

Deep Learning for Data Architects
Unleash the power of Python’s deep learning algorithms

Shekhar Khandelwal

www.bpbonline.com

Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied.
Neither the author, nor BPB Online or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use
of capitals. However, BPB Online cannot guarantee the accuracy of this
information.

First published: 2024

Published by BPB Online

WeWork

119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55515-391

www.bpbonline.com

Dedicated to

My beloved wife, Niharika
&
My Daughter, Saesha

About the Author

Shekhar Khandelwal is a distinguished Senior AI & Data Scientist,
residing in the bustling harbor city of Hamburg, Germany. His academic
career shines bright with a Master’s degree in Data Science, achieving
distinction for his thesis work in the realm of Computer Vision. His name
can be spotted in top-tier research papers and publications, predominantly
in the area of Deep Learning.

Bringing to the table over 15 years of experience, the author has an
extensive professional background in the field of AI and machine
learning. His journey ranges from coding and crafting enterprise-level AI
products to leading data teams and mentoring future data science
professionals. He has successfully developed numerous client solutions
utilizing big cloud service platforms such as AWS, Google Cloud,
Microsoft Azure, and IBM Cloud.

Despite his deep involvement in the tech industry, our author is also a
fitness enthusiast. When he’s not making machines smarter, he’s likely to
be found flexing his muscles at the gym, attending a crossfit class,
cycling, or participating in marathon runs. His zeal for fitness is as strong
as his passion for AI, making him a well-rounded professional in all
respects.

About the Reviewer

Abonia Sojasingarayar is a Machine Learning Scientist, Data Scientist,
NLP Engineer, Computer Vision Engineer, AI Analyst, Technical Writer,
and Technical Book Reviewer with over 6 years of experience. In my 6+
years of professional experience, I have dealt with ML domains
(predictive analysis, computer vision, NLP), data analysis, data mining,
data visualization, problem-solving, decision-making, planning, and
software development. I am skilled in solving modern problems using AI
and deep learning using familiar frameworks in Python such as
TensorFlow, scikit-learn, Keras, etc., open-source toolkits such as openCV
and NLTK, etc., and familiar with Web Marketing Strategies, front-end
and back-end development tools, and languages. (For more info, don't
hesitate to visit the project section)

She has experience in management consulting, commercial industry, cyber
security, RH, chemical industry, banking and insurance, public transport
industry, telecommunication services, e-commerce, and information
technology sectors.

Her skills and expertise includes Studying and transforming data science
prototypes, designing machine learning systems, Research and implement
appropriate ML algorithms and tools, Develop machine learning
applications according to requirements, Select appropriate datasets and
data representation methods, Run machine learning tests and experiments,
Perform statistical analysis and fine-tuning using test results, Train and

retrain systems when necessary, Extend existing ML libraries and
frameworks, Keep abreast of developments in the field, Execute analytical
experiments to help solve various problems, making a true impact across
various domains and industries, Identify relevant data sources and sets to
mine for client business needs and collect large structured/unstructured
datasets and variables, Devise and utilize algorithms and models to mine
big data stores, perform data and error analysis to improve models, and
clean and validate data for uniformity and accuracy, Analyze data for
trends and patterns and interpret data with a clear objective in mind,
Implement analytical models into production by collaborating with
software developers, Communicate analytic solutions to stakeholders and
implement improvements as needed to operational systems.

Acknowledgements

First and foremost, this book is dedicated to my uncle, Dinesh
Khandelwal. His unwavering faith in me serves as an enduring source of
inspiration. A renowned book-seller, his counter is the most honorable
stage for my books, each sale symbolizing a cherished victory.

This work is also a tribute to my parents, the architects of my existence,
whose love and nurturing have shaped me into the individual I am today.

Lastly, the dedication extends to the two sparkling gems of my life, my
wife and daughter. Their smiles, a profound treasure, are the driving
forces that fuel my passion.

Special gratitude is extended to BPB Publications for their mentorship and
expertise in bringing this work to life. The journey to finalize this book
was an enriching process, involving the valuable engagement and
collaboration of reviewers, technical experts, and editors.

Acknowledgement is also due to my colleagues and coworkers in the tech
industry. Over the years, their wisdom and feedback have been
instrumental in my growth and the refinement of my work.

Lastly, my heartfelt thanks go out to every reader who has taken an
interest in this book. Your support has been indispensable in transforming
this dream into reality. Your enthusiasm fuels my commitment to share my
knowledge.

Preface

The world as we know it is undergoing a profound transformation, a
digital metamorphosis that is driven by the immense power of data and
artificial intelligence. In the center of this revolutionary tide stands a key
player - the data architect. Tasked with the responsibility to make sense of
vast data oceans and convert it into meaningful insights, the role of a data
architect is evolving at a staggering pace. “Deep Learning for Data
Architects” is an embodiment of that evolution.

This book aims to illuminate the path for data architects and enthusiasts,
guiding them through the labyrinth of modern data structures and artificial
intelligence techniques, from the foundations of Python programming to
the advanced landscapes of deep learning models. It is a testament to the
compelling narrative of change that the industry is experiencing, catering
to professionals who aspire to stay at the forefront of this digital
transformation.

“Deep Learning for Data Architects” does not simply regurgitate
theoretical concepts. Instead, it creates an engaging dialogue with the
reader, providing practical Python implementations for complex AI
paradigms, creating a bridge between theory and practice. Each chapter
builds upon the last, starting with the basics and gradually delving into the
deep end of AI and machine learning.

The journey is as important as the destination, and throughout the course
of this book, you will encounter real-world data challenges, explore the
depths of neural networks, understand the intricacies of convolutional,
recurrent neural networks and unravel the mysteries of Generative
Adversarial Networks and Transformers. Each step you take will empower
you with new insights and skills, enabling you to tackle any challenge that
the data landscape might throw your way.

Whether you are a seasoned data architect aiming to add deep learning to
your arsenal, or a budding enthusiast stepping into the exciting
intersection of these fields, this book is designed for you. As you turn the
pages, you will find yourself not just learning, but evolving with the
narrative of deep learning, setting the stage for a future-proof career in this
dynamic domain.

Embrace this journey of learning and transformation, and let “Deep
Learning for Data Architects” be your guide and companion in the
exciting odyssey of AI and data science.

Chapter 1: Python for Data Science - serves as a solid foundation,
providing an introduction to Python for data science. You will learn
essential programming concepts, data structures, and libraries such as
NumPy and Pandas. This chapter ensures that you are equipped with the
necessary Python skills for the deep learning journey ahead.

Chapter 2: Real-World Challenges for Data Professionals in Converting
Data Into Insights - dives into the challenges faced by data professionals
when converting raw data into valuable insights. You will explore data
cleaning, handling missing values, outlier detection, and feature

engineering techniques. This chapter prepares you for the data
preprocessing steps crucial for successful deep learning implementations.

Chapter 3: Build a Neural Network-Based Predictive Model - focuses on
building predictive models using neural networks. You will learn about the
architecture of a neural network, the role of activation functions, and
techniques to handle classification and regression tasks. Through Python
code implementations, you will gain hands-on experience in building and
training neural networks.

Chapter 4: Convolutional Neural Networks - introduces CNNs, a powerful
class of neural networks for image analysis tasks. You will understand the
key components of CNNs, such as convolutional layers, pooling layers,
and fully connected layers. The chapter provides Python code
implementations to build CNN models for image classification tasks.

Chapter 5: Optical Character Recognition - explores the exciting field of
OCR using deep learning. You will discover techniques to extract text
from images, enabling automated text recognition. Through Python code
implementations, you will learn how to build OCR models and apply them
to real-world scenarios.

Chapter 6: Object Detection - focuses on object detection, an essential
task in computer vision. You will explore popular object detection
algorithms and architectures, such as Faster R-CNN and YOLO. Through
Python code implementations, you will gain hands-on experience in
training and deploying object detection models.

Chapter 7: Image Segmentation - delves into image segmentation, a
technique used to partition images into meaningful regions. You will learn
about popular segmentation algorithms, including U-Net and Mask R-
CNN. Through Python code implementations, you will develop a deeper
understanding of image segmentation and its applications.

Chapter 8: Recurrent Neural Networks - introduces RNNs, which are
widely used for sequential data analysis. You will understand the
architecture of RNNs, including LSTM and GRU units. Through Python
code implementations, you will learn how to build RNN models for tasks
such as natural language processing and time series forecasting.

Chapter 9: Generative Adversarial Networks - explores the fascinating
world of GANs, which can generate new data instances based on training
data. You will learn about the adversarial training process and different
GAN architectures, including DCGAN and CycleGAN. Through Python
code implementations, you will gain hands-on experience in generating
realistic images and exploring generative modeling.

Chapter 10: Transformers - introduces Transformers, a revolutionary deep
learning architecture that has gained prominence in natural language
processing tasks. You will learn about the transformer architecture and its
variants, such as BERT and GPT. Through Python code implementations,
you will gain practical experience in applying transformers to text-related
tasks.

Code Bundle and Coloured Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/k8vs91n

The code bundle for the book is also hosted on GitHub at In case there’s
an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved.
To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to
us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the
BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on
BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at business@bpbonline.com
with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit We have worked with

thousands of developers and tech professionals, just like you, to help them
share their insights with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase decisions.
We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

Table of Contents

1. Python for Data Science

Structure

Objectives

Setting up the development environment

Installing Anaconda

Advance Python libraries for data science

Numpy

Pandas

Reading and writing data to and from different file formats

Format - csv

Format - Excel

Format - JSON

Format - clipboard

Format - HTML tables

Format - PDF

Format - Web scraping

Improving efficiency with the pandas read_csv method

Parameter - dtype

Parameter - usecols

Parameter - chunksize

Conclusion

Questions

Answers

2. Real-World Challenges for Data Professionals in Converting Data Into
Insights

Structure

Objectives

Pandas profiling

Analyzing Pandas profile report

Saving the Pandas profile report to a HTML file

Creating a Jupyter Notebook widget

Pandas profile report for big datasets

Sweetviz

Installing and getting started with Sweetviz

Analyzing Sweetviz report

Generating a report to compare two DataFrames using Sweetviz

AutoViz

Installing and getting started with AutoViz

Analyzing AutoViz report

Lux

Installing and getting started with Lux

Analyzing Lux report

Generating Lux visualizations based on intent

Saving Lux report to a HTML file

Advanced features in Lux reports

Lazy Predict

Analyzing Lazy Predict experimentation results

PyCaret

Installing and getting started with PyCaret

Analyzing PyCaret experimentation results

Advanced features of PyCaret

Conclusion

Questions

Answers

3. Build a Neural Network-Based Predictive Model

Structure

Objectives

Artificial neural network and its components

Neurons

Feed forward

Activation functions

Loss function

Backward propagation

Epoch

Batch

Iteration

Optimizer

Learning rate

Building a classification model using neural network

Problem statement

Dataset

Implementation

Load Python libraries

Load data

Descriptive analytics

Data pre-processing

Modeling

Experiment 1 - Hidden layer -1, epoch-100 – shallow neural network

Experiment 2 - hidden layer -2, epoch-100 – deep neural network

Building a regression model using neural network

Problem statement

Dataset

Data pre-processing

Modeling

Model evaluation

Conclusion

Questions

Answers

4. Convolutional Neural Networks

Structure

Objectives

Convolutional neural networks components

Load required libraries

Digital image as a numpy array

Kernels/filters and convolution process

Stride

Padding

Convolution on RGB image

Convolution operation with multiple filters

One convolution layer

Pooling

Flattening

Dense layers

Image classification using CNN

Problem statement

Dataset - MNIST

Implementation

Data pre-processing

Modeling

Plot confusion matrix

Create a confusion matrix and plot

Hyperparameters tuning using KerasTuner

Dataset – Fashion MNIST

Implementation

Install KerasTuner

Conclusion

Questions

Answers

5. Optical Character Recognition

Introduction

Structure

Objectives

Optical character recognition

OCR Python libraries and their implementation

Tesseract OCR

Tesseract OCR demo

keras-ocr

keras-ocr demo

EasyOCR

EasyOCR demo

TrOCR

TrOCR demo

Conclusion

Questions

Answers

6. Object Detection

Structure

Objectives

Object localization and detection

Object detection algorithms and their comparison

Single shot detector Python implementation

YOLO v3 Python implementation

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Conclusion

Questions

Answers

7. Image Segmentation

Structure

Objectives

Difference between image classification, detection and segmentation

Image segmentation architectures

U-Net Python implementation

FCN-8 Python implementation

Mask R-CNN Python implementation

Conclusion

Questions

Answers

8. Recurrent Neural Networks

Structure

Objectives

Algorithms for RNN implementation

RNN implementation

Long short-term memory implementation

Gated Recurrent Unit implementation

Conclusion

Multiple choice questions

Answers

9. Generative Adversarial Networks

Structure

Objectives

Types of GAN

Vanilla GAN Python implementation

Key difference between Vanilla GAN and DCGAN

DCGAN Python implementation

StyleGAN Python implementation

Setup environment

Conclusion

Questions

Answers

10. Transformers

Structure

Objectives

Introduction to Transformers in deep learning

Various transformers architectures

Difference between contextual and non-contextual embeddings

BERT Python implementation

GPT Python implementation

Conclusion

Questions

Answers

Index

CHAPTER 1

Python for Data Science

You can’t build a great building on a weak foundation. You must have a

solid foundation if you are going to have a super-strong structure.
— Gordon B. Hinkley

Data is the most important component of data science. Python libraries for
data science are built specifically to solve various peripheral issues that
Data Scientists may face, like data sourcing, cleaning, pre-processing, and
working with big data. It is important to know what these libraries have to
offer and the sneaky tricks that can be implemented in our day-to-day data
wrangling. The high-level methods within these libraries save you a lot of
time performing humongous tasks, using just a few lines of code.

Additionally, data has to be sourced from all over the place. Hence, as
someone who is building predictive models, maybe in academia or at
work, should be familiar with different kinds of data that one can deal
with and how to source them using Python.

Plus, when you work on your personal system, you have to be really
cautious about how you utilize the available resources in terms of
computing hardware and so on. Hence, it is of utmost importance to know
various tricks that can help you with memory management. The tricks that
usually go unnoticed and unexplored within Python packages, if explored,
can significantly improve your efficiency while dealing with data.

Structure

In this chapter, we will cover the following topics:

Setting up the development environment

Advance Python libraries for data science

Reading and writing data to and from various file formats

Improving efficiency with the pandas read_csv method

Objectives

After studying this chapter, you should be able to set up your laptop with
the required tools and technologies to embark on your journey of
implementing various deep learning models that will be discussed in this
book. Also, you should be able to install various Python packages that are
prerequisites for building any predictive model. Once the development
environment is set up, you will learn about various Python libraries that
are available for scientific computing, machine learning and deep
learning. Additionally, you will learn how to maximize your productivity
in a limited hardware environment, since machine learning and deep
learning are computationally expensive.

Setting up the development environment

As part of the environment setup, we will look at how to install the
Anaconda tool, which gives access to almost all the required underlying
tools and technologies for development. Further, we will understand how
to get started with Jupyter Notebook, which is the IDE for Data Scientists.
Finally, we will look at how to enhance the notebook by installing
important plugins for better usability of the tool.

Installing Anaconda

The first and foremost tool that has to be installed on your machine is
Anaconda. Anaconda is a distribution of packages for the Python and R
programming languages. It includes a package manager called conda that can
be used to install, update, and manage packages within the Anaconda
environment.

Tools that come along with Anaconda are as follows:

Jupyter Notebook

Orange

Spyder

PyCharm

VS Code

RStudio

IBM Watson Studio

Each of these software can be installed separately as well. However, with
anaconda, all of them can be installed in one shot.

Follow the steps to install Anaconda on your machine:

Go to the home page of Anaconda at

It will look like as shown in Figure

Figure 1.1: Anaconda home page

Click on Download and download the installer of the choice of your operating
system, as shown in the following screenshot:

Figure 1.2: Anaconda installers

Double-click on the downloaded installer and follow the installation wizard,
as shown in the following screenshot:

Figure 1.3: Anaconda installation wizard

Click the Close button after you complete the installation of Anaconda on
your machine.

Now, let’s get started with Jupyter Notebook.

Getting Started with Jupyter Notebook

Once Anaconda is installed, you can proceed to launch the Jupyter Notebook
on the web browser:

Open the Anaconda Navigator app on your machine. The screen will look as
shown in Figure

Figure 1.4: Anaconda Navigator

Click on the Launch button under the Jupyter Notebook icon. This will
launch the Jupyter homepage on your default browser, as shown in the
following screenshot:

Figure 1.5: Jupyter Notebook

Further, you can navigate to the desired folder in your filesystem and go to
the folder where you want to create a notebook to start building your projects.

Click on the New dropdown and click on the Python 3 option, as shown in the
following screenshot:

Figure 1.6: Notebook IDE

This will create a new notebook with the name which can be renamed as
shown in the following screenshot:

Figure 1.7: Notebook cell

You can start writing Python code in the cells, as shown in Figure and run
them right there using the respective buttons provided at the top of the IDE:

Figure 1.8: Notebook Hello World

Enhancing Jupyter Notebook usability

Many seasoned data scientists usually work on the vanilla setup of Jupyter
notebook. However, it is important to know that there are many more
amazing features of the Jupyter Notebook that are usually not explored by
most users. Once you explore them and start using them, you will realize how
important they are to further enhance your usability and productivity with
building models and applications using Jupyter Notebook.

These features are the ability to incorporate latex in the markdown cells of the
notebook, code prettify for making the code look neater to promote best
practices and preserve its integrity, the ability to automatically create a table
of contents of your exploratory data analysis steps, code auto-completion
with notebook, the ability to save code snippets for reusability, and many
more.

Installing the required Python packages

Python, as we know, is a multi-utility programming language. It is also the
most preferred programming language for data science due to the amazing
scientific computing, visualization and algorithm implementation libraries.

In this section, we will install the most important Python packages that are
required to build any machine learning and deep learning model in Python.

Those are as follows:

Pandas

NumPy

Matplotlib

Seaborn

Scikit Learn

TensorFlow

Keras

Scikit-image

OpenCV

Use Code 1.1 snippet and run them on the notebook cell for installing the
Python packages on your machine. These are simple pip install commands
that can be run on the command line too. In order to run them through the

notebook cell, add an “!” before the command. That will make the notebook
know that the code has to be interpreted and executed as a shell command:

import sys

!{sys.executable} -m pip install -U pandas

!{sys.executable} -m pip install -U numpy

!{sys.executable} -m pip install -U matplotlib

!{sys.executable} -m pip install -U seaborn

!{sys.executable} -m pip install -U scikit-learn

!{sys.executable} -m pip install -U tensorflow

!{sys.executable} -m pip install -U keras

!{sys.executable} -m pip install -U scikit-image

!{sys.executable} -m pip install -U opencv-python

Code pip install commands

Note that these are some basic Python libraries required for building any
machine learning or deep learning model. However, additional libraries
required at specific stages of the model building process will be introduced
and discussed in their respective chapters.

Advance Python libraries for data science

Python has become the most preferred language for data science, owing to
the amazing and easy-to-use scientific computing and model building
libraries. Libraries like Pandas and Numpy provide various high-level
methods for data processing. Libraries like matplotlib and seaborn make
data visualization a piece of cake. Libraries like scikit-learn provide high-
level methods to implement almost all machine learning algorithms.
Libraries like Keras and PyTorch provide high-level methods to
implement almost all deep learning algorithms.

Also, Python for data science has a very active online community, which
constantly contributes to building various high-level Python packages for
easy and holistic implementation of almost all stages of the data science
life cycle. This makes data sourcing, data cleaning, data pre-processing,
data visualization, and model building possible with just a couple of lines
of code implementation.

Numpy

Numpy is a Python library that is written for scientific computing and data
analysis. It stands for Numerical Python.

When it comes to data science, the data is usually big data. Even when we
work on sample data for building and evaluating a predictive model, the data
is huge enough to give your machine a hard time to process. Now, Python as
we know it may not be that efficient in terms of computational speed and
efficiency. Hence, the power of vectorization that is inherently present in the
advanced Python libraries, like Numpy, comes to the rescue for faster
computations.

In standard Python ways, when you need to deal with data in an iterative
fashion, “for” loops are the best premise. In a loop, records are treated one
row at a time, which is time-consuming and not very efficient.

Vectorization uses the Single Instruction, Multiple Data architectures. SIMD
is a class of parallel computing that enables the hardware of your system to
perform a single instruction on multiple data points simultaneously.

So, numpy allows you to vectorize the code for faster computations, which is
of utmost importance in the world of machine learning and deep learning.

We’ll conduct a small test to demonstrate the time differences in two
methods. First, we’ll use standard Python to perform element-wise

multiplication of items in two lists. Then, we’ll use numpy arrays for the
same data and carry out a vectorized multiplication operation.

Importing the ‘time’ module to track the time taken for each operation:

import time

Create two lists with some random data:

list_1 = [i for i in range(1000000)]

list_2 = [j**2 for j in range(1000000)]

Capture the start time:

t0 = time.time()

Find the product of the two lists in a conventional pythonic way:

list_3 = list(map(lambda x, y: x*y, list_1, list_2))

Capture the end time:

t1 = time.time()

Print the time taken by this process:

print("Time taken by a standard python

Convert the Python lists into numpy arrays:

array_1 = np.array(list_1)

array_2 = np.array(list_2)

Capture the start time:

t0 = time.time()

Perform numpy multiplication:

array_3 = array_1*array_2

Capture the end time:

t1 = time.time()

Time taken by numpy operation:

print("Time taken by numpy operation : {}".format(t1-t0))

Output:

Figure 1.9: Numpy time test result

As it can be seen, the time taken by standard Python operation is
approximately 50

times more than the time taken by the same operation using numpy.

That clarifies why numpy is the back end of almost all data science libraries
like Pandas, which we will look at next.

Pandas

Pandas is a Python library that is used extensively for data manipulation
and visualization activities. The most basic data structure in Pandas is a
DataFrame. Pandas DataFrame provides a tabular representation of data
and many in-built data manipulation methods, which come in handy in the
data exploration and preprocessing stages.

Reading and writing data to and from different file formats

Seaborn library contains various datasets that can be utilized for various
demonstrations by loading those datasets in a pandas DataFrame.

First, let us import the pandas and seaborn libraries:

import pandas as pd

import seaborn as sns

Then, let us load one of the sample datasets into a pandas DataFrame:

df = sns.load_dataset("tips")

Output:

Figure 1.10: DataFrame head

Format - csv

To unload the Pandas DataFrame into a csv file, use the following:

df.to_csv("tips.csv", index=False)

Figure 1.11: csv file

Use the following to load the csv file into Pandas DataFrame:

df=pd.read_csv("tips.csv")

Format - Excel

Use the following to unload the Pandas DataFrame into an excel file:

df.to_excel("tips.xlsx", index=False)

Figure 1.12: xlsx file

Use the following to load the excel file into Pandas DataFrame:

df=pd.read_excel("tips.csv")

Format - JSON

Use the following to unload the Pandas DataFrame into a json file:

df.to_json("tips.json")

Figure 1.13: json file

Use the following to load the json file into Pandas DataFrame:

df=pd.read_json("tips.csv")

Pandas DataFrames can be written and read not only to and from text files
like CSV, JSON and so on. but also to binary files like parquet and pickle.
For the entire list of Pandas DataFrame supported file formats and their
definitions, refer to this blog:

https://khandelwal-shekhar.medium.com/different-file-formats-pandas-
dataframe-can-read-and-write-to-38198e48e439

Format - clipboard

Pandas DataFrames can also be written into the system’s clipboard. They
can also be read directly from the clipboard, which can be useful for
various kinds of applications.

Use the following to unload the Pandas DataFrame in the clipboard:

df.to_clipboard()

Use the following to load the content from the clipboard into Pandas
DataFrame:

df=pd.read_clipboard()

Format - HTML tables

Tabular data available on various web pages can be directly read into a
Pandas DataFrame.

Various tables are present on any web page. One of the table in a web page is
shown as follows:

Figure 1.14: HTML table

To read the tabular data from any web page table into a Pandas DataFrame,
use the website link that you want to scrape, to read the HTML content in the

code:

df=pd.read_html("https://url>")

However, if we look at the size of this DataFrame, it is more than 1.

Figure 1.15: DataFrame length

That means this command had read all the tables in the web page. If we want
to read any specific table from the web page, we can use the table heading as
the identifier.

df=pd.read_html("https://url>", match='Historical population')

Output:

Figure 1.16: DataFrame length

So, now there is only one element in this DataFrame. To see this data, read
the first element of the DataFrame.

Figure 1.17: DataFrame elements

However, sometimes data is available in a different data source, which is not
inherently supported by Pandas DataFrame to read from, like PDF tables,
HTML content of a web page, REST APIs, and so on. To read data from such
sources, we can use additional Python libraries like requests, Beautiful Soup,
tabula-py, and so on.

Format - PDF

Suppose tabular data is stored in a PDF file that we intend to load in a Pandas
DataFrame:

To read tabular data stored in a PDF file, we need to first install the tabula-py
library using the following command snippet:

import sys

!{sys.executable} -m pip install -U tabula-py

Install Java 8+ using this website based on your operating system:

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

Import the following libraries:

import tabula

import pandas as pd

Read the PDF data into a Python object, as follows:

data = tabula.read_pdf("data.pdf", pages="all")

However, this object is a Python list, and the data is not in a very readable
format.

