Recently, Mahieu et al. (Mahieu et al., 2020, 2022; Visalli et al., 2020)
showed the benefits of using open-ended questions over CATA.1
 In this study,
consumers were asked to describe with their own words both the products
they evaluated and what their ideal product would be like. Similarly, Luc
et al. (2020, 2022a,b) proposed an alternative to the Just About Right (JAR)
scale method – called free-JAR – and in which consumers describe the samples
using their own words, by still following a JAR terminology (too little, too
much, or JAR, etc.).
The inclusion of open-ended questions as one of the primary elements

of sensory and consumer tasks blurs the line with other fields, including
psychology and sociology where these qualitative methods originated. More
recently, advances in the technology (web-scraping, social listening, etc.)
opened new doors that brought SCS closer to other fields such as marketing
for instance. The amount of data that are collected with such techniques can
be considerably larger, but the aim of the analysis stays the same: extracting
information from text/comments. Various examples of the application of text
analysis in the SCS field can be found in Bécue-Bertaut et al. (2008), ten
Kleij and Musters (2003), Hamilton and Lahne (2020), Vidal et al. (2015), or
Feldmeyer and Johnson (2022) just to name a few.

13.2.2
 Objectives
of
Text
Analysis

Open-ended comments, and more generally textual responses in question
naires, are by definition qualitative. This means that the primary analysis
should be qualitative. It could simply consist of reading all these comments
and eventually summarizing the information gathered. But as the number
of comments increases, such an approach quickly becomes too time and
energy consuming for the analysts. How can we transform such qualitative
data into quantitative measures? How can we digest and summarize the
information contained in these comments without losing the overall meaning
of the messages (context)?
One easy solution is to simply count how often a certain word is being

used in a given context (e.g. how often the word sweet
 is being associated
to each product evaluated). However, if such a solution is a reasonable one to
start with, we will show some alternatives that allow going deeper into the
understanding of textual inputs. This is the objective of the textual analysis
and NLP that we are going to tackle in the next sections.

CATA
can
be
seen
as
a
simplified
version
of
open-comments
in
the
sense
that
respondents

also
 associate
 products
 to
words;
however,
 they
 lose
 the
 freedom
 of
 using
 their
 own
 as

they
need
to
select
them
 from
a
predefined
 list.

1

282
 Data
Science
 for
Sensory
and
Consumer
Scientists

13.2.3
 Classical
Text
Analysis
Workflow

In SCS, the generic notion of text analysis often includes any step or procedure
that allows going from the raw data (e.g. consumer comments, text scrapped
from website or social media, etc.) to results and insights. However, such
process requires many separate steps, often defined as follows:

1. Tokenization
 is the step that splits the raw data into statistical units
of interest, also called token.2

2. Non-informal words or stopwords
 (e.g. and, I, you, etc.) are then
removed from the data to facilitate the extraction of the information.

3. Stemming
consists of reducing words to their root form, hence grouping
the different variants of the same word (e.g. singular/plural, infinitive or
conjugated verbs, etc.).

4. An extra (optional) step called lemmatization
 consists of grouping
words that have similar meanings under one umbrella. The advantage
of such procedure is that it simplifies further the analysis and its
interpretation. However, it can be time consuming and more importantly,
it relies on the analyst’s own judgment: two different analysts performing
the same task on the same data will obtain different end results.

5. The final data are then analyzed
 and summarized (often through
counts) to extract information or patterns.

13.2.4
 Warnings

Languages are complex, as many aspects can influence the meaning of a
message. For instance, in spoken languages, the intonation is as important
as the message itself. In written languages, non-word items (e.g. punctuation,
emojis) may also completely change the meaning of a sentence (e.g. irony).
Worst, some words have different meanings depending on their use (e.g. like),
and the context of the message provides its meaning. Unfortunately, the full
context is only available when analyzed manually (e.g. when the analyst reads
all the comments), meaning that automating analyses do not always allow
capturing it properly. In practice, however, reading all the comments is not a
realistic solution. This is why we suggest to automate the analysis to extract
as much information as possible, before going back to the raw text to ensure
that the conclusions drawn match the data.

2
 A
token
can
be
a
single
word,
a
group
of
n-words
(also
know
as
n-grams),
a
sentence,
or

an
entire
document.

Text
 Analysis
 283

13.3
 Illustration
Involving
Sorting
Task
Data

Let’s start with loading the usual packages of need:

library(tidyverse)

library(here)

library(readxl)

The data set used for illustration was kindly shared by Dr. Jacob Lahne.
It is part of a study that aimed at developing a CATA lexicon for Virginia
Hard (Alcoholic) Ciders (Phetxumphou et al., 2020). The data can be found
in cider text data.xlsx.
Let’s also import the data to our R session:

file
path
 <- here("data","cider
text
data.xlsx")

cider
og
 <- read
xlsx(file
path)
 %>%

mutate(sample
 =
 as.character(sample))

13.3.1
 Data
 Preprocessing

Before starting, it is important to mention that there is a large variety of
R-based solutions and R packages that handle textual data, including:

• The IRaMuTeQ project (CAD1983821870) is a free software dedicated to
text analysis and developed in R and Python. It includes Reinert textual
clustering method (for more information, see http://www.iramuteq.
org/);

• {tm} package for text mining;

• {tokenizers} to transform strings into tokens;

• {SnowballC} for text stemming;

• {SpacyR} for Natural Language Processing;

• {Xplortext} for deep understanding and analysis of textual data.

However, to ensure a continuity with the rest of the book, we will empha
size the use of the {stringr} package for handling strings (here text)
combined with the {tidytext} package. Note that {stringr} is part of
the {tidyverse} and both packages fit very well within the {tidyverse}
philosophy.

http://www.iramuteq.org
http://www.iramuteq.org

284
 Data
Science
 for
Sensory
and
Consumer
Scientists

Let’s load this additional package:

library(tidytext)

13.3.2
 Introduction
 to
Working
with
Strings
 ({stringr})

The {stringr} package brings a large set of tools that allow working with
strings. Most functions included in {stringr} start with str
*(). Here are
some of the most convenient functions:

• str
length()
to get the length of the string;

• str
c()
to combine multiple strings into one;

• str
detect()
to search for a pattern in a string and str
which(), find
the position of a pattern within the string;

• str
extract()
 and str
extract
all()
 to extract the first (or all)
matching pattern from a string;

• str
remove()
and str
remove
all()
to remove the first (or all) match
ing pattern from a string;

• str
replace()
 and str
replace
all()
 to replace the first (or all)
matching pattern with another one.

It also includes formatting options that can be applied to strings, including:

• str
to
upper()
and str
to
lower()
to convert strings to uppercase or
lowercase;

• str
trim()
and str
squish()
to remove white spaces;

• str
order
to order the element of a character vector.

Examples of the applications of some of these functions are shown in the
next sections.

13.3.3
 Tokenization

The analysis of textual data starts with defining the statistical unit of interest,
also known as token. This can either be a single word, a group of words, a
sentence, a paragraph, a whole document, etc. The procedure to transform
the document into tokens is called tokenization.
By looking at our data (cider
og), we can notice that for each sample eval

uated, respondents are providing a set of responses, ranging from a single word
(e.g. yeasty) to a group of words (like
 it
 will
 taste
 dry
 and
 acidic).

Text
 Analysis
 285

Fortunately, the data are also well structured since the responses seem to be
separated by a ;
or ,.
Let’s transform this text into tokens using unnest
tokens()
 from the

{tidytext} package. The function unnest
tokens()
 proposes different
options for the tokenization including words, ngrams, or sentences, for
instance. However, let’s take advantage of the data structure and use
a specific character to separate the tokens (here ;, ,
 etc.). The regex

parameter allows us to specify the patterns to consider:

cider
 <- cider
og
 %>%

unnest
tokens(tokens,
 comments,
 token="regex",

pattern="[;|,|:|.|/]",
 to
lower=FALSE)

The original comments from consumers are now split into tokens, thus
increasing the size of the file from 168 individual comments to 947 rows of
tokens.
This procedure already provides some interesting information as we could

easily count word usage and answer questions such as “how often the word
apple is used to describe each samples?” for instance. However, a deeper look
at the data shows some inconsistencies since some words starts with a space or
have capital letters (remember that R is case-sensitive!). Further preprocessing
is thus needed.

13.3.4
 Simple
Transformations

To further prepare the data, let’s standardize the text by removing all the
white spaces (irrelevant spaces in the text, e.g. at the start/end, double spaces,
etc.), transforming everything to lower case (note that this could have been
done earlier through the parameter to
lower=TRUE
from unnest
tokens()),
removing some special letters, replacing some misplaced characters, etc.3

cider
 <- cider
 %>%

mutate(tokens
 =
 str
to
lower(tokens))
 %>%

mutate(tokens
 =
 str
trim(tokens))
 %>%

mutate(tokens
 =
 str
squish(tokens))
 %>%

mutate(tokens
 =
 str
remove
all(tokens,
 pattern="[(|)|?|!]"))
 %>%

mutate(tokens
 =
 str
remove
all(tokens,
 pattern="[ó|ò]"))
 %>%

mutate(tokens
 =
 str
replace
all(tokens,
 pattern="õ",
 replacement="’"))

3
 This
process
 is
done
 in
 iterations:
the
more
you
clean
your
document,
the
more
you
find

some
small
things
to
fix.
.
.
until
you’re
set!

286
 Data
Science
 for
Sensory
and
Consumer
Scientists

To ensure that the cleaning job is done (for now), let’s produce the list of
tokens generated here (and its corresponding frequency)4:

cider
 %>%

count(tokens)
 %>%

arrange(desc(n))

##
 #
 A
 tibble:
 476
 x
 2

##
 tokens
 n

##
 <chr>
 <int>

##
 1
 sweet
 55

##
 2
 fruity
 33

3 sour
 32

4 tart
 28

##
 #
 ...
 with
 472
 more
 rows

The most used words to describe the ciders are sweet
 (55 occurrences),
fruity
(33 occurrences), and sour
(32 occurrences).
A closer look at this list highlights a few things that still need to get tackled:

• The same concept can be described in different ways: spicy, spices,
and spiced
 may all refer to the same concept, yet they are written
differently and hence are considered as different tokens. This will be
handled in a later stage.

• Multiple concepts are still joined and hence considered separately:
sour
 and
 sweet
 is currently neither associated to sour
nor to sweet,
and we may want to disentangle them.

• There could be some typos: Is sweat
a typo and should read sweet? Or
did that respondent really perceived the cider as sweat?

• Although most tokens are made of one (or few) words, some others are
defined as a whole sentence (e.g. this
 has
 a
 very
 lovely
 floral
 and

fruity
 smell).

Let’s handle each of these different points. . .

13.3.5
 Splitting
Further
 the
Tokens

For an even deeper cleaning, let’s go one step further and split the remaining
tokens into single words by using the space as separator. Then, we can number
each token for each assessor using row
number()
 to ensure that we can still

4
 Although
not
present
 in
the
text,
we
will
use
the
next
three
 lines
of
code
multiple
times

to
count
the
number
of
words
present
 in
the
data.

Text
 Analysis
 287

recover which words belong to the same token, as defined previously. This
information will be specially relevant later when looking at bigrams.

cider
 <- cider
 %>%

relocate(subject,
 .before=sample)
 %>%

group
by(subject,
 sample)
 %>%

mutate(num
 =
 row
number())
 %>%

ungroup()
 %>%

unnest
tokens(tokens,
 tokens,
 token="regex",
 pattern="
 |-")

head(cider)

##
 #
 A
 tibble:
 6
 x
 5

##
 subject
 sample
 rating
 tokens
 num

##
 <chr>
 <chr>
 <dbl>
 <chr>
 <int>

1 J1
 182
 8 hard
 1

2 J1
 182
 8 cider
 1

3 J1
 182
 8 smell
 1

##
 4
 J1
 182
 8
 fermented
 2

##
 #
 ...
 with
 2
 more
 rows

For J1
 and 182, for instance, the first token is now separated into three
words: hard, cider, and smell.
A quick count of words show that sweet
appears now 96 times and apple

82 times. Interestingly, terms such as a, like, the, of, and, etc. also appear
fairly frequently.

