

Build Serverless Apps on Kubernetes with Knative
Build, deploy, and manage serverless applications on Kubernetes

Amit Deshpande

Anuj Gupta

Ashish Saxena

www.bpbonline.com

Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied.
Neither the author, nor BPB Online or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use
of capitals. However, BPB Online cannot guarantee the accuracy of this
information.

First published: 2024

Published by BPB Online

WeWork

119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55515-797

www.bpbonline.com

Forewords

In recent years, serverless computing has emerged as a revolutionary
paradigm, transforming the way we build and deploy applications. With
its promise of scalability, reduced operational overhead, and pay-per-use
pricing, serverless architecture has captured the imagination of developers
and organizations alike. Among the many frameworks and platforms
available for serverless development, Knative stands out as a powerful and
flexible open-source solution. The ability to build and deploy applications
without worrying about infrastructure management has revolutionized the
way developers approach software development.

This book, "Serverless Apps with Knative" is a comprehensive resource
that delves into the depths of Knative, empowering readers to harness its
capabilities and unlock the full potential of serverless computing. With a
blend of theoretical concepts, practical examples, and hands-on exercises,
this book equips both beginners and experienced practitioners with the
knowledge and skills needed to develop, deploy, and manage serverless
applications using Knative.

The journey begins in Chapter where readers are introduced to the
fundamental concepts of serverless computing and provided with an
overview of Knative's build components. This chapter sets the stage for
the exploration of Knative's capabilities in the subsequent chapters. By the
end of Chapter readers will have a solid understanding of serving,
eventing, event sourcing, and event consumption in a serverless context.

Chapters 2 and 3 focus on the installation and configuration of Knative. In
Chapter readers will learn various methods to install and configure
Knative, gaining insights into the background of installation, different
installation approaches, and essential configuration concepts. The chapter
also provides step-by-step recipes to guide readers through the installation
process. Chapter 3 builds upon this foundation, introducing peripheral
tools and frameworks for implementing DevSecOps and observability
within the Knative serverless architecture. Through detailed recipes,
readers will learn how to provision GitHub repositories for GitOps, install
tools like ArgoCD, Prometheus, Grafana, Loki, and Jaeger, and verify the
installation of these essential components.

The subsequent chapters dive deeper into Knative's core functionalities.
Chapter 4 introduces the Knative CLI, guiding readers through its
installation, customization, and plugin concepts. Chapter 5 provides an
overview of Knative Functions, explaining the simple programming
model they offer. Through practical recipes, readers will learn to
implement and deploy use cases using Knative CLI, kubectl, and YAML
configurations.

Chapter 6 explores Knative Eventing, focusing on understanding event-
driven architectures and how Knative enables event-driven
communication. Readers will gain insights into creating custom resources
for Knative Eventing CRDs and deploying Apache Kafka clusters for
event sourcing. This chapter also covers autoscaling with Apache Kafka
and Knative Eventing, enabling readers to leverage these powerful
features for handling event-driven workloads effectively.

Chapter 7 introduces routers and autoscaling in the context of Knative.
Readers will discover how to deploy multiple versions of a service and

distribute traffic between them. The chapter also covers blue-green
deployments and canary release patterns, empowering readers to adopt
advanced deployment strategies with confidence.

The book culminates in Chapter where patterns and best practices for
utilizing Knative are explored. This chapter offers invaluable insights into
using Istio as the default networking layer for Knative, implementing
GitOps with GitHub actions and Argo CD for CI/CD, and achieving
observability with log aggregation using Loki, as well as utilizing Jaeger,
Prometheus, and Grafana.

"Serverless Apps with Knative" is a comprehensive and practical resource
that equips readers with the necessary skills to leverage the power of
Knative for building scalable and efficient serverless applications.
Whether you are a developer, architect, or IT professional, this book will
empower you to embrace serverless computing and harness the full
potential of Knative.

I commend the authors for their meticulous attention to detail,
comprehensive coverage of the subject matter, and their ability to make
complex concepts accessible to readers of all levels. I am confident that
this book will serve as an invaluable guide in your journey to mastering
Knative and unlocking the true potential of serverless architecture.

Happy reading and serverless coding!

— A B Vijay Kumar

IBM Fellow

CTO Hybrid Cloud Services

IBM

Second Foreword

As a Practice leader & Thought leader in the Hybrid Multi Cloud team at
IBM, I am responsible for partnering with multiple clients across
industries in their Business modernization strategies; and developing
skills, capabilities, tools & assets to facilitate & accelerate their Cloud
transformation journeys. Through my 26 years of career, I have been a
constant innovator, embracing new technologies that have changed &
disrupted the IT industry in a positive way. As an IBM Master Inventor
with 15+ issued & 6+ filed patents, and 30+ IP.com technical publications,
I have been an advocate of exploring new technologies to drive
efficiencies, productivity, environment sustainability and quality.

Serverless computing has numerous advantages, as it allows application
developers to focus only on the application code delivering business value
without worrying about underlying infrastructure, capacity planning,
scalability, and so on. Knative is one such novel upcoming framework in
Serverless technology that is changing the way applications are built and /
or modernized. Knative is a Cloud Native Computing Foundation (CNCF)
incubation open-source project, supported by major companies like IBM,
Google, VMWare, RedHat. It provides a Kubernetes based serverless
container platform to build, deploy & manage serverless workloads. It
abstracts away many of the complexities associated with infrastructure
management. By providing a cloud agnostic framework, it provides for
developers to leverage innovation from across cloud providers, shift from
one provider to another easily eliminating vendor lock in, and cater to a
multi / Hybrid Cloud environment.

Knative Serving, one of the two key components, provides a way to
deploy & run containerized serverless workloads on Kubernetes cluster
without worrying about infrastructure management. It handles the tasks
related to managing the lifecycle of the containerized application, routing
of traffic and revision control. It also scales the number of instances based
on the traffic automatically, and can even scale down to zero when there is
no traffic.

Knative Eventing, the other key component, provides the users a set of
APIs to use event-driven architecture for Serverless applications. These
APIs can be used to create components that route events from producers
to consumers that receive events. Creation, parsing, sending & receiving
of events is done in a cloud agnostic way.

This book introduces the reader to the concept of Serverless computing
from a beginner’s point of view, clarifying the concepts, detailing out the
serverless offerings from the different cloud providers and breaking the
myths related to the technology. It then introduces Knative and how it
helps implement Serverless containers. The book talks in detail about its
two key components (Serving & Eventing), Knative functions with hands-
on code recipes, installing & configuring Knative including setting up
GitOps, Observability and concepts like Autoscaling, Scale to zero,
Revisions, Traffic Splitting between revisions and so on. The book
provides detailed examples which will provide a deep understanding of
the subject and equip the readers with all the information needed to
develop production ready applications with Knative. In summary, whether
you are an Architect, Developer, Tester or a Business leader, this book has
something for you.

I am thrilled to see a book like this which starts from the basics, covering
the fundamentals of Serverless & Knative in particular, and then deep
dives into the various aspects of Knative. It also outlines the architectural
perspectives of Knative to me, as it traverses a learner’s journey from
Novice to an Experienced professional.

As someone who has led several Cloud modernization projects, I am
confident that Serverless & Knative provide tremendous benefits to
developers & leaders in Cloud development. This book provides a
complete reference to anyone who wishes to leverage Knative, one of the
finest technologies to have evolved recently.

Cheers !

— Deepak Gupta

IBM Master Inventor

IBM

Dedicated to

My wonderful kids:
Ansh
&
Anisha

About the Authors

Amit Deshpande is an Associate Partner & Executive Architect with IBM
and has 21+ years of experience in the IT industry. He is a Thought
Leader in the area of Digital Transformation & Hybrid Multi-Cloud
Technologies. He has extensive experience in solutions & delivering
multiple complex projects in Microservices/API, Integration, Event-
Driven, Hybrid Cloud Architectures for various Banking, Manufacturing,
and Automotive customers. He has been involved in the conceptualization
and development of multiple Cloud Assets. Amit is an IBM Senior
Certified Architect, Open Group Certified Distinguished Architect,
Google Certified Professional Cloud Architect, and AWS Certified
Solution Architect – Associate. Amit is a passionate mentor to several
budding Architects in their journey in Architect Profession. He is an
active member of the Architect Certification Review Board (CRB). He has
also filed three patents in Kubernetes / Containerization area.

Anuj Gupta is an Executive Architect in Hybrid Cloud Manage with a
specialization in Redhat-OpenShift Microservices, which is part of IBM
Cloud Application Services. Prior to this role, he was part of IBM
Application Innovation Lab and Export Blue, working as a Senior
Architect across multiple LOBs and Portfolios. During his 17+ years of
experience, he has been involved in defining technical architecture and
end-to-end delivery for multiple projects across Open Subsurface Data
Lake (OSDU Opensource with the Open Group) for IBM Data & AI, B2B
payments, Card Authorization System, Enterprise Digital Analytics, AP
and AR systems of large Financial Services clients. He has extensive

experience in developing cloud-native applications based on OpenShift
for various workloads (stateful and stateless) and also migration of various
monolith applications from VSS to IaaS and then to OpenShift using
microservice architecture.