Output:

Figure 1.18: Data type

1. Tabula provides an option to read and save the data directly from pdf to csv
format:

1.
tabula.convert_into("data.pdf", "data.csv", output_format="csv", pages="all")

2. Now, we can read this csv file and load it in the pandas dataFrame using
the pandas read_csv method, as follows:

2. df=pd.read_csv("data.csv")

Output:

Figure 1.19: DataFrame head

However, we can see that data is not read in a very clean way, and we see that
there are a few unwanted columns created during the data transition process;
hence, some cleaning will be required before further processing of the
DataFrame.

Format - Web scraping

To scrape a web page and extract relevant information from the content, we
can use Python libraries like requests and Beautiful Soup:

Install the required Python packages – requests and Beautiful Soup:

import sys

!{sys.executable} -m pip install -U requests

!{sys.executable} -m pip install -U bs4

Import the required libraries:

1. import pandas as pd

Send the GET request to the desired web page to collect the HTML content of
the page:

url = "https://www.unb.ca/cic/datasets/ids-2017.html"

req = requests.get(url)

Use the Beautiful Soup library to parse the HTML content, as follows:

soup = bs4.BeautifulSoup(req.text, "html5lib")

Output:

Figure 1.20: HTML content

Improving efficiency with the pandas read_csv method

As mentioned earlier, most datasets are made available for predictive
modelling in a csv file. Hence, it is important to understand the various
options available in Pandas library on how to optimally use system memory
while reading the data file.

Dataset used for this section demonstrations is available at

The pandas.read_csv method reads the comma-separated values (csv) file into
a DataFrame. In this section, we will look at how we can use various
parameters available in the read_csv method to improve the pandas
DataFrame efficiency and also improve on memory utilization since that is of
utmost importance when we work on huge datasets.

First, read the full CSV data into a pandas DataFrame.

Code:

df=pd.read_csv("melbourne.csv")

df.head()

Output:

Figure 1.21: DataFrame head

Suppose we look at each column and the memory usage, as shown in the
following screenshot:

Figure 1.22: DataFrame info

The total memory usage is approximately 3.8 MB.

Parameter - dtype

Let us look at the details of all the numerical columns in the DataFrame:

Figure 1.23: DataFrame description

You can see that columns like Car and YearBuilt can be easily accommodated
in int16 or float16 data types, but by default, pandas reads them all in int64 or
float64 data types, which translates to more memory footprint.

Hence, read_csv provides a parameter called which can be used to specify the
desired data type for selected columns.

Code:

df1=pd.read_csv(file, dtype={

 "Rooms":np.int32,

 "Distance":np.float16,

 "Postcode":np.float16,

 "Bedroom2":np.float16,

 "Bathroom":np.float16,

 "Car":np.float16,

 "YearBuilt":np.float16

 }

)

df1.info()

Output:

Figure 1.24: DataFrame info

Now, it can be seen that the same data stored in the new pandas DataFrame
uses only 2.8 MB of memory space. This can be a huge memory saving
technique when working with huge datafiles.

Parameter - usecols

With the preliminary understanding of the features in the dataset,
sometimes you may find certain columns that are of no use for the
modelling. For example, in the Melbourne housing dataset, assume that
columns like Address, latitude, longitude and so on are of no importance.
And you are aware of it before even reading the data into a pandas
DataFrame. There is always an option to remove them after the
DataFrame is created. But when you deal with huge datasets, it would be
pretty time consuming and costly to read unnecessary columns, only to
remove them later.

The usecols parameter of the read_csv method comes handy at such times.
It lets the user define the columns they want to use from the CSV to form
the DataFrame.

Code:

cols =
["Suburb","Rooms","Type","Price","Distance", "Postcode", "Bathroom", "
Bedroom2", "BuildingArea", "YearBuilt"]

df2 = pd.read_csv(file, usecols=cols)

df2.info()

Output:

Figure 1.25: DataFrame info

Memory usage is further reduced to 1.8 MB.

Now, let’s use dtype and usecols together to further optimize the
DataFrame.

Code:

cols =
["Suburb","Rooms","Type","Price","Distance", "Postcode", "Bathroom", "
Bedroom2", "BuildingArea", "YearBuilt"]

df3 = pd.read_csv(file,

 usecols=cols,

 dtype={

 "Rooms":np.int16,

 "Distance":np.float16,

 "Postcode":np.float16,

 "Bedroom2":np.float16,

 "Bathroom":np.float16,

 "YearBuilt":np.float16

 })

df3.info()

Output:

Figure 1.26: DataFrame info

Memory usage is further reduced to a few thousand KBs.

Parameter - chunksize

While working with datasets that range from a few GBs or even TBs, even
with all the stated hacks, it will not be possible to read the entire dataset in
the DataFrame due to memory limitations.

Then, we can use the chunksize parameter to read the data in chunks. The
chunksize parameter will give the flexibility to read the dataset in the
chunks of the desired number of rows.

Code:

for chunk in pd.read_csv(file, chunksize=5000):

 print(chunk.shape)

Output:

Figure 1.27: File shapes

Conclusion

In this chapter, we looked at setting up the data science development
environment. We also looked at various advanced Python packages and
concepts that can help in the day-to-day data wrangling process for
anyone who is trying to build a predictive model. This chapter also
provided a lot of code snippets that can be readily used for various
common data sourcing, data loading, data cleaning and preprocessing, and
data visualization tasks.

In the next chapter, we will explore real-world challenges faced by data
architects to implement data science techniques for data problems. Also,
we will look at how such challenges can be resolved by using ready-to-use
automated tools and techniques.

Questions

Which of the following Python libraries is/are widely used in data
science?

Pandas

Numpy

Matplotlib

All of the above

NumPy stands for which of the following?

Number Python

Numerical Python

Numbers in Python

None of the above

PANDAS stands for which of the following?

Panel data analysis

Panel data analyst

Panel data

Panel dashboard

What are different file types that can be read using the pandas library?

CSV

Excel

JSON

All of the above

Which Python library can be used for API calls?

Seaborn

Beautiful Soup

Requests

All of the above

Answers

(d)

(b)

(d)

(d)

(c)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 2

Real-World Challenges for Data Professionals in Converting Data
Into Insights

The miracle isn’t that I finished. The miracle is that I had the courage to
start.

— John Bingham

Well begun is half done! Most of the time, if you have observed that once
you define the problem statement and collect the initial set of observations
aka data, you find it difficult to get started with data crunching or data
analysis. You kind of get dumbstruck on picking up a variable from your
dataset to start performing the data understanding process. The first step is
the most important step to finishing the marathon.

At such times, various automated data profiling, data visualization, and
model building libraries come in handy. These libraries give you a head
start in your predictive model building process. Such libraries come with
very easy-to-use, high-level functions that can perform various
complicated data analysis and plotting tasks with just a few lines of code.

Further, it has also been observed that once you clean and pre-process
your data, you find yourself clueless on which algorithm to apply based on
your problem statement and the dataset collected. Hence, the question
arises, ‘Why not use all the available algorithms?’ Well, that does not
seem feasible since there are many, and usually, time is limited. There are
automated tools that allow you to implement almost all the popular

regression or classification algorithms in one shot, with just a few lines of
code.

In this chapter, we will discuss various such amazing Python libraries that
automate the most cumbersome model building processes and give you
the head start that you are looking for to begin your data science problem-
solving journey.

Structure

In this chapter, we will cover the following topics:

Pandas-profiling

Sweetviz

AutoViz

Lux

Lazy Predict

PyCaret

Objectives

After studying this chapter, you should be able to automate various
important model building processes like descriptive analytics, exploratory
data analysis, and model building experimentations. You will also be able
to use various advanced Python libraries to automate all these steps and
further build upon this knowledge to enhance your predictive model
building processes.

Pandas profiling

Pandas-profiling is a Python library that makes descriptive analytics a matter
of just a few lines of code. It provides a detailed analysis of the dataset in just
seconds. It may not be everything that you need to know about a dataset, but
it is a good starting point to understand your data, with all the basic statistics
of the features and an optimum level of visualizations, before starting any
kind of exploratory data analytics.

Installing and getting started with pandas profiling

Following are the steps to install Pandas profiling and getting started with it:

Step 1: Install the pandas-profiling Python package, as shown here:

import sys

!{sys.executable} -m pip install -U pandas-profiling

Step 2: Import pandas_profiling with the following command:

import pandas_profiling

Step 3: Call the ProfileReport method within pandas_profiling and pass the
DataFrame to the method:

pandas_profiling.ProfileReport(df)

Figure 2.1: Pandas Profile Report

Once completed, a report is generated describing the whole DataFrame. You
can navigate through the entire report to completely understand the data they
are dealing with. At the top of the report, you will find all the different kind
of analysis that has been done on the data by Pandas Profiling, as seen in the
following screenshot:

Figure 2.2: Profile Report options

Analyzing Pandas profile report

In the Overview section of the report, you will see details like the number of
variables, number of observations, how many of them are categorical, and
how many are numerical, and so on. This gives a holistic view of the entire
dataset, as shown in the following screenshot:

Figure 2.3: Pandas Profile overview

The Warnings tab in the overview section will provide more information
about dataset variables like cardinality, distinct values, missing values, and
correlations among variables in a nutshell for a quick reference. Refer to the
following screenshot:

Figure 2.4: Pandas Profile warnings

Sample section will show the top and last few records of the dataset, as
shown in the following screenshot:

Figure 2.5: Sample rows

The Variables section will provide detailed information about each variable in
the dataset. Information like the number of records, distinct values, value
distributions and so on are shown in this section; refer to the following figure:

Figure 2.6: Feature analysis

With every feature in the variable section comes a Toggle details button. If
you click on that button, it will present you with detailed statistical
information about the feature, as shown in the following screenshot:

Figure 2.7: Toggle details

Within those detailed sections, there are various tabs like Histogram and
Common which provide an even more detailed analysis of the feature, as
shown in the following screenshot:

Figure 2.8: Feature details

Further, the Interactions section provides a unique capability for users to
select various combinations of features to analyze their correlation, as shown
here:

Figure 2.9: Bivariate analysis

However, the correlations section provides the holistic heatmap to show the
correlations between every feature combination, as shown in the following
screenshot:

Figure 2.10: Correlations Heatmap

Saving the Pandas profile report to a HTML file

In order to broadcast your data findings, the pandas profile report can be
exported into an HTML file, as follows:

from pandas_profiling import ProfileReport

df_profile = ProfileReport(df, title="Pandas Profiling Report")

df_profile.to_file("PandasProfiling_report.html")

The preceding code will generate and export the Pandas profile report into an
HTML file and display the status of the export:

Figure 2.11: Export Report status

Creating a Jupyter Notebook widget

For better usability within Jupyter Notebook, pandas profile report can be
converted into a widget within the notebook with this command:

df_profile.to_widgets()

Figure 2.12: Pandas Profile widget

Checking the variables view in the widget :

Figure 2.13: Feature analysis in widget view

Pandas profile report for big datasets

If you are dealing with huge datasets, then generating the full-fledged report
would be quite time-consuming and sometimes unnecessary. Hence, the
pandas profile provides you with an option to generate only a minimalistic
report that gives a decent understanding of the dataset.

The following code will generate the profile report for huge datasets:

1. bigData_profile = ProfileReport(df, minimal=True)

1. bigData_profile.to_widgets()

With minimal option as true, you can see that all the tabs are not present in
the report, as with the usual report. However, an overview of the dataset and
details about all the features available in the dataset are generated in the
report, as shown here:

Figure 2.14: Big data profile minimal report

To keep yourself updated about the latest improvements in the library, visit
the official page of Pandas profiling:

Sweetviz

Sweetviz is a Python library that provides the complete data report in an
interactive HTML file style-report. It does not only explore one dataset
but is also capable of exploring two datasets in one shot and provide a
well-defined comparison report between the two datasets, which is a very
useful feature for certain use cases, which we will discuss in the next
section.

Installing and getting started with Sweetviz

Follow the given steps to get started with Sweetviz:

Step 1: Install the Python package of Sweetviz with the following command:

import sys

!{sys.executable} -m pip install -U sweetviz

Step 2: Import the sweetviz library, as follows:

import sweetviz as sv

Step 3: Call the analyze method in the Sweetviz library; that’s all:

sv.analyze(df).show_html()

Figure 2.15: Sweetviz report status

Analyzing Sweetviz report

The Sweetviz report HTML file will be saved automatically on your
machine, and the report will also be automatically opened on your
browser for you to navigate to.

A sample Sweetviz report is shown here:

Figure 2.16: Sweeviz report

The report generated by Sweetviz is an interactive one. Clicking on the
Associations tab at the top of the report will display the association of
every variable with each other in the form of a heatmap in the right pane
of the report, as shown in the following screenshot:

Figure 2.17: Sweetviz heatmap visualization

Similarly, clicking on the individual variable in the report will open a
more detailed analysis of that variable in the right pane of the report, as
you can see here:

Figure 2.18: Individual feature analysis

Generating a report to compare two DataFrames using Sweetviz

Sweetviz provides an option to compare two DataFrames and generate a
detailed comparison report. This feature may come handy in situations
when you have different datasets collected to build a predictive model, or
when the DataFrame is divided into training and testing sets and you want
to compare how the data is distributed.

Create two DataFrames, say df1 and df2, and use the compare method by
passing the two DataFrames as an argument to the method. Further, use
the show_html method to generate the comparison report:

df_compare = sv.compare(df1, df2)

df_compare.show_html('Compare Report.html')

This will generate an HTML report that consists of all metrics of
comparison in the report.

A sample comparison report is shown in the following screenshot:

Figure 2.19: AutoViz report

To keep yourself updated on the latest improvements in the library, visit
the official page of Sweetviz:

AutoViz

AutoViz is a Python library that enables users to create different kinds of
visualizations that can be generated for the variables in the dataset. This
can be considered as a starting point of data analysis through
visualization. With just one line of code, a huge number of plots are
generated for careful analysis of the variables in the dataset, visually.

Installing and getting started with AutoViz

Following are the steps to install and get started with AutoViz:

Step 1: Install the autoviz Python package with the following command:

pip install autoviz

Step 2: Import the AutoViz class from the autoviz library, as shown here:

from autoviz.AutoViz_Class import AutoViz_Class

Step 3: Create an object for the AutoViz class with the given command:

AV = AutoViz_Class()

Step 4: Pass the datafile and the dependent variable name in the AutoViz
method in the AutoViz class object, as shown here:

df = AV.AutoViz('Train_data.csv', depVar="class")

This will generate the AutoViz report with all the visualization possible,
depending upon the features within the dataset.

Analyzing AutoViz report

First, the analysis of the dataset will be provided as the output, as follows:

Figure 2.20: Autoviz report

Further, the visualizations will be presented in the report.

Since the dependent variable is the ‘class’ column, all the variables are
plotted on a scatter plot against class feature, as seen in the following
screenshot:

Figure 2.21: Continuous variable scatter plot

The report further contains all the different kinds of plots that can be created
based on the feature data types, like scatter plot, box plot, violin plot,
heatmaps and so on, as shown in the following screenshot:

Figure Autoviz heatmap

As can be seen here, with just one line of code, a huge number of plots can be
generated using the Autoviz library to analyze data visually, before
proceeding with more detailed exploratory data analysis.

To keep yourself updated on the latest improvements in the library, visit the
official page of Autoviz:

Lux

Lux is an advanced data visualization library that can be integrated with a
Jupyter Notebook as a widget. It enables the notebook cells to display
toggle buttons and to display on-demand plots for a given DataFrame if
the user chooses to click on the displayed toggle buttons on the notebook
output cell.

Installing and getting started with Lux

Here are the steps to install and get started with Lux:

Step 1: Install lux package using pip

import sys

!{sys.executable} -m pip install -U lux-api

Step 2: In order to enable Lux widget in Jupyter Notebook, luxwidget
extensions need to be installed and enabled, as follows:

The output obtained is as shown here:

Figure 2.23: Extension install status

Step 3: For demonstration purposes, let’s create a DataFrame using one of the
dataset available in seaborn sample data, with the following code:

import seaborn as sns

df=sns.load_dataset('titanic')

Step 4: Upon the display of the DataFrame on the notebook cell, in addition
to the content of the DataFrame, a Toggle Pandas/Lux button will also be
displayed now:

Figure 2.24: DataFrame in Lux analysis

Analyzing Lux report

Upon clicking on the toggle button, Lux visualization will be displayed
within the notebook cell. The report contains various tabs like and as
shown in the following screenshot:

Figure 2.25: LUX visualizations

Generating Lux visualizations based on intent

Lux also provides the flexibility to generate intent-based visualizations. For
example, if you want to generate plots against selected features within the
dataset, then you can create an intent with the following code:

df.intent=['age’, 'fare']

Once the intent is created, when the DataFrame is displayed on the notebook
cell, the visualizations are automatically created based on the intent defined
against the DataFrame, as shown in the following screenshot:

Figure 2.26: LUX intent visualization

Another distinguishable feature of Lux is that in addition to the intended
plots, it recommends enhancement of the plots by adding another variable
against the intended variables to analyze the correlation of all of these
variables, as seen here:

Figure 2.27: Lux advance intent visualization

Also, note that all these plots are interactive, and the cursor can be used to
hover on various data points to get the details of those data points right there
on the plot, as shown in the following screenshot:

Figure 2.28: LUX visual features

Additionally, all the plots displayed can be downloaded using the Export
feature, as shown in the following screenshot:

Figure 2.29: LUX report export

Saving Lux report to a HTML file

LUX reports can be saved as an HTML file for sharing purposes, with the
following code:

df.save_as_html('lux_report.html')

The output obtained is as follows:

Figure 2.30: Save output message

Figure 2.31: LUX export

To clear the intent from the DataFrame, use the following command:

df.clear_intent()

Advanced features in Lux reports

Lux plots can be further optimized by using classes like VisList. For example,
if user wants to see distribution of data based on one variable against all
distinct values of another variable, we will write the following code:

from lux.vis.VisList import VisList

VisList(['class=?', 'survived'], df)

This will display plots of records distribution based on the survived feature
for all the different values of the class feature, as shown here:

Figure 2.32: LUX advance

To keep yourself updated on the latest improvements in the library, visit the
official page of LUX:

Lazy Predict

While working on a data science problem statement, wherein you are
supposed to build a predictive model, whether regression or classification,
there is always a limitation on the number of experiments that can be
conducted in terms of algorithms implementations and comparing the
results.

It is usually based on your experience and instinct; you pick a certain
algorithm, let us say random forest classifier for a classification use case,
and implement it on your dataset. Then, you consider the performance
metrics of the model created using random forest as a baseline and move
on to tune your model for better performance.

Lazy Predict is a library that enables users to experiment their dataset on
almost every popular algorithm available for regression and classification
problems, with just a few lines of code.

This expands the horizon of the experiment that a user conducts in terms
of algorithms implementations and gives a confidence on setting the
baseline performance metrics, which the user can use to build upon for
further improvements.

Installing and getting started with Lazy Predict

Follow the given steps to install and get started with Lazy Predict:

Step 1: Install the lazypredict Python library using pip

Step 2: Import the LazyClassifier and LazyRegressor classes, as shown
here:

from lazypredict.Supervised import LazyClassifier, LazyRegressor

Step 3: Import and load the dataset within the sklearn library to create a
DataFrame for demonstration purposes, with the following code:

from sklearn import datasets

from sklearn.model_selection import train_test_split

data = datasets.load_breast_cancer()

Step 4: Distribute DataFrame into train and test sets using the
train_test_split method from the sklearn library, as shown here:

X, y = data.data, data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, rando
m_state=42)

Step 5: Create an object for the LazyClassifier class:

clf = LazyClassifier(predictions=True)

Step 6: Use the fit method within the LazyClassifier class, and pass train
and test DataFrames and as well as the associated labeled DataFrames and
to the fit method. That will return two objects: models and predictions:

models, predictions = clf.fit(X_train, X_test, y_train, y_test)

Analyzing Lazy Predict experimentation results

Models will contain the comparison of all the algorithms implemented on the
DataFrame passed to the fit method for classification.

Let us print the models’ content and see for ourselves:

models

The output obtained is as follows:

Figure 2.33: Lazy Predict report

You can see that various performance metrics are captured for various
classification algorithms for the dataset used for the classification problem.

Predictions will contain all the predictions made by each algorithm for every
record in the test set, as shown here:

predictions

Figure 2.34: Lazy Predict predictions

Official page of Lazy Predict

Welcome to Lazy Predict’s documentation! — Lazy Predict 0.2.9
documentation

PyCaret

PyCaret is another amazing Python library that automates the model
building process and experiments your dataset with almost every
regression and classification algorithm out there. It also provides the
detailed analysis of the model performances built using PyCaret.

The official page of PyCaret is

Installing and getting started with PyCaret

Follow the given steps to install and get started with PyCaret:

Step 1: Install the pycaret library using pip

Step 2: Import sample datasets available within the pycaret library and use a
sample dataset for demonstration purposes, as shown here:

from pycaret.datasets import get_data

diabetes=get_data('diabetes')

Step 3: Import the classification class within the pycaret library:

from pycaret.classification import *

Step 4: Use the setup method to initiate the classification experiment on the
dataset by passing the DataFrame and the target variable to the method:

clf=setup(diabetes, target='Class variable')

It will perform some data analysis and ask for confirmation on whether the
data types assumed for the provided columns in the DataFrame are correct. If
they are correct, you can press and if you want to change the datatypes before
the features are fed into the classifier, then type quit and press

Figure 2.35: PyCaret data analysis

Step 5: Assuming that the data types are correctly identified, you press and
then the classification process upon various supported algorithms within the
PyCaret library begins:

Figure 2.36: PyCaret experiment description

Analyzing PyCaret experimentation results

Once the processing is completed, use the compare_models method to see the
full analysis of all the experimentations:

compare_models()

The output obtained is as follows:

Figure 2.37: PyCaret report

The results are, by default, sorted based on ‘Accuracy’ metrics; you can see
that Extra Trees Classifier worked well on this dataset. But based on the
performance metrics that you are looking for your problem statement, you

can choose the appropriate classifier from the list and create the model using
the create_model method:

et = create_model('et')

This will build the model of your choice and perform the cross-validation for
10 iterations by default and present the final performance metrics, as shown
in the following screenshot:

Figure 2.38: PyCaret performance metrics

Advanced features of PyCaret

However, this is not the end of the story. PyCaret comes with many more
advanced capabilities post the experimentation and model building process.

Once basic experimentation is completed, the pycaret library also provides
the flexibility to tune the model with just a single line of code:

tuned_et = tune_model(et)

Figure 2.39: PyCaret tuned model performance metrics

Once the model is created, you can also plot the model ROC curves with just
a single line of code:

plot_model(et)

Figure 2.40: Plot model performance

Plotting confusion matrix of the model

Once the model is created, you can also plot the model confusion matrix with
just a single line of code:

plot_model(et, plot = 'confusion_matrix')

Figure 2.41: Confusion matrix

Plotting feature importance

Once the model is created, you can also plot the feature importance with just
a single line of code:

plot_model(et, plot = 'feature')

Figure 2.42: Feature importance

We have only scratched the surface of the features available in the PyCaret
library. Refer to the official documentation to know about many more things
that can be done using this library, which can speed up your model building,
optimization, and evaluation processes.

Conclusion

In this chapter, we looked at various advanced Python libraries that help in
automating various exploratory data analysis steps. With only a few lines
of code, profiling of the dataset, visualizations, and detailed statistical
reports can be generated in no time. We also looked at various Python
libraries that enable experimenting with implementation of all kinds of
classification and regression algorithms, without having to code for each
of those individual algorithm implementations. Additionally, we discussed
how these automated tools give a head start to the data modeling process
and save a lot of time as well.

In the next chapter, we will cover the basics of neural networks and look
at how to build the basic neural network-based predictive model from
scratch.

Questions

Which of the following Python libraries can be used for automated data
exploration?

Pandas profiling

AutoViz

Sweetviz

All of the above

Which of the following Python libraries can be used for automated ML
modeling?

PyCaret

Lazy Predict

Both of the above

None of the above

What is the confusion matrix?

Visualization algorithm

Machine learning algorithm

Performance metrics

None of the above

What are the different types of machine learning?

Supervised learning

Unsupervised learning

Reinforcement learning

All of the above

What are the different types of problems that machine learning can solve?

Classification

Regression

Clustering

Forecasting

All of the above

None of the above

Answers

(d)

(c)

(c)

(d)

(e)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 3

Build a Neural Network-Based Predictive Model

We are all now connected by the internet, like neurons in a giant brain.

— Stephen Hawking

Have you ever wondered how our brain functions? How does it identify
things, understand patterns, and make decisions? This is an age-old
mystery, and all one can do is to presume the neurological functioning of
the brain, which makes it capable of performing all the incredible
cognitive and mathematical analysis. The answer is ‘Biological Neural
Networks’. The human brain is a humongous network of neurons, and
these neurons are connected in a systematic way that helps interpret data
absorbed by the sense organs like the eyes, ears, and nose from the
physical world. Artificial Neural Networks is structurally inspired by the
human brain, wherein connected networks of neurons are artificially
developed, which are then trained using training data to make the network
understand the pattern of the problems we are making computers to solve.

Structure

In this chapter, we will cover the following topics:

ANN and its components

Building a classification model using neural network

Building a regression model using neural network

Objectives

After studying this chapter, you should be aware of the various
components of an artificial neural network. Further, you will build neural
network-based classification and regression models using the Python
keras library. Once you build a predictive model, it is important to
understand the performance of the model. To assess the performance of
the model, there are various performance metrics for both classification
and regression problems. In this chapter, you will understand what
performance metrics one should derive in order to optimally assess the
model. Finally, you will understand how to tune the model by tuning
various hyperparameters.