13.3.6
 Stopwords

Stop words refer to common words that do not carry much (if at all)
information. In general, stop words include words (in English) such as I,
you, or, of, and, is, has, etc. It is thus common practice to remove such stop
words before any analysis as they would pollute the results with unnecessary
information.
Building lists of stop words can be tedious. Fortunately, it is possible to

find some predefined lists and to eventually adjust them to our own needs
by adding and/or removing words. In particular, the package {stopwords}
contains a comprehensive collection of stop word lists:

library(stopwords)

length(stopwords(source="snowball"))

##
 [1]
 175

288
 Data
Science
 for
Sensory
and
Consumer
Scientists

length(stopwords(source="stopwords-iso"))

##
 [1]
 1298

The English Snowball list contains 175 words, whereas the English list from
the Stopwords ISO collection contains 1298 words.
A deeper look at these lists (and particularly to the Stopwords ISO list)

shows that certain words including like, not and don’t (just to name a few) are
considered as stop words. If we would use this list blindly, we would remove
these words from our comments. Although using such list on our current
example would have a limited impact on the analysis (most comments are just
few descriptive words), it would have a more critical impact on other studies
in which consumers give their opinion on samples. Indeed, the analysis of the
two following comments I like Sample A and I don’t like Sample B would be
lost although they provide some relevant information.
It is therefore important to remember that although a lot of stop words are

relevant in all cases, some of them are topic specific and should (or should
not) be used in certain contexts. Hence, inspecting and adapting these lists
before use is strongly recommended.
Since we have a relatively small text size, let’s use the SnowBall Stopword

list as a start, and look at the terms that our list and this stopword list share:

stopword
list
 <- stopwords(source="snowball")

word
list
 <- cider
 %>%

count(tokens)
 %>%

pull(tokens)

intersect(stopword
list,
 word
list)

As we can see, some words such as off, not, no, too, and very would auto
matically be removed. However, such qualifiers are useful in the interpretation
of sensory perception, so we would prefer to keep them. We can thus remove
them from stopword
list.

stopword
list
 <- stopword
list[!stopword
list
 %in%

c("off","no","not","too","very")]

Conversely, we can look at the words from our data that we would not
consider relevant and add them to the list. To do so, let’s look at the list of
words in our data that is not present in stopword
list:

Text
 Analysis
 289

word
list[!word
list
 %in%
 stopword
list]

Words such as like, sample, just, think, or though do not seem to bring any
relevant information here. Hence, let’s add them (together with others) to our
customized list of stop words5:

stopword
list
 <- c(stopword
list,

c("accompany","amount","anything","considering",

"despite","expected","just","like","neither",

"one","order","others","products","sample",

"seems","something","thank","think","though",

"time","way"))

A final look at the list of stop words (here ordered alphabetically) ensures
that it fits our need:

stopword
list[order(stopword
list)]

Finally, the data are being cleaned by removing all the words stored in
stopword
list. This can easily be done either using filter()
(we keep tokens
that are not contained in stopword
list) or by using anti
join()6:

cider
 <- cider
 %>%

anti
join(tibble(tokens
 =
 stopword
list),
 by="tokens")

13.3.7
 Stemming
and
Lemmatization

After removing the stop words, the data contain a total of 328 different words.
However, a closer look at this list shows that it is still not optimal, as for
instance apple
(82 occurrences) and apples
(24 occurrences) are considered
as two separate words although they refer to the same concept.

5
 As
an
exercise,
you
could
go
deeper
into
the
list
and
decide
by
yourself
whether
you
would

want
to
remove
more
words.

6
 Note
 that
 if
 we
 were
 using
 the
 original
 list
 of
 stopwords,
 anti
join()
 can
 directly
 be

associated
to
get
stopwords(source="snowball").

290
 Data
Science
 for
Sensory
and
Consumer
Scientists

To further clean the data, two similar approaches can be considered:
stemming
and lemmatization.
The procedure of stemming consists of performing a step-by-step algorithm

that reduces each word to its base word (or stem). The most used algorithm
is the one introduced by Porter (1980) which is available in the {SnowballC}
package through the wordStem()
 function:

library(SnowballC)

cider
 <- cider
 %>%

mutate(stem
 =
 wordStem(tokens))

The stemming reduced further the list to 303 words. Now, apple
 and
apples
 have been combined into appl
 (106 occurrences). However, due to
the way the algorithm works, the final tokens are no longer English7
 words.
Alternatively, we can lemmatize words. Lemmatization is similar to stem

ming except that it does not cut words to their stems: Instead it uses
knowledge about the language’s structure to reduce words down to their
dictionary form (also called lemma). This approach is implemented in the
{spacyr} package8
 and the spacy
parse()
 function:

library(spacyr)

spacy
initialize(entity=FALSE)

lemma
 <- spacy
parse(cider$tokens)
 %>%

as
tibble()
 %>%

dplyr::select(tokens=token,
 lemma)
 %>%

unique()

cider
 <- full
join(cider,
 lemma,
 by="tokens")

As can be seen, as opposed to stems, lemmas consist of regular words. Here,
the grouping provides similar number of terms (approx 300) in both cases:

7
 Different
 algorithms
 for
 different
 languages
 exist,
 so
 we
 are
 not
 limited
 to
 stemming

English
words.

8
 spaCy
is
a
library
written
in
Python:
for
the
{spacyr}
package
to
work,
you’ll
need
to
go

through
 a
 series
 of
 steps
 that
 are
 described
 here:
 (https://cran.r-project.org/web/

packages/spacyr/readme/README.html)[https://cran.r-project.org/web/packages/

spacyr/readme/README.html]

https://www.cran.r-project.org
https://www.cran.r-project.org
https://www.cran.r-project.org
https://www.cran.r-project.org

Text
 Analysis
 291

cider
 %>%
 count(stem)

##
 #
 A
 tibble:
 301
 x
 2

##
 stem
 n

##
 <chr>
 <int>

1 acid
 23

2 acrid
 1

##
 3
 aftertast
 12

##
 4
 alcohol
 13

##
 #
 ...
 with
 297
 more
 rows

cider
 %>%
 count(lemma)

##
 #
 A
 tibble:
 303
 x
 2

##
 lemma
 n

##
 <chr>
 <int>

1 acid
 3

##
 2
 acidic
 18

##
 3
 acidity
 2

4 acrid
 1

##
 #
 ...
 with
 299
 more
 rows

In the case of lemmatization, acid, acidity, and acidic
 are still con
sidered as separate words whereas they are all grouped under acid
 with
the stemming procedure. This particular example shows the advantage and
disadvantage of each method, as it may (or may not) group words that are (or
are not) meant to be grouped. Hence, the use of lemmatization/stemming pro
cedures should be thought carefully. Depending on their objective, researchers
may be interested in the different meanings conveyed by such words as acid,
acidity, and acidic
and decide to keep them separated or decide to group
them for a more holistic view of the main sensory attributes that could be
derived from this text.
It should also be said that neither the lemmatization nor the stemming

procedure will combine words that are different but bear similar meanings. For
instance, the words moldy
and rotten
have been used, and some researchers
may decide to group them if they consider them equivalent. This type of
grouping should be done manually on a case-by-case using str
replace():

cider
 %>%

count(lemma)
 %>%

filter(lemma
 %in%
 c("moldy","rotten"))

292
 Data
Science
 for
Sensory
and
Consumer
Scientists

##
 #
 A
 tibble:
 2
 x
 2

##
 lemma
 n

##
 <chr>
 <int>

1 moldy
 2

##
 2
 rotten
 5

As can be seen here, originally, moldy
 was stated twice whereas rotten

was stated five times. After replacing moldy
 by rotten, the newer version
contains seven occurrences of rotten
and none of moldy.

cider
 %>%

mutate(lemma
 =
 str
replace(lemma,
 "moldy",
 "rotten"))
 %>%

count(lemma)
 %>%

filter(lemma
 %in%
 c("moldy","rotten"))

##
 #
 A
 tibble:
 1
 x
 2

##
 lemma
 n

##
 <chr>
 <int>

##
 1
 rotten
 7

Doing such transformation can quickly be tedious to do directly in R. As
an alternative solution, we propose to export the list of words in Excel, create
a new column with the new grouping names, and merge the newly acquired
names to the previous file. This is the approach we used to create the file
entitled Example of word grouping.xlsx. In this example, one can notice that
we limited the grouping to a strict minimum for most words except bubble

that we also combined to bubbly, carbonate, champagne, moscato, fizzy,
and sparkle:

new
list
 <- read
xlsx("data/Example
 of
 word
 grouping.xlsx")

cider
 <- cider
 %>%

full
join(new
list,
 by="lemma")
 %>%

mutate(lemma
 =
 ifelse(is.na(`new
 name`),
 lemma,
 `new
 name`))
 %>%

dplyr::select(-`new
 name`)

This last cleaning approach reduces further the number of words to 278.

13.4
 Text
Analysis

Now that the text has been sufficiently cleaned, some analyses can be run to
compare the samples in the way they have been described by the respondents.
To do so, let’s start with simple analyses.

Text
 Analysis
 293

13.4.1
 Raw
Frequencies
and
Visualization

In the previous sections, we have already shown how to count the number of
occurrences of each word. We can reproduce this and show the top 10 most
used words to describe our ciders:

cider
 %>%

group
by(lemma)
 %>%

count()
 %>%

arrange(desc(n))
 %>%

filter(n>=10,
 !is.na(lemma))
 %>%

ggplot(aes(x=reorder(lemma,
 n),
 y=n))+

geom
col()+

theme
minimal()+

xlab("")+

ylab("")+

theme(axis.line
 =
 element
line(colour="grey80"))+

coord
flip()+

ggtitle("List
 of
 words
 mentioned
 at
 least
 10
 times")

List of words mentioned at least 10 times

apple

sweet
fruity
sour
very
tart
dry

smell
slight
taste
crisp

not
flavor

light
floral

aroma
bubble
acidic

slightly
bitter

musty
strong

pear
green
wine

grape
plain

alcohol
aftertaste

red
white
little

0 30 60 90

As seen previously, the most mentioned words are apple, sweet, fruity,
and sour.
Let’s now assess the number of time each word has been used to characterize

each product.

294
 Data
Science
 for
Sensory
and
Consumer
Scientists

cider
 %>%

filter(!is.na(lemma),
 !is.na(sample))
 %>%

group
by(sample,
 lemma)
 %>%

count()
 %>%

ungroup()
 %>%

pivot
wider(names
from=lemma,
 values
from=n,
 values
fill=0)

##
 #
 A
 tibble:
 6
 x
 276

##
 sample
 acidic
 aftertaste
 alcohol
 appeal
 apple
 aroma

##
 <chr>
 <int>
 <int>
 <int>
 <int>
 <int>
 <int>

1 182
 6
 2
 3
 1 18 4

2 239
 5
 2
 2
 2 19 5

3 365
 3
 3
 0
 0 25 3

4 401
 4
 2
 2
 0 9 5

##
 #
 ...
 with
 2
 more
 rows,
 and
 269
 more
 variables:

##
 #
 artificial
 <int>,
 astringent
 <int>,
 bad
 <int>,

##
 #
 banana
 <int>,
 barn
 <int>,
 begin
 <int>,

##
 #
 bitter
 <int>,
 blackberry
 <int>,
 bland
 <int>,

##
 #
 bold
 <int>,
 bubble
 <int>,
 candy
 <int>,

##
 #
 cider
 <int>,
 clean
 <int>,
 crisp
 <int>,

##
 #
 decent
 <int>,
 different
 <int>,
 dog
 <int>,
 ...

A first look at the contingency table shows that apple
 has been used 25
times to characterize sample 365
 while it has only been used 9 times to
characterize sample 401.
Since the list of terms is quite large, we can visualize these frequencies in

different ways: First, we could readapt the histogram produced previously
overall but per product. This could give a good overview of which words
characterize each sample (results not shown here):

prod
term
 <- cider
 %>%

filter(!is.na(lemma),
 !is.na(sample))
 %>%

group
by(sample,
 lemma)
 %>%

count()
 %>%

ungroup()
 %>%

split(.$sample)
 %>%

map(function(data){

data
 %>%

arrange(desc(n))
 %>%

filter(n>=5)
 %>%

ggplot(aes(x=reorder(lemma,
 n),
 y=n))+

geom
col()+

theme
minimal()+

xlab("")+

ylab("")+

theme(axis.line
 =
 element
line(colour="grey80"))+

CA factor map
2

strong slightly

aroma

bitter

1

239 pear

401

sour dry

acidic
 tart

verybubble0 flavor 731 greenslight 365519 redlight mustysweet
182 wine

taste alcohol
not

-1 white

floral

D
im

 2
 (2

7.
35

%
)