Ashish Saxena is currently working as an Application Architect at IBM
and has 15+ years of experience in the IT industry. He is an SME for
Digital Transformation & Hybrid Cloud Technologies. He has extensive
experience in solutions and designing applications using microservices
and Event Driven architecture for various Telecommunication, Retail, and
Banking customers. Ashish is a certified Azure Solution Architect Expert.

About the Reviewer

Gaurav is a passionate technology leader and hands-on technologist, with
a track record of driving technical innovation. Gaurav has delivered
solutions for enterprises and start-ups operating in leadership,
management, architectural, and development capacities. Gaurav has over
26 years of experience, collaborating with some of the most well-known
technologies like Java, Microsoft, Angular, React, Python, PHP etc.
pertaining to the domains Medical, Media, Construction, Gaming,
Finance, ATM, Supply-chain, and so on. Gaurav has a doctorate in
computer science (Machine Learning) from California Public University.
Gaurav is a Microsoft MVP award recipient. He is a Mentor of Change
with AIM NITI Aayog, Govt. of India, Business Coach with Business
Blaster, Govt of NCT of Delhi. He is a lifetime member of the Computer
Society of India (CSI), an advisory member and senior mentor at
IndiaMentor. He has authored books across-the-technologies. Recently,
Gaurav has recognized as a world record holder for writing books in
exceptional technologies.

Acknowledgement

I would like to take this opportunity to express my profound gratitude to
my family – my parents, my wonderful wife Vidyuta, and my brother
Amogh. Their unwavering support and encouragement have been
instrumental in my journey.

I extend my heartfelt thanks to my esteemed friends and colleagues, Anuj
Gupta and Ashish Saxena, for their invaluable contributions as co-authors
of this book. Their extensive industry experience and technical prowess
have added immense value to the book.

My sincere appreciation goes to the exceptional team at BPB Publications
for their guidance and expertise throughout the book's development
process. The contributions from reviewers, technical experts, and editors
have been indispensable.

I am deeply grateful to my mentors, notably A B Vijay Kumar and Deepak
Gupta, who have served as a constant source of inspiration and guided me
towards the path of becoming an author. I would also like to express my
gratitude to IBM and my management for their encouragement and
support in writing this book.

Finally, I would like to extend my appreciation to all the readers who have
taken an interest in this book and for their support in bringing it to
fruition.

Preface

In the ever-evolving landscape of software development, there has been a
continuous search for tools and methodologies that streamline the process
of creating and deploying applications. As cloud computing has become
an integral part of modern development workflows, the focus has shifted
towards harnessing its full potential, leading to the emergence of
serverless architecture. Among the various technologies that support this
paradigm, Knative has emerged as a powerful and versatile solution for
deploying and managing serverless containers.

This book aims to provide a comprehensive guide to understanding,
implementing, and optimizing Knative serverless containers for
developers, DevOps engineers, and IT professionals. We will start by
introducing the core concepts of serverless architecture and its benefits,
followed by an in-depth exploration of Knative, its components, and how
it fits within the broader Kubernetes ecosystem.

Through a series of practical examples and case studies, we will
demonstrate how to build, deploy, and manage serverless containers using
Knative. We will cover topics such as setting up a development
environment, creating custom serverless applications, integrating with
other cloud-native tools and services, and best practices for monitoring,
logging, and troubleshooting.

In addition, we will delve into advanced topics such as scaling, and
performance optimization, helping you gain a solid understanding of how

to deploy and maintain high-performing, resilient serverless applications
using Knative.

Whether you are new to serverless computing, a seasoned professional
looking to expand your knowledge, or an organization considering
adopting Knative, this book will serve as a valuable resource to guide you
through the intricacies of serverless containers and their effective
management.

As the field of serverless computing continues to evolve, it is our hope
that this book will equip you with the knowledge and confidence to
navigate and harness the power of Knative serverless containers,
unlocking new possibilities and efficiencies in your software development
journey.

Happy reading, and here's to a future of seamless, scalable, and efficient
serverless applications!

Chapter 1: Serverless and Knative in a Nutshell – provides a detailed
overview of the evolution of serverless, how it works, and its key
advantages. The chapter also provides the reader with a point of view on
when serverless should be considered and its pitfalls. Furthermore, the
chapter covers serverless offerings, Function as a Service (FaaS), and
Serverless Containers, along with an introduction to the Knative project.

Chapter 2: Installation and Configuration of Knative – Part I - presents
detailed steps to install and configure various Knative pre-requisite
software like Kubernetes (K8S) Cluster, Helm as a package manager, and
Istio as a services mesh. The chapter explains the various ways of

installing Knative and provides detailed installation and validation steps of
Knative by deploying and running a pre-built app.

Chapter 3: Installation and Configuration – Part II - covers the installation
of various monitoring and observability tools. The chapter explains the
installation and validation steps for Kafka eventing and ArgoCD for
GitOps. This chapter also covers the installation of various observability
tools like Loki, Prometheus, Jaeger, and Grafana.

Chapter 4: Knative Functions – An Overview - allows the reader to learn
fundamental concepts of Knative Functions by demonstrating how to
create, build, deploy, and run Knative Functions on local and remote K8S
Cluster using hands-on code recipes.

Chapter 5: Knative Serving - gives special attention to the Knative
Serving component, demonstrating how to build, deploy and run
serverless containers using Knative Serving on the local K8S Cluster. The
chapter explains the Knative Serving concept based on a Case Study and
hands-on code recipes.

Chapter 6: Knative Eventing - gives special attention to the Knative
Eventing component, demonstrating how to build, deploy and run services
using Knative Eventing on the local K8S Cluster. The chapter explains
various Knative Eventing patterns with a Case Study and hands-on code
recipes. This chapter also covers how Kafka can be used as a messaging
service in Knative Eventing.

Chapter 7: Scaling and Routing - explains in detail how to scale the
serverless application based on demand using a Case Study by deploying

it on a remote K8S Cluster. This chapter also allows the reader to learn
about various autoscaling configurations in Knative. Furthermore, the
chapter covers the concepts of routing along with traffic splitting and
switching using hands-on code recipes with detailed implementation of
various Deployment Strategies like Blue-Green, Canary, and A/B Testing.

Chapter 8: Knative Best Practices – explains how to leverage the power of
Knative effectively, the problems associated with services deployment,
and their solution using GitOps strategy with a Case Study. This chapter
covers managing the deployments using GitOps strategy and continuous
deployment using ArgoCD. This chapter also covers Observability with
the configuration of various tools like Loki, Prometheus, Jaeger, and
Grafana using hands-on code recipes.

Code Bundle and Coloured Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/yfiq8gl

The code bundle for the book is also hosted on GitHub at In case there’s
an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved.
To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to
us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the
BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on
BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at business@bpbonline.com
with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit We have worked with
thousands of developers and tech professionals, just like you, to help them
share their insights with the global tech community. You can make a

general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase decisions.
We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