Artificial neural network and its components

Artificial Neural Network as the name suggests, is an artificially created
neural network composed of artificial neurons. These neurons are nothing
but interceptors of the incoming data signals, and they fire up based on the
underlying mathematical inference.

First, what is a neural network? The word ‘neural’ refers to ‘neurons’, and
the word ‘network’ refers to a graph-like structure. Hence, neural
networks are just a systematic network of neurons, which can interpret the
physical world around us.

These neurons are systematically arranged in various layers, as shown in
Figure

Figure 3.1: Hypothetical depiction of neural network

The first layer is called the input layer, and the last layer is called the
output layer. All the layers in between are called hidden layers. Now, if
many layers are defined in the hidden layer, the network is called a deep
neural network.

Figure 3.2 gives a simple and clear picture of how Artificial Intelligence
Machine Learning and neural networks are related:

Figure 3.2: Subfields of AI

Neurons

Neurons are the most basic components of a neural network. The best way to
understand an artificial neuron is by drawing parallels with its biological
counterpart, the human brain neuron.

In a human brain, information is intercepted via dendrites to the neuron cell
body, and based on some rule within the cell body, the relevant information is
passed further via axon terminals, as shown in Figure

Figure 3.3: Biological neuron and its components

Similarly, in an artificial neuron, as shown in Figure the inputs are injected
into a cell body (neuron) through one or multiple input neurons. Then, certain
mathematical calculations are processed within the cell body, and an output is
generated. Now, that output can be passed for further processing. Take a look
at the following figure:

Figure 3.4: Artificial neuron and its components

The cell body in the artificial neuron, as shown in Figure comprises two
components: a summation and a function. Now, every input in a neural
network is associated with a weight. And every neuron in the network has a
bias term associated with it. The summation in the neuron is the sum of the
input and weights and the bias term, as shown in Figure

Figure 3.5: Mathematical depiction of a neuron

Each input with its associated weights is mathematically computed and added
to a bias term that is specific to each neuron. Hence, the output from the
calculation will be as follows:

Figure 3.6: Neuron formula

Consider this happening with each neuron in the network, as shown in Figure

Figure 3.7: Neurons and associated maths

Now, this output value is treated by a function, as shown in Figure called the
activation function. Finally, based on the activation function output, the final
output from the neuron is generated and passed for further processing in the
network.

The full picture of what happens within a neuron is depicted in Figure

Figure 3.8: End-to-end mathematical depiction of a single neuron pass

This underlying process of inputs interacting with weights and biases, and
then the process of activation function treatment within each neuron happens
within every artificial neuron in the artificial neural network, as shown in
Figure

Figure 3.9: Neural network

Before we jump into building a deep learning model using the keras library, it
is important to understand a few other components of a deep neural network
and its training process, that is, the model building process.

Other than neurons, weights, biases, activation functions, input layer, output
layer, and hidden layers, as discussed earlier, there are various other
important components in an artificial neural network that are important to

understand before we delve into building a deep neural network using the
keras library.

The first thing to understand here is that this process of training a network or
building a model is all about finding the optimum values of weights and
biases of each neuron in the network.

Feed forward

When a network is built and before the input data is fed into the network
for starting the training process, we must know that the weights and biases
of each neuron in the network are randomly generated. Now, with those
random weights and biases, the input data is traversed through the
network end to end, and the output is generated in the output layer for
each input. This process of traversing the input data from input layer till
the output layer is called feed forward.

Activation functions

In a neural network, activation functions are used to introduce non-
linearity to the output of a neuron. Without activation functions, a neural
network would be limited to linear transformations of the input data,
which would severely limit its ability to model complex relationships
between inputs and outputs.

Activation functions transform the input signal to a neuron into an output
signal, which is then passed on to the next layer of the neural network.
They can make the output signal more or less sensitive to changes in the
input signal, and they can also be used to squash the output signal to a
specific range, such as between 0 and 1 or between -1 and 1.

By introducing non-linearity to the output of a neuron, activation
functions enable the neural network to model complex patterns and
relationships in the input data, allowing it to learn and make decisions
based on those patterns.

Here are some commonly used activation functions in neural networks
and their descriptions:

A function that maps any input to a value between 0 and 1, and is used for
binary classification tasks

Rectified Linear Unit A function that outputs the input value if it is
positive, and 0 if it is negative; it is commonly used in deep neural

networks due to its simplicity and effectiveness

Tanh (Hyperbolic A function that maps any input to a value between -1
and 1; it is similar to sigmoid but with a range that is symmetric around 0

A function that maps a vector of inputs to a probability distribution over
the classes in a multi-class classification task

Leaky A modified version of ReLU that allows for a small positive output
when the input is negative, to avoid the “dead neuron” problem

Exponential Linear Unit A function that is similar to ReLU but with a
smooth curve that allows for negative inputs.

Each of these activation functions has its own strengths and weaknesses
and is appropriate for different types of neural networks and tasks.

Loss function

Once the output is generated from the feed forward process, the predicted
output is compared with the actual output, considering we are performing
supervised learning. Upon this comparison, an error for each record is
captured, and subsequently, the overall error or loss of the network is
calculated using the loss function. There are various functions used to
calculate the loss, depending on whether it is a classification or a
regression problem.

Some of the widely used loss functions are as follows:

You can read more about these loss functions here:

https://keras.io/api/losses/

Backward propagation

The overall error or loss generated by the network in a certain forward
pass has been captured so that the process can go back into the network
and tune the weights and biases of each neuron to produce better results
the next time. This process of going back into the network after a forward
pass and determining the loss in quest of a better performing model is
called backward propagation.

Epoch

This process of forward pass, loss calculation, and backward pass can be
performed as many times as required for building the most accurate and
optimum model. This end-to-end movement of the entire dataset from the
input layer to the output layer and then back to the input layer is called
epoch.

Batch

The data used for training a model can be a lot and may not be feasible to
be processed all at once. Hence, data must be divided into batches. Let us
say there are 1000 records in the input dataset, and it seems to be
computationally feasible to compute only 250 records in one pass. Hence,
4 batches will be created with a batch size of 250 records for each pass.

Iteration

As we know, an epoch is considered complete when the entire dataset is
passed through the network to and fro once. Now, if the training sample is
divided into a certain number of batches, then the number of passes it will
require for all the batches to make one pass in the network is called
iteration. Hence, if there are 1000 training samples divided into a batch
size of 250, it will take 4 iterations to complete 1 Epoch.

Optimizer

As we know, during the backward propagation, the weights and biases are
tuned in the network to find their optimum values. The optimizers are the
ones that work on the concept of gradient descent in the quest of finding
the global minima, which tune these parameters. Without delving deep
into this process, understand that it is the optimizer’s task to determine
whether the values of weights and biases are to be increased or decreased
during the backward propagation.

Some of the widely used optimizers are as follows:

The Stochastic Gradient Descent optimizer is an iterative optimization
algorithm used in machine learning that updates the model parameters in
small steps by computing the gradients of the objective function with
respect to the parameters, using a random subset of the training data at
each iteration.

The RMSprop optimizer is a variant of the Stochastic Gradient Descent
algorithm that uses an exponentially weighted moving average of past
squared gradients to adjust the learning rate and accelerate convergence
for non-convex optimization problems.

The Adam optimizer is an adaptive optimization algorithm used in
machine learning that combines the advantages of the RMSprop and
momentum methods by incorporating first- and second-order moments of

the gradients to update the learning rate and improve convergence speed
for stochastic optimization problems.

You can read more about these optimizers here:

https://keras.io/api/optimizers/

Learning rate

As we know, the optimizers increase or decrease the weights and biases of
the neurons in the network to tune those parameters for the model to
produce the best results. The learning rate determines the rate at which
these parameters should be increased or decreased by the optimizer in
each epoch to test the model performance.

Since we theoretically know the building blocks of neural networks, let us
experiment with building a classification model using neural network.

Building a classification model using neural network

Classification models can be binary, multi-class, or multi-label.

When you need to classify the data points into only two categories, like
either spam or ham for email classification, it is said to be a binary
classification. An email can be classified into any one of the two classes
only in a binary classification.

When you need to classify an email into more than two categories, like
classifying emails into either ‘primary’, ‘promotional’, ‘social’, or any
other class, it is said to be a multi-class classification. An email can be
classified into any of the defined classes in multi-class classification.

When you need to tag multiple categories to an email, like an email can be
both ‘primary’ and ‘promotional’, multiple labels will be tagged to an
email through a classification model. This is multi-label classification.

Let us look at a neural network-based model implementation for a binary
classification.

Problem statement

The problem is about classifying a tumor into either ‘malignant’ or
‘benign’ using the characteristics of the breast mass provided in the
dataset.

Dataset

We are using the breast cancer dataset from the sklearn.datasets library.
The data contains records of the characteristics of breast mass like radius,
texture, smoothness, fractal dimensions, and so on. It is a labeled dataset,
and each record is labeled as either ‘malignant’ or ‘benign’. This is clearly
a problem of binary classification.

Implementation

We will implement a classification model using the Python keras library.

Load Python libraries

Let us start by loading all the required libraries:

import keras

import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets

Load data

Use the load_breast_cancer method in the datasets module within the
sklearn library to load the data into a bunch object, as follows:

breast_cancer_data = datasets.load_breast_cancer()

The bunch object created is used to separate predictors and target
variables into X and y objects separately, as shown:

X, y = breast_cancer_data.data, breast_cancer_data.target

Let us check the size of the dataset:

print(X.shape)

print(y.shape)

Figure 3.10: DataFrame shape

So, there are a total of 569 records and 30 features in the dataset. Using
those 30 features, a classification model needs to be trained to predict the

class of the breast mass as either ‘benign’ or ‘malignant’, as shown in the
following code snippet:

breast_cancer_data.target_names

Figure 3.11: Target names

The set of 30 features in the dataset is as follows:

breast_cancer_data.feature_names

Figure 3.12: Feature names

Descriptive analytics

Let us create a pandas DataFrame using X and y for descriptive analytics, as
shown:

df=pd.DataFrame(X, columns=list(breast_cancer_data.feature_names))

df['malignant']=y

df.head()

The preceding code prints the first 5 rows of the DataFrame:

Figure 3.13: Head of the DataFrame

Let us look at the class distribution:

df.malignant.value_counts()

Figure 3.14: Value counts of dependent variable

So, there are 357 records out of 569 that are of class ‘malignant’ and 212
records out of 569 which are of class ‘benign’.

To set the baseline, if the model predicts all the records as malignant, even
then the accuracy of the model will be as follows:

So, the dataset is slightly class imbalanced, and even if the model predicts all
the records as one class, the model will be 62.74% accurate.

For now, we will continue modeling without treating the class imbalance.

Data pre-processing

Store the features data in X and the target in y, as shown:

Perform the train-test split; reserve 80% data for training and 20% data for
testing:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, rando
m_state=42)

Scale the data using

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train=scaler.fit_transform(X_train)

X_test=scaler.transform(X_test)

Scaler is fit using the training dataset and used to transform the training
dataset using the fit_transform method. Later, the same scale is used to
transform the testing dataset.

Now, both the training and testing datasets are ready to train the model.

Modeling

Import the Sequential and Dense functions from the keras library:

from keras.models import Sequential

from keras.layers import Dense

Create a new Sequential object to build the model upon:

model = Sequential()

Experiment 1 - Hidden layer -1, epoch-100 – shallow neural network

In this experiment, we will build a shallow neural network with just one
hidden layer, as shown in Figure

Figure 3.15: Neural network with one hidden layer

Add the first hidden layer with 16 neurons. The activation function used will
be and the name of the layer is The input layer will contain the number of
neurons equal to the number of features in the dataset, that is, 30, as shown:

model.add(Dense(16, input_shape=(30,), activation='relu', name='dense_1'))

Finally, create the output layer with the sigmoid activation function. Since we
are going to use sparse_categorical_crossentropy as the loss function, the
model will spit out the probability of the input belonging to a certain class.

Since it is a binary classification problem, we need two neurons in the last
layer, as follows:

model.add(Dense(2, activation='sigmoid', name='dense_output'))

If you plan to use the binary_crossentropy loss function for binary
classification problems, then it would be a mandatory step to convert the
target data into 0 and 1 format before the training. You can use just one
neuron in the output layer, since in that case, the model is just going to spit
the probability of the input data belonging to class 1.

Once the whole network is built, we will compile the network using the adam
optimizer and sparse categorical cross entropy loss function:

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', met
rics=['accuracy'])

After compilation, we will see the summary of the model:

model.summary()

Model Summary is depicted in Figure 3.16.

Figure 3.16: Model summary

The summary shows exactly what we have built. The artificial neural network
we built consists of 30 neurons in the input layer, since there are 30 features
in the dataset. Then, there is a hidden layer comprising 16 neurons. And
finally, there is an output layer that has two neurons since it is a binary
classification. Hence, each output neuron will hold the probability of the
input belonging to that class, and the class of the input will be predicted based
on the highest probability in both the output neurons.

First, let us fit the model on the training dataset. In this step, the model is
being trained using the training dataset X_train and We will train the model
for 100 epochs:

result = model.fit(X_train, y_train, epochs=100, validation_split=0.05)

Model run summary is depicted in Figure

Figure 3.17: Model run summary

Model evaluation

Once the model is trained using the training dataset, it is time to evaluate the
model performance using the test dataset:

loss, acc = model.evaluate(X_test, y_test)

print('Loss on test data: ', loss)

print('Accuracy on test data: ', acc)

Model evaluation summary is depicted in Figure

Figure 3.18: Model evaluation summary

We can see that the accuracy of the model is approximately 96% and the loss
is 0.069.

Performance metrics

Let us first create an array of the predicted classes, as shown:

y_pred=model.predict(X_test)

y_pred=np.argmax(y_pred,axis=1)

Now, since we have both the list of the actual classes and that of the predicted
classes for the test data, let us generate the classification report that shows all
the important metrics with respect to the model:

from sklearn.metrics import classification_report, confusion_matrix

print(classification_report(y_pred, y_test))

This displays the classification report as shown Figure

Figure 3.19: Classification report

Confusion matrix

Further, let us build and visualize the confusion matrix for the binary
classification. We have a function called plot_confusion_matrix() that has
been taken directly from scikit-learn’s website. This is the code they provide
to plot the confusion matrix. Hence, it can be used as follows:

def plot_confusion_matrix(cm, classes,

 normalize=False,

 title='Confusion matrix',

 cmap=plt.cm.Blues):

 """

 This function prints and plots the confusion matrix.

 Normalization can be applied by setting `normalize=True`.

 «»»

 plt.imshow(cm, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 if normalize:

 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 print(cm)

 import itertools

 thresh = cm.max() / 2.

 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 plt.text(j, i, cm[i, j],

 horizontalalignment="center",

 color="white" if cm[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

Now, let us create a function that will build and visualize the confusion
matrix as shown in the following code snippet:

def create_confusion_matrix(y_test, y_pred):

 from sklearn.metrics import confusion_matrix

 cnf_matrix = confusion_matrix(y_test, y_pred)

 plot_confusion_matrix(cnf_matrix, [0,1])

Create the confusion matrix for the model built in Experiment 1, as follows:

create_confusion_matrix(y_test, y_pred)

This generates the confusion matrix shown in Figure

Figure 3.20: Confusion matrix

Based on the confusion matrix, the following result was obtained:

Out of 43 benign records, 41 were correctly predicted as benign and 2 were
incorrectly predicted as malignant.

Out of 71 malignant records, 69 were correctly predicted as malignant and 2
were incorrectly predicted as benign.

Experiment 2 - hidden layer -2, epoch-100 – deep neural network

In this experiment, we will build a deep neural network with more than one
hidden layer, as shown in Figure

Figure 3.21: Deep neural network

Since the steps involved in building a neural network are already explained in
Experiment 1, we will use the following code to build a deep neural network
with two hidden layers, each consisting of 16 neurons. All the other details
will remain the same as in Experiment 1:

model.add(Dense(16, input_shape=(30,), activation='relu', name='dense_1'))

model.add(Dense(16, activation='relu', name='dense_2'))

model.add(Dense(2, activation='sigmoid', name='dense_output'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', met
rics=['accuracy'])

model.summary()

This displays the model summary as per Figure

Figure 3.22: Model summary

Let us train the model with 100 epochs:

result = model.fit(X_train, y_train, epochs=100, validation_split=0.05)

This displays the model run summary as per Figure

Figure 3.23: Model run summary

Model evaluation

Once the model is trained using the training dataset, it is time to evaluate the
model performance using the test dataset:

loss, acc = model.evaluate(X_test, y_test)

print('Loss on test data: ', loss)

print('Accuracy on test data: ', acc)

This displays model evaluation summary as per Figure

Figure 3.24: Model evaluation summary

Here, the accuracy of the model is approximately 99% and the loss is 0.057,
which is better than the shallow neural network.

Performance metrics

Let us first create an array of the predicted classes:

y_pred=model.predict_classes(X_test)

Since we have both the list of the actual and the predicted classes for the test
data, let us generate the classification report that shows all the important
metrics with respect to the model:

from sklearn.metrics import classification_report, confusion_matrix

print(classification_report(y_pred, y_test))

This displays the classification report as shown in Figure

Figure 3.25: Classification report

Confusion matrix

Since we have already created the create_confusion_matrix function in
Experiment 1, we will just pass y_test and y_pred from the model in
Experiment 2 to build and visualize the confusion matrix for the deep neural
network:

create_confusion_matrix(y_test, y_pred)

This displays the classification report as per Figure

Figure 3.26: Confusion Matrix

Based on the confusion matrix, the following result was obtained:

Out of 43 benign records, 42 were correctly predicted as benign and 1 was
incorrectly predicted as malignant.

Out of 71 malignant records, all 71 were correctly predicted as malignant.

Hence, looking at the performance metrics of Experiment 1 and Experiment
2, it is clear that a deep neural network performs better than a shallow neural
network with only 1 hidden layer.

Building a regression model using neural network

As we know, regression models are used to predict continuous variables.
We can use linear regression-based traditional machine learning to do the
same.

Problem statement

The problem that we are trying to solve here is predicting the price of the
house based on various features of the house, like the number of rooms,
number of bathrooms, locality, and so on. Now, we know these features do
determine the price of the house. With the use of a neural network-based
predictive model, we will build an optimum application that can predict
the most accurate price of the house based on the various features of the
house.

Dataset

We will use the Boston housing dataset within the sklearn.datasets library to
build a neural network-based regression model.

Firstly, import the required libraries:

from sklearn.datasets import load_boston

import pandas as pd

Then, load the Boston housing dataset:

boston_housing_dataset = load_boston()

First, let us understand what is there in the boston_housing_dataset object:

boston_housing_dataset.DESCR.splitlines()

Dataset desription is depicted in Figure

Figure 3.27: boston_housing_dataset features

In this dataset, there are 506 observations. There are 14 attributes, out of
which 13 are predictors and MEDV is the target variable. MEDV is the price
of the house, and the other 13 attributes are the features of the house.

We intend to create a neural network-based regression model, which uses the
13 independent variables to predict the dependent variable, that is, the price
of the house.

Data pre-processing

First, let us create a pandas DataFrame using

df = pd.DataFrame(boston_housing_dataset.data, columns=boston_housing_d
ataset.feature_names)

Let us see the shape of the newly created DataFrame and print the top 5
records:

print(df.shape)

df.head()

First few records of the dataset is depicted in Figure

Figure 3.28: DataFrame head

So, the newly created DataFrame contains all the 506 records and 13
independent variables. We need to add the target variable MEDV in the
DataFrame, as shown here:

df['MEDV']=boston_housing_dataset.target

Let us again see the shape of the DataFrame and print the top 5 records:

print(df.shape)

df.head()

Figure 3.29: DataFrame head

Let us see which variable is highly correlated with the target variable

import seaborn as sns

sns.set(rc={'figure.figsize':(12,8)})

sns.heatmap(df.corr(), annot=True)

This will display a heatmap for the correlation of all the features, as shown in
the following screenshot:

Figure 3.30: Correlation heatmap

It is clearly visible from the heatmap that the RM attribute, which is the
average number of rooms per dwelling, and which is the % lower status of the
population, are highly correlated with the target variable. However, RM is
positively correlated and LSTAT is negatively correlated. This is good
information to retain for later evaluation purposes.

For now, let us continue with the modeling process.

The next step in the data pre-processing stage will be to distribute the data
into train and test datasets, as shown in the following code snippet:

from sklearn.model_selection import train_test_split

X = df.loc[:, df.columns != 'MEDV']

y = df.loc[:, df.columns == 'MEDV']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
state=123)

Let us see the shape of both training and testing datasets, as shown in the
following screenshot:

Figure 3.31: Train and test dataset shape

As we can see, 354 records fell into the training dataset and 152 records fell
into the testing dataset.

Now, let us see how the data is distributed statistically to figure out if scaling
is required:

df.describe()

This displays the statistical description of the dataset:

Figure 3.32: Statistical description of the dataset

As shown, the attribute values are not in the same range and vary
significantly. Attributes with significant difference in scales may result in
biases in the model toward the attribute that is higher in range as compared to
other attributes. Also, the significant difference in the scale of the values of
various attributes takes more time for the model to converge.

Hence, we will use the StandardScaler module with the sklearn library to
scale the data.

First, let us import the library:

from sklearn.preprocessing import StandardScaler

Then, we will create an object of the StandardScaler module:

scaler = StandardScaler()

Further, use the training data to fit the scalar object and transform the training
data using the trained scaler:

X_train_scaled=scaler.fit_transform(X_train)

Since the scaler object has never seen the test data and has been trained only
on the training data, we will use only the transform method for the test data,
as shown:

X_test_scaled=scaler.transform(X_test)

Modeling

To build the model, we will first import the Sequential and Dense modules
within the keras library, as shown:

from keras.models import Sequential

from keras.layers import Dense

We will create a model instance using the Sequential module:

model = Sequential()

First, create the input layer for all the 13 input variables in the dataset.
Further, create the first hidden layer with 128 neurons. Activate the neurons
using the relu activation function, and name the layer

model.add(Dense(128, input_shape=
(13,), activation='relu', name='dense_1'))

Next, create another hidden layer with 128 neurons and relu activation:

model.add(Dense(128, activation='relu', name='dense_2'))

Finally, create the output layer with one neuron, which will hold the predicted
price of the house. Since we need a regression model, we will use the linear
activation function:

model.add(Dense(1, activation='linear', name='dense_output'))

We will use the adam optimizer to optimize the learnable parameters during
the training process. Since this is a regression problem, we will use mean
squared error or mse as the loss function. And finally, we will use mean
absolute error or mae as the performance metrics to evaluate the performance
of the model:

model.compile(optimizer='adam', loss='mse', metrics=['mae'])

Let us look at the model summary:

model.summary()

This displays the summary of the model:

Figure 3.33: Model summary

As we can see, there are 18,433 trainable parameters, which are the weights
of every input to the neurons in the network and biases for each neuron in the
network.

Let us start the training process. We will train the model for 100 epochs and
validate the model during the training process using the validation split of 5%
from the training dataset:

history = model.fit(X_train, y_train, epochs=100, validation_split=0.05)

This displays the model run summary:

Figure 3.34: Model run summary

Model evaluation

Once the model is trained, let us use the testing dataset to evaluate the model
performance. Let us use the following code snippet using the plotly Python
library to plot the loss and mean absolute error of the model.

First, import the required Python libraries:

from plotly.subplots import make_subplots

import plotly.graph_objects as go

import math

import numpy as np

Further, create the figure using the plotly library:

fig = go.Figure()

fig.add_trace(go.Scattergl(y=history.history['loss'],

 name='Train'))

fig.add_trace(go.Scattergl(y=history.history['val_loss'],

 name='Valid'))

fig.update_layout(height=500, width=700,

xaxis_title='Epoch',

 yaxis_title='Loss')

fig.show()

This displays a model loss plot, as shown in the following screenshot:

Figure 3.35: Model loss

Let us build the same plot for mean absolute error:

fig = go.Figure()

fig.add_trace(go.Scattergl(y=history.history['mae'],

 name='Train'))

fig.add_trace(go.Scattergl(y=history.history['val_mae'],

 name='Valid'))

fig.update_layout(height=500, width=700,

 xaxis_title='Epoch',

 yaxis_title='Mean Absolute Error')

fig.show()

This displays a mean absolute error plot, as shown in the following
screenshot:

Figure 3.36: Model error plot

Finally, let us use the test dataset to evaluate the model:

mse_nn, mae_nn = model.evaluate(X_test, y_test)

print('Mean squared error on test data: ', mse_nn)

print('Mean absolute error on test data: ', mae_nn)

This displays the model evaluation summary:

Figure 3.37: Model evaluation summary

Conclusion

In this chapter, we delved deep into the world of Artificial Neural
Networks (ANN), breaking down its essential components and
understanding its foundational mechanisms. Through practical
application, we demonstrated how ANNs can be used to construct both
classification and regression models. By comparing and contrasting the
two types of models, readers should now have a clearer grasp of the
versatility of neural networks in handling various types of data problems.
Whether you’re predicting categories or continuous outcomes, neural
networks offer a powerful toolset for data-driven insights. As we move
forward, harnessing the knowledge gained here will be invaluable in our
exploration of even more advanced machine learning topics.

In the next chapter, we will look at Convolutional Neural Networks and
their building blocks. We will conceptually and programmatically
understand how to build a CNN model from scratch using Python.

Questions

What does ANN stand for?

Augmented Neural Networks

Auto Neural Networks

Artificial Neural Networks

None of the above

What are the different types of neural networks?