-1 0 1 2
Dim 1 (33.78%)

Text
 Analysis
 295

coord
flip()+

ggtitle(paste0("List
 of
 words
 mentioned
 at
 least
 5
 times
 for
 ",

data
 %>%
 pull(sample)
 %>%
 unique()))

})

Another approach consists of visualizing the association between the sam
ples and the words using Correspondence Analysis (CA). Since the CA can be
sensitive to low frequencies (see Chapter 2 in Husson et al., 2017), we suggest
to only keep terms that were at least mentioned five times across all samples,
resulting in a shorter frequency table. We then use the CA()
 function from
{FactoMineR} to build the CA map:

cider
ct
 <- cider
 %>%

filter(!is.na(lemma),
 !is.na(sample))
 %>%

group
by(sample,
 lemma)
 %>%

count()
 %>%

ungroup()
 %>%

filter(n
 >=
 5)
 %>%

pivot
wider(names
from=lemma,
 values
from=n,
 values
fill=0)
 %>%

as.data.frame()
 %>%

column
to
rownames(var="sample")

library(FactoMineR)

cider
CA
 <- CA(cider
ct)

sweet
soursmellfruity fruity sourfruity floral smellmusty fruitysmelldry crisp very not

very flavor dryslight dry redbubblecrisp dry light bubblebittertart
crisparomaflavor crisp strong mustyaroma taste tart

lightsmell greenacidic smellacidic sour very alcohol
pear apple apple appleslightlywhite

notnot fruity tart bitter very apple wineapple apple dry flavor taste crispflavortart
veryslight tart slight slight

sour fruity
light very sour pear

sour smell sweetsweetsweet sweettaste sweet

182 239 365 401 519 731

296
 Data
Science
 for
Sensory
and
Consumer
Scientists

As can be seen, sample 731
is more strongly associated with alcoholic terms
such as alcohol
or wine, and colors (red, green). Samples 239
and 401
are
more associated to sour
and bitter
(and pear
for 239), whereas samples 519

and 182
are more frequently described by terms such as fruity
and sweet

(floral
 is also used to characterize 182).
An alternative for visualizing these frequencies is through wordclouds,

which can easily be done using the {ggwordcloud} package. This package
has the advantage to build such representation in a {ggplot2} format. Such
wordclouds (here one per product) can be obtained using the following code:

cider
wc
 <- cider
 %>%

filter(!is.na(lemma),
 !is.na(sample))
 %>%

group
by(sample,
 lemma)
 %>%

count()
 %>%

ungroup()
 %>%

filter(n
 >=
 5)

library(ggwordcloud)

ggplot(cider
wc,
 aes(x=sample,
 colour=sample,
 label=lemma,
 size=n))+

geom
text
wordcloud(eccentricity
 =
 2.5)+

xlab("")+

theme
minimal()

Text
 Analysis
 297

In these wordclouds, we notice that apple
 and sweet
 appear in larger
fonts for (almost) all the samples, which can make the comparison quite
difficult between samples. Fortunately, the geom
text
wordcloud()
function
provides an interesting parameter in its aesthetics called angle
group
which
allows controlling the position of the words. To illustrate this, let’s apply the
following rule: for a given sample, if the proportion of association of a word
is larger than 1/6 (as we have six samples), the word will be printed in the
upper part of its wordcloud, and in the lower part otherwise. To facilitate
readability, the color code used followed the same rule:

cider
wc
 %>%

group
by(lemma)
 %>%

mutate(prop
 =
 n/sum(n))
 %>%

ungroup()
 %>%

ggplot(aes(colour=
 prop<1/6,
 label=lemma,
 size=n,

angle
group
 =
 prop
 <
 1/6))+

geom
text
wordcloud(eccentricity
 =
 2.5)+

xlab("")+

theme
minimal()+

facet
wrap(~sample)

298
 Data
Science
 for
Sensory
and
Consumer
Scientists

As can be seen, the term apple
 is more frequently (i.e. more than 1/6)
used to characterize samples 182, 239, 365, and 731. The term sweet
 is
more frequently used to characterize samples 182
and 519. Such conclusions
would have been more difficult to reach based on the previous unstructured
wordcloud.

13.4.2
 Bigrams
and
n-grams

In the previous set of analyses, we defined each word as a token. This
procedure disconnects words from each others, discarding the context around
each word. Although this approach is common, it can lead to misinterpretation
since a product that would often be associated to (say) not sweet would in the
end be characterized as not and sweet. A comparison of samples based on the
sole word sweet could suggest that the previous product is often characterized
as sweet whereas it should be the opposite.
To avoid this misinterpretation, two solutions exist:

1. Replace not sweet by not sweet, so that it is considered as one token
rather than two;

2. Look at the groups of words, that is, at words within their surroundings.

The latter option leads us to introduce the notion of bi-grams (groups of
two following words), tri-grams (groups of three following words), or more
generally n-grams (groups of n following words). More precisely, we are
applying the same frequency count as before except that we are no longer
considering one word as a token but as a sequence of 2, 3, or more generally
n words as a token. Such grouping can be obtained by the unnest
tokens()

from {tidytext} in which token=’ngrams’, with n
defining the number of
words to consider.
For simplicity, let’s apply this to the original data, although it could be

applied to the cleaned version (here we consider bi-grams).

cider
2grams
 <- cider
og
 %>%

unnest
tokens(bigrams,
 comments,
 token="ngrams",
 n=2)

cider
2grams
 %>%

count(bigrams)
 %>%

arrange(desc(n))

##
 #
 A
 tibble:
 1,230
 x
 2

##
 bigrams
 n

##
 <chr>
 <int>

##
 1
 sweet
 fruity
 11

Text
 Analysis
 299

2 a little
 9

##
 3
 slight
 apple
 9

##
 4
 smells
 like
 9

##
 #
 ...
 with
 1,226
 more
 rows

In our example, sweet
 fruity
is the strongest two-word association. Other
relevant associations are green
 apple, sweet
 apple, or very
 sweet. Of
course, such bi-grams can also be obtained per product:

cider
2grams
 %>%

group
by(sample)
 %>%

count(bigrams)
 %>%

ungroup()
 %>%

arrange(desc(n))
 %>%

filter(sample
 ==
 "182")

##
 #
 A
 tibble:
 255
 x
 3

##
 sample
 bigrams
 n

##
 <chr>
 <chr>
 <int>

1 182
 hint of
 3

##
 2
 182
 not
 sweet
 3

3 182
 not very
 3

##
 4
 182
 red
 apples
 3

##
 #
 ...
 with
 251
 more
 rows

For sample 182, not
 sweet
 appears three times which can be surpris
ing since it was one of the sample the most associated to sweet
 with 22
occurrences.

13.4.3
 Word
Embedding

The previous section introduces the concept of context, as words are associated
to their direct neighbors. Another approach called word embedding goes one
step further by looking at connections between words within a certain window:
for instance, how often are not and sweet present together within a window of
3, 5, or 7 words? Such an approach is not presented here as it is more relevant
for longer text documents.
In the previous sections, we already introduced the notion of term frequency

(tf), which corresponds to the number of times a word is being used in a
document. When a collection of documents are analyzed and compared, it is
also interesting to look at the inverse document frequency (idf), which consists
of highlighting words that discriminate between documents by reducing the
weight of common words and by increasing the weight of words that are
specific to certain documents only. In practice, both concepts are associated
(by multiplication) to compute a term’s tf-idf, which measures the frequency
of a term adjusted for its rarity in use.

300
 Data
Science
 for
Sensory
and
Consumer
Scientists

13.4.4
 Sentiment
Analysis

Textual analysis as we presented here is purely descriptive. In other words,
the items that we analyzed have no particular valence (i.e. they are neither
negative nor positive). When text data are more spontaneous (e.g. social
media such as tweets or consumers’ responses to open-ended questions), they
can be charged with positive or negative connotations. A good way to measure
the overall valence of a message is through Sentiment Analysis.
To perform Sentiment Analysis, we start by deconstructing the message

into words (tokenization approach considered previously). Then, in a similar
approach to the stop words, we can combine our list of words with a predefined
list that defines which words should be considered as positive or negative (the
rest being neutral). Ultimately, all the scores associated with each message
can be summed, hence providing the overall valence score of a message.
To get examples of sentiment list, the get
sentiments()
function from the

{tidytext} package can be used. This function proposes four potential lists:
"bing", "afinn", "loughran", and "nrc"
 (see Liu, 2015; Mohammad and
Turney, 2013 for example). Of course, such lists can be modified and adapted
to your own needs in case they do not fit perfectly.

13.5
 To
Go
Further.
.
.

Text Mining and Natural Language Processing are topics that have been
(and are still being) studied for a very long time. Recently, it has made a
lot of progress thanks to the advances in technology and has gain even more
interest with the abundance of text through social media, websites, blogs, etc.
It is hence no surprise that a lot of machine learning models use text data
(topic modelling, classification of emails to spam, etc.). Even current handy
additions to simplify our life are based on text analysis (e.g. suggestions in
emails, translation, etc.)
In the case you would want to go further on this topic, we strongly

recommend the following books:

• Text Mining with R

• Supervised Machine Learning for Text Analysis in R

• Textual Data Science with R

• R for Data Science (through the introduction to web-scrapping etc.)

It is out of the scope of this book to develop this topic further, yet
it is difficult to ignore the emergence of Generative AI (e.g. chatGPT)
in the context of textual data. For example, it can be very helpful to
automatically summarize comments from consumers (although it is outside
the R framework).

14

Dashboards

Since preparing the data and analyzing them is only a part of the story,
we tackled in Chapter 6 how to generate a report from your analysis (and
briefly how to analyze your data within your report) while Chapter 11
discussed points to consider to be as impactful in your communication
as possible. For the latter, many formats on how to deliver and present
your results were suggested, including the use of interactivity through
dashboards. Since it is possible to build dashboard in R, we had to
include a section that would introduce you to such solution. So embrace it,
integrate it to your toolbox, and soon it will be your turn to shine during
presentations!

14.1
 Objectives

We have certainly been all through situations in which we spent a lot of time
analyzing data for our study, built our report and our story, and spent time
in perfecting our presentation. But when come the day of the presentation to
your manager and colleagues, we get questions such as: What would happen if
we split the results between users/non users or between gender for instance?
In case you haven’t been prepared for this question and didn’t run the analysis
up-front, you probably answered something like: Let me rerun some analyses
and I’ll update you on that!
Now imagine that you are in a similar situation, except that when such

question arises, you have a tool that can answer live their questions using the
data and the same analysis. Wouldn’t that bring your discussion to another
level? Even better: Imagine you can share this tool with your colleagues for
them to use it and answer their own questions or use it for their own projects,
even if they are not good at coding (nor even slightly familiar with R)?
Simply said, this is one of the roles of dashboards, as it brings interactivity to

results (tables, graphs) by rerunning and updating them when data, options,
and/or parameters are being altered.

DOI: 10.1201/9781003028611-14 301

302
 Data
Science
 for
Sensory
and
Consumer
Scientists

The goal of this section is to build such dashboard using R and the {shiny}
package.

14.2
 Introduction
to
Shiny
through
an
Example

14.2.1
 What
 Is
a
Shiny
Application?

In case you have already been through the visualization Chapter 5, you’ve
already been briefly introduced to some sort of dashboard in R through the
{esquisse} package. In this section, the {shiny} package is used to build
such dashboard.
{shiny} is an R package that allows you to directly create from R interactive

web applications. Its goal is to convert your R code into an application that
can be accessible and used by anyone through their web browser, without
having to be familiar with R.
This procedure is made available as {shiny} uses some carefully curated set

of user interface (UI) functions that generate the HTML, CSS, and JavaScript
code needed for most common tasks. In most cases, further knowledge of
these languages is not required. . . unless you want to push your application
further. Additionally, it introduces a new way of programming called reactive
programming, which tracks automatically dependencies between code: When
a change in an input is detected, any code that is affected by this change will
automatically be updated.

14.2.2
 Starting
 with
 Shiny

To create your very first shiny application, you can click on R studio in the
new page icon and select Shiny Web App. . . Once you filled in the relevant
information (name, author), you can then decide whether you want to create
one unique file (app.R) or multiple files (ui.R
and server.R).
Both solutions are equivalent and work the same: In both cases, a ui()

and a server()
 function are generated. Due to better readability and to
ease its maintenance over time, we recommend to use the single file for short
applications and to use multiple files for larger applications (larger meaning
with more code lines).
For our short application, it seems more convenient to use a single file.