Table of Contents

1. Serverless and Knative in a Nutshell

Introduction

Structure

Objectives

Introduction to Serverless

Serverless

How serverless works

Key advantages of serverless

Serverless should be considered for

Key limitations/shortcomings of serverless

Scenarios not suited for serverless

Serverless 1.0 - Function-as-a-Service

Serverless 2.0 - Serverless Containers

Introduction to Knative

Knative Serving

Knative Eventing

Knative features

Conclusion

Multiple choice questions

Answers

Key terms

2. Installation and Configuration of Knative – Part I

Introduction

Structure

Objectives

Kubernetes cluster

Explore and understand various methods to get Kubernetes cluster

Install kubectl CLI

Validation of the Kubernetes cluster

Kubernetes package manager

Understanding Helm and its need

Helm installation

Verify Helm installation

Istio

Why Istio for Knative

Istio installation

Verify Istio installation

Knative installation

Explore and understand various approaches to installing Knative

Install Knative

Install Knative Serving with YAML

Install Knative Eventing with YAML

Install Knative CLI

Validate Knative installation

Conclusion

Multiple choice questions

Answers

Key terms

3. Installation and Configuration – Part II

Introduction

Structure

Objective

Broker

Brokers for Knative and its need

Installation options for Kafka broker

Installation and validation of Kafka

GitOps with Argo CD

Understanding GitOps and its need

Installation of Argo CD

Observability

Understanding observability and its significance in Knative

Understanding the Knative observability stack

Loki

Installing Loki

Prometheus

Installing Prometheus

Jaeger

Installing Jaeger

Grafana

Conclusion

Multiple choice questions

Answers

Key terms

4. Knative Functions – An Overview

Introduction

Structure

Objectives

Knative Functions

Installing Knative functions

Creating function

Building function

Local build

Remote build

Conclusion

Multiple choice questions

Answers

Key terms

5. Knative Serving

Introduction

Structure

Objectives

Knative Serving

Benefits of Knative Serving

Case study – Online order processing system

Functional architecture

Deployment architecture

Flow diagram

Service Implementation

Order service

Product service

Customer service

Build and deploy

Order service

Product and customer service

Validate services

Knative Serving – Services runtime behavior

Conclusion

Multiple choice questions

Answers

Key terms

6. Knative Eventing

Introduction

Structure

Objectives

Knative Eventing

Knative Eventing patterns

Source to Sink pattern

Broker and Trigger pattern

Case study – Online order processing system

Functional architecture

Deployment architecture

Order processing system with Source to Sink pattern

Service implementation

Build and deploy services

Event source installation

Create event sources

Validate services

Order processing system with Broker and Triggers Pattern

Service implementation

Build and deploy services

Broker installation

Create event source

Create triggers

Validate services

Conclusion

Multiple choice questions

Answers

Key terms

7. Scaling and Routing

Introduction

Structure

Objectives

Deployment of use case on remote Kubernetes cluster

Autoscaling in Knative

About Knative Pod autoscaler

Autoscaling configurations

Global settings configuration

Applying global settings – Order processing system

Per-Revision settings configuration

Metrics and targets

Traffic management

Revisions

Understanding Revisions with order service

Traffic splitting and switching

Deployment strategies

Blue-green deployment strategy

Apply blue-green deployment strategy

Canary deployment strategy

Apply canary deployment strategy

A/B testing deployment strategy

Apply A/B testing deployment strategy

Conclusion

Multiple choice questions

Answers

Key terms

8. Knative Best Practices

Introduction

Structure

Objectives

Manage Knative Services deployment

Manage Service deployment with GitOps powered by Argo CD

Installation of Argo CD

Access Argo CD web interface

Setup Git repository for deployment through Argo CD

Add Git repository for Argo CD

Deployment of Services with Argo CD

Continuous deployment with Argo CD

Observability for Knative services

Observability tools - Loki, Prometheus, Jaeger, and Grafana

Configure Loki for logs

Access Grafana web interface

Visualize logs with Grafana

Integrate Jaeger for distributed tracing

Set up and configure Prometheus for Metrics Collection

Configure alerts using Grafana

Conclusion

Multiple choice questions

Answers

Key terms

Index

C

HAPTER
1

Serverless and Knative in a Nutshell

Introduction

Serverless Computing is commonly known as Serverless. The name
Serverless Computing or Serverless itself sounds like a paradox, is it not?
We all know for a fact that, for any software to run, it needs basic
infrastructure - compute, storage, and network. So, does the Serverless
claims the ability to run software without any server infrastructure?
Certainly not.

This chapter will walk you through the evolution of We will learn about
the two main concepts of Serverless - Function-as-a-Service and
Serverless We will also learn about the Knative project and how it helps to
implement Serverless Containers.

Structure

In this chapter, we will discuss the following topics:

Introduction to Serverless

Function-as-a-Service

Serverless Containers

Introduction to the Knative project

Objectives

Upon completing this chapter, you will acquire a comprehensive grasp of
Serverless Concepts and the distinctions between FaaS and Serverless
Containers. Furthermore, you will be introduced to the Knative project.

Introduction to Serverless

Over the last three decades, tremendous innovation in server infrastructure
has been seen. With the advent of the Internet, enterprises were scrambling to
make information available round the clock from anywhere in the world
during the last decade of the century. It all started with Physical Servers, also
known as bare-metal. As depicted in the following figure, getting a bare-
metal and deploying the application on it required a high lead time, a lot of
effort, and a huge upfront Capital Expenditure

Figure 1.1: Installing application on the physical server

Almost a decade later, such applications have grown significantly in numbers,
and enterprises had to own/manage hundreds of bare-metal servers. The
enterprises were looking for a solution that could improve the resource
utilization of bare-metal servers. Then came the Virtual Machine technology
which allows partitioning of the bare-metal, making it easy to adapt to
dynamic workloads by reallocating resources. It also provided opportunities
for public cloud providers to offer compute platforms on rent, an offering
now popularly known as Infrastructure-as-a-Service As depicted in the
following figure, VM technology reduced the lead time to provision server
infrastructure significantly and made deploying applications on VM a bit
easier, but it still needed a lot of configuration and setup to be done.

Figure 1.2: Installing application on Virtual Machine

A few years later, Docker splashed on the scene with the ability to package
and run containers. It enabled multiple applications with different OS
requirements to run on the same OS kernel as containers and provided an
opportunity for further simplification and resource savings. Unlike VMs,
containers need significantly less resource footprint, are blazingly fast to spin
up or down, and need less overhead to manage. Shortly after, Kubernetes, an
open-source container scheduler and orchestration tool, was launched, which
now has become a default standard. As shown in Figure with containers, it
was made possible to significantly reduce the lead time and scope to be able
to deploy an application:

Figure 1.3: Installing the application as a container

Then came the concept of Serverless, which challenged the notion of the need
for continuously running servers to serve the applications. Serverless
provided an architectural approach for ephemeral infrastructure to serve an
application that can come into existence on an incoming request and
disappears immediately after serving it. Serverless allowed application
developers to focus only on the application code delivering business value
without worrying about underlying infrastructure, capacity planning,

scalability, and so on. As depicted in Figure Serverless approach improved
lead time drastically to build and deploy an application:

Figure 1.4: Installing application on serverless platform

As we know, software applications seldom have constant load, and it keeps
changing with time. So, we tend to either over or under provision the
infrastructure. As shown in Figure physical servers and virtual servers
provide very less elasticity, the provisioned infrastructure remains constant.
This leads to wastage of idle resources when load is less (overprovisioning)
and poor quality of service/lost business revenue in case of excess load (under
provisioning). Please refer to the following figure:

Figure 1.5: With bare metals and VMs

As shown in the following Figure Cloud computing, with its autoscaling
feature, tries to solve this problem to some extent. Since scaling of VM
infrastructure (up or down) takes few minutes, the minimum server capacity
must be kept active all the time, which leads to the idle resources even when
load is less. Please refer to the following figure:

Figure 1.6: With auto-scaling on cloud

Serverless tries to match the infrastructure needed to the load on the
application in real time as shown in the following Figure With this it is able to
provide optimal usage of the infrastructure resources and save overall IT
costs. And hence Serverless has become a very attractive proposition for
Enterprises. Please refer to the following figure:

Figure With Serverless

Serverless

Let us get into a bit of detail about Serverless. So, what is Serverless?
There are multiple definitions available. The one that fits the most is
Serverless is a compelling paradigm for deployment of applications and
services which is based on Event Driven Architecture, built-in scalability,
taking application centric approach by completely abstracting the physical
infrastructure and its management from the application developers. There
is a long-standing belief about Serverless is no server infrastructure is
needed. This is not true. All Serverless platforms allow the code to run on
a trigger. To run the code the Serverless platforms need to provision server
infrastructure till its execution is complete.

How serverless works

Let us take an example of a web application which has a front-end which gets
loaded in a browser as shown in the following figure. When front-end sends a
HTTP request, the serverless platform checks a backend application is
available to serve this request. If the backend application is not available, then
platform spins it up, which will serve the request. If multiple such requests
start coming in and if one backend application is not able to serve them at the
same time, the serverless platform automatically creates multiple instances of
backend application. And if incoming requests go down, the serverless
platform will scale down the backend application, even to zero. Please refer
to the following figure:

Figure 1.8: Serverless pattern for web application

Similarly, it works for event-driven applications as well, as shown in the
following figure:

Figure 1.9: Serverless pattern for event driven application

Key advantages of serverless

Serverless is a simple concept with many advantages like:

Enables optimal usage of infrastructure If there is no workload on the
application, the serverless platform scales it down to zero. This means no
infrastructure is blocked / utilized in such cases, which allows it to be used
for other applications in need.

Inherently scalable architecture: The serverless architecture mandates
platform to be scalable by default. The serverless applications developers
do not have to define how much it needs to be scaled. The application can
be scaled to the maximum limit of the platform and can be scaled down to
zero if there is no workload.

Eliminates the need for maintaining/managing the infrastructure: the
application developers are freed from infrastructure related tasks like
setting up auto-scaling, load balancers, SSL certificates, and so on. for the
application, the serverless platform takes care of these.

Enables development teams to focus on development and delivery of core
business values to the teams become more agile and innovate faster as
Serverless provides flexible infrastructure, easier development, shorter
development cycle and build powerful polyglot applications best suited
for customer needs.

Serverless should be considered for

Serverless is an architectural pattern, it is not a silver bullet and should not
be considered for any scenario without proper due diligence. The
following are a few scenarios (not limited to) that are best suited for
serverless patterns:

Application with unpredictable load or bursts of requests

Applications with seasonal workloads with varying peaks

Applications requiring event-driven architecture and loosely coupled
system design

Applications with a lot of idle time

Applications with stateless microservices design

Applications with short running functions and / or need high system
resources for processing.

Key limitations/shortcomings of serverless

Following are some of the key disadvantages or shortcomings of the
serverless pattern:

Cold When there is no active load on the serverless application, the
serverless platform will scale it down to zero and will release all
infrastructure resources used by that application. So, when the first request
comes in for the application, the application needs to be instantiated which
leads to slower response time. This performance issue with serverless
applications is also known as cold start. Once the application is
instantiated (also known as warm), it can handle incoming requests/events
with much faster response times.