Artificial Neural Networks (ANN)

Convolutional Neural Networks (CNN)

Recurrent Neural Networks (RNN)

All of the above

Modeling dataset is usually divided into?

Train and Test set

Train and Validation set

Train, Validation and Test set

None of the above

What are different types of activation functions?

ReLU

Sigmoid

Softmax

Tanh

All of the above

What are different types of optimizers in deep learning?

adam

adagrad

rmsprop

All of the above

Answers

(c)

(d)

(c)

(e)

(d)

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 4

Convolutional Neural Networks

One picture is worth a thousand words

— Albert Einstein

We give less credit to the intelligence of the human brain than it deserves,
simply because this intelligence is just given to us. We are born with it,
and it was not explicitly coded. But now, when we try to mimic the
intelligence of the human body through artificial neural networks, we
realize how easily our brain does certain things that are quite difficult to
mimic. For instance, looking at a cat or a dog and identifying them is so
natural for us. But if you think about it, once the light rays fall upon these
objects, they reflect and are absorbed by our eyes. From the eyes, this
information is transferred to the brain to process and conclude that what
we are seeing is a cat or a dog. And all this happens naturally and in a
fraction of milliseconds. A whole lot of code must be written to mimic
this intelligence. The code breaks down an image into data that can be fed
into an Artificial Neural Network to further process and classify the
respective class of the object. The process of converting the details in an
image into manageable data is termed “convolution.” The entire network
that applies these convolutions to an image and then classifies it using
artificial neural networks is known as a Convolutional Neural Network

Structure

In this chapter, we will cover the following topics:

Convolutional neural networks components

Image classification using CNN

Hyperparameters tuning using automated tools

Objectives

After completing this chapter, you should be aware of the various
components of convolutional neural networks. You should be familiar
with the technology behind digital image processing. You should also be
able to solve a problem of image classification by building your own
convolutional neural network using the python keras library. Additionally,
you understand how to tune the hyperparameters of the deep learning
model using an automated hyperparameter tuner, such as KerasTuner.

Convolutional neural networks components

A convolutional neural network comprises various underlying
components. Some components are used to build the basic network, and
others are used to optimize the network.

Load required libraries

Let us start with loading all the required libraries:

import keras

from keras.datasets import mnist

import numpy as np

import cv2

import matplotlib.pyplot as plt

%matplotlib inline

Digital image as a numpy array

Read the image from the disk:

image=cv2.imread("mnist_zero.png")

image.shape

The image is read as a RGB image with 3 channels. Hence, the image is of
size (28,28) and 3 channels:

Figure 4.1: image array size

First, let us convert the image from a 3 channel (RGB) image to a 1 channel
(grayscale) image:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

gray_image.shape

Figure 4.2: Image array size

To display the image as a full matrix that can display the width of the image
in 1 line, we will reduce the image size from (28,28) to (18,18):

gray_image = cv2.resize(gray_image, (18,18))

gray_image.shape

Figure 4.3: Image array size

Print the image object as an image:

plt.imshow(gray_image, cmap='gray')

Figure 4.4: Image display

Now, display the image object as a numpy array:

print(gray_image)

Figure 4.5: Pixel display

You can see that each pixel of the image represents the intensity of white in
that pixel. Hence, the pixel that is black in color is represented as 0. The more
the number is nearer to 255, the higher the intensity of white in that pixel.

Kernels/filters and convolution process

As we know, an image is nothing but a numpy array, and the dimension of the
array is its pixel arrangement in width and height. Additionally, if it is a color
image, the same dimension of array will be present for all the 3 channels:
Red, Green, and Blue.

Now, we can convert this array into a one-dimensional vector and ingest this
vector into a neural network for training a classification model.

But the problem with that is the model will be trained based on the pixel
values at a given cell in the array. Hence, the model may fit well for the
training data, but as soon as the pixel value changes in the testing data, the
model will fail miserably to identify the class of the image in the test data.

For instance, if the model is trained only on the raw pixel values and then if
model is trained on the image in Figure which is number 4, the model will not
be able to identify number 4 in the image in Figure just because the pixel
values are differently placed in both the images, even though they both
represent the same number:

Figure 4.6: Training image

Figure 4.7: Testing image

Hence, we cannot rely on just the raw pixel values of an image to build a
predictive model. This is where the concept of convolutions comes into the
picture.

First, let us look at the process of convolution, mathematically.

Let us import the numpy library:

import numpy as np

Create a matrix

matrix_a=np.arange(0,9).reshape(3,3)

print(matrix_a)

Figure 4.8: matrix_a

Create another matrix

matrix_b=np.arange(1,10).reshape(3,3)

print(matrix_b)

Figure 4.9: matrix_b

The element-wise multiplication of both matrices means the number at a
particular index in matrix_a should be multiplied by the number at the same
index of

For instance,

Hence, element-wise matrix multiplication will give the resultant matrix
value at the same index, as shown here:

Similarly:

and so on:

matrix_c=matrix_a*matrix_b

print(matrix_c)

Figure 4.10: matrix_c

Now, as per definition, a convolution is nothing but an element-wise matrix
multiplication of two matrices, and then the addition of all the elements of the
output matrix:

print("Sum of all the elements of the output of matrix_a * matrix_b")

print((matrix_a * matrix_b).sum())

Figure 4.11: Matrix multiplication

Hence, the convolution value of matrix_a and matrix_b is 240.

The process of convolution is to extract features from the images using
kernels or filters, which can also be called a convolution matrix.

Now, like an image is a matrix of numbers, a kernel is also a matrix of
numbers, just that an image is a bigger matrix and a kernel is a smaller
matrix.

Then how do kernels convolve an image, since to convolve, both the matrices
should have the same dimensions to perform the element-wise multiplication.
For that, the kernels convolve one smaller chunk of the image matrix at a
time. The smaller chunk of the image matrix will be of the same dimension as
of the kernel matrix.

In this process, the kernel will slide from one chunk to another chunk of the
image until the whole image is convolved.

Hence, the kernel slides over the image from left to right and top to bottom
for the convolution process, as shown here:

Figure 4.12: Kernel display

Every time the kernel convolves a chunk of the image, the convolution value
is inscribed on the resultant matrix, as shown here:

Figure 4.13: Convolution process

Stride

The number of steps the kernel will move while sliding over the image is
based on the stride value.

If the stride value is 1, the kernel will move 1 element at a time while
sliding to the right and also while sliding to the bottom, as shown here:

Figure 4.14: Stride process

If the stride value is 2, the kernel will move 2 elements at a time while
sliding to the right and also while sliding to the bottom, as shown here:

Figure 4.15: Stride process for two-step slide

Padding

As we can see, the dimension of the resultant matrix is always smaller than
the dimension of the original image. That means some information is lost in
the process of convolution. That also means that the deeper the network, the
smaller the output matrix will become, which may result in significant loss of
information in deeper networks.

Additionally, sometimes it becomes mathematically infeasible to convolve a
certain dimension of image using a certain dimension of filter or kernel.

For example, if the image is of the dimension (5,5), the kernel is of the
dimension (3,3), and the stride length is 2, the kernel will not be able to slide
over the image after first convolution, as there will not be enough pixels left
in the remaining steps.

Here comes the need for padding in the convolution process.

Padding is simply adding an additional layer around the original image. The
value of the elements in the padding layer can be anything; the most
commonly used values in the elements of the padded layer is either 0 or the
pixel value of the adjacent cell, as shown in the following screenshot:

Figure 4.16: Padding

Now, the dimension of the output matrix is determined by the following
formula:

Suppose input size = 5, padding = 1, kernel size = 3 and stride = 2.

Then

Hence, the resultant matrix will be of the dimension (3,3).

Convolution on RGB image

For a color (RGB) image, there are 3 image matrices, one for each channel.
Hence, to convolve three image matrices, 3 kernel matrices are required.
Hence, as per the definition, the number of channels of the filter is always
equal to the number of channels in the image.

Mathematically, the kernel associated with Red channel will convolve the
matrix of Red channel of the image, the kernel associated with Green
channel will convolve the matrix of Green channel of the image, and the
kernel associated with Blue channel will convolve the matrix of Blue
channel of the image.

Hence, there will be 3 output matrices. The final output matrix of the
convolution process will be the element-wise addition of the 3 output
matrices, as shown in the following screenshot:

Figure 4.17: Convolution process

Hence, irrespective of whether the input image is a grayscale image (1
channel) or an RGB image (3 channels), the output will always be a single-
dimensional matrix.

Convolution operation with multiple filters

The whole purpose of convolving an image is to extract the features from
the image. And since we need to extract multiple features from the image,
the same image can be convolved by multiple filters. As we know, each
filter, irrespective of the number of channels, will produce an output
matrix of one dimension. Hence, the number of channels in the final
output matrix depends on the number of filters used to convolve an image,
as shown in the following screenshot:

Figure 4.18: Multiple Filters

One convolution layer

To stitch the entire process of a single convolution layer in a CNN, each
filter produces one output matrix from an image. Hence, the number of
output matrices from one convolution layer depends on the number of
filters or kernels applied.

Once the n-layered output matrix is derived, the activation function is
applied on each and every element of the output matrix in all the layers.

Further, the bias term is added on each and every element of the output
matrix.

Finally, after activation function is implemented and bias term is added on
every element of the n-layered output matrix, the final n-dimensional
output is generated from a single convolutional layer of an n-layered
CNN, as shown in the following screenshot:

Figure 4.19: One convolution layer

Further, the final output matrix from this layer will be the input matrix for
the next layer, and the same process continues.

Pooling

In order to make the model more generalised, the pooling operation is
performed in subsequent layers.

The pooling process reduces the dimensions of the input matrix, which
depends on the pool size and the stride with which the pooling window
slides.

If max pooling is applied, then the maximum number in the pooling
window of the size (2,2) will be the result of the output matrix. And if
average pooling is applied, then the average of the numbers in those 2*2
dimensional matrix will be the result of the output matrix, as shown in the
following screenshot:

Figure 4.20: Pooling

The pooling layer reduces the size of the image representations, which
speeds up calculations. In addition, the pooling process makes some of the

features it detects a bit more robust.

For an RGB image, the pooling concept remains the same, just that it is
applied on all the channels of the image and produces an equal number of
channels in the output, as shown in the following screenshot:

Figure 4.21: Max Pool

Flattening

The flattening process refers to converting the n-dimensional matrix into a 1-
d vector, as shown in the following screenshot:

Figure 4.22: Flattening

The whole purpose of convolving an image is to extract features from the
image. The initial layers of the network extract more low-level features like
edges, while the layers toward the end extract more high-level features of the
image.

Dense layers

After the extracted features from the image are flattened and converted into a
1-d vector, it becomes feasible to ingest this vector into an artificial neural
network, which is also known as dense layer, since all the neurons in a layer
are connected to all the neurons to the subsequent layers, as shown in the
following screenshot:

Figure 4.23: Dense layers

It is the dense layer that is responsible to finally perform the task of
classification of the images by training the hidden layers of the network and
coming up with the optimum values of the weights and biases for each neuron
in the neural network.

Now, we could have simply flattened the pixel values in the matrix derived by
the input image and fed the pixel values into this dense layer for the model

training for the classification task. But, as stated earlier, with even a single
pixel value change in the input image, the model would start giving incorrect
results. In simple words, the model will not be robust.

Hence, using convolution layers, first the features from the image are
extracted using various convolutional layers, and then those features are
flattened and ingested into dense layers for classification training, as shown in
the following screenshot:

Figure 4.24: End-to-end CNN architecture

Image classification using CNN

Classification of images is the most important use case that can be solved
using CNN. In this section, we will look at the CNN implementation for a
classification problem.

Problem statement

The problem is about classifying the numbers between 0 to 1 in a set of
images containing handwritten numbers.

Dataset - MNIST

MNIST dataset is considered to be the “Hello World” program of Data
Science. Any tutorial on Computer vision and image classification starts
with the MNIST dataset implementation using convolutional neural
network.

The MNIST dataset is embedded into the keras.dataset library and can be
loaded directly into memory, without the need to load images from the
disk.

Implementation

Let us look at how to implement CNN in Python.

Load Python libraries

Let us first import all the required Python libraries:

import tensorflow as tf

from keras.datasets import mnist

import pandas as pd

import matplotlib.pyplot as plt

import random

import numpy as np

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout,
BatchNormalization, Activation

Load data

Load the MNIST data into train and test tuples directly from the keras.dataset
library:

(trainX, trainY), (testX, testY) = mnist.load_data()

Figure 4.25: Data download status

Let us look at the shape of both train and test datasets:

print('Train: X=%s, y=%s' % (trainX.shape, trainY.shape))

print('Test: X=%s, y=%s' % (testX.shape, testY.shape))

Figure 4.26: Test and train data shapes

Hence, the training set contains 60,000 images and the testing set contains
10,000 images.

Using the matplotlib library, we can plot the first few images of the dataset
shown here:

for i in range(9):

define subplot

 plt.subplot(330 + 1 + i)

plot raw pixel data

 plt.imshow(trainX[i], cmap=plt.get_cmap('gray'))

show the figure

plt.show()

Figure 4.27: MNIST numbers random display

Data pre-processing

Reshape the dataset to have a single channel:

trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))

testX = testX.reshape((testX.shape[0], 28, 28, 1))

One-hot encode the target values:

trainY_cat = tf.keras.utils.to_categorical(trainY)

testY_cat = tf.keras.utils.to_categorical(testY)

print(trainY[0])

print(trainY_cat[0])

Figure 4.28: One-hot encoding

Normalization by scaling pixels:

convert from integers to floats

trainX = trainX.astype('float32')

testX = testX.astype('float32')

normalize to range 0-1

trainX = trainX / 255.0

testX = testX / 255.0

Modeling

We will use the Sequential module with the keras library to create the neural
network. The model object is created for defining the CNN architecture:

model = Sequential()

Add the first convolutional layer in the model object; 32 kernels of the size
(3,3) are used in this layer. The shape of the input data needs to be mentioned
in the input_data argument:

model.add(Conv2D(32, (3, 3), input_shape = (28,28,1)))

Batch normalization is used as a regularization technique.

This is a technique used in deep neural networks to improve training speed
and stability by normalizing the input to each layer to have zero mean and
unit variance, and then scaling and shifting the normalized values using
learnable parameters. This helps mitigate the problem of internal covariate
shift, where the distribution of the inputs to a layer changes during training
and can slow down convergence. By normalizing the inputs to each layer,
batch normalization enables more stable and efficient training and can also
regularize the model and reduce overfitting.

model.add(BatchNormalization())

The activation function used here is

model.add(Activation("relu"))

Further, add a max pooling layer with a pool size of (2,2):

model.add(MaxPooling2D(pool_size = (2, 2)))

Create further convolutional layers with similar configurations and different
number of kernels:

model.add(Conv2D(64, (3, 3)))

model.add(BatchNormalization())

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Conv2D(128, (3, 3)))

model.add(BatchNormalization())

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size = (2, 2)))

Flatten the final feature matrix to create a 1-d vector that can be fed into the
dense layers:

model.add(Flatten())

Create the first dense layer with 128 neurons and relu activation function:

model.add(Dense(128, activation = 'relu'))

Finally, create the output layer; the number of neurons in this layer will be the
number of classes in the dataset, which is 10 in case of the MNIST dataset:

model.add(Dense(10, activation = 'softmax'))

Further, compile the model. The hyperparameters used are random based on
experience:

model.compile(loss ='categorical_crossentropy', optimizer='adam', metrics =
['acc'])

Once the model is compiled, print the model summary to see the overall
architecture of the convolutional neural network that we just designed:

model.summary()

Figure 4.29: Model summary

Train the model using the fit function. Validation data used during the training
process is the test dataset:

history = model.fit(trainX, trainY_cat, batch_size = 128, epochs = 10, verbos
e = 1, validation_data = (testX, testY_cat))

Figure 4.30: Model run summary

It can be seen that the CNN we just designed is able to classify the test dataset
with more than 98% accuracy with just 10 epochs of training.

Using the matplotlib library, we plot the training and validation accuracy and
loss at each epoch, as shown here:

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'y', label='Training loss')

plt.plot(epochs, val_loss, 'r', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Figure 4.31: Training and validation loss

acc = history.history['acc']

val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'y', label='Training acc')

plt.plot(epochs, val_acc, 'r', label='Validation acc')

plt.title('Training and validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Figure 4.32: Training and validation accuracy

Use the predict_classes method to predict the classes of the test dataset to
manually compare the predicted values with the ground truth:

prediction = model.predict(testX)

prediction = np.argmax(prediction,axis=1)

print("Actual Labels : ", testY)

print("Predicted Labels : ", prediction)

Figure 4.33: Actual and predicted Labels

Plot a random image and its associated actual and predicted labels:

i = random.randint(1,len(prediction))

plt.imshow(testX[i,:,:,0])

print("Predicted Label: ", int(prediction[i]))

print("True Label: ", int(testY[i]))

Figure 4.34: Actual and predicted label for an image

As you can see, the model predicted a wrong label for this image. The
handwritten number is 2, but it's predicted as 7. However, there is no denying
that the number is written incorrectly and actually looks more like 7 instead
of 2, even to human eyes.

Plot confusion matrix

To plot the confusion matrix, the sklearn library provides this generic
function that can be copied from their official documentation at

def plot_confusion_matrix(cm, classes,

 normalize=False,

 title='Confusion matrix',

 cmap=plt.cm.Blues):

 """

 This function prints and plots the confusion matrix.

 Normalization can be applied by setting `normalize=True`.

 «»»

 import itertools

 if normalize:

 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 plt.imshow(cm, interpolation='nearest', cmap=cmap)

 plt.title(title)

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 fmt = '.2f' if normalize else 'd'

 thresh = cm.max() / 2.

 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 plt.text(j, i, format(cm[i, j], fmt),

 horizontalalignment="center",

 color="white" if cm[i, j] > thresh else "black")

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 plt.tight_layout()

 plt.show()

Create a confusion matrix and plot

To create a confusion matrix, use the following code snippet:

from sklearn.metrics import confusion_matrix

test_label_list=list(np.unique(testY))

cnf_matrix = confusion_matrix(testY, prediction,labels=test_label_list)

np.set_printoptions(precision=2)

Plot non-normalized confusion matrix

plt.figure(figsize=(8,8))

plot_confusion_matrix(cnf_matrix, classes=test_label_list,

 title='Confusion matrix')

Figure 4.35: Confusion matrix

Confusion matrix gives a complete picture of the actual and predicted
classes of all the images in the dataset. Additionally, let us plot the
classification report to check the various other performance metrics like
precision, recall, and f1-score:

from sklearn.metrics import classification_report, confusion_matrix

print(classification_report(testY, prediction))

Figure 4.36: Classification report

Hyperparameters tuning using KerasTuner

As we saw in the preceding tutorial where we used a MNIST dataset and
trained a CNN model to classify the handwritten digits, we were able to
achieve more than 99% accuracy with a very simple neural network.
However, that is not the case with most real-world problems. The same
network with the specific arrangement of convolutional layers clubbed
with other layers like pooling layer, batch normalization layer, or even the
selection of activation functions may not work for other problems at hand.
The depth of the network plays a significant role in making a robust and
generalized model.

Adding more hidden layers in the network may or may not improve the
performance of the model. There are various other parameters that can be
tuned to improve a model’s performance. Such parameters are called
hyperparameters.

Tuning the parameters of a neural network, like weights and biases, can be
done by training the model. But tuning the hyperparameters like the
number of hidden layers, learning rate, epochs, kernels, and so on is a
matter of trial and experimentation. We can create as many permutations
and combinations of these hyperparameters and build a neural network for
each combination to come up with the most optimum model, but this is
not feasible manually, as there can be hundreds or even thousands of such
combinations.

Hence, KerasTuner comes to the rescue. KerasTuner is a Python library
that automates the process of finding the best hyperparameters for a
model.

The official website of the KerasTuner library is given here for further
reading:

https://keras-team.github.io/keras-tuner/

For demonstrating the capabilities of KerasTuner, let us work on the
Fashion MNIST datasets, which is very similar to MNIST datasets, but
instead of handwritten numbers, the images belong to various wearable
items.

Dataset – Fashion MNIST

Fashion MNIST dataset is very similar to MNIST dataset in terms of the
number of classes and training and testing images available.

Fashion MNIST dataset are as follows:

60,000 training examples

10,000 testing examples

10 classes

28×28 grayscale/single channel images

The ten fashion class labels are as follows:

T-shirt/top

Trouser/pants

Pullover shirt

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

Implementation

Since we have already implemented MNIST dataset in the previous tutorial,
and fashion-mnist dataset can be implemented using the same set of code by
just loading the fashion-mnist dataset from the keras dataset library instead of
loading the mnist dataset. Hence, in this KerasTuner implementation, we will
not follow the same approach to avoid redundancy.

Instead, we will first load the dataset and plot the images for the basic
understanding of the dataset. Further, we will use KerasTuner to find the best
model for this problem statement.

Loading the fashion-mnist dataset:

from tensorflow import keras

(X_train, y_train), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()

Figure 4.37: Fashion-mnist dataset

Let us check the shape of the dataset.

print('Train: X=%s, y=%s' % (X_train.shape, y_train.shape))

print('Test: X=%s, y=%s' % (X_test.shape, y_test.shape))

Figure 4.38: Train and test data frame shapes

Let us plot the first few images of the dataset:

import matplotlib.pyplot as plt

for i in range(9):

 plt.subplot(330 + 1 + i)

 plt.imshow(X_train[i], cmap=plt.get_cmap('gray'))

plt.show()

Figure 4.39: Fashion MNIST

Let us build a custom CNN model. Since the basic CNN architecture building
process was explained in the previous MNIST tutorial, it has been skipped
here, but we are building this baseline model to further compare it with the
model we will be creating using KerasTuner:

from tensorflow import keras

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten,
 Activation

(X_train, y_train), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()

X_train = X_train.reshape((X_train.shape[0], 28, 28, 1))

X_test = X_test.reshape((X_test.shape[0], 28, 28, 1))

Normalize pixel values between 0 and 1

X_train = X_train.astype('float32') / 255.0

X_test = X_test.astype('float32') / 255.0

model = keras.models.Sequential()

model.add(Conv2D(32, (3, 3), input_shape=X_train.shape[1:]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(128))

model.add(Activation("relu"))

model.add(Dense(10))

model.add(Activation("softmax"))

model.compile(optimizer="adam",

 loss="sparse_categorical_crossentropy",

 metrics=["accuracy"])

model.fit(X_train, y_train, batch_size=64, epochs=10, validation_split=0.2)

Figure 4.40: Model run summary

Let us evaluate the model on the testing dataset and check the accuracy, as
shown here:

eval_result = model.evaluate(X_test, y_test)

print("[test loss, test accuracy]:", eval_result)

Figure 4.41: Model evaluation summary

Hence, the basic CNN model built here has yielded an accuracy of 90.4%.
Now, this model can be improved by tuning the hyperparameters like the
number of layers in the network, number of neurons in the dense layers,
choice of learning rate, choice of optimizer, choice of loss function, and so
on.

But the answer for how to find the optimum hyperparameters is by ‘trial and
error’. We need to experiment by building as many models as we can using
different permutations and combinations of all the hyperparameters to derive
the most desirable ones.

Automated tools for deriving the most optimum hyperparameters perform the
same process, but with less coding and less effort. Let us demonstrate the
usage of one such tool: KerasTuner.