14.2.3
 Illustration

Let’s consider a simple application in which we would import a data set that
contains sensory data, as collected from a trained panel. In this example, the
data set structure follows the one in biscuits sensory profile.xlsx.

Dashboards
 303

For simplification purposes, the code developed for this application requires
that the data set contains one column called Judge (containing the panelist
information), one column called Product (containing the product informa
tion), and all the other columns being quantitative (corresponding to the
sensory attributes).
The goal of the application is then to compute from this raw data set the

sensory profiles of the products and to display them on screen. Furthermore,
we also represent these sensory profiles graphically in a spider plot or in a
circular bar plot. Since the main goal of shiny application is in its interactivity,
the user should have the opportunity to remove/add/reorder the attributes
on the table and plots and to hide/show products to increase visibility.
Once the graphics match our needs, we also propose to download it as a

.png file to integrate it in our report.
From a learning perspective, this application introduces you specifically to:

• Importing an external file to the application;

• Create options that are both independent (type of graph to produce)
and dependent on the file imported (list of attributes and products);

• Run some analyses (compute the means) and display the results as a
table and as a plot;

• Export the graph to your computer as a png file.

The code used in this chapter in Section “User Interface” can be found
in app.R. In the next sections, pieces of code are shown for explanation,
and should/can not be run on their own. Instead, the entire application
should be run.

User
Interface

The user interface (UI) is the part of the application that controls what the
user sees and controls. In our example, the UI is separated into two parts:

• The left panel contains the options that the user can manually change;

• The right (or main) panel contains the outputs.

In the app.R file, this information is stored in the ui()
function, and the two
panels can be found in sidebarPanel()
and in mainPanel(), respectively.
In sidebarPanel(), all the options are set up. These options include

fileInput()
 for importing the data set or radioButtons()
 to control
the type of plot to generate. A large list of options exist including
numericInput(), sliderInput(), textInput(), passwordInput(),
dateInput(), selectInput(), checkboxInput(), etc. Note that this

304
 Data
Science
 for
Sensory
and
Consumer
Scientists

library of options can be extended by adding checkboxGroupInput()
 from
the {shinyjs} package.1

For most of these options, setting them up is quite straightforward, espe
cially when (say) the range of values is already known beforehand (e.g. p-value
ranging from 0 to 1, with default value at 0.05). However, in some cases, the
option of interest cannot be defined on the UI side since they depend on the
data itself (e.g. the product or attribute selection in our example). In such
situations, these options are created on the server side and are retrieved on
the UI side through uiOutput().
On mainPanel(), tabsetPanel()
 and tabPanel()
 control the design of

the output section. In our example, two tabs (one for the table and one for
the graph) are created, although they could have been printed together on
one page.
In our simple example, the mainPanel()
 is only used to export results

computed on the server side. Depending on the type of output generated, the
correct function used to retrieve the results should be used:

• For tables, tableOutput()
 is used to retrieve the table generated with
renderTable();

• For graphics, plotOutput()
 is used to retrieve the plot generated with
renderPlot();

• For elements to download, downloadButton()
 is used to retrieve the
element (here a plot, but could be an Excel or PowerPoint file for
instance) generated with downloadHandler().

Note the pattern in the namings of the complementary functions: The
xxxOutput()
 function (UI side) is used to retrieve the output generated
(server side) by the corresponding renderXxx()
function. This also applies
with uiOutput()
and renderUI().

Server

The server side of the application is where all the computations are being
performed, including the construction of tables, figures, etc.
Since the options defined on the UI side should affect the computations

performed (e.g. our decision on the type of plot to design should affect the
plot generated), we need to communicate these decisions to the server and use
them. On the server side, any information (or option) passed to the server side

To
use
 {shinyjs},
you
need
 to
 load
 the
 library
 and
 add
useShinyjs(),
 at
 the
 start
 of

your
ui()
code.

1

Dashboards
 305

is done through input$name
option. In our previous example regarding the
type of graph to generate, this is shown as input$plottype, as defined by:

radioButtons("plottype",
 "Type
 of
 Plot
 to
 Draw:",

choices=c("Spider
 Plot"="line",
 "Circular
 Barplot"="bar"),

selected="line",
 inline=TRUE)

In this case, if the user selects Spider Plot (resp. Circular Barplot),
input$plottype
will take the value line (resp. bar).
In contrast, any information that is being build on the server side and

that should be passed on the UI part of the application can either be done
via the xxxOutput()/renderXxx()
combination presented before (useful for
showing results), including the renderUI()/uiOutput()
combination (useful
for options that are server-dependent).
Following a similar communication system than the one from UI to server,

the part generated on the server side is stored as output$name
option

(defined as renderUI()) and is captured on the UI side using uiOutput

("name
option").
In our example, the latter combination is used for the two options that

require reading the data set first, namely the selection of attributes and the
selection of products.

#
 server
 side:

output$attribute
 <- renderUI({

req(mydata())

items
 <- mydata()
 %>%

pull(Attribute)
 %>%

as.character()
 %>%

unique()

selectInput("attribute",

"Select
 the
 Attributes
 (in
 order)
 ",

choices=items,
 selected=items,

multiple=TRUE)

})

output$product
 <- renderUI({

req(mydata())

items
 <- mydata()
 %>%

pull(Product)
 %>%

unique()

306
 Data
Science
 for
Sensory
and
Consumer
Scientists

checkboxGroupInput("product",

"Select
 the
 Products
 to
 Display:",

choices=items,
 selected=items)

})

#
 UI
 side:

uiOutput("attribute")

uiOutput("product")

Lastly, we have elements that are only relevant on the server side, namely
the computation themselves. In our example, these are results of a function
called reactive().
Reactivity (and its corresponding reactive()
 function) is a great lazy

feature of {shiny} that was designed so that the computations are only per
formed when necessary, that is, when changes in an input affect computations.
This laziness is of great power since only computations that are strictly needed
are being performed, thereby increasing speed by limiting the computation
power required to its minimum.
Let’s break this down in a simple example:

mydata
 <- reactive({
req(input$datafile)

data
 <- readxl::read
xlsx(input$datafile$datapath,
 sheet=1)
 %>%

pivot
longer(-c(Judge,
 Product),

names
to="Attribute",
 values
to="Score")
 %>%

mutate(Attribute
 =
 fct
inorder(Attribute),

Score
 =
 as.numeric(Score))
 %>%

group
by(Product,
 Attribute)
 %>%

summarize(Score
 =
 mean(Score))
 %>%

ungroup()

return(data)

})

In this section, the file selected by the user is read through the fileInput()

option called datafile
 on the UI side. The path of the file is stored in the
object called datapath, meaning that to access this file, we need to read
input$datafile$datapath.
Once read (here using {readxl}), some small transformations to the data

are performed before saving its final version in an object called mydata. Since
this block of code only depends on input$datafile
(UI side), this part is no
longer used unless datafile
 is being updated or changed.

Dashboards
 307

For the computation of the means, the same procedure applies as well:

mymean
 <- reactive({

req(mydata(),
 input$attribute,
 input$product)

mymean
 <- mydata()
 %>%

mutate(across(c("Product",
 "Attribute"),
 as.character))
 %>%

filter(Attribute
 %in%
 input$attribute)
 %>%

mutate(Product
 =
 factor(Product,
 input$product),

Attribute
 =
 factor(Attribute,
 input$attribute),

Score
 =
 format(round(Score,
 2),
 nsmall=2))
 %>%

pivot
wider(names
from=Product,
 values
from=Score)

return(mymean)

})

For this reactive()
block, mymean
depends on mydata, input$attribute,
and input$product. This means that if datafile
 (read mydata),
input$attribute
 and/or input$product
 change, the computations
rerun and mymean
 is getting updated.
For small and simple examples like ours, this domain of reactivity may be

sufficient, and would be sufficient in many cases. There are, however, some
few points that require a bit more explanations.
First, we advise that you use reactive()
as much as possible: In our exam

ple, we could have created the code to build the graph within renderPlot().
However, this way of coding is not efficient since it would always be updated,
even when it is not necessary. For small examples such as the one proposed
here, this may not make much difference, but for larger applications it would
have a larger impact. This is why we prefer to create the graphs in a
reactive()
 instance, and simply retrieve it for display.
Second, and as you may have seen already, the output of a reactive()

section can be reused in other sections. This means that just like in regular
coding, you can save elements in R object that you can reuse later (e.g. mydata,
mymean, or myplot). However, these elements act like functions, meaning
that if you want to call them, you should do it as mydata()
 for instance.
More generally, let’s imagine that mydata
 is a list with two elements (say
mydata$element1
 and mydata$element2), we would retrieve element1
 as
mydata()$element1.
Third, let’s introduce the function req()
that is used at the start of almost

every block of code on the server side. To do so, let’s take the example of
output$attribute
which starts with req(mydata()). The req()
 functions
aims at requiring the object mentioned (here mydata()) before running: if

308
 Data
Science
 for
Sensory
and
Consumer
Scientists

mydata()
doesn’t exist, then output$attribute
 is set as NULL. This small
line of code comes handy as it avoids returning design errors: How to extract
a list of attributes from data that do not exist yet?
Finally, the application that we are developing here is over-reactive as every

change we do will create update results. To highlight this, just remove some
attributes from the list and you’ll see the mean table or graphic being updated.
In our small example, this is not too problematic since the application runs
fast, but in other instances in which more computation is required, you may
not want to wait that each little change done is being processed. To over
come this, you can replace reactive()
by eventReactive()
combined with
a button (e.g. Run or Apply changes) that only trigger changes once pressed.
This means that changes are only performed on a user action.

14.2.4
 Deploying
 the
Application

To run the application, three options exist (within RStudio):

• Push the Run app button on the task bar of your script (a menu allows
you to run the app in the Viewer window, or as a new window).

• Type directly shiny::runApp(’code’)
 in R.

• Use the shortcut CTRL+SHIFT+ENTER (on windows).

In this case, your computer (and RStudio) will use a virtual local server to
build the application.
Unfortunately, this solution is not sufficient in case you really want to share

it with colleagues. In such case, you need to publish your app by installing it
on a server. Ideally, you have access to a server that can host such application
(check with your IT department). If not, you can always create an account
on https://www.shinyapps.io/admin/ and install it there. Note that there is a
free registration option, which comes with limitations (number of applications
to install). Also, before using their services, make sure that their conditions
(privacy, protection of the data, etc.) suit you and your company policy.

14.3
 To
Go
Further.
.
.

Quickly, {shiny} became popular and many researchers developed additional
packages and tools to further enhance it. Without being exhaustive, here are a
few tools, widgets, and packages that we often use as they provide interesting
additional features. But don’t hesitate to look online for features that answer
your needs!

https://www.shinyapps.io

Dashboards
 309

14.3.1
 Personalizing
and
Tuning
Your
Application

If you start building many applications in {shiny}, you might get tired of
its default layout. Fortunately, the overall appearance of applications can be
modified easily, especially if you have notion in other programming languages
such as CSS and HTML. If not, no worries, there are alternative solutions for
you, including the {bslib} package. To change the layout, simply load the
library and add the following piece of code at the start of your application
(here for using the theme darkly):

fluidPage(

theme
 =
 bslib::bs
theme(bootswatch
 =
 "darkly")

)

{bslib} also allows you creating your own theme that matches your
company style. So do not hesitate to take some time to build it once and
to apply it to all your applications.
Besides changing the overall theme of your applications, there are certain

details that can make your overall application more appealing and easier to
use. In our short example, you may have noticed that each option and each
output is a separate line. This is sufficient here since the number of options
and outputs are very limited. However, as the application grows in size, this
solution is no longer sustainable as you do not want the users to scroll down
a long way to adjust all the options.
Instead, you can combine different options (or outputs) on one line. To

do so, {shiny} works by defining each panel as a table with as many rows
as needed and 12 columns. When not specified, the whole width (i.e. the
12 columns) of the screen is used, but this could be controlled through the
column()
 function.
In our example, we could have positioned the product selection and the

attribute selection on the same line using:

fixedRow(

column(6,
 uiOutput("product")),

column(6,
 uiOutput("attribute"))

)

14.3.2
 Upgrading
Tables

The default table built in {shiny} using the tableOutput()/renderTable()

combination is very handy, yet limited in its layout. Fortunately, many

310
 Data
Science
 for
Sensory
and
Consumer
Scientists

additional packages that create HTML tables have been developed to provide
alternative solution to build more flexible tables.
In particular, we recommend the use of the {DT} and {rhandsontable}

packages as they are very simple to use and yet provides a large variety of
powerful design options. Just to name a few, it allows:

• cells or text formatting (e.g. coloring, rounding, adding currencies, or
other units, etc.);

• merge rows or columns;

• add search/filter fields to columns of the table;

• provide interactivity, that for instance can be connected to graphics;
• include graphics within cells;
• allows manual editing, giving the user the chance to fill in or modify

some cells.

