
Domain-Specific
Languages

Andrzej Wąsowski
Thorsten Berger

Effective Modeling, Automation,
and Reuse

Domain-Specific Languages

Andrzej Wąsowski • Thorsten Berger

Domain-Specific

Effective Modeling, Automation, and Reuse

Languages

Andrzej Wąsowski Thorsten Berger
Department of Computer Science Faculty of Computer Science
IT University of Copenhagen Ruhr University Bochum
Copenhagen, Denmark Bochum, Germany

ISBN 978-3-031-23668-6 ISBN 978-3-031-23669-3 (eBook)
https://doi.org/10.1007/978-3-031-23669-3

© Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed
or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The
publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration: The cover design is based on work done by Sonja Israel, Ruhr University Bochum, for the Authors,

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The wiring diagram of Porsche 911E in Fig. 1.1 is included by permission of Corporate Archives Porsche AG. | The pho-

tograph of Porsche 911 in Fig. 1.1 is courtesy of Wikipedia User Thesupermat under CC BY-SA-3.0 license https://

en.wikipedia.org/wiki/Porsche_911#/media/File:Bonhams_-_The_Paris_Sale_2012_-_Porsche_912_‘SWB’_Coup%C3%

A9_-_1967_-_014.jpg. | The image of Charles Babbage on p. 6 is a public domain image, obtained thanks to the Wikimedia

Foundation (https://en.wikipedia.org/wiki/Charles_Babbage#/media/File:Charles_Babbage_-_1860.jpg). | The dance

choreography diagram of Fig. 1.6 is by Wikimedia Commons contributor Inigolv, released under CC BY-SA 4.0 license,

https://commons.wikimedia.org/wiki/File:Labanotation.svg. | The photo of Noam Chomsky on p. 97 is licensed as CC

BY-SA 4.0 by Wikipedia user Σ. | The program in Fig. 10.23 on p. 380 comes from Schoeberl [1], reproduced with

permission. | The image in Fig. 11.1 is courtesy of Stefan Stănciulescu, used with permission. | All other images and

photographs were created by the authors.
,

© The Authors, 2022, all rights reserved.

https://doi.org/10.1007/978-3-031-23669-3
https://en.wikipedia.org/wiki/Porsche_911#/media/File:Bonhams_-_The_Paris_Sale_2012_-_Porsche_912_%E2%80%99SWB%E2%80%99_Coup%C3%A9_-_1967_-_014.jpg
https://commons.wikimedia.org/wiki/File:Labanotation.svg
https://en.wikipedia.org/wiki/Porsche_911#/media/File:Bonhams_-_The_Paris_Sale_2012_-_Porsche_912_%E2%80%99SWB%E2%80%99_Coup%C3%A9_-_1967_-_014.jpg
https://en.wikipedia. org/wiki/Charles_Babbage#/media/File:Charles_Babbage_-_1860.jpg
https://en.wikipedia.org/wiki/Porsche_911#/media/File:Bonhams_-_The_Paris_Sale_2012_-_Porsche_912_%E2%80%99SWB%E2%80%99_Coup%C3%A9_-_1967_-_014.jpg

Foreword

A Shiny New DSL Textbook in Town

Advanced textbooks are crucial in maturing fields in computer science. In this
sense, Wasowski and Berger’s book makes a significant contribution to maturing the
notion of DSL1 in a contemporary way; the book also sends SLE2 on an impressive,
cross-technological space mission.

A younger Ralf was slightly obsessed with PL3 textbooks and I found each of
those books back then to be important in complementary ways. For example, I was
fond of Carl A. A. Gunter’s 1992 book on semantics due to its elegant mathematical
approach. I loved Peter Mosses’ 2005 book on action semantics for its clever
“ontology” of language concepts. I also discovered Benjamin C. Pierce’s 2002 TAPL
book with great relief, as it was moving the meta-theoretical realm from art to
science or engineering. The DSL book at hand is, of course, more of an SE4 than a
PL book, but it’s a bit of a hybrid because it’s a true SLE book.

Everyone should rest assured that we need several books to cover the field
of SLE and, more specifically, the field of DSLs. The DSL topic is covered
somewhat by scholarly articles, surveys, and PhD theses. There isn’t enough
available in textbook form. Anneke Kleppe’s 2008 book “Software Language
Engineering: Creating Domain-Specific Languages Using Metamodels” was a good
starting point. Compared with the DSL book at hand, Kleppe’s book is outdated,
highly technological space-specific (i.e., one of variant of MDE5), and incomplete.
Kleppe’s book lacks, for example, coverage of foundations, detailed guidelines
for QA6, exercises, and further reading pointers, when compared to Wasowski
and Berger’s book at hand. Markus Völter et al.’s 2013 book “DSL Engineering:
Designing, Implementing and Using Domain-Specific Languages” is more up-to-
date and more comprehensive, but it’s also driven by specific technologies and it
does not serve the classroom.

There is also my own 2018 textbook “Software Languages: Syntax, Semantics,
and Metaprogramming” (for short “the SL book”) which is somewhat close to
Wasowski and Berger’s book at hand—both from a community perspective and
in terms of structure and contents, but there are powerful differences. A crucial
advancement of Wasowski and Berger’s book is that it presents a modern notion of

1DSL: Domain Specific Language
2SLE: Software Language Engineering
3PL: Programming Language
4SE: Software Engineering
5MDE = MD(S)E: Model Driven (Software) Engineering
6QA: Quality Assurance

v

vi Domain-Specific Languages

DSL comprehensively from an SE point of view; it also realizes an important com-
ponent of the SLE mission: bring together the distinct technological spaces PL and
MDE (grammarware versus modelware or algebraic data types versus meta-models).

I wholeheartedly welcome this new book and cherish its original qualities; see
the detailed discussion below.

Structure of the DSL Book
Let me start with a brief recap of the DSL book’s structure.

• Chapters 1 and 2 introduce to and motivate the DSL subject. The first chapter
ties up DSLs with MDE and the second chapter summarizes the life-cycle of
realizing modeling languages / DSLs—with the “modeling languages hat” on.

• Chapter 3, perhaps unsurprisingly, kicks off the DSL development life-cycle with
“abstract syntax.” In addition to the obvious formalistic aspects, considerable
emphasis is placed on “domain analysis.” For example: What are the concepts
that the DSL needs to address? What I’d like to call SLE-style “technological
space liberation” starts no later than here. That is, it’s great to see how meta-
modeling (MDE) and algebraic data types (PL) are demonstrated as alternative
paths towards (abstract) syntax modeling and implementation.

• Chapter 4, quite logically, addresses “concrete syntax.” Just like the previous
chapter, the meta-meta-level is covered. (Thanks!) The chapter also gets quite
serious on grammar engineering. For instance, it covers syntax-oriented testing
and left-recursion removal. (I love it!) Two distinguished paths—the one via
a parser generator (in the MDE setting) and the other via a parser-combinator
library (in the PL setting)—are exercised. In summary, both the PL and MDE
point of view regarding concrete syntax are served back to back. (I submit: To
count as a SLE/DSL engineer in 2022, you certainly need to handle abstract and
concrete syntax across technological spaces.)

• Chapters 5 and 6 cover “static semantics” while managing the identification of
two layers: one with involvement of type systems higher up (and more intricate)
and one with just more basic constraints (à la “well-formedness”) as a starting
point. Formalistically, static semantics is presented as a logical constraint problem
where PL and MDE realizations are demonstrated. For instance, Scala can encode
constraints on algebraic data types and UML’s OCL can express constraints on
meta-models.

• Chapters 7 to 9 cover “dynamic semantics.” More specifically, Chapters 7 (Trans-
formation), 8 (Interpretation), and 9 (Generation) develop different paradigms
for the design and the implementation of dynamic semantics while also covering
testing and other types of QA for such components. Again, both PL (e.g., Scala)
and MDE (e.g., ATL) are exercised. Chapter 10 focuses on an important PL-
specific class of DSL implementation options—internal DSLs—that leverage
meta-programming; both the deep and shallow options are covered.

• The book exercises a number of domains, for example, robotics, but Chapters 11
to 13 engage with a distinguished domain: “variability” in software development,
which is indeed a (DSL!) domain in so far that variability approaches tend to use
DSLs for configuration. As a bonus, the book rehashes the central underlying
notions of “software product line” and “feature modeling.” In the last chapter, the
book lifts variability to the language level, thereby arranging DSLs in “linguistic
product lines”. (This is great!)

Foreword vii

Original Qualities of the DSL Book

• The DSL book shows a rich PL approach (i.e., Scala with algebraic data types
+ libraries) and the de-facto standard MDE approach (i.e., EMF and friends) back
to back. (Admittedly, my SL book is a bit more of a PL book.)

• The DSL/SLE/MDE fields are quite rich regarding technologies and formalisms
(“notations”) so that a textbook could easily drown in formalistic matters and
idiosyncrasies. However, the authors do a great job abstracting from the tech-
nologies chosen for illustration; the authors also mix in coverage of soft parts,
for example, requirements or domain analysis or the “bigger picture” in terms
of meta-meta-level considerations and multi-level modeling views.

• The authors spell out QA guidelines and methods for each and every DSL
component designed and implemented. This coverage goes beyond simple unit
testing (e.g., for transformations); it covers a range of properties, for example,
robustness, well-formedness, completeness, and correctness. (Admittedly, my
SL book does not discuss QA so broadly.)

• In fact, the book is generally engineering-oriented (i.e., SE-oriented) in that it
systematically exercises problem-oriented thinking of software engineers while
it drives the reader towards mapping problems to “standardized” solutions within
the PL and MDE spaces. As mentioned before, the solution spaces chosen—Scala
versus EMF—are discussed at a good level of abstraction. Thus, the reader can
imagine alternative solutions. (For instance, things make sense for me as a rusty
Haskell programmer.)

• On top of strong coverage of the topics of transformation and interpretation,
the authors develop the generation topic in an exceptionally strong manner. In
particular, they explain systematically, how and why (!) to mix templates and
recursion and how to reuse an existing interpreter for arriving at a generator.
(This is very insightful!) Further, the authors don’t fall into the trap of engaging
into a compiler construction-like optimization discussion.

• The book makes good use of example code and case studies. It uses simple toy
examples to develop the basic skills. It scales up to more significant case studies
to cover different DSL domains and to prove the scalability of the methodology.
The running robotics theme is definitely fun for most readers. Ultimately, the
book engages in the “variability” domain; see above. All example code from the
book is available for download!

• The book is clearly classroom- and learning-oriented in that the writing style is
skill-driven and there are loads of exercises that directly connect to the developed
examples. This amazing level of exercise support reminds me of textbooks in
mathematics. (Solutions to the exercises aren’t (yet) available online.) The book
is also immediately fit for research-oriented (≥ M.Sc. level) courses in that it pro-
vides references to underlying research foundations and further-reading material.

Reading Never Stops
The DSL book is a perfect testament of how the MDE, PL, and SE communities have
grown together at the pivotal front of SLE. The authors have a very strong standing in
the SE and MDE fields with significant engagements border-lining to PL. The SLE
community, “by design” (see [1]), aims at such community integration for the best

viii Domain-Specific Languages

of software languages (DSLs very much included!) on an engineering front. The
authors’ further reading pointers, per chapter, serve well to maintain and improve
the further integration of the fields both in terms of foundations and engineering.

My own background differs a bit from the one of the authors in that I am more
of a PL, grammarware, compiler and program transformation person. Also, more
recently, I have turned into a “megamodeling” aficionado. Accordingly, I would
like to submit a few further reading pointers that, in my view, logically continue
the directions given in the book. Please accept my apologies for the use of self-
references; the assumption is here that the self-referenced papers discuss or reference
also fundamental work by others.

• Model generation pops up a number of times in the DSL book in the context of
testing-based QA for robustness or correctness, for example, when testing model
transformations. More of the results of grammar-based test-data generation [7]
(e.g., regarding coverage criteria, use cases regarding code generation, and
coverage of semantic constraints) can be incorporated into the DSL engineering
methodology. Also, generation of graph-shaped data, which the book understand-
ably identifies as more complex than generation of tree-shaped data, has been
researched in the (OO) programming context [9].

• Much of the variability-inspired reuse discussion in Chapters 11 to 13 is focused
on and tailored to models (e.g., how to support variability in models), while
reuse of semantics is largely covered in the sense of “interpreters and code
generators are programs, too” and can be thus turned into software product
lines. There is, however, a great history of reuse (modularity, de-/composition)
for language definitions and, specifically, semantics descriptions, for example,
action semantics [11], Modular SOS [10], transformational approaches [4, 3],
and paradigm shifts for attribute grammars [6, 8]. One might argue that the PL
field (including language definition and implementation) has had feature models
and product lines for language definitions for a long time.

• The DSL book exercises the notions of “meta-modeling hierarchy” and “language-
conformance hierarchy” to capture the linguistic architecture of DSL solutions.
(I very much appreciate this engagement!) This type of discussion is an instance
of the more general paradigm of “megamodeling” or “linguistic architecture” [2,
5], which by its further development and deployment could help in formalizing
DSL methodology in an executable manner. For instance, we could explain
bootstrapping more rigorously by means of megamodeling, when compared to
what’s done in the textbook at hand.

Final Verdict

I concur with the greatest German comedian, Otto Waalkes, who says (I translate):
“There is a trend towards a second book.”7 Assuming that my SL book is already in
your library, you will definitely want to add the DSL book by Wasowski and Berger.
All jokes aside, the new DSL book by Wasowski and Berger is most definitely a
great textbook covering the DSL topic—rather than the less clearly demarcated

7In German: “Der Trend geht zum Zweitbuch.” It appears that the phrase expresses fear of the
opinions of the illiterate man who has only read a single book. Historically, that single book
may have been “the” bible.

SL topic—in a profound manner, while also conveying importance of the DSL
topic in today’s software development practice. This book excels in delivering
state-of-the-art SE research to teaching (learning) and SE practice. Finally, this DSL
book is a great SLE book, too.

Ralf Lämmel
Professor of Computer Science (Software Languages)
University of Koblenz
laemmel@uni-koblenz.de
Author of the Software Languages Book, http://www.softlang.org/book

References

[1] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Andreas Winter.
“Guest editors’ introduction to the special section on software language en-
gineering”. In: IEEE Trans. Soft. Eng. 35.6 (2009), pp. 737–741 (cit. p. vii).

[2] Frédéric Jouault, Bert Vanhooff, Hugo Brunelière, Guillaume Doux, Yolande
Berbers, and Jean Bézivin. “Inter-dsl coordination support by combining
megamodeling and model weaving”. In: ACM Symposium on Applied
Computing (SAC). 2010 (cit. p. viii).

[3] Ralf Lämmel. “Declarative aspect-oriented programming”. In: Proceedings
of the 1999 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation. Technical report BRICS-NS-99-1. University
of Aarhus, 1999, pp. 131–146 (cit. p. viii).

[4] Ralf Lämmel. “Evolution of rule-based programs”. In: J. Log. Algebraic
Methods Program. 60-61 (2004), pp. 141–193 (cit. p. viii).

[5] Ralf Lämmel. “Relationship maintenance in software language reposito-
ries”. In: Art Sci. Eng. Program. 1.1 (2017), p. 4 (cit. p. viii).

[6] Ralf Lämmel and Günter Riedewald. “Reconstruction of paradigm shifts”.
In: 2nd Int. Workshop on Attribute Grammars and their Applications,
WAGA’99. 1999 (cit. p. viii).

[7] Ralf Lämmel and Wolfram Schulte. “Controllable combinatorial coverage in
grammar-based testing”. In: Testing of Communicating Systems, 18th IFIP
TC6/WG6.1 International Conference, TestCom 2006. Vol. 3964. Lecture
Notes in Computer Science. Springer, 2006 (cit. p. viii).

[8] Johannes Mey et al. “Relational reference attribute grammars: improving
continuous model validation”. In: J. Comput. Lang. 57 (2020), p. 100940
(cit. p. viii).

[9] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khur-
shid. “Korat: A tool for generating structurally complex test inputs”. In:
29th International Conference on Software Engineering (ICSE 2007). IEEE
Computer Society, 2007 (cit. p. viii).

[10] Peter D. Mosses. “Modular structural operational semantics”. In: J. Log.
Algebraic Methods Program. 60-61 (2004), pp. 195–228 (cit. p. viii).

[11] Peter D. Mosses. “Theory and practice of action semantics”. In: Mathemati-
cal Foundations of Computer Science, MFCS’96. Vol. 1113. Lecture Notes
in Computer Science. Springer, 1996 (cit. p. viii).

Foreword ix

mailto:laemmel@uni-koblenz.de
http://www.softlang.org/book

Preface

What is a domain-specific language (DSL)? How do we use modeling for building
systems effectively? How are domain-specific languages relevant in practice? How
complex and expensive is developing languages? Does model-driven software
engineering (MDSE) impose a waterfall process with much overhead? Can it be
iterative, agile, test-driven? This book attempts to answer these and many other
questions in a format that is suitable for academic teaching and learning. We have
designed it around three principles: sound pedagogy, grounding in research, and
being non-sectarian regarding programming paradigms.

Pedagogy. We develop a skill-oriented, operational, and experiential approach
rooted in Scandinavian educational tradition. We do not want to tell you about
DSLs and MDSE. We want you to practice building DSLs, at your keyboard, in
your problem domain, using your favorite programming language. We make you
manipulate and analyze software artifacts automatically, including validation of
properties, modifying models or data, computing new artifacts out of existing
ones, or generating code. We emphasize practical take-home lessons, including
toolbox-like design guidelines, often derived from empirical research by others.

To facilitate constructive learning, we try to avoid presenting concepts without
examples and exercises. We developed dozens of concrete and reproducible ex-
amples, fitting each into a small figure, presenting key concepts without excessive
noise. This was a challenge in itself, as language projects tend to be too large to
present concisely. Still, our examples use concrete modern technology. We focus on
tools that are accessible for professional use, stable, and not controversial to adopt.
We prioritize language-engineering features available in mainstream programming
languages over academic solutions closer to our daily research work. We have also
designed 277 exercises, most focusing on training a single skill. We believe that
establishing fine-grained exercises is a stepping stone in developing a pedagogy of
any technical field. We hope that the community will recognize this contribution.

To the best of our knowledge, this is the first book that systematically discusses
practices of testing language designs and model-driven systems. This content is
distributed throughout all the chapters; quality assurance in a software project is
not an add-on, which could be delegated to a dedicated chapter as an afterthought,
but something we need to practice throughout the project. The book’s exercise
collection also incorporates tasks on testing and other quality assurance practices.

Research foundation. To prevent the skill-orientation from hampering the dura-
bility of the contents, we counterbalance it with a focus on fundamental concepts
and principles. We ground the text in programming-language and model-driven-
engineering research, avoiding buzzwords and acronyms. Each chapter concludes
with an overview of the related literature, commenting on key papers and books. It
directs students and early-stage researchers working on theses and research projects
to the relevant literature of the field. If you seek a book that will quickly teach you
to use a particular library, framework, or tool, then stop reading now. We want you

xi

xii Domain-Specific Languages

to gain knowledge that will survive changes of technology, current programming
languages and tools; that will help you critically assess different tools and strategies;
indeed, that will allow you to build the next generation of languages and tools.

Programming paradigms. Domain-specific languages are studied in several overlap-
ping research communities: object-oriented programming, functional programming,
dynamic languages (Racket, Smalltalk), modeling, and software-language engineer-
ing. We present key perspectives from multiple fields, unifying terminology and
setup. We discuss both internal and external DSLs, using both object-oriented and
functional programming languages, exploiting both model-based and grammar-
based technology. We use standard compiler construction terminology when
appropriate, unifying it with vernaculars of the separate communities (for instance,
relating meta-model, instance, abstract syntax, or relating meta-programming with
transformation). In the interest of trustworthiness and durability, the terminology is
cleaned off acronyms and buzzwords as much as possible.

Teaching Guide

Target audience and prerequisites. This book has been developed in a series of
courses on MDSE and DSLs at the IT University of Copenhagen in Denmark,
and at Chalmers University of Technology and the University of Gothenburg in
Sweden. We aim specifically at senior undergraduate and junior graduate students
in Computer Science or Software Engineering. We have included examples and
lessons from industrial and open-source projects, and from industrial research—thus
we hope that practitioners will also find this a useful reference. Numerous exercises
and the associated code repository facilitate self-study, as well.

The text is designed for a reader with basic experience of object-oriented and
functional programming, including testing. No significant mathematical background
is expected, beyond what is typically a prerequisite for an algorithms course:
propositional logic, quantifiers, sets, functions, relations, and basic data structures.

Teaching with this book. We used this material to execute courses lasting 14-15
weeks, of which 60-70% comprised lectures and labs based on the book and the rest
were reserved for a larger project. The entire book supports a course on external
and internal DSLs, in object-oriented and functional style, complemented with
product-line engineering as a simple but effective case of a DSL-based architecture.
However, depending on the school, the program, and the teacher’s preferences,
different smaller subsets can be selected:

• A classical DSL course: Chapters 1–10. In this variant, about 7-10 weeks of
classes are needed. Chapter 6 on typing is more advanced. As many useful DSLs
can be developed without type checking, it can be skipped. Similarly, Chapter 10
can be dropped, if internal DSLs are not of interest. The intensity can also be
lowered by omitting the functional programming examples and sections.

• A focused introduction to internal DSLs: Chapters 1–4, (optionally 5–6), and 10.

• A focused course on product-line engineering: Chapters 1–3 and 11–13.

In our experience, the lectures and exercises do not sufficiently facilitate learning in
a DSL course. Thus we normally supplement them with:

• Quizzes and discussion sessions in class, often during lectures. This book includes
many exercises, and many of them were actually developed for in-class use. We
used very short pen-and-pencil, closed-answer, or discussion exercises in class.

Preface xiii

• Recap lectures and technical briefings. A few days after the main class, a short
recap class summarizing the past week’s material, followed by a briefing where
the students can ask questions about the tooling.

• Weekly assignments. Exercises from the book are selected for homework, to
make students actively experience the material. We include many exercises, to
let the teacher choose suitable ones for her audience. The exercises use different
languages, or allow a programming language to be selected. It is also easy to
re-target most exercises to another language. Obviously, students should not
be made to use all the programming languages of the book, but rather the main
language to work with should be chosen to make sense for their context.

• A language engineering project. Small exercises facilitate learning individual
skills but may obscure the big picture. This is best addressed by an end-to-end
project, typically appreciated by students. In the project, they design and build a
DSL for a concrete problem, and obtain implementations for a few input models.

• Exams: We have used both written exams (many of the exercises in the book have
been developed for past exams), and oral exams that were based on defending
the project work and answering basic questions about the material.

Online material. The book website can be found at http://dsl.design/. We will
be releasing additional material there: slides, extra chapters, and links to open
supplementary material created by others. Our code repository is found at https:
//bitbucket.org/dsldesign/dsldesign/src/. It contains build infrastructure and source code
for most of the book’s figures, examples, and exercises. The repository is organized
using gradle as a build system, but incorporates code in many languages. Notably,
the repository does not require working with Eclipse or any other particular IDE.
Consult the README file for details.

We link to the repository from figures and text (clickable links). For brevity
we omit the prefix “https://bitbucket.org/dsldesign/dsldesign/src/master
/dsldesign.” For example, prpro/model/prpro.ecore links to https://bitbucket.org/
dsldesign/dsldesign/src/master/dsldesign.prpro/model/prpro.ecore. The code is released
under the Apache 2.0 license. We receive contributions and comments gladly.

Acknowledgements

We thank all students and colleagues who helped to create this book by finding
errors, contributing examples, and participating in stimulating discussions. We
owe you: Abdulrashid Mas’ab Mohammed, Alexandru Florin Iosif-Lazar, Anders
Fischer Nielsen, Cem Turan, Christoffer Stougaard Pedersen, Daniel Strüber, Erik
Meijer, Francisco Martínez Lasaca, Georg Hinkel, Hjalte Sorgenfrei Mac Dalland,
Jalil Boudjadar, Jean Bezivin, Jean Privat, Jeremy Gibbons, Jonatan Gustafsson,
Jurgen Vinju, Karol Wąsowski, Kasper Hansen, Marek Furák, Martin Schoeberl,
Miëtek Bak, Oscar Jönsson, Peter Sestoft, Ralf Gerstner, Ralf Lämmel, Robert Palm,
Robin Bellini Olsson, Rolf-Helge Pfeiffer, S, tefan Stănciulescu, Sven Peldszus, Tijs
van der Storm, Titus Barik, Tobias Schwarz, Vadim Zaytsev, and typeswitch (of
Twitter). Several hundred students in Copenhagen and Gothenburg have bravely
taken our courses, being the main motivation for us, while also serving as beta-
testers. Phil Watson, our copy editor at Springer, not only mercilessly pointed out
wrong articles, misspellings, and hyphenation errors, but also identified problems
in arguments and formulae. We thank you all. All remaining flaws are ours.

Andrzej Wąsowski, Thorsten Berger

Copenhagen, Bochum, September 2022

http://dsl.design/
https://bitbucket.org/dsldesign/dsldesign/src/
https://bitbucket.org/dsldesign/dsldesign/src/
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro/model/prpro.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro/model/prpro.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro/model/prpro.ecore

Contents

1 Using Modeling Languages 5
1.1 Model-Driven Software Engineering 7
1.2 Model-Driven Software Engineering in Industry 11

2 Building Modeling Languages 25
2.1 The Story of Abstraction in Programming Languages 25
2.2 The Ultimate Abstraction: Domain-Specific Languages 26
2.3 What Is a Language Built From? 28
2.4 Building a Language . 31
2.5 Testing Language Implementations 38

3 Domain Analysis and Abstract Syntax 47
3.1 What is Meta-Modeling? 47
3.2 Domain Analysis for Meta-Modeling 48
3.3 Meta-Modeling with Class Diagrams 51
3.4 Guidelines for Meta-Modeling with Class Diagrams 55
3.5 Meta-Modeling with Algebraic Data Types 58
3.6 Language-Independent Meta-Modeling Guidelines 64
3.7 Case Study: Mind Maps . 65
3.8 Quality Assurance and Testing for Meta-Models 68
3.9 The Language-Conformance Hierarchy 71
3.10 A Sneak Peek at XML . 78

4 Concrete Syntax 87
4.1 Concrete and Abstract Syntax 87
4.2 Defining Concrete Syntax 89
4.3 How to Write a Grammar in Practice 98
4.4 Parsing and Tools . 105
4.5 Guidelines for Specifying Concrete Syntax 114
4.6 Quality Assurance and Testing for Grammars 128
4.7 Grammars in the Language-Conformance Hierarchy 132

5 Static Semantics 143
5.1 Static Semantics with First-Order Structural Constraints 148
5.2 Writing Constraints in GPLs 157
5.3 Specialized Constraint Languages for Modeling 163
5.4 Guidelines for Writing Constraints 174
5.5 Quality Assurance and Testing for Static Constraints 181
5.6 Constraints in the Language-Conformance Hierarchy 188

6 Static Semantics with Type Systems 201
6.1 Abstract Syntax . 204
6.2 The Language of Types . 205

xiv

Contents xv

6.3 Type Hierarchy . 208
6.4 Climbing the Type Hierarchy to Merge Compatible Types 211
6.5 A Type-Checking Algorithm for Expressions 215
6.6 Type Checking for Models 220
6.7 Quality Assurance and Testing Type Checkers 222
6.8 Types in the Language-Conformance Hierarchy 227

7 Model and Program Transformation 233
7.1 Technological Spaces . 234
7.2 Model-Transformation Case Studies 236
7.3 Applications of Model and Program Transformation 249
7.4 Transformation Fundamentals 253
7.5 Program-Transformation Case Studies 259
7.6 Transformation Technologies 267
7.7 Guidelines for Writing Transformations 272
7.8 Quality Assurance . 274
7.9 A Critical Discussion . 280

8 Interpretation 293
8.1 Domain Implementation . 294
8.2 The Interpreter Proper . 300
8.3 Case Study: The Robot Language Interpreter 307
8.4 Monitoring and Models-At-Runtime 310
8.5 Guidelines for Implementing DSL Interpreters 311
8.6 Quality Assurance and Testing for Interpreters 314
8.7 Interpreters in the Language-Conformance Hierarchy 315

9 Code Generation 321
9.1 Reference Example Implementation 321
9.2 Code Generation Using Visitors and Recursion 325
9.3 Memory Management for Code Generation 326
9.4 Code Generation with Templates 330
9.5 Case Study: Robot . 334
9.6 Guidelines for Implementing DSL Code Generators 341
9.7 Quality Assurance and Testing for Code Generators 346
9.8 Code Generation in the Language-Conformance Hierarchy . . . 349

10 Internal Domain-Specific Languages 357
10.1 Internal DSLs with the Deep Embedding Pattern 358
10.2 The Shallow Embedding Pattern 368
10.3 Examples of Internal DSLs 372
10.4 Guidelines and Techniques for Building Internal DSLs 381
10.5 Quality Assurance and Testing Internal DSLs 387
10.6 Internal DSLs and the Language-Conformance Hierarchy 388

11 Software Product Lines 395
11.1 Software Variants . 395

11.2 Case Study: The Linux Kernel 399
11.3 Software Product Line Engineering 406
11.4 Variability Modeling . 411
11.5 Case Study: A Fire Alarm System 418
11.6 Spectrum of Variability Modeling 421

12 Feature Modeling 437
12.1 The Notion of Feature . 437
12.2 Documenting a Feature . 438
12.3 Uses of Feature Modeling 439
12.4 A Feature-Modeling Process 439

13 Model and Language Variability 459
13.1 Case Study: Variability in our FSM DSL and its Models 459
13.2 Benefits of Variability in Models and DSLs 465
13.3 Variability Mechanisms for Models 466
13.4 Designing Language Product Lines 473

xvi Contents

To Aleksandra, Urszula, Jakub, and Karol
Thank you for all the support and understanding.

Andrzej

To Maria, Mira, Ingeborg, and Günter
Thank you for all the understanding and support.

Thorsten

Language is sufficient to any thought.
Imperfect expression is the fault of limited writers,

not limited language.
(Francis-Noël Thomas and Mark Turner)

1 Using Modeling Languages

I wish to approach truth as closely as possible,
and therefore I abstract everything until I arrive

at the fundamental quality of objects.

Piet Mondrian

Using models to design complex systems is common in many engineering
disciplines, including architecture (buildings), civil engineering (roads and
bridges), automotive engineering (cars), and avionics (airplanes). Models
have an ever-growing list of applications. Engineers build them to assess sys-
tem properties before prototyping or to steer construction, production, and
servicing processes. For one system, different kinds of models may be built,
each providing a different perspective. For instance, three-dimensional
models are used when designing the chassis of a car, while analog-circuit
models describe its electrical system. Blueprint models are used in produc-
tion, while yet different ones, such as maintenance and service models, are
used later when servicing systems. All these examples of models describe
structural and functional properties of real-world systems. However, models
can also be used to describe and assess rather intangible properties that are
neither structural nor functional, such as system reliability, power consump-
tion, efficiency, or production cost. We say that models are purpose-specific
and domain-specific: they are tailored for a given purpose and represent the
main characteristic aspects of the domain. For example, telephone-network
switching models are different from railway-track switching models.

Definition 1.1. A model is an abstraction of reality made with a given
purpose in mind.

The main purpose of using models is to combat complexity: of the problem,
of the solution design, and of the system implementation or production.
The understanding of complex problems, solutions, designs, and processes
is possible thanks to abstraction [56]. Abstraction is the simplification and
elimination of information with respect to a given purpose. A model does
not contain all information, but it preserves the information necessary to
perform the intended application. We can say that “all models are wrong,
but some are useful” [7]. For instance, aesthetic information is typically
not necessary to assess performance.

Models can not only hide information, they can also approximate. For
instance, the Newtonian gravity model is sufficiently precise for applications
in mechanical engineering. It is widely applied, although we know that it is
imprecise. It is crucial that both abstraction and approximation are not ad-
verse to the purpose of a given model. Abstraction should not hide relevant
information, and approximation should only lead to acceptably small errors.

Thanks to the rapid growth of computing technology, models are in-
creasingly often digital. In fact, most engineering models are digital today,

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_1

5

https://doi.org/10.1007/978-3-031-23669-3_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_1&domain=pdf

6 Chapter 1. Using Modeling Languages

Model-Driven Engineering Prehistory

Source: Wikimedia Foundation

Charles Babbage (1791–1871) was an English mathematician, philosopher,
and mechanical engineer, credited with designing (not building) one of the
earliest examples of a mechanical computer, a difference engine or a machine
to automatically compute numeric tables of mathematical functions using
polynomial approximations [1].

Interestingly, Babbage’s reasons to build the difference engine resembled the
motivation of most automation projects, including model-driven software
engineering. In the nineteenth century, mathematicians would calculate
approximations of irrational functions manually. The results of these calcu-
lations, multi-page tables of numbers, would then be typeset by printers and
printed on paper, so that engineers could use them in calculations. Babbage
found this tedious and error prone—an ideal candidate for automation.

His machine worked as follows. First, it would calculate the values for the tables, and a custom-built
printing back-end would typeset results correctly, so no errors could sneak in at that stage. He even
considered what print colour should be used to minimize the number of errors. Today, when we search
for MDSE opportunities, we seek software development activities that are tedious and error prone, like
creating lots of boilerplate code. We use automation not only to derive early designs, but for end-to-end
construction of effectively functioning systems.

The British government showed interest in Babbage’s project, believing that this could bring down the
cost of computing the numeric tables. Modern managers use the same reasoning when considering
the introduction of MDSE. Unfortunately, Babbage had not managed to realize his detailed designs in
practice, so he did not know whether the benefits were actual. For MDSE, we fortunately know that there
are substantial gains in quality and cost to be reaped. We briefly survey them in Sect. 1.2. (Babbage’s
difference engine has been built twice in modern times, following his blueprints. One can appreciate it in
the Science Museum in London and in the Computer History Museum in Mountain View, California.)

even if they describe physical artifacts, such as buildings or car engines.
Building computerized models is cheaper than building physical models.
It allows animation, simulation, and computation of non-structural and
non-functional properties, for instance weight.

While computerized models have taken over other engineering disci-
plines, their use in software engineering is also growing. Many software en-
gineers use purposeful abstractions of design and computation without think-
ing of them as models. For instance, relational-database queries are models,
and so are HTML web pages and their style sheets. Reactive algorithms, or
behavior of software in general, are often described using automata models.
Efficiency of algorithms is approximated using asymptotic complexity mod-
els. In this book, we shall look at multiple opportunities to use models in
computing and to introduce purposeful domain-specific modeling languages
(DSMLs or DSLs for short) into the development of software systems.

Software engineers face the same complexity problems as engineers in
other disciplines do. In many ways, software systems are just as complex—
often even more complex—than other achievements of engineering. Many

1.1. Model-Driven Software Engineering 7

Figure 1.1: An early example of a model, the electrical scheme of the Porsche 911E, contrasted with the actual system. Note the
deliberate loss of information between the model and the real system, and how the model supports a well-defined purpose. Source of
wiring diagram: Corporate Archives Porsche AG. Source of Porsche photo: Wikipedia User Thesupermat (CC BY-SA-3.0).

commercial software systems have more lines of code than a Boeing 747
has mechanical parts. In fact, the Jumbo Jet has ‘only’ six million parts, half
of them being super-simple fasteners, many of them identical. In contrast,
the Linux kernel had about 15 million lines of code by December 2014.
This complexity is (partly) controlled using a configuration model and an
automated build process [3]. The Open Office productivity package had
reached nine million lines of code in 2012. Microsoft Windows is reported
to have exceeded 50 million lines in 2003. “Therefore, it seems obvious
that software systems, which are often among the most complex engineering
systems, can benefit greatly from using models and modeling techniques”
[56], in order to combat the complexity.

1.1 Model-Driven Software Engineering

Software development is particularly well aligned with modeling. For a
car, there is a notable abstraction gap between a model and a real physical
construction (Fig. 1.1). For software, both models and systems are digital—

https://creativecommons.org/licenses/by-sa/3.0/

8 Chapter 1. Using Modeling Languages

Figure 1.2: KNIME facilitates data analytics and AI development with a graphical DSL

the gap is much smaller; everything is a model in software engineering [4].
One can refine a model into a system following a stepwise and automatic
manner, and with much less effort than when designing cars or buildings.
After all, source code is also a model that abstracts many aspects of a
physical computation, just containing enough details to run the computation.
This proximity of models and programs allows us to make modeling the
central paradigm in development: the Model-Driven Software Engineering.

Definition 1.2. Model-Driven Software Engineering (MDSE) is a method to
produce software by creating and exploiting models. The focus is on models,
modeling, and model analysis, as opposed to programs and programming.
MDSE automates code production and other development activities.1

Organizations engineering software can adopt MDSE either by relying on
off-the-shelf modeling techniques and languages that have been developed
by others, or by creating their own languages and modeling infrastructure,
thanks to powerful MDSE tools and techniques, which we will present in
this book. As confirmed in surveys in industry [31, 39, 65], the most well-
known off-the-shelf modeling language is the Unified Modeling Language
(UML) [48, 20, 47], established and developed under the umbrella of
the Object Management Group (OMG). UML includes over 13 different
languages, such as class diagrams or sequence diagrams, which developers
can use without having to design languages and build tools, such as editors,
to apply MDSE. In many cases, however, it is desirable to create languages
specifically tailored to one’s need, such as a language that customers can
use to configure a product. Let us now look at some existing languages to
get a better intuition about their look and feel.

Example 1. KNIME2 is an extensible platform for composing data-analytics
pipelines, used by data scientists for building data analyses, visualizations, clas-
sifications, preprocessors, and other tasks in pharmaceutical, business intelli-

1Inspired by definitions of Selić [56] and of Wikipedia editors (https://en.wikipedia.org/wiki/Model-
driven_engineering, retrieved 2022/08).

https://en.wikipedia.org/wiki/Model-driven_engineering
https://en.wikipedia.org/wiki/Model-driven_engineering

1.1. Model-Driven Software Engineering 9

Figure 1.3: Scratch facilitates
end-user development with a
graphical DSL

gence, and financial research. Figure 1.2 shows an example model of an image
classifier in the DSL of KNIME. Nodes represent data-processing functional-
ities and edges the data flows. The first node, Table Reader, obtains a data set,
which is then normalized by a Normalizer, partitioned into training and test sets
(1/3 vs 2/3, held in the node properties not shown in the figure), and fed into
the MLP Learner, a multi-layer perceptron. Subsequently, the Predictor uses the
trained perceptron to classify test images, while the Scorer assesses the quality
of the results, calculating accuracy statistics (e.g., recall, precision, F-measure).
Given a dedicated language, like KNIME, inexperienced programmers can
focus on the problem domain as opposed to low-level architectural interfaces.

Example 2. Scratch3 is another end-user-oriented modeling language. Unlike
KNIME, Scratch is an imperative language, composed of control blocks known
from programming languages. Scratch programs resemble jigsaw puzzles
(Fig. 1.3). The syntax is designed to meet the expectations of the target user
group, the school children. Using a domain-specific syntax matching the user’s
expectations is one of the key success factors in designing DSLs. Scratch
boasted over a million users in 2014. The models are hosted on the Scratch
website and are freely accessible to the public. While Scratch is Turing-
complete, it is still not a GPL. It is not supposed to be used to write general
programs, but focuses on game-like sprite programs written for learning.

Example 3. Google Protocol Buffers are a data-modeling language aimed at
flexible and efficient serialization and persistence of structured data across
multiple programming languages and platforms. An example is shown in
Fig. 1.4. Since the language was initially developed for passing messages
between different machines in a request/response protocol, it uses ‘message’
as a metaphor for a data structure. It is a textual language (syntax is expressed
as a stream of characters), an interface definition language, and a structural
modeling language (a competitor of, for instance, XML). However, protocol

2https://www.knime.com, retrieved 2022/08
3http://scratch.mit.edu, retrieved 2022/08

https://www.knime.com
http://scratch.mit.edu

10 Chapter 1. Using Modeling Languages

Figure 1.4: An example model
in the Google Protocol Buffers

language

1 message Person {

3 enum PhType { MOBILE = 0; WORK = 1; }

5 message PhoneNo {
6 required string no = 1;
7 optional PhType type = 2 [default = MOBILE];
8 }

10 required string name = 1;
11 repeated PhoneNo phone = 2;
12 }

Figure 1.5: A simple data
model in Ruby on Rails, using
an internal DSL embedded in

Ruby syntax

1 class Client < ActiveRecord::Base
2 has_one :address
3 has_many :orders
4 has_and_belongs_to_many :roles
5 end

buffers are small and clean, use very little bandwidth for transmitting the data,
and have a human-readable syntax for their schema, unlike XML. The example
model describes a Person structure with the two properties name and phone,
where the latter is a message itself (a substructure) of type PhoneNo. The data
elements described by this model are assigned ordinal numbers representing
their placement in the serialization, which allows fields to be reordered and
renamed without changing the message format. The format also allows
optional elements to be assigned default values. It is an important design
criterion for the message serialization domain to allow as much backwards
compatibility as possible, when the message format changes or its definition is
refactored. Implementing a proper message format serialization infrastructure
with these properties is actually cumbersome, even if it is needed in many
software projects. Protocol buffers have a standalone implementation for at
least Python, Java, and C++. They demonstrate an important motivation for
DSLs and modeling: code reuse. The protocol buffers libraries have been
implemented once and for all and are maintained in only one place, saving
a lot of effort duplication. Since they are used by many, the libraries are of
considerably higher quality than if they were reimplemented repeatedly in
different projects. In February 2014, there were 48,162 message types defined
in 12,183 protocol buffers models across the Google code tree.

Example 4. Ruby is a dynamically typed, interpreted, and object-oriented
programming language. Due to its flexibility, it is often used to implement
DSLs. Ruby on Rails is the most well-known framework implemented in Ruby.
It is a web-application framework that gathers information from the web server
and the database and uses it to render web pages and interact with users. Like
in most web frameworks, the key element of a Ruby on Rails application is a
data model expressed in an internal DSL. See Fig. 1.5 for an example. These
models are used to scaffold the application using powerful code generators, as

1.2. Model-Driven Software Engineering in Industry 11

well as to access the database while it is operated. In Ruby on Rails we find
examples of relational modeling, UI modeling, use of specialized editors for
domain-specific models, and modeling of user interfaces.

With DSLs, we express software design using concepts from problem
domain, abstracting from the implementation technology [56]. Instead
of classes and loops, we talk about business entities, cash-flow processes,
and customers. This allows for software to be customized by domain
experts who are not programmers. For instance, many enterprise systems,
implemented by skilled engineers who know about software architectures
and programming, can still be customized by business-domain consultants
with expertise in enterprise architecture and business processes. Similarly,
many computer games support end-user extensions through various “mod”
packages implemented as domain-specific programs. But MDSE can help
skilled programmers, too. Protocol Buffers and Rails are not targeting
domain experts. They increase reliability and productivity by raising the
abstraction level and enabling code reuse. In both these languages models
are mixed with code. Modeling is not in opposition to programming, but
simply a more efficient way to program selected aspects of systems.

A common misunderstanding is that abstract models cannot be used effec-
tively in software production, as they contain too little information for sys-
tems to be generated. In all the above examples, automatic infrastructures
complete the abstract models with concrete information, effectively turning
them into programs. MDSE combines two sources of information: a model
and its language (captured in a language implementation). A good language
captures the commonality in the domain, and allows the aspects that vary to
be specified in models. KNIME, Scratch, and Protocol Buffers are extremely
simple languages, yet one can derive complex systems from their models.

1.2 Model-Driven Software Engineering in Industry

Recent decades have seen an increasing interest in modeling and MDSE
among practitioners and researchers. A large number of case studies and
individual industrial experiences are available. These publications typically
explain the domains and the circumstances in which MDSE has been
successfully applied, the usage and role of models, as well as the perceived
benefits, risks, and challenges encountered. Works and presentations by
established researchers summarize experiences of collaboration with indus-
try. For instance, Selić [55] mentions over seventy papers that report on
industrial experiences with MDSE. Already twenty years earlier, Deursen
and Klint [15] discussed the role of MDSE in industrial practice, its benefits,
along with the associated risks and mitigations.

Two substantial empirical works study how industrial practitioners use
MDSE: Forward and Lethbridge [19] ask 113 practitioners for attitudes
towards modeling and plain code-oriented development; Hutchinson et al.
[31] investigate the benefits of MDSE and attitudes towards it by surveying

12 Chapter 1. Using Modeling Languages

Terms, Acronyms, and Buzzwords of Model-Driven Software Engineering
Beginners often struggle with the many acronyms and synonyms used for similar concepts in this field.
We use the terms MDSE (Model-Driven Software Engineering) and DSL (Domain-Specific Language)
to denote the software development method and the main instrument respectively.

MDSE is an umbrella term for the whole field of using models to engineer software. Engineering com-
prises not only the development of code—known then as MDSD (Model-Driven Software Development)—
but also other activities, such as evolution and quality assurance. MDE (Model-Driven Engineering) and
MDD (Model-Driven Development) correspond to MDSE and MDSD, but are not restricted to software,
and may concern the engineering or development of other assets, such as hardware. MDA (Model-Driven
Architecture) is often used synonymously with all these MDSE-related terms. However, originally
MDA referred to a specific standard established by the Object Management Group [46] describing a
software-design process starting with domain modeling in order to obtain platform-specific models that
can ultimately be executed [22, 43].

Models in MDSE are defined in a language, which is often a DSL (Domain-Specific Language). A DSL,
as opposed to a GPL (General-Purpose Language, such as Java, C#, or Scala), focuses on expressing
concepts in a specific domain. DSLs should be understandable by a domain expert; their strength is
their reduced expressiveness compared to GPLs. DSML (Domain-Specific Modeling Language) refers
to DSLs used specifically for modeling. As for DSLs it is hard to draw the line between models and
programs, the terms DSL and DSML are often used interchangeably, reflecting more the convictions of
the speaker than differences of meaning. Further subsets of DSLs are domain-specific markup languages
(e.g., XHTML, MathML) and domain-specific programming languages (e.g., Perl, shell-script languages).

New terms have gained popularity recently, notably Low-Code Platforms and Non-Code Platforms.
They refer to a software-engineering method and a business model for rapid application development
that conceptually relies on MDSE. The focus is on leveraging external DSLs with graphical syntaxes
in software tools (the low-code or non-code platform) usable by end-users for generating the desired
applications [54, 50, 28]. Prominent examples are Google’s AppSheet, Microsoft’s PowerApps (both
commercial), and Eclipse’s OSBP (open source).

250 and interviewing 22 professionals. As many as 83 % of the 250 respon-
dents find MDSE beneficial, while only 5 % disagree. The empirical studies
are complemented by literature reviews, such as the one of Mohagheghi
and Dehlen [44] who identify and consolidate 25 papers published between
2002 and 2007 reporting on industrial experiences.

Where is MDSE used?

MDSE is used in domains where complex business logic co-exists with
technical details that can be abstracted, where software should be reused,
or where software interacts with hardware whose characteristics need to
be modeled. Having surveyed 128 practitioners, Bone and Cloutier [6]
conclude that large and long-lived software projects are more likely to adopt
MDSE than short-lived ones, as the additional effort would not always pay
off. Torchiano et al. [60] find that modeling correlates positively with the
company size: larger organizations model more. Nevertheless, there are
reports that small companies benefit from adopting MDSE, too [13].

1.2. Model-Driven Software Engineering in Industry 13

Figure 1.6: A dance
choreography expressed in the
visual DSL Labanotation
designed by Rudolf von Laban
in 1928.
Source: Wikimedia Commons
contributor Inigolv (CC BY-SA
4.0)

The literature review of Mohagheghi and Dehlen [44] provides docu-
mented adoption of MDSE in telecommunication [64, 59, 2], business ap-
plications and financial organizations [14], web applications [9], aerospace
and defense [33], as well as embedded [61] and safety-critical systems [53].
The survey of Bone and Cloutier [6] adds automotive [10], IT, medical
[41], and space systems [17]. Other substantial experience reports worth
mentioning concern the domains railway technology [40] and eGovern-
ment [42]. The latter, together with Baker, Loh, and Weil [2], are a rare
source of rich and longitudinal data from companies using MDSE. Selić
[55] reports similar domains, adding industrial automation [59] and office
automation systems [62]. He also lists large companies that have adopted
MDSE: Airbus, BAE Systems, Boeing, Lockheed-Martin, NASA-JPL,
Northrop-Grumman, Raytheon, SAAB, Thales, Audi, AVL, BMW, Bosch,
Carmeq, Continental, Daimler, Delphi, General Motors, Magneti Marelli,
Valeo, Volvo Cars,4 Volkswagen, ABB, Deere & Co., FMC, Siemens,
Alcatel-Lucent, Ericsson, Motorola, Nortel, Siemens, UBS, and SAP. In
addition to all these industrial experience reports, many publications report
on commercial and non-commercial DSLs that have been developed for
various domains, especially those listed above. The existence of these DSLs
indicates that there is a demand, and likely an actual usage in practice.

Robotics is often seen as a field that can benefit well from MDSE
technologies, especially from models that abstract over the hardware and
low-level motion control algorithms. Robotics software is often developed
in an ad hoc unsystematic way [57, 25, 11, 24, 26], and the respective
control software is rarely reusable [27]. Nordmann et al. [45] identified
41 publications presenting robotics DSLs. They use a reference example
of a kinematics DSL [23] developed to control robotic soccer players
within the RoboCup competition.5 Interestingly, more robotics soccer
DSLs exist. CABSL [51] can be used to program the behavior of specific
soccer players, such as the goalkeeper. Another example are DSLs for
controlling humanoid robots, such as DANCE [30]. This textual language
is inspired by Labanotation, a visual DSL invented by a German dance artist
and choreographer in 1928! An example choreography is shown in Fig. 1.6.

With the advent of big-data-processing and machine-learning frame-
works, whose APIs can be difficult to understand and cumbersome to use,

4Volvo Cars recruiters are known to ask about applicants’ performance in MDSE courses.
5http://www.robocup.org, retrieved 2022/08

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
http://www.robocup.org

14 Chapter 1. Using Modeling Languages

various DSLs have been presented to ease utilization of this technology.
The survey by Portugal, Alencar, and Cowan [49] identifies seven DSLs,
three of which were developed by Google, Microsoft, and Yahoo! to cope
with their complex machine-learning and data-processing frameworks.

Finally, a classic survey by Deursen, Klint, and Visser [16] gives an
overview of practice, technology, and motivation for using DSLs. Already
in the year 2000, they listed over thirty DSLs documented in the literature,
many in widespread use. They summarize implementation strategies, tech-
niques, and architectures, as well as (by now mostly of historical interest)
available language workbenches, which were starting to emerge at the time.
A newer annotated bibliography is maintained by Lämmel [37] online.6

How are models used?

Almost every programmer uses models in some way for automating en-
gineering activities, depending on what exactly is seen as a model [4].
Mohagheghi and Dehlen [44] list code generation, simulation, testing, and
automatic test generation as the most frequently reported use cases. Liebel
et al. [39] quantify the popularity of these use cases based on data from
112 professional developers in the embedded-systems domain. We discuss
them in decreasing order of popularity according to them.

Interpretation and code generation. Software or significant parts of it
can be automatically generated from models, or models can be directly
executed (interpreted) as part of the system execution. In this book, we
will experience interpretation and code generation not only by building
examples of systems, but also by using code generation when designing
and implementing DSL infrastructure. We will generate implementations
of models, (de)serializers of models, model generators, tests, and editors for
models, and well-formedness checkers for models. A lot of basic infrastruc-
ture of DSLs can be automatically generated using language workbenches.

Simulation. Early simulation of models is one of the most powerful
techniques used by hardware and embedded-systems engineers. The con-
struction of an executable model allows the behavior of the system to
be simulated before it is actually constructed, and design mistakes to be
found early. These benefits are less pronounced for software-only systems.
Still, simulation makes sense for establishing properties of systems, when
obtaining them directly from a running instance would be expensive or
slow. For instance, virtual simulation of network protocols is much more
efficient than setting up a physical network infrastructure, deploying the
implementations, and running tests. Simulation makes sense for complex
performance properties of many systems, as performance simulations can
often be run much faster than the system can be observed in real time.

Models provide useful oracles and visualizations for system monitoring
and debugging. Simulation can be used to mock components that are not yet

6https://github.com/slebok/yabib, retrieved 2022/08

https://github.com/slebok/yabib

1.2. Model-Driven Software Engineering in Industry 15

implemented, or to test implemented components to see whether they be-
have as expected. Errors are flagged whenever the actual execution diverges
from the specification given in a model. When program state, or problematic
data, are visualized as models, debugging any potential divergence from the
specification is easier. From language-engineering perspective, simulation
and runtime-monitoring are both special use cases of interpretation.

A related activity to simulation is instance generation. Instances of data
models can be generated to serve as test data. Many design mistakes in data
models can be established quickly by analyzing examples of unexpected
instances of data, cases which should be disallowed [32].

Documentation and information. Models provide excellent documentation,
given their proximity to the domain. Often, they are self-documenting
[16] and can be directly used as documentation, or embedded into such,
regardless of whether models have a textual or graphical syntax. Likewise,
models foster conversations and coordination among different roles, includ-
ing non-technical ones, such as domain or sales experts. While developers
can interact talking about code, using models can ease these interactions.
However, documentation and information, even though reported as the third
most frequent usage by Liebel et al. [39], is never the prime usage in MDSE,
which aims at using models in automation.

Model checking and verification. System models can be verified, for exam-
ple, for safety properties. Combined with code generation or interpretation,
model checking and verification of models significantly raise our confidence
that properties of the model are also properties of the final system. Liebel et
al. [39] study usage of model checking and verification at a fine-granularity
level. They distinguish, most frequent first: structural consistency checks,
behavioral consistency checks, timing analysis, formal verification, safety
compliance checks, and reliability analysis. Tools for model checking and
verification are available predominantly for established languages (such
as MATLAB Simulink), since developing verification infrastructure is
relatively expensive and requires advanced expertise. Such tools rarely exist
for project-specific languages. Consistency checks are considerably easier
and we will be discussing them regularly throughout the book.

Test-case generation. If models (like finite state machines, one of the run-
ning examples in this book) describe the possible behaviors of a system, we
can use them to generate test cases. Given possible sequences of states from
a model, one can generate test input data that ensures high test coverage
for the code-under-test and can be used to check whether the behavior
of the implementation adheres to the model. An explicit model, created
independently of the code, is a trustworthy representation of the designer’s
intention. Therefore it allows testing against these intentions. This is in
contrast to test cases derived from the possibly buggy code-under-test.

Traceability. Large organizations, especially in safety-critical domains,
need to establish traceability links between engineering artifacts. Most

16 Chapter 1. Using Modeling Languages

often, such links are necessary between requirements and code. Traceability
information allows the completeness of the implementation to be checked
against the requirements, analysis of the impact of (maintenance or evolu-
tion) changes to the system, and tracing of bug reports. In safety-critical
domains, such as aerospace and automotive, traceability is often prescribed
by a safety standard. Specific trace models, but also many other models,
can be used to record and exploit traceability information.

Model-based system integration. Finally, let us mention a use case that
was not directly listed by Liebel et al. [39], but which is common as well:
using models for integrating systems. Specifically, if systems rely primarily
on models, then data exchange and integration of systems can be done via
models. This is particularly convenient, since models can be translated
to other languages by model transformations, which are small programs
implemented in languages specialized for model transformation.

What are the benefits of MDSE?

Now that we know how models are used, let us discuss what an organization
can gain by adopting MDSE. We again discuss the benefits ordered by the
frequency reported by Liebel et al. [39].

Improved quality. The benefit of MDSE reported most frequently by
professionals is the improvement of quality [39]. First, generated code
is typically of high quality. A substantial effort is put into the design of
a generator, and any bug fixed there immediately improves the quality of
all the generated code, reducing errors for all users. Second, simulation
allows errors to be detected and fixed early, and to exercise more system
behavior than could be done in physical tests. Third, models improve
the quality of requirements in the sense that some requirements can be
expressed within the model [5], which allows errors in requirements to be
found, consistency and completeness of requirements to be checked, and
the clarity of requirements to be enhanced.

Improvements of quality are also confirmed by Kieburtz [34] who ob-
serves a reduction of error rates and productivity gains in a controlled
experiment. Mohagheghi and Dehlen [44] find in their survey that, in
addition to errors being found early, fewer code inspections were necessary
in published case studies of MDSE. In the words of Baker, Loh, and Weil
[2], in the context of a case study at Motorola: “it is not unusual to see a
30X—70X reduction in the time needed to correctly fix a defect detected
during system integration testing. This reduction is attributed to the ability
to add a model test that illustrates the problem, fix the problem at the model
level, test the fix by running a full regression test suite on the model itself,
regenerate the code from scratch, and run the same regression test suite on
the generated code.”

Improved reusability. Reuse is the ability to take an existing piece of soft-
ware and modify it to fit another purpose or a new context [16]. For instance,

1.2. Model-Driven Software Engineering in Industry 17

you may want to reuse code written for specific hardware for different hard-
ware. Another published case study from Motorola reports “reuse of designs
and tests between platforms or releases” as a significant benefit [64]. Instead
of copying and modifying code, the idea is that the modifications are rep-
resented in the models, so you account for changes, incorporate them in the
language, and then when you want to have a different system, you modify
the model, re-generate code or just run the interpreter. It is just easier to spec-
ify models than to modify code [56]. Models foster knowledge conservation
and reuse [16]. Furthermore, since models typically abstract over hardware,
one can write different generators or interpreters for different hardware plat-
forms: model-driven software is more easily retargetable. Many modeling
languages, known as variability-modeling languages, have been specifically
designed to support reuse. We return to them in Chapters 12 and 13.
Improved reliability. Improved reliability is a consequence of automation
and of the reuse of expert knowledge in code generation or interpretation
[16]. Selić [56] says “[...] modern optimizing compilers can outperform
most practitioners when it comes to code efficiency. Furthermore, they
do it much more reliably.” That generated code is more reliable was
also clearly shown in the controlled experiment of Kieburtz et al. [35].
Reliability was also a prime benefit observed in the Motorola case study
of Weigert and Weil [64] as (i) insecure or unreliable coding practices
can be avoided, (ii) specific secure coding policies and patterns can be
enforced, (iii) problems related to reliability can be detected early (in
the code generator implementation or in models), and (iv) separation of
concerns can help in assessment of reliability.
Improved traceability. Models themselves can be used for establishing and
exploiting traceability, but already by using MDSE, traceability is obtained
as a by-product [66]. Especially when transforming models into other mod-
els, model-transformation engines produce traces automatically; they create
and maintain a trace model, which can be queried. When requirements are
expressed as part of the model, traceability is naturally improved. Finally,
models foster the comprehension of change impacts when the system is
changed [15], which is also a traceability-related improvement. theo
Improved maintainability. Multiple authors report maintainability and
productivity gains as prime benefits of MDSE [16, 56, 15, 35, 19, 31].
Software defined in domain terms is easier to maintain. Models are easier to
understand than low-level code, and can serve the role of documentation at
times. It is easier to train new developers to tailor systems using an abstract
DSL instead of low-level code, since most DSLs ensure that the changes
stay within assumed design invariants. Collaboration and coordination
among developers is improved through models [19]. MDSE allows easier
modifications [19] and comprehension of change impacts. Models and their
languages more explicitly represent domain-specific knowledge, which is
also represented in a platform-independent manner [15]. The latter also
enhances system portability [31, 29].

18 Chapter 1. Using Modeling Languages

Figure 1.7: Illustrative
influences of MDSE. Adapted

from Hutchinson et al. [31] and
omitted ’system portability’.
ROI = return on investment

legend

p
ro
d
u
ct
iv
it
y

m
ai
n
ta
in
ab
ili
ty

positively
influences

negatively
influences

engineering
property

automatic code
generation

reduction of
repetitive coding

fewer silly
mistakes

use of model-
based testing

more creative
solutions

better overview
understanding

development of
model transformation

model
design

model
validation

test of model
transformations

overuse of
modeling

distraction
through models

high-level
models

self-docu-
menting code

maintenance at
model level

generated
traceability links

complexity of
generated code

complexity of
MDSE tooling

keeping models
consistent

evolution of
MDSE tooling

code
development

time

ROI of
MDSE

system
maintenance

time

shared
understanding

code testing
time

Improved productivity. The reasons for better productivity are mostly
the same as for improved maintainability: better comprehension thanks
to abstraction and domain-orientation. Various roles, including domain
experts, can understand the models [16, 56]. Systems can be created faster;
sometimes they can even be instantiated by non-technical domain experts,
who create the models and then initiate code generation with automatic
deployment [56]. Such systems are more likely to be usable and to meet
the original requirements [19]. Huge productivity gains are quoted by
practitioners of MDSE in interviews [31]: at least two-fold, but even eight-
fold! Interestingly, some interviewees mention that the increases might be
hidden from management to protect against budget cuts.

What are the risks of MDSE?

MDSE is, of course, not a panacea for all kinds of organizations, projects,
and domains. All the benefits discussed above are affected by various
negative forces. Figure 1.7 summarizes examples of factors that influence
various aspects of productivity (e.g., code development time) and main-
tainability according to Hutchinson et al. [31]. Both positive and negative
influences should be taken into account when assessing MDSE. In practice,
depending on the project context, certain aspects will outweigh others.
Return on investment. MDSE requires additional effort for engineering
systems (including maintenance). There is a risk that this effort is too high
and will not pay off when models are not useful enough [60, 16]. Another
challenge can be the costs for education and training that are necessary for
adopting MDSE [39, 16].
Half-baked adoption. If the potential of MDSE is not fully exploited,
especially if models end up being solely used for documentation, the
benefits are easily lost. Documentation-only models quickly diverge from
reality, when they are not used for automation. Developers lose interest and
do not maintain them, and the project gives up using models altogether [56].

1.2. Model-Driven Software Engineering in Industry 19

MDSE and Agile Software Engineering
MDSE is often (wrongly) associated with plan-based software engineering, requiring heavy upfront
investment and planning. In contrast, agile software engineering promotes incrementality, continuous
integration, delivery, and continuous deployment [18]. In our experience, these practices are perfectly
applicable to development of DSLs and systems using DSLs. Furthermore, key agile practices, such
as automated testing and continuous integration, require extreme automation, and in that synergize with
MDSE practices. MDSE can accelerate programming in agile projects, and can enable automation for
continuous test, integration, and deployment. The MDSE trend is further seen in the rise of low-code
and no-code platforms (see the box on p. 12).

Model and language quality. Selić [56] sees low-quality models and non-
adequate abstraction levels as significant risks. Since MDSE is so powerful,
low-quality models can have far-reaching negative impact. Deursen, Klint,
and Visser [16] see balancing between generality and domain-specificity in
DSL development as a challenge. An important quality property for DSLs
is that they are properly scoped—so neither include too many nor too few
concepts of the domain. A badly scoped DSL is a risk. Finally, when code
generation is used, the efficiency of the generated code is a considered risk
[16], but as we point out above, generated code is often more efficient.

Model consistency. Models need to be kept in sync with code and other
artifacts. A risk of inconsistencies arises when consistency is not actively
maintained [19]. Forward and Lethbridge postulate a need for better trace-
ability and facilities for partial updates or co-evolution. Use of embedded
DSLs (within code) could also lower this risk.

Tooling. Quality of tools is definitely a problem, even though the situation
has improved significantly over the last decade. Hutchinson et al. [31]
report over 50 tools used by the respondents, which suggests a lack of
maturity—definitive market leaders are yet to emerge. Tools are immature;
complaints about prices are common. Liebel et al. [39] further emphasize
tool interoperability and tool usability. In this book however, we use solely
open-source tools and widely available programming languages.

Bug fixing. While with MDSE introducing changes is easier, bug fixing
may be perceived as harder [19]. This is confirmed by our own experience,
especially in teaching, when students are new to the subject. Experience
helps; many problems are adoption related. The idiosyncrasies of many
tools challenge users early on. One has to remember though that when
software is developed without MDSE, the number of bugs is higher, even if
some of them appear very simple.

Further Reading

The idea of DSLs is usually tracked to the seminal paper of Landin [38] on the
next “700 programming languages.” Landin is concerned with a family of related
languages, where differences are introduced by (possibly significant amounts of)

20 Chapter 1. Using Modeling Languages

syntactic sugar, rather than with creating special purpose languages. His languages
differ syntactically, but share the same expressiveness. The suggestive title, and
the fact that it argues the need for diverse language syntaxes for various needs, is
probably the reason why this paper is considered as the first mention of DSLs.

The book by Stahl and Völter [58] is likely the most-referenced book on MDSE
that really helped to establish MDSE as a field and made it known to practitioners. It
presents the UML-based approach to DSLs. Using UML and stereotyping was one
of the earliest and remains one of the easier ways to create graphical languages. In
his newer book, Völter [63] focuses on using and developing DSLs. In many ways,
this text is more comprehensive than ours, however we strive to present the material
in style and structure suitable for use in an academic course, without assuming an
extensive training in compiler theory. A classic presentation of DSL design is given
by Fowler and Parsons [21], who thoroughly and excellently discuss the patterns
and guidelines for implementing and using DSLs. However, their implementation
of DSLs is not as much model-driven as in this book, which focuses on automation
more heavily. Another recent text on MDSE is the book of Combemale et al. [12].
It teaches language design for MDSE in a concrete manner, showing models and
code, and discussing examples. It includes exercises and code in a git repository,
encouraging experimentation. The book gives a good coverage of language work-
benches and of external DSL design. It also brings in some formal, mathematical
semantics to the reader to mitigate a bit the vagueness found in some other MDSE
literature, however it remains strictly in the object-oriented universe, while we are
trying to bridge the gap between the functional and object-oriented DSL traditions.

The book of Lämmel [36] is the most recent addition to this body of knowledge.
The book covers a breadth of methods with technologies and theories for the imple-
mentation of languages, from both an object-oriented and a functional perspective,
whereas the latter prevails. Haskell, Python, and Java are used as the key program-
ming languages. The object-oriented approach is presented directly in Java, with lim-
ited use of modeling and no explicit domain analysis. The book is strong on the pro-
gramming language and semantics background (e.g., it introduces Lambda calculus
and abstract interpretation), and comes with a code repository and many exercises.

Brambilla, Cabot, and Wimmer [8] present a good overview of model-driven
development architectures, processes, and benefits, in a manner very suitable for
experienced software developers who appreciate the software engineering issues
solved by MDSE, and who are trained in language design and implementation.

Rogers and Girolami [52] give an efficient introduction to data analytics and
machine learning—this helps one to appreciate the KNIME example in Fig. 1.2.

References

[1] Charles Babbage. Note on the application of machinery to the computation
of astronomical and mathematical tables. 1822 (cit. p. 6).

[2] Paul Baker, Shiou Loh, and Frank Weil. “Model-driven engineering in a
large industrial context–Motorola case study”. In: International Conference
on Model Driven Engineering Languages and Systems (MODELS’05). 2005
(cit. pp. 13, 16).

[3] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysz-
tof Czarnecki. “A study of variability models and languages in the systems
software domain”. In: IEEE Transactions on Software Engineering 39.12
(2013), pp. 1611–1640 (cit. p. 7).

References 21

[4] Jean Bézivin. “On the unification power of models”. In: Software and
System Modeling 4.2 (2005), pp. 171–188 (cit. pp. 8, 14).

[5] Stefan Biffl, Richard Mordinyi, and Alexander Schatten. “A model-driven
architecture approach using explicit stakeholder quality requirement models
for building dependable information systems”. In: Proceedings of the 5th
International Workshop on Software Quality. IEEE Computer Society. 2007,
p. 6 (cit. p. 16).

[6] Mary Bone and Robert Cloutier. “The current state of model based systems
engineering: results from the OMG SysML request for information 2009”.
In: Proceedings of the 8th Conference on Systems Engineering Research.
2010 (cit. pp. 12, 13).

[7] George Box and Norman Draper. Empirical Model-Building and Response
Surfaces. Wiley, 1987 (cit. p. 5).

[8] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool, 2012 (cit. p. 20).

[9] Marco Brambilla, Stefano Ceri, Piero Fraternali, Roberto Acerbis, and
Aldo Bongio. “Model-driven design of service-enabled web applications”.
In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data. ACM, 2005 (cit. p. 13).

[10] Manfred Broy. “Challenges in automotive software engineering”. In: Pro-
ceedings of the 28th International Conference on Soft. Eng. (ICSE’06).
ACM, 2006 (cit. p. 13).

[11] Davide Brugali. Software engineering for experimental robotics. Vol. 30.
Springer, 2007 (cit. p. 13).

[12] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turn-
ing Domain Knowledge Into Tools. CRC Press, 2016 (cit. p. 20).

[13] Jesús Sánchez Cuadrado, Javier Luis Cánovas Izquierdo, and Jesús García
Molina. “Applying model-driven engineering in small software enterprises”.
In: Sci. Comput. Program. 89.PB (Sept. 2014), pp. 176–198 (cit. p. 12).

[14] Gan Deng, Tao Lu, Emre Turkay, Aniruddha Gokhale, Douglas C Schmidt,
and Andrey Nechypurenko. “Model driven development of inventory track-
ing system”. In: Proceedings of the OOPSLA 2003 Workshop on Domain-
Specific Modeling Languages. 2003 (cit. p. 13).

[15] Arie Deursen and Paul Klint. Little languages: little maintenance? Tech.
rep. Amsterdam, The Netherlands, 1997 (cit. pp. 11, 17).

[16] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages:
An annotated bibliography”. In: SIGPLAN Notices 35.6 (2000) (cit. pp. 14–
19).

[17] Harald Eisenmann, Juan Miro, and Hans Peter Koning. “MBSE for Euro-
pean space-systems development”. In: INSIGHT 12.4 (2009), pp. 47–53
(cit. p. 13).

[18] Brian Fitzgerald and Klaas-Jan Stol. “Continuous software engineering and
beyond: trends and challenges”. In: Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. 2014 (cit. p. 19).

[19] Andrew Forward and Timothy C. Lethbridge. “Problems and opportunities
for model-centric versus code-centric software development: a survey of
software professionals”. In: Proceedings of the 2008 International Work-

22 Chapter 1. Using Modeling Languages

shop on Models in Software Engineering. MiSE ’08. 2008 (cit. pp. 11,
17–19).

[20] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Professional, 2004 (cit. p. 8).

[21] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison-
Wesley, 2011 (cit. p. 20).

[22] David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons, 2003 (cit. p. 12).

[23] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. “A domain specific
language for kinematic models and fast implementations of robot dynamics
algorithms”. In: Workshop on Domain-Specific Languages and Models for
Robotic Systems. 2011 (cit. p. 13).

[24] Sergio Garcia, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and
Rebekka Wohlrab. “An architecture for decentralized, collaborative, and
autonomous robots”. In: International Conference on Software Architecture
(ICSA). 2018 (cit. p. 13).

[25] Sergio Garcia, Daniel Strueber, Davide Brugali, Thorsten Berger, and Pa-
trizio Pelliccione. “Robotics software engineering: A perspective from the
service robotics domain”. In: 28th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE). 2020 (cit. p. 13).

[26] Sergio Garcia, Daniel Strueber, Davide Brugali, Alessandro Di Fava, Pa-
trizio Pelliccione, and Thorsten Berger. “Software variability in service
robotics”. In: Empirical Software Engineering (2022) (cit. p. 13).

[27] Sergio Garcia, Daniel Strueber, Davide Brugali, Alessandro Di Fava, Philipp
Schillinger, Patrizio Pelliccione, and Thorsten Berger. “Variability model-
ing of service robots: Experiences and challenges”. In: 13th International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS).
2019 (cit. p. 13).

[28] Dre Hendriks. “The selection process of model based platforms”. MA thesis.
Radboud University Nijmegen, 2017 (cit. p. 12).

[29] R. M. Herndon Jr. and V. A. Berzins. “The realizable benefits of a language
prototyping language”. In: IEEE Trans. Softw. Eng. 14.6 (June 1988),
pp. 803–809 (cit. p. 17).

[30] Liwen Huang and Paul Hudak. Dance: A declarative language for the
control of humanoid robots. Tech. rep. Department of Computer Science,
Yale University New Haven, CT, USA, 2003 (cit. p. 13).

[31] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen.
“Empirical assessment of MDE in industry”. In: ICSE. 2011 (cit. pp. 8, 11,
17–19).

[32] Daniel Jackson. Software Abstractions. MIT Press, 2006 (cit. p. 15).
[33] Eric Jouenne and Véronique Normand. “Tailoring IEEE 1471 for MDE

support”. In: UML Modeling Languages and Applications. Ed. by Nuno
Jardim Nunes, Bran Selić, Alberto Rodrigues da Silva, and Ambrosio Toval
Alvarez. Springer-Verlag, 2005 (cit. p. 13).

[34] Richard B. Kieburtz. Defining and Implementing Closed, Domain-Specific
Languages. Invited talk at the Workshop on Semantics, Applications and
Implementation of Program Generation (SAIG). 2000 (cit. p. 16).

[35] Richard B. Kieburtz et al. “A software engineering experiment in software
component generation”. In: ICSE. IEEE Computer Society, 1996 (cit. p. 17).

References 23

[36] Ralf Lämmel. Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2018 (cit. p. 20).

[37] Ralf Lämmel. Yet another annotated SLEBOK bibliography. 2014. URL:
https://github.com/slebok/yabib (cit. p. 14).

[38] Peter J. Landin. “The next 700 programming languages”. In: Commun.
ACM 9.3 (1966), pp. 157–166 (cit. p. 19).

[39] Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and Jörgen
Hansson. “Assessing the state-of-practice of model-based engineering in
the embedded systems domain”. In: International Conference on Model
Driven Engineering Languages and Systems (MODELS). 2014 (cit. pp. 8,
14–16, 18, 19).

[40] Anthony MacDonald, Danny Russell, and Brenton Atchison. “Model-driven
development within a legacy system: An industry experience report”. In:
Australian Software Engineering Conference. 2005 (cit. p. 13).

[41] Amen Ra Mashariki, LeeRoy Bronner, and Peter Kazanzides. “Designing
and developing medical device software systems using the model driven
architecture (MDA)”. In: Proceedings of the 2007 Joint Workshop on High
Confidence Medical Devices, Software, and Systems and Medical Device
Plug-and-Play Interoperability. HCMDSS-MDPNP ’07. 2007 (cit. p. 13).

[42] Niklas Mellegård, Adry Ferwerda, Kenneth Lind, Rogardt Heldal, and
Michel RV Chaudron. “Impact of introducing domain-specific modelling in
software maintenance: an industrial case study”. In: IEEE Trans. on Soft.
Eng. 42.3 (2016), pp. 245–260 (cit. p. 13).

[43] Stephen J. Mellor. MDA Distilled: Principles of Model-Driven Architecture.
Addison-Wesley Professional, 2004 (cit. p. 12).

[44] Parastoo Mohagheghi and Vegard Dehlen. “Where is the proof?—a review
of experiences from applying MDE in industry”. In: Proceedings of the
4th European Conference on Model Driven Architecture: Foundations and
Applications. ECMDA-FA’08. 2008 (cit. pp. 12–14, 16).

[45] Arne Nordmann, Nico Hochgeschwender, Dennis Leroy Wigand, and Se-
bastian Wrede. “A survey on domain-specific modeling and languages in
robotics”. In: Journal of Software Engineering in Robotics (JOSER) 7.1
(2016), pp. 75–99 (cit. p. 13).

[46] Object Management Group. MDA Guide revision 2.0. http://www.omg.org/cgi-
bin/doc?ormsc/14-06-01. 2014 (cit. p. 12).

[47] Object Management Group. Unified Modeling Language Specification 2.5.1.
https://www.omg.org/spec/UML. 2017 (cit. p. 8).

[48] Marian Petre. “UML in practice”. In: Proceedings of the 2013 International
Conference on Soft. Eng. IEEE Press. 2013 (cit. p. 8).

[49] Ivens Portugal, Paulo S. C. Alencar, and Donald D. Cowan. “A survey on
domain-specific languages for machine learning in big data”. In: CoRR
abs/1602.07637 (2016). arXiv: 1602.07637 (cit. p. 14).

[50] Clay Richardson and John R Rymer. “Vendor landscape: the fractured,
fertile terrain of low-code application platforms”. In: FORRESTER, Janeiro
(2016) (cit. p. 12).

[51] Thomas Röfer. “CABSL—C-based agent behavior specification language”.
In: RoboCup 2017: Robot World Cup XXI. Lecture Notes in Artificial
Intelligence. Springer, 2018 (cit. p. 13).

https://github.com/slebok/yabib
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/UML
https://arxiv.org/abs/1602.07637

24 Chapter 1. Using Modeling Languages

[52] Simon Rogers and Mark Girolami. A First Course in Machine Learning.
2nd Edition. Chapman & Hall/CRC, 2016 (cit. p. 20).

[53] Laurent Safa. “The practice of deploying DSM, report from a Japanese
appliance maker trenches”. In: 6th OOPSLA Workshop on Domain Specific
Modeling. 2006 (cit. p. 13).

[54] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso
Pierantonio. “Supporting the understanding and comparison of low-code
development platforms”. In: 2020 46th Euromicro Conference on Soft. Eng.
and Advanced Applications (SEAA). IEEE. 2020 (cit. p. 12).

[55] Bran Selić. Model-Based Software Engineering in Industry: Revolution,
Evolution, or Smoke? https://www.youtube.com/watch?v=miPZyfRIcs8. 2017
(cit. pp. 11, 13).

[56] Bran Selić. “The pragmatics of model-driven development”. In: IEEE
Software 20.5 (2003), pp. 19–25 (cit. pp. 5, 7, 8, 11, 17–19).

[57] SPARC. Robotics 2020 Multi-Annual Roadmap. 2016. URL: https: / /old .
eu- robotics.net /cms/upload / topic_groups /H2020_Robotics_Multi - Annual_
Roadmap_ICT-2017B.pdf (cit. p. 13).

[58] Thomas Stahl and Markus Völter. Model-Driven Software Development.
Wiley, 2005 (cit. p. 20).

[59] Miroslaw Staron. “Adopting model driven software development in industry:
a case study at two companies”. In: Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems. MoD-
ELS’06. 2006 (cit. p. 13).

[60] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and
Gianna Reggio. “Preliminary findings from a survey on the md state of the
practice”. In: International Symposium on Empirical Software Engineering
and Measurement (ESEM). 2011 (cit. pp. 12, 18).

[61] Bruce Trask, Dominick Paniscotti, Angel Roman, and Vikram Bhanot.
“Using model-driven engineering to complement software product line engi-
neering in developing software defined radio components and applications”.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications. 2006 (cit. p. 13).

[62] Nikola Trčka, Martijn Hendriks, Twan Basten, Marc Geilen, and Lou
Somers. “Integrated model-driven design-space exploration for embedded
systems”. In: Embedded Computer Systems (SAMOS), 2011 International
Conference on. IEEE. 2011, pp. 339–346 (cit. p. 13).

[63] Markus Völter. DSL Engineering. Designing, Implementing and Using
Domain Specific Languages. 2013. URL: http://www.dslbook.org (cit. p. 20).

[64] Thomas Weigert and Frank Weil. “Practical experiences in using model-
driven engineering to develop trustworthy computing systems”. In: Sensor
Networks, Ubiquitous, and Trustworthy Computing, 2006. IEEE Interna-
tional Conference on. Vol. 1. IEEE. 2006, 8–pp (cit. pp. 13, 17).

[65] Jon Whittle, John Hutchinson, and Mark Rouncefield. “The state of practice
in model-driven engineering”. In: IEEE software 31.3 (2014), pp. 79–85
(cit. p. 8).

[66] Stefan Winkler and Jens von Pilgrim. “A survey of traceability in require-
ments engineering and model-driven development”. In: Software & Systems
Modeling 9.4 (2010), pp. 529–565 (cit. p. 17).

https://www.youtube.com/watch?v=miPZyfRIcs8
https://old.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://old.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://old.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
http://www.dslbook.org

2 Building Modeling Languages

Everything is a model.

Jean Bézivin [8]

Our goal is to automate the development of software in a given domain
by using models to describe its essential characteristics and producing
applications using code generation and interpretation. To this end, we
need a language to express the models, its instances. This book is about
designing and implementing languages—your opportunity to become a
language designer. In this chapter, we first discuss the need for domain
specificity, and then follow with a brief overview of the topics involved in
language design—all of them discussed in great detail in later chapters.

2.1 The Story of Abstraction in Programming Languages

General-purpose programming languages (GPLs) aim at describing algo-
rithms and structuring software systems. As such, they are not tailored
towards a particular domain, but contain general computation-related con-
cepts such as loops, conditionals, and types. Over time, GPLs have become
increasingly abstract, to tackle ever-increasing complexity of software.

The very first programming languages—machine languages—only con-
tained instructions that the machine’s processor could execute directly, such
as counting, reading registers, and basic input/output operations on memory
and hardware devices. The instructions were stored as binary numbers. Con-
trol flow jumps in these languages used concrete memory addresses to indi-
cate program locations. In order to allow more complex programs to be writ-
ten, the assembly languages were designed; colloquially known as assem-
blers [9]. They brought jumps and limited arithmetic expressions. Numeric
instruction codes were replaced by human-readable mnemonic names and
named labels for jumps were added. The introduction of assembly language
dramatically raised the level of abstraction in programs, hiding the complex
low-level aspects of the machine. For the first time, a compiler had to be
used to transform the assembly code into machine-executable binary code.

The next generation of languages were touted as being high-level. Fortran
was the first [4], Algol 60 followed shortly after [3]. Both were imperative
languages, introducing concepts such as loops, conditionals, and recursion.
LISP, presented around the same time, was the first functional language
based on Church’s lambda calculus with the idea of function value as the
main building block of a program [39]. Finally, COBOL brought abstrac-
tions needed for business programming, such as macros and hierarchical
data structures [15]. All high-level languages shared the goal of moving the
computation away from low-level aspects of machine operation to abstract
terms representing application-level concepts.

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_2

25

https://doi.org/10.1007/978-3-031-23669-3_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_2&domain=pdf

26 Chapter 2. Building Modeling Languages

The next well-recognized evolutionary leap in programming languages
was the introduction of object-oriented programming. Simula 67 extended
Algol 60 with strong modularization concepts: objects and classes, spe-
cialization and generalization of data types, aggregation of related data,
and encapsulation of related behavior [18]. Among the most popular
object-oriented languages were C++, Java, and C#—one of which you are
probably familiar with. Nowadays, we observe an increasing incorporation
of functional-programming concepts, such as anonymous functions (also
known as lambdas) and closures into object-oriented languages, as can
be seen with Java 8, Kotlin, Python, etc. Scala is probably the language
combining the most object-oriented and functional features.

In retrospect, the history of programming languages is a history of
abstractions. The later languages enrich the abstraction capabilities of their
predecessors, even though the predecessors were already Turing-complete.
This means that, for a long time now, the expressiveness of a programming
language has been much less important than its abstraction capabilities.

2.2 The Ultimate Abstraction: Domain-Specific Languages

A practical way to further increase the abstraction in software development
is to introduce domain-specific languages. With DSLs, one can add domain-
specific concepts directly into the language. Instead of trying to find a
general-purpose abstraction, one can design abstractions that capture the
essential aspects of the domain and hide the inessential ones. Such a
language can no longer be used for arbitrary applications, but it raises the
abstraction level for applications in the problem domain that it supports.
DSLs are the ultimate abstraction [27].

Good examples of successful languages that abstract away substantial
amounts of details, yet put a lot of power into the hands of their users, are
HTML and SQL. Both hide the complex algorithms needed to execute them.
HTML hides the layout algorithms. SQL abstracts away query execution
mechanisms. Both expose high-level domain-specific concepts, for instance,
document elements and data relationships.

Definition 2.1. A domain-specific language (DSL) is a computer pro-
gramming or modeling language of limited expressiveness focused on a
particular domain or its aspect.1

Today, engineers can use modern tools, the so-called language workbenches,
to create languages for much smaller domains than SQL and HTML. Lan-
guage workbenches allow DSL infrastructure to be built cost-effectively.
The next leap in the history of abstraction in programming is in the hands of
software architects. It is now feasible to create compilers solely to increase
the quality and efficiency of individual software projects and products.

The concepts within a DSL need to pertain to a domain to be coherent
enough and understandable for the users. Otherwise, it would be too difficult

1After Fowler and Parsons [23]

2.2. The Ultimate Abstraction: Domain-Specific Languages 27

to use the language. In fact, limiting the language elements in a DSL to a do-
main is one of the core strengths of DSLs, which eases their use and makes
them appealing to both domain experts, end-users knowledgeable in the do-
main, and of course developers. A typical definition of domain is as follows.

Definition 2.2. A domain is an area of knowledge scoped to maximize the
satisfaction of the requirements, including a set of concepts and terminology
understood by practitioners in the area, and including knowledge of how to
build software systems (or their parts) in the area.2

The need to build a new language introduces a tension into MDSE: to lower
the cost for system engineering we need to invest additional development
into language engineering. Two forces act to reduce this cost: distribution
of cost across multiple projects, and advances in language technology.

Distribution of cost across multiple projects. MDSE is cost-effective if the
DSL is reused across multiple projects. For instance, a consulting firm that
customizes enterprise-resource-planning systems can build and maintain
extensions for several different customers efficiently using a DSL. A DSL
for coordinating autonomous robots will benefit the developers if they can
reuse the same language in several similar robotics projects. MDSE is
beneficial within a single project if concise domain-specific models replace
substantial boilerplate code in many places, as is the case with embedded
SQL or LINQ for database access. In all these examples, the cost of
language development is offset by claiming the benefits multiple times.

Advances in software tools. Any organization deciding to develop a DSL
needs language designers. Traditionally, this was not an easily avail-
able skill. Language designers and implementers were rare, and they
found jobs in compiler companies. However, thanks to the emergence of
well-integrated language workbenches along with the inclusion of meta-
programming (cf. Chapter 7) facilities and libraries in mainstream GPLs,
implementing DSLs has become much easier. It no longer requires spe-
cialized compiler knowledge or excessive time. It can be undertaken by
most software developers who have completed a software-engineering or
computer-science education, without dominating the cost of the primary
development.

Definition 2.3. A language workbench is a tool for creating and using
(domain-specific) languages.

Language workbenches are a rather mature technology, that has existed
already since 1980 [20]. One example is Xtext, a modern tool for de-
velopment of textual DSLs. We discuss it in Chapter 4. A popular tool
for development of graphical DSLs is Sirius [59, 61]. The gallery of
languages developed using Sirius is worth a check.3 Figure 2.1 shows a

2After Czarnecki and Eisenecker [17]
3https://www.eclipse.org/sirius/gallery.html, retrieved 2022/08

https://www.eclipse.org/sirius/gallery.html

28 Chapter 2. Building Modeling Languages

Wifi

Central_Unit

DSP

Motion_Engine

100

CaptureSubSystem

Radar_Capture

Engine

GPUBack_Camera

Radar

20

6

6

4

10

6

6

10

Figure 2.1: A robot-flow (architecture) model created in a graphical DSL designed in the language workbench Sirius Web, the
cloud-computing web-based version of Eclipse Sirius, supporting building live collaborative editing environments for graphical DSLs

robot architecture diagram in a visual DSL designed with a web-based
variant of Sirius.4 The standard graphical editor for Ecore models, used to
create many figures in this book, is implemented using Sirius, too.

Projectional language workbenches are conceptually similar to the work-
benches for graphical languages, but support both textual and graphical
syntax in an integrated manner. They achieve this by replacing a standard
text editor with a so-called projectional editor. In contrast to a regular
text editor combined with a parser, a projectional editor allows users to
edit a structured tree representation of the model directly. The structure is
rendered into a textual notation which creates an illusion of a text editor,
very much like WYSIWYG editors for HTML or for word processing.
A user editing the text directly changes the nodes of the underlying rep-
resentation, without any parsing. This technology allows for rendering
of graphical notations and providing both textual and graphical notations
within a single language, even within a single document. We return to
projectional languages and projectional editing in Chapter 13.

2.3 What Is a Language Built From?

Let us now consider what is it that we have to build when we design a new
language; what is a language? Or more precisely: how can language design
and implementation be split into smaller tasks? Most often we organize
a language implementation in a chain of processors in a pipeline. The
components are coarsely divided into two large groups, corresponding to
the main parts of any language, the syntax and the semantics.

4https://www.eclipse.org/sirius/sirius-web.html, retrieved 2022/08

https://www.eclipse.org/sirius/sirius-web.html

2.3. What Is a Language Built From? 29

Instance of a DSL: A Model, Code, a Program, or a Mogram?
We build DSLs to write models and programs also called instances. Interestingly, there is no single
English noun that describes the different kinds of instances, other than “instance” itself, which is rather
abstract and cryptic. The instances are typically called “models,” but are also referred to as “programs”
or “code,” even if these words do not really mean the same. In our context, it is essentially equivalent to
talk about models, code, or programs. After all, almost everything in software engineering is a model [8].

Kleppe [31] tried to introduce a neologism mogram to describe the things that can be written in a
language, emphasizing the commonalities between models, programs, and code. In her view, the most
important part of a language is the definition of the abstract syntax (the meta-model). The actual name
used for the instances is less important. Sadly, the word “mogram” has not caught on in the community.
Völter [60] explicitly points out that he does not distinguish between model, code, and program; if he
uses model and program in the same sentence, then model refers to the more abstract representation. So,
abstraction is his main characteristic of a model, in line with Def. 1.1. Consequently, we also use the
terms model, program, and code synonymously in this book.

Definition 2.4. The syntax is the definition of the principles and processes
by which sentences are constructed in a particular language.5

The above definition, originally proposed for natural languages (the lan-
guages spoken by humans), applies well to programming and modeling
languages. Syntax defines what programs we can write in a language.
The semantics, on the other hand, is concerned with the meaning of the
programs written in a given language.

Definition 2.5. The semantics are the (study of) meanings of a language.6

Similarly to syntax, the term “semantics” is applied to natural languages
spoken by people. Logicians introduced it to formal languages, to talk
about the meaning of terms in formal logics. The inspiration from logics
led the early theoretical computer scientists to adopt the distinction between
the syntax and semantics in the definition of programming languages—the
distinction that carried over to modern language implementation patterns.

Example 5. Let us explore the concepts of syntax and semantics using an
example. Consider a simple language for controlling mobile robots, with the
uninspiring name robot. It loosely follows the principle of reactive control,
a specific way of controlling the behavior of robots.7 An example model
can be found in Fig. 2.2. There are two key aspects that organize models in
this hypothetical language: modes of operation and flows between modes—
continuations. We have four modes in the example model: RandomWalk,
MovingForward, Avoid, and ShutDown. The modes can be nested. The last
three modes are nested in the first mode (RandomWalk).

A mode may contain other modes, actions, and reactions. Actions resemble
regular programming-language statements—they are immediately executed

5After Chomsky [13].
6After Merriam-Webster’s Collegiate Dictionary.

30 Chapter 2. Building Modeling Languages

Figure 2.2: An example of a
control model in the textual

robot language, describing a
robot performing a random

walk while avoiding obstacles

1 -> RandomWalk {
2 on clap -> ShutDown

4 -> MovingForward {
5 move forward at speed 10
6 on obstacle -> Avoid
7 }

9 Avoid {
10 move backward for 1 s
11 turn by random (-180,180)
12 } -> MovingForward

14 ShutDown { return to base }
15 }

as the mode is activated, in the order listed. The actions in the example are:
move, turn, and return to base. Reactions, introduced using the keyword
on, are not executed immediately, but registered and suspended. Each reaction
is triggered by an event, when it switches the mode to a new mode. The
two events in the example are: obstacle and clap. Reactions are only
active if their mode is active. Reactions are registered on the fly when a
mode is activated, but are only handled after all actions are completed (non-
preemptively). For instance, if the robot is in the MovingForward mode and
encounters an obstacle, the active mode becomes Avoid.

A mode can also have a continuation mode, a successor. These are indicated
using the arrow symbol (->). If a mode has a successor mode, then the control
switches to it immediately after all actions have been executed. For instance,
after Avoid the control moves to MovingForward. If a mode has no successor,
the control stays in place, and awaits for any possible reaction triggers. In
robot, one can only define a single successor for a mode. If control needs
to flow to various modes as a result of execution, this can only be done by
registering reactions that have different targets.

The same arrow symbol (->) is also placed before the initial mode, in the
context of its containing mode (see MovingForward). There must be exactly
one initial mode at each level of nesting.

The syntax of a model (or a program) is what you can directly see and read.
For instance, when looking at Fig. 2.2, you see the syntax of our example
model. The syntax is described with phrases of the following kind:

• A mode may contain other modes, actions, and reactions.
• There must be exactly one initial mode at each level of nesting.

The semantics of a model define what the model means: how the robot shall
behave according to the model. For the model in Fig. 2.2, the semantics is that
of a random walk. Semantics are defined over all instances of a language, but
they are only implemented once for the language. Semantics regulate detailed
aspects of behavior, for instance, whether modes are pre-emptive or not. If
you specify in the semantics that modes are pre-emptive, this would mean that
modes could be switched whenever a suitable reaction is triggered, leading

2.4. Building a Language 31

Figure 2.3: Two example
educational robots that are
possible execution platforms
for the robot control language
used in Fig. 2.2: Thymio (left),
Lego Mindstorms NXT (right)

to a new active mode, even when a computation is active in another mode.
Statements like the following describe the semantics of robot:

• Reactions are only active if their mode is active.
• If a mode has a successor mode, then the control switches to it immediately

after all actions have been executed.

Robot is implemented in our online repository, in the project robot/ and
related projects with the same prefix. We should now consider how the
syntax and semantics of this language are implemented.

2.4 Building a Language

How do we get the robot control language presented in Fig. 2.2 to execute
on a piece of real hardware, for instance on one of the robots shown in
Fig. 2.3? The language implementation is split into five coarse aspects:

• Concrete Syntax: How does a language look to users? What do the users
write or draw?

• Abstract Syntax: How are the models or programs of the language repre-
sented in the memory of a computer? What do the language designers
use to implement the language?

• Static Semantics: What models or programs written in the language are
legal? What models are erroneous (e.g., do not make sense)?

• Dynamic Semantics: An interpreter, a code generator, or a visualizer that
gives computational meaning to the language.

• Design Environment: The tools for creating models and programs in the
language (an IDE).

In the remainder of this chapter we demonstrate these key components using
the robot example. For each of the five aspects we discuss a definition, an
example, a way to specify or implement it, and the existing tool support.

7See also Chapter 14, especially Section 14.3, in the book of Matarić [38]

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot/

32 Chapter 2. Building Modeling Languages

Figure 2.4: A context-free
grammar defining the syntax of

the mobile robot control
language robot

Mode → ’->’? Id ’{’ (Action | Reaction | Mode)∗ ’}’
(’->’ Id)?

Reaction → ’on’ Event ’->’ Id

Action → (AcDock | AcMove | AcTurn)

(’for’ AExpr ’s’ | ’at’ ’speed’ AExpr)?
AcDock → ’return’ ’to’ ’base’
AcTurn → ’turn’ (’right’ | ’left’)? (’by’ AExpr)?

AcMove → ’move’ (’forward’ | ’backward’)
AExpr → MinusMultExpr | PlusMultExpr

PlusMultExpr → ’+’? MultExpr ((’+’ | ’-’) MultExpr)∗

MinusMultExpr → ’-’ MultExpr ((’+’ | ’-’) MultExpr)∗

MultExpr → Atomic ((’*’ | ’/’) Atomic)∗

Atomic → RndI | INT | ’(’ AExpr ’)’
RndI → ’random’ (’(’ AExpr ’,’ AExpr ’)’)?

Event → ’obstacle’ | ’clap’

Concrete Syntax

The concrete syntax of the language is the user interface of the language.
This is what language users write or otherwise create. For textual languages,
the concrete syntax is what is created in text editors and saved as files of
characters. Figure 2.2 presents the random walk model in concrete syntax.

Specification. Any reader new to the topic surely appreciates how non-
obvious it is to build tools that work with concrete syntax. Automatically
extracting structure and meaning from a flat sequence of characters in
a file requires non-trivial analysis. Fortunately, by now, this problem is
extremely well understood, especially for simple languages like most DSLs.
The concrete syntax for textual programming and modeling languages is
typically defined using context-free grammars. An example for robot is
found in Fig. 2.4. You can see there that a mode is written by starting with
an optional arrow symbol (’->’?), followed by an identifier of the mode
(Id), further followed by a list of actions, reactions, and modes enclosed
in braces, and possibly followed by an identifier of the continuation mode.
Such a specification is sufficient to automatically generate a parser, which
will extract the core structure of the model from a text file and present it to
computer tools as a data structure. We will explain the details in Chapter 4.

Tools. Context-free grammars are interpreted by automatic tools known
as parser generators. A parser generator can automatically synthesize a
parser—a front-end for your language tool that builds data structures out
of textual input. A parser generated from a context-free grammar detects
syntax violation errors, such as unmatched braces, missing keywords, lack
of punctuation, etc. For robot it will, for instance, enforce that there has
to be exactly one top-level mode, in which all the other modes are nested.

2.4. Building a Language 33

: AcDock : CstI
value: EInt = -180

: CstI
value: EInt = 180

: RndI
value: EInt = 1

: AcTurn
duration: EBoolean = false

: CstI
value: EInt = 1

: AcMove
forward: EBoolean = false

: Reaction
trigger: Event = EV_OBSTACLE

: CstI
value: EInt = 10

: AcMove
forward: EBoolean = true

: Reaction
trigger: Event = EV_CLAP

:Mode
name: EString = "ShutDown"
initial: EBoolean = false

:Mode
name: EString = "Avoid"
initial: EBoolean = false

:Mode
name: EString = "MovingForward"
initial: EBoolean = true

:Mode
name: EString = "RandomWalk"
initial: EBoolean = true

actions

continuation

m a xmin

 angleactions

durationactions

target

reactions

actions speed

modes

target

reactions modes

modes

Figure 2.5: The abstract syntax of the random walk model. The bold lines indicate the tree structure

Abstract Syntax

The abstract syntax is a representation of a model or program inside com-
puter memory. This is the representation seen by software processing the
language—a compiler, a code generator, an interpreter, or an analyzer. The
representation as a string of characters is unwieldy, as it does not capture
the structure of the model/program well. Instead, the abstract syntax is
represented as a tree of objects with cross references—an abstract-syntax
tree, AST for short. An example of an abstract syntax for the model of the
random walking robot (Fig. 2.2) is shown in Fig. 2.5 using the syntax of
UML instance specifications. Each box represents an in-memory object
capturing an element of the original model. The tree is rooted in a node
representing a mode of the random walk. Follow the bold lines to see the tree
structure clearly. The root mode contains three sub-modes, which further
contain the actions and reactions. Try to establish an approximate corre-
spondence of nesting in this diagram with the syntactic nesting in Fig. 2.2.

Specification. Since abstract-syntax trees are data structures, they are
defined using types. Presently, two ways of specification are commonly ac-
cepted: class diagrams (classes in object-oriented languages) and algebraic
data types (in functional programming languages). The types defining the
abstract syntax are often referred to as a domain model or a meta-model.
We shall discuss both ways of specification in Chapter 3.

Tools. In the implementation of DSLs, the abstract syntax is a pivotal struc-
ture: most language tools (parsers, importers, validators, converters, code
generators, interpreters, visualizers) either produce or consume abstract syn-
tax. This means that a good definition of an abstract syntax will allow you
to separately develop and test various tool chain components, facilitating
the parallelization of work, and its distribution among team members.

34 Chapter 2. Building Modeling Languages

Figure 2.6: An incorrect model
of a random walk robot

controller, violating the static
semantics rules in the bottom

of the figure (presented in
Scala).

-> RandomWalkBroken {
on clap -> ShutDown
on clap -> Avoid

MovingForward {
move forward at speed 10
on obstacle -> Avoid

}

Avoid {
move backward for 1 s
turn by random (-180,180)

} -> MovingForward

ShutDown { return to base }
} source: robot/test-files/random-walk-broken.robot

Constraint: All reactions in the same mode should have distinct trigger events.

inv[Mode] { self =>
val triggers = self.getReactions.map { _.getTrigger }
triggers.toSet.size == triggers.size }

Constraint: A mode either has no sub-modes or it has an initial sub-mode.

inv[Mode] { self =>
(!self.getModes.isEmpty) implies

(self.getModes.exists {_.isInitial}) }

Static Semantics

The syntax of a language defines which models in the language are correct.
Still, just like for spoken languages, syntactic correctness does not guarantee
that a model makes sense. Consider the following sentence:

A context-free professor conjugates a well-typed glass of higher-
order students.

For most English speakers, the sentence will not appear correct, barring
some poetic or psychedelic interpretations. This is despite the fact that it
follows all basic grammar rules. The problem is that it violates commonly
agreed ways to link words in a meaningful manner.

A similar problem arises for computer languages, where not all syn-
tactically correct programs make sense. The static semantics eliminates
many incorrect models and programs. It is concerned with aspects such
as resolving name accesses (whether referred-to elements exist), ensuring
that expressions are correctly typed (whether added elements are numbers),
and so on. In the robot language, we may require that there is at most one
reaction rule for each event in a mode, so that reactions do not compete with
each other, or that any complex mode (mode with nested sub-modes) has an
initial sub-mode. The model of a randomly moving robot of Fig. 2.2 satisfies
both these rules, but the robot model in the top part of Fig. 2.6 violates both.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot/test-files/random-walk-broken.robot

2.4. Building a Language 35

Specification. Typically, static semantics are specified by means of im-
plementing a name analysis, type checking, and a number of validity
constraints. Definitions of static semantics are much less standardized
than definitions of syntax, although many theories and frameworks exist.
Example constraints for the mobile robot control language are shown in the
bottom of Fig. 2.6. More complex and sophisticated static checks can be
considered, although most designers would limit themselves to properties
that can be checked efficiently, to ensure good usability of the language tools.
We discuss definitions of static semantics extensively in Chapters 5 and 6.
Tools. Some aspects of static semantics can be handled by language
workbenches. For instance, Xtext has generic support for name analysis.
Other tools use dedicated DSLs for writing semantics as models, which can
then be automatically processed to enforce them. Examples include XSe-
mantics [7], JetBrain’s Meta-Programming System,8 NaBL29 a part of the
Spoofax workbench [28], and PLT Redex in the Scheme community [22].
The Object Constraint Language (OCL) [45] provides a standardized for-
malism, with several available implementations for specifying first-order
constraints. It was originally created, among others, to give static semantics
to languages, UML in the first place. Despite so many frameworks being
available, we promote implementing static semantics in GPLs, in contrast
to parsing concrete syntax, where manual implementations have gone out of
fashion long ago. The proliferation of functional-programming constructs
in mainstream GPLs allows concise and clean static semantics checks to
be specified without specialized languages (Chapters 5 and 6).

Dynamic Semantics

Dynamic semantics is typically realized either by interpreting (e.g., exe-
cuting, visualizing, or calculating) the models, or by translating to other
languages, for which the meaning is known. Typically, it can be defined in
multiple ways for the same language. We can give the meaning to robot by
translating the models to a language executable on the target robotic hard-
ware,10 or by interpreting the models directly on a robot controller running
a suitable robotics framework. One can also define the dynamic semantics
abstractly, using a mathematical formalism. For robot, a suitable meaning
would be a set of execution traces, listing modes, actions, and events. An ex-
ample trace is: RandomWalk, MovingForward, move forward at speed 10,
obstacle, Avoid, move backward for 1 s, turn by 30, MovingForward,
move forward at speed 10, clap, ShutDown, return to base. The set
of all execution traces would define the language formally and abstractly.

Figure 2.7 shows a fragment of an interpreter for robot, implemented
in Scala, on top of Robot Operating System (ROS).11 We do not expect

8https://www.jetbrains.com/help/mps/typesystem.html, retrieved 2022/08
9http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html, retrieved 2022/08

10For example, Aseba script on a Thymio robot (http://wiki.thymio.org/en:asebalanguage, retrieved
2022/08), or URScript on a Universal Robot’s arm [57].

11http://www.ros.org, retrieved 2022/08

https://www.jetbrains.com/help/mps/typesystem.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html
http://wiki.thymio.org/en:asebalanguage
http://www.ros.org

36 Chapter 2. Building Modeling Languages

Figure 2.7: An example of
dynamic semantics

implementation: the core part
of the interpreter for robot,

the mobile robot control
language

1 class Interpreter (root: Mode) extends NodeMain:

3 var lock: Lock = ReentrantLock ()

5 override def getDefaultNodeName (): GraphName =
6 GraphName.of ("dsldesign/robot/scala/interpreter")

8 override def onStart (cn: ConnectedNode): Unit =
9 Thread.sleep (1000)

10 var state = State (dsldesign.robot.scala.Thymio (cn),
11 Map[Event, Reaction] (), root)
12 var listener = new MessageListener[LaserScan] {
13 override def onNewMessage (msg: LaserScan): Unit =
14 // obstacle event
15 if msg.getIntensities.sum > 0.09 && lock.tryLock then
16 try state = state.processEvent (EV_OBSTACLE)
17 finally lock.unlock

19 if lock.tryLock then
20 try
21 state.thymio.getProximityTopic.addMessageListener (listener)
22 state = state.activate
23 finally lock.unlock
24 ... source: robot.scala/src/main/scala/dsldesign/robot/scala/interpreter/Interpreter.scala

you to study how this is implemented. Instead, focus on the semantic gap
between Fig. 2.7 (robot program interpreter) and Fig. 2.2 (robot program).
In the interpreter, notice the concepts such as locks (line 3), threads (line 9),
listeners and callbacks (lines 12–13), and exception handling (lines 16–17).
All these concepts are necessary to implement the desired behavior in ROS,
but they are absent in robot models. This clearly illustrates the nature of
DSLs: a complex interpreter hides a large gap between the low-level lan-
guage implementation and the input model, or between the problem space
and the solution space. This gap is beneficial for the users of the language,
who no longer have to worry about convoluted implementation concepts.

An additional function of dynamic semantics is to detect any remaining
errors in models, introducing “last-minute” runtime validity checks—those
that are necessary, but could not have been performed statically. It is well
agreed between language experts that every non-trivial question about a
program is undecidable.12 Thus, static semantics can only guarantee well-
formedness of models and programs to a limited extent. For a GPL, a
property that is difficult to guarantee statically is the lack of divisions by
zero. An example for a DSL could be whether there exists an instance
satisfying all constraints in the diagram, or whether unsafe states are
unreachable. If we need to enforce properties that are not checked statically,
we insert them into dynamic semantics as runtime checks.

Specification. Dynamic semantics are usually implemented by building
either an interpreter or a translator (a code generator). The differences, ad-

12Rice’s theorem gives a formal reason [26, 48].

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.scala/src/main/scala/dsldesign/robot/scala/interpreter/Interpreter.scala

2.4. Building a Language 37

vantages, and disadvantages of various strategies are discussed in Chapter 9,
where we build a code generator, and another interpreter, for robot.

Admittedly, by following the compiler terminology, we misuse the term
dynamic semantics for DSLs. Unlike for GPLs, the semantics of many
DSLs is not dynamic at all—they are not executable. For instance, DSLs for
modeling structures (class diagrams), for modeling software configurations
(feature models, see Sect. 11.4), or for modeling styling visualizations
(CSS) are not directly operational. A CSS style sheet mostly describes how
things “look” not how things “behave.” In such cases, we basically mean
that the dynamic semantics is the implementation of the back-end of the
language-processing tools, for instance a code generator for class diagrams,
a renderer for CSS, or an interactive configurator for feature models.

Tools. Some of the same tools that can be used to specify static semantics
can also allow us to define dynamic semantics by defining operational reduc-
tion rules in a specialized DSL (see Chapters 7 and 8). The reduction rules
define an evolution of the system by specifying how an expression specify-
ing a system’s state evolves over time through rewriting, analogously to how
rewriting can be used to calculate a mathematical expression. Specialized
transformation languages are well suited for this purpose. However, it is
still most common to implement the dynamic semantics directly in a GPL.
Especially modern functional programming languages such as Haskell, F#,
and Scala lend themselves very well to this task. Their predecessor, the
ML language (later known as Standard ML or SML) was in fact designed
with meta-programming as a primary use case. The early application of ML
was the implementation of the theorem proving system LCF [24], where
syntax trees of formulae had to be rewritten in proof rules. This task is
very similar to writing an interpreter. We discuss the implementations of
language back-ends in various languages in Chapters 7 to 9.

Design Environment

A modern programmer expects rich editing environments with syntax and
error highlighting, code completion, and name resolution; integrated with
test infrastructure, and project navigation. A screenshot of a generated editor
for the mobile robot control language is presented in Fig. 2.8 (produced
using the Xtext framework13 described in Sect. 4.4).

Specification. The tools used to generate development environments de-
pend largely on the specification of syntax and static semantics. The editor
shown in Fig. 2.8 has been generated from an Xtext language model, defin-
ing the abstract and concrete syntax, and the static semantics. Specifying
other tools (testers, analyzers, debuggers) often requires direct implemen-
tations, following similar patterns to those for interpreters and generators.

Tools. Language workbenches integrate all language implementation com-
ponents discussed above, allowing an integrated development environment,

13http://www.eclipse.org/Xtext/, retrieved 2022/08

http://www.eclipse.org/Xtext/

38 Chapter 2. Building Modeling Languages

Figure 2.8: A feature-rich
editor generated by Xtext for

robot, our mobile robot
control language

an IDE, to be generated or otherwise created [20]. A language workbench
typically includes a parser generator for handling concrete syntax, along
with some facilities for specifying static and dynamic semantics. Work-
benches generate editors that combine all the language definition compo-
nents to provide semantically aware editing: the editor can resolve names,
complete references, parse, build an AST, check for validity, and possibly
also execute the model. Some language workbenches can automatically
create web-based editors, which you can deploy as part of web applications.

An interesting recent addition to this technology is the Language Server
Protocol (LSP),14 which allows generic support of rich IDE functionality
in any editor and language for which this protocol is implemented [5]. This
means that the cost of creating a rich editing experience is reduced dramat-
ically. Once you use a language workbench that can automatically create
an LSP server for your language, you obtain a rich experience in any editor
implementing an LSP client (which presently includes all major editors).

We have now briefly surveyed all major components of a language im-
plementation. Table 2.1 summarizes briefly the above developments. In
the first column, we list the language design components discussed above,
along with references to chapters that discuss them in detail. For each
language component we state the purpose, the way to specify/implement it,
and the tools that work with this component.

2.5 Testing Language Implementations

Testing is by far the most popular and (so far) the most effective way to
assure the quality of software components. When moving regular software

14https://langserver.org/, retrieved 2022/08

https://langserver.org/

2.5. Testing Language Implementations 39

Language
Component

Purpose Specification Examples Example Tools

Concrete
syntax
Chapter 4

Writing and reading interface for the
language: language users write and read
programs in concrete syntax.

Regular expressions and
context-free grammars.

Parser generators and parsers.

Abstract
syntax
Chapter 3

An in-memory representation of models and
programs as structures in a programming
language; a pivotal structure used by
the front-end and back-end of the language
infrastructure. This is what the language
designer uses to implement the language.

Algebraic data types or
meta-models.

Produced by parsers,
consumed by transformations.
Visualized as diagrams or trees
for debugging in IDEs.

Static
semantics
Chapters 5
and 6

Defining valid/invalid models; enforcing
well-typedness/constraints impossible/hard
to express with grammars and
meta-models/ADTs.

First-order constraints,
inductive type-system rules,
scoping rules.

Advanced frameworks exist,
but still mostly implemented
manually in practice.

Dynamic
semantics
Chapters 7
to 9

Define meaning of programs and models;
realize the actual purpose of the models.

Code generator or interpreter
implemented in a
transformation language or in a
high-level functional language.

Advanced frameworks exist,
but still most languages are
implemented manually in
practice.

Design
environment
Chapter 4

Supporting users in creating domain-specific
models. The modern editor for your
specialized language.

Uses specifications for the other
components.

Language workbenches
generate high-quality
comfortable editors.

Table 2.1: Overview of language infrastructure components.

projects to MDSE, we have to recognize that testing is also important
for DSL infrastructure. Large parts of the logic of our projects will be
embedded in language definitions, in interpreters and generators.

Consider the implementation of robot. To test whether the concrete
syntax is sufficiently well specified, we need a good collection of models
of robots that should parse (i.e., our generated parser recognizes them
successfully), and also a collection of models of robots that contain syntactic
errors and should not parse. Similarly, for the static semantics, we need to
gather cases of models that should and should not produce static checking
errors. Test cases for syntax and for static semantics are usually created at
design time, or ahead of design time, and are later extended with regression
test cases, as problems are discovered during development and usage of the
language. For instance, the model in Fig. 2.2 could be used as a test case
for both syntax and static semantics, while the model in Fig. 2.6 could be
used as a negative test case for static semantics, and a positive test case for
the concrete syntax (parsing).

It is considerably harder to test the implementations of the dynamic
semantics. For manual testing, we can create diverse robot models, run the
interpreter for each of them, and check whether the system behavior is con-
sistent with the model. This can be improved slightly, by replacing the phys-
ical robot with a simulator and using the so-called model-in-the-loop testing
(MIL). But how can we test the dynamic semantics automatically? Without
automatic tests, we can forget about test-driven development and continuous
integration. This would lead to a drop of quality in our project, while our

40 Chapter 2. Building Modeling Languages

goal is exactly the opposite. One possibility is to create an execution harness
for the interpreters of models. Our test cases then become triples: a model
of a robot, a sequence of inputs, and a sequence of expected actions.

In this book, we discuss testing patterns for each of the language aspects
in the corresponding chapter. We define a suitable notion of test cases,
discuss what it means for a test to pass or fail (oracles), elaborate on
possible stop criteria for testing (notions of coverage), as well as testing
architectures and patterns for language implementations.

Further Reading

While many of the technologies presented here can be used for designing and build-
ing general-purpose languages (GPLs), we focus on low-expressiveness languages
(DSLs) and side-step the specialized advanced concepts that one needs for realizing
compiled or interpreted GPLs, such as advanced type systems, optimization, or
generation of machine code. For such topics, we refer to literature on compilers and
programming languages [1, 42, 50].

Fowler and Parsons [23] give a good, if somewhat traditional, coverage of design
issues and implementation techniques for DSLs. They also include a good initial
introduction to internal DSLs, with a very interesting collection of implementation
patterns using various mechanisms of the host language. There is also a book about
Microsoft DSL Tools [16], but the tool does not seem to be maintained anymore.
The MetaEdit+ tool from MetaCase has an associated book that shows a good set of
examples and principles to follow, especially for graphical DSLs [30].

Bettini [6] gives a very pragmatic, even hands-on, course on development of
textual DSLs with the Xtext framework. Since this is the same framework as used in
this book, Bettini’s volume is a very convenient companion. While we focus more
on general aspects of language design, and present the methods as far as possible
in a tool-independent manner, Bettini explains directly how to work with Xtext.

The concept of a language workbench is attributed to Martin Fowler.15 Language
workbenches are advocated in detail by Völter [60]. A good overview of the
features offered by modern workbenches is surveyed by Erdweg et al. [20]. The
technology, under various disguises and at various levels of maturity, has existed
since the 1980s. Most workbenches were originally designed to facilitate the
creation of general-purpose programming languages, and were adopted over time
for designing DSLs. Early workbenches for textual language included: SEM
[56], MetaPlex [12], Metaview [55], Centaur [10], QuickSpec [37], MetaEdit [53],
ASF+SDF Meta-Environment [32], Gem-Mex/Montages [2], LRC [35], and LISA
[41]. Contemporary workbenches for textual languages are JastAdd [25, 54], Rascal
[33], Spoofax [28], Melange [19], Xtext [21, 6], MontiCore [34], and Neverlang
[58], just to name a few.

The workbenches for graphical syntax include Sirius, mentioned above, MetaEdit+
[29], and the open-source tools building upon the Eclipse Modeling Framework:
the Graphical Modeling Framework and Graphiti, which are both part of Eclipse’s
Graphical Modeling Project.16 Two less known graphical workbenches are DOME
[11] and GME [36].

15https://martinfowler.com/articles/languageWorkbench.html, retrieved 2022/08
16https://www.eclipse.org/modeling/gmp, retrieved 2022/08

https://martinfowler.com/articles/languageWorkbench.html
https://www.eclipse.org/modeling/gmp

2.5. Testing Language Implementations 41

Projectional editing, also known as structured or syntax-directed editing, goes
back to the 1980s, with tools such as the Incremental Programming Environment
[40], GANDALF [44], and the Synthesizer Generator [47]. Projectional editing
became popular with the Intentional Programming paradigm, which puts language
composition at the core of software engineering [51, 17]. Today, Jetbrains Meta
Programming System (MPS)17 and Intentional’s Domain Workbench [52, 14] are
the most comprehensive projectional language workbenches.

Schauss et al. [49] illustrate many technologies for construction of DSLs. The
paper is accompanied by a code repository18 containing examples of DSL implemen-
tations created with several workbenches (including Eclipse Modeling Framework,
Java/ANTLR, Rascal, JetBrains MPS, and Spoofax), as well as several embedded
DSLs (Scala, Rascal, and Racket).

In this chapter, we sketched an implementation of a simple external DSL for robot
control. Peterson, Hudak, and Elliott [46] demonstrate an internal DSL (an API-like
language), for a similar purpose but using an entirely different implementation pat-
tern. The distinction between internal and external DSLs will be made clearer in later
chapters of the book. Robotics is not an accidental choice for our example. Given the
complexity of robotics systems, and a range of well-defined tasks and activities in
robotics, DSLs are often a natural choice to formalize designs. Not surprisingly, DSL
proposals proliferate in this space. Already low-level robotics frameworks (such
as ROS) use many DSLs for describing packages, interfaces, builds, deployments,
hardware, scene, etc. Many more DSLs are built at a higher level of abstraction,
aiming for more complex aspects of robots such as reasoning, planning, kinematics,
and system architecture. See Nordmann et al. [43] and its accompanying website19

for a recent list of more than hundred papers describing robotics DSLs.

Additional Exercises

Exercise 2.1. a) Revisit Example 5 on p. 29. Using two different colors, highlight
all sentences (or sentence fragments) specifying syntax (respectively semantics)
of the robot language. Observe that in informal language descriptions syntax and
semantics are often mixed. b) Find a short informal description (or a fragment
of description) of a computer language relevant for you. Select an interesting
fragment, and repeat the highlighting exercise on this fragment.

Exercise 2.2. Identify an educational platform for robotics of your choice. A
typical educational platform will offer several APIs in GPLs and some DSLs
at various levels of sophistication, to cater for users programming the robots at
different stages of education. Pick two of these interfaces (either APIs and/or
DSLs) from whatever is available, and analyze them. Study tutorials briefly,
and read through some code examples. When discussing the properties of the
interfaces, try to contrast the two choices you made.

Attempt to answer the following questions for DSLs (if any): a) Who is the
target user? b) What use cases are supported by the language? c) What is the
expressiveness of the language? Is it in any way limited? Are any robotics-specific

17http://www.jetbrains.com/mps/, retrieved 2022/08
18https://softlang.github.io/metalib/, retrieved 2022/08
19http://corlab.github.io/dslzoo/index.html, retrieved 2022/08

http://www.jetbrains.com/mps/
https://softlang.github.io/metalib/
http://corlab.github.io/dslzoo/index.html

42 Chapter 2. Building Modeling Languages

tasks easier in this language than in general-purpose programming languages?
Are there any general programming tasks that are difficult to perform in this DSL?

Answer the following questions for selected APIs in GPLs (if any): d) Who are
the expected target users for this API? For what use cases? e) Are there any API
elements that are not directly pertinent to robotics tasks? Would it be possible to
eliminate any of them using a DSL? f) Does using the API involve a lot of boiler
plate code? Is creation of this code likely possible to automate? g) Your opinion:
Is the API a suitable target to use implementing an interpreter for a DSL, or is it
a good target for code generation? If there are several APIs available, perhaps
consider which one would be the easiest to use as a back-end for the DSL.

Exercise 2.3. For the robotics framework studied in Exercise 2.2 investigate what
testing and quality assurance support is provided by the vendor, or the framework’s
open source ecosystem.

Exercise 2.4. Chef20 is a deployment and configuration management language. It
started as an internal DSL implemented in Ruby and has grown out into a proper
external DSL. Discuss Chef based on what you learned about models and DSLs in
this chapter, specifically: What is the domain described by models in Chef? What
information is present, what is abstracted away, hidden? What is the style of the
syntax of this language? What tasks are automated thanks to Chef? From where
does the Chef infrastructure take information to execute simplistic models? Brows-
ing through the slides of a Webinar on Chef21 should suffice for this discussion.

Chef itself is of no particular importance for the rest of this book. You can
replace Chef with any other DSL. For example, if you are interested in robotics,
visit the Robotics DSL Zoo [43], pick one of the languages that attracts your
attention, and execute the above discussion for this language. This is an open
exercise with no perfect answer. It is meant to help you explore the concepts.

Exercise 2.5. Imagine a hypothetical configuration application, where a number
of parameters need to be configured, to satisfy an input model. The configurator
is equipped with a plugin mechanism, so that it can load .jar files containing more
sophisticated calculations that are made available in the model constraints.

The configuration tool can report various error messages for an input model.
For each of them decide which part of the DSL implementation is reporting the
error. Justify your answers briefly. Some possible answers include the interpreter,
the type system, regression tests, the code generator, constraints, the parser, etc...

a) Could not find the external dependency ’FunctionalCalculations.
jar’. No such file or directory.

b) line 213: Expected keyword ’parameter’ instead of EOL
c) Parameter group ’Engines’ depends on itself
d) line 196: Expected an Integer value instead of String
e) The enumeration type ’color’ should have distinct values. Value

’pink’ is repeated in lines 400 and 404.

20https://learn.chef.io/, retrieved 2022/08
21http://www.slideshare.net/chef-software/overview-of-chef-fundamentals-webinar-series-part-1, re-

trieved 2022/08

https://learn.chef.io/
http://www.slideshare.net/chef-software/overview-of-chef-fundamentals-webinar-series-part-1

References 43

Exercise 2.6. Discuss informally what testing (quality assurance) process you
would carry out to ensure that the grammar presented in Fig. 2.4 captures the right
models in the robot control language—admits the models of interest as legal, and
rules out the models that are syntactically incorrect.

Exercise 2.7. Informally discuss the selection of test cases for the two constraints
in Fig. 2.6. How many and what test cases would you select for each of the
constraints? If you have a system where there are many other constraints, and
you are time limited in testing, what would be the most important test cases?

References

[1] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, and Monica S. Lam. Com-
pilers: Principles, Techniques, and Tools. 2nd Edition. Prentice Hall, 2006
(cit. p. 40).

[2] Matthias Anlauff, Philipp W. Kutter, and Alfonso Pierantonio. “Tool support
for language design and prototyping with montages”. In: International
Conference on Compiler Construction. Springer. 1999 (cit. p. 40).

[3] John W. Backus et al. “Revised report on the algorithmic language ALGOL
60”. In: Commun. ACM 6.1 (Jan. 1963). Ed. by P. Naur, pp. 1–17 (cit. p. 25).

[4] John W. Backus et al. “The FORTRAN automatic coding system”. In:
Papers Presented at the February 26-28, 1957, Western Joint Computer
Conference: Techniques for Reliability. IRE-AIEE-ACM ’57 (Western).
Los Angeles, California: ACM, 1957 (cit. p. 25).

[5] Djonathan Barros, Sven Peldszus, Wesley K. G. Assunção, and Thorsten
Berger. “Editing support for software languages: Implementation practices
in language server protocols”. In: ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 2022
(cit. p. 38).

[6] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt, 2013 (cit. p. 40).

[7] Lorenzo Bettini. “Implementing Java-like languages in Xtext with Xseman-
tics”. In: Symposium on Applied Computing. ACM. 2013 (cit. p. 35).

[8] Jean Bézivin. “On the unification power of models”. In: Software and
Systems Modeling 4.2 (2005), pp. 171–188 (cit. pp. 25, 29).

[9] Andrew D. Booth and Kathleen H. V. Britten. Coding for the A.R.C. 1947
(cit. p. 25).

[10] Patrick Borras, Dominique Clément, Th Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and Valérie Pascual. “Centaur: the system”. In: ACM
SIGPLAN Notices 24.2 (1988), pp. 14–24 (cit. p. 40).

[11] Honeywell Technology Center. DOME guide. 1999 (cit. p. 40).
[12] Minder Chen and Jay F. Nunamaker. “Metaplex: an integrated environment

for organization and information system development”. In: International
Conference on Information Systems. Proceedings. 1989 (cit. p. 40).

[13] Noam Chomsky. Syntactic Structures. Mouton & Co., 1957 (cit. p. 29).
[14] Magnus Christerson and Henk Kolk. Domain Expert DSLs. A talk at QCon

London 2009. 2009. URL: http://www.infoq.com/presentations/DSL-Magnus-
Christerson-Henk-Kolk (cit. p. 41).

[15] COBOL-1961. Report to conference on data systems languages. Tech. rep.
US Dept. of Defense, 1961 (cit. p. 25).

http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk

44 Chapter 2. Building Modeling Languages

[16] Steve Cook, Gareth Jones, Stuart Kent, and Alan Cameron Wills. Domain-
Specific Development with Visual Studio DSL Tools. Addison-Wesley, 2007
(cit. p. 40).

[17] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000 (cit. pp. 27, 41).

[18] Ole-Johan Dahl and Kristen Nygaard. “Class and subclass declarations”.
In: IFIP TC2 Conference on Simulation Programming Languages. 1967
(cit. p. 26).

[19] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and
Jean-Marc Jézéquel. “Melange: a meta-language for modular and reusable
development of DSLs”. In: Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE). ACM,
2015 (cit. p. 40).

[20] Sebastian Erdweg et al. “The state of the art in language workbenches”. In:
SLE. 2013 (cit. pp. 27, 38, 40).

[21] Moritz Eysholdt and Heiko Behrens. “Xtext: implement your language
faster than the quick and dirty way”. In: Companion to the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, part of SPLASH 2010. 2010
(cit. p. 40).

[22] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. The MIT Press, 2009 (cit. p. 35).

[23] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison-
Wesley, 2011 (cit. pp. 26, 40).

[24] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edin-
burgh LCF. Vol. 78. Lecture Notes in Computer Science. Springer, 1979
(cit. p. 37).

[25] Görel Hedin and Eva Magnusson. “JastAdd—an aspect-oriented compiler
construction system”. In: Science of Computer Programming 47.1 (2003),
pp. 37–58 (cit. p. 40).

[26] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley, 2001
(cit. p. 36).

[27] Paul Hudak. “Building domain-specific embedded languages”. In: ACM
Comput. Surv. 28.4es (1996), p. 196 (cit. p. 26).

[28] Lennart C.L. Kats and Eelco Visser. “The Spoofax language workbench”.
In: Conference on Object-Oriented Programming, Systems, Languages,
and Applications. Ed. by William R. Cook, Siobhán Clarke, and Martin C.
Rinard. SPLASH/OOPSLA 2010. ACM, 2010 (cit. pp. 35, 40).

[29] Steven Kelly, Kalle Lyytinen, and Matti Rossi. “MetaEdit+ a fully con-
figurable multi-user and multi-tool CASE and CAME environment”. In:
International Conference on Advanced Information Systems Engineering.
Springer. 1996 (cit. p. 40).

[30] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: En-
abling Full Code Generation. Wiley, 2008 (cit. p. 40).

[31] Anneke G. Kleppe. Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels. Addison-Wesley, 2009 (cit. p. 29).

References 45

[32] Paul Klint. “A meta-environment for generating programming environ-
ments”. In: ACM Trans. on Soft. Eng. and Method. (TOSEM) 2.2 (1993),
pp. 176–201 (cit. p. 40).

[33] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “Rascal: a domain spe-
cific language for source code analysis and manipulation”. In: 2009 Ninth
IEEE International Working Conference on Source Code Analysis and
Manipulation. IEEE. 2009 (cit. p. 40).

[34] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “MontiCore: A frame-
work for compositional development of domain specific languages”. In:
International Journal on Software Tools for Technology Transfer (STTT)
12.5 (2010), pp. 353–372 (cit. p. 40).

[35] Matthijs Kuiper and João Saraiva. “Lrc—a generator for incremental language-
oriented tools”. In: International Conference on Compiler Construction.
Springer. 1998 (cit. p. 40).

[36] Akos Ledeczi et al. “The generic modeling environment”. In: Workshop on
Intelligent Signal Processing, Budapest, Hungary. Vol. 17. 2001 (cit. p. 40).

[37] Meta Systems Ltd. Quickspec reference guide. 1989 (cit. p. 40).
[38] Maja J. Matarić. The Robotics Primer. MIT Press, 2007 (cit. p. 31).
[39] John McCarthy. “Recursive functions of symbolic expressions and their

computation by machine, Part I”. In: Commun. ACM 3.4 (Apr. 1960),
pp. 184–195 (cit. p. 25).

[40] Raul Medina-Mora and Peter H. Feiler. “An incremental programming
environment”. In: IEEE Trans. Softw. Eng. 7.5 (Sept. 1981), pp. 472–482
(cit. p. 41).

[41] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer. “LISA:
An interactive environment for programming language development”. In: In-
ternational Conference on Compiler Construction. Springer. 2002 (cit. p. 40).

[42] Torben Ægidius Mogensen. Introduction to Compiler Design. Undergradu-
ate Topics in Computer Science. Springer, 2011 (cit. p. 40).

[43] Arne Nordmann, Nico Hochgeschwender, Dennis Leroy Wigand, and Se-
bastian Wrede. “A survey on domain-specific modeling and languages in
robotics”. In: Journal of Software Engineering in Robotics (JOSER) 7.1
(2016), pp. 75–99 (cit. pp. 41, 42).

[44] David Notkin. “The GANDALF project”. In: J. Syst. Softw. 5.2 (May 1985)
(cit. p. 41).

[45] Object Management Group. OCL Specification version 2.2. http://www.omg.
org/spec/OCL/2.2/. 2010 (cit. p. 35).

[46] John Peterson, Paul Hudak, and Conal Elliott. “Lambda in motion: Control-
ling robots with Haskell”. In: Practical Aspects of Declarative Languages
(PADL). Ed. by Gopal Gupta. Vol. 1551. 1999 (cit. p. 41).

[47] Thomas Reps and Tim Teitelbaum. “The Synthesizer Generator”. In: ACM
SIGPLAN Notices 19.5 (1984), pp. 42–48 (cit. p. 41).

[48] Henry G. Rice. “Classes of recursively enumerable sets and their decision
problems”. In: Transactions of the American Mathematical Society 74.2
(1953), pp. 358–366 (cit. p. 36).

[49] Simon Schauss, Ralf Lämmel, Johannes Härtel, Marcel Heinz, Kevin
Klein, Lukas Härtel, and Thorsten Berger. “A chrestomathy of DSL im-
plementations”. In: 10th International Conference on Software Language
Engineering (SLE). 2017 (cit. p. 41).

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/

46 Chapter 2. Building Modeling Languages

[50] Peter Sestoft. Programming Language Concepts. Springer Science & Busi-
ness Media, 2012 (cit. p. 40).

[51] Charles Simonyi. “The death of computer languages, the birth of inten-
tional programming”. In: Proc. NATO Science Committee Conference. 1995
(cit. p. 41).

[52] Charles Simonyi, Magnus Christerson, and Shane Clifford. “Intentional
software”. In: Proceedings of OOPSLA. 2006 (cit. p. 41).

[53] Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti Mart-
tiin. “MetaEdit—a flexible graphical environment for methodology mod-
elling”. In: International Conference on Advanced Information Systems
Engineering. Springer. 1991 (cit. p. 40).

[54] Emma Söderberg and Görel Hedin. “Building semantic editors using Jas-
tAdd: Tool demonstration”. In: Proceedings of the Eleventh Workshop on
Language Descriptions, Tools and Applications. 2011 (cit. p. 40).

[55] Paul G. Sorenson, Jean-Paul Tremblay, and Andrew J. McAllister. “The
Metaview system for many specification environments”. In: IEEE Software
5.2 (1988), pp. 30–38 (cit. p. 40).

[56] Daniel Teichroew, Petar Macasovic, Ernest Hershey, and Yuzo Yamamoto.
“Application of the entity-relationship approach to information processing
systems modeling”. In: Entity-Relationship Approach to Systems Analysis
and Design. Ed. by P.P. Chen. North-Holland, 1980 (cit. p. 40).

[57] Universal Robots. The URScript Programming Language. Version 3.1. Jan.
2015 (cit. p. 35).

[58] Edoardo Vacchi and Walter Cazzola. “Neverlang: A framework for feature-
oriented language development”. In: Computer Languages, Systems &
Structures 43 (2015), pp. 1–40 (cit. p. 40).

[59] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. “Sirius: a
rapid development of DSM graphical editor”. In: IEEE 18th International
Conference on Intelligent Engineering Systems INES 2014. IEEE. 2014
(cit. p. 27).

[60] Markus Völter. DSL Engineering. Designing, Implementing and Using
Domain Specific Languages. 2013. URL: http://www.dslbook.org (cit. pp. 29,
40).

[61] Vladimir Vujović, Mirjana Maksimović, and Branko Perišić. “Comparative
analysis of DSM graphical editor frameworks: Graphiti vs. Sirius”. In: Pro-
ceedings of the 23rd International Electrotechnical and Computer Science
Conference (ERK’14). 2014 (cit. p. 27).

http://www.dslbook.org

3 Domain Analysis and Abstract Syntax

There are catalogues of catalogues.
There are poems about poems.

There are plays about actors played by actors.
Letters due to letters.

Words used to clarify words.

Wisława Szymborska [23]

You want to design a DSL to boost software development, evolution, or
customization in some domain. In the first step, you need to clarify what
are the key relevant aspects of this domain, in a process known as domain
analysis and meta-modeling. During the analysis, we identify the relevant
concepts and relationships between them. During meta-modeling, we
formalize this knowledge in a model, and iteratively refine it until the model
precisely describes the abstract syntax of the DSL. It will define which
models or programs we shall be able to write in your language.

We now discuss these steps in detail. The chapter includes design and
analysis guidelines for meta-models, discusses them on a running example
(a DSL of finite-state machines), touches upon several meta-modeling
languages (meta-meta-models) with a focus on class diagrams, and then
explains what instances (called models) of meta-models look like. Finally,
we explain how models, meta-models, and meta-meta-models relate in the
theoretical framework known as the language-conformance hierarchy.

3.1 What is Meta-Modeling?

Let us define the prime outcome of domain analysis and meta-modeling.

Definition 3.1. A meta-model is a model that precisely defines the parts
and rules needed to create valid models in a DSL [7].

The parts refer to the domain concepts captured in the language, while the
rules are any kind of constraints that prescribe the construction of valid
models (i.e., instances) from those parts. Note that when we say valid
models, we refer to their abstract syntax, which is independent of the actual
notation (concrete syntax) of the language. While mappings need to be
defined between the abstract syntax and any of the concrete syntaxes, a
meta-model only determines the abstract syntax of a model. Whether the
concrete syntax of a model is correct has to be assured by other means, such
as a grammar for a textual DSL (Chapter 4).

Definition 3.2. Abstract syntax is a representation of a program (model) in
computer memory as a data structure, usually a tree or an instance of an
object-oriented meta-model.

We say that meta-modeling is the practice of modeling other modeling
languages, and a meta-model is a model of a modeling language. The

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_3

47

https://doi.org/10.1007/978-3-031-23669-3_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_3&domain=pdf

48 Chapter 3. Domain Analysis and Abstract Syntax

prefix “meta” comes from Greek, and today it means “self-referential.”
Meta-modeling is self-referential in the sense that it models modeling.

Practicing meta-modeling requires a meta-modeling language, often
called a meta-meta-model. A meta-modeling language is a modeling
language containing concepts that allow us to conveniently describe the
abstract syntax of other languages. Especially in the context of MDSE
we need expressive and precise meta-modeling languages, so that we can
generate the infrastructure for DSLs automatically. Class diagrams are
probably the most common meta-modeling language. However, other
languages can also be used, such as feature models [10, 17], which are
also precise, but less expressive than class diagrams. We discuss feature
models extensively in Chapters 11 and 12. Other popular languages used
for meta-modeling are XML Schema and other schema languages, as well
as data types in most programming languages, in particular algebraic data
types in functional languages (see also Sect. 7.1).

In this book, we work with two meta-modeling notations: class modeling
and algebraic data types, as key representatives of two language design
traditions. Ecore from the Eclipse Modeling Framework (EMF, see the
box on p. 53) is a class-modeling language popular in the object-oriented
programming community. It is less expressive and simpler than UML class
diagrams. Many open-source tools exist around Ecore—they can be used
to manipulate models and to implement languages. Algebraic data types
(ADTs) are used to express the abstract syntax of languages by functional
programmers. Most functional programming languages enjoy good support
for processing language representations easily and efficiently.

Meta-modeling is useful not only for language modeling, but also for
domain modeling and for model interchange between different tools [9],
where meta-models are essentially the exchange formats. An example
standard is the XML Metadata Interchange format XMI [19], which is
defined as part of MOF.

3.2 Domain Analysis for Meta-Modeling

DSLs tend to be designed for reasonably mature and well-understood
domains, to capitalize on the insights and experiences accumulated during
years of engineering practice. Most often, a non-model-driven system, or
even several ones, already exist in the area. Either you, your team, your cus-
tomer, or other experts will be able to describe the key requirements for the
new language. Similarly, existing examples of concepts of interest (cases,
drawings, informal models, data entries, API usages) and documentation of
prior practice are useful inputs to domain analysis and meta-modeling.

We demonstrate domain analysis with an example familiar to any com-
puter science undergraduate: finite-state machines. The example is specifi-
cally selected so that we can sidestep the issues of missing knowledge about
the domain and settle the basic terminology on familiar grounds.

3.2. Domain Analysis for Meta-Modeling 49

Domain Models and Meta-Models
You are probably familiar with domain modeling—an activity often included in the early stages of
software design in general, for example using UML diagrams. Domain modeling is a close relative of
meta-modeling: the reasoning and abstractions used in creating both kinds of models are similar. Yet,
they differ in their primary purpose and the level of formality and precision.

A domain model describes relevant concepts and their relationships in a particular domain. A domain
model is typically created early in a software project. Sometimes, domain models are reverse-engineered
when a project already exists and developers or domain experts want to create an overview of the relevant
concepts, for instance before introducing any changes. Many project teams express domain models using
class diagrams, but other languages, such as mind maps, feature models, state diagrams, or informal
drawings, are also used. The main purpose of a domain model is to facilitate understanding and commu-
nication among persons involved in a project, including users, domain experts, developers, and architects.

A meta-model represents a domain as a language. A meta-model tends to be more formal than a domain
model; it aims at precisely describing the possible instances (models or programs) of the language.
A meta-model models a language. The emphasis on precision allows: (i) building MDSE tooling to
generate language infrastructure, such as comfortable editors (with code-completion, error markers, and
syntax highlighting), serializers, and deserializers, (ii) automatically checking that language instances
conform to the meta-model, and (iii) implementing the semantics (e.g., an interpreter or a code generator)
of the meta-model. Only secondarily, meta-models are also a unit of communication. Since both domain
models and meta-models describe domain concepts, there is significant similarity between these concepts.

Example 6. We design a language fsm for describing sets of parallel finite-
state machines. Computer science students will use this language to specify
examples and solve exercises. They need to execute the models to interactively
explore behaviors. Each state machine has a name and a number of named
states. One state of each machine is singled out as an initial state. Transitions
connect pairs of states: a source and a target state. Each transition is labeled
by an input action and, optionally, by an output action.

This description is the input to our hypothetical domain analysis. In reality,
it would have been extracted by interviewing stakeholders and studying
available documents. Table 3.1 organizes the example description by the
five questions discussed below. Study the table before proceeding.

Key questions and activities. During the domain analysis you should ask
yourself and the subject matter experts the following five questions:

Q1: Purpose. What is the purpose of the language? What are the use cases?
Concrete operational examples effectively guide the language design. Ask
your users and experts what use cases are important and how they are
realized today. Ask to prototype entirely new scenarios; ask how they
imagine work with use cases not seen in existing systems or processes.
You will use the collected use cases to design a language that is as small
as possible, narrowed down to a minimum set of concepts. Resist the urge

50 Chapter 3. Domain Analysis and Abstract Syntax

to add things that are “nice to have.” Focusing on the required use cases
lowers the development and adoption costs without hampering usability.

Q2: Stakeholders. Who are the key stakeholders and the intended users
of the language?
A language for software developers or system administrators poses different
requirements than a language for an electrical engineer or a fire-alarm instal-
lation consultant. Without considering the users, it is practically impossible
to set the right level of abstraction. Bring the user personas in focus, to build
the language on the terms and ideas that they are familiar with. Understand
what are their organizational roles, and what background expertise they
have [24]. Later, this will also help you to select a suitable concrete syntax.

Q3: Concepts. What are the key domain concepts that users care about?
Enumerate the concepts of importance, including physical, structural, log-
ical, abstract, concrete, operational, and temporal concepts. This includes
anything that is necessary to describe in order to build an unambiguous
model for your use case. Do not limit yourself to static concepts that
represent physical objects in the domain, such as an “engine” or an “engine
controller.” It is equally important to also capture more transient concepts
representing activities (e.g., a “fuel-injection policy”) and temporal prop-
erties (e.g., “rotation frequency” or a “weekly assignment rotation”). Many
people have a natural tendency to focus on the static concepts and will
forget to tell you about the transient ones, unless asked specifically.
A common mistake is to include concepts and relations that belong to the
technical context of the DSL, but are not in the syntax of the language.
For example, the interpreter for state machines in Example 6 is not a part
of our language, but an associated tool. Therefore it does not belong to
our meta-model. The meta-model only includes concepts that must be
describable in the DSL, and not parts of the architecture, such as what tools
and processes we will run. These are still listed in the use cases, though
(Q1). The interpreter is important in the example, as we have to ensure that
the models capture all the information needed for execution. However, the
interpreter itself will not be modeled in the state machines and is not among
the listed concepts in Tbl. 3.1.

Q4: Relations. How are domain concepts related, and what are their
relevant properties?
Relations and properties organize and restrict your meta-model. For in-
stance, “every engine needs an engine controller, but only certain controllers
are suitable for hybrid engines.” The relations might not be static: “A
student is enrolled at the university until she graduates.” The relations may
also relate transient concepts: “fuel injection policy” is applied to an engine
while in force, and not otherwise. Customarily, properties (or attributes) are

3.3. Meta-Modeling with Class Diagrams 51

relations to very simple concepts such as age or color, which do not require
further elaboration.
Relations often emerge already in discussion of concepts (Q3). Do not try to
artificially separate the discussion of concepts from the discussion of their
relations in early design stages. Many relations can be seen as concepts and
vice versa, so it is not useful to draw the distinctions sharply at this stage.

Q5: Examples. What examples of language instances are available or can
be prototyped?
Using examples is a key technique, when eliciting requirements from
domain experts. You should collect existing examples, ask subject matter
experts to sketch new ones, and build some yourself to seek confirmation
of your understanding.
Perhaps your customer is already using a notation or conventions expressing
the subject of the DSL. In this case, an important objective for the DSL
may be to formalize the existing notations, so that tools can be build and
the automation of MDSE can be unleashed. Sometimes, you can define the
language solely based on the existing notations and conventions.
Alternatively, the new language may be built to raise the level of abstraction
of existing notations. For instance, a complicated and rich language (a GPL)
can be replaced by a simpler intuitive and task-oriented language. Then, it
is still valuable to understand existing notations by collecting examples, but
it is necessary to build small examples of the new abstract language with
the users in order to judge how well they are suited for the actual purpose.

These questions should not be answered in a sequential, waterfall-like
process. We recommend to perform the domain analysis iteratively (indeed,
the entire DSL design-and-implementation process should be iterative).
Collect as little information as seems necessary, then build some examples
and return to the subject matter experts for verification. Only collect new
information if you are unable to support the use cases.

Exercise 3.1. In a group, pick a domain of interest, and perform the domain
analysis following the above questions. If you do not know what to choose,
consider modeling a format of a boarding pass for a flight, a course front page for
a course management system such as Moodle, layout of furniture in a classroom,
light scenarios for a classroom, or a deployment architecture of a simple web-
based system. One person, with an idea how the language for the chosen domain
should work, takes the role of a domain expert. The others play the language
engineers. Build a table similar to Tbl. 3.1.

3.3 Meta-Modeling with Class Diagrams

How can we turn the knowledge collected in a domain analysis into a
meta-model? We have to encode it in a formal language well suited for
meta-modeling. Once we have a formal meta-model, we will implement
our DSL using MDSE. For the state-machine example (Example 6), we

52 Chapter 3. Domain Analysis and Abstract Syntax

Q1: Purpose To build examples of student exercises; To interact with examples using an interpreter, an
interpreter will be needed.

Q2: Users Computer science students learning automata theory (probably knowing the basics of a
programming language); A professor, who can provide the examples and will ask the
students to use the tool.

Q3: Concepts Finite-state machines, several in parallel; States; Transitions;

Q4: Relations Properties: states may be initial or end states, states and machines have names, transitions
have input action labels, transitions have optional output labels; Relations: machines own
states, transitions connect source and target states.

Q5: Examples The professor whose students are supposed to use the tool provided us with the following
example of a model in concrete graphical syntax:

S0 S1

login? / credentialsOK!

sendEmail? / sentOK!

sendEmail? /
sendErr!

login?
/ authErr!

Table 3.1: Knowledge collected in a hypothetical domain analysis process for the state-machine example

will use MDSE not only for generating code from state machines, but also
when designing and implementing the state-machine language itself. This
has an additional advantage, that you, the designer of the DSL, use the
same paradigm as the users of your DSL. This makes you a more empathic
designer, able to understand users’ requirements better.

In this section, we use a minimalistic subset of class diagrams called
Ecore to build meta-models (see the side box “Ecore, MOF, and Meta-
Modeling”). If you lack experience with class diagrams, please study the
appendix “Class Modeling” on our book website (http://dsl.design) before
reading further.

Object-oriented analysis and design. When meta-modeling with class dia-
grams, we follow the principles of object-oriented analysis and design. We
name classes after concepts and use associations to represent relations. Con-
tainment associations represent part-of relations; most other relations are
specified as regular associations with suitable role names. Generalization
(also known as inheritance) captures kind-of relations between concepts.

Example 7. Figure 3.1 shows the meta-model of finite-state machines. Compare
it with Tbl. 3.1 when reading. In the figure, we have classes representing
finite-state machines, states, and transitions. The Model class allows us to have
a single object as a handle to several state machines in a model.

A containment association states (black diamond) captures the part-of
relation between a state machine and a state. Even though transitions can
be thought of as relations, we model them as first-class objects. This is
because we need to store properties (the input and output labels)—associations

http://dsl.design

3.3. Meta-Modeling with Class Diagrams 53

Ecore, MOF, and Meta-Modeling
Meta-Object Facility (MOF) is a simple class-modeling language standardized by the Object Management
Group (OMG). MOF was created as the meta-modeling language to be used in writing the UML standard.
It is used by OMG to define the meta-models of the UML sub-languages. MOF is a minimalistic
class-modeling language that is relatively easy to learn and implement. MOF includes packages, classes,
attributes, simple types, containment, operations, multiple inheritance, interfaces, and binary unidirec-
tional associations (references). It excludes advanced constructs of UML Class Diagrams, for example
n-ary associations and association classes. You can inspect the freely accessible MOF specification at
https://www.omg.org/spec/MOF to get an idea what a formal modeling-language standard looks like.

Ecore (https://www.eclipse.org/modeling/emf/) is the Java implementation of the MOF specification by the
Eclipse Modeling project. Ecore is used for meta-modeling in the Eclipse Modeling Framework (EMF).
Meta-models in Ecore are compatible with EMF’s rich tool ecosystem, which can be used to implement
your DSL. Like MOF, Ecore is used for meta-modeling, so with exactly the same purpose the MOF
designers had in mind: to build language models. In fact, when we specify DSLs, such as state-machine
languages and configuration languages in Ecore, we follow the same method that UML designers used
to specify the abstract syntax for all UML diagrams, including the state-machine diagrams.

Transition

input : EString
output : EString

NamedElement

name : EString

Model FiniteStateMachine

State

root element

[1..1] target

[0..*] machines

[1..1] initial

[0..*] leavingTransitions [1..1] source

[1..1] machine

[1..*] states

source: fsm/model/fsm.ecore

Figure 3.1: A meta-model for
the language of finite-state
machines using class
diagrams as the
meta-modeling language.
Compare with Fig. 5.10 on
p. 164

cannot carry attributes in Ecore. The source and target references represent the
connection relations between a transition and its incident states. In order to
ensure that the entire instance is a tree (a single partonomy, see below) we
made the source relation a containment (black diamond again).