Install KerasTuner

First, let us install keras-tuner using a pip installer on the notebook cell:

! pip install keras-tuner

Next, import the libraries required to implement KerasTuner:

import tensorflow as tf

from tensorflow import keras

from keras.datasets import fashion_mnist

from keras.layers import Dense, Conv2D, MaxPooling2D, Activation, Dense,
 Flatten

from keras_tuner import RandomSearch

from keras_tuner.engine.hyperparameters import HyperParameters

Now, load the data:

(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

print('Train: X=%s, y=%s' % (X_train.shape, y_train.shape))

print('Test: X=%s, y=%s' % (X_test.shape, y_test.shape))

Figure 4.42: Train and test data shapes

Then, reshape and normalize the data as follows:

reshape dataset to have a single channel

X_train = X_train.reshape((X_train.shape[0], 28, 28, 1))

X_test = X_test.reshape((X_test.shape[0], 28, 28, 1))

Normalize pixel values between 0 and 1

X_train = X_train.astype('float32') / 255.0

X_test = X_test.astype('float32') / 255.0

Next, define the function that will build the model using various
combinations of hyperparameters for experimentations, as shown here:

def build_model(hp):

 model = keras.Sequential()

 model.add(Conv2D(hp.Int('conv_0_units',

 min_value=32,

 max_value=256,

 step=32),

 (3, 3),

 input_shape=X_train.shape[1:]))

 model.add(Activation(hp.Choice(f"conv_0_activation",

 ['relu']

)))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 for i in range(hp.Int('conv_layers', 2, 5)):

 model.add(Conv2D(hp.Int(f'conv_{i+1}_units',

 min_value=32,

 max_value=256,

 step=32),

 (3, 3)))

 model.add(Activation(hp.Choice(f"conv_{i+1}_activation",

 ['relu']

)))

 # this converts our 3D feature maps to 1D feature vectors

 model.add(Flatten())

 for i in range(hp.Int('dense_layers', 2, 5)):

 model.add(Dense(units=hp.Int(f'dense_{i}_units',

 min_value=32,

 max_value=512,

 step=32)))

 model.add(Activation(hp.Choice(f"dense_{i}_activation",

 ['relu', 'sigmoid']

)))

 model.add(Dense(10))

 model.add(Activation('softmax'))

 model.compile(optimizer=keras.optimizers.Adam(

 # Choose an optimal value from 0.01, 0.001, or 0.0001

 learning_rate=hp.Choice('learning_rate',

 values=[1e-2, 1e-3, 1e-4])),

 loss=hp.Choice('loss_function',

 values=['sparse_categorical_crossentropy']),

 metrics=['accuracy'])

 return model

We create the tuner object and pass the required arguments:

tuner = RandomSearch(

 build_model,

 objective='val_accuracy',

 max_trials=3,

 executions_per_trial=3,

 directory='.',

 project_name='keras_tuner'

)

Further, we create an object for early stopping of the network to avoid
overfitting:

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

Further, we search the best model hyperparameters using the tuner search
module:

tuner.search(x=X_train,

 y=y_train,

 epochs=10,

 validation_split=0.2,

 callbacks=[stop_early])

While the tuner search is in progress, you can see the architecture of the
current model in progress and the best architecture found so far, with their
respective accuracy, as depicted in Figure

Figure 4.43: KerasTuner run summary

After the tuner search completes all the defined trials, the output will show
the best accuracy achieved during the entire experimentation process, as

shown here:

Figure 4.44: Best accuracy

To check the best hyperparameter values for the best model identified by the
tuner search, use the get_best_hyperparameters method:

tuner.get_best_hyperparameters()[0].values

Figure 4.45: Best hyperparameters

Now, to train the model, we use the best hyperparameters found by the tuner:

best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

model = tuner.hypermodel.build(best_hps)

history = model.fit(X_train, y_train, epochs=50, validation_split=0.2)

Figure 4.46: Model run summary

We check the optimum epoch that gives the highest validation accuracy
during the training process. This is to avoid overtraining of the model and
train only for the number of epochs required:

val_acc_per_epoch = history.history['val_accuracy']

best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1

print('Best epoch: %d' % (best_epoch,))

Figure 4.47: Best epoch

We then create a hypermodel by training against the best hyperparameters and
best epoch found:

hypermodel = tuner.hypermodel.build(best_hps)

hypermodel.fit(X_train, y_train, epochs=best_epoch, validation_split=0.2)

Figure 4.48: Model run summary

Finally, we check the accuracy for the best model created using the test
dataset:

eval_result = hypermodel.evaluate(X_test, y_test)

print("[test loss, test accuracy]:", eval_result)

Figure 4.49: Model evaluation summary

So, we can see that we were able to improve the accuracy by 1% using the
KerasTuner tool to find the best hyperparameters. However, this can be
improved all the more by further tuning and by increasing the number of
trials and experiments that should be performed by the KerasTuner, which
was kept as minimum for this demonstration.

This is how KerasTuner automates the process of hyperparameter tuning and
facilitates the process of coming up with the best model suited for the
problem statement and the dataset available for the model training.

Conclusion

In this chapter, we looked at various components of convolutional neural
networks. We understood the process of convolutions and how images are
convolved using kernels or filters to generate various feature maps of the
image, which can be used to train an artificial neural network for image
classification problems. We also saw how tuning the hyperparameters of
the network can improve the accuracy of the model. This can be achieved
by either manually performing various experimentations or by utilizing
the automated tools like KerasTuner to find the optimum hyperparameters
for the network you are trying to build.

In the next chapter, we will explore different CNN architectures developed
by researchers. The parameters of these models have been made publicly
available, allowing others to utilize them in their work. The process of
utilizing the learned parameters of other networks in your own problem
statement is called transfer learning. We will cover this topic in detail in
the next chapter and use Python to solve image classification problems
using transfer learning.

Questions

CNN is mostly used for which of the following?

Structured data

Unstructured data

Both

None

What are the different problems that CNN can solve?

Image classification

Object detection

Image segmentation

All of the above

A convolutional neural network broadly consists of which of these?

Convolutional layers

Fully connected dense layers

Convolutional and fully connected dense layers

Convolutional, pooling, and fully connected dense layers

Which is transforming a two-dimensional feature array into a one-
dimensional vector called?

Pooling

Padding

Flattening

None of the above

What is adding a layer of pixels in an image array for convolution
purposes called?

Pooling

Padding

Flattening

None of the above

Answers

(c)

(d)

(d)

(c)

(b)

CHAPTER 5

Optical Character Recognition

OCR technology liberates information trapped on paper.

— anonymous

Introduction

Optical Character Recognition is a technology used in computer vision
that enables machines to recognize text from images or scanned
documents. OCR works by analyzing the pixel patterns of an image to
identify the shapes of individual letters and words, and then converting
them into machine-readable text.

OCR is used in various fields, such as healthcare, finance, legal, and
government, to digitize important documents and make them easier to
access and process. OCR involves several steps, including image
preprocessing, segmentation, feature extraction, and classification, which
are used to improve the accuracy of the recognition process.

The OCR technology has greatly improved the speed and efficiency of
document processing and has revolutionized the way we work with large
amounts of text-based data. As the technology continues to improve, it is
expected to play an even more significant role in the digital transformation
of various industries, making it easier to access and analyze data, and
improving the speed and accuracy of document processing.

Structure

In this chapter, we will cover the following topics:

Optical character recognition

OCR Python libraries and their implementation

Tesseract OCR

keras-ocr

EasyOCR

TrOCR

Objectives

After studying this chapter, you should be able to understand the concept
of Optical character recognition, and you should be familiar with the
various libraries available to solve reading text from images and other data
sources, like noneditable PDF files.

Optical character recognition

Optical Character Recognition is a technique that transforms text in images
into machine-readable text. This method is commonly applied to items such
as invoices, bank statements, restaurant receipts, signboards, traffic symbols,
and handwritten texts. Converting these visual representations to text is
beneficial for tasks like extracting information, digitizing books or
documents into PDFs, and online processing, such as text-to-speech. This
last feature is especially valuable for the visually impaired and is often
employed in autonomous vehicles for interpretation. The field of OCR is
continuously evolving, with advancements aimed at enhancing accuracy and
performance.

Refer to the following figure:

Figure 5.1: OCR working principle

OCR Python libraries and their implementation

In this section, we will learn about the OCR Python libraries and their
implementation.

Tesseract OCR

Between 1985 and 1994, Hewlett-Packard Laboratories in Bristol, United
Kingdom, and Hewlett-Packard Co. in Greeley, Colorado, USA,
developed Tesseract. Some additional improvements were made in 1996
to port it to Windows, and some C++ization was done in 1998. HP
released the source code for Tesseract in 2005. It was created by Google
between 2006 and November 2018.

The most recent stable version, major version 5, was introduced on
November 30, 2021, with the release of 5.0.0. Refer to the following
figure:

Figure 5.2: Tesseract OCR from Google

The classic Tesseract OCR engine, which recognizes character patterns, is
still supported, in addition to the new neural net Long Short Term
Memory OCR engine that is focused on line identification.

Tesseract OCR demo

Let us start with the demo:

Importing important libraries:

import cv2

import pytesseract

Giving the tesseract.exe file path:
Windows:

pytesseract.pytesseract.tesseract_cmd=r'C:\Program Files\Tesseract-
OCR\tesseract.exe'
Mac:

pytesseract.pytesseract.tesseract_cmd=r'\usr\local\bin\tesseract'

Importing image in cv2 and displaying in Windows:

img = cv2.imread("image.jpg")

img = cv2.resize(img, (400, 450))

cv2.imshow("Image", img)

Figure 5.3: Sample image with imprinted text

Passing image to pytesseract and getting image text as output:

text = pytesseract.image_to_string(img)

print(text)
Output:
Shekhar Khandelwal

Destroying all the windows:

cv2.waitKey(0)

cv2.destroyAllWindows()

keras-ocr

The keras-ocr library provides a high-level API and end-to-end training
pipeline to build new OCR models. In the next section, we will see a step-by-
step tutorial using keras-ocr to extract text from multiple images, as shown in
the following figure:

Figure 5.4: Sample bounding box against imprinted text on images

keras-ocr demo

We will construct a keras-ocr pipeline in this part to extract text from a few
test images. For this tutorial, we will use Google Colab.

Using the following code, let us first install the keras-ocr library (supports
Python >= 3.6 and TensorFlow >= 2.0.0):

Installing important libraries:

!pip install -q keras-ocr

!pip install matplotlib

Importing keras_ocr and matplotlib for visualizing images in a notebook
only:

import keras_ocr

import matplotlib.pyplot as plt

Importing the keras pipeline:

pipeline = keras_ocr.pipeline.Pipeline()

Figure 5.5: Console output

Importing images for processing:

images = [

 keras_ocr.tools.read(img) for img in ['keras-ocr-sample1.png',

 'keras-ocr-sample2.png'

]

]

Plotting image and checking in notebook:

plt.figure(figsize=(10,20))

plt.imshow(images[0])

Figure 5.6: Text imprinted on images of cartons

plt.imshow(images[1])

Figure 5.7: Text imprinted on the image of letter

Sending image to the pipeline for detection; you can choose n number of
images and put the image objects in an array and pass it:

prediction_groups = pipeline.recognize(image)

Figure 5.8: Console Output

Passing all the images in keras_ocr and getting prediction and output in the
notebook:

fig, axs = plt.subplots(nrows=len(image), figsize=(10, 20))

for ax, image, predictions in zip(axs, image, prediction_groups):

 keras_ocr.tools.drawAnnotations(image=image,

 predictions=predictions,

 ax=ax

)

Figure 5.9 Bounding box against all detected text for image 1

Figure 5.9 (b): Bounding box against all detected text for image 1

The prediction_groups object can be further processed to access the extracted
text from the images.

EasyOCR

EasyOCR Python package makes it possible to convert images into text. It
has access to over 70 languages, including English, Chinese, Japanese,
Korean, and Hindi, and many more are being added. It is, by far, the
simplest approach to implementing OCR. Jaided AI is the firm that
developed EasyOCR.

EasyOCR demo

Text detection in images with EasyOCR can be done using the following
steps:

Installing important libraries:

!apt-get install poppler-utils

!pip install pdf2image

!pip install easyocr

Importing libraries:

from pdf2image import convert_from_path

import easyocr

import numpy as np

import PIL

from PIL import ImageDraw

import spacy

from IPython.display import display, Image

Setting our language to which we want to detect in our images:

reader=easyocr.Reader(['en'])

Importing the PDF which we want to detect text in.
Download a sample PDF from this URL:
http://solutions.weblite.ca/pdfocrx/scansmpl.pdf

images=convert_from_path("scansmpl.pdf")

display(images[0])

Figure 5.10: Image of letter with imprinted text

Reading text from images using readtext from the reader:

bounds = reader.readtext(np.array(images[0]))

print(bounds)

This will generate an output like this:

[([[447, 182], [557, 182], [557, 226], [447, 226]], ‘THE’,
0.999958842455258),

([[570, 180], [804, 180], [804, 228], [570, 228]],

‘SLEREXE’,

0.7436111647485029),

([[820, 179], [1066, 179], [1066, 227], [820, 227]],

‘COMPANY’,

0.9999328194688163),

([[1080, 180], [1296, 180], [1296, 228], [1080, 228]],

‘LIMITED’,

0.9986524611037886),

([[560, 254], [752, 254], [752, 282], [560, 282]],

‘SAPORS LANE’,

0.7222110685501141),

([[776, 252], [872, 252], [872, 282], [776, 282]],

‘BOOLE’,

0.9236137994214395),

([[898, 252], [1012, 252], [1012, 282], [898, 282]],

‘DORSET’,

0.9998741940557054),

Truncate the output for documentation limitations.

Creating a bounding box in the image using the preceding coordinates:

def draw_boxes(image, bounds, color='yellow', width=2):

 draw = ImageDraw.Draw(image)

 for bound in bounds:

 p0, p1, p2, p3 = bound[0]

 draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)

 return image

draw_boxes(images[0], bounds)

Figure Bounding box against detected text

Extracting text from the tensor:

text=''

for i in range(len(bounds)):

 text = text + bounds[i][1] + '\n'

print(text)

Output:

1 THE

SLEREXE

COMPANY

LIMITED

SAPORS LANE

BOOLE

DORSET

BH 25 8 ER

TELEPHONE

BOOLE (945 13) 51617

TELEX 123456

Our

Ref .

350 /PJC /EAC

18th January,

1972 .

Dr _

P.N,

Cundall .

Mining Surveys

Ltd.

Holroyd

Road ,

Reading,

Berks

Dear

Pete,

Permit

me

to

introduce

you

to

the facility

of

facsimi le

transmission _

Truncate the output for documentation limitations.

As you can see in the output, all the words are there, but they are not in
proper paragraphs, so we are going to use spacy to fix paragraphs and all the
issues:

nlp = spacy.load('en_core_web_sm')

doc = nlp(text)

from spacy import displacy

displacy.render(nlp(doc.text), style='ent', jupyter=True)

Output:

Figure Console output

TrOCR

TrOCR is a cutting-edge research project that aims to develop a robust
OCR system that can recognize text from natural images captured by
smartphones without relying on additional sensors or specialized
hardware. Traditional OCR systems have limitations in recognizing text
from low-quality images with uneven illumination, perspective distortion,
and complex backgrounds. TrOCR addresses these challenges by
incorporating advanced computer vision and machine learning techniques
to improve the accuracy and speed of text recognition. The project has the
potential to revolutionize the way we interact with text, making it easier to
extract and analyze text from images in various applications, such as
augmented reality, image search, and mobile translation.

TrOCR demo

Text detection in images with TrOCR can be done using the following steps:

Installing important libraries:

!pip install -q transformers

Loading image:

import requests

from PIL import Image

url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"

image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

image

The output will look as follows:

Figure Console output

Now, the image is prepared for the model using TrOCR processor. Calling the
processor is equivalent to calling the feature extractor:

from transformers import TrOCRProcessor

processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-
handwritten")

pixel_values = processor(image, return_tensors="pt").pixel_values

print(pixel_values.shape)

Figure Console output

Load the model from the hub: https://huggingface.co/models?other=trocr

from transformers import VisionEncoderDecoderModel

model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-
base-handwritten")

Figure Console Output

Finally, the text is generated:

generated_ids = model.generate(pixel_values)

generated_text = processor.batch_decode(generated_ids,
skip_special_tokens=True)[0]

print(generated_text)

Figure Console output

Conclusion

In conclusion, OCR has come a long way in recent years with the
development of various open-source libraries and frameworks that make
text recognition from images more accessible and accurate. In this chapter,
we explored four popular OCR implementations in Python: Tesseract
OCR, keras-ocr, EasyOCR, and TrOCR.

Tesseract OCR, the most widely used OCR library, is based on Google’s
OCR engine and provides a reliable solution for recognizing text in
scanned documents. Keras-ocr, built on top of TensorFlow and keras,
offers a deep learning-based approach for recognizing text in images and
can handle more complex scenarios.

EasyOCR is another popular OCR library that supports more than 70
languages and provides a simple interface for recognizing text in natural
images. Finally, TrOCR is a promising research project that aims to
develop a robust OCR system for recognizing text in images captured by
smartphones.

Regardless of the OCR library or framework chosen, it is important to
carefully consider the use case and requirements to select the most
appropriate solution. Furthermore, it is important to fine-tune the OCR
system for optimal performance by preprocessing the images, selecting
appropriate recognition algorithms, and training the OCR model with
sufficient and relevant data.

In the next chapter, we will cover the topic of object detection. Classifying
an image is about telling what object is in the image. Taking this one step
further, object detection is about telling where exactly the object is located
in the image.

Questions

What does OCR stand for?

Optical Character Recognition

Object Character Recognition

Operating Character Recognition

Order Character Recognition

All of the above

Which of the following is not an application of OCR technology?

Scanning and digitizing documents

Translating text from one language to another

Recognizing handwritten text

Extracting data from images

None of the above

What is the primary function of OCR technology?

To identify and recognize text in images and documents

To edit and modify text in digital documents

To compress and optimize digital images

To create 3D models from 2D images

Which of the following types of documents can be processed by OCR
technology?

PDF files

Scanned images

Handwritten documents

All of the above

Which of the following factors can affect the accuracy of OCR results?

Image resolution

Font type and size

Language of the text

All of the above

Answers

a

b

a

d

d

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 6

Object Detection

“You can’t defend. You can’t prevent. The only thing you can do is detect

and respond.”
— Bruce Schneier

By now, we have understood that machines are now capable of classifying
images using intelligence infused through convolutional neural networks.
However, just classifying images does not solve any real-world problems.
An image can contain both a dog and a cat, and it would be expected from
a machine to tell exactly where in the frame these two objects lie. Also,
detecting multiple objects in a single image is of utmost importance.
These challenges can be tackled by object detection algorithms. In this
chapter, we will discuss various such algorithms in detail. Also, we will
see how these trained and ready-to-use algorithms can be applied in
projects, without the need to retrain the models from scratch.

Structure

In this chapter, we will cover the following topics:

Object localization and object detection

Object detection algorithms and their comparison

Single Shot Detector Python implementation

You Only Look Once Python implementation

Objectives

After studying this chapter, you should be able to understand the concept
of object localization and object detection in an image, and how they add
more value to simple image classification tasks. You should also be able to
implement various image detection algorithms in Python.

Object localization and detection

The most common use case of computer vision is image classification, which
is simply about classifying an image with a class. It only tells whether there is
a cat or dog in an image. It has nothing to do with the location of the cat or
dog in the image.

Object localization is about finding a relevant object in the image and
creating a bounding box against the object.

Object detection is a cumulative result of image classification and object
localization. This means not only an object location is detected, but the class
of the object is also identified.

Figure 6.1 depicts that in the first image a cat is identified, and the image is
classified as ´CAT´. But it does not locate the exact location of the cat. In the
second image, a bounding box is created around the cat and labelled as This
feature where an image is not only classified but also localized is the object
detection mechanism. Refer to the following figure:

Figure 6.1: Various computer vision tasks

Object detection algorithms and their comparison

There are numerous algorithms that can perform object detection and are
readily available to be used in real-time projects. Some of them are as
follows:

Region-based Convolutional Neural Network

Fast RCNN

Faster RCNN

Single Shot Detector

You Only Look Once

Figure 6.2 depicts a comparison of all the noted object detection algorithms in
terms of accuracy and speed. It can be seen that there is a clear tradeoff
between accuracy and speed, which can be a deciding factor when choosing
an algorithm for your project based on the specific business needs. Refer to
the following figure:

Figure 6.2: Comparison of object detection algorithms

Single shot detector Python implementation

Follow these steps for successful Single Shot Detector Python
implementation:

This step installs two Python packages:

scikit-image version 0.19.1, which is a collection of algorithms for image
processing

which is used for creating interactive Graphical User Interfaces for Jupyter
notebooks

!pip install scikit-image==0.19.1

!pip install ipywidgets --trusted-host pypi.org --trusted-host pypi.python.org -
-trusted-host=files.pythonhosted.org

This step imports the torch package, which is the base package for PyTorch. It
also disables a check in the torch.hub module that usually prevents the use of
repositories that have been forked. This is done by overriding an internal
function called _validate_not_a_forked_repo to always return

import torch

torch.hub._validate_not_a_forked_repo=lambda a,b,c: True

This step lists all the available models in the PyTorch Hub provided by
NVIDIA under the DeepLearningExamples repository. PyTorch Hub is a pre-
trained model repository.

List of available models in PyTorch Hub from
Nvidia/DeepLearningExamples

torch.hub.list('NVIDIA/DeepLearningExamples:torchhub')

This step loads a pretrained SSD model that is capable of object detection. It
specifies the precision of the model to be fp32 (32-bit floating point). The
model is loaded from NVIDIA’s DeepLearningExamples repository in the
PyTorch Hub:

load SSD model pretrained on COCO from Torch Hub

precision = 'fp32'

ssd300 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub',
'nvidia_ssd', model_math=precision);

Figure 6.3 depicts successful model loading:

Figure 6.3: Model loading

This step specifies a list of sample image URLs from the COCO validation
dataset that will be used for inference by the model:

Inference

Sample images from the COCO validation set

uris = [

]

For conveniently formatting the input and output of the model, a set of utility
methods are loaded from the NVIDIA’s DeepLearningExamples repository.
These utilities will help in processing the images and the output:

For convenient and comprehensive formatting of input and output of the
model, load a set of utility methods.

utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub',
'nvidia_ssd_processing_utils')

This step processes the images from the specified URLs to make them
compatible with the network input requirements. The images are formatted

and then converted into tensors that are multi-dimensional arrays containing
elements of a single data type:

Format images to comply with the network input

inputs = [utils.prepare_input(uri) for uri in uris]

tensor = utils.prepare_tensor(inputs, False)

As the SSD model was trained on the COCO dataset, this step loads a
dictionary that maps class IDs to their respective object names. This is
essential for understanding the output of the model:

The model was trained on COCO dataset, which we need to access in order
to

translate class IDs into object names.

classes_to_labels = utils.get_coco_object_dictionary()

This step sets the model to evaluation mode and specifies that the
computation should be performed on a GPU It then runs object detection on
the pre-processed images:

Next, we run object detection

model = ssd300.eval().to("cuda")

detections_batch = model(tensor)

The raw output from the SSD model for each input image contains a large
number of bounding boxes. This step filters the output to only include
reasonable detections (with confidence over 40%) and formats the results:

By default, raw output from SSD network per input image contains 8732
boxes with

localization and class probability distribution.

Let's filter this output to only get reasonable detections (confidence>40%)
in a more comprehensive format.

results_per_input = utils.decode_results(detections_batch)

best_results_per_input = [utils.pick_best(results, 0.40) for results in
results_per_input]

This part of the code is a function definition called plot_results that takes in
the best results per input and plots the images along with the predicted
bounding boxes and their confidence scores. The function uses a plotting
library for the Python programming language:

from matplotlib import pyplot as plt

import matplotlib.patches as patches

The utility plots the images and predicted bounding boxes (with confidence
scores).

def plot_results(best_results):

 for image_idx in range(len(best_results)):

 fig, ax = plt.subplots(1)

Show original, denormalized image...

 image = inputs[image_idx] / 2 + 0.5

 ax.imshow(image)

...with detections

 bboxes, classes, confidences = best_results[image_idx]

 for idx in range(len(bboxes)):

 left, bot, right, top = bboxes[idx]

 x, y, w, h = [val * 300 for val in [left, bot, right - left, top - bot]]

 rect = patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r',
facecolor='none')

 ax.add_patch(rect)

 ax.text(x, y, "{} {:.0f}%".format(classes_to_labels[classes[idx] - 1],
confidences[idx]*100), bbox=dict(facecolor='white', alpha=0.5))

 plt.show()

Finally, this function is called with the best results per input to visualize the
object detection results. The images are displayed with bounding boxes
around detected objects and labels that indicate what object has been
detected, along with the confidence in percentage:

Visualize results without Torch-TensorRT

plot_results(best_results_per_input)

Figures 6.4 , 6.5 and 6.6 depict sample object detection results using SSD
model:

Figure Sample result

Figure 6.5: Sample result

Figure 6.6: Sample result

YOLO v3 Python implementation

Follow these steps for a successful YOLO v3 Python implementation:

Git clone the project codes. This will copy all the required files and folders
from GitHub repo to the local machine:

!git clone https://github.com/pjreddie/darknet

This will clone the repository on your local machine.

Figure 6.7: Git clone command output

cd into the darknet folder and look at all the downloaded files and folders:

cd darknet

ls

Folder contents depicted in Figure

Figure 6.8: Darknet folder structure

Run the make command to build the project locally:

!make

Figure 6.9: Make command output

Download yolov3.weights using the wget command:

!wget https://pjreddie.com/media/files/yolov3.weights

Download yolo weights as depicted in Figure

Figure 6.10: wget yolo weights command output

Run the detect command to perform the predictions:

!./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

Output of the detect command is depicted in Figure

Figure 6.11: Predictions output

To view the objects detected within the sample image, use the Image module
in Python. Image and the objects detected are displayed with bounding boxes,
as shown in Figure

from PIL import Image

img=Image.open("predictions.jpg")

img

Figure Predictions with bounding boxes

Experiment 2

Animals of different sizes and shapes are also captured by the algorithm.
Predictions are depicted in Figure

!./darknet detect cfg/yolov3.cfg yolov3.weights data/giraffe.jpg

from PIL import Image

img=Image.open("predictions.jpg")

img

Figure 6.13: Predictions with bounding boxes

Experiment 3

People of different ages and sizes with various background objects are also
captured by the algorithm. Predictions are depicted in Figure

!./darknet detect cfg/yolov3.cfg yolov3.weights
/content/gdrive/MyDrive/coffee.JPG

from PIL import Image

img=Image.open("predictions.jpg")

img

Figure 6.14: Predictions with bounding boxes

Experiment 4

People with different poses, one horizontal and another in vertical
positions are also captured by the algorithm. Predictions are depicted in
Figure

!./darknet detect cfg/yolov3.cfg yolov3.weights
/content/gdrive/MyDrive/yoga.JPG

from PIL import Image

img=Image.open("predictions.jpg")

img

Figure 6.15: Predictions with bounding boxes

Experiment 5

Very small objects are also captured by the algorithm. Predictions are
depicted in Figure

!./darknet detect cfg/yolov3.cfg yolov3.weights data/kite.jpg

from PIL import Image

img=Image.open("predictions.jpg")

img

Figure Predictions with bounding boxes

Conclusion

In this chapter, we first understood the difference between image
classification, object localization, and object detection. Further, we looked
at various object detections algorithms and their prediction efficiencies.
Then, we looked at various ways of implementing them using Python.

In the next chapter, we will learn about object segmentation and
understand the importance of segmenting an object in an image. We will
also go through the advancement in this field and various ready-to-use
algorithm implementations that can be used in projects.