To build such table, you will need to load the corresponding packages. For
{DT} tables, you can generate and retrieve them using the complementary
functions renderDataTable()
and dataTableOutput(), or its concise forms

2renderDT()
 and DTOutput(). For {rhandontable} tables, you can gener
ate and retrieve them using renderRHandsontable()
 and rHandsontable

Output().
For more information and examples, please look at https://rstudio.github.

io/DT/ and https://jrowen.github.io/rhandsontable/.

14.3.3
 Building
Dashboard

The example used here illustrates the power of {shiny}. However, it is limited
to our own data set, meaning that it is study specific. What if we would want
to create a dashboard that is connected to a database, for instance, and that
updates its results as soon as new data are being collected?
This is of course the next step and {shiny} can handle this thanks to the

{shinydashboard} package.
In its principle, {shinydashboard} works in a similar way to {shiny}

itself, except for the structure of the UI. For {shinydashboard}, the UI
contains three sections as shown below (the example below generates an empty
dashboard):

library(shiny)

library(shinydashboard)

2
 The
table
should
be
generated
using
datatable().

https://www.rstudio.github.io
https://www.jrowen.github.io
https://www.rstudio.github.io

Dashboards
 311

ui
 <- dashboardPage(

dashboardHeader(),

dashboardSidebar(),

dashboardBody()

)

server
 <- function(input,
 output)
 { }

shinyApp(ui,
 server)

It is then your task to fill in the dashboard by, for instance, connecting to
your data source (e.g. a simple data set, a database, etc.) and to fill in your
different tabs with the interactivity and outputs of interest.
For more information, including a comprehensive Get started section, please

visit https://rstudio.github.io/shinydashboard/

14.3.4
 Interactive
Graphics

Through its way of working, {shiny} creates some interactivity to graphics
by updating it when changing some options. This is hence done by replacing
a static graph by another static graph.
However, R provides other options that creates interactive graphs directly.

This can be done thanks to the {plotly} library.
{plotly]
 is an alternative library to {ggplot2} that can be used to build

R graphics within the R environment: It is not specific to {shiny} and can
be used outside Shiny applications. To build {plotly} visualizations, you can
build it directly from scratch using the plot
ly()
 function. It is out of the
scope of this book to develop further how {plotly} works, mainly because we
made the decision to explain in details how {ggplot2} works. And fortunately,
{plotly} provides an easy solution to convert automatically {ggplot2} graph
to {plotly} thanks to the ggplotly()
 function.
For more information, please visit https://plotly.com/r/

14.3.5
 Interactive
Documents

Ultimately, {shiny} can also be combined to other tools such as {rmarkdown}
to build interactive tutorials, teaching material, etc. This is done by integrat
ing the interactivity of {shiny} to propose options and reactive outputs into
a text editor through {rmarkdown}.
To integrate {shiny} in your {rmarkdown}, simply add runtime:
 shiny

in the YAML metadata of your R markdown document.

https://www.rstudio.github.io
https://www.plotly.com

312
 Data
Science
 for
Sensory
and
Consumer
Scientists

14.3.6
 Documentation
and
Books

Thanks to its way of working and its numerous extensions, there is (almost)
no limit to applications you can build (except maybe your imagination?).
For inspiration, and to get a better idea of the powerful applications that
you can build, have a look at the gallery on the official shiny webpage:
https://shiny.rstudio.com/gallery/
In this section, we just introduced you to the main functions available

in {shiny}, but if you want to go further, there is a whole world for you
to explore. Of course, a lot of material is available online, and we would
not know where to start to guide you. However, we strongly recommend
you to start with the book from Hadley Wickham entitled Mastering Shiny
(https://mastering-shiny.org/) as it is comprehensive and will give you the
kick start that you need. . . and more.

https://www.shiny.rstudio.com
https://www.mastering-shiny.org

15

Conclusion
and
Next
Steps

Congratulations, you’ve reached the end of this book!
We hope we have motivated you to continue your amazing journey into

the emerging field of computational sensory science. To give you a little
hand, we are listing here some other resources we would recommend and
a summary of the main useful packages for sensory and consumer data
analysis/visualization, including the ones we used throughout this book.

15.1
 Other
Recommended
Resources

• R for Data Science (2nd edition) by Hadley Wickham, Mine Çetinkaya-
Rundel, and Garrett Grolemund https://r4ds.hadley.nz/

• Analyzing Sensory Data with R by Sebastien Le and Thierry Worch

• Rapid Sensory Profiling Techniques (2nd Edition) by Julien Delarue and
J. Ben Lawlor

• Practical Guide to Cluster Analysis in R by Alboukadel Kassambara

• Practical Guide to Principal Component Methods in R by Alboukadel
Kassambara

• Multiple Factor Analysis by Example Using R by Jerome Pages

• Using the flextable R package by David Gohel (https://ardata-fr.github.
io/flextable-book/index.html)

• Tidy Modelling with R by Max Kuhn and Julia Silge (https://www.
tmwr.org/)

• Hands-On Machine Learning with R by Brad Boehmke and Brandon
Greenwell (https://bradleyboehmke.github.io/HOML/)

• Introduction to Statistical and Machine Learning Methods for Data
Science by Carlos Andre Reis Pinheiro and Mike Patetta

• Supervised Machine Learning for Text Analysis in R by Emil Hvitfeldt
and Julia Sigle

DOI: 10.1201/9781003028611-15 313

https://www.r4ds.hadley.nz
https://www.ardata-fr.github.io
https://www.tmwr.org
https://www.bradleyboehmke.github.io
https://www.ardata-fr.github.io
https://www.tmwr.org

314
 Data
Science
 for
Sensory
and
Consumer
Scientists

• R Graphics Cookbook: Practical Recipes for Visualizing Data by Winston
Chang

• Text Mining with R: A Tidy Approach by David Robinson and Julia
Silge

• Textual Data Science with R by Mnica Bcue-Bertaut

• Design and Analysis of Experiments with R by John Lawson

• Mastering Shiny by Hadley Wickham (https://mastering-shiny.org/)

Some interesting books related to storytelling, graphical design, and data
visualization:

• Storytelling with Data by Cole Nussbaumer Knaflic

• Beyond Bullet Points by Cliff Atkinson
• Once Upon an Innovation by Jean Storlie and Mimi Sherlock

• Show me the Number: Designing Table and Graphs to Enlighten by
Stephen Few

More generally, the emergence of Generative AI cannot and should not
be ignored, as it can be a great digital assistant in many situations. In the
particular context of this book, it can be of great support for coding, as it can
generate some for you (e.g. you can find videos online on how to build Shiny
Applications using ChatGPT). It can also be used to help you find and fix
errors in your script. However, be aware that the AI-generated code might be
far from perfect, and your expertise and understanding of coding language is
extremely valuable to ensure that what is done is correct. Be also aware of
any other of its limitations including privacy before using it.

15.2
 Useful
R
Packages

• ClustBlock: hierarchical and partitioning algorithms of blocks of vari
ables. Includes functions for clustering subjects and multivariate analysis
of multiblock sensory data, such as Check-All-that-Apply (CLUSCATA)
or Free Sorting (CLUSTATIS).

• ClustVarLV: functions for the clustering of variables around Latent
Variables, for two-way or three-way data.

• corrplot: provides a visual exploratory tool on correlation matrix that
supports automatic variable reordering to help detect hidden patterns
among variables.

https://www.mastering-shiny.org

315
Conclusion
and
Next
Steps

• DistatisR: implements three-way multidimensional scaling. DiSTATIS
is used to analyze multiple distance matrices collected on the same set
of observation (e.g. by free sorting).

• FactoExtra: makes easy to extract and visualize the output
of exploratory multivariate data analyses, including Principal
Component Analysis (PCA), Correspondence Analysis (CA), Multiple
Correspondence Analysis (MCA), Multiple Factor Analysis (MFA),
Hierarchical Clustering (HCKUST), and partioning Clustering (e.g.
k-means, PAM,CLARA, etc.)

• FactoMineR: dedicated to multivariate Exploratory Data Analysis
including Principal Components Analysis (PCA), Correspondence
analysis (CA), Multiple Correspondence Analysis (MCA), and
clustering.

• rstatix: a pipe-friendly framework, coherent with the “tidyverse”
design philosophy, for performing basic statistical tests.

• sensmixed: to analyze sensory and consumer data within mixed effects
model framework.

• SensoMineR: dedicated to the statistical analysis of sensory data. It tack
les the characterization of the products, panel performance assessment,
links between sensory and instrumental data, consumer’s preferences,
napping evaluation, and optimal designs.

• SensR: for Thurstonian Models for sensory discrimination methods,
including duotrio, tetrad, triangle, 2-AFC, 3-AFC, A-not A, same-
different, 2-AC, and degree-of-difference. This package enables the cal
culation of d-primes, standard errors of d-primes, sample size and power
computations, and comparisons of different d-primes.

• stats: contains functions for statistical calculations and random number
generation. The analysis include ANOVA, posthoc tests, Clustering,
Correlation, multivariate analysis, among many others.

• tempR: for analysis and visualization of data from temporal sensory
methods, including temporal check-all-that-apply (TCATA) and tem
poral dominance of sensation.

https://taylorandfrancis.com

Bibliography

Ares, G. and Varela, P. (2017). Trained vs. consumer panels for analytical
testing: Fueling a long lasting debate in the field. Food Quality and
Preference, 61:79–86.

Atkinson, C. (2018). Beyond bullet points: Using PowerPoint to Tell a
Compelling Story That Gets Results. Pearson Education, Inc., 4th edition.

Baardseth, P., Bjerke, F., Aaby, K., and Mielnik, M. (2005). A screening
experiment to identify factors causing rancidity during meat loaf
production. European Food Research and Technology, 221(5):653–661.

Bécue-Bertaut, M. (2019). Textual Data Science with R. Boca Raton, FL,
Chapman & Hall/CRC Press.

´ Bécue-Bertaut, M., Alvarez-Esteban, R., and Pagès, J. (2008). Rating of
products through scores and free-text assertions: Comparing and combining
both. Food Quality and Preference, 19(1):122–134.

Ben Slama, M., Heyd, B., Danzart, M., and Ducauze, C. (1998). Plans d
optimaux: une stratégie de réduction du nombre de produits en cartographie
des préférences. Sciences des aliments, 18(5):471–483.

Bleibaum, R. N., editor (2020). Descriptive Analysis Testing for Sensory
Evaluation. ASTM International, 2nd edition.

Blundell, J., De Graaf, C., Hulshof, T., Jebb, S., Livingstone, B., Lluch, A.,
Mela, D., Salah, S., Schuring, E., Van Der Knaap, H., and Westerterp, M.
(2010). Appetite control: Methodological aspects of the evaluation of foods.
Obesity Reviews, 11(3):251–270.

Brockhoff, P.B. (2011). Sensometrics. In: Lovric, M. (ed.) International
Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. pp. 1302–
1305, https://doi.org/10.1007/978-3-642-04898-2 69

Bryan, J. (2018). Excuse me, do you have a moment to talk about version
control? The American Statistician, 72(1):20–27.

Cadoret, M., Lê, S., and Pagès, J. (2009). A factorial approach for sorting
task data (FAST). Food Quality and Preference, 20(6):410–417.

Cao, L. (2017). Data science: A comprehensive overview. ACM Computing
Surveys, 50(3):1–42.

317

https://www.doi.org/10.1007/978-3-642-04898-2_69

318
 Bibliography

Cariou, V. and Wilderjans, T. F. (2018). Consumer segmentation in multi-
attribute product evaluation by means of non-negatively constrained clv3w.
Food Quality and Preference, 67:18–26.

Civille, G. V. and Carr, B. T. (2015). Sensory evaluation techniques. CRC
Press.

Cleveland, W. S. (2001). Data science: An action plan for expanding the
technical areas of the field of statistics. International Statistical Review,
69(1):21–26.

Dairou, V., Priez, A., Sieffermann, J. M., and Danzart, M. (2003). An original
method to predict brake feel: A combination of design of experiments and
sensory science. SAE Transactions, 112(0598):735–741.