The transition objects are contained in the source state—this makes execu-
tion of machines easier; containment references are navigable. This is an exam-
ple when implementation considerations pollute the meta-model—a pragmatic
compromise that allows the same model to be used for domain analysis and
for implementation. Such compromises are often made for simple languages.

We decided to make initial a relation between a state machine and one of
its states. Alternatively, we could have modeled the initial state as a Boolean
attribute of one of the states. What we did requires a constraint that the initial
state of a machine is actually one of its own states (so the initial relation is a
subset of the states relation). The alternative modeling requires a constraint
that exactly one state in each state machine has the initial attribute set to true,

https://www.omg.org/spec/MOF
https://www.eclipse.org/modeling/emf/
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/model/fsm.ecore

54 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.2: An example CSS
file for Exercise 3.2

1 p {
2 background-color: black;
3 color: blue;
4 }

6 div { background-color: red; }

and all others are set to false. We discuss how to add constraints to meta-
models in Chapter 5.

We use a convention, instead of an explicit meta-model element, that
any state without an outgoing transition is an end state. Not declaring this
property in the meta-model makes it more concise, but users of our meta-
model (developers implementing transformations) need to be aware of this
convention, which is not necessarily obvious, especially since graphical state-
machine notations often have a dedicated symbol for end states.

Since state machines and states both have the attribute name, we extract it to
an abstract class NamedElement. This is a common pattern in object-oriented
meta-models. It allows a single visualization code to be used to label objects
that are named. For example, the EMF framework itself interprets this attribute
in a special way, displaying names as object identifiers in editors.

As shown in the above example, domain analysis is transferred to meta-
models naturally, like in most other examples of object-oriented design.
Most formal meta-models, and especially those based on class diagrams
like our example, capture the answers to the third and fourth question of
our simple domain-analysis scheme from Sect. 3.2 (concepts and relations),
but they are heavily influenced by the collected examples and use cases (we
come back to this in Sect. 3.8).

Exercise 3.2. Figure 3.2 presents an example domain-specific model in the CSS
(Cascading Style Sheets) language. Assume that a CSS model consists only of top-
level style specifications for elements of type p (paragraph) and div (document
sub-tree). These can be repeated arbitrarily many times, and mixed in any way.
Each specification can contain an arbitrary number of attributes in any order,
but there are only two kinds of attributes: background-color and color. Each
of these properties must have a color assigned selected from the list: black,
white, and red. If you know any other aspects of CSS ignore them for now, to
simplify the task. Design an Ecore meta-model (or a set of suitable Scala types)
for representing this subset of CSS. Name the root class of the CSS meta-model.

Exercise 3.3. Refactor the meta-model presented in Fig. 3.1 so that ‘initial’ is
a Boolean attribute of a State, instead being a (non-Boolean) property of the
FiniteStateMachine.

Instances of meta-models. Meta-models define all possible models and
therefore all possible instances of a language in abstract syntax, disregard-
ing the particular textual or graphical notation. These instances become
in-memory objects in tools such as the language editor, serializer, and
deserializer. They are also processed by model transformations, which we
discuss in Chapter 7.

3.4. Guidelines for Meta-Modeling with Class Diagrams 55

leavingTransitions

leavingTransitions

leavingTransitionssource

target
sourcesource

target

source

target

target

leavingTransitionsinitial

: Transition
input="sendEmail?"
output="sendErr!"

: Transition
input="sendEmail?"
output="sentOK!"

: Transition
input="login?"
output="credentialsOK!"

: Transition
input="login?"
output="authErr!"

: State
name="S1"

: State
name="S0"

 machines

: Model
name="simple"

: FiniteStateMachine
name="simple FSM"

states

states

Figure 3.3: An instance (in abstract syntax) of the finite-state-machines language defined by the meta-model in Fig. 3.1

Instances quickly become large, when their visualization is difficult,
impractical, or impossible. Furthermore, in the context of MDSE and
DSLs, we typically do not need to show instances in a generic notation—
we use concrete syntax of the DSL instead. However, for learning and
understanding, it does make sense to take a look at an instance to develop
an intuition for how instances and meta-models relate. Fig. 3.3 shows a
simple instance in abstract syntax of our language for finite-state machines.
It corresponds to the instance shown in concrete syntax in Tbl. 3.1. We
use a UML instance specification diagram to visualize this example.1 It
is instructive to compare the concrete state machine in Tbl. 3.1 with this
figure, and with the meta-model of Fig. 3.1. The concrete syntax of the
example has two states, and the object diagram has two State objects (S0
and S1), while the meta-model had a single State class. Similarly we have
four transitions (arrows) in the concrete syntax, each represented by an
object, an instance, of the Transition class of the meta-model.

Exercise 3.4. Draw the instance representing the example of Fig. 3.2 as an instance
(object diagram) of the meta-model designed in Exercise 3.2.

3.4 Guidelines for Meta-Modeling with Class Diagrams

In general, all design patterns and analysis methods known from class
modeling apply to meta-modeling. However, the meta-modeling use case
has its few specific requirements that lead to some specific design recom-
mendations and patterns. Let us discuss these now.

Guideline 3.1Create a single partonomy. A partonomy is the decomposition of a class
diagram along the part-of relationships. Meta-models should have a single
partonomy, so in each instance every object should be contained (perhaps
indirectly) in the containment hierarchy of a single root element. Basically,
there should be a single connected syntax tree.

1The appendix “Class Modeling” on our book website (http://dsl.design) talks about instance
specifications. An “object diagram” was a diagram type available in older versions of UML,
before UML 2.0. Objects are now called instance specifications and integrated into class
diagrams. The notation remained the same, however.

http://dsl.design

56 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.4: The partonomy of
the meta-model of Fig. 3.1

Transition

input : EString
output : EString

Model

FiniteStateMachine

State

[0..*] machines

[0..*] leavingTransitions
[1..1] source

[1..1] machine
[1..*] states

source: fsm/model/fsm.ecore

The partonomy of the diagram in Fig. 3.1 is shown in Fig. 3.4. A
partonomy view of a diagram shows the decomposition of structures: a
sub-diagram showing the classes and their containment relationships. In
our example, the decomposition is a very simple nesting (transitions are
nested in states, states are nested in finite-state machines, and machines
are nested in models). In general, a partonomy takes the form of a forest.
In meta-modeling, we introduce a class as the top-level node, usually
representing the model or the document, that owns all the forest’s trees.
This way, we arrive at a single tree structure. This structure is then easily
manipulated in programs, where it can be passed around and accessed using
a single root object. It is important that all classes are transitively contained
by the top-level class. Otherwise, the class could not be instantiated;
more precisely, it could, but would not be contained by another object and
therefore immediately deleted by the garbage collector of the underlying
programming language (e.g., Java).

Exercise 3.5. Draw the partonomy view of the meta-model created in Exercise 3.2.

Guideline 3.2 Avoid interfaces and methods. It is a bad smell if you see interfaces or
methods in your meta-model. Inexperienced modelers often confuse abstract
classes and interfaces, presumably due to the relative interchangeability
of these in programming. Abstract classes represent abstract concepts
and properties in the meta-models and are related to concrete concepts
using a kind-of relation (generalization); for instance, the abstract class
NamedElement in our example. In contrast, interfaces, as opposed to abstract
classes, are meant to represent the APIs of objects with which you or others
are interacting.

Methods (operations) rarely appear in meta-model classes. The MDSE
tools that process instances and meta-models only take the structure, qual-
ities, and relations into account, not the methods. At runtime, the in-
memory objects instantiating the meta-model classes tend to be passive.
Any operations on them are usually implemented outside the generated

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/model/fsm.ecore

3.4. Guidelines for Meta-Modeling with Class Diagrams 57

classes, in the interpretation and transformation modules. For these reasons,
you should normally not place methods and interfaces into class diagrams
that are meta-models—not least to avoid becoming confused about the role
of meta-models in the MDSE process.

Yet, a few exceptions to this rule exist. Methods can become handy if
you want to create derived attributes (properties that are computed based on
other properties and relations). In this case, you can put a respective method
into a class in the meta-model. Beyond derived properties, sometimes it is
too much overhead to separate simple behavior. Then, it might be useful
to implement convenience operations directly in the generated classes. For
instance, the state-transition logic for our finite-state-machine example
could be implemented as additional methods in the generated class State.

Exercise 3.6. Write a Java (or Scala) function isInitial that should be a member
of the class State (Fig. 3.1). The function should return true if and only if the this
object represents an initial state. Note that isInitial is a derived attribute, and
its representation in the diagram is actually shown later, in Fig. 13.2 on p. 462.

Adding convenience methods in the meta-model and in the generated
code can be entirely avoided when you are using a sufficiently expressive
programming language. For example, extension methods (C#, or Xtend)
can be used to provide these methods outside the generated code. In Scala,
implicits are used to add extension methods, following the pimp my library
pattern—especially for Java libraries, such as the code generated by EMF.
In AspectJ or Kermeta, aspect weaving can be used to achieve a similar
effect. In all these cases, we get an architectural advantage of keeping all
hand-written code in separate compilation units from generated code. This
simplifies incremental builds, error-reporting, and rerunning test cases, and
reduces the risk of manually modifying generated code, which introduces a
slippery slope of abandoning all benefits of MDSE in the long term.

Finally, the well-established Model-View-Controller pattern [14] calls
for separating operations (and visualization) on the model from the model
itself. This pattern is commonly followed in MDSE. When no operations
are put into the model, the chances of violating this pattern are much lower.

Guideline 3.3Verify the taxonomy. The taxonomy of a meta-model is the way concepts are
classified, and how classes are organized in a hierarchy. In object-oriented
meta-modeling the taxonomy is naturally given by the generalization (inher-
itance) hierarchy of classes. A taxonomy view can be produced from your
diagram by removing associations and only retaining the generalization
relation and classes. Unlike for partonomies, quite often there is no single
taxonomy in a meta-model, but several disconnected ones.

Exercise 3.7. Draw the taxonomy view of the diagram in Fig. 3.1. Recall that the
partonomy view of this diagram is shown in Fig. 3.4.

In the case of finite-state machines, the taxonomy view is somewhat simplis-
tic. The only generalizations in the diagram that might not be recognizable

58 Chapter 3. Domain Analysis and Abstract Syntax

for domain experts involve the abstract class NamedElement. In general,
however, the taxonomy view will show a useful decomposition of the
concept space that is dual to the partonomy decomposition. It is useful to
verify the taxonomy of the meta-model with domain experts.

For instance, if we model embedded-system components, we may see
generalizations between less and more advanced versions of a component.
We may also see abstract classes (and generalizations involving them) rep-
resenting component categories. Such a taxonomy should appear familiar
to domain experts and may be verified by them. Incidentally, the ability to
express concept taxonomies is one of the key advantages of class diagrams
over relational schemas for domain modeling. Entity-Relationship (E/R)
diagrams feature only relations (associations) between concepts, without
any way to express generalization first class.

Guideline 3.4 Reify relations when necessary. If relations between concepts have proper-
ties, you can reify them as classes. Even if you use a simple modeling lan-
guage such as Ecore, which does not use association classes, you can repre-
sent relations as classes, not associations. We have seen this pattern at work
in the state-machine example, where the transition could alternatively be
modeled as a successor relation between states. Turning an association into
a class and two relations for each of the original endpoints allows us to place
the attributes on the class, which was not possible for Ecore associations.

Exercise 3.8. Redesign the state-machine meta-model to use an association (refer-
ence) instead of a class for transitions. While doing this, simply ignore the input
and output labels—drop them from the meta-model.

Guideline 3.5 Avoid redundancies. It is a bad smell if multiple classes have the same
attribute. If multiple concepts share an attribute (name, size, speed, etc.),
then it is very likely that in your implementation of the framework you
would like to perform common operations on them (e.g., printing, measur-
ing, moving). This will be easier to do in a reusable way if you extract the
common properties to abstract classes, like we did with the name attribute
and the abstract class NamedElement.

Guideline 3.6 Use singular for class names. It is usually a bad smell if a class name is
in plural. Recall that you describe the main concepts in your domain and
their relationships, including how many instances of which concept are in a
relationship with how many other concepts. To precisely express this, each
class should represent one concept, and a concept is typically expressed in
the singular (e.g., Person or Customer), only very rarely in the plural (e.g.,
Statistics, CustomerServices).

3.5 Meta-Modeling with Algebraic Data Types

From the programming language point of view, meta-models are just defini-
tions of classes and properties. They are types, basically. We have shown
how to use Ecore to express meta-models, but most modern programming

3.5. Meta-Modeling with Algebraic Data Types 59

Opposing Forces in Meta-Modeling
A DSL meta-model is a technical artifact that responds to opposing forces. As a pivotal artifact in a
project, it needs both to capture key aspects of the input domain and to provide types for instantiation
and manipulation used in the implementation. For example, its instances should be easy to construct
using a parser (Chapter 4) and easy to navigate to required elements in interpreters and code generators.
This means that compromises are often made.

Fowler and Parsons [8] often find it helpful to consider how the instances are supposed to be used by
the software framework, when designing the meta-model. So they take both the domain (end-user)
perspective and the implementer perspective into account. Often the most elegant model from the domain
perspective is not the most convenient from the implementation perspective. If the gap between the
problem-space requirements and the solution-space needs are too large, it is not unusual to work with
two meta-models: one that is close to the domain (a so-called Platform-Independent Model) and one
that is closer to the solution (a Platform-Specific Model). In this case we can use a model-to-model
transformation (Chapter 7) to translate between the problem-space model and the solution-space model.

languages have sufficient facilities to express similar information directly,
without using Ecore. Thus you have a choice between using a dedicated
modeling framework or modeling directly with types. In this section, we
present the functional-programming style of abstract-syntax definitions—a
popular meta-modeling alternative among language designers.

Example 8. Recall the meta-model of finite-state machines of Fig. 3.1. Fig. 3.5
shows how the corresponding Scala case classes, an algebraic data type, look.
Read the figure and compare it against the class diagram, before proceed-
ing. Below, we comment on the six types defined therein: NamedElement,
ModelElement, Model, StateName, Transition, and FiniteStateMachine.

NamedElement is a Scala trait (similar to a Java interface, but it can also carry
attributes). Like in the Ecore meta-model, we require that all named elements
have a string attribute name. Since traits support multiple inheritance, this
modeling corresponds directly to the use of the abstract class NamedElement in
Fig. 3.1, where NamedElement was also used in multiple inheritance of Ecore.

We could use a getter-and-setter pattern to define the name attribute—EMF
does this when generating code from our Ecore meta-model. However, in the
pure functional-programming setting here, public access to values is much less
of an issue than in classical object-oriented programming. Since attributes can-
not be modified, invariants are not easy to break. For this reason, publicly ac-
cessible read-only fields, without a getter and setter, are common in functional
programming. Violation of access is less of an issue there, as pure code, with-
out side effects, cannot break data invariants, even if accessing values directly.
In turn, we gain conciseness and simplicity of the definition—less coding and
less maintenance. Still, it might sometimes be valuable to hide properties
behind access methods in functional programs—to prevent external code from
developing dependencies on internal representations. This is relatively rarely
used in language engineering, as it is in any case hard to evolve language

60 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.5: Another modeling
of the finite-state machine
language, using Scala (cf.

Fig. 3.1)

1 trait NamedElement:
2 val name: String

4 sealed abstract trait ModelElement

6 case class Model (
7 name: String,
8 machines: List[FiniteStateMachine]) extends ModelElement, NamedElement

10 type StateName = String

12 case class Transition (
13 target: StateName,
14 input: String,
15 output: String = "") extends ModelElement

17 case class FiniteStateMachine (
18 name: String,
19 states: List[StateName],
20 transitions: Map[StateName, List[Transition]],
21 initial: String) extends ModelElement, NamedElement

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/adt.scala

syntax implementation without changing the abstract API, so the external code
depending on the API would break anyway when the language evolves.

Returning to the figure, ModelElement is an abstract type that we use to
designate all program classes that are part of the meta-model. It corresponds
roughly to the EObject type defined by Ecore, which is a super-type for all
instance objects at runtime (it is defined in the Ecore library and used in the
code generated from the meta-model). With use of the ModelElement type
we can later write generic code that processes any kinds of instance objects,
while still being type safe. As you notice, there is slightly more work to do
in bare-bones Scala than in Ecore—EObject was defined once and for all in
Ecore, here we do the work in the meta-model.

The ModelElement trait is sealed in this example, which limits the possible
implementations to the three types defined below in the same file (Model,
FiniteStateMachine, and Transition). We seal this trait to emphasize that
the listing in Fig. 3.5 contains the complete meta-model definition—no further
extensions will be done in other files. It also allows the type checker to warn
the programmer, whenever a type-based pattern matching expression neglects
one of the three cases. The three classes correspond directly to the concepts
of model, state machine, and transition in the Ecore meta-model.

An attentive reader has already noticed that we lack a class definition for
State in this example. For simplicity, we represent states directly by their
names (character strings). We introduce a type alias StateName purely for
readability. While modeling states as a class was entirely possible in Scala,
we decided to choose another route to illustrate an alternative pattern, creating
a meta-model where the transition relation (the transitions property in
FiniteStateMachine) is a single first-class data structure, not distributed
by different containing states. Such representation of transitions as a single

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/adt.scala

3.5. Meta-Modeling with Algebraic Data Types 61

1 me match
2 case Model (name, machines) =>
3 ... // code executed if me is an instance of Model
4 case FiniteStateMachine (name, states,t ransitions,initial) =>
5 ... // code executed if me is a FiniteStateMachine
6 case Transition (target, input, output) =>
7 ... // code executed for transitions

Figure 3.6: A Scala
pattern-matching expression
for the types of Fig. 3.5

relation is a common functional modeling style for automata-like languages.
Modeling as a relation (a set of arrows) is also a typical way to represent cyclic
structures (which finite automata are)—otherwise there is no way to construct
cyclic instances in a purely functional manner in strict languages like Scala.
A key decision was to lift the transition representation from the state to the
machine level, as a structure over states, not part of each state. Using a map
is secondary; we could have used an association list, or other structures.

Algebraic data types. In Scala, we implement algebraic data types (ADTs)
using sealed traits and case classes. An ADT comprises a number of type
cases (a union, a sum of cases), where each case combines a tuple of several
attributes (selected from a Cartesian product of types). The name algebraic
stems from this combination of two operators to generate the type extension:
the union and the product. ADTs in other functional languages are also
known as data types, union types, discriminated unions, tagged types, etc.

Why do we choose to model abstract-syntax trees (and so, meta-models)
with ADTs? First, the combination of products and sums allows us to
represent trees of diverse shapes. The branching degree of a tree node
is defined by the arity of the cases class representing this type of node.
This makes ADTs extremely practical for specifying abstract-syntax trees,
which are trees of irregular arity. Second, ADTs combine well with pattern-
matching expressions (switches over types), which allow us to concisely
write language-processing algorithms, especially interpreters and transfor-
mations. Fig. 3.6 sketches a skeleton of a type-safe, statically checked code
that generically processes any kinds of model elements in our example.

ADTs in functional languages without inheritance (e.g., Haskell, Stan-
dard ML) can typically capture only the partonomy view of a meta-model.
The taxonomy needs to be worked around in code, using the available
reuse mechanisms (e.g., type classes, functors). In languages that combine
algebraic data types and classes (e.g., Scala, F#), most of the meta-modeling
goes in the same way as in Ecore: we map the taxonomy to the inheritance
hierarchy, and the partonomy to the nesting of type properties. Unfortu-
nately other relations (that are not guaranteed to be acyclic) are impossible
to represent directly in an immutable ADT. The ADT constructors can
only build trees—to close a cycle we either need to use a side effect
(an assignment) to redirect a reference, or we have to resort to indirect
modeling. A classical solution is to use name-based references. In the

62 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.7: The instances of
Fig. 3.3 recoded as an

instance value for types in
Fig. 3.5

1 val transitions = Map (
2 "S0" -> List (
3 Transition (input="login?", output="credentialsOK!", target="S1"),
4 Transition (input="login?", output="authErr!", target="S0")),
5 "S1" -> List (
6 Transition (input="sendEmail?", output="sentOK!", target="S0"),
7 Transition (input="sendEmail?", output="sendErr!", target="S1"))
8)
9 val machine = FiniteStateMachine (

10 name="simple FSM",
11 states=List ("S0", "S1"),
12 transitions=transitions,
13 initial="S0"
14)
15 val model = Model ("simple", List (machine))

example, elements’ names (strings of characters) are used as identifiers, and
we replaced references to objects with references to their names.2

Since we are now using name-based references, we also need a dictionary
that maps names to objects. We have two such dictionaries in our model:
one is the list of state names and the other is the map from state names to the
outgoing transition lists. Typically the dictionaries need to be computed sep-
arately, after parsing is completed. It is clearly an advantage of Ecore and of
language workbenches such as Xtext that they perform this work for you, re-
linking all the references in the object graph after parsing and type checking.

Exercise 3.9. Design a Scala algebraic data type representing the same information
as the meta-model of CSS created in Exercise 3.2.

Ecore instances are serialized to XMI files. We do not have such a generic
facility for regular values of programming languages (although some lan-
guages offer marshaling libraries to JSON, YAML, XML, or custom binary
formats). If you need a text representation that requires no additional
infrastructure, the easiest way to create and save instances of an ADT meta-
model is writing constructor expressions directly in Scala. Figure 3.7 shows
the instance of the finite-state-machine language originally presented in
Fig. 3.3 written as an instance of Scala types of Fig. 3.5. This is probably the
easiest way to store and reuse instances in testing. If you need to use other
modeling tools that rely on the XMI Format, you will have to implement a
suitable transformation first.

To simplify the construction of instances as constructor expressions,
we often implement default parameter values (see Transition.output in
Fig. 3.5, not exploited in Fig. 3.7), alternative constructors, and factory
methods. Language elements tend to have a lot of optional properties. Pro-
viding all of them explicitly at instantiation quickly becomes burdensome.

2Hint: Use strings of characters as element identifiers for languages that have a single name
space and small models (human created). In such cases, strings are sufficiently efficient and
tend to be the simplest way to implement references, as most often you only need to make
cyclic references to elements that already have names. The added bonus is that instances are
easy to read and reasonable to write for humans, for instance during testing and debugging.

3.5. Meta-Modeling with Algebraic Data Types 63

Exercise 3.10. Write down the scala value representing the abstract syntax of
the example CSS instance in Fig. 3.2. Use types and constructors defined when
solving Exercise 3.9.

ADTs vs Ecore. So what should I choose: a modeling DSL from a lan-
guage workbench like Ecore or just standard ADTs from my programming
language? One advantage of Ecore, and other language development
frameworks, is that many tools will integrate with their representations,
even from other programming languages than Java. If you need any Ecore
(or XMI) dependent technology, we recommend using Ecore for modeling.
At the same time, it should be noted that modeling and processing abstract
syntax of languages was one of the key motivations for creating modern
functional programming languages. In fact, the ML language, a predecessor
of Standard ML, OCaml, F#, and Scala, was originally created to build
a proof assistant in which logical statements had to be easily represented
and transformed using inference rules (so this was a language-engineering
project!). Ever since, functional programming languages have been popular
with language researchers and nowadays also with the industry developing
languages. This means that much competing infrastructure exists in the
ecosystem of functional programming languages.

Ecore meta-models tend to have a better representation of constraints
than ADTs. In most languages, ADTs do not provide modeling facil-
ities for capturing cardinality constraints, or bidirectional associations
(so associations that can be navigated from both ends, unlike regular
references in programming languages that are unidirectional). This is
why you will be reimplementing some of these facilities manually, often
by writing additional static-checking code. On the other hand, functional
programming languages offer a fairly concise programming style, well
suited for language processing, that comes in very useful in later language
development stages. The good news is that this style can also be used with
Ecore (with some friction due to the imperative nature of Ecore’s APIs).
Programming languages like Scala, Xtend, and recently also Java, allow
functional programming to be used with Ecore generated types.

Using a programming language in domain analysis tends to quickly bring
us into fairly low-level technical discussions (as seen to an extent in the
fsm example). While this is not immediately a problem for experienced
language engineers, if you are new to language design you might find this
design stage unduly daunting when using ADTs. Regardless of which
technology you use, you can follow the domain analysis process outlined
earlier in this chapter. This book allows you to explore, compare, and
reflect about both worlds, hopefully leading you to a much more informed
choice. Even if you only use one of these technologies in any given project,
knowing how languages are designed and implemented across technological
spaces should make you a better language engineer.

64 Chapter 3. Domain Analysis and Abstract Syntax

3.6 Language-Independent Meta-Modeling Guidelines

To further demystify the process of meta-modeling, we present modeling
advice collected from teaching experience and published research works.
The guidelines below apply regardless of whether you use object-oriented
syntax modeling or algebraic data types.

Guideline 3.7 Let the meta-model describe the problem, not the software tool solving it.
The similarity of meta-modeling with the design of object-oriented APIs
tends to confuse inexperienced language designers. It is key to understand
that meta-modeling is not programming of your tool infrastructure, and the
concepts in the meta-model are not the components of your tools! When we
use class modeling for creating meta-models, a class primarily represents
a domain concept, and not an implementation concept. The model you are
building is the model of the language, not an architectural diagram of your
tool, as often seen in introductory object-oriented modeling courses. So,
while we have states and transitions in our example, we do not include the
parser, the interpreter, a code generator, or a type checker in the meta-model.
These are not part of the language, but of the surrounding infrastructure.

Guideline 3.8 Avoid scope creep. Design what is absolutely necessary and avoid natural
tendencies to over-design [24]. Regardless of what meta-modeling language
you use, the meta-model should have as few concepts as necessary, and no
more. You can get there by questioning everything in the language design;
specifically, question why each construct is needed, and why already now, in
the current release of the language. Wile [24] suggest to focus on about 80%
of the needs, and to provide a way to escape outside the DSL, or to extend
it programmatically in the underlying system, for the rest of the complex
cases. Once the language is created and the infrastructure is implemented
and used, it is expensive to revert decisions. A smaller language is not only
cheaper to maintain and evolve, but also faster to learn. Releasing in small
increments allows tests with users to be run earlier and thus lowers risks.

Guideline 3.9 Use abstraction wisely. Even though abstraction is nice, always think what
level of abstraction and detail is sufficient and necessary. Consider for in-
stance our fsm language. When modeling execution time in a state machine,
you can decide between having the time in seconds versus just using labels
fast/slow. The latter might be sufficient for some applications, such as a
coffee machine that has a fast and a slow brewing mode. You could also
simplify the language, i.e., abstract it, by having fewer labels on the tran-
sitions. Drop the inputs when you notice that the language is just used for
specifying behavior in terms of actions and does not need to react to input.

Guideline 3.10 Strive for simplicity. A language must be simple [12, 11]. Implementing a
complex language will use a lot of resources. Keep the number of concepts
as small as possible and avoid redundancy (i.e., the language’s ability to
express the same things in many ways). Also accept that your language will
be incomplete. It is dangerous to create a language that covers all possible

3.7. Case Study: Mind Maps 65

Grammar-First or Model-First?
Some authors suggest that the language design should start with the concrete syntax and should use
meta-models (or other abstract-syntax definitions) as secondary implementation artifacts [20, 13]. In
this book, we advocate designing a domain model first, before developing concrete syntaxes. We believe
that the meta-model is a central, pivotal artifact in several ways. First, constructing the meta-model is an
instrument for performing domain analysis and problem understanding. Thus it is key for system design.
Second, designing the meta-model helps you to avoid the trap of jumping to solutions too quickly, stay
longer on the problem, and avoid being driven early in design by ad hoc concrete syntax ideas. Third,
different elements of your tool chain will communicate using the instances of the meta-model. These
different parts need to be able to query and manipulate the instances efficiently and effectively. Auto-
matically generated meta-models are usually far from natural and far from elegant. If you use them, you
need to program with convoluted types and APIs, and as a result your back-end tools become complex.

general cases. It is more important to create a language that covers cases
appearing in practice and then plan for language evolution.

Guideline 3.11Prepare the language to grow. Making the language simple is only safe if
you take some protective measures against trivialization. First, be ready to
grow the language iteratively in the future [4]. Few languages never need
to be evolved. DSLs are like libraries and need continuous growth. Second,
consider making the language open—equip it with an escape mechanism, so
that users who outgrow the language can circumvent its limitations [4]. This
can be done at various phases of the language design. In domain analysis
this may require considering an escape construct to call lower-level code.
Alternatives include implementing the language as an internal DSL (Chap-
ter 10), or providing an API to hook into your interpreter or code generator.

Guideline 3.12Avoid designing programming constructs. It is usually a bad sign if your
language becomes dominated by typical programming constructs such as
loops, branching, functions, and classes. You are almost never designing a
programming language [24]. This is often a sign that your abstraction is not
close enough to the domain. It is better to stick to the problem domain as
closely as possible [12, 21]. However, if your language is meant to describe
large, complex systems, consider adding modularity constructs to it. Large
models need to be broken into smaller pieces [11].

It is better to use the problem domain as inspiration, rather than the
solution space [12]. This applies even if an implementation exists, such as in
re-engineering scenarios where models and code generators are introduced
into an existing system. Of course, one should be realistic and still design a
language that can be realized on top of an existing framework. Solution-
space constraints should not dominate the design, however.

3.7 Case Study: Mind Maps

We shall now pursue a larger example to illustrate the domain-modeling
and analysis process. Our hypothetical goal is to build a mind-mapping

66 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.8: An example mind
map, hand-drawn on paper

Figure 3.9: A mind-map model shown in concrete syntax (created by the program XMind)

tool, not unlike XMind3 or FreeMind.4 A mind map is a diagram that
organizes information visually. Each mind-map diagram has a central
concept, usually represented by a label centered on a page, from which a
hierarchy of concepts and ideas extends concentrically. Fig. 3.8 presents
an example mind-map diagram that could have been created while taking
notes during a lecture on meta-modeling. Our goal is to create a modeling
language that allows us to draw mind maps on a computer.5

Figure 3.9 shows a piece of concrete syntax of an existing mind-mapping
tool. We discuss the domain analysis in Tbl. 3.2. Figure 3.10 shows a
potential meta-model of this mind-mapping language. At this point, there

3http://www.xmind.net, retrieved 2022/08
4http://freemind.sourceforge.net/wiki/index.php/Main_Page, retrieved 2022/08
5The example in this section is loosely inspired by a blog post of François Pfister, available at:
http://gmf-modeling.blogspot.com, retrieved 2022/08

http://www.xmind.net
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://gmf-modeling.blogspot.com

3.7. Case Study: Mind Maps 67

Purpose To be able to take simple lightweight notes in a mind-map format.
To be able to read these notes, when studying for exams.

Users Students taking notes during lectures and during exam preparation.

Concepts The center of the diagram contains the main topic, which is then
also the root of the note’s hierarchy. Subtopics are organized
centrally around the main topic.

Relations Properties: The topics can be (optionally) numbered to indicate
the order of reading. Some topics can be emphasized (for instance
printed with a bold font). Finally, topics are indexed by colors,
so that tools can mimic the idea of using several pens, when
displaying the nodes. Relations: The key relation is that between
topic and subtopic: decomposition of the topic into subtopics. The
nesting using the decomposition relation can be arbitrarily deep.
Besides this decomposition it is also possible to draw lines between
topics that are related even if they are not neighbors in the topic
decomposition hierarchy.

Examples Fig. 3.8 provides an example. We note that in this example topic
decompositions are black, and the cross-hierarchy relation is drawn
in a light gray color. In this example only the first layer of topics
around the center is numbered (the other topics are not numbered).
The hierarchy is five topics deep, and only black color is used. The
use of syntax is informal, and at places inconsistent as is common
for notations used for sketching or brainstorming on paper, before
they have been formalized.

Table 3.2: Knowledge
collected in a hypothetical
domain analysis process for
the mind-map example

should be nothing surprising in this meta-model. Still, let us discuss a
specific design decision. The class Color was designed to be contained by
the class Model. Each topic has optionally a reference to a specific color.
We could have let Color be contained by Topic, but since multiple topics will
likely have the same color, we would need to instantiate the same color
multiple times. We avoid this redundancy by this containment hierarchy,
so only one Color instance shall be created per unique color code (attribute
Color.rgbcode). Note that you could still create multiple Color instances with
the same color code; nothing prevents you from doing that. This issue will
be addressed using constraints later in Chapter 5.

Another issue with the class Color is that, when instantiating colors, you
need to create the color code, a string containing three hexadecimal numbers
representing the values for the red, green, and blue parts. It might be better
to predefine potential instances representing known colors directly in the
model. Unfortunately, that is not possible in Ecore. UML has a suitable
construct, called instance specification, which we will return to in Sect. 3.9.

68 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.10: The meta-model
of a simple mind-mapping

language

Model

editorVersion : EInt = 1

NamedElement

name : EString

MindMap

description : EString

Topic

order : EInt
emphasized : EBoolean = false

Color

rgbcode : EString

[0..*] mindmap

[0..*] subtopics

[0..1] color

[0..*] relatedTo

[0..*] topics

[0..*] colors

source: mindmap/model/mindmap.ecore

3.8 Quality Assurance and Testing for Meta-Models

In MDSE, meta-models become pivotal elements, used by all other parts of
your tool chain. It is thus key that they are correct. There are two main qual-
ity assurance (QA) objectives for meta-models: first, confirm that the meta-
model meets the requirements of the project (can we describe everything
we need?); second, ensure that the model has good quality and contains no
design errors. Let us discuss the strategies to achieve these goals.

Meeting the requirements. The key and too frequently neglected QA
practice is checking whether the meta-model adheres to its requirements.
We recommend a systematic and regular review of the requirements against
the meta-model. For example, if you followed the method of Sect. 3.2, you
can revisit the collected material in the QA phase: (i) Check whether
the purpose of the language has not moved from the prescribed goal.
(ii) Check whether the concepts in the meta-model remain relevant for
the stakeholders. (iii) Check whether the relevant concepts and relations
from the requirements are reflected well in the meta-model.

Definition 3.3. A meta-model is complete if its instances can represent all
the domain problems as defined in the system requirements.

The check for completeness should be organized not by model elements,
but by the requirements. A reasonable stop criterion for the activity is thus
achieving high coverage of requirements or simply establishing that all the
requirements are met. If you work through all the model elements, you will
not be able to see whether your model misses some aspects.

One way to make the completeness check concrete and focused, while
producing useful artifacts, is to manually create the instances of the domain
model that witness meeting the requirements. Bentley [4] recommends:
“Before implementing the language, test your design by describing a wide
variety of objects in the proposed language.” You can use the concrete cases
collected in the domain analysis as an inspiration for some of this work. The
created instances should be saved in the language development repository
as test cases for development of other language aspects. They will be in-
strumental in setting up automated tests of the implementation of static and
dynamic semantics, and as oracles for testing the front-end. They will also

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.mindmap/model/mindmap.ecore

3.8. Quality Assurance and Testing for Meta-Models 69

Transition

input : EString
output : EString

NamedElement

name : EString

Model FiniteStateMachine

State

root element

[1..1] target

[0..*] leavingTransitions [1..1] source

[0..*] machines

[1..1] initial

[1..1] machine [1..*] states

source: figures/model/fsmInconsistent.ecore

Figure 3.11: A version of the
meta-model for the language
of finite-state machines that is
consistent, but not
element-consistent

allow the front-end and the back-end to be developed and tested separately,
which is important for parallelizing work: the concrete syntax developers
can use them as oracles for results of parsing, the static semantics developers
and code generator developers can use them as initial test subjects.

Involving domain experts in the process is an advantage if possible, but
they might prefer to communicate using concrete syntax (see Chapter 4),
so the test with language users may be better done slightly later, or using
concrete syntax mock-ups.

Internal quality of the meta-model. Independently of assessing the extent
to which the meta-model meets the requirements, it is worthwhile to check
the internal quality of the meta-model. We focus on two main criteria:
consistency and parsimony.

Definition 3.4. A meta-model is consistent if it can be instantiated meeting
all constraints of the meta-modeling language semantics. A meta-model
is element-consistent if for each element of the meta-model there exists an
instance in which this element is instantiated.

Figure 3.11 presents a minor (erroneous) variation of the meta-model for
finite-state machines originally presented in Fig. 3.1. Only one property is
changed: the initial reference is turned into a containment (highlighted in
red). This meta-model is consistent, but not element-consistent. It can be
instantiated by creating an instance of the Model class without any machines.
Instantiating the FiniteStateMachine class is not possible. Observe, that a
FiniteStateMachine object should contain a State object, but a State object
must be contained both in the states collection and in the initial property,
which is not possible simultaneously. The meta-model can be fixed by
relaxing the containment constraint or by relaxing the cardinality (to make
both containments optional).

Inconsistency is always a manifestation of an internal quality problem in
a meta-model. An inconsistent meta-model is useless. It defines an abstract
syntax for an empty language. An element-inconsistent meta-model can
only be partially instantiated. It is not useless as a whole, but it has parts
that are useless. Inconsistent elements in a meta-model are like dead code
in programs—most often a manifestation of problems as well.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/fsmInconsistent.ecore

70 Chapter 3. Domain Analysis and Abstract Syntax

It is fairly rare that meta-models created by experienced modelers are
inconsistent (or element-inconsistent), but inconsistency errors often show
up in models created by beginners. Thus, you should use consistency testing
also as a way to learn meta-modeling. One group of consistency errors
emerges from the interplay of containment and cardinality constraints (like
in our example). It is also possible to create inconsistencies by building col-
lections of enumeration values with cardinality constraints and a uniqueness
constraint. For example, there may be not enough values of an enumeration
type to populate a collection with unique elements, and to satisfy a lower
bound on the size. Finally, inconsistency errors can also arise in an incorrect
construction of your partonomy (a disconnected or circular partonomy)—
recall that all meta-classes must be reachable from the root model class
through partonomy links, so they can be part of an abstract-syntax tree.

To test for element-consistency, create minimal instances for each meta-
model element both for classes and for properties, so references and at-
tributes. Note that even if all classes can be instantiated, this does not mean
that all properties can be populated. This requires an additional check. Each
of the minimal instances should start with the root meta-model instance (the
model, the document root, and so on) and add the minimal amount of other
elements to show instantiation for some target meta-class or property. Ob-
viously, instances created when testing requirements already prove consis-
tency for many elements, so you only need to add instances for elements that
have not been covered so far. Also, because many model elements require
a substantial number of parent classes, you will need many fewer minimal
instances than the number of meta-model elements. If your meta-model is
modularized, you can also create the test cases separately for each module,
as they are likely to be tested separately later (for instance you might be
testing an expression sub-language implementation, separately from the rest
of the abstract syntax). For small meta-models, this is usually not necessary.
As before, remember to store all the created instances for future use.

Create a maximal example that instantiates all elements that you believe
should be possible to instantiate together in a single model. In general, there
is no guarantee that a single maximal example exists for every meta-model,
as some meta-classes often cannot be instantiated simultaneously, but even
if this is the case, it is useful to approximate it and create a large example,
or a small number of such. This maximal example(s) will constitute a very
practical test case for implementation of the static and dynamic semantics
in the other language development activities. Save them together with other
test cases created.

Now, if you created new instances, this means that some elements have
not been directly traced to requirements. This might be a sign that your
meta-model is not minimal (cf. Avoid scope creep, p. 64).

Definition 3.5. A meta-model is parsimonious if it contains no meta-classes,
no relations (references, associations), and no attributes that do not address
any system requirements for the modeling language.

3.9. The Language-Conformance Hierarchy 71

To ensure parsimony, we recommend a systematic review of all meta-
model elements (classes, attributes, relations) with respect to the language
requirements. Elements introduced overly zealously by the designers should
be removed (or requirements adjusted if they are justified). Finally, we
recommend investigating other bad smells in the design, particularly those
listed in Sections 3.4 and 3.6.

The testing process for abstract syntax and meta-models is largely in-
dependent of whether we use a meta-modeling technology (such as class
diagrams and Ecore) or a type-modeling technology (such as algebraic data
types, ADTs). Inconsistency problems are less likely in ADT modeling,
but still possible. All the other issues apply to both styles. What mostly
changes are the formats in which the instances are saved.

Exercise 3.11. Describe how would you validate the meta-model presented in
Fig. 3.1, i.e., explain how would you make sure that the design is satisfactory.
What test cases and how many would you use? What are the main properties you
want to test a meta-model for?

3.9 The Language-Conformance Hierarchy

Now we know how to describe the abstract syntax of languages using
class diagrams, and since we will do that in a language workbench, let us
look at the typical architectures of such workbenches. The meta-modeling
hierarchy describes the common architecture that all language workbenches
share. As such, its main purpose is to provide a framework that helps
developers of language workbenches to design and implement them.

Imagine that you are the developer of a new language workbench. The
workbench needs to provide the language engineer with some means to
create a meta-model, so it offers class diagrams, Ecore, MOF, ADTs, or
another suitable meta-modeling language. You chose Ecore, so you need
to implement a tool that your language engineers can use to create an
Ecore model. Your users create the Ecore models with the tool and need
to generate the language infrastructure to allow their users to instantiate
the language models. The language workbench needs to make sure that
this infrastructure supports only the creation of valid models. Then, finally,
in a running system, which is either an interpreter or a code generator, the
model is loaded in main memory and will be traversed there. So, what
we have is a hierarchy of models at different levels of abstraction, and the
models are related via instantiation—a conformance relation.

Even the very top level, Ecore, is a model itself. While the specification
of Ecore is usually only implicit in the language workbench, it turns out that
one can (retro-actively) provide an Ecore model representing Ecore’s ab-
stract syntax; likewise, one can provide a MOF model representing MOF’s
syntax, as well as a UML model representing UML’s syntax. One can even
build an Ecore meta-model for the abstract syntax of Scala, or write Scala
ADTs for the abstract syntax of Ecore itself. When we start to talk about
meta-modeling of meta-modeling languages we end up with a hierarchy

72 Chapter 3. Domain Analysis and Abstract Syntax

of models at different levels of abstraction. This hierarchy is called the
meta-modeling hierarchy, or the language-conformance hierarchy.

The Meta-Model of Ecore

Let us first take a look at the top of the hierarchy, which in the case of many
Eclipse-based language workbenches, is an Ecore model. We will define
(and draw) this model using Ecore itself. We call this model the Ecore meta-
model, since it defines the Ecore language. Thereafter, we will take a look
at the hierarchy below the Ecore meta-model. Remember that we instantiate
it to define our own language, such as the robot, the mindmap, or the fsm
DSLs. These models are then meta-models themselves, since they define
all possible instances (models) in our DSL (e.g., the random walk program
from Figures 2.2 and 2.5 written in robot). Given this hierarchy, from the
perspective of models or programs that are instances of our language, the
Ecore meta-model is therefore also often called a meta-meta model.

Figure 3.12 shows an excerpt of the Ecore meta-model, which is ex-
pressed in the Ecore language itself. In other words, the concrete syntax
of the Ecore language is that of class diagrams, so we use this notation to
draw the Ecore meta-model. The full Ecore meta-model has more than 50
classes. In the figure, we only show the core classes and their relationships;
we also hide many of the attributes and all operations.

As you can see, when instantiating the Ecore meta-model in your own
model, you can use well-known class-modeling constructs. For instance,
use EClass to represent classes in your model, add attributes (by instantiating
EAttribute) or relationships (by instantiating EReference) to it, and organize
your classes in a package hierarchy (by instantiating EPackage). EReference
is a good example of a reified relationship (cf. Sect. 3.4), since relationships
between classes in a model have properties, such as whether the relationship
represents a containment (cf. attribute EReference.containment).

Interestingly, many methods are defined in the Ecore meta-model, in an
apparent contradiction to what we recommended in Sect. 3.4: that meta-
models should not contain operations. Some of these methods realize
derived properties, such as the method EClassifier.getClassifierID. However,
most of these methods belong to the reflective API of Ecore that can be
used when no Java classes are generated from a meta-model. These are to
be used by reflective tools that operate on arbitrary meta-models. In fact,
Ecore can be used completely without using code generation. To this end,
an Ecore model (as a meta-model for a DSL) can be created dynamically at
runtime, instantiated, and then processed (e.g., traversed or modified) using
the reflective Ecore API. Such a runtime instance of an Ecore language is
called a dynamic instance, further explained in the appendix “Using the
Eclipse Modeling Framework” on our book website (http://dsl.design).

The Ecore meta-model of Fig. 3.12 has been created post factum, after
Ecore was already implemented. Of course, the language has to be imple-
mented before it can be used to describe models (i.e., other languages) in it.

http://dsl.design

3.9. The Language-Conformance Hierarchy 73

EAttribute

iD : EBoolean = false

EClass

abstract : EBoolean = false
interface : EBoolean = false

EClassifier

instanceClassName
: EString

EDataType

serializable : EBoolean = true

EEnum

EEnumLiteral

value : EInt
instance :
EEnumerator
literal : EString

EModelElement
ENamedElement

name : EString

EOperation

EPackage

nsURI : EString
nsPrefix : EString

EParameter

EReference

containment :
EBoolean = false
/container : EBoolean
= false
resolveProxies :
EBoolean = true

EStructuralFeature

changeable : EBoolean = true
volatile : EBoolean = false
transient : EBoolean = false
defaultValueLiteral : EString
/defaultValue : EJavaObject
unsettable : EBoolean = false
derived : EBoolean = false

ETypedElement

ordered : EBoolean = true
unique : EBoolean = true
lowerBound : EInt
upperBound : EInt = 1
/many : EBoolean = false
/required : EBoolean =
false

[0..1] eType

[1..1] /eAttributeType

[0..*] eSuperTypes

[0..*] /eAllAttributes
[0..*] /eAllReferences
[0..*] /eReferences

[0..*] /eAttributes
[0..*] /eAllContainments

[0..*] /eAllOperations

[0..*] /eAllStructuralFeatures

[0..*] /eAllSuperTypes

[0..1] /eIDAttribute

[0..*] eExceptions

[0..1] eOpposite

[1..1] /eReferenceType

[0..*] eKeys

[0..1] eContainingClass

[0..*] eOperations

[0..*] eClassifiers
[0..1] ePackage

[0..1] eSuperPackage

[0..*] eSubpackages

[0..1] eOperation

[0..*] eParameters

[0..1] eEnum

[0..*] eLiterals

[0..1] eContainingClass

[0..*] eStructuralFeatures

source: figures/model/ecoremm.ecore

Figure 3.12: An excerpt of the Ecore meta-model of Ecore. In other words: the meta-model of the Ecore language, where the
meta-model is expressed in Ecore itself

So, the EMF developers first implemented Ecore and then defined the Ecore
meta-model for it using the language. This method is called bootstrapping,
and originates in compiler construction.

Bootstrapping: Describing a Language in Itself

The fact that one can describe the abstract syntax of a class-modeling
language, such as Ecore, using class modeling itself has actually sometimes
led to confusion that some languages are defined in themselves, for example
‘UML defined in UML’ or ‘Ecore is defined in Ecore.’ Such statements are
false—circular definitions of languages are not possible.

The practice of modeling a language using itself could better be called
bootstrapping. It resembles a practice common among programming lan-
guage designers, who build compilers for a new language in the language
itself, as the first serious maturity test. For example, your favorite Java com-
piler is most likely implemented in Java. Of course, a bootstrapped language
first needs a compiler or an interpreter implemented in another language
(which already has a compiler or interpreter). Typically one first implements
an interpreter for the core language (say Java) in a language with an existing
compiler (say C). Once this implementation works, one reimplements the
interpreter/compiler in Java again, and throws away the temporary C-based

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/ecoremm.ecore

74 Chapter 3. Domain Analysis and Abstract Syntax

mindmap

EcoreM3

M2

M1

M0

Languages / Models Model Fragments (Examples)

robotics.xmi

objects in memory
(heap space)

...
Sensors : Topic

...
Ultra-Sonic : Topic

topics

TopicMindMap

description : EString

[0..*] subtopics

[0..*] topics

EClass

EClassifier

EReference

EAttribute

[0..*] eSuperTypes

[0..*] /eAllReferences

[0..1] eOpposite

[0..*] /eAllAttributes

...
Robotics : MindMap

subtopics

Heap

relatedTo

[0..*]

‹‹instanceOf››‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹representedBy››

‹‹instanceOf››

‹‹instanceOf›› ‹‹instanceOf›› ‹‹instanceOf›› ‹‹instanceOf››

‹‹instanceOf››

‹‹representedBy›› ‹‹representedBy›› ‹‹representedBy››

Figure 3.13: The conformance hierarchy for Ecore and the mindmap language

interpreter. Similarly for modeling languages: the first definition uses an
existing language, or simply a natural-language description. The bootstrap-
like self-definition comes later, once the modeling language already exists.

Meta-Modeling Levels

The Object Management Group organizes models and languages in a hierar-
chy of abstraction layers, also known as the MOF meta-modeling hierarchy.
This is exemplified in Fig. 3.13 using our mind-map language and Ecore
as the meta-modeling language. Recall that Ecore is the de facto reference
implementation of MOF.

In the figure, at the very top level, called M3, we have the Ecore language,
which allows description of class diagrams. Instances of this language are
class diagrams at the level M2. A class diagram describing an abstract
syntax (the meta-model) of the mind-map language belongs here. Note
the conformsTo relation between languages and models, and we use the
instanceOf relations between model elements. On M3, the Ecore language
conformsTo itself. On M2, our mind-map DSL conformsTo Ecore.

3.9. The Language-Conformance Hierarchy 75

One level below at M1, we have a concrete model in the mind-map
language, here shown using a notation of instance specifications, sometimes
referred to as object diagrams (so their abstract syntax is shown). The
models at M1 describe concrete mind-map notes; here, a mind map of some
robotics topics (sensors). It conformsTo our mind-map language.

At the bottom level of the hierarchy, M0, we have the real system,
specifically, the objects that exist in the main memory at runtime. These
objects are representedBy the models at M1, and these are the objects you
will traverse and process programmatically (as defined by your dynamic
semantics). For instance, when you write an interpreter, you will traverse
these objects; or, when you write a generator or a code transformation, these
objects will be the actual input.

Some authors instead say that M0 refers to the ‘physical world’ (or the
domain) that is represented by the models at M1. One could see it like that,
but we think that this can be confusing, especially since there is not always
a physical world that your model will represent. For instance, what exactly
would a mind-map topic “Sensors” represent? Instead, always keep in mind
that at some point there need to exist real objects in the computer memory
that can be traversed and processed in some way.

Now, for the model layers M1–M3, let us briefly discuss what kind of
syntax is shown. On levels M3 and M2, we use the concrete syntax of Ecore
to show the excerpts of the models—exactly the same way an Ecore model
would be shown in the graphical editor available in the Eclipse Modeling
Framework. On M1, we use the abstract syntax of our mind-map language,
so we show the model as an object diagram. If we had used a concrete
syntax, it could look like Fig. 3.8 or Fig. 3.9, depending on how we had
designed the concrete syntax.

Figure 3.14 shows the same architecture, but using UML instead of Ecore
to define the mind-map language. The design of the UML has actually been
the main rationale for organizing this architecture. To formally define UML,
the MOF language was created by OMG. Recall that MOF, very similar to
Ecore, is a very simple class-modeling language that is less expressive than
UML class diagrams. For this reason, it is very usable to define the abstract
syntax of languages, including that of the very complex UML language with
its different sub-languages (class diagram, sequence diagram, state-machine
diagram, etc.). Since then, it has proven very useful for understanding the
layers involved when designing DSLs, like our mind-map language. To
understand the remainder, note that the models in M1–M3 are all shown in
concrete syntax, as opposed to Fig. 3.13, where M1 was in abstract syntax
for convenience reasons.

The UML hierarchy is a bit tricky, though. While on M3, MOF con-
formsTo itself, the entire UML language is in M2 and conformsTo MOF.
Importantly, UML contains conformance of models to meta-models in itself.
So, UML allows you to model both class diagrams and their instances (i.e.,
object diagrams) in the same model. This appears to be in conflict with the

76 Chapter 3. Domain Analysis and Abstract Syntax

UML

MOFM3

M2

M1

M0

Languages / Models Model Fragments (Examples)

mindmap-robotics.xmi

objects in memory
(heap space)

...
Sensors : Topic

[0..*] topics

...
Robotics : MindMap

Heap

[0..*]
superClass

Class
...

Association
...

InstanceSpecification
...

Class
...

Association
...

MindMap
description: String

Topic

topics

classifier instance-
Specification

BehavioredClassifier
...

Classifier

...isAbstract: Boolean

red : Color

rgbcode = "#ff0000"

Color
rgbcode: String

...

[0..*] [0..*]
Classifier

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹representedBy››

‹‹instanceOf›› ‹‹instanceOf›› ‹‹instanceOf››

‹‹representedBy››

‹‹instanceOf›› ‹‹instanceOf››

‹‹representedBy››

‹‹representedBy››

Figure 3.14: Meta-modeling hierarchy illustrated using UML and the mindmap language

meta-modeling hierarchy: we have types and instances at the same level, or
a language (UML) that stretches over two levels. In the example, we can put
both our mind-map DSL and their instances into level M1. You can see this
as a kind of unification of classes and their instances, which has advantages
that we discuss shortly. The figure actually shows how UML tools are
implemented to support this, using a general language-processing stack,
such as EMF, and this stack is at the same abstraction level as M1. The
key idea is that UML models the instanceOf relation itself, in the language,
while EMF just implements it in its language-processing stack. In other
words, the UML instanceOf relation between a class and an instance (i.e.,
an object) becomes a regular reference (association) in the implementation.

Using this support, the so-called ontological instantiation (explained
shortly), you can use UML to model classes in M1, which are instances
of the UML class Class in M2, and you can model instances (i.e., objects)

3.9. The Language-Conformance Hierarchy 77

an xml schema
an xsd file for XMI

xml schema lang
http://www.w3.org/2001/XMLSchema.xsd

M3

M2

M1

M0

Languages Model Fragments (Examples)

an xml file
for example: mindmap.ecore (XMI)

reality
an actual mindmap or what it represents

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

<xs:element name="choice" type="xs:simpleExplicitGroup"/>
<xs:element name="sequence" type="xs:simpleExplicitGroup"/>

‹‹instanceOf››

<xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eSuperTypes" type="ecore:EClass"/>
 <xsd:element name="eOperations" type="ecore:EOperation"/>
 <xsd:element name="EStructuralFeatures" type="ecore:EStructuralFeature"/>
 <xsd:element name="eGenericSuperTypes" type="ecore:EGenericType"/>
</xsd:choice>

‹‹instanceOf››

‹‹instanceOf››
<eStructuralFeatures xsi:type="ecore:EReference" name="rootTopics" upperBound="-1"
 eType="#//Topic" containment="true" resolveProxies="false">
 <eAnnotations source="http:///org/eclipse/emf/ecore/util/ExtendedMetaData">
 <details key="kind" value="element"/>
 <details key="name" value="rootTopics"/>
 </eAnnotations>
</eStructuralFeatures>

‹‹representedBy››

Figure 3.15: Meta-modeling hierarchy illustrated using the XML technology stack

in M1, which are instances of the UML class InstanceSpecification. On
M2, both these classes are associated to each other; see the arrow labeled
classifier and instanceSpecification.

In M1, let us take a look at the instances on the right-hand side. Since
the model is shown in concrete syntax, what you can see is three objects
connected by two links. All of these are actually represented by five objects
in the abstract syntax. If we were to show the abstract syntax, you would
see the five objects. However, the UML specification defines the respective
concrete syntax as follows: if an object is an InstanceSpecification whose
classifier is a Class, then the object is rendered in the typical object notation.
If an object is an InstanceSpecification whose classifier is an Association, then
it is rendered as a link (an arrow that has a label).

In summary, the idea of the meta-modeling hierarchy is that various levels
of meta-modeling can be set at various abstraction levels. For example, a
meta-model of Ecore is very abstract. A meta-model of UML expressed
in MOF is more concrete. A model of a mind-map application expressed
in UML is even more concrete. An instance of that model, an actual mind
map expressing specific topics, is very concrete.

When you design your own DSL using Ecore, it belongs to level M2, re-
placing UML, and concrete models in the DSL are at level M1. It depends on
the concrete project whether they have further instances or not—usually not.
If you design your DSL using UML, you will most likely use one more layer.

Linguistic Versus Ontological Instantiation

We have seen how EMF and UML support the instantiation of meta-models.
In EMF, the instance model is always a different model, whose conformance

78 Chapter 3. Domain Analysis and Abstract Syntax

to its meta-model is assured via the language-processing stack in EMF. In
UML, you can create a meta-model and (parts of) its instances in the same
model, since UML supports conformance as part of its language. The
former is called a linguistic, and the latter an ontological instantiation [1],
also known as multi-level modeling [6, 18]. The different approaches in
their whole are also referred to as linguistic meta-modeling and ontological
meta-modeling [15]. The latter is inspired by typical ontology specification
languages, such as OWL, which support modeling both classes (i.e., types)
and their instances, called TBox and ABox statements, respectively [3].

Now, what is the benefit of that? Conceptually, we are bringing classes
and their instances to the same level of abstraction. Often, when you
program (or model) you think about the program (or model) and manipu-
lated values (instances) simultaneously, so why not model them together?
Programming languages allow both algorithms and values to be specified.
This duality is often needed in modeling DSLs as well. One common use
case is to provide a collection of predefined “runtime” objects in a language.

A useful example can be found in the M1 layer for our mind-map example
in Fig. 3.14. Ignore the objects Robotics and Sensors and suppose there
would only be the object red. Remember that above in Sect. 3.7, we
lamented about the missing possibility to predefine some concrete colors
for our mind-map language, which is not possible in Ecore. In UML, you
can just create some instance specifications for the colors that you want.
Instantiate them with the respective color codes as attribute values. This
way, you define that in the system at runtime these instances need to exist.
You can of course still separate instance models and the definition of our
mind-map DSL, but conceptually, these models reside on the same meta-
level, M1. It is unified in a way that you can just import your meta-model;
you could extend the meta-model or partially instantiate it. This allows
more expressive DSLs to be designed [6, 18, 1, 15, 2].

3.10 A Sneak Peek at XML

We have discussed the meta-modeling hierarchy as established by MOF
and realized using class diagrams from UML and EMF’s Ecore language.
You are probably familiar with XML together with its related technologies,
such as XSD, XSL, XSL-FO, and so on. These technologies also form a
meta-modeling hierarchy, similar to the one we explained above.

The example in Fig. 3.15 shows the same meta-modeling architecture
as realized by the W3C technology stack for structured data XML. At the
top level, M3, we have the XML Schema Language XSD, which conforms
to its specification in XSD—again, after the language has been designed.
It has been described in itself and the corresponding XSD file has been
published.6 At the M2 level we have XML Schemas for concrete languages.
Here, we use the XMI language as an example. At the M1 level we have

6http://www.w3.org/2001/XMLSchema.xsd, retrieved 2022/09

http://www.w3.org/2001/XMLSchema.xsd

3.10. A Sneak Peek at XML 79

concrete XML files conforming to the schema of M2. In the example, we
use the mindmap.ecore file that conforms to the XMI schema for model
representation in XML format.

The familiar XML stack has very similar aims to meta-modeling lan-
guages: describing structures and data in a standard manner. The main
differences are that (1) XML documents are not really meant to be processed
by humans, and that (2) XML processing stays largely on the level of strings
or trees. Tools for processing models usually stay at a higher abstraction
level. As we will see in later chapters, models are processed using languages
that support standard object-oriented programming models.

Further Reading
Fowler and Parsons [8] distinguish domain-models and meta-models, and, like us,
they strongly argue for the use of explicit meta-models in the design and imple-
mentation of DSLs. They use the name semantic models for meta-models and they
devote an entire section to the pattern of using them in language implementations.

The community advocating MDSE and meta-modeling is commonly known as the
modelware community. However, as we indicated at various opportunities, language
development is an old discipline and traditionally centers around grammars and
parsers. That community is known as the grammarware community. Grammarware
practitioners might find the concepts of modelware as described in this book un-
usual. Paige, Kolovos, and Polack [20] provide an introduction into meta-modeling
concepts for grammarware practitioners. Among other things, they motivate the use
of meta-models that are still (relatively) unknown in the grammarware community.

The Meta-modeling hierarchy is described in section 6.2 of the book by Stahl
and Völter [21]. This hierarchy can also be found in the UML 2.5 Infrastructure
Specification from the Object Management Group.

We used the Eclipse Modeling Framework EMF with its language Ecore to
illustrate meta-modeling. Beyond the quick tutorial on EMF available on the book’s
website, we recommend the following books of Steinberg et al. [22], Budinsky et al.
[5], and Moore et al. [16] to for in-depth information about EMF.

Additional Exercises

Exercise 3.12. Specify an object diagram (a class instance specification diagram)
presenting the abstract-syntax tree of the mind map shown in Fig. 3.9. Limit your
diagram to the root topic (“Class Modeling, Meta-modeling”), the sub-topic “3.
Meta-Modeling,” and two of its sub-topics. Use the meta-model seen in Fig. 3.10.

Exercise 3.13. The object diagram in Fig. 3.16 shows (supposedly) an instance
of the meta-model of Fig. 3.1. What is the problem with this instance? Could it
represent a legal syntax tree? Why? a) Find a conformance error in this instance.
b) Correct the object diagram so that it conforms to the meta-model.

Exercise 3.14. Load the mind-map meta-model into a modeling tool and create an
instance of "Document Root" representing the abstract syntax of the model shown
in Fig. 3.9. For the purpose of the exercise, assume that topics are represented
by blue boxes in the concrete syntax. Threads are represented by white boxes
with a little blue circle. Thread items are represented by lines branching out of

80 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.16: An example
invalid instance of the fsm

meta-model of Fig. 3.1

leavingTransitions

initial

source

target states

: Transition
input="a"
output=null

: State
name="S1"

: State
name="S0"

: Model
name="model"

: FiniteStateMachine
name="simple FSM"

Figure 3.17: A simple
meta-model for SQL queries

SelectQuery

Table

Column

Model
NamedElement

name : EString
[1..*] what

[1..*] from [0..*] columns

[0..*] tables

[0..*] queries

source: sql/model/sql.ecore

Figure 3.18: A meta-model for
Pascal’s triangle

row 1 1

row 2 1 1

row 3 1 2 1

row 4 1 3 3 1

Triangle

Entry

row : EInt = 1
value : EInt = 1

[0..*] coefficients[1..1] root

[0..1] next

[0..1] leftParent

[0..1] rightParent

source: pascal/model/pascal.ecore

the thread’s blue circle. The mind-map meta-model in Ecore format is available
from the mindmap project of the book repository.

Exercise 3.15. Figure 3.17 presents a simplified meta-model for SQL queries.
Draw object instance diagrams representing the abstract-syntax trees of the
following queries as instances of this meta-model. You will need to invent a
suitable data model with tables and columns.

a) SELECT NAME FROM CUSTOMER;
b) SELECT NAME, PRICE FROM PRODUCT;

Exercise 3.16. Pascal’s triangle (Fig. 3.18) is a numeric hierarchical structure,
where each internal node’s value is the sum of the values of its two parents, a row
above. The right part of Fig. 3.18 presents a meta-model to represent Pascal’s
triangles of different sizes. Numbers are stored in entries nested directly under
an instance of the root class Triangle. Additional references connect nodes to
parents and to their next sequential neighbor. Draw the abstract syntax of the
triangle in the left part of the figure as an instance of the meta-model in the right
side. To save time, draw the instance for the first three rows (ignore row 4).

Exercise 3.17. Figure 3.19 shows a feature model in concrete syntax, and Fig. 3.20
shows a simplified meta-model for this language. In concrete syntax, we draw a
hollow arc to denote XorGroup and a filled one to denote OrGroup members. There
is only an Xor group in the instance. The feature aircon is an optional feature,

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.sql/model/sql.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.pascal/model/pascal.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.mindmap

3.10. A Sneak Peek at XML 81

car

transmission aircon

auto manual Figure 3.19: A simple feature
model in concrete syntax

Model1

NamedElement1

name : EString

Feature1

Group1

OrGroup1XorGroup1

[1..1] root

[0..*] subfeatures

[0..*] groups [2..*] members

source: featuremodels/model/FeatureModels1.ecore
Figure 3.20: A meta-model for
feature diagrams

NamedElement2

name : EString

Model2 Feature2

Group2

OrGroup2 XorGroup2

[1..1] root

[0..*] solitarySubfeatures

[0..*] groups[2..*] members

source: featuremodels/model/FeatureModels2.ecore
Figure 3.21: An alternative
meta-model for feature-models

denoted by the hollow circle, whereas the feature transmission is mandatory,
denoted by the filled circle. Draw the abstract syntax of the above feature model as
an instance of this meta-model. Remember that an abstract-syntax tree must have
a single partonomy. Can the optionality of a feature be represented in the meta-
model? More information about feature models is available in Chapters 11 and 12.

Exercise 3.18. Draw the abstract syntax of the feature model of Fig. 3.19, as an
instance of an alternative meta-model for feature diagrams shown in Fig. 3.21.

Exercise 3.19. Extend the meta-model in Fig. 3.20 so that it supports excludes
and requires constraints. After the extension it should be possible to state in the
syntax of the modeling language that some feature requires another feature, or

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels1.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels2.ecore

82 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.22: An example
graph in a hypothetical

concrete syntax

1 vertex 1;
2 vertex 2;
3 vertex 3;
4 edge 1->2 [coin];
5 edge 2->4 [coffee];
6 edge 3->1 [deliver]

Figure 3.23: An example
model in a hypothetical

concrete syntax

1 abstract class HasOptions {};
2 abstract class NamedElement {};
3 abstract class Question extends NamedElement {};
4 class MultipleChoice extends Question, HasOptions {};
5 class SingleChoice extends Question, HasOptions {};

some feature excludes the use of another feature. For instance:

electric requires automaticTransmission
diesel excludes hybrid

Exercise 3.20. The meta-model of Fig. 3.21 does not allow optional features to be
represented. Fix the meta-model by modifying the diagram so that it can represent
the distinction between optional and mandatory features.

Exercise 3.21. An HTML document consists of a header and a body. The header
has an attribute ‘title’ of type string. The body is a nested tree of elements and
text chunks containing strings of characters. Elements can nest other elements
and other chunks of text underneath. Text chunks cannot nest anything. Only
two types of elements are allowed: paragraphs (p) and divisions (div). Design a
meta-model representing documents in this subset of HTML. Include anchors and
anchor references in the meta-model. Use either Ecore or ADTs for modeling.
If you do both, compare the differences and similarities.

Exercise 3.22. Consider a simple modeling language for describing labeled di-
rected graphs. An example in concrete syntax is shown in Fig. 3.22. A graph
consists of a number of vertex declarations, each naming a vertex with an
integer number, and a list of edge declarations, each relating to vertices with
an optional label (a character string). Design an Ecore meta-model (or ADTs in
your functional programming language of choice) for representing such models.

Exercise 3.23. Consider a simplified variant of the Google Protocol Buffers DSL
(Sect. 1.1). We use a simplified language in this task: a model consists of a
number of message types. Each message type has a number of attributes and a
name. Each attribute has a name and a type (another message type), and a Boolean
attribute specifying whether the attribute is optional or mandatory. Present an
Ecore meta-model, or a set of ADT definitions, for the language described above.

Exercise 3.24. We want to describe very simple class models. Each class has a
name; it can be abstract or concrete; and a class may extend several other classes
(multiple inheritance). Figure 3.23 shows an example model in concrete syntax.
Design an Ecore meta-model able to represent abstract syntax of such models.

Exercise 3.25. Describe the AST of the language of the previous exercise using an
ADT instead of class diagrams (use a suitable language like Haskell, F#, or Scala).

3.10. A Sneak Peek at XML 83

FeatureGroup

OrGroup XorGroup

Figure 3.24: A simple class
diagram containing a core part
of a meta-model for feature
diagrams

EReference

containment : EBoolean = false

EPackage ENamedElement

name : EString

EModelElement

ETypedElement

lowerBound : EInt
upperBound : EInt = 1

EClassifier
EStructuralFeature

EAttribute
EClass

abstract : EBoolean = false
interface : EBoolean = false

EDataType

EBoolean

[0..1] eOpposite

[0..1] eSuperPackage

[0..*] eSubpackages

[0..1] ePackage

[0..*] eClassifiers

[1..1] /eReferenceType
[0..*] eSuperTypes

[0..*] /eAllStructuralFeatures

Figure 3.25: A subset of the Ecore meta-model

FiniteStateMachine State[1..*] states Figure 3.26: An
over-simplified meta-model for
state machines

Exercise 3.26. A simplified XML document is a tree of elements. Each element
has a name, a list of parameters, and a list of nested elements. Each parameter
has a name and a value of type string. Design a meta-model representing XML
documents from this simple dialect. Note that this is meant to be done for XML
as a language, not for a particular XML dialect.

Exercise 3.27. Design a meta-model for an XML dialect known to you. Explain
the main difference between this meta-model and the one in the previous exercise.

Exercise 3.28. Draw (on paper) the partonomy and taxonomy views for the meta-
model of Ecore (Fig. 3.12).

Exercise 3.29. Figure 3.24 shows a feature-diagrams’ meta-model. Draw the
abstract-syntax tree of this diagram as an instance of the meta-model in Fig. 3.25.

Exercise 3.30. Figure 3.26 depicts a simple Ecore class diagram (incidentally) de-
scribing a fragment of a meta-model for state machines. Draw the abstract-syntax
tree of this diagram as an instance of the Ecore meta-model shown in Fig. 3.25.

84 Chapter 3. Domain Analysis and Abstract Syntax

Figure 3.27: A tiny
meta-model for relational data
(entity-relationship diagrams)

NamedElement

Table Column[0..*] columns

source: relationalmodel/model/sql-small.ecore

Figure 3.28: A fragment of the
Ecore meta-model

EStructuralFeature

EClass EReference

[0..*] eStructuralFeatures

[1..1] /eReferenceType

Exercise 3.31. Figure 3.27 shows a meta-model for relational schemas. Draw the
abstract syntax of this diagram as an instance of the meta-model in Fig. 3.12.
Include classes, generalizations, references, and properties such as abstract,
containment, cardinality constraints (upper and lower bound), and names.

Exercise 3.32. The meta-model of Ecore shown in Fig. 3.25 is itself an Ecore
model. Thus it can be presented as an instance of itself, a kind of boot-strapping.
We attempt to understand this idea on a small part of Fig. 3.25 shown in Fig. 3.28.
Draw the abstract syntax of the diagram in Fig. 3.28 as an instance of the
Ecore meta-model in Fig. 3.25. Include classes, generalizations, references,
and properties such as abstract, containment, and names.

Exercise 3.33. Ecore supports bidirectional associations only indirectly (see sec-
tion “Associations” in the appendix “Class Modeling” on our book website,
http://dsl.design). It uses the EOpposite property to relate two inverse unidirectional
references. Study the Ecore meta-model (Fig. 3.12) and explain how bidirectional
references are represented in abstract syntax. Draw the abstract syntax for a
simple object diagram showing two classes related by a bidirectional reference.

Exercise 3.34. This exercise can be solved after reading Chapter 5. Use your
favorite meta-modeling mechanism to design a meta-model for Alloy instances,
like those shown in Fig. 5.14 on p. 173. See also Exercise 4.57 on p. 141.

References

[1] Colin Atkinson and Thomas Kühne. “Model-driven development: a meta-
modeling foundation”. In: IEEE Software 20.5 (2003), pp. 36–41 (cit. p. 78).

[2] Colin Atkinson and Thomas Kühne. “Reducing accidental complexity in
domain models”. In: Software & Systems Modeling 7.3 (2008), pp. 345–359
(cit. p. 78).

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter Patel-Schneider. The Description Logic Handbook. Cambridge
University Press, 2003 (cit. p. 78).

[4] Jon Bentley. “Programming pearls: Little languages”. In: Commun. ACM
29.8 (Aug. 1986), pp. 711–721 (cit. pp. 65, 68).

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.relationalmodel/model/sql-small.ecore
http://dsl.design

References 85

[5] Frank Budinsky, David Steinber, Ed Merks, Raymond Ellersick, and Timo-
thy Groose J. Eclipse Modeling Framework. Addison-Wesley, 2004 (cit. p. 79).

[6] Victorio A. Carvalho and João Paulo A. Almeida. “Toward a well-founded
theory for multi-level conceptual modeling”. In: Software & Systems Mod-
eling 17 (2018), pp. 205–231 (cit. p. 78).

[7] Johannes Ernst. What is metamodeling and what is it good for? Unfortu-
nately, the original website is no longer available. 2002 (cit. p. 47).

[8] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison-
Wesley, 2011 (cit. pp. 59, 79).

[9] Ralf Gitzel and Tobias Hildenbrand. A Taxonomy of Metamodel Hierarchies.
Apr. 2005. URL: https://madoc.bib.uni-mannheim.de/993/ (cit. p. 48).

[10] Kyo Chul Kang. “FODA: Twenty years of perspective on feature models”.
In: SPLC. Keynote Address. 2009 (cit. p. 48).

[11] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. “Design guidelines for domain specific
languages”. In: 9th OOPSLA Workshop on Domain-Specific Modeling.
2009 (cit. pp. 64, 65).

[12] Steven Kelly and Risto Pohjonen. “Worst practices for domain-specific
modeling”. In: IEEE Software 26.4 (2009), pp. 22–29 (cit. pp. 64, 65).

[13] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “MontiCore: A frame-
work for compositional development of domain specific languages”. In:
International Journal on Software Tools for Technology Transfer (STTT)
12.5 (2010), pp. 353–372 (cit. p. 65).

[14] Glenn E. Krasner, Stephen T. Pope, et al. “A description of the model-view-
controller user interface paradigm in the Smalltalk-80 system”. In: Journal
of Object-Oriented Programming 1.3 (1988), pp. 26–49 (cit. p. 57).

[15] Alfons Laarman and Ivan Kurtev. “Ontological metamodeling with explicit
instantiation”. In: SLE. 2009 (cit. p. 78).

[16] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and Philippe
Vanderheyden. Eclipse Development Using the Graphical Editing Frame-
work and the Eclipse Modeling Framework. IBM, 2004 (cit. p. 79).

[17] Damir Nesic, Jacob Krueger, Stefan Stanciulescu, and Thorsten Berger.
“Principles of feature modeling”. In: FSE. 2019 (cit. p. 48).

[18] Bernd Neumayr, Katharina Grün, and Michael Schrefl. “Multi-level do-
main modeling with m-objects and m-relationships”. In: 6th Asia-Pacific
Conference on Conceptual Modeling. APCCM. 2009 (cit. p. 78).

[19] Object Management Group. Metadata Interchange (XMI) Specification.
2015. URL: https://www.omg.org/spec/XMI (cit. p. 48).

[20] Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack. “Metamod-
elling for grammarware researchers”. In: 5th International Conference on
Software Language Engineering (SLE). 2013 (cit. pp. 65, 79).

[21] Thomas Stahl and Markus Völter. Model-Driven Software Development.
Wiley, 2005 (cit. pp. 65, 79).

[22] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. 2nd Edition. Addison-Wesley, 2009
(cit. p. 79).

[23] Wisława Szymborska. Enough. 2011 (cit. p. 47).
[24] David S. Wile. “Lessons learned from real DSL experiments”. In: Sci.

Comput. Program. 51.3 (2004), pp. 265–290 (cit. pp. 50, 64, 65).

https://madoc.bib.uni-mannheim.de/993/
https://www.omg.org/spec/XMI

4 Concrete Syntax

Parser development
is still a black art.

Klint, Lämmel, and Verhoef [16]

Models and meta-models, algebraic data types and values, XML schemas
and files, class and instance diagrams, YAML files—all these abstract-
syntax specification methods are clearly important for you as a language
designer. At the same time, the end-users, especially domain experts who
are not programmers, tend to find them unnatural and cumbersome to use.
An important part of a domain-specific language design is to choose a
natural and easy to use concrete syntax, so that users can work efficiently.

In this chapter, we define what is concrete syntax, and detail how to
create syntax that is easy to read and write for language users, and that is
understandable and maintainable for the language designers. We discuss
specification mechanisms (context-free grammars and regular expressions),
design guidelines for textual syntax, and quality assurance. However, we
try to limit the theoretical considerations to a bare minimum. We hope
that with this chapter we can actually meet the wishes of Klint, Lämmel,
and Verhoef [16] expressed in the paper quoted at the top of this page: to
demystify creation of parsers, showing and systematizing how grammars
are written. The chapter contains examples, case studies, and exercises, but
also many practical rules and guidelines on how to arrive at a good design
of concrete syntax, expressed in a robust grammar.

4.1 Concrete and Abstract Syntax

Figure 4.1 shows a model of a finite-state machine in three different rep-
resentations. The well-known graphical concrete syntax is found in the
bottom left, repeated from Tbl. 3.1. Meant for human consumption, it uses
graphical elements (e.g., arrows) and characters to represent the model. An
object-oriented abstract syntax of the very same model is shown in the top,
repeated from Fig. 3.3. Finally, the bottom-right part of the figure shows the
very same model in a textual concrete syntax, a text-based representation
aimed at human readers. Textual representations tend to be the easiest user-
oriented representations to define and implement. Users (engineers) prefer
them over graphical ones if large models need to be created or inspected
manually. This chapter focuses on defining such textual concrete syntax,
and on parsing it to obtain the corresponding abstract syntax.

Let us state explicitly the definition suggested above.

Definition 4.1. Concrete syntax is a representation of the model that is seen,
produced, and manipulated by the language user. Concrete syntax is called
graphical if it uses drawn elements (typically lines, arrows, geometrical

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_4

87

https://doi.org/10.1007/978-3-031-23669-3_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_4&domain=pdf

88 Chapter 4. Concrete Syntax

leavingTransitions

leavingTransitions

leavingTransitionssource

target
sourcesource

target

source

target

target

leavingTransitionsinitial

: Transition
input="sendEmail?"
output="sendErr!"

: Transition
input="sendEmail?"
output="sentOK!"

: Transition
input="login?"
output="credentialsOK!"

: Transition
input="login?"
output="authErr!"

: State
name="S1"

: State
name="S0"

 machines

: Model
name="simple"

: FiniteStateMachine
name="simple FSM"

states

states

S0 S1

login? / credentialsOK!

sendEmail? / sentOK!

sendEmail? /
sendErr!

login?
/ authErr!

1 machine "simple FSM" [
2 initial S0
3 state S0 [
4 on input "login" output "credentialsOK" and go to S1
5 on input "login" output "authErr" and go to S0
6]
7 state S1 [
8 on input "sendEmail" output "sendErr" and go to S1
9 on input "sendEmail" output "sendOK" and go to S0

10]
11]

Figure 4.1: A state-machine model in abstract syntax (top), concrete graphical syntax (bottom left), and concrete textual syntax (bottom
right). Convince yourself that the three representations indeed capture the same model

shapes, or icons). It is called textual if it is written as text, in a character
set available in the model editor.

Why these names? Why abstract and why concrete? The abstract syntax ab-
stracts away the visual aspects, including the linear or graphical layout that
encodes the model structure. For example, in Fig. 4.1 the instance diagram
does not contain any information on how transition arrows are routed, what
is the color and size of the state ovals, and where the labels are physically
placed. Nor does it store the order of transitions in the textual version. The
square brackets have been replaced by association links in the instance
diagram. The link labeled leavingTransitions represents the same information
as the fact that an arrow is sourced in a state oval, or that an on input line
is placed in the square bracket section of a state in the textual syntax.

A careful reader notices a paradox in Fig. 4.1: the instance diagram on
top shows lots of concrete information, even though it presents the abstract
syntax of a state machine. It has its own arrows, lines, boxes, and labels.
This is because it is drawn in a concrete syntax of another language, the
UML instance specification diagrams. Otherwise, you would not be able
to see it! Indeed, we have no way to show the abstract syntax on paper
or screen—it only exists abstractly, as objects and values during program
execution. Whenever we want to make abstract syntax visible for human
eyes, we need to write it down in some notation, using some concrete syntax.
Therefore, a human-readable syntax is useful, not only if we have to write
models, but also whenever models are not written by humans, created and

4.2. Defining Concrete Syntax 89

Instances vs Specifications for Concrete and Abstract syntax
In Sect. 3.9 we were extremely careful to specify conformance levels between elements of languages
and models. We have meta-models, defining abstract syntax of all possible models in the language, and
instances defining abstract syntax of a particular model. We should admit that in daily communication,
and also in this book, we will often just write abstract syntax without specifying whether we refer to the
entire language (meta-model or types) or to a specific model (objects or values). The meaning should
typically be clear from the context.

processed completely automatically, but need to be read by humans for
example for debugging and monitoring.

Exercise 4.1. Revisit the abstract and concrete syntax in Fig. 4.1. Explain how the
following changes to the model affect each of the three representations:

a) Make state S1 initial in this machine.
b) Add a new transition from S1 to S0 with input “reset” and output “initialized.”
c) Rename state S0 to S2. Be sure that you indicate all places where the changes

need to be made. How many places need to be changed in the abstract syntax?
How many places need to be changed in the textual concrete syntax?

4.2 Defining Concrete Syntax

We seek a way to recognize concrete syntax in order to distinguish cor-
rect programs from incorrect ones, and to translate them into an abstract
syntax, a form easy to handle for tools. To get there we need a precise
and unambiguous definition of the concrete syntax, completing the loose
English requirements collected during domain analysis. In order to explain
how such definitions are made, we first need to put a few basic concepts on
the table. This short section recalls the basic theoretical underpinnings of
concrete syntax definitions, leaving the practical applications to later pages.

Lexical and syntactic structure of program text. It is useful to split the
concrete syntax into two layers, traditionally called lexical and syntactic.
The lexical structure defines what are the legal words in the language,
for instance: How does a string literal look? What are the available
ways to write numbers? What are the keywords and operators in the
language? The syntactic structure defines how the words can be connected
into understandable sequences, analogous to sentences in natural languages.
For instance, that a variable declaration consists of a type name, followed
by an identifier, and an initializer.

Definition 4.2. The lexical structure determines what terms (also known
as words, tokens, lexemes) are legal in a language. The syntactic structure
defines in what order the terms (words, tokens) can appear in a model.

Let us define the lexical structure of the fsm language (Fig. 4.1, bottom
right) as follows:

90 Chapter 4. Concrete Syntax

Example 9. The keywords are: machine, initial, state, on, input, output,
and, go, and to. String literals are any sequence of characters not containing
double quotes, surrounded by double quotes. Identifiers (state names) start
with a letter followed by a sequence of letters and digits. Square brackets are
used to denote nesting of states and machines. White space has no meaning in
this language, except that it is used to separate tokens.

The syntactic structure of this language can be summarized as follows:

Example 10. A model begins with a keyword machine followed by a string
literal, an opening bracket, and a closing bracket. State definitions are placed
between the brackets. A state definition is either a declaration of initial state, or
a proper state definition. A declaration of initial state consists of the keyword
initial followed by an identifier. A proper state definition consists of a
keyword state followed by an identifier and a pair of square brackets. Tran-
sition definitions are placed between the brackets. Each transition definition
starts with keywords on input followed by a string literal, a keyword output,
followed by a string literal, followed by keywords and go to, followed by an
identifier (a target state name).

Ouch! This was quite hard to read! We definitely need a better way to
express specifications like the above. Writing them in English seems very
cumbersome. We normally do not. Still, being able to describe syntax
in natural language is a useful skill. It shows that you can conceptualize
syntax, it makes formalization easier, and helps to explain the language
to fellow developers. Thus if you have no prior experience with defining
syntax, it makes sense to try this on several examples.

Exercise 4.2. Following the style of the fsm example above, describe the lexical
and syntactic structure of a part of the Google Protocol Buffers language. Use the
fragment of the language visible in Fig. 1.4 on p. 10.

The software language engineering community agrees that concrete syntax
should be specified using regular expressions (for the lexical structure) and
formal grammars (for the syntactic structure). Regular expressions seem to
capture most of the necessary constraints for tokens in software languages,
and grammars do the same for syntactic structure. We briefly recall the
essence of both formalisms below.

Regular expressions. You are probably familiar with regular expressions
from scripting languages, web programming practice, or advanced search fa-
cilities in development editors. Regular expressions found in real languages
and tools tend to be complex and rich. The good news is that a tiny fully ex-
pressive core hides inside that has it all. It turns out that there are only three
operators in the core language! It is useful to appreciate this minimal core
language to internalize the limitations and use cases of regular expressions.

4.2. Defining Concrete Syntax 91

Regular expressions are defined given a fixed finite set of characters, an
alphabet. In modern practice, the alphabet is typically a variant of Unicode.
However, since regular expressions can be used to describe other things than
program text, let us assume that we use a finite set Σ of unknown symbols.

Example 11. Binary numbers are numbers that are written using only two
digits: zero (0) and one (1). We will write a regular expression defining what
is the syntax of a binary number. For this example, we take the alphabet to be
all letters and digits:

Σ = {0, . . . ,9,a, . . . ,z} ,

although we will only use the first two digits in our expression. Other
characters might be used in describing other tokens of our language.

Do not get discouraged by the abstract nature of this example. We chose
binary numbers mostly because zeroes and ones are easy to write on paper.
Nevertheless, binary patterns have many applications. Imagine instead that we
are designing a language where we want to describe Morse code messages. A
zero may represent a short tone and one may represent a long tone. A token in
our language can represent a coded letter. Or consider a computer game, where
users are allowed to define their own textures to create new tiles. One possible
texture definition is via monochromatic patterns. A token of zero-ones could
represent an alternation of black and white points in the texture.

The regular expression 0 represents a word consisting just of zero, and
the expression 1 represents a word consisting just of the digit one. A single
symbol from the alphabet Σ is a regular expression and it means a string
that contain exactly one symbol, this digit. Below, we use the double square
brackets to denote the meaning of an expression. Note that a meaning of a
regular expression is a set of tokens (strings), so the meaning of 0 is a set
containing a single-character string with zero:

J0K ={”0”} (4.3)

J1K ={”1”} (4.4)

We write ε to represent an empty (zero-length) word that contains no char-
acters. This might sound weird at first, but an empty word is rather useful.
It may for example represent an empty pattern texture (which could mean
transparency in our game). It is also useful for keeping the regular expression
notation small, as it allows many interesting constructs to be derived (see
below). In practical implementations ε is typically written as “nothing” (no
character), but in the definition below we will write it out explicitly for clarity.

JεK = {””} (4.5)

We can build more complex expressions to describe longer words or tokens
by concatenating simpler expressions sequentially. For instance, 00001111
represents the word of four zeros followed by four ones, 01 may represent
the letter A in Morse code, and 00000000 can represent a completely black

92 Chapter 4. Concrete Syntax

fragment of a texture in our game.

J00001111K = {”00001111”} (4.6)

J01K = {”01”} (4.7)

J00000000K = {”00000000”} (4.8)

Languages using only one possible term are not interesting. In our example,
we need to describe not a single token, but any binary number. To describe
bigger sets of tokens, we can combine simpler expressions with the alternative
operator denoted by the pipe symbol. For example, ε | 01 | 1000 means a set
of three tokens (in Morse code: no letter, letter A, or B):

Jε | 01 | 1000K = {””,”01”,”1000”} (4.9)

Even with the alternative operator, we can only describe finite numbers of
tokens. Worse, our regular expressions are as large as the languages they
describe. We cannot possibly enumerate all binary numbers in a single
expression! We need an iteration constructs to define larger sets. This is
a task for the Kleene closure operator, denoted by a post-fix plus sign. An
expression 1+ means any non-empty sequence of 1s (a unary number). We
describe a binary number by combining the Kleene closure with alternative:
(1 | 0)+. The meaning of the two expressions is:

J1+K = {”1”,”11”,”111”, . . .} (4.10)

J(0|1)+K = {”0”,”1”,”00”,”01”,”10”,”11”, . . .} (4.11)

Let us gather the constructs in a formal definition of the notation of regular
expressions.

Definition 4.12 (Syntax of Regular Expressions). Let Σ be a finite alphabet
and let ε denote the empty sequence. Then
Base case (simple expressions):

ε is a regular expression
a is a regular expression for any symbol a ∈ Σ

Let r, s be regular expressions. Then (inductive case):
r |s is a regular expression (union)
rs is a regular expression (concatenation)
r+ is a regular expression (Kleene closure)

A regular expression generates a set of tokens over alphabet Σ according to
the following rules.

Definition 4.13 (Semantics of Regular Expressions).
Base case (simple expressions):

JεK = {ε}
JaK = {a} for any a ∈ Σ

Inductive case (composite expressions):

4.2. Defining Concrete Syntax 93

Jr |sK = JrK∪ JsK (alternative or union)

JrsK = {vw | v∈JrK∧w∈JsK} (concatenation)

Jr+K = {v1...vn | vi∈JrK,1≤ i≤n,n∈N} (Kleene closure)

The first inductive case in Def. 4.13 says that the generated language
contains any word generated either by r or by s. The second case means
that the generated language contains languages created by concatenating
any word from the language generated by r with any word from the language
generated by s. The last case, the Kleene closure, should be read as follows:
the generated set contains words created by concatenating any positive
number of words from the language generated by r.

It turns out that the above definition is complete—it defines regular
expressions able to generate any regular language, so any language recog-
nized by a finite automaton. If you are interested in learning more about its
theoretical properties, please refer to a more foundational text on the theory
of automata (for example Hopcroft, Motwani, and Ullman [13]). For us,
this simply means that we can define essentially any relevant token using
the above constructs. Try the following exercise.

Exercise 4.3. Write a regular expression defining binary numbers without (left)
leading zeroes. The only binary number with leftmost zero allowed is zero itself.
Only use the regular expression operators introduced above. Positive examples: 0,
10, 11, 10101011; Negative examples: 00, 01, 011, 0000000

Table 4.1 lists several extensions1 to regular languages known from scripting
languages and other operating systems tools. Moreover, it shows that these
are, in fact, syntactic sugar of our simple core subset; they allow us to write
more conveniently things already possible in the language of Def. 4.12.
Syntactic sugar is of course important for users, and when you are defining
the lexical structure of languages, you definitely want to use such extensions.
Similarly, you want to add convenience syntax to your own language; thus
we will return to adding syntactic sugar to your language below.

Context-free grammars. We shall use context-free grammars (CFGs) to
describe syntax of correct models in a DSL. A specification of concrete
syntax should facilitate translation from textual input to abstract-syntax
trees. Yes, the core structure of any abstract-syntax representation is a tree

1See for instance https://www.regular-expressions.info/posixbrackets.html, accessed 2022/09

Operator name Expression Expansion

optional r? r|ε

Kleene star r∗ r+|ε

character range [a− zA−Z] a | · · · | z | A | · · · | Z

alphanumeric symbol [: alnum :] [a–zA–Z0–9]
Table 4.1: Examples of
syntactic sugar extensions of
regular expressions

https://www.regular-expressions.info/posixbrackets.html

94 Chapter 4. Concrete Syntax

states

leavingTransitionsleavingTransitions

leavingTransitions

states

leavingTransitions

: Transition
input="login?"
output="credentialsOK!"

: Transition
input="sendEmail?"
output="sendErr!"

: Transition
input="sendEmail?"
output="sentOK!"

: Transition
input="login?"
output="authErr!"

: State
name="S1"

: State
name="S0"

machines

: Model
name="simple"

: FiniteStateMachine
name="simple FSM"

Figure 4.2: A decomposition of the abstract-syntax instance shown in the top of Fig. 4.1. Convince yourself that it is an instance of the
partonomy of Fig. 3.4

(cf. Fig. 4.2). Intuitively, since we need to create trees, we need a formalism
that will be able to “see” the input as trees.

There is a tree in disguise in most structured computer text (models
and programs). The most obvious tree structure is given by nesting of
parentheses. For example, in Fig. 4.1 (bottom right), square brackets show
that transitions are nested in states and that states are nested in machines.
Another kind of nesting is defined by property–object relationships. In the
figure, a machine has a name, and a transition has an input, an output, and
a target state; so properties are nested under the larger objects.

How can we describe trees hiding in the textual input? We do this
inductively! We define what are the leaves (the base case) and what are
the inner nodes—for each node type we say what are the possible children
(the inductive case). Grammars are exactly the formalism that allows us to
describe such an inductive generation of trees. Consider the example below.

Example 12. Let us develop intuition for how grammars capture program text
by analyzing syntax of arithmetic expressions, a small language with a rather
natural inductive structure. Assume that expressions can be written with use
of variable names, and two operators: multiplication (∗) and addition (+), for
example x+ y ∗ z. This expression is captured by the following expression
tree. You have probably seen similar expression trees in primary school, not
realizing that they were abstract-syntax trees:

4.2. Defining Concrete Syntax 95

1

3 2

3 3

Figure 4.3: An abstract-syntax tree for the expression x+ y∗ z, an informal notation. Numeric
labels indicate a possible derivation order, explained below

In the figure, the leaves are drawn as poker tokens to emphasize that the
basic elements in our grammatical statements are lexical tokens, defined by
regular expressions. Observe that the tokens ordered from left to right form
the original expression x+ y∗ z.

How do we specify what arrows we should draw to form the tree on top of
the tokens? First, look at the unary nodes (nodes with only one outgoing arrow).
In this example, they all happen to be basic nodes, pointing to leaves. We can
capture this in a grammar by saying that an expression can be an identifier:2

expr →3 ID , (4.14)

where expr stands for a piece of text that is an expression, and ID means a
token representing a variable name (an identifier).

What about the two remaining ternary nodes? For them we have to specify
the branching: what three components are allowed to be nested under them.
It turns out that we have two kinds of them, one for addition, and one for
multiplication. Each allows first a left sub-expression, then an operator token,
and a right sub-expression:

expr →2 expr ’*’ expr (4.15)

expr →1 expr ’+’ expr (4.16)

Note how this structure with nesting sub-expressions (instead of identifiers di-
rectly) allows us to represent larger and larger expressions inductively. For ex-
ample, the same rules can be used to generate a sum of sums of multiplications.

The above three rules allow us to generate arbitrary expression trees in
the language of arithmetic expressions with addition and multiplication. The
keyword are to generate or to derive, as we apply the rule from left to right,
creating longer and longer strings. Here is an example of a derivation, with
labels on arrows denoting which rule has been applied (they also correspond
to the labels in Fig. 4.3):

96 Chapter 4. Concrete Syntax

expr →1 expr ’+’ expr

→2 expr ’+’ expr ’*’ expr

→3 expr ’+’ expr ’*’ ID

→3 expr ’+’ ID ’*’ ID

→3 ID ’+’ ID ’*’ ID (4.17)

In the above, we always expand the rightmost occurrence of expr using one
of our rules, as labeled on the arrow. If you start drawing the tree in the same
order, you will obtain the same image as in Fig. 4.3. Such a sequence of
expansion steps is called the rightmost derivation of the string of tokens.

We define context-free grammars for a fixed finite set of symbols denoted
T (for ‘tokens’). In grammars, the basic symbols are entire tokens, unlike
in lexical specifications where they tend to be characters.

Definition 4.18 (Syntax of Context-Free Grammars). Let T be a finite set of
terminal symbols (tokens), and let N be a finite set of non-terminal symbols
(syntactic categories). A grammar production rule, or a production for short,
is a pair of a non-terminal symbol n ∈ N and a sequence σ of terminal
and non-terminal symbols σ ∈ (N ∪T)∗. We typically write a production
(n,σ) using an arrow, emphasizing that the sequence σ can be derived or
generated from the non-terminal n: n → σ .

A context-free grammar (CFG) over sets of terminal (T) and non-
terminal (N) symbols is a set of production rules over T and N, with
a dedicated start non-terminal s ∈ N.

In other words, to write a grammar, we need to choose a set of tokens and
specify left-to-right productions generating strings of these tokens. The
meaning of the productions, so which language they define, is explained in
the semantics of context-free grammars.

Definition 4.19 (Semantics of Context-Free Grammars). Assume that s is a
start non-terminal of a context-free grammar G, with a production relation
→⊆ N × (T ∪N)∗. Then the grammar G generates a language of words
(sequences) over the alphabet of terminals T as follows:

JGK = {w ∈ T ∗ | s →∗ w} (4.20)

where →∗ denotes the reflexive transitive closure of relation →.

In simple words, the language JGK defined by the grammar G contains all
the models that can be created by expanding the start symbol by repeated ap-
plication of production rules, until all non-terminal symbols are eliminated.

Why do we call these grammars “context-free”? Recall the format of the
grammar rules: a production is applied to any non-terminal symbol in a

2For the time being, ignore that we need to distinguish precisely what identifier we are seeing.
We will come back to this in Sect. 4.4

4.2. Defining Concrete Syntax 97

The Unusual Past of Formal Grammars

Source: Wikipedia user Σ

(CC BY-SA 4.0)

Noam Chomsky (born 1928) is an American linguist, philosopher, and political
activist. Chomsky created a formal theory of transformational generative
grammars to understand natural languages. As a linguist, Chomsky was not
particularly interested in programming and modeling languages—he studied the
structure of natural languages used by people to communicate. Chomsky defined
a hierarchy of increasingly expressive ways to specify languages using grammars,
known today as Chomsky’s Hierarchy. The least expressive languages in the
hierarchy are the regular languages (generated by familiar regular expressions).
Context-free languages (generated by context-free grammars) take the second
level, followed by context-sensitive languages, and recursively enumerable
languages. This work was published in a highly influential volume called
Syntactic Structures [9].

Today, Chomsky’s work remains one of the foundations of theoretical computer science, while the
specification formalisms he introduced are the staple of software language engineering work.

sequence, without taking into consideration its context. In Eq. (4.17), we
expanded rules 1–3 without considering what precedes and what follows the
non-terminal expr. We always choose just one terminal at a time, and expand
it by substituting the right-hand side of the production. There exist more
complex, context-sensitive, grammars where the productions are applied
by considering in what surrounding the expanded non-terminal is placed.
These grammars are rarely used in language engineering.

Exercise 4.4. Consider again the grammar for arithmetic expressions used above:

expr →2 expr ’*’ expr expr →1 expr ’+’ expr expr →3 ID .

Add terminals for the opening and closing parentheses ’(’ and ’)’. Extend the
grammar to handle parenthesized expressions. How many rules do you need to add?

Exercise 4.5. Consider a simple context-free grammar (small letters denote non-
terminals, quoted letters terminals, ε the empty string, and n is the start symbol):

n →1 ’a’ ’c’ b b b →2 ’x’ b ’x’ n →3 b b ’a’ ’c’ b →4 ε .

Does the word ’acxxxac’ belong to the language generated by this grammar?
Argue why not, or show a derivation of the string from the start symbol.

So far, we have strictly separated the use of grammars and regular expres-
sions. We used regular expressions to define tokens (the lexical structure)
and the grammars to define the overall syntax. However, both in practice and
in theory these two notations overlap significantly. As noted in Chomsky’s
Hierarchy (info box on p. 97), every regular language is a context-free
language. This means that we can rewrite every regular expression over
an alphabet Σ to a context-free grammar with Σ being the set of terminal
symbols. Can you?

https://creativecommons.org/licenses/by-sa/4.0/deed.en

98 Chapter 4. Concrete Syntax

Exercise 4.6. Translate the regular expression from Exercise 4.3 (p. 93) to a
context-free grammar. If you skipped that exercise, simply write from scratch
a CFG generating the language of binary numbers without leading zeroes. The
terminal symbols should be ’0’ and ’1’. Hint: The translation rules from regular
expressions to CFGs are listed below.

The translation rules for core regular expressions to context-free grammars
are quite simple. The expressions in extended regex languages can be
reduced to context-free grammars by first expanding their syntactic sugar
(Tbl. 4.1) and then applying the rules below.

1. A regular expression r generating a single alphabet symbol, say ’r’,
is translated to a production with a single token representing the same
symbol. We need to invent a non-terminal symbol to be placed on the
left-hand side, say: R’ → ’r’.

2. A regular expression r|s is translated to two productions: RS’ → R and
RS → S, where RS’ is a fresh nonterminal, and R, S are the nonterminals
created during translation of r and s (inductively).

3. A regular expression rs is translated to a single grammar production:
RS’ → R S, where RS’ is a fresh nonterminal, and R, S are the nonter-
minals created during translation of r and s (inductively).

4. A regular expression r+ is translated to two productions: R’ → R R’
and R’ → R, where R’ is a fresh non-terminal, and R is the nonterminal
created during translation of r (inductively).

Why do we bother to learn and use regular expressions, if all the same could
have been achieved with grammars? Primarily, because the regular expres-
sion notation is so concise and convenient. Even when you are writing gram-
mars, it is convenient to use some regular expression operations. For exam-
ple, it is much easier to write a regular expression for a list of objects with
the same syntax (just use Kleene star) than to devise the appropriate produc-
tions. You need two grammar productions to express this simple case. Try!

For this reason, researchers have defined an extended notation for CFGs,
the Extended Backus-Naur Form (EBNF for short). EBNF includes the
regular expression operators as syntactic sugar. The essence of the EBNF
notation is summarized in Tbl. 4.2. EBNF became very popular. It is the
basis of the specification language of most modern syntax design tools.

Exercise 4.7. Write a simple EBNF grammar for an expression language with
variables, and conjunction (∧), disjunction (∨) and negation (¬). Assume that
terminals Id, Not, And, and Or are defined. They match, in the following
order: variable identifiers, negation, conjunction, and disjunction operators.
Your grammar should be able to generate, among others, the following example
expression: x∧¬(y∨ (z∧ x∨¬y)).

4.3 How to Write a Grammar in Practice

Having seen the basic specification notations, we want to understand how
specifications are created in practice. We shall observe the process on a

4.3. How to Write a Grammar in Practice 99

small case study; beginning with sketches (mock-ups), requirements, and
moving to identification of tokens, nonterminals, and rules. Even though we
want to be practical, we still use only classic EBNF and regular expressions.
We shall move to real tools in Sect. 4.4. Especially for new languages, it is
useful to lay down the initial construction of concrete syntax sidestepping
the accidental complexity brought by tools. A base-line grammar is best
created using fundamental notations [16], especially in learning situations.

Develop mock-ups. In practice, designing and specifying concrete syntax is
not as formal as it would seem based on the above definitions. Expressing
the design for a language in formal notation is cumbersome, especially if
the usability is to be assessed. It is easier and more effective to create mock-
up models in the envisioned syntax. Mock-up models may be shown to
stakeholders and discussed. Before you start writing grammars and regular
expressions, ask yourself what the models in your language will look like.
Revisit the last question from domain analysis: Do we have any examples of
existing notation? Use the existing examples and create new (cf. Tbl. 3.1).

Example 13. For the finite-state-machine language (fsm), we may want to base
a textual syntax on the familiar mathematical definition of a state machine:
a state machine is a triple—a set of states, an initial state, and a transition
relation. The left part of Fig. 4.4 shows how such a syntax could look. We start
with defining and naming a finite set of states (Line 1), proceed to define a tran-
sition relation (l. 3–8), and use these elements to declare a state machine (l. 10).

This notation is very concise. The key control structure of our state machine
is covered in just four lines (4–7)! On the other hand, this syntax is not very
scalable. If we had many states, the flat list of transitions would not resemble
an automaton at all. Our target audience (CS students) might find this notation
alien, too remote from programming languages.

We recommend to create several prototypes of the syntax, and possibly
several variations of the most interesting prototypes, before you start any
implementation. Prototyping is very easy (use paper, or a generic text
editor) and it provides instantaneous and valuable feedback. Consider
another design for the fsm language.

EBNF operator EBNF production CFG productions

alternative S → α | β
S → α

S → β

optional S → α T? β
S → α T’ β
T’ → T | ε

iteration S → α T+ β
S → α T’ β
T’ → T T’?

grouping S → α (β) γ
S → α T’ γ

T’ → β

Table 4.2: Extended
Backus-Naur Form (EBNF) for
context-free grammars,
defined as a syntactic sugar of
Chomsky’s CFGs. α and β

stand for arbitrary sequences
of terminals and nonterminals.
Kleene star can be expanded
to iteration just like for regular
expressions

100 Chapter 4. Concrete Syntax

1 let State = { S0, S1 }

3 let Tran = {
4 transition (S0, "login"?, "credentialsOK"!, S1)
5 transition (S0, "login"?, no!, S0)
6 transition (S1, "sendEmail"?, "sendErr"!, S1)
7 transition (S1, "sendEmail"?, "sendOK"!, S0)
8 }

10 let simpleFSM = machine (State, S0, Tran)

1 machine "simple FSM" [
2 initial S0
3 state S0 [
4 on input "login" output "credentialsOK" and go to S1
5 on input "login" output "authErr" and go to S0
6]
7 state S1 [
8 on input "sendEmail" output "sendErr" and go to S1
9 on input "sendEmail" output "sendOK" and go to S0

10]
11]

Figure 4.4: Two sketches of concrete syntax for the language of finite-state machines: mimicking a mathematical definition (left), and
programming language style with nested blocks (right)

Example 14. The right hand side of Fig. 4.4 shows an example of the same fsm
model in another prototype syntax, where states are used to group transitions.
A transition is always nested in its source state, and it is presented in text
resembling English sentences. This syntax clearly takes more space, but it does
have some advantages. The behavior of each state is always gathered in one
place and the blocks enclosed in brackets will appear familiar to programmers.
Even though in our language (Tbl. 3.1) states cannot be nested, this syntax
would support nested states as a conservative extension, if we needed it one
day. Finally, recall that our main use case was to support interpreters. A syntax
devoting a line to each state will make it easier to design an animation tool
that highlights the active state during the execution.

Obviously, whether the first or the second design is preferred depends on
many criteria and on a particular usage context (that is arguably underspeci-
fied in our example). Somewhat arbitrarily, we decide to continue with the
second variant in the remaining part of this chapter. Exercise 4.46 continues
further development of the first, more mathematical, design.

Extend your mock-up against requirements. When creating syntax mock-
ups it is useful to inspect corner cases in the language: How are we going
to express all the syntactic variations? We can identify and address such
questions by systematically scanning the meta-model for variability of
properties, or by going through the initial language requirements. For
the fsm example, we extract the requirements and issues from the domain
analysis in Tbl. 3.1 and from the meta-models in Fig. 3.1 and Fig. 3.5.
Table 4.3 shows the results of this analysis.

An analysis, like the one in Tbl. 4.3, provides a good opportunity to create
a model encompassing all syntactic variations. Always create a possibly
complete, large mock-up model and save it for the purpose of testing the
parser. Figure 4.5 shows such a model for the fsm case. Notice that this rep-
resentation of a finite-state machine is actually a Scala program. The model
is stored in a value (m) and it does not use square brackets, which in Scala
are reserved for type annotations. With a suitable library implementing this
DSL we can actually compile, and eventually execute, this model just using
a Scala compiler (including the parser) and runtime environment.

4.3. How to Write a Grammar in Practice 101

Requirement Justification if met, extension otherwise Example syntax

Can we
represent
initial
states?

A declaration of an initial state is shown in l. 3 (Fig. 4.4, right). initial

Can we
represent
end states?

The meta-model allows states without outgoing transitions.
This can be written in the mock-up syntax using empty brack-
ets. Allowing an empty list of transitions is a new requirement
though. It would be good to allow omitting the brackets.

state S2 []
state S3

States and
machines
should have
names.

Both states and machines are named in Fig. 4.4 (lines 1, 5, 10),
but some names are quoted and some are not. Uniformize the
design and allow quoting state names (plus spaces in names).

state "state S4" []

Transitions
should have
inputs.

The mock-up transitions already have inputs, but all inputs
are quoted. Relax this requirement to uniformize with state
names. When input names are not quoted, it seems natural to
drop the input keyword, too. Let’s make it optional.

on input sendEmail
output sendErr and go to S1

on sendEmail
output sendOK and go to S0

Can we
represent
optional
outputs?

Our mock-up example always includes an output label. Let us
add another example of a transition to show syntax without
output labels. When omitting an output, we would like to skip
the and keyword to avoid awkwardness, as shown to the right.

on shutDown and go to S3
on shutDown go to S3

Table 4.3: The mock-up fsm syntax of Fig. 4.4 (right), against the requirements of domain analysis

Once mock-ups are created we begin to design the grammar. Let us start
with tokens.

Identify tokens. We enumerate all token kinds used in the mock-up example
(Fig. 4.5), grouped by their role in the syntax in Tbl. 4.4. The three
categories of tokens in the table are typical for most languages. Punctuation
can be further divided into separators (comma, colon, semicolon), operators
(plus, minus, navigation dot), and delimiters (parentheses, brackets, braces,
quotes). Besides these, one typically would like to allow comments (often
handled as white space in the definition of lexical structure) and literals
(string literals, integer and floating-point number literals, etc.) We keep the
list of tokens very small for this example language for brevity.

Exercise 4.8. Write a regular expression defining the tokens of signed integer
literals. A literal constant cannot start with a zero, except for the constant 0
itself. The sign is optional. Positive examples: +1, 231, -0, -999999999. Negative
examples: 001, 0009, -099999, +01

Specify terminals. We begin specifying the syntactic structure of a language
by defining its terminal symbols. For every fixed token (punctuation and
keywords) we create a terminal symbol representing it. With most tools—
we can write regular expressions defining the tokens from the previous
step directly in the grammar. Table 4.4 lists the terminal symbols of our
grammar in the rightmost column.

102 Chapter 4. Concrete Syntax

Category Tokens Regular expression Terminal symbol
Keywords machine ’machine’ Machine

initial ’initial’ Initial

state ’state’ State

on ’on’ On

input ’input’ Input

output ’output’ Output

and ’and’ And

go ’go’ Go

to ’to’ To

Punctuation [’[’ LBracket

] ’]’ RBracket

Identifiers "complete FSM" "login" "credentialsOK"
"authErr" "sendEmail" "sendErr"
"sendOK" "state S5" S0 S1 S2 S3 S4 S5.

("[a-zA-Z]([:alnum:]|’ ’)*")
| ([a-zA-Z][:alnum:]*)

Id

Table 4.4: Token categories in the fsm case study.

Figure 4.5: A larger fsm
syntax mock-up, created as a

test case for a parser. This
mock-up contains most of the

possible variations in syntactic
structure

1 machine "Complete FSM" [
2 initial S0
3 state S0 [
4 on input "login" output "credentialsOK" and go to S1
5 on input "login" output "authErr" and go to S0
6]
7 state S1 [
8 on input "sendEmail" output "sendErr" and go to S1
9 on input "sendEmail" output "sendOK" and go to S0

10]
11 state S2 []
12 state S3
13 state "state S4" [
14 on input sendEmail output sendErr and go to S1
15 on sendEmail output sendOK and go to S0
16]
17 state S5 [
18 on shutDown go to S3
19 on input shutDown go to S3
20]
21] source: fsm/test-files/Complete.fsm

Handling identifiers and literals is slightly more complex than keywords
and punctuation. A keyword carries no interesting information besides
that it appears in the program text. An identifier or a literal belongs to
a larger category defined by a single regular expression, and we need to
remember what is the actual name or constant written by the programmer.
For this reason, in tools, a token carries the string value of the matched
expression, which can later be mapped to the right type. For instance, a
matched identifier or a string literal may be stripped of surrounding quotes,
while an integer constant may be converted into an integer value.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/test-files/Complete.fsm

4.3. How to Write a Grammar in Practice 103

Syntactic category Example Intuition / Justification

machineBlock machine "complete FSM"
[...]

The machine keyword (Fig. 4.5) initiates a block encompassing
the entire file that describes a machine. It clearly corresponds
to the meta-model concept FiniteStateMachine in Fig. 3.1.

initialDeclaration initial S0 Line 2 declares that state S0 is initial. It seems logical to make
this declaration separate from the definition of state S0 in the
following lines. Eventually, it should correspond to the initial ref-
erence in Fig. 3.1. The state has an optional block of transitions
in the last part. We probably need a transition concept, too.

stateBlock state S2 [...] The example contains six state definition blocks (S0–S5). They
all seem to have a similar structure, and correspond to the State
concept in the meta-model.

transition on input "login"
output "authErr"
and go to S0

Transitions come in a number of variations, but there is no doubt
that they are all an instance of the same concept, the Transition
meta-class in the meta-model. It appears that each transition
line has up to three parts: input, output, and a target state. Since
some of these are optional, it is useful to think about them as
separate syntactic elements (below).

inputClause on input "login" Specifies the input to which the transition reacts. It will populate
the input property of the Transition meta-class.

outputClause output "authErr" and Specifies the output that the transition produces; will populate
the output property of the Transition class.

targetClause go to S0 Specifies the target state of a transition. It will be used to set
the target reference in the meta-model.

Table 4.5: Syntactic categories (larger than one token) extracted from our examples, cf. Figures 3.1 and 4.5

A careful reader has noticed that there seems to be a conflict between the
definitions of keywords and identifiers in the fsm example. (Can you spot it
in Tbl. 4.4?) All our keywords are also identifiers! For instance, “machine”
is technically also a legal state name. Naming a state a machine could be
extremely confusing! Fortunately, this is not a problem in practice. Most
parsers allow tokens to be prioritized, so that keywords should be matched
first, and pre-empt any possible matching of an identifier, if a keyword
match succeeds. So any identifier specification in a language definition has
an implicit condition that the matched string does not match any other token
with a higher priority. Simple tokens, such as keywords and punctuation,
tend to be assigned the highest priority.

Exercise 4.9. Identify tokens (and categories of tokens) in the example model in
the robot language shown in Fig. 2.2 (p. 30). Formulate regular expressions for
the identified categories of tokens. The exercise should result in a table similar to
Tbl. 4.4, but for the robot language.

Identify syntactic categories. We shall now define the syntactic structure
of our language. This is more difficult than understanding what tokens
are used. We need to infer the structure from the examples. We shall
proceed by listing the syntactic categories, so groups of adjacent tokens

104 Chapter 4. Concrete Syntax

that represent a single concept in the model. Usually the nesting structure
allows us to discover some of these, while others appear because they are
logically cohesive. Table 4.5 lists syntactic categories that are easy to spot
in the example of Fig. 4.5.

Inferring syntactic categories from examples is a rather difficult pro-
cess that requires intuition and experience. Typically, only key syntactic
categories are easily visible, and nonterminal symbols can be defined for
them (below). Normally, you will discover the missing categories when
specifying the grammar. Of course, in practice we never write out the
syntactic categories with the level of detail of Tbl. 4.5. An experienced
grammar writer makes such observations on-the-fly, while writing the
grammar productions. On the other hand, if you are new to the graft of
grammar specification, this might be a useful exercise.

Specify grammar rules. Once you know the syntactic categories of your lan-
guage, writing the grammar productions is quite easy. Syntactic categories
become nonterminals, tokens become terminals, and your syntax specifi-
cation governs the rules (which should cover the examples you generated
by now). We begin with several simple rules from the bottom of Tbl. 4.5:

inputClause → ’on’ ’input’? Id

outputClause → ’output’ Id ’and’

targetClause → ’go’ ’to’ Id

transition → inputClause outputClause? targetClause

stateBlock → ’state’ Id (’[’ transition∗ ’]’)?

initialDeclaration → initial Id (4.21)

Exercise 4.10. Explain how the Kleene star (∗) and the optional operator above (?)
interact to provide two possible syntactic ways to specify an end state.

The above rules were rather simple to specify, but now we reach a stumbling
block: the initial state declaration (initial S0 below) should be allowed
to be placed anywhere within the machine block. At the same time, we
would like to make sure that at least one state and exactly one initial state
are specified. We could try the following sequence of grammar symbols:

stateBlock∗ initialDeclaration stateBlock∗ (4.22)

This enforces that exactly one initial declaration is placed within a sequence,
while some state blocks are allowed before and after. It does not guarantee
though that at least one state is defined (one state block is included). This
single state could be defined either before or after the initial declaration, so
we need to change the Kleene star operation on one of them to a Kleene
plus. But which one? If we want to be entirely flexible, then we should
allow both options: the state block must appear either in front of or after
the initial declaration. Now this piece of grammar becomes large enough to
give it a non-terminal name:

4.4. Parsing and Tools 105

machineBlockContents →
(

stateBlock+ initialDeclaration stateBlock∗
)

|
(

stateBlock∗ initialDeclaration stateBlock+
)

(4.23)

Defining the shape of allowed inputs precisely quickly becomes quite
cumbersome. It is typically better to settle for simple, approximating
presentations like Eq. (4.22). This has several advantages. Smaller gram-
mars are easier to maintain and debug. Also better error messages can be
produced if detection of detailed misformulation is done later, in the static
analysis phase using a type checker or constraints (see Chapter 5).

Finally, we use the new non-terminal to specify the machine blocks. We
also add a new non-terminal, the start symbol, defining the entire model
with multiple machines:

machineBlock → ’machine’ Id (’[’ machineBlockContents? ’]’)?

model → machineBlock∗ (4.24)

We conclude the section by summarizing the six-step method which we
used for writing down the fsm grammar:

1. Develop mock-up examples. Writing examples is easier than writing
grammars. You can experiment faster with examples, and show them to
customers before you commit to an implementation.

2. Extend mock-ups against requirements. Collect all the requirements
you can, from domain analysis, and from interacting with customers. In
the end, create a large comprehensive example and use it for testing.

3. Identify tokens. Group tokens into categories. These categories are sim-
ilar across most languages. Parsing tools often offer predefined tokens.

4. Specify terminals. Use predefined tokens from your tool, and add the
missing regular expressions yourself.

5. Identify syntactic categories. Exploit nesting (brackets, parentheses,
known structures like expression trees), seek for cohesive concepts, and
check that your meta-model concepts are represented in the grammar.

6. Specify grammar rules. At this stage, most rules are simple. When
some rule is hard to write precisely, consider writing a more permissive
rule instead. We can still detect erroneous inputs later using name
analysis, type checking, and well-formedness constraints (Chapter 5).

4.4 Parsing and Tools

A grammar definition is made operational by turning it into a parser. So far,
we wanted you to think about grammars as generators of legal models and
programs in the language. A parser does the opposite: it checks (recognizes)
whether a given input model belongs to the language; whether it could have

106 Chapter 4. Concrete Syntax

Figure 4.6: The grammar for
the finite-state-machine

language, as described in this
chapter, expressed in the input

language of the Xtext
workbench

1 grammar dsldesign.fsm.xtext.Fsm
2 with org.eclipse.xtext.common.Terminals
3 import "http://www.dsl.design/dsldesign.fsm"
4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

6 model returns Model:
7 {Model} machines+=machineBlock*;

9 machineBlock returns FiniteStateMachine:
10 {FiniteStateMachine}
11 ’machine’ name=EString (’[’
12 ((states+=stateBlock)+
13 & (’initial’ initial=[State]) // initialDeclaration
14 & (states+=stateBlock)*)?
15 ’]’)?;

17 stateBlock returns State:
18 {State}
19 ’state’ name=EString
20 (’[’ leavingTransitions+=transition* ’]’)?;

22 transition returns Transition:
23 ’on’ ’input’? input=EString // inputClause
24 (’output’ output=EString ’and’)? // outputClause
25 ’go’ ’to’ target=[State|EString]; // targetClause

27 EString returns ecore::EString:
28 STRING | ID; source: fsm.xtext/src/main/java/dsldesign/fsm/xtext/Fsm.xtext

been generated by the grammar. While doing that, it constructs an abstract-
syntax tree, or a meta-model instance, representing the input as a data struc-
ture in memory. For example, it takes a representation like in the bottom-
right corner of Fig. 4.1 and turns it into the instance shown in the top of the
figure. In addition, advanced parsers perform name resolution and linking,
turning identifiers of model elements into references to identified objects.
For instance, in Fig. 4.1 the parser has turned the token S0 on line 3 into a
reference initial from a FiniteStateMachine object to a State object.

Definition 4.25. A parser is a tool that checks whether an input is syntacti-
cally correct and constructs an abstract-syntax representation if so.

Parsers are rarely written from scratch. Instead we use parser generators
and interpreters (combinator libraries). These tools need more information
than a plain context-free grammar provides. EBNF just describes how to
structure input symbols into trees. A parser needs to know also what types
to construct and how to initialize the properties of abstract-syntax objects.
An extended notation to specify languages is needed. Unfortunately, there
is no agreement on parser specification languages, besides using EBNF
as a core. This makes it difficult to present them systematically, in a tool-
oblivious manner, in a textbook. As the second-best option, we show two
quite different examples below: Xtext (a parser-generator-based language
model) and parboiled2 (a parser combinator library for Scala).

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtext/src/main/java/dsldesign/fsm/xtext/Fsm.xtext

4.4. Parsing and Tools 107

In this book, we do not explain in detail how parsers, parser generators,
and combinator libraries work (although we do give some pointers to
further reading at the end of the chapter). Parsing is a very specialized field
of knowledge. Instead, we focus on deriving principles of efficient and
practical use of the parsing tools.

An example with Xtext. Xtext3 is a language workbench, based on the
ANTLR4 parser generator. Xtext is a mature and popular language in-
frastructure tooling for the JVM platform, popular for both industrial
and research-oriented language implementation. Besides parsers, Xtext
can generate rich IDE plugins, web editors, language server support5 [4],
and testing infrastructure for your language implementations. Figure 4.6
presents the fsm grammar in the syntax of the Xtext input langauge. This
grammar specification mixes two kinds of information: how to recognize
(generate) a valid model, and how to construct a valid instance of the
abstract syntax based on the recognized model.

The first two lines of the example declare the grammar name—the Java
package to host the parser code—and import the definitions of standard
terminal symbols (typical tokens). Xtext allows grammars to be modular-
ized and reused. In particular, reusing the specification of terminals is very
useful as most modern languages share the vast majority of terminals (string
literals, numeric literals, identifiers, and operators). Lines 3–4 import the
meta-models defining the abstract syntax. We import the fsm meta-model
(Fig. 3.1) and Ecore. These imports will allow the types of abstract syntax
in the grammar productions to be used to construct abstract-syntax objects.

Lines 6–7 define the start symbol, corresponding to the last rule in
Eq. (4.24). We used the same identifiers for symbols as in the original
production (model, machineBlock), so that the Xtext syntax is directly trace-
able to our abstract grammar. Colon replaces the right arrow of EBNF.
The returns clause declares the type of abstract-syntax objects constructed
and propagated upwards by the rule. We shall return an object of type
Model, more precisely an dsldesign.fsm.Model. In Line 7, the identifier
in curly braces is a semantic action, denoting the actual type which will
be constructed; this will often be a sub-type of the type specified in the
returns clause. Xtext will translate this action into a call of the right
factory method from the Ecore framework. In this example, the same type
is constructed and returned by the rule. In general, when generalization and
type hierarchies are used in abstract-syntax definitions these two types may
differ. For instance, we may construct a binary expression object, but return
upwards an up-cast to an abstract expression type.

Further in Line 7, we match zero or more machine blocks using a Kleene
star (machineBlock*). Each of the matches will produce an object of
type FiniteStateMachine—consult lines 9–15 to confirm this. All the

3https://www.eclipse.org/Xtext, accessed 2022/09
4https://www.antlr.org, accessed 2022/09
5https://langserver.org, accessed 2022/09. See also Sect. 2.4

https://www.eclipse.org/Xtext
https://www.antlr.org
https://langserver.org

108 Chapter 4. Concrete Syntax

constructed objects will be added to the machines collection of the returned
Model object. Check Fig. 3.1 on p. 53 to convince yourself that a Model
object indeed has a property machines, and that this property is indeed a
collection (it can have multiplicity higher than one). The addition of the
new object to the machines property is another semantic action admitted in
the Xtext input language.

Definition 4.26. Semantic actions are executable instructions how to build
the abstract-syntax tree. They typically include object constructors, for-
matting and conversion of the input data into AST format, initialization
and updates to properties of the constructed AST, or scoping and name
resolution directives.

Lines 9–15 define a machine block. They correspond to productions
in Eqs. (4.23) and (4.24). The grammar elements and semantic actions
used are largely the same as in the model rule discussed above. We note
that the machine identifier is matched using a nonterminal EString (see
lines 27–28). This allows both quoted and not quoted identifiers as per our
requirements. The identifier is stored in the name property of the constructed
FiniteStateMachine object. For convenience, the production defining the
machineBlockContents (4.23) has been inlined into the machineBlock rule.
This is easier to do in Xtext if a rule does not construct a new object, but
merely populates the properties of an already constructed object. More
interestingly, it uses the & operator of Xtext to specify more succinctly the
requirement that the initial state declaration statement has to appear in the
machine block, and some states should be defined either before it or after,
or on both sides. Compare lines 12–14 to Eq. (4.23). The & operator is an
unordered composition operator. It admits any sequencing of its operands,
which yields a simpler formulation than our original EBNF.

Exercise 4.11. Show that the unordered composition operator & of Xtext does not
add expressiveness to EBNF, that is, show how to eliminate the operator as a
syntactic sugar. More precisely, explain how a production T → α (β & γ) δ

should be transformed to generate the same language, but only using EBNF
operators. In the above, T stands for a nonterminal symbol, the Greek letters
stand for sub-expressions in EBNF. You may want to use Tbl. 4.2 for inspiration.

In the initial-state declaration fragment (Line 13), we meet a new kind of se-
mantic action: a name resolution rule: [State]. This action instructs Xtext
to match an ID token, and to turn the token’s value into a reference to an ob-
ject of type State, which has a property name holding the same value as the
identifier. Thus a name resolution semantic action resolves name-based ref-
erences into actual references between JVM objects. Technically, this name
resolution is performed by Xtext in the second pass, after the parsing has
completed successfully and an unlinked abstract-syntax instance has already
been constructed. Still, a single specification is used for both purposes.

The remaining productions in Fig. 4.6 use the constructs of Xtext already
explained above. You are encouraged to compare them to our abstract

4.4. Parsing and Tools 109

1 def model: Rule1[Pure.Model] =
2 rule { machineBlock.* ~ EOI ~> Model }

4 def machineBlock: Rule1[Pure.FiniteStateMachine] = rule {
5 "machine" ~ EString ~ BEGIN ~
6 stateBlock.* ~
7 initialDeclaration ~
8 stateBlock.* ~
9 END ~> FiniteStateMachine

10 }

12 def initialDeclaration: Rule1[String] =
13 rule { "initial" ~ EString }

15 def stateBlock: Rule1[StateTr] =
16 rule {
17 "state" ~ EString ~ (BEGIN ~
18 transition.* ~
19 END).? ~> StateTransitions
20 }

22 def transition: Rule1[Pure.Transition] =
23 rule {
24 inputClause ~ outputClause.? ~ targetClause ~> Transition
25 }

27 def inputClause: Rule1[String] =
28 rule { "on" ~ "input".? ~ EString }

30 def outputClause: Rule1[String] =
31 rule { "output" ~ EString ~ "and" }

33 def targetClause: Rule1[String] =
34 rule { "go" ~ "to" ~ EString }

36 def EString: Rule1[String] = rule { ID | STRING }
source: fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala

Figure 4.7: The PEG grammar
for the finite-state-machine
language, as described in this
chapter, expressed in the input
language of the parboiled2
parser. Only the core part with
non-terminal productions is
shown here

grammar. Note that the input, output, and target clause productions have
(again) been inlined, into the transition rule. The EString rule refers to
two terminals (STRING, ID) previously imported from the standard library
of Xtext in lines 1–2. If you are interested in learning more about this tool,
we recommend the book of Bettini [6].

An example with Scala and parboiled2. For contrast, consider the same
example coded in the language of parboiled2,6 a popular parsing library
for Scala. Parboiled2 is a parser combinator library. This means that,
unlike Xtext, it is not an independent language, but an internal DSL, so an
API exposing the grammar construction operators inside Scala programs.
Parboiled2 is implemented using macros, the main meta-programming
facility of Scala. Scala macros are executed at compile time. Parboiled2
uses them to generate an efficient implementation of a parser. This is

6https://github.com/sirthias/parboiled2, accessed 2022/09

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala
https://github.com/sirthias/parboiled2

110 Chapter 4. Concrete Syntax

why parboiled2 is very fast, unlike most parser combinator libraries. We
will talk more about internal DSLs in Chapter 10 and mechanisms for
meta-programming in Chapter 7.

Most parser combinator libraries, including parboiled2, do not parse
context-free languages specified by context-free grammars, but use Parsing
Expression Grammars (PEGs). In general, PEGs and CFGs define two
incomparable classes of languages [11]. This means that there exist lan-
guages accepted by PEGs, but not by CFGs and most likely vice versa
as well. Fortunately, PEGs are stylistically similar to EBNF: the notation
and the design process are essentially the same as for CFGs. Thus we
can reuse the grammar example from Sect. 4.3 to demonstrate parboiled2.
In contrast to CFGs, PEGs are unambiguous—the parsing algorithm is
deterministic and fast—but they do lack some of the theoretical succinctness
of CFGs, a problem not really experienced in practice. Combinator-based
implementations of PEGs, like parboiled2, allow for natural inclusion of
arbitrary code into the grammar specification, so expressiveness is not really
a problem. The main difference is perhaps in the attitude: a PEG grammar
designer should think more in terms of how the text is parsed (recognized),
and not how all the legal models in the language are generated. Some of
these issues are explored in the exercises in the end of the chapter.

Figure 4.7 presents a parboiled2 PEG for the finite-state-machine lan-
guage. Contrast it with Fig. 4.6 (Xtext) and with the abstract grammar for
finite-state machines of Sect. 4.3. Here, each production is modeled by a
single Scala function. We use the same function names as the names of the
nonterminal symbols in the context-free grammar. The first function, model,
defines the start symbol. The presentation format is specific to parboiled2,
but most grammars expressed using combinator libraries will look similar.

The grammar specification language of parboiled2 is more flexible than
the one used by Xtext, so we have not inlined any rules. We use separate
productions for input, output, and target clauses and for the initial state
declaration. These were all inlined in the Xtext example in Fig. 4.6. Note
that we also add the EString rule, in the bottom, mimicking the Xtext style,
to match regular and quoted identifiers using a single non-terminal.

Each production is a nullary function (a function that takes no arguments).
We explicitly annotate the return types. Thanks to Scala’s type inference,
these annotations are not strictly required. We include them for clarity, to
show what type is constructed by each production. Visually the return types
annotations play a similar role to returns clauses in the Xtext definition in
Fig. 4.6. We have only one kind of rule in this figure, the Rule1[]. Such
rules return a single value, which is placed on the parser stack. Thus model
and transition return the abstract-syntax object representing respectively
the entire model and a single transition.

All productions in the example follow the same format: a sequence of
grammar symbols is placed within braces after the rule keyword (actually
a Scala macro). If the value produced by the rule needs to be adjusted, for

4.4. Parsing and Tools 111

1 def STRING: Rule1[String] =
2 rule { WS.? ~ ’"’ ~ capture ((!’"’ ~ ANY).*) ~ ’"’ ~ WS.? }

4 val IDFirst: CharPredicate = CharPredicate.Alpha ++ "_"
5 val IDSuffix: CharPredicate = CharPredicate.AlphaNum ++ "_"

7 def ID: Rule1[String] =
8 rule { WS.? ~ capture (IDFirst ~ IDSuffix.*) ~ WS.? }

10 def BEGIN =
11 rule { WS.? ~ ’[’ ~ WS.? }
12 def END =
13 rule { WS.? ~ ’]’ ~ WS.? }

15 implicit def StringWS (s: String): Rule0 =
16 rule { WS.? ~ str (s) ~ WS }

18 def WS: Rule0 =
19 rule { anyOf (" \n\t").+ }

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala

Figure 4.8: The part of the
PEG grammar handling the
tokens, so what corresponds to
a lexer/tokenizer in a classical
CFG parser like Xtext/ANTLR

instance to invoke a constructor of a meta-model type, we suffix the rule with
a squiggly arrow (~>) and the name of a function implementing the semantic
action. Thus in Line 9, the FiniteStateMachine is a function name; it is
called as the last part of the matching process for the machineBlock to
execute the semantic action. We discuss an example of a semantic action
implementation below. Other notational conventions of interest include:
tilde (~) to sequentially combine symbols (white space in classic EBNF),
and the navigation dot to attach the otherwise familiar EBNF operators
asterisk, plus (Kleene), and question mark. These operators are actually
Scala methods. The pipe symbol represents optionality, but unlike in EBNF,
it is left-biased, so once a symbol on the left-hand side is matched, the
later alternatives will not be considered. This eliminates the ambiguity
(non-determinism) issues in PEGs.

In contrast to the Xtext variant of the example, we chose to use the simpli-
fied version of the state-sequencing rule (4.22) in the machine block (lines
5–9). This version admits state definitions before and after the initial state
declaration, but does not enforce that any definitions are actually included.
This simplified rule is easier to read than the one presented in Sect. 4.3 with
two alternative choices, but, obviously, this means that we will have to check
whether any states are actually declared in later stages. Typically such check-
ing happens during name resolution or static semantic checks (Chapter 5).

Most combinator-based parsers do not have a separate scanner for estab-
lishing the lexical structure. We know already from Sect. 4.2 that grammars
are sufficiently expressive to replace regular expressions, which proves that
they can be used to define the lexical structure of the language as well. This
is typically the approach taken by PEG implementers and by parser combi-
nator libraries, including parboiled2. The commonly followed pattern is to
write grammar productions to define the tokens. Technically, in these gram-

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala

112 Chapter 4. Concrete Syntax

mars the only terminal symbols are characters of the input set (say Unicode),
and all other symbols, tokens and non-tokens alike, are non-terminals.

Figure 4.8 shows the respective part of the Scala example for the finite-
state-machine language. We define terminals for quoted strings (STRING),
identifiers ID, opening and closing brackets (BEGIN, END), and white space
(WS). The last one is probably the most surprising—since there is no explicit
scanner, which would normally filter the white space out, like in Xtext, we
need to explicitly mention in the grammar where white space is allowed and
required. This is also why all the token productions mention WS. Parboiled
interprets string and character literals as parsers matching the literal exactly.
Since we would like to admit some white space before and require some
white space after keywords we modify the default behavior in lines 15–16.
This prevents ‘glueing keywords’ like in andgoto (instead of and go to).

This listing also includes a new kind of production (Rule0). Rule0 is a
type of rule that does not return any interesting value, but consumes some
tokens. This is very common for keyword terminals, for white space, and
for comments (we do not allow comments in the example).

Lines 4–5 introduce character predicates, which are a compact way to
define productions based on character classes. We use them to state what
are the legal first characters in an identifier (a letter or underscore), and
what are the legal subsequent characters (adding digits to the mix). Both
predicates are used in the identifier rule in lines 7–8.

We encourage the reader to study the figure before attempting to solve
the following exercise.

Exercise 4.12. Modify the STRING definition in Fig. 4.8 to admit special characters
using escaping in string literals. In particular, admit \n for newline, \t for a
tabulator symbol, and \" for a quote (note that quotes are presently not admitted
inside fsm strings).

The easiest way to work on this exercise is to modify source code in the
book code repository. You can test whether it worked by adding a test case to
fsm.scala/src/test/scala/dsldesign/fsm/scala/FsmParserSpec.scala.

Finally, we consider the construction of the abstract-syntax tree by this
parser. Since our parser is a pure functional program we cannot easily con-
struct instances of the AST types in dsldesign.fsm (Fig. 3.1). This meta-
model admits cycles in instances, and it is not possible to construct cyclic
structures of references in a purely functional manner without using laziness.
Instead the parser uses the pure variant of the meta-model shown in Fig. 3.5,
built with algebraic data types. This meta-model is simpler, and does not
actually ensure that there are no dangling references in the instances. For in-
stance, the meta-model construction will not detect that a non-existent state
has been selected as an initial state of a machine. To produce an instance
of the Ecore meta-model we need to perform an additional transformation
and checking. We will discuss such transformations in Chapter 7.

The construction of instances of the meta-model types happens in seman-
tic actions. Consider the rule for transition (lines 22–25 in Fig. 4.7) as an

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/FsmParserSpec.scala

4.4. Parsing and Tools 113

Parser Combinator Libraries

1 transvbphrase = !transverb --- jointermphrase >> apply2
2 | !linkingverb --- !passtrvb
3 --- !preposition --- jointermphrase >> drop3rd

Given the early history of the formal grammars, it is unsurprising that parser combinators are also related
to research in natural-language processing (NLP). Parser combinators are often attributed to the paper of
Frost and Launchbury [12], who used them to construct a natural-language processing tool in the Miranda
language, an ancestor of Haskell. The picture above shows a fragment of their grammar, displaying a
remarkable similarity to parboiled2 grammars. Frost and Launchbury used combinators, because of
the compositional design and the ability to express rich semantic actions needed in NLP. Their syntax
mimicked BNF, enabling fast prototyping and experimentation with language processors.

Parser combinators are used to build recursive descent parsers. Such parsers decide which production
applies based on a prefix of the stream of symbols at the current position, and then invoke the production
recursively. A production typically consumes the symbols from left to right and constructs the AST on
the fly. Today, many mainstream parsing tools are recursive descent, as its semantics are easier for users
to understand than the alternatives (say shift-reduce parsing).

Over time, parser combinator libraries became a part of the basic infrastructure of any serious program-
ming language: Java, Scala (parboiled2 and Petit Parsers), JavaScript (Bennu, Parjs, Parsimmon), C#
(pidgin, superpower, parseq), C++ (Cpp-peglib, boost meta-parse, boost-spirit, Parser-Combinators),
Python (Parsec.py, Parsy, Pyparsing, parsita), and so on.

1 val Transition: (String, Option[String], String) => Pure.Transition =
2 (input, output, target) =>
3 Pure.Transition (target, input, output.getOrElse (""))

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala

Figure 4.9: The semantic
action for constructing
instances of transition

example. This production gathers a string produced by three clauses (the
middle one will be optional due to the question mark), and feeds them into
a semantic action Transition shown in Fig. 4.9.

The action is a function taking the three constructed values and producing
a transition object. The parsed values are just reordered, so that they match
the order of arguments of the constructor (cf. Fig. 3.5), and the optional
output is replaced with an empty string, if missing. This general way to
specify semantic actions is far more expressive than the constructor calls
and property assignments of Xtext. It almost never happens that one needs
to adjust the grammar to allow the parser to easily construct the meta-model
types when using parboiled2 (in Xtext we inlined rules because of this).

Overall, working with a general PEG parser and parser combinators gives
us more possibilities than with fixed-formalism tools based on variants of
context-free grammars, like Xtext and ANTLR. However, this flexibility
comes at a non-trivial cost. First, the grammar specification in Xtext (for our
example) is about three times shorter than in parboiled2. The production

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala

114 Chapter 4. Concrete Syntax

rules are similarly concise, but the need to explicitly write semantic actions,
token parsing, and white-space handling creates a lot of additional work.
Recall that Xtext provides a predefined library of tokens and a default white-
space handling mechanism suitable for most needs. Also the semantic
actions of Xtext, albeit limited, are introduced with minimal effort. Second,
and perhaps more important, parser combinators are a powerful expressive
tool, with much weaker error reporting than a closed-format Xtext editor.
This translates to a much harder development experience. In the words
of Ford [11], a powerful syntax description paradigm also means more
rope for the careless language designer to hang himself with. Mistakes are
harder to understand and debug. And one still typically needs to resolve
named references afterwards, without any automatic support. It is clear
that these two groups of tools represent very different strategies suitable
for different use cases. External parsing tools are heavy dependencies
for projects and require mastering a new grammar specification language.
Parser combinators are a very lightweight dependency (just a library) that
can be embedded in any place in an existing program written in the host
language. They are particularly, but not only, suitable for small local parsing
jobs. A language engineer, and indeed any experienced programmer, needs
to be able to use either depending on the context.

4.5 Guidelines for Specifying Concrete Syntax

Let us switch from discussing concrete tools and case studies to general
rules and guidelines for creating concrete syntax. We have identified a range
of recommendations in research papers and through personal experience
of teaching and developing DSLs. We begin with big decisions (whether
to write a grammar at all!), and move through architecture-level guidelines
(how to choose rules, how to modularize and reuse) all the way to low-level
patterns (how to avoid left recursion, where to use grammars vs regular
expressions, and how to handle comments).

Guideline 4.1 Consider not writing a grammar. No parser at all! Standard format
technologies (YAML, JSON, XML, and CSV)7 are natural alternatives
to bespoke syntax. They allow fast and ad hoc creation of file formats
with efficient parsers and validity checkers. These are excellent for many
structural- and configuration-modeling tasks. On the other hand, bespoke
syntax may be needed if humans have to create models in an editor, the
DSL is complex, or the intended users do not have technical background. A
tailor-made concrete syntax can also make users much more efficient, so
consider it for high-volume tasks.

Another alternative to syntax design is to develop a GUI application
for creating “models,” typically a web-form or a wizard that populates a
YAML/JSON/XML file, or stores data in a relational database. For many

7See also Sect. 3.10.

4.5. Guidelines for Specifying Concrete Syntax 115

simple input formats, this will give a better user experience than a bespoke
textual or graphical modeling syntax.

If the users of your language fall into several groups with distinct presenta-
tion requirements, it might be worthwhile to invest in creating multiple front-
ends for the same abstract syntax, to allow the various tools to inter-operate
with the back-end. For example, programmers and IT operations technicians
can use textual syntax that resembles a programming language, while
business product modelers would use a GUI or a graphical syntax, yet both
would be producing and changing models in the same abstract language.

Guideline 4.2Textual or graphical syntax? Concrete syntax may be textual, graphical
(typically some form of a diagram), or hybrid (for instance state-machine
graphs with attached program code like in MATLAB/Simulink). The main
advantages of the textual form are the clear order of reading and efficient
typing with keyboards. Typically, mathematical expressions are hard to in-
put with other means than a keyboard, so it is natural and efficient to express
them as text. Furthermore, textual syntax is clearly the most popular among
professional programmers—DSLs aimed at software developers should
probably be textual [15]. Textual syntax is also the cheapest to implement,
especially with language workbenches like Xtext, Monticore, or Spoofax.

On the other hand, textual syntax is relatively hard to read, especially for
non-programmers. Text tends to hide indirections and references. While
in graphical syntax edges (arrows, lines) can express relationships, textual
syntax usually requires writing down an identifier as a reference to another
element. The structure of complex relationships (beyond natural nesting,
like partonomy) is obscured. For instance, it is very hard to spot a cycle
or a bottom connected component in a finite-state machine expressed in
the syntax of Fig. 4.5. If such structures must be visible, graphical syntax
might be preferred. However, for complex and large files it is probably still
better to replace reliance on visual skills with custom model analysis tools.

Guideline 4.3Use familiar, friendly, and intuitive notations, optimized for comprehension.
It is well known that engineers are attracted to learning new languages,
and that they tend to learn fast. It is quite the opposite for many non-
programmers. A new notation is likely to become yet another barrier to
adoption of the technology you want to introduce [14]. (Remember that
your future users also need to learn the tools and to adapt to new work
processes.) To minimize this risk, look to informal notations of the domain
as the foundation for the DSL. Adopt whatever formal notations the domain
experts already have and know, rather than invent new ones [14, 23]. Use
their jargon terms whenever possible. Wile recalls a case where a concept
called by experts a ‘metadata data item’ was not anything more than a
‘variable’ in the eyes of language designers. Still the original term, known
to users, was kept in the language. For any non-fundamental issues, it is
easier for language designers to adapt to users than the other way around.
In another place, Wile reports sticking to an existing notation even if it

116 Chapter 4. Concrete Syntax

Figure 4.10: A fragment of the
robot language meta-model

presenting the abstract
syntax of expressions (top).

In the bottom, an ambiguous
context-free grammar

capturing the same syntax.
See Chapter 2 for background

about this example DSL

source: robot/model/robot.ecoreaExpr → aExpr BINOP aExpr

aExpr → ’-’ aExpr

aExpr → ’random’ ’(’ aExpr ’,’ aExpr ’)’

aExpr → INT

appears bad from a programming language perspective; he recalls the case
of a DSL where parentheses were not balanced.

For the same reason choose known symbols for known concepts. A plus
(‘+’) should still mean addition and rarely anything else, etc. If in need
of new symbols, use descriptive terms (English words) or multi-character
symbols. In our robot language (see Chapter 2) we have a need to calculate
angles, speeds, and durations. Such calculations do not differ essentially
from basic mathematical (and programming) expressions. Thus we suggest
using a basic abstract syntax and grammar for them as shown in the example
for the robot language in Fig. 4.10. (Since core arithmetic expressions are
extremely common, we return to them in the discussions below.) For the
sake of readability, avoid overloading symbols, unless expected, and make
different concepts visually distinct.

Models and programs are read much more often than written [14]. Hence,
balancing comprehensibility and compactness is a delicate matter. For a
designer it is fairly easy to focus on compact representations, but you should
test your designs against users who try to read your example models.

Guideline 4.4 Exploit the examples and the meta-model to structure grammar productions.
The least clear part of Sect. 4.3 is the selection of grammar productions.
Let’s dwell a bit longer on this problem. When writing a grammar, we are
aiming at constructing a parse tree. What kind of branches do we have in the
tree? The branches in the tree must agree with two sources of constraints:
the input and the output structure.

We begin with seeking inspiration in the input. The most obvious struc-
ture of the production rules comes from nesting parenthetical constructions
in your model. Look at a larger mock-up of your DSL syntax, squint
your eyes, and observe the parenthetical structures: parts of syntax that

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot/model/robot.ecore

4.5. Guidelines for Specifying Concrete Syntax 117

1 machine [
2 state [...]
3 state [...]
4 state [...]
5 state [...]
6]

root

machine

statestate state state

[...] [...] [...] [...]

root → machine

machine → ’machine’ ’[’ state∗ ’]’

state → ’state’ ’[’ . . . ’]’

Figure 4.11: Picking up production nesting by parenthetical constructs. Left: the core nesting structure in Fig. 4.5, Center: a
hypothetical core structure of a parse tree for the same example, Right: A hypothetical CFG able to generate the tree in the middle

1 {
2 var x;
3 x = 1;
4 print (x);
5 }

root

block

stmtOrDeclstmtOrDecl stmtOrDecl

decl stmt stmt

var x; x = 1; print (x);

root → block

block → ’{’ stmtOrDecl∗ ’}’

decl → . . .

stmt → . . .

Figure 4.12: Creating an abstract nonterminal (stmtOrDecl) for elements appearing at the same level in a nesting structure of
productions. The example uses a hypothetical Javascript-like syntax

are enclosed within fixed opening and closing elements. Some possible
examples include: quotation marks, including double and triple quotation
marks, keywords begin...end, tags <div>...</div>, funny keywords
if...fi, do...od etc., as well as parentheses, brackets, braces, and so on.
In languages like Python and Haskell, where white space is used to nest
objects, the pairs could be indent/unindent, so they are a bit harder to see,
but they are still there!

Figure 4.11 demonstrates nesting context-free productions according to
nested structures in the input text. In the left of the figure, we show the
model from Fig. 4.5, eliding non-parenthetical aspects to make the nesting
stand out; in the middle, the same parenthetical structure is shown as a
tree; in the right, we extract productions from the tree. Note how the direct
nesting in the tree turns into productions (root and state). For machine
we turn similar structures into a repetition mechanism (Kleene star), but
otherwise the nesting still follows the tree. It is clear that the grammar on
the right will generate trees like in the middle.

Figure 4.12 shows how to unify various syntactic structures that are
allowed to be placed at the same nesting level. The left side includes a
code fragment in a Javascript-like language. We have a block (delimited by
braces) and, within this block, a handful of constructs that are syntactically
different: the first one is a declaration, the last two are statements. Had you
followed our advice from Sect. 4.3 you would have created two separate
nonterminals for declarations and statements. What should we then nest un-

118 Chapter 4. Concrete Syntax

der the block? Placing two or more syntactic categories at the same level is
a common pattern. We would still like to handle these situations with simple
replication like the machine/ state dependency in Fig. 4.11. To this end, we
introduce a new abstract nonterminal (called stmtOrDecl here) that admits
both kinds of expansions, or use the alternative operator, for example:

block → ’{’ (stmt | decl)∗ ’}’ . (4.27)

Finally, the meaning of the parsed text often gives hints for the creation of
rules: a coherent piece of syntax that returns a single value (an expression
for instance) or performs a single coordinated action (a declaration of
a complex type, and if-then-else statement, or a while-loop) are good
candidates for grouping under a single rule. This is how we created the
transition rule in Sect. 4.3. In Fig. 4.10, we chose a single non-terminal
aExpr to group arithmetic expressions. A single top-level expression non-
terminal will permit all kinds of expressions wherever an expression is
needed in the robot language, resulting in a nicely orthogonal design.