State As serverless applications can be killed by the platform at any time,
these applications effectively need to be stateless, and they need to depend
upon another component for state management.

Local For serverless application development, developers need to rely on
unit tests as end-to-end integration testing locally is significantly difficult.
This is a result of difficulty in replicating serverless platform on local
environment of developer.

Monitoring and Monitoring and debugging serverless applications is quite
difficult and time consuming. That is mainly because of every time a
serverless application instance spins up it creates a new version of itself.

Also there are tools available for remote debugging for serverless
applications.

Serverless is multi-tenant by definition, as same/available infrastructure
will be used to instantiate needed serverless application when
trigger/event arrives for the same. This might be a security compliance
issue for some organizations.

Scenarios not suited for serverless

Similarly, following are the few scenarios for which serverless patterns
should not be considered:

Application which has use cases which mandate to have stateful services

Applications with long tunning tasks / services

Applications with stringent compliance requirements

Complex applications which take long time to load / initialize

Applications with very low response time (sub-milliseconds) requirements

Serverless 1.0 - Function-as-a-Service

The Public Cloud providers also popularly known as Hyperscalers were
one of the first to identify the power of Serverless and they came up with
Serverless offering which now popularly known as Function-as-a-service,
a.k.a. FaaS. FaaS allows one to execute code in response to an event
without need to manage complex infrastructure typically needed to run
such applications. This allowed application developers to focus
completely on development of the business functionalities and delivering
business value.

The following table shows popular FaaS offerings by various
Hyperscalers:

Table 1.1: FaaS offerings by hyperscalers

All hyperscalers FaaS offerings have matured over the period of time.
They now provide:

Choice of various runtimes

Multiple modes of invocation (event triggers, api, messaging, and so on.)

Support for environment variables, logging and monitoring

Extended environment support for database, storage, integration with
other cloud services

All Hyperscalers provide almost similar functionalities and common
features for their FaaS offering and they all provide very cheap pricing!
Just to give an example AWS offers first 1M Lambda executions FREE
and 20 cents for next 1M executions. All other Hyperscalers offer similar
pricing models. Although FaaS has enabled variety of use cases, it still
lacks enterprise computing needs. Some of the key shortcomings of FaaS
are:

Resource FaaS providers / Hyperscaler platforms have defined limitations
on resources (CPU, I/O, memory, and so on) under which FaaS functions
need to work.

Limited execution By definition FaaS function cannot run indefinitely.
The allowed execution time ~5 mins which varies by the Hyperscaler

Limited The orchestration/integration options available are hyperscaler
specific

Limited local development Local development and debugging tooling is
mostly provided by hyperscaler and limited.

Vendor FaaS offerings have hyperscaler specific implementation which
developers need to comply with. This makes porting functions across
FaaS platforms difficult.

Serverless 2.0 - Serverless Containers

In comes the Serverless Container technology and as name suggests,
brings the best of both paradigms:

Enable abstracting applications from underlying infrastructure helping
enterprises to innovate faster.

Applications can be packaged as OCI compliant containers that can run
anywhere removing vendor lock-in.

Serverless container technology makes use of container orchestrator
platforms like Kubernetes. It allows to package of the code as a container
image and provides deployment mechanism on container orchestrator
platform (Kubernetes). Then serverless container platform takes care of
starting/stopping/scaling of the deployed container as per the workload.
And it solves most of the shortcomings of FaaS, mentioned in the previous
section, as

Developers can work with choice of their run times, local development
environment and package their code as container image – something they
are most familiar with

All the advantages of serverless and FaaS are still there

All the orchestration and integration options provided by the container
orchestrator are available to use

Removes vendor lock-in as code is packaged as containerized image
which can run anywhere

With this background, now let us come to the main topic of this book –
Knative which is a leading framework for building applications using
Serverless Container technology.

Introduction to Knative

Knative is an open source, enterprise level and Kubernetes based
serverless container platform for deploying and managing serverless and
event driven applications. Knative is a Cloud Native Computing
Foundation incubation project strongly backed by RedHat, Google, IBM
and others. Knative means Kubernetes native which is very important. It
makes the Knative cloud provider agnostic framework – if there is a
Kubernetes environment available, Knative will work as well, eliminating
vendor lock-in issues.

The following figure shows high level architecture of Knative. Knative
provides a layer on top of Kubernetes and provides Kubernetes-native
mechanism to manage serverless containerized applications on
Kubernetes:

Figure 1.10: Knative architecture

Knative has two main components: Serving and Eventing.

Knative Serving

Knative Serving provides mechanism to deploy and run containerized
serverless workloads on Kubernetes cluster without having to deal with
cluster or server management. It handles tasks such as revision control, traffic
routing and autoscaling for deployed serverless workloads. It has four objects
which are defined as Custom Resource Definitions as shown in the following
figure:

Figure 1.11: Knative serving

Let us understand the Knative Serving objects and how they interact with
each other

Service Manages the entire lifecycle of the containerized application
deployed using Knative. Service is also responsible for creating routes and
configurations. A service can be defined to route traffic to any available
Revisions of the deployed application.

Route Provides a network endpoint to a service that is backed by one or more
revisions. It also helps to manage traffic in various ways.

Configuration Describes the desired latest revision state and tracks the status
of revisions of the deployed application. If the configuration spec is updated,
a new Revision is created.

Revision Is a point-in-time snapshot of a deployed application. Revisions are
immutable objects and can be scaled up or down according to the incoming
traffic.

Knative Eventing

Knative Eventing is a set of APIs that provides a mechanism to use event-
driven architecture for Serverless applications. These APIs can be used to
create components that route events from event producers to event
consumers, also known as sinks, that receive events. These events conform to
the CloudEvents specifications, which enable creating, parsing, sending,
receiving events in any programming language and in cloud-agnostic way.
The following image depicts few of the Knative Eventing building blocks and
how they interact with each other to build an eventing

Figure 1.12: Knative Eventing

Let us have a look at these Knative Eventing building blocks

Source: A Kubernetes Custom Resource that register interest in a class of
events from a particular system

Broker: A Kubernetes CR that defines an "event mesh" which provides a
discoverable endpoint for event ingress, and send / trigger events to multiple
subscribers.

Trigger: A desire to subscribe to events of a given Broker or event consumer
using a Filter.

Filter: Applied to a Broker in order to allow types of events to be selected.

Channel: is an interface between event source and the subscriber. It can store
the incoming event and distribute them to the subscribers.

Subscription: Services can subscribe to a channel using Subscription to be
able to start receiving events.

Sink: An addressable / callable resource that can receive incoming events
from other sources.

Note: Addressable resources: Able to receive and acknowledge an event
delivered over HTTP to an address defined in the status.address.url field of
the event.

Callable resources: Able to receive an event delivered over HTTP and
transform it, returning 0 or 1 new event in the HTTP response payload.

We will get into much more detail for both Knative Serving and Eventing in
subsequent chapters of this book.

Knative features

Traditional Kubernetes deployment has quite a few steps, which involve
creating long configuration files typically in YAML format describing
various moving parts like pod, service, deployment, replicaset, and so on.

In contrast, Knative requires only one resource file called Knative Service,
which literally says, “run this image.” Once this file is applied to the
cluster, the Knative Operator automatically creates the required resources
– service, route, configuration, and revision. With Knative, developers do
not have to worry about infrastructure at all.

Some of the other Knative features are

Scale to zero in case of no traffic and scale from zero in case of a spike in
traffic, providing optimal usage of infrastructure resources

Progressive Progressive rollout strategy (blue/green, Canary deployments,
and so on) made easy with Knative as it provides Configuration and
Revisions

Knative provides for integration with various event sources and handling
of events by triggering handlers

All Knative components are Kubernetes native and hence can be easily
integrated and extended.

Conclusion

In this chapter, we covered how innovation led to major shifts in
infrastructure which have led to the rising of the Cloud and now the
Serverless platforms. We also looked at how Serverless started as a FaaS
and its advantages as well as shortcomings. We then covered the latest
Serverless offering, which is Serverless Containers, and how it tries to
overcome the shortcomings of FaaS. Then we had a look at the leading
Serverless Container project – Knative, its architecture, and its main
components – Knative Serving and Knative Eventing.

In the next chapter, we will get our hands dirty and start with installation
of Knative and related components.

Multiple choice questions

Which of the following is not the advantage of Serverless?

Inherently scalable architecture

Focus on delivery of core business values to the customer.

Does not provide elastic infrastructure based on incoming requests.

Optimal usage of Infrastructure

Which technology does Knative make use of?

Containers

Runtimes

C++

Python

Which of the following statement is True about Knative?

Knative always results in cloud vendor lock-in.

Knative is proprietary technology.

Knative applications cannot be hosted on public cloud.

Knative is open source and cloud provider agnostic framework.

Answers

c

a

d

Key terms

A large technology companies that operate massive, highly scalable data
centers and cloud computing infrastructures to provide services and
resources on a global scale. Examples: Google, Amazon, Microsoft

CAPEX (Capital Refers to the upfront investment in physical
infrastructure, hardware and software licenses required for building and
maintaining data centers, while Opex (Operational Expenditure) pertains
to the ongoing operational costs, such as maintenance, utilities, and
personnel, associated with running and managing the cloud services.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
2

Installation and Configuration of Knative – Part I

Introduction

There are various approaches to installing and configuring Knative on a
K8S Cluster. This chapter will walk you through the installation and
configuration of various pre-requisite software to get started with Knative.