Danzart, M. (1998). Quadratic model in preference mapping. 4th Sensometrics
meeting, Copenhagen, Denmark.

Danzart, M., Sieffermann, J. M., and Delarue, J. (2004). New developments in
preference mapping techniques: Finding out a consumer optimal product, its
sensory profile and the key sensory attributes. 7th Sensometrics Conference,
Davis, CA.

Davenport, T. H. and Patil, D. J. (2012). Data scientist. Harvard Business
Review, 90(5):70–76.

Dean, A., Voss, D., and Draguljic, D. (2017). Design and Analysis of
Experiments. Springer, 2nd edition.

Delarue, J. and Lawlor, J. B. (2022). Rapid Sensory Profiling Techniques.
Applications in New Product Development and Consumer Research.
Woodhead Publishing Ltd, Cambridge, UK, 2nd edition.

Delarue, J. and Sieffermann, J.-M. (2004). Sensory mapping using Flash
profile. Comparison with a conventional descriptive method for the
evaluation of the flavour of fruit dairy products. Food Quality and
Preference, 15(4):383–392.

Ennis, D. M. (2016). Thurstonian Models: Categorical Decision Making in
the Presence of Noise. Institute for Perception. Richmond, VA ISBN:
9780990644606

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining
to knowledge discovery in databases. AI Magazine, 17(3):37.

Feldmeyer, A. and Johnson, A. (2022). Using Twitter to model consumer
perception and product development opportunities: A use case with
Turmeric. Food Quality and Preference, 98:104499.

Bibliography
 319

Few, S. (2012). Show Me the Numbers: Designing Tables and Graphs to
Enlighten. Analytics Press.

Fisher, R. A. (1935). The Design of Experiments. Hafner Press, Macmillan
Publishing, New York.

Franczak, B. C., Browne, R. P., McNicholas, P. D., and Findlay, C. J. (2015).
Product selection for liking studies: The sensory informed design. Food
Quality and Preference, 44:36–43.

Gacula, M. C. (2008). Design and Analysis of Sensory Optimization. Harvard
Educational Review. Wiley, Trumbull, CT.

Galiñanes Plaza, A., Delarue, J., and Saulais, L. (2019). The pursuit of
ecological validity through contextual methodologies. Food Quality and
Preference, 73:226–247.

Hamilton, L. M. and Lahne, J. (2020). Fast and automated sensory analysis:
Using natural language processing for descriptive lexicon development. Food
Quality and Preference, 83:103926.

Husson, F., Le, S., and Pagès, J. (2017). Exploratory Multivariate Analysis by
Example Using R. Chapman and Hall/CRC.

Hvitfeldt, E. and Silge, J. (2021). Supervised Machine Learning for Text
Analysis in R. Chapman and Hall/CRC, New York.

ISO11035 (1995). Sensory analysis-identification and selection of descriptors
for establishing a sensory profile by a multidimensional approach. Standard.

ISO8586 (2012). Sensory analysis–general guidelines for the selection, training
and monitoring of selected assessors and expert sensory assessors. Standard.

Jaeger, S. R., Hunter, D. C., Kam, K., Beresford, M. K., Jin, D., Paisley,
A. G., Chheang, S. L., Roigard, C. M., and Ares, G. (2015). The concurrent
use of jar and cata questions in hedonic scaling is unlikely to cause hedonic
bias, but may increase product discrimination. Food Quality and Preference,
44:70–74.

Kahneman, D. and Tversky, A. (2000). Choices, Values and Frames.
Cambridge University Press and the Russell Sage Foundation, Cambridge.

Kassambara, A. (2017a). Practical Guide to Cluster Analysis in R:
Unsupervised Machine Learning. CreateSpace Independent Publishing
Platform, 1st edition.

Kassambara, A. (2017b). Practical Guide to Principal Component Methods in
R: PCA, M(CA), FAMD, MFA, HCPC, factoextra. Multivariate Analysis.
Sthda.com.

http://www.Sthda.com

320
 Bibliography

Knaflic, C. N. (2015). Storytelling with Data. John Wiley & Sons, Hoboken,
NJ.

Köster, E. (2003). The psychology of food choice: Some often encountered
fallacies. Food Quality and Preference, 14:359–373.

Köster, E., Couronne, T., Léon, F., Lévy, C., and Marcelino, A. S. (2003).
Repeatability in hedonic sensory measurement: A conceptual exploration.
Food Quality and Preference, 14:165–176.

Lawless, H. T. and Heymann, H. (2010). Sensory Evaluation of Food:
Principles and Practices. Food Science Text Series. Springer New York,
2nd edition.

Lawson, J. (2014). Design and Analysis of Experiments with R. Chapman and
Hall/CRC, 1st edition.

Lawson, J. and Willden, C. (2016). Mixture experiments in R using mixexp.
Journal of Statistical Software, 72(2):1–20.

Lê, S. and Worch, T. (2018). Analyzing Sensory Data with R. Chapman and
Hall/CRC.

Lee, H.-S. and O’Mahony, M. (2004). Sensory difference testing: Thurstonian
models. Food Science and Biotechnology, 13(6):841–847.

Liu, B. (2015). Sentiment Analysis. Cambridge University Press.

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., and Qannari, E. M.
(2020). Analysis and clustering of multiblock datasets by means of the
statis and clustatis methods. Application to sensometrics. Food Quality and
Preference, 79:103520.

Llobell, F., Vigneau, E., and Qannari, E. M. (2019). Clustering datasets by
means of clustatis with identification of atypical datasets. Application to
sensometrics. Food Quality and Preference, 75:97–104.

Luc, A., L, S., Philippe, M., Qannari, E. M., and Vigneau, E. (2022a). Free
jar experiment: Data analysis and comparison with jar task. Food Quality
and Preference, 98:104453.

Luc, A., Lê, S., and Philippe, M. (2020). Nudging consumers for relevant data
using Free JAR profiling: An application to product development. Food
Quality and Preference, 79:103751.

Luc, A., Lê, S., Philippe, M., Mostafa Qannari, E., and Vigneau, E. (2022b).
A machine learning approach for analyzing Free JAR data. Food Quality
and Preference, 99:104581.

Bibliography
 321

MacFie, H. (2007). Preference mapping and food product development. In
MacFie, H., editor, Consumer-led Food Product Development, Woodhead
Publishing Series in Food Science, Technology and Nutrition, pp. 551–592.
Woodhead Publishing Ltd, Cambridge.

Macfie, H. J., Bratchell, N., Greenhoff, K., and Vallis, L. V. (1989). Designs to
balance the effect of order of presentation and first-order carry-over effects
in hall tests. Journal of Sensory Studies, 4(2):129–148.

Mahieu, B., Visalli, M., and Schlich, P. (2022). Identifying drivers of liking
and characterizing the ideal product thanks to Free-Comment. Food Quality
and Preference, 96:104389.

Mahieu, B., Visalli, M., Thomas, A., and Schlich, P. (2020). Free-Comment
outperformed check-all-that-apply in the sensory characterisation of wines
with consumers at home. Food Quality and Preference, 84:103937.

Mao, M. and Danzart, M. (2007). How to select the best subset of
factors maximizing the quality of multi-response optimization. Quality
Engineering, 20(1):63–74.

Meiselman, H., editor (2019). Contet. The Effects of Environment on Product
Design and Evaluation. Woodhead Publishing.

Meullenet, J.-F., Xiong, R., and Findlay, C. J. (2008). Multivariate and
Probabilistic Analyses of Sensory Science Problems. John Wiley & Sons.

Modi, V. K. and Prakash, M. (2008). Quick and reliable screening of
compatible ingredients for the formulation of extended meat cubes using
PlackettBurman design. LWT – Food Science and Technology, 41(5):878–
882.

Mohammad, S. M. and Turney, P. D. (2013). Crowdsourcing a word-emotion
association lexicon. Computational Intelligence, 29(3):436–465.

Murrell, P. (2011). R Graphics. CRC Press, 2nd edition.

Naes, T. and Nyvold, T. E. (2004). Creative design–An efficient tool for
product development. Food Quality and Preference, 15(2):97–104.

Naur, P. (1974). Concise Survey of Computer Methods. Petrocelli Books.

O’Mahony, M. (1986). Sensory Evaluation of Food: Statistical Methods and
Procedures. Routledge.

O’Mahony, M. and Rousseau, B. (2003). Discrimination testing: A few ideas,
old and new. Food Quality and Preference, 14(2):157–164.

�

322
 Bibliography

Peng, R. D. (2011). Reproducible research in computational science. Science,
334(6060):1226–1227.

Perrin, L., Symoneaux, R., Mâıtre, I., Asselin, C., Jourjon, F., and Pagès, J.
(2008). Comparison of three sensory methods for use with the Napping R

procedure: Case of ten wines from Loire valley. Food Quality and Preference,
19(1):1–11.

Peryam, D. R. and Pilgrim, F. J. (1957). Hedonic scale method of measuring
food preferences. Food Technology, 11:9–14.

Petiot, J. F. (2022). A Genetic Approach for the Interactive Design of Sounds:
Application to Electric Vehicles. In: Nonfood Sensory Practices, edited
by Anne-Marie Pensé-Lhéritier, Irène Bacle, and Julien Delarue, 251–271.
Woodhead Publishing Series in Food Science, Technology and Nutrition.
Woodhead Publishing, 2022. https://doi.org/10.1016/B978-0-12-821939-3.
00017-8.

Phetxumphou, K., Cox, A. N., and Lahne, J. (2020). Development and
characterization of a check-all-that-apply (CATA) Lexicon for Virginia hard
(alcoholic) ciders. Journal of the American Society of Brewing Chemists,
78(4):299–307.

Pineau, N., Girardi, A., Lacoste Gregorutti, C., Fillion, L., and Labbe,
D. (2022). Comparison of rata, cata, sorting and napping as rapid
alternatives to sensory profiling in a food industry environment. Food
Research International, 158:111467.

Pineau, N., Moser, M., Rawyler, F., Lepage, M., Antille, N., and Rytz, A.
(2019). Design of experiment with sensory data: A pragmatic data analysis
approach. Journal of Sensory Studies, 34(2):e12489.

Piqueras-fiszman, B. (2015). Open-ended questions in sensory testing practice.
In Rapid Sensory Profiling Techniques and Related Methods: Applications
in New Product Development and Consumer Research, pp. 247–267.
Woodhead Publishing Ltd.

Popper, R., Rosenstock, W., Schraidt, M., and Kroll, B. (2004). The effect of
attribute questions on overall liking ratings. Food Quality and Preference,
15(7):853–858. Fifth Rose Marie Pangborn Sensory Science Symposium.

Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Prescott, J., Lee, S. M., and Kim, K.-O. (2011). Analytic approaches
to evaluation modify hedonic responses. Food Quality and Preference,
22(4):391–393.

https://www.doi.org/10.1016/B978-0-12-821939-3.00017-8
https://www.doi.org/10.1016/B978-0-12-821939-3.00017-8

Bibliography
 323

Qannari, E. M. (2017). Sensometrics approaches in sensory and consumer
research. Current Opinion in Food Science, 15:8–13.

R Core Team (2022). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rasch, D., Pilz, J., Verdooren, R., and Gebhardt, A. (2011). Optimal
Experimental Design with R. CRC Press, Taylor & Francis.

Rivière, P., Monrozier, R., Rogeaux, M., Pagès, J., and Saporta, G. (2006).
Adaptive preference target: Contribution of kanos model of satisfaction for
an optimized preference analysis using a sequential consumer test. Food
Quality and Preference, 17(7):572–581.

Rothman, L. and Parker, M. (2009). Just-About-Right (JAR) Scales. West
Conshohocken, PA: ASTM International.

Rytz, A., Moser, M., Lepage, M., Mokdad, C., Perrot, M., Antille, N.,
and Pineau, N. (2017). Using fractional factorial designs with mixture
constraints to improve nutritional value and sensory properties of processed
food. Food Quality and Preference, 58:71–75.

Schlich, P. (1993). Contribution à la sensométrie. PhD thesis, Université
Paris-Sud.

Schlich, P. and McEwan, J. (1992). Cartographie des préférences-un outil
statistique pour l’industrie agro-alimentaire. Sciences des aliments, 12:339–
355.

Silge, J. and Robinson, D. (2017). Text Mining with R: A Tidy Approach.
O’Reilly Media, Inc.