Exercise 4.13. Consider the subset of Cascading Style Sheets (CSS) studied in
Exercise 3.2 and in Fig. 3.2, p. 54. Write a simple context-free grammar in EBNF
for this subset of CSS. Assume that the start nonterminal is called css. You need
to decide what are the terminals in your language (typically keywords, operators,
punctuation, and names), but you do not have to formally define them. Focus on
the high-level structure, production nesting, and non-terminal selection.

Another, less obvious way to realize the structure of productions is to
consider the output structure.8 Since the parser creates an instances of a
meta-model, the parse tree should be closely aligned with the main tree
structure embedded in the meta-model. To appreciate this, revisit Fig. 4.10.
The meta-model in the figure contains two kinds of lines: generalization/in-
heritance and containment relations. Observe that all the productions of
the non-terminal aExpr (which constructs an instance of AExpr) follow
the inheritance relations (the taxonomy tree); there is one production for
each inheritance line. At the same time the containment relations (the
partonomy) become references to nonterminals in the right-hand-side of
the productions. This way a grammar can generate structures that can be
typed by (can conform to) this meta-model.

There is a third kind of line we might see in a meta-model, the usual
references (not shown in this figure). The non-containment references
in the meta-model correspond to references to non-terminals in the right
hand-side of productions, just like containment references. However, for
non-containment references, we usually do not construct an instance of the
sub-tree, but identify this sub-tree elsewhere, and link to it (reference it.)
We have observed this mechanism in Line 25 of Fig. 4.6. Verify that the
target property of a transition object in Fig. 3.1 is indeed a non-containment

8This is (roughly!) the procedure that the Xtext tool uses to generate an initial grammar for any
given meta-model.

4.5. Guidelines for Specifying Concrete Syntax 119

reference, and this is why we resolve a reference in the Xtext grammar
there instead of constructing a new object.

If you use the target meta-model to construct a grammar, the grammar is
likely to be ambiguous (many parse trees are possible for the same input)
and left-recursive (left-biased recursive descent parsers will not terminate
on it). Indeed, a grammar which simply captures abstract syntax will lack
a few details needed to make it an effective parsing grammar. However,
standard techniques (see below) can be used to eliminate the left recursion,
and this, most often, will get rid of the ambiguity as well.

Exercise 4.14. Write a simple, possibly ambiguous and left-recursive, grammar for
the language of feature models following the meta-model in Fig. 3.21 on p. 81.

Guideline 4.5Do not fight the input-output impedance in a grammar design. But what if
the input structure and the output meta-model lead to a very different gram-
mar? You are experiencing a case of an input-output impedance. Fighting an
input-output impedance during parsing is usually a bad idea. A parser is not
a suitable tool to mold the input data into an incompatible output structure.
Parsing is difficult enough without this. It is better to keep the abstract and
concrete syntax closer to each other. If you are experiencing an input-output
impedance, design a new meta-model that is structurally similar to the input
format. Populate this new abstract-syntax during parsing [14], and then use
a separate transformation pass (outside the parser) to obtain an instance
of the ultimate target meta-model. Parsing should to be compatible with
abstract syntax, otherwise post-processing is needed. This post-processing
is more easily done in a general programming language, after parsing.

This is, in fact, what we did for the finite-state-machine language, when
parsing with parboiled2 in Scala. Since the combinator-based parser was
pure, it was difficult to create a cyclic graph structure instantiating the
meta-model of Fig. 3.1. Instead, we used a simpler acyclic meta-model,
which requires an additional transformation pass (see also Chapter 7).

Guideline 4.6Modularize your grammars [2]. Grammars for real languages can get large.
Modularize your grammar vertically and horizontally, not only to help
reuse in other language projects, but also to make it easier to understand and
evolve your parser. For vertical modularization, group syntax elements in
syntactic categories. Introduce non-terminals for entire categories and place
productions defining the members of a category close to each other in a
file. This kind of abstraction was proposed in Fig. 4.12, where we extracted
stmtOrDecl, and in Eq. (4.23), where we extracted machineBlockContents.

For horizontal modularization, split the definitions of tokens and the
lexical structure from the high-level rules, even if your parsing system
does not have a separate scanner, but uses context-free productions for the
entire task. This is how we structured our parboiled2 grammar: the lexer
in Fig. 4.8 and the “actual parser” in Fig. 4.7. Separating the lexical and
syntactic productions has the additional advantage that it confines handling
white space to the low-level rules (see below, p. 120).

120 Chapter 4. Concrete Syntax

Many grammar specification languages allow parts of AST definitions
and grammar fragments to be imported. For instance, Xtext allows us to
import terminal definitions and grammars, and multiple Ecore meta-models,
so one can structure abstract syntax into several modules. In fact, an entire
grammar for Java-like expressions (XBase) is provided. Above, we have
imported the definitions of standard terminals (Line 2 in Fig. 4.6). Also
when using parboiled2 you can split a large grammar into several modules.
Use Scala/Java packages, imports, and generics to effectively compose them
together. ANTLR,9 Spoofax/SDF3,10 TXL,11 and most other language
development systems today support import and modularity constructs.

Guideline 4.7 Reuse existing grammars or parts of grammars. As mentioned above, when
using a rich language development system, or if you have modularized your
previous grammars, you can reuse language design modules by importing.
Instead of starting to design syntax from scratch, develop a habit to check
what sub-languages have already been defined. You will save time on testing
and getting things right. In the extreme, never plan to develop a grammar
for a well-established language as the first line of attack. For most existing
languages and sub-languages, open-source grammars are already available,
either as part of their compilers or editing environments, or included in
language workbenches as examples and resources.12 Even if you cannot
reuse the grammar directly due to different development languages and
tools being used, you can quite often reuse the design, by transcribing the
productions to your setup.

Guideline 4.8 Handle white space at the lexer level. In most situations, it is recommended
to handle white space in a lexer. Most languages use the same treatment
of white space (spaces, tabs, and newline characters). Dedicated lexers
tend to have built-in support that does not require any specification—any
white space is just ignored. It only separates tokens that could otherwise
be confused, for instance adjacent tokens and identifiers: e.g., state S0
should not be allowed to be written stateS0. Often it is possible to modify
the definition of what characters count as white space, for the rare case
when controlling them tightly is needed (see below).

The situation gets more complex when using a parser combinator library.
PEGs are typically defined at the character level, like our example with par-
boiled2. There the programmer may match white space wherever she sees
fit. Still, even with PEGs, it is a good practice to handle white space in the
rules that logically belong to the lexer, so the productions building tokens.
Anything else tends to lead to extremely complex and messy rule systems,
which are hard to debug. Recall that in our Scala grammar, all white-space

9https://www.antlr.org/, retrieved 2022/09
10http://www.metaborg.org/en/latest/, retrieved 2022/09
11http://www.txl.ca, retrieved 2022/09
12See for example: the ANTLR grammar collection https://github.com/antlr/grammars-v4, TXL

grammar collection https://www.txl.ca/txl-resources.html, and a large grammar zoo at the software
language engineering body of knowledge website https://slebok.github.io/zoo/ (accessed 2022/09)

https://www.antlr.org/
http://www.metaborg.org/en/latest/
http://www.txl.ca
https://github.com/antlr/grammars-v4
https://www.txl.ca/txl-resources.html
https://slebok.github.io/zoo/

4.5. Guidelines for Specifying Concrete Syntax 121

issues have been confined to the part shown in Fig. 4.8. The high-level
productions in Fig. 4.7 remained purely at the syntactic level, disregarding
individual character issues. Ford [11] recommends handling white space
immediately after each token, and we mostly followed his advice in Fig. 4.8.

Guideline 4.9White-space-sensitive parsing. There are, of course, exceptions to the
above rule. Some languages use indentation or line breaks as part of
their syntactic structure. Hereunder Haskell and Python use indentation
to mark code blocks (which many other languages solve with braces),
and Scala allows line breaks to be used as statement separators (which
most C-family languages, including Java, do with semicolons). White-
space-sensitive parsing is a tempting design technique for DSLs as well: it
allows us to create models that are more concise, and may resemble human-
aimed notation. For instance, in the Clafer language [3], we chose to use
indentation and newlines to group and separate model elements, so that
models look more similar to notes made by someone collecting main bullet
points about a domain. White-space-sensitive syntaxes also have some
disadvantages; chiefly it is hard to move pieces of code between places at
different levels in the blocks, and hard to reformat code automatically. They
may also confuse programmers trained on traditional block-oriented syntax.

When your language has white-space-sensitive syntax, the parser needs
to consider white space. This is typically done by tracking the current
nesting (counting tab characters or spaces), and using an explicit newline
character as a separator in productions listing statements, declarations, etc.
Unimportant white space, not at the beginning or at the end of a line, can
still be handled at the lexer level for simplicity. Refer to the manual of
your parsing system to see whether any explicit support is provided for
white-space-sensitive parsing.

Guideline 4.10Allow comments and handle them at the lexer level. Always include some
syntax for comments in your DSL. Comments not only allow users to
annotate models, but also help them to experiment and to quickly hide
defunct parts of the model. They are an important usability feature [14].

For most language implementation tasks, comments are considered white
space and they should be handled in a lexer. Whether handled in a lexer or a
parser, they are typically not saved in an AST, but just consumed. The only
problem is caused by multi-line comments, which should be allowed to be
nested for usability purposes, so that it is possible to comment out a piece
of program that already contains comments. Nested comments, like nested
parentheses, are not regular languages, so they cannot be defined just with
regular expressions, without the additional power of context-free languages.
In practice, lexers often include built-in extensions (for example nesting
counters), so that it is possible to handle (even) nested comments at this level.
Of course, PEGs, like in parboiled2, have no problems handling nested
structures, so this is not an issue there. Ford [11] proposes the following rule
for handling nested comments in a production. It uses a negative predicate
(the exclamation mark that means “anything except” the operand).

122 Chapter 4. Concrete Syntax

comment → ’/*’ (comment | (! ’*/’))∗ ’*/’ (4.28)

The rule says that a comment opens with a slash and asterisk and ends with
an asterisk and slash. Between the delimiters, we allow an arbitrary mixture
of other comments and any characters that are not a closing sequence for
a comment (!’*/’). This rule could also be formulated in Xtext. The
Xtext syntax specification language includes so-called until tokens, nega-
tive tokens, and hidden tokens13 that help when parsing multi-line nested
comments. The terminal grammar that we imported in our example supports
default handling of Java-like multi-line and single-line comments using a
simpler rule. This means that our implementation of the finite-state-machine
language in Xtext allowed comments, although not nested comments.

Like for any other guideline, there is an exception to this one, too. If you
are building a tool that processes comments, for instance a docbook/javadoc-
style processor, or if the user comments are supposed to be forwarded to
generated code, then comments need to be parsed for information with
proper rules, and represented explicitly in the AST meta-model.

Guideline 4.11 Do not use lexing and regular expressions for nested inductive structures.
Only use regular expressions for “finite memory” constructs. A common
picture is a web-programmer trying to parse a complex input using regular
expressions. The expressions grow and become increasingly complex, but
some cases remain uncovered, and new bugs pop up all the time. We would
like you to develop intuition for when to switch to grammars when parsing,
so that you can avoid these frustrating situations in your developer practice.

Intuitively, a regular language can be recognized using a finite and
bounded amount of memory. Languages that require counting during
parsing are not regular. For instance the language representing all mixtures
of balanced pairs of parentheses is not regular. Here is one example word
in this language: “((((())))).” Imagine a finite-memory recognizer for this
language as a finite-state automaton. With every open parenthesis we need
to advance to a new state to remember how many are opened, and with each
closed one we can retract to the previous state. So in the example above, we
will advance through five states when opening the parentheses, and start to
move back when the first one is closed. We can always create a sufficiently
long string of nested balanced parentheses, on which your recognizer will
“run out of memory” and loose track of balanced pairs during parsing. As
soon as we have to reuse one of the previously visited states we will not
know precisely how many parentheses have been opened: the number that
was open at the very first visit, or at the second one. (Recall that for a finite
automaton the only way to store information is to change states.)

This result is formalized in mathematical linguistics under the name
the pumping lemma for regular languages. (We recommend the book by
Hopcroft, Motwani, and Ullman [13] for a thorough study of this theory.)

13https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html#syntax, accessed 2022/09

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html#syntax

4.5. Guidelines for Specifying Concrete Syntax 123

It means that if there is some form of arbitrary nesting in your language,
you will not be able to parse or validate it using regular expressions, but
you need a grammar. In these cases, there is no point to “try harder” with
regular expressions.

Exercise 4.15. Recall that a polynomial is a function whose defining formula is a
sum of terms; each term is a constant factor multiplied by a variable raised to a
natural number. For example 2x3 is a term, and 2x3 −2y2 +7x is a polynomial.
Consider the following grammar describing a language of simple polynomials,
starting with the nonterminal poly.

poly →1 poly sign var ’^’ num | ε var →3 ’x’ | ’y’

sign →2 ’+’ | ’-’ num →4 ’0’ | ’1’ | ’2’
(4.29)

In our polynomials, all terms must be signed for simplicity. First, write out one or
two examples of polynomials generated by this grammar. Second, write a regular
expression accepting the same language. Third, replace the production for var
with: var → ’x’ | ’y’ | ’(’ poly ’)’. Understand what new polynomials
became syntactically legal; write one or two examples. Can we define a regular
expression matching the language generated by the modified grammar?

Guideline 4.12Sometimes you just need to mix parsing and lexing. For some languages,
it is not practical to separate parsing and lexing. This happens for some
advanced (some would say “quirky”) syntax designs. It may happen that
interpreting a grouping of symbols into tokens depends on the parsing
context. For instance, in C++ the sequence “<<” can be parsed as a single
token (a shift-right arithmetic operator), or as two tokens (two opening
angle brackets in a list instantiation). Compare how double angle is used
in these two pieces of C++: “x >> 2” vs “list<list<string>>”. In such
situations, it is convenient to distinguish what tokens we are dealing with
based on whether we are in the context of parsing a type expression, or an
arithmetic expression. This is best done directly in the grammar productions,
not in the lexer, when the high-level structure is not known yet. PEG parsing
tends to support such cases well.

Interestingly, the C++ grammar, prior to version C++11, was defined
with separate parsing and lexing phases; instantiating a list of lists of
strings could not be written as above. Instead one should have written
“list<list<string> >” separating the angle brackets, which is confusing
for users. The newer versions of C++ and Java, which uses a similar syntax
for generics, do not suffer from the same problem.

Even if you need to tokenize based on the syntactic context, we recom-
mend limiting this practice to the absolute minimum, and still performing
most tokenizing and parsing separately.

Guideline 4.13Avoid ambiguity in grammars. The grammar from the beginning of the
chapter (4.14–4.16) is ambiguous. The rightmost derivation shown in (4.17)
gives rise to the parse tree shown in Fig. 4.3. The following derivation,

124 Chapter 4. Concrete Syntax

Figure 4.13: The leftmost
derivation tree for the

expression x+ y∗ z using the
grammar from Eqs. (4.14)

to (4.16). Compare to Fig. 4.3

which is also rightmost but picks the production rules in a different order,
leads to the tree in Fig. 4.13. A different tree! Check!

expr →2 expr ’*’ expr

→3 expr ’*’ ID

→1 expr ’+’ expr ’*’ ID

→3 expr ’+’ ID ’*’ ID

→3 ID ’+’ ID ’*’ ID (4.30)

Exercise 4.16. Write down a leftmost derivation of the string x+ y∗ z using the
grammar of Eqs. (4.14) to (4.16), and draw the corresponding parse tree. Which
tree did you obtain? Is it the only possible leftmost derivation tree?

In general, we define ambiguity as follows.

Definition 4.31. A grammar G is ambiguous iff there exists a word (a
sequence of symbols) that can be derived from the start symbol of G in
more than one way, so expanding nonterminals in a different order or using
different productions, and resulting in two different parse trees.

As you can see, depending on the order of applying the productions we
obtain either a representation of (x+ y)∗ z or of x+(y∗ z)! (Which tree is
which?) Not only for addition and multiplication, but in many other cases,
this choice has serious consequences! You should control the ambiguity of
your grammar so that you are sure that the precedence of the operators and
similar structures is handled in agreement with your intentions.

For this very reason, many parsing tools restrict the input language for
syntax specification to an unambiguous subset of context-free grammars
such as LL(1), LALR, LL(∗), LR(k), or even PEGs. Typically, the ambi-
guity errors in input grammars are detected by these tools during parser
construction. Most of these algorithms require that at any given time a rule
can be chosen deterministically, otherwise an ambiguity is detected. PEGs
eliminate non-determinism by using a fixed rule ordering combined with
deterministic backtracking.

4.5. Guidelines for Specifying Concrete Syntax 125

An ambiguity error message flags an error in your grammar, not in
the parsing tool! Whatever tool your are using, you should understand
whether it reports ambiguity errors, and what mechanisms it offers for
handling ambiguity problems. Most parsing tools allow specification of the
precedence of operators, which reduces non-determinism. Also, ambiguous
grammars tend to be left-recursive, like our example with expressions.
Eliminating left recursion tends to eliminate ambiguity as well (especially
if the parsing tool follows a fixed left-, or right-parsing strategy). We talk
about left-recursion elimination below.

Ambiguous grammars, like our expression grammar, tend to be easy
to write. They strongly resemble abstract-syntax definitions. In fact,
researchers often use ambiguous grammars to define “abstract syntax” in
papers. If you are just starting to doodle a syntax for your language, it
may well be easiest to start by proposing an ambiguous grammar first, a
so-called baseline grammar, and to eliminate the ambiguities once you are
satisfied with the core design.

Like every rule, also this one must have an exception. TXL [10] is a
parsing tool that embraces ambiguity and expressly allows working with
ambiguous grammars. This makes writing TXL grammars much easier, at
the cost of making control over what trees are constructed more difficult.

Guideline 4.14Left-recursion elimination. The simple expression grammar used above is
left-recursive. In production (4.16) the non-terminal expr is immediately ex-
panded to another instance of expr, followed by some other symbols. Left-to-
right parsers cannot handle left recursion, due to prefix-ambiguity. Let us try
to understand why this might be a problem. Intuitively, left-to-right parsers
try to match a rule like the one in (4.16), but cannot decide whether it is ap-
plicable or not. It seemingly allows infinite recursion: the very same rule can
be tried immediately again and again. We define left recursion as follows.

Definition 4.32. A grammar is left-recursive if and only if it has a non-
terminal symbol n such that there exists a derivation n →+ nα for some
arbitrary string of symbols α . [1]

In other words, a grammar is left-recursive if it has a production with n on
the left-hand side that can be expanded, possibly multiple times, until we
obtain n as the leftmost symbol again. Productions (4.16) and (4.15) are
both left-recursive. You are encouraged to convince yourself that none of
the productions in Figures 4.6 and 4.7 are. This might be a bit harder to see
in a grammar written using Xtext or parboiled2 than in abstract EBNF.

Inexperienced users of modern parsing tools frequently suffer from
left-recursion issues. Only recently, ANTLR, which is the parsing tool
underlying Xtext, started to support automatic left-recursion elimination
for the special case of grammars with directly self-recursive productions
(so all the left recursion appears in the same EBNF rule, perhaps using
several alternative cases). At the time of writing however, Xtext does
not benefit from this functionality. Thus Xtext grammars cannot be left-
recursive, and ANTLR grammars cannot include left recursion along several

126 Chapter 4. Concrete Syntax

separate productions. Furthermore, most PEG implementations, including
parboiled2, simply loop indefinitely on left-recursive grammars.

This limitation of parboiled2, ANTLR, Xtext, and many other tools, is
not a serious one, as it is widely believed that all interesting programming
languages are specifiable in a non-left-recursive syntax. The only problem
is that it sometimes takes some effort to put the grammar of the language
in the right form. Learning how to do this also helps to fine-tune operator
precedence and associativity, which is a useful skill, if you ever use a
parsing tool without direct support for operator precedence specification.

Let us temporarily simplify our expression grammar to two rules, in order
to facilitate explanation (we ignore the second rule, with the multiplication):

expr → ID | expr ’+’ expr (4.33)

For brevity, we use parentheses instead of trees to show different parsings
below. For the input string “w+z+y+z” the above grammar admits, among
others, the following three parse trees:

((w+ x)+ y)+ z left-associative,
(w+ x)+(y+ z) a balanced one,
w+(x+(y+ z)) right-associative.

If you cannot see why these trees arise, write out the corresponding deriva-
tions. To eliminate left recursion, we will disallow arbitrary parse trees,
and focus on the last format from those listed above. The parsing w+(x+
(y+ z)) shows that a complex arithmetic summation is also just a sequence
of additions, which starts with an identifier and then is followed by more
identifiers separated by plus symbols. A plus-separated list of identifiers!
A standard grammar generating a comma-separated list of identifiers is not
left-recursive (Try to write it! see Exercise 4.34). We should be able to
model a list of additions the same way.

In this optics, there is no inherent left recursion in long summations. The
leftmost symbol in an input string is always a known terminal, here an ID,
not a full-blown expression. Thus the following production:

expr → ID (’+’ ID)∗ . (4.34)

After this change no more left recursion remains, but we still express the
same language as the original grammar. Let’s generalize this example
to a rule that handles the most cases of left recursion in practice. In the
following figure, the grammar on the left can always be rewritten to the
grammar on the right, without changing the generated language:

Figure 4.14: The workhorse
rewrite rule of the left-recursion

elimination.

n → β | nα ⇝ n → β (α)∗

4.5. Guidelines for Specifying Concrete Syntax 127

In the figure, n is a non-terminal, β is a string of symbols not starting with
n, and α is any string of symbols. For our example, n = expr, β = ID, and
α = ’+’ expr.

The rule in Fig. 4.14 is slightly more general than what we did in our
example. It keeps recursive expressions in α under Kleene-iteration, which
is not a problem in this case, as they are not left-recursive. Admittedly, it is
slightly hard to see that this rule may produce a right-heavy derivation tree,
making the string α right-associative, as in β (α(α(α · · ·))). Appreciating
this requires studying Tables 4.1 and 4.2 carefully. In practice, this also
depends on how your parsing framework implements the Kleene star in
EBNF. Most tools would just produce a flat list representation for parsing
Kleene iterations.

Consider the original example again, where we had two inter-dependent
left recursions. We recall it here for convenience:

expr → ID | expr ’+’ expr | expr ’*’ expr (4.35)

The rewrite rule from Fig. 4.14 does not apply directly anymore, as we have
two cases of expressions. A naive attempt to generalize it could produce
something like this:

expr → ID (’+’ ID | ’*’ ID)∗ (wrong!)

The above production generates any mixture of multiplications and addi-
tions, which, in principle, means that we can handle all the strings we want.
However, its derivation and parse trees disregard that the multiplication
and addition have different precedence, so that multiplication should bind
stronger than addition. For example, the string “w*x*y+z” may be parsed
as w∗ (x ∗ (y+ z)) instead of the most likely desired (w∗ (x ∗ y))+ z. We
will exploit the two precedence levels to remove left recursion here. At the
top level we have addition, which binds weaker than multiplication. Our
addition is still a plus-separated list, but the basic building blocks must be
identifiers or multiplications of identifiers. We call these elements terms, as
used in algebra for expressions that are summed. We apply the same trick
as before to ensure that summations involve no left recursion:

expr → term (’+’ term)∗ (4.36)

term → term ’*’ term | ID (4.37)
We are not completely done yet! We still have left recursion in the second
production (4.37), this time between terms. We have replaced expr with
term, as we can only multiply identifiers and other terms. Multiplying
expressions (so additions) is not possible, because addition has lower
precedence. However, when doing this renaming, we have still allowed the
second production to remain left-recursive. We shall apply the rewrite of
Fig. 4.14 again to this rule, to eliminate the left recursion entirely:

expr → term (’+’ term)∗ (4.38)

term → ID (’*’ ID)∗ (4.39)

128 Chapter 4. Concrete Syntax

In the new grammar, a summation term is an asterisk-separated list of
identifiers. We obtained a grammar for expressions that accepts all the same
inputs as the original example, but reconstructs the tree respecting the oper-
ator precedence. The key to get here was to apply the rewrite from Fig. 4.14
twice, once per each case, and also to observe that expressions with different
precedence should be represented by different non-terminals (stratified),
where we can use Kleene iteration at each level. The following figure sum-
marizes the general rule for grammars with left recursion in multiple cases.

Figure 4.15: The left-recursion
elimination strategy with
stratification of operator

precedence.

n → β | nαn | nγn ⇝ n → m (αm)∗

m → β (γβ)∗

In the figure, n is a non-terminal and α , β , γ are any strings of symbols not
containing n. We want α to bind weaker (have lower precedence) than γ .
In our example, n = expr, β = ID, α = ’+’, γ = ’*’, and m = term.

Finally, what if we wanted to allow parentheses in our language, in order
to override precedence? We leave understanding this issue to the reader by
comparing the following two grammars. First, an ambiguous left-recursive
grammar with parentheses:

expr → ID | ’(’ expr ’)’ | expr ’+’ expr | expr ’*’ expr (4.40)

and an unambiguous non-left-recursive grammar, where precedence has
been enforced. (A factor is an expression that can be multiplied.)

expr → term (’+’ term)∗

term → factor (’*’ factor)∗

factor → ID | ’(’ expr ’)’ (4.41)

Convince yourself that the two grammars generate the same strings, and
that the second one is indeed not left-recursive, and that it creates derivation
trees that respect the precedence of multiplication over addition, unless
overwritten with parentheses.

4.6 Quality Assurance and Testing for Grammars

Focused tests for small grammar fragments. We strongly recommend to
develop grammars iteratively. Do not attempt to write a grammar for a
complex language in a single sitting. Even small grammars hide many
intricate interacting constructs that are difficult to get right. Debugging a
large grammar quickly becomes overwhelming. Instead, create, run, test,
and fix coherent parts separately. At first, scaffold an empty parser that
always fails, or always succeeds. Most tools support this with an empty
start symbol production, or with a special “fail” (respectively “accept”)
combinator. Make sure you can run your parser from this point on, every

4.6. Quality Assurance and Testing for Grammars 129

1 "Transition variations (positive)" in new Fixture:
2 """
3 machine MACHINE [
4 initial STATE
5 state STATE [
6 on input INPUT output OUTPUT and go to STATE
7 on INPUT go to STATE
8]
9]

10 """.parse[Model] should not be None

12 "A machine without initial state (negative)" in new Fixture:
13 """
14 machine MACHINE [
15 state STATE []
16]
17 """.parse[Model] shouldBe None

source: fsm.xtext.scala/src/test/scala/dsldesign/fsm/xtext/scala/ParsersSpec.scala

Figure 4.16: A positive and a
negative test for the
Xtext/ANTLR parser using the
Xtext testing API, scripted in
the Scalatest framework

time you implement an extension or fix a bug. Build groups of productions
bottom-up, starting from terminals, expressions, block-like compound
groupings all the way to top-level concepts like modules, models, and
programs. Feel free to ignore optional syntax elements in early iterations.
Every time a meaningful subset of productions is specified, write a unit
test for them, and keep these automated tests alive and passing throughout
the development. Writing tests for small language fragments reduces the
combinatorial explosion of testing on all possible input variations. It also
gives you localized error information that is easy to interpret.

Do not stop working on a grammar when the parser works. Grammars
should be optimized and refactored. Your first designs are likely to be
suboptimal. One should eliminate excessive non-terminals and rules [2].
Optimization might give you a faster parser, but most importantly it helps
you to understand your parser well. It helps you to spot and remove issues.
It makes it easier for others to understand it, to remove any emerging
problems, and to extend it in the future. This other person might be you in
two years, surprised how complex a parser you made.

Positive and negative test cases. Figure 4.16 shows example tests for
the Xtext parser of Fig. 4.6. These tests have been written using the
Scalatest framework and the Xtext testing API. The testing framework and
the programming language are inessential here. We could have written them
using JUnit, or in any other JVM language, as these parsers are compatible
with the standard JVM infrastructure. We want to draw your attention to
(i) the format of the tests, and (ii) the use of positive and negative test cases.
Regarding the format, when testing parsers you typically create small pieces
of syntax (we are using Scala’s multi-line strings here), then you invoke
the parser and inspect the result. The parse method used in Fig. 4.17 is
injected into the string class by the book library, which integrates Xtext with

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtext.scala/src/test/scala/dsldesign/fsm/xtext/scala/ParsersSpec.scala

130 Chapter 4. Concrete Syntax

Figure 4.17: A positive and a
negative test for the parboiled2
parser recognizing a transition,

a part of the fsm language.
The transition production is

implemented in Fig. 4.7,
Line 22.

1 "input, no output (positive)" in {
2 "on input I go to T".transition.run () shouldBe
3 Success (Transition ("T","I"))
4 }

6 "missing white space in transition (negative)" in {
7 "onI goto T".transition.run ().toOption shouldBe empty
8 } source: fsm.scala/src/test/scala/dsldesign/fsm/scala/FsmParserSpec.scala

Scala to make writing Xtext tests in Scala more idiomatic.14 The function
returns None if the parser failed, and Some if it succeeded. In these two
simple tests we only check for success, not for the structure of the created
AST. This is often sufficient in small tests for DSLs.

We insist on using both negative and positive test cases. We should
not forget that a parser fulfils two major roles: it translates an input to
an abstract-syntax tree, which is later processed by other parts of the tool
chain, and it validates the structure of the input. Testing a parser only on
positive examples neglects its validation role. A good parser must fail on the
erroneous input. Test syntactic constraints on examples that violate them,
ideally near-miss examples that violate the rule but resemble a correct input.
In the figure, the first test is positive, the second test is negative. Notice
that the second input string looks like a plausible model—it takes some
attention to notice that it lacks the initial state required by our syntax.

Figure 4.17 presents two test cases for the parboiled2 parser developed
earlier in this chapter. The parboiled2 sub-parsers are accessible via a
call to run. Here, transition refers directly to the transition production
from Fig. 4.7. The direct access to sub-parsers is handy for testing parts
of the grammar in the modular and incremental style recommended above.
Most parser combinator libraries expose such an interface naturally, as all
productions in these libraries are usually implemented using a single type—
so every production can be used as a start production, a fully functional
parser. In the first test, we not only check that it succeeded, but also that the
created abstract-syntax tree value has the right structure.

At the time of writing, Xtext does not support testing parts of a grammar
directly. This is why our Xtext tests invoked the top-level Model rule. An
independent project provides facilities for production-level tests.15

Properties to test on grammars. When creating tests for parsers we recom-
mend considering the following properties:
• Handling white space. For PEGs and any other parsers that mix lexing

and parsing in a single mechanism, it is important to test whether white
space is allowed where it should be, but it is not required more than
strictly necessary. Arbitrary syntax errors involving spaces are irritating
for users. Humans are not conscious of white space when reading—it
is only important if its absence would cause confusion. For instance, in

14source: xtext.scala/src/main/scala/dsldesign/xtext/scala/package.scala
15https://github.com/itemis/xtext-testing, accessed 2022/09

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/FsmParserSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.xtext.scala/src/main/scala/dsldesign/xtext/scala/package.scala
https://github.com/itemis/xtext-testing

4.6. Quality Assurance and Testing for Grammars 131

Fig. 4.17 the second test establishes that white space is required between
“on” and “I” if you want to interpret them as a keyword followed by
an identifier—they are seen a single identifier otherwise. Dually, white
space should not be required if tokens are clearly separatable visually, for
instance between identifiers and operators, separators, or parentheses.

• Optionality of elements. Check whether the elements required to be
optional can be omitted, and whether they can be added. Both errors are
typical: you might have forgotten to include a question mark in an EBNF
grammar, or to specify an entire optional clause.

• Associativity and precedence of operators. Test associativity if the
order of evaluation influences the semantics of your operators. This is
always the case if expressions have side effects. For operator precedence,
compare ASTs both with and without parentheses, to check whether it
is appropriately reflected in the nesting of the AST. These tests have
additional importance if you use parser combinators. Parser generators
(like Xtext/ANTLR) will warn you if you have left-recursion issues at
generation time. Combinator parsers may enter an unbounded recursion
at runtime, so it is good to test well at design time. See the discussion of
left recursion, associativity, and precedence in Sect. 4.5.

• Metamorphic properties. Metamorphic properties are relations between
data involved in several program runs. A classic metamorphic relation in
parsing is that parsing an input, pretty-printing the resulting AST, parsing
the pretty-printed output, and pretty-printing the obtained AST again,
should produce the same AST and the same concrete syntax twice. This
property can be tested on all valid inputs you have. Metamorphic relations
are a good property to test if you have a lot of test cases, or if you have a
possibility to generate inputs randomly. This avoids the problem of creat-
ing many test oracles manually, while it is still likely to find instabilities.

Test coverage for grammars. As always, the key coverage property to
watch in testing is the coverage of user requirements. You should test
whether user requirements are met. This is done by creating examples
capturing the cases in the design and requirements documents (Sect. 3.2).
At this stage, it is also useful to involve users. A few sessions with users,
where you show them example models and ask them to create new ones,
will uncover misconceptions in the syntax design, confusing notations,
incomprehensible error messages, and missed requirements. Requirements
can also be used to established parsimony of concrete syntax (cf. Def. 3.5).
Since maintenance of DSLs is costly, we encourage you to look for nice-to-
have but not required syntax extensions at this stage, and eliminate them
from your grammar.

Finally, it is useful to ensure production and terminal coverage. This can
often be done by creating one large input model including all features of the
language [5]. In this chapter, the model in Fig. 4.5 was created to fulfil this
role. The key advantage of this tactic is that it can be implemented very fast.

132 Chapter 4. Concrete Syntax

Figure 4.18: A fragment of the
meta-model used in the

implementation of the Xtext
framework for representing

grammars

Grammar

name : EString
definesHiddenTokens :
EBoolean = false

AbstractRule

name : EString

AbstractMetamodelDeclaration

alias : EString
 ePackage : EPackage

ParserRule

definesHiddenTokens : EBoolean
= false
fragment : EBoolean = false
wildcard : EBoolean = false

TypeRef

 classifier : EClassifier

TerminalRule

fragment : EBoolean = false

EnumRule

[0..*] usedGrammars

[0..*] hiddenTokens

[0..*] metamodelDeclarations

[0..*] rules
[0..1] type

[0..*] hiddenTokens

[0..1] metamodel

source: figures/model/Xtext.ecore

Exercise 4.17. Consider the following simple grammar for a subset of Cascading
Style Sheets.16 The non-terminal css is the start symbol. Devise a testing strategy
for this grammar including test objectives, selection of test cases, scope of testing,
and stopping criteria for the testing process. Show some example test cases.

css → specification∗

specification → element ’{’ attribute∗ ’}’

element → ’p’ | ’div’

attribute → attrID ’:’ color ’;’

color → ’black’ | ’white’ | ’red’

attrID → ’color’ | ’background-color’ (4.42)

4.7 Grammars in the Language-Conformance Hierarchy

Let us step back for a moment and look at Figures 4.6 and 4.7 again.
Both figures present language definitions. They define what models can
be written in the finite-state-machine language. However, these language
definitions are also models themselves. Yes! Grammars are models and
parsers are programs. They are specified in a fixed specification language,
a DSL with its own abstract and concrete syntax.

Since context-free grammars are a DSL, we can define abstract syntax
(using meta-modeling) and grammars (using grammars!) for them. Fig-

16https://www.w3.org/Style/CSS/Overview.en.html, accessed 2022/09

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/Xtext.ecore
https://www.w3.org/Style/CSS/Overview.en.html

4.7. Grammars in the Language-Conformance Hierarchy 133

ure 4.18 presents a fragment of the meta-model for the Xtext language.17

Observe that the concepts in the meta-model reflect what we can present
in a grammar, among others rules and tokens.

Exercise 4.18. Design a meta-model in Ecore (or an ADT in a functional language)
for representing EBNF grammars as defined in Def. 4.18 and Tbl. 4.2. Inspect
the Xtext meta-model linked above, to identify conceptual similarity.

Defining grammars for grammar languages is not an academic exercise in
sophistry. It is yet another example of the design practice for language tools
known as bootstrapping. Compiler builders for GPLs take implementing
a compiler for their language as the first major project undertaken in the
language itself; a rite of passage for the tools and the language design. This
practice has spread from the compiler community to the broader community
building language infrastructures in general. Thus Ecore models are repre-
sented as instances of the Ecore meta-model, which has been implemented
in Ecore. Xtext grammars are parsed using an Xtext grammar, and so on.
There are two important reasons for this practice. First, building a self-
applying language tool is a rite of passage, the first major case study, for a
language-processing system. If the designers of Xtext can “eat their own
dog food” (use their own tool), then they can understand all the usability
issues and develop it further in relevant directions. Second, the designers
of language tools usually really believe in their ideas, so they are eager to
use them, eager to demonstrate their usefulness. For designers of MDSE
tools, like Xtext, the tools themselves serve as a major demonstration of the
power of the paradigm. For example, it is thanks to the use of Xtext that the
Xtext editor in Eclipse can offer syntax completion, and all the diagnostics
facilities, based on just a small language definition.

Bootstrapping a compiler usually involves building an intermediary com-
piler in another language first, so that the first native-native compiler can
be compiled. Similarly, bootstrapping a language-processing tool requires
implementing a less powerful papier-mâché version of the tool. The early
prototype should be powerful enough to build the first real bootstrapped
tool. For instance, a parser generator might be first implemented using a
manually built parser for its own grammar, or using a competing parsing tool.
Once this works, we can generate the parser for the grammar specification
language, and throw out the original simplistic manual implementation.
Afterwards the tool can be evolved by itself, using its own infrastructure.

To make this discussion slightly more concrete, consider the problem of
writing a grammar for regular expressions.

Exercise 4.19. Consider a standalone lexer generator (like Flex18). A lexer genera-
tor is a language-processing program. It reads a specification of a lexical structure
(a set of named regular expressions defining tokens) and generates a piece of code,

17The meta-model is available in the source tree of Xtext, see https://github.com/eclipse/xtext-
core/tree/master/org.eclipse.xtext/org/eclipse/xtext (seen 2020/09). Our code repository provides a
laid out diagram, which was used to create Fig. 4.18. See figures/model/Xtext.aird

https://github.com/eclipse/xtext-core/tree/master/org.eclipse.xtext/org/eclipse/xtext
https://github.com/eclipse/xtext-core/tree/master/org.eclipse.xtext/org/eclipse/xtext
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/Xtext.aird

134 Chapter 4. Concrete Syntax

tokenizing a stream of symbols into a list of tokens. How is lexing done in a lexer
generator? What are the tokens in the input for the lexer generator? Think about
these questions before continuing to read.

The tokens in a regular expression language are (cf. Def. 4.12): a pipe (|), a
plus (+), and an epsilon symbol (ε). We shall also add parentheses, to allow
us to control the precedence, which was implicit in Def. 4.12. Having agreed
on the tokens, we can write a grammar for regular expressions, so that we
can parse them as part of a grammar definition, the lexical specification, for a
hypothetical language-processing tool. If you look carefully, Def. 4.12 is al-
ready an ambiguous grammar in disguise. It is best if we reuse its structure:

regex → regex ’|’ regex regex → ’(’ regex ’)’

regex → regex regex regex → ’a’ for any character a∈ Σ

regex → regex ’+’ regex → ε (4.43)

Incidentally, the above grammar is ambiguous and left-recursive. Exer-
cise 4.44 considers transforming it into a non-left-recursive form. Impor-
tantly, the pipe symbol above is a terminal symbol, not the alternative
operator from EBNF (this is why we quoted it). Similarly the quoted plus
symbol, and the quoted parentheses are not EBNF parentheses or Kleene
iteration from EBNF. When writing grammars for a grammar DSL, we face
the same cognitive confusion we experienced when discussing meta-models
for meta-modeling languages in Chapter 3. The challenge there was that
we had to use (meta-) classes to represent classes and objects. Now we are
using the grammar rules to represent rules, and the same symbols appear
possibly in two roles: as the object symbols and the meta-language symbols.

Exercise 4.20. Write an abstract EBNF grammar defining the syntax of the simplest
context-free grammars, following Def. 4.18. Warning: this grammar will be
extremely short, given how simple the syntax of grammar productions is.

Exercise 4.21. Expand the above grammar to generate the syntax of EBNF gram-
mars. Your grammar should handle the EBNF operators as specified in Tbl. 4.2.
Compare your grammar to the official Xtext grammar.19 Are there any signs of
conceptual proximity?

Figure 4.19 presents two of the top-level rules of the Xtext grammar for
the Xtext language for comparison. Figure 4.20 summarizes the discussion
of this section with a hierarchical diagram—a grammar counterpart of
Fig. 3.13. In the bottom of the figure, we have the syntax of a concrete
finite-state-machine model. This model is written in the Fsm language, so
its syntax conforms to the Fsm.xtext grammar. Here conformance means
that it parses without errors. The Fsm.xtext grammar is itself a model,
written in the Xtext language, so it parses agains the Xtext.xtext grammar.

18https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator), seen 2022/09
19http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext

https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)
http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext

4.7. Grammars in the Language-Conformance Hierarchy 135

1 Grammar:
2 ’grammar’ name=GrammarID
3 (’with’ usedGrammars+=[Grammar|GrammarID]
4 (’,’ usedGrammars+=[Grammar|GrammarID])*)?
5 (definesHiddenTokens?=’hidden’
6 ’(’ (hiddenTokens+=[AbstractRule|RuleID]
7 (’,’ hiddenTokens+=[AbstractRule|RuleID])*)? ’)’)?
8 metamodelDeclarations+=AbstractMetamodelDeclaration*
9 (rules+=AbstractRule)+ ;

11 AbstractRule: ParserRule | TerminalRule | EnumRule;
source: github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext

Figure 4.19: The top-level
production (Grammar) of the
grammar for the Xtext input
format (describing grammars)

Because of bootstrapping, the Xtext grammar is specified in itself, and is
possible to parse against Xtext.xtext. This actually happens when you
compile Xtext from source. In the right-hand side of the figure, we list
example files in the languages listed to the left. You will notice that all these
examples have been used earlier in the chapter to present these languages.

Further Reading

The standard reference on grammars and parsing is the Dragon Book by Aho et al.
[1]. However, many competing books exist and most of them are very good. A more
recent concise reference has been authored by Mogensen [21]. Classic compiler
books have the advantage that they discuss different categories of grammars and
different classes of parsing algorithm with varying strengths and weaknesses; a nerdy
zoo of exotic constructions, mostly irrelevant for an average DSL designer. Thus
we limited ourselves to a rather superficial discussion of parsing issues. Anybody
building a parsing tool or experiencing performance issues with a parser (a relatively
rare situation with DSLs), is encouraged to delve deeper into the subject, starting
with the above two volumes.

The documentation of parboiled220 is helpful if you need to learn to use the
combinators. Myltsev [22] describes the design principles and the implementation
of the parboiled2 tool. Chiusano and Bjarnason [8] devote a chapter to the case study
of a design of a parser combinator library in Scala (Chapter 9 therein). Interestingly,
as of today, the problem whether PEGs and CFGs are incomparable is still open.
Ford [11] shows languages accepted by a PEG that cannot be generated by any
context-free grammar. However, we still do not know whether there exist context-
free languages that are not possible to accept with a PEG. Recently, Loff, Moreira,
and Reis [19] show that PEGs are surprisingly expressive, which is an indication
(not a proof yet) that they might be a strictly more expressive formalism than CFGs.

The problem of checking whether a given context-free grammar is ambiguous is
undecidable in general. Knuth [17] was probably the first to propose a conservative
procedure for deciding the problem, based on detecting LR(k) shift–reduce conflicts.
More recently, Brabrand, Giegerich, and Møller [7] give a short account of the
state of the art on grammar ambiguity checking, and give a heuristic conservative
procedure for detecting ambiguity.

You might be surprised to see that the recursive descent LL-parsing using left-
recursive grammars is a solved problem, at least theoretically. Unfortunately, GLL

20Available at their GitHub page https://github.com/sirthias/parboiled2, seen 2022/09

http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
https://github.com/sirthias/parboiled2

136 Chapter 4. Concrete Syntax

Fsm.xtext

Xtext.xtext

Languages (Grammars)
Models (Files)

Syntax Fragments (Examples)

simple.fsm

M3

M2

M1

grammar dsldesign.fsm.xtext.Fsm
with org.eclipse.xtext.common.Terminals

import "http://www.dsl.design/dsldesign.fsm"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

model returns Model:
{Model} machines+=machineBlock*;

machineBlock returns FiniteStateMachine:
{FiniteStateMachine}
’machine’ name=EString (’[’

((states+=stateBlock)+
& (’initial’ initial=[State]) // initialDeclaration
& (states+=stateBlock)*)?

’]’)?;

machine "simple FSM" [
initial S0
state S0 [
on input "login" output "credentialsOK" and go to S1
on input "login" output "authErr" and go to S0

Grammar:
’grammar’ name=GrammarID
(’with’ usedGrammars+=[Grammar|GrammarID]
(’,’ usedGrammars+=[Grammar|GrammarID])*)?

(definesHiddenTokens?=’hidden’
’(’ (hiddenTokens+=[AbstractRule|RuleID]

(’,’ hiddenTokens+=[AbstractRule|RuleID])*)? ’)’)?
metamodelDeclarations+=AbstractMetamodelDeclaration*
(rules+=AbstractRule)+ ;

AbstractRule: ParserRule | TerminalRule | EnumRule;‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

Figure 4.20: A hierarchy of concrete syntax languages (with the finite-state-machine language in the bottom). Compare to Fig. 3.13

parsing methods [18] are entering mainstream tools extremely slowly. Open-source
libraries are only starting to appear and gather initial interest.21 Independently
of the developments in generalized parsing, there are many works on automatic
and manual left-recursion elimination. Above, we presented a simple method
loosely inspired by the section on left-recursion elimination in the book of Aho
et al. [1]. Medeiros, Mascarenhas, and Ierusalimschy [20] propose a method to
systematically and automatically handle left-recursive PEGs. This method has not
been implemented in parboiled2 at the time of writing.

Xtext comes with extensive documentation for language designers.22 Bettini [6]
has written a book on the framework, the best reading material on the topic so far. It
also explains left-recursion elimination for Xtext grammar files in detail.

21Examples: https://github.com/rust-lang/gll for Rust, https://github.com/djspiewak/gll-combinators for
Scala, seen 2022/09

22http://www.eclipse.org/Xtext/, seen 2022/09

https://github.com/rust-lang/gll
https://github.com/djspiewak/gll-combinators
http://www.eclipse.org/Xtext/

4.7. Grammars in the Language-Conformance Hierarchy 137

Additional Exercises

Exercise 4.22. The regular expression ab∗ describes the set of all words starting
with a symbol a and followed by zero or more bs. The expression (aa)+ describes
the language of all non-empty words that can be built from symbol a that have
even length. Explain in English what are the languages described by the following
expressions: a) (10)∗, b) 1(0|1)∗, c) ((0(1|2)3))+. Parentheses are meta-
operators used for grouping, and denotes a single blank character.

Exercise 4.23. Decide whether each of the following strings belongs (or not) to
the language generated by the regular expression: ’0’|[’0’-’9’]+’.’[’0’-’9’
’a’-’f’]*. Explain why. a) ’c0ffee.0730’, b) ’0’ c) ’1’ d) ’0830.c0ffee’
e) ’09ea67.’ .

Exercise 4.24. The language L comprises words consisting of zero or more repeti-
tions of a followed by a single b or a single c. If the final symbol is b the number
of as must be even. If the final symbol is c the number of as may be even or odd.
Write a regular expression matching/generating the language L.

L = {b,aab,aaaab,aaaaaab, . . .}∪{c,ac,aac,aaac,aaaac, . . .} (4.44)

Exercise 4.25. Write a regular expression specifying identifiers as in the following
quote from the ISO C standard: An identifier is a sequence of letters and digits;
the first character must be a letter. The underscore _ counts as a letter. We
recommend writing out several positive and negative examples first.

Exercise 4.26. The following regular expression defines a language of identifiers
built from small letters and underscores: (’_’|[’a’-’z’])*. Improve it so that an
identifier can no longer be built solely of underscores (if it starts with underscore
it has to contain some letters, and possibly more underscores mixed in).

Exercise 4.27. Write a regular expression capturing unsigned fixed-point numbers
with up to three digits precision. There are no restrictions on the leftmost and the
rightmost zeros. There must be at least one digit to the left and at least one to the
right of the decimal point. Positive examples: 1.5, 123456.00, 199.159, 001.1;
Negative examples: 7, 5.000001, .99

Exercise 4.28. Write a regular expression matching hexadecimal numbers.

Exercise 4.29. The following regular expression matches fixed-point decimal con-
stants: [’0’-’9’]+’.’[’0’-’9’]+. a) Show an example of a string that begins
with a zero and matches this expression. b) Show a string that ends with zero and
matches. c) Modify the expression to disallow prefix zeros and trailing zeros after
the decimal point, except if a zero is the only symbol before or after the point.

Exercise 4.30. Write a regular expression matching a correct cardinality expres-
sion of the Clafer language [3], according to the following specification: A
cardinality expression is enclosed in square brackets and consists of two integer
constants separated by two consecutive dots. For instance: ‘[1..0]’, ‘[5..10]’
and ‘[11..00]’, but not ‘[0..1..2]’. See also Exercise 4.47

Exercise 4.31. Write a regular expression (grammar) generating (parsing) Roman
numerals up to 100. Your expression should only match valid numerals, not just
any combination of letters used in them.

138 Chapter 4. Concrete Syntax

Exercise 4.32. Explain in English what is the language described by the following
context-free grammar, with s being the start symbol:

s →1 t u ’a’ v u →3 ’reads’ | ’writes’

t →2 ’John’ | ’Mary’ | ’Alice’ v →4 ’book’ | ’letter’ | ’poem’

Exercise 4.33. Explain in English what language is generated by the following
EBNF grammar, with s being the start symbol.

s →1 s op id | id op →2 ’->’ | ’.’ id →3 ’x’

Exercise 4.34. This context-free grammar accepts comma-separated lists of iden-
tifiers. The start symbol is s and ID refers to a standard Java identifier token.

s →1 ’(’ t ’)’ t →2 ID ’,’ t t →3 ε (4.45)

a) Does the string (a, b, c) belong to the language generated by this grammar?
b) If yes, show a derivation. If not, fix this grammar so that it belongs to it.
c) Write a regular expression that accepts the same language as the grammar.

Exercise 4.35. Specify concrete syntax for a comma-separated list of hexadecimal
numbers. Each number is built of one or more white-space-separated groups of
digits. Each group consists of four digits, except for the leftmost (most significant)
group which can contain fewer. Decide whether to use regular expressions,
grammars, or both to solve the task, and argue for your choice. A positive example:
c0 ffee, ff, f10 abcd 0123’. A negative example: ’c0ff ee, abcd0123’.

Exercise 4.36. In the following context-free grammar, s is the start symbol. Write
a regular expression that accepts the same language.

s → a b c b → b ’1’ | ε a → a ’2’ | ε c → c ’3’ | ε

Exercise 4.37. Write a grammar representing the language of balanced parentheses
of three kinds, so ’(’, ’{’, and ’[’, where they can be arbitrarily nested as
long as they are always balanced with a closing parenthesis of the same kind. A
positive example: (())[{}], a negative example: ([){]}.

Exercise 4.38. Recall the language L from Exercise 4.24. Write a context-free
grammar in EBNF generating this language, replacing the original regular expres-
sion. The grammar may be ambiguous and left-recursive. Symbols ’a’, ’b’,
and ’c’ will be terminals in your grammar.

Exercise 4.39. Show two different derivations of different length of two strings
from the following grammar (s is the start symbol). Mark the derivation arrows
with production numbers, so that it is easy to reconstruct the rule application order.

s →1 ’a’ ’b’ s s →3 ’(’ s ’)’ s →5 ’d’

s →2 ’g’ s →4 ’a’ ’b’ s (4.46)

Exercise 4.40. In the following grammar, the start symbol is start. Is this grammar
left-recursive? If not, explain why. If yes, eliminate the left recursion (write down
the non-left-recursive grammar in EBNF accepting the same language).

4.7. Grammars in the Language-Conformance Hierarchy 139

start → ’(’ parameterList ’)’

parameterList → parameter | parameterList ’,’ parameter

parameter → ID ID (4.47)

Exercise 4.41. Which of the following grammars are left-recursive? Symbol s is
the start symbol.

a) s →1 s g, g →2 ’a’ ’b’, s →3 ’c’ ’d’
b) s →1 g s, g →2 ’a’ ’b’, s →3 ’c’ ’d’
c) s →1 x y z, x →2 z, z →3 ’a’ | ’b’ | s, y →4 ’c’ | ’d’

Exercise 4.42. Eliminate left recursion from the following grammars:

a) stmt →1 stmt ’;’stmt, stmt →2 ’{’stmt ’}’, stmt →3 ’print’ | ’skip’
b) qualified-name →1 qualified-name ’.’ ’ID’, qualified-name →2 ID

Exercise 4.43. Consider the following definition of the conjunctive normal form
(CNF) for propositional logic formulae: A literal is a variable identifier. An
atom is either a literal (say x) or a negation of a literal (say ¬x). A clause is a
disjunction of several atoms (possibly zero), for example: (x || y || ¬z). A CNF
formula is a conjunction (&&) of zero or more clauses. Write a non-left-recursive
EBNF grammar for parsing propositional formulae in CNF, as defined above.
Your grammar, should be able to parse, among others, the following example:
(x || y || ¬z) && (¬x) && (x || ¬x).

Exercise 4.44. Eliminate left recursion from the grammar in Eq. (4.43) on p. 134.

Exercise 4.45. This exercise attempts to develop a more domain-specific syntax
for Morse code than the one presented in the chapter. A message in Morse code
consists of a sequence of short and long tones. We can represent a short tone by
a single dash character (-, a minus) and a long tone by three consecutive dashes
without any spaces between them (---). Spaces separate long and short tones.
A single slash character (/) marks a break between words. Write a short valid
input string in this syntax. For instance, transcribe “MDSE IS FUN”. Write an
EBNF grammar defining a message in the Morse code over the set of the above
four tokens (long tone, short tone, space, and slash).

Exercise 4.46. Revisit the mathematically oriented syntax for finite-state machines
presented in the left part of Fig. 4.4. Write two or three more variants of this exam-
ple. For instance, consider whether it is required to use let definitions, or whether
the definitions can be nested directly in the “simpleFSM,” whether naming of
finite-state machines can be optional? Then write an abstract EBNF grammar
generating this language or implement it in your favorite syntax specification tool.

Exercise 4.47. Parsing cardinality expressions using a regular expression is subop-
timal (cf. Exercise 4.30). Separating elements of the expression is clumsy, and it is
messy to control the white space. Write an EBNF grammar for Clafer’s cardinality
expression, to meet the following slightly richer specification than above.

A cardinality constraint is enclosed in square brackets and consists of two
integer constants separated by two consecutive dots. For instance: ‘[1..0]’,
‘[5..10]’ and ‘[11..00]’, but not ‘[0..1..2]’. A cardinality constraint can also

140 Chapter 4. Concrete Syntax

be a single character selected from ’?’, ’+’, ’*’. Assume that there exists a
terminal symbol INT that is defined, and you can use it in your grammar. It
matches non-negative integer constants.

Exercise 4.48. [mini-project] The advantage of a rich language workbench (Xtext)
over a simple parser (parboiled2) is that it can support a broader range of use
cases than just parsing. Use editor generation facilities to generate an Eclipse
plugin for the finite-state-machine language, and to generate a web editor for this
language. Use the Xtext documentation for detailed steps in the process.

Exercise 4.49. [mini-project] Use https://github.com/xtext/xtext-external-editors to
generate vim, atom, and sublime syntax definitions for your external DSL.
Alternatively, develop your own generator of syntax-highlighting from Xtext
grammars. Use the tool to obtain syntax highlighting models for complex Xtext
languages (for example Xtend and Xtext itself).

Exercise 4.50. [mini-project] Use the Xtext New Project wizard to initialize a
grammar from an existing Ecore meta-model. Use the meta-model for feature
diagrams shown in Fig. 3.20 on p. 81 available from the book code repository at
featuremodels/model/FeatureModels1.ecore. Xtext will generate a default grammar
for this language. Edit the generated grammar to improve readability and write-
ability of the syntax. Revise the syntax and test in a generated editor as many
times as you need, until you are satisfied.

Exercise 4.51. Recall that, unlike context-free grammars, program expression
grammars are deterministically processed from left to right, and once a rule
matches, a typical PEG parser does not backtrack. Consider a variant of the rule
for inputClause from Equation (4.21). We basically replace the optionality by
an alternative. Interpret the following production as a PEG not a CFG rule:

inputClause → ’on’ ’input’ ID | ’on’ ID (4.48)

Does reordering (swapping) the two operands of the alternative in the above
production affect the language this production accepts? Reflection points: Ford
[11] writes that this question is often obvious, but sometimes gets difficult. In
general, it is an undecidable problem. This problem is trivial for context-free
grammars—the reordering never changes the generated language. (Think why!)
There is an interesting duality between PEGs and CFGs: for PEGs ambiguity is
trivial (always unambiguous) but commutativity of alternative is undecidable. For
CFGs the alternative operator is commutative, while ambiguity is undecidable.

Exercise 4.52. Following Ford [11], parboiled2 supports syntactic predicates.
A syntactic predicate enforces a condition on the current symbol. A positive
predicate (must hold) is written &(p) and a negative predicate (must not hold)
is written !(p). The predicate action does not consume any symbols from the
input, and does not add anything to the output. The rule just fails and backtracks
if a predicate is violated. The predicate p, in great simplicity can be any Boolean
function that examines the current symbol, for instance: Is it a digit? Is it a letter?
Is it capitalized? Typically with PEGs, the symbols are input stream characters.23

Rewrite the ID production in Fig. 4.8 to use only IDSuffix and a negative
predicate instead of IDFirst. Notes: The formulation in Fig. 3.5 is likely better,
but the point is to practice the use of predicates in PEGs. If you seek an example,
Ford [11] shows a negative predicate in Figure 1, the Primary rule.

https://github.com/xtext/xtext-external-editors
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels1.ecore

References 141

Exercise 4.53. Design positive and negative test cases for the grammar of Equa-
tion (4.41). Select the test cases to ensure good coverage, and argue for your
selection of cases, as well as for the choice of the coverage metric.

Exercise 4.54. Design a concrete textual syntax for simple Ecore-like models,
including classes, binary references, and generalization. Express your syntax
definition as a context-free grammar.

Exercise 4.55. Design a grammar for the core of the XML language (opening/clos-
ing tags, attributes, and standalone empty-element tags). Make the exercise more
challenging by including arbitrary non-tag strings inside the elements, possibly
using negative syntactic predicates.

Exercise 4.56. Recall the basic syntax of grammars without any EBNF extensions
and parentheses, so as shown in Def. 4.18. This syntax is so simple that it can
be described using a regular expression (sic!). Write this regular expression
matching a valid grammar production. Assume that the expression is written over
the tokens: ID and ->. These tokens are obviously also regular, so they can be
inlined into your solution without losing the regularity of the language.

Exercise 4.57. This exercise can be solved after reading Chapter 5. Use your
favorite parsing tool to define a grammar and parse the Alloy instance syntax, as
shown in the right panel of Fig. 5.14 on p. 173. See also Exercise 3.34 on p. 84.

References

[1] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, and Monica S. Lam. Com-
pilers: Principles, Techniques, and Tools. 2nd Edition. Prentice Hall, 2006
(cit. pp. 125, 135, 136).

[2] Tiago L. Alves and Joost Visser. “A case study in grammar engineering”.
In: SLE. Vol. 5452. Lecture Notes in Computer Science. Springer, 2008
(cit. pp. 119, 129).

[3] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki,
and Andrzej Wąsowski. “Clafer: Unifying class and feature modeling”. In:
Software and System Modeling 15.3 (2016) (cit. pp. 121, 137).

[4] Djonathan Barros, Sven Peldszus, Wesley K. G. Assunção, and Thorsten
Berger. “Editing support for software languages: Implementation practices
in language server protocols”. In: ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 2022
(cit. p. 107).

[5] Jon Bentley. “Programming pearls: Little languages”. In: Commun. ACM
29.8 (Aug. 1986), pp. 711–721 (cit. p. 131).

[6] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt, 2013 (cit. pp. 109, 136).

[7] Claus Brabrand, Robert Giegerich, and Anders Møller. “Analyzing ambi-
guity of context-free grammars”. In: Sci. Comput. Program. 75.3 (2010),
pp. 176–191 (cit. p. 135).

[8] Paul Chiusano and Rúnar Bjarnason. Functional Programming in Scala.
Manning, 2014 (cit. p. 135).

[9] Noam Chomsky. Syntactic Structures. Mouton & Co., 1957 (cit. p. 97).

23More about predicates in parboiled2 grammars at https://github.com/sirthias/parboiled2.

https://github.com/sirthias/parboiled2

142 Chapter 4. Concrete Syntax

[10] James R. Cordy. “The TXL source transformation language”. In: Sci. Com-
put. Program. 61.3 (2006), pp. 190–210 (cit. p. 125).

[11] Bryan Ford. “Parsing expression grammars: A recognition-based syntactic
foundation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. Ed. by Neil D. Jones and
Xavier Leroy. POPL. ACM, 2004 (cit. pp. 110, 114, 121, 135, 140).

[12] R. Frost and John Launchbury. “Constructing natural language interpreters
in a lazy functional language”. In: Comput. J. 32.2 (1989), pp. 108–121
(cit. p. 113).

[13] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley, 2001
(cit. pp. 93, 122).

[14] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. “Design guidelines for domain specific
languages”. In: 9th OOPSLA Workshop on Domain-Specific Modeling.
2009 (cit. pp. 115, 116, 119, 121).

[15] Steven Kelly and Risto Pohjonen. “Worst practices for domain-specific
modeling”. In: IEEE Software 26.4 (2009), pp. 22–29 (cit. p. 115).

[16] Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an engineering
discipline for Grammarware”. In: ACM Trans. Softw. Eng. Methodol. 14.3
(2005), pp. 331–380 (cit. pp. 87, 99).

[17] Donald E. Knuth. “On the translation of languages from left to right”. In:
Information and Control 8.6 (1965), pp. 607–639 (cit. p. 135).

[18] Bernard Lang. “Deterministic techniques for efficient non-deterministic
parsers”. In: Automata, Languages and Programming, 2nd Colloquium,
Proceedings. Ed. by Jacques Loeckx. Vol. 14. Lecture Notes in Computer
Science. Springer, 1974 (cit. p. 136).

[19] Bruno Loff, Nelma Moreira, and Rogério Reis. “The computational power
of parsing expression grammars”. In: Developments in Language Theory -
22nd International Conference. Ed. by Mizuho Hoshi and Shinnosuke Seki.
Vol. 11088. Lecture Notes in Computer Science. Springer, 2018 (cit. p. 135).

[20] Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. “Left
recursion in parsing expression grammars”. In: CoRR abs/1207.0443 (2012).
arXiv: 1207.0443. URL: http://arxiv.org/abs/1207.0443 (cit. p. 136).

[21] Torben Ægidius Mogensen. Introduction to Compiler Design. Undergradu-
ate Topics in Computer Science. Springer, 2011 (cit. p. 135).

[22] Alexander A. Myltsev. “Parboiled2: A macro-based approach for effective
generators of parsing expressions grammars in Scala”. In: CoRR (2019).
DOI: https://doi.org/10.48550/arXiv.1907.03436 (cit. p. 135).

[23] David S. Wile. “Lessons learned from real DSL experiments”. In: Sci.
Comput. Program. 51.3 (2004), pp. 265–290 (cit. p. 115).

https://arxiv.org/abs/1207.0443
http://arxiv.org/abs/1207.0443
https://doi.org/10.48550/arXiv.1907.03436

5 Static Semantics

Plenitude, when too plenitudinous,
was worse than destitution,

for—obviously—what could one do,
if there was nothing one could not?

Stanisław Lem [16]

In Chapter 3, we have discussed how to use generalization, containment,
cardinality constraints, and associations to control the set of legal instances
of a model. Nevertheless, when working on your own models, you must
have arrived at situations when capturing the exact set of desirable instances
using a class diagram was either impossible or cumbersome in counter-
productive ways. For example, consider the simple class diagram shown in
Fig. 5.1. The model captures parent-child relations between people. Every
person can have up to two parents, and every person can have some children.
The parent-child relation is modeled using two uni-directional references,
since Ecore lacks bidirectional associations.

Person

[0..*] child

[0..2] parent

Figure 5.1: An Ecore class
diagram with two unidirectional
references (overlayed on top of
each other) for the Person
class

It is natural to require, for any instance conforming to this model, that if
person A is a parent of B then the two persons are distinct, and that B is also a
child of A. Figure 5.2 shows instances violating these two invariants. In the
first instance, object B (respectively object C) is not a child of A (respectively
D). The second and third instances in the figure are variations of circularity
problems involving two objects and one object.

Alice: Person

Bob: Person

E: Person

D: Person

B: Person C: Person

A: Person

parent
parent

child

parent

parent

child

parent

Figure 5.2: Three undesirable instances admitted by the diagram of Fig. 5.1. The diagrams show complete models, not partial views

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_5

143

https://doi.org/10.1007/978-3-031-23669-3_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_5&domain=pdf

144 Chapter 5. Static Semantics

Figure 5.3: An unexpected
instance of the fsm

meta-model of Fig. 3.1, with
one machine ‘borrowing’ its

initial state from another one

: State

: State

: FiniteStateMachine

: FiniteStateMachine

: Model

initial

machine
states

machine
initial

states

machines

machines

In this case, we could fix the class model using a black diamond, to rule out
cycles, and a bidirectional association instead of two references,1 to rule
out violations of the inverse of parent–child relations. This would invalidate
all the instances of Fig. 5.2. Unfortunately, the problems mount up quickly
when we add more intricate constraints. What if we are only interested
in instances that contain at least two generations of people? Or families
where the two parents hold different passports? The meta-models quickly
get large when you start to be precise about all domain constraints. Often
it is impossible to capture the desired constraint using just the diagram
constructs, due to their limited expressiveness.

In the fsm meta-model (Fig. 3.1, p. 53), we would like to require that the
initial state of each machine is also its own state. An instance violating this
requirement is shown in Fig. 5.3. Working around this problem is cumber-
some. We may turn the initial reference in Fig. 3.1 into a containment (di-
amond). This would prevent a state from another state machine from being
referenced, at the cost of creating a new problem: the collection of states
would no longer contain all states, as an object can have at most one owner.
For an even more annoying complication, consider the following exercise.

Exercise 5.1. Sketch an instance of a finite-state-machine meta-model, with two
machine objects and a transition that crosses between states of the two machines.
Is it possible to rule out this instance via meta-modeling?

Problems with capturing constraints precisely are not limited to references
and containments in Ecore, which can only express constraints enforcing
acyclic hierarchies. They are not limited to object-oriented meta-modeling
languages either. We experience the same challenges when building abstract
syntax as algebraic data types in functional style. In fact, Ecore has
slightly more mechanisms to express constraints than the type systems
of mainstream programming languages. As an example, Fig. 5.4 shows an
ADT in Scala corresponding to the meta-model of Fig. 5.1. Lines 3–6 define

1In Ecore, one can enforce that two references are opposites by setting the eOpposite at-
tribute (http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.
html#getEOpposite(), as of 2022/09)

http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html#getEOpposite()
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html#getEOpposite()

145

1 // This model disallows cycles,
2 // but also disallows parent-child inversion...
3 case class Person:
4 name: String,
5 parent: List[Person],
6 child: List[Person]

8 // The following fails to typecheck
9 val A: Person = Person ("A", parent = List (B))

10 val B: Person = Person ("B", child = List (A))

Figure 5.4: A Scala ADT for
the Parent/Child example
(cf. Fig. 5.1). An attempt to
disallow cycles ends up with a
model that cannot be
instantiated

1 class Person (name: String,
2 parent: => LazyList[Person] = empty,
3 child: => LazyList[Person] = empty)

source: person.scala/src/main/scala/dsldesign/person/scala/Person.scala

Figure 5.5: An instantiatable
pure ADT that can represent
inverse parent–child
relationships, unlike Fig. 5.4,
but cannot prevent cycles

a class Person with collections parent and child. This class can only be
instantiated if parent child relationships are acyclic. In any pure functional
programming language, values with cyclic reference structures cannot be
created using eager constructors. Unfortunately, this not only disallows
cycles but also the duality of parent–child references. Consequently, we
cannot represent that an object is a parent of its own child in this design.

One way to work around this is to use side effects and imperative pro-
gramming: create disconnected objects first, and then wire them up with
assignments. This is essentially what Ecore does, and we have seen above
that it has its own problems. Alternatively, we can follow the same pattern
as in Chapter 3 and model the problem using not object references, but maps
and identifiers (cf. Fig. 3.5). There is however no obvious way to statically
enforce correctness of such maps, so that one is an inverse of another, or
that a transitive closure of map key–value pairs forms no cycles, etc.

Exercise 5.2. Create an ADT representing the abstract syntax of the person exam-
ple in Scala (or any other functional programming language) that uses explicit
person names, and named-based references, like in Fig. 3.5. Specify the ‘broken’
instances, corresponding to those in Fig. 5.2, that type-check against, and can be
constructed successfully with, your ADT.

Figure 5.5 presents an alternative abstract syntax in Scala for our example.
In this case, we are using lazy (by-name) references to encode cycles.
The parent and child properties are lazy, they are not evaluated before
access. This way we can complete constructing a person object without an
immediate access to the parent and child objects. These references need to
exist only later, when we ask for parent or child properties in a subsequent
computation. We also add default values for the parent/child properties, so
that it is easy to construct objects without parents or children.

Figure 5.6 shows example instances of this “lazy” design. All values in
this figure type-check and, thanks to laziness, can be explored at runtime
without causing stack overflows. The instance (a) demonstrates that we can
now represent both parent–child references that are inverses of each other

Chapter 5. Static Semantics

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.person.scala/src/main/scala/dsldesign/person/scala/Person.scala

146 Chapter 5. Static Semantics

Figure 5.6: Four instances of
the ADT in Fig. 5.5. The first

instance shows that duality of
the parent/child relationships
can be represented in a pure

manner using laziness.
Unfortunately instances (b)–(d)

show that all pathological
cases of Fig. 5.2 can be

represented as well

1 // (a) Capturing the parent-child duality (a positive example)
2 lazy val Mom: Person = Person (name="Mom", child=LazyList (Son))
3 lazy val Son: Person = Person (name="Son", parent=LazyList (Mom))

5 // (b) A violation of parent-child duality (a negative example)
6 lazy val B = Person (name="B", parent=LazyList (A))
7 lazy val A = Person (name="A", child=LazyList (C))
8 lazy val C = Person (name="C", parent=LazyList (D))
9 lazy val D = Person (name="D")

11 // (c) Circular instances with two objects (a negative example)
12 lazy val Bob: Person = Person (name="Bob", parent=LazyList(Alice))
13 lazy val Alice = Person (name="Alice", parent=LazyList (Bob))

15 // (d) A circular instance with a single object (negative)
16 lazy val E: Person =
17 Person (name="E", parent=LazyList (E), child=LazyList (E))

source: person.scala/src/test/scala/dsldesign/person/scala/PersonSpec.scala

like in Ecore. The Mom object is the parent of the Son object, and the Son
object is a child of the Mom object. This was impossible to represent in the
eager design of Fig. 5.4. This relaxation allows modeling of cyclic struc-
tures, but it is too weak to control them. We still lack facilities to enforce
that some references are inverses of each other while others remain acyclic.
Instances (b)–(d) show Scala encodings of the unreasonable Ecore instances
from Fig. 5.2. You will experience similar problems, whatever modeling
or programming language you are using. The real world invariably calls
for more intricate restrictions than modeling languages and type systems
are able to express. It is best for us to give up the delusion of a faithful and
direct representation of domain constraints in the abstract syntax itself.

Domain-specific models have to adhere to domain constraints. The
kind of requirements regarding references and cardinalities we discussed
above should have been uncovered during domain analysis; see Sect. 3.2,
especially question Q4 on p. 50. Repeat the analysis if it fell short. New
constraints typically appear throughout the language implementation pro-
cess, even during construction of the back-ends. It would be naive to expect
that you can discover all of them in the initial conversation with your users.
Expect the set of domain constraints to grow throughout a project.

Example 15. During meetings with subject matter experts, it is both efficient
and effective to capture domain constraints in natural language. For instance,
the following constraints might have been collected during domain analysis
for the finite-state-machine language:

C1 All machines must have distinct names.
C2 All states within the same machine must have distinct names.
C3 For each state machine m, the state designated as the initial state of m is

also a member of the collection of states contained in M.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.person.scala/src/test/scala/dsldesign/person/scala/PersonSpec.scala

147

C4 Transitions cannot cross machine boundaries (target and source are in the
same state machine).

C5 Each state must be reachable from the initial state in each state machine.

The limitations of the implementation of the modeling language will impose
further constraints. For instance, the code generator implemented by the
authors for the finite-state-machine language does not handle non-determinism.
If you called the generator on a model with non-determinism, it would produce
code that fails to compile. Consequently, the example of Fig. 4.5 is not a valid
input model for this generator. The non-determinism is present in state S0
(lines 4–5 both respond to the same input) and in state S1. This leads us to
formulate an additional constraint, at least until a better generator is developed.

C6 Every two transitions originating in the same state must have different
input labels.

Constraints written in English have limited utility. While they are often
easier to understand than constraints written in a formal language, they need
to be checked and analyzed manually. They are also prone to misinterpreta-
tion, as natural language is often ambiguous. To use domain constraints in
an automated language-processing tool we need to write them in a machine-
processable form, unambiguous, executable, decidable, and testable.

There are two established ways to enforce domain constraints in modeling
languages: formal structural first-order constraints and type systems. We
discuss both methods in this chapter, but emphasize structural constraints
over type systems. Structural constraints, or constraints for short, are a
cheaper and simpler method, suitable for small languages used commonly
in model-driven development (Sections 5.1–5.4). In Chapter 6 we present
a simple type system and explain when constraints are insufficient and type
systems should be used. Of course, the two techniques can be combined
in an implementation of a single language to address different problems.

The structural constraints and a type system define the static semantics
of a language.

Definition 5.1. Static semantics defines what models are well-formed (valid)
by constraining structural connections in the model syntax, so that the
model elements are related in a meaningful manner.

Definition 5.2. A well-formed (valid) model instance is an instance that
conforms to the meta-model (it satisfies the diagrammatic constraints) and
satisfies the domain constraints that have been formulated either using
structural constraints or in a type system, or using both means. If a type
system is used, then a well-formed instance is also called well-typed.

Well-formedness should be established right after parsing and the confor-
mance checks performed by the front-end of a tool, the parser. The early
enforcement of well-formedness allows other components of a tool chain to
be greatly simplified. An explicit definition of static semantics also leads to

Chapter 5. Static Semantics

148 Chapter 5. Static Semantics

Figure 5.7: Meta-modeling
and two common methods of
defining static semantics for
modeling and programming

languages. The set of statically
valid instances in the center is

the static semantics of the
language

Instances
conforming

to a meta-model
or abstract-syntax
types (Chapter 3)

Instances
satisfying
textual
domain
constraints
(Chapter 5)

Statically
valid

instances

Type-correct
instances

(Chapter 6)

a desirable separation of concerns: the validation and the interpretation of
an input are not mixed. It also allows better code reuse in the tool chain, as
all tools can reuse the same validator.

5.1 Static Semantics with First-Order Structural Constraints

The easiest way to represent domain constraints is to use logical predicates
restricting the connections between model elements. Consider the Con-
straint C4 above: target and source states are in the same state machine.
For a transition object t, we can specify C4 as a Boolean expression in a
programming language:

t.source.machine == t.target.machine

Such executable constraints can be used by tools to automatically validate
input models. To program such constraints, a language tool developer needs
to be able to reason about restrictions on structures of abstract-syntax trees,
to choose the best formulation and the most effective implementation. We
devote a few pages to a mathematical interpretation of first-order predicates
over models, in order to facilitate development of these reasoning skills.

Definition 5.3. A constraint is a pure (side-effect free) Boolean expression
declared over elements of a meta-model, but interpreted over its instances.
Its purpose is to restrict the set of valid instances of the meta-model.

Constraints are declared over meta-model elements, but their semantics im-
pose restrictions on the elements of instances. A constraint’s value decides
whether an instance is valid or not. In that, constraints resemble meta-
models, which also restrict the set of valid instances (cf. Fig. 5.7). If we
define the semantics of class diagrams in the same formalism as constraints,
we can obtain a unified understanding of the instance space as the intersec-
tion of the diagram and the constraints. Tbl. 5.1 defines the core semantics

5.1. Static Semantics with First-Order Structural Constraints 149

of class diagrams by translation to first-order predicate logic. Once we have
interpreted diagrams as first-order formulae, it is straightforward to conjoin
more first-order sentences formulating the domain constraints.

Diagrammatic constraints. Let us discuss the formalization in Tbl. 5.1 row
by row, just enough to develop a logic-based intuition for reading diagrams.
For each class C in the meta-model we introduce a unary predicate of the
same name C(·) that holds precisely for the instance objects x that belong
to class C. Here, “unary” means that the predicate has one argument. For
the finite-state-machine meta-model of Fig. 3.1 we create predicates Model,
FiniteStateMachine, State, Transition, and NamedElement.

If a class D generalizes a class C, we require that the predicate C implies
the predicate D: every object of class C is also an object of class D, or, in
other words, the set of instances of C is a subset of the set of instances of
D. Class D is larger, more general. See the second row in Tbl. 5.1. For our
example, this yields the following implications:

∀x.Model(x)→ NamedElement(x) (5.4)

∀x.FiniteStateMachine(x)→ NamedElement(x) (5.5)

∀x.State(x)→ NamedElement(x) (5.6)

There is no corresponding implication for Transition because this class
is not generalized by any other class; transitions are not named elements.
Since implication is transitive, so is the generalization relation. This cannot
be seen in our example, as the hierarchy of generalization is only one
level deep. If State had subclasses, they would also be subclasses of

Table 5.1: Mapping core concepts of class diagrams to first-order predicate logic. Notation: ∀ = for all (universal quantification), → =
implies, ∧ = and, | · | = the number of elements in a set, [a;b] = an interval of integers between a and b including both endpoints, ≡ is
logical equivalence (equality of logical values). Variables x and y range over objects and values in an instance model. A conforming
instance must satisfy all generated constraints simultaneously. For simplicity we assume that names of all references and attributes are
globally unique in the meta-model

Class C ⇝ A unary predicate C(x) true iff the type of object x is C

Class D generalizes class C ⇝ A constraint ∀x.C(x)→D(x)

Non-containment reference r from
class C to D, C.r : D

⇝ A binary predicate r(x,y) true if reference r from x points to y
and a constraint ∀x,y. r(x,y)→ C(x)∧D(y)

Containment reference from class C
to D, C.r : D

⇝ Same as the non-containment reference plus a constraint that
∀x,y. r(x,y) → owns(x,y), where owns(x,y) is a special pred-
icated shared between all references in the diagram such that
∀y. |{x | owns(x,y)}| ≤ 1.

Cardinality constraint [a..b] on ref-
erence r in class C

⇝ A constraint ∀x.C(x)→ |{y | r(x,y)}| ∈ [a;b]

Attribute a of type T in a class C,
C.a : T

⇝ The same as the non-containment reference: a binary predi-
cate a(x,y) true if the value of a in x is y and a constraint
∀x,y.a(x,y)→C(x)∧T(y), where T(y) holds iff T is the type of y

References r1, r2 are opposite ⇝ A constraint ∀x,y. r1(x,y)≡ r2(y,x)

150 Chapter 5. Static Semantics

NamedElement. This scheme handles multiple inheritance, too: a class
can be generalized by more than one super-class. Its instances are simply
instances of all the generalizing classes.

We interpret references as two-argument predicates (binary predicates),
as shown in row 3 of Tbl. 5.1. For each reference r we introduce a predicate
r(·, ·) relating the referencing and the referenced objects. For instance,
for the reference FiniteStateMachine.states in Fig. 3.1 we add a predicate
states(x,y) with the following type restriction:

∀x.∀y.states(x,y)→ FiniteStateMachine(x)∧State(y) (5.7)
Recall that Ecore only supports uni-directional references, and the machine–
states line in Fig. 3.1 is in fact two references, related by a constraint that
the two references are dual (opposite). This means that we also have a
constraint for the opposite direction (5.8) and a constraint relating the two
references (below, cf. the last row in Tbl. 5.1).

∀x.∀y.machine(x,y)→ State(x)∧FiniteStateMachine(y) (5.8)

∀x.∀y.machine(x,y)≡ states(y,x) (5.9)

Moreover a machine is composed of states, so it owns them all. This
ownership cannot be shared with any other class, as indicated by the black
diamond on the reference arrow in Fig. 3.1. Thus, following the fourth row
of the table, we require that belonging to a collection of states implies owner-
ship (5.10), and that there is at most one owner for each object in the model:

∀x.∀y.states(x,y)→ owns(x,y) (5.10)

∀y. |{x | owns(x,y)}| ≤ 1 (5.11)

A cardinality constraint limits the number of objects that can be referenced.
It can be turned into a restriction on the size of the sets that it defines on
each end of a reference. For the states and machine collections of Fig. 3.1
we have the following constraints (cf. row 5 in Tbl. 5.1):

∀x.Machine(x)→ |{y | states(x,y)}| ≥ 1 (5.12)

∀x.State(x)→ |{y |machine(x,y)}|= 1 (5.13)

The first constraint states that if x is a machine, then it has to contain at
least one state. The second states that if x is a state, then it has to be owned
by precisely one machine.

The set of all constraints describing a diagram fully characterize its set
of instances. It is instructive to compare the following definition with the
definition Def. 4.19 on p. 96.

Definition 5.14. Let M be a meta-model, and ΦM be the characteristic
first-order formula for M derived using the rules of Tbl. 5.1. The set of all
instances (object models) that satisfy the formula ΦM are the semantics of
a meta-model: JMK = {m | ΦM(m)} .

5.1. Static Semantics with First-Order Structural Constraints 151

Exercise 5.3. Write the characteristic first-order formula (the diagrammatic con-
straint) for the meta-model in Fig. 5.1. Then consider the two rightmost instances
in Fig. 5.2 and convince yourself that they satisfy the constraints. For each con-
straint ensure that you know which objects are bound to x and y in the quantifiers.

Additional textual domain constraints. Now we can use the logical pred-
icates as a vocabulary to talk formally about instances of a meta-model,
to write domain constraints in logic even if they are not expressible di-
agrammatically. But how do we translate requirement constraints into
formal logic? How do we take a constraint, like C1 “all machines must
have distinct names,” and make it formal? In short, we bind all mentioned
entities using quantifiers and split the body in half using an implication.

While this is not always explicit in English, most constraints take a
form of logical implication from a precondition (the antecedent) to a post-
condition (the consequent). You can see it in C1 if it is rewritten to “all
objects that are machines must have distinct names,” or to “if an object
is a machine, then it has a different name from all other machines.” We
assume a convention here that the preconditions are underlined and the
post-conditions follow directly after. Words represented by predicates in
the meta-model formalization are bold. This rewrite also makes the binding
of machines to quantifiers clearer. We now explicitly use phrases like
all objects, an object, but we are still somewhat loose about names—has
name—not making it clear that names are instances of a type as well. In
a formalization, all entities mentioned in a constraint need to be bound
with quantifiers and linked to particular sets representing properties. Con-
sequently, the final formulation of C1 is even more verbose: “For all
quadruples of objects, where the first two are machines and the last two
are their names, the names must differ.”

∀m1.∀m2.∀n1.∀n2. m1 ̸= m2 ∧
FiniteStateMachine(m1)∧FiniteStateMachine(m2) ∧

name(m1,n1)∧name(m2,n2) → n1 ̸= n2 (5.15)

Typically, a meta-model constraint in first-order logic starts with quantifiers
naming all the objects involved, followed by a precondition involving types
of objects and any structural assumptions about them. The precondition
implies the post-condition, so what should hold. The implication is the
central structuring element. Recall that an implication holds vacuously if
the antecedent is violated. This way the quantifiers range only over values
that satisfy the precondition, so over the objects of the correct types that
participate in the selected relations.

Another notable pattern visible in C1 is the inequality condition, m1 ̸=m2,
in the precondition. If m1 and m2 are equal then their names will also be
equal. Indeed, we are interested in the constraint being enforced only for
two different machines. The word different is, however, typically omitted
in English. It is a common mistake of novice constraint writers to forget it
also in logical formalizations. Be careful about that!

152 Chapter 5. Static Semantics

Recall constraint C2: “all states within the same machine must have
distinct names”. This is how it reads in the verbose style: “for all 5-tuples
of objects, where one represents a machine, two represent its two different
states, and two represent their names, the names must be different in every
valid instance.” This is how it looks as a sentence in logic:

∀m.∀s1.∀s2.∀n1.∀n2.

s1 ̸= s2 ∧ states(m,s1)∧ states(m,s2) ∧name(s1,n1)∧name(s2,n2)

→ n1 ̸= n2 (5.16)
A careful reader will notice a slight difference between Eq. (5.16) and
our encoding of constraint C1. The latter does not mention the unary
type predicates FiniteStateMachine and State, despite references from the
constraint text. These are omitted because the predicate states is unique
in the meta-model and it enforces the types of its arguments, cf. Eq. (5.7).
We have implicitly used this trick also for the second argument of predicate
name, for both C1 and C2—names enforces the second argument to be a
name. However, this predicate does not help restrict the first argument’s type
beyond NamedElement. Since many elements in the model are named, we
had to explicitly restrict m1 and m2 to be machines in Eq. (5.15). Remember
that all our constraints are interpreted in conjunction with the diagrammatic
constraints. This can save a lot of typing, but, most importantly, it improves
the readability of constraints considerably. When we switch from logic to
computer languages for writing constraints, many of these redundant type
predicates will become implicit navigations. Constraint C3 demonstrates
the benefits of conciseness particularly clearly:

∀m.∀s. initial(m,s)→ states(m,s) (5.17)

We have used four quantifiers in Eq. (5.15) to introduce four variables.
Equation (5.16) had as many as five quantifiers. In logic, a quantifier binds
a variable. A correct constraint in logic should have no free variables
(variables which are not bound). When writing constraints always check
whether they contain no free variables—these are invariably a sign of
a logical mistake. All variables need to be introduced by quantifiers,
otherwise we do not know how to interpret them. Are they arbitrary?
Is a single value fixed? Are multiple values possible?

The universal quantification (∀) is much more common in domain con-
straints than the existential quantification (∃), because we typically enforce
domain properties on all instances of a type. Often, the universal quantifier
is implicit in English; it is implied, or hidden in an indefinite article, espe-
cially in formal writing, like requirements documents: “A state must have
a machine it belongs to” is likely meant to say that “Every state shall be
owned by some machine.” However, existential quantification is also used.
It is often used to express lower-bound restrictions that there is at least one
entity of some kind or that some sets are not empty. For the sake of an exam-
ple, let us reformulate Eq. (5.13) using existential quantification. Convince
yourself that this and the original formulations are equivalent in our context:

5.1. Static Semantics with First-Order Structural Constraints 153

∀x. State(x) → ∃y.Machine(y)∧ states(y,x) (5.18)

Recall Constraint C4 from p. 146: “Transitions cannot cross machine
boundaries. Target and source states must be in the same state machine.”
Here is how we can detail this constraint taking the concept of transition
as the starting point: “For any transition with a target state s2 and a source
state s1 that belongs to machine m, the target state also belongs to m.”
Formally:

∀t.∀s1.∀s2.∀m. source(t,s1)∧ target(t,s2)∧machine(s1,m)

→machine(s2,m) (5.19)
There are many ways to write the same constraint equivalently. We could
have started from a model object, not from a transition: “In every model, and
in each machine of that model, if you take a transition belonging to this ma-
chine (that is a transition sourced in some state belonging to this machine),
its target state also needs to belong to the same machine.” You probably
appreciate that the English formulation is much simpler in the original. The
formulation in first-order logic is correspondingly more complex as well:

∀M.∀m.∀t.

(machines(M,m)∧∃s1. states(m,s1)∧ leavingTransitions(s1, t))

→ (∀s2. target(t,s2)→machines(m,s2)) (5.20)

Writing constraints, like writing code, is an art and a craft. You either are a
genius that can produce optimal formulations instantly, or you must be a
craftsman that can predictably refactor proposed constraints towards better
formulations. An important goal of this chapter is to help you learn this
craft. We can already see above that it helps to (i) wisely choose the starting
type (the context class), (ii) avoid using more than one implication, and
(iii) maintain a simple quantification scheme. The universal quantifiers,
all in front of the constraint, are often the simplest form to read, but some
constraints require more complex schemes.

These considerations are independent of the concrete programming lan-
guage used to write constraints. First-order logic is probably the most
generic specification language, the basis of most of the languages used in
practice. We used it to introduce constraints, to ensure that your intuition is
robust with respect to idiosyncrasies of more practical programming and
modeling languages. Having said this, the software-oriented specification
languages do offer a lot of devices to make your life easier and constraints
more readable. Just compare our best bid for C4, Eq. (5.19), with the
formulation that opened this section:

t.source.machine == t.target.machine.

While this example lacks a quantifier (just one!), the constraint is clearly
made simpler by using navigation instead of predicates and multiple in-
termediate variables. For this reason, we will switch to using realistic
constraint languages in Sect. 5.2.

154 Chapter 5. Static Semantics

Exercise 5.4. Recall the determinism Constraint C6 from Example 15 on p. 146:
For any two transitions sourced in the same state, the input labels must be different.
Formulate this constraint in first-order logic using the predicates following the
encoding of Tbl. 5.1.

Even though first-order logic can capture most of the properties we need,
it falls short for some specific but important cases. In particular, connected-
ness properties for the model graph, which commonly appear in modeling
languages, cannot be captured in first-order logic. One such constraint
is C5 from our example: “Each state must be reachable from the initial
state.” Reachability in a finite-state machine means that the directed graph
of transitions must be connected. There must be a directed path from the
initial state to any other state.2 A state that cannot be reached appears
useless. Connectedness properties are not limited to contrived mathematical
models like finite-state machines. They appear in quite many domain-
specific languages that aim to describe processes or physical layout. A
stage in a business process that cannot be activated is useless. A room in
a building that cannot be reached from the main entrance is likely useless.
A track that cannot be entered by a train is useless.

A similar property to connectedness is acyclicity. A graph of arrows
is acyclic if it is impossible to reach each node from its successors. Thus
acyclicity often requires the same expressive power as connectedness. For
instance, if you are building an abstract syntax for spreadsheets, each of
your instances is a particular sheet containing cells. Typically spreadsheet
applications require that there are no dependency cycles between cells.
Otherwise calculations cannot be done. If you are modeling Ethernet
connections, you may disallow cycles in the node graph. When modeling
electric circuits you might want to require them.

Connectivity properties are common, yet first-order logic cannot express
them. The problem is that connectedness properties are global properties
of a graph, while in first-order logic we can only use predicates that relate
a finite number of objects to each other—finite-arity predicates capture
only local connections in a graph. To talk about connectedness we need
to be able to express transitive closures of relations induced by predicates.
This cannot be done in classic first-order logic.3 It requires a second-order
logic, where we can constrain not only objects, but also predicates. Below
we present a simple formalization of Constraint C5 that uses a transitive
closure, so technically it is written in second-order logic:

∀m.∀s1.∀s2. initial(m,s1)∧ states(m,s2) → successor∗(s1,s2) (5.21)

where successor(s1,s2) = ∃t.source(t,s1)∧ target(t,s2) and successor∗ is
the reflexive transitive closure of successor.

2The direction of a transition in this case is from its source to its target, as in concrete syntax.
This direction for connectedness properties does not necessarily have to be the same as the
direction of references in the meta-model (and in the instance), but it very often is the same.

3For the interested reader, this follows from the compactness theorem for first-order logics

155

In verbose English Eq. (5.21) says: If s1 is an initial state of machine m,
and if s2 is another of its states, then s1 and s2 should be related by (possibly
multiple applications) of the successor relation. A state s2 is considered a
successor of a state s1 if there exists a transition sourced in s1 with state s2
as the target. Notice that since successor is not defined in our meta-model,
so it is not part of our basic vocabulary, we had to define it in addition.

The introduction of a helper predicate successor is merely a convenience.
On the other hand, the use of the reflexive transitive closure of a predicate,
denoted by the asterisk in (5.21) is key. Let us define it semi-formally first:

successor∗(s1,sn) ≡ (s1 = sn) ∨ (5.22)

(∃s2 · · ·∃sn−1.successor(s1,s2)∧ successor(s2,s3)∧·· ·∧ successor(sn−1,sn))

A reflexive transitive closure of a binary predicate is a new binary predicate
that is reflexive—so that sucessor∗(s,s) holds, as enforced by the first
disjunct—and it holds for direct and indirect successors of the left argument
s1, as enforced by the second disjunct. At the definition time we do not
know what are the states s2, . . . , sn−1. The intermediate states and even their
number n are different for each pair of arguments. This is in stark contrast
with the fixed arity of predicates in first-order logics. Equation (5.22) cannot
be written in first-order logic without the informal dots in the quantification.

More precisely, we define the reflexive transitive closure operator as the
smallest predicate successor∗ satisfying the following equation:

successor∗(s1,sn) ≡ (5.23)

(s1 = sn)∨∃s2. successor(s1,s2)∧ successor∗(s2,sn)

In this context, the smallest predicate means the predicate satisfied by the
smallest number of pairs of states, but still satisfying the equation above. A
curious reader will notice that without the minimality requirement, many
predicates satisfy Eq. (5.23). In particular, the always-true predicate that
holds for any two states satisfies it, too. But the always-true predicate
does not capture the connections in the graph at all! It turns out that the
smallest solution to Eq. (5.23) is what we want, as it captures just enough
states to allow traveling over the successor relation, and not more. It is this
definition of a predicate as a minimal solution of an equation that cannot be
formalized in first-order logics.

Exercise 5.5. Prove that the predicate successor∗(s1,sn)≡ true satisfies Eq. (5.23).

A minimum reflexive transitive closure is uniquely defined, and captures all
reachable nodes in a graph. Thus if you do not work in logic, but have the
power of a programming language at your disposal, the transitive closure
operator is naturally replaced by using a depth-first-search (or a breadth-
first-search) graph traversal. Therefore, it is important to develop enough
intuition to realize when a property needs transitive closure, in order to stop
writing quantified sentences and switch to a graph exploration algorithm.

5.1. Static Semantics with First-Order Structural Constraints

156 Chapter 5. Static Semantics

C1. All machines must have distinct names.
∀m1.∀m2.∀n1.∀n2. m1 ̸= m2 ∧

FiniteStateMachine(m1) ∧
FiniteStateMachine(m2) ∧
name(m1,n1)∧name(m2,n2)→ n1 ̸= n2

inv[Model] { M =>
M.getMachines.asScala.forall { m1 =>

M.getMachines.asScala.forall { m2 =>
m1!=m2 implies m1.getName!=m2.getName } } }

The quantifications over machines turn into iterations over collection properties. In order to iterate over machines,
we shift the context to models (the argument of inv). There is no need to bind the name objects as we can navigate
to the values. We use our own implies operator for readability.

C2. All states within the same machine must have distinct names.
∀m.∀s1.∀s2.∀n1.∀n2. s1 ̸= s2 ∧

states(m,s1)∧ states(m,s2) ∧
name(s1,n1)∧name(s2,n2)→ n1 ̸= n2

inv[FiniteStateMachine] { m =>
m.getStates.asScala.forall { s1 =>

m.getStates.asScala.forall { s2 =>
s1!=s2 implies s1.getName!=s2.getName } } }

The first quantification shifted to the context type in inv[_]. Otherwise analogous to C1.

C3. For each state machine m, the state designated as the initial state of m is also a member of the collection of
states contained in M.
∀m.∀s. initial(m,s)→ states(m,s) inv[FiniteStateMachine] { m =>

m.getStates.contains (m.getInitial) }

Implications P(x)→ Q(x) are conveniently turned into membership and inclusion tests (P ⊆ Q) if sets of objects
characterized by P and Q are available (contains in Scala). The implication disappears when the precondition is
eliminated (as true→ φ ≡ φ).

C4. Transitions cannot cross machine boundaries (target and source are in the same state machine).
∀t.∀s1.∀s2.∀m. source(t,s1) ∧

target(t,s2)∧machine(s1,m)

→machine(s2,m)

inv[Transition] { t =>
t.getSource.getMachine == t.getTarget.getMachine }

All quantifiers disappear thanks to the use of a suitable context type and navigation.

C5. Each state must be reachable from the initial state in each state machine.
∀m.∀s1.∀s2.

initial(m,s1)∧ states(m,s2)

→ successor∗(s1,s2)
where
successor∗(s1,sn) ≡ (s1 = sn) ∨
∃s2. successor(s1,s2) ∧

successor∗(s2,sn)

inv[State] {s => reachable (s.getMachine.getInitial,s)}

def reachable (s1: State, s2: State): Boolean =
BFS (Set(s1), Set()).contains (s2)

def BFS (toSee: Set[State], seen: Set[State]):Set[State]=
val seen1 = seen union toSee
if toSee.isEmpty then seen1
else BFS (toSee.flatMap (succ).diff (seen1), seen1)

def succ (s: State): Seq[State] =
s.getLeavingTransitions

The transitive closure operation is implemented as a custom recursive algorithm (reachable), but the main constraint
(the first line) is still kept in a simple declarative sentential form.

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala

Table 5.2: Mathematical logic (left) vs implementations of constraints in a programming language (Scala, right). We use our
Scala-Ecore integration layer scala/ src/ main/ scala/ dsldesign/ scala/ emf.scala

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala

5.2. Writing Constraints in GPLs 157

5.2 Writing Constraints in GPLs

The primary use of static semantics, including first-order constraints, is def-
initional: to specify the language precisely, to disambiguate what instances
of the abstract syntax are valid. If this was the only goal, we could formulate
the semantics just in logic, like above. Logic is precise and unambiguous
enough. But static semantics also needs to be enforced by tools; a code
generator, a simulator, a visualizer, an editor. In fact, any tool that processes
models needs to check whether its input is valid. Thus we need a way to
execute constraints, to check whether they hold for each instance.

Constraints written in a general-purpose programming language are
executable by definition. We would like to program the constraints, while
maintaining the declarative sentential flavor. A low-level imperative pro-
gramming style, with multiple functions, loops, and variable updates, would
turn what should be a concise sentence into a long story. Based on the analy-
sis of the previous section, we need a fairly high-level language in which we
can navigate references, force types of objects, and quantify over sets and
types. Finally, we need a way to access models, or to link the syntax of mod-
els to a programming language. So far, we used the predicates representing
the meta-model to refer to model elements in constraints. In a programming
language, the abstract-syntax framework provides these facilities. Instead of
predicates, we use types, references, and attributes, exposed by Ecore, MPS,
algebraic data types, or whatever other abstract-syntax mechanism you use.

Table 5.2 aggregates the constraints discussed in Sect. 5.1 together with
their Scala translations. We developed a small Scala library that makes in-
teraction with the Eclipse Modeling Framework slightly easier and enforces
a few conventions.4 In Tbl. 5.2, constraints are implemented as anonymous
functions (lambda expressions) returning a Boolean value. The context ob-
ject is bound to the sole argument. The function expression is wrapped in a
factory call inv[T] that represents constraints pertaining to objects of type T.
The created wrapper object provides simple validation logics that can check
whether the constraint holds for all elements of type T in a given model.

The omnipresent collection conversions (asScala) in Tbl. 5.2 are slightly
disturbing. Every time we access an Ecore collection we convert it into
Scala. These inessential conversions are caused merely by impedance
between the two collection libraries. Ecore uses the Java collection library.
We inject the necessary casts to access the modern declarative API of the
Scala standard library, including the quantifier functions.

In Constraint C1, the four logical quantifiers are replaced by just two
collection iterations in Scala, one introducing m1 and one introducing m2.
The names of machines are no longer bound using quantifiers. Instead, we
navigate to their values: m1.getName. The shift from universal quantifiers to
collection iteration is deceivingly obvious, not least because the collection
iterators use the same names as the logical quantifiers. This shift, however,
has significant practical implications. We restrict the logic’s ability to

4source: scala/src/main/scala/dsldesign/scala/emf.scala

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala

158 Chapter 5. Static Semantics

quantify over an entire universe of values satisfying a precondition, to
quantifying over values reachable from the context object via navigation.
While this limits what we can express, it makes constraint checking decid-
able. Now the constraints can be executed. If we follow good practices
of meta-modeling, all model elements are reachable from the root object
anyway. Thanks to the single-partonomy principle (p. 55), the root object
can be used as the context for a constraint in the worst case.

Constraint C1 uses the implies operator provided by our library. Implica-
tion is a commonly used logical connective in logics, but rarely implemented
in programming languages. It is always easily introduced by the logical
tautology: a → b ≡ ¬a∨ b. This is how the operator is injected as an
extension method on a Boolean type in our library.

Figure 5.8: A Scala extension
adding the implies operator to

the Boolean class

extension (a: Boolean)
def implies (b : => Boolean) = !a || b

source: scala/src/main/scala/dsldesign/scala/emf.scala

The Boolean value is implicitly converted to an ImpliesExtension object,
which provides the new implies method. In Scala, methods can be called
using infix notation, so the new method works well as an operator. Any
language equipped with an extension mechanism will allow a new operator
to be added in a similar manner. It is worth the effort, as logical constraints
written using implication tend to be more concise, and more readable, than
those written using ternary if-then-else expressions. The latter get overly
verbose when one of their decision branches becomes constant.

Figure 5.9: An example of an
overly verbose if-then-else
expression with a constant

branch

inv[Model] { M =>
M.getMachines.asScala.forall { m1 =>

M.getMachines.asScala.forall { m2 =>
if m1 != m2

then m1.getName != m2.getName
else true } } }

In some languages (Scala, Python, and JavaScript among them), the com-
parison operator is extended to Boolean values, enforcing the ordering that
false is smaller than true. This ordering coincides with the implication:
a ≤ b ≡ a → b. Thus the less-than operator may provide a cheap way
to formulate implication: a <= b. Unfortunately, the ASCII symbol for
less-than resembles the implication arrow in the opposite direction. It is
fairly easy to misread the above as b implies a, while it really means
a implies b. Thus we find it hard to recommend this practice, unless
consistently enforced by all developers involved in a project.

Sometimes, we can eliminate an implication entirely. In Constraint C3,
the implication between predicates has been replaced by a set-membership
test. In general, an implication between predicates can be replaced by
inclusion of sets they characterize, if these are accessible through navigation,
or through the available API. As soon as the precondition has been entirely

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala

5.2. Writing Constraints in GPLs 159

captured by other means, the implication from a precondition to the post-
condition can be removed. This happens if we express the precondition in
other ways, for instance filtering by types or navigation (also in C4).

Exercise 5.6. Implement Constraint C6 in a programming language of your choice.

Constraint C4 is a very simple example of what is often called a commutativ-
ity constraint. Two ways to navigate from the context object to some target
objects should be consistent. This is much easier to see in a GPL than in the
logical formulation, because of explicit navigation. If a transition does not
cross machine boundaries then navigating from a transition to a machine
results in the same machine object whether via the source or via the target
link. Many meta-models contain cycles that should be commutative when
navigating. Systematically inspecting cycles in the meta-model to identify
commutativity (sometimes called diagram chasing) is an established way to
identify validation constraints for instances. Indeed, a careful reader will
notice that commutativity constraints are a generalization of EOpposite
duality in Ecore diagrams (Why?).

Constraint C5 is a special case in our table. Recall from Sect. 5.1 that this
constraint is not first-order. It needs to compute a transitive closure, imple-
mented here using a breadth-first search. The recursion breaks the sentential
style of the constraint. We wrap the computation into a Boolean function
reachable to nevertheless be able to state the main constraint declaratively.
It is useful to separate sentential constraints from computationally heavy
aspects in such cases, implementing helper functions that serve as derived
attributes of objects. Think of reachable and succ as if these were new
properties of State that might be reused in other hypothetical constraints
that themselves can be written in a sentential form. If we add a type system
or type inference mechanism to a DSL (Chapter 6) we can also integrate
the inferred type of an object, or whether an object type-checks against
a given type annotation, as a derived property into declarative first-order
constraints.

Exercise 5.7. The implementation of Constraint C5 in Tbl. 5.2 is potentially very
inefficient. The reachable state space of the automaton is computed from scratch
every time a constraint is checked. Discuss how to redesign this implementation
to only compute the reachable state space once per machine, which should save
computation time if the constraint is checked on many states.

Everything we said above applies not only to validating abstract syntax in
Ecore, but to any abstract syntax that is exposed to a programming language
as values and types. This includes abstract-syntax ADTs in functional pro-
gramming. The only thing that changes is that you are using different types
and functions to express the constraint. Consider the following exercise.

Exercise 5.8. Implement the Constraints C1–C6 for the abstract syntax presented
in Fig. 3.5 on p. 60. The abstract-syntax ADT code is available at fsm.scala/src/
main/scala/dsldesign/fsm/scala/adt.scala

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/adt.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/adt.scala

160 Chapter 5. Static Semantics

Scala: Constraint C2 repeated from Tbl. 5.2.
We use asScala to convert from Java collec-
tions used in the EMF API. The implies and
inv functions are implemented in the book’s
library.

fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala

val C2 = inv[FiniteStateMachine] { m =>
m.getStates.asScala.forall { s1 =>
m.getStates.asScala.forall { s2 =>

s1!=s2 implies s1.getName!=s2.getName } } }

Python: Very concise thanks to the dedicated
comprehension/query syntax. The quantifiers
come first, a precondition at the end. Type
checking only at runtime. PyEcore helps to
use DSLs in robotics and data science projects.

fsm.py/constraints.py with pyecore

C2 = lambda m: all (s1.name != s2.name
for s1 in m.states for s2 in m.states if s1 != s2)

JavaScript: No type checking, not even at
runtime; C2 might hold on any object that
has ‘states’ and ‘name.’ We cast lists to array
as the standard list API is too weak. Note
the quirky use of the less-than operator as
implication, in the “wrong” direction. Ecore.js
helps development of DSLs for the web,
server- and browser-side.

fsm.js/constraints.js with ecore.js

var C2 = m =>
m.get(’states’).array().every (s1 =>
m.get(’states’).array().every (s2 =>

(s1!=s2) <= (s1.get(’name’)!=s2.get(’name’))))

Java: the most verbose of the shown languages;
with a bit underdeveloped collection API. We
cast lists to streams, in order to access quantifier
functions. The constraint could be made more
terse using a functional-programming library.

fsm.java/src/main/java/dsldesign/fsm/java/Constraints.java

Function<FiniteStateMachine, Boolean> C2 = m ->
m.getStates().stream().allMatch (s1 ->
m.getStates().stream().allMatch (s2 ->
s1==s2||!Objects.equals(s1.getName(),s2.getName())));

Groovy and Kotlin conveniently extend Java
collections (using extension methods) with
higher-order functions. The default argument
“it” in anonymous functions simplifies the con-
straints slightly. Both examples access the Java
API generated by EMF. Kotlin is interesting
if your DSL is to operate on Android devices.

fsm.groovy/src/main/groovy/dsldesign/fsm/groovy/Constraints.groovy

def C2 = {
it.states.every { s1 ->
it.states.every { s2 -> s1==s2 || s1.name!=s2.name }}}

fsm.kt/src/main/kotlin/dsldesign/fsm/kotlin/Constraints.kt

val C2: (FiniteStateMachine) -> Boolean = {
it.states.all { s1 ->
it.states.all { s2 -> s1==s2 || s1.name!=s2.name }}}

Xtend makes the “it” argument even more ex-
pressive, opening its namespace like Java does
for this. You can’t even see “it” in the exam-
ple, where states really means it.states.

fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/Constraints.xtend

val (FiniteStateMachine) => Boolean C2 = [
states.forall [s1 |
states.forall [s2 | s1==s2 || s1.name!=s2.name]]]

C#: A Java-like shape of C2 is possible in C#,
but we show LINQ syntax to demonstrate a
different style, aiming at programmers experi-
enced with database queries.

fsm.cs/Program.cs with .NETModelingFramework

Func<IFiniteStateMachine,bool> C2 = m => (
from s1 in m.States from s2 in m.States
where s1!=s2 select s1.Name==s2.Name).All (x => !x);

F#: We show both the LINQ (first) and the
functional (second) form for C2. Note that
the F# LINQ interface includes a universal
quantifier, which makes C2 less cryptic than in
C#. The functional formulation suffers from
type-impedance between collection libraries
(Seq.toList), like many other languages.

fsm.fs/Program.fs with .NETModelingFramework

let C2: IFiniteStateMachine -> bool = fun m -> query {
for s1 in m.States do for s2 in m.States do

where (s1 <> s2) all (s1.Name <> s2.Name) }
let C2a: IFiniteStateMachine -> bool = fun m ->

m.States |> Seq.toList |> List.forall (fun s1 ->
m.States |> Seq.toList |> List.forall (fun s2 ->
s1 = s2 || s1.Name <> s2.Name))

Table 5.3: Constraint C2 from Tbl. 5.2 implemented in nine programming languages for comparison

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/constraints.py
https://github.com/pyecore/pyecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.js/constraints.js
https://github.com/emfjson/ecore.js
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.java/src/main/java/dsldesign/fsm/java/Constraints.java
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.groovy/src/main/groovy/dsldesign/fsm/groovy/Constraints.groovy
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.kt/src/main/kotlin/dsldesign/fsm/kotlin/Constraints.kt
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/Constraints.xtend
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.cs/Program.cs
https://github.com/NMFCode/NMF
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.fs/Program.fs
https://github.com/NMFCode/NMF

5.2. Writing Constraints in GPLs 161

Obviously, Scala is not the only language in which one can write validity
constraints. Most modern general-purpose programming languages are
perfectly suitable for the task. To illustrate the point, we formulated
Constraint C2 in nine mainstream languages. Table 5.3 explores various
presentation styles, while maintaining the same computational intention.
We do not seek a smarter or a more idiomatic formulation. We display
differences between languages, not between different ways to write a
constraint. And the differences turn out to be minor. Consequently, we
recommend that, in typical projects, where a DSL implementation is just
a task in a larger system endeavor, you write static semantics constraints
in the language determined by other system requirements. This is likely
going to decrease the maintenance cost, ensuring that developers familiar
with the implementation language are available to evolve the DSL. Using a
specialized constraint language makes sense if you are developing many
languages (for example a language-engineering consultant). Otherwise, the
investment is probably not justifiable.

The book code repository contains not only the source code of all the nine
constraints from Tbl. 5.3, but also the driver code that initializes the relevant
Ecore library, loads the model, and executes the test of the constraint on
several instances. You can use these examples to scaffold your own projects
interacting with Eclipse EMF, in any of the nine programming languages.
That we can write this example in nine different programming languages
is a testimony to how recognized Ecore is as a technology. All the nine
programs use the same finite-state-machine meta-model, and the same test
instances stored in the XMI format. This also means that you can use
XMI and Ecore as an interchange platform for language-oriented data. You
can write and reuse language tools implemented in various programming
languages, and protect yourself from being captured by a single vendor.

In the table, all the examples in JVM languages (Scala, Java, Groovy,
Kotlin, and Xtend) use the code generated by the main implementation of
Ecore from the Eclipse Modeling Framework. EMF generates an implemen-
tation of a meta-model as Java classes and interfaces. Any JVM language
can interact with these classes. The only problem, as seen for Scala, might
be inefficiencies related to differences in the standard libraries. In Tbl. 5.3,
Scala and Java (sic!) use conversions between legacy collections and other
types. In Scala, as mentioned above, the standard library provides a suitable
higher-order API. In Java, the standard lists lack such an API, so it is useful
to convert lists to streams, which have a more modern functional interface.
Groovy, Kotlin, and Xtend all provide extension methods that enrich Java
APIs suitably, so the code is less cluttered.

The Python implementation is based on the pyecore library.5 The
JavaScript implementation is based on the ecore.js library.6 What is inter-

5https://github.com/pyecore/pyecore, retrieved 2022/09
6https://github.com/emfjson/ecore.js, at the time of writing the implementation does not enforce
EOpposite constraints between references. You may need to maintain or check them yourself.

https://github.com/pyecore/pyecore
https://github.com/emfjson/ecore.js

162 Chapter 5. Static Semantics

esting about both of these implementations is that no code is generated. The
interpretation of meta-models happens entirely at runtime, which can be
conveniently done in dynamic languages. The C# and F# examples use the
.NET Modeling Framework (NMF),7 which technically is not a reimplemen-
tation of Ecore, but a similar independent modeling framework that can im-
port Ecore meta-models. It uses the same XMI format for instances as EMF.

Importantly, whatever programming language we use the constraints
remain written in pure declarative style. The structure of the model and the
values of properties are not modified during validation—a standard contract
between the validator and other components in the tool chain. This contract
is important, as the validation logic might be executed multiple times, not
always under your control. For instance, if the validator is integrated into an
Eclipse editor, constraints are executed every time a file is saved, sometimes
every keystroke a user types. Obviously, a user creating a model should not
see her model changed by the validation logic while typing.

In all nine languages, we have used anonymous functions to represent
constraints, with the context element bound to the sole argument. Several
languages (Groovy, Kotlin, and Xtend) provide a special variable named
‘it’ that serves as an implicit formal argument to a lambda expression, and
makes writing constraints slightly more concise. In Scala, the underscore
can be used similarly, but it only works well if you have to refer to the
context object once. (This is why we do not use it.) Furthermore, several
languages support properties for objects that allow for set/get prefixes to be
dropped from access methods; hereunder Python, Groovy, Kotlin, Xtend,
C#, and F#. Technically, Scala also supports such syntax, but this would
require an extension to the code generated by Ecore for Java, whereas
Groovy, Kotlin, and Xtend achieve this without any additional code, as their
attribute implementation is based on conventions.

More interestingly, Python, C#, and F# provide a query-like syntax,
which brings the first-order constraints to resemble database queries. When
a first-order property is written as a query, three components are distinguish-
able: (i) a binding of an iterator variable name to a set (for/from/for),
combined with (ii) a filter expression that serves as a precondition (whe-
re/select/if), and (iii) a quantifier to establish the result (all/All/all).
The relational encoding exploits a classic result from database theory due to
Codd [4] that relational queries and first-order predicates over data elements
are equally expressive and sufficiently rich to specify many practical data
restrictions. Programmers with extensive database experience may find it
easier to read and write constraints that resemble database queries.

Equality tests are common in constraints, in both pre- and post-conditions,
so you need a very good understanding of the semantics of equality in the
used programming language. Equality testing with complex objects and
null values easily gets subtle. For example in Java, a test a.equals (b) can
only be made if a is not null, thus you need to test for a == null separately.

7https://github.com/NMFCode/NMF, retrieved 2022/09

https://github.com/NMFCode/NMF

5.3. Specialized Constraint Languages for Modeling 163

On the other hand, the test a == b might be misleading. For instance, two
identical String objects are not equal in Java if they are not physically
at the same memory location. For exactly this reason we are using a
helper function Object.equals in our example for Java. Consider how
your language executes equality on complex objects that might potentially
be null. Remember to test these cases, to rule out possible misconceptions.
A mistake here easily flips a constraint value between true and false.

Exercise 5.9. Implement all constraints from Tbl. 5.2 in your favorite programming
language. Test Ecore instances can be found under fsm/test-files/ in the book
code repository. Alternatively, create your own definition of abstract syntax and
program against it. How well does the abstract-syntax model support establishing
constraints? Are there any design issues with it? How well does your program-
ming language support writing constraints? Consider the size and readability of
your constraints against the examples in Tables 5.2 and 5.3.

Exercise 5.10. The Constraint C2 could be equivalently formulated in English
as follows: “In every finite-state machine, the set of states of this machine has
to be the same cardinality (size) as the set of names of these states.” This
basically means that there are no duplicate state names. Implement C2 using
this formulation in your language of choice. Discuss the difference in compu-
tational complexity of the original and the new formulation. Which of the two
formulations is more readable in your opinion? Why?

5.3 Specialized Constraint Languages for Modeling

General-purpose languages are hard to beat when it comes to ease of
integration with the rest of your project, and the accessibility and familiarity
of the basic tooling. Install an interpreter or a compiler—and you are ready
to go! Almost no setup and no configuration pains. However, sometimes it is
practical to integrate constraints with a meta-model, not with the processing
tools. This is where specialized constraint languages and tools can help.
Using specialized languages may also help to provide more functionality
than just evaluation of constraints—the only functionality that programming
languages provide. For instance, we can use automatic instance generation
to create ad hoc instances for testing tools.

Object Constraint Language. When meta-modeling in Ecore or UML, the
Object Constraint Language (OCL) is a natural choice of a specialized
constraint language, as it is particularly well integrated with these host lan-
guages. OCL is a formal language originally designed to write expressions
associated with UML models, including well-formedness constraints and
other formal specifications. It has been later integrated with Ecore and with
several other languages including model-transformation languages such as
QVT and ATL discussed in later chapters. OCL is a strongly typed declar-
ative language, based on first-order predicate logic with a programmer-
friendly syntax. For example, quantifiers are disguised as collection oper-
ations, and native navigation in object graphs is provided, so that we do not
have to write awkward navigations using predicates like in Sect. 5.1. OCL

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/test-files/

164 Chapter 5. Static Semantics

1 package fsm : _’dsldesign.fsm’ = ’http://www.dsldesign.org/dsldesign.fsm’ {
2 abstract class NamedElement {
3 attribute name: String[1];
4 }

6 class Model extends NamedElement {
7 property machines: FiniteStateMachine[*|1] { ordered composes };
8 invariant C1: machines->forAll (m1, m2 | m1 <> m2 implies m1.name <> m2.name);
9 }

11 class FiniteStateMachine extends NamedElement {
12 property states#machine : State[+|1] { ordered composes };
13 property initial : State[1];
14 invariant C2: states->forAll (s1,s2 | s1 <> s2 implies s1.name <> s2.name);
15 invariant C3: states->includes (initial);
16 invariant C5:
17 let reachable: Set(State) =
18 initial->closure (s | s.leavingTransitions->collect (t: Transition|t.target))
19 in states->forAll (s | reachable->includes(s));
20 }

22 class Transition {
23 property target: State[1];
24 property source#leavingTransitions : State[1];
25 attribute input: String[1];
26 attribute output: String[?];
27 invariant C4: source.machine = target.machine;
28 }

30 class State extends NamedElement {
31 property leavingTransitions#source : Transition[*|1] { ordered composes };
32 property machine#states : FiniteStateMachine[1];
33 }
34 }

Figure 5.10: Constraints C1-C5 written in OCL, embedded in a textual representation of the meta-model of Fig. 3.1

allows new functions to be defined, including recursive functions. It is, thus,
more expressive than first-order logic. OCL can express transitive closure.

OCL specifications are meant to define invariant conditions that must
hold for the system being modeled or queries over objects described in a
model. Each OCL expression is related to an instance of a model element,
called a context, in line with how we used the term above. The keyword
self returns a reference to the context object. OCL expressions are pure,
i.e., their evaluation cannot alter the instance over which they are evaluated.
Thus OCL is a very good match for our definition of static semantics
constraints (cf. Def. 5.3, p. 148).

Figure 5.10 presents the running example using OCL. More precisely, it
presents both the finite-state-machine meta-model and the associated con-
straints using the Eclipse OCLinEcore textual syntax. The figure shows the
same model, the very same file, as in Fig. 3.1 on p. 53, but opened in a differ-
ent editor, using a different textual concrete syntax, not the graphical syntax
of Fig. 3.1. Note the same concrete and abstract classes, the same general-

5.3. Specialized Constraint Languages for Modeling 165

ization hierarchy, the same properties, and the same cardinality constraints.
The textual syntax allows us to conveniently show OCL constraints inline.
Each constraint is introduced with the keyword invariant and a label.

Constraint C1 is found in Line 8. Observe two interesting features: a
binary universal quantifier forAll that iterates over pairs of objects, and the
built-in implication operator. Both of these extensions contribute positively
to the simplicity of the formulation. The same advantages are observed in
Line 14 for C2. Compare how this constraint has been written in general-
purpose programming languages in Tbl. 5.3.

The OCL standard library provides a rich set of logical and set operations,
and the usual operations for collection manipulation. All Ecore meta-model
types are directly accessible. We gather the operations used in our examples
along with a few extras in Tbl. 5.4. The closure operation deserves a longer
discussion. We used closure in the implementation of C5 in Line 18. It
computes the reflexive transitive closure of a binary relation provided as
a lambda expression. We run closure on a collection of elements of some
type T. As an argument, we provide a function f that given an element of
type T computes a new collection containing more elements of the same
type. The closure computation will obtain a new collection by applying f
to each element in the input, and then union the result with the input. This
will be repeated until a fixed point is reached, so until applying the function
f no longer gives any new elements. We encourage the reader to compare
this definition, and the formulation of the constraint, to our discussion of
computing transitive closure to find the set of reachable states in Sect. 5.1.

Exercise 5.11. Implement Constraint C6 from p. 147 in OCL.

Exercise 5.12. The binary universal quantifier in Line 8 (Fig. 5.10) is quite con-
venient for writing constraints relating multiple elements of the same type. Most
programming languages only provide unary quantifiers in standard libraries, but
it is rather straightforward to implement more quantifiers on your own. Imple-
ment binary and ternary universal and existential quantifiers in a programming
language of your choice. The book source code provides Scala implementa-
tions in scala/src/main/scala/dsldesign/scala/emf.scala as an example. Reimplement
constraints C1 and C2 using the new quantifiers.

Often when writing constraints, you discover that the meta-model designers
have not included object properties that would be useful when programming
against the model. If these properties are derivable from the other existing
properties in the model, we can use a let expression to introduce a function
computing the new derived attribute. We did exactly this in lines 17–19 in
Fig. 5.10. Unfortunately, a let expression introduces a new name only in
the scope of a single constraint (in our case C5). What if the new attribute
should be accessible from many places? Also from other constraints?

OCL supports derived properties (derived attributes), to address this use
case. Derived attributes are injected in all instance models and computed
when needed. Figure 5.11 shows an example. In the present meta-model,
the initial state is an attribute of a state-machine object (initial). There is

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala

166 Chapter 5. Static Semantics

and or xor not implies The essential Boolean connectives.

let f (x: T1): T2 = ...
in ... e ... end

Introduce a new function f (or a new value) accessible in
expression e.

if ... then ... else ... endif Ternary conditional expression (if-then-else expression).
Corresponds to “... ? ... : ...” in C-like languages.

ss->includes (s) True iff the collection ss contains element s.

ss->includesAll (tt) True iff the collection ss contains all elements from the
collection tt.

ss->isEmpty (); ss->notEmpty () True iff the collection ss is empty (respectively not empty).

ss->size () Return the number of elements in collection ss.

ss->intersection (tt) A collection of elements shared by collections ss and tt.

ss->including (s) A collection containing the element s and all elements of
collection ss.

ss->forAll (s1, ..., sn |
f (s1, ..., sn))

True iff f holds for all selections of n-element tuples from a
collection ss.

ss->exists (s1, ..., sn |
f (s1, ..., sn))

True iff f holds for at least one n-element tuple from a
collection ss.

ss->select (s | f (s)) Filter ss so that it contains only elements on which f is true.
This function is known as ‘filter’ in some other languages.

ss->collect (e | f (e)) Computes a collection of elements derived from ss using f.
The function f returns a collection itself. In other languages
this is known as flatMap or a bind.

ss->closure (s | f (s)) Compute the reflexive transitive closure of f by applying it
repeatedly (starting with ss) until a fixed point is reached.

ss->iterate (e, z = ini |
f (e, z))

Iterate f over ss, where z is the current state of the iteration
(initially ini), and e binds to consecutive elements. The
function f computes a new value of z. The last one is
returned. Known as ‘fold’ or ‘reduce’ in other languages.

ss->isUnique (s | f(s)) Holds iff f evaluates to a different value for each element in
the source collection ss.

T.allInstances () A collection of all instances of a given type T (discouraged;
better use context, or navigate to the right subset).

s.oclIsTypeOf (T) True iff the actual type of s is T (ignores generalization).

s.oclIsKindOf (T) True iff the type of s is T or its sub-type (observes general-
ization).

Table 5.4: An abridged reference list of OCL operations and expressions. The argument in lambda expressions can be omitted. It
defaults to self. A complete reference of the Eclipse implementation of OCL is available at

http:// help.eclipse.org/ oxygen/ topic/ org.eclipse.ocl.doc/ help/ GettingStarted.html, as of 2022/09

http://help.eclipse.org/oxygen/topic/org.eclipse.ocl.doc/help/GettingStarted.html

5.3. Specialized Constraint Languages for Modeling 167

1 class State extends NamedElement {
2 ...
3 property machine#states : FiniteStateMachine[1];
4 property isInitial: Boolean [1] { derived, volatile }
5 { derivation: self.machine.initial = self; }
6 }

Figure 5.11: An example of a
new derived attribute
isInitial added to the
State class using OCL

no easy way to check for a given state whether it is an initial one. One needs
to navigate upwards to the containing machine object, and compare the self
reference with its initial state. This operation can be automated and linked
to a derived attribute (Lines 4–5 in the figure). Now we can simply check
s.isInitial on any state s. OCL’s derived properties resemble extension
methods from general-purpose programming languages. Exercise 5.24
explores this connection.

Exercise 5.13. Rewrite Constraint C3 in the context of State class using the
isInitial attribute.

There are several independent implementations of OCL. To write this chap-
ter we used the so-called Pivot OCL implementation from the Eclipse MDT
project.8 However, the differences between OCL dialects are relatively
minor, and you should use the variant that integrates best with the rest
of your tool chain. There are also derivative languages that offer added
functionality and usability. For example, EVL is a validation language with
very similar constraint syntax to OCL.9 It adds support for modeling depen-
dencies between constraints (e.g., if a constraint fails, another one should
be ignored), customizable error messages, and inter-model constraints.

OCL provides the ability to attach constraints to models, instead of
committing to a particular programming language. A standard specification
[17] and several implementations define how constraints are evaluated.
Fundamentally though, this is comparable to what any general-purpose pro-
gramming language offers for defining static semantics, as we have seen in
Sect. 5.2. Alloy, and a few related languages, add other interesting abilities:
to check whether a set of constraints is consistent, to check what properties
they entail, and to generate instances of various shapes. These in turn can be
employed to automatically create test cases, or even synthesize programs.

Alloy. Alloy [12] is a textual structural-modeling language that corresponds
(roughly!) to class diagrams combined with OCL constraints, but unified in
a single syntax. The first user experience resembles the OCL-in-Ecore editor
(whose syntax was used in Fig. 5.10). Alloy’s semantics is, however, more
restricted than OCL. Arbitrary recursion is not allowed, and any execution
is of finite bounded size. It does support a transitive closure though. This
allows Alloy tools to provide all the additional computational support.

Figure 5.12 presents the finite-state-machine example in Alloy. Alloy
is a relational modeling language. The main building blocks are signa-

8https://wiki.eclipse.org/OCL/Pivot_Model, seen 2022/09
9https://www.eclipse.org/epsilon/doc/evl/, seen 2022/09

https://wiki.eclipse.org/OCL/Pivot_Model
https://www.eclipse.org/epsilon/doc/evl/

168 Chapter 5. Static Semantics

tures defining sets of objects that can enter in relations with other objects.
Signatures resemble classes in object-oriented languages. More precisely,
they model single-column database relations and are close relatives to
unary predicates used for types in Sect. 5.1. We have seven signatures
in Fig. 5.12: Name, Label, NamedElement, Model, FiniteStateMachine,
State, and Transition. The first two, Name and Label, introduce names
and labels as types. Alloy supports limited modeling with strings. For our
purposes, it is more practical to create two sets (names and labels) that
have no further structure and no contents except their own identity, and use
them to label named elements and transitions. This will allow us to write
constraints about uniqueness of names and labels without concern for the
character contents of strings. This will also help Alloy tools to work more
efficiently with our model.

In Line 4, we introduce a signature for named elements. Similarly
to Ecore and Java, we mark it “abstract,” telling Alloy to never directly
instantiate it, but to instantiate only its specializations. A named element
has a single attribute of type Name. The keyword one in Line 4 means
that there is exactly one name assigned to every instance of NamedElement,
corresponding to a cardinality constraint 1 or 1..1 in class modeling. It
is important to understand that even though name is written syntactically
as if this was an attribute contained in NamedElement it really denotes a
binary relation, a subset of the Cartesian product NamedElement×Name. It
relates named elements to their names. Later, when we write constraints
in Alloy, we can use attribute names as first-class binary relations (sets of
pairs), which allows to use set theory algebra to write constraints, making
them very compact and easier to handle for tools.

In Line 6, the document root is declared, as a singleton signature (one).
A singleton, referring to the singleton pattern [9], means that Alloy tools
will always create exactly one instance of the Model, as we intended for
our use case—so far we always considered one model at a time. The
signature has an attribute machines relating the single Model instance to
at least one FiniteStateMachine instance. The some keyword on the
FiniteStateMachine type is a cardinality constraint. It means “one or
more” (1..*). Observe that Model extends NamedElement, so it also has the
attribute name inherited from NamedElement. The other signature definitions
follow analogously. The keyword set (lines 10 and 14) means “any number,”
the same as “*”, “n”, or “-1” in class modeling. The cardinality one means
“exactly one” (1..1) and lone means “at most one” (0..1).

Being a relational language, Alloy has no first-class support for contain-
ment and partonomy constraints. Nesting of properties does not guarantee
that containment is enforced. Intuitively, all Alloy properties are like
references in UML without the black diamond. The signatures in our
example allow for the same state to be shared by two state machines. This
happens by relating both to the same state instance in the states relation.
Figure 5.13 shows an instance generated for the model consisting of the

5.3. Specialized Constraint Languages for Modeling 169

1 sig Name { }
2 sig Label { }

4 abstract sig NamedElement { name: one Name }

6 one sig Model extends NamedElement {
7 machines: some FiniteStateMachine }

9 sig FiniteStateMachine extends NamedElement {
10 states : set State,
11 initial: one State }

13 sig State extends NamedElement {
14 leavingTransitions: set Transition,
15 machine : one FiniteStateMachine }

17 sig Transition { target: one State,
18 input : one Label,
19 output: lone Label,
20 source: one State }

22 fact { Model.machines = FiniteStateMachine }
23 fact { FiniteStateMachine.states = State }
24 fact { State.leavingTransitions = Transition }
25 fact { machine = ~states }
26 fact { source = ~leavingTransitions }

28 fact C1 { #FiniteStateMachine.name = #FiniteStateMachine }
29 fact C2 { all m: FiniteStateMachine |
30 #m.states.name = #m.states }
31 fact C3 { initial in states }
32 fact C4 { source.machine = target.machine }
33 fact C5 { all m: FiniteStateMachine |
34 m.states in m.initial.*(leavingTransitions.target) }

source: fsm.als/fsm.als

Figure 5.12: The fsm
meta-model in Alloy, with
explicit partonomy constraints
and the initial state constraint

first twenty lines of Fig. 5.12. Notice that a single state is shared by two
machines in the instance. Similarly, because cardinality is only restricted
on the far end of references, it is possible to create instances of machines,
states, and transitions that are not contained in any other objects.

In lines 22–26, we establish the containment constraints explicitly. We
first require that that all finite-state machines are related to a model, that
all states are related to a finite-state machine, and all transitions are leav-
ing some state. These together disallow objects that float freely, outside
a partonomy. To understand the syntax of these constraints, note that
Model.machines computes the (database-like) join of the set of models with
the machines relation, ultimately resulting in the set of all machines that are
related to the model. The constraint requires that this set is the same as the
set of all finite-state machines (l. 22). The constraints in lines 23–24 follow
the same pattern. To restore the requirements that objects are not shared
by more than one container in a partonomy, we enforce the duality of nav-
igation (l. 25–26). The first constraint says that the machine relation is the

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.als/fsm.als

170 Chapter 5. Static Semantics

Figure 5.13: An instance of an
fsm with two machines sharing

a single state. This instance
has been generated by the

Alloy analyzer for the first
twenty lines of the model in

Fig. 5.12

inverse of the states relation. The second imposes that the source relation
is the opposite of the leavingTransitions relation. This not only enforces
synchronization of references in the style of Ecore’s EOpposite, but also dis-
allows sharing. Consider the example: since each state can point to exactly
one machine, its inverse, states, cannot link the same state to multiple
machines. It is easy to build a similar argument for transition sources. There
is no corresponding constraint for containment of machines in a model—
this one is not needed, because the model signature defines a singleton.

In lines 1–26 we have represented the fsm meta-model in Alloy. Now we
can, finally(!), write the static semantics constraints. Constraint C1 is shown
in Line 28. The formulation uses set cardinality. The statement that all
machines have unique names is equivalent to the set of machines and the set
of their names being equal size. In Alloy the operator #x returns the size of
the set x. Constraint C2 is implemented in the same manner, just restricted
to a subset of states pertaining to a single machine, using a quantifier.

In Line 31, we require that the initial state is an own state of a machine
(C3). More precisely, initial is a relation (a set of pairs) linking each
machine to exactly one state, and states is also a relation with a higher
cardinality of the image. The constraint states that the former (seen as a set
of tuples) is a subset of the latter: if a machine is related to a state in the
initial relation, then it is also related in the states relation.

Constraint C4 (transitions cannot cross machine boundaries) is imple-
mented using the same principle. We require that the relations created by
joining the transition objects with machine objects via source states and
via target states are the same. Both relations pair transitions and machines
in tuples (ti,m j). Because there is only one entry in each set for each
transition ti (why?), the equality of the relations entails that for each single
transition its source and target must be the same (m j). If these two relations
differed, there would be at least one transition which would be paired with a
different machine via the source than via the target state. Constraints C1–C4
demonstrate that when working with relations like with sets, we can often
drop quantifiers. In relational languages, this is an additional instrument
for making constraints concise (on top of choosing the right context type).

Finally, in the reachability Constraint C5 we use Alloy’s transitive closure
operator (l. 33–34 in Fig. 5.12). This is the most concise and the most direct

5.3. Specialized Constraint Languages for Modeling 171

presentation of C5 so far, but it requires familiarity with transitive closure.
In order to compute a transitive closure, we need a relation that has the
same set as its domain and image. This is intuitively expected: we are
supposed to explore the successor relation for states, which defines how to
advance from a state to a state; a binary relation on states, a subset of the
Cartesian product State×State. There is no such relation in the model,
where connections between states always go via a transition object.

In order to derive the successor relation we need to combine two relations
together: first choose a transition (leavingTransitions), then go to a
target state (target). Recall that leavingTransitions relates states and
transitions. It is a subset of State×Transition. Similarly, target is a
relation between transitions and states, a subset of Transition×State.
The navigation dot operator in Alloy, as in leavingTransitions.target,
is implemented as a relational join that “forgets” the internal columns. A
standard relational join of these two relations would give a subset of

State×Transition×State (5.24)

In Alloy, the middle column is erased when composing joins, so we obtain
a relation which is a subset of the product State×State. The navigation
join gives a relation that is suitable for computing a transitive closure. The
intermediate transition objects have disappeared. Let us formalize this. Let
the bow tie symbol (▷◁) denote a forgetting join:

R ▷◁ Q ≡ {(r,q) | there exists p such that (r, p) ∈ R and (p,q) ∈ Q} (5.25)

Then the reflexive transitive closure of leavingTransitions.target can
be described as:

*(leavingTransitions.target) =
∞⋃

i=0
leavingTransitions.target ▷◁ · · · ▷◁ leavingTransitions.target︸ ︷︷ ︸

i times, forget internal columns

(5.26)

The joint product of zero components above (i = 0) is interpreted as the
identity relation, the smallest reflexive relation on State. Compare the defi-
nition in Eq. (5.26) with the definition of transitive closure using predicates
in Eq. (5.23), p. 155. The infinity in the definition should not scare you. For
finite relations (instances in Alloy are always finite and bounded), the union
will stabilize (reach a fixed point) after a finite number of iterations.

As you guessed from the above, in Alloy, *R denotes a reflexive transitive
closure of relation R. We can finally read lines 33–34 in Fig. 5.12. The
constraint states that the set of all states is the set of all reachable states,
so states that can be reached from m.initial by transitive closure of the
relation leavingTransitions.target.

There is more to Alloy than a brief section can show. We have only used
the universal quantifier all in our examples. Alloy provides several other
quantifiers, including some (existential), one (exists precisely one), lone

172 Chapter 5. Static Semantics

(at most one), and none (exist no). There is also a host of set and relation
operations. Constraints can be placed in the context of signatures (like with
OCLinEcore), which allows us to eliminate some quantifiers and shorten
navigations. All these contribute to extreme brevity of relational constraints.
Clearly, Alloy offers the most concise notation of all those discussed above.

Exercise 5.14. To appreciate how context changes formulation, move Constraint
C5 to the context of FiniteStateMachine and eliminate the use of the quantifier.
To add a constraint to the context of a signature place a Boolean predicate in
its own braces directly after closing the signature, without any keyword, as in:
sig ... { attributes here } { constraints here }.

Exercise 5.15. Implement Constraint C6 in Alloy. Hint: Since all navigations in
Alloy compute sets, this can be done by comparing the size of the set of transitions
leaving a state with the size of the set of the labels on these transitions.

Alloy tools provide automatic instance generation and visualization. Auto-
matic generation of diverse instances of the model can be used to debug your
designs interactively. Jackson [12] recommends generating and reviewing
instances for partial designs every time you make changes in a model.
Analyzing them often uncovers misconceptions and omissions in the model.
For example, the instance in Fig. 5.13 demonstrates that the containment
constraints in the first 20 lines of our model are not sufficient. A designer
discovering this instance would be compelled to add additional partonomy
constraints, as we indeed did in lines 22–26. If no instance can be generated,
then this means that our model is over-constrained. The constraints are
inconsistent with each other and need to be corrected.

Alloy’s analyzer establishes global consistency of the model (cf. Def. 3.4).
However, we can also use Alloy to establish element consistency. In this
case, just add an instantiation constraint for the type of the tested element.
For example, if we need to generate a model with at least one transition we
add the following new constraint to the set of constraints:

{ some Transition }

Technically, Alloy’s tools do not solve the general consistency problem but
a bounded variant:

Definition 5.27. A model is consistent up to a bound k (k-consistent for
short) if and only if there exists a valid instance of size at most k. A model
is k-inconsistent if it is not k-consistent.

There exist k-inconsistent models that are consistent in general. Thus Alloy
tools can report inconsistency even for valid models. However, Alloy’s
designers hypothesize that lots of modeling problems can be debugged on
very small instances. This is also our experience. In practice, one typically
configures Alloy tools with rather small bounds (small k) and increases
them as needed. This also makes the tools faster. The bound is specified as
part of the query to the analyzer.

5.3. Specialized Constraint Languages for Modeling 173

1 univ={FiniteStateMachine$0, Label$0, Model$0,
2 Name$0, Name$1, State$0, Transition$0}
3 none={}
4 this/Name={ Name$0, Name$1 }
5 this/Label={ Label$0 }
6 this/NamedElement={
7 FiniteStateMachine$0, Model$0, State$0 }
8 this/NamedElement<: name={
9 FiniteStateMachine$0->Name$1,

10 Model$0->Name$1, State$0->Name$0 }
11 this/Model={ Model$0 }
12 this/Model<: machines={Model$0->FiniteStateMachine$0}
13 this/FiniteStateMachine={FiniteStateMachine$0}
14 this/FiniteStateMachine<: states={
15 FiniteStateMachine$0->State$0 }
16 this/FiniteStateMachine<: initial={
17 FiniteStateMachine$0->State$0 }
18 this/State={ State$0 }
19 this/State<: leavingTransitions={
20 State$0->Transition$0 }
21 this/State<: machine={State$0->FiniteStateMachine$0}
22 this/Transition={ Transition$0 }
23 this/Transition<: target={ Transition$0->State$0 }
24 this/Transition<: input={ Transition$0->Label$0 }
25 this/Transition<: output={ }
26 this/Transition<: source={ Transition$0->State$0 }

Figure 5.14: An example instance generated by Alloy tools for the model in Fig. 5.12. Presented as relations in the left column, and
using Alloy’s textual instance syntax in the right column

The limitation of Alloy to bounded problems follows from the underlying
reasoning technology: predominantly SAT-solving. Variants of Alloy and
similar languages based on Constraint Programming (CP) and Satisfiability
Modulo Theory (SMT) solvers also exist. However, all these reasoners,
even though very fast, can only represent fixed-size problems.

Alloy tools present instances as graphs (Fig. 5.13) or tables. The table
presentation may clarify the relational nature of the language. The left
column in Fig. 5.14 shows the tables for a small instance containing one
model object, with one state machine that contains a single state with a
single loop transition. The example instantiates each class of the partonomy
in Fig. 3.4 once. The format uses one table per signature. The first column
in each table is the primary key. The remaining columns are foreign
keys referring to other tables. We encourage the reader to reconstruct
the structure of the instance on paper, from this representation. Tables for
names and labels (both single column) are omitted for brevity.

Clearly, Alloy is not a static-semantics definition language in the same
way as OCL and the GPLs used earlier in this chapter. There is no way to
attach its constraints to syntax trees in Ecore or to types in programming
languages. Only meta-models written in Alloy can be constrained, and there
is no easy way to develop languages on top of these meta-models. However,
one can translate models from other languages into Alloy syntax, and use
Alloy tools to evaluate constraints on them. Once instances are found, the

174 Chapter 5. Static Semantics

Alloy output can be parsed and translated into whatever technical space
you need. Since Alloy is a solver, not an evaluator, a whole range of more
powerful checks can be implemented than when using other languages.

The right panel in Fig. 5.14 shows the same example as in the left panel,
but in Alloy’s textual syntax for instances. This format is rather easy to
parse. If we translated it to XMI, Scala, or our concrete syntax for state
machines, we could use the automatically generated instances to test the
tool chain of our language, including generators and interpreters. If we
had built a different Alloy model capturing the execution traces of a state
machine, then the instances could represent sequences of inputs to the
machine. After loading these sequences in a Java program, we could use
them to drive automatic testing tools for an fsm interpreter.

Finally, we can also use Alloy for simple program or model synthesis.
One needs to build a model that describes programs of interest with con-
straints. For our example, if we add the following constraint in Alloy, the
tools will synthesize a simple state machine of the shape resembling a
coffee machine, entirely automatically.

A model with a single state machine that owns two states
connected with exactly two transitions in a cycle labeled by
’coin’ and ’coffee’.

Exercises 3.34 (p. 84) and 4.57 (p. 141) explore parsing of Alloy outputs.
This method has been used in research for many DSLs. Over the years,

researchers have exploited the expressive and clean Alloy syntax to built
tools supporting specialized constraint languages beyond instance finding
and consistency checking. The applications include testing, synthesis,
diagnostics and repair, simplification, model merging, etc. Targeting Alloy
as a solver (instead of the more basic formats of SAT, SMT, and CP solvers)
speeds up tool development considerably. If you have a constraint-modeling
and solving mindset, and know Alloy, you will easily find tasks around
your language that can be automated.

5.4 Guidelines for Writing Constraints

Constraints can be tricky to write. Let us discuss good practices in con-
straining syntax.

General Hints for Writing Static Semantics Constraints

Guideline 5.1 Consider not defining the static semantics at all! This may sound crazy after
reading three sections arguing exactly the opposite! However, side-stepping
constraint and type system definition (Chapter 6) is often a natural choice.
For minimalistic languages, developed on a tight budget, it may make sense
to never develop a static semantics validator. If your language is based on
code generation you may be able to piggy-back on your target language [15].
Imagine, for instance, that we generate C code from finite-state-machine

5.4. Guidelines for Writing Constraints 175

Constraints as a Modeling Paradigm
Constraints are the basis of a very useful paradigm in modeling, exercised at its full in tools from the
Constraint Programming community [6, 19]. Many constraint languages derive from first-order logic
and relational algebras, exploiting the result of Edgar Codd (1923-2003) that first-order logic adequately
captures relational (so structural) modeling. The modeling mindset is to restrict the infinite set of
graphs to only those of interest. Alternatively, we think in terms of graphs that should be generable
by an instance generator. Constraint modeling is a strong form of declarative programming: you state
requirements (the “what”) and delegate finding solutions, proving consistency, or verifying facts that
hold in a model to a solver (the “how” and “why”).

In this chapter, you have seen constraints written in English, in first-order logic, in a range of programming
languages, in OCL, and in Alloy. We hope that this exposed you to the constraint-modeling paradigm
sufficiently to recognize constraint writing as a specialized but useful modeling skill that can help to
solve a range of problems, even outside static semantics. A skill, a mental model even, that carries
beyond the concrete languages used as examples here.

switch (input) {
case COFFEE:

next_state = BREWING;
break;

case COFFEE:
next_state = PAYMENT;
break;

Figure 5.15: Left: A hypothetical code generated from a non-deterministic state machine violating Constraint C6. Right: A compiler
error from GCC that can serve as “piggy-backing.” An actual generator for fsm is shown in Fig. 9.9 on p. 333

models (we will indeed generate such code in later chapters). If our machine
has non-deterministic transitions, violating Constraint C6, we might pro-
duce code like that presented in the left part of Fig. 5.15: a switch statement
with a duplicate entry. This in turn can cause the C compiler to complain,
as shown in the right part of the figure. If this kind of error is acceptable to
your users, you may choose not to implement the constraint validation at all!

Guideline 5.2Define static semantics later rather than earlier. Even if you decide that
a static checker is needed for your DSL, there are several advantages to
delaying its design. In agile development, it is important to scaffold a
working tool chain as early as possible, in very few sprints. This way your
users can start to experiment with it. You can receive early feedback. They
can start advancing their projects. Early on, it is less important how the tools
will behave on ill-defined inputs. Early iterations of language tools do not
need to be tested on invalid models. Good diagnostics, error detection, and
reporting can often be designed in later iterations, when the scope and design
of the language are stabilizing, and the rest of the tool chain is maturing.

We recommend to design an interpreter (Chapter 8) or a code generator
(Chapter 9) first, achieving a minimal viable prototype of the language
as early as possible. A set of constraints is primarily defined to capture

176 Chapter 5. Static Semantics

the assumptions of the dynamic semantics. These assumptions will be
much better understood when you already have dynamic semantics! This is
even more important for type checkers (Chapter 6): a type checker and the
associated type system are really an approximation of dynamic execution. It
is essentially impossible to come up with a good and useful approximation
without a good understanding of the dynamic semantics itself. Thus, we
recommend implementing a type checker after completing at least the first
iteration of an interpreter or a code generator.

Guideline 5.3 A general-purpose or a specialized constraint language? Should I follow
the advice of Sect. 5.2 or of Sect. 5.3? Should I use an external tool like
Alloy? Shall I design all constraints in basic mathematics first, like in
Sect. 5.1, and only then rewrite to a programming language?

The decision between specialized and general-purpose languages hinges
on the trade-off between easy access to programming experts and the need
to use specialized reasoning tools. If the goal is to validate inputs, and there
is no need for instance generation, choose the language which will be easy
to work in for you and for others around you. This way the constraints can
easily change ownership to new programmers and the project can live longer.
This will typically be the same language in which you implement the rest
of your DSL tools. Do not work on paper, or not for too long. Implement
constraints in a programming language and start running and testing them it-
eratively as soon as you can, even before a constraint formulation is finalized.
(We did not endorse mathematical logic as a software development mech-
anism, but as a way to introduce you to thinking in terms of constraints.)

Specialized constraint languages are useful in two scenarios: if reasoners
are needed for specialized applications, and if you are planning to develop
many languages. In the former case, you have little alternative. In the
latter, for example if you work for a language consultancy, the increased
conciseness and readability of constraints will pay over time for the steeper
learning curve and more cranky tools.

Guideline 5.4 Maximize the diagram, minimize the constraints. A class diagram is a
constraint system itself, just of limited expressiveness. As already discussed
in Sect. 5.1, many of the same constraints can be stated both in the constraint
language and in the diagram language. When the partonomy constraints
(black diamond) turned out not to be supported in Alloy, we expressed
the same semantics using relational constraints (lines 22–26 in Fig. 5.12).
Conversely, instead of using diagram annotations in Ecore, we could have
written textual constraints to limit cardinalities of associations, or to bind
two unidirectional references into a bidirectional one.