Questions

Image classification and image detection are the same thing. Is this true or
false?

True

False

What are the different algorithms for object detection?

R-CNN

SSD

YOLO

All of the above

Object localization and object detection are the same thing. Is this true or
false?

True

False

TFOD stands for which of the following?

Tensor Fast Object Detection

Tensor Flow Object Detection

Test Flow Object Detection

None of the above

Which algorithms can be implemented using TFOD?

SSD

Faster R-CNN

Mask R-CNN

All of the above

Answers

b

d

b

b

d

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 7

Image Segmentation

The human eye has the power to find a needle in a haystack, to localize an

object in an image, to see beyond the surface and uncover the hidden
details.

— anonymous

Image segmentation is a process in computer vision where we divide an
image into smaller, more meaningful parts. It is like cutting a big puzzle
into smaller pieces, with each piece representing a different object or part
of an object in the image. For example, suppose you have a picture of a
group of animals, like a lion, a zebra, and a giraffe all standing together.
With image segmentation, a computer can be trained to recognize and
separate each animal, so we can see the lion, zebra, and giraffe as
individual images. This makes it easier to understand the image and
analyze different objects present in it. It is a useful technique that helps us
extract meaningful information from images and make sense of them.

Structure

In this chapter, we will cover the following topics:

Difference between image classification, detection, and segmentation

Image segmentation architectures

U-Net python implementation

FCN-8 python implementation

Mask R-CNN python implementation

Objectives

After studying this chapter, you should be able to understand the concept
of image segmentation and how it is different from image classification
and object detection techniques. You will also know the process of and the
underlying code for implementing image segmentation architectures using
Python.

Difference between image classification, detection and segmentation

Image classification is the process of identifying what is in an image. For
example, a classifier might be trained to recognize that an image contains
a dog.

Object detection is similar to image classification, but it also tells you
where in the image the object is located. So, in addition to identifying that
an image contains a dog, an object detector would draw a bounding box
around the dog in the image.

Image segmentation is a process of dividing an image into multiple
segments or regions, each of which corresponds to a different object or
part of an object. So, in addition to identifying that an image contains a
dog and where the dog is located, image segmentation might identify the
dog’s nose, tail, and paws as separate segments.

Figure 7.1 depicts the difference between image classification, detection,
and segmentation:

Figure 7.1: Image classification vs detection vs segmentation

Image segmentation architectures

There are several popular image segmentation architectures that can be
implemented using the Keras Python library, including the following:

This architecture is a Fully Convolutional Neural Network that is often
used for biomedical image segmentation. It consists of an encoder and a
decoder, where the encoder is used to extract features from the image, and
the decoder is used to generate the segmentation mask.

This is an FCN architecture that uses a VGG-16 encoder and a decoder
made of transpose convolutional layers.

This is an FCN architecture that uses a pre-trained VGG-16 model as the
encoder and a series of upsampling and convolutional layers as the
decoder.

This is an FCN architecture that uses an atrous convolutional layer to
increase the resolution of the output segmentation mask.

Mask This architecture uses a Region-Based Convolutional Neural
Network to predict object bounding boxes and an FCN to generate the
segmentation mask.

This is an extension of the FCN architecture that combines the advantages
of global and local context and uses the pyramid pooling module to
adaptively reweigh the spatial information at multiple scales.

Encoder-decoder with Atrous separable convolution (DeepLab This is an
extension of the DeepLab V3 architecture. It uses Atrous separable
convolution in the decoder and is considered state-of-the-art for semantic
image segmentation tasks.

It is a lightweight version of UNet architecture. It uses pre-trained encoder
as a backbone, and segmentation network is built using the decoder block
of UNet.

These architectures can be implemented using Keras, along with other
libraries like TensorFlow, which helps implement the neural networks,
along with other image processing libraries like OpenCV, PIL, and so on.

U-Net Python implementation

The U-Net architecture is a popular image segmentation architecture that was
developed for biomedical image segmentation. It is a fully convolutional
neural network that is built upon the autoencoder architecture.

Figure 7.2 depicts the U-Net architecture:

Figure 7.2: Architecture of U-Net for producing k 256-by-256 image masks

for a 256-by-256 RGB image

In this section, we will walk through the implementation of the U-Net
architecture, which is widely used for image segmentation tasks. We will be
using TensorFlow’s Keras API and the Oxford-IIIT Pet Dataset for
demonstration.

Prerequisites

Python 3

TensorFlow 2.x

Knowledge of convolutional neural networks

pip install tensorflow

import os

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.preprocessing.image import load_img, img_to_array

import matplotlib.pyplot as plt

For this implementation, we will use the Oxford-IIIT Pet dataset, which is
available through TensorFlow datasets. This dataset contains images of cats
and dogs, with corresponding segmentation masks:

import tensorflow_datasets as tfds

Download the dataset

dataset, info = tfds.load('oxford_iiit_pet:3.2.0', with_info=True)

Figure 7.3 depicts the output of the data download step:

Figure 7.3: Data download

We will define functions for loading and preprocessing the images and the
masks:

def normalize(input_image, input_mask):

 input_image = tf.cast(input_image, tf.float32) / 255.0

 input_mask -= 1

 return input_image, input_mask

@tf.function

def load_image_train(datapoint):

 input_image = tf.image.resize(datapoint['image'], (128, 128))

 input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

 if tf.random.uniform(()) > 0.5:

 input_image = tf.image.flip_left_right(input_image)

 input_mask = tf.image.flip_left_right(input_mask)

 input_image, input_mask = normalize(input_image, input_mask)

 return input_image, input_mask

def load_image_test(datapoint):

 input_image = tf.image.resize(datapoint['image'], (128, 128))

 input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

 input_image, input_mask = normalize(input_image, input_mask)

 return input_image, input_mask

TRAIN_LENGTH = info.splits['train'].num_examples

BATCH_SIZE = 64

BUFFER_SIZE = 1000

STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE

train = dataset['train'].map(load_image_train,
num_parallel_calls=tf.data.experimental.AUTOTUNE)

test = dataset['test'].map(load_image_test)

train_dataset =
train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()

train_dataset =
train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

test_dataset = test.batch(BATCH_SIZE)

U-Net is an architecture for semantic segmentation. It’s an encoder-decoder
type network, where the encoder downsamples the input image and the
decoder upsamples and recovers the segmentation mask:

def build_unet(input_shape):

 inputs = keras.Input(shape=input_shape)

Encoder

 conv1 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')
(inputs)

 conv1 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')
(conv1)

 pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)

 conv2 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')
(pool1)

 conv2 = layers.Conv2D(128, (3, 3), activation=’relu', padding='same')
(conv2)

 pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)

Decoder

 conv3 = layers.Conv2D(256, (3, 3), activation='relu', padding='same')
(pool2)

 conv3 = layers.Conv2D(256, (3, 3), activation='relu', padding='same')
(conv3)

 up1 = layers.concatenate([layers.UpSampling2D(size=(2, 2))(conv3),
conv2], axis=-1)

 conv4 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(up1)

 conv4 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')
(conv4)

 up2 = layers.concatenate([layers.UpSampling2D(size=(2, 2))(conv4),
conv1], axis=-1)

 conv5 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(up2)

 conv5 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')
(conv5)

Output Layer

 outputs = layers.Conv2D(3, (1, 1), activation='softmax')(conv5)

 return keras.Model(inputs=inputs, outputs=outputs)

Build U-Net model

model = build_unet((128, 128, 3))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

EPOCHS = 10

VAL_SUBSPLITS = 5

VALIDATION_STEPS =
info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS

model_history = model.fit(train_dataset, epochs=EPOCHS,

 steps_per_epoch=STEPS_PER_EPOCH,

 validation_steps=VALIDATION_STEPS,

 validation_data=test_dataset)

Figure 7.4 depicts model fitting epochs:

Figure 7.4: Model fitting

Let’s plot the training history and visualize the segmentation results on test
images:

Plot training history

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(model_history.history["loss"], label="Training Loss")

plt.plot(model_history.history["val_loss"], label="Validation Loss")

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(model_history.history["accuracy"], label="Training Accuracy")

plt.plot(model_history.history["val_accuracy"], label="Validation Accuracy")

plt.legend()

plt.show()

Visualize predictions

for image, mask in test_dataset.take(1):

 pred_mask = model.predict(image)

 plt.figure(figsize=(10, 10))

 for i in range(9):

 plt.subplot(3, 3, i + 1)

 plt.imshow(image[i])

 plt.imshow(np.argmax(pred_mask[i], axis=-1), alpha=0.5)

 plt.axis("off")

 plt.show()

Figure 7.5 depicts model train and validation accuracies and loss:

Figure 7.5: Model results

Figure 7.6 depicts image segmentation on a sample images:

Figure 7.6: Image segmentation on a sample image

In this section, we learned how to implement the U-Net architecture for
image segmentation using TensorFlow’s Keras API. We built the model,
trained it on the Oxford-IIIT Pet dataset, and visualized the segmentation
results. The U-Net model is powerful and versatile, making it a popular
choice for various image segmentation tasks.

FCN-8 Python implementation

FCN8 is a fully convolutional neural network architecture for image
segmentation. It uses a series of convolutional layers to extract features
from the input image, and then it uses transposed convolutional layers to
upsample the feature maps to the same size as the input image. The final
layer produces a segmentation map with a per-pixel prediction of the class
label.

In this section, we will walk through the implementation of Fully
Convolutional Networks (FCN-8 variant) for semantic image segmentation.

Prerequisites

Python 3

TensorFlow 2.x

Knowledge of convolutional neural networks

pip install tensorflow

Let’s begin by importing the necessary libraries and modules:

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D,
Dropout, Conv2DTranspose, concatenate

def fcn8(input_shape, num_classes):

 inputs = Input(input_shape)

This line initializes the input tensor of the model with the specified shape.

It consists of five blocks with Conv2D layers, followed by MaxPooling.
Each block is responsible for extracting features from the input images.

Block 1

 conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)

 conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)

 pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

Block 2

 conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)

 conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)

 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

Block 3

 conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)

 conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)

 pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

Block 4

 conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)

 conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)

 pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

Block 5

 conv5 = Conv2D(512, 3, activation='relu', padding='same')(pool4)

 conv5 = Conv2D(512, 3, activation='relu', padding='same')(conv5)

 pool5 = MaxPooling2D(pool_size=(2, 2))(conv5)

Convert the fully connected layers to convolutional layers to make the
network fully convolutional:

Fully Convolutionalization

 fc6 = Conv2D(4096, 7, activation='relu', padding='same')(pool5)

 fc6 = Dropout(0.5)(fc6)

 fc7 = Conv2D(4096, 1, activation='relu', padding='same')(fc6)

 fc7 = Dropout(0.5)(fc7)

This section merges high-level and low-level features to refine the
segmentation outcomes. The Conv2DTranspose layers are employed to
enlarge or upscale the feature maps.

Score Pooling 4

 score_pool4 = Conv2D(num_classes, 1, activation='relu',
padding='same')(pool4)

Score Pooling 7

 score_fc7 = Conv2D(num_classes, 1, activation='relu', padding='same')
(fc7)

Deconvolution 2x

 upsample_2x = Conv2DTranspose(num_classes, 4, strides=(2, 2),
padding='same')(score_fc7)

Score Sum 2

 score_sum2 = concatenate([score_pool4, upsample_2x], axis=3)

Deconvolution 2x

 upsample_4x = Conv2DTranspose(num_classes, 4, strides=(2, 2),
padding='same')(score_sum2)

Final Prediction

 upsample_final = Conv2DTranspose(num_classes, 16, strides=(8, 8),
padding='same')(upsample_4x)

 outputs = keras.activations.softmax(upsample_final, axis=-1)

The generate_sample_data function creates random input data and labels for
training and evaluation:

def generate_sample_data(num_samples, image_shape, num_classes):

 X = np.random.rand(num_samples, *image_shape)

 y = np.random.randint(0, num_classes, (num_samples,
*image_shape[:-1], 1))

 return X, y

Define input shape and number of classes

input_shape = (256, 256, 3)

num_classes = 10

Generate sample training data

X_train, y_train = generate_sample_data(100, input_shape, num_classes)

Generate sample test data

X_test, y_test = generate_sample_data(20, input_shape, num_classes)

Compile the model with the architecture defined earlier:

 model = Model(inputs=inputs, outputs=outputs)

 return model

Compile the model with the optimizer, loss function, and metric:

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

Train the model on the sample dataset:

model.fit(X_train, y_train, batch_size=16, epochs=10, validation_data=
(X_test, y_test))

Figure 7.7 depicts model fitting epochs:

Figure 7.7: Model fitting epochs

Evaluate the model’s performance on the test data:

loss, accuracy = model.evaluate(X_test, y_test)

print("Test Loss:", loss)

print("Test Accuracy:", accuracy)

Figure 7.8 depicts model accuracy and loss values:

Figure 7.8: Model accuracy and loss

In this section, we implemented the FCN-8 architecture for image
segmentation using TensorFlow’s Keras API. FCN-8 is an effective
architecture for semantic segmentation that combines deep features with
upsampling and skip connections.

Mask R-CNN Python implementation

Mask R-CNN is a popular architecture for instance segmentation tasks,
which involves predicting both object bounding boxes and per-pixel mask
segmentations for each object in an image.

Here’s an example of how to implement Mask R-CNN in Python using
Tensorflow:

This step clones the TensorFlow Tensor Processing Unit (TPU) repository
from GitHub. Cloning refers to downloading the code and files of this
repository to your local machine or environment. This is done by executing
the git clone command, followed by the repository URL. The repository
contains models and code designed to run on TPUs, which are hardware
accelerators specialized in deep learning tasks:

!git clone https://github.com/tensorflow/tpu/

In this step, you are importing various libraries and modules required for the
subsequent code. These libraries include the following:

IPython.display for displaying images

PIL.Image for handling image data

numpy for handling arrays

tensorflow for building and executing machine learning models

sys to manipulate the Python runtime environment

You are also modifying the system path to include directories within the
cloned repository and This allows you to import modules that are inside
these directories. You are importing coco_metric and visualization_utils
from these directories. Lastly, you are disabling TensorFlow v2 behavior to
make sure the code is compatible with TensorFlow version 1:

from IPython import display

from PIL import Image

import numpy as np

import tensorflow as tf

import sys

sys.path.insert(0, 'tpu/models/official')

sys.path.insert(0, 'tpu/models/official/mask_rcnn')

import coco_metric

from mask_rcnn.object_detection import visualization_utils

import tensorflow.compat.v1 as tf

tf.disable_v2_behavior()

This step initializes a dictionary named which maps integers to names of
objects. These integers represent unique identifiers for each object category
(for example, ‘person’, ‘bicycle’, ‘car’, and so on.). The category_index is
created from ID_MAPPING to store information in a slightly different
format, which is likely to be used later for visualization or analysis:

ID_MAPPING = {

 1: 'person',

 2: 'bicycle',

 3: 'car',

 4: 'motorcycle',

 5: 'airplane',

 6: 'bus',

 7: 'train',

 8: 'truck',

 9: 'boat',

 10: 'traffic light',

 11: 'fire hydrant',

 13: 'stop sign',

 14: 'parking meter',

 15: 'bench',

 16: 'bird',

 17: 'cat',

 18: 'dog',

 19: 'horse',

 20: 'sheep',

 21: 'cow',

 22: 'elephant',

 23: 'bear',

 24: 'zebra',

 25: 'giraffe',

 27: 'backpack',

 28: 'umbrella',

 31: 'handbag',

 32: 'tie',

 33: 'suitcase',

 34: 'frisbee',

 35: 'skis',

 36: 'snowboard',

 37: 'sports ball',

 38: 'kite',

 39: 'baseball bat',

 40: 'baseball glove',

 41: 'skateboard',

 42: 'surfboard',

 43: 'tennis racket',

 44: 'bottle',

 46: 'wine glass',

 47: 'cup',

 48: 'fork',

 49: 'knife',

 50: 'spoon',

 51: 'bowl',

 52: 'banana',

 53: 'apple',

 54: 'sandwich',

 55: 'orange',

 56: 'broccoli',

 57: 'carrot',

 58: 'hot dog',

 59: 'pizza',

 60: 'donut',

 61: 'cake',

 62: 'chair',

 63: 'couch',

 64: 'potted plant',

 65: 'bed',

 67: 'dining table',

 70: 'toilet',

 72: 'tv',

 73: 'laptop',

 74: 'mouse',

 75: 'remote',

 76: 'keyboard',

 77: 'cell phone',

 78: 'microwave',

 79: 'oven',

 80: 'toaster',

 81: 'sink',

 82: 'refrigerator',

 84: 'book',

 85: 'clock',

 86: 'vase',

 87: 'scissors',

 88: 'teddy bear',

 89: 'hair drier',

 90: 'toothbrush',

}

category_index = {k: {'id': k, 'name': ID_MAPPING[k]} for k in
ID_MAPPING}

In this step, the required libraries are imported, and an image is downloaded
from a specified URL. The image is saved as The code then reads the image
in binary mode, and the image data is converted into a numpy array. The
image dimensions (width and height) are extracted and stored. The image is
displayed in the IPython environment with a width of 1024 pixels:

the required libraries

import numpy as np

from PIL import Image

from IPython import display

Download an image from a specific URL and save it as "test1.jpg"

!wget https://img.theculturetrip.com/768x/smart/wp-
content/uploads/2019/11/r9j01k.jpg -O test1.jpg

Set the path of the downloaded image

image_path = 'test1.jpg'

Open the image file in binary mode

with open(image_path, 'rb') as file:

Convert the image data into a numpy array

 np_image_string = np.array([file.read()])

Open the image using the PIL library

image = Image.open(image_path)

Get the width and height of the image

width, height = image.size

Convert the image data into a numpy array with the specified dimensions
and data type

np_image = np.array(image.getdata()).reshape(height, width,
3).astype(np.uint8)

Display the image with a width of 1024 pixels

display.display(display.Image(image_path, width=1024))

Figure 7.9 depicts a sample image for image segmentation demo:

Figure 7.9: Sample image for image segmentation

A TensorFlow session is created and assigned to the variable session. This
session will allow you to run a computation graph. It is part of
TensorFlow’s v1.x way of executing models:

session = tf.Session(graph=tf.Graph())

In this step, a pre-trained model is loaded from a specified directory in
Google Cloud Storage. This directory contains the saved model. The
tf.saved_model.loader.load() function is used to load the model into the
previously created TensorFlow session:

Loading pretarined model

saved_model_dir = 'gs://cloud-tpu-checkpoints/mask-rcnn/1555659850'
#@param {type:"string"}

_ = tf.saved_model.loader.load(session, ['serve'], saved_model_dir)

This step involves running the instance segmentation on the input image.
Instance segmentation is a process where each object instance in an image
is detected and delineated. The model’s outputs include the number of
detections, bounding boxes, class labels, scores, and masks for the objects
detected. The step also processes the raw outputs to make them ready for
visualization.

Instance Segmentation

num_detections, detection_boxes, detection_classes, detection_scores,
detection_masks, image_info = session.run(

 ['NumDetections:0', 'DetectionBoxes:0', 'DetectionClasses:0',
'DetectionScores:0', 'DetectionMasks:0', 'ImageInfo:0'],

 feed_dict={'Placeholder:0': np_image_string})

num_detections = np.squeeze(num_detections.astype(np.int32), axis=(0,))

detection_boxes = np.squeeze(detection_boxes * image_info[0, 2], axis=
(0,))[0:num_detections]

detection_scores = np.squeeze(detection_scores, axis=(0,))
[0:num_detections]

detection_classes = np.squeeze(detection_classes.astype(np.int32), axis=
(0,))[0:num_detections]

instance_masks = np.squeeze(detection_masks, axis=(0,))
[0:num_detections]

ymin, xmin, ymax, xmax = np.split(detection_boxes, 4, axis=-1)

processed_boxes = np.concatenate([xmin, ymin, xmax - xmin, ymax -
ymin], axis=-1)

segmentations =
coco_metric.generate_segmentation_from_masks(instance_masks,
processed_boxes, height, width)

In this final step, the results are visualized. The code draws the detection
boxes and labels on the original image using the processed outputs from the
previous step. The number of boxes to draw and the minimum score

threshold can be specified. The resulting image with detections is saved as
test_results.jpg and is also displayed in the IPython environment:

Results

max_boxes_to_draw = 50 #@param

min_score_thresh = 0.1 #@param {type:"slider", min:0, max:1, step:0.01}

image_with_detections =
visualization_utils.visualize_boxes_and_labels_on_image_array(

 np_image,

 detection_boxes,

 detection_classes,

 detection_scores,

 category_index,

 instance_masks=segmentations,

 use_normalized_coordinates=False,

 max_boxes_to_draw=max_boxes_to_draw,

 min_score_thresh=min_score_thresh)

output_image_path = 'test_results.jpg'

Image.fromarray(image_with_detections.astype(np.uint8)).save(output_ima
ge_path)

display.display(display.Image(output_image_path, width=1024))

Figure 7.10 depicts the sample image with bounding boxes after image
segmentation:

Figure 7.10: Sample image with bounding boxes after image segmentation

Conclusion

Image segmentation is a powerful technique that allows for the
identification of specific objects or regions of interest within an image.
There are several approaches to image segmentation, including
thresholding, region-based methods, and deep learning-based methods.
Each approach has its own strengths and weaknesses and is suited for
different types of images and tasks.

FCN and Mask R-CNN are two of the most popular deep learning-based
image segmentation architectures. FCN utilizes a series of convolutional
and transposed convolutional layers to extract features from an image and
then sample the feature maps to produce a segmentation map. Mask R-
CNN is an extension of the Faster R-CNN object detector; it includes a
branch for predicting an object mask in parallel with the existing branch
for bounding box recognition.

Implementing image segmentation models in Keras can be relatively easy
with the help of pre-built libraries like and However, it’s important to keep
in mind that the architecture and training parameters may need to be
adjusted to suit the specific task and dataset.

In the next chapter, we will learn about RNN, which is an advanced
computational model extensively used in the field of data science and
architecture. It is specifically designed to process and analyze sequential
data, making it an invaluable tool for tasks like natural language
processing, time series analysis, and speech recognition.

Questions

What is the primary goal of image segmentation?

To classify pixels in an image

To detect objects in an image

To enhance the quality of an image

To separate an image into multiple segments

Which of the following is not a type of image segmentation?

Semantic segmentation

Instance segmentation

Object detection

Color-based segmentation

Which of the following is a popular technique for image segmentation?

K-means clustering

Random Forest

Convolutional Neural Networks (CNN)

Support Vector Machines

What is the primary advantage of using Fully Convolutional Networks
(FCNs) for image segmentation?

They are less computationally expensive

They are better at handling variable-size inputs

They are better at handling large datasets

They are better at handling high-dimensional inputs

What is the main advantage of using deep learning-based methods for
image segmentation?

They can handle large amounts of data

They can handle high-dimensional inputs

They can handle complex and non-linear relationships between inputs and
outputs

They can handle all of the above

Answers

d

c

c

b

d

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 8

Recurrent Neural Networks

One picture is worth a thousand words

— Albert Einstein

A Recurrent Neural Network is a type of artificial neural network that is
well suited to processing sequential data, such as natural language, time
series data, and audio. RNNs have an internal memory that allows them to
process information from previous time steps in addition to the current
input. This allows them to recognize patterns and dependencies across the
input sequence and make predictions about future events based on this
information.

One of the key features of RNNs is their ability to process sequences of
variable length, which makes them useful for a wide range of applications,
such as language translation, language modeling, and speech recognition.

RNNs can be trained using various optimization algorithms, such as
gradient descent and stochastic gradient descent, to learn the weights of
the network and make accurate predictions.

Overall, RNNs are a powerful tool for analyzing and modeling sequential
data and have been widely used in several fields to perform various tasks.

Structure

In this chapter, we will cover the following topics:

Algorithms for RNN implementation

RNN implementation

Long Short-Term Memory implementation

Gated Recurrent Unit implementation

Objectives

By the end of this chapter, you should understand the different algorithms
suitable for RNN implementation. Additionally, you will be well-
acquainted with key algorithms such as LSTM and GRU. Furthermore,
you will be equipped to address various challenges using RNN, LSTM,
and GRU with the help of Python libraries.

Algorithms for RNN implementation

Backpropagation Through Time This is a widely used algorithm that
involves unrolling the RNN and treating it as a deep feedforward neural
network, allowing the weights of the network to be updated using gradient
descent.

Truncated Backpropagation Through Time This is a variant of BPTT that
involves only unrolling the RNN for a limited number of time steps,
which can reduce the computational complexity of training.

Stochastic Gradient Descent This is an optimization algorithm that
involves updating the weights of the network using small, random batches
of data rather than the entire dataset.

Adaptive Moment Estimation This popular optimization algorithm
combines the ideas of SGD and momentum to improve the convergence
rate of the training process.

Long Short-Term Memory This is a type of RNN that includes special
units called “memory cells” that can store information for long periods,
allowing the network to better capture long-term dependencies in the data.

Gated Recurrent Unit This is another type of RNN that uses “gates” to
control the flow of information within the network, allowing it to better

capture long-term dependencies in the data.

Overall, the choice of algorithm will depend on the specific requirements
of the task and the available computational resources.

RNN implementation

We will start with a very simple RNN implementation for the most famous
MNIST dataset.

Following are the steps for an end-to-end RNN implementation using Python
Keras library.