Structure

In this chapter, we will discuss the following topics:

Kubernetes cluster

Exploring and understanding various methods to get Kubernetes cluster

Recipes

Installing kubectl CLI.

Validation of Kubernetes cluster

Kubernetes package manager

Understanding Helm and its need

Recipes

Installing Helm on Linux

Validate Helm installation

Istio an overview

Understanding Ingress Controller and its need

Implement gateway

Istio for Knative

Quick introduction on Istio.

Recipes

Installing Istio

Validate Istio install

Knative

Various ways to install the Knative

Recipes

Installing Knative Serving using YAML

Installing Knative Eventing using YAML

Installing Knative CLI

Validate Knative Serving through pre-built images.

Validate Knative Eventing through pre-built images.

Sending and verifying cloud events

Objectives

By the end of this chapter, you should have a setup of your Kubernetes
cluster with Knative components installed. You will also learn about
various installation methods and Knative dependencies.

Kubernetes cluster

A Kubernetes cluster is a group of nodes (physical or virtual machines)
that run containerized applications and work together to provide the
Kubernetes services necessary to manage those applications.

Explore and understand various methods to get Kubernetes cluster

Knative helps you to run serverless workloads in a Kubernetes-native way. To
learn Knative and try exercises in the upcoming chapters, it is very important
to first explore and understand the various methods to procure/install the
Kubernetes Cluster. You can get the K8S cluster from one of the methods
described in Figure which explains various pathways for installing the K8S
Cluster:

Figure 2.1: Various methods to install K8S cluster

Managed K8S A Managed K8S Service such as AWS Elastic Kubernetes
Service Google Kubernetes Engine Azure Kubernetes Service IBM K8S
Service can be procured. These services allow you to create and manage a
cluster without having to worry about the underlying infrastructure.

Setup K8S cluster on owned Using the Command-Line Interface like
kubeadm and automation tools like Ansible, Terraform a K8S cluster can be
installed/deployed on owned infrastructure, which can be either on on-
premises or on Cloud. Within each of public cloud, cloud-based Virtual
Machine services such as AWS Elastic Compute Cloud Google Compute
Engine and Azure Virtual Machines can be leveraged to set up the K8S
Cluster. Within on-premises, one can use VMs or bare metal servers to create
the K8S cluster. For the local development environment, options like
minikube and microk8s can be leveraged to create and run a single-node K8S
cluster. This can be used for local development and testing purpose.

Vendor managed K8S The K8S distribution like Red Hat OpenShift, Rancher,
and VMWare Tanzu provide additional features and tools to create, manage
and scale K8S cluster.

For experimentation/prototyping/learning purposes, a Local/Single Node
machine having 3 CPUs and 8GB memory can be used.

In this book, for all the Knative exercises and recipes, we will use the
Managed K8S cluster (Method - 1 explained above) from one of the major
cloud providers, which can host and scale any production-grade workload.
The configuration used is 3 nodes, and each node is 4X16 (4 CPUs, 16GB
RAM) with Ubuntu 20.04. K8S version used is 1.25.x. You can use either
options 1 or 2 to get the K8S cluster setup.

Install kubectl CLI

kubectl is a CLI for running commands against K8S clusters. It allows you
to run and manage application deployments in a K8S environment. You
can use kubectl to deploy, inspect, and manage the state of your
applications, as well as to view and modify the configuration of your
cluster.

To install kubectl on Ubuntu 20.04, follow these steps:

#Update the package manager cache:

sudo apt-get update

#Install the required dependencies:

sudo apt-get install -y apt-transport-https

#Add the GPG key for the official Kubernetes package repository:

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-
key add -

#Add the Kubernetes package repository to your system and update cache
manager again

echo

"deb http://apt.kubernetes.io/ kubernetes-xenial main"

 | sudo tee /etc/apt/sources.list.d/kubernetes.list

sudo apt-get update

#Install kubectl:

sudo apt-get install -y kubectl

You should now have kubectl installed on your system. To verify the
installation, run the following command:

kubectl version --client

The output will be like the below, the exact version#, git commits, and
build date may differ based on the time CLI was installed:

user@virtualserver01:/
kubectl version --client

WARNING: This version information is deprecated and will be replaced
with
 the
output

from

 kubectl
version

--short. Use --output=yaml|json to get the full version.

Client

Version
: version.Info{Major:
"1"
, Minor:
"26"
, GitVersion:
"v1.26.0"
, GitCommit:
"b46a3f887ca979b1a5d14fd39cb1af43e7e5d12d"
, GitTreeState:
"clean"
, BuildDate:
"2022-12-08T19:58:30Z"
, GoVersion:
"go1.19.4"
, Compiler:
"gc"
, Platform:
"linux/amd64"
}

Kustomize
Version

: v4
.5.7

For the setup of the K8S context of the cluster, which is a management
services cluster in this case, you will have to issue a few commands like
login to the respective cloud/hyperscaler to authenticate and authorize,
followed by setting up the kube config context in the local machine. Once
this step is done successfully, you can verify using the below commands:

Note: If the kubectl version command is issued, the output will also
display the Server version of the K8S Cluster. In the above case, since we
have added -- client to the kubectl version common, it only returned the
Client version.

This time the output will include server details having version#, git
commit#, and build date right below the client details:

user@virtualserver01:/
kubectl version

WARNING: This version information is deprecated and will be replaced
with the output from kubectl version –short. Use –
output=yaml|json to get the full version.

Client Version: version.Info{Major:
”1”
, Minor:
”26”

, GitVersion:
”v1.26.0”
, GitCommit:

”b46a3f887ca979b1a5d14fd39cb1af43e7e5d12d”
, GitTreeState:
”clean”
, BuildDate:
”2022-12-08T19:58:30Z”
, GoVersion:
”go1.19.4”
, Compiler:
”gc”
, Platform:
”linux/amd64”
}

Kustomize Version: v4.5.7

Server Version: version.Info{Major:
”1”
, Minor:
”25”
, GitVersion:
”v1.25.5+IKS”
, GitCommit:
”7108fa3bb8b37cd6b31affc82dc45cee3c9493f6”
, GitTreeState:
”clean”
, BuildDate:
”2022-12-09T06:35:21Z”

, GoVersion:
”go1.19.4”
, Compiler:

”gc”
, Platform:
”linux/amd64”
}

user@virtualserver01:/
#

Validation of the Kubernetes cluster

To validate the cluster further and get more information about the cluster
below commands can be issued. The output will show all the nodes in the
cluster and their corresponding name, status, Age, server version, build,
network details, and operating system:

to get cluster’s node details and network details

kubectl get nodes -o wide

Figure 2.2: Example output for K8S cluster validation

to get cluster's various API endpoints like K8S control plane, core dns, metr
ics server and k8s-dashboard,

kubectl cluster-info

The following image shows the cluster information around K8S control plane
version, metrics server and K8S dashboard:

Figure 2.3: Example output for K8S cluster info validation

Kubernetes package manager

Kubernetes package manager is a tool that simplifies the installation
process, and management of K8S applications and their dependencies. It
also helps to automate the deployment of complex applications on K8S by
providing an easy way to install, upgrade, and manage K8S resources such
as deployments, services, and configuration files. There are several
package manager tools like Helm, Kustomize, Operator Framework, and
so on.

We will be using Helm.

Understanding Helm and its need

Helm is a package manager for K8S. It is used to manage K8S resources,
such as applications, services, and their dependencies. Helm helps you
deploy applications and services to K8S clusters, and it provides a way to
package, configure, and manage complex applications in a reproducible
manner.

In Helm, a package is called a chart. A chart is a collection of files that
describe a related set of K8S resources. It includes all the necessary K8S
manifest files and may also include scripts, templates, and other files
needed to deploy and manage the application.

To use Helm, you first install it on your local machine, and then you can
use it to search for, download, and install charts from repositories. Helm
also provides a Command-Line Interface that you can use to manage
charts and perform other tasks, such as upgrading and uninstalling charts.

Helm is a powerful tool for managing applications on K8S, and it is
widely used in the K8S community. It is an open-source project, and it is
available for free under the Apache 2.0 license.

We will use Helm to install and manage some of the pre-requisite
components for Knative, like Istio, Argo CD, Prometheus, and so on., in
upcoming chapters and exercises.

Helm installation

The Helm installable binary for the desired version and operating system
can be downloaded from the https://github.com/helm/helm/releases

Below are the specific instructions used for installing Helm on
Ubuntu 20.04.

#download helm for ubuntu 20.04 (linux
 amd64).

wget https://get.helm.sh/helm-v3.10.3-linux-amd64.tar.gz

#untar/unzip downloaded file

tar -zxvf helm-v3.10.3-linux-amd64.tar.gz

#move file to the usr/local/bin so can be executed from any path

sudo mv linux-amd64/helm /usr/
local
/bin/helm

Verify Helm installation

helm

version

The following image displays the Helm version information:

Figure 2.4: Example output for Helm version validation

Istio

Istio is a service mesh that provides advanced traffic management,
observability, and security features. It includes its own ingress controller,
Istio Gateway, which can be used to route incoming traffic to services in
the mesh. In the following sections, we will go through the alternatives
and why choose Istio for Knative for gateway.