Exercise 5.16. For the following constraints discuss how they could be enforced
using an appropriate construct in an Ecore meta-model instead:

a) A constraint written in Scala for the meta-model in Fig. 5.1:
inv[Person] { _.getChild.size <=2 }

b) A constraint written in OCL for the finite-state-machine meta-model:

5.4. Guidelines for Writing Constraints 177

invariant: self.name.notEmpty ()

Whenever there is a choice, it is advisable to express syntactic restrictions in
the meta-model, leaving only the impossible to the textual constraints. Dia-
grammatic idioms are easier to recognize and to explain to other developers.
Recognizable diagrammatic patterns may appear very cryptic in a textual
language (compare the black diamonds in Fig. 3.1 with the corresponding
five constraints in Alloy in Fig. 5.12). If you incorporate diagrammatic
idioms into a meta-model, you can expect better diagnostics of instances
from the modeling framework, and better type checking and runtime check-
ing of your language implementation code. This is because the generated
meta-model code that you are programming against will be aware of these
constraints, and reflect them in types and runtime checks as appropriate.

This guideline should be applied pragmatically. Sometimes, maximizing
a diagram is not the best strategy. If expressing a constraint in the diagram
requires significant refactoring, introducing auxiliary classes, or splitting
classes into sub-concepts that do not reflect the concepts in the domain,
then declaring constraints outside the diagram is preferable. The bottom
line is that you should try to use structural notations, such as class diagrams
or ADTs, primarily for representing fundamental intuitive structural con-
straints. Non-standard intricate restrictions should be specified separately
in a logic-based formalism.

Guideline 5.5Static semantics depends on abstract syntax alone. Refer only to the
model properties in a constraint. Even if written in a GPL, constraints are
conceptually a part of the meta-model. The only data that you can refer
to from constraints are model properties. Nothing else. Constraints are
used to enforce integrity of the model itself. It is a common encapsulation
failure to bring other concerns to constraints. This makes them difficult to
test in isolation from the rest of the system, and hard to reuse in new tools
for the DSL. None of our examples, even in Scala or C#, has violated this
assumption (cf. Tables 5.2 and 5.3, and Figures 5.10 and 5.12).

A common violation of this guideline is an introduction of dependencies
between the Eclipse IDE platform (or another editor) and the validity
checker, for instance when producing error messages. A static checker that
depends on an IDE platform is extremely difficult to use in a standalone
command-line or server-side tool, which you will presumably need sooner
or later. Even if you succeed in embedding the IDE with the static checker,
the executable will be far from lean and nimble. The large dependency will
make it brittle, susceptible to co-evolution problems with the related big
piece of software. A careful reader will notice that the example code for
this book has been carefully designed to avoid such dependencies, even in
the parts where we use the Eclipse Modeling Framework and Xtext.

If you absolutely need to refer to other parts of the system, if the model
needs to be validated for consistency with other files, for instance database
entries or configuration files, do this validation in another pass. Encapsulate

178 Chapter 5. Static Semantics

Figure 5.16: Top: (l. 1–2) Our
favorite declarative formulation

of C2 in Scala. See
Exercise 5.22 about

forAllDifferent. Bottom:
(l. 4–13) A verbose and lengthy

imperative formulation of C2,
typical of inexperienced

constraint writers. Avoid this!
Both examples are written in

Scala, but the problem is seen
in most languages

1 val C2_GOOD = inv[FiniteStateMachine] { self =>
2 self.getStates.forAllDifferent { (s1,s2) => s1.getName != s2.getName }}

4 def C2_BAD (m: FiniteStateMachine): Boolean =
5 var it1 = m.getStates.iterator
6 while it1.hasNext do
7 var s1: State = it1.next
8 var it2 = m.getStates.iterator
9 while it2.hasNext do

10 var s2: State = it2.next
11 if s1 != s2 && s1.getName == s2.getName then
12 return false
13 return true source: fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala

the meta-model constraints in a self-contained module, only dependent on
the abstract syntax, and interface to that module from a bigger checker.

Programming Constraints and Avoiding Bad Smells

Guideline 5.6 Keep constraints declarative, as close to natural language as possible.
There is clearly a correspondence between requirements written in English
and in formal logic and programming languages. To avoid obfuscating this
correspondence, keep your constraints as declarative as possible, as close to
natural language as possible, devoid of low-level computational primitives
such as variable assignments, loops, or return statements (Fig. 5.16). Imple-
ment iteration with higher-order functions instead. Extend your constraint
language with needed operators and iterators (implication, n-ary quantifiers,
all-different, etc.). You will quickly accumulate a useful vocabulary of
primitives. Finally, if you really need recursion or loops (for instance to
implement transitive closure), encapsulate the necessary computations in
Boolean predicates, to be able to use them in other declarative constraints.

Guideline 5.7 Do not modify the model from the constraint code. We argued already
against side effects in constraints. Constraints can be checked multiple
times from within the modeling environment, and in other tools. They can
be constantly evaluated by the modeling editor to provide live feedback. The
user may not control these checks explicitly. So these executions should not
have any visible side effects on the model. Specialized constraint languages
are designed to avoid such mistakes. Exercise extra care when using a GPL.

The only exception to this guideline is when a static-semantics device
(most typically, but not only, a type system) infers new information about
the model. It might be practical to augment (decorate) the model with new
values, but never change the existing ones. For instance, we may want to
annotate sub-expressions with inferred types. In any case, this should be
done in such a way that the checkers can be run multiple times without harm.

Guideline 5.8 Avoid top-level conjunction. It is tempting to combine several different
aspects in a single constraint using logical conjunction. Avoid this though.
One constraint should capture one English sentence, as simply as possible.
There is rarely advantage to creating compound constraints. Small atomic

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala

5.4. Guidelines for Writing Constraints 179

inv[Student] { self =>
!self.getName.isEmpty && self.getAge >= 18 }

Error: An empty name or the age is below 18!

inv[Student] { !_.getName.isEmpty }
Error: An empty student name.
inv[Student] { _.getAge >=18 }
Error: The age is below 18.

Figure 5.17: Top: a
compound constraint that
mixes age and name aspects
that are otherwise unrelated.
Bottom: The same constraint
split into two separate ones.
Observe how the error
message for the user becomes
more precise with the split

context Model
invariant: Transition.allInstances->forAll (t|t.source<>t.target)

context Transition
invariant: source <> target

context FiniteStateMachine
invariant C3: State.allInstances ()->exists (s |

self.states->includes (s) and self.initial=s)

Figure 5.18: Top: Using
OCL’s allInstances to forbid
self-loop transitions
(Transition). Center:
Replace allInstances with
a better context. Bottom: A
needlessly convoluted
formulation of Constraint C3
using allInstances.
Contrast with Fig. 5.10

independent constraints map to precise and informative error messages for
the users. If a compound constraint fails, it is difficult to see which part of
the conjunction is invalid, leading to vague error messages (Fig. 5.17).

Guideline 5.9Avoid quantifications over all instances of a type. In OCL, T.allInstances
evaluates to all objects of type T. GPL libraries for computing over abstract
syntax also provide a similar reflection capability. Figure 5.18 shows
an example of a constraint on finite-state machines forbidding self-loop
transitions (so transitions with source and target in the same state). The
first variant uses iteration over all instances of a type. The second variant
eliminates the use of this very general construct by placing the transition in
the context of a Transition object. The bottom part of the example shows
Constraint C3 written in the context of class FiniteStateMachine (like our
original example), but using iteration over all instances of type State. This
formulation is much more complex than our original proposal in Fig. 5.10.

The use of allInstances should be avoided in favor of a good context
class for the constraint. Iteration over all objects of a type tends to be
computationally expensive and lowers understandability of the constraints—
it escapes from the instances to the meta-level. The method allInstances
is static, so it belongs to the meta-class, not to the instances. If you need
to get all instances of more than one class, you will be able to do it by
navigating from the document root (or any closer class), as discussed below.

Guideline 5.10Refactor constraints to the optimal context. Constraints placed in a wrong
context require long navigations and many quantifiers. In Fig. 5.19, the
class Model is a worse choice for the context of C3 than the class
FiniteStateMachine, which we chose originally. Shifting the context a
level upwards along the partonomy costs an additional universal quantifier.

180 Chapter 5. Static Semantics

Figure 5.19: Top: Constraint
C3 in the optimal context of a
machine. Bottom: C3 in the
context of a Model. See also
another example in Eq. (5.20)

on p. 153

inv[FiniteStateMachine] { self =>
self.getStates.contains (self.getInitial) }

inv[Model] { self =>
self.getMachines.forall { fsm =>

fsm.getStates.contains (fsm.getInitial) } }

Table 5.5: Several examples
of eyebrow-raising expressions

that should be simplified in
static semantics constraints

(and pretty much in any other
kinds of computer

programming). Examples are
presented in Scala syntax, but
most apply to other languages

Do not write Write instead
if e then true else false e
if e then false else true !e
if e1 then e2 else false e1 && e2
if e1 then true else e2 e1 || e2
if e1 then e2 else true e1 implies e2
if e1 then true else e2 !e1 implies e2
e && true e
false || e e
!e1 || e2 e1 implies e2
!(!e) e
return e; e

Exercise 5.17. Besides long navigations and excess quantifiers, inability to nav-
igate to the set of instances needed in a constraint also indicates a possibility of
the wrong context type. If you need to resort to allInstances (in OCL) to work
around such problems, the context is likely incorrect, too. To appreciate this issue
re-write C3 in the context of NamedElement of the meta-model in Fig. 3.1.

It takes experience to select the right context. In sequences of universal
quantifiers, check to see whether any prefix of them can be avoided by shift-
ing the context to the type one of them ranges over. If long navigations de-
scend down the partonomy, especially starting with the same prefix, you are
likely using a context too high in the partonomy hierarchy. Check if any ob-
jects down in the navigation prefix would not be a better candidate. Dually,
if long navigations go upwards in the partonomy, it might be that the context
needs to be moved higher. Beware though that these rules are not strict. You
will meet long navigations in constraints that are inherently non-local. There
is not much you can do about this, except perhaps to revisit the meta-model
design and add explicit or derived associations. A constraint relating very
remote classes may be an indicator of a missing association in the model.

Guideline 5.11 Avoid verbose Boolean constructs, especially using true and false. Pro-
grammers inexperienced in functional style, which is so strongly exercised
in constraints, tend to write expressions that are suboptimal in subtle but
irritating ways. Table 5.5 lists some common examples. Chiefly, an appear-
ance of a constant true or false in a Boolean expression is a bad-smell.
Most often the constant can be eliminated in favor of applying a simpler
operator that more directly states the intention. This way the constraint’s
intention is more easily available to the prospective reader of the code.

5.5. Quality Assurance and Testing for Static Constraints 181

5.5 Quality Assurance and Testing for Static Constraints

Front-end failures are visible to the language users, so the corresponding
bugs tend to be detected early and fixed quickly. Nevertheless, experienced
language engineers admit that this does not prevent many errors from hiding.
Ratiu, Völter, and Pavletic [18] describe an extensive case study in which
they found many bugs in a collection of DSLs, despite high confidence
in the implementations a priori. They used automated random testing to
test murky cases. Indeed, some aspects of requirements-based white-box
scenario tests for constraints can be automated using randomization.

Scenario testing. We begin with an exploratory question.

Exercise 5.18. Constraint C3 (p. 146) requires that the initial state of each state
machine is one of its own states. We formalized this in Tbl. 5.2, p. 156. Create an
instance of the fsm meta-model (Fig. 3.1, p. 53) which violates this constraint.

A buggy constraints checker not only admits semantically meaningless mod-
els, but it may also prevent users from creating legitimate ones. Scenario-
based testing of constraints aims to establish whether the right instances
are admitted and rejected by our implementation. Test at least one positive
and at least one negative scenario for each constraint. At least one of your
tests should be passing when the constraint holds and at least one when the
constraint is not satisfied. Do not ignore the negative tests: they ensure that
a constraint catches input errors effectively, so they test its main purpose!

We illustrate this with an example, creating tests for Constraint C2
from p. 146: all states within the same machine must have distinct names.
Figure 5.20 recalls the constraint in the top left corner. The same constraint
in other programming languages has been shown in Tbl. 5.3 on p. 160. The
main part of Fig. 5.20 shows five example test cases, each a single tree in
the instance specification notation of UML. We number these test cases for
reference; find the numbers in the name attribute of each of the five root
Model objects. The figure shows four positive and one negative test cases:

(+) test-00: a single machine with a single state
(+) test-02: two machines with a name clash, each with a single distinct state
(+) test-07: an empty model, no machines, no states
(+) test-09: five machines with some name clashes, each has a state named "a"
(-) test-08: two machines, one of them has two states named "b"

Convince yourself that C2 indeed passes (respectively fails) on these inputs.
Simultaneously, observe that these test cases are selected specifically for
C2, which allows for good fault localization and exploring various aspects
of the constraint. The positive tests do not necessarily validate with other
constraints. For instance, test-02 violates Constraint C1 that all machines
must have distinct names, yet we use it as a positive scenario for C2.

Test cases are best stored in abstract syntax. Since this example is
developed with Ecore, we used XMI files—the UML notation was only
useful for creating a figure. The bottom part of Fig. 5.20 shows how files

182 Chapter 5. Static Semantics

val C2 = inv[FiniteStateMachine] { m =>
m.getStates.asScala.forall { s1 =>
m.getStates.asScala.forall { s2 =>
s1!=s2 implies s1.getName!=s2.getName } } }

: dsldesign.fsm.State
name: String = "b"

: dsldesign.fsm.State
name: String = "b"

: ...FiniteStateMachine
name = "machine-1"

: ...FiniteStateMachine
name = "machine-1"

: dsldesign.fsm.State
name: String = "a"

: dsldesign.fsm.Model
name: String ="test-08"

states

machines

states initialinit ialstates

machines

: dsldesign.fsm.Model
name: String ="test-07"

: dsldesign.fsm.FiniteStateMachine
name: String = "SingleMachine"

: dsldesign.fsm.State
name: String = "a"

: dsldesign.fsm.Model
name: String ="test-00"

initialstates

machines

leavingTransitions

: dsldesign.fsm.Transition
input: String = "idle"

: dsldesign.fsm.Transition
input: String = "idle"

: dsldesign.fsm.Transition
input: String = "3"
output: String = "r!"

: dsldesign.fsm.Transition
input: String = "1"
output: String = "o!"

: dsldesign.fsm.Transition
input: String = "2"
output: String = "q!"

: dsldesign.fsm.Transition
input: String = "idle"

: dsldesign.fsm.State
name: String = "c"

: dsldesign.fsm.State
name: String = "b"

: ...FiniteStateMachine
name = "machine-1"

: ...FiniteStateMachine
name = "machine-1"

: dsldesign.fsm.State
name: String = "a"

: dsldesign.fsm.Model
name ="test-02"

target

 target

target

leavingTransitions

targetleavingTransitions

states

machines

states initial

init ial

states

machines

: dsldesign.fsm.State
name: String = "a"

: dsldesign.fsm.State
name: String = "a"

: ...FiniteStateMachine
name = "machine-2"

: ...FiniteStateMachine
name = "machine-4"

: dsldesign.fsm.State
name: String = "a"

:FiniteStateMachine
name = "machine-3"

: dsldesign.fsm.State
name: String = "b"

: ...FiniteStateMachine
name = "machine-1"

: ...FiniteStateMachine
name = "machine-1"

: dsldesign.fsm.State
name: String = "a"

: dsldesign.fsm.Model
name ="test-09"

machinesmachines

initialstates states initial

machines

states initial

machines

states initialinit ialstates

machines

1 def load (name: String) =
2 EMFScala.loadFromXMI[dsldesign.fsm.Model] (s"../dsldesign.fsm/test-files/${name}.xmi")

4 "positive tests" - {
5 "single machine (test-00)" in { C2.checkAll (load ("test-00")) shouldBe true }
6 "two larger machines (test-02)" in { C2.checkAll (load ("test-02")) shouldBe true }
7 "empty model (test-07)" in { C2.checkAll (load ("test-07")) shouldBe true }
8 "names across scopes (test-09)" in { C2.checkAll (load ("test-09")) shouldBe true }
9 }

11 "negative tests" - {
12 "two machines (test-08)" in { C2.checkAll (load ("test-08")) shouldBe false }
13 }

source: fsm.scala/src/test/scala/dsldesign/fsm/scala/constraints/ConstraintsSpec.scala

Figure 5.20: Top: Test cases for Constraint C2: four positive (nos. 0, 2, 7, and 9) and one negative (no. 8). Find the numbers of the test
cases in the name attribute of the Model objects. The XMI files can be found in the code repository at fsm/ test-files/ . Bottom: The

Scala test code for these examples

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/constraints/ConstraintsSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/test-files/

5.5. Quality Assurance and Testing for Static Constraints 183

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala

Figure 5.21: A fragment of a
test-coverage report for tests
of constraints for the fsm
example; Top: a summary of
the statistics, Bottom: detailed
coloring of covered and not
covered code

are loaded and included in Scalatest’s test. Had we not used Ecore, the test
cases in abstract syntax could have been stored as plain values in a GPL,
like we did in Fig. 3.7, or in another standard format for structured data,
for instance JSON or YAML. By using abstract syntax to represent test
cases we decouple the implementation of static checking from concrete
syntax. You can test the constraints before the parser for the language is
ready, which is a common practice in many language projects.

If a static checker is decomposed into many simple independent con-
straints, it may suffice to consider just two test cases for each. Complex
constraints, however, may require many test cases to activate all sub-
expressions. To independently verify that we have tested all constraints, we
can use a test-coverage tool. The top part of Fig. 5.21 shows a report for our
constraints from scoverage,10 covering 71.17% of statements. We do not
reach 100%, as we only implemented tests for Constraints C1–C6, while

10https://github.com/scoverage/ is a tool for Scala (2022/09). Similar tools exist for other program-
ming languages—another good reason to implement constraint checking in a GPL

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/constraints.scala
https://github.com/scoverage/

184 Chapter 5. Static Semantics

Figure 5.22: Generators of
random correct state machines
that should validate positively.
Lines 1–7 show helper factory
functions, and lines 9–37 show

the actual generators using
Scalacheck’s Gen API

1 def Model (name: String, machines: Seq[FiniteStateMachine]=Nil): Model =
2 val model = factory.createModel
3 model.setName (name)
4 model.getMachines.addAll (machines.asJava)
5 model

7 def FiniteStateMachine (name: String, states: Seq[State], ini: State) ...

9 val genName: Gen[String] = for
10 L <- Gen.choose (1, 30)
11 first <- Gen.alphaChar
12 chars <- Gen.listOfN (L, Gen.alphaNumChar)
13 yield (first ::chars).mkString

15 val genModel: Gen[Model] = for
16 name <- genName
17 M <- Gen.choose (0, 5)
18 machines <- Gen.listOfN (M, genMachine)
19 yield Model (name, machines)

21 val genMachine: Gen[FiniteStateMachine] = for
22 name <- genName
23 S <- Gen.choose (1, 10)
24 states <- Gen.listOfN (S, genState)
25 initial <- Gen.oneOf (states)
26 T <- Gen.choose (0, 20)
27 transitions <- Gen.listOfN (T, genTrans (states, genName))
28 yield FiniteStateMachine (name, states, initial)

30 val genState: Gen[State] = for name <- genName yield State (name)

32 def genTrans (states: Seq[State],gen: Gen[String]): Gen[Transition] = for
33 input <- gen
34 output <- gen
35 source <- Gen.oneOf (states)
36 target <- Gen.oneOf (states)
37 yield Transition (input, output, source, target)

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/generators.scala

the test project contains other examples and code that have not been tested
at the time of the report generation; for instance alternative implementations
of C2 used in this chapter. Unfortunately, branch coverage is very unreliable
for constraints (25%). Coverage tools typically do not detect branches at the
expression level. Branches tend to be defined by conditional statements and
loops, which does not agree well with the functional style of meta-model
constraints. The scoverage tool only finds eight branches in the entire
module (!), most in the code we have not tested. It is useful to inspect the
detailed coverage report. A fragment is shown in the bottom of Fig. 5.21.
There we can see that C1 and C2 have been executed; uncovered code is
highlighted in red.

Automating random testing for constraints. In order to automate test
selection, we generate model instances randomly. This can be conveniently

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/generators.scala

5.5. Quality Assurance and Testing for Static Constraints 185

done using the generator support from property-based testing libraries
such as Quickcheck for Haskell [3], JUnit-Quickcheck for Java, Hypoth-
esis for Python, and FsCheck for F#. We demonstrate the idea using
Scalacheck. Scalacheck uses a generic type to represent generators. A
value of type Gen[A] is a generator of values of type A. Scalacheck provides
ready-made generators for standard types and an API for constructing
complex generators from simple ones. For instance, choose (0, 5) is a
Gen[Int] which produces integer numbers from the interval [0;5), while
listOfN[A](42,g) is a Gen[List[A]] producing lists of up to 42 elements
populated by generator g, if the type of g is Gen[A].11

Generating random abstract-syntax trees structurally resembles parsing,
as it is, in a way, a reverse operation. We instantiate syntax types using
random values from Gen instead of using the structure of an input string.
An example is found in Fig. 5.22. Lines 1–7 define helper factory functions,
used below to build syntax trees. The first creates a Model node with the
given name and a set of machine objects. The second creates a finite-state
machine with a name, a set of states, and an initial state. We create such
convenience factories for all concrete classes of Fig. 3.1 (not shown). Had
we used abstract syntax defined as an algebraic data type (Fig. 3.5), we
would just invoke the type constructors directly. We use the wrappers here
to hide the chatty style of Ecore from the functional API of generators.

The main part of the example is found in lines 9–37. The generator
genName first decides the length of a name (l. 10), then picks a random letter
to be the first character (l. 11) and a list of alphanumeric characters (l. 12),
and creates a string out of this suffix and the previously selected prefix
(l. 13). The generator genModel (l. 15–19) builds a model object by creating
a random name (genName) and adding up to five finite-state-machine objects
(l. 17–19). Each state machine (l. 21–28) is populated with up to ten states,
one of them designated as initial (a mandatory property in the meta-model).
Finally, we generate up to twenty transition objects (l. 26–27) connecting
the states of the same machine to create “well-behaved” models. For this
we pass a set of states to genTrans.

Generation of well-behaved models exploits the partonomy of the meta-
model. The more tree-like the abstract syntax, the easier it is to structure
the generators. In Fig. 5.22, we descend from models, to machines: states
and transitions are generated for each machine separately and connected to
the states of only this machine. For meta-models with complex structures
and dependencies, generating type-correct instances is difficult. In such a
case it might be better to use a solver or a tool like Alloy Analyzer.

Once we have the generators, we can use them in tests. Figure 5.23
shows how to build a simple fuzzer—a tool that feeds random data into
a static checker and tests stability, so whether crashes appear. Here we
test the EMF validator, so the meta-model constraints; later we will show

11Find more generators in the implementation of Gen at https://github.com/typelevel/scalacheck/
blob/1.14.x/src/main/scala/org/scalacheck/Gen.scala, retrieved 2022/09

https://github.com/typelevel/scalacheck/blob/1.14.x/src/main/scala/org/scalacheck/Gen.scala
https://github.com/typelevel/scalacheck/blob/1.14.x/src/main/scala/org/scalacheck/Gen.scala

186 Chapter 5. Static Semantics

Figure 5.23: A simplistic
fuzzer for meta-model

constraints. Among other
things it tests whether our

generator indeed constructs
valid instances in the eyes of

EMF/Ecore

1 "Instances created by genModel validate" in check {
2 Prop.forAll (genModel) { m: Model =>
3 validate (m)
4 .isEmpty
5 .before { EcoreUtil.delete (m) }
6 } }

Figure 5.24: Generators of
“free” models that are likely to
fail validation with Constraints

C1–C6. We use the same
genTransition function as

in Fig. 5.22

1 val genFreeName: Gen[String] = for
2 predefined <- Gen.oneOf ("Name1" , "Name2", "Name3", "Name4")
3 fresh <- Gen.asciiPrintableStr suchThat { !_.isEmpty }
4 name <- Gen.frequency (2 -> predefined, 1 -> fresh)
5 yield name.substring (0, name.size min 60)

7 val genFreeModel: Gen[Model] = for
8 name <- genFreeName
9 numMachines <- Gen.choose (0, 30)

10 machines <- Gen.listOfN (numMachines, genFreeMachine)
11 numStates <- Gen.choose (numMachines, 2*numMachines)
12 states <- Gen.listOfN (numStates, genFreeState (machines))
13 numTrans <- Gen.choose (0, 10*numMachines)
14 // Values below ignored as side effects connect elements to the model
15 _ <- Gen.listOfN (numTrans,genTrans (states,genFreeName))
16 _ <- Gen.sequence { for ma <- machines
17 yield Gen.oneOf (states).map (ma.setInitial) }
18 yield Model (name, machines)

20 def genFreeState (machines: List[FiniteStateMachine]): Gen[State] = for
21 name <- genFreeName
22 owner <- machines.find { _.getStates.isEmpty } match
23 // prioritize machines with no states as owners
24 case Some (m) => Gen.const (m)
25 case None => Gen.oneOf (machines)
26 yield State (name, owner)

28 val genFreeMachine: Gen[FiniteStateMachine] =
29 for name <- genFreeName yield FiniteStateMachine (name, Nil, null)

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/generators.scala

how to test our own constraints. The validate call (l. 3) returns an option
object, containing diagnostic information. If the option is empty (l. 4), the
test passes, as no diagnostics means no failure. Just before finishing the
test, we deallocate the model, so as not to pollute the EMF heap (l. 5). The
framework tests 100 random inputs by default.

The models generated so far strive to be correct: they should validate
successfully with our constraints. Random statically valid models are
extremely useful for testing of the later phases of the tool chain, including
interpreters and code generators. However, to test constraints we also need
negative examples. Figure 5.24 shows another set of generators that are less
conservative and create possibly broken “free” machines, which may violate
Constraints C1–C6 but which observe the meta-model constraints. Testing
constraints requires inputs that validate with EMF or the host language (if us-
ing ADTs), as otherwise the test fails even before we try to run a constraint.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/generators.scala

5.5. Quality Assurance and Testing for Static Constraints 187

1 def consistent (c: Constraint): Prop =
2 Prop.exists (genModel) { m: Model =>
3 c.checkAll (m) before { EcoreUtil.delete (m) } }

5 "C1 is consistent" in check { consistent (C1) }
6 ...
7 "C6 is consistent" in check { consistent (C6) }

9 def falsfiable (c: Constraint): Prop =
10 Prop.exists (genFreeModel) { m: Model =>
11 (!c.checkAll (m)) before { EcoreUtil.delete (m) } }

13 "C1 can be falsifiable" in check { falsifable (C1) }
14 ... source: fsm.scala/src/test/scala/dsldesign/fsm/scala/constraints/ConstraintsFuzzSpec.scala

Figure 5.25: Testing
consistency and falsifiability of
constraints using random
generation of models from
Figures 5.22 and 5.24

We use the same helper factory functions as in Fig. 5.22. A new gen-
erator for names (l. 1–5) ensures that names will contain a wider set of
characters (l. 3) while also allowing for some name clashes (l. 2). To allow
for violations, we abandon the top-down design and create sets of states and
transitions independently of state machines (l. 12 and 15). We then arbitrar-
ily assign them to individual machines (l. 25–26, and 15). This uses the gen-
erator of transitions shown in Fig. 5.22 but with a different set of states, now
coming from multiple machines. The initial states are selected randomly,
disregarding their ownership (l. 16–17). Many of these models should now
fail our constraints, so they can serve as both positive and negative test cases.

We will use positive and negative test cases to establish consistency and
falsifiability of individual constraints. These concepts are very similar to
the concept of consistency of a meta-model (Def. 3.4, p. 69).

Definition 5.28 (Local consistency). A constraint is consistent if there
exists a model for which it holds. A constraint is falsifiable if there exists a
model for which it does not hold.

Consistency and falsifiability are key internal quality criteria for constraints,
independent of the user requirements for the language. An inconsistent
constraint in a static checker prevents the language tool from processing
any models. If a constraint is not falsifiable then it is useless—it does not
contribute to the discriminating power of the checker. It cannot separate the
good and bad inputs. Whenever you create a positive test case (that passes)
you prove that a constraint is satisfiable. Whenever you create a negative
test case (that passes) you prove that a constraint is falsifiable. Figure 5.25
shows how we can use randomly generated test cases to prove that each of
the constraints is both consistent and falsifiable. Consistency requires that
we can find a model that satisfies the constraint (l. 3 and 5–7). Falsifiability
requires that we can find a model that violates the constraint (l. 11 and 13).

The above tests establish local consistency, so that each constraint can
be satisfied on its own. This does not mean that your constraint system is
satisfiable as a whole. To establish global consistency we need a global
version of the function in lines 1–3 (Fig. 5.25) that checks not a given

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/constraints/ConstraintsFuzzSpec.scala

188 Chapter 5. Static Semantics

fsm abstract syntax
(meta-model)

Ecore.ecoreM3

M2

M1 coffeemachine.fsm/.xmi
instance

static well-formedness
constraints for fsm

and

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo›› ‹‹conformsTo››

OCL abstract syntax
(meta-model)

Ecore.ecoreM3

M2

M1 OCL Constraints
(model)

static well-formdeness
constraints for OCL

and

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo›› ‹‹conformsTo››

Figure 5.26: Two views on the language-conformance hierarchy for fsm with constraints and for OCL. Left: statically constraining
instances of fsm. Right: OCL—as a language in the language-conformance hierarchy it is constrained itself

constraint, but all our constraints on the same model—a recommended
exercise. Normally, randomly satisfying many constraints might be difficult,
but here we are using a generator of well-behaved models, so this will work
well. On the other hand, we use the “free” generator for falsifiability tests
(l. 10). Can you explain why?

Testing for consistency and validity are examples of a more general test
strategy, property-based testing, which is well suited for testing language
implementations. We demonstrate it more extensively in Sect. 6.7 by testing
an implementation of a type checker.

Finally, neither scenario testing nor randomized testing of constraints
suffices for quality assurance of static checkers of most languages. Typi-
cally, only when the back-end of the language tool is implemented unmet
requirements on input models manifest themselves as problems with in-
terpretation or code generation. If this happens, you need to add new
regression scenarios to your collection and revise the constraints iteratively.

5.6 Constraints in the Language-Conformance Hierarchy

Constraints define model conformance and thus have a place in the hier-
archy of models and meta-models defined in Sect. 3.9. The left part of
Fig. 5.26 shows how constraints influence the conformance of fsm models:
a valid model is restricted both by the meta-model (types, connections,
and cardinalities) and by constraints specifying the restrictions that cannot
be captured in the meta-model. Some constraints can be moved between
diagrams and a textual constraint specification, for instance cardinalities
can be expressed both ways (cf. p. 176). Language workbenches often store
constraints within the meta-model; for example, Ecore allows this. Then
the entire M2 layer is kept in a single file.

The right part of Fig. 5.26 changes the perspective: a constraint language
(OCL) is also a DSL. In the new hierarchy, the constraints themselves are
at level M1. From the OCL-as-a-language perspective these constraints
are instances or models of OCL. The constraint language has its own
abstract-syntax definition (the OCL meta-model at M2), and its own well-

5.6. Constraints in the Language-Conformance Hierarchy 189

TypedElement

OCLExpression

CallExp LiteralExp IfExp VariableExp TypeExp MessageExp StateExp

FeatureCallExp LoopExp

IteratorExp IterateExp

Variable

State

[0..1] source

[1..1] body
[0..1] initExpression

[1..1] referredVariable

[0..1] referredState
[0..1] iterator

[0..1] result
source: figures/model/OCLPart.ecore

Figure 5.27: A view of the OCL expression meta-model in Ecore syntax, adapted from the OCL Specification, which uses UML [17]

1 context IterateExp
2 inv: self.result.initExpression->size() = 1

Figure 5.28: A result variable
of an IterateExp must have an
init expression (OCL)

formedness constraints (also M2). Yes! The OCL specification from OMG
contains OCL constraints defining valid OCL constraints! [17]

Figure 5.27 shows a fragment of the meta-model from the specification.
The fragment defines OCL expressions. An expression in OCL is typed, and
it is either a call expression, a literal expression, a conditional expression,
a variable expression, a type expression, a message expression, or a state
expression. The figure details the variable expressions. Each variable
expression has a reference to a variable object. The variable object itself
may contain another expression as an initializer (initExpression).

The instances of this meta-model are further constrained. Figure 5.28
shows an example constraint, extracted from the OCL specification. Re-
markably, these constraints do not talk about the elements in the fsm meta-
model, but about the elements in the OCL meta-model, so they restrict not
what state machines we can create, but what constraints we can write.

Exercise 5.19. The Xtext grammar specification language is also a DSL (Fig. 4.6).
It has its own abstract syntax (meta-model) and its own static constraints. Study
the code base of Xtext’s implementation.a a) Identify the concrete-syntax defini-
tion (hint: Fig. 4.19), b) identify the abstract-syntax definition (the meta-model)
(hint: Fig. 4.18), c) identify static validation constraints for the Xtext files.

Further Reading

Our formalization of class diagrams using logic was arguably a bit hasty. For
example, we have not formalized the link between instances of a formula and the
logical constraints. There are many research papers on this topic. We mention a
few that we know first hand, as authors. A small and very concise definition can be

ahttps://github.com/eclipse/xtext-core

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/OCLPart.ecore
https://github.com/eclipse/xtext-core

190 Chapter 5. Static Semantics

found in the work of Fahrenberg et al. [8], or in the definition of formal semantics
for Clafer [14]. Semantically, Clafer can be seen as a simple class-diagramming
language, with a few syntactic devices to keep the models concise. A graph-oriented
perspective, as opposed to a logical view of the same problem of classes vs instances,
is often found in categorical approaches, for instance in the work of Bak et al. [1].

The transitive reduction of a binary relation is a concept dual to the transitive
closure. Instead of inferring new indirect binary connections in a graph, the transitive
reduction removes them from a relation. Much less known than the closure, the
transitive reduction is uniquely defined and well described in graph algorithms; see
for example the book of Valiente [22]. It can be used to uncover the core dependence
structure from a logical description, for example in model synthesis [20, 5].

The standard reference on OCL is the book of Warmer and Kleppe [23]. Chapter
3 presents guidelines for writing constraints (see esp. Section 3.10 on tips and tricks).
A more concise, but still comprehensive, presentation can be found in a 30-page-long
tutorial paper of Cabot and Gogolla [2]. Another tutorial-like resource is the slides of
a course on OCL by Demuth [7]. The current official OCL specification can always
be found at http://www.omg.org/spec/OCL/ (last checked 2022/09). The specification is
not particularly useful for learning OCL. It serves as a reference definition. Chapter
7 (The OCL Language Description) is certainly worth looking into.

The most concise overview text about Alloy is Jackson’s recent ACM Commu-
nications article [10]. His book [12] and the journal paper on Alloy [11] contain
short and interesting critiques of OCL. He contrasts OCL with Alloy, emphasizing
the difference between the relational and logical styles. Besides Alloy, other
modeling languages take constraints to the extreme, most notably FORMULA [13]
and Clafer [1]. The main distinguishing feature of FORMULA is the semantics
based on SMT solving, which allows first-class treatment of numbers (instead of
just simple entities like in Alloy). The main advantage of Clafer is its concise
economical syntax exploiting the strengths of feature modeling. Unlike Alloy,
Clafer allows part-of relationships to be directly specified, like in class diagrams.

Additional Exercises

Exercise 5.20. Which of the following first-order sentences hold for the general-
ization hierarchy shown in Fig. 5.29?

a) ∀x.HybridEngine(x)→ CombustionEngine(x)∧ElectricMotor(x) ?
b) ∀x.DieselEngine(x)→ ElectricMotor(x) ?
c) ∀x.DieselEngine(x)→ CombustionEngine(x)∧ElectricMotor(x) ?
d) ∀x.CombustionEngine(x)∧HybridEngine(x)→ ElectricMotor(x) ?

Exercise 5.21. Recall the OCL higher-order function isUnique (see Tbl. 5.4).
Does the GPL you use for DSL implementations offer this function in the library?
If yes, what is its name and type? Are there differences from OCL? If no,
implement the function yourself and use it later to solve Exercise 5.26c.

Exercise 5.22. A common pattern of binary universal quantification is all-different:
the quantifier enforcing a property for all pairs of different elements in a collection.
Both Constraint C1 and C2 are of this form; see also Fig. 5.16. Implement
forAllDifferent in a language of your choice and use it to simplify C1 by

http://www.omg.org/spec/OCL/

5.6. Constraints in the Language-Conformance Hierarchy 191

Engine

HPower : EInt

CombustionEngine

capacity : EDouble = 0.0

GasEngineDieselEngine

turbo : EBoolean = true

ElectricMotor

HybridEngine
source: figures/model/generalization.ecore

Figure 5.29: An example
generalization hierarchy of car
engine designs

eliminating the precondition and implication. We show Scala implementations
in scala/src/main/scala/dsldesign/scala/emf.scala as an example.

Exercise 5.23. Recall the closure operation from OCL that computes the reflexive
transitive closure of a binary relation specified as a lambda expression. In Scala
the type of the operation would be approximately the following:

def closure[A] (self: Seq[A]) (R: A => Seq[A]): Seq[A]

Implement this operation in Scala or in another GPL. Refactor the implementation
of Constraint C5 in Tbl. 5.2 to use the new operation.

Exercise 5.24. Derived attributes can be implemented using extension methods
in many GPLs, including Scala, Kotlin, Groovy, Xtend, C#, and F#. Implement
isInitial (Fig. 5.11) as an extension method in a GPL of your choice. Consider
using value caching (for instance lazy val in Scala), to compute the derived
value only at the first access and retrieve it from a cache all the subsequent times.

Exercise 5.25. Recall the class types in the diagram of Fig. 5.1 on p. 143. Write the
following commutativity constraints for this diagram (in logic, in a programming
language, or in a dedicated constraint language):

a) Each person is listed in the set of parents of each of its children.
b) Each person should be included in the set of children of its own parents.

Exercise 5.26. Consider a simple meta-model of a language for describing organi-
zation of trips (Fig. 5.30). Write the following constraints for this meta-model:

a) The vehicles associated with a trip need to be large enough to accommodate
all the involved passengers: for each trip, the number of passengers must be
smaller than or equal to the number of seats in the involved vehicles.

b) For each vehicle participating in a trip, a driver is included in this trip that
drives this vehicle, and this person is also in the list of passengers of this trip.

c) Every car is uniquely identified by its registration plate. Write the constraint
first in the context of the Trip class, then in the context of the TripModel
class, avoiding use of allInstances (if using OCL).

Exercise 5.27. Consider the naive meta-model in Fig. 5.31 describing a car.

a) For this meta-model, write the following constraint: Driver’s seat in a car
must be a seat in the same car. Use a formalism of your choice.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/generalization.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala

192 Chapter 5. Static Semantics

Figure 5.30: A trip
meta-model: describing simple

travel arrangements

noOfSeats : EInt

no : EStringgender : Gender = FEMALE
age : EInt

FEMALE
MALE

[1..*] vehicle

[0..*] passengers [1..*] driver

[0..*] trips

[0..*] drives[0..*] person

TripTripModel

Gender Person Car

Vehicle

source: trip/model/trip.ecore

Figure 5.31: A simple model
of structural components of a

passenger car

Car

color : Color = RED

Wheel Color

RED
BLUE
GREEN

Seat

Engine

CombustionEngine ElectricEngine

[4..4] wheel

[4..7] seat [1..1] driverSeat

[1..1] engine

source: figures/model/car.ecore

Figure 5.32: A meta-model for
the core of a flow-based web

composition language

Sink

Node

NamedElement

name : EString

Source

InternalNode

PipesModel

[0..*] predecessors
[0..*] successors

[0..*] nodes

source: pipes/model/pipes.ecore

b) Refactor the meta-model to make driverSeat an attribute in the Seat class
(an attribute). How can you enforce the above constraint now?

c) Refactor the model to split the passenger seats (4..7) and the driver seat into
two separate containments, passengerSeats and driverSeat. How can you
now access the set of all seats? Implement a derived attribute seats that is the
union of values of the two new attributes. Use derived properties if writing
in OCL, extension methods, protected code blocks in Java (in code generated
by Ecore), or just a static function in other languages.

Exercise 5.28. Figure 5.32 presents a meta-model of a flow language for creating
web mash-ups.12 A model consists of nodes, which are further divided into
sources (where the flow starts), internal nodes (processing nodes), and sinks
(rendering nodes, where the flow ends). a) Is the instance shown in Fig. 5.33
a valid instance of this meta-model? b) Figure 5.34 shows a constraint for this
meta-model. Does the instance satisfy this constraint? If yes, argue how each
constraint is satisfied. If no, indicate the violating model elements.

12One such language was Yahoo! Pipes, now defunct, cf. https://en.wikipedia.org/wiki/Yahoo!_Pipes.
Other services use similar languages, for instance: http://www.pipes.digital.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.trip/model/trip.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/car.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.pipes/model/pipes.ecore
https://en.wikipedia.org/wiki/Yahoo!_Pipes
http://www.pipes.digital

5.6. Constraints in the Language-Conformance Hierarchy 193

: Sink

name: String = "toXML"

: InternalNode

name: String = "toHTML"

: InternalNode

name: String = "EnToDa"

: Source

name = "readTwitter"

: PipesModel

name: String = "model"

nodes

nodes

 successors

 predecessors

nodes

nodes

Figure 5.33: An example
instance for the meta-model of
Fig. 5.32

1 // Xtend
2 def boolean constraint (PipesModel it) {
3 nodes.filter [it | it instanceof Source].size == 1
4 && nodes.filter [it | it instanceof Sink].size == 1
5 }

1 // Scala
2 (m: PipesModel) =>
3 m.getNodes.filter { _.isInstanceOf[Source] }.size == 1 &&
4 m.getNodes.filter { _.isInstanceOf[Sink] }.size == 1

source: pipes.scala/src/main/scala/dsldesign/pipes/scala/constraints.scala

Figure 5.34: A class
cardinality constraint for Pipes
in Xtend and Scala

Exercise 5.29. Constrain the meta-model of Fig. 5.32 so that from each Source
instance one can reach a Sink instance (not just an InternalNode) via a series
of successors links. Warning: depending on your constraint language this may
require implementing a depth-first search in the graph (if transitive closure is not
supported explicitly).

Exercise 5.30. For each of the following constraints indicate the preferred context
class in the Pipes meta-model of Fig. 5.32.

a) Every source has exactly one successor
b) An internal node has at least two successors or its name is an empty string
c) There is exactly one node whose name is “abrakadabra”

Exercise 5.31. For the model of Figure 5.1 write the constraint that if person A is
a parent of B then the two persons are distinct. Test the constraint on a negative
example (a violating instance) of your design.

Exercise 5.32. This and several following exercises use the same running exam-
ple of a printing infrastructure in an office. The first meta-model is shown in
Fig. 5.35.13 (Some constraints are shown in the project printers.scala in the book
code repository.) Write the following constraints for this meta-model:

a) Every printer pool that has a fax, also has a printer. Write the constraint
in the context of the PrinterPool class. Create an instance that satisfies the
constraint and verify by running the validation to see whether this is indeed the
case. Create an instance that violates it and verify that this is indeed the case.

b) Write the constraint from the previous point in the context of class Fax. Use
the same positive and negative instances to test it. Reflect on the differences
between the two formulations.

13These exercises are inspired by the submission for the standardization process of Common
Variability Language within the Object Management Group [21]. This part of the submission
has been prepared by Krzysztof Czarnecki, Kacper Bąk, and Andrzej Wąsowski.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.pipes.scala/src/main/scala/dsldesign/pipes/scala/constraints.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers.scala

194 Chapter 5. Static Semantics

Figure 5.35: An example
printer pool model t1

PrinterPool

FaxPrinter
[1..1] pool

[0..1] printer
[1..1] /pool

[0..1] fax

source: printers/model/t1.ecore

Exercise 5.33. Write the following constraint in the context of the printer pool
class in the meta-model of Fig. 5.36: Each printer pool with a fax must have a
printer, and each printer pool with a copier must have a scanner and a printer.
Create two instances, one that satisfies and one that violates the constraint. Test
whether this is indeed the case, by evaluating the constraint on the instances.

Figure 5.36: A class diagram
t2 showing a printer pool with

scanners and copiers

PrinterPoolCopier Scanner

FaxPrinter

[1..1] pool

[0..1] copier
[1..1] pool

[0..1] fax

[0..1] pool

[0..1] scanner

[1..1] pool
[0..1] printer

source: printers/model/t2.ecore

Exercise 5.34. For the meta-model t3 in Fig. 5.37, write the following constraint:
PrinterPool’s minimum speed must be 300 units lower than its regular speed.
Validate the constraint with a positive and a negative test instance.

Figure 5.37: A class diagram
of the t3 meta-model with

attributes

PrinterPool

minSpeed : EInt
speed : EInt source: printers/model/t3.ecore

Exercise 5.35. For the meta-model t4 in Fig. 5.38, write the following constraint
in the context of the class Printer: Every color printer has a colorPrinterHead.
Validate the constraint with a positive and a negative instance.

Figure 5.38: A meta-model t4
which allows that printers have

color printing heads

PrinterPool Printer

color : EBoolean
= false

ColorPrinterHead[1..1] pool

[1..*] printer

[1..1] printer

[0..1] head

source: printers/model/t4.ecore

Exercise 5.36. For the meta-model t5 (Fig. 5.39) formulate a constraint that a
color-capable printer pool contains at least one color-capable printer (in the
context of class Printer). Validate it using a positive and a negative instance.

Figure 5.39: Meta-model t5
with color printer pools and

color printers

PrinterPool

color : EBoolean = false

Printer

color : EBoolean = false[1..1] pool

[1..*] printer

source: printers/model/t5.ecore

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers/model/t1.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers/model/t2.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers/model/t3.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers/model/t4.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers/model/t5.ecore

5.6. Constraints in the Language-Conformance Hierarchy 195

Exercise 5.37. For the meta-model t6 of Fig. 5.40 Write the following constraints:
a) If a printer pool contains a color scanner, then all its printers must be color
printers, b) If a printer pool contains a color scanner, then it must contain a color
printer. Write the constraints in the context of the class PrinterPool, and test
them using negative and positive instances.

Now write both of these constraints first in the context of Scanner and then
in the context of Printer, so four new constraints in total. The last case is
particularly unwieldy. Use the same instances to test the constraints in the new
contexts. Discuss the differences that context changes introduce to constraints.

PrinterPoolPrinter

color : EBoolean
= false

Scanner

color : EBoolean
= false

[1..1] pool

[0..*] scanner

[1..1] pool

[1..*] printer

source: printers/model/t6.ecore
Figure 5.40: Colored scanners
and printers in meta-model t6

Exercise 5.38. For the diagram of Fig. 5.40 assert that there is at most one color
printer in any pool. Test the constraint on a positive and a negative instance.

Exercise 5.39. Figure 5.41 presents a simplified meta-model for SQL queries.

a) Write a constraint that every SelectQuery selects from exactly one table, and
all columns come from the same table. Write it in the context of SelectQuery.

b) Write the same constraint in the context of the Model class.
c) Forget the above. Now a query can draw from several tables, but the tables

used in a query must not have columns with the same names. Write this
constraint in the context of SelectQuery.

d) Now combine both ideas. Write a constraint that all column names accessed
in a single query are unambiguous: in each query, if a column is accessed, no
other column in the referred tables has the same name. Context: SelectQuery.

If you do the exercise in Scala, an empty file for constraints is prepared at sql.
scala/src/main/scala/dsldesign/sql/scala/constraints.scala.

Exercise 5.40. In the meta-model of Fig. 3.20 (p. 81) sub-features are contained in
the subfeatures collection of the parent feature. If features are part of a group,
an object of type Group1 is placed under the feature object with references to the
features that are group members.

a) Write a constraint enforcing that a group can only contain sub-features of its
parent, and not of other features. Figure 5.42 shows a positive and a negative
instance. The latter should be prevented by the constraint.

b) Write a constraint stating that any two groups nested under the same feature
cannot overlap (they have disjoint sets of members).

Exercise 5.41. Write the following constraints over the instances of the Pascal’s
triangle meta-model of Fig. 3.18 on p. 80:

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers/model/t6.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.sql.scala/src/main/scala/dsldesign/sql/scala/constraints.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.sql.scala/src/main/scala/dsldesign/sql/scala/constraints.scala

196 Chapter 5. Static Semantics

Figure 5.41: A meta-model for
a very simple core of select

queries in SQL

SelectQuery

Table

Column

Model

NamedElement

name : EString
[1..*] what

[1..*] from
[0..*] queries [0..*] columns

[0..*] tables

source: sql/model/sql.ecore

Figure 5.42: A good (left) and a bad (right) instance for Exercise 5.40 question a). The right one should be prevented by constraints

a) The value of each internal entry is equal to the sum of the parent values
(internal entries are defined as the entries that have two parents).

b) For every row n, the parents of all the nodes in the row are at row n−1.

Exercise 5.42. Figure 5.43 shows a simple meta-model for relational schemas. Its
instances store primary keys in the primaryKeys collection, and foreign keys in
the refersTo collection. Write a constraint enforcing that a primary key column
cannot also be a foreign key and vice versa. Note that a column is a primary key
and a foreign key at the same time if it is both pointed to from a table, and itself
refers to a table. Test the constraint on a positive and a negative instance.

Exercise 5.43. We would like to constrain instances of the pipes meta-model
(Fig. 5.32) so that each instance has at most one source, at least one sink, and at
least one internal node using the following constraint (Xtend):
def boolean constraint (PipesModel it) {

nodes.exists [it | it instanceof Source]
|| nodes.exists [it | it instanceof Sink]
|| nodes.exists [it | it instanceof InternalNode]

}

Testing shows that this constraint is incorrect. Propose an improvement, in a
chosen constraint language, and validate it with a positive and a negative instance.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.sql/model/sql.ecore

5.6. Constraints in the Language-Conformance Hierarchy 197

IntegerColumn

NamedElement

name : EString

Table

Root
Assume that all columns hold
integers for simplicity. This way
we do not have to model types.

[0..1] refersTo

[0..*] primaryKeys

[0..*] columns
[0..*] tables

source: relationalmodel/model/relationalmodelfk.ecore

Figure 5.43: A simple
meta-model for relational
schemas with tables and
integer columns, primary keys,
and foreign keys

Exercise 5.44. We would like to constrain the instances of the pipes meta-model
(Fig. 5.32), so that each sink has at least one predecessor. We do this using the
following constraint written in the context of class Sink (Xtend):

def boolean constraint (Sink it) { ! predecessors.empty }

Rewrite this constraint in the context of the PipesModel class in a constraint
language of your choice.

Exercise 5.45. The pipes meta-model in Fig. 5.32 contains a flaw. It allows sinks
to be predecessors (while sinks should have no outgoing edges), and sources to be
successors (while sources should have no incoming edges). Fix this by changing
the meta-model. For the repaired meta-model write a constraint enforcing that
successors and predecessors are opposite associations, i.e.„ if a node a is a
predecessor of a node b then b is a successor of the node a, and vice versa (so
formalize in a constraint language the EMF EOpposite mechanism).

Exercise 5.46. We want to restrict the Pipes meta-model of Fig. 5.32 with the two
following constraints (enforced for all sinks and all sources, written in Xtend):

def boolean constraint (Sink it) { !predecessors.empty }
def boolean constraint (Source it) { !successors.empty }

Alternatively these constraints could be incorporated into the meta-model. Revise
the meta-model to contain these constraints directly in the class diagram.

Exercise 5.47. We want to constraint the Pipes meta-model of Fig. 5.32 so that
each instance model has exactly one source and exactly one sink:

def boolean constraint (PipesModel it) {
nodes.exists [it | it instanceof Source] &&
nodes.exists [it | it instanceof Sink]

}

Is this implementation correct? If so, explain why. If not, specify an example
instance on which the English specification and the Xtend constraint differ. To
test this, you may need to translate the constraint into the constraint language
used in your modeling environment.

Exercise 5.48. Recall the constraint presented in Fig. 5.34 for the model of
Fig. 5.32. What are the suitable test cases for testing the constraint? Discuss how
you would select test cases for this constraint (including example test cases).

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.relationalmodel/model/relationalmodelfk.ecore

198 Chapter 5. Static Semantics

Exercise 5.49. Formulate the constraints from Exercise 5.37 in Java, C#, or Python
(in the context of the class PrinterPool), without using anonymous and higher-
order functions. Comment on the difference in writing constraints using functional
(declarative) and imperative style. Which version of the constraint is more
readable? Why?

Exercise 5.50. Recall the key fragment of the Ecore meta-model presented in
Fig. 3.25 (p. 83). Write a constraint that restricts this model’s instances to only
allow generalization of EClasses (eSuperTypes) by other EClass instances in the
same EPackage. It should not be allowed to generalize EClasses across package
boundaries. For simplicity, do not use the full Ecore meta-model, just the one
presented in Fig. 3.25.

Exercise 5.51. The micro Ecore meta-model of Fig. 3.25 on p. 83 allows that
an EClass is a super-type of itself. Write a constraint that disallows that. Only
disallow direct (non-transitive) generalization of an EClass by itself.

Now, strengthen the constraint to also disallow an EClass to be an indirect
(transitive) generalization of itself. You can use the provided helper function
allSuperTypes formulated in Xtend:

1 // Get the set of all super-types of c, including c and classes in r
2 def static private Set<EClass> allSuperTypes(EClass c, Set<EClass> r) {
3 if (r.contains(c)) return r
4 r.add (c)
5 c.ESuperTypes.toSet.fold(r, [r2, t| allSuperTypes(t, r2)])
6 }

Exercise 5.52. Recreate the model of Fig. 5.31 in Alloy. Use Alloy Analyzer to
count how many possible configurations are possible. Then add the constraint
from Exercise 5.27a and repeat the count. Reflect on this result. Has the number
changed? Why?

References

[1] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki,
and Andrzej Wąsowski. “Clafer: Unifying class and feature modeling”. In:
Software and System Modeling 15.3 (2016) (cit. p. 190).

[2] Jordi Cabot and Martin Gogolla. “Object constraint language (OCL): A
definitive guide”. In: 12th International Conference on Formal Methods for
the Design of Computer, Communication, and Software Systems: Formal
Methods for Model-Driven Engineering. SFM. 2012 (cit. p. 190).

[3] Koen Claessen and John Hughes. “QuickCheck: A lightweight tool for
random testing of Haskell programs”. In: International Conference on
Functional Programming. ICFP. 2000 (cit. p. 185).

[4] E. F. Codd. “Relational completeness of data base sublanguages”. In: Re-
search Report / RJ / IBM / San Jose, California RJ987 (1972) (cit. p. 162).

[5] Krzysztof Czarnecki and Andrzej Wąsowski. “Feature diagrams and logics:
there and back again”. In: Software Product Line Conference. SPLC. 2007
(cit. p. 190).

[6] Rina Dechter. Constraint Processing. Morgan-Kauffman, 2003 (cit. p. 175).
[7] Birgit Demuth. OCL (Object Constraint Language) by Example. http://st.inf.

tu-dresden.de/files/general/OCLByExampleLecture.pdf. 2009 (cit. p. 190).

http://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
http://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf

References 199

[8] Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wąsowski. “Sound
merging and differencing for class diagrams”. In: Fundamental Approaches
to Software Engineering (FASE). 2014 (cit. p. 190).

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995 (cit. p. 168).

[10] Daniel Jackson. “Alloy: A language and tool for exploring software designs”.
In: Commun. ACM 62.9 (2019) (cit. p. 190).

[11] Daniel Jackson. “Alloy: A lightweight object modelling notation”. In: ACM
Trans. Softw. Eng. Methodol. 11.2 (2002), pp. 256–290 (cit. p. 190).

[12] Daniel Jackson. Software Abstractions. MIT Press, 2006 (cit. pp. 167, 172,
190).

[13] Ethan K. Jackson and Wolfram Schulte. “FORMULA 2.0: A language for
formal specifications”. In: Unifying Theories of Programming and Formal
Engineering Methods - International Training School on Soft. Eng., Held at
ICTAC’13. Ed. by Zhiming Liu, Jim Woodcock, and Huibiao Zhu. Vol. 8050.
Lecture Notes in Computer Science. Springer, 2013 (cit. p. 190).

[14] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal An-
tkiewicz, Krzysztof Czarnecki, and Andrzej Wąsowski. “Clafer: Lightweight
modeling of structure, behaviour, and variability”. In: Art Sci. Eng. Program.
3.1 (2019), p. 2 (cit. p. 190).

[15] Ralf Lämmel. Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2018 (cit. p. 174).

[16] Stanisław Lem. The Cyberiad: Fables for the Cybernetic Age. Trans. by
Michael Kandel. The original from 1965 in Polish. Harcourt Brace, 1974
(cit. p. 143).

[17] Object Management Group. OCL Specification version 2.2. http://www.omg.
org/spec/OCL/2.2/. 2010 (cit. pp. 167, 189).

[18] Daniel Ratiu, Markus Völter, and Domenik Pavletic. “Automated testing of
DSL implementations—experiences from building mbeddr”. In: Software
Quality Journal 26.4 (2018), pp. 1483–1518 (cit. p. 181).

[19] Francesca Rossi, Peter van Beek, and Toby Walsh, eds. Handbook of
Constraint Programming. Elsevier, 2006 (cit. p. 175).

[20] Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wąsowski, and Krzysztof
Czarnecki. “Efficient synthesis of feature models”. In: Information and
Software Technology 56.9 (2014) (cit. p. 190).

[21] Submitters and supporters. Common Variability Language. OMG Revised
Submission. 2012 (cit. p. 193).

[22] Gabriel Valiente. Algorithms on Trees and Graphs. Springer, 2002 (cit. p. 190).
[23] Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison-

Wesley, 2003 (cit. p. 190).

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/

6 Static Semantics with Type Systems

You won’t find a lemon
in the vegetable container.

the spouse to one of the authors

Type systems are a common complement to structural constraints in enforc-
ing static semantics on a program text, and are particularly useful if you need
to track recursive properties on inductive syntax types (meta-models with cy-
cles over containment relations). In this chapter, our goal is to explain what
types and type systems are, to show how to build a simple one, and to discuss
when it is practical to use a type system instead of structural constraints.

Types are labels decorating an abstract-syntax tree with limited informa-
tion about the meaning (semantics) of the individual syntax nodes. A type
checker does two things simultaneously: (i) it infers the decorations sum-
marizing non-local properties in a syntax tree, and (ii) it enforces structural
constraints on the inferred decorations. This effectively constrains elements
and properties placed arbitrarily far from each other in the syntax graph.

Type systems are particularly useful when types are not a direct property
of a syntax object, but rather emerge from properties of an entire sub-tree of
syntax objects. Thus type systems are a natural generalization of structural
constraints. They add a step of additional information inference before
enforcing structural constraints on the inferred labels. Just like in Sect. 5.2,
in type systems we tend to use constraints that are directly executable
(unlike the constraints in Alloy, which need to be solved). Consequently,
executable structural constraints, presented in the previous chapter, are the
simplest possible type system—one which infers no additional properties
beyond what is found directly in the syntax.

Example 16. Prpro is an example language loosely inspired by the probabilistic
programming framework PyMC.1 PyMC’s interface can be seen as an internal
domain-specific language (Chapter 10) for describing Bayesian probabilistic
models. In contrast, prpro, developed partly in this chapter, is an external
DSL but with similar goals.

In the first example model in prpro, we declare two named constants, x and
y, followed by a normal distribution with the mean parameter µ equal to x+ z
and the standard deviation σ = y.

x = 0

y = 0

u ∼ N (µ = x+ z,σ = y)

A type checker for prpro should flag an error above: the name z is used,
but undeclared. If z was declared, but had an incompatible type instead
(say a string of characters), an error should be raised as well. Importantly,

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_6

201

https://doi.org/10.1007/978-3-031-23669-3_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_6&domain=pdf

202 Chapter 6. Static Semantics with Type Systems

discovering the type of z may require bringing information from far away. The
variable z could have been declared very far away in a large model, with many
other declarations placed before the use. In a complex language, it is typically
impossible to write a static navigation expression over the abstract-syntax tree
that finds the declaration of z and constrains it to exist, exactly because of
this unbounded distance. A type system must perform work that resembles a
transitive closure: traversing and collecting information from the entire model.

In probabilistic programming, parameters of a distribution do not have to
be fixed values. In the example below, x is itself governed by a, so-called,
prior distribution.2 We do not know what is the value of x but we do know that
it is a floating-point number selected from the interval (−1;1) with a uniform
probability density:

x ∼ U (−1,1)

y = 1

u ∼ N (µ = x+ y,σ = y)

This flexibility influences how we think about types in prpro. It turns out that
µ does not have to be a floating-point number, but can also be a probability
distribution over numbers. In the above model, not only x is a distribution,
but also x+ y and µ . The expression x+ y represents the distribution of x
shifted by a constant y. This also means that the normal distribution, in the
last line, is not a pure normal distribution, but a distribution that arises from
averaging normal distributions with means (µ) selected from the distribution
x+ y. To perform reasoning of this kind, we need to traverse the entire slice
of the model that is involved in calculating µ , including declarations of all
involved variables—a perfect task for a type checker.

We assume the following definition of a type system after Pierce [10].

Definition 6.1. A type system is a tractable syntactic method for proving
the absence of selected errors in the construction of a model (program) by
classifying syntax elements according to their relevant properties.

This abstract definition calls for a few explanations. First, a type system
shall be tractable. The algorithm for establishing type correctness should
be efficient, typically polynomial in the size of the input model. This is why
we want to use only executable constraints. Theoretically, we could encode
type correctness as constraints with free variables in a sufficiently rich logic,
but solving them would be very hard; far from polynomial time. Type
checkers typically use algorithms that infer types inductively by traversing
the syntax tree (see the info box on p. 203).

A type checker is not a universal verification tool. It is constructed to
prove limited concrete properties, to detect selected errors. These could be
errors in computation (like memory safety), but could also be errors in how

1https://docs.pymc.io/, accessed 2022/09
2Do not worry about Bayesian models, priors, density functions, etc. if you do not know them.
They do not have major importance in the rest of the book.

https://docs.pymc.io/

203

What Are Inductive Properties?

Exploring a local fragment of a model instance to check
a parent-child property.

In Chapter 5, we focused on requirements (restric-
tions) that could be expressed directly in terms of
meta-model types, through a localized inspection.
For example: A person object should be included
among its child object’s parents. This property is
directly expressible as a computation over a fixed
number of objects, without navigating arbitrarily far
from the context object in the syntax graph.

In contrast, the type of an arithmetic expression is not directly computable by just examining the instance
object in question (an expression node) and a small number of its neighbors. Consider the rule for typing
a binary addition expression: The result of binary addition is an integer if both of its arguments are
integers. This rule, similarly to the other constraints we considered before, can be split into two parts:

Premises (inductive): Both sub-expressions evaluate to an integer number
Conclusion (structural): The result of binary addition is an integer

To establish that the conclusion holds, we first need to establish the premises. Often, and also in this
case, enforcing the premises may require exploration of an arbitrary large abstract-syntax tree, using the
same rule applied to a smaller part of the model. What if the left operand is an addition expression itself?
And what if the left operand of the left operand is an addition again? You can see that we might be
dealing with an arbitrary large sub-tree whose type is not directly known. We shall apply the same typing
rule to smaller and smaller sub-expressions, until we hit the leaves (constants and variable references),
where we can decide with certainty that their type is integer, without invoking the rule recursively.

An inductive property is a property which requires multiple recur-
sive checks of itself on decreasing pieces of syntax. In language
implementation, we usually encounter mutually recursive induc-
tive properties—sets of rules that recursively invoke each other.
Establishing that they hold requires exploring arbitrary large
parts of the instance. This resembles reflexive transitive closure.
Indeed, transitive closure is an example of an inductive property.

We use structural induction, which differs from mathematical
induction you may recall from high school. Mathematical
induction derives facts for natural numbers if they hold for
smaller numbers. Structural induction establishes that a
property holds for a syntax tree if it holds for smaller sub-trees.
The process terminates, since at every inductive step we are
considering smaller trees, until we arrive at basic terms, which
can be typed non-inductively (without further recursion).

Establishing an inductive property may
require exploration of arbitrary large sub-
trees of an AST.

the model instance is structured—most useful for non-behavioral languages.
For instance, for a modeling language of electrical circuits we could imagine
a type system which ensures that alternating current (AC) is not connected
to direct current (DC) ports, or two AC ports with the wrong voltage.

Type checking is a syntactic method that operates directly on the syn-
tax tree, or an instance of a meta-model, without building complex and

Chapter 6. Static Semantics with Type Systems

204 Chapter 6. Static Semantics with Type Systems

Figure 6.1: An example
prpro model in abstract
syntax. We build a type

checker for such models in this
syntax

1 val example1: Model = List (
2 Data ("x", VectorTy(17, PosFloatTy)),
3 Data ("y", VectorTy(17, FloatTy)),

5 Let ("Beta0", Uniform (CstI (-200), CstI(200))),
6 Let ("Beta1", Uniform (CstI (-200), CstI(200))),
7 Let ("sigma", Uniform (CstF (0), CstI (100))),

9 Let ("y",
10 Normal(
11 mu = BExpr (
12 BExpr (VarRef ("Beta1"), Mult, VarRef ("x")),
13 Plus,
14 VarRef ("Beta0")),
15 sigma = VarRef ("sigma"))
16)
17) source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/testCases.scala

expensive representations. It works by classifying syntax elements, labeling
them with discrete information representing a property, for instance “this
expression will produce an integer value,” or “this wire carries DC current.”

Type checking is most used for algebraic DSLs and languages with
expressions. In expression languages, a model fragment is built from
hierarchies of atoms and operators, and then an inductive definition is
natural: we can locally reason about the types of larger expressions based
on the types of smaller expressions. In contrast, the structural first-order
constraints discussed in Chapter 5 are best suited for properties that are
local, and related to types of direct connections in the abstract syntax. If a
property is natural to write as an executable constraint over abstract syntax
without types then avoid constructing a type system altogether.

In this chapter, we develop and reflect upon the basics of a type system for
prpro, our small Bayesian modeling language. Once you have an abstract
syntax for your language, there are three parts of a type system that need
to be developed: (i) the language of types, (ii) the typing hierarchy, for
languages that need sub-typing, and (iii) the type-checking algorithm. We
go through all of them in order below, using examples in Scala and Java
with Ecore. The examples are easy to recast in any other modern GPL.

6.1 Abstract Syntax

We develop the running example in two styles: object-oriented (using
Ecore and Java) and functional (using Scala and its algebraic data types).
Figure 6.1 shows a simple prpro model example in the abstract syntax in
Scala, itself defined in Fig. 6.2. Figure 6.3 shows the corresponding meta-
model in Ecore. Both definitions use the same type names and relations. A
Model is an ordered list of Declarations binding values to names (l. 31). A
declaration is an abstract type, with two concrete realizations (l. 8). Either
we declare (Let) a binding of a name to an expression value, or we declare a
named data set (Data). To keep the example small, prpro lacks a mechanism

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/testCases.scala

6.2. The Language of Types 205

1 abstract trait NamedElement:
2 val name: String

4 trait Typeable:
5 def getTy: Ty
6 private def setTy (ty: Ty): Ty

8 enum Declaration extends NamedElement:
9 case Let (name: String, value: Expression)

10 case Data (name: String, ty: VectorTy)

12 sealed abstract trait Expression extends Typeable

14 enum Distribution extends Expression:
15 case Uniform (lo: Expression, hi: Expression)
16 case Normal (mu: Expression, sigma: Expression)

18 final case class BExpr (
19 left: Expression,
20 operator: Operator,
21 right: Expression
22) extends Expression

24 final case class VarRef (name: String) extends NamedElement, Expression
25 final case class CstI (value: Int) extends Expression
26 final case class CstF (value: Double) extends Expression

28 enum Operator:
29 case Plus, Minus, Mult, Div

31 type Model = List[Declaration]
source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt.scala

Figure 6.2: Algebraic data
types representing the abstract
syntax of prpro, a simple
probabilistic modeling
language. See also Fig. 6.3

to acquire the data, such as a URI or a path to a file. We only specify the type.
Expressions, used in let-bindings, are divided into: Distribution expres-
sions, binary expressions (BExpr), and simple expressions. In prpro we
can combine distributions: so we can use distributions as elements in expres-
sions. For example, we can compute a sum of distributions, or use distribu-
tions as values for parameters of other distributions (so-called prior distribu-
tions). The simple expressions are constant literals (both integer and floating
point) and variable references, which refer to the expression or data set
bound to a name. We expect that a variable is bound before it is referenced.

6.2 The Language of Types

Types are typically defined inductively. This means that simple values
are described by simple types, complex values have complex types, and
complex types are created from simpler types. Thus types are themselves
expressions! Indeed, they are instances of another language—the type
language. A type language is an abstraction of the language we apply
types to, the typed language, here prpro. It follows the same core structure,
but leaves out many details inessential for the property tracked by the

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt.scala

206 Chapter 6. Static Semantics with Type Systems

Model

Declaration

NamedElement

name : EString

Expression

ty : Ty

Distribution

Let

Data

 ty : VectorTy

Uniform Normal

BExpr

operator : Operator = Plus

VarRef

CstI

value : EInt

CstF

value : EDouble = 0.0

Operator

Plus
Minus
Mult
Div

[0..*] decls

[0..1] referencedVar

[1..1] value [1..1] lo

[1..1] hi

[1..1] mu

[1..1] sigma

[1..1] left

[1..1] right

source: prpro/model/prpro.ecore

Figure 6.3: An Ecore meta-model for prpro that follows a similar design to the ADTs in Fig. 6.2

type system. The process of typing is the process of abstracting model
syntax elements by the type language elements. Designing a type language
amounts to a systematic inspection of the meta-classes of the typed language,
asking what should be inferred about them, and what could be left out.

Since types are a language, we can specify their syntax using a meta-
model or algebraic data types. Figures 6.4 and 6.5 show the abstract syntax
for prpro types. Prpro has integer and floating-point values. In a proba-
bilistic modeling language, we may want to control the ranges of numeric
values and constants, so that we can distinguish distributions that generate
positive values only, or parameters (like standard deviation) which only
take non-negative values. Also, we might want to pay special attention to
numbers between zero and one (probabilities), and whether a probability of
zero is allowed for a given expression location. This leads to the following
set of simple numeric types: integers, non-negative integers, naturals, floats,
non-negative floats, probabilities, and positive probabilities. In Fig. 6.4,
these are defined in lines 3–5; in Fig. 6.5 in the enumeration SimpleTyTag.

Composite types are defined as enumeration cases in Scala (lines 7–9 in
Fig. 6.4) and as concrete classes in Ecore (the bottom part of the diagram in
Fig. 6.5). Prpro includes binary expressions, distribution expressions, and
declarations of named variables bound to distributions and data sets. What
types of values can arise from these constructs? Binary expressions will
have types arising from the combined sub-expressions. Obviously, if the sub-
expressions have simple types (for instance they are integer constants), then

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro/model/prpro.ecore

6.2. The Language of Types 207

1 sealed abstract trait Ty

3 enum SimpleTy extends Ty:
4 case IntTy, NonNegIntTy, NatTy, FloatTy,
5 NonNegFloatTy, PosFloatTy, ProbTy, PosProbTy

7 enum CompositeTy extends Ty:
8 case VectorTy (len: Int, elemTy: SimpleTy)
9 case DistribTy (outcomeTy: SimpleTy)

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/types.scala

Figure 6.4: An ADT
representing a type language
for prpro, a simple
probabilistic modeling
language. See also an Ecore
definition of the type language
in Fig. 6.5

Ty

SimpleTy

tag : SimpleTyTag = INT

SimpleTyTag

INT
NON_NEG_INT
NAT
FLOAT
NON_NEG_FLOAT
POS_FLOAT
PROB
POS_PROB

CompositeTy

VectorTy

len : EInt

DistribTy

[1..1] outcomeTy[1..1] elemTy

source: prpro/model/types.ecore

Figure 6.5: An Ecore
meta-model for the language
of types for prpro that follows
a similar design to the ADTs in
Fig. 6.4

the expression can inherit a simple type. What if we combine two distribu-
tion expressions? We shall obtain a distribution! What if we refer to a named
data set? It is convenient to interpret data sets as vectors (VectorTy) of data
elements. We want to track how long the vectors are, and what is the type
of elements. For simplicity, we only admit vectors of simple types. In the
developments below, we assume that a vector’s length is greater than one.

A prpro executor needs to distinguish distributions from simple values,
as a different execution machinery is needed for them. Another composite
type, DistributionTy, summarizes the type of the elements a distribution
generates. To keep the language simple we only allow distributions over
simple types. We require that all vectors in prpro have constant fixed size,
so we cannot use a distribution to specify a vector length. We see a vector
as a special case of a distribution for which we also have observation data
from experiments. When we manipulate a distribution and a vector we
simply promote them to the results of manipulation of their element types.

To summarize, we construct a type language as a simplification (ab-
straction) of the typed language, considering what properties of the input
elements we want to track. In our example, we track value ranges and
lengths of vectors. The type language is implemented using the same
mechanism as the abstract syntax of the typed language. In many simple
languages, types do not have to be part of the language syntax. For
statically typed languages, however, we need to allow users to include
type annotations in models and programs. We typically also need to be able
to print error messages, which may require pretty-printing type expressions.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/types.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro/model/types.ecore

208 Chapter 6. Static Semantics with Type Systems

Figure 6.6: Sub-typing
hierarchy for simple types in

prpro. There is an edge from
type t1 to type t2 in the graph
iff t1 is a direct sub-type of t2,

written t1 ⊑ t2

Float

Int

NonNegInt

Nat

NonNegFloat

PosFloatProb

PosProb

This means that we also need a concrete syntax for types. One just includes
them in the grammar definition of the typed language. Since defining the
concrete syntax for types is not different from defining it for any other parts
of the language, we skip the details in this chapter.

6.3 Type Hierarchy

Most type systems define a notion of refinement or substitutability. Substi-
tutability means that when a model expects a value of a type t1 at a certain
syntactic location, it will also work correctly (or be meaningful) for any
value of a sub-type t2 of t1 at this location [6]. For example, a probabilistic
model written in prpro shall allow an integer number to be assigned where
a floating point is required. More interestingly, we can use a probability dis-
tribution over values instead of a simple value in an arithmetic expression.

The simple types of prpro are organized in a hierarchy by inclusion
between the sets of values they represent; a common, but not the only
possible, criterion. See Fig. 6.6. Smaller types (like Prob representing prob-
ability) are below larger types (like NonNegFloat representing non-negative
floating-point values). In the graph, we move downwards to sub-types and
upwards to super-types. The lines going upwards connect types representing
increasing sets of values. The largest simple type in our hierarchy is Float,
and it includes Int as a sub-type, written Int⊑ Float. In prpro, we will
allow an integer at any position when a floating-point number is required.
Similarly, positive probability is a more precise type than both probability
(Prob) and positive floating-point numbers (PosFloat).

Formally, we interpret Fig. 6.6 as a partial order on simple types. The
nodes positioned higher are bigger in the order, and the ⊑ symbol means “di-
rectly below in the graph.” We generalize this for nodes that are not directly
adjacent in the graph. We write ⊑∗ for the reflexive transitive closure of the
relation ⊑. Thus t1 ⊑∗ t2 means that t1 and t2 are connected by a directed
path in the graph and the former lies below the latter; t1 begins and t2 ends a
directed path. Types that are not connected by a directed path are incompara-
ble and their values cannot be substituted, for instance Prob and PosFloat.

6.3. Type Hierarchy 209

After defining a sub-typing hierarchy for simple types, we need to do the
same for composite types: distributions and vectors. The main idea in prpro
is that we can refine (substitute) values of simple types by distributions (to
change usual calculations into calculations on random variables). Let us
formalize these intuitions as sub-typing rules.

Each of the rules below has three parts: a name (in parentheses to the
left), the premise (above the line), and the conclusion (below the line).
The premise defines the condition that must be satisfied for the rule to
be applicable. Multiple terms in a premise are interpreted conjunctively—
they must all be satisfied. For instance, the premise of the very first rule,
SSIMPLE, requires that two types, t1 and t2, are simple and that the former
is a sub-type of the latter. Then the conclusion is that t1 is a sub-type of
t2 also in our general sub-typing relation. We use the slanted inequality
symbol (⩽) for the sub-typing ordering between arbitrary types, not just
simple types. Do not confuse this symbol with the usual inequality symbol
(≤) representing the less-than-or-equal ordering on numbers. Here are all
the sub-typing rules, with more commentary below:

(SSIMPLE)
t1, t2 simple t1 ⊑∗ t2

t1 ⩽ t2

(SDIST-1)
t1 ⊑∗ t2

Distrib(t1)⩽ Distrib(t2)
(SDIST-2)

t1 ⊑∗ t2
Distrib(t1)⩽ t2

(SVECT-1)
l1 ≥ l2 t1 ⊑∗ t2

Vector(l1, t1)⩽ Vector(l2, t2)
(SVECT-2)

t1 ⊑∗ t2
Vector(l, t1)⩽ t2

The rule SVECT-1 relates vector types. We refine a vector type by sub-typing
its element type and by ensuring that the refining type does not admit shorter
vectors. This means that if a context in a model needs l2 values of type t2,
then it will be able to operate on a prefix of a longer data set of l1 elements,
where each of the elements is also of type t2 (because t1 ⊑∗ t2). It might just
ignore the excessive data elements. Note that the ordering on element types
is consistent (in the same direction) as the ordering on vector types, while
the ordering on lengths is inverted. The formal name for this phenomenon
is type parameter variance. We say that element type here is a co-variant
parameter of vector type (it refines in the same direction as the containing
type), while length is contra-variant (it changes in the opposite direction).

A distribution type refines another distribution type if their element types
are also sub-types (SDIST-1, co-variant). A distribution over elements of
type t1 cannot produce any values that a distribution of type t2 would not be
able to produce, at least in principle. The rules SVECT-2 and SDIST-2 rule
handle the most controversial choice in the type system of prpro: it admits
refinement of a simple type by a distribution type or a data set type. We want
to allow a probability distribution or data in a location where a simple value
is normally used in an expression. A distribution expresses uncertainty

210 Chapter 6. Static Semantics with Type Systems

Figure 6.7: A Scala
implementation of the inductive

definition of the sub-typing
relation from p. 209

1 def isSubTypeOf (t: Ty): Boolean = (this, t) match
2 case (t1: SimpleTy, t2: SimpleTy) => // (SSimple)
3 t1.superTys.contains (t2)
4 case (VectorTy (l1, t1), VectorTy (l2, t2)) => // (SVect-1)
5 l1 >= l2 && (t1 isSubTypeOf t2)
6 case (VectorTy (l1, t1), t2: SimpleTy) => // (SVect-2)
7 t1 isSubTypeOf t2
8 case (DistribTy (t1), DistribTy (t2)) => // (SDist-1)
9 t1 isSubTypeOf t2

10 case (DistribTy (t1), t2: SimpleTy) => // (SDist-2)
11 t1 isSubTypeOf t2
12 case _ => false source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/types.scala

Figure 6.8: A fragment of the
Java implementation of a
sub-typing relation, rules

SSIMPLE and SVECT-1 shown
on p. 209

1 public static Boolean isSubTypeOf (Ty t1, Ty t2)
2 {
3 class SubTypeSwitch extends PrproTypesSwitch<Boolean> {
4 public Boolean defaultCase (EObject t) { return false; }
5 }
6 return new SubTypeSwitch () {
7 public Boolean caseSimpleTy (SimpleTy t1) { // (SSimple)
8 return new SubTypeSwitch () {
9 public Boolean caseSimpleTy (SimpleTy t2)

10 { return superTyTags (t1).contains (t2.getTag ()); }
11 }.doSwitch (t2);
12 }
13 public Boolean caseVectorTy (VectorTy t1) { // (SVect-1)
14 return new SubTypeSwitch () {
15 public Boolean caseVectorTy (VectorTy t2) {
16 return t2.getLen () <= t1.getLen ()
17 && isSubTypeOf (t1.getElemTy (), t2.getElemTy ());
18 }
19 }.doSwitch (t2);
20 }
21 ...
22 }.doSwitch (t1);
23 } source: prpro.java/src/main/java/dsldesign/prpro/java/Types.java

about this value. A vector represents experimental data about this value.
What does it mean for the type system? We allow any simple type t1 to be
refined by a distribution generating values, or a data set containing values,
of any of its sub-type. One can argue that distributions are a super-type of
simple values, and we could organize this type system “upside-down.” We
feel that this results in a more complex type system, and does not follow
the intuitions of Python’s frameworks that inspired this example.

Exercise 6.1. Is Float the top type in the sub-typing hierarchy? In other words, is
any other type in prpro a sub-type of Float? Analyze the sub-typing rules above
to answer the question, and provide a proof, or a counterexample.

Exercise 6.2. Does there exist a single maximal type in the type hierarchy for
prpro defined above? What is this type? If not, give examples of two types, and
argue that they do not have a common super-type.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/types.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/Types.java

6.4. Climbing the Type Hierarchy to Merge Compatible Types 211

Implementation. Figure 6.7 shows the implementation of the above rules
in Scala, following the same order as in the formalization above. In Line 3,
we query a simple type for the set of its super-types to test the relation ⊑.
Since the set of simple types is small and finite in prpro, we hard-coded the
set of super-types (superTys) for each simple type. The remaining cases
closely follow the formal definition of the rules.

The Java implementation is more complex. We show a fragment of it in
Fig. 6.8. The structure and logic of the implementation is the same, but,
since Java does not have pattern-matching expressions, we use a dynamic
dispatch pattern with a Switch class generated by Ecore’s infrastructure
from the meta-model of the type language. This pattern allows computations
to be split based on the abstract-syntax types. In lines 3–5, we define a
switch instantiation for the task of sub-type checking. The idea is that a call
to SubTypeSwitch.doSwitch produces a Boolean value: true if and only
if t1 is a sub-type of t2. The implementation of doSwitch is provided by
Ecore. We need to define how to handle the individual cases of switching.
We first override the method for the default case, stating that if no other
rule has applied, then the sub-typing does not hold (Line 4). Then we
instantiate the switch (lines 6–23), defining pattern matching on type t1.
Since this pattern does not support matching on pairs of types, we use nested
instantiations, which makes things harder to read. Still the traceability to
the formal rules is fairly direct. The full implementation is available in
prpro.java/src/main/java/dsldesign/prpro/java/Types.java.

6.4 Climbing the Type Hierarchy to Merge Compatible Types

We are typing an expression e1 + e2 where the sub-expressions are of types
t1 and t2. What can we say about the type of the resulting value? A type
checker decides which types are allowed to be combined. If the types
are compatible, it computes their most precise common super-type. For
instance, when adding an integer to a floating-point value, the result should
be a floating-point number. The type describing the combination of types
t1, t2 is known as the join, the least upper bound, or simply the lub of t1
and t2 in the sub-typing ordering. We write it as t1 ⊔ t2 in formal notation.

Without going into the mathematical details, the least upper bound of
two simple types t1 ⊔ t2 is the type located above both t1 and t2 in the graph
of Fig. 6.6, connected by directed path from both types, and the closest
such (no shorter path can be found to a shared ancestor). We basically start
climbing the hierarchy simultaneously from t1 and t2, and continue until
the two paths meet. Figure 6.9 shows that NonNegFloat is an upper bound
of PosProb and Nat, but the least upper bound is PosFloat:

PosProb⊔Nat= PosFloat (6.2)

A bigger question is: How shall we join composite types? For languages
with simple type systems, like most DSLs, we can read this almost directly
from the sub-typing rules. Since composite types are inductively defined,

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/Types.java

212 Chapter 6. Static Semantics with Type Systems

Figure 6.9: The type
NonNegFloat is an upper

bound of types Nat and
PosProb but PosFloat is the

least upper bound

Float

Int

NonNegInt

Nat

NonNegFloat

PosFloatProb

PosProb

this definition is going to be recursive. We are going to consider all possible
pairings of types t1 and t2 and discuss how they should be combined, if at
all. The definition is shown below in Eq. (6.3). We begin with simple types
as a special case of composite types—we already know how to join them.
We just delegate to Fig. 6.6.

t1⊔ t2 =

t1 ⊔ t2 in Fig. 6.6 if t1, t2 are simple
Vector(min(l′, l′′), t ′⊔ t ′′)if t1 = Vector(l′, t ′), t2 = Vector(l′′, t ′′)
Distrib(t ′1 ⊔ t ′2) if t1 = Distrib(t ′1), t2 = Distrib(t ′2)

t ′⊔ t ′′

if t1 = Distrib(t ′), t2 = Vector(l, t ′′)
if t1 = Vector(l, t ′), t2 = Distrib(t ′′)
if t1 = t ′ simple, t2 = Distrib(t ′′) or Vector(l, t ′′)
if t2 = t ′′ simple, t1 = Distrib(t ′) or Vector(l, t ′)

(6.3)

The second case specifies how to unify two vector types. The length of
resulting vectors is the smaller of the lengths of the two joined types. The
element type is a super-type (a lub) of the element types of the joined
vectors. Compare these type transformations with the premises of rule
SVECT-1. The longest vector that is no longer than both l′ and l′′ has
min(l′, l′′) elements. The newly created vector type is a super-type for the
combined types, but still as low in the sub-typing hierarchy as possible.
This is consistent with the substitutability principle. We guarantee that
any vector value correctly typed will offer at least as many elements as its
type announces, perhaps more. Also, all the elements in the vector will be
typeable with the inferred element type of the vector.

Similarly, when joining two distribution types (the third case), we join
the element types and obtain a new distribution type that is the closest
super-type as per rule SDIST-1. The final case deals with sub-typing along
SDIST-2 and SVECT-2. The cases join a distribution type with a simple
type, or with the element type of another complex type, resulting in the
closest simple type above in the sub-typing hierarchy. Compare this with

6.4. Climbing the Type Hierarchy to Merge Compatible Types 213

1 val topologicallySortedSimpleTys = List (NatTy, PosProbTy,
2 NonNegIntTy, PosFloatTy, ProbTy, IntTy, NonNegFloatTy, FloatTy)

4 def lub (t1: SimpleTy, t2: SimpleTy): SimpleTy =
5 topologicallySortedSimpleTys
6 .find { t => (t isSuperTypeOf t1) && (t isSuperTypeOf t2) }
7 .getOrElse (null) // find always succeeds (null should never be used)

9 def lub (t1: Ty, t2: Ty): Ty = (t1, t2) match
10 case (ty1: SimpleTy, ty2: SimpleTy) =>
11 lub (ty1, ty2)
12 case (VectorTy (len1, ty1), VectorTy (len2, ty2)) =>
13 VectorTy (len1 min len2, lub (ty1, ty2))
14 case (DistribTy (ty1), DistribTy (ty2)) =>
15 DistribTy (lub (ty1, ty2))
16 case (VectorTy (len1, ty1), ty2) =>
17 lub (ty1, ty2)
18 case (DistribTy (ty1), ty2) =>
19 lub (ty1, ty2)
20 case (ty1: SimpleTy, DistribTy (ty2)) =>
21 lub (ty1, ty2)
22 case (ty1: SimpleTy, VectorTy (len2, ty2)) =>
23 lub (ty1, ty2) source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/types.scala

Figure 6.10: A Scala
implementation of join (the
least upper bound) for prpro:
for simple types (lines 4–7)
and for composite types (lines
9–23)

rules SVECT-2 and SDIST-2, where a simple type is a super-type of a
vector or a distribution if it is a super-type of its element type.

Implementation. For a small known set of simple types, like in prpro,
the least upper bound can be pre-computed for any pair of simple types.
However, pre-computing might be annoying in early design stages, when
types are changing a lot. Every time you add or modify a type the pre-
computed map needs to be updated. To avoid this problem, we sacrificed
efficiency for flexibility, and proceed like with sub-typing of simple types:
we sorted the types topologically and used a simple algorithm that walks
up the sorting until we find the first node that is a super-type of both types
combined. This way, we only needed to update the topological sorting in
one place when updating the simple type hierarchy during development.

Figure 6.10 presents the implementation of type joining for both simple
and composite types for the abstract syntax as a Scala ADT. In lines 1–
2, we define a topologically sorted list of simple types. As expected,
FloatTy is the very last type on the list, as it is also the top type in the
hierarchy of simple types in Fig. 6.6. (Why is NatTy first?) Lines 4–7
show the implementation of lub for simple types: find the first type on
the topologically sorted list that is a super-type of both t1 and t2. This
operation should never fail, so Line 7 never returns null. It is still needed
to satisfy Scala’s type checker, because the find function on lists returns
an option of the identified value, not the value directly.

Finally, the lub function for general types (including the composite types)
is shown from Line 9 onwards. It computes a join of two types. Lines
11–23 implement the cases in Eq. (6.3). In Line 11, we delegate to the lub

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/types.scala

214 Chapter 6. Static Semantics with Type Systems

Figure 6.11: A Java
implementation of join for

simple and composite types in
prpro; Only the case

corresponding to SVECT is
shown

1 protected static final List<SimpleTy> topologicallySortedSimpleTys =
2 List.of (natTy, posProbTy, nonNegIntTy, posFloatTy, probTy, intTy,
3 nonNegFloatTy, floatTy);

5 public static SimpleTy lub (SimpleTy t1, SimpleTy t2)
6 {
7 return topologicallySortedSimpleTys
8 .stream ()
9 .filter (t -> isSuperTypeOf (t,t1) && isSuperTypeOf (t,t2))

10 .findFirst ()
11 .orElse (null); // never used
12 }

14 public static Ty lub (Ty t1, Ty t2)
15 {
16 class LubSwitch extends PrproTypesSwitch<Ty> {
17 private EObject ty;
18 public LubSwitch (EObject t) { this.ty = t; }
19 public Ty get () { return this.doSwitch (ty); }
20 }

22 return new LubSwitch (t1) {
23 ...
24 @Override public Ty caseVectorTy (VectorTy t1)
25 {
26 return new LubSwitch (t2) {
27 @Override public Ty caseVectorTy (VectorTy t2)
28 {
29 SimpleTy ty = lub (t1.getElemTy (), t2.getElemTy ());
30 int len = Math.min (t1.getLen (), t2.getLen ());
31 return vectorTy (len, ty);
32 }
33 @Override public Ty caseSimpleTy (SimpleTy t2)
34 { return lub (t1.getElemTy (), t2); }
35 @Override public Ty caseDistribTy (DistribTy t2)
36 { return lub (t1.getElemTy (), t2.getOutcomeTy ()); }
37 }.get ();
38 } ... source: prpro.java/src/main/java/dsldesign/prpro/java/Types.java

fuction for simple types. In lines 12–15, we apply the simple type join
to element types, and the minimum function to the vector sizes. In lines
16–23, we promote one of the sides to a simple type, if none of the previous
types matches, which effectively implements the last case from Eq. (6.3).

Figure 6.11 presents a small fragment of the corresponding Java im-
plementation. Like in the Scala version, we first define the topological
order of simple types (lines 1–3). Then we implement least upper bound
for them, by searching the topological sorting. Finally, in lines 14–38,
we show a fragment of the implementation of lub for composite types.
Like in Fig. 6.8, we use the switch pattern classes generated by the Ecore
infrastructure. First, we specialize the switch class for the lub computation
(16–20). This computation is total, so we do not need to override the default
case—another case would always match first. Second, we instantiate it and

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/Types.java

6.5. A Type-Checking Algorithm for Expressions 215

show how to merge two vector types, with the core operations in lines 27–32.
The entire implementation is available from the book’s code repository.

6.5 A Type-Checking Algorithm for Expressions

We have discussed relations between types (sub-typing) and operations
on types (least upper bound). We are ready to talk about the actual type
checking—relating types not to each other but to values and expressions in
prpro models. We first assign basic numeric types to literals and constant
values. To assign the most precise type for a constant we find the type placed
lowest in the hierarchy of Fig. 6.6 that still contains the constant. A positive
integer literal (say 42) is assigned type Nat. Zero (0) is typed NonNegInt,
as non-negative integers are the smallest of our types that include zero.
All remaining integer literals (-42) are typed Int. Similarly, a positive
floating-point literal (3.14) is typed as a positive float, unless it is a zero
(0.0), which is typed as a probability. Any other number between zero and
one is typed as a positive probability. Literals below zero (-3.14) are typed
Float. This is summarized in the following definition:

type-of(c) =

Nat if c is a positive integer literal
NonNegInt if c = 0
Int for other integer literals
Prob if c = 0.0
PosProb for c ∈ (0;1]
PosFloat for floating-point literal c > 1.0
Float for other literals

(6.4)

We assigned types to literals and constants directly, because their meaning is
fixed and context-independent. In contrast, the type of an expression refer-
ring to variables depends on properties of these variables. A sum x+y gives
an integer if both x and y are integers. It is a float if both x and y are floating-
point variables. Consequently, we need to know the types of smaller sub-
expressions to type larger expressions. To capture this contextual informa-
tion, we will store types of known variables in a typing environment denoted
with the Greek letter Γ. An environment (Γ) is simply a map from variable
names to types. It carries the information about types declared at various
locations in the model to the places were the variables are used. Since prpro
has data declarations as well as let-declarations, we need two environments.
We will use Γ for storing the types of let-bindings, and will use ∆ to store
the types of the associated data sets. This way, we can have the same names
both defined in the model (let, Γ) and supported by the data (data, ∆).

The typing rules assign a type (t) to each prpro expression (e) in typing
environments (Γ and ∆). We will use the following ternary typing judgement
to state this formally and concisely:

Γ,∆ ⊢ e : t (6.5)

216 Chapter 6. Static Semantics with Type Systems

Like before, we will use this judgement in inference rules relating premises
(above the line) and conclusions (below the line). We begin introducing
the rules with the two simplest cases, the constant literals and variable
references. The first rule below, CONST, defines the type for a constant c
invoking Eq. (6.4). The second rule, VAR-REF-DATA, types a reference to
a data set. The premise checks what type has been assigned to the variable
name in the environment ∆ and simply returns that type. The final rule,
VAR-REF-LET, types a variable reference using a previous let-binding,
provided that there is no corresponding data set (so data declarations have
precedence in this type system). There is no other way to type a variable
access in prpro. If a variable has not been typed (assigned) before accessing
we will not be able to type it, which will result in a type error:

(CONST)
c is a literal

Γ,∆ ⊢ c : type-of(c)
(VAR-REF-DATA)

∆(name) = t
Γ,∆ ⊢ name : t

(VAR-REF-LET)
∆(name) is undefined Γ(name) = t

Γ,∆ ⊢ name : t

The type of a binary arithmetic expression is inferred from the types of its
sub-expressions. This means that a sum of floats will remain a float, and
a sum of integers will remain an integer:

(BEXPR)
Γ,∆ ⊢ e1 : t1 Γ,∆ ⊢ e2 : t2 t = t1 ⊔ t2

Γ,∆ ⊢ e1 ⊕ e2 : t

The typing rule BEXPR above is unsound for some of our simple types.
“Unsound” means that it can be used to conclude a type for a value that is
inconsistent with the meaning of that type. Two examples:

1. Since 1 is of type Nat and 42 is Nat the typing rules allow us to conclude
that ‘(1 - 42): Nat’ (the result should be Int)

2. Since ‘0.6: PosProb’ and ‘0.42: PosProb’ we can conclude that ‘(0.6
+ 0.42): PosProb’ (it should be PosFloat; probability cannot exceed 1).

There are several ways to make this rule sound. Perhaps the easiest is to
assign a larger type than the least upper bound (respectively Int and Float)
for results of the expression. This will make a workable type system, but
we will loose all the fine granularity of numeric types that we so carefully
designed. A more complex, but a more precise solution is to write a rule
for each operator and numeric type separately. For instance, we do know
that a sum of two natural numbers is a natural number, but for a difference
we can only promise that it is an integer.

Exercise 6.3. Design a solution for this problem, and sketch the typing rules to
return these types instead of t1 ⊔ t2 for the binary expression case.

Implementation. Figure 6.12 presents a Scala implementation of the rules
BEXPR, CONST, VAR-REF-DATA, and VAR-REF-LET (Lines 5–23). The

6.5. A Type-Checking Algorithm for Expressions 217

1 type Result[+T] = Either[String,T]

3 def tyCheck(tenv: TypeEnv, denv: TypeEnv, expr: Expression): Result[Ty] =
4 expr match
5 case BExpr (left, operator, right) =>
6 for
7 t1 <- tyCheck (tenv, denv, left)
8 t2 <- tyCheck (tenv, denv, right)
9 yield expr.setTy (lub (t1, t2))

11 case CstI (n) if n > 0 => Right (expr.setTy (NatTy))
12 case CstI (0) => Right (expr.setTy (NonNegIntTy))
13 case CstI (_) => Right (expr.setTy (IntTy))
14 case CstF (0.0) => Right (expr.setTy (ProbTy))
15 case CstF (x) if x > 0.0 && x <= 1.0 => Right (expr.setTy (PosProbTy))
16 case CstF (x) if x > 1.0 => Right (expr.setTy (PosFloatTy))
17 case CstF (_) => Right (expr.setTy (FloatTy))

19 case VarRef (name) =>
20 denv.get (name)
21 .orElse (tenv.get (name))
22 .map (expr.setTy)
23 .toRight (s"Undeclared variable ’${name}’")

25 case Normal (mu, sigma) =>
26 for
27 _ <- tyCheck (tenv, denv, mu).ensure (
28 t => t.isSubTypeOf (FloatTy),
29 t => s"Need a sub-type FloatTy for mu but got ’$t’")
30 _ <- tyCheck (tenv, denv, sigma).ensure (
31 t => t.isSubTypeOf (NonNegFloatTy),
32 t => s"Need a sub-type of NonNegFloatTy for sigma but got ’$t’")
33 yield expr.setTy (DistribTy (FloatTy)) ...

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/typeChecker.scala

Figure 6.12: The
type-checking rules for simple
expressions (lines 5–23) of
prpro and for a normal
distribution node (lines 25–33)
implemented in Scala

signature of function tyCheck corresponds to the structure of the typing
judgement in the rules: it relates typing environments (tenv is Γ, denv is ∆),
an expression (expr), and a resulting type (Result[Ty]). The type Result
(Line 1) represents a result of type checking: a prpro type inferred for
an expression or an error message. The first case, implementing BEXPR,
obtains the types of sub-expressions recursively. Then it combines them
using the least upper bound. The use of the for-yield expression of Scala
ensures that failures are propagated: if any of the type-check calls in lines
7–8 fails, then the entire for-yield fails and returns an error message.

Lines 11–17 implement the typing of literals based on the CONST rule
and Eq. (6.4). These cases cannot fail—a type has been defined for any
literal. We wrap the resulting type in the Right case of the Result[Ty].
(The Left case represents a failure.) Lines 19–23 implement the variable
reference rules. First, the typing environment of data declarations (denv, ∆),
a Map[String, Ty], is queried for the type of the variable referred to by
name. This results in a value of type Option[Ty]. If this does not succeed
then the let-bindings environment is queried (tenv, Γ) following the design

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/typeChecker.scala

218 Chapter 6. Static Semantics with Type Systems

Figure 6.13: Selected
type-checking rules for
expressions of prpro

implemented in Java, using the
switch pattern with the

infrastructure generated by
Ecore

1 static class TypeEnvs {
2 public Map<String, Ty> let; // Gamma
3 public Map<String, Ty> data; // Delta
4 ...
5 }
6 static class TyCheckExprSwitch extends TyCheckSwitch<Ty> {
7 protected TypeEnvs env;
8 ...
9 @Override public Ty caseCstI (CstI expr)

10 {
11 Ty result = Types.intTy;
12 if (expr.getValue () > 0) result = Types.natTy;
13 else if (expr.getValue () == 0) result = Types.nonNegIntTy;
14 expr.setTy (result);
15 return result;
16 }
17 @Override public Ty caseBExpr (BExpr expr) throws TypeError
18 {
19 Ty t1 = tyCheck (this.env, expr.getLeft ());
20 Ty t2 = tyCheck (this.env, expr.getRight ());
21 expr.setTy (Types.lub (t1, t2));
22 return expr.getTy ();
23 }
24 @Override public Ty caseNormal (Normal expr) throws TypeError
25 {
26 Ty t1 = tyCheck (this.env, expr.getMu ());
27 if (!Types.isSubTypeOf (t1, Types.floatTy))
28 throw new TypeError (
29 "Need a subtype of FloatTy for ’mu’ but got ’" + t1 +"’");
30 Ty t2 = tyCheck (this.env, expr.getSigma ());
31 if (!Types.isSubTypeOf (t2, Types.nonNegFloatTy))
32 throw new TypeError (
33 "Need a subtype of NonNegFloatTy for ’sigma’ but got ’"
34 + t2 +"’");
35 expr.setTy (Types.distribTy (Types.floatTy));
36 return expr.getTy ();
37 } source: prpro.java/src/main/java/dsldesign/prpro/java/TypeChecker.java

of rules VAR-REF-DATA and VAR-REF-LET (l. 21). The map invocation
stores the type in the annotation of the expression using a side effect for
easy later access (l. 22). Function setTy is declared in Fig. 6.2. Finally,
the option value is converted with toRight to a result of the Right[Ty] if
this is successful. If it fails, toRight (slightly confusingly) creates a failing
instance of Left encapsulating the provided error message. We encourage
you to study the implementations of the normal distribution rule in lines
25-33. We will formalize the typing rule for these expressions below.

Figure 6.13 presents the key part of the corresponding Java implementa-
tion. A helper class TypeEnvs (l. 1–5) implements a pair of typing environ-
ments, for data and let bindings. These are stored in a local field during type
checking (l. 7) and are accessed in the variable reference case, not shown in
the figure. The functions (in l. 9, 17, and 24) process one meta-class from
the meta-model, returning the inferred type. Instead of propagating errors

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/TypeChecker.java

6.5. A Type-Checking Algorithm for Expressions 219

using a special result type (as in our functional Scala example), we opt for
using exceptions here, as a more natural Java idiom. Errors are propagated
through the exception-handling control flow. Otherwise the design is similar
to Fig. 6.12. We use the switch pattern classes of Ecore, providing an
inner class to define visitors for various types, letting the Ecore generated
machinery handle the dispatching based on the types of traversed syntax
nodes. The implementation for BEXPR in lines 17–23 is almost identical to
the Scala version. The implementation of CONST is split into two functions
by the meta-model types; we only show one of them, for integers (l. 9–16).
The entire implementation can be found in our source code repository.

We return to formal typing rules for prpro. The most domain-specific part of
prpro expressions are the constructors of probability distributions. Typing
them resembles typing other expressions, except for the distribution-specific
type requirements for sub-expressions. The following rules formalize how
to type them, both with and without an observation property. Recall that
in prpro we can write a distribution expression just by invoking the name
of the distribution, and providing the parameters. We can use constants and
other variables as parameters, but also other distributions, and data sets.

(NORM)
Γ,∆ ⊢ eµ : Float Γ,∆ ⊢ eσ : NonNegFloat

Γ,∆ ⊢ Normal(eµ ,eσ) : Distrib(Float)

(UNIF)
Γ,∆ ⊢ e0 : t0 Γ,∆ ⊢ e1 : t1 t0 ⊔ t1 ⩽ t t is simple

Γ,∆ ⊢ Uniform(e0,e1) : Distrib(t)

The NORM rule states that a normal distribution expression always provides
a distribution over floats. This is because a normal distribution assigns
non-zero density to any real value. However, for typing to succeed, the type
checker should prove that the mean parameter (eµ) is a float (or a sub-type)
and the standard deviation parameter (eσ) is a non-negative float. The UNIF
rule follows the same pattern, but for uniform distributions. The interesting
aspect here is that we first type the endpoints of the interval (e0,e1), obtain-
ing types t0 and t1. Note that these can be two different types. For instance, if
the expressions are constant literals representing 0.42, and 42, then the first
type is PosProb and the second one is Nat. To infer a single type of the ele-
ments generated by a uniform distribution over this interval, we can find the
smallest simple type that includes the entire interval; in this case PosFloat
(Fig. 6.9). We use the merging described in the previous section (lub) to
find this type in the typing rules for the uniform distribution expressions.

Finally, we need to include automatic up-casting in the typing rules
(which allows any type to be promoted to its super-type):

(UPCAST)
Γ ⊢ e : t1 t1 ⩽ t2

Γ ⊢ e : t2

220 Chapter 6. Static Semantics with Type Systems

The UPCAST rule allows a distribution to be used instead of a floating-point
number for parameters of normal and uniform distributions. In the rules
NORM and UNIF, the types t, NonNegFloat, and Float are simple. UPCAST
exploits the sub-typing (DIST-2) to admit a distribution or a vector type in
the same position. This way a distribution expression type checks even if it
nests other distribution expressions and data set references.
Implementation. Our implementations of type checking of probabilistic
expressions have been shown in Fig. 6.12 (lines 25–33) and in Fig. 6.13
(lines 24–37). In Scala, we use a method ensure implemented in Result[T]
that takes a Boolean predicate on T and a function that formats an error
message (typically both lambda expressions). The ensure function does
nothing if applied to a result that is a failure (just propagates the left value).
Otherwise it checks whether the predicate holds. If it does, ensure returns
the value received, otherwise it formats an error message using the second
argument and returns a failure (left) result with the same message. We show
the type checking for normal distributions in both figures. We check the
conditions one by one in the same order.

When we describe a type system formally, we tend to state properties
declaratively: we specify what values and what types can be matched
together. If you can prove, using the inference rules, that an expression
types with type t, then you can prove the same for any super-type of t
(substitutability). So the type system is non-deterministic.

Exercise 6.4. Study the formal typing rules and propose a small expression in
prpro that can be typed both by Vector(5,PosProb) and by Vector(7,Prob). Prove
both typings using our rules. Store your example for the next exercise.

In an implementation, the rules that update the typing environment have
been made deterministic. When implementing a type checker we seek an
algorithmic presentation, not a relational one. We achieve this by finding
the smallest (the most concrete) type possible for every expression. We
basically implement the most conservative interpretation of the typing rules
and avoid using up-casting whenever it is not strictly needed.

Exercise 6.5. Study the implementation of one of our type checkers for prpro.
What type will actually be returned for your example term from Exercise 6.4?

Finally, our implementation has no case corresponding to the UPCAST rule.
This rule always introduces non-determinism. In the implementation, we
basically replace type constraints (colon in the formal rules) with sub-type
constraints (⩽) to allow relaxation in premises. This is still deterministic,
because the sub-expressions are typed deterministically, and we just need to
check whether their types are appropriate, directly or indirectly. See calls to
isSubTypeOf for example in Line 29 of Fig. 6.12 and Line 27 of Fig. 6.13.

6.6 Type Checking for Models
Process the top-level declarations, and the typing of prpro will be complete.
This task is much easier than type-checking expressions. Each let declara-

6.6. Type Checking for Models 221

1 def tyCheck (tenv: TypeEnv, denv: DataEnv, decl: Declaration)
2 : Result[(TypeEnv, DataEnv)] = decl match
3 case Data (name, ty) =>
4 val denv1 = denv.get (name) match
5 case Some (_) =>
6 Left (s"Data for ’$name’ has already been registered!")
7 case None =>
8 Right (denv + (name -> ty))
9 denv1.map { denv1 => (tenv, denv1) }

11 case Let (name, value) =>
12 val tenv1 = tyCheck (tenv, denv, value)
13 .ensure (
14 t1 => tenv.get (name).isEmpty,
15 t1 => s"’$name’ has already been defined!")
16 .map { t1 => tenv + (name -> t1) }
17 tenv1.map { tenv1 => (tenv1, denv) }

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/typeChecker.scala

Figure 6.14: The
type-checking rules for prpro
declarations, implemented in
Scala. This function has to be
put in a loop iterating over the
entire model to complete the
type checker

tion sets the type of a name to the type of the right-hand-side expression; this
type will be used for typing subsequent references to the variable. Multiple
declarations are checked sequentially. Type checking of the entire model
fails if any of them fails. In the formal rules below, DATA updates the data
set environment ∆0 with the type of a new data set for name. The rule ensures
that name has not been previously defined, and captures the update in ∆1:

(DATA)
∆0(name) is undefined ∆1 = ∆0[name 7→ t]

Γ,∆0 ⊢ data name of type t : Γ,∆1

(LET)
Γ0,∆ ⊢ e : t Γ0(name) is undefined Γ1 = Γ0[name 7→ t]

Γ0,∆ ⊢ let name= e : Γ1,∆

(MODEL)
Γ0,∆0 ⊢ d1 : Γ1,∆1 · · · Γn−1,∆n−1 ⊢ dn : Γn,∆n

Γ0,∆0 ⊢ d1, · · · ,dn : Γn,∆n

where di are declarations

The LET rule, processing variable-binding declarations, resembles DATA,
but infers the type from the right-hand-side expression. Finally, type-
checking the entire model requires that all declarations type-check correctly,
accumulating the types and names in the two typing environments on the
fly (MODEL). A prpro model is well-typed if we can use the above rules to
type all the declarations according to the last rule.

Implementation. Like before, the implementation of the above rules should
ensure determinism. Rule LET should not be satisfied with any type compat-
ible with e, but should obtain the smallest, the most precise compatible type
according to the sub-typing ordering. This makes it easier to reuse variables
and expressions. If someone needs a Float and you give her a Prob, the model

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/typeChecker.scala

222 Chapter 6. Static Semantics with Type Systems

Figure 6.15: The
type-checking rules for

declarations implemented in
Java. This function has to be

put in a loop iterating over the
entire model to complete the

type checker

1 @Override public TypeEnvs caseData (Data decl) throws TypeError
2 {
3 String name = decl.getName ();
4 if (this.env.data.containsKey (name))
5 throw new TypeError ("Identifier ’" + name + "’ already defined!");
6 env.data.put (name, decl.getTy ());
7 return env;
8 }

10 @Override public TypeEnvs caseLet (Let let) throws TypeError
11 {
12 String name = let.getName ();
13 Ty t1 = tyCheck (this.env, let.getValue ());
14 if (this.env.let.containsKey (name))
15 throw new TypeError ("Identifier ’" + name + "’ already defined!");
16 this.env.let.put (name, t1);
17 return env;
18 } source: prpro.java/src/main/java/dsldesign/prpro/java/TypeChecker.java

will still make sense, but not if you give a Float when a Prob is expected.
Fortunately, this is already guaranteed by the implementation of the type-
checking rules for expressions. If the rules for expressions are made deter-
ministic, then the model-level rules are deterministic, too. In the three for-
mal rules above, only LET may introduce non-determinism, and only when
typing an expression. No new non-determinism is introduced at this level.
It is a good exercise to study the rules again to convince yourself about this.

Figures 6.14 and 6.15 show the implementations of LET and DATA. The
former shows the entire implementation, while the latter only the overridden
methods in the switch class for typing declarations. The DATA rule, in both
examples, just checks for repeated declaration, and if no problem is found,
records the declared type in the data set typing map. The LET rule first
obtains the type of the right-hand-side expression. If successful, Line 14
(respectively 13) confirms that the variable has not been defined before.
Either a failure of typing the expression or a repeated declaration of the same
name cause the typing to stop with an error. Finally, the type environment
is extended with a new definition (l. 16 in both figures) and returned (l. 17).

The MODEL rule uses a loop in Java and a fold in Scala (not shown for
brevity). It processes the declarations one by one using the above-defined
functions to build the typing environment. See our repository for details.

Exercise 6.6. Revisit the now complete implementation of the type checker. Which
part needs to be modified to implement the solution to Exercise 6.3? Introduce
the sound rule for binary expressions into the implementation.

6.7 Quality Assurance and Testing Type Checkers

Type systems are often developed using some formal specification (as we
did), which gives the basis for developing systematic tests. To test a type
system implementation, we test each component: each of the sub-typing
rules, each of the join rules, and each of the type-checking rules.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/TypeChecker.java

6.7. Quality Assurance and Testing Type Checkers 223

What Do I Need to Build When Implementing a Type System?
The complexity of a type checker may overwhelm when compared to the terse constraints of Chapter 5.
The diagram below summarizes the components of a typical implementation. Unlike a typical constraint, a
type system examines the entire syntax instance, not just few related objects, to track non-local properties.

The left column, typed language, lists syntax (Chapter 3) and runtime
objects (Chapter 8) related by terms in the typing language (right column).
Types replace values in an abstract interpretation, as if we computed on sets, not on concrete values.

typed language: x + y
typing lang.: Vector (200, Float)

Runtime is when a model is used computationally (not necessarily run).
At runtime, concrete values arise: simple (numbers, strings, enumerations)
and composite (objects, records, arrays, lists). Typically simple values are assigned simple types, and
composite values are assigned composite types. The structure of the value domain is reflected in types.

simple type: Float
composite type: Distrib (Float)

We organize types into a refinement hierarchy resembling inheritance
(sometimes exploited in implementations). If t ′ ⩽ t then any value of type
t should be substitutable by a value of t ′ without causing errors tracked by
the type system. This is often done by making the set of values of t ′ be a subset of values of t.

distribution of non-negative
floats is a float distrib.: Distrib
(NonNegFloat)⩽ Distrib (Float)

When typing expressions, we often combine values of different types
by up-casting them to a common super-type. This operation is captured
by a join operation (least upper bound, LUB) on types, which has to be
consistent with the sub-typing ordering.

NonNegInt ⊔ Prob = NonNeg-
Float and Vector(2,NonNegInt)
⊔ Vector(4,Prob) = Vector(2,
NonNegFloat)

Types of simple literals are described by a direct case split. Inductive rules
are needed if we have literals for composite values, and for expressions. A
judgement decides what is the type of the value returned by an expression
given the syntax of the expression and the context properties captured in a typing environment.

1.0: PosProb and 1: Nat,
x+Normal(0,5): Distrib(Float)
if Γ(x) = Float

Statements, declarations, etc. update a typing context without carrying a
type themselves, and may propagate multiple properties simultaneously.
The typing environment stores information about referenceable properties that needs to be accessed later.

let x=1 ensures that Γ(x) =
Nat if Γ(x) undefined

At the top model-level we ensure the key Boolean property: Does the model type-check or not? We also
store the entire type information collected during typing for use in the language implementation.

224 Chapter 6. Static Semantics with Type Systems

Scenario-driven testing. We create test cases for each rule, attempting
to achieve good decision branch coverage. For each rule, find an input
(abstract-syntax tree) satisfying the premises, and check whether the im-
plementation types it as prescribed. The second column in Tbl. 6.1 shows
examples of such test cases for prpro. For example, the first row has a test
case derived from Fig. 6.6 to check whether the sub-typing implementation
for simple types behaves as expected. The right column shows negative
test cases, so examples of broken inputs to the type checker that violate the
premises of the typing rule. For the sub-typing of simple types in the first
row, we choose two types that are not sub-types in Fig. 6.6.

Often there are more ways to violate a typing rule than to satisfy it. Many
negative test cases are needed to obtain good decision branch coverage.
Remember that a type checker is an error-finding tool, so testing whether
it works is largely testing how it behaves on broken inputs. In the SVECT-1
row of the table, we show a violation of the sub-typing rule for vectors. The

Table 6.1: Selected example test cases for the elements of the type checker; For each formal rule, test how it behaves when the input
satisfies the premises, and when it violates them. Tests are shown in an informal dialect inspired by unit test matchers

rule positive test case negative test case

SSIMPLE PosProbTy.isSubTypeOf (PosFloatTy)
must be (true)

PosProbTy.isSubTypeOf (NatTy)
must be (false)

SVECT-1 VectorTy (42, PosProbTy)
.isSubTypeOf (VectorTy(13,PosFloatTy))

must be (true)

VectorTy (13, PosProbTy)
.isSubTypeOf (VectorTy (42, PosFloatTy))

must be (false)

t1 ⊔ t2 for
simple types

lub (ProbTy, NonNegFloatTy)
must be (NonNegFloatTy)

no negative test (all pairs are unifiable)

t1 ⊔ t2 for
composite
types

lub (VectorTy (10, intTy),
VectorTy (42, probTy))

must be (vectorTy (10, floatTy)

no negative test (all pairs are unifiable)

type-of(t) for
simple types

typeOf(CstF (0.6)) must be (PosProbTy) no negative test (all literals are assigned a type)

VAR-REF-LET VarRef ("x") with
tenv = Map ("x" -> PosProbTy),
denv = Map ()
is of type (PosProbTy)

VarRef ("x") with
tenv = Map ("y" -> DistribTy(FloatTy))
denv = Map ("y" -> VectorTy(50,FloatTy))
fails to type-check

NORM val e = Normal (CstF (0.42), CstF (0.1))
tyCheck (tenv0,denv0,e) must be (FloatTy)

val e = Normal (CstF (0.42), CstF (-0.42))
tyCheck (tenv0,denv0,e) must fail

LET Let("x", BExpr (CstI (1), Plus,
Normal(CstF(0.0),CstF(0.1))))
with tenv = denv = Map() must give
tenv = Map ("x" -> Distrib(FloatTy))

Let ("x", BExpr (CstI (1), Plus,
Normal (CstF (0.0), CstF(0.1))))
with tenv = (Map ("x"-> PosProbTy)
must fail

source: prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala

source: prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypeCheckerSpec.scala

source: prpro.java/src/test/java/dsldesign/prpro/java/TypesTest.java

source: prpro.java/src/test/java/dsldesign/prpro/java/TypeCheckerTest.java

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypeCheckerSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/test/java/dsldesign/prpro/java/TypesTest.java
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/test/java/dsldesign/prpro/java/TypeCheckerTest.java

6.7. Quality Assurance and Testing Type Checkers 225

sub-type is shorter (13) than the super-type (42). Confirm with the SVECT-1
rule that this is indeed a negative test case. Notice that this is not the only
one way to violate SVECT-1. For example, two types of the same lengths
but incomparable element types would fail the sub-typing check, too.

The remaining rows in the table show examples for each rule category
of this chapter: sub-typing for simple types, sub-typing for composite
types, joining simple types, joining composite types, typing literals, and
typing expressions (three rows). You can use this table to see whether you
understand our typing rules or the implementation presented in the chapter.
In an implementation, we incorporate them in automated unit tests and
use them continuously in development. We add to them any regressions
identified later in the project.

Exercise 6.7. Design positive and negative test cases for some of the rules not
shown in Tbl. 6.1: SDIST-1, SDIST-2, BEXPR, SVECT-2, UNIF, and DATA. Add
them to tests for the Scala or Java implementation of the prpro type checker.

Testing the MODEL rule requires a larger input. It can be constructed from
test cases for smaller parts, but it is more beneficial to obtain an independent
test. Take the maximal example designed for testing the parser of your
language, and evolve it into a type-correct example. (Often the maximal ex-
ample for the parser is immediately a negative test case for the type checker.)

Property-driven testing. Scenario-based testing can get tedious when the
different aspects of the language interact with each other, easily leading
to a combinatorial explosion of the test case space. To test sub-typing for
our eight simple types we need 64 test cases, one for each pair. This may
appear overly conservative. For instance, we can easily cut the number of
test cases in half, if we can establish general laws:

sub-typing is
reflexive

forAll { (t: Ty) => t.isSubTypeOf (t) must be (true) }

sub-typing is
anti-
symmetric

forAll { (t1: Ty, t2: Ty) =>
whenever (t1.isSubTypeOf (t2) && t2.isSubTypeOf (t1))
{ t1 must be (t2) }}

sub-typing is
transitive

forAll { (t1: Ty, t2: Ty, t3: Ty) =>
whenever (t1.isSubTypeOf (t2) && t2.isSubTypeOf (t3))
{ t1.isSubTypeOf (t3) must be (true) }}

join is a
super-type of
its arguments

forAll { (t1: Ty, t2: Ty) =>
t1.isSubTypeOf (lub (t1,t2)) must be (true)
t2.isSubTypeOf (lub (t1,t2)) must be (true)

}

join is the
least
super-type of
its arguments

forAll { (t: Ty, t1: Ty, t2: Ty) =>
whenever (t1.isSubTypeOf (t) && t2.isSubTypeOf (t)) {

lub (t1, t2).isSubTypeOf (t) must be (true)
}

} source: prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala

Table 6.2: Examples of
property-based tests for the
prpro type system. Note that
these tests are the same for
any type system. Code
examples use the Scalatest
library, but similar
Quickcheck-style libraries exist
for any mainstream
programming language

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala

226 Chapter 6. Static Semantics with Type Systems

1. For any simple type t we have t ⊑ t
2. For any two simple types, if t1 ̸= t2 we have that if t1 ⩽ t2 then t2 ̸⩽ t1

This is what property-based testing is about. Instead of formulating discrete
inputs, we formulate laws that should hold for large classes of inputs, and
test these laws on many possible random values. Table 6.2 shows five
essential property-driven tests for the prpro type checker. These tests have
been derived from the fundamental properties of the type system that we
want to be able to establish for any type system: namely that sub-typing
with join form a partial order. The first row tests that a type is always a
sub-type of itself, the second that two mutual sub-types must be equal. The
third states that a sub-type of a sub-type is a sub-type as well (transitivity).
The fourth checks whether a join of two types results in a super-type. The
final row tests that the obtained super-type is the smallest possible.

The table uses the syntax of the Scalatest library, but many alterna-
tive libraries exist for all mainstream programming languages (e.g. Junit-
quickcheck for Java,3 hypothesis4 for Python). Property-based testing is
particularly useful for testing highly reusable components that are going
to experience a diversity of inputs, like language tool chains. It helps to
increase test coverage with automation.

The skill of writing property tests resembles writing constraints (Chap-
ter 5). However, we constrain not the syntax of our language but its types
and the behavior of the type checker. If you are used to writing static
semantics constraints, you will easily succeed in writing property-based
tests. Obviously, there are more properties than the generic five that one
could write, also properties that are specific to the implemented language.
We show more in the implementation of prpro in our code repository.

Property-based testing interacts well with scenario-based testing. When-
ever a property-based test fails, the testing framework provides you with
the failure-inducing input. Since the framework is randomized, it is prudent
to store that input as a regression, besides using it for debugging. This way
you will accumulate a collection of test cases quite fast.

Property-based testing needs a way to generate inputs automatically. For
all the types tested by properties, one needs to create generators compatible
with the framework. Figure 6.16 shows the generator for our composite
types. It is an inductive procedure that constructs larger terms from smaller
terms, and uses randomization to decide which sub-types to instantiate.
Similar generators can be implemented for the abstract-syntax trees. They
will become useful again in testing later parts of the language infrastructure,
for instance code generators (Chapter 9).

Exercise 6.8. Write a regression scenario test exposing the unsoundness of our
typing rules (cf. Exercise 6.3). At this stage, we cannot argue for unsoundness
of a typing rule yet. We can show that 0.6: PosProb and 0.42: PosProb leads

3https://github.com/pholser/junit-quickcheck
4https://github.com/HypothesisWorks/hypothesis

https://github.com/pholser/junit-quickcheck
https://github.com/HypothesisWorks/hypothesis

6.8. Types in the Language-Conformance Hierarchy 227

1 val genTy: Gen[Ty] = Gen.oneOf (genSimple, genComposite)
2 val genSimple: Gen[SimpleTy] = Gen.oneOf (topologicallySortedSimpleTys)
3 val genComposite: Gen[CompositeTy] = Gen.oneOf (genVector, genDistrib)
4 val genVector: Gen[VectorTy] = for
5 len <- genInt
6 elemTy <- genSimple
7 yield VectorTy (Math.abs (len % 1000) + 1, elemTy)
8 val genDistrib: Gen[DistribTy] = genSimple.map {ty => DistribTy(ty)}

Figure 6.16: Simplified
generators for the prpro types
to be used to test type system
properties. We are using the
generator framework of the
Scalacheck library, compatible
with Scalatest

Ty

SimpleTy

tag : SimpleTyTag = INT

SimpleTyTag

INT
NON_NEG_INT
NAT
FLOAT
NON_NEG_FLOAT
POS_FLOAT
PROB
POS_PROB

CompositeTy

VectorTy

len : EInt

DistribTy

[1..1] outcomeTy

new SimpleTy { tag = INT }
new SimpleTy { tag = NON_NEG_INT }
new SimpleTy { tag = NAT }
new SimpleTy { tag = FLOAT }
new SimpleTy { tag = NON_NEG_FLOAT }
new SimpleTy { tag = POS_DLOAT }
new SimpleTy { tag = PROB }
new SimpleTy { tag = POS_PROB }

isSubTypeOf

Boolean isSubTypeOf(...)

instances-of

realizes-in-code

Figure 6.17: The subtyping
hierarchy is typically not
implemented using subtyping
in the implementation
language (a shallow
embedding) but it is coded
separately as a function
checking whether values
representing types are related
(a deep embedding)

to (0.6 + 0.42): PosProb, but not that the latter is unsound. We would need to
know how to execute our operators, which we have not implemented yet. However,
we can write a syntactic regression test stating that the type of 0.6+0.42 should
be a super-type of PosFloat. This test will fail until you solve Exercise 6.3.

6.8 Types in the Language-Conformance Hierarchy

The typing and the typed language are easily confused, even more so if
the typing language is a part of the typed language. Also, the types of
your language (prpro) and those of the implementation language (here
Scala, Java, and Ecore) may appear perplexingly similar. It is essential
to draw clear lines and understand how the involved languages and types
relate to each other. In this chapter, we followed the deep embedding
design: the types of prpro are not types of Java or Scala, but they are
values (see Def. 10.7 in Sect. 10.1). Type-checking is just an algorithm
operating on values in the implementation language. It relates values
representing expressions and declarations to values representing types. A
deep embedding is a common choice for implementation of types. A
shallow embedding is the dual pattern, popular in code generators and in
internal DSLs. We define and discuss it in Chapters 9 and 10.

In the implementation of prpro, each simple type is a distinct value
of type SimpleTy, which is a Scala (Java) type representing all simple
types. Figure 6.17 attempts to visualize this for the Java implementation.
The simple types are tags in an enumeration, so they are simple values,
instantiating the enumeration type SimpleTyTag. The class SimpleTy wraps
the enumeration for minor technical reasons. The sub-typing hierarchy of
Fig. 6.6 is not captured by Java sub-typing (inheritance) but it becomes an
association between values. We have implemented this association not as

228 Chapter 6. Static Semantics with Type Systems

Expression

 ty : Ty

Let

BExpr

operator : Operator = Plus

VarRef

 referencedVar : Declaration

CstI

value : EInt

Operator

Plus
Minus
Mult
Div

[1..1] value

[1..1] left

[1..1] right
Ty

SimpleTy

tag : SimpleTyTag = INT

SimpleTyTag

INT
NON_NEG_INT
NAT
FLOAT
NON_NEG_FLOAT
POS_FLOAT
PROB
POS_PROB

CompositeTy

VectorTy

len : EInt

DistribTy

[1..1] outcomeTy[1..1] elemTy

: CstI
value = 42

: Let
name = "x"

: VarRef

: BExpr
operator = Plus

referencedVar

r ight

lef t

: SimpleTy
tag = NAT

: SimpleTy
tag = FLOAT

: DistribTy outcomeTy

instance-of
instance-of

instance-of
instance-of

instance-of instance-of

instance-of

type-of

type-of
type-of

type-of

type-of

refines

Figure 6.18: Relating the typed language (top left), the typing language (top right), the typed language instance (bottom left), and the
actual typing (bottom right). Dashed arrows represent instantiation (conformance), while dotted arrows represent typing

a direct reference but as a function isSubTypeOf that derives the property
from all super-types of each type (Fig. 6.8 line 10, and Fig. 6.7 line 3).

Figure 6.18 extends this overview to abstract syntax of models and
composite types. We use Ecore for this example, which is easier to lay out
visually than Scala. We are interested in typing a simple binary expression
x+42, under the assumption that x is a distribution over floating-point
numbers. We begin with the typed language, shown in the left part of the
figure. The abstract syntax for the example is found in the bottom left corner.
It follows the UML instance specification notation. The top left corner of
the figure shows the relevant fragment of the prpro meta-model (quoting
Fig. 6.3). The vertical dashed arrows connect each abstract-syntax object
with the meta-class it instantiates. This left part of the figure is reminiscent
of Fig. 3.13, except that only two-levels are shown, M1 and M2.

The right part of the figure presents the corresponding hierarchy for the
typing language. The values in the bottom right corner represent types
relevant for the example expression: the simple type of naturals (for the
constant 42) and the distribution over floats (for x and the resulting binary ex-
pression). These values are instances of meta-classes defining the syntax of
the typing language shown in the top-right corner of Fig. 6.18, an exact copy
of Fig. 6.5. Again, the vertical dashed lines mark the instantiation relations.

The dotted horizontal lines visualize the typing relations. At the instance
level (bottom), concrete type values are assigned to each expression term

6.8. Types in the Language-Conformance Hierarchy 229

VarRef, BExpr, and CstI. These lines are reflected at the meta-level (top),
which states that any expression object will be typed by a Ty object, adding
further that constants shall be typed by SimpleTy. At the meta-level no
concrete types are specified. We know that constants must have simple types,
only because there is no way in prpro to write literal values for composite
types. At the meta-level, concrete type assignments cannot be made. The
type checker, operating on the instance level, can assign these types.

Mathematically, both the type-of relation and the instance-of relation are
mappings onto simpler domains. The former maps to the domain of types,
which is smaller and more abstract than the set of all models. The latter
maps onto the meta-model, again a small set of meta-classes and relations.
The former maps onto the types for the implemented language, the latter
maps onto the types in the implementation language.

Further Reading
Programming language researchers have identified many use cases, engineering pat-
terns, and sophisticated design methods for type systems that clearly go beyond the
scope of this book. There are many formal problems to consider when designing a
type system. Does there always exist a unique smallest type describing the value that
can be produced by each expression? Or is the execution of a well-typed program
going to preserve types (subject reduction)? What properties are guaranteed to hold
for well-typed models (soundness)? How to design type systems that do not require
explicit type annotations and support generic functions (parametric polymorphism)
with type inference (solving type-variable constraints)? The classic introductory
text on type systems that goes into considerable detail is the book of Pierce [10].
The goal of Lämmel [5] is closer to ours: to show the basics for application-oriented
readers. Another book, with slightly more details about type systems, but still fairly
efficient, is the programming language implementation book by Sestoft [11].

The goal of many researchers in type system engineering is to depart from manual
implementation of type checkers, to create them automatically from high-level
descriptions, in a way similar to how we generate parsers from grammars. Statix5 [1,
9] is a tool that attempts to bridge type-checking and constraint solving. It provides
a DSL for declarative specification of type correctness. Models in this DSL are
automatically reduced to a constraint-solving problem. Statix is developed within the
ecosystem of the Spoofax6 language workbench [4]. Another tool for declarative def-
initions of type systems (and interpreters), integrated with Xtext, is Xsemantics7 [2].

In prpro, we have developed an entire expression language for the purpose of
the example. Many DSLs use a similar generic expression language. Xbase8 is an
implementation of a rich Java-like expression language with a type system provided
by Xtext. It can be reused in other languages.

We do not teach property-based testing in this book but merely apply it to
language implementations. To learn more about its pragmatics, search online for
tutorials of ScalaCheck, QuickCheck (Haskell), Hypothesis (Python), or Junit-
Quickcheck (Java). Property-based testing is an increasingly popular technique

5https://eelcovisser.org/research/#Statix
6https://www.spoofax.dev/
7https://github.com/eclipse/xsemantics
8https://www.eclipse.org/Xtext/documentation/305_xbase.html

https://eelcovisser.org/research/#Statix
https://www.spoofax.dev/
https://github.com/eclipse/xsemantics
https://www.eclipse.org/Xtext/documentation/305_xbase.html

230 Chapter 6. Static Semantics with Type Systems

that originated with the seminal paper of Claessen and Hughes [3] introducing
the Haskell tool QuickCheck. Reading it is highly recommended. Since language
definitions often have clear expected behaviors, it is natural to formulate laws that the
implementations should adhere to—a natural playground for property-based testing
[8]. Generating meaningful random models and programs remains a challenge, for
instance ensuring that enough of them are well-typed [7].

Additional Exercises

Exercise 6.9. Add vector literals to the abstract syntax of prpro (the possibility of
writing constant literals that represent vectors). Why does the typing hierarchy
not need to be changed with this extension? Expand the typing rules to account
for the new construct, and implement the new rule.

Exercise 6.10. Extend prpro with type-casting, so the ability to force a type of an
expression. For instance, in Scala, we can add a constructor for expressions:

final case class Cast (e: Expression, ty: Ty) extends Expression

From the type-checker’s perspective, a type-casting construct simply changes the
type of the expression e to ty regardless of what the inferred type of e is. Adjust
the type system to account for this new construct and implement the new rule.

This provides a workaround for the weaknesses of the numeric type inference in
prpro. If the type system is unable to prove that a number is positive, the program-
mer may explicitly specify it. Of course, if the programmer is wrong, the model
will be malformed. It would be prudent to insert a runtime check in the interpreter
for prpro, to ensure that the type cast is safe for the value produced by e.

Exercise 6.11. Our type checker accepts inconsistent types of data and variables,
but our intention is that the data set for a variable has the same type as elements in
a distribution type of the same variable. Change the rule LET (p. 221), so that it
behaves like now if there is no data definition for the variable, but if there is a data
set for the variable, the type of elements in the data set has to be a sub-type of the
elements in the distribution type matched. The right-hand side in a let expression
must then be a distribution. See the next exercise for the implementation.

Exercise 6.12. Reimplement the type-checking function for declarations, either in
Scala or Java, so that for LET it behaves like now when there is no data definition
for the variable. If there is a data set for the variable, the type of elements in the
data set has to be a sub-type of the elements in the distribution type matched.

Exercise 6.13. Implement two constraints enforcing the following properties:
a) An expression can only refer to data sets (yielding a vector type locally) in the
very last let binding in the model. The very last entry in the model should be a let
binding. b) If a data set is referred to in a let binding’s expressions, then there has
to be a data set defined for the left-hand side variable in the binding, and both data
sets (vectors) should be of the same size. Note that many interesting constraints
become easy to write when we have inferred types for model elements.

Exercise 6.14. Add a Bernoulli distribution expression to the prpro meta-model
and the type checker. A Bernoulli distribution has one parameter p, which takes
value between zero and one (a probability value), and produces a distribution
of Booleans. For our purposes, make it produce distributions of non-negative

6.8. Types in the Language-Conformance Hierarchy 231

integers (to cover zero and one). Add a suitable type-checking rule for Bernoulli
expressions summarizing the above specification, and implement it in Scala or
Java. Take inspiration from normal and uniform distribution expressions.

Exercise 6.15. Add a Boolean type to prpro and its type system. The most natural
way in a statistical language is to consider Booleans to be integers 0 and 1, as then
we can talk about an average value of a series of Booleans. Thus make Boolean a
sub-type of non-negative integers. Revise the typing rules in Eq. (6.4) accordingly.
If you solved Exercise 6.14 then you can now revise the solution to make the new
Bernoulli expression return a distribution of Booleans.

Exercise 6.16. Add two-dimensional vector types to the type language of prpro
(so two-dimensional arrays, or vectors of vectors) and the typing rule to support it.

Exercise 6.17. (A small project) Add arbitrarily nested vector types to prpro. We
can assume that the multidimensional vector values “enter” the language via the
Data construct (we can still ignore how they are actually specified in external files).
This extension requires revising the language of types, adding the sub-typing
rules, join rules, and the typing rules.

Exercise 6.18. (A small project) Change prpro’s Data bindings for data sets to
include a URL of a CSV file containing the data, instead of a type (Figures 6.2
and 6.3). Implement a simple inference tool that detects the type of the entries in
the CSV file by their syntax and calculates the vector type returned by the type
checker for data bindings based on this information. Integrate this inference into
the type checker (Fig. 6.14) for prpro and test that it works well.

Exercise 6.19. (A small project) Extend the syntax of prpro with normal distri-
butions that take a vector of numbers for the mean parameter mu. Such a normal
expression should produce a vector of normal distributions, one for each value of
the mean. (A “vectorized” distribution construct is common in Python libraries
for probabilistic programming.) Extend the type language to allow vectors of
distributions. Make sure that there is a new typing rule for normal distributions,
and revisit all sub-typing, join, and typing rules for vectors, amending as needed.

Exercise 6.20. (A project) Reimplement the type system for prpro using XSe-
mantics or Spoofax/Statix, and reflect on the added value of using a DSL-driven
(model-driven) tool for type system implementation. When is it beneficial?

Exercise 6.21. (A small project) Revisit the finite-state-machine language from
Chapter 3. Add global numeric variables, expressions (both arithmetic and
Boolean), and assignments to the abstract syntax. Allow adding Boolean expres-
sions as guards on transitions and assignments as actions. A transition is active
and can be taken if the source state is active and the guard condition evaluates
to true. Design a type system that ensures that only Boolean expressions, not
numeric expressions, are used as guards on transitions.

Exercise 6.22. (A project) Design a simple language for electric circuits. Each
wire in a circuit can carry DC or AC power. We have power inputs, and power
outputs. Wires have two ends that can be connected to other wires or junctions.
Junctions connect several incoming wires to outgoing wires. Finally, a frequency
converter (one input, one output) changes incoming AC current into a DC current.
Design and implement a type system which, given a typing environment that
assigns AC or DC current to each input node for the circuit, infers the AC/DC

232 Chapter 6. Static Semantics with Type Systems

current type for every wire and output node. A circuit should fail to type-check if
AC and DC wires are connected without a frequency converter node.

References

[1] Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser,
and Guido Wachsmuth. “A constraint language for static semantic analysis
based on scope graphs”. In: ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM 2016. Ed. by Martin Erwig and Tiark
Rompf. ACM, 2016 (cit. p. 229).

[2] Lorenzo Bettini. “Implementing Java-like languages in Xtext with Xseman-
tics”. In: Symposium on Applied Computing. ACM. 2013 (cit. p. 229).

[3] Koen Claessen and John Hughes. “QuickCheck: A lightweight tool for
random testing of Haskell programs”. In: International Conference on
Functional Programming. ICFP. 2000 (cit. p. 230).

[4] Lennart C.L. Kats and Eelco Visser. “The Spoofax language workbench”.
In: Conference on Object-Oriented Programming, Systems, Languages,
and Applications. Ed. by William R. Cook, Siobhán Clarke, and Martin C.
Rinard. SPLASH/OOPSLA 2010. ACM, 2010 (cit. p. 229).

[5] Ralf Lämmel. Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2018 (cit. p. 229).

[6] Barbara H. Liskov and Jeannette M. Wing. “A behavioral notion of subtyp-
ing”. In: ACM Trans. Program. Lang. Syst. 16.6 (Nov. 1994), pp. 1811–1841
(cit. p. 208).

[7] Jan Midtgaard and Anders Møller. “QuickChecking static analysis proper-
ties”. In: Softw. Test. Verification Reliab. 27.6 (2017) (cit. p. 230).

[8] Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes.
“Testing an optimising compiler by generating random lambda terms”. In:
International Workshop on Automation of Software Test, AST 2011. Ed. by
Antonia Bertolino, Howard Foster, and J. Jenny Li. ACM, 2011 (cit. p. 230).

[9] Daniël A.A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser. “To-
wards language-parametric semantic editor services based on declarative
type system specifications”. In: European Conference on Object-Oriented
Programming, ECOOP. Ed. by Alastair F. Donaldson. Vol. 134. LIPIcs.
2019 (cit. p. 229).

[10] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002
(cit. pp. 202, 229).

[11] Peter Sestoft. Programming Language Concepts. Springer Science & Busi-
ness Media, 2012 (cit. p. 229).

7 Model and Program Transformation

The only thing constant in life is change.

François de La Rochefoucauld

So far, we focused on defining the syntax of DSLs in efficient ways. We
worked with abstract and concrete syntax. We have seen tools that can
transform syntax definitions (meta-models and grammars in our case) not
only into model editors, but into a whole infrastructure for processing
models that adhere to the syntax definition.

The language infrastructure allows users to instantiate languages and
create valid models. It serializes and de-serializes (i.e., parses) models, so
that users can build and process the models through editor tools that conve-
niently support editing models in their concrete syntax. This infrastructure
allows creation of models in dedicated languages and to their manual use for
a variety of purposes, such as documentation, brainstorming, or the sharing
of knowledge among users (e.g., developers, modelers, domain experts, or
business experts)—essentially since we can store valuable data as models.
We can even document the meaning of models textually. However, just
manually using and processing models would limit their power substantially.
In disciplines such as data management, which focus on efficiently storing
data in various forms, this might be sufficient.

Recall that one of our main goals is automation of software engineering
tasks. If we want to automate based on models, we will need to explicitly
express the meaning of models—that is, their semantics—in a way that
automated tooling can use. We already presented ways to explicitly express
the static semantics. In this chapter, we will turn our attention more towards
the dynamic semantics of languages.1 Semantics give meaning to models
and to their languages (i.e., meta-models). We usually define semantics for
languages, which then also gives semantics to all their models.

The standard way to give dynamic semantics to programming languages
(GPLs) or modeling languages (DSLs) is to write an interpreter or a com-
piler. In this chapter, we focus mostly on compilers, which translate models
within or across languages. We discuss interpreters later in Chapter 8.

Transforming software artifacts is a very common task. Consider a
traditional compiler, which processes source code. After recognizing
the syntax, it performs many different transformations to translate the
source code into an instance of another language, such as assembler or
machine language, that can be executed. The instances are merged, split,
optimized, and translated, which the compiler can do because it implements
the language’s semantics. In other words, specifying how models can be

1Recall our introduction to dynamic semantics from Sect. 2.4.

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_7

233

https://doi.org/10.1007/978-3-031-23669-3_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_7&domain=pdf

234 Chapter 7. Model and Program Transformation

translated, transformed, processed, merged, split, and so on gives semantics.
Models often have multiple semantics, but some are more important for the
intended uses of the models than others.

Transforming programs or models is called program transformation
or model transformation. Both are a form of meta-programming, so
programming that treats other programs (or models) as data. In that
sense, it is a more advanced programming activity than usual program-
ming. Program and model transformation are very close, as models and
programs are sometimes hard to distinguish.2 The former is older and
originates from the programming language community, which focused on
building compilers. There, program transformations aim at optimizing
programs, transforming (intermediate) program representations into other
representations, essentially translating within or across languages. Model
transformation originates from the software engineering field and mainly
originates from the need to express software in domain-specific languages.
The idea is to automate software engineering tasks and allow developers to
work on higher levels of abstraction.

Countless publications about model and program transformation exist [39,
21, 70]. They contributed many important concepts realized in dedicated
transformation languages and tools. As we will illustrate, transformations
can be realized in contemporary programming technology as well. In fact,
our experience shows that in practice, transformations are often realized
using ordinary GPLs. Specialized transformation languages often require
experts, who are difficult to hire, and when they leave a company, the
maintenance of these transformations becomes challenging.

In this chapter, we focus on examples, definitions, classifications, prac-
tical guidelines, and quality assurance of transformations. We describe
transformations written in the (arguably) mainstream programming lan-
guage Scala and briefly illustrate some other, specialized transformation
languages. All our transformations could be written in Java as well, but
they would be more verbose. We will even show a transformation written in
C that we found in the Linux kernel (Fig. 7.17), illustrating the verbosity of
transformations when a language does not have convenient transformation
abstractions. On a final note, we use the terms model and program synony-
mously. We could have just used model, but to avoid confusion we still use
program when we talk about program-transformation techniques.

7.1 Technological Spaces

In the book, we largely tried to provide a problem-oriented and conceptual
view of engineering DSLs. But, of course, in practice you will need to
choose an actual implementation technology. We did meta-modeling using
Eclipse’s modeling framework EMF, realized concrete syntax in the EMF-
compatible Xtext framework, and otherwise tried to realize everything else

2Recall our box on models versus programs on p. 29 in Chapter 2.

7.1. Technological Spaces 235

(e.g., static semantics, dynamic semantics, internal DSLs) in an arguably
mainstream programming language—Scala. Over recent decades, many
different technological spaces [41, 24] arose, many of which offer tools
to realize all parts of a DSL. Sticking to one such technological space has
many benefits, especially that the tools interoperate quite well, but it can
also be limiting. You always rely on a vibrant community that keeps the
tools updated, and there can easily be a mismatch between the technological
space of the DSL and the rest of your system, requiring intricate integrations
with glue code and bridges. In this context, our book tries to remain
mainstream as much as possible with Scala, but leverages the powerful
technological spaces for DSL engineering, especially Eclipse’s EMF.

Inspired by Mens and Van Gorp [48], as well as Kurtev, Bézivin, and
Aksit [41], we define a technological space as follows.

Definition 7.1. A technological space is a set of well-integrated concepts,
tools, mechanisms, and languages building upon a common technologi-
cal platform. The platform is determined by a particular meta-modeling
language.

The space can be seen as a working context. It usually has an associated
body of knowledge and a community that shares know-how and contributes
to the space. The meta-modeling language in fact influences the space
substantially. For instance, Ecore is based on class modeling, so you will
see classes and objects together with their different relationships in many
aspects in the space, determining the way of thinking and working within a
space called Modelware.

In this book, so far, we mainly covered the technological spaces called
Modelware and Grammarware. The main reason is that they aim at de-
veloping software, as opposed to spaces such as SQLware, which aims at
managing large data, or XMLware, which aims at exchanging data.

Modelware focuses on object-oriented modeling techniques and arose
from systems and software engineering. The observation was that one
can use object-oriented modeling, specifically class diagrams, to describe
the structure of other models—the terms model, meta-model, and meta-
meta-model were born. Class diagrams are expressive, have a widely
known concrete syntax (we use it throughout the book), and provide an
intuitive modeling paradigm, sometimes called the lingua franca of software
engineering. Originally conceived as a simple language to exchange ideas
and brainstorm, that they became a precise modeling notation that is the
basis of automated tools is actually contested,3 but we believe that this use is
where class diagrams shine when used right, especially when not used to de-
scribe whole systems, but focusing on domain-oriented aspects. Modelware
also became popular due to heavy standardization efforts by the Object
Management Group (OMG) with the MOF (Meta-Object Facility) and

3https://twitter.com/grady_booch/status/1388930413280727042

https://twitter.com/grady_booch/status/1388930413280727042

236 Chapter 7. Model and Program Transformation

UML (Unified Modeling Language) standards. Many model-transformation
technologies exist for Modelware; see Sect. 7.6.

Grammarware focuses on grammar-oriented descriptions of structure and
arose from functional programming. The community interprets grammar
broadly, as a “structural description in software systems” [40], so not
necessarily a grammar in the sense of a parser specification—the latter is
seen as an enriched grammar by proponents of Grammarware. A grammar
should allow creation of instances of different types, should have constructs
to compose the types and the instances into more complex structures, and
should have constructs to describe choices among types and instances.
Algebraic data types belong in this space, as well as context-free grammars,
tree grammars, and graph grammars. Proponents of Grammarware call for
more engineering principles, since grammars—descriptions of structures—
exist in pretty much any software system. Compared to Modelware, a
core difference is that models can describe non-structural aspects (e.g.,
behavior), while grammars are restricted to structure, and meta-models
focus on describing language constructs for modeling, so meta-models
contain grammars, while some grammars are meta-models. This illustrates
that both meta-models and grammars are well suited to describe DSLs,
as we do in this book. Many program-transformation techniques exist for
Grammarware, specifically for algebraic data types; see Sect. 7.6.

Other technological spaces exist in addition to Modelware and Gram-
marware. Lämmel [43] lists the following ones together with their core
technologies: XMLware (e.g., XML, XML infoset, DOM, DTD, XML
Schema, XPath, XQuery, XSLT), JSONware (e.g., JSON, JSON Schema,
JSONata), SQLware (e.g., table, SQL, relational model, relational algebra,
WOL), RDFware (e.g., resource, triple, Linked Data, RDF, RDFS, OWL,
SPARQL, STTL), Objectware (e.g., objects, object graphs, object models,
state, behavior, visitor pattern), and Javaware (e.g., Java, Java bytecode,
JVM, Eclipse, JUnit). They all come with their own transformation tech-
niques, such as XSLT, JSONATA, WOL [22], STTL [18], while in plain
object-oriented development one can use the visitor pattern and recursive
functions to traverse models.

Model transformations operate within or across technological spaces. As
you will see in our examples, the transformation language can easily be in
a different technological space than the models that you want to transform.
We use Scala to transform models expressed in Ecore, which, despite Scala
being close to Java, requires some conversions (mainly of Java collections
to Scala collections). We show that it is not too difficult to bridge these tech-
nological spaces, so that you can stick to arguably mainstream technologies.

7.2 Model-Transformation Case Studies

Let us jump directly into examples to illustrate very common use cases of
model transformations: transforming models along different languages and

7.2. Model-Transformation Case Studies 237

Transition

input : EString
output : EString

NamedElement

name : EString

Model FiniteStateMachine

State

root element

[1..1] target

[0..*] machines

[1..1] initial

[0..*] leavingTransitions [1..1] source

[1..1] machine

[1..*] states

source: fsm/model/fsm.ecore

Figure 7.1: The meta-model
of the fsm language, repeated
from Fig. 3.1

along different versions of one language. In a later chapter, specifically
in Sect. 13.1, we will see another transformation that configures variable
Ecore models based on a configuration.