Stone, H., Bleibaum, R. N., and Thomas, H. A., editors (2020). Sensory
Evaluation Practices. Academic Press, 5th edition.

Storlie, J. and Sherlock, M. (2020). Once Upon an Innovation: Business
Storytelling Techniques for Creative Problem Solving. Beaver’s Pond Press.

Stubbs, R. J., Hughes, D. A., Johnstone, A. M., Rowley, E., Reid, C., Elia,
M., Stratton, R., Delargy, H., King, N., and Blundell, J. (2000). The use
of visual analogue scales to assess motivation to eat in human subjects:
A review of their reliability and validity with an evaluation of new hand
held computerized systems for temporal tracking of appetite ratings. British
Journal of Nutrition, 84(4):405–415.

Stunkard, A. J. and Messick, S. (1985). The three-factor eating questionnaire
to measure dietary restraint, disinhibition and hunger. Journal of
Psychosomatic Research, 29(1):71–83.

324
 Bibliography

ten Kleij, F. and Musters, P. A. (2003). Text analysis of open-ended survey
responses: A complementary method to preference mapping. Food Quality
and Preference, 14(1):43–52.

Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical
Statistics, 33(1):1–67.

Tukey, J. W. (1977). Exploratory data analysis, volume 2. Reading, MA.

Varela, P. and Ares, G. (2012). Sensory profiling, the blurred line between
sensory and consumer science. A review of novel methods for product
characterization. Food Research International, 48(2):893–908.

Vidal, L., Ares, G., Mach́ın, L., and Jaeger, S. R. (2015). Using Twitter data
for food-related consumer research: A case study on what people say when
tweeting about different eating situations. Food Quality and Preference,
45:58–69.

Vigneau, E., Qannari, E., Navez, B., and Cottet, V. (2016). Segmentation of
consumers in preference studies while setting aside atypical or irrelevant
consumers. Food Quality and Preference, 47:54–63.

Visalli, M., Mahieu, B., Thomas, A., and Schlich, P. (2020). Automated
sentiment analysis of Free-Comment: An indirect liking measurement? Food
Quality and Preference, 82:103888.

Wakeling, I. N. and MacFie, H. J. (1995). Designing consumer trials balanced
for first and higher orders of carry-over effect when only a subset of k
samples from t may be tested. Food Quality and Preference, 6(4):299–308.

Wichchukit, S. and O’Mahony, M. (2015). The 9-point hedonic scale and
hedonic ranking in food science: Some reappraisals and alternatives. Journal
of the Science of Food and Agriculture, 95(11):2167–2178.

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(1):1–23.

Wickham, H. and Grolemund, G. (2016). R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data. O’Reilly Media, Inc.

Wilderjans, T. F. and Cariou, V. (2016). Clv3w: A clustering around latent
variables approach to detect panel disagreement in three-way conventional
sensory profiling data. Food Quality and Preference, 47:45–53.

Williams, A. and Langron, S. (1984). The use of free-choice profiling for
the evaluation of commercial ports. Journal of the Science of Food and
Agriculture, 35(5):558–568.

Worch, T., Lê, S., Punter, P., and Pagès, J. (2013). Ideal profile method (ipm):
The ins and outs. Food Quality and Preference, 28(1):45–59.

Bibliography
 325

Wu, C. F. J. (1997). Statistics = Data Science? Lecture at the University
of Michigan-Ann Arbor. Retrieved from: https://www2.isye.gatech.edu/
∼jeffwu/presentations/datascience.pdf

Yu, P., Low, M. Y., and Zhou, W. (2018). Design of experiments and regression
modelling in food flavour and sensory analysis: A review. Trends in Food
Science & Technology, 71:202–215.

https://www2.isye.gatech.edu
https://www2.isye.gatech.edu

https://taylorandfrancis.com

Index

Pages
 in
italics
 refer
to
figures,
pages
 in
bold
refer
to
tables.