Why Istio for Knative

Let us start with understanding K8S Ingress. K8S Ingress is a resource
that allows external traffic to reach the services in a K8S cluster. It acts as
a gateway for incoming traffic, routing it to the appropriate service based
on the host and path of the incoming request. Ingress can also be used to
provide additional functionality such as authentication, SSL termination,
and URL rewriting. Additionally, it can be used to expose multiple
services on the same IP address and port, using host and path-based
routing to direct traffic to the appropriate service. There are several
options for deploying an Ingress gateway for K8S like:

Ingress Controller using nginx, HAProxy

K8S Service Type Loadbalancer

NodePort

ClusterIP

Considering the Knative’s requirement for HTTP/2, gRPC, autoscaling,
traffic splitting, rate limiting, and canary deployments, it is recommended
to use open-source ingress controllers for K8S like

Is a service mesh that provides advanced traffic management,
observability, and security features. It includes its own ingress controller,

Istio Gateway, which can be used to route incoming traffic to services in
the mesh.

Is built on top of Envoy and offers a wide range of functionality for traffic
management, including load balancing, rate limiting, and authentication. It
also supports service meshes like Istio and can integrate with other service
discovery and configuration management tools like Consul and
ConfigMap.

Is a Kubernetes-native API Gateway built on top of the Envoy proxy. It is
designed to be easy to use and provides features such as authentication,
rate limiting, and canary deployments.

Is a Kubernetes-native ingress controller that is built on top of the Envoy
proxy. It is designed to be simple and lightweight, and focuses on
providing a consistent configuration for routing and load balancing in
K8S.

Is an ingress controller built on top of the Envoy proxy. It is focused on
providing a simple, consistent configuration for routing and load
balancing in K8S.

All of them are powerful Ingress controllers but the choice may depend on
the specific requirements of the user, for example if the user wants a
simple and lightweight solution Kourier will be a good fit, if the user
needs advanced features like traffic management, observability, and
security Istio will be the best fit. In this chapter we will install Istio as
Ingress Controller for Knative considering its most widely used in
production K8S environment.

Istio installation

To install Istio on K8S cluster using Helm, you will need to have Helm
installed on your local machine which is already covered in earlier
sections of this chapter. Here are the specific steps and instructions used
for installing Istio:

#Add the Istio Helm repository to your local Helm installation by running
the following command

helm repo add istio https://istio-release.storage.googleapis.com/charts

#Update your local Helm chart repository by running the following comm
and

helm repo update

#Create a namespace for Istio components in your Kubernetes cluster:

kubectl create namespace istio-system

#Install the Istio base chart which contains cluster-
wide resources used by the Istio control plane:

helm install istio-base istio/base -n istio-system

#Install the Istio discovery chart which deploys the istiod service:

helm install istiod istio/istiod -n istio-system --
wait

#Install an ingress gateway:

kubectl create namespace istio-ingress

kubectl label namespace istio-ingress istio-injection=enabled

helm install istio-ingress istio/gateway -n istio-ingress --
wait

Verify Istio installation

The installation of Istio can be verified through below steps:

#verify istio-base and istiod system

helm ls -n istio-system

#verify istio-gateway

helm ls -n istio-ingress

The following image displays the successful installation of istio package
through helm.

Figure 2.5: Example output for Istio validation

The output of above commands will show the Helm resource their status,
chart version and app version. In the above case the, the app Istio base and
gateway of version 1.16.1 are successfully deployed.

So, now we have K8S cluster running with Istio gateway. We also have
installed command line tools - kubectl and Helm. Let us now dive deep to

understand the Knative components and their installation.

Tip: You can use Open K8S Integrated Development Environment (IDE) like
lens desktop and K8S Web Dashboard to better manage and gain visibility to
your cluster.

Knative installation

The installation process for Knative can be complex, depending on the
configuration and requirements of your environment. It is important to
follow the installation instructions carefully and ensure that all
prerequisites are met before installing Knative.

Explore and understand various approaches to installing Knative

There are below ways in which Knative can be installed. Let us go
through each of them in brief:

This is a simplified installation process that uses pre-configured YAML
files and Helm charts to set up a basic Knative environment on a K8S
cluster. This method is intended for users who are new to Knative and
want to get started quickly, without having to manually configure each
component. It can be used to set up a development or test environment but
may not be suitable for production use due to the lack of customization
options. The environment set up from quickstart is for experimental use
only.

YAML based YAML-based installation of Knative is a method for
installing and configuring the various components of the Knative platform
on a K8S cluster using YAML files. These files define the desired state of
the cluster, including the configuration of the Knative components such as
the Knative Serving, Eventing and Serving operators. The files can be
modified to customize the installation, such as to change the resources
allocated to a component or to enable or disable specific features.

Operator based This method of installing and managing the Knative
components using K8S operators. Operators are a method of packaging,
deploying, and managing a K8S application. They provide a way to
automate the management of the application's lifecycle, including scaling,

upgrades, and rollbacks. In the case of Knative, the operator is responsible
for installing and managing the various Knative components, such as the
Serving and Eventing components. This method of installation allows for
more fine-grained control and customization of the Knative installation.

Vendor managed Knative

Red Hat OpenShift This is a fully managed Knative service that runs on
Red Hat's OpenShift platform and allows developers to build and deploy
containerized applications without having to worry about infrastructure.

Google Cloud Run for This is a fully managed Knative service that allows
developers to deploy and run containerized applications on Google Cloud
without having to worry about infrastructure.

IBM Cloud This is a fully managed Knative service that allows developers
to build and deploy containerized applications on IBM Cloud without
having to worry about infrastructure.

For this book we are going to use YAML based installation for Knative
components. Refer to the Chapter Serverless and Knative in a Nutshell to
read more about Knative components.

Install Knative

Knative has two components – Serving and Eventing which have been
discussed in detail Chapter Serverless and Knative in a Here, we will be
focusing on installation of the same. Both components can be installed by
using YAML based approach which has been discussed as one of the
approaches for installation in earlier section.

Install Knative Serving with YAML

To install the Knative Serving component, please follow below steps:

Execute the following Custom Resource Definitions and Custom
Resources for Knative serving:

#Install custom resources definition for knative serving

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/serving/1-serving-
crds.yaml

#Install the core components of knative serving

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/serving/2-serving-
core.yaml

The successful execution of below commands can be verified using
following command:

kubectl get pods -n knative-serving

The following output will show Knative Serving components (activator,
autoscaler, controller, domain-mapping, domain mapping webhook and

webhook) in running one healthy pod for each:

$
kubectl
get
pods
-n
knative-serving

NAME
READY
STATUS
RESTARTS
AGE

activator-7cbbfbc85-glcqp
1
/1
Running
0
3m29s

autoscaler-8f986cff-ph4n8
1
/1
Running
0
3m27s

controller-58dfb45d74-b8fp2
1
/1
Running
0
3m25s

domain-mapping-5d8db49bf6-cz297
1
/1
Running
0
3m23s

domainmapping-webhook-584476fd67-mtrjj
1
/1
Running
0
3m22s

webhook-6d5c55fd8c-29q4m
1
/1
Running
0
3m18s

$

Since Istio is already setup, in earlier section of the chapter and same is
being used as networking layer so no need to install the same again.
Please proceed with step 3.

Configure Istio to create a gateway and also map it to Knative service for
routing following below steps:

#apply net-isito to configure istio gateway and map knative
 service

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/serving/3-net-
istio.yaml

Configure Magic DNS by leveraging Knative Job configures Knative to
use sslip.io as a default DNS suffix.

#apply magic dns sslip.io

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/serving/4-serving-
default-domain.yaml

The successful execution of preceding commands can be confirmed
through the following verification:

kubectl get pods -n knative-serving

The following output will show two additional pods, net-istio-controller,
and net-sitio-webhook, in running and healthy state

Fetch the External IP address or CNAME by running the following
command. The information will be used later to verify installed
application or access the gateway.

#Fetch the External IP address or CNAME

kubectl get svc -n istio-ingress

Configure Append External IP or CNAME with add it to ConfigMap

Given, 1.2.3.4 is the External IP, you can edit the resource using following
commands:

#Edit the CM to add DNS (external-ip.sslip.io)

kubectl edit
cm
config-domain -n knative-serving

Change content to: Notice the last line in following example content:

apiVersion:

v1

kind:

ConfigMap

metadata:

name:

config-domain

namespace:

knative-serving

data:

sslip.io is a "magic" DNS provider, which resolves all DNS lookups for:

*.{ip}.sslip.io to {ip}.