Case Study 1: From Finite-State Machines to Petri Nets

We first transform models from one format (i.e., language) into another
format (i.e., language). The following is a small, but sufficiently involved
example of translating between meta-models, which we use to demonstrate
the various aspects of transformations.

Recall the fsm language, specifically its meta-model in Sect. 3.3, which
expresses finite-state-machine models. We repeat it here in Fig. 7.1 and
also show an example model in visual syntax for illustration in Fig. 7.2. We
created this syntax using Sirius (cf. Sect. 2.2).4 Our example model is a
finite-state machine of a coffee machine that is operated through coins and
allows the user to select either coffee or tea, and then goes into the state
of brewing coffee or brewing tea. The other transitions among the coffee
machine’s states should be self-explanatory.
Transformation goal. Our goal is to transform fsm models into so-called
Petri nets. The example is inspired from a model transformation by Hinkel
[35]. As Hinkel explains, such a transformation is not too realistic, since
in a real system, either one of the two formalisms is typically used, but not
both. We choose this transformation as our demonstration example, since
the two formalisms are well understood and conceptually not too far apart.

Petri nets [58] is a formal modeling language typically used to describe
processes with parallelism. Without digging into the details and the many
variants and extensions that exist for Petri nets, let us briefly define what a
Petri net is. A Petri net is a directed bipartite graph that contains two kinds
of nodes: places and transitions. Places contain tokens and are connected
with each other via transitions. Petri nets prescribe the way tokens can be
“fired” through transitions from one place to another, thereby simulating the
dynamics of the system that the Petri net models. The exact semantics are
not important for us, and we refer to the literature for details [58].

4The Sirius visual editor definition is available at fsm.sirius.design/description/sirius.odesign in our
online repository.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/model/fsm.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.sirius.design/description/sirius.odesign

238 Chapter 7. Model and Program Transformation

Figure 7.2: A finite-state
machine representing a simple

coffee machine. See also
Fig. 9.17 on p. 353

CoffeeMachine

init
ial

selection

brewCoffee

brewTea

broken

break / machine is broken!

break / machine is broken!

break / machine is broken!

timeout / coin returned; insert coin

done / coffee served. Enjoy!

coin / what drink do you want?

tea / serving tea

coffee / serving coffee

done / tea served. Enjoy!

break / machine is broken

coin / what drink do you want?

break / machine is broken

tea / serving tea

coffee / serving coffee

timeout / coin returned; insert coin

break / machine is broken!

done / coffee served. Enjoy!

break / machine is broken!

done / tea served. Enjoy!

break / machine is broken!

A meta-model for our Petri nets language (referred to as petrinet in the
remainder) is shown in Fig. 7.3, and an example in concrete syntax can be
found in Fig. 7.4. The latter model is actually the result of transforming the
coffee machine model from Fig. 7.2 into petrinet.

Transformation requirements. Our main requirement when transforming
fsm models into petrinet models is that source and target model share the
same execution semantics. In other words, the possible state transitions of a
model should be equal to the possible transitions of tokens through places.
The mapping is relatively simple. For each state in the state machine, there
should be a place with the same name in the Petri net. For each transition in
the state machine, there should be a transition in the Petri net, connecting
exactly the places whose origin-states (identified by names) are connected
in the state machine. There should be an initial token in the place with
the same name as the initial state, and for each end state (i.e., a state that
has no outgoing transition), there should be an additional transition that
throws away a token (realized using a dangling transition, as shown for
place “broken” in Fig. 7.4).

Transformation technology. We implement this transformation in four
languages: Scala, Xtend, QVT-O, and ATL. We discuss the Scala transfor-
mation here, and beyond showing small snippets in Tbl. 7.1 for the other

7.2. Model-Transformation Case Studies 239

Place

tokenNo : EInt

Transition

input : EString

PetriNet

Model

NamedElement

name : EString

root...

[0..*] fromPlace [0..*] outgoingTransitions

[0..*] toPlace [0..*] incomingTransitions

[0..*] places

[1..1] net

[0..*] transitions
[1..1] net

[0..*] petrinets

source: petrinet/model/petrinet.ecore

Figure 7.3: The meta-model
of the simple petrinet
language

languages, we refer to our online repository: fsm.xtend, fsm.qvto, and fsm.atl,
as well as for the full implementation of the Scala transformation fsm.scala
(file FSMToPetriNet.scala). The repository also contains the driver code that
initializes the relevant Ecore library as well as loading the source model
and saving the transformed target model.

Using different technological spaces—Eclipse EMF to represent source
and target models and Scala for the transformation—has some implications.

First, you need to understand that, while we transform models, the
transformation logic is implemented against the languages, more precisely,
the meta-models. So, it is helpful to understand the transformation on
examples, which you can then use to experiment with your implementation
and eventually also validate it. As such, the implementation refers to meta-
classes defined in the meta-models. In our case, these meta-classes are
generated from Ecore models. Since the generator is not available for
Scala, it generates Java classes, so we cannot exploit all the neat features of
Scala, such as pattern matching, for transformations when using the Eclipse
modeling framework (EMF) for handling source and target models.

Second, we need to convert Java collections into Scala collections and
vice versa (see the many .asScala or .asJava. We could to some extent use
Scala implicits, which would need to be declared for various meta-classes
separately and, in our experience, make the transformation code even harder
to maintain and evolve. We use Scala implicits to specify helper functions
(also known as queries), however. Another alternative would of course be
to write the whole transformation in Java, which also offers map and filter
with closures on lists, which we commonly use in our Scala transformation.

Instead of representing the source and target languages and objects
in Ecore and then accessing the generated Java classes from Scala, we
could have represented the languages using ADTs (algebraic data types)
in Scala, more precisely, Scala case classes. This would have avoided
all the .asScala and .asJava calls, but as already discussed above, would
deprive us of all the other benefits of using EMF, such as free persistence
and many other frameworks, such as Xtext. Alternatively, we could have
written the transformation in Java or in one of the dedicated transformation
languages available for the Eclipse EMF technological space (e.g., Xtend,

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.petrinet/model/petrinet.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.qvto
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.atl
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala

240 Chapter 7. Model and Program Transformation

Figure 7.4: The result of
transforming the

coffee-machine state machine
from Fig. 7.2 into a Petri net

initial selection

coin / please select drink

timeout / coin returned; insert coin

brewCoffee

coffee /
serving
coffee

brewTea

tea /
serving

tea

broken

break /
machine

is broken

break /
machine

is broken

break /
machine
is broken

done /
enjoy your
coffee!

done / enjoy your tea!

QVT-O or ATL—which we actually did in our online repository) that
make accessing the models even easier. However, which transformation
language you choose is a not an easy decision and is influenced by many
factors. Mainly, it should integrate well into your system and it should be
a language that allows easy maintenance and evolution. For instance, if
in your organization, there is no expert in the language, or the one expert
might leave the organization, then it is better to make a pragmatic choice
and rather pass on using certain language features, but stick to a mainstream
language, such as Java, that is widely used in your organization. See the
discussion about technological spaces in Sect. 7.1.

Implementing the transformation. Figure 7.5 shows our Scala implemen-
tation. From a first look, you will see that our strategy is to decompose
the overall transformation into Scala methods that take care of different
model parts. We call those parts rules and in Scala put them into methods.
Specifically, we transform states to places with convertState, transitions
with convertTransition, end states to transitions that throw a token away
with convertEndState2RemTrans, and state machines to Petri nets with
convertStateMachine. Beyond two other helper methods (getInitial-
TokenCount and isEndState), which query the models and are used in the
rules, there is just the method run to start the transformation. You will
see that there, we start the transformation by transforming state machines
(instances of the meta-class FiniteStateMachine).

7.2. Model-Transformation Case Studies 241

1 object FsmToPetriNet extends CopyingTrafo[fsm.Model, petrinet.Model]:
2 val pFactory = petrinet.PetrinetFactory.eINSTANCE

4 // We inject some queries over States
5 extension (self: fsm.State)
6 def getInitialTokenCount = if (self.getMachine.getInitial == self) 1 else 0
7 def isEndState = self.getLeavingTransitions.isEmpty

9 def convertState (self: fsm.State): petrinet.Place =
10 pFactory.createPlace before { p =>
11 p.setName(self.getName)
12 p.setTokenNo(self.getInitialTokenCount)
13 }

15 def convertTransition (places: List[petrinet.Place]) (self: fsm.Transition)
16 : petrinet.Transition =
17 pFactory.createTransition before { pnt =>
18 pnt.setInput(self.getInput)
19 pnt.getFromPlace.addAll(places.filter(_.getName == self.getSource.getName).asJava)
20 pnt.getToPlace.addAll(places.filter(_.getName == self.getTarget.getName).asJava)
21 }

23 def convertEndState2RemTrans (places: List[petrinet.Place]) (self: fsm.State)
24 : petrinet.Transition =
25 pFactory.createTransition before { pnt =>
26 pnt.setInput("")
27 pnt.getFromPlace.add(places.find(_.getName == self.getName).get)
28 }

30 def convertStateMachine (self: fsm.FiniteStateMachine): petrinet.PetriNet =
31 pFactory.createPetriNet before { pn =>
32 pn.setName(self.getName)
33 val places = self.getStates.asScala.toList.map(convertState)
34 pn.getPlaces.addAll(places.asJava)
35 pn.getTransitions.addAll(
36 self.getStates.asScala
37 .flatMap(_.getLeavingTransitions.asScala.toList)
38 .map(convertTransition(places))
39 .asJava)

41 // for each end state generate a transition that quashes a token
42 pn.getTransitions.addAll (
43 self.getStates.asScala
44 .filter(_.isEndState)
45 .map(convertEndState2RemTrans (places))
46 .asJava)
47 }

49 override def run (self: fsm.Model): petrinet.Model =
50 pFactory.createModel before {
51 _.getPetrinets.addAll(self.getMachines.asScala.map(convertStateMachine _).asJava) }

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/transforms/FsmToPetriNet.scala

Figure 7.5: Transformation of fsm models to petrinet models in Scala

Rules call other rules explicitly. So, we explicitly encode control flow.
There are dedicated model-transformation languages that do not require

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/transforms/FsmToPetriNet.scala

242 Chapter 7. Model and Program Transformation

this; you just declare rules, and the transformation engine figures out the
best way of applying them. In Scala as a GPL, we need to figure out a
viable strategy ourselves and encode it explicitly in the transformation code.

Let us look at the different parts of the transformation in detail.
At the top (Scala object declaration), see that our transformation is imple-

menting the trait CopyingTrafo[fsm.Model, petrinet.Model], which is a
trait we defined in the book-accompanying libraries (dsldesign.scala.emf)
that we offer to ease the use of Scala. It just defines the run methods. An
alternative trait would be InPlaceTrafo[T], which only takes one meta-
model as a type parameter and, as we will discuss below, just modifies
the model at hand instead of creating a separate transformed “copy” of the
model—as in our example.

Next, the field pFactory holds a reference to EMF’s object instantiation
factory, which is the standard way of instantiating meta-classes defined in
Ecore. It is specific to our target meta-model and is part of the generated
code from our petrinet meta-model defined in Ecore.

Let us now go through the different parts of this transformation, starting
at the bottom, where the entry point is, and then gradually going up.

At the very bottom, the method run is our entry point. We see that it
creates an instance of the meta-class Model, which is the top class in the
partonomy of the meta-model and contains PetriNet classes. So, we need
to instantiate Model first, which will hold instances of the rest of the target
petrinet model. Before we return the newly created Model instance as a
result of the transformation, we need to set its attributes, of which there is
only one in this case: the list of Petri nets. To write this initialization more
concisely we created in the book-accompanying library dsldesign.scala
an operator before, which allows us to avoid introducing local name
bindings.5 So, instead of instantiating Model, assigning it to a local val, and
then setting the attributes, we can avoid that by giving a closure to before,
which will evaluate the closure and then return the instance. In the closure,
we can just run a number of statements to fill the attributes. Observe the
other uses of before in our transformation. However, it only saves two lines
(the val assignment for the name binding, and the return of the instance),
so feel free to just use local name bindings. The actual conversion is then
done using Scala’s map function, which runs convertStateMachine on all
state machines contained in the attribute machines of Model. Note that
we, somewhat awkwardly, need to wrap the mapping into .asScala and
.asJava calls.

Next, the method convertStateMachine works as follows. It uses the
operator before to offer a reference to the newly created instance of a
PetriNet, whose attributes we now set:
• We first set name to the name of the state machine we convert from.
• Then, we convert all states to places. Interestingly, we add a name

binding here and hold the newly created places in a val places. The
5This operator is inspired by the operator => in the transformation language Xtend.

7.2. Model-Transformation Case Studies 243

reason is that we will need to query our mapping of states to places later
again. Here, we actually see a disadvantage of using a GPL instead of
a dedicated model-transformation language, such as QVT-O. The latter
contains a ‘trace model’ that collects and holds the mapping in memory,
so that one can query it retroactively. Holding the collection of places
is our way of emulating a trace model. You will see how we query it
in convertTransition and in convertEndState2RemTrans below. We
then, of course, also add the places to the respective attribute (places) in
our PetriNet instance just created.

• Thereafter, we map transitions. Notice the different structures, that is,
the partonomies, in the meta-models. In the fsm meta-model (Fig. 7.1),
transitions are contained by states, whereas in petrinet (Fig. 7.3), the
transitions are contained by the meta-class PetriNet—this structural dif-
ference complicates our transformation slightly and requires the querying
of our emulated ‘trace model’ (the list places). To actually transform the
transitions, we obtain the list of them by collecting them via the states
and then flattening the list, and then mapping them to Petri net transitions
via convertTransition, passing it the places list.

• Finally, we need to create the pendant of state-machine end states in the
petrinet model, which are dangling transitions (i.e., they quash tokens).
To this end, we obtain all end states by filtering the list of states using the
query isEndState we created as an extension method for the class State6

in the upper part of the transformation. We then map those end states to
dangling Petri net transitions using convertEndState2RemTrans.
The method convertEndState2RemTrans does the conversion we just

discussed. It sets the newly created transition’s attribute input to an empty
string (which means that the transition always fires and then destroys the
token, since there is no other place, so that it is the equivalent to an end
state in a finite-state machine). It then maps the transition’s fromPlace
attribute to the place that corresponds to the end state. Note that here, it
is important that we retrieve the previously created instance of a place
from our emulated ‘trace model’ (the places list) and do not create a new
instance! In dedicated model-transformation languages (e.g., QVT-O), we
would not need to pass such a list of already mapped instances, but could
just query the real trace model for the place instance that the respective end
state was mapped to in another transformation rule.

The method convertTransition converts the transitions and also needs
to look up the places corresponded to by the start and end attributes of the
state-machine transitions that we convert. Specifically, we instantiate a new
Petri net transition, set its attribute input to the input of the state, and then
set the attributes fromPlace and toPlace by looking up the place instances
from our ‘trace model’ (which we passed as an argument to the method)

6Scala extension methods allow adding methods to types that are already defined. Here,
recall that the type State was defined in the meta-model and materialized in the Java classes
generated from the meta-model.

244 Chapter 7. Model and Program Transformation

that correspond to the respective source and target states of the original
state-machine transition.

At the top, the method convertState is probably the simplest mapping
rule. It creates a new Place, sets the name attribute to that of the source
state, and sets the tokenNo (number of tokens in the place) via the query
method getInitialTokenCount defined as an extension of the class State.

Comparison Across Model-Transformation Languages

To illustrate what our transformation from fsm to petrinet looks like
in different languages, including the dedicated model-transformation lan-
guages QVT-O, ATL, and Xtend, Tbl. 7.1 repeats the transformation rule
convertTransition from our first case study (Sect. 7.2) and compares it
with the other languages.

Case Study 2: Transforming Feature Models

A common use case for model-to-model transformations is to translate
between two similar languages (for example, between two versions of the
same tool). Imagine an organization has shipped a modeling tool—here, we
will consider feature models again. Users of the tool have created models
in the language. Now, for some optimization reasons, the organization
changes the language. Any update to the tool shipped to the customers will
need to convert models in the old language into the new version of it.

We discuss such a transformation, but more concisely than the one above,
omitting various details about using Scala to implement a transformation.
So, you should have read Sect. 7.2 before reading this section.

Figure 7.6: A meta-model for
feature diagrams

Model1

NamedElement1

name : EString

Feature1

Group1

OrGroup1XorGroup1

[1..1] root

[0..*] subfeatures

[0..*] groups [2..*] members

source: featuremodels/model/FeatureModels1.ecore

Transformation goal. Our goal is to transform feature-model instances
represented in one meta-model into instances of a slightly modified meta-
model for feature models.

Recall two meta-models for feature models presented in Chapter 3. We
repeat them here in Figures 7.6 and 7.7. In the first meta-model, observe
that sub-features are contained in the subfeatures collection of the parent

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels1.ecore

7.2. Model-Transformation Case Studies 245

Scala: fsm.scala/src/main/scala/dsldesign/fsm/scala/transforms/FsmToPetriNet.scala

def convertTransition (places: List[petrinet.Place]) (self: fsm.Transition)
: petrinet.Transition = pFactory.createTransition before { pnt =>

pnt.setInput(self.getInput)
pnt.getFromPlace.addAll (places.filter (_.getName == self.getSource.getName).asJava)
pnt.getToPlace.addAll (places.filter (_.getName == self.getTarget.getName).asJava) }

We use the operator before (implemented in the book’s library) to assign attributes to the newly created Transition
instance without creating a name binding (e.g., val newTransition = pFactory.createTransition). Since we
need to set the fromPlace and toPlace attributes to already instantiated Place objects, we carry our self-made trace
model in terms of a list places: List[petrinet.Place] and retrieve objects from there. After filtering that list, we
use asJava to convert it to a Java collection used in the EMF API, so that we can add it to the Ecore model.
QVT-O: fsm.qvto/transforms/ToPetriNet.qvto

mapping FSM::Transition::ConvertTransition(): PN::Transition{
input := self.input;
fromPlace := self.source.resolveone(PN::Place);
toPlace := self.target.resolveone(PN::Place); }

QVT-O is also imperative, so the logic is similar to our Scala implementation, but we save the explicit object
instantiation as well as maintaining and carrying over our own trace model. Instead, QVT-O provides methods to
retrieve already instantiated target objects by querying for source objects, or vice versa, from its trace model. Here, we
get the Place object that was created for the State object from the original transition’s source attribute; similarly for
toPlace. One can also retrieve multiple objects for associations with a * cardinality, or retrieve only those that were
transformed by a specific rule. Details on QVT-O are in the books of Gronback [32] and (in German) Nolte [53].
ATL: fsm.atl/transforms/ToPetriNet.atl

rule Transition2Transition{
from t: FSM!Transition
to tr: PN!Transition(

input<-t.input,
fromPlace<-thisModule.resolveTemp(t.source, ’p’),
toPlace<-thisModule.resolveTemp(t.target,’p’)) }

ATL is imperative and declarative. Here we use the declarative style, where one defines a rule, and whenever the
source pattern (after from t:) matches in the source model, the rule is applied. The rule is not explicitly called from
another rule, as opposed to Scala, QVT-O, and Xtend (where we call it in the rule that transforms state-machine
objects to Petri net objects), which makes ATL concise. Like QVT-O, we do not need to explicitly instantiate the target
object, nor to maintain and carry over our own trace model. We access the trace model with the resolveTemp method
provided by the ATL API, but we need to specify the name of the target pattern (’p’), which is defined in some other
matched rule. Detailed documentation about ATL is available on its website: https://www.eclipse.org/atl/documentation.
Xtend: fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/ToPetriNet.xtend

def dsldesign.petrinet.Transition convertTransition(Transition t, EList<Place> places){
pFactory.createTransition => [

input = t.input
fromPlace += places.filter[x | x.name == t.source.name]
toPlace += places.filter[x | x.name == t.target.name]] }

Very similar to the Scala implementation. We use Xtend’s => operator to avoid a local name binding (e.g.,
val pntransition = pFactory.createTransition) for the explicitly instantiated Petri net transition object.
Otherwise, we also maintain and carry over our own ‘trace model’ and query it for the already instantiated Place
objects. We named the parameter t instead of self, which is a reserved keyword. Like QVT-O and ATL, Xtend
is nicely integrated with EMF and uses its collection API, so there is no need to convert from e.g., EList to another
collection type, in contrast to Scala.

Table 7.1: The rule that transforms transitions of a state machine model implemented in four model-transformation languages. The full
Scala implementation is in Fig. 7.5, the others are in the book’s repository

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/transforms/FsmToPetriNet.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.qvto/transforms/ToPetriNet.qvto
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.atl/transforms/ToPetriNet.atl
https://www.eclipse.org/atl/documentation
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/ToPetriNet.xtend

246 Chapter 7. Model and Program Transformation

Figure 7.7: An alternative
meta-model for feature models

NamedElement2

name : EString

Model2 Feature2

Group2

OrGroup2 XorGroup2

[1..1] root

[0..*] solitarySubfeatures

[0..*] groups[2..*] members

source: featuremodels/model/FeatureModels2.ecore

feature. Then, if these features are part of a group, an object of type Group1
is placed under the feature object with references to the features that are
group members. In the second, alternative meta-model for feature models,
which is perhaps simpler, study the relation between classes Feature2
and Group2. This time only solitary features are nested directly under the
parent feature. Grouped features are contained in an object of class Group2.
Compare to the first meta-model, where only a simple reference was used
for members. The advantage of the first meta-model was that it was easy to
access all sub-features—now, we need to combine the set of solitary sub-
features with the members of all groups to compute the set of all children.
On the other hand, in this new meta-model we do not need to write two
important constraints that are already guaranteed by types: (i) in an instance
of the first meta-model, a group should only contain sub-features of its
parent (and not of other features), and (ii) any two groups nested under the
same feature should not overlap (they should have disjoint sets of members).
Remember Exercise 5.40, in Chapter 5, where we asked you to express
these two constraints.

Transformation requirements. Transforming models (i.e., instances) of
FeatureModels1 into models of FeatureModels2 requires mainly copying the
objects and then creating a slightly different partonomy. This transformation
is probably simpler than the one above (Sect. 7.2), but the difference in
partonomy might be a bit tricky. Essentially, the requirements are to copy ob-
jects of type Model1, Feature1, and Group1 (with its sub-classes XorGroup1
and OrGroup1) into respective objects of type Model2, and so on. When
copying the features, specifically when creating the feature hierarchy in
the target model by filling the solitarySubFeatures composition relation,
only those features should be added that are not part of a group. Instead,
these should be added to the members relation, which is a composition
relation in the target model instead of just an association.

Transformation technology. We implement the transformation again in four
languages: Scala, QVT-O, ATL, and Xtend. We discuss only the Scala one

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels2.ecore

7.2. Model-Transformation Case Studies 247

here, and refer to our online repository: featuremodels.xtend, featuremodels.
qvto, featuremodels.atl, and featuremodels.scala for the full implementations.

Transformation implementation. If the transformation logic that you should
implement is not clear from the requirements, you should take a look at
example models in abstract syntax. Recall Exercise 3.17 and Exercise 3.18
from Chapter 3, where we already asked you to create such instances for
these two meta-models.

Figure 7.8 shows our Scala implementation. Similarly to our transfor-
mation of fsm into petrinet models above (Sect. 7.2), we decompose the
transformation into methods, each of which handles the transformation of a
meta-class. Let us go through it from bottom to top.

The method run is the entry point and delegates the conversion of a
model instance to the method convertModel.

The method convertModel creates a new model instance using the EMF
object creation factory that is generated from the meta-models (see the
Gradle build script for details, or alternatively the appendix “Using the
Eclipse Modeling Framework” on our book website http://dsl.design). It uses
the before operator, in whose body we bind the reference m to use it twice:
to set the name of the new Model2 instance to that of the source model, and
to set the root containment relation to a converted root feature.

Then, convertFeature instantiates a new feature, sets the name to that
of the source feature, and then fills the solitarySubFeatures composition
relation as described in our requirements above. To figure out whether a
sub-feature is solitary or a member of a feature group, we defined the query
isSolitary as an extension method to the class Feature1 at the top of our
transformation implementation. Thereafter, the other features (i.e., those
that are part of a group) will be added as children to a new Group2 instance
in convertGroup.

Finally, convertGroup is responsible for creating the right Group2 in-
stance (either OrGroup2 or XorGroup2) and then converts and adds all
grouped features (which are found via the members association in the
source model) to the target model, where they are contained in the members
composition relation, so they become children of the group in the target
model, whereas they have been children of the feature in the source model.

Exercise 7.1. Now consider yet another alternative meta-model for feature models
in Fig. 7.9, which should be the new target meta-model of the transformation.
In this meta-model, there is no longer a type distinction between OR and XOR
groups. Instead, groups get a lower and upper bound specifying the number of
features that can be selected within them. OR groups map to a lower bound of 1
and no upper bound (represented by a ’*’ or ’-1’), while XOR groups map to a
lower bound of 1 and an upper bound of 1.

Take the existing transformation and change it so that it works correctly with
the changed target meta-model. You can also do this exercise on paper by crossing
out, adding, and changing any part of the transformation in Fig. 7.8 as you consider
it meaningful.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels.xtend
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels.qvto
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels.qvto
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels.atl
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels.scala
http://dsl.design

248 Chapter 7. Model and Program Transformation

1 object FeatureModel1ToFeatureModel2 extends CopyingTrafo[Model1, Model2]:

3 val fm2Factory = featuremodels2.Featuremodels2Factory.eINSTANCE

5 extension (self:Feature1)
6 def isSolitary(subfeature: Feature1): Boolean =
7 !self.getGroups.asScala
8 .exists {_.getMembers.asScala.exists(_ == subfeature)}

10 def convertGroup (self: Group1): Group2 =
11 { if (self.isInstanceOf[OrGroup1])
12 fm2Factory.createOrGroup2
13 else
14 fm2Factory.createXorGroup2
15 } before {
16 _.getMembers.addAll(self.getMembers.asScala.map(convertFeature).asJava)
17 }

19 def convertFeature (self: Feature1): Feature2 =
20 fm2Factory.createFeature2 before { f =>
21 f.setName (self.getName)
22 f.getSolitarySubfeatures.addAll (
23 self.getSubfeatures.asScala
24 .filter (self.isSolitary)
25 .map (convertFeature).asJava)
26 f.getGroups.addAll (self.getGroups.asScala.map (convertGroup).asJava)
27 }

29 def convertModel (self: Model1): Model2 =
30 fm2Factory.createModel2 before { m =>
31 m.setName(self.getName)
32 m.setRoot(convertFeature(self.getRoot))
33 }

35 override def run (self: Model1): Model2 =
36 convertModel (self)

source: featuremodels.scala/src/main/scala/dsldesign/featuremodels1/scala/transforms/FeatureModel1ToFeatureModel2.scala

Figure 7.8: Transformation of feature models between two different meta-models (Figures 7.6 and 7.7)

Summary

Both transformations are relatively simple, especially the feature-model one.
Still, the latter shows that already a seemingly small, but tricky mismatch
between the source and target meta-model can require you to write such
upgrade transformations and ship them with a new version of your tool.

We implemented both transformations in Scala, but our repository con-
tains the full implementations also in QVT-O, ATL, and Xtend. In principle,
one could have written the transformation also in Java, which would prob-
ably not even be so much more verbose, since Java also offers functional
collection operators, such as map and filter, which take closures (anonymous
functions) as in Scala as parameters. One could have avoided the explicit
conversions between Java and Scala lists, since the code generated from the
Ecore meta-models is in Java.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels.scala/src/main/scala/dsldesign/featuremodels1/scala/transforms/FeatureModel1ToFeatureModel2.scala

7.3. Applications of Model and Program Transformation 249

NamedElement2

name : EString

Model2 Feature2

Group2

lowerBound : EInt = 0
upperBound : EInt = -1

[1..1] root

[0..*] solidarySubFeatures

[0..*] groups[2..*] members

source: featuremodels/model/FeatureModels3.ecore

Figure 7.9: Another alternative
meta-model for feature models
(changed target meta-model)

Another observation is that in Scala, we need to explicitly encode con-
trol flow instead of declaring transformation rules and then letting the
transformation figure out how and in what order to call them and how
to traverse the source model (as the transformation language ATL would
do). In the signatures of the rules, we explicitly wrote down the return
types, which could be omitted in Scala. However, we left them in for better
comprehension, especially here in the book.

7.3 Applications of Model and Program Transformation

Model- and program-transformation techniques have many applications. In
the context of building DSLs, transformations are mainly used to realize the
dynamic semantics by translating models into other models. However, they
can also support the management of models. In a way, transformations then
also implement the semantics of languages, perhaps not completely and only
focusing on a specific aspect, so it is fair to say that the main application
of transformations is to capture language semantics in one form or another.

Beyond the examples we show in this book, there are repositories of
model transformations. The ATL transformation zoo7 contains more than
100 documented transformations. Kusel et al. [42] and Selim, Cordy, and
Dingel [60] survey and study these transformations. Whether one needs
a dedicated transformation language for rather small transformations is
a question we discuss in Sect. 7.9, but the transformations in the zoo
provide an overview of typical problems addressable by model or program
transformations, and especially how such transformations can be structured
and decomposed into individual rules.

Dynamic Semantics Definition

Back in Chapter 2 we already talked about the term dynamic semantics.
Let us, however, recall the distinction between syntax and semantics of
a language. The term syntax refers to “the principles and processes by
which sentences are constructed in particular languages” [15]. It is the

7https://www.eclipse.org/atl/atlTransformations, retrieved 2022/09

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels3.ecore
https://www.eclipse.org/atl/atlTransformations

250 Chapter 7. Model and Program Transformation

actual representation of a model that users or tools interact with. The term
semantics refers to the meaning or the effect of a model.

Semantics can be defined informally or formally. In the former, you
basically put (and hide) the meaning of models in source code, which has
some behavior influenced by a model. You can always do that, but by
expressing semantics more formally, you make the semantics available to
automation and analysis. For instance, you can identify certain properties
of the semantics, such as correctness, liveness (e.g., no deadlocks), or safety.
Interpreters, which we will discuss in Chapter 8, can be seen as a more
informal way of specifying dynamic semantics. Still, when implementing
the interpreter systematically, following patterns and best practices, you
might be able to analyze the semantics’ properties as well to some extent.

For formal semantics [50, 72], we distinguish between different styles,
for example:

• Operational semantics define the meaning of a language in terms of
states that the instances can have, together with defining valid transitions
among the states. The transitions capture the possible sequences of states.
A state is an abstraction of one possible state of the whole model. If you
have a simple programming language that allows definition of variables,
then a state typically represents a mapping of variables to values at a given
execution step. All the states in the operational semantics of a program
are typically derived from the possible combinations of variables and
values. However, from this example, you sense that operational semantics
are rather uncommon in MDSE.

• Denotational semantics define the meaning of a language inductively,
by declaring denotations for smaller parts of the language, which when
combined in some form, determine the whole semantics. As such, the
main property of denotational semantics is compositionality. Denota-
tional semantics are well-suited to describe, for instance, the semantics of
feature-modeling languages or other variability-modeling languages, such
as Kconfig from the Linux kernel, which we will discuss in Sect. 11.2. We
refer to technical notes we created that show what denotational semantics
for variability-modeling languages look like: She and Berger [61] and
Berger and She [5].

• Translational semantics define the meaning of a language by specifying
how instances in one language are transformed into instances of another
language, for which the semantics is already implemented or well known.
This kind of semantics is most common in MDSE: all our transformation
examples in this chapter realize a kind of translational semantics.

Let us look at two examples.

Example 17. Recall some of the examples of semantics we discussed in Chap-
ter 2 (Example 5 and Sect. 2.4), where we had a very simple state-machine-like
DSL called the robot control language. In this case, a suitable semantics of a

7.3. Applications of Model and Program Transformation 251

model was the set of all possible execution traces (i.e., sequences of modes,
actions, and events) that are allowed at runtime.

Example 18. Recall our fsm language from Example 6 (Chapter 3). Depending
on the purpose, finite-state machines can have different semantics, for example:

• In Example 6 we mentioned that it should be used for teaching purposes,
where students execute state machines and observe the behavior. Here, it
makes sense to translate the state machine into source code in a GPL, such
as Java. The source code incorporates the switch pattern (illustrated in
Fig. 9.8 on p. 332) or the state pattern [29] to structure the states and their
transitions. We will show this prime example of a translational semantics
in Sect. 9.4 (see Figures 9.8 and 9.9). Another alternative is to translate the
state-machine model into a data structure that is evaluated at runtime by an
interpreter [56]. This shows that different types of semantics can also be
combined.

• Another common purpose of state machines is to define acceptable input
words (or sentences). In this case, the semantics we are interested in is the
set of all possible words (or sentences) over an alphabet of input characters
(or input words). You can define these semantics by transforming state
machine models into regular expressions, whose semantics are known, so
we have another common example of a translational semantics here. You
can also write an interpreter that checks for a given input word (or sentence)
whether it is acceptable (by just traversing the states via the transitions,
which are labeled with inputs). This also defines a semantics, but less
formally, since it is hidden in the implementation of the interpreter.

Model Refinement

Translating models or programs is the most important application of model-
or program-transformation technologies. And, as we just discussed, trans-
lating models is a common way to define the dynamic semantics of DSLs.

Generating lower-level models from models at a higher level of abstrac-
tion [21] is most typical. This kind of transformation is usually called
refinement [8]. You often see refinement translations chained one after
another, typically ending with the generation of source code, which is at
the lowest level of abstraction.

Example 19. A good example is expanding syntactic sugar. Languages incorpo-
rate syntactic sugar to optimize the language and ease its usage, which leads to
more concise and more comprehensible models. Back in Sect. 4.2, specifically
in Tbl. 4.1, we described syntactic sugar for regular expressions. When
you have syntactic sugar in your language, it makes sense to ‘desugar’ the
respective elements in your model and convert them into non-sugar elements,
since then you do not need to implement semantics for the syntactic sugar
as well, avoiding redundancy. Often, expanding syntactic sugar happens
conveniently in the parser on the concrete-syntax level. But, when you do not

252 Chapter 7. Model and Program Transformation

use a parser, or believe that the parser specification is already complex enough,
you can realize desugaring as a refactoring transformation which operates on
the abstract syntax.

Model Abstraction

The opposite of model refinement is model abstraction, which refers to
generating higher-level models from lower-level ones. An example would
be reverse-engineering of models, such as extracting feature models from
source code.

Example 20. A more concrete example would be translating simulation models
(e.g., of a flight simulator [46]) between different levels of fidelity. High-
fidelity models are more detailed. For instance, a transformation could
abstract a time given in seconds (high fidelity) into the values fast or slow (low
fidelity), so it translates the lower-level model into a higher-level one that is
an abstraction.

Model Management

When you use the DSL(s) you developed in your software engineering
projects—that is, when you adopt MDSE—you will need to manage models
and related artifacts. You will need to evolve and maintain them. While
refinement and abstraction already help in managing models, the following
activities specifically focus on model management. They can be seen as
rather internal MDSE problems that are mainly addressed by the vendors
of MDSE tools.

• Model Mapping and Model Synchronization of models at the same level
or different levels of abstraction. For our flight simulator example, it
is necessary to also maintain models at different levels of fidelity [46],
which requires synchronization or alignment.

• Model View Creation comprises querying models for information and
establishing views on models. When changing the view, ideally, trans-
formations can incrementally update the original model as well. As
an example for views, consider our feature-model transformation from
Sect. 7.2. From feature models, a query could extract all grouped features,
or it could provide a slice through the feature hierarchy presented as a
feature-model view [37] to the user.

• Model Evolution tasks include model versioning, model comparison
(a.k.a. diffing), model merging, model update (including incremental
update), and patching. Furthermore, languages evolve, so their instances
might need to be updated to the new language version. Model evolution
also includes migration [32] from one language to another language
at the same level of abstraction (changes in that level are captured by
Refinement and Abstraction above).

7.4. Transformation Fundamentals 253

Model Optimization

Models sometimes need to be optimized with respect to some property
of their syntax or semantics. For instance, syntax-related properties are
the model size, structure, comprehensibility, or conciseness, which can be
optimized. Semantics-related properties can be memory consumption or
performance when models are executed. Optimizations are often semantics-
preserving and are then called refactorings [32], but they can also change
the semantics when reasonable.

Model optimization has always been the main objective of program
transformation. The idea is to transform a program so that it is optimized
towards a specific property. To this end, program transformations manip-
ulate programs or program parts, typically within compilers, refactoring
engines, or program analyzers.

For example, our transformations in Sect. 7.5 show the manipulation
of Boolean expressions with the goals of reducing their size by removing
redundancies, enhancing comprehension, or making expressions compatible
with programs (SAT solvers) that need expressions in a certain format
(conjunctive normal form). Let us look at some further examples.

Example 21. A typical application mentioned in the literature is constant fold-
ing [55, 9]. In our expression example, you basically replace sub-expressions
that are constant. For instance, when identifiers have a value, then you replace
the identifier with the value, which simplifies the expression. Applied to
programs, constant folding is a typical program optimization technique that
focuses on optimizing data flow in programs.

Example 22. Other common applications are copy propagation and dead-code
elimination in programs. For instance, when an IF statement’s condition
always evaluates to false, dead-code elimination removes the true branch
and just leaves the false branch. Just to name a few more, further program
optimizations are: fusion, inlining, constant folding, common sub-expression
elimination, or partial evaluation (a.k.a. program specialization). There is a
whole book about partial evaluation by Jones, Gomard, and Sestoft [38].

In summary, the goal of applying transformations for optimizations is
most often not to change the semantics, but to change other properties.
This is obviously also the case when we use transformations to define the
dynamic semantics of DSLs. For the other applications—translating models
to lower levels of abstraction and managing models—one usually changes
the semantics.

7.4 Transformation Fundamentals

In general, model transformations are specialized programs that take source
models as input and either modify them or produce new target models as

254 Chapter 7. Model and Program Transformation

output. They traverse the source models and copy, modify, or create model
fragments. The transformations are defined in a language, which can be a
GPL or a dedicated transformation language, which can be in the form of a
library. Let us present some basic definitions.

Definition 7.2. A model transformation is a computable function that maps
a set of source models to a set of target models. It comprises one or multiple
transformation rules.

A model transformation establishes a relationship between one or several
source models and one or several target models. This relationship is
computable, at least in the direction from the source to the target model.

Transformation Architecture

Figure 7.10 shows an overview of a model transformation with architectural
relations to artifacts in a model-driven software project. In the middle is the
actual transformation definition—the code specifying the transformation
rules (explained shortly). It is executed by a transformation engine, which
is either the runtime environment of a specialized model- or program-
transformation language (e.g., QVT), or the execution environment of the
GPL in which the transformation is defined (i.e., Scala in our examples).

Definition 7.3. A transformation engine is a tool that executes a transfor-
mation definition on source models and produces target models.

Specialized transformation engines often have additional capabilities to
scale and maintain model transformations, including parallel execution and
model traceability management.

The source and target meta-models are typically used to type-check the
implementation of the transformation, as languages used to implement trans-
formations tend to be statically and strongly typed (although not necessarily
so). The transformation is executed by a transformation engine (mid-bottom
in the figure), which, while interpreting the transformation code, reads the
source model, and produces the target output. The transformation itself
is implemented in (i.e., conforms to) a suitable transformation language,
either a model-transformation DSL (such as QVT) or a suitably powerful
GPL (for instance, Scala supported by a library such as Kiama).

Note that, while the transformation transforms source models into target
models, the transformation is defined over the source and target meta-
models. In other words, the transformation definition refers to elements
(meta-classes) of the source and target meta-models. In the figure (Fig. 7.10),
we show Ecore as the meta-modeling language, but of course, the meta-
models can be realized using algebraic data types as well. This is the typical
case when using program-transformation technology.

Model transformations are often chained. You might immediately re-
member a compiler, where you have different transformations chained one
after another to generate lower-level code. Similarly, when one creates

7.4. Transformation Fundamentals 255

Ecore.ecore
M3

M2

M1

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹writes››

source meta-model

‹‹conformsTo››

target meta-model

‹‹conformsTo››
‹‹conformsTo››

transformation
definition

transformation
engine

transformation language
meta-model

‹‹conformsTo››

‹‹refersTo›› ‹‹refersTo››

‹‹reads››
‹‹reads››

source model target model

Figure 7.10: A typical model-transformation architecture shown in the meta-modeling hierarchy

code from a higher-level language, such as a DSL, one often has multiple
transformations.

Transformation Rules and Rule Application

While a large number of model- and program-transformation techniques
have been presented, they all provide one common abstraction: the trans-
formation rule. According to Visser [70], a “rule defines a basic step in the
transformation.”

Definition 7.4. A transformation rule is a function mapping fragments of a
source model to fragments of a target model.

Transformation rules define patterns over fragments in the source and
target models. They also explicitly define what fragments of the source
model they are applicable to. Rules can usually access context information,
such as trace models or transformation parameters.

Rules are selected and applied to the source model in a certain order
(or in parallel), which is controlled by the transformation engine or by the
developer. In all our examples in this chapter, the rule application is deter-
mined by the Scala runtime, and we as developers control the application
of rules to some extent. For instance, we call rules explicitly from other
rules, we define so-called rewriting strategies explicitly (an abstraction of
controlling traversal and rule application, discussed in Sect. 7.6), or we let
Scala decide which rule to apply via pattern matching.

256 Chapter 7. Model and Program Transformation

Classifications

Various classifications of model transformations exist in scientific articles
[48, 21, 39] and in books [8, 17]. The following are the most common
categorizations of model transformations.

M2M versus M2T Transformations Model transformations are separated
into model-to-model (M2M) and model-to-text (M2T) transformations.
These mainly differ in the kind of output generated.

M2M transformations convert models in abstract syntax into models in
abstract syntax, each of which adheres to a meta-model. Working on the
abstract syntax (cf. Sect. 2.4) has the advantage that there is no irrelevant
information from the concrete syntax, which usually just complicates a
transformation.

M2T transformations convert models directly into text—that is, abstract
syntax into concrete textual syntax (essentially strings). The latter is
sometimes also called pretty-printing, especially in the context of program
transformations. In M2T, the output meta-model is trivial, since you output
a (potentially large) string of characters.

M2T transformations usually offer less type safety compared to M2M
transformations, where the target models adhere to dedicated meta-models.
One would need to check the generated textual output using a grammar or
a regular expression, for instance. An alternative is statically typed macro
languages, which work similarly to macros in the C preprocessor, but are
statically typed and cannot create an invalid AST. Such macros are available
in Scala as part of its “principled meta-programming” capabilities.

When we chain transformations into larger ones, we usually use M2M
transformations except for the last one, which is often the transformation
into text (M2T).

Finally, you might sometimes even see the term text-to-model (T2M)
transformations. That most often just refers to parsing, so transforming a
model from concrete syntax into abstract syntax. It might involve changing
the semantics or translating into another language; then it is not exactly
parsing anymore. T2M is usually at the beginning of a transformation chain.
Furthermore, there are transformation systems that work on parse trees or
on plain texts, so could be dubbed text-to-text (T2T) transformations, but
they are rather uncommon in our experience.

Horizontal versus Vertical Transformations We also classify transfor-
mations based on whether and how the abstraction level among source and
target models is changed. Figure 7.11 illustrates these kinds, referring to
applications from Sect. 7.3 above. When the level is changed—for instance,
when realizing refinement or abstraction with the transformation—we talk
about a vertical transformation. When we only change the structure of the
model—for instance, when realizing evolution or optimization—we talk
about a horizontal transformation. A transformation can also change both;
then we informally call it a skewed transformation.

7.4. Transformation Fundamentals 257

model

horizontal transformation
ve

rt
ic

al
 tr

an
sf

or
m

at
io

n
(restructured) model

re
fin

em
en

t

ab
st

ra
ct

io
n

evolution

optimization

any combination

(more concrete) model Figure 7.11: Horizontal versus
vertical transformations

Endogenous versus Exogenous Transformations Another typical char-
acterization of transformations is based on whether the source and target
models conform to the same language or not—in other words, whether the
meta-models are the same or not.

Definition 7.5. An endogenous transformation (endo-transformation) trans-
lates instances of a language to instances of the same language.

Endogenous transformations are also known as rephrasings [70]. A trivial
one is the identity (no change to the source model). Model optimization
transformations are often endogeneous, but (cf. Sect. 7.3) refactoring
(changing the models without changing semantics), desugaring (implement-
ing more complex features as less complex ones), and constant folding
(replacing constant variables in programs) are always endogenous.

Definition 7.6. An exogenous transformation translates instances of one
language into instances of another language.

Exogenous transformations are also just called translations [70]. The
transformation from fsm to petrinet is exogenous. Other common ex-
ogenous transformations are those that realize translational semantics,
such as compiling source code and models to intermediate representations,
visualizing models in HTML or SVG, and translating models for analysis
using solvers (e.g., our translation of logical expressions into conjunctive
normal form below in Sect. 7.5).

Deciding whether a transformation is endogenous or exogenous is simple
for M2M transformations. It is based on the equality of meta-models. For
M2T transformations, or chained transformations that start with a textual
source model, end with a textual target model, or both, it is not so clear. To
this end, we define language equality over the abstract syntax here. So, if
the source and target models conform to the same meta-model (even if not
explicitly provided), we call the transformation endogenous, and exogenous
otherwise. But, since the concrete syntax can be different, the models might
look like they belong to different languages.

In-Place versus Copying Transformation To produce a target model, a
transformation can take the source model and modify exactly that model,
or it can copy and modify (parts of) the source model.

258 Chapter 7. Model and Program Transformation

Definition 7.7. An in-place transformation (a.k.a. destructive transfor-
mation) is an endogenous transformation that modifies the source model,
instead of producing a new model.

In-place transformations are practical for small model adaptations, such
as normalization of model element names, or for refactorings, such as
variable renaming. They are also very useful for models used in a model-
view-controller pattern, where the controller modifies a model directly,
and asks the view to update. However, they often are hard to manage for
complex manipulations of models. In-place transformations can only be
realized in an imperative language, where destructive updates are allowed.
In-place transformations only make sense in the endogenous case.

Definition 7.8. A copying transformation (a.k.a. out-of-place or pure
transformation) creates a new target model based on the source model.

One strong advantage of copying transformations is that the source
model is available unmodified throughout the process, so we can always
refer in rules to the original state. In in-place, destructive transformations,
information is often lost during transforming (unless stored separately). A
copying transformation is also more testable, as one can write assertions
relating the source and target. For destructive transformations, this can
still be done, but requires cloning source instances, or referring to their
serialized, unmodified original copies.

Rewriting is an example of an endogenous copying transformation.
Our transformations in Sect. 7.5 below are of this kind. In the rewriting
paradigm, a new model is created by creating incrementally different copies
of it using rewrite rules. All exogenous transformations are necessarily
copying, as we cannot put instances of the new target model in place of the
instances of the source model, as this would violate type correctness.

Unidirectional versus Bidirectional Transformations Most model trans-
formations are unidirectional transformations, which means that they are
only executable in one direction. All our example transformations in this
chapter are of this kind. Obtaining a source model from a target model—that
is, running the transformation in the opposite direction—requires writing a
new transformation.

However, there exists a certain kind of transformation, called a bidirec-
tional transformation, which can be executed in both directions, including
obtaining a source model from a target model. This scenario is useful
when target models can be updated and the source model should be up-
dated as well, or any potential impact on the source model is of interest.
However, bidirectional transformations are less common and require the
transformation to be defined in a more declarative style.

Number of Source and Target Models Finally, model transformations
can be classified by their numbers of source and target models. Beyond

7.5. Program-Transformation Case Studies 259

the typical case of one source and one target model, if we have two or
more source models, then the transformation is usually called a model
merge. A special case is when one model represents a configuration or
parameterization (e.g., mainly containing key-value pairs); then we call
the transformation parameterized. If there is no target model, we call the
transformation a model analysis or a model query.

7.5 Program-Transformation Case Studies

After some theory, it is time again to look at some case studies, but this
time some that are known from the field of program transformation.

We will now realize transformations by relying directly on programming-
language capabilities for defining source and target models, and on transfor-
mation libraries for implementing the actual transformation rules. So, we
will create meta-models using algebraic data types (ADTs) and transform
their instances. While various transformation libraries for programming
languages exist, we will use the Scala-based library Kiama [62], which real-
izes the paradigm of strategic programming [44, 45]. The latter decouples
model traversal from rewriting and abstracts both into the notion of strategy.
Essentially, you define and compose strategies for realizing your model
transformation, where Kiama already offers a set of basic strategies. This
controls how the transformation (a.k.a. rewriting) rules are applied.

The following three case studies are about transforming logical expres-
sions. For simplicity, we limit ourselves to propositional (Boolean) logic.
It is quite common that you will need to transform tree-based data. Since
expressions are represented as trees, we hope you will find the following
examples of transformations useful.

The transformations are inspired by our previous experience of develop-
ing analysis techniques for variable source code [6, 52, 7]. What variable
code is we will discuss in more detail later (Chapters 11 to 13). What
we often needed to do is to transform tree-based data, such as abstract-
syntax trees (ASTs) of source code, and we often needed to transform
logical expressions, for instance, abstracting arithmetic expressions into
(less-expressive) Boolean expressions, transforming Boolean expressions
into conjunctive normal form (which is needed for using SAT solvers),
simplifying expressions, or just conjoining and disjoining expressions to
facilitate our code analysis. On a final note, in a recent work where we
were limited to writing code in plain C, creating these transformations was
much more cumbersome [28]. So, we strongly recommend using modern
transformation technology as presented in this chapter.

Case Study 1: Constant Propagation in Logical Expressions

A very common transformation on logical expressions is constant propa-
gation. Essentially, you have an expression over variables. You set one or
multiple variables to a value and want to derive an expression where those
variables are replaced with the respective values.

260 Chapter 7. Model and Program Transformation

We create ADTs for representing Boolean expressions with a minimum
of operators (AND, OR, and NOT). These are shown in Fig. 7.12. You
may recall that we already introduced an expression language in Sect. 6.1
(specifically, as part of Fig. 6.2), but that expression language focused on
arithmetic expressions. So, for simplicity, we introduce a new one, which
we will use again later (Sect. 13.1, specifically Fig. 13.3). A visualization
of these algebraic data types is shown in Fig. 7.13.

Let us briefly explain these algebraic data types, which we realized as
case classes in Scala:

• The abstract class Expression is the super-type for any node in the
Expression tree structure. It is sealed, which as you may recall from
Sect. 3.5 limits the possible sub-types to the sub-classes defined in the
same file. It has some convenience methods for composing expressions,
including &, which takes another expression and conjoins it with the
present one. Obviously, if the other expression is true, the method returns
the present one. The logic is similar for the other convenience methods.

• The classes BinaryExpression and UnaryExpression represent the two
kinds of intermediate nodes to establish the tree structure of expressions.
A binary expression node has two children (attributes left and right),
and a unary expression only has one child (expr).

• The case classes AND, OR, NOT, and Identifier then represent the actual
binary and unary expression nodes that we can use for instantiating
expressions. They contain a simple pretty-printer via toString.

• The case objects True and False represent Boolean constants together
with convenience methods for conjoining, disjoining, and negating them
with other expressions. The pretty-printer is also built-in via toString.
We could have defined them as case classes as well, which would be
almost as convenient, since one can easily instantiate case classes in
Scala, but this way we share the instances for True and False expression
nodes, which saves us some heap space.

• Finally, the case class Configuration represents concrete assignments
of variables to values for expressions.

These ADTs allow expressions to be represented as ASTs. The nodes in
these trees represent terms—the main abstraction for programs in program
transformation with term rewriting, which we explain in more detail in
Sect. 7.6) below. Here, we use AST node and term synonymously.

Exercise 7.2. Draw an instance of our expression meta-model in Fig. 7.12 for the
expression: ¬((A∧¬B)∨ ((C∧¬D)∨ (¬C∧D))). Are different instances possi-
ble to represent this expression? In your answer, distinguish between syntactic
and semantic equality.

Transformation goal. Our goal is to transform logical expressions into
expressions where Identifier nodes whose values are set within a partial
assignment (represented by the class Configuration in our meta-model)
are replaced by the values (i.e., true or false) of those Identifiers.

7.5. Program-Transformation Case Studies 261

1 sealed abstract class Expression:
2 def & (other: Expression): Expression = other match
3 case True => this
4 case _ => AND (this, other)

6 def | (other: Expression): Expression = other match
7 case False => this
8 case _ => OR (this, other)

10 def unary_! : Expression = NOT (this)

12 sealed abstract class BinaryExpression (
13 val left: Expression,
14 val right: Expression
15) extends Expression

17 sealed abstract class UnaryExpression (
18 val expr: Expression
19) extends Expression

21 case class NOT (e: Expression) extends UnaryExpression (e):
22 override def toString = "!" + e

24 case class AND (l: Expression, r: Expression) extends BinaryExpression (l, r):
25 override def toString = "(" + l + " & " + r + ")"

27 case class OR (l: Expression, r: Expression) extends BinaryExpression (l, r):
28 override def toString = "(" + l + " | " + r+ ")"

30 case class Identifier (name: String) extends Expression:
31 override def toString = name

33 given StringToExpression: Conversion[String, Identifier] with
34 def apply (s: String) = Identifier (s)

36 case object True extends Expression:
37 override def & (other: Expression) = other
38 override def unary_! = False
39 override def toString = "TRUE"

41 case object False extends Expression:
42 override def | (other: Expression) = other
43 override def unary_! = True
44 override def toString = "FALSE"

46 case class Configuration (
47 val name: String,
48 val identifierValues: Map[Identifier,Expression])

source: dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/adt.scala

Figure 7.12: ADTs for a simple expression language in Scala

Transformation requirements. We require all Identifiers to be visited and
replaced if part of the partial assignment. The rest of the expression
instance, especially its structure, should remain unchanged. In principle,
the transformation could be an in-place transformation, but we require the

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/adt.scala

262 Chapter 7. Model and Program Transformation

Figure 7.13: Visualization of
the expression language in

Fig. 7.12

Expression

BinaryExpression UnaryExpression

Identifier

name : EString
value : EBoolean = false

AND OR NOT Configuration

name : EString

[1..1] left

[1..1] right
[1..1] expr

[1..*] literal

source: expr/model/expr.ecore

source models to be immutable, so we need a copying transformation. It
also needs to be parameterized—the partial assignment is the parameter.

Transformation technology. Since our source and target models, and their
meta-model, are defined in Scala, we also implement the transformation in
Scala. Using the strategic-programming framework Kiama in this case lets
us avoids having to implement recursive methods that traverse the source
model (e.g., in a top-down, depth-first-search manner) and copy the visited
nodes into nodes organized in the same structure, with the exception of
Identifier nodes that are part of the partial assignment. Kiama relieves
us from having to create such recursive methods, which can become quite
difficult when we need multiple traversals or change the traversal based on
the sub-tree structure, and so on.

Transformation implementation. Figure 7.14 shows our implementation.
We use the trait CopyingParameterizedTrafo, which is part of the book-
accompanying libraries (dsldesign.scala.emf) to simplify using Scala.
The trait requires setting the parameter p: Configuration upon instantia-
tion. Since this way we have some state in the object (i.e., the configuration),
we write the transformation as a Scala class instead of an object. The run
method calls Kiama’s rewriter, which creates the target model by applying
constantPropagationRule to the elements of the source model to which
it is applicable, while copying the rest of the model to leave it unchanged.

Our rule in the function constantPropagationRule does pattern match-
ing on terms (nodes in the AST); specifically, it checks for an Identifier
node. If its name is in the configuration parameter, then the Identifier is
replaced with the respective value, that is, either the expression true or false.

The rule is applied using Kiama’s strategy everywherebu. It applies the
rule to all (sub-)terms of the root node (subject term) of the source expres-
sion (for which we do the constant propagation) in a bottom-up manner.

Exercise 7.3. For our expression language, extend the algebraic data types with a
binary expression type IMPLIES. So, logical expressions can be defined using the
implies (→) operator (i.e., A → B ≡¬A∨B). Add a convenience method implies
also to the class Expression and to True, which allows an easy instantiation of

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr/model/expr.ecore

7.5. Program-Transformation Case Studies 263

1 class ConstantPropagation (val p: Configuration) extends
2 CopyingParameterizedTrafo[Expression, Configuration, Expression]:

4 val constantPropagationRule = everywherebu {
5 rule[Expression] {
6 case id@Identifier (_)
7 if p.identifierValues.keySet.contains (id) =>
8 p.identifierValues.get (id).get
9 }

10 }

12 override def run (self: Expression): Expression =
13 Rewriter.rewrite (constantPropagationRule) (self)

source: expr.scala/src/main/scala/dsldesign/expr/scala/transforms/ConstantPropagation.scala

Figure 7.14: A
constant-propagation
transformation in Kiama

implications, similarly to the other methods in the class. Optionally, do the same
for Exclusive OR (a.k.a. XOR or ⊕).

Case Study 2: Simplifying Logical Expressions

Let us now create a transformation to syntactically simplify logical ex-
pressions. We reuse our ADTs to represent expressions in an AST. Proper
expression simplification is a hard problem, when it should be sound (the
semantics remains the same) and complete (no shorter expression with the
same semantics is possible). We use a more tractable method that works
purely on the expression syntax. It is sound, but not necessarily complete.

Transformation goal. The goal of expression simplification is to preserve
the semantics of expressions, but to reduce their structural complexity. In
our case, the goal is to decrease the number of nodes in an expression.

Transformation requirements. So, we require that after each rule applica-
tion, the number of nodes is lower. This can be achieved by only creating
rules whose left-hand sides—the patterns over source elements to which
the rule can be applied—are larger than their right-hand sides.

Transformation technology. Our form of expression simplification can be
nicely expressed in Kiama rules for strategic programming in Scala. So, we
reuse our ADTs from the previous case study that hold the expressions.

Transformation implementation. Figure 7.15 shows our implementation.
We define rules for common simplifications of Boolean expressions. Recall
that these implementations are inspired by our work on analyzing systems
software, including the Linux kernel. What we actually did was to observe
the expressions and manually find parts that we could simplify, which
we then abstracted into individual rules. The rules are put into a pattern-
matching statement in Scala, where they are applied to nodes in the AST.
Each node represents a term.

The application of this rule (function simplifyRule) is controlled by
Kiama’s strategy innermost. It belongs to the so-called fixed-point strate-
gies, which exhaustively apply rules to terms (i.e., expression nodes) until
no rule is applicable anymore. Innermost applies simplifyRule repeatedly

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/transforms/ConstantPropagation.scala

264 Chapter 7. Model and Program Transformation

to the lowest and leftmost (i.e., the “innermost”) sub-term to which the rule
applies—that is, where any of the patterns in the rule matches.

Intuitively, the strategy starts with the subject term (its parameter), then
goes down to the lowest ancestor, taking the leftmost child as a route, and
tries to apply simplifyRule. If not applicable, it goes to the next child until
one is applicable, and otherwise goes up. This strategy makes sure that
our rules are applied as often as possible, until none of them matches the
subject term or any of the ancestor terms.

Figure 7.15: Simplifying
logical expressions using the
innermost strategy in Kiama

1 object SimplifyExpression extends CopyingTrafo[Expression, Expression]:

3 val simplifyRule = innermost {
4 rule[Expression] {
5 case NOT (NOT (a)) => a
6 case NOT (True) => False
7 case NOT (False) => True
8 case OR (a, b) if a == b => a
9 case OR (True, a) => True

10 case OR (False, a) => a
11 case OR (a, True) => True
12 case OR (a, False) => a
13 case AND (True, a) => a
14 case AND (False, a) => False
15 case AND (a, True) => a
16 case AND (a, False) => False
17 case AND (a, b) if a == b => a
18 case AND (AND (a, b), c) if b == c => AND (a, b)
19 case AND (a, AND (b, c)) if a == b => AND (b, c)

21 case OR (AND (a, b), AND (c, d)) if a == c => AND (a, OR (b, d))
22 case OR (AND (a, b), AND (c, d)) if b == d => AND (b, OR (a, c))
23 case OR (AND (a, b), AND (c, d)) if b == c => AND (b, OR (a, d))
24 case OR (AND (a, b), AND (c, d)) if a == d => AND (a, OR (b, c))

26 case AND (OR (a, b), OR (c, d)) if a == c => OR (a, AND (b, d))
27 case AND (OR (a, b), OR (c, d)) if b == d => OR (b, AND (a, c))
28 case AND (OR (a, b), OR (c, d)) if b == c => OR (b, AND (a, d))
29 case AND (OR (a, b), OR (c, d)) if a == d => OR (a, AND (b, c))

31 case OR (a, AND(b, c)) if (a==b || a==c) => a
32 case OR (AND(a, b), c) if (a==c || b==c) => c

34 case OR (AND (a, b), OR (c, d))
35 if (a==c || a==d || b==c || b==d) => OR (c, d)
36 case OR (OR (c, d), AND (a, b))
37 if (a==c || a==d || b==c || b==d) => OR (c, d)

39 case OR (NOT (a), b) if a==b => True
40 case OR (a, NOT (b)) if a==b => True
41 }}

43 override def run (self: Expression): Expression =
44 Rewriter.rewrite (simplifyRule) (self)

source: expr.scala/src/main/scala/dsldesign/expr/scala/transforms/SimplifyExpression.scala

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/transforms/SimplifyExpression.scala

7.5. Program-Transformation Case Studies 265

Exercise 7.4. Extend the simplification rule in Fig. 7.15 to handle logical implica-
tions as well. Represent implications with a new case class IMPLIES. Also create
test cases.

Case Study 3: Transforming Logical Expressions into the Conjunctive Nor-
mal Form

A common transformation for Boolean expressions is to convert them
into the conjunctive normal form (CNF). CNF refers to the formula being
in a special syntactic form. A Boolean formula is in CNF when it is a
conjunction of clauses. Clauses are disjunction of literals, and literals are
variables, their negation, or just true or false values. Formally, an expression
in CNF looks like this:

∧
i
∨

j(¬)xi j.
Reasoners, such as Satisfiability (SAT) solvers, usually require expres-

sions to be in CNF. It allows efficient algorithms, a standard format called
Dimacs, and quickly rules out satisfiability when already one clause is
not satisfiable. There are some SAT solvers that do not require CNF, but
the majority require that others have taken care of the conversion already.
Importantly, any Boolean formula can be converted into CNF. However, this
conversion can be quite complex, especially for disjunctions, where the CNF
transformation can virtually explode the expressions in size, requiring fur-
ther tactics to make the transformation tractable, such as the transformation
by Tseitin [68]. However, here we will realize the most simple conversion
from Logic textbooks, where one applies certain logical laws exhaustively.

Transformation goal. The goal is to transform small Boolean expressions
into CNF. By ‘small,’ we refer to expressions that can still easily be
represented as object structures in the heap memory and do not cause
stack overflow errors when traversed using recursive functions (as is very
common in functional programming languages), and that do not cause
exponential explosion in size and time when converted into CNF. Handling
large expressions requires different representations and transformation
techniques than those we use in the book.

Transformation requirements. For brevity, the transformation should not
introduce auxiliary variables into the formula. The latter is necessary to
make the CNF conversion scalable for large formulas, which can easily
explode. Here, we avoid such variables and rather want to illustrate a
clean transformation that applies the logical laws as transformation rules as
directly as possible.

Transformation technology. CNF conversion can largely be expressed in
Kiama rules for strategic programming in Scala. So, as previously, we reuse
our ADTs for expressions (Fig. 7.12).

Transformation implementation. Figure 7.16 shows our implementation.
The most important rule is distributiveRule, which applies the distribu-
tive laws (e.g., X ∨ (Y ∧ Z) ⇔ (X ∨Y)∧ (X ∨ Z)). Applied repeatedly,
they push conjunctions up in the expression AST, and disjunctions down.

266 Chapter 7. Model and Program Transformation

The other rules should be applied before, including: De Morgan’s laws
(e.g., ¬(X ∧Y) ⇔ ¬X ∨¬Y) in demorgansRule, which push the nega-
tions down to the Identifiers, so that they only appear as part of a lit-
eral; the doubleNegationRule, which removes double negations; and the
valueNegationRule, which resolves negations of True and False.

Figure 7.16: CNF conversion
of logical expressions in Kiama

1 object ExpressionToCNF extends CopyingTrafo[Expression, Expression]:

3 val demorgansRule = reduce {
4 rule[Expression] {
5 case NOT (AND (x, y)) => OR (NOT (x), NOT (y))
6 case NOT (OR (x, y)) => AND (NOT (x), NOT (y))
7 }
8 }

10 val doubleNegationRule = reduce {
11 rule[Expression] {
12 case NOT (NOT (x)) => x
13 }
14 }

16 val valueNegationRule = everywheretd {
17 rule[Expression] {
18 case NOT (True) => False
19 case NOT (False) => True
20 }
21 }

23 val distributiveRule = innermost {
24 rule[Expression] {
25 case OR (x, AND (y, z)) => AND (OR (x, y), OR (x, z))
26 case OR (AND (x, y), z) => AND (OR (x, z), OR (y, z))
27 }
28 }

30 def run (self: Expression): Expression =
31 Rewriter.rewrite(
32 demorgansRule <*
33 doubleNegationRule <*
34 valueNegationRule <*
35 distributiveRule) (self)

source: expr.scala/src/main/scala/dsldesign/expr/scala/transforms/ExpressionToCNF.scala

We use Kiama’s rewriter to apply these rules repeatedly. They are
combined with the combinator <*, which expresses sequential composition.
It creates a strategy that applies the first strategy first, and when it succeeds
it applies the second strategy to the rewritten term. It fails otherwise, so the
second is only applied when the first succeeds. In our case, the rules all
succeed regardless whether they rewrote the subject term or not.

It is important to first exhaustively apply De Morgan’s laws, since rewrit-
ing can produce double negations, while the latter cannot produce new
sub-expressions where De Morgan’s laws could be applied. Both rules use
Kiama’s reduce, which is a fixed-point strategy, which exhaustively apply

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/transforms/ExpressionToCNF.scala

7.6. Transformation Technologies 267

rules to terms (i.e., expression nodes) until no rule is applicable anymore.
Reduce works recursively, for each term it applies the rule t “repeatedly to
subterms until it fails on all of them” according to Kiama’s documentation.
Thereafter, we apply the valueNegationRule, which only requires one full
traversal of the tree, achieved via the strategy everywheretd. It tries to
apply the rule to every term (i.e., node) in the expression AST.

Finally, we apply the distributiveRule, which again requires a fixed-
point strategy. We could use reduce again, but prefer the strategy innermost,
since it usually has a performance advantage [62]. The former repeatedly
traverses the whole AST from the top, searching for terms to apply the rule.
But, as already explained for the previous transformation, innermost starts
with the ‘innermost’ term, which is the leftmost leaf node in the AST. It
then traverses the tree up until it can apply the rule to reduce the innermost
terms first; it only stops when the rule is not applicable anymore anywhere
in the tree. So, the subject term (i.e., root node) is transformed last.

A hint on testing. Note that getting a transformation like this one right can
be tricky, especially when you want to realize it as concisely as possible as
in our implementation. To this end, we created special test cases, relying
on generated expressions and a method that checks whether an expression
is in CNF. We explain the details in Sect. 7.8 below.

Exercise 7.5. Extend the CNF transformation in Fig. 7.16 to accept and transform
expressions with implication operators (IMPLIES) as well. Represent implications
with a new case class IMPLIES, as in the previous exercise. Create test cases.

Exercise 7.6. Extend the CNF transformation so that, after conversion to CNF, it
reduces clauses (i.e., disjunctions of literals) that contain a true or f alse literal.
An example would be (A∨B)∧ (B∨ true)∧ (C∨ f alse), where the second clause
can be removed, and the third clause can be reduced to (C). Create test cases.

Exercise 7.7. Investigate the actual performance of the strategy innermost com-
pared to reduce for the rule distributiveRule. While the former usually has
a performance advantage, it is actually not clear whether this advantage also
applies to our CNF transformation. Provide concrete arguments based on the
distributive rule for which strategy will be faster. Write a small performance test
that compares the performance of both strategies on generated expressions. You
can use our expression generator from Fig. 7.20.

7.6 Transformation Technologies

An incredible number of transformation technologies exists from the soft-
ware engineering and the programming language communities [39, 21, 70].
We now only focus on M2M transformation technologies from the Model-
ware (model transformation) and Grammarware (program transformation)
fields. We discuss M2T in detail in Chapter 9.

Before looking at the technologies, let us first see what a transformation
can look like when it is written in a GPL that does not have any of the
abstractions suited for transformations—in plain C. Figure 7.17 shows an

268 Chapter 7. Model and Program Transformation

excerpt from the Linux kernel configurator, which we will examine in detail
later (Sect. 11.2). Like our case study in Sect. 7.5, it is about simplifying
logical expressions. Here, the source and target models—the expressions—
are defined in C structs instead of meta-models or algebraic data types.

Figure 7.17: Expression
simplification in C from the

Linux kernel

1 /*
2 * Recursively performs the following simplifications in-place (as well
3 * as the corresponding simplifications with swapped operands):
4 *
5 * expr && n -> n
6 * expr && y -> expr
7 * expr || n -> expr
8 * expr || y -> y
9 *

10 * Returns the optimized expression.
11 */
12 static struct expr *expr_eliminate_yn(struct expr *e){
13 struct expr *tmp;

15 if (e) switch (e->type) {
16 case E_AND:
17 e->left.expr = expr_eliminate_yn(e->left.expr);
18 e->right.expr = expr_eliminate_yn(e->right.expr);
19 if (e->left.expr->type == E_SYMBOL) {
20 if (e->left.expr->left.sym == &symbol_no) {
21 expr_free(e->left.expr);
22 expr_free(e->right.expr);
23 e->type = E_SYMBOL;
24 e->left.sym = &symbol_no;
25 e->right.expr = NULL;
26 return e;
27 } else if (e->left.expr->left.sym == &symbol_yes) {
28 free(e->left.expr);
29 tmp = e->right.expr;
30 *e = *(e->right.expr);
31 free(tmp);
32 return e;
33 }
34 }
35 ... source: https://github.com/torvalds/linux/blob/master/scripts/kconfig/expr.c

Without a transformation technology, one needs to write recursive func-
tions that dive down the AST of the models, as you can see in the excerpt.
An alternative from object-oriented languages is the visitor design pattern,
which is not very concise, however (one needs to create several classes). In
any case, when using recursion or the visitor pattern, transformations are
difficult to understand and write. They are even more difficult to maintain,
since they do not separate the traversal and the rewriting of AST nodes.

Also observe how pattern matching on the AST nodes is realized in
this excerpt. In our case study in Scala using the Kiama framework, line
17 to 35 would only be two lines. This illustrates the benefit of having
pattern-matching support.

https://github.com/torvalds/linux/blob/master/scripts/kconfig/expr.c

7.6. Transformation Technologies 269

Tools, Libraries, and Languages

Addressing these issues, a large number of libraries and languages spe-
cialized for manipulating models exist. They mainly differ in the way
they provide facilities for traversing models and for rewriting source into
target elements. GPLs not only with pattern matching, but also with higher-
order functions are also useful—especially when models are represented
as algebraic data types. For this reason, transformations of syntax trees
are traditionally convenient to write in languages such as Scala, F#, or
Haskell, with diverse supporting libraries (internal DSLs) that simplify
writing transformations. It helps especially when they take over control
of the order in which the rules are executed. Besides that, a number of
specialized external DSLs for writing model transformations exist, such as
QVT-O, ATL, or Xtend, which we illustrated above in Tbl. 7.1.

Such specialized transformation tools, libraries, and languages are usually
associated with certain claims. Among others, they are claimed to: be easy
to use, provide usable abstractions to developers, be scalable to large source
models, provide traceability, and support many different automation use
cases, including incremental updates or even bidirectional transformations.

The implemented transformations are usually claimed to be more com-
prehensible and easy to evolve, maintain, and reuse—as opposed to being
implemented in ordinary GPLs. In our opinion, the available tools, libraries,
and languages have only partially delivered on these claims.

Model-Transformation Technologies

Surveys [39, 21] classify M2M model-transformation tools and technologies
into the following categories.

• Imperative transformation technologies, where the manipulation of model
elements is very directly expressed in terms of imperative statements.
These transformations are at a rather low level. Therefore, they are also
called direct manipulation techniques. Just using a GPL to implement
the transformation falls under this category, even when enhanced with
some libraries (i.e., internal DSLs) for tracing or controlling the rule
application. Examples of M2M technologies realized as external DSLs
are QVT-O and Xtend.8

• Relational transformation technologies, where the manipulation of model
elements is performed by the engine based on a mapping definition
among source and target models. The mapping is explicit in the transfor-
mation definition; the actual manipulation of a source model is implicitly
defined through it when the engine translates the mapping definition into
manipulations. Examples are JTL [16] and QVT-Relations [54]. Less
expressive than relational techniques, but following a similar idea, are
structure-driven techniques, which are most suited for rather simplistic

8Xtend is more than a DSL, it is in fact a GPL, but with specific support for transformation.
Since it is mainly used for that, it is probably fair to also call it a model-transformation DSL.

270 Chapter 7. Model and Program Transformation

1-to-1 mappings between source and target elements, without requiring
iterations or even fixpoint calculations.

• Graph-based transformation technologies, a.k.a. graph transformations
[25], rely on algebraic graph transformation [3], a technique to algo-
rithmically obtain a new graph from an existing graph, which has many
applications beyond software engineering. Graph transformations for-
mally describe the modification of graphs, in our case models in abstract
syntax. In graph-based transformation technologies, the transformation
rules are pairs of graph patterns, often using a graphical syntax.

• Hybrid transformation technologies combine aspects from the other
three technologies above. Examples are the Atlassian Transformation
Language (ATL), GrGen [30], Viatra2 [69], and Henshin [4, 67]. The
latter is primarily a graph-based transformation technology, but optionally
provides concepts from imperative technologies to allow extensive rule
application control. We illustrate Henshin below.

Since the field is huge, we refer to surveys [39, 21] for further details on
these categories of M2M transformations and for more technologies. There
are also more-specific surveys which, for instance, focus on bidirectional
transformation technologies including QVT-Relations or JTL [26, 34, 23].

Example 23. Henshin is a hybrid transformation technology. It offers a graphi-
cal and textual syntax to define graph-transformation rules. The rules declare
patterns over model elements, specifying which elements to remove, add,
replace, and so on in models. It is especially suited for in-place endogenous
transformations. Henshin’s core supports unidirectional transformations, but
an extension for bidirectional transformations exists (HenshinTGG).

The example below is an adaptation of a small part of our transformation
from Sect. 7.5 that simplifies logical expressions. Specifically, it represents
the rewriting of ((A∧B)∧C) when B =C in line 18 of Fig. 7.15.

Figure 7.18: A model-transformation rule in Henshin

7.6. Transformation Technologies 271

Program-Transformation Technologies

Program transformations, attributed to the community around Grammar-
ware, transform programs instead of models or other data. Since we learned
that models and programs are very close, this can hardly be seen as a
distinguishing criteria. Instead, we see the following differences.

Differences to Model Transformation The main difference is probably
that program transformations are based on mathematics-oriented concepts,
such as term rewriting, attribute grammars, and functional programming
[9]. In contrast, model transformations usually target object-oriented pro-
gramming and adopt an object-oriented approach for representing and
manipulating models.

Second, model transformations, as they relate models to each other, are
often expected to record traceability links, which is not done in program
transformation [21]. Traceability links are meta-data about the origins of
the generated output elements, used for debugging, understanding, docu-
mentation, or auditing purposes.

Third, model-transformation technologies often come as external DSLs,
while program-transformation technologies come as internal DSLs (via a
library). This can be seen well in our case studies in Sections 7.2 and 7.5.

Fourth, model transformations are programmed against meta-models.
These constrain valid instances and usually provide stronger guarantees
than are offered by algebraic data types. So, checking for valid instances
does not need to be done by model transformations, while a program-
transformation developer needs to take more care [43].

Term Rewriting Program transformation commonly relies on term rewrit-
ing [9]. Kiama [62], which we used above in Sect. 7.5, is based on the
rewriting paradigm. Other examples are Stratego [71] and TXL [19, 20].

In term rewriting you abstractly represent programs as terms. Like ASTs,
terms are ordered trees. That makes them particularly useful to represent
source code, where you have lists of statements, declarations, or expressions.
These are the child nodes of a node representing a method or a block in
source code. Still, term syntax can sometimes be difficult to comprehend. It
is especially challenging when inputs (programs or program fragments) are
large [70]. Notably, terms in term rewriting are limited to abstract syntax,
which can be complex sometimes.9

The other important abstraction is rewrite rules. They define source
patterns and target patterns. If a rule is applicable, then source and target
elements are in a reduction relationship. The source is called the redex, the
target is called the reduct.

The source patterns are used to check applicability. However, pattern
matching (as in Scala) is often limited. For instance, one usually cannot deal
with associativity or commutativity of term structures. Various extensions

9Stratego exceptionally allows rules to be defined over concrete syntax as well [71].

272 Chapter 7. Model and Program Transformation

were proposed for this reason, such as associative-commutative matching
in Maude, or recursive patterns for matching sub-trees. Furthermore, trans-
formation rules often need additional conditions (in addition to the patterns)
to check applicability. This can, for instance, be seen in our expression
simplification case study in Sect. 7.5.

Term rewriting is typically context-free. However, when using it in
modern programming languages, as we demonstrated with Scala, rules do
not need to be context-free, but can access their context (e.g., a partial
assignment in our constant-propagation transformation in Sect. 7.5). In fact,
term rewriting has long been limited to context-free rules, but this has been
eliminated by modern rewriting systems and languages, as in our case. Since
we used Scala, the rules are closures and can access context, as shown in
our case study on constant propagation for logical expressions in Sect. 7.5).

A rule represents one transformation step. But to transform programs,
you usually need many steps, so multiple rules need to be applied multiple
times. Like in model-transformation technologies, the control over rule
application is often separated from the rules themselves. In the simplest
case, rule application can be based on lazy function evaluation, as found in
many functional programming languages, such as Scala.

Rule Application Control In general, rule application control is classified
into: fixed application order, automated dependency analysis, goal-driven,
strategy menu, or programmable [70]. In the latter, called strategic program-
ming, rule application is controlled by a program in a so-called strategy
language.

Strategic Programming The paradigm of strategic programming, realized
for example by Stratego and Kiama, abstracts programmable rule applica-
tion control into so-called strategies. According to Bravenboer et al. [9]: “A
strategy is a little program that makes a selection from the available rules
and defines the order and position in the tree for applying the rules.” Many
different strategies exist, as well as strategic-programming frameworks. For
a good overview we recommend the survey by Visser [70].

7.7 Guidelines for Writing Transformations

Guideline 7.1 Choose the right technological space and transformation paradigm. You
choose the technological space based on the representation of your source
and target models, as well as the features of transformation technology
you need—with the help of this chapter, of course. Recall that we showed
how transformations can be simply implemented in Java or any other major
GPL, such as Scala. Since our meta-models are made with EMF, they get
Java model infrastructures for free, and all the persistence code is generated
and readily available. We can simply load model data into memory objects
and manipulate them using Java. However, some specialized features
are useful when writing transformations, especially if you want a concise

7.7. Guidelines for Writing Transformations 273

and declarative realization of rules. Then you choose between model-
and program-transformation technologies. In this chapter, we conveyed
that program transformation, while limited to endogenous transformations,
might be better for models at lower levels of abstraction (i.e., programs)
with more complex transformation logic. Especially if you transform
models that hold structures similar to expressions, you should use program-
transformation technology. Here, it seem more natural to use program
transformation with term rewriting. While there are transformations on
expressions in the ATL transformation zoo10 (e.g., the transformation “Truth
Tables to Binary Decision Diagrams”), expression transformation can be
written much more concisely with pattern matching using ADTs, however.

Guideline 7.2Start with examples. It is always good to start with an example for trans-
formations. For complex targets, you might want to convert your example
manually to understand the mechanism. Alternatively, if your transforma-
tion is really complex or when you need to work on it collaboratively with
someone else, you could write down the transformation in natural language.
It helps to break down the transformation logic into smaller rules.

Guideline 7.3Use test-driven development. Even better than just using examples, already
express the examples as test cases. Do not underestimate testing for transfor-
mations, which is more challenging than for ordinary programs. While the
transformation implementation as the unit under test is often simpler than
typical units under tests in ordinary software development, the input and
output test data are actual models, which poses new problems. There is also
little explicit support for testing, so start early with testing, ideally adopting
a test-driven development style. We discuss testing shortly in Sect. 7.8.

Guideline 7.4Make the types of the source and target explicit via meta-models or ADTs.
The source and target adhere to certain types against which the transforma-
tion logic is programmed, so we make the types explicit. When you write a
transformation, you often have the types implicitly in mind and put them
into the logic. But, here we have models adhering to meta-models (types),
which allows us to have a full infrastructure for processing models, and
then we can program our transformation. This not only helps when imple-
menting transformations, but we can also check whether transformations
are complete (e.g., cover the complete meta-model).

Guideline 7.5Document the transformation goal. In the transformation implementation,
the goal is only implicitly given in the rules. Especially for optimization,
the goal can be declared.

Guideline 7.6Be wary of skewed transformations. You usually want to separate hori-
zontal transformations and vertical transformations. However, it might be
sufficient to separate those parts into separate transformation rules. Then,
it might be OK. The transformation would then still be skewed, which
usually hinders comprehensibility, so you might want to avoid that. But
apply common sense here.

10https://www.eclipse.org/atl/atlTransformations, seen 2022/09

https://www.eclipse.org/atl/atlTransformations

274 Chapter 7. Model and Program Transformation

Guideline 7.7 Use immutable data structures. Or, at least ensure that the source instances
cannot be changed accidentally. In Scala we use case classes, which pre-
vents accidental modification of the source instead of the target. Dedicated
model-transformation languages such as ATL or QVT-O even disallow
modifying the source. The source is read-only, and the target is write-only.

Guideline 7.8 Emulate exogenous transformations with union languages. Some transfor-
mation languages, chiefly those based on the rewriting paradigm (hereunder
TXL and Scala’s Kiama) only allow copying, thus endogenous, transfor-
mations. In these languages, it is necessary to create a union of the target
and source languages, in order to implement exogenous transformations as
endogenous transformations within the union language.

Guideline 7.9 In transformation rules, put computation into the right context. We have
often seen transformations in which computation is put into a wrong or
inconvenient context. By ‘context’ we mean the input pattern, or place
in the source model (e.g., a specific meta-class) where a rule is applied.
An example would be object instantiation, where putting the object in the
right place in the partonomy or establishing links to other objects can be
inconvenient (e.g., requiring retrieval of objects from the trace model or
manually keeping track of them) or impossible when not done in the right
context. Recall from Sect. 5.1 that choosing the context (context class or
starting type) wisely is also important when writing constraints.

Guideline 7.10 Use transformation chaining for separation of concerns. We mentioned
chaining of transformations a couple of times in this chapter. Decomposing
a large and complex transformation into smaller ones fosters modularity,
reuse, and maintainability. It is common to have some M2M transformations
ending with an M2T transformation. The latter can be seen as a view, while
the M2M transformations perform the actual transformation of some source
model. Since these transformations are changed at different frequencies and
often by different developers—views are often changed more frequently,
and the changes do not affect how the models are transformed, but rather
how they are presented—one should separate them. In particular, there
should be no calculations in the M2T transformation. For instance, if you
use a template-based M2T, then the template should just present values
from the transformed models, not doing any further calculations beyond
just very simple ones (e.g., to change a date format).

7.8 Quality Assurance

Regardless of whether you use a dedicated transformation technology or
an ordinary programming language, you will need to quality-assure the
transformation to prevent faults. Quality assurance can be done using static
methods, such as manual code reviews or automated static analysis, or it
can be done using dynamic techniques, which mainly means testing. As for
static techniques, we believe that code reviews are similarly applicable as
for ordinary software projects, while there are almost no automated static

7.8. Quality Assurance 275

analysis techniques. The latter exist for the field of compiler verification [1,
36], so for compilers of GPLs. These are hardly applicable for the kinds of
model and program transformations for DSLs we describe in this book. So,
your main quality assurance technique for transformations will be testing.

Since the dynamic semantics is a substantial part of your DSL engineer-
ing project, you can expect a substantial fraction of resources to be devoted
to testing [57]. The fraction is likely even larger than in common software
projects. The main reason is that the core parts of the DSL development
are supported by very efficient model-driven tools that make you proceed
faster. However, very little specific support exists for testing of model or
program transformations, so you are down to regular development speed.

However, there is an interesting tradeoff compared to testing of ordinary
programs: the input and output test data (i.e., models) are much more
complex, while the code is often simple, except for difficult transformations.
Our transformation of Boolean expressions into CNF above (Sect. 7.5) can
be seen as a more difficult one.

Case Study: Testing our Transformation of Logical Expressions

Let us start with an example where we create an automated white-box test
of the most complicated transformation from this chapter: our transfor-
mation of logical expressions into the conjunctive normal form (CNF) in
Sect. 7.5. We will discuss the random generation of input data (i.e., models
representing expressions) and how to write an oracle, which tells us whether
the output data is correct.

Trying to cover the different rules, we create simple test data together with
expected outputs (test oracle) as shown in Fig. 7.19. We use Scalatest, but
the test framework is not really essential; we could have used JUnit as well.
The source models for these rules can be simple, and we instantiate them
using the simple internal DSL for expressions we defined with algebraic
data types (Fig. 7.12), which makes this part and the oracles really concise
(just one line of code for each expression).

The last rule is the most complicated, since it relies on fixpoint generation
and also needs the previous rules to be applied to an expression for mean-
ingful results. We randomly generate input data using a custom generator.
We could have used ScalaCheck as we did in Fig. 6.16 in Sect. 6.7, but
we also illustrate how one can write a generator from scratch here. In fact,
for such smaller languages like expr, we believe that writing a random-
instance generator causes less overhead than having to set up and configure
an instance generator for meta-models or ADTs.

Figure 7.20 shows our hand-crafted instance generator. What we need
to do is to randomly generate identifier names, which the first part of
the method generateExpr() is about. Thereafter, we randomly create
nodes of the tree recursively, where the node type is determined randomly,
down to a maximum nesting depth, which is a reliable stopping criterion
for expressions. The number of nodes would be more brittle, since one

276 Chapter 7. Model and Program Transformation

Figure 7.19: Testing individual
rules of our transformation of
logical expressions into CNF

1 class ExpressionToCNFSpec extends
2 org.scalatest.freespec.AnyFreeSpec,
3 org.scalatest.matchers.should.Matchers:

5 val transform = ExpressionToCNF

7 "test De Morgan’s rule" in {
8 val e = "a" | !("x" & !("y" & "z"))
9 val res = rewrite (transform.demorgansRule) (e)

10 res should equal ("a" | (!"x" | (!(!"y") & !(!"z"))))
11 }

13 "test double negation rule" in {
14 val e = "a" | !(!"x")
15 val res = rewrite (transform.doubleNegationRule) (e)
16 res should equal ("a" | "x")
17 }

19 "test negation of values rule" in {
20 val e = "a" & !True | "b" & !False
21 val res = rewrite (transform.valueNegationRule) (e)
22 res should equal ("a" & False | "b")
23 }
24 ... source: expr.scala/src/test/scala/dsldesign/expr/scala/transforms/ExpressionToCNFSpec.scala

can easily generate very complex expressions that would crash the CNF
conversion and make the tests flaky.

Figure 7.20:
Random-expression generator

1 def generateExpr (maxNumberOfIdentifiers: Int, maxNestingDepth: Int)
2 : Expression =
3 val r = Random()
4 val identifiers = (26 to (maxNumberOfIdentifiers + 25))
5 .map { i =>
6 (i % 26 + 65).toChar.toString + (if i/26 == 1 then "" else i/26) }
7 subexp (maxNestingDepth, identifiers)

9 private def subexp (depth: Int, ids:Seq[String]): Expression =
10 if depth <= 0
11 then Identifier (ids (Random.nextInt (ids.size)))
12 else Random.nextInt (4) match
13 case 0 => Identifier (ids (Random.nextInt (ids.size)))
14 case 1 => NOT (subexp (depth - 1, ids))
15 case 2 => AND (subexp (depth - 1, ids), subexp (depth - 1, ids))
16 case 3 => OR (subexp (depth - 1, ids), subexp (depth - 1, ids))

source: expr.scala/src/main/scala/dsldesign/expr/scala/adt/generators.scala

Figure 7.21 shows the respective test case that generates 50 expressions
using our instance generator and checks whether they are in CNF form
using the method isInCNF(). See the comment in the source code for the
idea behind this recursive method. In a way, this method realizes and checks
a constraint, similarly to what we do in Chapter 5.

Overall, we believe that this is the most effective way of testing this
transformation. Manually creating a substantial number of input and output

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/test/scala/dsldesign/expr/scala/transforms/ExpressionToCNFSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/adt/generators.scala

7.8. Quality Assurance 277

1 class ExpressionToCNFSpec extends
2 org.scalatest.freespec.AnyFreeSpec,
3 org.scalatest.matchers.should.Matchers:

5 val transform = ExpressionToCNF
6 ...

8 "test 50 randomly generated expressions" in {
9 for i <- 1 to 50 do

10 val e = generators.generateExpr(26, 8)
11 isInCNF (transform.run (e)) should be (true)
12 }

14 /**
15 * The idea is to check that in each path to a leaf, there’s no conjunction after
16 * a disjunction anymore; and no disjunction or conjunction after a negation.
17 */
18 def isInCNF (e: Expression): Boolean =
19 def checkAllowedNodeTypesInSubtree
20 (node: Expression, conjAllowed: Boolean): Boolean = node match
21 case OR (l, r) =>
22 checkAllowedNodeTypesInSubtree (l, false) &&
23 checkAllowedNodeTypesInSubtree (r, false)
24 case AND (l, r) => conjAllowed &&
25 checkAllowedNodeTypesInSubtree (l, true) &&
26 checkAllowedNodeTypesInSubtree (r, true)
27 case NOT (Identifier (_)) => true
28 case NOT (_) => false
29 case _ => true

31 checkAllowedNodeTypesInSubtree (e, true)
source: expr.scala/src/test/scala/dsldesign/expr/scala/transforms/ExpressionToCNFSpec.scala

Figure 7.21: Testing whether randomly generated expressions are actually transformed into CNF

data pairs is difficult, especially since it is not so simple to manually check
whether an expression is in CNF. The problem is the representation of ex-
pressions; for instance, a clause is a binary tree of OR nodes with literals at
the bottom, instead of a flat list of literals. So, printing it out will give you an
expression with many parentheses. For not absolutely simple expressions, it
quickly becomes difficult to observe that the nesting is correct, for instance,
that no AND node is a descendant of an OR node, which is not allowed for
CNF. Of course, one could transform expressions into flatter representations
of CNF expressions, but this would require an exogenous transformation.
which is not possible with Kiama or term rewriting in general, so we
would need a different transformation technology. Alternatively, we could
implement another transformation that flattens the expressions to conform
to a special CNF meta-model or respective algebraic data types, but we
believe that implementing the static semantics in the method isInCNF() is
easier in this case.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/test/scala/dsldesign/expr/scala/transforms/ExpressionToCNFSpec.scala

278 Chapter 7. Model and Program Transformation

Unit Testing of Transformations

The most common paradigm to test transformations is white-box testing,
where the team that writes the transformation also validates it. Black-box
testing we believe is rare. In black-box testing, those who create the tests
are not aware of the actual implementation of the transformation. Black-
box testing amounts to finding inputs based on some specification of the
transformation, or on otherwise assumed behavior.

You usually do not need to write negative test cases. In other parts of the
book we advocated creation of both positive and negative test cases. Positive
cases use valid input together with the expected output (i.e., the test oracle),
while negative test cases use invalid input and check that the transformation
fails as expected. Other authors, such as Lämmel [43] also suggest to
write both for testing transformations. However, negative test cases are not
necessary when proper static semantics are defined for the meta-models,
which is what we argue for in the book. Negative test cases would just
check the static semantics, so we do not need them here. So, whenever
you believe you should have negative test cases, you should rather define
them as static semantics, which makes your DSL more robust, since static
semantics always need to hold, not just when executing transformations.

With white-box testing you try to create test data that fulfill coverage
criteria. In the context of transformations, the following criteria are useful.
Coverage criteria stem from experience, and the idea is always to find test
data that might reveal errors.

Coverage criteria. The main coverage criteria should be to cover the goal
and requirements. The following coverage criteria also make sense for
transformations.

• Meta-model or ADT coverage: Each meta-model or ADT element should
be instantiated at least once in the input models. This criterion of course
can have many concrete realizations, including different combinations of
these examples:
– Class coverage (meta-model) or type coverage (ADT);
– Relationship coverage (meta-model) or reference attribute coverage

(ADT);
– Class (meta-model) or type (ADT) attribute coverage. Since attributes

can have many values, this might require equivalence class identifica-
tion or boundary value analysis to select one or only a few values.

• Rule coverage: Each transformation rule should execute at least once.

Many more coverage criteria are possible, but be careful. After you
define criteria, you will need to create instances fulfilling them, which can
be laborious [51]. Ratiu, Völter, and Pavletic [57] report that it was most
effective to start with several models of substantial size (human made) and
to mutate them, instead of starting with very small ones and trying to grow
them. To manually grow models of interesting size and complexity may
prove difficult (as in our logical expression to CNF example above).

7.8. Quality Assurance 279

Automated random testing. Random testing, also known as fuzzing, relies
on randomly generating input models for transformations. We already
discussed instance generation in Sect. 5.5, which was done there using
ScalaCheck, but other frameworks also exist. Instance generation is a bit
easier for trees (as we showed for our expr language), but more difficult
for complex meta-models that are rather graph-like. Especially generating
type-correct instances is difficult, which might require a powerful solver,
such as the Alloy Analyzer [2].

Many papers about instance generation for meta-models [10] exist. We
refer to Ab. Rahim and Whittle [1], who describe various ones. But again,
you might be better off writing your own random-instance generator as we
showed above (Fig. 7.20), or using ScalaCheck.

The fuzzing community provides support for randomly creating test input
data based on grammars [73]. However, grammars are not as expressive
as meta-models or ADTs; for instance, they lack type safety. One can use
such techniques to achieve valid models if the static semantics of models
are expressible in grammars.

The oracle problem. Test oracles define whether a program output or
behavior is correct or not for a specific input. For transformations, creating
test oracles is more challenging than for ordinary programs. In addition,
showing semantic equivalence between test output and expected output
(oracle) for specific test input data can be challenging, especially when
the transformation is non-deterministic, so can create slightly different
syntaxes for semantically equivalent target models. An example would
be introducing auxiliary variables for expression scalability reasons in our
CNF transformation, which can have some randomness.

In general, model comparison can be reduced to the graph isomorphism
problem. So, a naive implementation would be NP-complete [51]. However,
efficient implementations exist that reduce complexity by exploiting addi-
tional information, such as identifiers of classes. EMFCompare [11] offers
model comparison for Ecore-based meta-models, which you could use.

More pragmatically, it is often sufficient to check for the existence
of certain patterns in the output model. These patterns you derive from
your transformation implementation. In some transformation languages,
especially graph-transformation languages such as Henshin (cf. Fig. 7.18),
you provide output patterns, which you can search in the target model. Then,
instead of accomplishing model comparison, you use a more lightweight
strategy here by checking for patterns. This strategy is often sufficient,
since the output meta-model and the static semantics will make sure that
your output model is syntactically valid.

Another way to create a test oracle is property-based testing. You test
certain properties of the transformation, such as invariants. Again, since we
use meta-models or ADTs, the typical type-correctness is already assured.
For structurally similar source and target meta-models, an invariant could
be correspondence correctness: the presence of a target element for each

280 Chapter 7. Model and Program Transformation

source element. When you have an inverse transformation in addition
to your transformation, or the transformation is even bidirectional, an
invariant would be whether you obtain the original source model after
transforming in both directions. If the transformation originates from a
re-engineering project, you can check target models against an existing
legacy transformation—a strategy generally known as regression testing.

Finally, another property of model transformations is robustness. Here,
the oracle should merely check whether the transformation crashes, does not
finish (e.g., ending up in an endless loop), or exceeds memory constraints.
The strategy you can apply is to use the methods above, but just create
larger models. For instance, in our instance generator for our expr language
(Fig. 7.20), you increase the maximum depth of the expression AST via the
respective parameter.

Exercise 7.8. What is a suitable test strategy for the transformation in Fig. 7.5
from Sect. 7.2? Use the different aspects we described in this section, such as
instance generation, coverage criteria, and test oracle, to come up with a strategy.
Describe it in your own words, including exemplary test cases and anything else
that you consider relevant.

7.9 A Critical Discussion

Writing model and program transformations will for a long time in the future
be a common software engineering activity, given the many use cases for
them (Sect. 7.3). However, adopting specialized transformation technology
to realize transformations instead of using a mainstream language is not
an easy decision. In this light, let us now finally discuss the benefits and
the challenges of model-transformation technologies, and have a critical
discussion on their future.

Benefits of transformation technologies. Proponents of dedicated model-
or program-transformation technologies typically emphasize the following
benefits. When engineering transformations, organizations will have lower
development and maintenance costs, increased productivity, and a better
quality of the implemented transformation. We believe the most relevant
benefit is increased maintainability, since:
• Transformation technology fosters a core software engineering principle:

separation of concerns. It especially separates the domain from the
technology using off-the-shelf DSLs or custom DSLs.

• Models that are transformed are abstractions over complex systems.
Given this abstraction, realizing model transformations is easier. This
advantage holds for model transformations, not necessarily for program
transformations, which are usually at lower levels of abstraction.

• Finally, in most transformation technologies, the rules are declarative, and
the source models are immutable, which already prevents many errors.

Challenges of model-transformation technologies. Dedicated model-trans-
formation technologies are also challenging, and the benefits might not

7.9. A Critical Discussion 281

be achieved. The additional benefits of dedicated technologies, such as
parallelism or traceability, are often not needed in practice.

Consider maintainability, which is challenged by the fact that developers
will need to learn a new and specific technology. One of our industrial
partners in a company developing MDSE technology said that they im-
plement transformations in Java, since otherwise no one can maintain
the transformation anymore when the original developer leaves. It is in
fact difficult to hire developers who have the respective knowledge or can
quickly learn it. A company developing a commercial language workbench,
where we asked for example transformations for teaching and research, said
they have only one, which is used for model evolution (when a language
evolves, models need to be updated)—which the company believes to be
one of the main use cases for model transformations.

On the other hand, there are documented adoptions of dedicated model-
transformation technology in industry. The Dutch company ASML main-
tains 100 model transformations for 22 DSLs [47]. The company FEI
Company in the US uses model transformations for their microscope cali-
bration software [14]. The multi-national technology consulting company
Altran also reported using model-transformation technology [49]. General
Motors in the US is know to have created its own model-transformation
engine called DSLTrans [27].

Empirical studies and expert opinions. The community has started dis-
cussing the future of model-transformation technology. For instance, Bur-
gueño, Cabot, and Gérard [13] report on an open discussion within the
MDSE community, which recognizes the lack of empirical evidence that
specialized transformation languages (DSLs, such as QVT-O or ATL) are
better than GPLs in practice. A survey that was responded to mainly by
academics (i.e., 35 % were solely industrial participants, the rest had an
academic affiliation or both) shows that among the respondents, only a very
small percentage use a GPL, while most use a dedicated transformation
language, with ATL being the most frequently mentioned one, followed by
QVT-O. This confirms the interest in such languages by academics, which
also explains the large number of technologies that have been developed.
The reasons for the low adoption in industry discussed in an open discus-
sion with experts were the lack of professional tool support, which some
explained by the lack of customer interest, even when a company wanted
to develop one. Another reason was that code generation is becoming
less important, but rather the management of models is what industry
should focus on. The lack of empirical evidence of the benefit of all the
additional features was also pointed out, confirmed by experiences of a
discussant stating that creating a medium or large transformation is already
cumbersome with the dedicated techniques.

Given the unclear benefit of dedicated transformation technologies, we
conducted a controlled experiment comparing ATL, QVT-O, and Xtend
[33] ourselves. It was motivated by a previous collaboration with industry,

282 Chapter 7. Model and Program Transformation

where a student developer re-engineered existing model transformations
written in GPLs. The transformations written in the languages ATL and
ETL were up to 48 % more concise than those written in Java, but that is
within the variance between programmers, Java is known as being rather
verbose, and the benefit was almost consumed by custom Java startup
boilerplate code. We also performed an evolution step, but the sizes of the
modifications were independent of the language, since they did not affect
the boilerplate code, which made the transformations in dedicated languages
verbose. Given this motivation, we conducted the experiment with student
developers, who needed to comprehend, change, and implement (from
scratch) model transformation in ATL, QVT-O, and Xtend—the latter
was our GPL for reference. Like in the industrial collaboration, there
were bigger differences in transformation size between the developers than
between the languages. We did not observe a statistically significant benefit
among the languages in terms of correctness. Still, a limitation is that
the tasks were done on paper, not in an IDE, and we could still identify
several aspects where the dedicated transformation languages ATL and
QVT-O support the developers, especially with copying objects, identifying
contexts, and scheduling computations based on types.

Given these empirical results and opinions, we believe that research
into concepts (e.g., meta-models of source and target models, transfor-
mation rules, immutability, pattern matching, implicit class instantiation)
of model- and program-transformation techniques is valuable, and that
we will continue to see concepts and practices in mainstream technology.
The future of dedicated transformation languages is less clear to us. This
chapter was written based on these insights, showing how to effectively
write transformations in mainstream technology, and also showing what
transformations can look like when there is no good support (cf. Fig. 7.17).

Further Reading
Classifications of model-transformation technologies. Consult Czarnecki and
Helsen [21] for a more systematic study of M2M transformation paradigms. The
paper provides a useful, if dated, state of the union regarding model transformation.
Most of the technologies mentioned are still available, and the catalog of main
characteristics of these technologies has not changed much since then. More recent
follow-up work is done by Kahani et al. [39].

Benefits, challenges, and the future. Götz, Tichy, and Groner [31] survey benefits
and challenges that are claimed in the literature for dedicated model-transformation
technologies. They discuss them in a much more systematic and detailed way than
we do in Sect. 7.9. Bucchiarone et al. [12] describe the grand challenges in MDSE,
including those related to model-transformation technology.

Formal semantics of languages. Mosses [50] provides a good overview on ways to
specify the formal semantics of programming languages. He defines many terms
we also use (and define), but mainly from the programming language perspective.
Many of the descriptions can easily be adapted to models. But, for instance, when
he states that static semantics model compile-time checks and dynamic semantics

7.9. A Critical Discussion 283

model runtime behavior, you will intuitively understand the terms, but notice that
there is no clear notion of compile time and runtime in MDSE with DSLs. This
can be explained, since there is nothing like the standardized compiler architectures
from the programming language field in MDSE.

Technological spaces. We discussed the notion of technological space in this chapter.
We could already have done that in earlier chapters, but transformations often bridge
the spaces, while transformation technology is often specific to a particular space.
To illustrate and compare technological spaces, Schauss et al. [59] implement a
finite-state-machine DSL, similar to our fsm language, in ANTLR, Eclipse EMF,
Haskell, Racket, MPS, Rascal, Scala, Sirius, Spoofax, and Xtext.

Specific transformation technologies. Teaching materials and textbooks for specific
model-transformation technologies are rare. An exception is QVT-O, where the
book by Gronback [32] introduces QVT-O in depth, systematically with examples.

Visser [70, S.6.3] give a good overview of strategic programming. Specifically
for the strategic programming framework Kiama, there are many more publications.
See the project page11 for all references, including further discussions on Kiama’s
term rewriting capability [64, 66] and on its attribute grammar support [64, 63], as
well as a description of implementing a compiler in Kiama [65]. Notably, attribute
grammars allow using Kiama also for realizing the static semantics of DSLs.

Quality assurance. The survey of model-transformation tools by Kahani et al. [39]
details validation support, mainly for testing or simulation. They also provide
further references on verification and validation of model transformations.

Additional Exercises

The first two exercises that follow demonstrate the chaining of trans-
formations, where you add an M2M transformation before a final M2T
transformation. For the latter we refer to examples in Chapter 9.

Exercise 7.9. Implement an M2M transformation that takes an fsm model and nor-
malizes all names in the model to be legal Java identifiers. Such a transformation
would be a useful addition for our code generator in Sect. 9.4 (see Figures 9.8
and 9.9), which produces invalid code if names of elements in the meta-model
contain spaces, illegal symbols, and so on.

Exercise 7.10. In Exercise 9.21 you will build a simple report generator that
creates HTML output from fsm models. An example output can be found in
Fig. 9.18 on p. 354. Let us hypothetically assume that for that generator it would
be useful to produce a variant of the output where all the names are obfuscated,
like in Fig. 7.22. We want to do this without changing the HTML generator but
by running an obfuscator on the entire model, and then reusing the generator
from Exercise 9.21. Each identifier is replaced by a meaningless name in the
format “idN,” like in Fig. 7.22. An obfuscator is an in-place model-to-model
transformation. In the solution, it might be convenient to implement a function
String obfuscate(String) that given a string translates it to an obfuscated
version in a deterministic way. If you call it twice on the same string of characters

11https://inkytonik.github.io/kiama/Research

https://inkytonik.github.io/kiama/Research

284 Chapter 7. Model and Program Transformation

Figure 7.22: An example
HTML report generated from

an fsm instance

Figure 7.23: A simple class
diagrams meta-model,

classmodel, with class
generalization and integer

attributes, but no associations

Root

Class

NamedElement

name : EString

IntegerAttribute

[0..*] classes
[0..*] attribute

[0..1] superClass source: classmodel/model/classmodel.ecore

it will return the same obfuscated name, for instance "id0". It guarantees to
return a different obfuscated name for different argument strings.

Exercise 7.11. Write an in-place model transformation that adds a new row to an
instance of the Triangle meta-model presented in Fig. 3.18 from the additional
exercises in Chapter 3. The transformation function should take as the first
parameter the leftmost entry in the deepest row so far, and as the second parameter
the root of the Triangle object.

Figure 7.24: A simple
meta-model for relational
schemas with tables and

integer columns, primary keys,
but no foreign keys

IntegerColumn

NamedElement

name : EString

Table

Root Assume that all columns hold
integers for simplicity. This way
we do not have to model types.

[0..*] primaryKeys

[0..*] columns
[0..*] tables

source: relationalmodel/model/relationalModel.ecore

The following exercises are about transformations and not about DSLs.
Notice that structured data transformation is a field that has some application
in implementation of languages, but also in other areas.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.classmodel/model/classmodel.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.relationalmodel/model/relationalModel.ecore

7.9. A Critical Discussion 285

1 object ClassModelToRelationalModel extends CopyingTrafo[classmodel.Root, RN.Root]:

3 val rFactory = RN.RelationalmodelfkFactory.eINSTANCE

5 def convertAttribute (self: classmodel.IntegerAttribute): RN.IntegerColumn =
6 rFactory.createIntegerColumn before {
7 _.setName (self.getName)
8 }

10 def convertClass (self: classmodel.Class): RN.Table =
11 rFactory.createTable before { t =>
12 t.setName (self.getName)

14 val key = rFactory.createIntegerColumn before { _.setName ("id") }
15 t.getPrimaryKeys.add (key)
16 t.getColumns.add (key)

18 t.getColumns.addAll (self.getAttribute.asScala.map (convertAttribute).asJava)
19 }

21 override def run (self: classmodel.Root): RN.Root =
22 rFactory.createRoot before {
23 _.getTables.addAll (self.getClasses.asScala.map (convertClass).asJava)
24 }

source: relationalmodel.scala/src/main/scala/dsldesign/relationalmodelfk/scala/transforms/ClassModelToRelationalModel.scala

Figure 7.25: A transformation converting from class models to relational models

Person

ssn: Integer

Professor

office: Integer
phoneNumber: Integer

source: classmodel/test-files/person-professor.xmi

Figure 7.26: An example input
class diagram in concrete
syntax

Exercise 7.12. Consider the meta-model for extremely simple class diagrams
presented in Fig. 7.23. We transform instances of this meta-model to something
that can be stored in a (very simplified) relational database. Figure 7.24 presents
the meta-model for the database. The implementation of this transformation in
Scala is shown in Fig. 7.25.

What is the output of running the transformation on the class diagram in
Fig. 7.26? Draw the answer in the abstract syntax of the RelationalModel.ecore
language.

Exercise 7.13. For the transformation shown above, describe in English how to
change it along with the associated meta-models to accommodate both integer
attributes and string attributes (invalidating the notes in the bottom right corners
of the two diagrams).

Exercise 7.14. The implementation of the transformation shown above does not
terminate for some inputs. For what inputs will it loop forever or crash? Write (in
English) the constraint that rules out such models.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.relationalmodel.scala/src/main/scala/dsldesign/relationalmodelfk/scala/transforms/ClassModelToRelationalModel.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.classmodel/test-files/person-professor.xmi

286 Chapter 7. Model and Program Transformation

Exercise 7.15. We again transform instances of the meta-model of Fig. 7.23 to
something that can be stored in a (very simplified) relational database. This
time, we are using the meta-model for the database extended with foreign keys,
shown in Fig. 7.27. You may recall we already presented this meta-model in
Fig. 5.43 on p. 197. The transformation creates a table for each class. The table
contains a primary-key column, always called "id". This key is also included in
the primaryKeys. A column is created for every attribute of the class (with the same
name as the attribute). Finally, if the class has a super-type, the corresponding
table has a column, called "fk_id", to store a foreign key referencing to the
table of the super class. The refersTo property points to the table representing the
super-class.

In Fig. 7.28 you can find an incomplete implementation of this transformation.
Explain what is missing in the blank and complete it. Perform this exercise
completely on paper.

Figure 7.27: A simple
meta-model for relational
schemas with tables and

integer columns, primary keys,
and foreign keys (’refersTo’)

IntegerColumn

NamedElement

name : EString

Table

Root
Assume that all columns hold
integers for simplicity. This way
we do not have to model types.

[0..1] refersTo

[0..*] primaryKeys

[0..*] columns
[0..*] tables

source: relationalmodel/model/relationalmodelfk.ecore

Exercise 7.16. Explain in English what are the main necessary changes to the meta-
models and transformations of Figures 7.23 to 7.25 to support binary associations
between classes. For clarity of the presentation, it might be useful to sketch the
modified parts of the meta-models.

Exercise 7.17. For each of the following kinds of transformation give an example
of a practical use case, where it would be applicable, and explain what properties
of a programming language you would find useful to implement it (you are
allowed to consider any programming languages that you know).

a) A model-to-text transformation
b) A model-to-model transformation
c) An endogenous transformation (an endo-transformation)
d) A text-to-text transformation

References
[1] Lukman Ab. Rahim and Jon Whittle. “A survey of approaches for verifying

model transformations”. In: Softw. Syst. Model. 14.2 (May 2015), pp. 1003–
1028 (cit. pp. 275, 279).

[2] Kyriakos Anastasakis, Behzad Bordbar, and Jochen M. Küster. “Analy-
sis of model transformations via Alloy”. In: Workshop on Model-Driven
Engineering, Verification and Validation. MoDeVVa. 2007 (cit. p. 279).

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.relationalmodel/model/relationalmodelfk.ecore

References 287

1 object ClassModelToRelationalModelWithFKs extends CopyingTrafo[classmodel.Root, RN.Root]:

3 val rFactory = RN.RelationalmodelfkFactory.eINSTANCE

5 def convertAttribute (self: classmodel.IntegerAttribute): RN.IntegerColumn =
6 rFactory.createIntegerColumn before {
7 _.setName (self.getName)
8 }

10 def convertClass
11 (transformedClasses: mutable.Map[classmodel.Class, RN.Table])
12 (self: classmodel.Class): RN.Table =
13 transformedClasses.get (self) match
14 case Some (table) => table
15 case None =>
16 rFactory.createTable before { t =>
17 t.setName (self.getName)

19 val key = rFactory.createIntegerColumn before { _.setName ("id") }
20 t.getPrimaryKeys.add (key)
21 t.getColumns.add (key)

23 t.getColumns.addAll (self.getAttribute.asScala.map (convertAttribute).asJava)

25 if (self.getSuperClass != null) {
26 /* --
27 | |
28 | |
29 | |
30 | |
31 ---*/
32 }
33 transformedClasses.addOne (self, t)
34 }

36 override def run (self: classmodel.Root): RN.Root =
37 val transformedClasses = mutable.Map[classmodel.Class,RN.Table] ()
38 rFactory.createRoot before {
39 _.getTables.addAll (self.getClasses.asScala.map (convertClass (transformedClasses)).asJava)
40 }

Figure 7.28: An incomplete M2M transformation in Scala.

[3] Marc Andries et al. “Graph transformation for specification and program-
ming”. In: Science of Computer Programming 34.1 (1999), pp. 1–54
(cit. p. 270).

[4] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. “Henshin: Advanced concepts and tools for in-place
EMF model transformations”. In: International Conference on Model
Driven Engineering Languages and Systems. Springer. 2010, pp. 121–135
(cit. p. 270).

[5] Thorsten Berger and Steven She. Formal Semantics of the CDL Language.
Tech. note. 2010. URL: https://arxiv.org/abs/2209.11633 (cit. p. 250).

https://arxiv.org/abs/2209.11633

288 Chapter 7. Model and Program Transformation

[6] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and
Andrzej Wąsowski. “Feature-to-code mapping in two large product lines”.
In: SPLC. 2010 (cit. p. 259).

[7] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysz-
tof Czarnecki. “A study of variability models and languages in the systems
software domain”. In: IEEE Transactions on Software Engineering 39.12
(2013), pp. 1611–1640 (cit. p. 259).

[8] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool, 2012 (cit. pp. 251,
256).

[9] Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. “Pro-
gram transformation with scoped dynamic rewrite rules”. In: Fundamenta
Informaticae 69.1-2 (2006), pp. 123–178 (cit. pp. 253, 271, 272).

[10] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le
Traon. “Metamodel-based test generation for model transformations: An
algorithm and a tool”. In: 2006 17th International Symposium on Software
Reliability Engineering. IEEE. 2006, pp. 85–94 (cit. p. 279).

[11] Cédric Brun and Alfonso Pierantonio. “Model differences in the Eclipse
Modeling Framework”. In: UPGRADE, The European Journal for the
Informatics Professional 9.2 (2008), pp. 29–34 (cit. p. 279).

[12] Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pieran-
tonio. “Grand challenges in model-driven engineering: An analysis of the
state of the research”. In: Software and Systems Modeling 19.1 (2020),
pp. 5–13 (cit. p. 282).

[13] Loli Burgueño, Jordi Cabot, and Sébastien Gérard. “The future of model
transformation languages: An open community”. In: Journal of Object
Technology 18.3 (2019) (cit. p. 281).

[14] Zijun Chen. “Evaluation of model transformation testing in practice”. MA
thesis. TU Eindhoven, 2020 (cit. p. 281).

[15] Noam Chomsky. Syntactic Structures. Mouton & Co., 1957 (cit. p. 249).
[16] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pieran-

tonio. “JTL: A bidirectional and change propagating transformation lan-
guage”. In: International Conference on Software Language Engineering.
Springer. 2010, pp. 183–202 (cit. p. 269).

[17] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turn-
ing Domain Knowledge Into Tools. CRC Press, 2016 (cit. p. 256).

[18] Olivier Corby and Catherine Faron Zucker. “STTL: A SPARQL-based
transformation language for RDF”. In: 11th International Conference on
Web Information Systems and Technologies. 2015 (cit. p. 236).

[19] James R. Cordy. “The TXL source transformation language”. In: Sci. Com-
put. Program. 61.3 (2006), pp. 190–210 (cit. p. 271).

[20] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A. Schnei-
der. “Source transformation in software engineering using the TXL trans-
formation system”. In: Information and Software Technology 44.13 (2002),
pp. 827–837 (cit. p. 271).

[21] K. Czarnecki and S. Helsen. “Feature-based survey of model transformation
approaches”. In: IBM Syst. J. 45.3 (2006), pp. 621–645 (cit. pp. 234, 251,
256, 267, 269–271, 282).

References 289

[22] Susan B. Davidson and Anthony S. Kosky. “WOL: A language for database
transformations and constraints”. In: Proceedings 13th International Con-
ference on Data Engineering. IEEE. 1997, pp. 55–65 (cit. p. 236).

[23] Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czarnecki.
“A three-dimensional taxonomy for bidirectional model synchronization”.
In: Journal of Systems and Software 111 (2016), pp. 298–322 (cit. p. 270).

[24] Dragan Djurić, Dragan Gašević, and Vladan Devedžić. “The tao of mod-
eling spaces”. In: Journal of Object Technology 5.8 (2006), pp. 125–147
(cit. p. 235).

[25] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, eds. Handbook
of Graph Grammars and Computing by Graph Transformation: Vol. 2:
Applications, Languages, and Tools. World Scientific, 1999 (cit. p. 270).

[26] Romina Eramo, Romeo Marinelli, and Alfonso Pierantonio. “Towards a
taxonomy for bidirectional transformation.” In: SATToSE 1354 (2014),
pp. 122–131 (cit. p. 270).

[27] Michalis Famelis et al. “Migrating automotive product lines: A case study”.
In: International Conference on Theory and Practice of Model Transforma-
tions. Springer. 2015, pp. 82–97 (cit. p. 281).

[28] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny
Groshev. “ConfigFix: Interactive configuration conflict resolution for the
Linux kernel”. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). 2021
(cit. p. 259).

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995 (cit. p. 251).

[30] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam
Szalkowski. “GrGen: A fast SPO-based graph rewriting tool”. In: Interna-
tional Conference on Graph Transformation. Springer. 2006, pp. 383–397
(cit. p. 270).

[31] Stefan Götz, Matthias Tichy, and Raffaela Groner. “Claimed advantages and
disadvantages of (dedicated) model transformation languages: A systematic
literature review”. In: Software and Systems Modeling 20.2 (2021), pp. 469–
503 (cit. p. 282).

[32] Richard C Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Pearson Education, 2009 (cit. pp. 245, 252, 253, 283).

[33] Regina Hebig, Christoph Seidl, Thorsten Berger, John Kook Pedersen, and
Andrzej Wąsowski. “Model transformation languages under a magnifying
glass – a controlled experiment with Xtend, ATL, and QVT”. In: 26th
ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE). 2018 (cit. p. 281).

[34] Soichiro Hidaka, Massimo Tisi, Jordi Cabot, and Zhenjiang Hu. “Feature-
based classification of bidirectional transformation approaches”. In: Soft-
ware & Systems Modeling 15.3 (2016), pp. 907–928 (cit. p. 270).

[35] Georg Hinkel. “An approach to maintainable model transformations with an
internal DSL”. MA thesis. Department of Informatics, Karlsruhe Institute
of Technology, 2013 (cit. p. 237).

290 Chapter 7. Model and Program Transformation

[36] Tony Hoare. “The verifying compiler: A grand challenge for computing
research”. In: International Conference on Compiler Construction. Springer.
2003, pp. 262–272 (cit. p. 275).

[37] Arnaud Hubaux, Mathieu Acher, Thein Than Tun, Patrick Heymans, Philippe
Collet, and Philippe Lahire. “Separating concerns in feature models: Retro-
spective and support for multi-views”. In: Domain Engineering. Springer,
2013, pp. 3–28 (cit. p. 252).

[38] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall, 1993 (cit. p. 253).

[39] Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen Dingel,
and Daniel Varró. “Survey and classification of model transformation tools”.
In: Software & Systems Modeling 18.4 (2019), pp. 2361–2397 (cit. pp. 234,
256, 267, 269, 270, 282, 283).

[40] Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an engineering
discipline for grammarware”. In: ACM Trans. on Soft. Eng. and Method.
(TOSEM) 14.3 (2005), pp. 331–380 (cit. p. 236).

[41] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. “Technological spaces: An
initial appraisal”. In: CoopIS, DOA 2002 (2002) (cit. p. 235).

[42] Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Werner Rets-
chitzegger, Wieland Schwinger, and Gerti Kappel. “Reality check for
model transformation reuse: The ATL Transformation Zoo case study”.
In: AMT@MoDELS. 2013 (cit. p. 249).

[43] Ralf Lämmel. Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2018 (cit. pp. 236, 271, 278).

[44] Ralf Lämmel, Eelco Visser, and Joost Visser. “Strategic programming meets
adaptive programming”. In: AOSD. 2003 (cit. p. 259).

[45] Ralf Lämmel and Joost Visser. “Design patterns for functional strategic
programming”. In: RULE. 2002 (cit. p. 259).

[46] Robert Lindohf, Jacob Krueger, Erik Herzog, and Thorsten Berger. “Soft-
ware product-line evaluation in the large”. In: Empirical Software Engineer-
ing 26.30 (2 2021) (cit. p. 252).

[47] Josh G.M. Mengerink, Alexander Serebrenik, Ramon R.H. Schiffelers, and
Mark G.J. van den Brand. “Automated analyses of model-driven artifacts:
Obtaining insights into industrial application of MDE”. In: IWSM Mensura.
2017 (cit. p. 281).

[48] Tom Mens and Pieter Van Gorp. “A taxonomy of model transformation”. In:
Electronic Notes in Theoretical Computer Science 152 (2006), pp. 125–142
(cit. pp. 235, 256).

[49] A.J. Mooij, M.M. Joy, G. Eggen, P. Janson, and A Rădulescu. “Industrial
software rejuvenation using open-source parsers”. In: International Con-
ference on Theory and Practice of Model Transformations. Springer. 2016
(cit. p. 281).

[50] Peter D. Mosses. “Formal semantics of programming languages. An over-
view.” In: Electronic Notes in Theoretical Computer Science 148.1 (2006),
pp. 41–73 (cit. pp. 250, 282).

[51] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. “Model transfor-
mation testing: Oracle issue”. In: 2008 IEEE International Conference
on Software Testing Verification and Validation Workshop. IEEE. 2008,
pp. 105–112 (cit. pp. 278, 279).

References 291

[52] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
“Where do configuration constraints stem from? An extraction approach and
an empirical study”. In: IEEE Transactions on Software Engineering 41.8
(2015), pp. 820–841 (cit. p. 259).

[53] Siegfried Nolte. QVT - Operational Mappings: Modellierung mit der Query
VSiews Transformation. Springer, 2010 (cit. p. 245).

[54] Object Management Group. Query/Views/Transformation Language (QVT).
https://www.omg.org/spec/QVT. 2016 (cit. p. 269).

[55] Karina Olmos and Eelco Visser. “Strategies for source-to-source constant
propagation”. In: Electronic Notes in Theoretical Computer Science 70.6
(2002), pp. 156–175 (cit. p. 253).

[56] Gergely Pintér and István Majzik. “Program code generation based on
UML statechart models”. In: Periodica Polytechnica Electrical Engineering
(Archives) 47.3-4 (2003), pp. 187–204 (cit. p. 251).

[57] Daniel Ratiu, Markus Völter, and Domenik Pavletic. “Automated testing of
DSL implementations—experiences from building mbeddr”. In: Software
Quality Journal 26.4 (2018), pp. 1483–1518 (cit. pp. 275, 278).

[58] Wolfgang Reisig. A Primer in Petri Net Design. Springer, 2012 (cit. p. 237).
[59] Simon Schauss, Ralf Lämmel, Johannes Härtel, Marcel Heinz, Kevin

Klein, Lukas Härtel, and Thorsten Berger. “A chrestomathy of DSL im-
plementations”. In: 10th International Conference on Software Language
Engineering (SLE). 2017 (cit. p. 283).

[60] Gehan M.K. Selim, James R. Cordy, and Juergen Dingel. “How is ATL
really used? Language feature use in the ATL zoo”. In: 2017 ACM/IEEE
20th International Conference on Model Driven Engineering Languages
and Systems (MODELS). 2017 (cit. p. 249).

[61] Steven She and Thorsten Berger. Formal Semantics of the Kconfig Language.
Tech. note. 2010. URL: https://arxiv.org/abs/2209.04916 (cit. p. 250).

[62] Anthony M. Sloane. “Lightweight language processing in Kiama”. In: Inter-
national Summer School on Generative and Transformational Techniques
in Software Engineering. Springer. 2009, pp. 408–425 (cit. pp. 259, 267,
271).

[63] Anthony M. Sloane, Lennart C.L. Kats, and Eelco Visser. “A pure embed-
ding of attribute grammars”. In: Science of Computer Programming 78.10
(2013), pp. 1752–1769 (cit. p. 283).

[64] Anthony M. Sloane and Matthew Roberts. “Domain-specific program
profiling and its application to attribute grammars and term rewriting”.
In: Science of Computer Programming 96 (2014), pp. 488–510 (cit. p. 283).

[65] Anthony M. Sloane and Matthew Roberts. “Oberon-0 in Kiama”. In: Science
of Computer Programming 114 (2015), pp. 20–32 (cit. p. 283).

[66] Anthony M. Sloane, Matthew Roberts, and Leonard G.C. Hamey. “Respect
your parents: How attribution and rewriting can get along”. In: International
Conference on Software Language Engineering. Springer. 2014, pp. 191–
210 (cit. p. 283).

[67] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo
Kehrer, Manuel Ohrndorf, and Matthias Tichy. “Henshin: A usability-
focused framework for EMF model transformation development”. In: Inter-
national Conference on Graph Transformation. Springer. 2017, pp. 196–
208 (cit. p. 270).

https://www.omg.org/spec/QVT
https://arxiv.org/abs/2209.04916

292 Chapter 7. Model and Program Transformation

[68] Grigori S. Tseitin. “On the complexity of derivation in propositional calcu-
lus”. In: Automation of Reasoning. Springer, 1983 (cit. p. 265).

[69] Dániel Varró and András Balogh. “The model transformation language of
the VIATRA2 framework”. In: Science of Computer Programming 68.3
(2007), pp. 214–234 (cit. p. 270).

[70] Eelco Visser. “A survey of strategies in rule-based program transformation
systems”. In: Journal of Symbolic Computation 40.1 (2005), pp. 831–873
(cit. pp. 234, 255, 257, 267, 271, 272, 283).

[71] Eelco Visser. “Program transformation with Stratego/XT”. In: Domain-
Specific Program Generation. Springer, 2004, pp. 216–238 (cit. p. 271).

[72] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, 1993 (cit. p. 250).

[73] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Chris-
tian Holler. The Fuzzing Book. 2022. URL: https : / /www. fuzzingbook.org
(cit. p. 279).

https://www.fuzzingbook.org

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_8

293

8 Interpretation

A finished translation is like a tangible,
measurable piece of proof that one has

understood the original perfectly.

Stanisław Barańczak [2]

Code generators (Chapter 9) and interpreters are the primary ways to give
DSLs a dynamic semantics, to breath meaning into syntax. DSL interpreters
are tools that translate the input language piece-by-piece on the fly, like a hu-
man simultaneous translator from Danish to German during an interview or
a press conference. As a result the input model “executes.” Code generators
translate the input model entirely in one go into some target language, like a
human translator of books from Danish to German. The resulting code can
be compiled and executed by the target language’s tools. Both interpreters
and code generators are special kinds of transformations (Chapter 7).

The overall design of a code generator is largely inspired by compilers.
Figure 8.1 summarizes this architecture as a pipeline, from the top left: syn-
tax processing, static semantics processing, translation into intermediate rep-
resentations and eventually outputting binary code or bytecode. Interpreters
typically follow the same architecture, until the translation phase, when
the representation is executed instead of being translated. The languages
using virtual machines combine both ideas: first compile to an intermediate
bytecode representation, then use a byte code interpreter to execute it.

lexing (scanning)

string of characters

string of tokens

parsing

name & type analysis

annotated AST

translation

intermediate lang.

register allocation

assembly code

assembler

machine code

syntax

semantics

abstract syntax tree
(AST)

«transformation»
optimization

«transformation»
peephole optimization

«example»
'\t','x',' ','+','3','\n'

«example»
ID("x"),PLUS,INT(3)

«example»

ope_expr
left
right
ope = PLUS

var_ref("x")
const(3)

«example»

ope_expr
left
right
ope = INT_PLUS

var_ref
 int_const(3)

:int
:int

:int

«example»
 r123 ← r12+r3

jz L5
jmp [r123]

«example»
 AX ← BX+CX

jz L5
jmp [AX]

«example»
 f0 07 67 a4 5d cd ...

Figure 8.1: A typical compiler follows a pipeline architecture

https://doi.org/10.1007/978-3-031-23669-3_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_8&domain=pdf

294 Chapter 8. Interpretation

Figure 8.2: Left: Code
generation creates custom

code reflecting the meaning of
the model, linked with the
platform implementation.

Right: An interpreter is a part
of the platform. It can use

models directly

generated
completion code

domain implementation
(a static platform)

domain-specific
model

code

generator

domain implementation
(a static platform)

interpreter of models

domain-specific model

The above designs developed for GPLs remain valid for DSLs, but
DSLs require flexible and cheap implementation strategies. DSLs are
simpler but more diverse than GPLs, and they are developed on smaller
budgets. DSL implementers tend to follow the front-end part of the GPL
pipeline architecture: the syntactic analysis (Chapters 3 and 4) and the
static semantics (Chapters 5 and 6). The multistage code generator passes
are often replaced with a simple interpreter, or with a generator targeting a
GPL. The complexity is then delegated to the GPL compiler or interpreter.

Figure 8.2 summarizes the difference between these two key strategies:
code generation (left) and interpretation (right). With code generation we
hard-code a static platform represented by the dark shape in the figure.
The static platform implements the part of our DSL that is independent of
the model; typically a runtime system, a business application framework,
hardware drivers for an embedded system, etc. The static platform should
expose abstractions that can be efficiently used by the generated code. Then
we generate the remaining code automatically, based on the input model.
The generated code reflects the meaning of the model. It is linked and
executed together with the static platform to obtain a running software
system. Both the static platform and the generated code are implemented in
a target GPL. Google Protocol Buffers (p. 10) are an example of a DSL using
(multiple) code generators and (multiple) static runtime implementations.

In the interpreter strategy (on the right in Fig. 8.2) we still implement
a static platform, but instead of a code generator, we include a runtime
interpreter for models. There is no generation whatsoever. The platform
just reads the model and executes it with the provided logic. Most block-
based languages for programming aiming at children (such as the Scratch
language in Fig. 1.3) are interpreted. However, many DSLs for professionals
are also interpreted, among them block-languages for configuring robotics
applications (similar to Scratch), HTML (where the verb rendering means
interpretation), and query languages (like SQL). Interpretation is often the
easiest and the cheapest way to implement DSL semantics, thus we discuss
it in considerable detail below. Code generation, as a more performant, but
also more expensive method, is discussed in Chapter 9.

8.1 Domain Implementation

With both code generation and interpretation (Fig. 8.2), the bulk of any DSL
implementation tends to be model-independent. One can implement a large
part of the language semantics as usual “static” code without building an

8.1. Domain Implementation 295

interpreter or generating code. For example, in a DSL describing web pages,
most of the logic can be pre-implemented in generic JavaScript, CSS, and
HTML primitives, all independent of the input model. In a mission DSL for
robotics, most of the implementation is concerned with robotics architecture,
hardware drivers, perception, knowledge, and control components, which all
can be implemented and composed regardless of whether we use a model to
control a robot or not. Similarly, only a tiny part of a database management
system is concerned with interpretation of SQL. Most of the manipulation
primitives, data structures, indexing, and storing solutions are implemented
before you write your first query. An SQL interpreter merely composes the
right elements from this implementation to deliver a response to a query.

This static project, often called the platform, implements what is known
about the domain, limiting the use of the model to interpretation or code
generation time.

A library as the platform. The domain can be implemented as a library, if
the DSL’s semantics concerns invoking primitive operations from a known
collection. This is, for instance, the case for control languages that define
top-level behavior of an agent like a robot or another device. Stahl and
Völter [17] recommend placing domain concepts at the level of functionality,
when implementing the platform. This decreases the semantic gap between
models and code, and maximizes the chance of success when translating
or interpreting a model. So, for example, in an insurance application it
makes sense to work with platform concepts like person or account, and the
primitive operations on them (open, close, deposit, index, evaluate, etc.). In
a robotics application, it is useful to work with robot actions and skills, for
instance: moving, sensing, planning, and following paths for a mobile robot.
The types in your library should capture the domain concepts (meta-model
types can often be used directly here), and the API functions should reflect
the basic operations in the semantics of the DSL. Then the generator or the
interpreter just translates the model elements to instances of these types and
the model operations to the API calls.

A framework as the platform. If your DSL is not control-oriented, and
the same control loop is used in the semantics of all models (for instance
in event-driven languages), it might be more practical to implement the
platform as a framework with control inversion. A framework is a larger
code base, typically with quite a strict architecture, that can be extended
into a complete application by providing adaptation code (for example
via extending super-classes), providing configuration parameters, XML
models, or implementing callbacks. You can think of a framework as a
large library using inversion of control. Frameworks are ubiquitous in
software development; we use persistence frameworks, GUI frameworks,
web programming frameworks, or enterprise systems frameworks.

Very often DSLs are designed against existing frameworks (Eclipse,
OSGI, ROS, etc.). The framework adaptation code tends to contain a lot
of boilerplate, which can be successfully generated from models describing

Example 24. Recall the DSL robot of Chapter 2 (Fig. 2.2, p. 30), a state-
machine-like language with nested modes containing actions executed on
mode activation, and reactions triggered by external events. Figure 8.3 presents
its meta-model. Actions (docking, turning, or moving) are not instantaneous
but can have a predefined duration, which is specified using a minimalistic
expression language. Reactions are predefined state changes triggered by
detection of an obstacle or a sound signal (a clap). Finally, a dedicated action
navigates back to the initial position of the robot while avoiding collisions.

We chose to create a domain implementation for robot using the Robot
Operating System (https://www.ros.org/), a robotics programming platform that
bundles simulators of the hardware along with sensing and control software.
The overall architecture is summarized in Fig. 8.4, to the right.

To execute models like the one in Fig. 2.2, we need a physical robot, but in
early stages it is more practical to use a simulator (bottom in the diagram). We
use the TurtleBot3 platform along with the Webots simulator (https://cyberbotics.
com/). This way you can run and test it without the hardware. The simulator
provides a model of the physical environment and of the robot hardware. ROS
provides a differential drive controller (that moves the robot by translating
velocity commands into power applied to the two wheels) and a driver for
the laser sensor to detect obstacles. Finally, for navigating back to the initial
position, we use a navigation component from ROS that computes paths on the
map and uses the controller to follow them. Besides these, ROS also provides
basic coordination and communication middleware so that we can monitor and

296 Chapter 8. Interpretation

the essence of the product. Automatic code generation from models or inter-
pretation of models helps to maintain invariants of the framework API—this
is very handy, as violation of such invariants typically cannot be discovered
early (errors manifest themselves only at runtime). If the code generator/in-
terpreter is correct, we just need to encode the framework invariants into the
static semantics of the DSL by adding suitable constraints or typing rules.

Other good architectural frameworks that work well with MDSE are compo-
nent-based architectures and middleware, which both require considerable
boilerplate code to integrate together into complete products. This code can
normally be generated automatically.

Ultimately, you rarely have the comfort of choosing the architecture and
technology underlying your DSL. For most commercial software, at the
point when a DSL is being built, the underlying software platform already
exists. The only thing you might need to do is to add an adaptation layer
that brings the abstractions closer to the DSL concepts.

The organization of a DSL implementation into a large platform and a
small interpreter (generator) allows the amount of information in the models
to be limited. The languages can be kept small, and users need not provide
a lot of details in them. The DSL tools extract relatively little information
from the models, and mostly focus on composition and completing the
platform implementation. The models are easier to write for users and the
DSL is easier to implement for engineers.

https://www.ros.org/
https://cyberbotics.com/
https://cyberbotics.com/

8.1. Domain Implementation 297

Mode

name : EString
initial : EBoolean = false

ModeProperty

Reaction

trigger : Event = EV_OBSTACLE

Action

AcDock AcMove

forward : EBoolean = false

AcTurn

right : EBoolean = false
AExpr

BinExpr

ope : EString

MinusRndI CstI

value : EInt

Event

EV_OBSTACLE
EV_CLAP

[0..*] actions

[0..1] continuation

[0..*] modes

[0..*] reactions

[0..1] target

[0..1] duration [0..1] speed

[0..1] distance

[0..1] angle

[0..1] left

[0..1] right

[1..1] aexpr

[0..1] max

[0..1] min

source: robot/model/robot.ecore

Figure 8.3: A meta-model of a simple control DSL for mobile robots. See an example model in Figures 2.2 and 2.5

control the components of our interpreter. Since the framework is fairly sub-
stantial and requires extensive setup and configuration, we wrapped everything
in a Docker container. We have done this to simplify the setup for readers, but
the practice is not unusual for complex platforms underlying real DSLs—you
often need to provide a reproducible development and deployment solution,
not only in robotics. For instance, you cannot expect every developer building
a financial product DSL to set up the test and build environment involving
complex business servers. This is best automated in a reproducible manner.

This book is not about robot programming—the above summary, necessarily
too brief to build a robot, has been included to make you realize that
the implementation of the domain for many DSLs may be substantial,
unlike what many textbook examples may make you think. The platform
implementing the domain is typically much larger and much more complex
than the actual interpreter or a code generator. The platform is also what
gives the DSL its power—a rich semantics for the models.

Often the existing infrastructure predates the DSL design project. For
this reason it may turn out not be sufficient, even if correctly configured. A
common problem is an impedance between the abstractions in the language

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot/model/robot.ecore

298 Chapter 8. Interpretation

Figure 8.4: Left: A
visualization of the TurtleBot3

robot in a Webots simulation of
an example project

robot.turtlebot3.
Right: The key architectural

components realizing the logic
of a robot model, a

refinement of the
right-hand-side diagram of

Fig. 8.2 for this example. The
interpreter is just a single

component here, not even the
most complex one. The

domain implementation tends
to be large and complex for

many DSLs

and in the legacy platform. For this reason it is advisable to implement an
adaptation API layer that directly corresponds to the primitives in the DSL,
but realizes the meaning of the primitives using the platform. This should
make the implementation of the interpreter much simpler.

Example 25. For the robot language, the adaptation layer defines functions
realizing actions on top of the ROS API, and establishes listeners for external
events used in the models. It is shown as a gray box in the top right of
Fig. 8.4, below the interpreter. Figure 8.5 summarizes the adaptation API.
Focus on the kinds of APIs implemented here; most function bodies are
elided anyway, for brevity. The class TurtleBotPlatform is an abstract class,
which is extended by model executors, for instance interpreters, but also
reference implementations of models, and generated code. The initializer
in lines 2–15 defines the operation frequency, a number of event monitors
(callbacks), and several internal state variables. The callbacks, l. 7–9, are
activated whenever the laser sensor communicates a readout (used to discover
obstacles), whenever a user produces a clapping sound, and when a timer-
driven loop needs to republish active commands for the motor (l. 9). We create
a publisher channel for communicating with the differential driver controller
in l. 6. The state variables store the active motor command (l. 11), the current
mode of the model (l. 12), and two flags registering whether a clap or obstacle
event has been seen and awaits processing (l. 13–14).

The most interesting part of the figure is the action API in l. 31–38 imple-
menting operations available in robot. There is almost a one-to-one correspon-
dence between these functions and the actions available in the meta-model of
Fig. 2.2. This is a common pattern: the domain implementation API should
closely mimic the language. Finally, the functions in lines 17–29 (and in l. 40)
implement other technicalities of the robot semantics: the monitoring and tim-
ing callbacks, and making motor commands persist for some time (latching).1

1Our code repository also contains a simpler version of this example, implemented in Scala,
using RosJava and ROS1, and integrated with xtext. See robot.scala/.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.scala/

8.1. Domain Implementation 299

1 class TurtleBotPlatform(Node):
2 def __init__(self, name, executor):
3 super().__init__(name)
4 self.FREQ = 10.0 # Hz
5 # Framework event listeners and timers
6 self.cmd_vel = self.create_publisher(Twist, ’/cmd_vel’, 10)
7 self.scan_listener = self.create_subscription(LaserScan,’/scan’,self.scanner_callback, 1)
8 self.clap_listener = self.create_subscription(Bool, ’/clap’, self.clap_callback, 10)
9 self.tm_control_loop = self.create_timer(1.0/self.FREQ, self.msg_pulse_callback)

10 # Internal framework states
11 self.latched_msg = Twist()
12 self.mode = []
13 self.ev_clap = False
14 self.ev_obstacle = False
15 ...

17 def info(self, msg: str) -> None:
18 """A convenience function for reporting progress using ROS logging facility."""
19 def latch(self, duration: float = -1.0) -> None:
20 """’Latch’ the message for non-preemptive duration seconds,
21 or if duration -1, latch it for infinity but make preemptive."""
22 def tm_latch_callback(self) -> None:
23 """Discover that a message has timed out, and ’unlatch’ it."""
24 def msg_pulse_callback(self) -> None:
25 """Repeatedly send latched message to /cmd_vel, if there is one."""
26 def scanner_callback(self, msg: LaserScan) -> None:
27 """Detect an obstacle with reasonable range of sensing in front"""
28 def clap_callback(self, msg: Bool) -> None:
29 """Called when a clap is observed (mocked)"""

31 # Operations on the robot (basic actions semantics)
32 def random_rotation(self, duration: float = -1.0) -> None: ...
33 def engage(self, velocity: float, duration: float = -0.7) -> None: ...
34 def stop(self, duration: float = -1.0) -> None: ...
35 def back_off(self, duration: float = 0.7) -> None: ...
36 def return_to_base(self) -> None: ...
37 def _go_to_pose(self, pose: PoseWithCovarianceStamped) -> None: ...
38 """Plan and Navigate to a specific pose on the map using Navigation2 of ROS2"""

40 def swist(m) -> str: """Format a 2D twist message a string for printing""" ...
41 def run(args, mkController):
42 """Initialize ROS and the interpreter class, start the main control loop""" ...
source: robot.turtlebot3/dsldesign_robot_turtlebot3/turtlebot.py

Figure 8.5: The adaptation layer API (see Fig. 8.4) for the robot DSL example, in Python using ROS

In summary, the adaptation layer API implements the basic operations of
the language, defines the state of the execution, and provides infrastructure
services needed for a language interpreter (or a code generator) to execute
models possibly directly. The interpreter does not need to refer to other parts
of the platform, as all the functionality is exposed in the adaptation layer at
the right level of abstraction. Crucially, the entire platform, even the adapta-
tion API, is independent of the input model. It does not refer to the model.

Discussing domain implementations in detail is difficult, because they
entirely depend on expertise in a particular domain of interest. For effi-

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/turtlebot.py

300 Chapter 8. Interpretation

1 def eval (s: fsm.State) (input: String)
2 : Option[(fsm.State, Option[String])] =
3 s.getLeavingTransitions
4 .asScala
5 .find { tran => tran.getInput == input }
6 .map { tran =>
7 (tran.getTarget, Option (tran.getOutput)) }

10 def repl (s: fsm.State): Unit =

12 val inputs = s.getLeavingTransitions.
13 .asScala
14 .map { _.getInput }
15 .mkString (", ")

17 print (s"\nMachine in state: ${s.getName}. ")
18 print ("Input [$inputs]? ")
19 val input = io.StdIn.readLine
20 eval (s) (input) match

22 case Some (s1 -> Some (output)) =>
23 println (s"Machine outputs: $output")
24 repl (s1)
25 case Some (s1 -> None) =>
26 repl (s1)
27 case None =>
28 println ("Invalid input!")
29 repl (s)

32 def run (m: fsm.Model): Unit =
33 repl (m.getMachines.get (0).getInitial)
source: fsm.scala/src/main/scala/dsldesign/fsm/scala/package.scala

1 def eval(state, input: str):
2 active = filter(lambda t: t.input==input,
3 state.leavingTransitions)
4 tran = next(active, None)
5 if tran:
6 return (tran.target, tran.output)
7 else:
8 return None

10 def repl(state):
11 while True:
12 name = state.name
13 msg1 = f’Machine in state "{name}".’
14 inputs = (s.input
15 for s in state.leavingTransitions)
16 msg2 = ’, ’.join(inputs)
17 try:
18 print(msg1, end = ’’)
19 i = input(f’ Input [{msg2}]? ’)
20 result = eval(state, i)
21 if result:
22 state = result[0]
23 if result[1]:
24 print(’Machine outputs:’,
25 end = ’’)
26 print(f’ {result[1]}’)
27 else:
28 print("Invalid input!")
29 except EOFError:
30 print("\nInvalid input!")

32 def run(model):
33 repl(model.machines[0].initial)
source: fsm.py/interpreter.py

Figure 8.6: An interpreter for state machines in Scala (left) and Python (right) using the meta-model of Fig. 3.1

ciency, we switch attention to simple exercise-like DSLs below, without any
accompanying platform. Beware though, that this switch is purely motivated
by the need to discuss interpretation principles efficiently and pedagogically.
It is not meant to be an admission that the platform is unimportant, or even
that writing the interpreter is the major part of the required effort.

8.2 The Interpreter Proper

For many simple DSLs the easiest way to interpret a model is to work
directly with its abstract syntax. We show this on two simple examples: the
finite-state-machine language and the logical expressions language.

Interpreting a language with explicit states and imperative transitions.
The characteristic aspect of the finite-state-machine example DSL is that
its execution involves an explicit notion of state and transitions between
states. An interpreter for such a language typically takes the form of a
loop (or an equivalent recursion) calculating the new value of the current

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/package.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/interpreter.py

8.2. The Interpreter Proper 301

state. Figure 8.6 shows the interpreters for the fsm language in Scala and
Python. Both implementations work with the abstract syntax as defined in
the meta-model of Fig. 3.1. (The ADT variant would be almost identical.)

The core of the interpreter is the function that for the current state and
input calculates the target state and the output (lines 1–8, for both languages).
We first find the transitions leaving the current state, then identify active
transitions (that are triggered by the current input), pick the first active
transition, and return a pair: the target state and (possibly) an output. If
any of these steps fails (no leaving transitions, no active transition) then we
return an error value, None in both languages. The output message is also
None, if the transition produces no output (silent).

Many interpreters maintain a state of execution (here the active state of
the machine). An evaluation mechanism interprets the current state and
interacts with the execution environment (the domain implementation) to
create a new state. Often the notion of state is implicit, with a complex
transition evaluation function. For instance, the state may be the values
assigned to all variables in scope (a dictionary) with each transition given
by assignment statements. This has been particularly simple for the finite-
state-machine language, because in this language the transitions are explicit
in the abstract syntax, and firing them requires no calculation.

Read-evaluate-print-loop (REPL). An evaluation function needs to be
wrapped into an execution loop. In our example, the loop is a simple infinite
iteration that continues to take inputs from the user (standard input), execute
transitions using the evaluator, and communicate the potential outputs along
with the active state. Lines 10–33 in Fig. 8.6 show implementations for a
REPL in Scala and Python. In Scala, we read an input from the user, eval-
uate it to get a new state using the eval function discussed above, print an
output (if present), and move to the new state. The loop is explicit in Python
(l. 11). The Scala version uses (tail) recursion to achieve the same effect
(l. 24, 26, and 28). Of course, we could have used a while-loop in Scala, too.

Exercise 8.1. Reimplement the REPL in Scala using an explicit while-loop and a
variable for storing the current state.

Many modern programming languages offer REPLs, sometimes known as
an interactive shell or an interactive interpreter. REPLs help novice users
to learn, and the experienced ones to prototype and debug code. REPLs are
also the first step to implementing interfaces to more complex environments,
such as Jupyter notebooks. They also allow execution of DSL models as
shell scripts on any system following the Unix shebang convention (#!).2

2The shebang convention is used to make script files executable in Unix systems and
compatible systems. In order to support it, the grammar of your DSL must ac-
cept a hash as a character opening a line comment, at least on the first line in the
file. To start an interpreter from within a model file use #!/path/to/interpreter in
its first line and make it executable. To start an interpreter that already reads the
model file some other way, but reads the REPL commands from the current file, use
#!/usr/bin/env -S sh -c ’"$1"<"$2"’ redirun /path/to/interpreter.

302 Chapter 8. Interpretation

This possibility is one of the easiest ways to integrate your DSL models
with the rest of the system.

If the fsm language had to be used to control an embedded system,
the REPL would have to be replaced with reading sensors and actuating
hardware, instead of standard input and output streams. If control inversion
is used, for instance implemented in a framework, the evaluation function
needs to be registered in some event-handlers or callbacks, while the
framework provides the loop.