Firstly, we need to import the necessary libraries. We will need numpy for
numerical calculations, keras for building the model, and the string library for
working with text data:

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, SimpleRNN

import string

Next, we need to prepare the dataset. For simplicity, we will use a short
sequence of characters from the English alphabet:

define the raw dataset

alphabet = string.ascii_lowercase

create mapping of characters to integers and reverse

char_to_int = dict((c, i) for i, c in enumerate(alphabet))

int_to_char = dict((i, c) for i, c in enumerate(alphabet))

prepare the dataset of input to output pairs encoded as integers

seq_length = 3

dataX = []

dataY = []

for i in range(0, len(alphabet) - seq_length, 1):

 seq_in = alphabet[i:i + seq_length]

 seq_out = alphabet[i + seq_length]

 dataX.append([char_to_int[char] for char in seq_in])

 dataY.append(char_to_int[seq_out])

In this step, we are creating a mapping of characters to integers and vice
versa. We are then creating our input and output sequences. Each input

sequence will be a sequence of three characters from the alphabet, and the
output will be the next character in the alphabet.

Next, we need to reshape our input sequences into the form [samples, time
steps, features] expected by an RNN:

X = np.reshape(dataX, (len(dataX), seq_length, 1))

We normalize the input values to the range 0-to-1. This is a common practice
when working with neural networks:

X = X / float(len(alphabet))

We are going to predict the next character in the alphabet, which is a multi-
class classification problem. Therefore, we need to one hot encode our output
variable:

from keras.utils import np_utils

y = np_utils.to_categorical(dataY)

We can now define our RNN model. We will use a single hidden layer with
32 units. The output layer is a Dense layer using the softmax activation
function to output a probability prediction for each of the 26 characters
between 0 and 1:

model = Sequential()

model.add(SimpleRNN(32, input_shape=(X.shape[1], X.shape[2])))

model.add(Dense(y.shape[1], activation='softmax'))

We compile our model using the log loss function in Keras) and use the
efficient ADAM optimization algorithm to find the weights.

We then fit the model using batch learning and 500 epochs:

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=
['accuracy'])

model.fit(X, y, epochs=500, batch_size=1, verbose=2)

Figure 8.1 depicts model training epochs:

Figure 8.1: Model training epochs

After training, let’s use the model to make predictions:

for pattern in dataX:

 x = np.reshape(pattern, (1, len(pattern), 1))

 x = x / float(len(alphabet))

 prediction = model.predict(x, verbose=0)

 index = np.argmax(prediction)

 result = int_to_char[index]

 seq_in = [int_to_char[value] for value in pattern]

 print(seq_in, "->", result)

This code snippet will output the input sequence and the predicted output
character.

Figure 8.2 depicts model prediction results:

Figure 8.2: Model prediction results

Finally, let us evaluate the performance of our model:

scores = model.evaluate(X, y, verbose=0)

print("Model Accuracy: %.2f%%" % (scores[1]*100))

This will give you the accuracy of the model on the dataset.

Figure 8.3 depicts model accuracy:

Figure 8.3: Model accuracy

This is a basic example of how to implement a simple RNN in Keras for a
sequence prediction problem. Note that for more complex problems and
datasets, you may need to tweak the architecture, use different types of RNNs
like LSTM or GRU, and spend more time tuning the hyperparameters.

Long short-term memory implementation

Long short-term memory is a type of RNN that is particularly well-suited for
modeling long-term dependencies in time series data. Unlike traditional
RNNs, which use a single hidden state to capture the entire history of the
input sequence, LSTMs use a series of hidden states, known as memory cells,
to selectively remember and forget information from the past. This allows
LSTMs to capture long-term dependencies without suffering from the
vanishing gradient problem, which occurs when the gradients of the error
signal become very small over many time steps. LSTMs have been widely
used in natural language processing tasks, such as language translation and
language modeling, and also in other areas like speech recognition and
financial forecasting.

Let’s look at an example of how you could implement a LSTM network using
the Keras library in Python. In this task, we will train an LSTM on a simple
and intuitive dataset: the airline passengers’ dataset. This dataset shows the
total number of airline passengers in a month, from 1949 to 1960. This
problem is common for demonstrating time series prediction because it is a
good example where understanding the long-term trend is beneficial for the
model.

Start by importing the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import LSTM, Dense

import urllib.request

We can download the dataset and read it:

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv"

file = urllib.request.urlopen(url)

data = pd.read_csv(file, usecols=[1], engine='python')

We need to normalize the dataset to make the scale of the input features
similar:

scaler = MinMaxScaler(feature_range=(0, 1))

data = scaler.fit_transform(data)

We split the dataset into training and testing sets:

train_size = int(len(data) * 0.67)

test_size = len(data) - train_size

train, test = data[0:train_size, :], data[train_size:len(data), :]

def create_dataset(dataset, look_back=1):

 dataX, dataY = [], []

 for i in range(len(dataset) - look_back - 1):

 dataX.append(dataset[i:(i + look_back), 0])

 dataY.append(dataset[i + look_back, 0])

 return np.array(dataX), np.array(dataY)

look_back = 3

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

reshape input to be [samples, time steps, features]

trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))

testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

model = Sequential()

model.add(LSTM(4, input_shape=(1, look_back)))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

Figure 8.4 depicts model training epochs:

Figure 8.4: Model training epochs

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

Invert predictions back to original scale

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))

print(f'Train Score: {trainScore:.2f} RMSE')

testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))

print(f'Test Score: {testScore:.2f} RMSE')

Figure 8.5 depicts model scores:

Figure 8.5: Model scores

plt.plot(scaler.inverse_transform(data))

trainPredictPlot = np.empty_like(data)

trainPredictPlot[:, :] = np.nan

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

testPredictPlot = np.empty_like(data)

testPredictPlot[:, :] = np.nan

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(data)-1, :] = testPredict

plt.plot(trainPredictPlot)

plt.plot(testPredictPlot)

plt.show()

This will plot the original dataset in blue, the predictions for the training
dataset in orange, and the predictions on the test dataset in green.

Figure 8.6 depicts model predictions:

Figure 8.6: Model predictions

Gated Recurrent Unit implementation

Gated recurrent unit (GRU) is another type of RNN that is designed to
address the vanishing gradient problem that can occur when training
traditional RNNs on long sequences. Like LSTM networks, GRUs use gates
to control the flow of information through the network, but they use a simpler
gating mechanism that requires fewer parameters and is easier to train. GRUs
have been shown to be competitive with LSTMs on a variety of natural
language processing tasks, such as language translation and language
modeling, and they are often preferred for their simplicity and efficiency.
GRUs have also been used in other areas, such as speech recognition and time
series forecasting, where they have demonstrated good performance.

In this section, we will walk you through the steps to implement a GRU with
some advanced techniques like dropout and recurrent dropout.

Let’s begin by importing the necessary libraries:

import numpy as np

import tensorflow as tf

from tensorflow.keras.datasets import imdb

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, GRU, Embedding

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.utils import to_categorical

We load the IMDB dataset, which is available in TensorFlow Keras. We will
restrict the dataset to the top 10,000 words:

top_words = 10000

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)

We need to make sure all sequences have the same length. For this, we will
use padding:

max_review_length = 500

X_train = pad_sequences(X_train, maxlen=max_review_length)

X_test = pad_sequences(X_test, maxlen=max_review_length)

We will build a simple model with an Embedding layer, followed by a GRU
layer with dropout, and finally, a Dense layer for the output:

embedding_vector_length = 32

model = Sequential()

model.add(Embedding(top_words, embedding_vector_length,
input_length=max_review_length))

model.add(GRU(units=100, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation='sigmoid'))

We will compile the model using binary cross-entropy as the loss function
(since it is a binary classification problem) and optimizer:

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=
['accuracy'])

print(model.summary())

Figure 8.7 depicts model summary:

Figure 8.7: Model summary

Now, let us train the model using the training dataset. We will also monitor its
performance on the test dataset:

model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3,
batch_size=64)

Figure 8.8 depicts model training epochs:

Figure 8.8: Model training epochs

Let us evaluate the model’s performance on the test dataset:

scores = model.evaluate(X_test, y_test, verbose=0)

print("Accuracy: %.2f%%" % (scores[1] * 100))

Figure 8.9 depicts model accuracy:

Figure 8.9: Model accuracy

Conclusion

In conclusion, RNNs are a type of neural network that are well-suited for
processing sequential data, such as time series data or natural language
text. RNNs have the ability to maintain a hidden state that captures
information from the past, which allows them to capture dependencies
between elements in the sequence. LSTM networks and GRU networks
are variants of RNNs that use additional gates to control the flow of
information through the network, which allows them to better capture
long-term dependencies in the data. LSTMs and GRUs have been widely
used in natural language processing tasks, such as language translation
and language modeling, and in other areas like speech recognition and
financial forecasting. In the Keras library, the LSTM and GRU layers can
be easily added to a model, making it easy to experiment with these
powerful models.

Multiple choice Questions

What is a characteristic of RNNs that makes them well-suited for
processing sequential data?

They use convolutional layers to extract features from the data.

They use a single hidden state to capture the entire history of the input
sequence.

They use a fixed-length input window to process the data.

They use a series of hidden states to selectively remember and forget
information from the past.

What is a disadvantage of using traditional RNNs to model long-term
dependencies in time series data?

They require a large number of parameters.

They are computationally inefficient.

They suffer from the vanishing gradient problem.

They are prone to overfitting.

How do LSTM networks address the vanishing gradient problem in
traditional RNNs?

They use a series of hidden states, known as memory cells, to selectively
remember and forget information from the past.

They use a gating mechanism to control the flow of information through
the network.

They use a combination of convolutional and fully connected layers to
extract features from the data.

They use a fixed-length input window to process the data.

How do GRU networks differ from LSTM networks?

GRU networks use a simpler gating mechanism that requires fewer
parameters.

GRU networks are more computationally efficient than LSTM networks.

GRU networks are more powerful than LSTM networks.

GRU networks are less prone to overfitting than LSTM networks.

Which of the following is a common use case for RNNs, LSTMs, and
GRUs?

Object detection in images

Speech recognition

Language translation

Financial forecasting

Answers

b

c

a

a

b

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 9

Generative Adversarial Networks

The true test of artificial intelligence is not the ability to imitate humans

but the ability to outdo them.
— Tim Urban

A Generative Adversarial Network is a type of neural network used to
generate synthetic data that is similar to a given training dataset. A GAN
is a type of computer program that is used to create synthetic data that
looks like it could be real. For example, a GAN could be used to generate
synthetic images of people that look like they could be real photographs.

The way a GAN works is by using two different parts: a generator and a
discriminator. The generator is like an artist who creates synthetic images,
and the discriminator is like a critic who judges whether the images are
real or fake.

The generator and discriminator work together to improve the quality of
the synthetic images. The generator creates synthetic images and tries to
fool the discriminator into thinking they are real. The discriminator looks
at the images and tries to tell if they are real or fake. As the generator gets
better at creating synthetic images that the discriminator cannot tell are
fake, the discriminator gets better at telling real images from synthetic
ones.

Through this process, the GAN is able to learn what real images look like,
and it can use this knowledge to create synthetic images that look more
and more like real ones. GANs have been used to create a wide range of
synthetic data, including images, audio, and text.

Structure

In this chapter, we will cover the following topics:

Types of GAN

Vanilla GAN Python implementation

Key difference between Vanilla GAN and DCGAN

DCGAN Python implementation

StyleGAN Python implementation

Objectives

After studying this chapter, you will be aware of the various types of
GAN. Additionally, you will be able to implement important GAN
architectures in Python.

Types of GAN

There are several types of Generative Adversarial Networks including the
following:

Vanilla This is the original GAN architecture, proposed by Ian
Goodfellow et al. in 2014. This type of GAN consists of a generator
network and a discriminator network, trained using the adversarial
process..

Conditional GAN This is a variant of the GAN architecture that allows the
generation of synthetic data to be controlled by a set of external
conditions.

Deep Convolutional GAN This is a variant of the GAN architecture that
uses deep convolutional neural networks as the generator and
discriminator networks. This type of GAN is particularly well suited for
generating images.

Wasserstein GAN This is a variant of the GAN architecture that uses the
Wasserstein distance as the loss function for training the generator and
discriminator networks.

Style This is a variant of the GAN architecture that uses an intermediate
latent space to control the style of the generated data. This type of GAN is
particularly well suited for generating images with high levels of
variability.

These are just a few examples of the many types of GANs that have been
developed. GANs are a rapidly evolving field, and new variations and
improvements are being proposed and developed all the time.

Vanilla GAN Python implementation

In this section, we will walk you through a step-by-step implementation of a
Vanilla GAN using Python and PyTorch. GANs consist of two neural
networks, i.e., a generator and a discriminator, that are trained simultaneously.
The generator creates new data instances, while the discriminator evaluates
them. The goal is to train the generator to create data that is indistinguishable
from real data for the discriminator.

Make sure you have PyTorch installed in your environment. Use the below
pip command for the installation.

pip install torch torchvision

Let us begin by importing the necessary libraries.

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

import matplotlib.pyplot as plt

import numpy as np

For this tutorial, we will use the MNIST dataset. The dataset consists of
handwritten digits and is a common dataset used for training simple models in
machine learning.

transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])

train_dataset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

The generator takes a random noise vector as input and produces an output
image. The discriminator takes an image as input and outputs a scalar
representing the probability of the input image being real.

Generator

class Generator(nn.Module):

 def __init__(self):

 super(Generator, self).__init__()

 self.main = nn.Sequential(

 nn.Linear(100, 256),

 nn.ReLU(),

 nn.Linear(256, 512),

 nn.ReLU(),

 nn.Linear(512, 1024),

 nn.ReLU(),

 nn.Linear(1024, 28*28),

 nn.Tanh()

)

 def forward(self, input):

 return self.main(input).view(-1, 1, 28, 28)

Discriminator

class Discriminator(nn.Module):

 def __init__(self):

 super(Discriminator, self).__init__()

 self.main = nn.Sequential(

 nn.Linear(28*28, 1024),

 nn.LeakyReLU(0.2),

 nn.Linear(1024, 512),

 nn.LeakyReLU(0.2),

 nn.Linear(512, 256),

 nn.LeakyReLU(0.2),

 nn.Linear(256, 1),

 nn.Sigmoid()

)

 def forward(self, input):

 return self.main(input.view(-1, 28*28))

We will use the binary cross entropy loss and the Adam optimizer.

Create the Generator and Discriminator

generator = Generator()

discriminator = Discriminator()

Loss function

criterion = nn.BCELoss()

Optimizers

lr = 0.0002

optimizer_G = optim.Adam(generator.parameters(), lr=lr)

optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)

Now, we will train the GAN. For each batch of real data, we train the
discriminator with a batch of fake data generated by the generator. We then
train the generator to produce more realistic data.

num_epochs = 30

latent_vector_size = 100

for epoch in range(num_epochs):

 for i, (images, _) in enumerate(train_loader):

 batch_size = images.size(0)

 # Labels

 real_labels = torch.ones(batch_size, 1)

 fake_labels = torch.zeros(batch_size, 1)

 # Train Discriminator

 outputs = discriminator(images)

 d_loss_real = criterion(outputs, real_labels)

 real_score = outputs

 z = torch.randn(batch_size, latent_vector_size)

 fake_images = generator(z)

 outputs = discriminator(fake_images.detach())

 d_loss_fake = criterion(outputs, fake_labels)

 fake_score = outputs

 d_loss = d_loss_real + d_loss_fake

 optimizer_D.zero_grad()

 d_loss.backward()

 optimizer_D.step()

 # Train Generator

 z = torch.randn(batch_size, latent_vector_size)

 fake_images = generator(z)

 outputs = discriminator(fake_images)

 g_loss = criterion(outputs, real_labels)

 optimizer_G.zero_grad()

 g_loss.backward()

 optimizer_G.step()

 print(f'Epoch [{epoch+1}/{num_epochs}], d_loss: {d_loss.item():.6f},
g_loss: {g_loss.item():.6f}, '

 f'D(x): {real_score.mean().item():.6f}, D(G(z)):
{fake_score.mean().item():.6f}')

Figure 9.1 depicts training epoch status:

Figure 9.1: Training epoch status

Finally, let us visualize some images generated by the trained generator:

z = torch.randn(1, latent_vector_size)

sample_images = generator(z).detach().numpy().reshape(-1, 28, 28)

plt.figure(figsize=(6, 6))

for i in range(1):

 plt.subplot(1, 1, i+1)

 plt.imshow(sample_images[i], cmap='gray')

 plt.axis('off')

plt.show()

Figure 9.2 depicts a GAN generated sample image:

Figure 9.2 : GAN generated sample image

You have just trained your first GAN in PyTorch. You can further experiment
with different architectures, loss functions, and datasets to improve the
performance and quality of generated images.

Key difference between Vanilla GAN and DCGAN

A Deep Convolutional Generative Adversarial Network is a type of GAN
that is composed of convolutional layers. GANs are a type of neural
network that is designed to generate new, previously unseen examples
from a given dataset, such as images or audio. A GAN consists of two
parts: a generator network that creates new examples, and a discriminator
network that tries to distinguish the generated examples from the real
examples in the dataset.

In a DCGAN, the generator network is composed of transposed
convolutional layers, which increase the spatial resolution of the input,
while the discriminator network is composed of convolutional layers,
which decrease the spatial resolution of the input. The goal of the
generator is to create examples that are similar to the real examples in the
dataset, while the goal of the discriminator is to distinguish the generated
examples from the real ones.

The generator and discriminator are trained together in an adversarial
fashion, with the generator trying to create examples that can fool the
discriminator and the discriminator trying to correctly identify the
generated examples. The training process continues until the generator is
able to create examples that are indistinguishable from the real examples
to the discriminator.

DCGANs have been used to generate a wide range of data, including
images, audio, and text. They have been used for various tasks, such as

image generation, style transfer, and super-resolution.

DCGAN are generally considered as one of the first GANs architecture
that has been successful on image generation tasks and hence, a
benchmark for other image generation techniques.

The key difference between a Vanilla GAN and a DCGAN is the
architecture of the generator and discriminator networks.

The generator network in a Vanilla GAN typically consists of a series of
fully connected layers, which are not ideal for working with image data.
This is because fully connected layers do not take into account the 2D
spatial structure of an image and can lead to checkerboard artifacts in the
generated images.

On the other hand, the discriminator network in a Vanilla GAN typically
consists of a series of fully connected layers, followed by a sigmoid
activation function, which outputs a probability of the input being a real
image.

In contrast, the generator network in a DCGAN consists of a series of
transposed convolutional layers, which increase the spatial resolution of
the input and take into account the 2D spatial structure of the images. This
leads to generated images with a more natural and smooth appearance.

The discriminator network in a DCGAN typically consists of a series of
convolutional layers, followed by batch normalization and LeakyReLU,
which is more suited for image data.

In summary, the main difference between a Vanilla GAN and a DCGAN is
that the generator and discriminator in a DCGAN use convolutional
layers, which are well suited for working with image data and producing
visually realistic results, while the generator and discriminator in a Vanilla
GAN use fully connected layers, which are not well suited for working
with image data and can lead to poor results.

DCGAN Python implementation

In this section, we will walk you through the implementation of a
simplified Deep Convolutional Generative Adversarial Network in Python
using TensorFlow. The aim is to create an end-to-end example that you can
easily follow and execute. DCGAN is an architecture for training GANs to
generate high-quality images.

Prerequisites:

Python 3

TensorFlow 2.x

Make sure you have the prerequisites installed:

pip install tensorflow

Let us start by importing the necessary libraries:

import tensorflow as tf

from tensorflow.keras.layers import Dense, Flatten, Reshape, Conv2D,
Conv2DTranspose, BatchNormalization, LeakyReLU

from tensorflow.keras.models import Sequential

from tensorflow.keras.optimizers import Adam

import numpy as np

import matplotlib.pyplot as plt

For this example, we will use the MNIST dataset, a classic dataset of
handwritten digits:

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()

train_images = (train_images - 127.5) / 127.5 # Normalize the images to
[-1, 1]

The generator takes a random noise vector as input and generates an
image:

def make_generator_model():

 model = Sequential()

 # Dense layer

 model.add(Dense(256 * 7 * 7, input_shape=(100,), use_bias=False))

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 # Reshape layer

 model.add(Reshape((7, 7, 256)))

 # Convolutional Transpose layers

 model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1),
padding='same', use_bias=False))

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same',
use_bias=False))

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 # Output layer

 model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same',
use_bias=False, activation='tanh'))

 return model

generator = make_generator_model()

The discriminator takes an image as input and outputs the probability of
the image being real:

def make_discriminator_model():

 model = Sequential()

 # Convolutional layers

 model.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))

 model.add(LeakyReLU())

 model.add(BatchNormalization())

 model.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

 model.add(LeakyReLU())

 model.add(BatchNormalization())

 # Flatten layer

 model.add(Flatten())

 # Output layer

 model.add(Dense(1))

 return model

discriminator = make_discriminator_model()

We will use the binary cross-entropy loss for both the generator and the
discriminator. The generator tries to minimize this loss, while the
discriminator tries to maximize it:

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):

 real_loss = cross_entropy(tf.ones_like(real_output), real_output)

 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

 total_loss = real_loss + fake_loss

 return total_loss

def generator_loss(fake_output):

 return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = Adam(1e-4)

discriminator_optimizer = Adam(1e-4)

This function defines the operations performed in a single training step:

@tf.function

def train_step(images):

 noise = tf.random.normal([batch_size, 100])

 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

 generated_images = generator(noise, training=True)

 real_output = discriminator(images, training=True)

 fake_output = discriminator(generated_images, training=True)

 gen_loss = generator_loss(fake_output)

 disc_loss = discriminator_loss(real_output, fake_output)

 gradients_of_generator = gen_tape.gradient(gen_loss,
generator.trainable_variables)

 gradients_of_discriminator = disc_tape.gradient(disc_loss,
discriminator.trainable_variables)

 generator_optimizer.apply_gradients(zip(gradients_of_generator,
generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,
discriminator.trainable_variables))

We will train the DCGAN and periodically save generated images to
visually inspect the progress:

def generate_and_save_images(model, epoch, test_input):

 predictions = model(test_input, training=False)

 predictions = (predictions + 1) * 127.5

 plt.figure(figsize=(4, 4))

 for i in range(predictions.shape[0]):

 plt.subplot(4, 4, i+1)

 plt.imshow(predictions[i, :, :, 0], cmap='gray')

 plt.axis('off')

 plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))

 plt.show()

epochs = 50

noise_dim = 100

num_examples_to_generate = 16

random_vector_for_generation =
tf.random.normal([num_examples_to_generate, noise_dim])

batch_size = 256

Batch and shuffle the data

train_dataset =
tf.data.Dataset.from_tensor_slices(train_images.reshape(train_images.shap
e[0], 28, 28, 1)).shuffle(60000).batch(batch_size)

Training Loop

for epoch in range(epochs):

 for images in train_dataset:

 train_step(images)

Generate and save images

 if (epoch + 1) % 5 == 0:

 generate_and_save_images(generator, epoch + 1,
random_vector_for_generation)

Once the training is complete, you can use the saved images to analyze the
results:

Display the final epoch's image

generate_and_save_images(generator, epochs,
random_vector_for_generation)

Figure 9.3 depicts DCGAN generated sample images:

Figure 9.3: DCGAN generated sample images

This completes the DCGAN example. Note that training a GAN can be
tricky and may require tweaking hyperparameters or using different
architecture choices. However, this simplified example should give you a
foundation to build upon. Happy coding!

StyleGAN Python implementation

StyleGAN is a type of GAN architecture that was introduced by NVIDIA
in 2018. It is specifically designed for generating high-resolution images,
such as photographs of faces. The key innovation of StyleGAN is the use
of style-based generator architecture, which separates the high-level
structure of the image, such as the pose and identity of a face, from the
low-level details, such as the texture of the skin and the color of the eyes.
This separation allows the generator to generate highly realistic images
while still maintaining the ability to control high-level attributes, such as
the pose or the expression of a face. Additionally, StyleGAN uses an
Adaptive Instance Normalization technique that enables transferring the
style from a reference image to the generated image. This allows for high-
quality control over the fine details of the image, such as the wrinkles and
the freckles on a face, while maintaining the overall structure of the
image.

Here is an example of how you can implement a StyleGAN in Python.