1.2.3.4 .sslip.io:

""

Install Knative Eventing with YAML

To install the Knative Eventing component, please follow below steps:

Execute the following Custom Resource Definitions and Custom
Resources for Knative Eventing:

#Install custom resources definition for Knative Eventing

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/eventing/1-eventing-
crds.yaml

#Install the core components of Knative serving

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/eventing/2-eventing-
core.yaml

The successful execution of step 1 can be verified using following
command:

kubectl get pods -n knative-eventing

You will notice 2 new pods getting added: eventing-controller and
eventing webhook in running and healthy state.

Example

user@virtualserver01:~$
kubectl
get
pods
-n
knative-eventing

NAME

READY
STATUS
RESTARTS
AGE

eventing-controller-7b95f495bf-5lpdq
1
/1
Running
2
(7d14h
ago)
7d14h

eventing-webhook-8db49d6cc-d6cvj
1
/1
Running

2
(7d14h
ago)
7d14hs

Install an in-memory implementation of Channel by running the
command:

#Install in-memory implementation of channel

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/eventing/3-in-memory-
channel.yaml

Install this implementation of Broker by running the following command:

#Install broker implementation

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/install-knative/eventing/4-mt-channel-
broker.yaml

You will notice 5 new pods getting added: mt-broker-ingress in running
and healthy state.

Example Output:

user@virtualserver01:~$

kubectl
get
pods
-n
knative-eventing

NAME
READY
STATUS
RESTARTS
AGE

eventing-controller-7b95f495bf-5lpdq
1
/1
Running
2
(7d14h
ago)
7d14h

eventing-webhook-8db49d6cc-d6cvj
1
/1

Running
2
(7d14h
ago)
7d14h

imc-controller-bf8c4d6f5-j8ndf
1
/1
Running
0
6d21h

imc-dispatcher-5688655bb-2f6ft
1
/1
Running
0
6d21h

mt-broker-controller-98f7b598b-l8wns
1
/1
Running
0
6d22h

mt-broker-filter-58c89f8487-p8r7l
1
/1
Running
0
6d22h

mt-broker-ingress-69bd8fccf6-sbvqs
1

/1
Running
0
6d22h

Install Knative CLI

For validation and future ease of managing upcoming Knative resources,
one should install Knative Knative CLI is a Command-Line Interface tool
that allows developers to interact with and manage the Knative resources
on a K8S cluster. It provides a set of commands to deploy, configure, and
scale Knative services, as well as to view logs and status information.
Knative CLI is built on top of the K8S CLI (kubectl) and uses the same
configuration and authentication mechanisms. The following are the steps
to install Knative CLI on Ubuntu 20.04:

wget https://github.com/knative/client/releases/download/knative-
v1.8.1/kn-linux-amd64

mv kn-linux-amd64 kn

chmod +x kn

mv kn /usr/
local
/bin
use sudo if required.

kn version

Validate Knative installation

In this section, we will verify the installation of Knative Serving and
Eventing by quickly deploying a pre-built application.

Let us start with Knative Serving validation first. The app is pre-built, and
image is available at docker.io/knativedemo/helloworld-java-spring

To Deploy the app, follow either YAML or Knative approach

Follow the steps for deploy using YAML:

Create a new file service.yaml file with below content:

apiVersion:
serving.knative.dev/v1

kind:
Service

metadata:

name:
helloworld-java-spring

namespace:

default

spec:

template:

spec:

containers:

-
image:
docker.io/knativedemo/helloworld-java-spring

env:

-
name:

TARGET

value:
"Hello Knative
Book Sample v1"

Apply the preceding YAML file

kubectl apply -f service.yaml

OR

Follow the steps for deploy using

kn service create helloworld-java-spring --
image=docker.io/knativedemo/helloworld-java-spring --env TARGET=
"Hello Knative Book Sample v1"

This will wait until your service is deployed and ready, and ultimately it
will print the URL through which you can access the service.

To verify the app, follow below steps:

Find the domain URL for your application using following command:

kubectl get ksvc helloworld-java-spring --output=custom-
columns=NAME:.metadata.name,URL:.status.url

Example

book@
LAPTOP-
780
KFQ65:~$ kubectl
get

 ksvc helloworld-java-spring --output=custom-
columns=NAME:.metadata.name,URL:.status.url

NAME URL

helloworld-java-spring http://helloworld-java-spring.knative-
serving.169.48.166.178.sslip.io

book@
LAPTOP-
780
KFQ65:~$

Make the request to above URL which is our case wither in browser or
through curl. You should get following output:

Example Output:

Hello Knative Book Sample v1!

OR

Follow the steps to find domain url and verify using

curl $(kn service
describe
 helloworld-
java
-spring -o
url
)

Example Output:

Hello Knative Book Sample v1!

Let us start with Knative Eventing validation now. The app is pre-built
and image is available at docker.io/knativedemo/helloworld-python

To Deploy the app, follow the steps:

Apply the following YAML file creating the deployment, svc and triggers:

kubectl apply -f https://raw.githubusercontent.com/serverless-apps-with-
knative/code-recipe/main/chapter-2/verify-knative/eventing/sample-
app.yaml

Verify the using following commands:

kubectl --namespace knative-samples get deployments helloworld-python

kubectl --namespace knative-samples get svc helloworld-python

The pods should be up and running in healthy state.

Verify if Knative Eventing Trigger is Ready state. Make sure that
Ready=true

kubectl -n knative-samples get trigger helloworld-python

kubectl -n knative-samples get trigger helloworld-python

Example output: Ready is true in the below output:

book@

LAPTOP-
780
KFQ65:~$ kubectl -n knative-samples
get
 trigger helloworld-python

NAME BROKER SUBSCRIBER_URI AGE
 READY REASON

helloworld-python
default
 http:
//helloworld-python.knative-samples.svc.cluster.local 7d2h True

book@
LAPTOP-
780
KFQ65:~$

Now, you have deployed the application, and have verified that the
namespace, sample application and trigger are ready, you can send a
CloudEvent.

Send and verify the Cloud Events, follow below steps:

Deploy a curl pod and SSH into it:

kubectl --namespace knative-samples run curl --
image=radial/busyboxplus:curl -it

Run the following command in the SSH terminal:

curl -v

“broker-ingress.knative-eventing.svc.cluster.local/native-samples/default”
 \

-X POST \

-H
“Ce-Id: 536808d3-88be-4077-9d7a-a3f162705f79”
 \

-H
“Ce-specversion: 0.3”
 \

-H
“Ce-Type: dev.knative.samples.helloworld”
 \

-H
“Ce-Source: dev.knative.samples/helloworldsource”
 \

-H
“Content-Type: application/json”
 \

-d
‘{“msg”:”Hello World from the curl pod.”}’

Exit

Verify pod logs if event is received by app using following:

kubectl --namespace knative-samples logs -l app=helloworld-python --
tail=50

Example output:

[2023-01-11
06

:55:16,016]
WARNING in helloworld:
b'{"msg":"Hello
World
from
the
curl

pod."}'

172.30.226.233
-
-
[11/Jan/2023
06
:55:16]
"POST / HTTP/1.1"
200
-

[2023-01-11
07
:02:02,585]
WARNING in helloworld:
b'{"msg":"Hello
World
from
the
curl
pod."}'

172.30.226.233
-

-
[11/Jan/2023
07
:02:02]
"POST / HTTP/1.1"

200
-

Conclusion

In this chapter, we have covered the installation and configuration of
various Knative’s pre-requisites software and its components. We have
installed kubectl CLI, K8S Cluster, Helm, Istio, kn CLI, Knative Serving,
Knative Eventing. We also understood their significance and various ways
of installation. Then we ran sample pre-built apps to verify Serving and
Eventing components.

In next chapter, we will take up the installation of the next set of pre-
requisite tools which will help in implementing GitOps and Observability
for Knative.

Multiple choice questions

Which statement is true for kubectl?

kubectl is CLI to run and manage K8S clusters.

kubectl is a python library to having util functions for K8S.

kubectl CLI only works in MAC OS.

kubectl helps in controlling the ingress traffic to cluster.

Which of them cannot be ingress traffic controller for Knative having
envoy proxy?

Contour

Nginx

Ambassador

Gloo

Istio

Kourier

Helm is __________ ?

a CLI to manage to K8S cluster.

a Package Manager for K8S

a monitoring agent for K8S

Answers

a

b

b

Key terms

Kubernetes CRD (Custom Resource Definition) is an extension
mechanism that enables users to define custom resource types in
Kubernetes, while CR (Custom Resource) refers to an instance of that
custom resource type created based on the defined CRD.

Kubernetes Package commonly known as is a popular open-source tool
that simplifies the deployment, management, and versioning of
applications and services on Kubernetes by providing a convenient way to
package, distribute, and install pre-configured sets of Kubernetes
resources called "charts."

C

HAPTER
3

Installation and Configuration – Part II

Introduction

In previous chapter, we learnt about various tools like Knative CLI,
Knative Serving, Knative Eventing and so on. These tools help us to get
started with Knative. In this chapter we will discuss and provide
installation of various monitoring and observability tools. We will also
discuss about significance of these tools in Knative.

Structure

In this chapter, we will discuss the following topics:

Broker

Explore and understand various broker options for Knative.