Recursive interpretation of ASTs. Recursion is a natural way to traverse
meta-models and ADTs with cycles over containments. This is best demon-
strated on the simple expression language expr of Figures 7.12 and 7.13.
Recall that expr has binary and unary expressions (and, or, not), named
variables, and constants (true/false, in the Scala ADT variant).

The essential difference between the state machines and expressions is the
limited nesting of the abstract syntax of fsm models. A model contains state
machines, machines contain states, each state may contain transitions. No
deeper elements are present. In the expression language an expression can
inductively contain another expression, which contains another expression,
and so on. Arbitrarily large syntax tree structures can be instances of the
expr. Recursion is an ideal way to explore such trees.

The second essential difference between fsm and expr is how they focus
on state changes and values. The execution of a finite-state machine
modifies the current state of the interpreter. In other words, it produces
side effects. The expression language is quite different. For example, the
expression x∧ y evaluates to the value true for the assignment of variables
{x 7→ true,y 7→ true}. The state of the interpreter and the assignment of
variables to values remain unchanged during the evaluation. The only
result of the evaluation is the value produced. In general, model evaluation
often produces both state changes and values, but some languages are more
value-heavy than state-heavy.

Let us see how these ideas manifest in a Scala interpreter for the ADT
version of expr (Fig. 8.7, left column). In Line 1, we define the type Env (for
“environment”), which represents the state of the evaluation. Our state is a
map of variable names to values. The state never changes here. Contrast this
with the fsm interpreter, which produced a new state value at each step. The
expression evaluator (eval) produces a Boolean value (lines 3–4) or fails
(Option). The type Boolean is our value type while Env is our state type.

When building an interpreter, you should have a clear idea what state is
manipulated and what values are produced. The state type in an interpreter
is the type that represents the state of the execution. The value type is the
type that represents the value produced. For larger languages, we can have
several state and several value types, as different parts of the model have
different meaning. Importantly, one should not confuse the state and value
types with the meta-model types. For instance, in expr we have a construc-
tor True that represents the literal true in the syntax. This syntax element

8.2. The Interpreter Proper 303

1 type Env = Map[String, Boolean]

3 def eval (e: Expression) (env: Env)
4 : Option[Value] =
5 e match

12 case Identifier (name) =>
13 env.get (name)

22 case AND (l, r) =>
23 for
24 valL <- eval (l) (env)
25 valR <- eval (r) (env)
26 yield valL && valR

28 case OR (l, r) =>
29 for
30 valL <- eval (l) (env)
31 valR <- eval (r) (env)
32 yield valL || valR

34 case NOT (e) =>
35 for valE <- eval (e) (env)
36 yield ! valE

38 case True =>
39 Some (true)

41 case False =>
42 Some (false)
source: expr.scala/src/main/scala/dsldesign/expr/scala/
adt.scala

1 static class EvalSwitch
2 extends ExprSwitch<Boolean> {

4 private final Map<String, Boolean> env;

6 public EvalSwitch (Map<String, Boolean> env) {
7 super ();
8 this.env = env;
9 }

11 @Override
12 public Boolean caseIdentifier (Identifier expr) {
13 Boolean result = this.env.get (expr.getName());
14 if (result == null)
15 throw new
16 RuntimeError("Access to undefined variable ’"
17 + expr.getName() + "’");
18 else
19 return result;
20 }

22 public Boolean caseAND (AND expr) {
23 Boolean valL = this.doSwitch (expr.getLeft ());
24 Boolean valR = this.doSwitch (expr.getRight ());
25 return valL && valR;
26 }

28 public Boolean caseOR (OR expr) {
29 Boolean valL = this.doSwitch (expr.getLeft ());
30 Boolean valR = this.doSwitch (expr.getRight ());
31 return valL || valR;
32 }

34 public Boolean caseNOT (NOT expr) {
35 return !this.doSwitch (expr.getExpr ());
36 }

38 @Override
39 public Boolean defaultCase (EObject ignore)
40 throws RuntimeError {
41 throw new RuntimeError ("Internal Error. " +
42 "Attempted to evaluate object " + ignore);
43 }
44 }

46 static Boolean eval(Map<String, Boolean> env,
47 Expression expr)
48 throws RuntimeError {
49 return new EvalSwitch (env).doSwitch (expr);
50 }
source: expr.java/src/main/java/dsldesign/expr/java/Interpreter.java

Figure 8.7: An interpreter for the expr language in Scala using the abstract data types AST of Fig. 7.12 in Scala (left)
and using the meta-model of Fig. 7.13 in Java (right)

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/adt.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/adt.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.java/src/main/java/dsldesign/expr/java/Interpreter.java

304 Chapter 8. Interpretation

evaluates to true, which is a value of type Boolean, our value type. Things
often get a bit subtle on the boundary of abstract syntax and value types, and
it often helps to carefully separate these. However, once everything is well
understood, you may be able to reuse literal types from the meta-model as
values in the interpreter, if you know what you are doing. In this example,
using the syntax types for values does not really help. Using Boolean, we
can delegate operations in our language to Scala operations on the Boolean
type, which saves some work, and keeps the interpreter smaller. In the fsm
example, however, we used a reference to a state object (in the abstract
syntax) as the state type, effectively reusing a type from the abstract syntax.

The body of the interpreter (lines 5–42) matches the abstract syntax
types, and evaluates the syntax nodes. For instance, when evaluating an
expression consisting of a single variable name, we return the value of that
variable stored in the state environment (lines 12–13). For a more complex
binary expression, say AND in lines 22–26, we recursively evaluate the left
(l) and right (r) sub-expressions in the same state (env). This gives us two
Boolean values—we return their Boolean conjunction as implemented in
Scala (&&). The for-yield wrapping makes sure that if any of the recursive
calls returns None (fails), so does the evaluation of the entire conjunction.
We encourage the reader to study the remaining cases.

Let us turn to the right column in Fig. 8.7, which shows a variation
of a visitor pattern implementing an interpreter in Java. This interpreter
works against the abstract syntax defined by the meta-model of Fig. 7.13,
exploiting the infrastructure generated by Ecore. The evaluator class extends
the generated switch class for expressions. The value type, still Boolean, is
returned by the switch (Line 2). The constructor (Line 6) receives the state
of the evaluation (still an environment mapping variable names to Booleans)
and stores it in the object field (lines 4 and 8) so that the evaluation cases can
access it. The methods handling the individual cases of the abstract syntax
follow. In the figure, the cases in the right column are aligned with the cases
in the Scala interpreter in the left column to make it easy to compare them.

Consider the case of an expression consisting of a single variable name
(lines 12–20). We get the value of the variable from the state environment
(Line 13), then we check whether this succeeded and either return the value
or throw an exception with an error. The code is a bit more verbose than
on the left, because get in Scala does error handling automatically. On
the other hand, in the Java example we formulate an error message. In the
conjunction case (lines 22-26), the recursive call now involves invoking the
switch method doSwitch on the sub-expressions. This method performs the
resolution of types to cases using dynamic dispatch. The final case (lines
38–42) is added for diagnostic purposes. If we have not missed any cases,
this method will never be called. (The corresponding check in Scala is done
for the pattern matching at compile time.)

8.2. The Interpreter Proper 305

Exercise 8.2. The interpreter to the right in Fig. 8.7 does not support constant
literals True and False. Extend the Ecore meta-model for expr to support
them, like in the ADT of expr.scala/src/main/scala/dsldesign/expr/scala/adt.scala.
Regenerate the Ecore code and extend the interpreter in expr.java/src/main/java/
dsldesign/expr/java/Interpreter.java to support evaluation for the new literals.

An abstract look at interpretation. Interpreters can be implemented follow-
ing various architectural patterns. However, before one decides on imple-
mentation details, it is useful to agree on the execution semantics (dynamic
sematics) of the DSL. This can be done with abstract mathematical notation,
which sidesteps the intricacies of implementation patterns. Such notation
also makes structural recursion (recursion on the structure of abstract-syntax
types) and loops visible, demonstrating that these phenomena are not acci-
dental in our implementation but fundamental to the meaning of languages.

Let us begin with formalizing the dynamic semantics of the expr lan-
guage, the essentials besides the interpreters presented in Fig. 8.7. We will
capture the dynamic semantics of expr using a ternary evaluation relation.
“Ternary” means that this relation binds three elements, in this case: an eval-
uation state (the environment, ε), a term in abstract syntax (an expression,
e), and a produced value (a Boolean, v). We propose the following notation:

⟨ ε , e ⟩ → v (8.1)

interpreter state
(values of variables)

abstract syntax
(an expression in expr)

value computed by
interpreting e in ε

It is instructive to link the symbols to elements of interpreters in Fig. 8.7:
ε corresponds to env, e corresponds to the expression e, and v is the value
returned be the interpreters. We use such judgement (notation) to write the
operational evaluation rules for expr. In the following, x stands for any
variable name in an expr program, b and bi stand for Boolean values, e and
ei stand for abstract-syntax trees of expressions. Each rule corresponds to a
case in the Scala and Java interpreters for expr.

(VAR-REF)
b = ε(x)

⟨ε,x⟩ → b
(NOT)

⟨ε,e⟩ → b1 b = ¬b1

⟨ε,!e⟩ → b

(AND)
⟨ε,e1⟩ → b1 ⟨ε,e2⟩ → b2 b = b1 ∧ b2

⟨ε,e1 && e2⟩ → b

(OR)
⟨ε,e1⟩ → b1 ⟨ε,e2⟩ → b2 b = b1 ∨ b2

⟨ε,e1 ||e2⟩ → b

(TRUE)
⟨ε,true⟩ → true

(FALSE)
⟨ε,false⟩ → false

Recall that inference rules are read upwards. The conclusion, under the
line, describes the purpose of a rule. The premise, above the line, specifies

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.scala/src/main/scala/dsldesign/expr/scala/adt.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.java/src/main/java/dsldesign/expr/java/Interpreter.java
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.java/src/main/java/dsldesign/expr/java/Interpreter.java

306 Chapter 8. Interpretation

when the rule applies. For example, VAR-REF defines how to evaluate an
expression consisting of a single variable reference x to produce a value b. It
checks the value of x in the environment ε (the premise) and returns it as the
result of the evaluation (b) in the conclusion. The negation rule NOT defines
how to interpret an expression that negates a smaller sub-expression e (the
conclusion). The rule evaluates the expression under negation recursively
(the premise) and returns the negation of the obtained Boolean value. We
encourage the reader to study the remaining rules.

Exercise 8.3. Compare Fig. 8.7 with the above rules. Explain how the formal
rules are realized in the two interpreters in the figure. Draw arrows between rule
elements and computations in the source code, while explaining this relationship.

Could we write similar rules for the fsm language? This language not only
produces values (outputs), but also changes the current state (a side effect).
This requires an evaluation relation that binds together quadruples: a source
state, an input event, an output, and a target state. Following common
convention, we will write the outputted value (o) on top of the evaluation
arrow, and the new state (t) to the right of the arrow:

⟨ s , i ⟩
o

−−→ t (8.2)

interpreter state
(references current state)

input event

value produced
(output message)

new interpreter state computed
in s in response to input i

Already the structure of the judgement signals that the semantics is con-
cerned with loops: it starts with a state and ends with a new state in each step.
This is even more clear in the rules themselves. The rules are not recursive;
no premise involves invoking the evaluation judgement as a precondition.

In the following, we write [s, i,o, t] to represent abstract syntax of tran-
sitions, where s is the source state, i is the input (activation) label, o is an
output label, and t is the target state. If a transition has no output label we
write ⊥ instead. Given a state s we write s.leavingTransitions for the set
of transitions sourced in s. In the outputs, we use ⊥ to mark execution of
silent transitions—transitions that do not produce an output.

(OUTPUT)
[s, i,o, t] ∈ s.leavingTransitions o is an output label

⟨s, i⟩ o−→ t

(SILENT)
[s, i,⊥, t] ∈ s.leavingTransitions

⟨s, i⟩ ⊥−→ t

(ERROR)
[s, i,o, t] /∈ s.leavingTransitions for any o (or ⊥) and any target t

⟨s, i⟩ ⊥−→ s

8.3. Case Study: The Robot Language Interpreter 307

The first rule (OUTPUT) identifies a transition leaving state s which is
labeled by the presented input i. It outputs the label o found in this transition,
and returns its target state as the new current state (t) in the conclusion.
The second rule (SILENT) is similar, except that it matches a transition
without an output, hence ⊥, and produces a silent state change to t. The
final rule reflects handling erroneous inputs: if an input is provided for
which no transition is active, the state does not change, and the user is given
an opportunity to feed it with a new input again. This corresponds to a silent
loop, if no transition is activated. We encourage the reader to compare these
rules to the implementation in Scala and Python presented in Fig. 8.6.

8.3 Case Study: The Robot Language Interpreter

Let us return to the example of the robot DSL from Chapter 2, Fig. 2.2. In
Sect. 8.1 we have discussed a possible domain implementation for this lan-
guage using ROS. Let us revisit this case and discuss the implementation of
an example interpreter. Our proposal is shown in Fig. 8.8. The presentation
is slightly abbreviated—a full version can be found in our code repository.
The figure shows four main parts of the interpreter, from the top: an initial-
izer, an expression evaluator, an action executor, and the main loop (run).

In line 3, we initialize the super-class, our adaptation API layer as imple-
mented in Fig. 8.5. Then we set up the pyecore framework. The robot meta-
model is loaded along with an example model to interpret—the random walk
model of Fig. 2.2. Finally the top-level mode of the model is made active.
The function activate switches the current mode to the given one, and
initializes the program counter to the number of actions in the current mode.

The core of the interpreter is realized in the loop in lines 31–54. At each
iteration of this loop, the interpreter does just one semantic action, either
waiting for the current timed actions to terminate (l. 33-34), executing the
next action in the current mode (l. 36–37), activating the initial mode nested
in the current node if no more actions are to be executed (l. 39), or processing
reactions (lines 43–54). The execution of actions uses a helper function
execute_action (above) that delegates further to our adaptation API from
Fig. 8.5. Crucially, the function is so simple because we designed our adap-
tation layer to provide the right calls for the DSL actions. Not much com-
putation is needed on the interpreter side. The executor also uses a simple
evaluator (l. 11). We hope that the you appreciate the similarity of this eval-
uator to the one for expr shown in Fig. 8.7, but now implemented in Python.

Let us return to the interpreter loop. Observe that at every iteration of the
loop the interpreter releases control to ROS middleware (l. 32), so that all
concurrent aspects of the execution get a chance to schedule. This allows
ROS to activate callbacks in our platform which register incoming events
and communicate with other parts of the system, including the navigation
stack. We used a single-threaded scheduler in this implementation so
there is no implicit pre-emption (while the control flow is a bit easier to
comprehend). Also, if a command has been issued for a definite duration,

308 Chapter 8. Interpretation

1 class Interpreter(TurtleBotPlatform):
2 def __init__(self, executor):
3 super().__init__("interpreter", executor)
4 ...
5 self.model = self.load_instance("src/dsldesign_robot/test-files/random-walk.robot.xmi")
6 self.activate(self.model)

8 def activate(self, mode):
9 self.mode, self.mode_pc = mode, len(self.mode.actions)

11 def evaluate_expr(self, expr):
12 if isinstance(expr, self.Robot.RndI): return random.randrange(0, 2000) / 1000.0
13 elif isinstance(expr, self.Robot.CstI): return expr.value
14 elif isinstance(expr, self.Robot.Minus): return - self.evaluate_expr (expr.aexpr)
15 elif isinstance(expr, self.Robot.BinExpr):
16 left, right = self.evaluate_expr (expr.left), self.evaluate_expr (expr.right)
17 if expr.ope == ’+’: return left + right
18 elif expr.ope == ’-’: return left - right ...

20 def execute_action(self, action):
21 if isinstance(action, self.Robot.AcMove):
22 direction = 1.0 if action.forward == True else -1.0
23 if action.speed: velocity = self.evaluate_expr(action.speed) * 0.008 * direction
24 else: velocity = 0.1 * direction
25 if action.duration: self.engage(velocity, float(self.evaluate_expr(action.duration)))
26 else: self.engage(velocity)
27 elif isinstance(action, self.Robot.AcTurn): self.random_rotation()
28 elif isinstance(action, self.Robot.AcDock): self.return_to_base()

30 def run(self):
31 while True:
32 self.executor.spin_once(0.0)
33 if self.tm_latch in self.timers:
34 self.executor.spin_once(1.0/self.FREQ)
35 elif self.mode_pc > 0:
36 self.execute_action(self.mode.actions[-self.mode_pc])
37 self.mode_pc = self.mode_pc - 1
38 else:
39 try: self.activate(next(filter(lambda m: m.initial, self.mode.modes)))
40 except StopIteration:
41 reacted = False
42 for m in self.active_modes():
43 for r in m.reactions:
44 if (self.ev_clap and r.trigger == self.Robot.Event.EV_CLAP) or (
45 self.ev_obstacle and r.trigger == self.Robot.Event.EV_OBSTACLE):
46 if r.target: self.activate(r.target)
47 reacted = True
48 break
49 elif self.mode.continuation:
50 self.activate(self.mode.continuation)
51 reacted = True
52 break
53 if reacted: break
54 self.ev_clap, self.ev_obstacle = False, False

source: robot.turtlebot3/dsldesign_robot_turtlebot3/interpreter.py

Figure 8.8: Core parts of the robot interpreter for TurtleBot3, slightly abbreviated for ease of reading

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/interpreter.py

8.3. Case Study: The Robot Language Interpreter 309

What do I need to build when implementing an interpreter?
Building an interpreter requires connecting different parts of a DSL implementation. We summarize this
in the diagram below. The interpreter is typically oblivious to the concrete syntax (thus it is not shown in
the diagram), but works with abstract syntax and types (the two gray boxes to the left).

The abstract syntax (the interpreted language) is usually the main source of information. The interpreter
follows statements/transitions or expressions—these are all elements in a model.

The value and state types (rightmost) define what can be computed during interpretation. Values are
consumable information; they enter further evaluation or are communicated to the user. States are updated
internally by the interpreter. In our examples, the value types were simple (String, Boolean). The state
type for the expr interpreter was a map of variable names to values (complex), for fsm it was a state name
(simple, but we used a reference to a state object in the abstract syntax, which is complex). In general,
both value and state types can be either complex or simple, depending on the semantics of the DSL.

The evaluation rules (the interpreter proper, the white box in the center) evaluate expressions producing
values, or statements producing state changes. In general, if the expressions in a language can have side
effects, evaluation of expressions can also produce state changes. For instance, in Java every expression
can contain a call to an impure function. Statements often contain expressions, thus statement evaluation
rules can depend on expression evaluation rules and vice versa.

The loop around the entire diagram symbolizes scheduling of the evaluation rules. They either follow
model elements (for instance statement-by-statement) or the environment inputs, using a recursion, a
traversal, a visitor, or a loop. This loop can also be realized by control inversion, when using a framework.

In our examples, DSL types were not used, as both languages were untyped. If your DSL has a type
checker, the inferred type information may be used in evaluation rules. For instance, many object-oriented
languages use static type information to resolve argument overloading or dispatch for non-virtual methods.
In DSLs, different types can lead to different semantics as well.

310 Chapter 8. Interpretation

the loop simply sleeps for some time, again releasing control to ROS (l. 34).
Unlike a usual interpreter for a programming language, this interpreter
works in lockstep and interleaves execution with the operating system in
a manner controlled by a clock.

You rarely see interpreters sleeping in programming language textbooks.
There is a good reason for this. Regular sources teaching you about
implementing programming languages focus on evaluation (like our expr
and fsm examples). Implementing a DSL interpreter requires not only
knowledge about languages, but also about the domain, here concurrent
and distributed programming with ROS. Thus your DSL interpreters will
be heavily influenced by the domain you are targeting. By building the
interpreter, you are hiding a lot of complexity in the domain behind the
DSL, so that your users do not have to know about all these technicalities.
Ultimately, your domain expertise is more important when building an
interpreter than what you can learn from this book.

8.4 Monitoring and Models-At-Runtime

Runtime monitoring is an interesting application of interpretation, where
the model is not used to run the system by means of an interpreter. Instead,
we use the model interpreter to watch the system, for instance to explain
its operation or to detect anomalous situations. The system may run using
control software developed some other way, not using a DSL or using
code generated from a DSL. A runtime monitor is an interpreter that is
not concerned with computing values or outputs, but its primary task is
to observe the outputs from the system and update the state of the model,
based on these observations. In this sense, it resembles our fsm interpreter,
but treating system outputs as model inputs. The interpreter may raise
alarms to the operator, when anomalies are detected. A user interface may
be provided which allows the user to benefit from the received information.

Blair, Bencomo, and France [3] survey the basic definitions and applica-
tions of models-at-runtime, which is a broader area that incorporates use of
models in systems during operations, not only for monitoring.3 In this do-
main, the models are system representations, casually connected to the sys-
tem: either the model controls the system, or the system controls the model
(monitoring and explaining). Both of these directions are combined in self-
adaptive systems, where the model monitors information about the state of
the system and environment, and uses this to calculate adaptation decisions.

Another important application of domain-specific models is adaptation
and customization of applications at runtime, after deployment. Common
examples include report generation in business applications, and business
process models used to customize case-handling systems [16]. Changing
models, often stored in databases or standardized formats (XML, Json,
Yaml), is much easier than updating the source code of systems. Adaptation
by changing models is often available to non-programmers.

3See also other articles on this topic in this special issue of IEEE Computer.

8.5. Guidelines for Implementing DSL Interpreters 311

8.5 Guidelines for Implementing DSL Interpreters

Let’s discuss common advise for implementing interpreters. Be sure to also
check the guidelines in Chapter 9, especially regarding the choice between
code generation and interpretation.

Guideline 8.1Use a reference example implementation to design the platform API. You
may wonder how did we arrive at the adaptation layer API for the robot
example? The domain operations named in the meta-model helped (move
forward, rotate, dock), however they did not tell us much about organizing
the control structure of the platform. What callbacks do we need, what
scheduling policy, and how do we avoid data races and deadlocks for the
robot language?

A common practice to help the design process at this stage is to create a
reference product implementation—a complete manual implementation of a
simple but non-trivial DSL model. For our robot DSL we first implemented
the random walk program directly in Python. You can use any way you
choose to do this, but it is most useful to structure the implementation
similarly to the abstract syntax of the model. Write a program which
behaves like the model, but does not refer to it in the code. Just keep the
abstract syntax in front of you, developing from one step to another as if
you were the interpreter. Ask yourself: what information would be available
at this stage, if I had to take it from the model?

Once this single example is working, refactor the code to keep model-
dependent parts in one module and all the model-independent parts else-
where. This way you get the first platform API candidate. For our robotics
example the platform API can be found in robot.turtlebot3/dsldesign_robot_
turtlebot3/turtlebot.py and the model-dependent part of the reference imple-
mentation is in robot.turtlebot3/dsldesign_robot_turtlebot3/controller.py. We will
also discuss it further in Sect. 9.5.

Often you can throw out the reference implementation after building the
interpreter. During the interpreter implementation you will find issues with
the platform. It should be further developed and structured. The reference
example will quickly become obsolete. Its role is fulfilled once you have
the platform, and know how to start on the interpreter. In Chapter 9, we
show how the reference example helps to implement a code generator; there
we also discuss the example for the robot language in more detail.

Guideline 8.2Align the domain implementation and the runtime representation with
transformations. Another way to decrease the gap between the underlying
software platform and the abstraction level of your DSL is to switch to
a lower-level representation before interpreting. Programming language
implementation textbooks tell us that a translator can be made simpler if a
better-aligned representation of the source is used. It can be produced
using a transformation (Chapter 7). In fact, a classical compiler has
several translation phases before machine code is emitted; see Fig. 8.1.
Common transformations involve syntactic sugar elimination, switching

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/turtlebot.py
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/turtlebot.py
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/controller.py

312 Chapter 8. Interpretation

to an abstract representation of the execution platform (abstract registers
instead of program variables), and optimization passes.

Multiple transformation steps are possible also for DSLs, however for
most DSLs, we want to keep the back-end simple. It is typically easier
to reduce the abstraction gap by developing a suitable domain adaptation
layer API than by aggressively transforming the input DSL (besides the
simplest desugaring steps during parsing). Static code is much easier to
test and maintain than transformations. We especially discourage adding
transformations solely to improve performance early, before you have a
prototype interpreter working. Optimizations can always be done later.

Guideline 8.3 Do not confuse model syntax with runtime state. Meta-models should be
used purely to define syntax, and not runtime state. For inexperienced
language designers, it is often confusing to decide what information is part
of the model, and what a part of its interpretation. Let’s discuss this using
the examples of fsm and petrinet.

In the fsm interpreters in Fig. 8.6, we use a variable to represent the cur-
rent state: s in Scala and state in Python. In both cases, the variable refers
to the meta-model to point to the active state but itself it is not a part of the
meta-model but of the interpreter. We initialize it with the property initial
of the FiniteStateMachine class. We could have placed a reference to
the current state, say currentState, as a property in the Model class (see
Fig. 3.1, p. 53). If we did this, we would have to modify (rewrite) the syntax
of the model during execution, every time a state changes.

In the petrinet meta-model (Fig. 7.3, p. 239), we store the number of
tokens in the tokenNo attribute of the Place class. The role of tokenNo is to
specify how many tokens are in each place in the initial configuration. One
could implement an interpreter for petrinet by modifying the tokenNo
values during execution, however we recommend storing the runtime infor-
mation elsewhere, in a map data structure or an array in the interpreter.

Polluting meta-models with runtime information will confuse the later
maintainers of your project, and when you start to use your models for other
purposes than execution (for instance visualization). Suddenly, instances
have parts that become irrelevant, or they lack information used by your
additional back-ends. Every time you create a new back-end for your DSL,
you will have to make changes to the meta-model. Since a meta-model is a
pivotal central artifact, this can have unpleasant ripple effects.

For the same reasons, we advocate not to place operations on meta-
classes. The interpreter or code generation logic is cleaner to keep outside
of the meta-models and the code generated from them. Let the abstract-
syntax specification be their only function. You can use syntax as runtime
representation, but do not embed runtime representation into syntax. If your
use case requires adding methods to the classes, say because you expose an
API to other programmers and they expect object-oriented style, then we
recommend to inject this functionality separately. Use extension methods or
other injection mechanisms that do not require changing the generated code.

8.5. Guidelines for Implementing DSL Interpreters 313

Flavours of Dynamic Semantics for DSLs
When implementing semantics, it is useful to understand what class of language are you dealing with.
What languages are similar? How are they built? Find inspiration in this incomplete taxonomy of DSLs.
flavour | examples description implementation hints

structural | class diagrams,
Ecore, Alloy, Clafer [1],
feature models, kconfig, ER
diagrams, CSS, protocol
buffers (Fig. 1.4), active
record (Fig. 1.5), XML

Describe structures of elements and
attributes of elements for software
and other systems. They range from
simple feature models (defining
structure of a configuration space)
to expressive languages like Al-
loy [10]. Their semantics defines a
set of valid instances.

Rarely interpreted, most often used
to generate code or synthesize in-
stances (cf. constraint semantics).
Validation of instances is an example
of interpretation; done by evaluating
constraints similarly to how we did
for expr but using an instance in-
stead of an environment as a context.

expression (value semantics) | expr,
prpro, OCL, ...

Define expressions computing log-
ical/arithmetic/etc. values (cf. data
flow). Used to express guards, pol-
icy conditions etc., in larger DSLs.

Their syntax defines trees of terms
that can be evaluated. Process them
using structural recursion as we have
done in Fig. 8.7 for expr.

state machines | fsm, robot,
UML state diagrams,
Simulink state diagrams,
behavior trees [7]

A visible concept of state, one state
active at a time. Execute in steps
performing state transitions reacting
to external or internal stimuli. Some
allow concurrency (multiple states
active) but at each transition only
one state changes (interleaving).

Identify the type of state values, and
conditions for the transition relation.
The interpreter typically loops to
check whether conditions for a tran-
sition are satisfied and triggers the
required state change, like we did
for fsm and robot in this chapter.

Petri nets | petrinet, BPMN,
BPL, UML Activity
Diagrams

A visible concept of state, multiple
states active simultaneously. State
changes are concurrent without inter-
leaving. Parallelism not explicit in
the structure, like in state machines,
but represented at runtime by tokens.

Resembles interpreting many copies
of a state machine. An executor
maintains a vector of tokens for
places (or a database for slow pro-
cesses). Events trigger change of the
placement of tokens.

data flow | spreadsheets, flow
charts, hardware circuits,
neural networks in forward
mode, prpro, KNIME
(Fig. 1.2), UI DSLs [5]

Models produce value(s) in re-
sponse to values received. The out-
come is calculated by combining
values along edges like in expres-
sion trees, each edge representing a
calculation transforming a value.

Similar to expr but the model is
not a tree. An interpreter constructs
a DAG and pushes values through.
For a deep graph of a recurrent
model, one can execute calculations
in parallel across layers (pipelining).

time-triggered | robot,
Lustre [8], behavior trees [7]

State-machine/ Petri-net/ data-flow
DSLs executed in lockstep against
a clock at fixed or variable rate.

Use an operating system scheduler,
like for robot in Fig. 8.8; run the
loop in time slices, not at full speed.

constraint semantics | OCL, Alloy,
Clafer, feature models

Logical constraints define a solution
space, structural or behavioral.

Best implemented by generating in-
put for a solver (or an M2M transf.)

markup | HTML, XML,
Markdown

Languages which produce decora-
tions/properties for otherwise free-
style text or similar data. Interpreta-
tion of these languages is typically
called “rendering."

Resembles generation more than in-
terpretation. Create output in another
language, say PostScript, or runtime
objects representing the document
(DOM, an M2M transformation).

314 Chapter 8. Interpretation

Exercise 8.4. Implement an interpreter for petrinet. Use a dictionary or a map to
store the number of elements in each location. Then change it to update the value
of tokenNo fields in the abstract syntax on every execution step. Reflect on the
merits of both methods.

Guideline 8.4 Dynamic typing is a simple substitute for static constraints and types. If you
have not implemented static semantics, but still want to avoid the interpreter
crashing in uncontrollable ways, you can insert dynamic type-checking into
the evaluator. Essentially, every time in the evaluator where a type error
could appear, first check the types of values received, and fail gracefully
(or recover) if the types do not agree.

Exercise 8.5. A type checker for expr would have ensured safety of name refer-
ences, so that we cannot interpret expressions which refer to variables not defined
in the environment. Presently, without a type checker, the interpreter will fail
at Line 13 (Fig. 8.7, Scala). Modify the interpreter to check whether the name
is defined, and produce an error message instead of crashing, when a variable
name is not known. The easiest way to do it is probably to throw an exception,
like the Java variant does. Alternatively, you can print a message and return
None. Ultimately, one should change the return type from Option[Boolean] to
Either[String, Boolean] and return the error message on failure.

Of course, similarly one could detect type mismatches and other static
errors dynamically.

8.6 Quality Assurance and Testing for Interpreters

Testing of dynamic semantics involves testing the domain implementation
and testing the interpreter (or the code generator). This is also how difficulty
distributes: testing the domain implementation is easier than testing the
interpreter, which in turn is easier than testing a code generator.

Testing the domain implementation. The static code in the platform is
testable using standard unit testing and mocking methods. This is an
important benefit of moving most of the implementation of the semantics
into the platform. We can write tests for the platform elements without
considering any input models.

Testing the interpreter. Interpreters are special cases of transformations—it
is sometimes hard to think about them the same way, but very often they use
the same kind of queries and model access as transformations. This is even
more obvious when we consider testing. To test interpreters we need to
use examples of statically correct models, or generators of statically correct
models, and oracles for properties we want to test. For evaluators, the
oracles check whether the value produced exhibits desirable properties; for
executors we check properties of the states reached. Most of the advice on
testing from Sect. 7.8 applies directly here, including the coverage criteria
and randomization strategies.

It is extremely useful to keep the interpreter automatically testable.
Among other things this allows the use of randomized automated testing

8.7. Interpreters in the Language-Conformance Hierarchy 315

Ecore.ecore
M3

M2

M1

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹produces››

meta-model of our DSL

‹‹conformsTo››

‹‹often not formalized››

‹‹conformsTo››

interpreter implementation
in language L

execution engine
for L

definition of a GPL or a
transformation language L

‹‹refersTo››

‹‹reads and runs››‹‹reads››

source model in our DSL

output value or effect
on environment

input data or interaction
with the environment

‹‹receives››

‹‹often not formalized››

M0
runtime

Figure 8.9: Most interpreters are like transformations which do not produce an output at the model level, but at a runtime level

methods like fuzzing, mutation testing, or property-based testing. If the
interpreter relies on an external platform (other systems, user inputs, sensor
data, etc.) then implement a mock version of the platform, which takes
over all communication with the model. This way your interpreter will be
testable, without the entire machinery. For instance, it would be very useful
to be able to execute basic tests of the robot interpreter without running
ROS and the physical (or simulated) turtle bot.

Exercise 8.6. Reimplement robot.turtlebot3/dsldesign_robot_turtlebot3/turtlebot.py with-
out any dependency on ROS, as a mock class, and use it to create some test
executions of the interpreter of robot.

8.7 Interpreters in the Language-Conformance Hierarchy

Figure 8.9 places interpretation in the framework of the language-conformance
hierarchy. Since interpretation is a runtime phenomenon the most interesting
part is found in the bottom of the figure, at M0. An execution engine running
the interpreter reads inputs and produces outputs. The input and the output
effect of the interpretation is most often not formalized as a document,
thus we mark no meta-models for the white boxes. The input and output
values typically conform to a runtime type in the execution language used
to implement the interpreter (here denoted L).

For expr the input was an environment mapping defining variable values;
for fsm we receive input messages from the operator of our REPL. For expr
we produced Boolean values; for prpro we can produce samples from joint

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/turtlebot.py

316 Chapter 8. Interpretation

probability distribution (Exercise 8.14); for fsm we produced String values
containing produced messages. However, for robot this was much less
clear. We did receive and produce messages conforming to ROS message
types—still, the motion of the robot was the interesting effect ultimately.
Outputs of interpretation can be formalized as documents conforming to
formal definitions sometimes, for example, if the interpreter communicates
with a web service using documents as messages.

At level M1, in the left column, we have our domain-specific model, con-
forming to its abstract syntax, at M2. The abstract syntax is itself specified in
Ecore (M3) in this diagram. As always, we know that it can be implemented
using other means, for instance algebraic data types, or XML schemas.

The interpreter is in the center of the figure, at M1. We assume it has
been implemented in a language L. All interpreters in this chapter are
implemented using GPLs, but L could also be a specialized language for
meta-programming like PLT-Redex [6] or a model-transformation language
(Chapter 7). Imperative transformation languages allow implementation of
interpreters in similar style as we did. Pure (graph-rewriting) transformation
languages allow implementing interpreters in rewriting style (which we did
not use in this book). Again, the implementation GPL L does not need to
have an explicit meta-model in Ecore. None of our examples did, but model-
transformation languages typically have such a meta-model. We draw an
Ecore box at the top for simplicity, but of course many implementation
GPLs use other defining methods than Ecore.

For all but very few DSLs, the implementation language L is different
from the DSL itself. This is in stark contrast with the practice of bootstrap-
ping used to implement GPLs: for a GPL it is typically a goal to obtain an
interpreter or a compiler implemented in itself, and become independent
of other programming languages. Most DSLs are not expressive enough
to achieve this. Their goal is also different. Most DSLs want to realize
applications in other domains than language implementation, so they are
not geared for this problem. With DSLs we use whatever language is
convenient to implement the interpreter in. Very often it is the language in
which the software platform underlying the DSL is implemented.

Further Reading

Lämmel [12] gives a slightly deeper, but still very approachable introduction to
interpretation and the formal operational semantic rules. He has a tendency to focus
on classic languages (expr rather than robot). Further material on formal under-
standing of the semantics can be found in the books of Nielson and Nielson [14] and
of Winskel [18]; both focus on traditional programming languages (not DSLs) and
are listed here in increasing level of difficulty. A simple introduction to interpreters
and code generators for GPLs, using simple abstract-syntax representations like we
do here, can be found in the text book of Sestoft [15].

We have shown two main interpreter implementation patterns: one based on
pattern matching and splitting cases, and one on a switch pattern, a variation of
a visitor pattern. In object-oriented languages, the interpreter pattern is another

8.7. Interpreters in the Language-Conformance Hierarchy 317

solution. The interpreter pattern assumes that the evaluation method is implemented
by all abstract-syntax classes. It only applies to expression evaluators, and it is hard
to use it for DSLs of other semantic styles. It is inconvenient to use with Ecore and
generators of meta-classes. If you do not use Ecore, but just implement a syntax
ADT yourself, you still mix the evaluation and syntax in complex ways, making
your project more entangled. Hills et al. [9] give an informative comparison of the
visitor pattern vs the interpreter pattern precisely for this application: implementing
evaluators. They conclude that in their experience visitor-pattern-based implemen-
tations are cheaper to maintain. Unfortunately, we are not aware of any study that
systematically compares the visitor pattern vs a direct recursive implementation
with pattern matching (as used in Fig. 8.7).

Combemale et al. [4] give an elegant example of building a type checker using
OCL and extend it to an interpreter. The connection between type-checking and in-
terpretation is quite deep. Indeed, type-checking is an abstract form of interpretation.

Our language-conformance diagrams (Fig. 8.9) increasingly focus on transfor-
mation and execution, not just conformance. Traditionally, transformation flows
have been represented using so-called tombstone diagrams [13]. They focus more
on translation and execution than on conformance between languages. You can find
a good introduction in the book of Jones, Gomard, and Sestoft [11].

Additional Exercises

Exercise 8.7. Add an implication operator e1 → e2 to expr (either in Java or Scala),
and extend the interpreter accordingly. The result of e1 → e2 is true if and only if
e1 evaluates to false or e2 evaluates to true. A similar extension can be done for
other logical operators: NAND and XOR (Compare with Exercise 7.3 on p. 263.)

Exercise 8.8. Implement the interpreter for expr in Python. For simplicity, you
can assume that the expressions are parsed and stored in xmi files, so you can load
them using pyecore (https://github.com/pyecore/pyecore). In Python, it is natural
to use direct recursion (as Ecore generates no switch class for Python). So we
recommend to follow the style of our Scala implementation in Fig. 8.7 but using
exceptions to raise errors like in our Java implementation.

Exercise 8.9. Complete the interpreter for expr by adding a parser to the available
Java interpreter (Fig. 8.7). Use the Xtext parser from expr.xtext/src/main/java/
dsldesign/expr/xtext/Expr.xtext following the example in expr.xtext.scala/src/main/
scala/dsldesign/expr/xtext/scala/xtextParserExampleMain.scala. If you want to use
the Scala interpreter, you need to implement a parser in Scala, or a model
transformation that translates the meta-model instance produced by the Xtext
parser to the ADT representation used by the interpreter. You should be able to
read expressions from a character stream and output their values.

Exercise 8.10. Wrap the interpreter from Exercise 8.9 into a simple REPL, which
receives expressions and prints their values. For simplicity, assume a fixed set
of predefined variables, all defined to be false in the state environment. The
interpreter should fail if you access an undefined variable (as it already does).

Exercise 8.11. Extend the expr language to allow definition of variable bindings,
for instance by writing: let x = true. Extend the abstract-syntax model, the
parser, and the evaluator. Now the interpreter either executes a binding, or

https://github.com/pyecore/pyecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext/src/main/java/dsldesign/expr/xtext/Expr.xtext
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext/src/main/java/dsldesign/expr/xtext/Expr.xtext
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext.scala/src/main/scala/dsldesign/expr/xtext/scala/xtextParserExampleMain.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext.scala/src/main/scala/dsldesign/expr/xtext/scala/xtextParserExampleMain.scala

318 Chapter 8. Interpretation

evaluates an expression. Use this new interpreter in the REPL from Exercise 8.10,
which receives expressions and prints their values, but now should also allow
definition of variable values.

Exercise 8.12. Study the constant propagation (Fig. 7.14) and expression sim-
plification (Fig. 7.15) presented in Chapter 7. Both of these calculations are
forms of partial evaluation [11] attempting to evaluate possibly large fragments
of an expression with information available statically, without a concrete initial
evaluation state. Compare them with the total evaluator in Fig. 8.7. Identify the
cases in the code where the partial evaluators give up (cannot improve more),
while the total evaluator still proceeds.

Exercise 8.13. Compare the type-checking rules (CONST, VAR-REF, BEXPR)
for prpro on p. 216 with the evaluation rules for expr on p. 305. Observe that
the judgements have different notation but similar structure. Both chapters used
environments (respectively Γ and ε). What was stored in the type environments,
and what was stored in the evaluation environments? Can you explain why type
checking is sometimes described as abstract interpretation?

Exercise 8.14. Implement an interpreter for prpro as defined in the meta-model
of Fig. 6.3 (then use Java or Python) or Fig. 6.2 (then use Scala). The intended
semantics is to evaluate expressions like in expr and add them to the environments
for bindings. A distribution expression should be evaluated by picking a random
value from the distribution. For this you may need a statistics library. For Python
we recommend scipy.stats (https://docs.scipy.org/doc/scipy/reference/stats.html).
For Java and Scala, Apache Commons Mathematics Library might do the job
(https://commons.apache.org/proper/commons-math/), although it is not well aligned
with the pure programming style. As usual, you may need to do some adaptation
between the DSL and the underlying platform. Execute each model 20 times, and
print out the valuation for all variables at the exit times (a 20-row sample).

Remark: Add a REPL and a few more months of work, and you have developed
a mini competitor for R (https://www.r-project.org/about.html).

Exercise 8.15. The same switch pattern that we used in Fig. 8.7 was also used
to perform type-checking of the prpro models (see Fig. 6.13). It is instructive
to compare the two implementations, even though the subject languages differ
slightly. Compare the case of type-checking BExpr in prpro with the case of
evaluating AND for expr. Similarly, compare the case of type-checking BExpr in
Fig. 6.12 against the case of Scala evaluation of AND in the left part of Fig. 8.7.
Note how a type checker resembles an evaluator but computes with types not
values. What is the essential difference between type-checking and evaluation
regarding how the results of the recursive calls are combined?

Exercise 8.16. Note that our implementation of robot always performs a fixed
random rotation, ignoring the duration and speed of the action provided in the
model. Extend the platform and the interpreter to allow rotation with a calculated
speed for a calculated time. This exercise requires introductory-level expertise
with ROS to produce new Twist messages.

Exercise 8.17. Note that our implementation of robot always performs a fixed
random rotation, ignoring the value of the angle provided in the model. (Open
the meta-model from the repository, as Fig. 8.3 does not show the respective ref-
erences). Add support for rotation by an angle to the platform and the interpreter.

https://docs.scipy.org/doc/scipy/reference/stats.html
https://commons.apache.org/proper/commons-math/
https://www.r-project.org/about.html

References 319

Warning: this requires experience with ROS navigation. A similar extension
would add an ability to move forward for a certain distance (presently only time
is supported).

Exercise 8.18. Implement a runtime monitor for robot that listens to the running
interpreter of a given model and shows what mode of the model is active. Of
course, in this case it is easier to make the interpreter report the mode changes (it
already does)—however for the sake of the exercise, make the interpreter publish
mode changes as messages on a new topic (say /monitor) and write another ROS
node that interprets these messages to report about the state of the system. This
exercise requires introductory-level expertise with ROS to set up new channels,
add a new node to a project, etc.

Exercise 8.19. Discuss specializations of the diagram in Fig. 8.9 for expr, fsm,
robot, and prpro (if you solved Exercise 8.14). What goes into the individual
boxes?

Exercise 8.20. Study the Ecore meta-model in spreadsheet/model/spreadsheet.ecore
and design a simple evaluator for instances of spreadsheets (instances of this
meta-model). For simplicity, an evaluator could print an ASCII table or a CSV file
with the results. Depending on how much you want to implement, and how much
you want to extend the meta-model this project can become arbitrarily large.

References

[1] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wąsowski. “Feature and
meta-models in Clafer: Mixed, specialized, and coupled”. In: International
Conference on Software Language Engineering (SLE). 2010 (cit. p. 313).

[2] Stanisław Barańczak. “Mały, lecz maksymalistyczny manifest translato-
logiczny (a small but maximalist translatological manifesto)”. Trans. by
Antonia Lloyd-Jones. In: Teksty Drugie: Teoria Literatury, Krytyka, Inter-
pretacja 1990.3 (1990) (cit. p. 293).

[3] Gordon Blair, Nelly Bencomo, and Robert B France. “Models@run.time”.
In: Computer 42.10 (2009), pp. 22–27 (cit. p. 310).

[4] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turn-
ing Domain Knowledge Into Tools. CRC Press, 2016 (cit. p. 317).

[5] Martin Elsman and Anders Schack-Nielsen. “Typelets: A rule-based eval-
uation model for dynamic, statically typed user interfaces”. In: Practical
Aspects of Declarative Languages (PADL). Ed. by Matthew Flatt and Hai-
Feng Guo. PADL. Springer, 2014 (cit. p. 313).

[6] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. The MIT Press, 2009 (cit. p. 316).

[7] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and
Andrzej Wąsowski. “Behavior trees in action: A study of robotics applica-
tions”. In: International Conference on Software Language Engineering
(SLE). Ed. by Ralf Lämmel, Laurence Tratt, and Juan de Lara. ACM, 2020
(cit. p. 313).

[8] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The
synchronous data flow programming language LUSTRE”. In: Proc. IEEE
79.9 (1991), pp. 1305–1320 (cit. p. 313).

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.spreadsheet/model/spreadsheet.ecore

320 Chapter 8. Interpretation

[9] Mark Hills, Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. “A case
of visitor versus interpreter pattern”. In: Objects, Models, Components,
Patterns – 49th International Conference (TOOLS). Ed. by Judith Bishop
and Antonio Vallecillo. Springer, 2011 (cit. p. 317).

[10] Daniel Jackson. Software Abstractions. MIT Press, 2006 (cit. p. 313).
[11] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation

and Automatic Program Generation. Prentice Hall, Inc., 1993 (cit. pp. 317,
318).

[12] Ralf Lämmel. Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2018 (cit. p. 316).

[13] W.M. McKeeman and et al. A Compiler Generator. Prentice Hall, 1970
(cit. p. 317).

[14] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications.
An Appetizer. Springer-Verlag, 2007 (cit. p. 316).

[15] Peter Sestoft. Programming Language Concepts. Springer Science & Busi-
ness Media, 2012 (cit. p. 316).

[16] Tijs Slaats, Raghava Rao Mukkamala, Thomas T. Hildebrandt, and Morten
Marquard. “Exformatics declarative case management workflows as DCR
graphs”. In: Business Process Management (BPM). Ed. by Florian Daniel,
Jianmin Wang, and Barbara Weber. Springer, 2013 (cit. p. 310).

[17] Thomas Stahl and Markus Völter. Model-Driven Software Development.
Wiley, 2005 (cit. p. 295).

[18] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, 1993 (cit. p. 316).

9 Code Generation

A compiler is much like an interpreter, both in
its structure and in the function it performs.

Abelson et al. [1]

Even though building interpreters is often the cheapest and the easiest way
to implement dynamic semantics, we need alternatives when architectural
or performance requirements rule that out. Demands on execution speed,
throughput, parallelization, low memory consumption, access locality, secu-
rity or available programming languages and libraries may all prohibit using
an interpreter to execute DSL models. Code generation shifts some of the
heavy requirements of the interpretation to compile time, allowing use of
simpler target languages and simpler runtime architectures, and delivering
higher performance. It helps in the protection of intellectual property, if the
input models should not be disclosed. At the same time, code generators
tend to be more expensive to implement and test than interpreters.

Code generation is a form of model-to-text (M2T) transformation. There
are three popular patterns for implementing code generators: (i) visi-
tor-based or recursive, driven by the input structure, (ii) template-based,
driven by the output structure, and (iii) hybrid. Visitor-based generators use
the object-oriented visitor pattern to produce output for each element of an
AST. A similar solution is to use recursion, often preferred in functional
programming languages. Template-based generators take the perspective of
the output program, which is written out in full, except for a few gaps left to
be filled in by the generator. For more complex DSLs, a hybrid strategy is
useful, combining a template with algorithmic traversals of the input AST.
In the following, we present these strategies in detail. Subsequently, we
discuss design guidelines and quality assurance practices for generators.

9.1 Reference Example Implementation

In Chapters 7 and 8 we used the language expr for transformation and in-
terpretation. We have even built a simplistic code generator for it, disguised
as the toString method in Fig. 7.12 on p. 261. If you review that example,
you will realize that a translation of expr to a high-level target is almost
trivial. Logical expressions in high-level programming languages are all
alike, so there is not much to translate (but see Exercise 9.22). We need a
more involved example to demonstrate code generation.

Example 26. Recall the simple probabilistic modeling language, prpro, used in
Chapter 6. In prpro, values of variables are defined using expressions involv-
ing probability density functions. The density’s parameters can themselves be
defined by expressions. Data sets can be loaded and used to do inference in

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_9

321

https://doi.org/10.1007/978-3-031-23669-3_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_9&domain=pdf

322 Chapter 9. Code Generation

0.00 0.25 0.50 0.75 1.00
x

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

A scatter plot of the data

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.05 0.00 0.05

-0.024 0.043

94% HDI

mean=0.0082

b0

0.85 0.90 0.95 1.00 1.05 1.10

0.92 1

94% HDI

mean=0.98

b1

0.18 0.19 0.20 0.21 0.22

0.19 0.21

94% HDI

mean=0.2

sigma

Figure 9.1: An example result of executing code generated from a prpro model. The program builds an inference model and construct
the plots (all labels, and the number of plots are extracted from the input). The statistics involved is not of interest to us in this book

the model. The example model below represents a linear regression problem.
We have two data columns, x and y. Variable y is normally distributed (the last
line), with the mean given by a linear function of x. The parameters of the
function are unknown, but uniformly distributed (b0, b1), and so is y’s standard
deviation σ . The example can also be found at prpro/test-files/example2.xmi.

data x

data y

b0 = U (−2,+2)

b1 = U (−2,+2)

σ = U (0.001,2.0)

y ∼ N (b1x+b0,σ)

We would like to use prpro models to read data and to infer distributions over
the parameters b0, b1, and σ . Figure 9.1 shows a possible result: the two
columns of data against each other (the top left cell), the inferred distributions
over the parameters in the bottom row. How do we create such plots using
a code generator? We need to be able to create the code like that in Fig. 9.2.
This Python program builds a PyMC model of the above example, performs
Monte Carlo Markov Chain inference, plots the resulting distributions, and
saves the result to a PDF file.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro/test-files/example2.xmi

9.1. Reference Example Implementation 323

1 data = pd.read_csv(’./data.csv’)
2 print(’loading data.csv’)
3 print(data.head())
4 print(’...’)

6 with pm.Model() as model:
7 prpro_b0 = pm.Uniform(’b0’, -2, 2)
8 prpro_b1 = pm.Uniform(’b1’, -2, 2)
9 prpro_sigma = pm.Uniform(’sigma’, 0.001, 2.0)

10 prpro_y = pm.Normal(’y’,
11 mu = ((prpro_b1 * data[’x’]) + prpro_b0),
12 sigma = prpro_sigma, observed = data[’y’])
13 inferred_data = pm.sample(return_inferencedata = True)

15 print(’creating plots’)
16 N = 3 # numbers of parameters (non-data backed variables) in the model
17 fig, ax = plt.subplots(2, N, figsize = (15, 10))
18 ax[0,0].plot(data[’x’], data[’y’], ’o’, label=’data’, alpha = 0.3)
19 ax[0,0].set_xlabel(’x’)
20 ax[0,0].set_ylabel(’y’)
21 ax[0,0].set_title(’A scatter plot of the data’)

23 az.plot_posterior(inferred_data, var_names = [’b0’], ax = ax[1,0])
24 az.plot_posterior(inferred_data, var_names = [’b1’], ax = ax[1,1])
25 az.plot_posterior(inferred_data, var_names = [’sigma’], ax = ax[1,2])
26 fig.tight_layout()

28 print(f’generating a pdf file {__file__}.pdf’)
29 plt.savefig(f’{__file__}.pdf’) source: prpro.py/reference-example.py

Figure 9.2: The reference
output implementation of code
that could have been
generated from a prpro
model (abbreviated)

The first four lines just load the data file. The filename and path are fixed
to ./data.csv. When generating this code, the first four lines need to be
emitted independently of the input. Lines 7–12 capture the probabilistic part
of the input, in the same order as in the model above. Each expression is
transformed from mathematical notation to PyMC syntax. Such translation
requires a piecewise traversal of the input syntax tree. Finally, lines 16–17
and lines 23–25 produce the plots. The number of these lines and some values
(like N in lines 16–17) depend on the number of parameters that we have in the
input model. The structure of the lines is almost fixed though, and we could
generate them with a for loop, traversing a list of the input parameters.

An example like the one in Fig. 9.2 is called a reference output imple-
mentation. Before you settle on building a code generator, it is highly
recommended to implement one example output manually, and get it to
run in the intended context. This helps to solve key interaction problems
with the supporting platform and clarifies the architectural division between
the static and the dynamic code. Consequently, designing a code generator
is much easier. It amounts to identifying the model-dependent parts, and
replacing them with the generation logic.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.py/reference-example.py

324 Chapter 9. Code Generation

Figure 9.3: A visitor
translating a prpro expression

into a Python expression using
the PyMC library. An example

implementation in Java

1 static public String generate (Expression e)
2 { return new GeneratorExprSwitch().doSwitch (e); }

4 static public String generate (Expression e, Declaration context)
5 { return stripParens (new GeneratorExprSwitch (context).doSwitch (e)); }

7 public static String stripParens (String s) {
8 if (s.charAt (0) == ’(’) return s.substring(1, s.length () - 1);
9 else return s;

10 }

12 static class GeneratorExprSwitch extends PrproSwitch<String>
13 { ...
14 public GeneratorExprSwitch (Declaration d) { this.context = d; }

16 private String lhs ()
17 { return (context != null) ? context.getName () : ""; }

19 private String observed () {
20 if (context != null) {
21 Model model = (Model) context.eResource().getContents().get(0);
22 for (Declaration d: model.getDecls())
23 if (d instanceof Data && d.getName().equals(context.getName()))
24 return ", observed = data[’" + d.getName () + "’]";
25 }
26 return "";
27 }
28 @Override public String caseCstI (CstI expr)
29 { return expr.getValue ().toString (); }

31 @Override public String caseCstF (CstF expr)
32 { return expr.getValue ().toString (); }

34 @Override public String caseVarRef (VarRef expr) {
35 String name = expr.getReferencedVar ().getName ();
36 if (expr.getReferencedVar () instanceof Data)
37 return "data[’" + name + "’]";
38 else return "prpro_" + name;
39 }
40 @Override public String caseBExpr (BExpr e) {
41 String left = generate (e.getLeft ());
42 String right = generate (e.getRight ());
43 switch (e.getOperator ()) {
44 case MINUS: return "(" + left + " - " + right + ")";
45 case MULT: return "(" + left + " * " + right + ")";
46 case DIV: return "(" + left + " / " + right + ")";
47 default: return "(" + left + " + " + right + ")";
48 } }

50 @Override public String caseNormal (Normal e) {
51 String mu = ", mu = " + stripParens (generate (e.getMu ()));
52 String sigma = ", sigma = " + stripParens (generate (e.getSigma ()));
53 String name = lhs () != "" ? "’" + lhs () + "’, " : "";
54 return "(pm.Normal(" + name + mu + sigma + observed () + "))";
55 }
56 ... source: prpro.java/src/main/java/dsldesign/prpro/java/ExprGenerator.java

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/ExprGenerator.java

9.2. Code Generation Using Visitors and Recursion 325

Exercise 9.1. Print or photocopy Fig. 9.2 and compare it carefully with the input
model in the example. Annotate parts of the code that depend on the model, and
parts that are fixed. Watch for references to identifiers from the model (clearly
model-dependent) and try to speculate which lines depend on the input model
entirely (they would not have been there if a line in the input had been missing).

9.2 Code Generation Using Visitors and Recursion

Let us start with discussing how we translate prpro expressions into Python.
This part of the code depends most strongly on the input. Expressions
are defined inductively—bigger expressions are built from smaller ones.
The meta-model contains cycles over containment cycles (Fig. 6.3, p. 206).
Such structures are best processed by traversals, using visitors or recursion,
similarly to type-checking in Chapter 6 and interpretation in Chapter 8.

The idea is to traverse the abstract-syntax tree bottom up, creating a
piece of output for each leaf in the tree, and composing them together for
internal nodes. Figure 9.3 presents an implementation for prpro using the
visitor pattern in Java. It assumes that the model is loaded in memory, as
an instance conforming to the Ecore meta-model of Fig. 6.3. We are only
concerned with translating the expression part of the model here; the core
part can be found in lines 28–56. For a simple integer constant expression
(l. 28) and for a simple float expression (l. 31), we just translate the value
of the literal to a character string. For a variable reference (l. 34) we check
whether the variable referred to is a data variable. If so we refer to the data
frame data in line 37, otherwise we just return the name of the variable,
prefixing it with ’prpro_’. Compare to the corresponding output in Fig. 9.2.
In Line 11, parameter b1 is prefixed, while x is turned into a reference to
data. For binary expressions (l. 40 and onwards), we first generate the
string representation of the left literal, then of the right one, and proceed to
compose them with the correct binary operator. We enclose the output in
parentheses to avoid problems with operator precedence.

Consider the case of translating a Gaussian density expression in the
bottom of the figure. We generate the code for the expression defining
the mean first (l. 51). We use a recursive visitor. We proceed similarly
for the standard deviation in l. 52. In Line 53, we check whether this
normal density is used directly in a top-level let expression. If it is, we
generate a string representing the variable name enclosed in quotes. This is
needed, because PyMC should receive this name to be able to use it in the
library when outputting plots and model graphs (useful for debugging, plots,
and summaries). Finally, in Line 54, we compose the entire distribution
expression, including a reference to the observed data set, if such exists,
using a helper function observed. The remaining part of the code provides
the helper functions and sets up the generators.

It is instructive to compare this code to the type checker of Chapter 6
(Fig. 6.13, p. 218); especially lines 19–20 in the latter to lines 41–42 here.
Both the type-checking and the code generation algorithms perform the

326 Chapter 9. Code Generation

same traversal of the syntax tree, but they produce different values. A similar
parallel can be drawn to interpreters. We show no interpreter for prpro, but
see lines 23–24 in the expr interpreter (the right column in Fig. 8.7).

In many functional languages the visitor pattern is not an option as
overloading and dynamic dispatch are not available. Recursion is a natural
alternative. Figure 9.5 shows the corresponding generator in Scala. How-
ever, before we discuss it in more depth, let us introduce a complication.
After all, we have seen recursive interpreters and type checkers already, and
this generator is not going to be very different.

9.3 Memory Management for Code Generation

One common problem with generation of anything but the smallest pro-
grams is memory management. A traversal of a model creates small strings
in leaves of an AST and recomposes them into larger strings in internal
nodes. In a language with automatic memory management (garbage collec-
tion) this tends to create a new string object for each composition operator.
For instance in Line 54 of Fig. 9.3, five new string objects will be created,
not counting the string objects created in lines 51–53. This phenomenon
leads to code generators quickly becoming memory inefficient, or even
consuming the entire RAM and crashing for large output files. In imperative
languages, the standard solution is to use a string builder instead, which
uses destructive updates to extend the string in place, instead of producing
new values (see Exercise 9.15). In purely functional style, one uses a
representation that minimizes polluting memory with intermediate objects.

Think what happens when we concatenate n strings: s1 + s2 + ...+ sn. If
the concatenation operator is left-associative, we execute (· · ·(((s1 + s2)+
s3)+ s4) · · ·+ sn−1)+ sn. We create each of the n−1 prefix string objects:

s1 + s2
s1 + s2 + s3
s1 + s2 + s3 + s4
...
s1 + s2 + s3 + s4 + · · ·
s1 + s2 + s3 + s4 + · · ·+ sn

The result of the final computation above produces a string which uses
memory proportional to the combined size of the input strings. The penul-
timate row uses memory proportional to the combined size of all but the
last one, and so on. The total memory allocated in the process is quadratic
in the size of the input strings. These allocations happen too quickly for the
garbage collector to free the temporaries efficiently, clogging the system.

What can we do instead? For the strings si above, a simple list is itself
a perfect representation—we can extend it with new strings in constant
time and space. We can output it to a file, string by string, in linear time.
Unfortunately, functional lists cannot be extended efficiently at the end, as

9.3. Memory Management for Code Generation 327

1 enum StringTree:
2 case Em
3 case Lf (s: String)
4 case Br (pr: StringTree, sf: StringTree)

6 infix def |+| (sf: StringTree): StringTree = Br (this, sf)
7 infix def |+| (sf: String): StringTree = Br (this, Lf (sf))

9 override def toString: String = this.toStringList(Nil).mkString

11 def toStringList (l: List[String]): List[String] = this match
12 case Em => l
13 case Lf (s) => s::l
14 case Br (pr, sf) => pr.toStringList (sf.toStringList (l))

16 extension (pr: String)
17 def |+| (sf: StringTree): StringTree = Br (Lf (pr), sf)
18 def |+| (sf: String): StringTree = Br (Lf (pr), Lf (sf))

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/exprGenerator.scala

Figure 9.4: An example of an
efficient output representation
for text files to be used by
generators. It avoids trashing
the heap with many temporary
objects. The |+| operator is
added for convenience. Lines
6–7 allow suffixing a string tree
representation with a string or
another tree. Lines 16–18
extend the String class, to
allow prefixing a string or a
string tree with another string

this also leads to a quadratic cost. During code generation we often need
to build up fragments from both ends. We can do this efficiently if we
represent the output as a tree, as we already do for the input. Unlike for the
input though, the output does not require semantic information. The only
thing we need to remember is what is combined with what, so we can use a
single abstract meta-model for all output languages. With a tree instance,
the generator can proceed efficiently using memory linear in the size of the
output. Once it is done, the tree can be serialized to a file in linear time, or
converted to a String imperatively (say, using a string builder).

A small and efficient pure tree representation for code generation results
is shown in Fig. 9.4. Think of it as if this was a simple meta-model
or a language for representing string outputs. We have three kinds of
StringTrees: a leaf (Lf); a branch (Br), and empty (Em). A leaf stores a
single string, a branch combines two trees. We can add a new tree before or
after another one, for the same small cost. The empty constructor is practical
to provide a value when a part of a generator does not produce any output.

The string tree type implements two operations: concatenation (|+|) and
serialization to a list (toStringList) for easy output to a file. Concatenation
of a string or a string tree to a current string tree just creates a suitable
branch value (lines 6–7 and 17–18). Only a constant amount of memory is
allocated for each new node; the string values are not copied. The function
toStringList uses a post-order traversal of the tree, to build a list efficiently
(prefixing is a cheap operation for functional lists). In Line 9, we add a
helper function toString that uses an efficient implementation of Scala’s
mkString to create a single string value. This way the entire generator can
be both efficient and pure (the impurity is encapsulated in mkString).

With this implementation in hand, we create a memory-efficient and pure
code generator for prpro’s expressions in Scala Fig. 9.5). The generator

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/exprGenerator.scala

328 Chapter 9. Code Generation

Figure 9.5: A recursive
implementation of a code

generator in Scala translating
a prpro expression into a

Python expression that uses
the PyMC library. The

generator is build on top of the
string tree library of Fig. 9.4

1 type DataEnv = Map[String, VectorTy]

3 def generate (denv: DataEnv, context: Option[Declaration], e: Expression)
4 : StringTree = e match
5 case BExpr (left, operator, right) =>
6 val sLeft = generate (denv, None, left)
7 val sRight = generate (denv, None, right)
8 val sOpe = generate (operator)
9 "(" |+| sLeft |+| sOpe |+| sRight |+| ")"

11 case CstI (n) => Lf (n.toString)
12 case CstF (x) => Lf (x.toString)

14 case VarRef (name) =>
15 if denv.isDefinedAt (name) then
16 "data[’" |+| name |+| "’]"
17 else "prpro_" |+| name

19 case Normal (mu, sigma) =>
20 val sMu = "mu = " |+| generate (denv, None, mu)
21 val sSigma = ", sigma = " |+| generate (denv, None, sigma)
22 val sObserved = observed (denv, context).getOrElse (Em)
23 "(Normal(" |+|varName(context)|+|sMu|+|sSigma|+|sObserved|+| "))"

25 case Uniform (lo, hi) => ...

27 private def generate (ope: Operator): String = ope match
28 case Plus => "+"
29 case Minus => "-"
30 case Mult => "*"
31 case Div => "/"

33 private def varName (context: Option[Declaration]): StringTree =
34 Lf (context.map { decl => s""""${decl.name}", """ }.getOrElse (""))

36 private def observed (denv: DataEnv, context: Option[Declaration])
37 : Option[StringTree] = for
38 decl <- context
39 o = generate(denv, None, VarRef (decl.name))
40 if denv.isDefinedAt (decl.name)
41 yield Lf (s", observed = ${o}")

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/exprGenerator.scala

uses |+| instead of + to build the output. Recursion replaces the visitors,
resulting in a more concise implementation. The familiar structure remains.

Exercise 9.2. Compare Fig. 9.3 against Fig. 9.5, especially the lines 3–23 in the
latter. Compare these to the type checker for prpro in Fig. 6.12 on p. 217. Observe
how type-checking and code generation perform the same kind of traversal, just
creating a different representation (types vs a code string tree).

In the Scala code generator, we chose to use information obtained during
type-checking. In Line 15, we consult the data environment denv to see
whether a data definition exists for a variable. In the Java variant, we
chose to extract this information directly from the abstract syntax, arguably

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/exprGenerator.scala

9.3. Memory Management for Code Generation 329

1 def generate (denv: DataEnv, context: Option[Declaration], e: Expression)
2 : Doc = e match
3 case BExpr (left, operator, right) =>
4 val dLeft = generate (denv, None, left)
5 val dRight = generate (denv, None, right)
6 val dOpe = generate (operator)
7 paren (dLeft + dOpe + dRight)

9 case CstI (n) => Doc.str (n)
10 case CstF (x) => Doc.str (x)

12 case VarRef (name) =>
13 if denv isDefinedAt name then
14 Doc.str ("data[") + quote (name) + Doc.str ("]")
15 else Doc.str ("prpro_") + Doc.str (name)

17 case Normal (mu, sigma) =>
18 val dMu = Doc.str ("mu = ") + generate (denv, None, mu)
19 val dSigma = Doc.str (", sigma = ") + generate (denv, None, sigma)
20 val dObserved = observed (denv, context)
21 paren (Doc.str ("pm.Normal") + paren (
22 varName (context) + dMu + dSigma + dObserved))

24 case Uniform (lo, hi) => ...

26 def generate (denv: DataEnv, l: Let): Doc =
27 val rhs = generate (denv, Some (l), l.value)
28 Doc.str ("prpro_") + Doc.str (l.name) + Doc.str (" = ") + rhs

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/prproGenerator.scala

Figure 9.6: A recursive
implementation of a code
generator for prpro in Scala
using a pretty-printing library
paiges. The helper functions
varName and observed have
been hidden for brevity

repeating some work already done by the type checker (l. 36, Fig. 9.3).
We did what seemed simpler, more concise, in each of these cases. Still,
it is common for more involved input languages that the type-checking
information influences the code generation. This is particularly so if the
input language is untyped while the output language is typed or requires
precise memory management (such as C).

The idea of a library of types and combinators to represent generated
code can be expanded to a full-fledged system that not only solves the
memory representation problems but also allows the output to be structured
more easily. One such library is paiges for Scala;1 similar exist for almost
any programming language—search online for a “pretty-printing library.”
Figure 9.6 shows a reimplementation of the generator from Fig. 9.5 using
paiges instead of string trees. The StringTree type has been replaced by
the Doc type from paiges. Otherwise the code is almost identical.

Pretty-printing libraries offer support for automatic line wrapping (hard
and soft line breaks), controlling indentation, hangs, and block nesting.
They offer convenience operators, so that we do not need to convert all types
to strings explicitly. Finally, a number of rendering facilities, including

1https://github.com/typelevel/paiges, seen 2022/09

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/prproGenerator.scala
https://github.com/typelevel/paiges

330 Chapter 9. Code Generation

Figure 9.7: The template part
of the prpro code generator.

The recursive part, invoked in
line 3, is found in Fig. 9.6. The
template is slightly abbreviated

to fit the figure

1 def body (denv: DataEnv, m: Model): Doc =
2 val lets = m.collect { case l: Let => l }
3 val docs = lets.map { l => generate (denv, l) }
4 Doc.intercalate (Doc.lineBreak, docs)

6 def plots (denv: DataEnv, tenv: TypeEnv, m: Model): Doc =
7 val parameters = tenv.keySet.diff (denv.keySet)
8 parameters
9 .toList

10 .zipWithIndex
11 .map { (name, i) =>
12 s"az.plot_posterior(trace, var_names=[’${name}’], ax=ax[1,${i}])" }
13 .map { Doc.str _ }
14 .foldRight[Doc] (Doc.empty) (_ / _)

16 def generate (denv: DataEnv, tenv: TypeEnv, m: Model): String =
17 val x = denv.keys.toList (0)
18 val y = denv.keys.toList (1)
19 val N = tenv.keySet.diff (denv.keySet).size
20 s"""print(’loading data.csv’)
21 |data = pd.read_csv(’./data.csv’)
22 |print(data.head())
23 |print(’...’)

25 |with pm.Model() as model:
26 | ${body(denv, m).hang (4).render (-1)}
27 | trace = pm.sample(draws = 20000, return_inferencedata = True)

29 |print(’creating plots’)
30 |N = ${N} # numbers of parameters in the model

32 |fig, ax = plt.subplots(2, N, figsize=(15, 10))
33 |ax[0,0].plot(data[’${x}’], data[’${y}’], ’o’,label=’data’,alpha=.3)
34 |ax[0,0].set_xlabel(’${x}’)
35 |ax[0,0].set_ylabel(’${y}’)
36 |ax[0,0].set_title(’A scatter plot of the data’)

38 |${plots (denv, tenv, m).render (-1)}
39 |fig.tight_layout()

41 |print(f’generating a pdf file {__file__}.pdf’)
42 |plt.savefig(f’{__file__}.pdf’)
43 """.stripMargin

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/prproGenerator.scala

translations to lazy streams or directly to output streams, allow code to be
emitted without creation of another in-memory copy of the document.

9.4 Code Generation with Templates

We already know how to translate expressions, creating a small but essential
part of our reference example, lines 7–12 in Fig. 9.2. A careful look at
the remaining part of that figure reveals that the rest of the code depends
less on the input and can be processed without recursive traversals. This
situation is common—the output structure is fixed, except for pieces of

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/prproGenerator.scala

9.4. Code Generation with Templates 331

information selected from the model. While a regular visitor producing
code is a program that follows the structure of the input to compose the
output out of small pieces, we need the opposite: a program that follows
the boilerplate string of the output program, but with some gaps populated
by computations referring to the input model. We need templates.

Interpolated strings as templates. Figure 9.7 shows a template for the top
level of the prpro code generator. The bulk is found in lines 20–43. We
use the simplest template technology—interpolated multi-line strings. A
large string in the example looks like the output program. The gaps are
marked ${...}; each contains a Scala expression, such as a call or a variable
reference. Most are very simple (lines 33–35). In Line 26, we invoke the
recursive code generator of Fig. 9.6. We use stripMargin, a helpful method
on strings in Scala, which allows us to maintain the indentation of the gen-
erator code (as in the file), but produces a different indentation in the output
string—the margin left of | symbols is stripped from each line in the output.

Exercise 9.3. The generator of Fig. 9.7 assumes two data columns in the data file,
and two variables in the model. The variable defined in the last line of the model
is the target of the regression. Generalize this to n columns, with n−1 regression
variables, the last still being the target. Most changes need to be done in the
plotting code. Instead of plotting x against y, plot each of the regressors (column
variables) against the target (y) separately, changing l. 32 to create n− 1 plots
(adding more plots in the first row of Fig. 9.1). The remaining plots (posteriors)
for parameters do not change. Use the function plots, lines 6–14, as inspiration
for generalizing the first row plots.

Templates are an established technique, particularly in web development.
PHP2 was probably the first famous template language. PHP embeds
pieces of executable code in an HTML document. In general, the haps
in templates contain meta-code (i.e., code-creating code), which is run at
template instantiation time to compute the variable parts [4]. In modern
GPLs, simple templates can be built by string interpolation and multi-line
string literals (C#, Kotlin, Groovy, Scala, Xtend, etc.). Recently, Java 15
has introduced multi-line strings, known there as text-blocks, with support
for formatting gaps and automatic adjustment of indentation.

Dedicated template languages. Dedicated template languages offer more
functionality than simple string interpolation—besides the ability to eval-
uate expressions and calls they feature control structures, loops and con-
ditionals, to create regularly structured and optional fragments. Control
structures cannot be embedded in interpolated strings. Some template
languages integrate directly with Ecore, which allows for very lightweight
construction of generators which read a model instance directly (Xpand,3

Acceleo4). Many languages have been created for report generation and web

2https://www.php.net/, accessed 2022/09
3http://wiki.eclipse.org/Xpand, accessed 2022/09
4http://www.eclipse.org/acceleo, accessed 2022/09

https://www.php.net/
http://wiki.eclipse.org/Xpand
http://www.eclipse.org/acceleo

332 Chapter 9. Code Generation

Figure 9.8: Java code
generated for the finite-state

machine from Fig. 7.2 on
p. 238 (see also Fig. 9.17 on

p. 353). White space is
reduced in the figure and some
cases are omitted to conserve

space

1 class FSMCoffeeMachine {
2 static final int INITIAL = 0;
3 static final int SELECTION = 1;
4 static final int BREWCOFFEE = 2;
5 static final int BREWTEA = 3;
6 static final int BROKEN = 4;
7 static int current;
8 static final String[] stateNames = {
9 "initial","selection","brewCoffee","brewTea","broken",

10 };
11 static final String[] availableInputs = {
12 "<coin><break>",
13 "<tea><coffee><timeout><break>",
14 "<done><break>",
15 "<done><break>",
16 "",
17 };
18 public static void main (String[] args) {
19 @SuppressWarnings(value = { "resource" })
20 Scanner scanner = new Scanner(System.in);
21 current = INITIAL;
22 while (true) {
23 System.out.print ("[" + stateNames[current] + "] ");
24 System.out.print ("What is the next event? available: " +
25 availableInputs[current]);
26 System.out.print ("?");
27 String input = scanner.nextLine();
28 switch (current) {
29 case INITIAL:
30 switch (input) {
31 case "coin":
32 System.out.println("machine says:what drink do you want?");
33 current = SELECTION;
34 break;
35 case "break":
36 System.out.println("machine says:machine is broken");
37 current = BROKEN;
38 break;
39 }
40 break;
41 case ...
42 } } } }

programming. Most of these can be effectively used for code generation.
Examples include StringTemplate,5 Velocity,6 FreeMarker,7 and JSP.8 In
the Python universe, Jinja9 is a popular and feature-rich language. Let us use
Xtend to create code from fsm models. We used Xtend briefly in Chapters 5
and 7. Xtend incorporates Xpand templates as part of its multi-line strings.

5https://www.stringtemplate.org/, accessed 2022/09
6https://velocity.apache.org, accessed 2022/09
7http://freemarker.org, accessed 2022/09
8https://jsp.java.net, accessed 2022/09
9https://jinja.palletsprojects.com/, accessed 2022/09

https://www.stringtemplate.org/
https://velocity.apache.org
http://freemarker.org
https://jsp.java.net
https://jinja.palletsprojects.com/

9.4. Code Generation with Templates 333

1 def static compileToJava(FiniteStateMachine it) {
2 var int i = -1
3 ’’’
4 import java.util.Scanner;
5 class FSM«it.name.toFirstUpper» {
6 «FOR state : it.states»
7 static final int «state.name.toUpperCase» = «i = i + 1»;
8 «ENDFOR»
9 static int current;

10 static final String[] stateNames = {
11 «FOR state : states»"«state.name»",«ENDFOR»
12 };
13 static final String[] availableInputs = {
14 «FOR state : states»
15 "«FOR t : state.leavingTransitions»<«t.input»>«ENDFOR»",
16 «ENDFOR»
17 };

19 public static void main (String[] args) {
20 @SuppressWarnings(value = { "resource" })
21 Scanner scanner = new Scanner(System.in);
22 current = «initial.name.toUpperCase»;
23 while (true) {
24 System.out.print ("[" + stateNames[current] + "] ");
25 System.out.print ("What is the next event? available: "
26 + availableInputs[current]);
27 System.out.print ("?");
28 String input = scanner.nextLine();
29 switch (current) {
30 «FOR state : states»
31 case «state.name.toUpperCase»:
32 switch (input) {
33 «FOR t : state.leavingTransitions»
34 case "«t.input»":
35 System.out.println ("machine says:«t.output»");
36 current = «t.target.name.toUpperCase»;
37 break;
38 «ENDFOR»
39 }
40 break;
41 «ENDFOR»
42 }
43 }
44 }
45 }
46 ’’’
47 } source: fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/ToJavaCode.xtend

Figure 9.9: Xtend/Xpand
template generating Java code
from a finite-state machine
instance

We begin by exploring what code needs to be generated for this example.
A reference example is presented in Fig. 9.8. Abstract object-oriented and
functional patterns for implementing state machines are readily available,
yet we opted to present a low-level scheme that could also be realized in
a low-level language. This code can easily be translated to C (Exercise 9.8).
In the figure, lines 2–6 define symbolic names for integers used to represent
the current state (in C it would have been natural to use preprocessor

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/ToJavaCode.xtend

334 Chapter 9. Code Generation

symbols). The current state is stored in the variable current declared in
Line 7. Lines 8–10 define names of states as strings (so that we can print
them), and lines 11–17 list available actions for each state (also for printing
messages). The behavior of a state machine is realized in lines 18–42. A
machine is executed by a non-terminating loop (l. 22). In each iteration, we
print the current state and the available actions (l. 23–26), and wait for the
user to input the next one (l. 27). We decide what to do next, depending
on what is the current state, using a switch. In the initial state, we react to
coin and break. Each reaction prints a message and changes the current
state. If an action provided by the user is not handled in the model, we just
repeat the iteration, asking the user for another action.

Figure 9.9 shows a template, which generates code like that in Fig. 9.8.
The three for-loops at the top generate the list of state identifiers, the list
of state names, and the list of available actions. Xpand control keywords
in the template, the gaps, are enclosed in French quotes, guillemets, «
and ». These are rarely used in programming languages, so the chance
of a clash with the generated language is minimized. Furthermore, note
that without for-loops, with usual interpolated strings, we would have to
invoke a helper function for each of these blocks, making it much harder to
appreciate the structure of a produced file. Xpand also handles indentation
automatically. The indentation of the entire template string (visible in l. 3)
will not influence the indentation of the output (so the class declaration
produced in l. 5 will not be indented in the output file, as shown in Fig. 9.8).
Most of the loop code is static, independent of the input model, but for
each possible current state we generate a case block in the switch statement,
extracting the necessary information from the model as we go.

9.5 Case Study: Robot

Let us combine the techniques discussed above to build a larger case study:
a code generator for the robot language. Recall that we have already built
an interpreter for robot in Chapter 8. In Sect. 8.1, we have presented a
platform implementation providing the basic primitives for controlling a
TurtleBot. We have used this implementation (Fig. 8.5, p. 299) together
with ROS as the basis for the interpreter. Our adaptation layer supports
initialization of the model and the robot, maintaining the controller state,
logging, sending commands to the robot, deciding how long they should
be active, and reading sensors. We will now build a Python code generator,
using the same platform to support the generated code.

A reference example implementation for robot. The same way as Fig. 9.2
shows a reference example for prpro, Fig. 9.10 shows a reference example
for robot, using the random walk model of Fig. 2.2 (p. 30) as the input. Let
us understand what the key parts are. In the example, we use integers to iden-
tify modes (lines 1–4). This is not strictly necessary in Python, but would
be natural, for instance in C, if we wanted to create a compact and efficient

9.5. Case Study: Robot 335

1 _RANDOM_WALK = 1
2 _MOVING_FORWARD = 1*2
3 _AVOID = 1*3
4 _SHUT_DOWN = 1*5
5 class RandomWalk(TurtleBotPlatform):
6 ...
7 def execute_AVOID(self):
8 if self.mode_pc == 0:
9 self.info(’AVOID[0]’)

10 direction = -1.0
11 velocity = 0.1 * direction
12 self.engage(velocity, float(2))
13 self.mode_pc = self.mode_pc + 1
14 return True
15 if self.mode_pc == 1:
16 self.info(’AVOID[1]’)
17 self.random_rotation()
18 self.mode_pc = self.mode_pc + 1
19 return True
20 return False

22 def run(self):
23 while True:
24 self.executor.spin_once(0.0)
25 if self.tm_latch in self.timers:
26 self.executor.spin_once(1.0/self.FREQ)
27 continue

29 # actions and sub-mode activations
30 if self.mode==_RANDOM_WALK and self.execute_RANDOM_WALK():
31 continue
32 if self.mode==_MOVING_FORWARD \
33 and self.execute_MOVING_FORWARD():
34 continue
35 if self.mode == _AVOID and self.execute_AVOID():
36 continue
37 ...
38 # reactions
39 if self.active(_MOVING_FORWARD):
40 if self.ev_obstacle:
41 self.info(’Reacting to an obstacle!’)
42 self.ev_obstacle = False
43 self.activate(_AVOID)
44 continue

46 # continuations
47 if self.mode == _AVOID:
48 self.activate(_MOVING_FORWARD)
49 continue

source: robot.turtlebot3/dsldesign_robot_turtlebot3/controller.py

Figure 9.10: The core part of
the reference controller
implementation of the random
walk model of Fig. 2.2, p. 30

implementation. Instead of using consecutive integers though, we use con-
secutive prime numbers. The identifier of each mode is chosen to be its own
prime number multiplied by the identifiers of its container modes (parents).
This way, checking whether one mode is a parent of another amounts to

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.turtlebot3/dsldesign_robot_turtlebot3/controller.py

336 Chapter 9. Code Generation

Figure 9.11: The core part of
the code generation template

for robot, mostly
corresponding to the parts of
the reference implementation

in Fig. 9.10

1 class Controller(TurtleBotPlatform):
2 ...
3 {% for m in ctx.modes %}
4 def execute{{m.SNAKE_NAME}}(self):
5 {% for a in m.actions %}
6 if self.mode_pc == {{loop.index0}}:
7 self.info(’{{m.name}}[{{loop.index0}}]’)
8 {% filter indent(8) %}
9 {{generate_action(a)}}

10 {% endfilter %}
11 self.mode_pc = self.mode_pc + 1
12 return True
13 {% endfor %}
14 {% for sm in m.modes if sm.initial %}
15 self.info(’{{m.name}}[initializing submode {{sm.name}}]’)
16 self.activate({{sm.SNAKE_NAME}})
17 return True
18 {% else %}
19 return False
20 {% endfor %}
21 {% endfor %}

23 def run(self):
24 while True:
25 self.executor.spin_once(0.0)
26 if self.tm_latch in self.timers:
27 self.executor.spin_once(1.0/self.FREQ)
28 continue

30 # actions and sub-mode activations
31 {% for m in ctx.modes %}
32 if self.mode=={{m.SNAKE_NAME}} and \
33 self.execute{{m.SNAKE_NAME}}(): continue
34 {% endfor %}

36 # reactions
37 {% for m in ctx.modes if m.reactions %}
38 if self.active({{m.SNAKE_NAME}}):
39 {% for r in m.reactions %}
40 {% if r.trigger == ctx.Robot.Event.EV_CLAP %}
41 ...
42 {% elif r.trigger == ctx.Robot.Event.EV_OBSTACLE %}
43 if self.ev_obstacle:
44 self.info(’Reacting to an obstacle!’)
45 self.ev_obstacle = False
46 {% endif %}
47 self.activate({{r.target.SNAKE_NAME}})
48 continue
49 {% endfor %}
50 {% endfor %}

52 # continuations
53 {% for m in ctx.modes if m.continuation %}
54 if self.mode == {{m.SNAKE_NAME}}:
55 self.activate({{m.continuation.SNAKE_NAME}})
56 continue

source: robot.py/controller.py.jinja

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.py/controller.py.jinja

9.5. Case Study: Robot 337

checking whether one identifier is divisible by another. This check is encap-
sulated in the function self.active (not shown but used in a few places).

For each mode, an execution function enforces the encapsulated behavior.
Recall the obstacle avoidance mode:

Avoid {
move backward for 1 s
turn by random (-180,180)

} -> MovingForward

In Avoid, two actions are executed. First the robot moves backwards for 1s,
then it rotates through a random angle. Subsequently, the control switches
to the MovingForward mode. The corresponding code is found in lines 7–20.
The variable self.mode_pc records the action being executed. This is often
called a program counter, thus pc. If we are at the first action (mode_pc==0,
Line 8), we log this fact, set the direction of motion backwards, calculate
velocity, and call the platform’s engage to move the robot. After executing
the line, we increment the counter and exit (l. 13-14) to allow time to pass.
The controller will resume the execution after the set delay. Then the second
action is executed: we perform a random rotation (l. 15–19). For simplicity,
we ignore the action’s parameter, the range of random angles for rotation.
We just invoke self.random_rotation from the platform to perform an ar-
bitrary turn. It is an interesting exercise to first evaluate the argument expres-
sion, and then use it to control the size of the rotation in random_rotation.

The main execution loop is found in the run function. It has four parts:
delaying until actions are complete (l. 24–27), executing code inside modes
upon activation (29–36), reacting to external events (38–44), and switching
to a continuation mode, if there is one (46–49). We discuss them in order.

In every iteration, lines 24–27 release control to allow callbacks to be
activated. This is necessary because we use a sequential non-preemptive
scheduler. If any actions are active (l. 25), we wait for their completion,
ignoring any other events; sleeping a short cycle to avoid busy waiting
and restarting the loop. This is a bit convoluted, and it is meant to be!
An implementation of a DSL will always be dense with domain-specific
logic and behavior from your problem domain. Fortunately, we do not need
to understand this to understand the example. From the code generation
perspective, l. 24–27 are static code that just needs to be output.

Once no actions await completion, we check which mode is active (lines
30–35) and execute its body. An execute function (like the one in l. 7–20)
returns true if more actions remain to be executed, and false when the
body execution is completed. After a line of model code is executed, we
restart the interpreter loop (continue) to check whether no actions await
completion. If the check fails, we continue executing the other active modes.
This fragment of code is sorted topologically by modes, so the top-level
modes will be executed before nested modes.

In lines 39–44, we check what mode is active, and whether any external
events have been registered that are required in this mode. Recall the

338 Chapter 9. Code Generation

MovingForward mode in the model. It contains a reaction rule that changes
the mode to Avoid whenever an obstacle is detected:
-> MovingForward {

move forward at speed 10
on obstacle -> Avoid

}

The variable selv.ev_obstacle, tested in l. 40, is set when the platform ob-
ject detects an obstacle. This happens in a process parallel to the controller.
The implementation for the rule of MovingForward (l. 39–44) produces a
log entry, resets the event variable, and activates the target model Avoid.

Finally, in l. 46–49, we check whether the active mode has a continuation.
If we got to this point, it means that the actions of the mode have been
completed. If a continuation is found, we activate it.

Exercise 9.4. Print or photocopy Fig. 9.10 and mark parts that depend on the model,
and parts that are fixed. Watch for references to identifiers from the model (clearly
model-dependent) and try to speculate which lines depend on the input model
entirely (they would not have been there if a line in the input had been missing).

The robot code generator. We use Jinja to implement the code generator
for robot. Jinja is a dedicated template language for M2T transformations
implemented in Python. Jinja supports inheritance of templates. Inheritance
allows definition of high-level structure and its refinement for various
outputs—this helps to modularize code generators. Jinja is an external
DSL—Jinja code is not Python code, but Python code can be invoked from
the template’s gaps. The engine supports template comments (not rendered
in the output), white-space and indentation control (so that both the input
and the output code is readable), and the usual set of control structures
(loops, conditionals, and compile-time macros).

Figure 9.11 shows a template for robot, which for the random walk
model would generate the code in Fig. 9.10. Before understanding it in
detail, try to relate the main parts to the reference example. There is a part
generating the execute methods (l. 4–21), a part generating the header of the
while-loop (24–28), a part generating execution of mode actions (30–34),
a part generating the reaction handling (36–50), and a part generating the
continuation code (52–56).

As Jinja is a template language, the top-level code is not executed. It is
the template’s static output, emitted during the instantiation. The executable
code is enclosed in braces and percentage signs, {% ... %}. Consequently,
the first code executed during instantiation is found in l. 3. It opens a for-
loop similar to what we have seen in Xtend/Xpand. (The ellipsis ... is part
of neither the Jinja language nor its output—it indicates that the template
is abbreviated in the figure.) The loop iterates over the modes listed in
ctx.mode, made available by the caller. The ctx object comes from our
library and provides the logic and data needed during generation. See below
for more details. The for-loop effectively creates an execute_XXX method
for each mode found in the model.

9.5. Case Study: Robot 339

1 {% macro generate_action(action) %}
2 {% if ctx.isMove(action) -%}
3 direction = {{1.0 if action.forward == True else -1.0}}
4 {% if action.speed %}
5 model_speed = {{ctx.generate_expr(action.speed)}}
6 velocity = model_speed * 0.008 * direction
7 {% else %}
8 velocity = 0.1 * direction
9 {% endif -%}

10 {% if action.duration %}
11 self.engage(velocity, float({{ctx.generate_expr(action.duration)}}))
12 {%- else %}
13 self.engage(velocity)
14 {%- endif %}
15 {%- elif ctx.isTurn(action) -%}
16 self.random_rotation()
17 {%- elif ctx.isDock(action) -%}
18 self.return_to_base()
19 {%- endif -%}
20 {%- endmacro -%} source: robot.py/controller.py.jinja

Figure 9.12: The Jinja macro
compiling a single action
execution in robot

A nested loop iterates over lines of action code in each mode (l. 6–13).
Lines 14–20 initialize a nested mode (not shown in our reference example)
and return. In several places, we see another kind of gap, enclosed in
double braces, {{ ... }}. These gaps contain expressions that evaluate
to strings subsequently incorporated into the output of the template. For
example in l. 4, we access a capitalized name of the mode to create the
function name; MovingForward becomes _MOVING_FORWARD and we pro-
duce def execute_MOVING_FORWARD. The values in m.SNAKE_NAME are pre-
computed in our context object for each mode, before the generation starts.

Read the rest of the template and relate it to the reference implementation
in Fig. 9.10 to see how the latter emerges at instantiation time. Let us just
discuss the new constructs here. In Line 8, a filter adjusts indentation (many
filters are supported in Jinja). Line 9 invokes a macro, a sub-template,
generate_action. Its definition is shown in Fig. 9.12. In Line 18, we use
an else-clause for a for-loop. This construct, not usually seen in GPLs, is
useful in template DSLs to emit some text when a loop has not been entered.
This particular loop includes a filter in l. 14, which might skip all modes. In
code generation, we often want to output some default text if a collection
we iterate over is empty. In lines 40–46, we use a sequence of if, else-if,
and else branches, to select a piece of code conditionally. Concretely, we
select the reactions to events that pertain to a given mode in the model.

The template is supported by a small runtime implemented manually
(Fig. 9.13). The runtime provides support functions that load the model
from a file and pre-compute values needed for generation. This includes
deriving a flat list of modes (def __modes), generating prime numbers
(__modes) and using them to calculate identifiers for modes (__base_ids,
__derive_ids). At this time we also calculate capitalized state names
(l. 23). Functions isXXX detect the type of an action. They are used to decide

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.py/controller.py.jinja

340 Chapter 9. Code Generation

Figure 9.13: A runtime for the
robot code generator. It

provides support functions,
from the top: initialization

(loading the model and
pre-computing values needed

for generation), generating
prime numbers, deriving a flat

list of modes from a tree,
calculating identifiers for

modes, detecting which type a
particular action has,
generating code for

expressions and for triggers.
Finally, it loads and instantiates

the template (bottom)

1 class GeneratorCtx:
2 def __init__(self, fname):
3 ... self.__modes(); self.__base_ids(); self.__derive_ids(self.model)

5 def primes(self): ...
6 def SNAKE(self, name):
7 name = re.sub(’(.)([A-Z][a-z]+)’, r’\1_\2’, name)
8 name = re.sub(’([a-z0-9])([A-Z])’, r’\1_\2’, name)
9 return "_" + name.upper()

11 def __modes(self):
12 self.modes = []
13 old_modes = [self.model]
14 while old_modes:
15 children = [parent.modes for parent in old_modes]
16 new_modes = [m for modes in children for m in modes]
17 self.modes.extend (old_modes)
18 old_modes = new_modes
19 def __base_ids(self):
20 prime = self.primes()
21 for m in self.modes:
22 m.state_id = next(prime)
23 m.SNAKE_NAME = self.SNAKE(m.name)
24 def __derive_ids(self, parent):
25 for m in parent.modes:
26 m.state_id = f"{parent.state_id}*{m.state_id}"
27 self.__derive_ids(m)

29 def isMove(self, a): return isinstance(a, self.Robot.AcMove)
30 def isTurn(self, a): return isinstance(a, self.Robot.AcTurn)
31 def isDock(self, a): return isinstance(a, self.Robot.AcDock)

33 def generate_expr(self, expr):
34 if isinstance(expr, self.Robot.RndI):
35 return "(random.randrange(0, 2000) / 1000.0)"
36 elif isinstance(expr, self.Robot.CstI): return str(expr.value)
37 elif isinstance(expr, self.Robot.Minus):
38 return - self.evaluate_expr (expr.aexpr)
39 elif isinstance(expr, self.Robot.BinExpr):
40 left = str(self.evaluate_expr (expr.left))
41 right = str(self.evaluate_expr (expr.right))
42 if expr.ope == ’+’: return ’(’ + left + right + ’)’
43 elif expr.ope == ’-’: return ’(’ + left - right + ’)’
44 ...
45 def generate_trigger(self, ev):
46 if ev == self.Robot.Event.EV_CLAP: return "ev_clap"
47 if ev == self.Robot.Event.EV_OBSTACLE: return "ev_obstacle"

49 if __name__ == ’__main__’:
50 env = Environment(loader = FileSystemLoader("."),
51 trim_blocks = True, lstrip_blocks = True)
52 template = env.get_template("controller.py.jinja")
53 print(template.render(ctx = GeneratorCtx("random-walk.xmi")))

source: robot.py/generator.py

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot.py/generator.py

9.6. Guidelines for Implementing DSL Code Generators 341

The Main Benefits of Code Generation

• No dependency on the source language: When we generate code, the system using it no longer depends
on the input DSL. This might be desirable to protect intellectual property (input models), or just to keep
the target infrastructure simple. When using an interpreter the target system still needs to contain the
entire DSL implementation, including the meta-models, front-end stages, and the models themselves.

• Performance: Generated code is faster than interpreted code, and when optimization algorithms are
used during code generation, it may be made fast as, or faster than, human-written code.

• Code volume: If needed, generated code can be aggressively optimized for size. The generated system
only has to contain the parts relevant for the given input model. An interpreter normally supports
all the features of the input language, even if the model of a given system does not use them all.

• Overcoming restrictions of the target language: If the target language is not Turing-complete we can
benefit from implementing a code generator in a more expressive language. Whatever elements could
not be computed in the target language we can pre-compute at compile-time. For instance, if the
target language is the DIMACS format of a SAT-solver, it is impossible to implement an interpreter
in it, but we can implement a code generator and use a suitable solver.

source: Stahl and Völter [11]

what code to generate in Fig. 9.12. Lines 33–47 implement a recursive
generator of expression code, very similar to the recursive generators shown
above for prpro.10 Finally, in lines 49–53, we show the code for loading
a template and instantiating it (render). For most of the time, this is just
regular Python code that perform calculations and helps to keep the gaps in
the template small, so that the template code remains readable.

Exercise 9.5. The generator in Fig. 9.11 always creates an execute_XXX method
for a mode, even if the mode has no actions to be executed. This leads to creating
empty methods returning False and making the check in lines 32–33 needless—it
always fails. Optimize the code generator to not emit the empty execute methods
and to avoid the check in l. 32-33 if a mode contains no actions to execute.

9.6 Guidelines for Implementing DSL Code Generators

Most of the guidelines presented in Sect. 8.5 apply to code generators, too.
Below we add a bit more advice specific to code generators.

Guideline 9.1A code generator or an interpreter? It is typically cheaper to understand,
design, and maintain an interpreter than a code generator. A key advantage
of interpreters is the single-stage execution. A generator implements the
dynamic semantics in two stages: the actual generation first, followed
by the execution of the generated code second. On the other hand, code
generators allow smaller and more efficient implementations of the model.
The benefits of code generation are summarized in the box on p. 341. If in
doubt, we recommend implementing an interpreter first.

10This generator may almost be turned into an interpreter executed at compile time and producing
a constant value, if not the random number generator that has to be executed at runtime.

342 Chapter 9. Code Generation

Guideline 9.2 Implement a reference example. Guideline 8.1 on p. 311 states that a refer-
ence example implementation is a good way to architect the platform API,
and to divide the dynamic and static parts of the semantics implementation.
For code generators, an additional benefit is that the reference implemen-
tation presents an expected output. It is much easier to create a single
example output than to build a generator. Yet, despite the simplicity, the
reference example advances you substantially towards an actual generator.

When creating a reference example for generation, maintain a mindset
as if the generator existed. Be mechanical, not smart, in all your coding
decisions. If any smartness is needed to decide what should be generated,
mark it as a needed addition to the runtime library (as we did for generating
prime numbers in the robot case study, Fig. 9.13).

Guideline 9.3 Even if a code generator is needed, building an interpreter helps to build a
better code generator faster. If the generator is complex and overwhelming,
consider implementing an interpreter first. If possible, use the same lan-
guage as the target of the generator. An interpreter is often simpler to build.
It will (i) give you a clean implementation of the execution rules to translate
to the generator, (ii) allow you to separate the runtime platform from the
dynamic part, (iii) provide parts that can be reused in the generator (types,
notions of state, even some evaluators), and (iv) serve as a test oracle for the
generated code. Do not build any interpreters though, if it is straightforward
to create a generator.

Guideline 9.4 Use the reference example and the interpreter to understand variability
and binding times. Once you have a reference example, perform a simple
binding-time analysis [8]. A binding-time analysis gives a systematic way to
derive a code generator. It has two steps (which can be used independently,
if you only have an interpreter, or only have a reference example).

The first step uses the reference example to understand the structure
of the template. Mark the parts of this code that depend on the input
model, to distinguish them from the parts that are static. Then consider
what information from the model should enter each gap. In the second
step, consult the interpreter to see how to fill the template gaps that require
complex logic. Finally, turn the reference example program into a template,
by replacing the marked parts by generator expressions referring to the input
program, and converting parts of the interpreter into compile-time macros.

We have applied this procedure to all examples in this chapter. This is
why you have been asked to solve exercises marking static and variable
parts of the prpro and robot reference examples. These exercises help you
to find elements that are not static. Let us now investigate how to exploit an
interpreter, using Fig. 9.14, to find how to generate complex code. The left
column shows an action executor from the interpreter of robot. The middle
column shows the corresponding template in the robot code generator. The
right column shows the code generated for the random walk example, for
action AcMove. In the interpreter code (left) we underline the expressions
that can be evaluated at generation time for a particular model. We leave the

9.6. Guidelines for Implementing DSL Code Generators 343

in
te

rp
re

te
r.p

y
(C

h.
 8

)
G

en
er

at
or

: c
on

tr
ol

le
r.p

y.
jin

ja
 (C

h.
 9

)
Ex

am
pl

e
Ge

ne
ra

te
d

Co
de

de
f
ex
ec
ut
e_
ac
ti
on
(s
el
f,
 a
ct
io
n)
:

if
 i
si
ns
ta
nc
e(
ac
ti
on
,
se
lf
.R
ob
ot
.A
cM
ov
e)
:

di
re
ct
io
n=
1.
0
if
 a
ct
io
n.
fo
rw
ar
d=
=T
ru
e
el
se
 -
1.
0

if
 a
ct
io
n.
sp
ee
d:

mo
de
l_
sp
ee
d=
se
lf
.e
va
lu
at
e_
ex
pr
(a
ct
io
n.
sp
ee
d)

ve
lo
ci
ty
=m
od
el
_s
pe
ed
 *
 0
.0
08
 *
 d
ir
ec
ti
on

el
se
:

ve
lo
ci
ty
=0
.1
 *
 d
ir
ec
ti
on

if
 a
ct
io
n.
du
ra
ti
on
:

se
lf
.e
ng
ag
e(
ve
lo
ci
ty
,

fl
oa
t(
se
lf
.e
va
lu
at
e_
ex
pr
(a
ct
io
n.
du

ra
ti
on
))
)

el
se
:

se
lf
.e
ng
ag
e(
ve
lo
ci
ty
)

el
if
 i
si
ns
ta
nc
e(
ac
ti
on
,
se
lf
.R
ob
ot
.A
cT
ur
n)
:

se
lf
.r
an
do
m_
ro
ta
ti
on
()

el
if
 i
si
ns
ta
nc
e(
ac
ti
on
,
se
lf
.R
ob
ot
.A
cD
oc
k)
:

se
lf
.r
et
ur
n_
to
_b
as
e(
)

{%
 m
ac
ro
 g

en
er
at
e_
ac
ti
on
(a
ct
io
n)
 %
}

{%
 i
f
ct
x.
is
Mo
ve
(a
ct
io
n)
 -

%}

di
re
ct
io
n=
{{
1.
0
if
 a
ct
io
n.
fo
rw
ar
d=
=T
ru
e
el
se
 -
1.
0}
}

{%
 i
f
ac
ti
on
.s
pe
ed
 %

}

mo
de
l_
sp
ee
d=
{{
ct
x.
ge
ne
ra
te
_e
xp
r(
ac
ti
on
.s
pe
ed
)}
}

ve
lo
ci
ty
=m
od
el
_s
pe
ed
 *
 0
.0
08
 *
 d
ir
ec
ti
on

{%
 e
ls
e
%}

ve
lo
ci
ty
=0
.1
 *
 d
ir
ec
ti
on

{%
 e

nd
if
 -
%}

{%
 i
f
ac
ti
on
.d
ur
at
io
n
%}

se
lf
.e
ng
ag
e(
ve
lo
ci
ty
,

fl
oa
t(
{{
ct
x.
ge
ne
ra
te
_e
xp
r(
ac
ti
on
.d
ur
at
io
n)
}}
))

{%
-

el
se
 %
}

se
lf
.e
ng
ag
e(
ve
lo
ci
ty
)

{%
-

en
di
f
%}

{%
-

el
if
 c
tx
.i
sT
ur
n(
ac
ti
on
)
-%
}

se
lf
.r
an
do
m_
ro
ta
ti
on
()

{%
-

el
if
 c
tx
.i
sD
oc
k(
ac
ti
on
)
-%
}

se
lf
.r
et
ur
n_
to
_b
as
e(
)

{%
-

en
di
f
-%
}

{%
-

en
dm
ac
ro
 -
%}

di
re
ct
io
n
=
-1
.0

ve
lo
ci
ty
 =
 0
.1
 *
 d
ir
ec
ti
on

se
lf
.e
ng
ag
e(
ve
lo
ci
ty
,f
lo
at
(2
))

Figure 9.14: A binding-time
analysis for the robot action
execution. Left: The interpreter
code executing actions. We
mark parts that can be entirely
evaluated once the model is
known. Center: Convert the
marked parts to generator
macros (here in Jinja). Right:
The result of rendering the
template macro for a move
action. The code generator
takes the same decisions
statically as the interpreter
does dynamically

344 Chapter 9. Code Generation

code that does not refer to the model unmarked. Each underlined fragment
is then converted into a generator macro in the middle column. Now, the
processing of an action happens in two stages: the generator evaluates
whatever it can and emits the rest (the right column).

Guideline 9.5 Choose templates where the output structure is independent of the input,
traversals when the input structure dominates the output. The control flow
during a traversal of an input AST is driven by the structure of the input
model. The control flow during template instantiation follows the order
of elements in the template. Logically then, whenever the structure of the
output is fixed, and just needs a few gaps to be populated, a template is a
suitable governing solution for a generator. However, for intricate structures
(especially expressions, but also other inductively defined structures), the
generated code has almost no static part, but is entirely driven by the input.
For these fragments of the input language, use recursion or visitors.

Guideline 9.6 Generate as little code as possible, integrate the rest. In most model-driven
architectures, a relatively small part of the system depends on the input
model directly. It is recommended to generate only the variable parts of
the system. The static parts should be coded in a conventional manner,
once and for all. Design as much as possible of the output manually as a
runtime library (the platform). Keep it in separate files and directories, and
integrate it with the generated code using mechanisms available in the target
language (calls, callbacks, class extensions, inheritance, generics, etc.). The
larger the static part of your system, the easier it is to test and maintain it.

Guideline 9.7 Generate code readable for programmers, with clear abstractions, correct
indentation, and comments. Engineers are skeptical of magic. Program-
mers can understand readable code and verify that it does what it should.
This raises trust and confidence in your generator. Understanding helps you
and your users to debug the code if anything goes wrong [2]. It is unrealistic
to assume that developers will never look at the generated code.

Earlier in the chapter, we ensured that generators produce correctly
indented commented code using suitable abstractions. In Fig. 9.3, we use
a helper stripParens to remove unnecessary outermost parentheses to
decrease clutter. We generate names for magic integer constants, and keep
comments. These comments, names of states, and names of outputs help to
trace the output to the input model elements. For more complex DSLs, you
should generate comments or annotations in the output code that link to the
input model elements unambiguously, say using URIs, for justification and
debugging purposes. Such links are called traceability links (see Chapter 7).

It is important though not to compromise readability of the code of the
generator itself. A good M2T language, like Jinja, allows white space to
be adjusted so that both the input and the output code remain readable.

Exercise 9.6. Our generators for prpro (Fig. 9.6, Fig. 9.3) produced too many
parentheses for expressions. Let us fix this. Map the operators in prpro to
integers representing precedence. For instance, addition could be mapped to 1,

9.6. Guidelines for Implementing DSL Code Generators 345

multiplication to 2. Pass the precedence of the surrounding expression to the
generator, and only add the parentheses if the precedence of the context is higher
than that of the expression created. This way you will only add needed parentheses.
This is best implemented by modifying the generator of Fig. 9.6.

Guideline 9.8Remember security, especially code injection attacks. Code generators are
susceptible to code injection attacks, since parts of the output depend on
the input model. An action name in fsm could be crafted by a malicious
attacker to execute arbitrary code on the machine running the generated
code. Always consider whether the input models are coming from a trusted
source, and whether the generated code is running on a vulnerable machine.
As a default, assume that any machine is vulnerable. Use escaping support
in the template language or in another established library to sanitize the
strings incoming from the model. It is best to rely on existing trustworthy
sanitizers, as getting a sanitizer to be watertight is known to be very difficult.

Another line of defence is to forbid dangerous inputs during input valida-
tion (parsing and static constraints). Watch for character strings and special
symbols that can appear in the input model, especially in literals and names.
Confront them with the symbols and keywords of the target language. Do
they really need to be allowed in the input? Pay special attention to symbols
changing context in the input strings (comments, quotes, other punctuation).

Exercise 9.7. Construct an fsm model in the xmi representation such that code
generated from it compiles, but throws a runtime exception. Discuss eliminating
this attack at the time of parsing, constraint checking, and code generation.

Guideline 9.9Automate the build process fully, including code generation. When inte-
grating a code generator into the build process of the target application,
automate the entire process, including invoking the generator and compiling
the output. Avoiding manual steps in the workflow decreases chances
that people will stop using the generator over time, resorting to manual
modifications of the generated code. Requiring manual steps makes it
harder for people to experiment with different models, defeating the main
purpose of using a DSL and model-driven engineering [11].

Guideline 9.10Do not use protected code blocks. Integrate the generated code with static
code using other methods. Some code generators (including the built-in
generator of Ecore) support so-called protected output blocks. These are
marked fragments in the generated code that can be modified or completed
after the generation. The generator guarantees that its subsequent runs will
not overwrite these changes. This seemingly attractive facility has many
pitfalls [11]. First, it blurs the boundary between the generated and static
code for future maintainers of your system. Second, it requires that the
generated code is version controlled. Third, it leads to code loss eventually,
when model elements change in the input so that the part of the model to
which your protected code is linked disappears.

We cannot recommend protected code blocks. Instead, integrate gener-
ated code with your customizations using the linker of the target language.

346 Chapter 9. Code Generation

Use calls from the generated code to your code or vice versa, and other
available mechanisms of the target (extension methods, C++-style templates
or generics, mixins, partial type declarations, sub-typing, interfaces, design
patterns like facade, adapter, decorator, factory, control inversion, etc.).

Guideline 9.11 Avoid complex input manipulation in the generator. If you need to perform
complex computations in the generator then your input is likely not well
prepared. Rather adapt the input before the code generation, by running a
suitable M2M transformation (Chapter 7) that translates the input into an
intermediate representation that is semantically closer to the output—see
Guideline 8.2 on p. 311. If the alignment of the output and input is good,
but complex logic is required because of non-trivial semantics, place this
in the code generation support library as we did in Fig. 9.13 for robot,
keeping the template itself as clean and readable as possible.

9.7 Quality Assurance and Testing for Code Generators

Testing a domain implementation is easier than testing an interpreter, which
is easier than testing a code generator (Chapter 8). A static domain imple-
mentation is often just a library, which is amenable to standard testing meth-
ods. The added difficulty of testing an interpreter is caused by its correctness
depending on the input model. The added difficulty of testing generators
stems from the two-stage execution process: bugs manifest themselves in
the generated code, but the causes of bugs (faults) are in the generator. How-
ever, running a debugger on the generator is most often unhelpful. It can
explain how the code is created, but not why the created code is wrong. The
debugging process for code generators starts in the generated code, where
the reasons for failure need to be identified, and then continues into the gen-
erator, where the root cause has to be understood and fixed. Since the gen-
erator code lacks even basic IDE feedback for the target language (syntax-
checking, type-checking, etc.), errors can go unnoticed for a long time.

It is challenging to construct test oracles for code generators. A code
generator is correct if the created program is correct—a property hard to
formalize and automate. The most basic strategy, often used in compiler
implementation, is then to avoid writing clever oracles altogether, but to
store the baseline result and to compare against it textually (comparison with
baseline). In this strategy, the generated code needs to be manually reviewed
and stored for comparison as a baseline. Then these baseline samples are
compared to the output of the code generator for the corresponding inputs,
failing if the output differs from the baseline. This strategy works only for
very simple languages, or for mature and stable code generators, where
changes are minor and rare. It is not really a testing strategy, but a change-
monitoring strategy. Tests fail when the output changes, even if not in a
buggy way. Then the human has to verify outputs that change (the actual
manual test) and update them again in the baseline collection.

We need more systematic methods than comparison with baseline to test
generators. Let us stratify the testing process for generators into three stages,

9.7. Quality Assurance and Testing for Code Generators 347

of increasing precision and difficulty (mostly inspired by Ratiu, Völter, and
Pavletic [10]): (i) robustness of the code generator, (ii) structural correctness
of the output, and (iii) structural correctness of the generated code.

Robustness of code generators. The lowest level of ambition when testing
code generators is to ensure that the generator does not crash.

Definition 9.1 (Robustness). A code generator is robust if for each input
model free of validation (static) errors the generator does not throw any
exceptions (or otherwise crash) during execution.

To test robustness we can feed the generator with diverse input models and
monitor safe termination. Random model generation or synthesis helps here,
but one needs to take care to create models that are correct inputs (Chapter 5).
Ratiu, Völter, and Pavletic [10] report from a case study that it took only a
few hundred randomly generated models before they were able to identify
about a dozen robustness issues. While robustness issues may not disclose
the most intricate problems in a generator, they can be detected quickly and
automatically, so defending against them is a natural place to start.

Structural correctness of the generated code. Our second line of defense
is checking whether the generator produces a reasonable output—not a
program that makes sense from the domain perspective, but a program that
looks acceptable for the target language infrastructure.

Definition 9.2 (Structural Correctness). An automatic code generator
maintains structural correctness of the output language if the generated
code conforms to the static semantics requirements of the target language:
it parses, satisfies static constraints, and type-checks.

To test structural correctness when the target is a compiled GPL, check
whether the generated output compiles for many input models. It helps if
your target language is equipped with an expressive type system, and if the
platform and the generated code use this type system to capture semantic
correctness of the code as much as possible. Then the compiler will detect
intricate problems for you, even without running the generated code! In
this sense, C++ is a better target language than C (if you use the modern
type-system features of C++), and Rust is a better target language than C++.
Similarly, Scala can be a more interesting target than Java, and TypeScript
than JavaScript. Dynamically typed languages are less useful when it comes
to checking structural correctness (although for Python there exist several
static checkers independent of the compiler). The situation is similar if
another DSL is the target: we run its tool chain to establish whether the
model parses, type-checks, and satisfies any static semantics constraints.

Testing structural correctness of the generated code can catch malformed
output, and occasionally a semantic problem thanks to types. However,
static semantics constraints are often weak. Being problem-independent,
they are unlikely to catch any mistakes in your understanding of the domain
or the requirements. For this, we need to directly test the dynamic semantics.

348 Chapter 9. Code Generation

Semantic correctness of the generated code. Ultimately, there is no way
to avoid testing the semantic correctness of a code generator. Semantics is
the most idiosyncratic aspect of our DSL, but also the one that captures the
domain properties and user requirements.

Definition 9.3 (Semantic Corrrectness). A code generator is semantically
correct if it always produces programs (models) that correctly capture the
meaning of the input domain-specific programs (models).

Consider four increasingly costly strategies for testing semantic correctness:

• Create dedicated tests for each property: For each requirement create
an input model (a test case) exhibiting the requirement and write a test
for the output program to check whether it exhibits the desired property.
Executing this test requires running the code generator.

• Generate assertions in the output programs: If the target language is
expressive enough to support assertions, consider capturing your assump-
tions and requirements in the assertions in the generated code. These
need to be added to the generator. This way you can test the output
program by running it and checking whether the assertions pass.

• Support assertions in the input models: Input-specific requirements for
the output can be formalized in the DSL models if the DSL supports
assertions (alternatively an accompanying test DSL can be created). A
code generator can then transfer these assertions to the output, increasing
the power of the previous technique. But remember that the assertions
in the input open a surface for code injection attacks. Deactivate them
in the generation of production code.

• Property-based testing using abstract-syntax representations: This is the
most expensive method and only pays off for high-assurance domains and
DSLs. Use an M2M, not an M2T, transformation. An M2M transforma-
tion produces instances, which can be inspected using constraints. Write
properties relating the input and the output AST, and use property-based
testing with random model generation to test them. For instance, you can
verify traceability: that for each input model element the corresponding
output model element exists, and that each variable output element has
a corresponding input element justifying its existence.

Ratiu, Völter, and Pavletic [10] find semantic tests expensive and advise to
adjust their cost to the needs of the domain. In the end, writing assertions
or writing properties relating input and output amounts to defining a partial
formal semantics for the code generator, and this can get arbitrarily complex.

Test coverage. Test suite quality. If you used a reference example to drive
the implementation of a generator, there is a risk that the design is overfitted
to this single example. Mitigate this risk by testing with other models,
and using coverage criteria to assess the diversity of your test suite. We
recommend covering all the elements in the input meta-model and all the
code generation rules (the code of the generator).

9.8. Code Generation in the Language-Conformance Hierarchy 349

M2

M1

‹‹conformsTo››

‹‹writes››

input DSL I definition target language T

‹‹conformsTo››
‹‹conformsTo››

the generator
transformation program

execution engine
for L

definition of a GPL or a
transformation language L

‹‹refersTo›› ‹‹refersTo››

‹‹reads and runs››
‹‹reads››

source model in our DSL I output model/program in T

Figure 9.15: Architecture of a code generator. Three languages are involved: input language I, transformation language L, and target
language T. Each of these can, but do not have to, be different from the others. The figure is adapted from Fig. 7.10 for code generation

For many of the above testing patterns, we need to generate random
inputs. We can use input models in either abstract syntax or concrete
syntax. Abstract-syntax models are relatively easily created using generator
frameworks of the property-based testing libraries (Chapter 5). Concrete
syntax models, on the other hand, are easier to create and inspect manually.

Another strategy is to start with a collection of manually created seed
models and mutate them automatically by introducing small changes (shift-
ing parts of the model, removing parts, changing operators, renaming
objects, etc.). This requires implementing a mutator that executes small
M2M transformations before we invoke the generator. A mutator for testing
generators must preserve static correctness of the model it is mutating, as
we typically do not want to generate code from invalid input models.

9.8 Code Generation in the Language-Conformance Hierarchy

Figure 9.15 gives a high-level view of a code generation transformation.
We have an input in some source language I, typically an abstract syntax of
our DSL, but could also be a pre-transformed input. The input conforms
to the language definition for I. Furthermore, a transformation language L
is used to implement a code generator. The code generator program also
conforms to L’s definition—otherwise we would not be able to execute it.
When the generator is complex, several languages can be involved. For
robot, we have used Python and Jinja (itself an external DSL). Finally,
the generator produces an output in some target language T. This output
should conform to some output meta-model for T, but most practically used
generators do not guarantee this. Like in all our examples, most often the
generator program does not refer to the output language definition, it simply
produces text, and we need to use testing to establish the conformance of
the output. So in practice, the two arrows in the top right corner of the
figure are not guaranteed to be enforced by construction.

The choice of the two languages, the generator language (L) and the target
(T), is obviously an important decision in planning the entire DSL imple-

350 Chapter 9. Code Generation

Natural Targets for Code Generation
The following table lists target languages for code generation to inspire your own designs. This
taxonomy is obviously incomplete, but we hope you will extend it with your experiences.

target group | some examples applications

low-level programming languages |
C, C++, Rust

Used for generating controllers for embedded systems, hardware drivers, op-
erating system components. Compilers for C exist for almost any hardware
platform conceivable. Low-level programming languages are also an impor-
tant target for generators where performance and parallelization is of high
importance (statistical software, machine learning).

business application platforms |
JVM (Java, Scala, Kotlin),
.NET (C#, F#)

These languages are natural targets for generating applications based on
large object-oriented enterprise frameworks. Such generators can realize
logic of tailored applications, business processes, GUIs, etc.

web programming | JavaScript,
TypeScript, HTML, CSS,
PhP

Generation of web front-ends or their customizations, generating cus-
tomizations of web-sites for language, browser, connection speed, viewing
platform (including mobile phone apps). Templates are very popular in
web space. Since JavaScript is also executable on servers, it supports a
growing number of business software back-ends, similar to the applications
for generators targeting Java and .NET virtual machines.

scripting languages | Python,
Shell, Ruby, Groovy, Lua

Scripting languages are a natural target for DSLs that describe packaging
and deployment of software and automation tasks in sysadmin.

structured data | YAML,
JSON, XML

When the goal is to convert the information from a DSL model to a format
that can be easily read on another platform, a simple generator can pretty-
print to a structured widely supported format like YAML. A DSL can also be
used to provide a customization interface for a complex software system and
the generator creates a configuration file, often in a structured file format.

logic and constraint programming
and optimization | SAT
(DIMACS,KodKod),
Alloy, Z3, Prolog, linear
programming toolkits

When your DSL defines a constraint problem, and its semantics involves
finding a (possibly optimal) solution, it is natural to reduce the semantics to
an existing solver or a Monte Carlo inference language. Examples: real-time
scheduling, controller synthesis, UI layout, staff roster, timetabling, test case
synthesis, etc.

software analysis tools | Spin,
Uppaal, Simulink Design
Verifier, KeY, Coq, Agda

There are many analysis tools for models of diverse complexity. If the
purpose of the DSL is to create an analysis case, one often translates the
DSL models into input models for an analysis tool. In this case, the target
language is often a DSL, too.

mentation. Unlike for interpreters, T and L can be different for generators,
and often are. The generator language L should be selected in agreement
with the rest of the language tool chain (parsing, meta-modeling, static se-
mantics). L should support the infrastructure that is needed to generate code
such as templates, but also have sufficient expressiveness to do complex
calculations and to create data structures. On the other hand, the target
language T should be selected by the requirements of the target platform, so
the execution environment for the created code. If this environment requires
performance and memory efficiency, C or Rust might be good choices. If

9.8. Code Generation in the Language-Conformance Hierarchy 351

this environment is a business application framework, Java might be a good
choice. We discuss some of these decisions in the info box above.

Crucially, the target code does not have to maintain any dependencies on
the input model and the associated DSL infrastructure. Indeed, being able to
deploy on specialized platforms, without any dependencies on our develop-
ment environment is one of the key reasons to use a code generator. Never-
theless, if there are no user requirements to separate the target language from
the generator language, one should probably not do so. Using the same lan-
guage allows reuse of expertise in the project and makes the code generator
easier to maintain. The same programmers that develop the system linked
against the generated code can then potentially maintain the generator. For
prpro we have used a different source, target, and implementation language,
while for robot we used Python both in the generator and in the target.

Further Reading

Kahani et al. [9] and Czarnecki and Helsen [4] survey M2T transformation
languages and classify them in more detail than we did here. A large number
of integration patterns for the static and generated code, along with an
evaluation of their requirements, are described by Greifenberg et al. [5, 6].

Pretty-printers are programs that serialize abstract syntax to concrete
syntax. Pretty-printers are M2T transformations, and the simplest kinds
of code generators; here the source and the target language are the same,
just in different representations. The popular compositional design of
pretty-printers is due to Hughes and Wadler [7, 13]. The paiges library
chapter follows this design. The design has proven useful not just for pretty-
printing, but for formatting structured ASCII text in general, including in
code generation. Implementations exist for many languages.

Binding-time analysis discussed in Guideline 9.4 was originally devel-
oped for automatic derivation of generators from interpreters [8]. While
automatic derivation of generators is a difficult problem, still far from
language-engineering practice, binding-time analysis provides a systematic
basis for manual design of generators.

One key advantage of M2M transformations is that they can guarantee
type correctness of the output statically. This means that a transformation
will always produce correct output models. This is much harder to ensure
for M2T transformations, including generating code. The existing attempts
require a grammar for the target language and can guarantee that the output
is parseable [12, 3]. This introduces cost to M2T, getting it closer to M2M,
but still allows some illusion of a template to be maintained. Probably the
most attractive language in this space is TXL [3].

The report of Ratiu, Völter, and Pavletic [10] is a detailed source of
inspiration on aspects of testing DSL implementations, including non-
trivial ideas and experiences regarding code- and test-generation, richer
than what Sect. 9.7 reports.

352 Chapter 9. Code Generation

Additional Exercises

Exercise 9.8. Create a code generator translating the fsm language to C by modi-
fying the Java code generator found in fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/
ToJavaCode.xtend. Use any template language you find interesting to study.

Exercise 9.9. Implement a graph visualizer for fsm. Graphviz (http://graphviz.org)
is a graph visualization tool which comes with its own DSL for describing graphs.
Use the DSL to draw graphs of finite-state machines. The generator should
produce a Graphviz file, and then use Graphviz to lay the graph out in an image.

Exercise 9.10. Implement a mutator for fsm instances: an M2M transformation that
randomly performs a small change to a state name, modifies a connection of a tran-
sition, drops or adds a transition, or changes which state is initial. Use this mutator
to test robustness of our fsm generator. Try to assess the achieved test coverage.

Exercise 9.11. Implement a code generator for petrinet (Fig. 7.3, p. 239).

Exercise 9.12. Let our input language be the CSV format (comma-separated-
values), with the first row containing distinct column names. Find a CSV handling
library for a programming language of your choice, and use it to load a file. Then
implement an M2T code generator into YAML, JSON, or XML (pick one), trans-
lating each row to a single object, with column names being the field names (tag or
attribute names for XML). Do not use any library handling YAML/JSON/XML.

Exercise 9.13. Reimplement the above generator using an M2M transformation:
design a simple meta-model or ADTs to represent flat objects, convert the data
to this AST first (M2M), and then serialize it using a pretty-printer of your own
design (M2T). Alternatively, use an existing library handling YAML/JSON/XML,
and build an instance of its representation using an M2M transformation, then
serialize using the library’s pretty-printer. Reflect on the advantages and disad-
vantages of the two strategies from this and the previous exercise.

Exercise 9.14. Implement a generator of random CSV files (or find one), and use
it to test robustness of a generator from one of the two exercises above.

Exercise 9.15. Reimplement the code generator for prpro expressions (Fig. 9.3)
to use java.lang.StringBuilder instead of the naive concatenation of strings.

Exercise 9.16. Use the pretty-printing library (paiges) to improve the generator
for prpro from Fig. 9.7. Ensure that the code generated is at most 80 columns
wide and is properly indented according to Python rules, even if some lines wrap.
The wrapping of the generated expression code is controlled in Line 26 of this
figure, where it is presently set to -1, in order to make all line lengths unlimited.

Exercise 9.17. Reimplement the code generator for prpro using the Pyecore library
and the Jinja template language, like we did for robot in this chapter.

Exercise 9.18. Our generators for prpro do not sanitize variable names. Speculate
what could happen if variable names stored in the XMI input file contained single
quotes, double quotes, and then arbitrary strings? Adapt the code generator of Fig-
ures 9.5 and 9.7 to escape single quotes, either using your own custom sanitization
function or (better) using an existing sanitization library available for JVM.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/ToJavaCode.xtend
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend/src/main/xtend/dsldesign/fsm/xtend/ToJavaCode.xtend
http://graphviz.org

9.8. Code Generation in the Language-Conformance Hierarchy 353

Exercise 9.19. Write a transformation that translates instances of the meta-model
classmodel presented in Fig. 9.16 to Java types. All names in the input models
are unique. All attributes are integer valued for simplicity. This way we do not
have to represent types in the meta-model. You can find a Scala ADT version of
the same meta-model at classmodel.scala/src/main/scala/dsldesign/classmodel/scala/
syntax.scala if you prefer to work on this exercise in a functional style. Notice
that this generator is a smaller sibling of the official Ecore generator that we have
been using all the time to obtain the implementations of our meta-models in Java.

Root

Class

NamedElement

name : EString

IntegerAttribute

[0..*] classes
[0..*] attribute

[0..1] superClass source: classmodel/model/classmodel.ecore

Figure 9.16: A simple class
diagrams meta-model,
classmodel, with class
generalization and integer
attributes, but no associations

Exercise 9.20. Implement a generator of random instances for the meta-model
from the previous exercise and use it to test structural correctness of the Java files
created by your code generator.

Exercise 9.21. Implement a generator for fsm that produces a readable summary
of a machine to be displayed in a web browser (generate the suitable HTML file).
A simple instance of fsm representing a coffee machine is shown in Fig. 9.17
(see also Fig. 7.2 and the meta-model in Fig. 3.1). An example rendering for this
instance is shown in Fig. 9.18. (See also Exercise 7.10.)

1 machine CoffeeMachine [

3 initial ^initial

5 state ^initial [
6 on input "coin" output "which drink do you want?" and go to selection
7 on input "break" output "machine is broken" and go to broken
8]

10 state selection [
11 on input "tea" output "serving tea" and go to brewTea
12 on input "coffee" output "serving coffee" and go to brewCoffee
13 on input "timeout" output "coin returned; insert coin" and go to ^initial
14 on input "break" output "machine is broken!" and go to broken
15]

17 state brewCoffee [
18 on input "done" output "coffee served. Enjoy!" and go to ^initial
19 on input "break" output "machine is broken!" and go to broken
20]

22 state brewTea [
23 on input "done" output "tea served. Enjoy!" and go to ^initial
24 on input "break" output "machine is broken!" and go to broken
25]

27 state broken
28]

Figure 9.17: An example
instance of an fsm in textual
concrete syntax
for the coffee machine model
shown previously in graphical
syntax in Fig. 7.2 on p. 238

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.classmodel.scala/src/main/scala/dsldesign/classmodel/scala/syntax.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.classmodel.scala/src/main/scala/dsldesign/classmodel/scala/syntax.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.classmodel/model/classmodel.ecore

354 Chapter 9. Code Generation

Figure 9.18: An HTML report
created from the fsm instance

representing the coffee
machine model in

Figures 7.2 and 9.17

Description of a finite-state machine coffeeMachine
The finite-state machine ’coffeeMachine’ has the following states:

1. initial
2. selection
3. brewCoffee
4. brewTea
5. broken

The machine ’coffeeMachine’ has the following transitions:

1. It goes from initial to broken on input coin
2. It goes from selection to brewTea on input tea
3. It goes from selection to brewCoffee on input coffee
4. It goes from selection to initial on input timeout
5. It goes from selection to broken on input break
6. It goes from brewCoffee to initial on input done
7. It goes from brewCoffee to broken on input break
8. It goes from brewTea to initial on input done
9. It goes from brewTea to broken on input break

Exercise 9.22. Implement a code generator for expr models (Chapter 8) to a lan-
guage that does not have infix operators, for instance Racket, Lisp, or PostScript.

References
[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press, 1985 (cit. p. 321).
[2] J. Craig Cleaveland. “Building application generators”. In: IEEE Software

5.4 (1988), pp. 25–33 (cit. p. 344).
[3] James R. Cordy. “The TXL source transformation language”. In: Sci. Com-

put. Program. 61.3 (2006), pp. 190–210 (cit. p. 351).
[4] K. Czarnecki and S. Helsen. “Feature-based survey of model transformation

approaches”. In: IBM Syst. J. 45.3 (2006), pp. 621–645 (cit. pp. 331, 351).
[5] Timo Greifenberg et al. “A comparison of mechanisms for integrating hand-

written and generated code for object-oriented programming languages”.
In: International Conference on Model-Driven Engineering and Software
Development (MODELSWARD). Ed. by Slimane Hammoudi, Luís Ferreira
Pires, Philippe Desfray, and Joaquim Filipe. SciTePress, 2015 (cit. p. 351).

[6] Timo Greifenberg et al. “Integration of handwritten and generated object-
oriented code”. In: International Conference on Model-Driven Engineering
and Software Development (MODELSWARD). Springer. 2015 (cit. p. 351).

[7] John Hughes. “The design of a pretty-printing library”. In: 1st International
Spring School on Advanced Functional Programming Techniques. Ed. by
Johan Jeuring and Erik Meijer. Vol. 925. LNCS. Springer, 1995 (cit. p. 351).

[8] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall, Inc., 1993 (cit. pp. 342,
351).

[9] Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen Dingel,
and Daniel Varró. “Survey and classification of model transformation tools”.
In: Software & Systems Modeling 18.4 (2019), pp. 2361–2397 (cit. p. 351).

[10] Daniel Ratiu, Markus Völter, and Domenik Pavletic. “Automated testing of
DSL implementations—experiences from building mbeddr”. In: Software
Quality Journal 26.4 (2018), pp. 1483–1518 (cit. pp. 347, 348, 351).

References 355

[11] Thomas Stahl and Markus Völter. Model-Driven Software Development.
Wiley, 2005 (cit. pp. 341, 345).

[12] Guido Wachsmuth. “A formal way from text to code templates”. In: Funda-
mental Approaches to Software Engineering (FASE). 2009 (cit. p. 351).

[13] Philip Wadler. “A prettier printer”. In: The Fun of Programming. Ed. by
Jeremy Gibbons and Oege de Moor. Bloomsbury, 2003 (cit. p. 351).

10 Internal Domain-Specific Languages

Abstraction is the most important factor in
writing good software. (...) A domain-specific

language is the “ultimate abstraction.”

Paul Hudak [6]

In the previous chapters, we have focused on the construction of external
domain-specific languages. Their development follows a compiler-like
pipeline architecture, with clearly separated design artifacts: concrete
and abstract syntax, types and constraints, an interpreter or a generator.
Building external DSLs might feel like reimplementing large parts of GPL
functionality, especially if your DSL includes logic or expressions, or you
need an editor with support for static checking, code completion, etc. This
should not be necessary, given that excellent implementations of GPLs
providing this functionality are readily available. In this chapter, we investi-
gate the design and implementation of internal domain-specific languages,
which, implemented as libraries in another language, are able to reuse the
infrastructure of GPLs and embed well into an existing development setup.

Think of an internal DSL as an idiomatic slang, a sub-language. A large
language, like English, can be used to talk about anything, but an idiomatic
slang focuses on efficiency for a narrow domain. For example, in a Canadian
coffee shop the idiom “double double“ means an order for a coffee with
double cream and double sugar—quite far from the general meaning of
the word “double!” Coffee shop slangs are internal DSLs embedded in the
English language, but used purely to order coffee products. Similarly, in
computing, internal DSLs are implemented as a specialization of a larger
language to solve a specific problem efficiently, assigning new idiomatic
meaning to the existing language constructs.

The key idea of internal DSLs is to exploit the syntax of a suitable GPL to
create an idiomatic impression. The following polynomial equation, where
α is a non-zero constant, does not seem to carry a lot of interesting meaning:

α(x2
1 + x2

2)− (α −1)x2
3 = x2

3 (10.1)

We transform the equation; reduce the terms with the same variable, divide
by α , and rename x1, x2, x3 to a, b, c respectively. This transformation,
even if semantically preserving, “magically" reveals a familiar idiomatic
meaning, the Pythagorean theorem:

a2 +b2 = c2

a

c
b

Using a specific format with familiar identifiers has exposed the information
much more clearly—a property of right triangles. The new meaning is an
interpretation that has been added by us, the human readers, who have

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_10

357

https://doi.org/10.1007/978-3-031-23669-3_10
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_10&domain=pdf

358 Chapter 10. Internal Domain-Specific Languages

1 val m = (state machine "coffeeMachine"
2 initial "initial"
3 input "coin" output "what drink do you want?" target "selection"
4 input "idle" target "initial"
5 input "break" output "machine is broken" target "deadlock"
6 state "selection"
7 input "tea" output "serving tea" target "making tea"
8 input "coffee" output "serving coffee" target "making coffee"
9 input "timeout" output "coin returned; insert coin" target "initial"

10 input "break" output "machine is broken!" target "deadlock"
11 state "making coffee"
12 input "done" output "coffee served. Enjoy!" target "initial"
13 input "break" output "machine is broken!" target "deadlock"
14 state "making tea"
15 input "done" output "tea served. Enjoy!" target "initial"
16 input "break" output "machine is broken!" target "deadlock"
17 state "deadlock"
18 end) source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/coffeeMachine.scala

Figure 10.1: A coffee machine model in the internal DSL variant of the finite-state-machine language, embedded in Scala

context to interpret the syntax when they recognize familiar idioms. This
is the main idea of internal DSLs: use a general-purpose programming
language that can express arbitrary computations, and provide a vocabulary
(an API) that allows the users of the language to interpret the program text
abstractly—as a model, often resembling some other familiar notation.

Definition 10.2. An external DSL is defined and designed separately from
any GPL. Its standalone implementation provides its own concrete syntax
(parser), static semantics, and a back-end (execution mechanism).

Definition 10.3. An internal DSL is implemented as a library within a host
GPL. Its models are programs in the GPL. An internal DSL reuses the con-
crete syntax along with the basic static and execution semantics of the host.

We have already seen examples of internal DSLs in earlier chapters. The
most prominent one was the language of parser combinators used to build
concrete syntax in Chapter 4 (see Fig. 4.7 and the info box on page p. 113).
In these examples, parser combinators are themselves internal DSLs hosted
in Scala and Haskell. The models built in this language are GPL programs,
but it is more natural to read them as if they were formal grammars.

In this chapter, we shall learn the key patterns of implementing internal
DSLs: the deep and shallow embedding. Then we discuss a range of advan-
tages, use cases, and design guidelines for internal DSLs. We visit a zoo of
examples of practical internal DSLs, we consider testing such DSLs, and po-
sition them in the framework of the meta-modeling hierarchy of Chapter 3.

10.1 Internal DSLs with the Deep Embedding Pattern

Figure 10.1 shows an example state machine model of a coffee machine
written in an internal DSL hosted in Scala. It is useful to compare this
model with Fig. 4.5 on p. 102, which shows another model in an external

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/coffeeMachine.scala

10.1. Internal DSLs with the Deep Embedding Pattern 359

model → ’state’ ’machine’ String state∗ ’end’

state → (’state’ | ’initial’) String transition∗

transition → ’input’ String (’output’ String)? ’target’ String

Figure 10.2: A simple
context-free grammar for fsm,
in preparation for designing an
internal DSL

model → ’state’ machine

machine → ’machine’ String initialOrStateOrEnd

initialOrStateOrEnd → ’state’ String inputOrNextState

| ’initial’ String inputOrNextState

| ’end’

inputOrNextState → ’input’ String outputOrTarget

| ’state’ String inputOrNextState

| ’initial’ String inputOrNextState

| ’end’

outputOrTarget → ’output’ String target

target → ’target’ String inputOrNextState

Figure 10.3: The grammar
from Fig. 10.2 transformed to a
simple prefix form that is easy
to implement as an
object-oriented API

DSL variant of fsm. First, perhaps the most striking difference between the
two designs of syntax is that in Fig. 10.1, a model is a fragment of a Scala
program, an expression calculating an AST, subsequently bound to im-
mutable variable m. This discloses that the model is really just an idiomatic
Scala program. Second, we no longer use square brackets to denote blocks.
This is because Scala reserves them to mark generic type parameters and we
cannot nest code inside other than types. We often adapt to the restrictions
of the host language when designing syntax for internal DSLs.

In the deep embedding pattern, we clearly separate the front-end from
the back-end of the language, similarly to external DSLs. We use the host
language to implement the front-end instead of an external parsing tool. In
this particular example, the back-end constructs an Ecore representation,
which can later be executed using interpreters and code generators as shown
in Chapters 8 and 9. The construction of the abstract-syntax is the essence of
the deep embedding pattern, but not the use of Ecore. Other representations
can be used, most typically the plain types of the host language.

The front-end of a deep internal DSL parses the input and constructs the
abstract syntax simultaneously. For pedagogical reasons, we explain the
two activities separately, starting with parsing. We begin by sketching a
simple context-free grammar for the fsm language, with one machine per
model for simplicity.1 See Fig. 10.2.

We will use a few steps to implement an API (in Scala) which uses
types to constrain legal sequences of calls, effectively allowing the writing

1Building internal DSLs from grammars is not recommended. It is often impossible to realize a
grammar precisely in the host GPL. We do it here to make the presentation more precise.

360 Chapter 10. Internal Domain-Specific Languages

of sentences derived from the grammar in Fig. 10.2. We first turn the
grammar into a form where each production expands to a keyword terminal,
possibly followed by a parameter value and a non-terminal responsible for
the continuation, the “what-comes-after.” The entire transformed grammar
is presented in Fig. 10.3. Convince yourself that it generates the same
language as the one we started with. The rewriting has “chopped off” every
production after one or two terminals and introduced a new non-terminal
for the tail. This form is quite easy to map to an object-oriented API. A non-
terminal becomes a class, and each keyword is implemented as a method,
with the subsequent value becoming the argument for a call.

Figure 10.4 shows an encoding of this grammar as a Scala API. We open
with the named value (object) state; just referring to state creates an
illusion of using a keyword in the internal DSL, even though this is just
a value exposed by our API. The methods in the state object implement
the keywords in the next production, here the machine non-terminal. The
method takes the name of the machine as an argument, so a string value can
follow in our “grammar,” and returns the object representing initialOrState-
OrEnd. The return type provides three methods as there are three possible
expansions for this production: starting with ’state’, ’initial’, and
’end’. The first introduces a state, the second introduces an initial state,
and the third one just closes the machine. The implementation returns a
unit value, as we are purely concerned with parsing for now. This scheme
to obtain the implementation from a grammar is not general, yet it works
for any grammar of this shape, and for any object-oriented host language.

Exercise 10.1. Write a small model of a state machine using the API of Fig. 10.4.
For instance a machine with a single state and a loop transition. Understand the
types of all sub-expressions in the program.

Figure 10.5 recreates fragments of the coffee machine model, annotating
types for parts of the model. The example t0 simply refers to the state
object predefined in Fig. 10.4; it returns the singleton object itself. In the
t1 expression we call its only method, machine. Here we exploit a bit
of syntactic flexibility in Scala: state.machine ("coffeeMachine") can
be written without the navigation operator (dot) and without parentheses
around the argument; any unary method can be invoked as if it was an
infix operator. Compare also the fragment t4 with t4withDots for a larger
example of the same. Appreciate how layout changes (unconventional line
breaks and indentation) create an illusion of a DSL out of a Scala expression.

A dot-free parentheses-free syntax, like above, should be possible to at-
tain in any GPL that provides the ability to define your own infix operations.
In a host language where dots and parentheses are unavoidable, we would
use the following design, known as a fluent interface:

1 state .machine ("coffeeMachine")
2 .state ("initial")
3 .end ()

10.1. Internal DSLs with the Deep Embedding Pattern 361

1 object state:
2 def machine (name: String) = INITIAL_OR_STATE_OR_END // Allow opening keywords: "state machine"

4 object INITIAL_OR_STATE_OR_END: // In a machine context, open a state block
5 // using "state"/"initial", or close with "end"
6 def state (src: String) = INPUT_OR_NEXT_STATE // Open a non-initial state. An "input", a new
7 // state, or "end" may follow.
8 def initial (src: String) = INPUT_OR_NEXT_STATE // Open a new initial state.
9 val end = () // Close the current machine object.

11 object INPUT_OR_NEXT_STATE: // A new transition or close a state
12 def input (input: String) = OUTPUT_OR_TARGET // Parse a new transition definition
13 def state (name: String) = INITIAL_OR_STATE_OR_END.state (name) // End a state definition,
14 // start a new state
15 def initial (name: String) = INITIAL_OR_STATE_OR_END.initial (name) // End a state definition,
16 // start an initial state
17 val end = () // Close a machine. Return to top level

19 class TARGET: // Detect the target state phrase
20 def target (name: String) = INPUT_OR_NEXT_STATE // Detect "and go" and then await for "to"

22 object OUTPUT_OR_TARGET extends TARGET: // Detect an (optional) output or a target (inherited)
23 def output (output: String) = TARGET () // Record a transition output and move to new state

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/justParsing.scala

Figure 10.4: The implementation of parsing for the finite-state-machine internal DSL in Scala. See full version in Fig. 10.7

The complete implementation needs to construct an abstract syntax of
the state-machine model on the fly, while the internal DSL expression is
evaluated. We will do this by extending Fig. 10.4 with suitable computations.
While “parsing” we receive the information from the user in small pieces,
so we need a representation that can be updated incrementally. Figure 10.6
shows a simple incrementally updatable representation, which aggregates
the name of the state machine, state names, transitions, and the name of the
initial state (when available, thus an Option). For each transition we store
the name of the source state, and add the input and output labels, with the
name of the target state, when they become available.

Figure 10.7 shows the implementation of the internal DSL for finite-state
machines, including the construction of an abstract-syntax value. Whereas
in Fig. 10.4 the second line delegates to a simple object implementing
parsing past the opening keyword, in Fig. 10.7 we delegate to a class
encapsulating a model representation object. The rule in line 2 invokes the
constructor ModelRep to store the machine name in the parser state. This
object is then available for the subsequent rules. For instance, in line 6 we
update the parsing state with the name of the initial state and in line 8 add a
new state name to a list. In contrast, in Fig. 10.4 the corresponding lines (still
6 and 8) do not pass any values but just delegate to the tail parsing object.

Line 9 in both figures implements the finalization of the machine. In the
extended version we pass the constructed model object to a helper function
(modelRep2Model) that implements a model-to-model transformation from
Scala object spaces to an Ecore representation. In the corresponding line in

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/justParsing.scala

362 Chapter 10. Internal Domain-Specific Languages

Figure 10.5: Fragments of the
coffee machine model with

type annotations,
demonstrating how the syntax

is parsed (typed). Especially
note t4withDots to

appreciate how the ability to
drop parentheses from method

arguments and dot from
method calls in Scala helps to

create an illusion of another
language

1 val t0: state.type =
2 (state)

4 val t1: INITIAL_OR_STATE_OR_END =
5 (state machine "coffeeMachine")

7 val t2: unit =
8 (state machine "coffeMachine"
9 end)

11 val t3: INPUT_OR_NEXT_STATE =
12 (state machine "coffeeMachine"
13 initial "initial")

15 val t4: unit =
16 (state machine "coffeeMachine"
17 initial "initial"
18 end)

20 val t4withDots: unit = // same as above but with explicit dot and parens
21 state
22 .machine ("coffeeMachine")
23 .initial ("initial")
24 .end

26 val t5: OUTPUT_OR_TARGET =
27 (state machine "coffeeMachine"
28 initial "initial"
29 input "coin")

31 val t6: TARGET =
32 (state machine "coffeeMachine"
33 initial "initial"
34 input "coin" output "what drink do you want?")

36 val t7: INPUT_OR_NEXT_STATE =
37 (state machine "coffeeMachine"
38 initial "initial"
39 input "coin" output "what drink do you want?" target "selection")

41 val t8: unit =
42 (state machine "coffeeMachine"
43 initial "initial"
44 input "coin" output "what drink do you want?" target "selection"
45 end)

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/coffeeMachineExplained.scala

Fig. 10.4, we have simply returned a unit value, so basically ‘nothing.’ The
use of Ecore here is inessential: it is just a model-to-model transformation
injected in the final step. It could have been replaced with whatever else
you need: performing cleanup, expanding syntactic sugar, static checking,
converting to other formats, etc.

Observe how concise the language implementation is. Figures 10.6
and 10.7 contain almost all the code; everything but the final transformation
is included. This code arranges parsing and basic type checking. Still,

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/coffeeMachineExplained.scala

10.1. Internal DSLs with the Deep Embedding Pattern 363

1 sealed case class ModelRep (
2 name: String,
3 states: List[String] = Nil,
4 tran: List[TranRep] = Nil,
5 initial: Option[String] = None)
6 sealed case class TranRep (
7 source: String,
8 input: Option[String] = None,
9 output: Option[String] = None,

10 target: Option[String] = None)
source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala

Figure 10.6: Data types for
collecting information during
parsing in a deeply embedded
implementation of fsm (a
temporary abstract syntax)

1 case object state:
2 def machine (name: String) = INITIAL_OR_STATE_OR_END (ModelRep (name))

4 case class INITIAL_OR_STATE_OR_END (machine: ModelRep):
5 def initial (src: String) =
6 INPUT_OR_NEXT_STATE (machine.copy (initial = Some (src), states = src ::machine.states), src)
7 def state (src: String) =
8 INPUT_OR_NEXT_STATE (machine.copy (states = src ::machine.states), src)
9 def end: fsm.Model = modelRep2Model (machine)

11 case class INPUT_OR_NEXT_STATE (machine: ModelRep, src: String):
12 def input (input: String) =
13 OUTPUT_OR_TARGET (machine, src, TranRep (source = src, input = Some (input))
14 def state (name: String) = INITIAL_OR_STATE_OR_END (machine).state (name)
15 def initial (name: String) = INITIAL_OR_STATE_OR_END (machine).initial (name)
16 def end: fsm.Model = INITIAL_OR_STATE_OR_END (machine).end

18 class TARGET (machine: ModelRep, src: String, tran: TranRep):
19 def target (name: String) =
20 val tran1 = tran.copy (target = Some (name))
21 INPUT_OR_NEXT_STATE (machine.copy (tran = tran1 ::machine.tran), src)

23 case class OUTPUT_OR_TARGET (machine: ModelRep, src: String, tran: TranRep)
24 extends TARGET (machine, src, tran):
25 def output (output: String) =
26 val tran1 = tran.copy (output = Some(output))
27 TARGET (machine, src, tran1) source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala

Figure 10.7: An implementation of the fsm internal DSL: the code from Fig. 10.4 extended with construction of the abstract-syntax tree.
All information is collected in a simple abstract syntax, shown in Fig. 10.6, and then, in Line 9, converted to Ecore using a helper
function (not included, but see fsm.scala/ src/ main/ scala/ dsldesign/ fsm/ scala/ internal/ deep.scala)

the obtained DSL is very flexible. For instance, we can replace any state
name with a Scala expression generating the name, or we can use string
interpolations. The host language provides extensibility and expressiveness.

Let us define the deep embedding pattern, and summarize the main
techniques used above to implement the fsm language.

Definition 10.4. A deep embedding is a language implementation pattern
in which the elements of the implemented language are represented as
values in the implementation language (the host), and not as corresponding
first-class elements of the host language. The language implementation

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala

364 Chapter 10. Internal Domain-Specific Languages

constructs a value representing the abstract-syntax tree of the DSL model.
The tree is subsequently transformed for static checking and possible
optimization, and traversed for evaluation, like with external DSLs. [5]

What does “not first-class” mean? It simply means that all concepts in
the input language map to runtime values (second-class). If our DSL has
classes, they do not map to classes in the host language, but to objects
(values). Similarly, constants become not the constant literals in the host,
but values (objects) representing constants, etc.