Setup environment

Before you begin, make sure you have installed the required libraries. You
can install them using

pip install torch torchvision matplotlib

Start by importing the necessary libraries:

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

import matplotlib.pyplot as plt

import numpy as np

Use GPU for faster computation if available:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

For this tutorial, we will use the CIFAR-10 dataset:

batch_size = 64

transform = transforms.Compose([

 transforms.Resize(64),

 transforms.ToTensor(),

 transforms.Normalize((0.5,), (0.5,))

])

dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

Define a class for Generator:

class Generator(nn.Module):

 def __init__(self, z_dim=128, channels=3):

 super().__init__()

 self.z_dim = z_dim

 self.gen = nn.Sequential(

Input: N x z_dim x 1 x 1

 self._block(z_dim, 512, 4, 1, 0), # 4x4

 self._block(512, 256, 4, 2, 1), # 8x8

 self._block(256, 128, 4, 2, 1), # 16x16

 self._block(128, 64, 4, 2, 1), # 32x32

Output: N x channels x 64 x 64

 nn.ConvTranspose2d(64, channels, 4, 2, 1),

 nn.Tanh()

)

 def _block(self, in_channels, out_channels, kernel_size, stride,
padding):

 return nn.Sequential(

 nn.ConvTranspose2d(in_channels, out_channels, kernel_size,
stride, padding, bias=False),

 nn.BatchNorm2d(out_channels),

 nn.ReLU(inplace=True),

)

 def forward(self, x):

 return self.gen(x.view(len(x), self.z_dim, 1, 1))

Define a class for Discriminator

class Discriminator(nn.Module):

 def __init__(self, channels=3):

 super().__init__()

 self.disc = nn.Sequential(

Input: N x channels x 64 x 64

 self._block(channels, 64, 4, 2, 1), # 32x32

 self._block(64, 128, 4, 2, 1), # 16x16

 self._block(128, 256, 4, 2, 1), # 8x8

 self._block(256, 512, 4, 2, 1), # 4x4

Output: N x 1

 nn.Conv2d(512, 1, 4, 1, 0),

 nn.Sigmoid()

)

 def _block(self, in_channels, out_channels, kernel_size, stride,
padding):

 return nn.Sequential(

 nn.Conv2d(in_channels, out_channels, kernel_size, stride,
padding, bias=False),

 nn.BatchNorm2d(out_channels),

 nn.LeakyReLU(0.2, inplace=True),

)

 def forward(self, x):

 return self.disc(x).view(-1)

z_dim = 128

lr = 0.0002

gen = Generator(z_dim).to(device)

gen_opt = optim.Adam(gen.parameters(), lr=lr)

disc = Discriminator().to(device)

disc_opt = optim.Adam(disc.parameters(), lr=lr)

criterion = nn.BCELoss()

n_epochs = 5

sample_size = 64

fixed_noise = torch.randn(sample_size, z_dim, device=device)

for epoch in range(n_epochs):

 for real, _ in dataloader:

 real = real.to(device)

 noise = torch.randn(real.shape[0], z_dim, device=device)

 fake = gen(noise)

 # Train Discriminator

 disc_opt.zero_grad()

 disc_loss = criterion(disc(real), torch.ones(real.size(0),
device=device)) + criterion(disc(fake.detach()), torch.zeros(real.size(0),
device=device))

 disc_loss.backward()

 disc_opt.step()

 # Train Generator

 gen_opt.zero_grad()

 gen_loss = criterion(disc(fake), torch.ones(real.size(0),
device=device))

 gen_loss.backward()

 gen_opt.step()

 # Output Images

 with torch.no_grad():

 samples = gen(fixed_noise)

 samples = (samples + 1) / 2

 samples = samples.cpu().permute(0, 2, 3, 1).numpy()

 plt.figure(figsize=(6, 6))

 for i in range(16):

 plt.subplot(4, 4, i + 1)

 plt.imshow(samples[i])

 plt.axis('off')

 plt.show()

This implementation of StyleGAN is a simplified version of the original
architecture, which uses a more complex generator architecture consisting
of multiple levels, where each level is composed of multiple blocks,
wherein each block is composed of several layers. Note that the
architecture and hyperparameters are simplified and may not generate
good results; it is important to experiment with different architectures and
hyperparameters to obtain better results.

Conclusion

In this chapter, we explored several important GAN architectures,
including Vanilla GANs, DCGANs, and StyleGANs. We also provided
example implementations of these architectures in Python using the
Python Keras library.

Vanilla GANs are the simplest GAN architecture, consisting of a generator
and a discriminator that are both simple fully connected neural networks.
DCGANs are an extension of Vanilla GANs, which use deep
convolutional neural networks for both the generator and discriminator.
And style GANs, which is one of the most advanced architectures that
allows the generation of high-resolution images, such as photographs of
faces. With Style GANs, the generator learns to produce new data samples
that are similar to the training data, while the discriminator learns to
distinguish the generated samples from the real samples.

GANs can be used for a wide variety of tasks, such as image synthesis,
image-to-image translation, and image super-resolution. With continued
advancements in deep learning techniques and increasing computational
resources, GANs will likely play an even more important role in the field
of artificial intelligence in the future.

In the next chapter, we will discuss the ground-breaking algorithm in the
deep learning sphere: Transformers. We will discuss the various
Transformers architectures, the difference between contextual and non-

contextual embeddings, and finally, Python code implementation on two
major NLP libraries: GPT and BERT.

Questions

What is the main goal of the generator network in a GAN?

To produce new data samples that are similar to the training data

To distinguish the generated samples from the real samples

To optimize the discriminator network

To classify the input data

What type of neural networks are typically used for the generator and
discriminator in a DCGAN?

Simple fully-connected neural networks

Deep convolutional neural networks

Recurrent neural networks

Transformer networks

What is the main difference between a Vanilla GAN and a DCGAN?

DCGANs use deep convolutional neural networks, while Vanilla GANs
use simple fully-connected neural networks

DCGANs are designed for image generation, while Vanilla GANs are
designed for text generation

DCGANs use an adversarial loss function, while Vanilla GANs use a
reconstruction loss function

DCGANs are designed for image super-resolution, while Vanilla GANs
are designed for image-to-image translation

How does StyleGAN differ from other GAN architectures?

StyleGAN separates the high-level structure of the image from the low-
level details

StyleGAN uses an adaptive instance normalization technique

StyleGAN uses progressive growing of GANs

All of the above

What is the main disadvantage of GANs?

GANs are difficult to train and often suffer from stability issues

GANs are very computationally expensive

GANs can only be used for a limited set of tasks

GANs are not interpretable

Answers

a

b

a

d

a

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

CHAPTER 10

Transformers

Transformers are the backbone of data science and natural language
processing, they are the key to unlocking the true potential of data.

— Unknown

Transformers are a type of deep learning model that help computers
understand and generate language. Think about all the different ways you
can say the same thing, like “I’m going to the store” or “I am off to the
store”, or “I will go to the store”; they all mean the same thing but are
written differently. Transformers help a computer understand all the
different ways of saying the same thing. They also help a computer
generate new sentences that make sense, like a computer writing a story or
a poem. It is like having a good teacher to help you with your writing, but
instead of just helping you, it helps the computer understand and write
language too!

Transformers are a type of neural network architecture that have become
increasingly popular in the field of Natural Language Processing and other
domains like computer vision, speech recognition and data science. The
architecture, introduced in the 2017 paper Attention Is All You Need by
Google researchers, utilizes self-attention mechanisms to process input
sequences in a parallel manner, allowing for faster and more efficient
training and inference. These models have been shown to achieve state-of-
the-art performance on a variety of NLP tasks and have also been applied
to other domains with promising results.

Structure

In this chapter, we will cover the following topics:

Introduction to Transformers in deep learning

Various Transformers architectures

Difference between contextual and non-contextual embeddings

BERT Python implementation

GPT Python implementation

Objectives

After studying this chapter, you should be able to understand the concept
of Transformers architectures and how it is transforming NLP domain
within data science. You should also have understood the process and the
underlying code to implement various Transformer-based architectures
using Python.

Introduction to Transformers in deep learning

In recent years, deep learning has made significant progress in the field of
NLP. One of the most important contributions to this progress has been the
Transformer model. In this chapter, we will explore the Transformer
model, its architecture, and how it has revolutionized the field of NLP.

The Transformer model was first introduced in the paper Attention is All
You Need by Google researchers in 2017. The Transformer model is a
neural network architecture that is designed to process sequences of data,
such as sentences or paragraphs of text. The key innovation of the
Transformer model is the use of self-attention mechanisms, which allows
the model to weigh the importance of different parts of the input sequence
when making predictions.

The Transformer model comprises an encoder and decoder. The encoder
takes the input sequence and produces a set of hidden representations,
called the keys and The decoder then takes these hidden representations
and uses them to make predictions about the output sequence. The self-
attention mechanism is applied in the encoder, where it allows the model
to focus on specific parts of the input sequence when producing the
hidden representations.

One of the most important applications of the Transformer model is in
pre-training large language models. The Bidirectional Encoder
Representations from Transformers model, developed by Google

researchers in 2018, is a transformer-based model that is pre-trained on a
massive amount of unlabeled text data. BERT is trained to understand the
meaning of words in context and has shown to be very effective in a wide
range of NLP tasks.

Generative Pre-training Transformer model, developed by OpenAI in
2018, is another large-scale language model that is trained on a massive
amount of text data. GPT is trained to generate text and has been used in a
wide range of natural language generation tasks, such as language
translation and text summarization.

The Transformer architecture has also been used to improve the
performance of other deep learning models for NLP tasks. The Robustly
Optimized BERT model, developed by Facebook AI in 2019, is an
improved version of BERT that is trained on more data with more
advanced techniques. The Text-to-Text Transfer Transformer model,
developed by Google AI in 2019, is designed for a wide range of natural
language processing tasks.

In conclusion, the Transformer model has been a major breakthrough in
the field of natural language processing. Its self-attention mechanism
allows the model to weigh the importance of different parts of the input
sequence, and its architecture is particularly well suited to processing
sequences of data. The Transformer model has been used to pre-train large
language models and improve the performance of other deep learning
models for NLP tasks. As the demand for more sophisticated natural
language processing continues to grow, the Transformer model will likely
continue to be an important part of the deep learning landscape.

Various transformers architectures

There are several variations of the Transformer architecture that have been
developed and used in various NLP and other tasks. Some of the most
popular Transformer architectures are as follows:

This model, developed by Google, is trained on a large corpus of text data
and can be fine-tuned for various NLP tasks, such as question answering
and sentiment analysis.

This model, developed by OpenAI, is trained on a massive amount of text
data and can be fine-tuned for various language tasks, such as language
translation, text generation and summarization.

This model is an optimized version of BERT that uses a larger dataset and
other techniques to improve performance.

This model is also developed by Google. It uses a permutation-based
architecture that allows it to consider all the context in a given sentence,
unlike BERT, which only considers the context to the left of a given word.

This model, also developed by Google, is trained on a diverse set of data
sources and tasks and can be fine-tuned for a wide range of language tasks
using a simple text-to-text transfer learning framework.

This model, developed by Google, is a lite version of BERT that is faster
and requires less memory resources but still maintains good performance.

This model, developed by Microsoft, is an extension of BERT that uses
dynamic masked self-attention, which can improve the performance of the
model.

These are some most popular Transformer architectures, but new models
and variations are being developed and proposed regularly.

Difference between contextual and non-contextual embeddings

Embeddings are a way to represent words, phrases, or other linguistic
units in a numerical format that can be used as input to machine learning
models. Embeddings can be either contextual or non-contextual:

Contextual embeddings take into account the context in which a word or
phrase appears. They assign different embeddings to the same word,
depending on the context. For example, the embedding for the word “cat”
in the sentence “My cat is sleeping” would be different from the
embedding for the same word in the sentence “I saw a cat in the park.”

Non-contextual embeddings, also known as static embeddings, represent a
word or phrase with a fixed, pre-trained vector, regardless of the context
in which it appears. For example, the embedding for the word “cat” would
be the same regardless of whether it appears in the sentence “My cat is
sleeping” or in “I saw a cat in the park.”

BERT is a transformer-based model that generates contextual embeddings
for words and phrases. It uses a technique called self-attention to analyze
the context in which a word appears in a sentence. This allows BERT to
generate embeddings that take into account not only that word but also the
words that appear before and after it in the sentence. BERT also uses a
technique called pre-training, which trains the model on a large corpus of
text data before fine-tuning it for a specific task. This allows BERT to

generate high-quality embeddings that can be used for various NLP tasks,
such as sentiment analysis, question answering, and language translation.

In summary, BERT generates contextual embeddings, which are more
informative and accurate than non-contextual embeddings, by using a self-
attention mechanism and pre-training on a large corpus of text data. These
embeddings are useful for various natural language processing tasks.

BERT Python implementation

In this section, we will discuss an example of how to produce word
embeddings using regular methods and BERT.

Using regular methods:

from gensim.models import Word2Vec

Train a Word2Vec model on a dataset

sentences = [['this', 'is', 'the', 'first', 'sentence'], ['this', 'is', 'the', 'second',
'sentence']]

model = Word2Vec(sentences, size=100, window=5, min_count=1,
workers=4)

Get the embedding for the word 'sentence'

word_embedding = model.wv['sentence']

Using BERT:

from transformers import BertTokenizer, BertModel

Load the BERT tokenizer and model

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

model = BertModel.from_pretrained('bert-base-uncased')

Tokenize the input text

text = "This is an example sentence."

tokenized_text = tokenizer.tokenize(text)

Convert the tokens to their corresponding IDs

input_ids = tokenizer.convert_tokens_to_ids(tokenized_text)

Add the necessary special tokens

input_ids = [101] + input_ids + [102]

Create the attention masks

attention_masks = [1] * len(input_ids)

Convert the input IDs and attention masks to tensors

input_ids = torch.tensor(input_ids).unsqueeze(0)

attention_masks = torch.tensor(attention_masks).unsqueeze(0)

Pass the input through the model to get the embeddings

with torch.no_grad():

 last_hidden_states = model(input_ids, attention_masks)[0]

Get the embedding for the word 'sentence'

word_embedding = last_hidden_states[0]
[tokenized_text.index('sentence')]

BERT can produce more informative and accurate embeddings than
regular methods like Word2Vec because of its self-attention mechanism,
which allows it to take into account the context in which a word appears
in a sentence. BERT also uses pre-training, which trains the model on a
large corpus of text data before fine-tuning it for a specific task; this
makes its embeddings more generalizable. Additionally, BERT uses a
transformer-based architecture that allows it to process input sequences in
a parallel manner, which makes the training and inference faster.

In summary, BERT generates embeddings that consider the context in
which a word appears that leads to better performance on a wide range of
natural language processing tasks than regular methods like Word2Vec.

GPT Python implementation

Install the Hugging Face’s transformers library:

pip install transformers

Load a pre-trained GPT model:

from transformers import GPT2Tokenizer, GPT2LMHeadModel

Load the GPT-2 tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

Load the GPT-2 model

model = GPT2LMHeadModel.from_pretrained("gpt2")

Prepare the input data:

Tokenize the input text

text = "This is an example sentence."

tokenized_text = tokenizer.tokenize(text)

Convert the tokens to their corresponding IDs

input_ids = tokenizer.convert_tokens_to_ids(tokenized_text)

Add the necessary special tokens

input_ids = [tokenizer.cls_token_id] + input_ids +
[tokenizer.sep_token_id]

Create the attention masks

attention_masks = [1] * len(input_ids)

Perform the NLP task:

Perform the language modeling task

outputs = attention_mask=attention_masks)

Get the predicted next token

= :]).item())

Fine-tune the model on a specific task:

from transformers import AdamW

6.

Define the loss function and the optimizer

loss_fn = nn.CrossEntropyLoss()

optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)

10.

Fine-tune the model on the task-specific dataset

for _ in trange(epochs, desc="Epoch"):

13. # Set the model to training mode

15.

 # Training loop

 for step, batch in enumerate(train_dataloader):

18. # Add batch to GPU

 batch = tuple(t.to(device) for t in batch)

20. # Unpack the inputs from our dataloader

 b_input_ids, b_attention_masks, b_labels = batch

22. # Clear out the gradients (by default they accumulate)

 optimizer.zero_grad()

24. # Forward pass

 outputs = model(b_input_ids, attention_mask=b_attention_masks,
labels=b_labels)

 loss = outputs[0]

27. # Backward pass

 loss.backward()

29. # Update parameters and take a step using the computed gradient

 optimizer.step()

It is important to note that in this example, you should replace
train_dataloader and epochs with the appropriate values for your dataset.
Also, it is recommended to use the DistributedDataParallel wrapper for

multiple gpu support or DataParallel for single gpu support to train the
model.

Conclusion

In conclusion, Transformer architectures have revolutionized the field of
NLP and other domains like computer vision, speech recognition, and data
science. Transformer-based models like BERT and GPT have shown to
achieve state-of-the-art performance on a wide range of NLP tasks, such
as sentiment analysis, language translation, text generation,
summarization, and question answering.

Overall, Transformer-based models have proven to be highly effective for
a wide range of NLP tasks. BERT and GPT are some of the most popular
models among them; they are pre-trained models that can be fine-tuned on
specific NLP tasks. These models’ ability to consider the context of a
word in a sentence, thanks to their self-attention mechanism, makes them
highly powerful. The Hugging Face’s transformers library provides an
easy-to-use interface to fine-tune and use these models. With the growing
amount of textual data, the use of Transformer models will continue to
increase in the industry, and they will play a significant role in the
development of advanced NLP applications. In addition, with the ongoing
research on transformer-based models, we can expect to see even more
powerful models in the future.

These models are widely adopted in the industry for various NLP
applications. With the advancements in language models and Transformer
architectures, we can expect to see more exciting NLP applications in the
future.

Questions

What is the main advantage of transformer-based models over traditional
models?

They take into account the context of a word in a sentence

They are pre-trained on a large corpus of data

They use self-attention mechanisms

All of the above

BERT is a transformer-based model that generates which of the
following?

Non-contextual embeddings

Contextual embeddings

Static embeddings

None of the above

What is the main difference between BERT and GPT?

BERT generates contextual embeddings, while GPT generates non-
contextual embeddings

BERT is fine-tuned on specific NLP tasks, while GPT is pre-trained

BERT is pre-trained on a large corpus of text data, while GPT is fine-
tuned on specific NLP tasks

None of the above

How can we fine-tune a pre-trained transformer-based model on a specific
task?

By using a pre-defined loss function and optimizer

By using pre-trained weights as a starting point and training on the
specific task

By using a pre-defined dataset

All of the above

What is the purpose of the self-attention mechanism in transformer-based
models?

To take into account the context in which a word appears in a sentence

To pre-train the model on a large corpus of text data

To fine-tune the model on a specific task

None of the above

Answers

d

b

c

b

a

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

Index

A

activation functions 65

Exponential Linear Unit (ELU) 66

Leaky ReLU 66

Rectified Linear Unit (ReLU) 65

sigmoid 65

Softmax 66

Tanh (Hyperbolic Tangent) 66

Adam optimizer 68

Adaptive Instance Normalization (AdaIN) 220

Adaptive Moment Estimation (Adam) 190

advance Python libraries, for data science 8

Numpy

Pandas 10

ALBERT model 230

algorithms, for RNN implementation

Adaptive Moment Estimation (Adam) 190

Backpropagation Through Time (BPTT) 190

Gated Recurrent Unit (GRU) 191

Long Short-Term Memory (LSTM) 190

Stochastic Gradient Descent (SGD) 190

Truncated Backpropagation Through Time (TBPTT) 190

Anaconda 2

installing 4

Artificial Neural Networks (ANN)

activation functions 66

backward propagation 66

batch 67

epoch 67

feed forward 65

iteration 67

learning rate 68

loss function 66

neurons

optimizers 67

artificial neuron 62

AutoViz 40

installing 40

report, analyzing 42

URL 43

B

Backpropagation Through Time (BPTT) 190

BERT Python implementation 232

Bidirectional Encoder Representations from Transformers (BERT) model
230

C

classification model, with neural network

building 68

data loading 70

data pre-processing 71

dataset 69

deep neural network experiment 78

descriptive analytics 71

implementation 69

modeling 72

problem statement 69

Python libraries 69

shallow neural network experiment

CNN components 94

convolution, on RGB image 102

convolution operation, with multiple filters 102

convolution process

digital image, as numpy array

kernels/filters 96

padding 101

required libraries 94

stride 100

CNN implementation, in Python

data loading 108

Python libraries, loading 107

confusion matrix

creating 115

plotting 113

contextual embeddings 230

Convolutional Neural Network (CNN) 93

D

data 1

DCGAN Python implementation 214

data loading 214

DCGAN training 218

discriminator, building 216

generator, building 215

libraries, importing 214

loss functions and optimizers, defining 216

results, displaying 219

training step 217

DeBERT model 230

Deep Convolutional Generative Adversarial Network (DCGAN)

DeepLab 165

DeepLab V3+ 165

deep neural network experiment

confusion matrix 80

hidden layer 78

model evaluation 78

performance metrics 79

development environment

Anaconda, installing

Jupyter Notebook 6

Jupyter Notebook usability, enabling 7

Python packages, installing 8

setting up 2

E

EasyOCR 137

demo

embeddings 230

contextual embeddings 230

non-contextual embeddings 230

F

Facebook AI 229

FCN-8 165

FCN-8 prerequisites

Conv2DTranspose layers 175

encoder (VGG16 Base) 173

FCN-8s Model, defining 173

fully convolutionalization 174

model building 176

model compiling 176

model evaluation 177

model training 176

necessary libraries, importing 173

sample data generation 175

TensorFlow, installing 173

FCN-8 Python implementation 172

file formats 10

clipboard 14

csv 11

Excel 12

HTML tables

JSON 14

PDF

web scraping 18

Fully Convolutional Neural Network (FCN) 165

G

GAN types

Conditional GAN (cGAN) 206

Deep Convolutional GAN (DCGAN) 206

Style GAN 206

Vanilla GAN 206

Wasserstein GAN (WGAN) 206

Gated Recurrent Unit (GRU) 191

Gated Recurrent Unit implementation 199

data loading 200

data preprocessing 200

model building 200

model compiling 201

model evaluation 202

model training 201

necessary libraries, importing 200

Generative Adversarial Network (GAN) 205

Generative Pre-training Transformer (GPT) model 229

Google AI 229

GPT model 229

GPT Python implementation

H

hyperparameters tuning, with KerasTuner 117

Fashion MNIST dataset 117

implementation

I

image classification 164

image classification, with CNN 106

confusion matrix, creating 115

confusion matrix, plotting 113

data pre-processing 108

implementation 107

MNIST dataset 106

modeling

problem statement 106

image detection 164

image segmentation 164

image segmentation architectures 165

DeepLab 165

DeepLab V3+ 165

FCN-8 165

Linknet 165

Mask R-CNN 165

PSPNet 165

SegNet 165

U-Net 165

J

Jupyter Notebook 6

K

keras library 65

keras-ocr library 133

demo

KerasTuner 116

installing

keys 228

L

Lazy Predict 48

experimentation results, analyzing 50

installing 49

Linknet 165

long short-term memory implementation 195

data, preprocessing 196

dataset, loading 196

dataset matrix, creating 196

dataset, splitting 196

model building 197

model evaluation 198

model training 197

predictions, making 197

required libraries, importing 195

results, plotting 199

Long Short Term Memory (LSTM) 190

Lux 43

advanced features, in reports 48

installing 43

report, analyzing 44

report, saving to HTML file 47

visualizations, generating based on intent 46

M

Mask R-CNN 165

Mask R-CNN Python implementation

MNIST dataset 106

multi-class classification 68

N

Natural Language Processing (NLP) 227

neural network 64

neurons 62

non-contextual embeddings 230

Numerical Python 8

Numpy

O

object detection 164

object detection algorithms

comparison 149

experiment 2 158

experiment 3 159

experiment 4 159

experiment 5 160

Single Shot Detector (SSD) Python implementation

YOLO v3 Python implementation

object localization 148

OCR Python libraries

EasyOCR 137

keras-ocr library 133

Tesseract OCR 132

TrOCR 143

one convolution layer 103

dense layers 106

flattening 105

pooling 104

Optical Character Recognition (OCR) 130

Python libraries 131

optimizers

Adam 68

RMSprop optimizer 67

SGD 67

P

Pandas 10

Pandas profiling 28

installing 29

Jupyter Notebook widget, creating 35

report, analyzing

report, for big datasets 36

report, saving to HTML file 34

pandas read_csv method

efficiency, improving with 20

parameter

chunksize 24

dtype 22

usecols

PSPNet 165

PyCaret 50

advanced features 53

confusion matrix, plotting 55

experimentation results, analyzing 53

feature importance, plotting 55

installing 51

model performance, plotting 54

model, tuning 54

Python

for data science 1

Python packages

installing 8

R

Recurrent Neural Network (RNN) 189

algorithms, for implementation 190

Region-Based Convolutional Neural Network (R-CNN) 165

regression model, with neural network

building 80

data pre-processing

dataset 82

model evaluation

modeling

problem statement 81

RMSprop optimizer 67

RNN implementation 191

data, normalizing 192

data, reshaping 192

dataset, preparing 192

model compiling 193

model defining 192

model evaluation 195

model training 193

necessary libraries, importing 191

one hot encode output variable 192

predictions, demonstrating 194

Robustly Optimized BERT (RoBERT) model 229

S

SegNet 165

SGD optimizer 67

shallow neural network experiment

confusion matrix

hidden layer

model evaluation 74

performance metrics 75

Single Instruction, Multiple Data (SIMD) 9

Single Shot Detector (SSD) Python implementation

static embeddings 230

Stochastic Gradient Descent (SGD) 190

StyleGAN 220

StyleGAN Python implementation 220

architecture, defining 222

data loading 221

device, configuring 221

libraries, importing 220

loop, training 224

models and optimizers, initializing 223

setup environment 220

Sweetviz 36

DataFrames comparison report, generating 39

installing 37

report, analyzing 38

T

Tesseract OCR 131

demo 132

Text-to-Text Transfer Transformer (T5) model 230

Transformer architectures

ALBERT 230

BERT 229

DeBERT 230

GPT 229

RoBERT 229

T5 230

XLNet 230

Transformer model 228

transformers 227

in deep learning 229

TrOCR 143

demo 144

Truncated Backpropagation Through Time (TBPTT) 190

U

U-Net 165

U-Net prerequisites

data preprocessing 167

dataset loading 167

model training 170

necessary libraries, importing 166

results, visualizing

TensorFlow installation 166

training and test datasets, preparing 168

U-Net Model, building 168

U-Net Python implementation 166

prerequisites 166

V

values 228

Vanilla GAN

versus DCGAN 213

Vanilla GAN Python implementation 207

data loading 207

GAN training

generated images, visualizing 212

generator and discriminator, defining 208

libraries, importing 207

loss function and optimizers, defining 209

X

XLNet model 230

Y

YOLO v3 Python implementation

	Start