Keywords

A

ANOVA
(Analysis
of
Variance),
24–26,

43,
62,
110,
171,
177,
183–184,

193,
200–201,
203,
217–218,

315

Audience,
240–245,
243,
247,
249–253

Audience
Awareness,
242

General
Interest
Audience,
243–244

Management
Audience,
244

Technical
Audience,
243–244

Automated
Reporting,
113–115

B

Bar
Chart
 (s),
83,
91,
93–96,
97,
100,

101,
107–108,
110,
128–130,

202,
219,
219

Black
boxes,
267

C

Cluster/Clustering,
44,
44,
62,
225–232,

227,
229,
257–258,
260–264,

262,
263,
283,
313–315

Agglomerative
 Hierarchical

Clustering
 (AHC),
 226,

229–230

K-means
Clustering,
230,
261–262,

264,
315

Communication/Communicate,
 40,

73–75,
113,
239–240,
249–252

Confusion
Matrix,
274,
274

Cross-validation,
266,
269,
270,
272

D

Dashboard,
34,
136,
242,
245,
249–251,

301–302,
310–311

Data
Cleaning,
35,
37–38,
171

Data
 Inspection,
37,
39,
171–172,
175,

188

Data
Manipulation,
43,
44,
65,
171,
172,

188,
199,
270

Data
Science,
1,
19,
33–35,
37–38,
41

Decision
Tree,
258,
267

Data
Types,
5–6,
188

Nominal
Data,
189–190

Demographic
 (s),
141,
194,
207,
209,

210,
215,
256,
258

Design
of
Experiments,
145–151

Balanced
 Incomplete
Block
Designs

(BIBD),
150

Design
Inspection,
185

Designs
of
Sensory
Experiments,
145

Mixture
Design
(s),
155–156,
159

Screening
Design
(s),
159

Sensory
Informed
Design,
151,
160

Design
Principles
(Tables
and
Charts),

73–74

Dimensionality
Reduction,
257–259,
265

E

Exploratory
Analysis,
39,
241,
257

Export
Graphs,
108–110

Export
to
Excel,
115–120

Export
to
PowerPoint,
120–130

Export
to
Word,
130–132

F

Factor
Levels,
63,
192,
195,
197

Feature
Importance,
275–276,
276

F-values,
202,
203

G

ggplot2,
19,
85–86,
89,
97,
102,
107,

110–111,
128–129,
158,
205,

230,
236,
238,
296,
311

327

328
 Index

Git,
30

GitHub,
30–32,
36

H

Handling
Strings,
19,
283

I

Import
(data),
164–169

K

K-nearest
neighbors,
267

L

Label
Overlapping,
89

Linear
Regression,
91,
171,
232,
265

Local
Project,
17

Logistic
Regression,
265–266

M

Machine
Learning,
39,
242,
255–258,

261,
264,
268,
270,
273,
277,

300

Semi-supervised
Learning,
258

Supervised
Learning,
257,
264

Unsupervised
Learning,
257–258

Missing
Values,
58,
62,
68–69,
71,
94,

164,
172,
174,
175–185,
176,

177,
178

Model
Formula,
271

Model
Evaluation,
273

Model
Hyper-parameter
Tuning,
272

Model
Quality,
273,
269

Model
Training,
272

Multivariate
Adaptive
Regression
Spline

(MARS),
266

O

Overlapping
Axis,
107

P

Partial
Least
Squares
(PLS),
266

Principal
Component
Analysis
(PCA),

23,
152,
153,
154,
184,
204–205,

206,
 222,
 224,
 225,
 229,

235–237,
245,
246,
248,
249,

257–261,
260,
263,
266,
315

Penalized
Regression,
266

Pipes,
19–21,
29,
85,
107

Posit,
11–12

Power
Calculation,
146

Predictive
Analysis,
241–242

Preference
Mapping,
44,
44,
62,
152,

222,
224,
225,
229,
235,
236,

238,
258,
261

Preference
Pattern,
44,
228

R

R
Language,
9–18

RMarkdown,
133–136,
311

R
Packages,
12–15,
314

R
Scripts,
10,
16–18,
114,
133,
251

Random
Forests,
267

Recipes,
270

Reformulate,
40,
254

Regression
Line,
91,
92,
97,
221–222,

233

Regular
Expressions,
61,
211

Reproducible
Research,
10,
35,
38,
41,

136

Rstudio,
11–12,
14–15,
17–18,
30–32,

134,
308

S

Sampling,
38,
269–270

Scatter
Plot,
86,
87,
88,
90,
92,
96,
99,

110,
177

Sentiment
Analysis,
300

Server,
302,
304–308

Shiny
Applications,
302,
303,
311,
314

Spider
Plot,
102,
104,
105,
107,
108,

109,
242,
305

Standardized
Reporting,
35–36

Storytelling,
40,
251–252,
314

Strings,
 19–20,
 26,
 52,
 55,
 117,
 190,

195–197,
283–284

T

Table
Making,
76–85

Text
Analysis,
279–283,
292,
300

329
Index

Correspondence
Analysis,
295

Frequencies,
293–296

Natural
Language
Processing,
279,

283,
300

n-grams,
298

Wordclouds,
296–297

Text
Data
Pre-Processing,
282

Lemmatization,
282,
289–291

Stemming,
282–283,
289–291

Stopwords,
282,
287–289

Text
Analysis,
279–283,
292,
300

Tokenization,
282,
284–285,
300

Three
Factor
Eating
Questionnaire

(TFEQ),
 141,
 211,
 213,

215–216,
216

Behavioral
Traits,
141,
207

Tibbles,
21,
23–24,
201,
221

Tidying
Data,
45

Binding
Horizontally,
68

Binding
Vertically,
67

Conditions,
53

Creating
Columns,
50

Filtering
Data,
57

Grouping,
64

Merging
Columns,
52

Rearranging
Rows
 55,
 Selecting

Rows
55

Removing/Selecting
Columns,
48

Renaming
Variables,
45

Reorganizing
Columns,
47

Reshaping
Data,
59

Separating
Columns,
52

Splitting
Data,
58

Summary,
63

Tidymodels,
268

Tidyverse,
19

U

User
Interface,
302–303

V

Version
Control,
10,
30–31

Visual
Analog
Scale
(VAS),
141,
143

Y

YAML,
134,
311

Function

*
 join(),
38,
69–70,
72,
208,
289

A

accuracy(),
274

across(),
50–51,
65

add
slide(),
122,
124–126,
128–129

addWorksheet(),
116,
118–119

agnes(),
226,
230

aov(),
24,
177,
200

arrange(),
55–56,
82,
126,
128–129,
187,

202,
204,
212–213,
216,
222,

235,
286,
293–294,
298–299

as
tibble(),
22–23,
121,
153,
158,
186,

218,
228,
235–237,
257,
260,

290

B

bind
cols(),
68,
273,
275

bind
rows(),
68,
168,
170

block
 list(),
124–125

body
add
break(),
132

body
add
par(),
130–132

body
add
toc(),
132

C

CA()
295

conditionalFormatting(),
118–119

conf
mat(),
274

coord
flip(),
100,
101,
108,
203,
208,

211,
293,
295

coord
polar(),
102,
103,
104

create
report(),
174

createStyle(),
118–119

createWorkbook(),
116

D

dataTableOutput(),
310

decat(),
203

dml(),
128

E

enframe(),
169–170,
201,
213,
219

explain
 tidymodels(),
275–276

330
 Index

filter(),
25,
57–58,
102,
115,
121,
179–

182,
187,
192,
202,
212–213,

215,
220,
222,
232–233,
289,

291–296,
299,
307

fit(),
272–273

flextable(),
76,
126,
153

ftext(),
124–125,
131

F

fpar(),
124–125,
131

fviz
cluster(),
263

fviz
nbclust(),
261–262

fviz
pca
biplot(),
205,
260

fviz
pca
 ind(),
153,
205,
224

fviz
pca
var(),
205,
225

G

geom
bar(),
92,
93,
97,
202,
211,
213,

219

geom
miss
point(),
177,
178

geom
point(),
86–87,
89,
90,
91,
97,
102,

104,
220,
222,
228,
233,
237

geom
smooth(),
91,
92,
97,
220,
222,

233–234

geom
text(),
89,
90,
91,
98,
205,
211,

213,
233,
237,
296,
297

geom
text
repel(),
98,
205,
233,
237

geom
text
wordcloud(),
296

gg
miss
upset(),
176,
177

ggplot(),
 86,
 89,
 91–93,
 100,
 102,

104–105,
107,
128,
177,
202,

205,
211,
213,
216,
219–220,

222,
228,
233,
237,
293–294,

296–297

ggsave(),
108,
110

ggtitle(),
95,
96,
97,
203,
211,
217,
222,

237,
293,
295

glimpse(),
173,
174

grid
 regular(),
272

group
by(),
64,
66,
76,
81,
102,
178,

180–181,
183,
186–187,
201,

208,
212,
216–217,
221,
228,

287,
293–297,
299,
306

gt(),
81–82,
84

H

hclust(),
226,
230

HCPC(),
229–230

HSD.test(),
218

I

ifelse(),
54–55,
58,
79,
153,
183,
202,

215,
224,
228,
233,
292

impute
 lm(),
184

imputePCA(),
184

initial
split(),
269

inner
 join(),
69,
86,
117,
167,
189,
200,

207,
208,
215,
217,
224,
230,

232

install.packages(),
14–15,
134

install
version(),
15

is.na(),
58,
179–183,
292–296

K

kap(),
274–275

kmeans(),
262–263

L

layout
summary(),
121

layout
properties(),
121,
123

lm(),
91,
200,
201,
218,
221,
265,
267

M

map(),
58,
169–170,
176,
200–201,
208,

212–213,
221,
294

melt(),
61

ms
barchart(),
129

mutate(),
24–25,
50–52,
54–55,
58,
61,

65–66,
71–72,
81,
84,
86,
92,

102,
126,
153,
157–158,
183,

186–187,
191–192,
194,
196–

198,
201–202,
208,
212–213,

215–217,
219–222,
224,
228,

232,
237,
275,
283,
285,
287,

290,
292,
297,
306–307

N

nest
by(),
24,
200–201,
232

numericInput(),
303

Index
 331

O

openXL(),
116–117,
122

optFederov(),
148–149,
152–153,
157

P

PCA(),
152,
204–205,
224,
259

ph
with(),
123–126,
128–130

pivot
 longer(),
 24,
 27,
 59–62,
 64,

66–67,
 102,
 117,
 128–129,

180–182,
195,
200–201,
204,

208,
212–213,
215–216,
232,

237,
306

pivot
wider(),
27,
59,
62,
64,
66–67,
117,

180–183,
186–187,
204,
216,

224,
230,
294–295,
307

plot
annotation(),
105

prcomp(),
204

predict(),
273

PrefMap(),
235

princomp(),
204

print(),
16,
22,
122,
124–125,
129–130,

132

plotOutput(),
304

R

rand
 forest(),
271

reactive(),
306–308

read
docx(),
130–131

read
pptx(),
120–121,
126

read
xlsx(),
45,
52,
68,
71–72,
76,
81,

86,
115–116,
120,
165–169,
172,

189,
199–200,
207,
215,
217,

283,
292,
306

recipe(),
270

relocate(),
47–48,
50,
86,
117,
200,
287

rename(),
27–28,
46,
50,
86,
158,
187,

217,
219,
228

renderPlot(),
304,
307

renderTable(),
304,
309

replace
na(),
182

S

scale(),
226

scale
fill
manual(),
100,
101,
203

scale
x
continuous(),
95,
97,
99,
104

scale
x
discrete(),
108,
109

scale
y
continuous(),
97,
102,
104,
222,

229

saveWorkbook(),
120

select(),
13,
24,
26,
48–50,
52,
54–55,

58,
60–62,
65,
67,
76,
81–82,

86,
 116–117,
 126,
 128–129,

158,
167,
180,
182–184,
187,

189,
191–192,
200,
202,
204,

207–208,
211–213,
215–217,

220–221,
224,
228,
230,
232,

275–276,
290,
292

selectInput(),
303,
305

separate(),
27,
53,
61,
81,
224,
228

set
engine(),
265–267,
271

set
mode(),
271

slice(),
56

spacy
parse(),
290

split(),
58,
176,
187,
195,
200–201,
208,

213,
294

stopwords(),
287–288

str(),
189

str
detect(),
213,
215,
284

str
extract(),
195,
284

str
remove(),
284–285

str
replace(),
195,
284,
291–292

str
starts(),
215

summarize(),
25,
63–64,
76,
102,
119,

180,
183,
208,
212,
216,
228,

232,
306

T

tableOutput(),
304

testing(),
269

theme(),
94,
96,
98–99,
104,
107,
108,

213,
293–294

theme
bw(),
94,
97,
128,
203,
211,
213,

217,
219–220,
222,
229,
233,

237

theme
minimal(),
94,
102,
104,
293–294,

296–297

tidy(),
177,
200–202,
232–233

training(),
269

tune
grid(),
272

332

U

unite(),
27,
52–53,
224,
228

ungroup(),
64,
66,
81,
102,
178,
180–181,

183,
186–187,
201,
208,
212,

221,
228,
233,
287,
294–297,

299,
306

unnest(),
169–170,
201,
213,
219,
222

unnest
 tokens(),
285,
287,
298

V

vfold
cv(),
270

vis
miss(),
175–176

Index

W

WilliamsDesign(),
147–148

wordStem(),
290

workflow(),
271

write
xlsx(),
115–116

writeData(),
116–118

writeDataTable(),
116–117,
119

X

xtabs(),
149,
186

Y

ylab(),
203,
211,
217,
237,
293–294

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	About the Authors
	1. Bienvenue!
	1.1 Why Data Science for Sensory and Consumer Science?
	1.1.1 Core Principles in Sensory and Consumer Science
	1.1.2 Computational Sensory Science

	2. Getting Started
	2.1 Introduction to R
	2.1.1 What Is R?
	2.1.2 Why Learn R (or Any Programming Language)?
	2.1.3 Why R?
	2.1.4 Why RStudio/Posit?
	2.1.5 Installing R and RStudio

	2.2 Getting Started with R
	2.2.1 Conventions
	2.2.2 Install and Load Packages
	2.2.3 First Analysis in R
	2.2.4 R Scripts
	2.2.5 Create a Local Project

	2.3 Further Tips on How to Read This Book?
	2.3.1 Introduction to {magrittr} and the Notion of Pipes
	2.3.2 Tibbles
	2.3.3 Calling Variables
	2.3.4 Printing vs. Saving Results
	2.3.5 Running Code and Handling Errors

	2.4 Version Control/Git and GitHub
	2.4.1 Git
	2.4.2 GitHub

	3. Why Data Science?
	3.1 History and Definition
	3.2 Benefits of Data Science
	3.2.1 Reproducible Research
	3.2.2 Standardized Reporting

	3.3 Data Scientific Workflow
	3.3.1 Data Collection
	3.3.2 Data Preparation
	3.3.3 Data Analysis
	3.3.4 Value Delivery

	3.4 How to Learn Data Science
	3.5 Cautions: Don’t Do That Everybody Does

	4. Data Manipulation
	4.1 Why Manipulating Data?
	4.2 Tidying Data
	4.2.1 Simple Manipulations
	4.2.2 Reshaping Data
	4.2.3 Transformation That Alters the Data
	4.2.4 Combining Data from Different Sources

	5. Data Visualization
	5.1 Introduction
	5.2 Design Principles
	5.3 Table Making
	5.3.1 Introduction to {flextable}
	5.3.2 Introdution to {gt}

	5.4 Chart Making
	5.4.1 Philosophy of {ggplot2}
	5.4.2 Getting Started with {ggplot2}
	5.4.3 Common Charts
	5.4.4 Miscealleneous
	5.4.5 Few Additional Tips and Tricks

	6. Automated Reporting
	6.1 What and Why Automated Reporting?
	6.2 Integrating Reports within Analysis Scripts
	6.2.1 Excel
	6.2.2 PowerPoint
	6.2.3 Word
	6.2.4 Notes on Applying Corporate Branding

	6.3 Integrating Analyses Scripts Within Your Reporting Tool
	6.3.1 What Is {rmarkdown}
	6.3.2 Starting with {rmarkdown}
	6.3.3 {rmarkdown} through a Simple Example
	6.3.4 Creating a Document Using {knitr}
	6.3.5 Example of Applications

	6.4 To Go Further. . .

	7. Example Project: The Biscuit Study
	7.1 Objective of the Test
	7.2 Products
	7.3 Sensory Descriptive Analysis
	7.4 Consumer Test
	7.4.1 Participants
	7.4.2 Test Design
	7.4.3 Evaluation

	8. Data Collection
	8.1 Designs of Sensory Experiments
	8.1.1 General Approach
	8.1.2 Crossover Designs
	8.1.3 Balanced Incomplete Block Designs (BIBD)
	8.1.4 Incomplete Designs and Sensory Informed Designs for Hedonic Tests

	8.2 Product-related Designs
	8.2.1 Factorial Designs
	8.2.2 Mixture Designs
	8.2.3 Screening Designs
	8.2.4 Sensory Informed Designs for Product Development

	8.3 Execute
	8.4 Import
	8.4.1 Importing Structured Excel File
	8.4.2 Importing Unstructured Excel File
	8.4.3 Importing Data Stored in Multiple Sheets

	9. Data Preparation
	9.1 Introduction
	9.2 Inspect
	9.2.1 Data Inspection
	9.2.2 Missing Data
	9.2.3 Design Inspection

	9.3 Clean
	9.3.1 Handling Data Type
	9.3.2 Converting between Types

	10. Data Analysis
	10.1 Sensory Data
	10.2 Demographic and Questionnaire Data
	10.2.1 Demographic Data: Frequency and Proportion
	10.2.2 Eating Behavior Traits: TFEQ Data

	10.3 Consumer Data
	10.4 Combining Sensory and Consumer Data
	10.4.1 Internal Preference Mapping
	10.4.2 Consumers Clustering
	10.4.3 Drivers of Liking
	10.4.4 External Preference Mapping

	11. Value Delivery
	11.1 How to Communicate?
	11.2 Exploratory, Explanatory, and Predictive Analysis
	11.3 Audience Awareness
	11.3.1 Technical Audience
	11.3.2 Management
	11.3.3 General Interest

	11.4 Methods to Communicate
	11.4.1 Consider the Mechanism
	11.4.2 Pick the Correct Format

	11.5 Storytelling
	11.5.1 The Beginning (Context)
	11.5.2 The Middle (Action and Impact)
	11.5.3 The End (Conclusion)

	11.6 Reformulate

	12. Machine Learning
	12.1 Introduction
	12.2 Introduction of the Data
	12.3 Machine Learning Methods
	12.4 Unsupervised Machine Learning
	12.4.1 Dimensionality Reduction
	12.4.2 Clustering

	12.5 Supervised Learning
	12.5.1 Workflow
	12.5.2 Regression
	12.5.3 Other Common Supervised ML Algorithms

	12.6 Practical Guide to Supervised Machine Learning
	12.6.1 Introduction to the {tidymodels} Framework
	12.6.2 Sampling the Data
	12.6.3 Cross-Validation
	12.6.4 Data Preprocessing {recipes}
	12.6.5 Model Definition
	12.6.6 Set the Whole Process into a Workflow
	12.6.7 Tuning the Parameters
	12.6.8 Model Training
	12.6.9 Model Evaluation

	13. Text Analysis
	13.1 Introduction to Natural Language Processing
	13.2 Application of Text Analysis in Sensory and Consumer Science
	13.2.1 Text Analysis as Way to Describe Products
	13.2.2 Objectives of Text Analysis
	13.2.3 Classical Text Analysis Workflow
	13.2.4 Warnings

	13.3 Illustration Involving Sorting Task Data
	13.3.1 Data Preprocessing
	13.3.2 Introduction to Working with Strings ({stringr})
	13.3.3 Tokenization
	13.3.4 Simple Transformations
	13.3.5 Splitting Further the Tokens
	13.3.6 Stopwords
	13.3.7 Stemming and Lemmatization

	13.4 Text Analysis
	13.4.1 Raw Frequencies and Visualization
	13.4.2 Bigrams and n-grams
	13.4.3 Word Embedding
	13.4.4 Sentiment Analysis

	13.5 To Go Further. . .

	14. Dashboards
	14.1 Objectives
	14.2 Introduction to Shiny through an Example
	14.2.1 What Is a Shiny Application?
	14.2.2 Starting with Shiny
	14.2.3 Illustration
	14.2.4 Deploying the Application

	14.3 To Go Further. . .
	14.3.1 Personalizing and Tuning Your Application
	14.3.2 Upgrading Tables
	14.3.3 Building Dashboard
	14.3.4 Interactive Graphics
	14.3.5 Interactive Documents
	14.3.6 Documentation and Books

	15. Conclusion and Next Steps
	15.1 Other Recommended Resources
	15.2 Useful R Packages

	Bibliography
	Index