The main ideas used here to realize parsing were:
• Static values (singleton objects) and method names for introducing key-

words in the language,
• Classes for controlling which names are allowed in a context,
• Method arguments for introducing free values (could be any expressions)

like identifiers and references,
• A context object in the parser storing the AST, adjusted and passed

forward from construct to construct. For this simple example, we used a
simple flat value. If you need nested structures (recursion in the grammar),
the context object should embed a stack or a tree, very much like with
generated parsers and PEGs.

Exercise 10.2. Modify the implementation of the deeply embedded internal DSL,
so that instead of the keyword end, we use parentheses to enclose states nested
in a machine, for example:
1 val m = state machine "coffee Machine" (
2 initial "initial"
3 input "coin" output "what drink do you want?" target "selection"
4 ...
5)

We can also modify the state syntax consistently so that it uses parentheses as well.
This is a non-trivial change, as initial can no longer be a method on the object
constructed by machine. Instead machine can be a curried method that takes two
arguments, and the parentheses are placed around the second one. (Unfortunately,
the same seems impossible with braces in Scala.)

Context Objects

When building the abstract-syntax tree above, we maintain the parser state in
a context object representing a partial AST (ModelRep). In a pure program,
we have to construct a new augmented context object whenever new infor-
mation becomes available (e.g., TranRep(source=src,input=Some(input),
line 13 in Fig. 10.7). In imperative (impure) programs, there is no need to
create new objects. The existing context object can be updated directly. We
demonstrate this with a similar DSL implemented in Python.

As usual we begin with defining the abstract syntax. Figure 10.8 defines
a simple representation for transitions and models. A Model (Line 16) has
a name, an initial state name, and a list of transitions. A transition (Tran,

10.1. Internal DSLs with the Deep Embedding Pattern 365

1 class ModelElement:
2 """Shared functionality between meta-model elements"""
3 def __repr__(self):
4 """Support serialization for print-debugging and tests"""
5 return str(self.__class__) + ": " + str(self.__dict__) + "\n"

7 class Tran(ModelElement):
8 def __init__(self: Tran, source: str, input: str, output: str, target: str) -> None:
9 # These assertions will catch some syntax errors (at runtime)

10 assert source != "" and input != "" and target != ""
11 self.source = source
12 self.input = input
13 self.target = target
14 self.output = output

16 class Model(ModelElement):
17 """A simple Python abstract syntax (a meta-model) for FSM"""
18 def __init__(self: Model, name: str) -> None:
19 self.name = name
20 self.initial: str = ""
21 self.tran: List[Tran] = []

23 @property
24 def states(self: Model) -> Set[str]:
25 """A derived property listing all states. Should only be used after the
26 Model is constructed."""
27 return {t.source for t in self.tran} | {t.target for t in self.tran}

source: fsm.py/FsmInternalDeep.py

Figure 10.8: A simple meta-model (abstract syntax) for finite-state machines in Python

Line 7) has a source state, an input label, a target state, and an output label.
States are represented just by their names as character strings.

Exercise 10.3. Write down the coffee machine of Fig. 10.1 using this abstract-
syntax (meta-model) in Python.

Figure 10.9 presents our coffee machine model in an internal DSL of
Python (the implementation of the DSL will be shown below). In order to
show different means available to Python programmers, we include four
variants of this DSL, all based on the same abstract syntax. Since all these
variants are compatible, we mix them in a single model, a different style
for each state. We begin with Python’s idiomatic dictionaries. The step
function creates a transition based on the received dictionary describing a
transition (lines 2–6). The second variant uses named parameters instead.
The function is called transition to avoid a name clash with step (lines 8–
12). The third variant uses a fluent interface style, very much like in Scala,
but with an explicit navigation symbol (lines 14–17, see also p. 360). Unlike
in Scala, we have to use explicit navigation (the ‘dot’ operator), because
Python methods are not infix operators. One could override infix operators
in Python (see https://docs.python.org/3/library/operator.html#mapping-operators-
to-functions). Variant IV (lines 19–21) exploits this to separate transition
elements with operators. The last variant creates the strongest illusion; how-

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/FsmInternalDeep.py
https://docs.python.org/3/library/operator.html#mapping-operators-to-functions
https://docs.python.org/3/library/operator.html#mapping-operators-to-functions

366 Chapter 10. Internal Domain-Specific Languages

1 with Model("coffeeMachine") as m:
2 # Variant I: Dictionary-based
3 step({"source": "initial", "input": "coin",
4 "output": "what drink do you want?", "target": "selection" })
5 step({"source": "initial", "input": "idle", "target": "initial" })
6 step({"source": "initial", "input": "break", "output": "machine broken", "target": "deadlock" })

8 # Variant II: Keyword arguments-based
9 transition(source="selection", input="tea", output="serving tea", target="makingTea")

10 transition(source="selection", input="coffee", output="serving coffee", target="makingCoffee")
11 transition(source="selection", input="timeout", output="coin returned", target="initial")
12 transition(source="selection", input="break", output="machine is broken!", target="deadlock")

14 # Variant III: Fluent style
15 state("makingCoffee") \
16 .input ("done").output ("coffee served. Enjoy!").target ("initial") \
17 .input ("break").output ("machine is broken!").target ("deadlock")

19 # Variant IV: Operator style
20 state("makingTea") ** "done" % "tea served. Enjoy!" >> "initial"
21 state("makingTea") ** "break" % "machine is broken!" >> "deadlock"

23 # Designate the initial state (we use it with all the styles above)
24 initial ("initial") source: fsm.py/CoffeeMachineDeep.py

Figure 10.9: An example model of a coffee machine, demonstrating several styles of DSL design patterns in Python

ever the first three designs are more often found in the Python ecosystem.
Overloading operators is more typical of functional programmers.

All these variants have one thing in common: they access a context object
throughout (m, line 1). The use of a context object and the with statement
is a common pattern in Python libraries. After the scope is exited, the
resulting model will be bound to the variable m. From then on, we can
continue working with it, just like with an instance of an external DSL.

Figure 10.10 shows the implementation of all four variants. We begin
with enriching the Model class with a context management API, so that we
can use it as an argument in a with statement. This requires implementing
functions __enter__ and __exit__, respectively to set up the model and to
finalize the scope exit. We add a static property __contexts, a stack with the
current model placed at the top. Our implementation of the concrete syntax
will add elements to the model on top of this stack. Using a stack allows the
with statement to be nested. If this is not desirable, a simple value should
be used, instead of a stack. The four variants are implemented in lines
16–48. The second variant, in l. 22–24, is probably the easiest to understand.
When a transition is created, the values for source, input, output, and target
are extracted from the keyword arguments (output is optional). Then we
construct the transition object (Line 23) and add it to the model on top of the
context stack. The variant I implementation (l. 19–20) simply delegates to
Variant II, by reinterpreting the received dictionary as keyword arguments.

The fluent variant (line 26–44) is much more complex. Following the
same pattern as in Scala, the state factory creates a builder object, which

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/CoffeeMachineDeep.py

10.1. Internal DSLs with the Deep Embedding Pattern 367

1 class Model(ModelElement):
2 """(See Fig. 10.10 for the first part of the class definition)
3 Support meta-models as context objects (with):"""
4 __contexts: List[Model] = []
5 @classmethod
6 def context (cls) -> Model:
7 return cls.__contexts[-1]
8 def __enter__(self: Model) -> Model:
9 self.__class__.__contexts.append (self)

10 return self
11 def __exit__(self, exc_type, exc_value, traceback) -> bool:
12 if exc_type != None: return False
13 self.__class__.__contexts.pop()
14 return True

16 def initial(state_name: str) -> None: # Mark initial state (all variants)
17 Model.context().initial = state_name

19 def step(tran: dict) -> None: # Variant I: dictionary based
20 transition(**tran)

22 def transition(**props) -> None: # Variant II: with keyword arguments
23 t = Tran(props["source"], props["input"], props.get("output", ""), props["target"])
24 Model.context().tran.append(t)

26 def state(name: str) -> TranBuilder: # Variant III: Fluent
27 return TranBuilder(name)

29 class TranBuilder(ModelElement):
30 def __init__(self: TranBuilder, source: str) -> None:
31 self.__source = source
32 self.reset()
33 def reset(self: TranBuilder) -> TranBuilder:
34 self.__input = self.__output = self.__target = ""
35 return self
36 def input(self: TranBuilder, input: str) -> TranBuilder:
37 self.__input = input
38 return self
39 def output(self: TranBuilder, output: str) -> TranBuilder:
40 self.__output = output
41 return self
42 def target(self: TranBuilder, target: str) -> TranBuilder:
43 transition(source=self.__source, input=self.__input, output=self.__output, target=target)
44 return self.reset()
45 # Variant IV: with infix operators
46 def __pow__(self: TranBuilder, input: str) -> TranBuilder: return self.input(input)
47 def __mod__(self: TranBuilder, msg: str) -> TranBuilder: return self.output(msg)
48 def __rshift__(self: TranBuilder, target: str) -> TranBuilder: return self.target(target)

source: fsm.py/FsmInternalDeep.py

Figure 10.10: The implementation of three styles of internal DSLs with Python, using context objects

supports the API defining the properties of the transition. No particular
order is enforced, except that target should be called last, as it finalizes
the transition object (it delegates to variant II again).

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/FsmInternalDeep.py

368 Chapter 10. Internal Domain-Specific Languages

Finally, the variant with infix operators extends the fluid interface by
replacing method names with overloaded operators on TranBuilder objects
(l. 46–48). Here it is important to choose operators of decreasing precedence
or left associativity, so that a transition is evaluated from left to right:

((state("makingTea") ** "done") % "tea served.Enjoy!") >> "initial"

Otherwise, if the parsing was

state("makingTea") >> ("done" % ("tea served.Enjoy!" ** "initial"))

we would need to override operators for standard classes, like strings,
which is dangerous and not recommended. Adding the operators only to our
TranBuilder guarantees that there will be no clashes with other libraries.

Exercise 10.4. Investigate how to write a transition without an output label in
each of the four syntactic variants of the DSL in Fig. 10.10. Understand which
implementation aspect makes the output label optional in each of the four designs.

Context objects always appear in internal DSL implementation in one form
or another. They can be implicit, like in our Scala design, they can be
explicitly introduced as in the Python with statement. Often they are passed
as an argument to anonymous functions, especially if the internal DSL is
implemented in functional style. An implicit value it (Kotlin, Groovy, and
Xtend) as well as underscore or givens (Scala) can also be used to pass a
value around in a non-invasive manner for the syntax.

10.2 The Shallow Embedding Pattern

The main task of the implementation of a deeply embedded DSL is to build
an abstract-syntax tree of the input model. Once this is constructed, we
hand it over to the later phases of the tool chain. Thus, an implementation
of a deeply embedded internal DSL is a syntax-first approach. A shallow
embedding is dual: the semantics is implemented first, directly in the
language, while the abstract syntax is not represented or manipulated at all.

In this section, we implement a shallow DSL for finite-state machines
as an example. As usual, we want to show you an example model in the
resulting language first; see Fig. 10.11. Superficially, this model resembles
the deeply embedded one a lot (cf. Fig. 10.1). The key difference, though, is
that we do not need to interpret or compile the resulting model—the model
is directly executable; the coffee machine of Fig. 10.11 is a self-contained
executable Scala program.

Typically, we begin the design by asking what is the semantics of the
model. How can it be represented in the host language? For the finite-state
machines a transition function is a natural semantic model. A state is a func-
tion that given an input produces an optional output and a new state. If inputs
and outputs are just character strings, then we obtain the following type:

State := String→ Option[String]×State (10.5)

This can be implemented in a Scala trait or a class (we show a trait):

10.2. The Shallow Embedding Pattern 369

1 lazy val initial: State = (state
2 input "coin" output "what drink do you want?" target selection
3 input "idle" target initial
4 input "break" output "machine is broken" target deadlock
5)

7 lazy val selection: State = (state
8 input "tea" output "serving tea" target makingTea
9 input "coffee" output "serving coffee" target makingCoffee

10 input "timeout" output "coin returned;insert coin" target initial
11 input "break" output "machine is broken!" target deadlock
12)

14 lazy val makingCoffee: State = (state
15 input "done" output "coffee served. Enjoy!" target initial
16 input "break" output "machine is broken!" target deadlock
17)

19 lazy val makingTea: State = (state
20 input "done" output "tea served. Enjoy!" target initial
21 input "break" output "machine is broken!" target deadlock
22)

24 lazy val deadlock: State = (state)
source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/shallow/coffeeMachine.scala

Figure 10.11: The coffee
machine model specified in the
shallow version of the internal
DSL. The model shall be
executed from the initial
state. There is no separate
interpreter — each state is an
interpreter itself. The language
implementation is shown in
Fig. 10.12

1 type Step = String => (Option[String], State)

3 val state: State = new State:
4 def step: Step =
5 { (input: String) => (Some ("Unknown input msg!"), state) }

7 trait State:
8 def step: Step
9 def input (event: String): Suspended =

10 Suspended (source=this, event=event, output=None)

12 case class Suspended (source:State, event:String, output:Option[String]):
13 def output (o: String): Suspended =
14 Suspended (source, event, Some (o))

16 def target (t: => State): State = new State:
17 def step: Step = input =>
18 if input == event
19 then (output,t)
20 else source.step (input)

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/shallow.scala

Figure 10.12: The
implementation of a shallow
variant of the internal DSL for
finite-state machines in Scala.
Note that the figure shows the
entire implementation of the
parser, static checker, and
interpreter for the language
(minus minor boilerplate to
conserve space). An example
model is shown in Fig. 10.11

trait State { def step: String => (Option[String], State) }

You can find the same type in Fig. 10.12 (l. 7-10); we just extracted the
function type to a named type Step, as it is referred to several times in the
implementation.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/shallow/coffeeMachine.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/shallow.scala

370 Chapter 10. Internal Domain-Specific Languages

Now that we chose a type to represent a state, we can start writing
examples. For instance, a state that ignores all inputs and produces no
outputs can be written as follows:

val deadlock = new State {
def step = (input: String) => (None, deadlock)

}

Once we have a proposal for a semantic representation, we want to design an
API of syntactic operators, like deadlock above, that will enable us to build
state machines, creating states and combining them into state machines.
These operators become the concrete syntax for our DSL. If we wanted
to follow a style to other fsm DSLs in the book the operators should be
input, output, and target. Unfortunately, input, output, and target do
not have uniform meaning. None of them carries enough information to
specify an entire transition, or to create a function of type Step. We still
need to know the target state and output to produce a transition function.

In principle, one could create a new semantic type for every new kind of
information that appears. If we have an expression that represents a part of
the transition it will have the same type as the transition, but all the missing
information needs to be added as arguments. Then input "coin" could be
a function which given a source, an output, and a target state produces a
new output (option) and a new target state:

Input := State×Option[String]×State

→ String→ Option[String]×State (10.6)

The arguments represent in order: (model elements) the source state, the out-
put label, the target state, followed by (runtime elements) the runtime input
label, a received runtime output, and the runtime target state resulting from
executing the transition. We could build such partial types for output and
target and compose them into Steps, but the various types quickly multi-
ply and become overwhelming. To simplify, we can use deep embedding lo-
cally: let’s store partial information as a value syntactically and generate the
semantic function once we have everything we need to construct a transition.

The idea is shown in the implementation of Fig. 10.12. The State trait
is equipped with a new method input, providing the keyword to initiate
a transition sub-expression. The method stores the source state and the
event in a value of class Suspended, which also provides the remaining
keywords. The output method (line 13) collects the optional output label.
The key part of the implementation is found in the target method (lines
16–20). When target is called, we have all the information to construct the
transition function. We create a new Step object with its own step function.
There we check whether the runtime input is the same as the guard on
the transition. If it is, we return the output and the target state. If it is not
we delegate to the source state’s step function, to check whether another
transition can match the input.

10.2. The Shallow Embedding Pattern 371

To complete the implementation, we still need a base handler representing
an empty state. We place it in a static value named state (line 3), which
conveniently provides the opening keyword for a state definition. This way,
if no transition matches a runtime input, the control will eventually arrive
at the default handler, which will produce the error message and loop; the
state machine will deadlock, if you send it an invalid input.

With the implementation in Fig. 10.12, one can execute the model from
Fig. 10.11 by calling the step function of the initial state with an input. The
incantation initial.step ("coin") will produce:

(Some ("what drink do you want?"), selection).

Note that no external interpreter is invoked. If you want to continue inter-
acting with the machine, you can take the returned target state (selection)
and invoke its step method, and so on.

Some sub-expressions in this internal DSL produce deeply embedded
syntax values (Suspended in Fig. 10.12), but every sentence still produces a
semantic value, directly represented as a function (an object with a method).

Exercise 10.5. Consider several sub-expressions from the coffee machine model,
and explain what is the type of these sub-expressions as implemented using this
shallowly embedded internal DSL. In other words, produce a variant of Fig. 10.5
for the model of Fig. 10.11 with the implementation of Fig. 10.12.

Exercise 10.6. Modify the implementation of the shallow DSL in Fig. 10.12 so that
instead of failing to a deadlock on an unknown message, it ignores the message
and returns to the same state again (loops on any unknown message).

One way to do this is to pass the original source state to each step method, and
make the base step method to loop not to itself, but to the original source state.
This is a non-trivial redesign, characteristic of shallow DSLs, where a change in
semantics can have far-reaching effects.

We summarize the key aspects of the shallow embeddings with a definition.

Definition 10.7. A shallow embedding is a language implementation pat-
tern in which the elements of the implemented language are mapped to the
elements of the host language (first-class elements) that can be directly
evaluated in the host language infrastructure, capturing the intended mean-
ing of the DSL model. The abstract syntax of the model is not explicitly
constructed or traversed. (cf. Gibbons and Wu [5])

When designing a shallow embedding for an internal DSL we first want
to understand what is the type of the semantic value that represents the
meaning of the model. Very often, for models that represent executions and
transformations, this value will be a function. Then we identify elements
in the host language that corresponds to our language. For functional
semantics we will often see function definitions and lambdas, but for other
models it might be expressions or classes (as we see for the active record
pattern in Ruby in Fig. 1.5, p. 10). For finite-state machines we exploited

372 Chapter 10. Internal Domain-Specific Languages

functions to capture the meaning of transitions and lazy references to link
values into circular structures (we could have used nullary functions instead).
Note that in the deeply embedded DSL, states were elements in the syntax
tree. In the shallowly embedded DSL, states can be executed directly—they
are small programs that produce other small programs (other states).

Typically we want to define a set of operators that allow us to construct
the semantics of the model piecewise. The operators serve as syntax for the
internal DSL, but their implementation captures the semantics. This means
that the semantics of the language needs to be compositional with respect
to syntax: each piece of syntax must be meaningfully interpretable, and
there must be a relatively close correspondence between the DSL concepts
and the constructs in the host language. In a deeply embedded DSL, we can
transform the model first, if the execution semantics is far from the syntax.
This cannot be done in a shallow internal DSL, because we process each
syntactic element immediately.

On the other hand, we can obtain a very concise implementation of the
language. The implementation in Fig. 10.12 is shorter than the deeply
embedded variant of the same language. This is so even though the shallow
DSL includes the entire execution semantics, while the deep one relies on an
external interpreter. Deep embeddings tend to be easier to implement, espe-
cially for less experienced programmers. They follow a more systematic de-
sign, while shallow embeddings tend to slide towards wizardry. Shallow em-
beddings result in implementations that are leaner but harder to understand.

Shallow DSLs are elegantly structured from small bricks of behavior,
while deeply embedded DSLs rely on big-steps and architectural layers
(parsing, transformations, interpretation), like external DSLs. As a conse-
quence, deep DSLs allow multiple back-ends, while replacing a back-end in
a shallow DSL is practically impossible. It requires a new language imple-
mentation. On the other hand, a shallow DSLs tend to be easy to extend with
a new keyword, as each keyword has a modular implementation in a single
place, while in a deep DSL the implementation is scattered across phases.

10.3 Examples of Internal DSLs

We now show examples of internal DSLs hosted in many programming
languages, to demonstrate the range of applications, and to inspire your
own designs. For each language we show an example model, and discuss
some design and implementation principles.

Parser Combinators as an Internal DSL

Figure 10.13 recalls the PEG rule matching a machine definition, using the
dialect of the parboiled2 library. The rule is a Scala expression constructing
a parser using operators ~, *, and ~>. The details of the implementation
of each operator may be complex, but we read this expression at a much
higher level of abstraction: as an EBNF production. We read the expression
not as Scala, but as an internal DSL.

10.3. Examples of Internal DSLs 373

1 "machine" ~ EString ~ BEGIN ~
2 stateBlock.* ~
3 initialDeclaration ~
4 stateBlock.* ~
5 END ~> FiniteStateMachine

source: fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala

Figure 10.13: A rule parsing
the machine definition
specified in the parboiled2
internal DSL. The entire
grammar is shown
in Fig. 4.7, p. 109

Most parser combinator libraries are shallowly embedded DSLs. Par-
boiled2, however, combines both patterns, and even includes aspects of
code generation: the model evaluation happens partly at compile time
thanks to the use of Scala compiler macros, a particularly complex and rare
construction that enables high performance for parsing large files.

A basic semantic type in parser combinator DSLs is a parser or a rule:
a function that takes an input stream and produces a value representing
abstract syntax. The EBNF operators are functions that compose the parser
values. Libraries in statically typed languages rely on types to ensure that
the parsing rules are well-formed. The type system of the host language is
put to work to implement the static semantics of the internal DSL. We have
done the same in the finite-state-machine languages, ensuring that keywords
are only available in certain contexts, for instance target cannot be used
before input. However, parser combinator libraries go further, enforcing
the types of produced objects.

To appreciate the idea, consider the combinator optional(a), synony-
mous with the question mark in EBNF. The combinator is generic. It takes
a rule a that produces a value of type T and creates a new rule producing
a value of type Option[T]. We could state its type as follows (simplified):

def optional[T] (a: Rule1[T]): Rule1[Option[T]]

In addition, parboiled2 uses types to enforce disciplined use of the parsing
stack, making sure that when a stack is reduced, it always has enough
values. Rule1[T] is a type of a rule that pushes a value of type T on the
stack. Since optional(a) pushes the same value wrapped in an option or
None, the operator does not change the arity of the rule. Both input and
output are Rule1. Similarly, the operator zeroOrMore (Kleene star) changes
a Rule1[T] into a Rule1[Seq[T]].

Finally, we remark that many internal DSLs for parsing reuse the facility
of regular expression matching of the host language for matching tokens
(terminal symbols). Remember that not just functions and types of the host
language can be reused in an internal DSL. Anything, including important
libraries, of the host language can be exploited.

Sinatra: An Internal DSL for Web Programming in Ruby

Sinatra2 is a lightweight web framework in Ruby for building simple web
apps. It is reportedly used by many companies, including GitHub, Apple,

2https://www.sinatrarb.com/, accessed 2022/09

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/FsmParser.scala
https://www.sinatrarb.com/

374 Chapter 10. Internal Domain-Specific Languages

Figure 10.14: Left: A web
server rendering ’Hello World’

using Sinatra. Right: The
corresponding Ruby code

implementing the same without
an internal DSL

1 require ’sinatra’

3 get ’/hello’ do
4 ’Hello world!’
5 end

1 app = NoDSL::Application.new
2 app.on_request(:get, :path_info => ’/hello’)
3 do |response|
4 response.body = "Hello world."
5 end

Figure 10.15: A
parameterized

route handler in Sinatra

1 get ’/hello/:name’ do
2 # When matching "GET /hello/foo" and "GET /hello/bar"
3 # Then params[:name] is ’foo’ or ’bar’
4 "Hello #{params[:name]}!"
5 end

BBC, and Accenture. Sinatra’s design is not unique to Ruby. The language
has inspired web frameworks for other languages, such as Express for Java
Script3 and Scalatra for Scala.4 Its API forms an internal DSL shallowly em-
bedded in Ruby. Sinatra’s syntax is build around the basic verbs in the HTTP
protocol: GET, POST, and PUT. The left part of Fig. 10.14 shows a small piece
of Ruby code using the Sinatra library. This code implements a web server
that outputs a static page containing ’Hello world!’ whenever a user
accesses the path ’/hello’. The right-hand side of the figure shows the sim-
ilar functionality implemented using a classic library. It is easy to appreciate
that the internal DSL in the left part succeeds in hiding a lot of complexity.

In Sinatra terminology, a single block defining a reaction to a request
is called a “route.” The specifications of post and put routes are similar
to get. Routes are matched in the order they are defined. The first route
that matches the request is invoked. Route patterns can be parameterized.
Figure 10.15 shows a parameterized version of the get route. If accessed
with /hello/Garfield, the app will respond with Hello Garfield.

How is this implemented? The do–end block is Ruby’s form of an anony-
mous function, which is passed as the last parameter to a function (to the
get function in the above example). The code in the block is handled lazily.
It is not executed at the time of calling get, but the yield statement can pass
control to it at a suitable point, inside the get implementation. The get route
is basically a function (method) that matches its argument pattern to an in-
coming request, binds parameters to values during this matching, and yields
to the block provided within do–end after the call. Ruby provides a way to
check whether a code block has been passed or not, so that you can differ-
entiate the semantics of your internal DSL construct depending on whether
it contains a block or not. Using code blocks is common in internal DSLs in
Ruby. You can see the same technique applied in the step definitions of the
Cucumber project (https://cucumber.io/) for behavior-driven development.

Exercise 10.7. Anonymous functions, code blocks, and passing arguments by-
name are commonly used to implement control structures in internal DSLs. Use
them to build an imperative state-machine DSL. Change our implementation of

3https://expressjs.com/, accessed 2022/09
4https://scalatra.org/, accessed 2022/09

https://cucumber.io/
https://expressjs.com/
https://scalatra.org/

10.3. Examples of Internal DSLs 375

1 const useStyles = createUseStyles({
2 myButton: {
3 color: ’green’,
4 margin: {
5 top: 5, // jss-default-unit makes this 5px
6 right: 0,
7 bottom: 0,
8 left: ’1rem’
9 },

10 ’& span’: {
11 // jss-nested applies this to a child span
12 fontWeight: ’bold’ // jss-camel-case turns this into ’font-weight’
13 }
14 },
15 myLabel: { fontStyle: ’italic’ }
16 })

Figure 10.16: An example
cascading style sheet specified
in JSS. Code from
https:// cssinjs.org,
MIT Licensed

the shallow DSL to execute actions instead of producing outputs. The output
keyword should be changed to action and it should take a function of type
Unit => Unit or a Unit value by-name (so => Unit). The transition function
will not produce any output, but it will return the target state after executing the
action. Alternatively, implement this DSL in Ruby, with code blocks for actions.

Ruby provides a number of constructs that support meta-programming. You
can even overload the dynamic method dispatch mechanism to change how
calls are made, for instance to modify the list of parameters before execu-
tion. String interpolation, regular expressions, and reflective programming
facilities are all used in internal DSLs, which are very popular in the Ruby
ecosystem. APIs of many Ruby libraries evolve towards internal DSLs.

JSS: Generating Style Sheets with JavaScript

JSS (Fig. 10.16) is a simple DSL for compact specification of cascading
style sheets (CSS).5 JSS has reached ten million downloads per month
from the npm repository, with over 700 other packages depending on it.
Recall from Chapter 4 that CSS is an external DSL. The JSS language is an
internal DSL of JavaScript that allows in-memory dynamic construction of
CSS for web applications. We can categorize JSS as deeply embedded—its
implementation builds a syntax representation for the CSS, and from then
on it is interpreted by the web browser’s rendering engine.

The design of the JSS syntax exploits the similarity of the CSS syntax and
the syntax of JavaScript object initializers. The entire expression in lines
2–14 of Fig. 10.16 is an object initializer, but it resembles the CSS syntax
strikingly (cf. Fig. 3.2, p. 54). The implementation of the DSL performs
renaming of attributes (for instance fontWeight to font-weight, which is
not a syntactically correct name for a field in a JavaScript object), applies
transformations to sub-trees (l. 10), adds units (not natively supported in
JavaScript, see line l. 5), etc.

5https://cssinjs.org/, seen 2022/09

https://cssinjs.org
https://cssinjs.org/

376 Chapter 10. Internal Domain-Specific Languages

1 def create_tree(level):
2 root = py_trees.composites.Selector("Demo Dot Graphs %s" % level)
3 first_blackbox = py_trees.composites.Sequence("BlackBox 1")
4 first_blackbox.add_child(py_trees.behaviours.Running("Worker"))
5 first_blackbox.add_child(py_trees.behaviours.Running("Worker"))
6 first_blackbox.add_child(py_trees.behaviours.Running("Worker"))
7 first_blackbox.blackbox_level = py_trees.common.BlackBoxLevel.BIG_PICTURE
8 second_blackbox = py_trees.composites.Sequence("Blackbox 2")
9 second_blackbox.add_child(py_trees.behaviours.Running("Worker"))

10 second_blackbox.add_child(py_trees.behaviours.Running("Worker"))
11 second_blackbox.add_child(py_trees.behaviours.Running("Worker"))
12 second_blackbox.blackbox_level = py_trees.common.BlackBoxLevel.COMPONENT
13 third_blackbox = py_trees.composites.Sequence("Blackbox 3")
14 third_blackbox.add_child(py_trees.behaviours.Running("Worker"))
15 third_blackbox.add_child(py_trees.behaviours.Running("Worker"))
16 third_blackbox.add_child(py_trees.behaviours.Running("Worker"))
17 third_blackbox.blackbox_level = py_trees.common.BlackBoxLevel.DETAIL
18 root.add_child(first_blackbox)
19 root.add_child(second_blackbox)
20 first_blackbox.add_child(third_blackbox)
21 return root

Figure 10.17: Bottom: an internal DSL model of a behavior tree in py_trees syntax. Top: a visualization of the same model generated
using py_trees tools. Source: https:// github.com/ splintered-reality/ py_trees, BSD Licensed code

Behavior Trees in Robotics: A Lightweight Deep Embedding

Behavior Trees are a discrete control specification language with similar
goals to state machines. Unlike with state machines, in behavior trees one
does not define the state transition function explicitly. Instead, a hierarchy
of conditional executions is designed. Behavior trees originated in the
gaming industry, as a formalism to program autonomous agents in games.
They have attracted interest in robotics, where several implementations
exist, all as internal DSLs of Python or C++.

The existing implementations of behavior trees use an extremely light-
weight form of deep embedding: the API consists of factory functions
used to construct an abstract-syntax tree directly. Figure 10.17 illus-
trates the main idea with an example from the py_trees project.6 The

6https://github.com/splintered-reality/py_trees, retrieved 2022/09

https://github.com/splintered-reality/py_trees
https://github.com/splintered-reality/py_trees

10.3. Examples of Internal DSLs 377

top of the figure shows the visual syntax of a behavior tree, which is
essentially also the abstract-syntax tree of the model. This visualization
can be obtained using py_trees tools. The model itself is not created
visually, but programmed in an internal DSL. The code is shown in the
bottom of the figure. In Line 2 we create a selector node, also the root
of the AST. In lines 3, 8, and 13 we create the black box nodes and
connect them to their parent nodes using add_child. The remaining lines
create the worker nodes and wire the entire tree together using further
add_child calls. Other implementations of behavior trees in robotics, most
notably BehaviorTrees.CPP,7 follow the same pattern. A much larger but
essentially similar example in C++ can be seen at https://github.com/kmi-
robots/hans-ros-supervisor/blob/master/src/full_supervisor.cpp.

Being a deeply embedded DSL, py_trees can offer multiple semantics.
The library provides both an interpreter for the models and a visualization
tool. Providing these with a shallow embedding would be at least cumber-
some, if not impossible. The BehaviorTree.CPP library goes further and
provides a visual external DSL editor and a concrete syntax based on XML.
The tools can generate the C++ code in the internal DSL for execution.
Thus BehaviorTree.CPP is both an internal and an external DSL.8

The lightweight deep embedding strategy results in rather hard to read
models. Programming behavior trees in these internal DSLs is not much
different from using, say, the Ecore API directly to construct class models.9

On the other hand, the language implementation can be made extremely
lean this way. Often this is the easiest way to start an internal DSL, which
can later evolve into more complex designs with better concrete syntax.

RxROS: A Dataflow-Oriented Internal DSL for Robotics

RxROS10 is a DSL for implementing processing nodes in the Robot Op-
erating System (ROS). RxROS is an extension of the popular Reactive
Programming paradigm11 for building ROS systems. Unlike behavior trees,
reactive programming is data-flow-oriented, not control-flow-oriented. This
is also reflected in the design of the DSL, which allows to construct pipelines
or circuits processing events/signals.

Figure 10.18 shows a fragment of an example program in the DSL,
and Fig. 10.19 shows the corresponding data-flow graph. The example
implements a controller for a remotely operated mobile robot. An operator
controls the robot using two redundant interfaces: a joystick and a keyboard.
It is instructive to read the code and the diagram in parallel. The stream
of events starts with two sources, /joystick and /keyboard. The two

7https://www.behaviortree.dev/, accessed 2022/09
8It would be an interesting exercise to attempt to implement a proper internal DSL syntax for
behavior trees that would facilitate modular construction of trees and remain readable.

9This style was already visible in our transformation rules, for instance in Fig. 7.5 on p. 241
where all the createXXX calls are dynamic calls to factories creating abstract-syntax elements.

10https://github.com/rosin-project/rxros2, accessed 2022/09
11http://reactivex.io/, accessed 2022/09

https://github.com/kmi-robots/hans-ros-supervisor/blob/master/src/full_supervisor.cpp
https://github.com/kmi-robots/hans-ros-supervisor/blob/master/src/full_supervisor.cpp
https://www.behaviortree.dev/
https://github.com/rosin-project/rxros2
http://reactivex.io/

378 Chapter 10. Internal Domain-Specific Languages

1 auto joyObsrv = from_topic<teleop_msgs::msg::Joystick>(vpublisher, "/joystick")
2 | map([](teleop_msgs::Joystick joy) { return joy.event; });

4 auto keyObsrv = from_topic<teleop_msgs::msg::Keyboard>(vpublisher, "/keyboard")
5 | map([](teleop_msgs::Keyboard key) { return key.event; });

7 joyObsrv.merge(keyObsrv)
8 | scan(std::make_tuple(0.0, 0.0), teleop2VelTuple)
9 | map(velTuple2TwistMsg)

10 | sample_with_frequency(frequencyInHz)
11 | publish_to_topic<geometry_msgs::Twist>(vpublisher, "/cmd_vel");
12 rclcpp::spin(vpublisher);

Figure 10.18: A controller for a remotely operated mobile robot in the data-flow style of RxROS, an internal DSL of C++

from
topic
/joystick

Joystick.event
map

from
topic
/keyboard

Keyboard.event
map

teleop event

merge integrated
velocity
changes

scan Twist
messages

map re-sample and
publish to topic
/cmd_vel

map

Figure 10.19: An overview of the data flow in the velocity publisher example from Fig. 10.18

observers are created in lines 1–2 and 4–5 respectively. In lines 7–11, we
construct the flow by merging the streams of events of the two observers,
accumulating velocity changes to calculate the desired speed (scan), trans-
lating the desired velocity into a vector in 3D space (a Twist), resampling
the stream from the erratic frequency generated by the operator to a fixed
frequency required by the motor controller (sample_with_frequency) and
publishing the resulting stream to the controller (publish_to_topic).

RxROS builds on Reactive Extensions for C++12 (RxCPP). Both RxROS
and RxCPP are shallowly embedded DSLs in C++. The use of overloaded
operators (pipeline) and an expression-oriented data-flow programming
create a style that looks alien in C++, especially considering that the classic
C++ API is based on callback functions, multi-threading, and locks. The
internal DSL program is multi-threaded and safe from deadlocks, but the
concurrency and deadlock control are hidden by the abstraction.

Gradle and SBT: Internal DSLs in Build Systems

Internal DSLs in build systems are a long tradition. For example, the
KBuild system13 in the Linux Kernel Project is an internal DSL of GNU
Make, and the Colcon system14 in ROS is an internal DSL of CMake.15

Figures 10.20 and 10.21 show build scripts for two popular build tools in the
JVM ecosystem: Gradle (a popular tool used for compiling, among others,

12https://github.com/ReactiveX/RxCpp, accessed 2022/09
13https://www.kernel.org/doc/html/latest/kbuild/index.html, accessed 2022/09
14https://colcon.readthedocs.io/en/released/user/quick-start.html, accessed 2022/09
15https://cmake.org/, accessed 2022/09

https://github.com/ReactiveX/RxCpp
https://www.kernel.org/doc/html/latest/kbuild/index.html
https://colcon.readthedocs.io/en/released/user/quick-start.html
https://cmake.org/

10.3. Examples of Internal DSLs 379

1 plugins {
2 id "base"
3 id "java"
4 }
5 sourceCompatibility = javaVersion
6 sourceSets { main { java { srcDirs ’src/’ } } }
7 dependencies {
8 implementation "org.eclipse.emf:org.eclipse.emf.ecore:$emfVersion"
9 implementation "org.eclipse.emf:org.eclipse.emf.ecore.xmi:$xmiVersion"

10 implementation "org.eclipse.emf:org.eclipse.emf.common:$emfVersion"
11 }
12 tasks.create (’fsmModelCode’, GenerateModelCodeTask, ’dsldesign.fsm/model/fsm.genmodel’)
13 clean { dependsOn cleanFsmModelCode }
14 compileJava { dependsOn fsmModelCode }
15 jar { from(’model’) { into(’model’) } } source: fsm/build.gradle

Figure 10.20: A fragment of a build script from the book repository, responsible for generating Ecore code for the fsm meta-model. This
is a Gradle build script, simultaneously also a fully functional program in Groovy

1 name := "option"
2 scalaVersion := "2.13.3"
3 scalacOptions += "-deprecation"
4 scalacOptions ++= Seq ("-deprecation", "-feature", "-Xfatal-warnings")
5 libraryDependencies += "org.scalacheck" %% "scalacheck" % "1.14.0" % "test"
6 libraryDependencies += "org.scalatest" %% "scalatest-freespec" % "3.2.0" % "test"
7 libraryDependencies += "org.scalatest" %% "scalatest-shouldmatchers" % "3.2.0" % "test"
8 libraryDependencies += "org.scalatest" %% "scalatest-mustmatchers" % "3.2.0" % "test"
9 libraryDependencies += "org.scalatestplus" %% "scalacheck-1-14" % "3.2.0.0" % "test"

Figure 10.21: An example build script for Scala’s Simple Build Tool (SBT)

Android apps) and SBT (the default build tool of the Scala community).
Both DSLs are shallowly embedded, in Groovy and Scala respectively.

All keywords in Fig. 10.20 are function calls. Groovy’s syntax to call
functions without parentheses, and with code blocks in braces, is used
heavily. Code blocks are a special case of unary anonymous functions with
a default argument, basically delayed computations. For example plugins
(l. 1) is a function that takes a code block as an argument and executes
the code block with an object representing the current configuration as its
argument. The configuration object provides a method id that registers the
needed plugins in the current configuration. The SBT example in Fig. 10.21
does not use functions, but relies on overloading operators (:=, +=, ++=,
%%, and %). Both tools allow the user to drop out to the host language for
programming complex build tasks, which is commonly done.

Both internal DSLs run on JVM, and this means that they are inter-
operable across JVM languages. Gradle scripts have historically been
designed for Groovy, but nowadays they can also be written in Kotlin. The
implementation of Gradle itself mixes Java, Groovy, and Kotlin. Of course,
when we change languages the syntax of the internal DSL changes, too.
For instance, function calls in Kotlin, unlike in Groovy, require parentheses
around arguments (so id("base") would be needed in Line 2). On the other

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/build.gradle

380 Chapter 10. Internal Domain-Specific Languages

Figure 10.22: A simple
SystemC example

implementing a state-machine
module called "camera" having

different inputs/outputs, two
empty functions (run, sense)

and the constructor SC_CTOR
to instantiate the

state-machine object.
SystemC is an internal DSL of

C++ supporting software
simulation and high-level

hardware synthesis

1 enum Camera_States { C_INACTIVE, C_SENSING, C_NOT_SENSING};
2 SC_MODULE(Camera) {
3 sc_in<bool> clk;
4 sc_in<bool> rst;
5 sc_fifo<int> out_data[1];
6 sc_fifo_out<int> out_port[1];
7 sc_in<bool> startstop;
8 Camera_States currentState;
9 int ns, ms;

10 PseudoRandom pr;
11 void run();
12 void sense();
13 SC_CTOR(Camera) : ns(0), ms(0) {
14 SC_CTHREAD(run, clk.pos());
15 reset_signal_is(rst,true);
16 currentState = C_INACTIVE;
17 for (int i = 0 ; i < 1; i++){
18 out_port[i](out_data[i]);
19 }
20 }
21 };

Figure 10.23: A circuit is a
class extending the Module

trait provided by the framework.
This circuit counts from 0 to

25000000-1, after which it
toggles a blinking led and
restarts the counter. The

assumption is that the circuit is
clocked with 50MHz, which

gives blinking at 1Hz frequency.
Source: Schoeberl [16]

1 class Hello extends Module {
2 val io = IO (new Bundle {
3 val led = Output (UInt (1.W))
4 })
5 val CNT_MAX = (50000000 / 2 - 1).U;
6 val cntReg = RegInit (0.U(32.W))
7 val blkReg = RegInit (0.U(1.W))
8 cntReg := cntReg + 1.U
9 when (cntReg === CNT_MAX) {

10 cntReg := 0.U
11 blkReg := ~blkReg
12 }
13 io.led := blkReg
14 }

hand, the same infrastructure, and a very similar DSL, with all the same
abstractions, can be reused in or accessed from in many JVM languages.

Internal DSLs are often naturally extensible, including Gradle and SBT.
The example in Fig. 10.20 uses a custom task GenerateModelCodeTask for
code generation. Because this DSL is running on JVM, the extension can be
implemented in any JVM language, and we have implemented this new task
in Scala, even though it is invoked in a Gradle script—a Groovy program.
Internal DSLs are advisable in applications where easy extensibility of
the language is a requirement. External DSLs are hard to extend: one
needs either to modify their implementation or to implement a built-in
extensibility mechanism. The latter comes for free in internal DSLs.

System Design DSLs: SystemC and Chisel

VHDL [7] and Verilog [8] are classic external DSLs for hardware design.
Recently the interest in system design languages is shifting towards internal

10.4. Guidelines and Techniques for Building Internal DSLs 381

DSLs, which present a number of advantages, most importantly easy access
to good tools, and to test and simulation infrastructure in a software-only en-
vironment. The intended users for these DSLs are system engineers who are
used to both software development and hardware design. Thus, they are will-
ing to accept the complexity, while being able to appreciate the flexibility.

SystemC (Fig. 10.22) is an increasingly popular language for system
design and verification addressing the needs of both software and hardware
design. SystemC is an internal DSL of C++, a C++ library that allows one
to specify partitioning of the system into components and provide their
logic using C++. The choice to make SystemC an internal DSL is key to its
success: a system designed in SystemC can be compiled and executed (sim-
ulated) in a purely software environment, which facilitates fast development
cycles. At the same time, components expressed in a suitable subset can be
used for high-level synthesis to create hardware boards using, for instance,
FPGA technology. As you can see in the figure, C++ preprocessor macros
are used, among other things, to hide C++ syntax and make the domain
concepts more directly available to the designer (SC_MODULE, SC_CTOR,
SC_CTHREAD) by expanding them to a more complex C++ counterpart.
Classes and class templates are used heavily to provide the abstractions.

Using preprocessors is a standard pattern for introducing internal DSLs.
The preprocessor translates the new keywords and constructs into the host
language—essentially a form of code generation which yields rather simple
implementations. Its main disadvantage is that the compiler reports any
potential errors at the level of the host, in the generated code. Since no
type information is present in simple preprocessors, the programmer has
no way to interpret these errors, short of understanding the internals of the
implementation of the DSL [2].

Interestingly, SystemC is not the only internal DSL for hardware syn-
thesis. Another interesting language is Chisel16 (Fig. 10.23). Chisel is
a hardware design DSL internal to Scala [16]. The overarching design
follows the deep embedding. The first-tier infrastructure generates not an
abstract syntax but an intermediate representation FIRRTL, which, like in
deeply embedded DSLs, can then be fed to a synthesizer. Chisel programs
can be compiled to Verilog. Implicit arguments for function calls and
constructors are used to connect the syntax elements with the current
execution configuration and the model.

10.4 Guidelines and Techniques for Building Internal DSLs

Selecting the right domain concepts, ensuring static correctness, and provid-
ing dynamic semantics are just as essential for internal DSLs as for external
ones. Consequently, the syntax, semantics, and domain analysis guidelines
from the previous chapters apply to internal DSLs, too. In this section, we
complement them with design advice specific to internal DSLs.

16https://github.com/chipsalliance/chisel3, retrieved 2022/09

https://github.com/chipsalliance/chisel3

382 Chapter 10. Internal Domain-Specific Languages

Terminology: Internal DSLs, Embedded DSLs, Embeddings
The term of embedded DSL is often attributed to Hudak
[6] who introduced it in the context of functional pro-
gramming and Haskell, however the practice was well
known in the Lisp community already since the sixties.
Hudak’s definition of an embedded DSL is essentially

1 // LINQ Query Syntax (C#)
2 var result =
3 from person in list
4 where person.name.Contains("Alice")
5 select person.degree;

the same as our definition for an internal DSL (Def. 10.3). Kieburtz [10] calls internal DSLs open,
emphasizing their extensibility. We prefer the adjective “internal” as it emphasizes that the language
is “extracted” from the host by exposing a stylized API. We use the term embedding to distinguish the
shallow and deep patterns of building internal DSLs.
Nowadays, the term embedded lan-
guages is often used more broadly, re-
ferring to languages that are composed
into the host language, possibly using
additional processing tools. Often such

1 val xmlDoc = <students> // XML Literal in Scala 2
2 <person nane="Alice"><points>100</points></person>
3 <person name="Bob"><points>315</points></person>
4 </students>

languages cannot be implemented as a library of the host—a program containing DSL fragments might
need to be preprocessed, or the host compiler might need to be extended to handle a new language syntax.

Examples of embedded DSLs that are not internal DSLs include LINQ Query Syntax in C#
(shown in the top of the box), assembly blocks in C/C++ (asm), and some of the ways to embed
SQL in programming languages. Another example is the embedded XML syntax in Scala
(above), which is implemented in the Scala parser, invoking an XML parser. Interestingly, the
sentiment in the Scala community is to remove such language extensions from the compiler (see:
https://docs.scala-lang.org/scala3/reference/dropped-features/xml.html), migrating the XML support to a
proper internal DSL which can be implemented using specialized string interpolators. The tendency to
move towards internal DSLs is frequently observed. Language designers equip GPLs with increasingly
more powerful extension capabilities, decreasing the need for specialized extensions embedded in the
compiler infrastructure while making building internal DSLs easier.

Guideline 10.1 Build internal DSLs for programmers, not for end-users. For language
engineers, embedding an internal DSL in an expressive host language is
the fastest way to obtain a working implementation for many DSLs. For
users, an internal DSL is typically far enough from the host language
to create an interesting diversion while increasing productivity thanks to
high expressiveness; still, close enough not to be a distraction, or to cause
technical frictions. Internal DSL programs integrate well into the existing
development ecosystem of the host (build systems, debuggers, editors).

As Hudak [6] suggests, abstraction is key to creating high-quality soft-
ware, and the ultimate abstraction is the language that precisely captures
the system’s domain. This might be the reason why many software projects
and libraries evolve towards internal DSLs, and why, 25 years after Hudak’s
seminal text, we understand that internal DSLs are a very good tool for
efficient programmers, but much less so for the end-users.

From the end-user perspective however, the tool support for internal
DSLs tends to be weak: the host language tools are unable to reason at
the level of abstraction of the DSL. Syntax highlighting does not highlight

https://docs.scala-lang.org/scala3/reference/dropped-features/xml.html

10.4. Guidelines and Techniques for Building Internal DSLs 383

the keywords of the DSL, as they are considered identifiers from the host’s
point of view. On the other hand, the editing and testing environment of
the host language can be used, and is often sufficiently convenient for
programmers. Another good example is error reporting, typically done
using the host language infrastructure, or, in other words, not done at all—
just left to the type checker of the host language. Users receive messages
at a lower level of abstraction than the code they have written in the DSL.
More concretely: you cannot get a compile-time message about ambiguity
of a grammar from a parser combinator library. You will get an error about
type mismatch between some types in the implementation of the parser
DSL—often types you have never heard about. While programmers may
tolerate this, end-users are immediately confused.

Exercise 10.8. Introduce an error in fsm.scala/src/main/scala/dsldesign/fsm/scala/
internal/deep/coffeeMachine.scala (Fig. 10.1) and compile to see what Scala error is
reported. Reflect on what error messages you could expect from an external DSL
implementation for a similarly broken input.

Guideline 10.2Use constants, static values, functions, and methods to introduce keywords.
We have demonstrated these mechanisms extensively in the fsm language.
All methods in Fig. 10.7 introduce keywords. In the Python version, we
use several top-level functions, not methods: initial, step, transition
(Fig. 10.10). In the shallow DSL, the state keyword (Fig. 10.11) is
introduced as a global constant, a static value (Fig. 10.12).

When you need to chain keywords, like in “state machine,” you can
combine these techniques: create a unary function state that takes an
object of a fresh new type “T” as an argument, and provide a single global
value of that type (machine: T). A variation of this scheme provides the
end keyword in Fig. 10.4. The dual works as well: Create a class “C” with a
method for the second keyword (C.machine) and a global instance of C with
the name of the first keyword (state: C). This is how the state input
chain is created in Fig. 10.12.

Guideline 10.3Support optional syntax with overloading, default parameter values, or
custom dispatch. The basic way to control syntactic variation is to sepa-
rate keywords into classes representing distinct parsing contexts. Three
classes in Fig. 10.4 demonstrate this pattern: INITIAL_OR_STATE_OR-_END,
INPUT_OR_NEXT_STATE, and OUTPUT_OR_TARGET. Each of these offers the
keywords available in a particular syntactic location.

In some language designs, a single keyword should offer variation in the
same context. For instance, we could imagine a variant of our language that
makes the state names optional. This can be done by making the state name
parameter take a default value, or by overloading the keyword method in
two versions: a variant taking the name and an argument-less variant.

Exercise 10.9. Modify the implementation of the deep fsm language (Fig. 10.7) to
make the state names optional. Change the abstract syntax to use Option[String]
instead of String for the state name, and adjust the class INITIAL_OR_STATE_OR

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/coffeeMachine.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep/coffeeMachine.scala

384 Chapter 10. Internal Domain-Specific Languages

-_END to assume no state name (None) for the state name in state and initial
by default. This exercise can be implemented in Python for Fig. 10.8.

Occasionally it happens that you need more control over the syntax than the
type system provides. For instance, default parameter values can typically
only be used with the last arguments in the function call. Workarounds
for this problem, like named arguments, might destroy the internal DSL
illusion of the API. Some object-oriented languages offer a workaround:
you can control the method dispatch dynamically at runtime; then you can
first inspect the provided arguments, and decide how the execution can
proceed. You can even inject new arguments and new functions into classes
at runtime, a practice known as monkey patching. Injecting new methods
at runtime allows the creation of new names in the language based on the
previously seen names in the internal DSL model, which could be used
to create a form of first-class references to functions or values. For most
internal DSLs, such techniques are unjustifiably complex, almost abusive
of the host language. They remain useful when there is no other way, at
the cost of losing the static control over syntactic correctness of models.
Even spelling mistakes can easily be missed by the host infrastructure,
and the errors are only reported at runtime. For deeply embedded DSLs,
these issues can be partly circumvented by implementing a dedicated static
checker invoked before the model is executed.

In Scala, classes that need custom dynamic dispatch must mix in the trait
Dynamic.17 and expose new methods by implementing the applyDynamic
member. The user can then call any function name on objects of this
class and applyDynamic receives all the calls with the function name as
a character string, along with a list of arguments. The function can then
inspect the arguments and deliver the required behavior. In Python, one can
create callable classes to achieve a similar effect (implement __call__ and
dynamically inspect the received arguments). Similar mechanisms exist in
all dynamically typed languages, including Smalltalk, Ruby, and JavaScript.

Guideline 10.4 Integrate with existing types using extension methods. Monkey patching
does allow injection of capabilities of internal DSLs into types that you do
not control, for instance to add keywords of the internal DSL to standard
library types. Extension methods are a type-safe and easy to use alternative.
An extension method is a function added to a class after its implementation
but without using inheritance. Extension methods can be called also on
objects that are created outside your code, even in code that has been written
before the extension methods have been defined.

For a simple example, consider an internal DSL that allows association of
English texts with their phonetic encoding, for some linguistic application.
In such a language we might want to write:

17https://dotty.epfl.ch/api/scala/Dynamic.html, retrieved 2022/09

https://dotty.epfl.ch/api/scala/Dynamic.html

10.4. Guidelines and Techniques for Building Internal DSLs 385

If we implement this DSL in Scala, a natural idea is to make reads a method
of the type String which takes another String argument and creates the
association in the dictionary of phonetic mappings as a result. Can we add
the method reads to the String class, which is a standard library type?
Can we do this so that no other strange problems appear anywhere else in
the code that uses String? We can define reads as an extension method
and import it only in the scope of the internal DSL model. For example:

1 extension (s1: String)
2 def reads (s2: String) =
3 ... // implement the logic that associates s2 with s1

Figure 10.24: An extension
method in Scala makes the
call reads available on
instances of String

You will find extension methods in most modern GPLs (C#, Scala, Groovy,
Kotlin, Xtend). In dynamic languages, resort to monkey patching instead,
losing static type safety. In Python, overloading operators is an easy, but
unsafe, way to extend—operators can be overloaded for existing types.

Guideline 10.5Limit access to DSL terms using imports, inheritance, or mixins. Internal
DSLs tend to heavily extend the available vocabulary. This can easily cause
clashes with other libraries. It is useful to limit the internal DSL API to be
available only in the lexical scope of a model definition. One way to do this
is to use extension methods, and only import their definitions where a model
is being defined (see above). If your DSL models can be encapsulated in a
class definition, then another pattern is to import the DSL definition through
inheritance or mixing in a trait.

For the example of the state machine in Fig. 10.7 we would encapsulate
the entire implementation into a class or a trait. Let’s assume that this
class is called FSM. Then the model definition can be placed in the default
constructor of a specializing class. With this pattern the definition of the
API provided by fsm is not visible anywhere outside the inheriting class,
which should limit the risk of clashes with other libraries.

1 class CoffeeMachine extends FSM:
2 val m = state machine ... end

Figure 10.25: A model placed
in the default constructor of a
class (Scala)

Guideline 10.6Create visually intuitive syntax with operators. Like for external DSLs,
in some situations, especially if there is prior notation to mimic, it may
make sense to use operators instead of keywords. In internal DSLs we are
restricted to the available possibilities in the host language. Some languages
allow definition of new operators (Haskell and Scala), some others only
overriding of existing operators (C++, Python). Furthermore, the parsing
of the internal DSL expressions will typically be affected by the operator
precedence and associativity rules of the host language. (In an external DSL,
we can set the associativity and precedence ourselves.) This has affected
the choice of operators in Variant IV of the Python example in Figures 10.9
and 10.10, where we wanted to ensure left-associativity. The operators

386 Chapter 10. Internal Domain-Specific Languages

selected (**, %, >>) have decreasing precedence, enforcing left-to-right
parsing of each transition.

Guideline 10.7 Use the host’s expression language, variable and function definitions,
character strings, regular expressions, dictionary literals, initializers, etc.
Internal DSLs reuse the existing expression language of the host. We can
bind expressions to variable names, and can naturally parameterize internal
DSL models by placing them in functions and making them dependent on
arguments. If new operators, constructors, or combinators are needed we
define them as functions, methods, or class constructors, which produce val-
ues, so that they can participate in host language expressions. Implementing
combinators (keywords) for internal DSLs purely makes the integration
with the rest of the host language easier.

Exercise 10.10. Find online information about assertion matchers used in unit-
testing frameworks (JUnit’s or Scalatest’s matchers, or http://hamcrest.org/). Relate
them to your knowledge of DSLs. Are matchers as an internal DSL? How are they
implemented in the framework that you chose? Is there an explicit abstract-syntax
representation? An explicit evaluator?

Guideline 10.8 Control structures via laziness and call-by-name. To implement control
structures, we typically need a way to embed code that will not be imme-
diately executed, but whose execution can be postponed or skipped. For
instance, a branching statement has the following structure:

IF CONDITION THEN CODE1 ELSE CODE2

To implement it in a shallow DSL, we need to evaluate the condition, but
then evaluate only one of CODE1 and CODE2. For a deep DSL, we want
to capture the syntax of the condition and both code parts in branches—
neither of them gets immediately executed. In modern GPLs we can realize
this using nullary lambdas (() => CODE1), call-by-name argument passing
(Scala, Haskell), or code blocks (Groovy, Ruby, Kotlin). Then a control
combinator becomes a higher-order function taking other code as argument.

Table 10.1: Three strategies
for implementing control lazily:

function closures,
call-by-name, and code blocks

IF/THEN/ELSE implementation as a unary function taking as an argument:
– A nullary function (Scala) IF (()=>CONDITION) THEN { ()=>CODE1 } ELSE { ()=>CODE2 }

– Some code by-name (Scala) IF (CONDITION) THEN { CODE1 } ELSE { CODE2 }

– A code block (Ruby) IF { next CONDITION } THEN { CODE1 } ELSE { CODE2 }

Exercise 10.11. Extend our implementation of the shallow DSL for finite-state
machines to execute arbitrary code when a transition is taken, instead of producing
a string message. An example instance is shown in Fig. 10.26. The output value
type for transitions needs to be eliminated from the implementation, and the
output keyword needs to take a unit value by-name and execute it when the output
is produced. The same exercise can be implemented for the Python variant of the
deep DSL, with lambdas or other callables storing the action in transitions.

Finally, lazy bindings can also be used to create circular structures in the
internal DSL as we did in Figures 10.11 and 10.12 to allow cyclic references.

http://hamcrest.org/

10.5. Quality Assurance and Testing Internal DSLs 387

1 lazy val selection: State = (state
2 input "tea" output { print ("serving tea") } target makingTea
3 input "coffee" output { print ("serving coffee") target makingCoffee
4 input "timeout" output { print ("coin returned") } target initial
5 input "break" output { print ("machine broken!") } target deadlock
6)

Figure 10.26: An example
instance in a variant of the fsm
DSL that embeds imperative
actions as code, instead of
message values. See
Exercise 10.11

1 "t0 composed t1 on random input not handled by t1 is the same as t" in {
2 forAll { (inputStr: String) =>
3 forAll { (inputStr1: String) =>
4 whenever (inputStr != inputStr1) {
5 val deadlock = state
6 lazy val t0: State =
7 state.input (inputStr) output (inputStr) target (t0)
8 lazy val t1: State =
9 t0.input (inputStr1) output (inputStr1) target (deadlock)

10 t0.step (inputStr) should be { t1.step (inputStr) }
source: fsm.scala/src/test/scala/dsldesign/fsm/scala/internal/shallow/ShallowSpec.scala

Figure 10.27: A property test
for the shallow language of
Fig. 10.12. We construct a
two-transition state and show
that the second transition has
no effect on firing the action of
the first, over many random
inputs. The test uses the
scalatest and scalacheck
libraries

Guideline 10.9Exploit the static type system and type inference for validity checking. Sup-
plement with runtime checks (shallow DSLs) or a standalone custom static
checker (deep DSLs). It is important to emphasize that dynamically typed
internal DSLs can be implemented in statically typed hosts, and statically
typed (deeply embedded) DSLs can be implemented in dynamically typed
hosts. As shown in Fig. 10.10, we use types or classes to control the
syntax of the internal DSL, even in Python, which is dynamically typed.
Type inference has helped us to keep the complex types outside the model
in a statically typed host. For shallow DSLs, we can use the static type
system of the host (if any) and runtime checks—basically validation of
input arguments for each term. For a deeply embedded DSL, we have the
option of implementing a standalone type checker that can be invoked at
runtime once the AST is constructed, just like for an external DSL.

10.5 Quality Assurance and Testing Internal DSLs

To test an implementation of an internal DSL, use the host’s testing frame-
works like for any other API testing. The same coverage criteria apply as
in previous chapters: you want to test all syntactic elements, all static se-
mantics restrictions, and exercise the implementation of the semantics well.

Figure 10.27 presents a test fragment written in Quickcheck style for
the shallow implementation of transitions, testing the semantics of firing
transitions. We build a state with two transitions labeled by two different
actions (inputStr and inputStr1) and fire the first of them (Line 10). The
test establishes that a state with both transitions behaves the same as a state
with just the first one. This test is typical for shallow embeddings, where
we cannot access any representations but need to exercise the semantics
directly. For deeply embedded DSLs, we can explore the created syntax
tree and test properties directly on it, as explored by the following exercise.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/internal/shallow/ShallowSpec.scala

388 Chapter 10. Internal Domain-Specific Languages

Figure 10.28: A negative test
for the deep DSL of Fig. 10.7:

missing input. The test
passes when the example fails

to compile

1 """val m = (state machine "m1"
2 initial "s1" output "coin" target "selection"
3 end)""" shouldNot compile

source: fsm.scala/src/test/scala/dsldesign/fsm/scala/internal/deep/DeepSpec.scala

Exercise 10.12. In the deeply embedded DSL of Fig. 10.7 we can construct broken
machines without the initial state. Write a regression test that demonstrates
that this is a problem: build a test case without an initial state and invoke
EMF validation to show that the constructed instance violates the meta-model
constraints. The validation can be invoked using validate from scala/src/main/
scala/dsldesign/scala/emf.scala. Either call that function in your test or see how it
uses the EValidator support from Ecore and invoke it yourself.

We have previously emphasized the importance of using both positive and
negative examples for testing. If a syntactic constraint is not tracked by the
implementation (as in the above exercise), we can test it using a negative
example relatively easily. But what shall we do about properties that are
supposed to be tracked by the implementation? Any possible violation will
break the compilation (or interpretation) of the host program. The test suite
will not compile, rendering automatic testing unusable.

To work around this, we invoke the compiler of the host language from
the tests; the test fails if the compiler succeeds on negative examples or if it
fails to compile the positive examples. Some testing frameworks do this
automatically: they use meta-programming to attempt to compile a piece of
code and report a pass when the compilation fails. An example is shown
using the Scalatest framework in Fig. 10.28. There, we have a piece of state
machine where the keyword input and the input label are missing from the
state definition. The test passes if the example does not compile, but the
test suite continues execution despite the failure.18

10.6 Internal DSLs and the Language-Conformance Hierarchy

Recall that instances of an external DSL conform to a grammar defining the
language. This is dramatically different for internal DSLs: all instances of
internal DSL models always conform to the grammar of the host language.
Thus a finite-state machine in Figures 10.1, 10.9, and 10.11, whether shallow
or deep, primarily conforms to the definition of Scala (respectively Python).

None of the coffee machine models in this chapter conformed to any def-
inition of the external finite-state-machine language. They were programs
in the host language. The deeply embedded implementation (Fig. 10.7)
produces instances of the finite-state-machine meta-model (Fig. 3.1), but
as outputs. The DSL models do not conform to this meta-model, but the
program they represent evaluates to such an instance. Furthermore, the

18See https://www.scalatest.org/user_guide/using_matchers#checkingThatCodeDoesNotCompile. In-
cidentally, the example is written in Scalatest’s internal DSL, giving an illusion of English
phrases. The matcher compile is implemented using macros. It does not call the Scala
compiler—the test’s outcome is decided while compiling the test suite.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/internal/deep/DeepSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala
https://www.scalatest.org/user_guide/using_matchers#checkingThatCodeDoesNotCompile

10.6. Internal DSLs and the Language-Conformance Hierarchy 389

shallow embedding does not produce explicit instances at all! The execution
captures the semantics of the model directly, and thus the only conformance
we consider is that to the host language definition. The internal DSL
definition is represented indirectly in the API, and conformance to the DSL
is enforced by type-checking and potential runtime checks.

Further Reading

Outside the LISP tradition [15], the first conscious examples of internal DSLs
include languages for multimedia control and robotics applications embedded in
Haskell [14, 3]. Today the papers are mostly interesting for historical reasons. They
all exploit functional programming for building internal DSLs. While functional
programming (chiefly anonymous functions) remains highly relevant in this context,
today we know that internal DSLs thrive in most modern programming languages,
regardless of the paradigm followed [17].

An early documented case of the deep embedding pattern is shown by Leijen
and Meijer [12]. Gibbons and Wu [5] discuss the trade-offs between the deep and
shallow embeddings. They demonstrate a fold-based pattern in Haskell that reduces
the problem of low separation of concerns in shallow embedding implementations.

Myltsev [13] and the documentation of parboiled219 explain the design of this
popular parser combinator library for Scala in detail. Chiusano and Bjarnason [1]
go even further in their textbook on functional programming in Scala, devoting an
entire chapter to a discussion of design decisions in a parser combinator library.
They demonstrate that a PEG parser is a functor and monad. Jennings and Beuscher
[9] show another hardware description langauge (Verilog), or more precisely its
embedded variant in Scheme. Ghzouli et al. [4] present an in-depth analysis of
behavior tree languages from a language design perspective. Larsen, Hoorn, and
Wąsowski [11] describe the RxROS internal DSLs for reactive processing in robotics
in depth, including performance experiments.

Additional Exercises

Exercise 10.13. Implement a deeply embedded DSL to represent numbers in the
unary system as shown in the rightmost column of Fig. 10.29. The unary number
system is probably the simplest system for representation of information that we
can think of. A natural number is represented by the corresponding amount of
ones. Design an abstract syntax to represent the models and implement the API to
construct representations like the figure shows. Add a method to evaluate models
to strings or integers, so that we can print the value of the unary number as a
decimal, for example print(I I I) should print 3. The figure shows instances
in Scala. In other host languages you may need to use the navigation operator, or
parentheses around some arguments. If the task turns out to be difficult, consider
alternative designs. For instance, require commas, or dots between the digits.
Once you have the first design working, it is usually possible to improve it. See
also Exercise 10.25.

19https://github.com/sirthias/parboiled2/, seen 2022/09

https://github.com/sirthias/parboiled2/

390 Chapter 10. Internal Domain-Specific Languages

Figure 10.29: Decimal
numbers, the corresponding

binary and unary
representations, and examples

in an internal DSL

decimal binary unary internal DSL (Exercise 10.13)
1 1 1 I

2 10 11 I I

3 11 111 I I I

4 100 1111 I I I I

5 101 11111 I I I I I

Figure 10.30: More flexible
syntax for the unary

numbers DSL

decimal internal DSL (Exercise 10.15)
4 II II

5 II III

6 III III

10 IIIII IIIII

5 I III I

Exercise 10.14. In continuation of Exercise 10.13, consider a unary representation
of the number 4 in your DSL. Insert explicit parentheses and type annotations
into the expression representing 4, to reflect how the host language perceives it.
See Fig. 10.5 for inspiration. In your design, do all the "I" symbols refer to the
same host type, value, or function?

Exercise 10.15. Consider the following extension to the unary numbers DSL (Exer-
cise 10.13). We would like to make writing and reading numbers in our syntax eas-
ier. Following the telephone number conventions, we would like to glue together
pairs, triples, quadruples, and quintuples of digits (cf. Fig. 10.30). Implement
this internal DSL. If you have solved Exercise 4.35 on p. 138, then reflect on the
differences of addressing the same problem in an internal and external DSL. (This
exercise also makes sense for a shallow DSL, an extension of Exercise 10.25).

Exercise 10.16. A binary number only uses digits zero and one, for instance 101
in binary equals 1∗22 +0∗21 +1∗20 = 5. Design a deeply embedded internal
DSL for expressions representing binary numbers. Use letters I and O to represent
the digits, so that you avoid clashes with decimal digits of the host language. For
example, 101 could be written I O I. The expression should construct a represen-
tation of the abstract syntax that, when translated (for example with toString),
will return the character strings representing the decimal number stored.

Exercise 10.17. Ternary numbers, or base-3 numbers, also known as radix-3
numbers, are constructed from digits 0, 1, and 2. We use symbols O (as in Opera), I
(as in Infinity), and Z (as in Zoo) respectively in the internal DSL to avoid conflicts
with the regular digits of the host language. So a ternary number 102 (in decimal
1 ∗ 9+ 0 ∗ 3+ 2 = 11) is represented as I O Z in our internal DSL. Implement
this internal DSL as a deeply embedding API in a host language of your choice.
Exercise 10.18. Design a deeply embedded DSL to represent Roman numerals
up to 50. See Fig. 10.31 for a suggestion. This can be implemented either as a
deeply or shallowly embedded DSL. If you have solved Exercise 4.31 on p. 137
then compare the solutions and reflect on the differences between the external
and internal implementations.

10.6. Internal DSLs and the Language-Conformance Hierarchy 391

decimal internal DSL (Exercise 10.18)
4 I V

6 V I

7 V I I

9 I X

10 X

14 X I V

Figure 10.31: A proposal for
syntax of Roman numerals as
an internal DSL

1 XML {
2 tag ("StudyProgram") {
3 tag ("name", "value"->"SDT") /
4 tag ("course", "name"->"SMDP", "students"->89, "day"->"Mon") {
5 tag ("lecture01", "title"->"Introduction") { tag ("cancelled") / }
6 tag ("lecture02", "title"->"Algebra") /
7 }
8 tag ("course", "name"->"SPLC", "students"->21) /
9 tag ("course", "name"->"SASP", "students"->10, "day"->"Tue") /

10 tag ("course", "name"->"SPLS", "students"->3) /
11 tag ("MSc") /
12 tag ("fulltime") /
13 }
14 }

Figure 10.32: Constructing a
simple XML file
in an internal DSL

Exercise 10.19. Develop an internal DSL for defining data in XML format. Assume
that XML files contain tags and attributes with string or integer values. No free
text is allowed inside tags but tags can be nested. Figure 10.32 presents an
instance in a hypothetical syntax for inspiration. In the figure, we terminate a
tag construction with a slash to indicate that no nested tags are coming. You can
design the language so that the terminating slash is not needed, if you dislike it.
There exist several internal DSLs for representing XML values, so feel free to
search online for further ideas. You might want to use the host’s language support
for variadic functions (functions with a varying size of argument list). The arrow
syntax, used in many languages to create pairs, can be implemented differently.
The implementation should allow the constructed document to be serialized into a
string representing the XML data. The serializer should not depend on the internal
DSL API, only on the representation of the abstract syntax (the meta-model).

Exercise 10.20. Implement an internal DSL for defining formatters for dates stored
in simple records. A formatter is an object that given a date converts it to a char-
acter string in a user defined format. Figure 10.33 shows an example of a program
using the DSL. If you undertake the exercise in Scala, this program should compile
and work the same way with your DSL in scope. If you use another host language
than Scala, be prepared to modify the syntax to fit the host language. You can
choose between a shallow and a deep embedding yourself. The course repository
includes an example solution as a shallowly embedded DSL in Scala, but try to
design your solution before consulting the repository (dateformatter.scala/).

Exercise 10.21. Reimplement the finite-state-machine DSL in another host than
Python and Scala. Decide whether the embedding should be shallow or deep,
depending on the available infrastructure, expressiveness, and personal prefer-

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.dateformatter.scala/

392 Chapter 10. Internal Domain-Specific Languages

Figure 10.33: An example
program using an internal DSL
for building date formatters. In
all but the first line, a formatter
object is constructed in braces.
Here, println is a method of

the formatter class invoked
directly to demo. See

Exercise 10.20

1 val d = Date (31, 5, 2022) // outputs:
2 { yyyy - mm - dd } println d // 2022-05-31
3 { mm / dd / yyyy } println d // 05/31/2022
4 { yyyy mm dd } println d // 20220531
5 { yyyy (".") mm (".") dd } println d // 2022.05.31
6 { mmm (" ") yy } println d // May 22
7 { mmm (" ") ddth (", ") yyyy } println d // May 5th, 2022
8 { / mmm (" ") ddth (", ") yyyy / } println d // /May 5th, 2022/
9 { ("(") mmm (" ") ddth (", ") yyyy (")") } println d // (May 5th, 2022)

source: dateformatter.scala/src/main/scala/dsldesign/dateformatter/scala/Main.scala

ences. Discuss the differences between our implementations and yours. Are you
using objects or functions to represent the model? What constructs of the host
language are you using to obtain the syntax encoding? Do you have better or
worse control over static validity rules? Are the error messages for the user more
or less readable?

Exercise 10.22. Modify the implementation of the deep finite-state-machine lan-
guage (Fig. 10.7 or Fig. 10.10) to add a possibility that users provide a documenta-
tion string for a machine model. For example, invent and inject your own keyword
or a comment operator (say >>) into the design. Alternatively, make the opening
or closing keyword already present in the language take an optional comment
string as an argument. Multi-line string literals in Scala or Python could be used
to represent the comment values. Consider several designs and implement the
one you find a good compromise between usability and the implementation cost.

Exercise 10.23. Modify the Python implementation of the finite-state-machine
DSL (Fig. 10.10, fsm.py/FsmInternalDeep.py) to enforce that for each transition
the output label can only be specified after an input label, and the target is only
allowed after input or output but not before. This can be done in at least two
ways: either using separate builder classes for different stages like in our Scala
design, or by introducing runtime checks (fail if you see an output label before an
input). Note that in Python both designs are enforced at runtime unless you use
an external type checker.

Exercise 10.24. Reimplement the deeply embedded internal DSL for finite-state
machines (Fig. 10.7) so that the final call to end is not needed. This requires that
every state element, every initial element, and each transition line produce
a valid Ecore model which can be returned directly. Most operations need to be
implemented as extension methods on Ecore generated classes. A simpler version
of this exercise can be done with your own abstract syntax instead of Ecore.

Exercise 10.25. Implement the unary numbers DSL (see Exercise 10.13) as a
shallowly embedded internal DSL. Each sub-expression should produce an integer
number directly. You likely need a host language which supports extension
methods, either directly or by implicit conversions. After you are done, prepare a
fully typed explanation of how the language works in the style of Fig. 10.5.

Exercise 10.26. Generalize the design of the shallow DSL for finite-state machines
in Scala (Fig. 10.12) to take any input and output type instead of string for
messages. This requires changing the type State to be generic, as in State[
Input, Output]. Similarly for the other class, Suspended. One difficulty with
the state type is that we need to provide an error message for the basic transition

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.dateformatter.scala/src/main/scala/dsldesign/dateformatter/scala/Main.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/FsmInternalDeep.py

References 393

in line 5. If the output type is generic, the return value can no longer be a string. A
cheap solution is to produce None instead. Alternatively, make state take an error
message argument explicitly, or make state require the existence of a type-class,
say ErrMsg[Output], and provide the instances for basic types in the DSL library.

Exercise 10.27. Change the shallow implementation of the finite-state-machine
DSL to take arbitrary guard conditions on transitions. The simplest way seems to
be to accept any function of the type String => Boolean that given an input label
evaluates a condition to decide whether the transition should fire or be skipped.
For example (cf. Fig. 10.11):

lazy val selection: State[String] = (state
input {i => i=="tea" && beans>9} output "serving tea" target makingTea

Exercise 10.28. Implement a shallow variant of the deeply embedded DSL from
Exercise 10.16 or Exercise 10.17.

Exercise 10.29. Build an internal DSL for constructing feature models (see Chap-
ter 11, Fig. 11.10). A possible meta-model to use can be found in Figures 3.20
and 3.21. The constructed representation should accept a parameter representing
a configuration (for instance a list of selected features, or a map from feature
names to Boolean values) and return true if the configuration is an instance of the
represented model, false otherwise. First, build a representation without cross-
tree constraints. Then consider adding the possibility of expressing cross-tree
constraints using the expression language of the host language.

Exercise 10.30. Study Jnario (https://github.com/sebastianbenz/Jnario), an implemen-
tation of behavior-driven design in Xtend (or choose any other BDD implementa-
tion in your language of choice, say Cucumber or Rspec). The core of Jnario is an
internal DSL in Xtend for writing behaviors and specs. Study the implementation
of Jnario, and argue why it is an internal DSL. What is its target user base? How
is it implemented? Is it deeply or shallowly embedded?

Exercise 10.31. (An extension of Exercise 10.12 on p. 388 for the deeply em-
bedded finite-state-machine language of Fig. 10.7) Write a property-based test
that generates random fsm models in the internal DSL syntax and checks that
all the models randomly constructed validate against the meta-model in Ecore.
The implementation of the deep DSL can be found in fsm.scala/src/main/scala/
dsldesign/fsm/scala/internal/deep.scala and the test can be added to fsm.scala/src/
test/scala/dsldesign/fsm/scala/internal/deep/DeepSpec.scala. This test will fail if
your generator can create models without the initial state (expected!). Then
refactor the implementation of the deep DSL to pass the test (force that initial
is required). You can invoke EMF validation using the validate function from
scala/src/main/scala/dsldesign/scala/emf.scala.

References
[1] Paul Chiusano and Rúnar Bjarnason. Functional Programming in Scala.

Manning, 2014 (cit. p. 389).
[2] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages:

An annotated bibliography”. In: SIGPLAN Notices 35.6 (2000) (cit. p. 381).
[3] Conal Elliott. “An embedded modeling language approach to interactive

3D and multimedia animation”. In: IEEE Trans. Software Eng. 25.3 (1999)
(cit. p. 389).

https://github.com/sebastianbenz/Jnario
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/internal/deep.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/internal/deep/DeepSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/dsldesign/fsm/scala/internal/deep/DeepSpec.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/dsldesign/scala/emf.scala

394 Chapter 10. Internal Domain-Specific Languages

[4] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and
Andrzej Wąsowski. “Behavior trees in action: A study of robotics applica-
tions”. In: International Conference on Software Language Engineering
(SLE). Ed. by Ralf Lämmel, Laurence Tratt, and Juan de Lara. ACM, 2020
(cit. p. 389).

[5] Jeremy Gibbons and Nicolas Wu. “Folding domain-specific languages:
Deep and shallow embeddings (functional pearl)”. In: ACM SIGPLAN
International Conference on Functional Programming (ICFP). Ed. by Johan
Jeuring and Manuel M.T. Chakravarty. ACM, 2014 (cit. pp. 364, 371, 389).

[6] Paul Hudak. “Building domain-specific embedded languages”. In: ACM
Comput. Surv. 28.4es (1996), p. 196 (cit. pp. 357, 382).

[7] IEC/IEEE. IEC/IEEE International Standard - Behavioural Languages
- Part 1-1: VHDL Language Reference Manual. IEC 61691-1-1:2011(E)
IEEE Std 1076-2008. 2011. DOI: 10.1109/IEEESTD.2011.5967868 (cit. p. 380).

[8] IEEE. IEEE Standard for SystemVerilog–Unified Hardware Design, Specifi-
cation, and Verification Language. IEEE Std 1800-2017 (Revision of IEEE
Std 1800-2012). 2018. DOI: 10.1109/IEEESTD.2018.8299595 (cit. p. 380).

[9] James Jennings and Eric Beuscher. “Verischemelog: Verilog embedded in
Scheme”. In: DSL. ACM, 1999 (cit. p. 389).

[10] Richard B. Kieburtz. Defining and Implementing Closed, Domain-Specific
Languages. Invited talk at the Workshop on Semantics, Applications and
Implementation of Program Generation (SAIG). 2000 (cit. p. 382).

[11] Henrik Larsen, Gijs van der Hoorn, and Andrzej Wąsowski. “Reactive
programming of robots with RxROS”. In: Robot Operating System (ROS):
The Complete Reference (Volume 6). Ed. by Anis Koubaa. Springer, 2021
(cit. p. 389).

[12] Daan Leijen and Erik Meijer. “Domain specific embedded compilers”. In:
DSL. ACM, 1999 (cit. p. 389).

[13] Alexander A. Myltsev. “Parboiled2: A macro-based approach for effective
generators of parsing expressions grammars in Scala”. In: CoRR (2019).
DOI: https://doi.org/10.48550/arXiv.1907.03436 (cit. p. 389).

[14] John Peterson, Paul Hudak, and Conal Elliott. “Lambda in motion: Control-
ling robots with Haskell”. In: Practical Aspects of Declarative Languages
(PADL). Ed. by Gopal Gupta. Vol. 1551. 1999 (cit. p. 389).

[15] Erik Sandewall. “Programming in an interactive environment: the “LISP”
experience”. In: ACM Comput. Surv. 10.1 (1978) (cit. p. 389).

[16] Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing,
2019. URL: https://github.com/schoeberl/chisel-book (cit. pp. 380, 381).

[17] Weixin Zhang and Bruno C.d.S. Oliveira. “Shallow EDSLs and object-
oriented programming: Beyond simple compositionality”. In: Art Sci. Eng.
Program. 3.3 (2019) (cit. p. 389).

https://doi.org/10.1109/IEEESTD.2011.5967868
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.48550/arXiv.1907.03436
https://github.com/schoeberl/chisel-book

11 Software Product Lines

The species that survives is the one that is able
best to adapt and adjust to the changing

environment in which it finds itself.

Leon C. Megginson

We will now look at the application of MDSE for so-called software product
lines—portfolios of software variants in a particular application domain. We
will discuss the systematic engineering of product lines using methods and
tools from the field of software product line engineering (SPLE). This field
advocates the creation of configurable software platforms that use MDSE
technology. From such platforms, the software products (i.e., the individual
variants) can be derived, typically in an automated process supported by
interactive configurator tools. As such, software product lines are kinds of
software architectures that aim at maximizing the reuse of code, the reuse of
other software development artifacts, and the reuse of engineering efforts.

In this chapter, our focus is on models and DSLs for the domain software
product lines. As we will show, real-world product lines typically exhibit
large and complex variability that needs to be managed—and effectively
managing variability requires modeling it, using dedicated DSLs called
variability-modeling languages. Intuitively, the software variants that are
part of a product line (or that can be derived through configuration from
a product line), share commonalities and variabilities—for instance, some
functionality is sometimes there, sometimes not. Often, certain functionality
also depends on other functionalities. So, these functionalities and their
dependencies need to be modeled. To this end, a range of variability-
modeling languages has been developed, many of which express the logic
that some functionality (referred to as a feature in the remainder) can be
present or absent in a concrete variant of the product line. However, more
expressive languages also exist—for instance, when variants differ in how
certain parts are connected with each other, which is called topological
variability. For the former kind of variability, using so-called feature- or
decision-modeling languages suffices (see our case study on the Linux
kernel in Sect. 11.2), while for the latter, dedicated DSLs need to be created
(see our case study on fire alarm systems in Sect. 11.5).

11.1 Software Variants

The need for software variants is increasing—not only due to an ever-
increasing diversity of hardware, runtime environments, and market seg-
ments, but also through new application scenarios for embedded or cyber-
physical devices, such as wearables or Internet of Things (IoT) devices.
Creating variants of software systems allows organizations to address such
varying stakeholder requirements. It allows them to experiment with new

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_11

395

https://doi.org/10.1007/978-3-031-23669-3_11
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_11&domain=pdf

396 Chapter 11. Software Product Lines

Feature Models are Languages, Too
Recall that this book is primarily about creating modeling languages, not so much about using languages
(but, of course we use meta-modeling languages for creating other languages). From the descriptions
above, you might think that this chapter is mainly about using languages to model the variability of
software product lines. However, the languages that we will discuss are in fact meta-modeling languages
with different levels of expressiveness. You will see that, when creating feature models, you are actually
creating a new language—a specific feature model—that describes the whole product line and that can
be instantiated by creating a configuration. The latter is a model that represents a concrete software
variant and that conforms to the feature model.

As such, this chapter will also introduce you to simpler and less expressive meta-modeling languages
than class diagrams. In fact, we will present you a spectrum of languages. Class diagrams are certainly
the most expressive ones, and in all the chapters above we have used their power to create DSLs
describing possible instances of software systems or parts thereof. But here, you will see that less
expressive meta-modeling languages exist that can suffice as well. We will specifically discuss the
advantages and disadvantages of using DSLs versus feature models, and also explain the spectrum of
languages between the two.

ideas or optimize non-functional requirements, such as performance, power
consumption, or cost.

Opportunistic software reuse. Consider a typical scenario of opportunistic
code reuse, without a product line architecture. In this scenario, a developer
clones (copies) a fragment of code that implements some functionality that
has already been developed in an existing project. This allows her to reuse
past effort very easily and fast, but unfortunately leads to multiplication of
maintenance efforts. The cloned code starts to live its own life. If she fixes
a bug in it, it is very likely that the bug will persist in the original project.
Fixing it there requires additional effort. Also, if the original is fixed, it is
unlikely that the correction will be propagated to the new project. Further-
more, all the effort on testing the code is now duplicated in the two projects.

Over time, the software organization will have a number of projects
that share pieces of functionality, but that do not really share code. They
only contain copies (clones) of similar code. The shared code in a product
system decreases, and the product-specific code grows. If this continues,
costs will grow with the age of the projects, and ultimately the entire system
family may become too expensive to maintain.

Similar problems appear when this so-called clone & own [45, 27, 26,
120] reuse is organized using branching in a version-control system. Many
developers initially start to use branching or forking to maintain variations of
software, but this only works for limited kinds of variations, and even there
it is hard to propagate bug fixes between branches and clones. Through par-
allel development, developers also commonly face merge conflicts [90, 92,
87, 1], which they need to resolve manually. Essentially, clone & own is only
manageable if there is just one difference per variant. Then, using the notion
of feature branches or using a dedicated branching strategy, such as that

11.1. Software Variants 397

of Staples and Hill [121], can help. But, in general, version control is not
well suited to organizing many variants of software in parallel over time—
representing software evolution in space [12]. It is much better suited to or-
ganizing sequential variants—a.k.a. history, representing software evolution
in time [12]. Branches and forks should be used to organize the development
process (for instance, using feature branches) and not the architecture.

Opportunistic reuse with clone & own is in fact the most common strategy
that organizations use for creating software variants [16]. Many compa-
nies have documented their experiences [53, 121, 46, 45, 21] of using
clone & own. There are also many open-source projects handling their
variants with this strategy, such as open-source firmware [120, 82], families
of Android apps [26, 94, 26], families of Java and Android games [3, 42,
81], web applications [72], as well as robotics control software [59, 57, 58].

Let us take a look at the 3D printer firmware Marlin [120, 82, 79], which
has over 17,000 forks nowadays. Almost 20 % of these forks represent dif-
ferent variants [120], since new features were developed in them, such as to
support new printer models. Interestingly, many other forks just change Mar-
lin’s configuration file as a pragmatic way to store individual configurations.

Forking provides substantial flexibility and drives innovation in Marlin
[120]. It allows experimenting, and the fork developer has full control
without affecting the codebase of the main project repository. In fact,
forks contributed to the firmware with 58 % of Marlin’s commits. With
this practice, the Marlin community follows GitHub’s recommendation
to use forking for developing projects, which is often referred to as pull-
based development [60]. In practice, a developer creates a fork, makes
modifications, and then creates a pull request to push the changes back
to the main project repository, where the changes are reviewed and either
merged or rejected. When working on a fork, developers need to pull the
recent development changes from the original project repository, which
usually evolves when the developer works on the fork.

Marlin also faces the typical problems of clone & own. First, there
is the need to propagate changes, especially bug fixes, across the forks.
Unfortunately, the propagation of bug fixes is scarce in Marlin. For instance,
for a particular bug that crashed the firmware, nine months after it was fixed,
only 7 % of the forks had adopted the fix [120]. In general, very few
forks (15 %) adopt changes at all. The second typical problem that can be
observed with clone & own in Marlin is that it is easy to lose overview of the
forks and their content. Finding interesting additions and features becomes
challenging. Figure 11.1 shows that sometimes new features can be hidden
in the fourth level of forks from the main Marlin project. So, developers
can easily lose overview of the features that exist in the fork ecosystem, as
well as they may be unaware of the development that is going on.

Marlin is also highly configurable, offering around 140 configuration
options in a configuration file to customize Marlin to users’ needs and to
optimize it with respect to memory consumption. In fact, as software that

398 Chapter 11. Software Product LinesResults and observations - Decentralization

17

Figure 11.1: Features hidden in the Marlin fork ecosystem. Source: S, tefan Stănciulescu

runs on embedded systems, the available hardware resources are sparse. As
a Marlin contributor acknowledges, “not all boards have enough space to
run all the features,” which calls for making many of its functionalities (i.e.,
its features) optional. Relying on C++, Marlin adopted the C preprocessor’s
conditional compilation directives (e.g., #ifdef, #if) to cut out code from
the source files that pertains to disabled features based on the values of the
configuration options. Marlin uses these directives to facilitate flexibility
of using several variants (e.g., for testing) and to account for memory
constraints. Marlin even explicitly prescribes their use to realize optional
features and to integrate functionality (features) from a fork in the main
project. This way, Marlin benefits from community contributions, while
keeping the increase in functionality manageable, still allowing its users to
tailor and customize Marlin to their needs.

In summary, Marlin uses clone & own and also some sort of more sys-
tematic management of its variability using configuration options and C
preprocessor directives. We will now look more into the latter, where we
will more abstractly talk about these concepts, referring to configuration op-
tions as optional features and the preprocessor directives as variation points.

Systematic software reuse. The more variants a system has, the more it
needs to adopt dedicated methods and tools to manage variability—or, in
other words, to systematically reuse software. Let us look at five large
systems that manage vast amounts of variability [15]: the Linux kernel as a
general-purpose operating-system kernel, eCos as an operating system for
deeply embedded devices, the Debian Linux distribution as a complete oper-
ating system with applications, Eclipse as a platform for customizable IDEs
with plugins, and Android as a mobile operating system with apps. Each of
these has established a software platform with a vibrant software ecosystem
around it [24, 71, 15]. In these ecosystems, third-party contributors provide
additional value, way beyond what the platform vendors would be able to
accomplish. These contributions to the platform have led to vast variability
in these five systems. The Linux kernel boasts 15,000 configuration options,

11.2. Case Study: The Linux Kernel 399

allowing it to operate in many different hardware and runtime environments,
ranging from Android phones to large supercomputer clusters and server
farms. eCos has over 2,800 configuration options and packages to make it
run on many different hardware boards. Debian and Eclipse have tens of
thousands of software packages and plugins, respectively. Android boasts
over 2 million apps today. Each of these software ecosystems uses different
variability mechanisms and strategies to systematically manage variability,
as illustrated in Fig. 11.2. Linux and eCos use feature models, which
are hierarchical menus of configuration options and their dependencies
(explained in detail in Sect. 11.4). eCos, Debian, and Eclipse use package-
management systems where so-called manifest files describe the variability
information (e.g., name and version of a package, dependencies between
packages). Eclipse and Android use service-oriented management and
execution of apps, which is characterized by dynamic-binding lookup of
app dependencies via the capabilities they offer.

Looking at the Linux kernel, eCos, Debian, Eclipse, and Android reveals
a spectrum of different variability mechanisms and strategies. In this order,
as shown in Fig. 11.2, we can observe that to the left, the domains are
highly technical, while those to the right are more end-user-oriented. To
the left, we find rather static and closed configuration, where the whole
space of configuration options is declared in one model, while to the right,
the systems focus more on dynamic and open configuration. The systems
to the left also rather strive to control and manage variability, controlling
the system’s scope, and strictly assuring contribution quality; while those
systems to the right focus more on encouraging variability to foster growth
of the ecosystem, letting the community decide the scope, encouraging
competition and community innovation.

In summary, we can see that using feature models works and scales
well for static variability in engineering domains. Feature models support
fine-grained, low-level, and controlled configuration. To the contrary, the
open and dynamic ecosystems grow fast and, therefore, rely on mechanisms
that we call dynamic binding, runtime-service lookup, capability-based
dependencies, and easy download and installation. For more details about
these mechanisms, we refer to Berger et al. [15].

In the remainder, our focus is on feature models as a language1 that is
not only confined to systems such as the Linux kernel or other software
product lines, but feature models can be seen as a very intuitive language to
model systems, domains, concepts, or other languages.

11.2 Case Study: The Linux Kernel

Let us look a bit deeper into the Linux kernel’s systematic software reuse,
specifically its use of variability modeling. Like Marlin, it has tens of
thousands of forks, but also systematically reuses software with a highly

1In fact, there is no single language, but “feature models” can rather be seen as a family of
languages, with a large number of variations proposed in the literature [75, 13].

400 Chapter 11. Software Product Lines

Figure 11.2: Variability
mechanisms in five software

ecosystems
feature models manifest-based

packages
service-oriented

applications

eCosLinux

Kernel

Debian Eclipse Android

configurable software platform comprising more than 15,000 features today.
The majority of these features represents configuration options that can
have values of a specific type, most of which control the inclusion of source
code for compilation in the build process. The predominant programming
language is C. The variability is realized using different mechanisms, in-
cluding the C preprocessor with its conditional compilation directives (e.g.,
#ifdef), ordinary if statements in the C source code, and a configurable
build system relying on Make [91]. The former two control the selective
compilation of parts of a C file by removing the parts that should not be
included for the present configuration, while the build system selectively
compiles whole files.

Users configure the kernel interactively via its configurator tool, which
exists in three different variants. Figure 11.3 shows a screenshot of the
graphical configurator; the other two variants of the configurator are opti-
mized for shell use. While end-users typically do not need to modify the
default configuration provided with the Linux distribution that ships the ker-
nel, it is sometimes necessary even for end-users to tweak the kernel towards
specific hardware or environments. Linux developers or system integrators
modify the configuration much more, allowing the kernel to run in a large
range of environments, from supercomputer clusters to Android devices.

Users create a kernel configuration by giving values to features (mainly
by selecting or deselecting them) in the configurator tool (see Fig. 11.3).
A configuration is an assignment of concrete values to features according
to the feature’s type and other constraints. To derive a customized Linux
kernel, the configuration is then used in the kernel’s build process to steer
the inclusion of source files [18] for compilation. Specifically, the build
system selects the files relevant for the selected features—more precisely,
the files whose presence condition (cf. Def. 11.4 below) evaluates to true2—
and then the C preprocessor outputs C source files that are customized via

2It is actually even more complicated, since the build system does not use presence conditions
explicitly, but they are encoded using some convention. See Berger et al. [18] for more details.

11.2. Case Study: The Linux Kernel 401

Figure 11.3: The Linux kernel
configurator, showing the
Kconfig language’s concrete
syntax

conditional compilation directives (e.g., #ifdef, #if) within these files. The
preprocessed source files can then be compiled and linked. In addition to
this rather static mechanism (a variation point that is bound at build time
cannot be changed without rebuilding the kernel), many features also control
so-called loadable kernel modules, which can be loaded dynamically at
runtime. With the exception of these modules, very similar mechanisms can
be found in many other systems software projects [19] written in C or C++.

Not all combinations of features and their values are valid. A configura-
tion needs to adhere to constraints. Given the sheer size of the kernel, these
constraints need to be declared together with the features in a so-called
variability model. Constraints mainly arise from dependencies between
features [96], for instance, when the code included by one feature references
code that is only included in another feature. There are also dependencies
between different hardware, which leads to dependencies between device-
driver features. Sometimes, developers also declare constraints that prevent
combinations of features that have not been tested or are not (yet) supported.

To declare the features together with their constraints and some other
meta-information (e.g., feature description), the Linux kernel comes with a
DSL called Kconfig [131]. The DSL has one graphical and multiple textual
syntaxes, implemented in the respective configurator tools (Fig. 11.3 shows
the graphical configurator) [54]. The Linux kernel model spans over 1,000
files written in the textual Kconfig syntax and distributed over the kernel
codebase, following its structure. To this end, Kconfig offers a simple
modularization concept, where (sub-) Kconfig files can be referenced in
a Kconfig file and are then included by the configurator. Kconfig and the
configurator tool are also used in various other systems software projects,
such as Busybox, and embedded libraries, such as uClibc [19].

The most important semantics exhibited by a Kconfig model is called
configuration space semantics, meaning that a model describes all possible

402 Chapter 11. Software Product Lines

valid configurations. Another relevant semantics is called ontological
semantics, which refers to the hierarchical organization of features. Both
semantics are implemented in the configurator tool. For the former, it
restricts the valid changes to those that lead to a configuration that still
adheres to the constraints. For the latter, the configurator renders a hierarchy
of features as a hierarchical menu browseable the users.

The kernel’s model and the Kconfig language have evolved continuously
since Kconfig was introduced as a DSL in October 2002. As such, both
the language and the model are already relatively old, nicely illustrating
how such models and languages evolve [85]. We can clearly see that the
evolution of the kernel is feature-driven, since the code and the Kconfig
model co-evolve. When changing or adding features (e.g., a device driver),
developers usually also need to modify Kconfig files or provide a new
Kconfig file, respectively.

We say that Kconfig is a feature-model-like language, since its syntax
can be mapped to feature models [19, 116, 114]. Feature models are the
most popular notation for modeling features and their constraints, and
we will discuss them in detail in Sect. 11.4. Like feature models, Kconfig
organizes the features in a hierarchy, offers mandatory and optional features,
feature groups, and feature types. Using these concepts imposes constraints
among features. Any additional constraints (e.g., a dependency between
two features, regardless of how far away they are in the hierarchy) can be
expressed as so-called cross-tree constraints. To this end, Kconfig provides
a simple constraint language with three-state logic [76] for controlling
the binding mode of features (a feature of type “tristate” can be set to
disable, enable, or compile as module), as well as comparison, arithmetic,
and string operators. Furthermore, Kconfig also exhibits concepts that go
beyond feature modeling, mainly to scale the model to over 15,000 features.
Among others, it offers visibility conditions for features, modularization
concepts, default values, and derived features. For a detailed explanation
of all these concepts, we refer to a study about the syntax and semantics
of Kconfig by Berger et al. [19], as well as a description and extension of
the configurator [54]. We will also explain feature modeling in more detail
shortly, in Sect. 11.4, and we describe a feature-modeling methodology
extensively in Chapter 12.

Let us look at a small excerpt of the Linux kernel model that is shown
in Fig. 11.4. It illustrates the definition of features and constraints for an
embedded file system included in the kernel that is called Journalling Flash
File System (JFFS2). We also show the excerpt with more features in the
graphical feature-model syntax in Fig. 11.8. Our model excerpt shows the
definition of the following seven features.

• MISC_FILESYSTEMS is a feature that is mainly used to organize the
model. Still, it can be selected or deselected, the latter to disable its
whole sub-tree comprising many more “miscellaneous” filesystems.

11.2. Case Study: The Linux Kernel 403

1 menuconfig MISC_FILESYSTEMS
2 bool "Miscellaneous filesystems"

4 if MISC_FILESYSTEMS

6 config JFFS2_FS
7 tristate "Journalling Flash File System" if MTD
8 select CRC32 if MTD

10 config JFFS2_FS_DEBUG
11 int "JFFS2 Debug level (0=quiet, 2=noisy)"
12 depends on JFFS2_FS
13 default 0
14 range 0 2
15 --- help ---
16 Debug verbosity of ...

18 config JFFS2_COMPRESS
19 bool "Advanced compression options for JFFS2"
20 depends on JFFS2_FS

22 choice
23 prompt "Default compression" if JFFS2_COMPRESS
24 default JFFS2_CMODE_PRIORITY
25 depends on JFFS2_FS
26 config JFFS2_CMODE_NONE
27 bool "no compression"
28 config JFFS2_CMODE_PRIORITY
29 bool "priority"
30 config JFFS2_CMODE_SIZE
31 bool "size (EXPERIMENTAL)"
32 endchoice

34 endif

Figure 11.4: Kconfig excerpt
for a filesystem (JFFS2)
available in the Linux kernel,
shown in textual concrete
syntax

• JFFS2_FS is the feature that represents the JFFS2 filesystem, which is of
type “tristate” and can have three values (similar to Kleene’s three-state
logic [76]): “y” (yes, compile into the kernel), “n” (no, do not compile at
all), or “m” (module, compile the feature as a loadable kernel module).
It depends on the two other features MTD and CRC32, each in a slightly
different way, but this subtle semantic difference is not so important
here. In short, the latter dependency, declared with the keyword select,
automatically selects the depending feature when a user selects JFFS2_FS,
while the former does not (when MTD is disabled, JFFS2_FS is grayed
out and cannot be selected).

• The feature JFFS2_FS_DEBUG sets the debugging level as an integer
ranging from 0 to 2 (default 0). Notice the keyword depends on, which
has a dual meaning. It expresses a dependency, but also that the feature
should be a sub-feature of JFFS2_FS. Finally, we show the syntax of the
feature description in Fig. 11.4, which we, for brevity, omit for the other
features in the excerpt.

404 Chapter 11. Software Product Lines

• The feature JFFS2_COMPRESS enables data compression in the filesys-
tem and is, as a simple configuration option, only a Boolean feature
(keyword bool). Its parent feature is set to JFFS2_FS, which this option
also depends on.

• Thereafter, we see a feature group named “Default compression” with
three features in our excerpt of the Linux kernel model. Exactly one of the
three features can be selected: JFFS2_CMODE_NONE, JFFS2_CMODE_-
PRIORITY or JFFS2_CMODE_SIZE.

Kconfig is a complex DSL with intricate semantics. Consider again the
dual meaning of the keyword depends on, which can express both a cross-
tree constraint and a hierarchy relationship. The latter is not obvious, and
there are further ways of (again, rather implicitly) expressing the hierarchy,
which illustrates a language design issue. A developer more familiar with
curly-brace-dominated languages, such as Java or C, would probably find
using parentheses, brackets, or curly braces a more natural way to explicitly
represent the feature hierarchy. Many other surprises exist, especially when
combining different elements of Kconfig. For instance, default values for
features are only defaults when the feature is visible; otherwise, the default
determines the feature’s value and cannot be changed.

We see various explanations for the complexity of Kconfig:

• First, the configurator tool is not very intelligent, in the sense that it
does not support intelligent choice propagation or conflict resolution.
A conflict occurs when a user wants to set at least two features to
values that violate constraints. The transitivity of dependencies can make
the resolution of conflicts challenging. Support for conflict resolution
[54] could help users substantially when they need to enable or disable
features, which requires enabling or disabling other features, and so on.
Presently, Kconfig tries to tackle this problem with imperative choice
propagation that is triggered via certain types of constraints (e.g., select
does choice propagation, but depends on does not), which complicates
the language and requires the developers who edit the model to already
think about choice propagation. Still, despite this mechanism, performing
the configuration is still challenging. In fact, a survey among Linux users
[67] revealed that it takes 68 % of them a few minutes to activate an
inactive feature on average, with 20 % stating even a few dozen minutes.
It also revealed that the advice given by the configurator (and feature
descriptions) is often incomplete, hard to understand, or incorrect.

• Second, the Kconfig language was not systematically engineered, as
opposed to what we advocate in this book. In fact, when Kconfig was
introduced in October 2002, the developers decided against another
language that came with more intelligent configuration support (based
on a reasoner in the background) and a language with simpler syntax
and more intuitive semantics. However, Kconfig is a bit more script-like,
which generally appeals to Linux developers.

11.2. Case Study: The Linux Kernel 405

• Third, Kconfig has been continuously extended, together with its config-
urator tooling. Language evolution is typically required to be backwards
compatible, which under long lifespans complicates the language.

Kconfig’s complexity makes it challenging to extend the configurator
or build further (intelligent) tools to support the Kernel configuration. For
instance, it would be valuable to incorporate better choice propagation and
intelligent conflict resolution support using off-the-shelf logical reasoners,
such as SAT, SMT, or CSP solvers [108]. Using such a reasoner, however,
requires the kernel model to be transformed into the logical representation
needed by the solver (e.g., a propositional logic formula in conjunctive
normal form in the case of a SAT solver). This, in turn, requires the exact
syntax and semantics of Kconfig to be understood in order to develop a
valid model transformation. Unfortunately, from our own experience [54],
reverse-engineering the syntax and semantics of Kconfig is difficult and
laborious. Syntax and semantics are hidden in the implementation of the
kernel’s configurator tool. In our case, we read the Kconfig documentation,
tested the behavior of the configurator on small examples, and inspected
the configurator’s implementation [116, 19]. Formally defining syntax and
semantics took over one month, and implementing the transformation into
a propositional logic formula another few months. In a more recent effort,
we implemented the semantics and a conflict resolution algorithm fully
in C [54]. Various other researchers also implemented transformations
themselves later, and were also challenged by Kconfig’s complexity, as
shown in a survey by El-Sharkawy, Krafczyk, and Schmid [114].

Another open-source DSL used in systems software is CDL (Component
Definition Language) [19, 17], specifically in the embedded operating sys-
tem eCos. Compared to Kconfig, CDL has a syntax that is more intuitive for
users familiar with curly-brace-like languages and a more obvious seman-
tics, lacking many of the surprising behaviors of Kconfig. The configurator
tool for CDL is also more intelligent, as it comes with a built-in reasoner that
resolves configuration conflicts automatically, showing users sets of changes
that can be made to a configuration to a feature to be set to a certain value.

Exercise 11.1. The Linux kernel and the Android operating system are two
prominent examples of variability-rich systems. After we have discussed the
Linux kernel’s variability in depth, discuss how Android’s variability mechanisms
differ from those used in the kernel. Discuss the following aspects: the goal of
variability, the target users of the products, the representation of variability, the
granularity of variability, and two other aspects you find relevant. To learn more
about Android’s mechanisms, you could read our paper Berger et al. [15].

Note that there is no notion of completeness for your discussion, and obviously,
you cannot cover all the details given in the paper. But cover the aspects above
(plus the two you find relevant). Imagine you are describing it to a software
architect who does not know about either Linux’s or Android’s variability mecha-
nism, but needs to decide about what mechanisms to use for an architecture she is
designing for some software platform.

406 Chapter 11. Software Product Lines

11.3 Software Product Line Engineering

Let us now look at the SPLE paradigm. Our understanding of the Linux
kernel as a highly configurable system will help, since it uses mechanisms
known from SPLE. While the Linux kernel originates from practitioners,
and SPLE mainly from researchers who worked closely with industry, both
came up with similar concepts. However, SPLE is more than just a bunch of
mechanisms, it is a paradigm comprising a business, process, architecture,
and organizational aspects, providing a tool box and practices for each
of these aspects. SPLE gained popularity in the 1990s and early 2000s,
but it goes back to research on so-called program families in the 1970s as
described by Parnas [100].

SPLE arose from the observation that opportunistic reuse does not scale
with the number of software variants, as we discussed above. The following
is a well-established definition of what a software product line is.

Definition 11.1. A software product line is a set of software-intensive
systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way.3

This definition emphasizes the following core characteristics of software
product lines when systematically developed using SPLE. First, a product
line represents a portfolio of software products (“set of software-intensive
systems”).4 Second, SPLE advocates that a software product line is realized
via a configurable (a.k.a. integrated) software platform (“share a common,
managed set”) from which the individual variants can be derived, often in
an automated and tool-supported process (“in a prescribed way”). Third,
SPLE manages the platform using the notion of feature (“managed set of
features”), which abstractly represent the common and variable function-
alities of products in the product line. As such, the individual products, or
variants, are defined by the features they provide. Fourth, SPLE is effective
when the products pertain to a particular domain, which, as you recall from
Def. 2.2 in Sect. 2.2, is an area of knowledge containing concepts and
terminology understood by practitioners and including the knowledge to
build systems in the area [7, 39].

Organizing your software production into a product line is usually linked
with an intention to address a certain well-scoped market niche, by pro-
viding well-customizable software for this niche and its stakeholders. The
production of this software should rely on systematic reuse. As such, the
notion of domain is crucial. When software systems do not belong to the
same domain, it is usually not meaningful to develop them as a product
line. They likely do not share enough commonality that can be exploited
to establish a platform.

3By Northrop [97].
4We use the terms variant, product, and system almost synonymously in the remainder.

11.3. Software Product Line Engineering 407

SPLE is a method in which technical, business, and management issues
overlap. Adopting SPLE requires consideration of the four concerns Busi-
ness, Architecture, Process, and Organization, which is called the BAPO
model [127, 98, 84]. The concern Business refers to how to generate revenue
from the products of a product line. Architecture refers to the technical
means to build the product line. Process refers to the roles, responsibilities,
and their relationships in developing the product line and deriving individual
products. Organization refers to mapping roles (developers and other stake-
holders) to organizational structures. An organization needs to consider all
these aspects to effectively adopt SPLE. Otherwise, the endeavor of migrat-
ing from opportunistic to systematic software reuse is likely doomed to fail.

SPLE Architecture and Variability Mechanisms

Let us also briefly look at the concern Architecture, which typically realizes
two abstractions: the problem space and the solution space [39]. Figure 11.6
and Fig. 11.5 illustrate both concepts. The problem space contains the
domain-specific abstractions (in our case, features) as an interface to the
solution space—the actual software assets in the platform. Both the problem
space and the solution space are deep concepts that have been intensively
elaborated upon elsewhere [39, 7]. Our focus in this book is the problem
space, since we advocate the development of languages providing such
domain-specific abstractions. In this chapter, we focus on feature models
as a simple and intuitive language to represent the problem space.

For the solution space, you need a product line architecture, which is
essentially an MDSE architecture. You apply the same principles, but
need to realize variation points that are bound during product derivation.
Variation points describe where your system can differ and how, and you
realize the using variability mechanisms.

Definition 11.2. A variation point is a specific location in a system where a
system can vary in a certain prescribed way.

Definition 11.3. A variability mechanism is an implementation technique
to realize variation points.

We distinguish between annotative and compositional variability mech-
anisms. According to Apel et al. [7], the former “annotate a common code
base, such that code that belongs to a certain feature is marked accordingly.
During product derivation, all code that belongs to deselected features or
invalid feature combinations is removed (at compile time) or ignored (at
run time) to form the final product.” The latter does, according to the same
authors “implement features in the form of composable units, ideally one
unit per feature. During product derivation, all units of all selected features
and valid feature combinations are composed to form the final product.”
Again, in this chapter, our focus is on the problem space. We refer to the
book by Apel et al. [7], which describes many different ways to realize it

408 Chapter 11. Software Product Lines

mapping

problem space solution space

IA64

ACPI PMPCI

ACPI → PCI ∧ PM

source code requirements models hardware

other

artifacts

void __init
init_IRQ(void)
{

#ifdef ACPI
acpi_boot_ini();

#endif
ia64_register_ipi();
register_percpu_
irq(...);

mapping

feature model assets

....

Figure 11.5: High-level architecture of a product line, illustrating problem space, solution space, and the mapping between them

using different implementation techniques. We will, however, discuss those
mechanisms in more detail for models instead of code in Chapter 13.

There exists a mapping between problem and solution space, which can
be realized using different mapping techniques. An important concept is
the presence condition.

Definition 11.4. A presence condition is a logical expression over features
determining the presence or absence of software assets in a variant. A
presence condition evaluating to true for a specific configuration will
include the respective software asset.

Look at our running example, the Linux kernel, again and observe that it
has presence conditions. They are contained in the preprocessor directives
(e.g., #if) and, implicitly, in its build system [18]. Notably, the presence
conditions are not limited to Boolean operators, but also include arithmetic
or string operators—essentially the full richness of the C preprocessor.

On a final note, our experience shows that the real benefit of SPLE and
feature modeling can only be achieved when the features are mapped to
multiple types of assets. For complex and large product lines, mapping to
code suffices and already shows the benefits. However, mapping features
just to requirements is likely to fail, that is, the costs of doing SPLE and
feature modeling exceed the benefits, which arise when new products can be
derived quickly in an automated derivation process. Figure 11.5 illustrates
a system where features are mapped to code, requirements, models, and
pieces of hardware, which is a typical set of asset types that features are
mapped to in industrial applications of SPLE.

SPLE Process and Activities

Let us briefly look at the concern Process, where SPLE advocates a so-called
two-lifecycle process. It separates the development of shared assets (the plat-
form) from the derivation of individual products. Both are full-blown classic
engineering processes. Figure 11.6 summarizes these two main (sub-)
processes. Domain engineering is the process that systematizes and collects
knowledge, experience, and assets accumulated in an organization (or in a
software project) about a given domain, in order to provide means to reuse

11.3. Software Product Line Engineering 409

domain engineering

application engineering

domain
requirements
engineering

domain
design

domain
implementation

domain
testing

product
management

application
requirements
engineering

application
design

application
implementation

application
testing

Figure 11.6: The two main
processes of SPLE: domain
engineering and application
engineering

these efficiently when building new systems. Application engineering (bot-
tom) derives the artifacts from the common domain artifacts produced in do-
main engineering (the top process). So, the design is done by completion of
the shared design, and application development is done by completing/deriv-
ing from the framework code. Test cases and documentation might be
derived, too. By instituting this process systematically, the cost of obtaining
a single product is substantially reduced. Observe that the vertical arrows
in Fig. 11.6 (derivation of applications from platform assets) are obtained
using technologies presented in the previous chapters. We refer to classical
SPLE books for details about the two-lifecycle process [7, 103, 127].

While this two-lifecycle process nicely illustrates the main activities of
SPLE and helps in categorizing them, the actual processes in industrial
practice usually look different. There is no strict separation between domain
engineering and application engineering: instead, activities from both
processes are mixed. Organizations often adopt product lines reactively
or extractively—they start with one or multiple cloned products and then
evolve them into a product line. Furthermore, they often evolve the product
line by evolving individual products. Apparently, it is still easier to work on
individual products instead of many products (i.e., the platform), but then of
course the evolved products need to be integrated into the platform again. In
a way, evolution and adoption of product lines then share similar activities.
This is reflected in Fig. 11.7, which illustrates adoption (mainly integration
of variants) and evolution (mainly evolution of individual products). Read
more in Krueger, Mahmood, and Berger [80].

Software Product Lines in Practice

As we have seen, the Linux kernel and other open-source systems software
manage their variability relying on techniques known from SPLE and from
MDSE, such as a configurable software platform, a configurable build
system, a configurator tool, and a DSL- and model-based representation
of all features. The latter abstractly represents thousands of variabilities,
such as supported drivers, processor architectures, scheduling algorithms,
and diagnostic facilities, and the dependencies among them. Even though
the Linux kernel was developed completely independently of the research

410 Chapter 11. Software Product Lines

Figure 11.7: Adoption and
evolution processes for

product lines

integrated
platform

derived
variant

evolved
variant

planned
or existing
variant(s)

adoption

evolution

community which established SPLE methods and tools since the advent of
feature modeling in 1990, it illustrates the practical relevance of SPLE.

Other application domains that typically need to engineer variant-rich
systems and that benefit from SPLE are the following.
• The automotive domain boasts some of the largest variant spaces in

existence today. SPLE in automotive has been described in experience
reports and case studies about Volvo Cars [14] and Scania [49, 61], Audi
[64], Daimler [47, 11], General Motors [52], Rolls-Royce [62], as well
as the engine control software of Bosch [126] or Cummins [38].

• Avionics and aerospace is another domain benefiting from SPLE, which
in addition has strict safety requirements. Example experience reports
have been written about Eurocopter [44, 65], Lufthansa [31], NASA
[55], Boeing [115], and the US Army’s Common Avionics Architecture
System (CAAS) [36].

• Telecommunication is another typical domain suited for SPLE. Consider
the experience reports about Ericsson [124, 93, 5], E-COM [83], Terres-
trial Trunked Radio (TETRA) [102], as well as Nokia Mobile Phones
and Nokia Networks [127].

• Power electronics systems often need to exist in many different variants,
as discussed in the experience reports about Danfoss [53], ABB [56, 106,
103, 122], and Hitachi [125].

• Robotics and industrial automation systems often come in different
hardware configurations and benefit from SPLE methods, as discussed,
for example, in a case study on re-engineering automation systems into
product lines [77], in experience reports about managing variability in
robotics [58, 59], in a case studies on the company Keba [22], and in
discussions of systematic variability management in robotics [25, 86].

• Even web applications have been reported [128]. While specific architec-
tures for web applications have been proposed [10], they often exhibit
variability in the user interface, which is still difficult to implement [21].

• Further case study collections are provided by van der Linden, Schmid,
and Rommes [127], the SEI’s catalog of case studies Software Engineer-

11.4. Variability Modeling 411

ing Institute [118], and the SPLE community’s “Hall of Fame.”5 All are
summarized in Berger et al. [21].

11.4 Variability Modeling

In this book, we are primarily interested in technical support for software
product line engineering. As we have seen in the Linux kernel case study
above, MDSE appears very helpful. The idea is to build a variability model
of the product line (the Kconfig model in the case of the Linux kernel) that
describes the differences and similarities between systems, and then link this
model to the implementation either via code generation (generating individ-
ual products) or by other means (annotations, preprocessing, interpretation,
and so on). Variability modeling is one of the primary means to tackle the
complexity of product lines. Such models describe the variability and the
commonality of all the variants (i.e., products) that belong to a product line.

Variability modeling can be seen as domain modeling for software
product lines or other complex software systems. A variability model
is a kind of domain model, since it not only describes the concepts and
terminologies in a domain, but also describes what parts of the product line
are common to all possible products (or variants) and what are variable (i.e.,
exist in some, but not all products). Among the latter, there can also be
product-specific parts, which only exist in one particular product.

Definition 11.5. A variability model is a domain model that describes the
common and variable aspects of products in a software product line.

For software product lines, or for any complex system, it is not sufficient
to model the variability only—that is, how the individual software products
differ. To support the engineering (e.g., to keep an overview understanding
or to scope a product line), it is necessary to model the commonality as well.

The first step to build a product line is typically to model the commonality
and variability of the products (i.e., the individual variants) belonging to
the product line. Commonality denotes all the aspects that are shared by the
products in a software product line. Variability comprises all the aspects in
which the products differ. In software product line engineering, the point is
to exploit the commonality and to manage (e.g., limit and scope) variability,
in order to obtain faster time to market, and a better return on investment.

Domain

Variability models, and thereby product lines, are usually focused on a
specific domain. We distinguish two kinds of domains:

• vertical domains are areas which are organized around classes of sys-
tems realizing specific business needs, for example “airline reservation
systems, order processing systems, inventory management systems” [39].

5http://www.splc.net/fame.html

http://www.splc.net/fame.html

412 Chapter 11. Software Product Lines

• horizontal domains are areas organized around classes of parts of systems
(this includes database systems, container libraries, workflow systems,
GUI libraries, numerical code libraries, and so on).

One meets product lines in both kinds of domains, but it is most classical
to apply SPLE to narrow vertical domains, for example, power electronics
firmware or avionics control systems. An example of a product family in
a horizontal domain is the Linux kernel,6 or a configurable platform for
cloud computing.

The scope of the domain defines how diverse products will be in this
domain. In general, more variability means a wider scope. Remember that
variability should be managed, so the scope should be kept under control.
The scope of the domain needs to be established based on sales needs,
maturity of products and knowledge in the organization, and the potential
for reuse. In general, you want the scope be as narrow as possible, and
you need to continuously monitor and maintain it, to avoid the scope-creep
problem. The latter refers to product lines that admit too much variability
and become very difficult to maintain (for instance, the products in the
product line might no longer share the same core software architecture).

Common and variable properties of the system can be described by a
domain model. Such a model defines the scope, the vocabulary, and the
main concepts of the domain. Domain models can be expressed in many
ways, but are most commonly expressed as a DSL. We call these DSLs
variability-modeling languages.

Variability Models

Since the advent of SPLE to efficiently develop software product lines in the
early 1990s, a large number of variability-modeling languages have been
proposed [117, 33, 4, 32]. Variability modeling is one of the primary means
to tackle the complexity of product lines, by describing the variability and
the commonality of all the variants that belong to a product line.

The most popular languages are feature [74, 75] and decision models
[109], which are relatively similar with only small differences [40]. For
instance, the latter’s configuration options are called decisions instead of
features. Our focus in the remainder is on feature models as the most popular
and widespread notation [16]. Furthermore, decision models only focus
on variability, without modeling the commonality of product lines, and the
notion of feature is more aligned with features as they are commonly used
to refer to the functional and non-functional aspects of software systems.

Many other variability-modeling languages beyond feature models exist.
We already mentioned decision modeling, which originates from the Syn-
thesis method for software reuse [105]. Schmid, Rabiser, and Grünbacher

6Some authors would say that highly configurable systems in horizontal domains are not
product lines, because they cannot be seen as sets of “products,” but rather subsystems or
components. Such subtle distinctions are unimportant here, though. They have relatively little
influence on the technical aspects interesting for us.

11.4. Variability Modeling 413

Misc. Filesystems

Journalling Flash File System

Debug Level: Int

Support ZLIB → ZLIB Inflate
JFFS2 → CRC ∧ MTD
0 ≤ Debug Level ≤ 2

a → b ∧
c ≥ d

feature

optional
feature

mandatory
feature

exclusive
choice (XOR)

cross-tree
constraints

legend

inclusive
choice (OR)

Compress Data

Support ZLIB

None Priority Size

Default Compression

Figure 11.8: Configuration of
a Linux filesystem illustrated
as a feature model (concrete
syntax)

[109], Dhungana, Heymans, and Rabiser [43], and Czarnecki et al. [40]
provide further information about decision models. An alternative language
is OVM (Orthogonal Variability Modeling), which focuses on modeling
variation points and its variants [103]. Surveys comparing variability-
modeling languages from different perspectives are provided by Classen,
Heymans, and Schobbens [35], Schobbens et al. [110], Schmid, Rabiser, and
Grünbacher [109], Czarnecki et al. [40], and Sinnema and Deelstra [117].

An interesting alternative is to provide a variability-modeling language as
a UML profile [129, 130], allowing feature models (problem space) and vari-
ation points to be added to ordinary UML diagrams, such as class diagrams
or state machines. It relies on UML’s built-in extension mechanism called
profiles [99]. A profile provides so-called stereotypes, which can be added
to diagram elements, such as classes, relationships (e.g., associations), or
attributes. As such, a standard UML tool can be used for modeling feature
models, diagram variation points, and their mappings to features.

Feature Models

Feature models organize features in a hierarchy and declare relationships
and constraints among features. Feature models allow developers to keep
an overview understanding of software systems, and like features, are an in-
tuitive means for communications, bridging different kinds of stakeholders,
including developers and domain or business experts.

Figure 11.8 shows a feature-model example. Take a look at the legend,
which explains the basic syntax. Mandatory features (filled circle) are
features that are always included when their parent is included. Optional
features (hollow circle) do not need to, but may be included if their parent is
included. Both kinds require that their parent is included, though, if they are
to be included. Alternative feature groups (also called Xor groups) denote
an exclusive choice between several alternatives (exactly one needs to be
selected with the parent). Or group features denote a non-exclusive choice
between several alternatives (so more than one inclusion in the group is
allowed). Additional dependencies between features (those that cross the
tree hierarchy) can be stated on the side.

414 Chapter 11. Software Product Lines

This description illustrates the so-called configuration space semantics
of feature models. Several semantics exist. While the feature hierarchy is
one of the most important benefits of feature models (called ontological
semantics), allowing engineers to keep an overview understanding of a
product line, the primary semantics (called configuration space semantics)
of feature models represents the valid combinations and values of features
in a concrete product of a product line, restricted by constraints. In other
words, the configuration space semantics determines the set of all possible
products or variants of a product line. For a detailed description of feature-
model semantics, take a look at Sect. 2.3 in the book of Apel et al. [7].

The example model in Fig. 11.8 is a feature model we created for a
configurable file system in the Linux kernel called JFFS (Journalling Flash
File System). In reality, it is defined in the Kconfig language, which we
explained above in Sect. 11.2, and we specifically showed an excerpt of
the Kconfig model with the configuration declaration of JFFS2. There,
the feature Debug Level is a mandatory feature with the value type integer;
Compress Data is an optional feature of type Boolean with the optional
sub-features Support ZLIB and Default Compression. The latter is a feature
group of type Alternative, allowing exactly one sub-feature to be selected.
This example also shows three cross-tree constraints (CTCs), noted next to
the diagram. Note that ZLIB Inflate is a feature that is defined outside our
excerpt of the Linux kernel model.

Definition 11.6. A feature model is a tree-based structure representing
features and their constraints.

We already mentioned feature models in Chapter 7 and provided a meta-
model in Fig. 7.6, and alternative meta-models in Figures 7.7 and 7.9
when we discussed model transformations in Sect. 7.2. For completeness,
we include another possible meta-model for feature models in Fig. 11.9.
Note that it uses an association class SubfeatureRelationType to detail
the association between features and their non-grouped (solitary) features,
which is not possible in Ecore, but in UML class diagrams. However, in
the remainder, it is not essential to understand the meta-models of feature
models, since we will use feature models as a meta-modeling language.
Feature models are not very expressive, but that is their strength, and
convenient tools are available. More complex feature-modeling notations
exist. Extensions include adding references between features, and adding
classifiers (feature cardinalities, or feature groups).

A product or variant is defined by a configuration of the model.

Definition 11.7. A feature-model configuration is an assignment of concrete
values to features. A configuration is an instance of a feature model.

Mapping features to software assets provides further semantics. The map-
ping specifies the locations of specific features in the assets. Features can
also be mapped to variation points within assets; then they control the inclu-
sion of certain assets depending on the concrete configuration of the feature

11.4. Variability Modeling 415

Group

ORGroup XORGroup

Feature

GroupedFeature RootFeature SolitaryFeature

SubfeatureRelationType

MandatorySubfeature

OptionalSubfeature

[1..1] isInGroup

[2..*] groupMembers

[0..*] hasGroups [1..1] feature [1..1] feature

[0..*] isSubfeature

Figure 11.9: One possible meta-model for feature models. Adapted from Janota, Kuzina, and Wąsowski [68]

model. Here, also recall Fig. 11.5, where we discussed the architecture of
a product line and how features are mapped to assets. The mapping is ex-
ploited in the product derivation process, often performed via a configurable
build system, as we described for the Linux kernel in Sect. 11.2 above.

Definition 11.8. Concrete and abstract features are notions referring to
the mapping of features to assets. Concrete features are mapped. Abstract
features are not mapped and are rather used for model-structuring purposes.
They are usually intermediate features in the model hierarchy.

Exercise 11.2. The company UpAndDown has a competitor, the elevator manu-
facturer LiftYouUp. One of its customers has an urgent request for an elevator
with directed call buttons. Call buttons are either directed call or undirected
call. Directed call definitely requires the behavior mode ShortestPath, while
undirected call can work with the behavior modes FIFO or ShortestPath. Due to a
bug in your current system, ShortestPath does not work with the priority mode
RushHourPriority, so you can only sell FloorPriority or PersonPriority currently
for ShortestPath (of course, one of these priority modes is required for the elevator
to work). FIFO, when used in combination with the priority PersonPriority,
excludes undirected call buttons. Overall, you have three available behavior
modes, Sabbath, FIFO, and ShortestPath, and all exclude each other. Your
customer has heard that some elevators offer periodic airing, which your customer
wants, but airing definitely excludes both RushHourPriority and PersonPriority.

Model the problem as a feature model. Can you offer your customer an elevator
with directed call buttons and periodic airing?

Exercise 11.3. Draw a feature model for the following product line of (very simple)
robot control software.

A robot always has a body, a mobile base, a connectivity system, an arm,
and a perception sensor. Optionally, it can incorporate a computer. The mobile
base can be biped or wheeled, depending on its operational environment. The
connectivity system can be either wireless or wired. If wireless, the connection
can be based on Wi-Fi and/or Bluetooth. The end-effector of the robotic arm
can be either a parallel gripper (with high payload capacity) or a 5-fingers-hand
(provides more functionalities). The perception sensor can be a Lidar and/or
an RGBD-camera. The usage of an RGBD-camera requires the inclusion of a
computer. If the parallel gripper is chosen, the biped option is not possible.

416 Chapter 11. Software Product Lines

Exercise 11.4. Draw a feature model for the following subset of the open-source
SSL server called AXTLS.

The system supports various platforms, including Linux, Win32, and Cyg-
win. Exactly one of these platforms has to be selected. AXTLS has a built-in
and mandatory HTTP server, which has three optional features: debug mode,
HTTP_AUTH authorization, and CGI. The latter is further decomposed into
CGI Extensions and LUA scripts which can be enabled for CGI. AXTLS further
has so-called BigInt options: an optional sliding window, an optional CRT, and
a mandatory reduction algorithm; the latter can be Montgomery, classical or,
Barret, or any combination of the three. Montgomery does not work on Cygwin
platforms, and Barret requires the debug mode to be enabled.

Figure 11.10: A simplified
feature model in concrete

graphical syntax

options

display cache

small
large

1M 8M fixed

requires
excludes

Exercise 11.5. Consider the feature model presented in Fig. 11.10. For each of the
following configurations state whether it is an instance of the above model:

a) options, display, large, cache, fixed

b) options, display, large, cache, 1M, fixed

c) options, display, small, cache, 8M

d) options, display, small, cache, fixed

Exercise 11.6. Consider the feature model of a car entertainment system presented
in Fig. 11.10. Change the model to capture two new requirements:

a) The system should be allowed to have both a small and a large display at the
same time (in the above model only one of them is allowed at a time).

b) A system that has both a small and a large display, must also have an 8M cache.

Recall that you may both modify the diagram and add feature constraints
outside the diagram.

Textual Feature Models

Academic feature-modeling languages usually come with a graphical syntax,
but there are also textual languages that can be seen as feature-model-like,
for instance: TVL [34, 66], Clafer [8, 9], CDL [19, 17], and of course
Kconfig, which we discussed extensively above in Sect. 11.2. A comparison
of textual languages is provided by Eichelberger and Schmid [48].

Example 27. Let us look at an example of a textual feature-modeling language.
Clafer [8] is a language that goes well beyond feature modeling. It allows

11.4. Variability Modeling 417

seamless switching from feature modeling to structural modeling (class mod-
eling). As such, it combines both paradigms (feature and class modeling).
Clafer has a very concise syntax, where the feature hierarchy is represented by
tab-based indentation. As such, it is a simple and intuitive format for a feature
model and can ideally be put into a project to record and organize features
without requiring tooling. Such a feature-model file can then be combined
with a lightweight annotation system for software artifacts [72, 112] to help
record feature locations and to visualize them.

Let us look at an example Clafer model below in Fig. 11.11.

1 telematicsSystem
2 xor channel
3 single
4 dual

6 extraDisplay ?
7 xor size
8 small
9 large

10 [dual]

Figure 11.11: A simple Clafer model of a car telematics system

A full description of Clafer is provided in Juodisius et al. [73]. In the
example, each line has a feature, where the indentation represents the hierarchy.
The semantics of the hierarchy is similar to feature models: a sub-feature
implies its parent feature. By default, a feature is mandatory (so, the parent
also implies the feature), unless made optional by attaching a question mark.
When the keyword xor is put directly before the feature name, then its children
form an xor group (i.e., exactly one of the children needs to be selected when
the feature is selected). Constraints are put in brackets. In our example, large
implies that the expression below it in brackets (the indentation expresses that
the constraint [dual] belongs to the feature large) needs to hold for the feature
to be selected. Here, the feature large implies the feature dual. An alternative
way of expressing this constraint would be writing [large => dual] in line
10, but with the same indentation level as line 7.

Exercise 11.7. Consider the Clafer model from Fig. 11.11 again. For each of the
following instances, state whether they adhere or not to the above model.

a) telematicsSystem, channel, single
b) telematicsSystem, channel, single, extraDisplay
c) telemeticsSystem, channel, single, extraDisplay, size, large
d) telemeticsSystem, channel, single, extraDisplay, size, small

Exercise 11.8. Consider the Clafer model from Fig. 11.11 again. Change it to
capture the following new requirements:

a) The system should be allowed to have both a small and a large extra display at
the same time (in the presented model only one of them is allowed at a time).

418 Chapter 11. Software Product Lines

Figure 11.12: Illustrative
example of a simple fire alarm

installation [20]

operation
panel

alarm
1

alarm
2

detector
4

detector
2

detector
3

alarm
3

detection zone 1
alarm zone 1

alarm zone 1
detection zone 2 detection zone 3

alarm zone 2

detector
1

As in the old model, it is still allowed to have either a small or large extra
display alone, and it is still required to have at least a small or large display.

b) If a system has both a small and a large display, then it must be dual channel,
but a large display should be allowed with a single channel (unlike in the
presented model).

11.5 Case Study: A Fire Alarm System

Let us build a meta-model that allows modeling of fire alarm installations.
It is based on a real project [20] we conducted with a Norwegian company,
Autronica, producing fire alarm systems for industrial plants, oil rigs,
and cruise ships. The company used the meta-model for configuring the
software controlling the installation of fire alarm devices. While being
realistic, the meta-model we will create here is substantially smaller than
the real one (which consists of 219 classes). The meta-model represents all
possible fire alarm installations the company can deliver, whereas a concrete
instance is used to configure the software that runs in special panels (which
are usually connected via a network) and controls the installation with all
its devices (e.g., smoke detectors or sounders). Figure 11.12 illustrates a
simple installation of a fire alarm system.
Motivation. Autronica strives to check rules, regulations, and system
constraints at an early stage of the engineering process, well before the
delivery starts for each new installation. In the case of fire alarm systems,
the configurator not only warrants obtaining the right functionality, but is
responsible for enforcing rules required by functional safety certification.
Therefore, designing a new AutroSafe installation always involves creating
its model. Field equipment is configured by setting various parameters
in production and during startup of a panel. In the following, we discuss
opportunities and challenges of standardized domain modeling at Autronica.

11.5. Case Study: A Fire Alarm System 419

Modeling configurations using a custom modeling tool. Today, Autronica
handles the configuration data systematically and through proprietary con-
figuration tools. The installation configuration model is built by consultants
using a custom configurator tool developed around 15 years ago. The tool
relies on a meta-model expressed in the Entity-Relationship (E/R) notation.
The model has evolved over its lifetime, mainly through additions of new
physical devices and relationships. The configurator is used to create one
central configuration of the complete installation, which is used to generate
C-like data structures for each (display and operation) panel.

Unfortunately, the AutroSafe configuration tool is difficult to maintain,
partly because it has been tailor-made and does not rely on any modeling
or configuration frameworks. Thus, evolving the tool is a burden. It has
served well for years, but the infrastructure provides little overview, and
requires complex input. UML modeling tools are much easier to use; they
are standardized and maintained. The output from these tools can drive
more applications than just configuration, and it is accepted by many other
tools thanks to standardization.
Capturing topological properties in domain models. In the legacy E/R
model, domain properties are described in a very tight way with a high
degree of coupling. Hopefully, using a more developed domain-modeling
language will enable a clear separation between the logical and physical
topologies, yet still allow constraints relating the two to be described.
Maintaining configurators and meta-models for similar product families.
Presently, configurators for several products exist, but they are indepen-
dently built and rely on different technologies. Some of the input files use
XML, others have a C-like syntax. Even though the overall configuration
procedures are similar for the products families Autronica does not handle
them in a uniform manner.
Abstract syntax (meta-model). A fire alarm installation has a name and a
list of responsible persons. The latter are persons who have a name. The
installation is composed of multiple domains, which are meant to separate
the fire alarm system into parts that should be independent (e.g., when the
parts reside in different buildings). For the remainder of the system, the
company wanted to be flexible and create a logical structure (for organizing
devices into zones) and a physical structure (which reflects the actual,
physical layout of the devices on so-called loop cables), so that flexible
activation relationships can be realized.

The logical structure of fire alarm installations is defined as follows:
• A domain contains one or more operation zones, which have a name, a

severity (LOW, MEDIUM, or HIGH), a textual description, and between
one and five responsible persons. An operation zone can contain one or
more operation zones itself, which makes it possible to divide a zone into
sub-zones, allowing an arbitrarily deep hierarchy of zones.

• An operation zone contains an arbitrary number of detection zones and
alarm zones, each of which has a name. An alarm zone can have multiple

420 Chapter 11. Software Product Lines

other alarm zones as neighbors. When an alarm zone starts the alarm,
it will notify its neighbors to also trigger the alarm. An alarm zone is
mapped to detection zones via an activation expression. This expression
can just be the name of a detection zone or a more complex logical
expression with the operators AND, OR, and ! (NOT). For instance, if
there exist detection zones named D1, D2, D3, D4, D5, one should be
able to specify expressions such as:

(D1 AND !D3) OR (D4) OR (D2 AND D4 AND D3)

The physical structure is as follows:

• An operation zone is controlled by exactly one panel, which can be a
display panel or an operation panel. A panel has a name. An operation
panel contains a so-called loop driver module, to which the physical
devices are connected (via a loop wire). More precisely, a loop driver
contains nodes in a specific order. A node can be either a smoke detector,
a sprinkler, or a sounder, each of which has a name. Finally, to connect
logical and physical structure, smoke detectors and sprinklers belong to
one or multiple detection zones, and sounders belong to one or multiple
alarm zones.

Figure 11.13 shows a meta-model realizing the language description
above. Note the operation findDZones in the class OperationZone, which is
a convenience query operation we added to simplify the declaration of a
constraint, explained below.

Static semantics (constraints). Let us define the following additional
constraints as static semantics in our meta-model.

• Names should be at least two characters long (invariant nameLength).
• If the severity of an operation zone is high, then there shall be at least

two responsible persons (invariant: twoResponsibles).
• Each responsible person shall be responsible for at least one operation

zone (invariant responsibleForOZ).
• If an alarm zone A is a neighbor of an alarm zone B, then B shall also be

a neighbor of alarm zone A (invariant neighborSymmetry).
• Alarm zones that are activated by detection zones shall be in the same

operation zone (invariant activatedWithinOZ).
• An operation zone that is a sub-zone of another operation zone shall be in

the same domain as the parent operation zone (invariant sameDomain).

We define these constraints using OCL in Fig. 11.14, remembering
from Chapter 5 that other constraint languages could be used as well. For
descriptions of the OCL language, refer to the sources given in Sect. 5.6,
such as the tutorial of Cabot and Gogolla [28]. Note that for the invari-
ant activatedWithinOZ we first create a query operation findDZones that
traverses the expression tree to return the literals (i.e., concrete detection
zones) that we then use in the constraint. There, we need to apply this

11.6. Spectrum of Variability Modeling 421

FireAlarmInstallation

Domain OperationZone

severity : Severity = LOW
description : EString
findDZones(e ActivationExpression) :
DetectionZone

NamedElement

name : EString

DetectionZone AlarmZone

Panel

DisplayPanelOperationPanel

LoopDriver

Person

Severity

LOW
MEDIUM
HIGH

Node

SmokeDetectorSounder Sprinkler

ActivationExpression

UnaryOp

NOT

BinaryOp

AND
OR

BinaryExpression

operator : BinaryOp = AND

UnaryExpression

operator :
UnaryOp = NOT

Literal

[1..*] domain

[1..*] panel

[0..*] responsibles

[1..*] operationzone

[0..*] operationzone

[0..*] detectionzone [0..*] alarmzone

[1..1] controlledBy

[1..5] responsible

[1..*] belongsto

[1..*] belongsto

[1..1] dzone

[0..*] neighbor

[1..1] activatedBy

[1..*] belongsto

[0..*] loopdriver
[1..1] firstNode

[0..1] nextNode

[1..1] left [1..1] right

[1..1] expr

source: dsldesign.firealarmsystem/model/firealarmsystem.ecore

Figure 11.13: Meta-model for fire alarm installations

function on a set of activation expressions, which we do via the collection
operator iterate. The latter is a common aggregate function in functional
programming (e.g., called reduceLeft() in Scala), which aggregates a set via
a supplied closure that repeatedly “folds” a set element into an aggregate
(which is again a set in our case). Finally, the invariant sameDomain is
already enforced by the meta-model and can be omitted.

11.6 Spectrum of Variability Modeling

DSLs and feature models are two different techniques that belong to the
same continuum of meta-modeling or domain modeling.7 The spectrum
is inspired by Czarnecki and Eisenecker [39] and illustrated in Fig. 11.15.
To the left, you go more into routine configuration, which gives you more

7See the box on p. 49 for a discussion of the relation of meta-modeling and domain modeling.

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.dsldesign.firealarmsystem/model/firealarmsystem.ecore

422 Chapter 11. Software Product Lines

Figure 11.14: Additional
constraints (static semantics)
for our fire alarm meta-model

from Fig. 11.13 defined as
OCL constraints

context NamedElement
invariant nameLength: self.name.size() >= 2

context OperationZone
invariant twoResponsibles: self.severity=Severity::HIGH implies

responsible->size() >= 2

context Person
invariant responsibleForOZ: OperationZone.allInstances()->

exists(o : OperationZone | o.responsible->
exists(p : Person | p = self))

context AlarmZone
invariant neighborSymmetry: self.neighbor->

forAll(myNeighbor | myNeighbor.neighbor->
exists(theirNeighbor | theirNeighbor=self))

context OperationZone
findDZones(argument: ActivationExpression): DetectionZone[*]
body: if argument.oclIsKindOf(BinaryExpression) then

findDZones(argument.oclAsType(BinaryExpression).left)->
union(findDZones(argument.oclAsType(BinaryExpression).right))

else if argument.oclIsKindOf(UnaryExpression) then
findDZones(argument.oclAsType(UnaryExpression).expr)

else
Set{argument.oclAsType(Literal).dzone}

endif
endif

invariant activatedWithinOZ: self.detectionzone->includesAll(
self.alarmzone->iterate(x:AlarmZone; acc=Set{} |

acc->union(findDZones(x.activatedBy)))
)

context OperationZone
invariant sameDomain: true -- already enforced by meta-model

source: dsldesign.firealarmsystem/model/firealarmsystem.ecore

guidance and efficiency in realizing the problem space. To the right, you go
more into creative constructions, which allows more flexibility, but yields
more complexity.

Specifically, the spectrum from right to left shows the following variability-
modeling strategies:

• If you want to completely avoid variability modeling, then you can write
only project-specific code (rightmost) with your own custom code that
allows customization of the software to create variants. This is the most
flexible and the hardest to maintain mechanism, however. You are not
supported by product line or model-driven tooling, and it is up to you
whether you want to realize a separation into problem and solution space
yourself, which would increase maintainability.

• You can use existing frameworks to realize customization. Then there is at
least reuse of the framework, but your framework completion code (what

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.dsldesign.firealarmsystem/model/firealarmsystem.ecore

11.6. Spectrum of Variability Modeling 423

configuration files,
calibration parameters

wizards, preferences,
tabular configurations

feature models

DSLs

frameworks

only project code

configuration

construction

Figure 11.15: Spectrum of
domain modeling, inspired by
Czarnecki and Eisenecker [39]

you need to write to use a framework) is still hand-crafted, and it might
be difficult to maintain. You will also need to realize separation into
problem and solution space yourself in the framework completion code.
Frameworks are classified into white-box and black-box frameworks.
Read more in Apel et al. [7].

• DSLs and MDSE are closer to the middle of the spectrum. They allow
a lot of freedom and flexibility, but are easier to maintain than large
amounts of custom code—due to systematic reuse in interpreters and
generators, but you need to implement these as well. From here on to
the very left you have an explicit separation into problem (e.g., DSL and
model) and solution space (e.g., implementation assets).

• Feature models are less expressive than DSLs, and the way to configure
with feature models is more rigid than with a typical DSL. Yet, feature
models require no meta-modeling and no concrete syntax design, which
makes them easier to use. They suffice for many cases.

• Simple configuration files are to the left of the spectrum, and are the
cheapest to maintain and the least flexible way to customize a system.

Stahl and Völter [119] advise that one should stay as much as possible
to the left side of this spectrum. Namely, one should prefer modeling with
feature models, or simple configuration parameters over DSLs, if possible,
to avoid scaling up complexity needlessly. The above spectrum makes it
clear though, that when features are not sufficient, it is natural to implement
product line architectures using DSLs. Consider our case study on fire
alarm systems in Sect. 11.5, where feature modeling (where you basically
switch on or off features) was not sufficient to represent all the possible
concrete fire alarm systems, since that domain is rather about instantiating
concepts such as fire detectors and alarm devices and connecting them in
a topology. To this end, the expressive power of DSLs was necessary.

Feature Models versus Custom DSLs

Figure 11.16 illustrates the difference between using feature models and
creating your own DSL.

424 Chapter 11. Software Product Lines

Figure 11.16: Feature models
versus custom DSLs

a DSL

EcoreM3

M2

M1 a DSL model

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

a feature model

a configuration

‹‹conformsTo››

a feature-mode-
ling language

‹‹conformsTo››

Feature models are convenient and simple. There is almost no design
effort, and they provide deep insight into the domain as realized in the
product line. In contrast, DSLs require more design and maintenance effort,
but they reward you with more expressiveness. Our fire alarm example
(cf. Sect. 11.5) could not have been expressed using feature models. The
effort to create feature models is reduced by existing feature-modeling tools,
while for DSL development, the effort is reduced by existing language
workbenches.

It is easy to add configuration files to the illustration in Fig. 11.16. At
the top (M3), there would be a configuration file schema, such as Java
.properties files. At the M2 level, interestingly, one finds the configuration
file, which contains both the configuration options and their values. This
can be seen as ontological instantiation (cf. Sect. 3.9). So, there is typically
no M1 level. Some configuration file mechanisms (not Java .properties
files) might allow specification of options and their types, but that is rather
uncommon. You would go to feature models to have such support.

Exercise 11.9. Study the way preferences are modeled and realized in Android
apps.a Extend Fig. 11.16 to show the respective meta-modeling hierarchy for
Android app preferences.

Guidelines

Model domain concepts using the following guidelines.

• Concepts that are common to all products in the domain belong to
the platform implementation, while concepts and aspects that vary are
expressed in your domain-specific models. If you use feature modeling,
the mandatory features correspond to common aspects of the system.

aSee for instance the Android developer guides at https://developer.android.com.

https://developer.android.com

11.6. Spectrum of Variability Modeling 425

• To decrease complexity, the domain and the platform should be as close
to each other as possible. Ideally, the platform (or framework) should
provide implementation of domain concepts.

• If you use a DSL, note that, typically, structure is captured in the language,
while behavior is provided by the framework/platform. If you do need to
customize behavior, it is recommended to reduce it to a small finite num-
ber of choices of different behavior and describe it using a feature model.

• If this is not an option, try to reuse as much as possible existing languages
such as statecharts, automata, BPMN/BPEL, activity diagrams, and
message sequence charts. Designing your own behavioral languages is
known to be difficult to get right. Inventing your own behavioral language
gives more flexibility than reusing an existing one, but it increases the
risks and the difficulty of achieving full automation.

• A good rule of thumb: if you need to introduce typical GPL constructs
into your DSL, such as a loop, and they need to be generated from models
(compiled into the target language) then you probably have grown your
DSL too much. Most DSLs should stay simple, and possibly declarative.

In summary, narrow and simple is better than broad and complex.

Exercise 11.10. Discuss the differences between modeling a product line using
feature models versus DSLs in a domain of your choice. List at least two
advantages of each.

Further Reading

Classical textbooks on SPLE are those by Apel et al. [7], Clements and
Northrop [38], Pohl, Böckle, and van der Linden [103], van der Linden,
Schmid, and Rommes [127], and Capilla, Bosch, and Kang [29]. Details on
implementation techniques for product lines are extensively discussed by
Apel et al. [7]. They focus on the solution space and code-level mechanisms,
which is a good complement to this and the next chapters, which focus on
the problem space and model-based representations of the solution space,
as opposed to source code.

Recall the BAPO model, which illustrates four concerns to consider
when adopting SPLE. We briefly discussed the concern Architecture in
Sect. 11.4 and the concern Process in Sect. 11.3. Read more about poduct
line architectures in Balzerani et al. [10] and about dynamic product line
architectures in Capilla et al. [30]. Our comparison of variability mecha-
nisms in software ecosystems including Android apps and Debian packages
might also be worth reading [15], together with Anvaari and Jansen [6] on
the architectural openness of mobile platform architectures and Bosch [23]
on architectural challenges in general for software ecosystems.

For product lines, read more about the concern Business in a study on the
costs of platform-oriented versus clone & own-oriented reuse in Krueger
and Berger [78]. Moreover, Stahl and Völter [119, Chapter 18] state that
it often makes economical sense to consider a model-driven product line

426 Chapter 11. Software Product Lines

architecture (PLA) if you can save about 30 % of the code to be maintained.
They indicate also that the cost of deriving a new variant is about 20–25 %
of making the reference implementation (one variant), and the total saving
per early variant is conservatively estimated at 16 %. This gives you some
indication of when it makes economical sense to consider SPLE (sometimes
people talk about a break-even point at three products for complex systems).
The concern Organization is discussed by Clements et al. [37] and Ahmed
and Capretz [2]. Furthermore, Fafchamps [50] describes the organizational
factors that facilitate or foster software reuse.

To realize product lines, we discussed the clone & own strategy versus
the platform strategy in this chapter, and then of course focused on the
latter, that is, how it is realized using MDSE techniques. There are
various works that focus on bridging the gap between clone & own and
platform-orientation, trying to combine the benefits of both. Take a look
at frameworks to manage clones by Mahmood et al. [88], Rubin, Czarnecki,
and Chechik [107], Fischer et al. [51], Rabiser et al. [104], Martinez et al.
[89], Pfofe et al. [101], and Montalvillo and Diaz [95]. A description of
development activities supported by automated techniques in the evolution
of product lines is given by Strueber et al. [123], who also argue that
benchmarks are needed to improve the techniques.

Software ecosystems are conceptual successors of software product lines
[24, 70]. While product lines can be seen as perhaps the most successful
approach to intra-organizational software reuse, software ecosystems enable
inter-organizational reuse. Often, when organizations cannot realize all
incoming requirements anymore, they need to open up their platform and
allow third-party contributions, essentially establishing an ecosystem in a
market niche that strengthens the organization. The challenge of opening
up platforms towards software ecosystems has been discussed by Seidl
et al. [113], Jansen [69], Schultis, Elsner, and Lohmann [111], Dal Bianco
et al. [41], and Hanssen [63], which are all interesting further reads about
software ecosystems.

References

[1] Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. “Understanding
semi-structured merge conflict characteristics in open-source Java projects”.
In: Empirical Software Engineering 23.4 (2018), pp. 2051–2085 (cit. p. 396).

[2] Faheem Ahmed and Luiz Fernando Capretz. “An organizational maturity
model of software product line engineering”. In: Software Quality Journal
18.2 (2010), pp. 195–225 (cit. p. 426).

[3] Jonas Akesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger.
“Migrating the Android Apo-Games into an annotation-based software
product line”. In: SPLC. 2019 (cit. p. 397).

[4] Vander Alves, Nan Niu, Carina Alves, and George Valen. “Requirements
engineering for software product lines: A systematic literature review”. In:
Information and Software Technology 52.8 (2010), pp. 806–820 (cit. p. 412).

References 427

[5] Jesper Andersson and Jan Bosch. “Development and use of dynamic
product-line architectures”. In: IEE Proceedings-Software 152.1 (2005),
pp. 15–28 (cit. p. 410).

[6] Mohsen Anvaari and Slinger Jansen. “Architectural openness: Comparing
five mobile platform architectures”. In: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar,
2013, pp. 138–158 (cit. p. 425).

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2013 (cit. pp. 406, 407, 409,
414, 423, 425).

[8] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wąsowski. “Feature and
meta-models in Clafer: Mixed, specialized, and coupled”. In: International
Conference on Software Language Engineering (SLE). 2010 (cit. p. 416).

[9] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki,
and Andrzej Wąsowski. “Clafer: Unifying class and feature modeling”. In:
Software and System Modeling 15.3 (2016) (cit. p. 416).

[10] Luca Balzerani, D Di Ruscio, Alfonso Pierantonio, and Guglielmo De
Angelis. “A product line architecture for web applications”. In: Proceedings
of the 2005 ACM Symposium on Applied Computing. 2005 (cit. pp. 410,
425).

[11] Joachim Bayer, Thomas Forster, Theresa Lehner, Cord Giese, Arnd Schnie-
ders, and Jens Weiland. “Process family engineering in automotive control
systems: A case study”. In: GPCE. 2006 (cit. p. 410).

[12] Thorsten Berger, Marsha Chechik, Timo Kehrer, and Manuel Wimmer.
“Software evolution in time and space: unifying version and variability
management (dagstuhl seminar 19191)”. In: Dagstuhl Reports. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2019 (cit. p. 397).

[13] Thorsten Berger and Philippe Collet. “Usage scenarios for a common
feature modeling language”. In: First International Workshop on Languages
for Modelling Variability (MODEVAR). 2019 (cit. p. 399).

[14] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof
Czarnecki, and Andrzej Wąsowski. “Three cases of feature-based variability
modeling in industry”. In: MODELS. 2014 (cit. p. 410).

[15] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst,
Krzysztof Czarnecki, Andrzej Wąsowski, and Steven She. “Variability
mechanisms in software ecosystems”. In: Information and Software Tech-
nology 56.11 (2014), pp. 1520–1535 (cit. pp. 398, 399, 405, 425).

[16] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. “A survey of variability
modeling in industrial practice”. In: VaMoS. 2013 (cit. pp. 397, 412).

[17] Thorsten Berger and Steven She. Formal Semantics of the CDL Language.
Tech. note. 2010. URL: https://arxiv.org/abs/2209.11633 (cit. pp. 405, 416).

[18] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and
Andrzej Wąsowski. “Feature-to-code mapping in two large product lines”.
In: SPLC. 2010 (cit. pp. 400, 408).

[19] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysz-
tof Czarnecki. “A study of variability models and languages in the systems
software domain”. In: IEEE Transactions on Software Engineering 39.12
(2013), pp. 1611–1640 (cit. pp. 401, 402, 405, 416).

https://arxiv.org/abs/2209.11633

428 Chapter 11. Software Product Lines

[20] Thorsten Berger, Stefan Stanciulescu, Ommund Ogaard, Oystein Haugen,
Bo Larsen, and Andrzej Wąsowski. “To connect or not to connect: Experi-
ences from modeling topological variability”. In: SPLC. 2014 (cit. p. 418).

[21] Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, and
Jabier Martinez. “The state of adoption and the challenges of systematic
variability management in industry”. In: Empirical Software Engineering
25 (3 2020), pp. 1755–1797 (cit. pp. 397, 410, 411).

[22] Thorsten Berger et al. “What is a feature? A qualitative study of features in
industrial software product lines”. In: SPLC. 2015 (cit. p. 410).

[23] Jan Bosch. “Architecture challenges for software ecosystems”. In: ECSA.
2010 (cit. p. 425).

[24] Jan Bosch. “From software product lines to software ecosystems”. In:
Proceedings of the 13th International Software Product Line Conference.
SPLC. 2009 (cit. pp. 398, 426).

[25] Davide Brugali. “Software product line engineering for robotics”. In: Soft-
ware Engineering for Robotics (2021), pp. 1–28 (cit. p. 410).

[26] John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and
Thorsten Berger. “Clone-based variability management in the Android
ecosystem”. In: ICSME. 2018 (cit. pp. 396, 397).

[27] John Businge, Openja Moses, Sarah Nadi, and Thorsten Berger. “Reuse and
maintenance practices among divergent forks in three software ecosystems”.
In: Empirical Software Engineering 27.2 (2022), p. 54 (cit. p. 396).

[28] Jordi Cabot and Martin Gogolla. “Object constraint language (OCL): A
definitive guide”. In: 12th International Conference on Formal Methods for
the Design of Computer, Communication, and Software Systems: Formal
Methods for Model-Driven Engineering. SFM. 2012 (cit. p. 420).

[29] Rafael Capilla, Jan Bosch, and Kyo-Chul Kang. Systems and Software
Variability Management: Concepts, Tools and Experiences. Springer, 2013
(cit. p. 425).

[30] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike
Hinchey. “An overview of dynamic software product line architectures
and techniques: Observations from research and industry”. In: Journal of
Systems and Software 91 (2014), pp. 3–23 (cit. p. 425).

[31] Gary Chastek, Patrick Donohoe, John D. McGregor, and Dirk Muthig. “En-
gineering a production method for a software product line”. In: Proceedings
of the 2011 15th International Software Product Line Conference. SPLC.
2011 (cit. p. 410).

[32] Lianping Chen and Muhammad Ali Babar. “A survey of scalability aspects
of variability modeling approaches”. In: Workshop on Scalable Modeling
Techniques for Software Product Lines at SPLC. 2009 (cit. p. 412).

[33] Lianping Chen, Muhammad Ali Babar, and Nour Ali. “Variability manage-
ment in software product lines: A systematic review”. In: SPLC’09. 2009
(cit. p. 412).

[34] Andreas Classen, Quentin Boucher, and Patrick Heymans. “A text-based
approach to feature modelling: Syntax and semantics of TVL”. In: Science
of Computer Programming 76.12 (2011), pp. 1130–1143 (cit. p. 416).

[35] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. “What’s
in a feature: A requirements engineering perspective”. In: FASE. 2008
(cit. p. 413).

References 429

[36] Paul Clements and John Bergey. The US Army’s Common Avionics Ar-
chitecture System (CAAS) product line: A case study. Tech. rep. Software
Engineering Institute, Carnegie Mellon University, 2005 (cit. p. 410).

[37] Paul Clements, Lawrence Jones, Linda Northrop, and John D. McGregor.
“Project management in a software product line organization”. In: IEEE
Software 22.5 (2005), pp. 54–62 (cit. p. 426).

[38] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001 (cit. pp. 410, 425).

[39] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000 (cit. pp. 406, 407,
411, 421, 423).

[40] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and
Andrzej Wąsowski. “Cool features and tough decisions: A comparison of
variability modeling approaches”. In: VaMoS. 2012 (cit. pp. 412, 413).

[41] Vittorio Dal Bianco, Varvana Myllarniemi, Marko Komssi, and Mikko
Raatikainen. “The role of platform boundary resources in software ecosys-
tems: A case study”. In: WICSA. 2014 (cit. p. 426).

[42] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. “Mi-
grating the Java-based Apo-Games into a composition-based software
product line”. In: SPLC. 2019 (cit. p. 397).

[43] Deepak Dhungana, Patrick Heymans, and Rick Rabiser. “A formal seman-
tics for decision-oriented variability modeling with DOPLER”. In: VaMoS.
2010 (cit. p. 413).

[44] Frank Dordowsky and Walter Hipp. “Adopting software product line princi-
ples to manage software variants in a complex avionics system”. In: SPLC.
2009 (cit. p. 410).

[45] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin
Becker, and Krzysztof Czarnecki. “An exploratory study of cloning in
industrial software product lines”. In: CSMR. 2013 (cit. pp. 396, 397).

[46] Anh Nguyen Duc, Audris Mockus, Randy Hackbarth, and John Palframan.
“Forking and coordination in multi-platform development: A case study”. In:
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 2014 (cit. p. 397).

[47] Christian Dziobek, Joachim Loew, Wojciech Przystas, and Jens Weiland.
“Functional variants handling in Simulink models”. In: MACDE. 2008
(cit. p. 410).

[48] Holger Eichelberger and Klaus Schmid. “A systematic analysis of textual
variability modeling languages”. In: Proceedings of the 17th International
Software Product Line Conference. 2013 (cit. p. 416).

[49] Ulrik Eklund and Håkan Gustavsson. “Architecting automotive product
lines: Industrial practice”. In: Science of Computer Programming 78.12
(2013), pp. 2347–2359 (cit. p. 410).

[50] Danielle Fafchamps. “Organizational factors and reuse”. In: IEEE Software
11.5 (1994), pp. 31–41 (cit. p. 426).

[51] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexan-
der Egyed. “Enhancing clone-and-own with systematic reuse for developing
software variants”. In: 30th IEEE International Conference on Software
Maintenance and Evolution. 2014 (cit. p. 426).

430 Chapter 11. Software Product Lines

[52] Rick Flores, Charles Krueger, and Paul Clements. “Mega-scale product line
engineering at General Motors”. In: Proc. SPLC. 2012 (cit. p. 410).

[53] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo
Zhang. “Ten years of product line engineering at Danfoss: Lessons learned
and way ahead”. In: SPLC. 2016 (cit. pp. 397, 410).

[54] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny
Groshev. “ConfigFix: Interactive configuration conflict resolution for the
Linux kernel”. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). 2021
(cit. pp. 401, 402, 404, 405).

[55] Dharmalingam Ganesan, Mikael Lindvall, Chris Ackermann, David McCo-
mas, and Maureen Bartholomew. “Verifying architectural design rules of
the flight software product line”. In: Proceedings of the 13th International
Software Product Line Conference. SPLC. 2009 (cit. p. 410).

[56] Christopher Ganz and Michael Layes. “Modular turbine control software:
A control software architecture for the ABB gas turbine family”. In: In-
ternational Workshop on Architectural Reasoning for Embedded Systems.
1998 (cit. p. 410).

[57] Sergio Garcia, Daniel Strueber, Davide Brugali, Thorsten Berger, and Pa-
trizio Pelliccione. “Robotics software engineering: A perspective from the
service robotics domain”. In: 28th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE). 2020 (cit. p. 397).

[58] Sergio Garcia, Daniel Strueber, Davide Brugali, Alessandro Di Fava, Pa-
trizio Pelliccione, and Thorsten Berger. “Software variability in service
robotics”. In: Empirical Software Engineering (2022) (cit. pp. 397, 410).

[59] Sergio Garcia, Daniel Strueber, Davide Brugali, Alessandro Di Fava, Philipp
Schillinger, Patrizio Pelliccione, and Thorsten Berger. “Variability model-
ing of service robots: Experiences and challenges”. In: 13th International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS).
2019 (cit. pp. 397, 410).

[60] Georgios Gousios, Martin Pinzger, and Arie van Deursen. “An exploratory
study of the pull-based software development model”. In: Proceedings of
the 36th International Conference on Software Engineering. New York, NY,
USA: ACM, 2014, pp. 345–355 (cit. p. 397).

[61] Hakan Gustavsson and Ulrik Eklund. “Architecting automotive product
lines: Industrial practice”. In: SPLC. 2010 (cit. p. 410).

[62] Ibrahim Habli and Tim Kelly. “Challenges of establishing a software prod-
uct line for an aerospace engine monitoring system”. In: 11th International
Software Product Line Conference. SPLC. 2007 (cit. p. 410).

[63] Geir K. Hanssen. “A longitudinal case study of an emerging software
ecosystem: Implications for practice and theory”. In: Journal of Systems
and Software 85.7 (July 2012), pp. 1455–1466 (cit. p. 426).

[64] Bernd Hardung, Thorsten Kölzow, and Andreas Krüger. “Reuse of software
in distributed embedded automotive systems”. In: 4th ACM International
Conference on Embedded Software. EMSOFT. 2004 (cit. p. 410).

[65] Klaus-Dieter Hess and Frank Dordowsky. “Rational ClearCase migration to
a complex avionics project—an experience report”. In: CONQUEST. 2008
(cit. p. 410).

References 431

[66] Arnaud Hubaux, Quentin Boucher, Herman Hartmann, Raphaël Michel, and
Patrick Heymans. “Evaluating a textual feature modelling language: Four
industrial case studies”. In: Software Language Engineering. Ed. by Brian
Malloy, Steffen Staab, and Mark van den Brand. Vol. 6563. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2011, pp. 337–356
(cit. p. 416).

[67] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. “A user survey of
configuration challenges in Linux and eCos”. In: VaMoS. 2012 (cit. p. 404).

[68] Mikolás Janota, Victoria Kuzina, and Andrzej Wąsowski. “Model con-
struction with external constraints: An interactive journey from semantics
to syntax”. In: MoDELS. Ed. by Krzysztof Czarnecki, Ileana Ober, Jean-
Michel Bruel, Axel Uhl, and Markus Völter. Vol. 5301. Lecture Notes in
Computer Science. Springer, 2008, pp. 431–445 (cit. p. 415).

[69] Slinger Jansen. “Opening the ecosystem flood gates: Architecture chal-
lenges of opening interfaces within a product portfolio”. In: ECSA. 2015
(cit. p. 426).

[70] Slinger Jansen and Michael A Cusumano. “Defining software ecosystems:
A survey of software platforms and business network governance”. In:
Software Ecosystems. Edward Elgar, 2013 (cit. p. 426).

[71] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. “A sense of
community: A research agenda for software ecosystems”. In: 31st Interna-
tional Conference on Software Engineering - Companion Volume. IEEE.
2009 (cit. p. 398).

[72] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki.
“Maintaining feature traceability with embedded annotations”. In: SPLC.
2015 (cit. pp. 397, 417).

[73] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal An-
tkiewicz, Krzysztof Czarnecki, and Andrzej Wąsowski. “Clafer: Lightweight
modeling of structure, behaviour, and variability”. In: Art Sci. Eng. Program.
3.1 (2019), p. 2 (cit. p. 417).

[74] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Tech.
rep. Software Engineering Institute, Carnegie Mellon University, 1990
(cit. p. 412).

[75] Kyo Chul Kang. “FODA: Twenty years of perspective on feature models”.
In: SPLC. Keynote Address. 2009 (cit. pp. 399, 412).

[76] S.C. Kleene. “On notation for ordinal numbers”. In: The Journal of Symbolic
Logic 3.4 (1938), pp. 150–155 (cit. pp. 402, 403).

[77] Heiko Koziolek, Thomas Goldschmidt, Thijmen de Gooijer, Dominik
Domis, Stephan Sehestedt, Thomas Gamer, and Markus Aleksy. “Assessing
software product line potential: An exploratory industrial case study”. In:
Empirical Software Engineering 21.2 (2016), pp. 411–448 (cit. p. 410).

[78] Jacob Krueger and Thorsten Berger. “An empirical analysis of the costs of
clone- and platform-oriented software reuse”. In: 28th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE). 2020 (cit. p. 425).

[79] Jacob Krueger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig,
and Thorsten Berger. “Towards a better understanding of software fea-

432 Chapter 11. Software Product Lines

tures and their characteristics: A case study of Marlin”. In: VaMoS. 2018
(cit. p. 397).

[80] Jacob Krueger, Wardah Mahmood, and Thorsten Berger. “Promote-pl: A
round-trip engineering process model for adopting and evolving product
lines”. In: 24th ACM International Systems and Software Product Line
Conference (SPLC). 2020 (cit. p. 409).

[81] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake,
and Thomas Leich. “Apo-Games: A case study for reverse engineering
variability from cloned Java variants”. In: 22nd International Systems and
Software Product Line Conference - Volume 1. SPLC ’18. 2018 (cit. p. 397).

[82] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig,
and Thorsten Berger. “Where is my feature and what is it about? A case
study on recovering feature facets”. In: Journal of Systems and Software
152 (2019), pp. 239–253 (cit. p. 397).

[83] Liang Liang, Zhiqiang Hu, and Xiangyun Wang. “An open architecture for
medical image workstation”. In: Medical Imaging 2005: PACS and Imaging
Informatics. 2005 (cit. p. 410).

[84] Frank van der Linden. “Software product families in Europe: The Esaps &
Café projects”. In: IEEE Software 19.4 (2002), pp. 41–49 (cit. p. 407).

[85] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and
Andrzej Wąsowski. “Evolution of the Linux kernel variability model”. In:
SPLC. Ed. by Jan Bosch and Jaejoon Lee. Vol. 6287. Lecture Notes in
Computer Science. Springer, 2010, pp. 136–150 (cit. p. 402).

[86] Alex Lotz, Juan F Inglés-Romero, Dennis Stampfer, Matthias Lutz, Cristina
Vicente-Chicote, and Christian Schlegel. “Towards a stepwise variability
management process for complex systems: A robotics perspective”. In:
Artificial Intelligence: Concepts, Methodologies, Tools, and Applications.
IGI Global, 2017, pp. 2411–2430 (cit. p. 410).

[87] Wardah Mahmood, Moses Chagama, Thorsten Berger, and Regina Hebig.
“Causes of merge conflicts: A case study of ElasticSearch”. In: 14th Interna-
tional Working Conference on Variability Modelling of Software-Intensive
Systems (VaMoS). 2020 (cit. p. 396).

[88] Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Laemmel, and
Mukelabai Mukelabai. “Seamless variability management with the Virtual
Platform”. In: 43rd International Conference on Software Engineering
(ICSE). 2021 (cit. p. 426).

[89] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. “Bottom-up technologies for reuse: Automated ex-
tractive adoption of software product lines”. In: Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017 - Companion Volume. IEEE Computer
Society, 2017, pp. 67–70 (cit. p. 426).

[90] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. “Software
practitioner perspectives on merge conflicts and resolutions”. In: ICSME.
2017 (cit. p. 396).

[91] Robert Mecklenburg. Managing Projects with GNU Make: The Power of
GNU Make for Building Anything. O’Reilly Media, Inc., 2004 (cit. p. 400).

[92] Gleiph Ghiotto Lima de Menezes. “On the nature of software merge con-
flicts”. PhD thesis. Federal Fluminense University, Dec. 2016 (cit. p. 396).

References 433

[93] Parastoo Mohagheghi and Reidar Conradi. “An empirical investigation of
software reuse benefits in a large telecom product”. In: ACM Trans. Softw.
Eng. Methodol. 17.3 (June 2008), 13:1–13:31 (cit. p. 410).

[94] Israel J. Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst,
Thorsten Berger, and Ahmed E. Hassan. “A large scale empirical study
on software reuse in mobile apps”. In: IEEE Software 31.2 (Mar. 2014),
pp. 78–86 (cit. p. 397).

[95] Leticia Montalvillo and Oscar Diaz. “Tuning GitHub for SPL development:
Branching models & repository operations for product engineers”. In: SPLC.
2015 (cit. p. 426).

[96] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
“Where do configuration constraints stem from? An extraction approach and
an empirical study”. In: IEEE Transactions on Software Engineering 41.8
(2015), pp. 820–841 (cit. p. 401).

[97] Linda M. Northrop. “Introduction to software product lines”. In: SPLC.
2010 (cit. p. 406).

[98] H. Obbink, J. Müller, P. America, R. van Ommering, G. Muller, W. van
der Sterren, and J.G. Wijnstra. “COPA: A component-oriented platform
architecting method for families of software-intensive electronic products”.
In: Tutorial for SPLC (2000) (cit. p. 407).

[99] Object Management Group. Unified Modeling Language Specification 2.5.1.
https://www.omg.org/spec/UML. 2017 (cit. p. 413).

[100] David Parnas. “On the design and development of program families”. In:
IEEE Transactions on Software Engineering SE-2.1 (Mar. 1976), pp. 1–9
(cit. p. 406).

[101] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina
Schaefer. “Synchronizing software variants with VariantSync”. In: Pro-
ceedings of the 20th International Systems and Software Product Line
Conference. 2016 (cit. p. 426).

[102] Pietu Pohjalainen. “Bottom-up modeling for a software product line: An
experience report on agile modeling of governmental mobile networks”. In:
Proceedings of the 15th International Software Product Line Conference.
SPLC. 2011 (cit. p. 410).

[103] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product
Line Engineering. Springer, 2005 (cit. pp. 409, 410, 413, 425).

[104] Daniela Rabiser, Paul Grünbacher, Herbert Prähofer, and Florian Angerer.
“A prototype-based approach for managing clones in clone-and-own product
lines”. In: 20th International Systems and Software Product Line Confer-
ence. 2016 (cit. p. 426).

[105] Reuse-driven software processes guidebook, Version 02.00.03. Tech. rep.
SPC-92019-CMC. 1993 (cit. p. 412).

[106] Andreas Rösel. “Experiences with the evolution of an application family
architecture”. In: Proceedings of the Second International ESPRIT ARES
Workshop on Development and Evolution of Software Architectures for
Product Families. 1998 (cit. p. 410).

[107] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. “Cloned product
variants: From ad-hoc to managed software product lines”. In: STTT 17.5
(2015), pp. 627–646 (cit. p. 426).

https://www.omg.org/spec/UML

434 Chapter 11. Software Product Lines

[108] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education Limited, 2016 (cit. p. 405).

[109] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. “A comparison of deci-
sion modeling approaches in product lines”. In: VaMoS. 2011 (cit. pp. 412,
413).

[110] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. “Feature diagrams: A survey and a formal semantics”. In:
RE. 2006 (cit. p. 413).

[111] Klaus-Benedikt Schultis, Christoph Elsner, and Daniel Lohmann. “Archi-
tecture challenges for internal software ecosystems: A large-scale industry
case study”. In: FSE. 2014 (cit. p. 426).

[112] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. “A common
notation and tool support for embedded feature annotations”. In: 24th ACM
International Systems and Software Product Line Conference - Volume B.
2020 (cit. p. 417).

[113] Christoph Seidl, Thorsten Berger, Christoph Elsner, and Klaus-Benedikt
Schultis. “Challenges and solutions for opening small and medium-scale
industrial software platforms”. In: 21st International Systems and Software
Product Line Conference (SPLC). 2017 (cit. p. 426).

[114] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. “Analysing the
Kconfig semantics and its analysis tools”. In: GPCE. 2015 (cit. pp. 402,
405).

[115] David C. Sharp. “Reducing avionics software cost through component
based product line development”. In: 17th DASC. AIAA/IEEE/SAE. Digital
Avionics Systems Conference. Proceedings (Cat. No. 98CH36267). 1998
(cit. p. 410).

[116] Steven She and Thorsten Berger. Formal Semantics of the Kconfig Language.
Tech. note. 2010. URL: https://arxiv.org/abs/2209.04916 (cit. pp. 402, 405).

[117] Marco Sinnema and Sybren Deelstra. “Classifying variability modeling
techniques”. In: Information and Software Technology 49.7 (2007), pp. 717–
739 (cit. pp. 412, 413).

[118] Software Engineering Institute. SEI Product Line Bibliography. URL: http:
//www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm (cit. p. 410).

[119] Thomas Stahl and Markus Völter. Model-Driven Software Development.
Wiley, 2005 (cit. pp. 423, 425).

[120] Stefan Stanciulescu, Sandro Schulze, and Andrzej Wąsowski. “Forked and
integrated variants in an open-source firmware project”. In: ICSME. 2015
(cit. pp. 396, 397).

[121] Mark Staples and Derrick Hill. “Experiences adopting software product
line development without a product line architecture”. In: APSEC. 2004
(cit. p. 397).

[122] Pia Stoll, Len Bass, Elspeth Golden, and Bonnie E. John. “Supporting
usability in product line architectures”. In: Proceedings of the 13th Interna-
tional Software Product Line Conference. SPLC ’09. 2009 (cit. p. 410).

[123] Daniel Strueber, Mukelabai Mukelabai, Jacob Krueger, Stefan Fischer,
Lukas Linsbauer, Jabier Martinez, and Thorsten Berger. “Facing the truth:
Benchmarking the techniques for the evolution of variant-rich systems”. In:
23rd International Systems and Software Product Line Conference (SPLC).
2019 (cit. p. 426).

https://arxiv.org/abs/2209.04916
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm

References 435

[124] Mikael Svahnberg and Jan Bosch. “Evolution in software product lines: Two
cases”. In: Journal of Software Maintenance 11.6 (Nov. 1999), pp. 391–422
(cit. p. 410).

[125] Yasuaki Takebe, Naohiko Fukaya, Masaki Chikahisa, Toshihide Hanawa,
and Osamu Shirai. “Experiences with software product line engineering in
product development oriented organization”. In: SPLC. 2009 (cit. p. 410).

[126] Christian Tischer, Andreas Muller, Thomas Mandl, and Ralph Krause. “Ex-
periences from a large scale software product line merger in the automotive
domain”. In: SPLC. 2011 (cit. p. 410).

[127] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007 (cit. pp. 407, 409, 410, 425).

[128] Martin Verlage and Thomas Kiesgen. “Five years of product line engineer-
ing in a small company”. In: ICSE. 2005 (cit. p. 410).

[129] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. “Towards a UML pro-
file for software product lines”. In: Software Product-Family Engineering.
2004 (cit. p. 413).

[130] Tewfik Ziadi and Jean-Marc Jézéquel. “Software product line engineering
with the UML: Deriving products”. In: Software Product Lines. Springer,
2006, pp. 557–588 (cit. p. 413).

[131] Roman Zippel. KConfig. Technical Documentation. 2017. URL: http://www.
kernel.org/doc/Documentation/kbuild/kconfig-language.txt (cit. p. 401).

http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

12 Feature Modeling

Copy and paste is a design error.

David L. Parnas

An important notation for expressing domain models is feature models.
Feature models are a simple, tree-based modeling notation that allows
features and their constraints to be expressed. The latter restrict the valid
combinations of features or express relations among features.

Feature models can nowadays be seen as the most successful notation to
model the common and variable characteristics of products in a software
product line. Proposed almost three decades ago, as part of the feature-
oriented domain analysis (FODA) method [24], hundreds of variability
management methods and tools have been introduced that build upon feature
models. However, building feature models is still a creative process that
requires expert domain knowledge. As such it is mainly done by humans,
who need support in terms of a methodology—the focus of this chapter.

We already described the feature-modeling notation in Sect. 11.4. In this
chapter, we will show how to systematically engineer feature models using
a modeling methodology. But first, we will discuss the notion of feature
and the different usages of feature models to set our modeling methodology
into more context.

12.1 The Notion of Feature

Feature models center around the notion of feature [14]. Features are
abstract entities used in a multitude of contexts, including software con-
figuration, product marketing, scoping, requirements engineering, and
domain analysis. As opposed to implementation assets (e.g., source files
or components), features are more intuitive and domain-oriented entities
understood by a range of stakeholders, not only developers. Features often
also cross-cut software assets. For instance, the feature ACPI (Advanced
Configuration and Power Interface), which controls power consumption in
the Linux kernel, is a highly scattered feature, modifying many different
parts (via #ifdef code fragments) of the source code in the kernel [37].

The notion of features is vague, which is in fact a core strength of features,
since organizations can choose their own definition. In the most general
sense, we can say that features abstractly represent functional or non-
functional concerns of a software system. We can also see features as end-
user-visible characteristics of a system [24, 14], or as distinguishable charac-
teristics of a concept that is relevant to some stakeholder in the project. For
example, choosing a manual or automatic transmission, when buying a car,
might be interpreted as deciding a feature. Furthermore, features are a kind

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_12

437

https://doi.org/10.1007/978-3-031-23669-3_12
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_12&domain=pdf

438 Chapter 12. Feature Modeling

of concern. They are also a high-level requirement. Pragmatically, some
organizations call the headlines of the requirements documents features.

In the literature, as many as 37 definitions of “feature” exist. Some
definitions only capture the development side, e.g., when a feature is defined
as a set of requirements [15], others only the business side [39]. As such, we
recommend that you and your organization agree on the notion of feature.
The following is a definition that, in our opinion, captures the notion of
feature used in this book well, and can provide the basis for a more concrete
definition that an organization can formulate.

Definition 12.1. A feature is a concept in a domain. It can be seen as a
high-level requirement. A feature represents commonality or variability in
a product line. It is a unit of communication among stakeholders.

12.2 Documenting a Feature

What we usually see of a feature is its name and its position in the hierarchy,
which gives it some semantics. Mapping a feature to source code assets
or to models gives it even more semantics. In practice, organizations need
to track more information about features to engineer them. We call them
feature facets.

Much information about these feature facets is distributed in different
assets of a project and can be recovered. However, it makes sense to record
such information. We coined the term feature facet for this reason [14].
You can either record various feature facets when defining the feature, or
you can retroactively recover such facets [28].

Based on our previous work, and the book of Apel et al. [5], we suggest
that recording the following information per feature is useful, but of course
you need to tailor this list to your circumstances.

• organizational information, including organization level and responsi-
ble party (a.k.a. feature owner);

• description, including rationale, nature, and corresponding requirements;
• relationship to other features, including hierarchy, grouping, and con-

straints;
• domain-specific dependencies, including dependency on hardware, reg-

ulations, and runtime environments;
• planning information, including priority, costs, effort, and process;
• realization information, including scope, architectural responsibility,

binding time, and behavioral specifications (e.g., invariants and condi-
tions);

• usage information, including interested stakeholders, configuration
knowledge (e.g., default activation) and questions, known effects on
non-functional properties, and potential feature interactions;

• quality assurance information, including testing and approval process.

12.3. Uses of Feature Modeling 439

configuration
& buildcoordination

validation
& verification

domain modeling
product line scoping

& management
m

an
ag

em
en

t
&

 d
es

ig
n

de
ve

lo
pm

en
t

&
 Q

A

design-space
exploration

Figure 12.1: Range of
feature-model usages

Exercise 12.1. Imagine the company UpAndDown that produces elevator systems.
It provides customized solutions for private and public customers.

Analyze the domain. Which features are likely to be requested by many cus-
tomers? Which features are likely to be requested by only a few customers? Which
features could distinguish your products from the products of your competitors in
this market segment?

Model the domain with a feature model. Pay attention to feature dependencies.
Consider a maximum of around ten features.

12.3 Uses of Feature Modeling

As illustrated in Fig. 12.1, feature models are used for different purposes.
We distinguish management & design uses, such as for domain modeling,
scoping and managing the product line, as well as performing design-space
exploration, from development & quality assurance (QA) purposes, such as
coordination, configuration & build, and validation & verification.

A feature model can play the same role as a DSL model in a model-driven
product architecture. A feature model can be used to derive a desirable
product configuration, which can be fed into the code generator, to drive
the derivation of an implementation of a specific product. In this sense,
a feature model is an extremely simple meta-model, which describes its
models—configurations adhering to the constraints of the feature tree.

Feature-modeling languages are used by several commercial and open-
source product line tools such as pure::variants from the company pure::sys-
tems [38], Gears [26] from the company BigLever, or the open-source tool
FeatureIDE [43]. Many configuration languages grown internally within
various projects resemble feature modeling a lot. Recall our discussion of
the Linux kernel’s language Kconfig in this chapter.

12.4 A Feature-Modeling Process

Now that we discussed the feature-modeling notation in detail, and also
took a look at the feature-modeling-like language Kconfig used in the Linux
kernel and other systems software projects [13], let us look at the modeling
process itself. In this section, we will refer to our modeling principles

440 Chapter 12. Feature Modeling

Table 12.1: Legend for
feature-modeling guidelines

Symbol Description

å Decision affecting following activities

2 Activity

(2) Optional activity

3 Composite activity

(3) Optional composite activity

2 Sub-Activity of a composite activity

presented in Nesic et al. [36] and present core questions you need to answer
as well as different kinds of actions you need to perform. Tbl. 12.1 explains
core terms and their icons we will use in this section.

The following process and principles should be applied when creating a
feature model for a software product line. If you are using feature models
just for brainstorming or other creative phases of software engineering
without the goal of creating a product line at some point, you probably do
not need to consider the following modeling process and principles.

There are three ways of adopting a product line [25, 12], and they influ-
ence the way you create the feature model. When building a product line
from scratch, also called pro-active adoption, you predominantly create the
feature model in a top-down fashion. From domain analysis and scoping,
where you model the domain in a reasonable scope—for instance, you
model the features that you think you can develop and sell to customers—
you start by creating the top-level features and then refine them. When
building a product line from one existing product, also called re-active
adoption, or from multiple existing products, also called extractive adoption,
you predominantly build the feature model in a bottom-up fashion. From
the existing products you have configuration options, which you model as
optional features as leaves. From the differences between existing products
you identify differences and try to understand why these differences exist
from a domain perspective, and these differences you model as features.
However, while we say “predominantly” top-down or bottom-up, in all
three adoption scenarios one does both (principle M5: Use a combination
of bottom-up and top-down modeling), as we discuss in the phase Domain
Analysis and Scoping for the activity Feature Identification on page 444.

In our process, we classify the different activities into four phases: Pre-
Modeling, Domain Analysis and Scoping, Modeling, and Maintenance and
Evolution. Figure 12.2 depicts these phases, together with typical iterations
among the last three phases.

Pre-Modeling Activities

In the first phase, before you start the actual modeling, you plan the feature
modeling and train the relevant stakeholders. The result is a description
of the model purpose, a clarification of the stakeholders involved and their
roles, and a change and expectation management plan. We recommend

12.4. A Feature-Modeling Process 441

Pre-Modeling

Domain Analysis and Scoping

Modeling

Maintenance and Evolution
Figure 12.2: The four main
phases of the feature-modeling
process

defining the model purpose (activity Define Model Purpose) and training
(activity Provide Training) in iteration, which allows the purpose to be
clarified and refined.

2 Define model purpose. Your first activity is to clarify what to use the
model for (principle PP3: Define the purpose of the feature model). You
need to do that in order to focus the modeling on the relevant features and
modeling concepts (e.g., constraints), and avoid wasting time on irrelevant
ones. Choose among the different uses shown in Fig. 12.1. However, note
that when the feature model should serve both management & design and
development & QA purposes, there is often a tension between designing
the model more towards capturing domain- and business-oriented features
or towards implementation-oriented features. In other words, the feature
model is often seen as a pivotal model artifact, used as a communication
platform to support business goals, while at the same time it should be
possible to map the features to describe the software assets and control
the platform, that is, be able to derive individual products in an automated
process supported by a configurator tool, for example.

2 Identify stakeholders. Your second activity is to identify the relevant
stakeholders (principle PP1: Identify relevant stakeholders), who can have
diverse roles in your organization. We distinguish between three kinds,
which are not necessarily disjoint:

• (i) experts are those who will provide input about features and their
constraints, as domain- or implementation-oriented experts;

• (ii) modelers are those who will perform the modeling; and
• (ii) model users are those who will use and benefit from the feature model.

The experts (i) should have sufficient knowledge about the domain (i.e.,
know the problem space) or about the implementation (i.e., know the solu-
tion space). While the former understand what features need to be developed
for economic benefit (e.g., business and sales experts), the latter know the
technical details about the software in depth (e.g., developers). Depending
on the purpose of the feature model, you want to have a representative of
one of each kind, multiple representatives of either kind, or one who has

442 Chapter 12. Feature Modeling

knowledge about the domain and the implementation. In our experience, we
even observed companies where the developers traditionally had very good
insights into the business and sales aspects, especially when there used to
be a close relationship due to frequent meetings. In many cases, however,
developers have never learned to think in terms of the domain and business
and require training and a pilot project to obtain such a perspective.

The modelers (ii) are often system and software architects, project man-
agers, or requirements engineers, since they usually build abstract system
models. Our experience shows that the number of stakeholders performing
the modeling in an organization should be low, perhaps as low as a single
person (principle PP6: Keep the number of modelers low).
å Finally, it is important to decide who are the model users (iii). If

they are end-users or even customers, then the feature model needs to be
understandable. It is also necessary to model all the constraints among
features (principle D2: If the main users of a feature model are end-users,
perform feature-dependency modeling). This way, the configurator tool can
ensure that only correct configurations are created and valid variants are
derived from the platform. When a domain expert configures the model,
who knows all the details about features and constraints among them, then
it might not pay off to invest the effort of modeling constraints (see below
where we talk about dependency modeling).

3 Provide training. Training should include becoming familiar with the
feature-modeling notation and the tool used, as well as with the process
and principles of feature modeling—a sub-activity we call 2 Tool and
Notation Training. Training involves familiarization with product line
engineering (e.g., platform architectures, software configuration, and prod-
uct derivation), perhaps with this book chapter—a sub-activity we call
2 SPLE Education. To make it easy for learners to understand the feature-
modeling notation and its semantics, ideally it can be related to concepts
they are used to intuitively. For developers, feature types and their graphical
representation can be related to classes or data types. For instance, a feature
with a checkbox is a feature of type Boolean. In practice, the training is
often done together with a tool vendor.

We recommend that training involves a 2 Pilot Project of around
three days (principle T3: Conduct a pilot project). This should be done
with a small (sub-)system of the company that exists in multiple variants,
which have sufficient commonality and do not come with strict deadlines
regarding the release to production. This allows very fast feedback loops
and facilitates training. If your organization does not have an existing
system and rather wants to adopt SPLE from scratch, then you can refer to
existing data sets of clone & own-based systems [27, 42, 29].

The pilot should comprise all the activities of the feature-modeling
phases, which we explain shortly: the modeling phase as well as the
maintenance and evolution phase. We recommend to create a platform
with around 20–50 variation points that represent the differences in the

12.4. A Feature-Modeling Process 443

individual variants. So, identify the differences in the implementations,
abstract them into the respective features, and model them in a feature
model, as we explain for the feature-modeling phases shortly.

As a guided exercise, a core benefit of performing a pilot project is
to “walk” those who have detailed knowledge about the variant imple-
mentations up to the domain. Those stakeholders usually understand the
differences in detail, that is, in terms of implementation concepts. When
asked about the details, they usually provide those implementation-level
details. The idea is to ask them various times (cf. principle M3) why the
differences exists, leading to increasingly domain-oriented explanations,
until the difference can be described by the presence or absence of a
specific feature, as a domain-oriented concern. The pilot project will
also give experience in product derivation (cf. principle QA2). Engineers
can experience whether the derivation feels viable, that is, go through the
feature model and make selections to establish a configuration.

The pilot project also helps to, if envisioned, connect the business and
development worlds. Connecting features to assets and to business aspects
is also important, since doing that later is difficult. This will also improve
acceptance of the feature model, since product derivation before was usually
a manual and error-prone activity, requiring copying and pasting software
assets and packaging them properly. Selecting a reasonably small sub-
system for the pilot project can substantially improve feature-model training
and acceptance.

2 Create change and expectation management. When an organization
wants to introduce feature modeling and SPLE, defining and executing
a communication plan is crucial. The plan should explain the benefits,
especially the reuse potential and the respective business-related benefits,
such as shorter time to market. We recommend describing the benefits
tailored to the different stakeholders. For instance, the stakeholders who
are more business-oriented benefit from having features, from having them
organized in the feature model, and from having feature descriptions.
The more development-oriented stakeholders benefit from clear feature
requirements, which the features are mapped to, as well as keeping an
overview understanding of the development.

The communication plan should also explain the necessary changes in the
process and in the organizational structure, as well as in the architecture of
the platform and the individual products. Explaining the notion of feature,
and why we need features, is also important.

2 Establish a forum and a workshop format. It is also advisable to estab-
lish a forum with regular meetings to discuss maintenance and evolution.
Since a feature model is brittle, one or a few stakeholders in the organization
should become the main modeler(s), to be consulted in those forums.

To elicit information about new features and their relations, a workshop
format should be adopted. The workshops help to elicit information from
the stakeholders (principle IS1: Rely on domain knowledge and existing

444 Chapter 12. Feature Modeling

artifacts to construct the feature model), to validate the model (principle
QA1: Validate the obtained feature model in workshops with domain
experts), as well as to evolve and maintain it.

It is also advisable to put an approval process for new features in place,
ideally as part of the workshop format.

(2) Define decomposition criteria. This optional activity aims at defining
some criteria that help modelers decide how to decompose features in the
model (principle PP4: Define criteria for feature to sub-feature decompo-
sition). As discussed in the box “The Feature Hierarchy” on page 449, the
meaning of the hierarchy edges in a model is intentionally not well defined.
Modelers are relatively free to stick with Part-Of or Is-A relationships
between features and model the hierarchy freely to be as intuitive as possible,
or to conceive and document domain-specific decomposition criteria for the
model. These could reflect existing hierarchies (e.g., of physical parts of the
product) in the organization or even parts of the architecture decomposition,
or other hierarchies that your stakeholders are familiar with in customer-
facing catalogs.

(2) Unify domain terminology. This optional activity can be necessary
when the domain terminology is too diverse and ambiguous in the organi-
zation (principle PP2: In immature or heterogeneous domains, unify the
domain terminology). The risk is that different perceptions of domain con-
cepts might cause confusion among stakeholders and lengthy discussions.
We suggest you provide a dictionary with descriptive terms for feature
names. If several feature models will be created, you could also define
a hierarchical naming schema and prefixes for features in particular (sub-
)models. A common language is the precondition for successful joint work
among the stakeholders involved.

Domain Analysis and Scoping Activities

After the pre-modeling phase, there are two main phases carried out itera-
tively (principle PP5: Plan feature modeling as an iterative process). In the
first one, described in this subsection, you extract information about features
and their relationships relevant to the subsequent modeling phase. Iterating
between the two phases allows you to gradually increase your modeling
expertise, as well as to safely and incrementally evolve the feature model.

The idea is that you start with an initial domain analysis and scoping,
to gather and document information (mainly a list of features and their
relationships) in a way that is sufficient to proceed with the modeling
activities. Then you iterate—increasingly more closely—where you obtain
features and immediately model them. You usually even develop the system
in parallel. Once you have an initial software system controlled by the
feature model, this will also help with the iteration.

We recommend to perform the activities of this phase in workshops
(principle M1: Use workshops to extract domain knowledge). A workshop
is usually the best way to start to obtain core domain knowledge from the

12.4. A Feature-Modeling Process 445

relevant experts. Recall the activity Establish a Forum and a Workshop
Format on p. 443 above.

2 Identify features. Before modeling features, we first need to identify
them. We distinguish between the bottom-up and the top-down strategy.
The former you mainly apply for the extractive and the re-active adoption
of product lines, so when you already have a system or a set of cloned
system variants. The latter you apply for pro-active adoption, when you
need to decide what features to realize and how to organize them. In
practice, you apply both the bottom-up and the top-down strategies, but put
more emphasis on either one based on the adoption strategy. You should
also recall how a feature is defined (cf. Def. 12.1), and what its main
characteristics are—most importantly, that a feature represents a distinct,
well-understood, and graspable aspect of the software system (principle
M6: A feature typically represents a distinctive, functional abstraction).

When identifying features, you should first focus on those that distinguish
variants (principle M2). You should also prefer features of type Boolean
(principle M10) for easy comprehension of the resulting feature model. The
following two main identification strategies exist:

• 2 Bottom-Up Feature Identification If you have one existing system
(re-active adoption), you start by considering the existing and demanded
configuration options, which give you a list of features to start with.
When you have existing system variants (extractive adoption), which
often arise from clone & own, then you perform pairwise diffing. You
can use a standard diffing tool, such as the one that is built into Eclipse,
Notepad++ with the Compare plugin, or the tool Meld,1 which provides
more extensive diffing support. Specifically, perform a pairwise diff
among the variants, which means that you take one as a base and diff
it with another one. You observe the differences, then try to understand
why these differences are there, in order to identify features. Of course,
to come up with a product line, you need to convert the differences
into variation points using a suitable variability mechanism. We refer
to Sect. 11.3 and the relevant literature (Apel et al. [5], Chapters 4 and
5) for details about implementation techniques for variation points, as
well as for methods and tools to integrate the cloned systems into one
platform [6, 30, 40, 27].
Overall, your task is to “convert” implementation differences into features.
The idea, which we already explained for the pilot project above, is to
understand why a difference exists. A typical technique (principle M3:
Apply bottom-up modeling to identify differences between artifacts) is to
ask those with detailed variant implementation knowledge various times
why the difference exists; this leads to increasingly domain-oriented
explanations, until the difference can be described by the presence or

1https://meldmerge.org

https://meldmerge.org

446 Chapter 12. Feature Modeling

absence of a specific feature. In other words, you lift the implementation-
level differences to the domain.

• 2 Top-Down Feature Identification This sub-activity is usually the
responsibility of dedicated domain analysis [23] and product-line-scoping
methods [41, 21, 22]. According to Czarnecki and Eisenecker [16], the

“purpose of Domain Analysis is to select and define the domain of focus
and collect relevant domain information and integrate it into a coherent
domain model.” The domain model in our case is a feature model.
Product-line-scoping methods, such as PuLSE-Eco [7], systematically
select and prioritize the features that an organization wants to realize.
These should bring an economic benefit for the organization and be in
line with its business strategy (e.g., considering vision, strategy, finance,
and commercial aspects).

After identification, the feature needs to be approved in some way by your
organization. This approval process can be part of the established forum and
workshop format (cf. page 443). Once approved, you can add it to the fea-
ture model (see activity Add Features below). It should also be documented
(principle M11: Document the features and the obtained feature model).
å The next question you should think about is whether you need to iden-

tify and model cross-tree constraints between features. Many constraints
will already be reflected in the feature hierarchy and in feature groups, or
as mandatory features. In any case, these constraints need to reflect the
semantics of how you can combine features via the assets they map to. For
instance, when you combine features into an OR group, but the system
does not build or crashes when you select more than one of these features,
then an XOR group would properly constrain the features. Beyond these
constraints, which are easily visible in a feature model, you need to decide
whether you need to model cross-tree constraints, which are often more
intricate and challenge comprehension of the feature model.

Two modeling principles come in handy for making this decision. If the
model is configured by (company) experts, avoid modeling of cross-tree
constraints (principle D1). Since it is very expensive to accurately model
all constraints, and since the experts will likely know all the constraints, it
usually will not pay off to model them. Some case studies [10] shed more
light on this issue. First, you often need a consultant to help the customer
to decide which features are needed, so you can often save the effort of
modeling constraints. Another strategy seen in practice is to maintain sets
of tested configurations, which are evolved and maintained together with
the model. In contrast, if the main users of the feature model are end-users,
then you need to model the cross-tree constraints (principle D2). This
can easily be seen in the Linux kernel (cf. Sect. 11.2) and many other
systems software projects [13]. The complexity of these models and the
sheer number of their configurations used for running systems demand that
all constraints should be modeled.

12.4. A Feature-Modeling Process 447

(2) Identify constraints. As discussed in the box on page 450, constraints
restrict the possible configurations of a feature model, to prevent undesired
or invalid system variants, and to enhance the configuration experience.

But where do the constraints come from? All systems composed of parts
(in our case, software assets) have constraints over those parts, arising from
domain, marketing, or technical restrictions. Since we abstract the selection
of those parts to the selection of features (i.e., we mapped the parts to
features), what we do is to lift those constraints over parts to constraints
over features, which is not always trivial.

• Code Constraints Empirical studies show that in systems software, up
to half of the constraints in a feature model can be found in the codebase
and extracted using various program analysis techniques [34, 35]. Since
such analysis techniques are difficult to set up and use, the developers
should rather inform the modelers about such constraints or declare them
directly in the model.
We distinguish between two major kinds of sources: the so-called feature
effect and the prevention of build- or runtime errors. While details are
described by Nadi et al. [35], intuitively, feature effect refers to the idea
that enabling a feature in the model should have an effect on the resulting
variants. In other words, if you enable the feature and nothing will happen,
then likely some constraints are missing. A typical example is a feature
whose implementation (i.e., the variation point controlling inclusion of
the implementation) is contained in that of another feature. Of course, if
the latter is disabled, enabling the former will not have any effect. So, fea-
ture effect means that enabling a feature should lead to a lexically different
program or to one that behaves differently. The other source of constraints
aims at the prevention of build- or run-time errors, and is also described
in more details by Nadi et al. [35]. Such errors can occur early when
the system fails to build, that is, fails to preprocess, parse, compile, type-
check, or link. They can also occur late at runtime, for instance, when
the system crashes due to null-pointer de-referencing or buffer overflows.
Notably, they are much more difficult to detect than build-time errors.

• Domain Constraints Such constraints arise from domain knowledge and
are usually not contained in the codebase. Examples are dependencies
among hardware devices, which are instead contained in documentation
or in the experience and knowledge of domain experts or developers. To
some extent, these constraints can be found through testing the different
combinations of hardware and then adding them. However, mostly they
need to be provided by the domain experts.

• Other Constraints Further sources are marketing experts, who might
want to limit feature combinations for business reasons, or to simplify
feature selection for the customer. Constraints can also be used to
partially configure a feature model, which is called staged configuration
[18]. Finally, some feature-modeling tools allow specification of soft
constraints, such as “recommends” [10].

448 Chapter 12. Feature Modeling

From these sources of constraints, observe that, while code constraints
are reflected in the codebase and could in principle be recovered, the other
sources illustrate that feature models contain unique knowledge.

Finally, when identifying constraints, it is normal that initially you are
not aware of all the dependencies. In fact, it is often difficult to see them
early on, which can also be seen in the Linux kernel [31]. There, when
developers add new features, it is sometimes observable that they fix the
dependencies in several subsequent commits.

Finally, after identifying the constraints, document them together with
their rationales (principle M11: Document the features and the obtained
feature model).

Modeling Activities

In the modeling phase, the goal is to obtain a feature model based on the
documented information about features and relationships in the previous
phase (Domain Analysis and Scoping Activities).
å A core question to begin the modeling with is whether you want to

physically separate the partitions of the envisioned model into different
feature-model files or not (principle MO3: Split large models). If so,
perform the following two activities, otherwise continue with activity
Define Coarse Feature Hierarchy below. Still, even if you do not want to
decompose and rather want to create one feature model, it can be beneficial
to temporarily decompose into models representing different stakeholder-
related features, to model them in isolation, and later integrate them.

(3) Model modularization. Decomposing a feature model into smaller
ones has pros and cons. It facilitates distributed, independent evolution
and maintenance of the model, eases version management, as well as
discourages (or limits) cross-tree constraints across the models. However,
it also raises consistency maintenance issues. In contrast, not decomposing
avoids the overhead of having to maintain multiple model files and their
inclusion in a central one, but large models quickly become unmanageable.

Whether you should decompose depends on multiple factors. First,
it depends on whether you find an easy decomposition of the feature-
model hierarchy into coherent sub-trees. For instance, a sub-tree could
contain features representing implementation details and another one those
representing user-visible characteristics. Other factors are the estimated
software size and estimated number of features. From our experience, large
models with several hundreds of features are all modularized into multiple
files. The Linux kernel with the distribution of its ultra-large model across
1,000 files (cf. Sect. 11.2) is an extreme example. From our experience, all
commercial models we have seen with several hundred features were all
split into multiple ones. The hierarchy of feature models sets up the first
framework for the platform—it is an initial structure that helps with the
modeling. This hierarchy can be distributed along the codebase (i.e., as in
the Linux kernel) or organized in a dedicated folder structure.

12.4. A Feature-Modeling Process 449

The Feature Hierarchy
The feature hierarchy is one of the most valuable parts of a feature model. It organizes knowledge,
thereby helping stakeholders to keep an overview understanding of complex systems in terms of features.

The meaning of the hierarchy edges in feature models is not explicitly defined from a domain perspective.
In our experience, they most often resemble a Part-Of relationship, but can also be of the Is-A kind
(a.k.a. generalization), so rather expressing ontological relationships. Part-Of also makes sense from
a configurator perspective. Recall that a child feature implies its parent in the semantics. You want to
avoid selecting a feature without it having an effect, to avoid meaningless configurations (redundant
feature selections that do not change the actual derived variant). When an asset that is controlled by
a child feature is part of another asset controlled by the parent feature, then you should not be able to
enable the contained asset, which will never be there, since the container is missing.

A good feature hierarchy has the following properties:

• It is intuitive and easy to navigate.
• It abstracts over the codebase (folder) hierarchy.
• Its top-level features are more abstract and business-oriented. Those in the middle levels represent

functional aspects. The bottom-level features are usually more detailed technical concerns (e.g.,
hardware, libraries, diagnostics, and configuration options.

• It organizes features into sub-trees that logically partition the domain.
• Its organization reduces cross-tree constraints, thereby increasing cohesion and reducing coupling.
• It does not have a deep hierarchy. In practice, hierarchies have 3–6 levels. The maximum depth we

have seen (in the Linux kernel) is 8. Deep hierarchies have many intermediate features, which are
usually vague and not very distinct, and as such difficult to understand for stakeholders.

Model modularization has two sub-activities:

• 2 Define Structure of Model Files To decompose, you define a hi-
erarchy of feature models, beginning with a root model. This model’s
top-level features then become root features in the decomposed model
files. You carry out this sub-activity at the beginning.

• 2Maintain Consistency Between Model Files To maintain consistency,
you find features that participate in dependencies across the models, and
then move them into a separate “interface” feature model. This practice
isolates the inter-model dependencies and eases their maintenance. You
carry out this sub-activity during the actual modeling once you feel that
the cross-model dependencies are getting out of hand.

2 Define coarse feature hierarchy. You start by creating an initial, coarse
hierarchy of features within the feature model (if you created multiple
feature models, select the one whose features you think are most well-
understood).

Start by defining feature groups, where you model features that belong
to a horizontal domain or have a close relationship. Think how to navigate
those groups and existing features in a better way. You maximize cohesion

450 Chapter 12. Feature Modeling

Feature Constraints
Constraints restrict the values of features based on other features’ values to prevent undesired or invalid
variants. Or, in other words, constraints restrict the possible configurations (and, thereby, system variants)
of a feature model. Most of these constraints should be reflected in the feature hierarchy and in feature
groups, or by making features mandatory. The remaining constraints are added as cross-tree constraints.

Constraints exist for various reasons [35]:

• Constraints enforce low-level dependencies between software assets, mainly code. Since software
systems, especially product lines, are built modularly and have variation points, features might need to
use other features to function. For instance, there can be a definition-use relationship, such as a method
definition provided by the assets of one feature, and called from within the assets of another feature.

• Constraints assure a correct runtime behavior—mainly since some dependencies for features might
only be known or available at runtime. For instance, in the Linux kernel, many driver features rely
on the availability of certain hardware or interfaces (e.g., communication ports) only available for
a certain hardware architecture. So, there would be a dependency to, for instance, the feature X86.

• Constraints improve the user’s configuration experience. As an input to interactive configurator tools,
feature models facilitate configuration, when shown as menus and sub-menus in a tree-like organization.
To foster such an organization, feature models contain constraints. Interestingly, when configurator
tools do not offer intelligent choice-propagation or conflict-resolution support, such as the Linux kernel
configurator, often additional constraints are needed to compensate for the lack of such a support.

• Constraints avoid corner cases of feature combinations. Given the sheer number of possible
configurations and ways of combining features, often undesired feature interactions [4] arise, which
need extra code to handle them. For instance, we observed that in the Linux kernel, when supporting
a certain, rare combination of hardware would be too expensive, developers might decide to disallow
such a corner case via constraints. Some systems even provide a disabled feature Broken that features
not currently supported can depend on.

and minimize coupling with feature groups (principle MO5). Specifically,
feature groups should represent related functionalities—these are within a
group, while there is low coupling to other groups (so, no cross-tree con-
straints). In contrast, you use abstract or mandatory features (cf. Def. 11.8)
for structuring the overall model.

Another idea is that you organize features into sub-trees that logically
partition the domain. Thereby, you try to reduce the need for cross-tree con-
straints across those partitions (sub-trees), but rather keep constraints within
them. In other words, you try to increase cohesion and reduce coupling.

To form the hierarchy, consider the properties given in the box on p. 449.
It is probably useful to recall that the top-level features are more abstract
and business-oriented (principle MO2: Features at higher levels in the
hierarchy should be more abstract), so that they can be communicated to
customers. Intermediate features (i.e., those in the middle levels) represent
functional aspects. Towards the leaves, the features are more technical—
often, you create a domain- and business-oriented feature and then, when
actually implementing it, need to add more specific and perhaps technical

12.4. A Feature-Modeling Process 451

sub-features. You try to avoid having many intermediate features, which
are usually vague and difficult to understand for your stakeholders.

After defining a coarse hierarchy, it will be iteratively refined in the next
activity (Add Features).

2 Add features. While identifying features, you extend and refine your
feature model. The new features you identify will either already exist in the
feature model, or you need to add the newly identified features at relevant
places in the feature model.

Since you always want to limit the number of features, you should first
look for features that are similar and ask yourself whether an existing
feature can be adjusted. You also do that because there is always the cost of
a new feature to consider, and you want to avoid a growing pool of features.
So, you first try to update and enhance existing features.

When placing the feature in the hierarchy, consider again the properties
given in the box on page 449. However, the location should still “feel right”
to the involved stakeholders, and as such, a discussion among them might
be necessary.

Finally, define the relevant meta-data (e.g., feature title and short de-
scription); especially define default feature values (principle M8), which
substantially eases creating a feature-model configuration (making deriving
a configuration a reconfiguration problem). Further meta-data that might
be relevant in your organization could be the rationale why the feature was
added, the feature owner (if this role exists) or party responsible for the
feature, or so-called visibility conditions [13], determining when the feature
is even visible to the user when creating a configuration.

(2) Model constraints. If you decided to identify and model constraints
(recall the question on p. 446), then conduct this optional activity.

Declaring dependencies between features might require regrouping of
features, removing the dependency, or extracting the dependencies into an
interface feature model (principle MO3: Split large models). So, you should
always evaluate whether you really need to define those dependencies.

You should avoid complex constraints, which typically come in the
form of Boolean expressions. Such constraints challenge comprehension,
maintenance, and evolution of the model (principle MO4: Avoid complex
cross-tree constraints). You first try to model constraints using the feature
hierarchy and other graphical elements from feature models (e.g., manda-
tory features or feature groups). In fact, an indicator of a good feature
hierarchy is a low ratio of cross-tree constraints. If you still cannot restrict
the remaining cross-tree constraints to simple binary dependencies (e.g.,
required in the form of an implication between two features, or excludes in
the form of an implication by a feature of the negation of another one), you
can also put some constraints into the presence conditions of the variation
points, which keeps the model clean at the cost of a slightly more complex
mapping between features and software assets (i.e., variation points).

452 Chapter 12. Feature Modeling

The source of the constraint (cf. activity Identify Constraints) gives you
an indication how to model it. Interestingly, constraints arising from the
source we called feature effect are mostly reflected in the feature hierarchy.
This makes a lot of sense when you remember that a feature always implies
its parent in a feature model, enforcing that the sub-feature has an effect.
Constraints preventing build- and runtime errors are rather seen in cross-tree
constraints or feature groups.

(2) Define views. In addition to model modularization, some feature-
modeling tools allow creation of views, for instance through filters or
partial configuration, sometimes also called profiles (principle M9: Define
feature-model views).

3 Validation. After the modeling activities, it is time to check that the
modeling was correct in the eyes of the stakeholders. After changes during
evolution and maintenance, you also want to use the following ways of
validation, especially the last one, regression testing.

• 2 Stakeholder Reviewing In the workshop format established during
the planning phase, various stakeholders should be invited to validate
the feature model (principle QA1: Validate the obtained feature model in
workshops with domain experts). We advise that different domain experts
participate, given their individual area of expertise. They can validate that
the right features and constraints were identified and modeled correctly,
and they can advise on feature names and whether the structure of the
hierarchy is intuitive. It is also beneficial when experts who did not
participate in the modeling take part in the validation—among other
things to comment on the intuitiveness of the feature model.

• 2 Perform Product Derivations When one of the purposes of the
feature model is to support product derivation, you should let the relevant
stakeholders perform it for some example variants (principle QA2: Use
the obtained feature model to derive configurations). This can be done
in the workshop format established. Obviously, the experience will be
different than before, which was mostly manual. So, the stakeholders
will select features in a certain order, and by doing so, they will be able
to tell the modeler whether it feels right and whether it will be effective.
As for which variants to derive, you should do that for existing ones, but
also derive at least one that never existed before, which reinforces the
benefit of having a platform with automated variant derivation through
feature-model configuration.

• 2 Regression Testing When iteratively creating the feature model,
as well as maintaining and evolving it, you can easily break existing
configurations. Many of the established feature-modeling tools, includ-
ing FeatureIDE [32], will provide you some automated analysis that
tells you whether a change to the model will have an effect on existing
configurations. These analyses are confined to the feature model, but it
is often desired to analyze the effect on the actual variants [33]. This

12.4. A Feature-Modeling Process 453

requires creating regression tests (principle QA3: Use regression tests to
ensure that changes to the feature model preserve previous configurations)
using typical testing methods (e.g., unit tests), but these should be given
different configurations, ensuring the coverage of feature configurations
that cover variants that are in use, ideally on the customer side. Knowing
those requires either tracking such configurations or obtaining expert
knowledge from the developers implementing the respective software
assets. For instance, a developer usually knows from experience which
features might interact and should be tested for certain modules.

Maintenance and Evolution Activities

To evolve the model, you can apply the activities from the previous two
phases: Domain Analysis and Scoping Activities, as well as Modeling
Activities. Especially the established workshop and forum (recall the
respective planning activity on page 443) come in handy here. Still, while
many stakeholders are involved, one or only a few of them should ultimately
control the model and make changes (principle MME1: Use centralized
feature model governance). Feature models are brittle assets and need to
be evolved with care, to avoid inconsistencies that would have an impact
on many different variants. In this light, it is also important to regularly
perform the validation activities (cf. page 452).

The following activities additionally support evolving the model, as well
as maintaining it.

2 Model version control. Tracking the evolution of the feature model,
with the ability to go back and analyze it, is core. There have been attempts
at supporting the versioning at the feature level, but according to our experi-
ence, you should version the feature model in its entirety (principle MME2).
While keeping an overview with a more fine-grained way of versioning is
already difficult, the main reason is probably that individual features are not
units of deployment or packaging, but whole system variants are. As such,
it is more relevant to go back to such whole snapshots instead of individual
feature versions.

2 Remove features. Performing this activity is necessary from time to
time, but surprisingly difficult. Many companies therefore avoid removing
features. However, for very long-living platforms, removal is absolutely
necessary, to reduce the maintenance overhead and system complexity.

The removal of features should be discussed in the established workshop
or forum format. Once decided, a strategy is to remove the feature step-wise.
If supported by the feature-modeling tool, the feature should first be flagged
as deprecated, and also its default value should be changed to false. The
next step is to make the feature a dead feature via constraints, so that it
cannot be selected anymore. The final step is to remove the feature from
the model, and also the respective software assets.

Some companies even model the overall lifecycle states of a feature
internally as a state machine, with around 5–8 states. A good example of

454 Chapter 12. Feature Modeling

states is: Proposed, Approved, Implemented, Deployed, Obsolete, Decom-
missioned. The state Obsolete would comprise the above steps of removing
the feature from the model, while in the state Decommissioned, the feature
is removed from the model and assets.

2 Optimizations. Of course, over time, the constraints become more
intricate, and the hierarchy might not be as intuitive as necessary. So, an
important activity is to optimize the hierarchy and the constraints. However,
without proper tool support for refactoring, it is relatively easy to invalidate
existing variants, which should be avoided. Performing the validation
activities is crucial (cf. page 452).

Further Reading

The body of work on feature modeling is humongous. The FODA report
[24] is the most popular work on feature-oriented domain analysis, and has
proposed the feature-modeling notation. Another introduction to feature
modeling is chapter 4 of the book by Czarnecki and Eisenecker [16]. Nowa-
days, many different variants of the original feature-modeling notation exist.
A brief history of these notations is provided by Berger and Collet [9].

It is worthwhile to look at feature models as they are used in practice. Our
study of feature modeling in systems software, including the Linux kernel,
sheds light on those models, especially on the languages that are used
and the characteristics of models [13]. Our survey of variability modeling
in Berger et al. [12] discusses how product lines are adopted and what
languages, tools, and scales of feature models are used in practice. It is com-
plemented by a qualitative study of cases in industry [10]. Other interesting
and detailed descriptions of feature modeling comprise the report of Hubaux,
Heymans, and Benavides [20] in the context of a re-engineering project, and
the study of (feature-model-like) sales configurators by Abbasi et al. [1].

When many feature models exist, some explicit management might
be needed. The works by Acher et al. [2, 3] describe techniques to de-
(compose) feature models. There are also plenty of analyses on feature
models, surveyed by Benavides, Segura, and Ruiz-Cortés [8] and revisited
in 2019 [19]. Here, see a related investigation on analyses that are actually
needed by industry, as a contrast in Mukelabai et al. [33].

Of course, various other variability-modeling techniques exist. An in-
teresting comparison of feature models with so-called decision models by
Czarnecki et al. [17] shows that there are actually many commonalities and
only minor differences (e.g., the ability to model the commonality is given
in feature models, but not in decision models). Furthermore, if you have not
only product lines, but whole ecosystems, such as Android (cf. Sect. 11.1),
you will need different management and especially modeling techniques
for variability, such as manifest files. See our report in Berger et al. [11].

References 455

References

[1] Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin Boucher,
and Patrick Heymans. “The anatomy of a sales configurator: An empirical
study of 111 cases”. In: International Conference on Advanced Information
Systems Engineering. Springer. 2013, pp. 162–177 (cit. p. 454).

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. “Com-
posing feature models”. In: International Conference on Software Language
Engineering. Springer. 2009, pp. 62–81 (cit. p. 454).

[3] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
“Familiar: A domain-specific language for large scale management of feature
models”. In: Science of Computer Programming 78.6 (2013), pp. 657–681
(cit. p. 454).

[4] Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave. “Feature
interactions: The next generation (Dagstuhl Seminar 14281)”. In: Dagstuhl
Reports 4.7 (2014), pp. 1–24 (cit. p. 450).

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2013 (cit. pp. 438, 445).

[6] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Sil-
via R. Vergilio, and Alexander Egyed. “Reengineering legacy applications
into software product lines: A systematic mapping”. In: Empirical Software
Engineering 22.6 (2017), pp. 2972–3016 (cit. p. 445).

[7] Joachim Bayer et al. “PuLSE: A methodology to develop software product
lines”. In: Proceedings of the 1999 Symposium on Software Reusability.
1999 (cit. p. 446).

[8] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. “Automated
analysis of feature models 20 years later: A literature review”. In: Informa-
tion Systems 35.6 (2010), pp. 615–636 (cit. p. 454).

[9] Thorsten Berger and Philippe Collet. “Usage scenarios for a common
feature modeling language”. In: First International Workshop on Languages
for Modelling Variability (MODEVAR). 2019 (cit. p. 454).

[10] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof
Czarnecki, and Andrzej Wąsowski. “Three cases of feature-based variability
modeling in industry”. In: MODELS. 2014 (cit. pp. 446, 447, 454).

[11] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst,
Krzysztof Czarnecki, Andrzej Wąsowski, and Steven She. “Variability
mechanisms in software ecosystems”. In: Information and Software Tech-
nology 56.11 (2014), pp. 1520–1535 (cit. p. 454).

[12] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. “A survey of variability
modeling in industrial practice”. In: VaMoS. 2013 (cit. pp. 440, 454).

[13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysz-
tof Czarnecki. “A study of variability models and languages in the systems
software domain”. In: IEEE Transactions on Software Engineering 39.12
(2013), pp. 1611–1640 (cit. pp. 439, 446, 451, 454).

[14] Thorsten Berger et al. “What is a feature? A qualitative study of features in
industrial software product lines”. In: SPLC. 2015 (cit. pp. 437, 438).

[15] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. Pearson Education, 2000 (cit. p. 438).

456 Chapter 12. Feature Modeling

[16] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000 (cit. pp. 446, 454).

[17] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and
Andrzej Wąsowski. “Cool features and tough decisions: A comparison of
variability modeling approaches”. In: VaMoS. 2012 (cit. p. 454).

[18] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. “Staged con-
figuration through specialization and multilevel configuration of feature
models”. In: Software Process: Improvement and Practice 10.2 (2005),
pp. 143–169 (cit. p. 447).

[19] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Fernández, and Antonio Ruiz-Cortés. “Automated analysis of feature mod-
els: Quo vadis?” In: Computing 101.5 (2019), pp. 387–433 (cit. p. 454).

[20] Arnaud Hubaux, Patrick Heymans, and David Benavides. “Variability
modeling challenges from the trenches of an open source product line
re-engineering project”. In: 2008 12th International Software Product Line
Conference. IEEE. 2008, pp. 55–64 (cit. p. 454).

[21] Isabel John and Michael Eisenbarth. “A decade of scoping: A survey”. In:
Proceedings of the 13th International Software Product Line Conference.
2009, pp. 31–40 (cit. p. 446).

[22] Isabel John, Jens Knodel, Theresa Lehner, and Dirk Muthig. “A practical
guide to product line scoping”. In: 10th International Software Product
Line Conference (SPLC’06). IEEE. 2006, pp. 3–12 (cit. p. 446).

[23] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Tech.
rep. Software Engineering Institute, Carnegie Mellon University, 1990
(cit. p. 446).

[24] Kyo Chul Kang. “FODA: Twenty years of perspective on feature models”.
In: SPLC. Keynote Address. 2009 (cit. pp. 437, 454).

[25] Charles Krueger. “Variation management for software production lines”. In:
Proceedings of the Second International Conference on Software Product
Lines. SPLC 2. 2002 (cit. p. 440).

[26] Charles W. Krueger. “BigLever Software Gears and the 3-tiered SPL
methodology”. In: OOPSLA. 2007 (cit. p. 439).

[27] Jacob Krueger and Thorsten Berger. “Activities and costs of re-engineering
cloned variants into an integrated platform”. In: 14th International Work-
ing Conference on Variability Modelling of Software-Intensive Systems
(VaMoS). 2020 (cit. pp. 442, 445).

[28] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig,
and Thorsten Berger. “Where is my feature and what is it about? A case
study on recovering feature facets”. In: Journal of Systems and Software
152 (2019), pp. 239–253 (cit. p. 438).

[29] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter
Saake. “Getting rid of clone-and-own: Moving to a software product line
for temperature monitoring”. In: SPLC. 2018 (cit. p. 442).

[30] Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger,
and Andrzej Wąsowski. “Intention-based integration of software variants”.
In: 41st International Conference on Software Engineering. ICSE. 2019
(cit. p. 445).

References 457

[31] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and
Andrzej Wąsowski. “Evolution of the Linux kernel variability model”. In:
SPLC. Ed. by Jan Bosch and Jaejoon Lee. Vol. 6287. Lecture Notes in
Computer Science. Springer, 2010, pp. 136–150 (cit. p. 448).

[32] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas
Leich, and Gunter Saake. Mastering Software Variability with FeatureIDE.
Springer, 2017 (cit. p. 452).

[33] Mukelabai Mukelabai, Damir Nesic, Salome Maro, Thorsten Berger, and
Jan-Philipp Steghöfer. “Tackling combinatorial explosion: A study of in-
dustrial needs and practices for analyzing highly configurable systems”.
In: 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2018 (cit. pp. 452, 454).

[34] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
“Mining configuration constraints: Static analyses and empirical results”. In:
ICSE. 2014 (cit. p. 447).

[35] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
“Where do configuration constraints stem from? An extraction approach and
an empirical study”. In: IEEE Transactions on Software Engineering 41.8
(2015), pp. 820–841 (cit. pp. 447, 450).

[36] Damir Nesic, Jacob Krueger, Stefan Stanciulescu, and Thorsten Berger.
“Principles of feature modeling”. In: FSE. 2019 (cit. p. 440).

[37] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger,
Sven Apel, Krzysztof Czarnecki, and Jesus Padilla. “A study of feature scat-
tering in the Linux kernel”. In: IEEE Transactions on Software Engineering
47.1 (2021), pp. 146–164 (cit. p. 437).

[38] pure-systems GmbH. “pure::variants Eclipse Plugin User Guide”. 2004.
URL: https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-
user-manual.pdf (cit. p. 439).

[39] Matthias Riebisch. “Towards a more precise definition of feature models
– position paper”. In: Modelling Variability for Object-Oriented Product
Lines. Ed. by Matthias Riebisch and Detlef Streitferdt James O. Coplien.
BookOnDemand Publ. Co., 2003, pp. 64–76 (cit. p. 438).

[40] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. “Cloned product
variants: From ad-hoc to managed software product lines”. In: STTT 17.5
(2015), pp. 627–646 (cit. p. 445).

[41] Klaus Schmid. “Scoping software product lines”. In: Software Product
Lines. Springer, 2000, pp. 513–532 (cit. p. 446).

[42] Daniel Strueber, Mukelabai Mukelabai, Jacob Krueger, Stefan Fischer,
Lukas Linsbauer, Jabier Martinez, and Thorsten Berger. “Facing the truth:
Benchmarking the techniques for the evolution of variant-rich systems”. In:
23rd International Systems and Software Product Line Conference (SPLC).
2019 (cit. p. 442).

[43] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. “Featureide: an extensible framework for feature-
oriented software development”. In: Science of Computer Programming 79
(2014), pp. 70–85 (cit. p. 439).

https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
https://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf

13 Model and Language Variability

The features in the feature model
will be used to generalize and

parameterize other models.

Kyo Kang et al. [36]

In the last two chapters, we discussed the use of MDSE techniques for real-
izing software product lines. More specifically, we described the realization
of variability in traditionally developed systems and focused on variability
of source code to customize it to particular needs. Let us now discuss the
other direction: using product line techniques to reuse models and DSLs.
Since engineering a DSL and its infrastructure (e.g., editors, analyzers,
interpreters) can be expensive, you might want to reuse both. Like for source
code, we can foster reuse by realizing variability in models and languages.

We already learned that the automotive domain has massive variability
(Sect. 11.3). Increasingly often, automotive systems follow the AUTOSAR
standard [21, 59, 65], which is a component framework, an operating
system, and a set of modeling languages for developing software com-
ponents that run in the electronic control units (ECUs) of modern cars.
AUTOSAR improves the interoperability and reuse of software components
across automotive suppliers and manufacturers. To handle the variation,
elements in AUTOSAR are configurable and can be annotated with presence
conditions (cf. Def. 11.4). Closely related to AUTOSAR is the EAST-ADL,
an architecture description DSL specifically targeting automotive embedded
systems [16]. EAST-ADL focuses on a higher level of abstraction than AU-
TOSAR, but reuses its entities for modeling the lower levels. EAST-ADL
allows model elements to be annotated with presence conditions and offers
feature-modeling capabilities—recognizing the vast need for variability
management in automotive systems. Also other common modeling lan-
guages such as UML diagrams (e.g., use case diagrams [26] and state charts
[43]) and Petri Nets [52] have been extended with variability-modeling
capabilities, allowing variability to be represented in the respective models.

13.1 Case Study: Variability in our FSM DSL and its Models

Let us take a look at our FSM (finite-state-machines) DSL and FSM models
again. It will allow us to nicely illustrate the different use cases of adding
variability to models, which are concrete state machines in this case, such as
our coffee machine model. Assume we need to maintain different variants
of our coffee machine for different customers. There should be a variant
that only supports brewing tea, one that only supports brewing coffee, one
that supports both, and all these variants should sometimes come with a
failsafe mode. That gives six variants, which you could still manage using
clone & own. You could just have different copies of your full model, where

© Springer Nature Switzerland AG 2023
A. Wąsowski, T. Berger, Domain-Specific Languages, https://doi.org/10.1007/978-3-031-23669-3_13

459

https://doi.org/10.1007/978-3-031-23669-3_13
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23669-3_13&domain=pdf

460 Chapter 13. Model and Language Variability

Figure 13.1: Our coffee
machine state machine with

variability (presence conditions
are annotations, but here

visualized as yellow notes)

CoffeeMachine

init
ial

selection

brewCoffee

brewTea

broken

break / machine is broken!

break / machine is broken!

break / machine is broken!

timeout / coin returned; insert coin

done / coffee served. Enjoy!

coin / what drink do you want?

tea / serving tea

coffee / serving coffee

done / tea served. Enjoy!

break / machine is broken

coin / what drink do you want?

break / machine is broken

tea / serving tea

coffee / serving coffee

timeout / coin returned; insert coin

break / machine is broken!

done / coffee served. Enjoy!

break / machine is broken!

done / tea served. Enjoy!

break / machine is broken!

tea

tea

coffee

coffee

tea && failsafe

coffee && failsafefailsafe

failsafe

coffee

tea

failsafe

you removed the unnecessary parts. You could also enhance clone & own a
bit by referencing other model elements to reduce redundancy. You could
define one model as the explicit base model and then have other models that
refer to contents from the base model. In our scenarios, this would totally
do and probably be the easiest solution. But of course, while clone & own
is simple, you run into the typical scalability problems when you have more
variants and you need to maintain them (e.g., make modifications to parts
that exist in multiple variants). So, let us instead realize what is commonly
known as a model template, a 150 % model, or a model product line.

Figure 13.1 shows our coffee machine model with variability represented
as presence conditions (in the yellow notes) over three Boolean features:
coffee, tea, and failsafe. Observe these conditions, which are attached to
transitions and to states. For instance, the state brewCoffee and its incoming
and outgoing transitions are only present when the feature coffee is enabled.
The conditions are similar for the feature tea. Further observe that the
transitions to the state broken from the optional states brewCoffee and
brewTea can only be present when both failsafe and coffee, or when both
failsafe and tea, are enabled, to avoid dangling transitions.

The presence of features is decided through a configuration at design
or build time, not at runtime. So, the yellow annotations represent, for

13.1. Case Study: Variability in our FSM DSL and its Models 461

instance, the choice that the machine supports brewing tea. This choice
can be made by the coffee machine manufacturer before a sale or before
deploying it at the customer’s site. The variable tea (input, i.e., trigger,
of the transition from state selection to state brewTea), on the other hand,
represents a runtime condition, specifically, that a user just requested to
brew tea. This functionality is only available when the feature tea was
enabled before, of course.

Now assume that the coffee machine is larger. In such a scenario, the
manufacturer would likely, in addition, model the features in a feature
model and implement a model transformation that generates code from the
state-machine model. Here, it is important that the transformation includes
a configuration step, so the transformation needs to be variability-aware
and to evaluate the presence conditions in order to obtain a configured
state-machine model (so, an M2M transformation) or directly generate code
that omits states and transitions not enabled in the specific configuration
(so, an M2T transformation). It is also clear that the graphical editor
needs to support these yellow annotation boxes. As we will see below, the
support for variability can be built into the DSL from the very beginning,
so the developer of the concrete syntax can provide support, as well as the
developer of the transformations. Another option is to inject the variability
support from the outside and retroactively make the DSLs variability-aware,
including its infrastructure (e.g., editors, analyzers, transformations). An
example of automatically extending DSLs and their graphical, Sirius-based
editors is provided by Garmendia et al. [22].

After briefly discussing variability in FSM models, let us see whether it
might make sense to have variability in the FSM language as well. Assume
we want to maintain different variants of the language: some variants with
support for modeling hierarchical state machines, some variants that do
not allow an output, or perhaps others that support timed transitions or
expressions on the transitions. This would account for different language
users and usage scenarios of state machines. Similarly to our coffee machine
example, we could of course manage this small number of variants using
clone & own, which has the advantages and disadvantages we discussed
above. As opposed to a 150 % model, however, one usually needs to
maintain copies of the language infrastructure (e.g., editor, transformations)
as well. In other words, you duplicate abstract syntax, concrete syntax,
and semantics. To avoid clone & own, we will realize a so-called language
product line for our FSM language.

Figure 13.2 shows our FSM meta-model with two presence conditions
attached to meta-model elements. The yellow notes are meant to illustrate
Ecore annotations, which are usually not visible in an Ecore editor, but we
added them here manually as notes. Ecore annotations are a powerful, but
not well-documented part of Ecore. Basically, one can attach an annotation
to almost any Ecore model element, and an annotation can be anything from
text to more complex Ecore elements. OCL constraints are usually added

462 Chapter 13. Model and Language Variability

Figure 13.2: Our
state-machine language (FSM)

with variability (presence
conditions as annotations in

yellow boxes)

Transition

input : EString
output : EString

NamedElement

name : EString

Model FiniteStateMachine

State

/isInitial : EBoolean =
false

[1..1] target

[0..*] leavingTransitions [1..1] source

[0..*] machines

[1..1] initial

[1..1] machine

[1..*] states

[0..1] parent

[0..*] children
hierarchical

output

source: fsmpl/model/fsmpl.ecore

to Ecore models using Ecore annotations. Open our FSM meta-model that
has those annotations (fsmpl/model/fsmpl.ecore) in Eclipse.

We illustrate the realization of two optional features: hierarchical and
output. The feature hierarchical enables our states to be hierarchical. The
feature’s presence implies the presence of an association realizing a tree
structure among states. The feature output enables the state machine to
output text when a transition is taken. So, both features are useful, but
not mandatory. Of course, in practice, it might not be so necessary to
disable output; one could just not use it in models, but it is apparent that
for larger languages and more complex features (e.g., those that are cross-
cutting), tailoring a language will reduce complexity and not expose features
irrelevant for the current use case or customer.

Let us build such a variability support for our FSM models (i.e., the
meta-model as in Fig. 13.2 and its instances as in Fig. 13.1) to realize the
variability above. Since we attach presence conditions to model elements,
we need a language to represent such expressions over features as well
as concrete configurations. Figure 13.3 shows a simple language for
expressions and their configurations (i.e., assignments of literals to Boolean
values). Note that we reuse the class Literal to also store their values (the
attribute value is optional, so we set its cardinality to 0..1) in a configuration,
so Literal has two roles. It represents the literals in expressions, where they
do not have a value (the attribute is absent). It also represents literals in a
configuration, where they have a value (of type Boolean in our case).

Figure 13.3: A simple
expression language

Expression

BinaryExpression UnaryExpression

Identifier

name : EString
value : EBoolean = false

AND OR NOT Configuration

name : EString

[1..1] left

[1..1] right
[1..1] expr

[1..*] literal

source: expr/model/expr.ecore

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsmpl/model/fsmpl.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsmpl/model/fsmpl.ecore
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr/model/expr.ecore

13.1. Case Study: Variability in our FSM DSL and its Models 463

1 grammar dsldesign.expr.xtext.Expr with org.eclipse.xtext.common.Terminals

3 import "http://www.dsl.design/dsldesign.expr"
4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

6 Expression:
7 Conjunction ({OR.left=current} "||" right=Conjunction)* ;

9 Conjunction returns Expression:
10 Unary ({AND.left=current} "&&" right=Unary)* ;

12 Unary returns Expression:
13 ’(’ Expression ’)’ | {NOT} "!" expr=Unary | Identifier;

15 Identifier returns Identifier:
16 name=EString;

18 EString returns ecore::EString:
19 STRING | ID;

source: expr.xtext/src/main/java/dsldesign/expr/xtext/Expr.xtext

Figure 13.4: The grammar for
the simple expression
language for representing
presence conditions of model
elements

To attach such expressions to elements in our Ecore meta-model, we use
annotations (EAnnotation). These could in principle hold any structured
meta-classes, so we could import the expression meta-model and then
instantiate it in annotations, but this way of using EAnnotations is rare
and has several disadvantages. Instead, we attach the presence conditions
as expressions in textual concrete syntax. Eclipse’s Ecore editor allows
doing so in the properties view. Specifically, one attaches annotations as
key-value pairs. In our case, we choose “condition” as the key and the
textual expression as the value. This allows quite easy use of our simple
expression language for models in languages other than Ecore as well. We
define the syntax in Xtext, following what we learned in Chapter 4. It is
shown in Fig. 13.4. Observe how we avoided a left-recursive grammar.

Next, we need an evaluator for expressions based on a configuration as
well as some utility methods for creating a configuration. Even though we
used Ecore and Xtext, where staying in the EMF world would be a natural
choice, we implemented these methods in Scala. Furthermore, we could
instead have expressed the FSM meta-model using algebraic data types
instead of Ecore (e.g., as Scala case classes) and we could have written the
parser directly in Scala using combinator parsing. However, we decided to
show this combination to illustrate how Ecore models can be accessed from
Scala—in addition to our model-transformation examples in Sect. 7.2.

Figure 13.5 shows our utility methods. It makes sense to also look at
the meta-model of our expression language (Fig. 13.3) when you try to
understand the code. First, prettyPrint() pretty-prints expressions. It is a
simple recursive method that uses pattern matching to distinguish the nodes
it is traversing, but since we are not using Scala case classes, we need to
call the respective methods (e.g., getLeft()) to obtain the sub-nodes into
which to descend further. We can only pattern match on the type of the

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext/src/main/java/dsldesign/expr/xtext/Expr.xtext

464 Chapter 13. Model and Language Variability

node in the AST of the expression at hand. Second, printConfiguration()
iterates through the literals contained in the configuration and prints their
value. Third, createConfiguration() is owed to the relatively complex
way of instantiating Ecore classes, relying on its factory methods and the
enforcement of getters and setters, and dedicated methods to add values to
lists. If we had used Scala case classes, it would have been much easier to
realize instantiating configurations. Finally, eval() evaluates expressions
for a specific configuration. Similarly to the pretty-printer, it recursively
descends the expression AST with limited pattern matching (only on the
type), and evaluates the nodes according to their semantics. Our code
repository contains code illustrating how to invoke these methods and parse
expressions in textual syntax (expr.xtext.scala/src/main/scala/dsldesign/expr/
xtext/scala/xtextParserExampleMain.scala).

Figure 13.5: Scala methods to
pretty-print expressions, print

configurations, instantiate
configurations, and evaluate

configurations

1 def prettyPrint (e: Expression): String =
2 e match
3 case a: AND =>
4 s"(${prettyPrint (a.getLeft)} && ${prettyPrint (a.getRight)})"
5 case o: OR =>
6 s"(${prettyPrint (o.getLeft)} || ${prettyPrint (o.getRight)})"
7 case i: Identifier => i.getName
8 case n: NOT => "!" + prettyPrint (n.getExpr)
9 case _ => "[unknown expression node]"

11 def printConfiguration (c: Configuration): String =
12 c.getName + ": " + c.getLiteral.asScala.map(l =>
13 l.getName + "=" + l.isValue).mkString(", ")

15 def createConfiguration (name: String, c: List[(String, Boolean)])
16 : Configuration =
17 val eFactory = ExprFactory.eINSTANCE
18 val result = eFactory.createConfiguration
19 result.setName (name)
20 for (n,v) <- c do
21 val i = eFactory.createIdentifier
22 i.setName (n)
23 i.setValue (v)
24 result.getLiteral.add (i)
25 result

27 def eval (e: Expression, c: Configuration): Boolean = e match
28 case a: AND =>
29 eval (a.getLeft, c) && eval (a.getRight, c)
30 case o: OR =>
31 eval (o.getLeft, c) || eval (o.getRight, c)
32 case i: Identifier =>
33 c.getLiteral.asScala
34 .find { _.getName == i.getName }
35 .exists { _.isValue }
36 case n: NOT =>
37 eval (n.getExpr, c)
38 case _ => false

source: expr.xtext.scala/src/main/scala/dsldesign/expr/xtext/scala/package-exprparserutils.scala

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext.scala/src/main/scala/dsldesign/expr/xtext/scala/xtextParserExampleMain.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext.scala/src/main/scala/dsldesign/expr/xtext/scala/xtextParserExampleMain.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.expr.xtext.scala/src/main/scala/dsldesign/expr/xtext/scala/package-exprparserutils.scala

13.2. Benefits of Variability in Models and DSLs 465

Finally, let us implement the preprocessor that will derive models. It takes
a configuration and a model with variability—models where elements are
annotated with presence conditions—and outputs a model containing only
elements without a presence condition or where the condition evaluates to
true. In principle, other configuration mechanisms could be incorporated as
well, such as replacing symbols representing features with the exact values.
One could also weave in model elements from other models, which would
be a more compositional mechanism (explained shortly), instead of the
annotative one we realized here. Figure 13.6 shows our implementation in
Scala. While it is pragmatic, basically just traversing all model elements and
either just removing the annotation (when its presence condition evaluates
to true) or removing the annotated model element, it is not very scalable for
large models. In Ecore, removing elements triggers some expensive model
traversals, so a more efficient implementation would collect all elements to
remove and then remove them in one go. In our code repository we provide
an example of how to apply this model configurator to our state-machine
meta-model from Fig. 13.2 (in the main method in modelconfig/src/main/
scala/dsldesign/modelconfig/scala/package.scala).

1 def deriveModel (epackage: EPackage, conf: Configuration): Unit =
2 val c = EcoreUtil.getAllProperContents[EObject] (epackage, false)
3 for item <- c.asScala
4 do item match
5 case e: EModelElement =>
6 e.getEAnnotations.asScala
7 .find { _.getDetails.containsKey ("condition") }
8 .foreach { annotation => // at most one
9 val cond = annotation.getDetails.get ("condition")

10 if evaluateCondition (cond, conf)
11 // include element, i.e., just remove annotation
12 then EcoreUtil.delete (annotation)
13 // do not include element, i.e., remove the element
14 else EcoreUtil.delete (e)
15 }
16 case _ =>

18 private lazy val setup = ExprStandaloneSetup ()

20 def evaluateCondition (cond: String, conf: Configuration): Boolean =
21 given org.eclipse.xtext.ISetup = setup
22 eval (cond.parse[Expression].get, conf) // crash on a parse error

source: modelconfig.scala/src/main/scala/dsldesign/modelconfig/scala/package.scala
Figure 13.6: Ecore model
configurator

13.2 Benefits of Variability in Models and DSLs

The most general benefit of variability in DSLs is that it enables reuse not
only of the DSL, but also of its infrastructure, both of which can be difficult
to develop.

Language product lines allow end-users to customize DSLs to specific
domains without needing to be trained in language design [9, 34]. While

https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.modelconfig/src/main/scala/dsldesign/modelconfig/scala/package.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.modelconfig/src/main/scala/dsldesign/modelconfig/scala/package.scala
https://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.modelconfig.scala/src/main/scala/dsldesign/modelconfig/scala/package.scala

466 Chapter 13. Model and Language Variability

MDSE promises to let developers who are not experts in language de-
sign develop custom DSLs, having variability in them will even allow
non-developers (e.g., domain experts or end-users) to create their own
customized DSLs. This is a middle ground between offering an off-the-
shelf DSL and letting developers create DSLs from scratch.

Compared to clone & own, the core advantage is that variability avoids
redundancy when maintaining multiple model and language variants to-
gether with their infrastructure. Of course, one could enhance clone & own
by defining a base model, which the variant models could refer to via
referencing, which reduces redundancy, but that does not really avoid the
scalability problems of clone & own.

When adding variability to models, you will likely end up with fewer vari-
ation points than when you add them to code. The intuition is that DSLs and
models are defined at higher levels of abstraction, so it is safe to assume that
features can be more modularized and are less cross-cutting. When concrete
(meta-) models are derived—through a feature-model configuration and a
model transformation—the more detailed code is generated in a systematic
way. The higher abstraction especially allows modular representation of
cross-cutting concerns which could unfold into cross-cutting code. The
disadvantage is that you not only need to define DSLs, but you also need
ways to express variation points in them, which can be done in different
ways and at different levels of intrusiveness.

Let us also discuss the benefits of the pragmatic way of realizing variabil-
ity in languages and models that we described in our case study above. The
core advantage is that it can be applied to any Ecore model, since we use
an annotation mechanism built into the Ecore language. This way, we did
not even have to extend the visual editors—neither the visual class diagram
editor for the meta-model nor the visual editor for FSM models. Both by
default show a properties view that can be used to add those annotations.
Of course, if we wanted to have visual editors that show the annotated
presence condition as yellow boxes as in Fig. 13.1 and Fig. 13.2, we would
need to extend the editors. There are techniques to generate the latter,
however [22]; or with projectional workbenches, much more comprehensive
support is possible—in prior work we developed a variability language that
offers colored bars to specify presence conditions when composed with any
programming language available in Jetbrains MPS [5, 51].

In addition, our preprocessor needs to be added to the transformation
chain, or alternatively existing transformations need to be extended.

13.3 Variability Mechanisms for Models

As an alternative to managing model variants using clone & own, one can
also manage them by integrating these variants into a platform and deriving
individual variants from the platform. To this end, a platform contains
variation points realized using specific implementation techniques called

13.3. Variability Mechanisms for Models 467

variability mechanisms. This strategy is similar to creating a platform for
software variants, but there are some specifics for models.

Most importantly, models and languages usually do not stand alone,
but come with an infrastructure, including visual or textual editors and
transformations. In other words, when adding variability to models or lan-
guages, you need to consider three dimensions—abstract syntax, concrete
syntax, and semantics [1, 9]. Especially when models play the role of
a meta-model for a language, the infrastructure comprises an editor for
the concrete syntax and transformations, generators, or interpreters for the
semantics. So, variability also affects this infrastructure. Since abstract
syntax, concrete syntax, and semantics are represented differently, they
might require different variability mechanisms. Our FSM example above
illustrated this core challenge of variability in models, where we declared
the abstract syntax (meta-model) in the Ecore language and the concrete
syntax in an Xtext grammar. We did not consider the semantics of the
FSM language in our example, but we defined the semantics of variability
annotations in the FSM meta-model and in FSM models within our model
configurator tool.

We call a model with variability a model product line. When the model
is the meta-model of a language, then we call it a meta-model product line
or a language product line. Their variability mechanisms are classified into
annotative and compositional mechanisms [5, 37], similarly to variability
mechanisms for source code. For adding variability to models, we also
distinguish between the amalgamated and the separated strategy.

We will discuss different variability mechanisms for models in the re-
mainder. Among other things, we will see that there is a lot of support
for realizing variability in the abstract syntax, while there is not so much
support for the concrete syntax (and for model editors) and the semantics,
which can be tricky to realize.

Research has focused on providing languages and tooling for adding
variability to DSLs, as opposed to ad hoc solutions. Let us call such
a language a variability language.1 Various frameworks for realizing
variability in models have been developed, which we will also briefly
mention. According to our experience, they are all somewhat difficult to
set up, so you might be better off creating your own solution based on our
FSM example in Sect. 13.1 above and the engineering process we propose
in Sect. 13.4 below.

Annotative versus Compositional Variability

Annotative variability. Our FSM example above was annotative. Annota-
tive (a.k.a. negative) variability relies on integrating all the variability into
one model. Such a model is made configurable by means of annotations,

1A variability language focuses on the solution space and is different from a variability-modeling
language (e.g., feature modeling), which focuses on the problem space. They are mapped to
each other.

468 Chapter 13. Model and Language Variability

which specify how the model should vary. We specifically call such a model
a 150 % model or a model template, which is a model product line with
annotative variability. A concrete variant is derived from the 150 % model
by binding variation points as defined in the annotations.

Realizing annotative variability in models requires an annotation lan-
guage to express annotations that realize variation points, and it requires
tooling that derives concrete model variants. Annotation language is a more
specific term for a variability language in annotative variability. In a very
simple annotation language, as in our FSM example above, derivation of a
concrete variant from the annotated model amounts to removing the parts
that are not enabled by the configuration. This can be achieved by the
annotations containing presence conditions, which are expressions over
features (cf. Def. 11.4). If they evaluate to true for configuration then
the annotated model part remains in the concrete variant model. Beyond
annotations just specifying the presence or absence of elements, annotations
can also be more expressive and describe variation points that not only con-
trol parameterization and existence, but also substitution and user-defined
variability. They can also be more domain-specific.

The most mature framework for annotative model and language variabil-
ity is probably Base Variability Resolution (BVR) [27, 28, 71, 29], also
known as Common Variability Language (CVL) [30]. It provides a full
variability management solution for models, including feature-modeling
capabilities and an expressive annotation language that allows specification
of expressive variation points. For instance, variation points can be of type
existence, substitution, or value assignment, among others. The BVR/CVL
framework allows variation points to be added to any MOF-compliant
model, called the base model. Its main implementation [71] is built on top
of EMF, so it supports any Ecore model. In BVR/CVL, variation points are
controlled and mapped to features2 in a feature model.3 Other frameworks
are FeatureMapper [33] and the more recent SuperMod [60, 45].

Annotation languages can not only be more expressive, but also be more
domain-specific. For instance, we could have an annotation language for
our FSM models where we can describe in domain terms (e.g., states,
transitions) that a state should connect to a specific other state when a
certain feature is enabled. This would also allow topological variability to be
realized [6], where a model varies based on how model parts are connected,
as you recall from our fire alarm system case study in Sect. 11.5. With
our simple annotation language based on presence conditions, realizing
this variation would potentially lead to many redundancies and a 150 %
model that would be difficult to comprehend. A dedicated annotation
language4 that allows description of such variations in domain terms could
make describing such variation much easier. In fact, our fire alarm system

2Called VSpec in BVR/CVL.
3Called the VSpec tree in BVR/CVL.
4In fact, calling it an annotation DSL would be more appropriate and emphasize the domain-
orientation.

13.3. Variability Mechanisms for Models 469

meta-model could be seen as an extreme case of such a domain-specific
annotation language intermingled (amalgamated, see below) with common
domain concepts we used to model the fire alarm system domain.

There are techniques to develop expressive and domain-specific anno-
tation languages. One such technique is VML* [82], which is a family of
languages that allow construction of DSLs that describe how models vary.
VML* provides various actions that will perform the variation, including
removing and replacing model parts, but the abstractions presented to the de-
veloper in an annotation language built using VML* can look very different
(so, they abstract over removing and replacing model parts). Alternatively,
Sánchez et al. [57] and Greifenberg et al. [23] provide engineering processes
for such languages.

The variability mechanisms above all focus on the abstract syntax. For
concrete syntax and semantics, we do not get much support from the existing
literature, which primarily focuses on the abstract syntax for annotative
variability. However, supporting the concrete syntax is important to allow
an editing infrastructure that can deal with variability annotations in models.
Beyond resorting to textual annotations, which are offered by typical textual
preprocessors (e.g., C preprocessor, Antenna, Velocity, or PHP), few works
provide support. One of the few works that help you add variability to
visual DSLs is the work by Garmendia et al. [22], which takes a visual DSL
and generates a variability-aware visual DSL. The respective editor allows
annotation of models in the DSL with presence conditions and looks similar
to our example in Fig. 13.2. For compositional variability, there is some
more support, as we discuss shortly.

For the semantics, which are often implemented as generators, model
transformations, or interpreters, one can resort to the facilities (e.g., IF
statements) of a GPL or a model-transformation language. Salay et al. [56]
provide a technique to lift model transformations to variability. We will
also discuss very pragmatic ways of realizing variability in concrete syntax
and semantics in Sect. 13.4.

Compositional variability. Alternatively, compositional (a.k.a. positive)
variability advocates decomposing variable model parts into separate mod-
els, instead of integrating the variability in one model. The separate models
are usually called composition units, feature modules, delta modules, or just
modules [4, 3, 38, 58]. Concrete variants are obtained by composing mod-
ules according to a concrete configuration. Often, a base model that contains
the commonality and separate models for optional features are created.

A compositional variability mechanism comprises a variability language
for expressing model fragments (called modules) and a model composition
technique. In other words, the meta-model will have facilities to describe
modules, including for instance their interface and the position(s) in a base
model into which they should be composed.

Many DSLs already provide simple file inclusion mechanisms, which can
be used to modularize variable parts. However, the variability encapsulated

470 Chapter 13. Model and Language Variability

in modules is often cross-cutting and needs to change other parts. There
are often also constraints among modules to avoid unwanted interactions
or to satisfy dependencies. So, more expressive mechanisms are needed.

Many compositional variability mechanisms rely on model composition
techniques that have been conceived for common use cases beyond just
variability. In the literature, such support exists mainly for the abstract
syntax (e.g., meta-model) and the concrete syntax (e.g., grammar), partially
also for the semantics (e.g., model transformation). For the latter, the main
challenge lies in combining semantics implementations, which requires
solving a viable execution order. This is a complex problem and requires
declarative transformations that can be fed to a solver that will produce
such an order for a selection of language modules to combine. A discussion
about this problem is provided by Völter and Visser [78].

We distinguish between reference-oriented and merge-oriented tech-
niques. For the former, there is a range of such techniques, including
grammar and meta-model inheritance and importing techniques, which
‘virtually’ compose models. Of course, the referencing needs to be variable
(e.g., import another model based on a presence condition), which can
be achieved using variability annotations. The other techniques rely on
merging the actual models, so, ‘physically’ merging them.

Let us illustrate some merge-oriented model composition techniques.

• Model superimposition is a syntax-oriented composition technique that
merges modules (i.e., model fragments) based on their partonomies
(the main hierarchical structure in models). The idea is to merge corre-
sponding substructures based on nominal and structural similarity. The
nodes in the hierarchy need to have a name (unique in the scope of
the parent module). The comparison of these structures determines the
merge point. Typically, one has a base model with a structure, then other
models with a partial slice of this structure are merged into the base
model. This high-level explanation might not be too intuitive, but in the
end it is a relatively simple composition technique. Take a look at the
descriptions and examples by Apel et al. [2], who present a language
to express modules that can be composed into a concrete model variant
using superimposition.

• Aspect-oriented composition relies on mechanisms known from aspect-
oriented programming, where one has specific languages to express the
positions (called join points) in target models where model fragment
should be integrated. Morin et al. [50] present a technique to add
variability concepts to an existing meta-model, allowing model fragments
to be expressed and then woven together. The difference to superim-
position is the way the target location in models for integrating model
fragments is described. The specific technique of Morin et al. [50] calls
model fragments graft models and the target the base model. It supports
adding model elements, modifying properties of model elements, and

13.3. Variability Mechanisms for Models 471

merging model elements. More aspect-oriented composition techniques
for models exist [42].

• Three-way merge is a common file composition mechanism in version-
control systems. Traditionally, three-way merge integrates evolutionary
changes stemming from concurrent development, but it can also be used
to merge modules. For realizing variability in models, the selection of
modules to be merged is controlled by a configuration of features. So,
features are realized by modules, which are selectively merged to obtain
a concrete variant. Since three-way merge requires three files, a core
limitation is that modules need to be organized in a certain way.

• Custom merge means that merging is often domain-specific, and it can
be implemented individually. There is support for custom merge. For
instance, the generic “weaving tool” ATLAS model weaver [8] allows
definition and generation of specific merge tooling. Conceptually, when
two models should be merged (each of which conforms to a meta-model),
the idea is that the developer creates a weaving meta-model, an instance
of which defines relations between elements of the models, and which
controls the merge.

Frameworks for compositional model variability rely conceptually on
the composition mechanisms above, but provide more specific variability
languages to define modules and their possible compositions. They address
the problem that modules can have dependencies and might interact in
certain ways, which needs to be managed. Among other things, derivation
of invalid languages must be prevented. To this end, the frameworks add
such mechanisms, most often by relying on feature models to define the
available modules and their dependencies. The languages to define modules
can also be more domain-specific—to the domain of variability or the target
domain of the model.

On the language level, there are component-oriented language work-
benches that more naturally support reuse and combination of language
modules. They rely conceptually on model composition techniques, but of
course need to support the language infrastructure as well. Examples of
component-oriented language workbenches are Jetbrains Meta Program-
ming System (MPS) [75, 7], Neverlang [67], MontiCore [39, 9], LISA
[49], and JastAdd [32]. The idea is to enhance reuse beyond what more
mainstream language workbenches offer, including Xtext. For language-
level frameworks that support variability, the same motivation holds as for
model composition with variability support by means of feature models.
The language modules have dependencies and often need to be composed
in certain ways. For example, Neverlang has been connected to BVR/CVL
[68]. The motivation is that modules (or parts of modules, such as the
concrete syntax definition or the semantics) have dependencies, including
requires and excludes, which might be difficult to manage for many lan-
guage modules. Modules might have interactions. So, it is difficult for
developers to adhere to and manage such constraints. Later, Neverlang

472 Chapter 13. Model and Language Variability

has also been connected to FeatureIDE [20]. Jetbrains MPS has dedicated
support for feature models.

Despite all the support, composing languages is still a challenge. The
support is often limited to one technological space (e.g., Eclipse EMF) and
lacks common foundations. Also recall that languages consist of abstract
syntax, concrete syntax, and semantics, each of which can require different
mechanisms. Especially for the concrete syntax, composing grammars can
be an intricate problem, since grammar ambiguities might arise, which
need to be resolved. We refer to the literature for more information [34,
69], especially the literature on projectional language workbenches such
as MPS, which eases the combination of concrete syntaxes of language
modules and avoids the problem of grammar ambiguities [7, 75, 19, 78, 76].

Amalgamated versus Separated Variability

Recall that both annotative and compositional variability mechanisms need
a variability language to describe variation points (annotative variability)
or the composition of modules (compositional variability). For annotative
variability, the variability language can be a combination of annotations
and the expression language for our FSM example above, since it makes it
possible to express that a certain model element is present or not present
based on a certain configuration for which the presence condition expression
evaluates to true. In our example, the annotations were already part of
the meta-modeling language Ecore, while we introduced the expression
language. This strategy is called amalgamated or intrusive—your meta-
model has elements to describe variability [28]. Alternatively, the variability
concepts can be defined completely outside your DSL, which is called
separated or non-intrusive variability.

In amalgamated variability you have the concepts from the variability
language (e.g., variation points or annotations) directly in the language.
Either the language already offers facilities that can be used, or you need to
define them. Languages that offer such facilities are, for instance, UML,
which has stereotypes, tagged values, and structural constraints; or Ecore,
which has EAnnotations, as we used them in the FSM case study above.
When we use such facilities in this way, we call them ad hoc variability
extensions. If they are a bit more formalized and reusable, we call them ad
hoc variability languages. Examples are UML profiles offering variability
concepts [80, 81]. There are also generic variability languages that can
be used for any language in a certain technological space (e.g., EMF or
Jetbrains MPS). Examples are our variability language in PEoPL [5], VML*
[82], and the variability language offered by Garmendia et al. [22].

In amalgamated variability, your models will then use the domain-specific
concepts of the actual language and the variability concepts available via
one of the three strategies—ad hoc variability extensions, ad hoc variability
languages, or generic variability languages.

13.4. Designing Language Product Lines 473

Symbol Description

å Decision affecting following activities

2 Activity

(2) Optional activity

3 Composite activity

(3) Optional composite activity

2 Sub-Activity of a composite activity

Table 13.1: Legend for
designing model and language
product lines

There can also be good reasons for not wanting to extend meta-models
with variability description facilities—for instance, when you do not want
to modify existing tooling. Then, a separated variability or non-intrusive
strategy makes sense [28]. This allows description of variation points and
model composition completely outside the model in a separate model. A
variability language supporting this strategy needs to have a way to point
into existing models in a non-intrusive way. The framework BVR/CVL [71,
29, 30] we mentioned above provides this support.

13.4 Designing Language Product Lines

Languages like our FSM language with variability are called meta-model
product lines or language product lines [24, 41, 25]. As you can see from
these examples, the mechanism at both levels—the language (a.k.a. meta-
model or M2) level and the model (a.k.a. instance or M1) level—is the
same. We attached presence conditions to the elements of models, which
are then called model templates, 150 % models or model product lines [14,
9, 33, 2, 29]. Since the technique is the same, we will talk about language
variability, but mean model variability as well (the intuition is similar to our
discussion in the box on page 396).

As we already indicated above, when discussing variability mechanisms
for models, the design space for realizing variability in languages is huge.
Like for traditional product lines, there is a huge body of knowledge
stemming from research on model variability. This is not surprising, since
the domains where SPLE is thriving are usually model-oriented—recall
automotive, avionics, and industrial automation. Let us more systematically
discuss the design space and what kinds of decisions you will need to make
to realize variability.

We now describe a development process and discuss pragmatic solutions
in addition to using some of the existing frameworks for realizing variability
we mentioned above in Sect. 13.3.

2 Domain analysis. As with traditional product lines, it is very helpful to
have an understanding of the variability you think you will encounter in the
future. The value of this activity should not be underrated [79] for DSLs.
A domain analysis together with a scoping process, where you come up
with features that you organize in a feature model, will help. You can also

474 Chapter 13. Model and Language Variability

attach priorities to those features for planning. The features you will need
arise from understanding the users of your models (or languages) and the
anticipated usage scenarios. You should also think about the complexity
and scale of your models.

In principle, you can build language product lines bottom-up or top-
down. In the latter case, you would do the domain analysis after the other
activities and identify features by diffing the variants, possibly using our
feature-modeling process from Chapter 12. However, in practice, we believe
that distinguishing between top-down and bottom-up will hardly make a
difference to the number of variants and their sizes. We advocate being
pragmatic here. Identify the features and think about future features, and
consider the following factors, but do not limit yourself to a strict process
or order of activities. Whether language variants will ever be as numerous
as variants of software systems remains to be seen.

å Variants needed? The domain analysis will help you decide whether
variability is really necessary or a one-size-fits-all language will suffice.
Tailoring the languages with variability will make them easier to use, but
with the tradeoff of having to manage the variants. That is a difficult
decision you will need to make. If you cannot make it, it makes most sense
to avoid variants and only incorporate them later when necessary—which is
also the common adoption strategy for traditional product lines. We showed
in our FSM case study how to add variability to languages and models
retroactively.

å Decision binding time? Another important question is about when to
make decisions. The system you are describing will have some functional
logic, allowing its operation at runtime. In our FSM coffee machine example
(Fig. 13.1), that is for instance the variable coffee, which represents an event
at runtime. So, coffee will be true when the machine is in the state selection
and a user requests coffee. Then, this decision will determine the behavior
of our coffee machine. In other words, the decision what to brew is made at
runtime. You might also decide that this decision should be made at design
time, where the manufacturer decides what behavior to ship. In that case,
there would be a variant with fixed behavior determined by the decision,
which cannot be changed at runtime by a user. It is a conscious decision,
which is often not as easy to make as for our coffee machine example, where
it is clear from domain knowledge that the user should make the decision.
In more complex systems, it can be difficult to decide. So, in summary, you
will need to decide what should be part of the functional, control logic of
the system and what should be part of the engineering process. In our coffee
machine example, we decided that the presence of the functionality to brew
coffee should be decided at build time by the manufacturer—this was also
easy to decide based on domain knowledge (you need to decide about the
presence of coffee-brewing hardware already on the manufacturer’s side).

å Clone & Own versus variability? When you decide you need to have
variants (as opposed to putting everything into the runtime), the question

13.4. Designing Language Product Lines 475

arises whether to go for clone & own versus adding variability. The decision
is based on the number of variants and the extent of customization of the
surrounding language infrastructure, since variability can affect abstract
syntax, concrete syntax, and semantics. Recall that when you need a custom
editor for each variant, you need to maintain those copies as well; similarly
for transformations. Also recall that you can enhance clone & own by
defining a base model from which the variant models can reuse elements via
referencing, which is a middle ground between clone & own and variability
[66]. So, anticipate the effort needed to maintain those parts when making
a decision. Researchers have tried to help you with such a decision, but
only some rough guidelines are available, such as the rule of three variants
determining the break-even point when a product line pays off [70, 54], or
recent empirical data on the costs of either strategy [40].

å Annotative versus compositional variability? When you decide to
realize your variants through variability mechanisms, the next question is
what kind of mechanism to choose.

In practice, annotative variability is more common (e.g., recall our Linux
kernel case study from Sect. 11.2) and typically preferred by developers
as the easier technique [64, 12, 37, 46]. Models and other artifacts can
be annotated in a very fine-grained manner. A core challenge is that
annotations easily clutter the models and other artifacts, challenging their
comprehension.

Modularity fosters comprehension, since modules can be developed and
maintained separately, which is less intellectually challenging. However,
compositional mechanisms lead to more coarse-grained variability com-
pared to annotations, and the effort to create modules is typically higher,
since you need to find a good decomposition of your model variants into
modules.

Compositional variability offers better support for the concrete syntax and
the semantics, in addition to the abstract syntax. Compositional language
workbenches (cf. Sect. 13.3) offer modules that encapsulate the three parts,
requiring developers to think about the modularization much more, and
offering tool support for the three parts out of the box. When you have
many variants, there are frameworks that extend these workbenches with
facilities to manage the language modules better (e.g., Neverlang combined
with FeatureIDE); see our discussion in Sect. 13.3.

In summary, this decision depends on the structure and complexity of
your features, the realizability of a variability mechanism of either kind, the
number of features and variants, and the granularity of your variability.

å Amalgamated versus separated variability? The next challenge is to
choose or realize a language that you can use to describe variation points
(annotative variability) or the composition of modules (compositional vari-
ability). You need to decide whether you put that language’s concepts into
the meta-model (amalgamated) or not (separated). Make the decision based
on the following list of advantages and disadvantages.

476 Chapter 13. Model and Language Variability

Separated variability enhances comprehension of the language. Espe-
cially when you have annotative variability, it avoids the clutter of having
annotations directly in the model. This comes at the cost of reasoning about
variability and quickly distinguishing the variable from the common parts
of the model. The latter usually needs tool support. Separated variability,
based on how specific it is to the meta-model, might require co-evolution.
However, non-domain-specific variability languages, such as in CVL/BVR,
are only specific to the meta-modeling language (MOF/Ecore), so you
won’t have any problems there.

Amalgamated variability enhances comprehension of the variability that
exists in the language. Especially when the language has extension mecha-
nisms (cf. Sect. 13.3), that provides a huge benefit, since the tooling will be
supportive in this case.

In summary, you will make this decision depending on the extensibility of
your meta-model, your language infrastructure, and the comprehensibility
of your DSL with or without variability concepts.

2 Select a technological space. Usually, you will extend an existing
language with variability in a bottom-up way, so the language’s imple-
mentation determines the technological space. However, if you build your
language with variability support from scratch, in a top-down way, then you
might want to select the space based on your decisions about the realization
of variability. Especially if you decide for compositional variability, then
it makes sense to select a compositional language framework, many of
which we listed above in Sect. 13.3. In our opinion, the most mature and
advanced compositional language framework is Jetbrains MPS, which we
used successfully for various projects [44, 5, 76, 7, 77].

Beyond those compositional language frameworks, research has focused
on providing standardized variability languages and tooling for language
product lines. Various frameworks for realizing variability in models have
been developed, many of which we also mentioned in Sect. 13.3. However,
according to our experience, they are difficult to set up. So, selecting a
technological space and a framework should be a careful decision.

Your decision whether you realize annotative or compositional variability
further influences the choice of a technological space, and vice versa.

3 Realize annotative variability. Recall that variability in languages
affects abstract syntax, concrete syntax, and semantics.
2 Parameterization Start with parameterization, which might be enough

for your use case. You add support (either amalgamated or separated) for
using placeholders (parameters) in your models. A preprocessor traversing
the model and replacing the placeholders could be realized as a simple
modification of our model configurator above (Fig. 13.6).
2 Annotations with Presence Conditions Then, check whether an-

notations with presence conditions are sufficient. They work well when

13.4. Designing Language Product Lines 477

you do not have too many feature interactions.5 Annotations might be a
bit cumbersome when you need to replace parts in the model with other
parts. Then, a more expressive or domain-specific technique for describing
variation points can be useful that not only controls parameterization and
existence, but also substitution and user-defined variability (e.g., BVR/CVL
and VML* in Sect. 13.3).

Annotative variability for the abstract syntax is relatively easy to realize,
as we showed in Sect. 13.1. It gets tricky for the concrete syntax, since
you would need to realize the same annotations for the concrete syntax
definition (e.g., a grammar in Xtext or visualization rules in Sirius). In
principle, textual annotations could be added to the concrete syntax using a
textual preprocessor (e.g., C preprocessor, Antenna, Velocity, or PHP). A
pragmatic solution is to provide the textual syntax for all variants. Then,
depending on the derived meta-model variant (abstract-syntax definition),
only the subset for the available meta-model elements will be available
in the language infrastructure. However, this depends on the language
workbench you use to realize the concrete syntax, where you will have
to experiment a bit to figure it out. It will also not work when there is
variability in the mapping (e.g., one concept in the concrete syntax maps to
different concepts in the abstract syntax depending on the configuration).
Finally, when your syntax definition relies on grammars, you can also
leverage non-terminal symbols to represent variable parts—after all, that is
a built-in variability mechanism in grammars.

For the semantics, similar issues arise as for the concrete syntax. Assume
we implement the semantics using transformations. Then, these can also
be made configurable. Fortunately, model-transformation languages are
expressive (and are often GPLs, for instance, when we implement the trans-
formation in Scala), so they naturally come with configuration mechanisms
(e.g., IF statements) to realize variability. Alternatively, the superset of
all transformation rules can be realized. Then, depending on the derived
abstract syntax of models, only certain rules are used. So, you would
implement the transformation against the product line meta-model (which
is a 150 % model), instead of having different variants of transformations.
Like for the concrete syntax, this works when the transformation logic is
not affected by variability, such as when you need to interpret a source
element differently based on the configuration.
2 Domain-Specific and Expressive Annotations Realizing more ex-

pressive or domain-specific annotations can be tricky. Of course, if an-
notations are similarly expressive to presence conditions—that is, they
define presence or absence of meta-model elements, then they can easily
be made domain-specific by using domain terms. When you need more
expressiveness, for instance, for topological variability, you can resort to

5For feature interactions, it is often necessary to specify their handling, for which you need
model parts that handle those. The presence conditions of these parts are then typically a
conjunction over the interacting features.

478 Chapter 13. Model and Language Variability

a framework, but the added complexity might be huge. We experimented
with CVL for topological variability and cannot recommend it. You might
want to experiment with VML* or more recent frameworks. However, in
the end, it might be quicker to develop your own DSL for it, either directly
in your target meta-model (amalgamated) or outside (separated). This gives
you full flexibility. For our FSM example (cf. Sect. 13.1), for instance, you
could define a concept that has a presence condition as a parameter and
in its body defines that a certain transition exists with specific source and
target states. Our fire alarm system from Sect. 11.5 is a very expressive and
very domain-specific variability language. However, it was not connected
to feature models, which would allow a feature-oriented configuration.

2 Realize compositional variability. The idea of compositional variability
techniques is to modularize your optional features into separate modules.
You have one or multiple base modules that represent the mandatory parts
of your models. This will allow you, with the help of a framework
(either a compositional language workbench or a framework that adds
variability-modeling capabilities with feature models on top), to compose
the mandatory parts with the optional features based on a configuration.

Decomposing your language product line into modules is almost an art,
but you want to follow some criteria:

• Decomposing is highly domain-specific, so you want to put modules
together based on their distinctness in the domain. A module should
correspond to a feature and as such be understandable for the target users
of your language product line—developers who derive or customize
languages.

• You want to have as few dependencies between modules as possible.
• You need to consider abstract syntax, concrete syntax, and semantics

when decomposing.
• You might want to realize minor variations within or between modules

using annotative variability, perhaps even just with parameterization
(depending on what your framework supports).

Remember that some features are cross-cutting, so the parts of the model
that belong to a module need to be carefully decided. Some frameworks
(cf. Sect. 13.3) support cross-cutting features in modules, but not the
compositional language workbenches. For the latter, you might need to
introduce redundancy, and to control it, you might need to connect feature
modules to features and then control the composition via a configuration.

It is also important to create specific feature-interaction modules, which
handle wanted or unwanted interactions between features.

å Feature model or configuration file? If you use a framework that sup-
ports language variability with feature models, this question does not arise.
When you create your variability mechanisms yourself, e.g., something sim-
ilar to the annotative mechanism in our FSM example, the question arises
where to specify the features. When you do not have many dependencies

13.4. Designing Language Product Lines 479

or when just documenting the dependencies in textual form, you could go
with a simple configuration (a.k.a. properties) file. Put the dependencies
into comments. Of course, the more features, dependencies, and variants
you have, the more sense it makes to use a feature model and connect to a
feature-modeling tool.

2 Quality assurance. We are not aware of any specific support for validat-
ing language product lines in the literature. You are largely on your own
and should be pragmatic.

If you have built your language product line from existing variants, you
should try to recreate the original variants. You might have test cases for
the variants, which you might be able to reuse.

Otherwise, derive a set of variants based on your domain knowledge.
You should try to create a minimal and a maximal language variant, but also
combine features where you have the impression they could interact. For
both strategies, you should instantiate the languages and run their semantics
for validation.

Further Reading

Language composition. Language composition is a relevant concept for variability.
In general, composition has many benefits, but from the human perspective, you
can take a look at the following studies to see why developers seem to appreciate
language composition: Hutchinson et al. [35], Selić [61], and Völter et al. [76].

Erdweg, Giarrusso, and Rendel [18] discuss language composition from a concep-
tual point of view and describe various kinds of composition together with examples.
Specifically, they describe so-called language extension, language restriction, lan-
guage unification, self-extension, and extension composition. Some of these are
easier to realize (e.g., language extension is easier than composition), as discussed
by Völter and Visser [78]. General thoughts on language composition and managing
languages in the large are provided by Hölldobler, Rumpe, and Wortmann [34].

Combemale et al. [13] provide a chapter (Chapter 11) on model composition for
the purpose of scaling up model management, where they discuss aspect-oriented
weaving, reuse with typing, and slicing techniques.

Solutions to realize language and model product lines have been presented
especially for the following four technological spaces.

Projectional language workbenches. The field of projectional language work-
benches with its core technology, projectional editing (a.k.a. structured editing or
syntax-directed editing), focuses on language composition and language modularity.
We already discussed projectional workbenches as a special kind of language
workbenches in Sect. 2.2. Going back to the 1980s, projectional editing is not even a
new idea. Early projectional workbenches include the Incremental Programming En-
vironment [47], GANDALF [53], and the Synthesizer Generator [55]. Projectional
editing gained widespread attention with Charles Simonyi’s paradigm of intentional
programming in the 1990s [62, 15, 63, 11]. The currently most mature projectional
editing workbench is Jetbrains MPS,6 which we already mentioned above. Its main
advantage for language composition relies on the absence of parsing. You can

6http://www.jetbrains.com/mps

http://www.jetbrains.com/mps

480 Chapter 13. Model and Language Variability

develop language extensions modularly and embed languages into other languages,
especially DSLs into GPLs [73]. Projectional editors avoid language ambiguities,
because you always work directly on the AST. Your editing gestures change the
AST directly, without any parsing. Since that AST is always maintained in memory,
every node is always mapped to its defining language concept (meta-class). Another
benefit is that visual notations can be used flexibly and mixed with each other and
with textual notations. This includes notations that one cannot easily parse (e.g.,
tables, diagrams, and mathematical formulas) [74].

The book of Völter [72] focuses on building DSLs in MPS and discusses many
of its capabilities in a very practice-oriented way. A book focusing on the technical
details and covering MPS in depth and breadth is the one by Campagne [10]. Both
books are must-reads for those who want to build languages in MPS.

In our own prior work, upon the projectional language workbench Jetbrains Meta
Programming system (MPS), we developed variability support that can be easily
plugged into programming languages [5, 51].

JastAdd as a compositional language workbench. JastAdd [32] is a compositional
language workbench focusing on GPLs, but can of course also be used to develop
DSLs. It supports creating full-fledged compilers, composed of language modules
containing abstract syntax, concrete syntax, and semantics. A core feature is its
support for attribute grammars—a programming technique to declaratively compute
properties (i.e., attributes) of nodes in the AST to efficiently implement language
semantics. An attribute could reference, for instance, the node defining a variable
from its usage nodes. Attributes can depend on other attributes, and might change
based on changes in the tree. Attribute grammars allow such attributes to be
efficiently computed. Take a look at the tutorial about JastAdd by Hedin [31].
It is also interesting to read a modular implementation of a Java compiler using
JastAdd—where the different language concepts added over time to Java can be
added modularly via language module composition [17].

Other compositional language workbenches. More compositional language work-
benches exist; many are not less extensive than the others above. Read about
MontiCore, which focuses on DSLs, in Krahn, Rumpe, and Völkel [39], and about
its extensions to further improve the reuse of language modules [9]. Read about
Neverlang in Vacchi and Cazzola [67], which is even feature-oriented, that is, allows
composition of languages based on selecting features that are mapped to modules.

Furthermore, compositional language workbenches have been proposed and
extended with variability management concepts. Combemale et al. [13] provide a
chapter on variability in models, which mainly explains CVL/BVR. Butting et al.
[9] provide a framework for engineering language product lines. Méndez-Acuña
et al. [48] discuss a bottom-up reverse-engineering process to obtain a language
product line from existing language variants.

Additional Exercises

Exercise 13.1. Extend the Ecore model configurator from Fig. 13.6 so that it
supports parameterization. Furthermore, assume you would use this preprocessor
to parameterize a DSL. Describe this use case in more detail and explain how you
would incorporate the preprocessor into the overall tool chain, including how you
would define parameters and where you would store their values.

References 481

Exercise 13.2. Create a simple model weaver. For the weaving strategy, decide
whether to use superimposition based on the model structure or another technique
to merge model fragments. Read the respective literature on the details [2]. Create
simple models to test your model weaver. As an extension, make the weaving
configurable, i.e., attach presence conditions over features to the fragments, which
the weaver will take into account. For that you can reuse our simple expression
language and the model configurator, but you could also implement it in your
favorite GPL. This assignment is rather advanced.

Exercise 13.3. Discuss properties that modules of languages should have. Describe
what potential techniques for checking these properties could look like.

Exercise 13.4. Revisit our fire alarm system case study from Sect. 11.5. Identify
three features (at least one should cross-cut multiple classes) and map them
to classes and relationships. Choose and very briefly explain an appropriate
mechanism to map the features.

References

[1] David Fernando Méndez Acuña. “Leveraging software product lines en-
gineering in the construction of domain specific languages”. PhD thesis.
Université Rennes 1, 2016 (cit. p. 467).

[2] Sven Apel, Florian Janda, Salvador Trujillo, and Christian Kästner. “Model
superimposition in software product lines”. In: International Conference on
Theory and Practice of Model Transformations. Springer. 2009, pp. 4–19
(cit. pp. 470, 473, 481).

[3] Sven Apel, Christian Kästner, and Christian Lengauer. “Language-indepen-
dent and automated software composition: The FeatureHouse experience”.
In: IEEE Trans. Softw. Eng. 39.1 (2013), pp. 63–79 (cit. p. 469).

[4] D Batory, J.N Sarvela, and A Rauschmayer. “Scaling step-wise refinement”.
In: IEEE Transactions on Software Engineering 30.6 (2004), pp. 355–371
(cit. p. 469).

[5] B. Behringer, J. Palz, and T. Berger. “PEoPL: Projectional editing of product
lines”. In: International Conference on Software Engineering. ICSE. 2017
(cit. pp. 466, 467, 472, 476, 480).

[6] Thorsten Berger, Stefan Stanciulescu, Ommund Ogaard, Oystein Haugen,
Bo Larsen, and Andrzej Wąsowski. “To connect or not to connect: Experi-
ences from modeling topological variability”. In: SPLC. 2014 (cit. p. 468).

[7] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dangprasert,
and Janet Siegmund. “Efficiency of projectional editing: A controlled
experiment”. In: 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE). 2016 (cit. pp. 471, 472, 476).

[8] Jean Bézivin, Frédéric Jouault, and David Touzet. “An introduction to
the ATLAS model management architecture”. In: Rapport de recherche 5
(2005), pp. 10–49 (cit. p. 471).

[9] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann.
“A compositional framework for systematic modeling language reuse”. In:
MODELS. 2020 (cit. pp. 465, 467, 471, 473, 480).

[10] Fabien Campagne. The MPS Language Workbench Volume II: The Meta
Programming System. CreateSpace Independent Publishing Platform, 2016
(cit. p. 480).

482 Chapter 13. Model and Language Variability

[11] Magnus Christerson and Henk Kolk. Domain Expert DSLs. A talk at QCon
London 2009. 2009. URL: http://www.infoq.com/presentations/DSL-Magnus-
Christerson-Henk-Kolk (cit. p. 479).

[12] Paul C. Clements and Charles Krueger. “Point/counterpoint: Being proac-
tive pays off—eliminating the adoption”. In: IEEE Software 19.4 (2002),
pp. 28–30 (cit. p. 475).

[13] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turn-
ing Domain Knowledge Into Tools. CRC Press, 2016 (cit. pp. 479, 480).

[14] Krzysztof Czarnecki and Michał Antkiewicz. “Mapping features to models:
A template approach based on superimposed variants”. In: GPCE. 2005
(cit. p. 473).

[15] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000 (cit. p. 479).

[16] Vincent Debruyne, Françoise Simonot-Lion, and Yvon Trinquet. “EAST-
ADL: An architecture description language”. In: IFIP World Computer
Congress, TC 2. Springer. 2004 (cit. p. 459).

[17] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java compiler”.
In: OOPSLA. 2007 (cit. p. 480).

[18] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. “Language
composition untangled”. In: Proceedings of the Twelfth Workshop on Lan-
guage Descriptions, Tools, and Applications. 2012, pp. 1–8 (cit. p. 479).

[19] Sebastian Erdweg et al. “The state of the art in language workbenches”. In:
SLE. 2013 (cit. p. 472).

[20] Luca Favalli, Thomas Kühn, and Walter Cazzola. “Neverlang and Fea-
tureIDE just married: Integrated language product line development en-
vironment”. In: 24th ACM Conference on Systems and Software Product
Lines. 2020 (cit. p. 472).

[21] Simon Fürst et al. “AUTOSAR – a worldwide standard is on the road”. In:
14th International VDI Congress Electronic Systems for Vehicles. Vol. 62.
2009, p. 5 (cit. p. 459).

[22] Antonio Garmendia, Manuel Wimmer, Esther Guerra, Elena Gómez-Martínez,
and Juan de Lara. “Automated variability injection for graphical modelling
languages”. In: Proceedings of the 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. 2020
(cit. pp. 461, 466, 469, 472).

[23] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
“Engineering tagging languages for DSLs”. In: ACM/IEEE 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MODELS). 2015 (cit. p. 469).

[24] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. “Analysing
meta-model product lines”. In: Proceedings of the 11th ACM SIGPLAN
International Conference on Software Language Engineering. SLE 2018.
2018 (cit. p. 473).

[25] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. “Property
satisfiability analysis for product lines of modelling languages”. In: IEEE
Transactions on Software Engineering (2020) (cit. p. 473).

http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk

References 483

[26] Ines Hajri, Arda Goknil, Lionel C Briand, and Thierry Stephany. “Configur-
ing use case models in product families”. In: Software & Systems Modeling
17.3 (2018), pp. 939–971 (cit. p. 459).

[27] Øystein Haugen and Birger Møller-Pedersen. “Configurations by UML”. In:
European Workshop on Software Architecture. Springer. 2006, pp. 98–112
(cit. p. 468).

[28] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen,
and Andreas Svendsen. “Adding standardized variability to domain spe-
cific languages”. In: Proceedings of the 2008 12th International Software
Product Line Conference. SPLC ’08. 2008 (cit. pp. 468, 472, 473).

[29] Øystein Haugen and Ommund Øgård. “BVR – better variability results”.
In: International Conference on System Analysis and Modeling. Springer.
2014, pp. 1–15 (cit. pp. 468, 473).

[30] Oystein Haugen, Andrzej Wąsowski, and Krzysztof Czarnecki. “CVL:
Common variability language”. In: 17th International Software Product
Line Conference. SPLC. 2013 (cit. pp. 468, 473).

[31] Görel Hedin. “An introductory tutorial on JastAdd attribute grammars”.
In: Generative and Transformational Techniques in Software Engineering
III: International Summer School, GTTSE 2009, Braga, Portugal, July 6-
11, 2009. Revised Papers. Ed. by João M. Fernandes, Ralf Lämmel, Joost
Visser, and João Saraiva. Springer, 2011, pp. 166–200 (cit. p. 480).

[32] Görel Hedin and Eva Magnusson. “JastAdd—an aspect-oriented compiler
construction system”. In: Science of Computer Programming 47.1 (2003),
pp. 37–58 (cit. pp. 471, 480).

[33] Florian Heidenreich, Jan Kopcsek, and Christian Wende. “FeatureMapper:
Mapping features to models”. In: Companion of the 30th International
Conference on Software Engineering. 2008, pp. 943–944 (cit. pp. 468, 473).

[34] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. “Software lan-
guage engineering in the large: Towards composing and deriving languages”.
In: Computer Languages, Systems & Structures 54 (2018), pp. 386–405
(cit. pp. 465, 472, 479).

[35] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen.
“Empirical assessment of MDE in industry”. In: ICSE. 2011 (cit. p. 479).

[36] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Tech.
rep. Software Engineering Institute, Carnegie Mellon University, 1990
(cit. p. 459).

[37] Christian Kästner and Sven Apel. “Integrating compositional and annotative
approaches for product line engineering”. In: McGPLE. 2008 (cit. pp. 467,
475).

[38] Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze, Lorenzo
Bettini, and Ferruccio Damiani. “DeltaJ 1.5: Delta-oriented programming
for Java 1.5”. In: PPPJ. 2014 (cit. p. 469).

[39] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “MontiCore: A frame-
work for compositional development of domain specific languages”. In:
International Journal on Software Tools for Technology Transfer (STTT)
12.5 (2010), pp. 353–372 (cit. pp. 471, 480).

[40] Jacob Krueger and Thorsten Berger. “An empirical analysis of the costs of
clone- and platform-oriented software reuse”. In: 28th ACM SIGSOFT

484 Chapter 13. Model and Language Variability

International Symposium on the Foundations of Software Engineering
(FSE). 2020 (cit. p. 475).

[41] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. “Choosy and
picky: Configuration of language product lines”. In: Proceedings of the
19th International Conference on Software Product Line. 2015 (cit. p. 473).

[42] Philippe Lahire, Brice Morin, Gilles Vanwormhoudt, Alban Gaignard,
Olivier Barais, and Jean-Marc Jézéquel. “Introducing variability into aspect-
oriented modeling approaches”. In: International Conference on Model
Driven Engineering Languages and Systems. Springer. 2007, pp. 498–513
(cit. p. 471).

[43] Michael Lienhardt, Ferruccio Damiani, Lorenzo Testa, and Gianluca Turin.
“On checking delta-oriented product lines of statecharts”. In: Science of
Computer Programming 166 (2018), pp. 3–34 (cit. p. 459).

[44] Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger,
and Andrzej Wąsowski. “Intention-based integration of software variants”.
In: 41st International Conference on Software Engineering. ICSE. 2019
(cit. p. 476).

[45] Lukas Linsbauer, Felix Schwaegerl, Thorsten Berger, and Paul Gruenbacher.
“Concepts of variation control systems”. In: Journal of Systems and Software
171 (2021), p. 110796 (cit. p. 468).

[46] Wardah Mahmood, Daniel Strueber, Anthony Anjorin, and Thorsten Berger.
“Effects of variability in models: A family of experiments”. In: Empirical
Software Engineering (2022) (cit. p. 475).

[47] Raul Medina-Mora and Peter H. Feiler. “An incremental programming
environment”. In: IEEE Trans. Softw. Eng. 7.5 (Sept. 1981), pp. 472–482
(cit. p. 479).

[48] David Méndez-Acuña, José A Galindo, Benoit Combemale, Arnaud Blouin,
and Benoit Baudry. “Reverse engineering language product lines from
existing DSL variants”. In: Journal of Systems and Software 133 (2017),
pp. 145–158 (cit. p. 480).

[49] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer. “LISA:
An interactive environment for programming language development”. In: In-
ternational Conference on Compiler Construction. Springer. 2002 (cit. p. 471).

[50] Brice Morin, Gilles Perrouin, Philippe Lahire, Olivier Barais, Gilles Van-
wormhoudt, and Jean-Marc Jézéquel. “Weaving variability into domain
metamodels”. In: International Conference on Model Driven Engineering
Languages and Systems. Springer. 2009, pp. 690–705 (cit. p. 470).

[51] Mukelabai Mukelabai, Benjamin Behringer, Moritz Fey, Jochen Palz, Jacob
Krüger, and Thorsten Berger. “Multi-view editing of software product lines
with PEoPL”. In: 40th International Conference on Software Engineering
(ICSE), Demonstrations Track. 2018 (cit. pp. 466, 480).

[52] Radu Muschevici, José Proença, and Dave Clarke. “Feature nets: Be-
havioural modelling of software product lines”. In: Software & Systems
Modeling 15.4 (2016), pp. 1181–1206 (cit. p. 459).

[53] David Notkin. “The GANDALF project”. In: J. Syst. Softw. 5.2 (May 1985)
(cit. p. 479).

[54] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product
Line Engineering. Springer, 2005 (cit. p. 475).

References 485

[55] Thomas W. Reps and Tim Teitelbaum. “The synthesizer generator”. In:
Proc. SDE. 1984 (cit. p. 479).

[56] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha
Chechik. “Lifting model transformations to product lines”. In: Proceed-
ings of the 36th International Conference on Software Engineering. 2014
(cit. p. 469).

[57] Pablo Sánchez, Neil Loughran, Lidia Fuentes, and Alessandro Garcia.
“Engineering languages for specifying product-derivation processes in soft-
ware product lines”. In: International Conference on Software Language
Engineering. Springer. 2008, pp. 188–207 (cit. p. 469).

[58] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. “Delta-oriented programming of software product lines”. In:
SPLC. 2010 (cit. p. 469).

[59] Michael Schulze and Stefan Kuntz. “AUTOSAR and variability”. In: ATZex-
tra worldwide 18.9 (2013), pp. 108–110 (cit. p. 459).

[60] Felix Schwägerl and Bernhard Westfechtel. “Integrated revision and varia-
tion control for evolving model-driven software product lines”. In: Software
and Systems Modeling 18.6 (2019), pp. 3373–3420 (cit. p. 468).

[61] Bran Selić. “The pragmatics of model-driven development”. In: IEEE
Software 20.5 (2003), pp. 19–25 (cit. p. 479).

[62] Charles Simonyi. “The death of computer languages, the birth of inten-
tional programming”. In: Proc. NATO Science Committee Conference. 1995
(cit. p. 479).

[63] Charles Simonyi, Magnus Christerson, and Shane Clifford. “Intentional
software”. In: Proceedings of OOPSLA. 2006 (cit. p. 479).

[64] Daniel Strueber, Anthony Anjorin, and Thorsten Berger. “Variability repre-
sentations in class models: An empirical assessment”. In: ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and
Systems (MODELS). 2020 (cit. p. 475).

[65] Jacques Thomas, Christian Dziobek, and Bernd Hedenetz. “Variability
management in the AUTOSAR-based development of applications for
in-vehicle systems”. In: Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems. 2011, pp. 137–140 (cit. p. 459).

[66] Juha-Pekka Tolvanen and Steven Kelly. “How domain-specific modeling
languages address variability in product line development: Investigation of
23 cases”. In: SPLC. Paris, France, 2019, 24:1–24:9 (cit. p. 475).

[67] Edoardo Vacchi and Walter Cazzola. “Neverlang: A framework for feature-
oriented language development”. In: Computer Languages, Systems &
Structures 43 (2015), pp. 1–40 (cit. pp. 471, 480).

[68] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoît Combemale.
“Variability support in domain-specific language development”. In: Inter-
national Conference on Software Language Engineering. Springer. 2013,
pp. 76–95 (cit. p. 471).

[69] Mark G.J. Van den Brand, Jeroen Scheerder, Jurgen J Vinju, and Eelco
Visser. “Disambiguation filters for scannerless generalized LR parsers”. In:
International Conference on Compiler Construction. 2002 (cit. p. 472).

[70] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007 (cit. p. 475).

486 Chapter 13. Model and Language Variability

[71] Anatoly Vasilevskiy, Øystein Haugen, Franck Chauvel, Martin Fagereng
Johansen, and Daisuke Shimbara. “The BVR tool bundle to support product
line engineering”. In: SPLC. 2015 (cit. pp. 468, 473).

[72] Markus Völter. DSL Engineering. Designing, Implementing and Using
Domain Specific Languages. 2013. URL: http://www.dslbook.org (cit. p. 480).

[73] Markus Völter. “Language and IDE modularization and composition with
MPS”. In: GTTSE. LNCS. Springer, 2011 (cit. p. 480).

[74] Markus Völter and Sascha Lisson. “Supporting diverse notations in MPS’
projectional editor”. In: (2014) (cit. p. 480).

[75] Markus Völter and Vaclav Pech. “Language modularity with the MPS
language workbench”. In: 34th International Conference on Software Engi-
neering (ICSE). 2012 (cit. pp. 471, 472).

[76] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. “To-
wards user-friendly projectional editors”. In: International Conference on
Software Language Engineering. Springer. 2014, pp. 41–61 (cit. pp. 472,
476, 479).

[77] Markus Völter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian Erd-
weg, and Thorsten Berger. “Efficient development of consistent projectional
editors using Grammar Cells”. In: 9th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE). 2016 (cit. p. 476).

[78] Markus Völter and Eelco Visser. “Language extension and composition with
language workbenches”. In: Companion to the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA. 2010 (cit. pp. 470, 472, 479).

[79] Jules White, James H Hill, Jeff Gray, Sumant Tambe, Aniruddha S Gokhale,
and Douglas C Schmidt. “Improving domain-specific language reuse with
software product line techniques”. In: IEEE Software 26.4 (2009), pp. 47–53
(cit. p. 473).

[80] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. “Towards a UML pro-
file for software product lines”. In: Software Product-Family Engineering.
2004 (cit. p. 472).

[81] Tewfik Ziadi and Jean-Marc Jézéquel. “Software product line engineering
with the UML: Deriving products”. In: Software Product Lines. Springer,
2006, pp. 557–588 (cit. p. 472).

[82] Steffen Zschaler et al. “VML* – a family of languages for variability
management in software product lines”. In: International Conference on
Software Language Engineering. Springer. 2009 (cit. pp. 469, 472).

http://www.dslbook.org

	Foreword
	A Shiny New DSL Textbook in Town
	Structure of the DSL Book
	Original Qualities of the DSL Book
	Reading Never Stops
	Final Verdict
	References

	Preface
	Contents
	1 Using Modeling Languages
	1.1 Model-Driven Software Engineering
	1.2 Model-Driven Software Engineering in Industry
	Further Reading
	References

	2 Building Modeling Languages
	2.1 The Story of Abstraction in Programming Languages
	2.2 The Ultimate Abstraction: Domain-Specific Languages
	2.3 What Is a Language Built From?
	2.4 Building a Language
	2.5 Testing Language Implementations
	Further Reading
	Additional Exercises
	References

	3 Domain Analysis and Abstract Syntax
	3.1 What is Meta-Modeling?
	3.2 Domain Analysis for Meta-Modeling
	3.3 Meta-Modeling with Class Diagrams
	3.4 Guidelines for Meta-Modeling with Class Diagrams
	3.5 Meta-Modeling with Algebraic Data Types
	3.6 Language-Independent Meta-Modeling Guidelines
	3.7 Case Study: Mind Maps
	3.8 Quality Assurance and Testing for Meta-Models
	3.9 The Language-Conformance Hierarchy
	3.10 A Sneak Peek at XML
	Further Reading
	Additional Exercises
	References

	4 Concrete Syntax
	4.1 Concrete and Abstract Syntax
	4.2 Defining Concrete Syntax
	4.3 How to Write a Grammar in Practice
	4.4 Parsing and Tools
	4.5 Guidelines for Specifying Concrete Syntax
	4.6 Quality Assurance and Testing for Grammars
	4.7 Grammars in the Language-Conformance Hierarchy
	Further Reading
	Additional Exercises
	References

	5 Static Semantics
	5.1 Static Semantics with First-Order Structural Constraints
	5.2 Writing Constraints in GPLs
	5.3 Specialized Constraint Languages for Modeling
	5.4 Guidelines for Writing Constraints
	Constraints as a Modeling Paradigm
	5.5 Quality Assurance and Testing for Static Constraints
	5.6 Constraints in the Language-Conformance Hierarchy
	Further Reading
	Additional Exercises
	References

	6 Static Semantics with Type Systems
	6.1 Abstract Syntax
	6.2 The Language of Types
	6.3 Type Hierarchy
	6.4 Climbing the Type Hierarchy to Merge Compatible Types
	6.5 A Type-Checking Algorithm for Expressions
	6.6 Type Checking for Models
	6.7 Quality Assurance and Testing Type Checkers
	6.8 Types in the Language-Conformance Hierarchy
	Further Reading
	Additional Exercises
	References

	7 Model and Program Transformation
	7.1 Technological Spaces
	7.2 Model-Transformation Case Studies
	7.3 Applications of Model and Program Transformation
	7.4 Transformation Fundamentals
	7.5 Program-Transformation Case Studies
	7.6 Transformation Technologies
	7.7 Guidelines for Writing Transformations
	7.8 Quality Assurance
	7.9 A Critical Discussion
	Further Reading
	Additional Exercises
	References

	8 Interpretation
	8.1 Domain Implementation
	8.2 The Interpreter Proper
	8.3 Case Study: The Robot Language Interpreter
	8.4 Monitoring and Models-At-Runtime
	8.5 Guidelines for Implementing DSL Interpreters
	8.6 Quality Assurance and Testing for Interpreters
	8.7 Interpreters in the Language-Conformance Hierarchy
	Further Reading
	Additional Exercises
	References

	9 Code Generation
	9.1 Reference Example Implementation
	9.2 Code Generation Using Visitors and Recursion
	9.3 Memory Management for Code Generation
	9.4 Code Generation with Templates
	9.5 Case Study: Robot
	9.6 Guidelines for Implementing DSL Code Generators
	9.7 Quality Assurance and Testing for Code Generators
	9.8 Code Generation in the Language-Conformance Hierarchy
	Further Reading
	Additional Exercises
	References

	10 Internal Domain-Specific Languages
	10.1 Internal DSLs with the Deep Embedding Pattern
	10.2 The Shallow Embedding Pattern
	10.3 Examples of Internal DSLs
	10.4 Guidelines and Techniques for Building Internal DSLs
	10.5 Quality Assurance and Testing Internal DSLs
	10.6 Internal DSLs and the Language-Conformance Hierarchy
	Further Reading
	Additional Exercises
	References

	11 Software Product Lines
	11.1 Software Variants
	11.2 Case Study: The Linux Kernel
	11.3 Software Product Line Engineering
	11.4 Variability Modeling
	11.5 Case Study: A Fire Alarm System
	11.6 Spectrum of Variability Modeling
	Further Reading
	References

	12 Feature Modeling
	12.1 The Notion of Feature
	12.2 Documenting a Feature
	12.3 Uses of Feature Modeling
	12.4 A Feature-Modeling Process
	Further Reading
	References

	13 Model and Language Variability
	13.1 Case Study: Variability in our FSM DSL and its Models
	13.2 Benefits of Variability in Models and DSLs
	13.3 Variability Mechanisms for Models
	13.4 Designing Language Product Lines
	Further Reading
	Additional Exercises
	References