Installation options for Kafka broker

Recipes

Install Kafka

Validation of Kafka cluster

GitOps with Argo CD

Understanding GitOps and its need

Understanding Argo CD

Recipes

Install Argo CD

Explore and validate the Argo CD

Observability

Understanding observability

Significance of observability for the Knative

Different stacks and components for observability

Recipes

Install Loki

Install Prometheus

Install Jaeger

Install Grafana

Objective

By the end of this chapter, you should be able to understand, setup, and
install Messaging tool like kafka broker, GitOps tools like Argo CD, and
Observability stack.

Broker

A message broker provides a mechanism for asynchronous
communication, where the sender and receiver do not need to be active at
the same time. The sender publishes messages to a designated destination,
and the receiver subscribes to that destination to receive the messages.
This decoupling of sender and receiver allows for greater flexibility,
scalability, and fault tolerance in distributed systems. It is a software
system or middleware that facilitates communication and coordination
between distributed applications or services.

Brokers for Knative and its need

Brokers are a pivotal component in Knative because they provide a
mechanism for decoupling event sources from event consumers. Brokers
act as intermediaries that receive events from event sources and forward
them to interested event consumers. This allows greater flexibility and
scalability in event-driven systems, as event sources and consumers can be
added or removed without impacting other components of the system.
Additionally, brokers in Knative provide features such as filtering,
batching, and deduplication of events, which can help simplify application
logic and reduce the amount of code that developers need to write.

Following are the options to implement the brokers for Knative:

In-memory A simple broker that is included with Knative and uses
memory to store events. Refer Install Knative Eventing section in Chapter
Installation and Configuration of Knative to understand installation steps
of In-memory broker.

NATS A broker that uses NATS streaming as a backend for storing events.

Kafka A broker that uses Apache Kafka as a backend for storing events.

With manage services on the public cloud, one can use the following
brokers

Amazon Simple Notification Service (SNS) A broker that uses Amazon
SNS as a backend for storing events.

Azure Event Grid A broker that uses Azure Event Grid as a backend for
storing events.

Google Cloud Pub/Sub A broker that uses Google Cloud Pub/Sub as a
backend for storing events.

IBM Event An Apache Kafka based managed service broker from IBM.

Among the preceding options for implementing the Broker, the one which
best suits for production workload for Knative is Kafka considering it is
open source has no cloud vendor lock-in, is scalable, and can be spun up
as part of the K8S Cluster itself. In the following section, we will learn the
ways the Kafka Cluster can be spun up in K8S Cluster.

Installation options for Kafka broker

There are broadly three approaches in which Kafka broker can be installed
in K8S Cluster, which are described in the following sections. The choice
of installation method may depend on factors such as ease of deployment,
customization options, and support requirements.

Using individual YAML/Manifest It involves installing the Kafka
components like Apache Kafka broker, Zookeeper, and so on., using
individual YAML files. It also involves customizing and configuring these
files manually, which makes managing and administration a very complex
affair compared to the other options.

Helm Helm charts are K8S package managers, and we have already read
in detail in Chapter Installation and Configuration of Knative while
installing Istio. There are several helm charts that are available to deploy
and manage Kafka Clusters in K8S. One of the examples is from the
Bitnami helm chart described in the following location
https://bitnami.com/stack/kafka/helm

Operator Operator framework allows a seamless way to manage the
lifecycle of software packages in K8S. The following are the two options
for Operator-based installation:

open-source project that provides a way to run Apache Kafka on K8S.
Strimzi is a K8S operator that can be installed on a K8S cluster to manage

Kafka clusters and topics.

Confluent K8S operator provided by which is a company that offers a
commercial version of Kafka. The Confluent operator can be installed on
a K8S cluster to manage Kafka clusters and other related Confluent
components.

We will be using Operator framework-based installation using Strimzi in
the following section considering the ease of the deployment and
management of Kafka Cluster on K8S.

Installation and validation of Kafka

Kafka Cluster can be created using following instructions:

Before deploying Strimzi Cluster Operator, we will first create K8S
namespace using following command:

#create namespace

kubectl create namespace kafka

Now, use following command to deploy Strimizi Cluster Operator. This
command will apply Strimzi Custom Resource Definitions which define
schemas used for custom resources like Kafka, Kafka Topic and so on.
This will also download and install YAML files for ClusterRoles and
ClusterRoleBindings in Kafka namespace:

#create CRDs, cluster role binding and cluster roles.

You can follow the below commands to verify logs if Strimizi operator
was installed successfully:

#verify if pods are up and running

kubectl get pod -n kafka –watch

#verify logs if operator / CRDs installed

kubectl logs deployment/strimzi-cluster-operator -n kafka -f

Once the operator is installed, and pods are in a healthy state, it will watch
or monitor for new custom resources and create the Kafka cluster, topics,
or users that correspond to those Custom Resources

Create an Apache Kafka cluster with one node for Apache Zookeeper and
one node for Apache Kafka:

Apply the `Kafka` Cluster CR file

kubectl apply -f https://strimzi.io/examples/latest/kafka/kafka-persistent-
single.yaml -n kafka

Validate pods are ready

#validate if pods ready

kubectl
wait
 kafka/my-cluster
–
for
=condition=Ready –timeout=300s -n kafka

Validate setup/installation by sending and receiving the messages:

#while cluster is running, try sending the message through simple produce
r

Validate if the message was received in a different terminal:

#while cluster is running, try receiving the message through simple consu
mer in another terminal

kubectl -n kafka run kafka-consumer -ti --
image=quay.io/strimzi/kafka:0.33.1-kafka-3.3.2 --rm=
true
 --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server my-
cluster-kafka-bootstrap:9092 --topic my-topic --from-beginning

Your Kafka Cluster is ready, and you are ready to cruise further with
Knative.

GitOps with Argo CD

GitOps is a software development approach that uses Git as a single
source of truth for both application code and infrastructure configuration.
Argo CD is one of the open source tools implementing the same.

Understanding GitOps and its need

In a GitOps workflow, all changes to infrastructure and application code
are committed to a Git repository, and a tool such as Argo CD is used to
automatically apply those changes to the running environment. This
approach provides a standardized, auditable, and version-controlled way
to manage deployments while reducing the risk of human error and
enabling more frequent and reliable updates.

Argo CD is an open-source GitOps tool that automates the deployment of
applications to K8S clusters. It uses a Git repository to manage the desired
state of the K8S resources and continuously monitors the actual state of
the resources. When changes are detected in the Git repository, Argo CD
automatically synchronizes the desired state with the actual state of the
resources in the Cluster.

Argo CD can be used effectively with Knative to help manage and deploy
serverless applications. The following are the reasons why Argo CD is a
good fit for Knative:

Simplified Argo CD simplifies the deployment process by automating the
rollout of new code changes to production, reducing the risk of human
error and streamlining the deployment process.

Multi-cluster Argo CD is designed to manage deployments across
multiple K8S Clusters, which can be useful for larger-scale or multi-
region deployments.

GitOps Argo CD uses a GitOps workflow, which means that application
deployments are triggered by commits to a Git repository, making it easier
to manage and audit changes to the deployment process.

Application Argo CD provides a clear view of the deployed applications
and their configuration, making it easier to manage and troubleshoot
issues that arise during the deployment process.

Integration with other Argo CD can be easily integrated with other K8S
tools, such as Prometheus and Grafana, to provide additional monitoring
and observability features.

By using Argo CD with Knative, teams can benefit from a simplified,
automated deployment process that reduces the risk of errors and
improves visibility into the deployed applications. This can help teams to
move more quickly, with greater confidence in their ability to manage and
deploy serverless applications at scale.

Installation of Argo CD

Create a namespace for Argo CD

#create a namespace argocd

kubectl create namespace argocd

Apply the following manifest file for Argo

#Apply manifest file having argo resources

kubectl apply -n argocd -
f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

Verify if Pods are running fine

#Verify if pods are running fine

kubectl get pods -n argocd -w

Sample output

argocd-application-controller-0

1
/1

Running

0

31s

argocd-applicationset-controller-7cdf6fc77b-mgkhw

1
/1

Running

0

42s

argocd-dex-server-7d687968db-9qp8l

1
/1

Running

0

41s

argocd-notifications-controller-79dccb6f68-cdtjv

1
/1

Running

0

39s

argocd-redis-74c8c9c8c6-tbg2p

1
/1

Running

0

38s

argocd-repo-server-98d6d47cc-pjwnb

1
/1

Running

0

36s

argocd-server-567b595777-8smsd

1
/1

Running

0

33s

Once all pods are in a running state and use the following commands to
expose the argo-cd You can optionally use port-forward as well

kubectl
 patch svc argocd-server -n argocd -p ‹{
"spec"
: {
"type"
:
"LoadBalancer"
}}'

OR

kubectl port-forward svc/argocd-server -n argocd 8080:443

Access the UI at loadbalancer or localhost based on the approach you used
in the preceding steps. Use the following password to access the protected
Argo CD admin UI console.

kubectl -n argocd get secret argocd-initial-admin-secret -
o jsonpath=”{.data.password}” | base64 -d;
echo

Observability

Observability in software refers to the ability to gain insights and
understand the internal state and behavior of a software system during
runtime. It encompasses the collection, analysis, and visualization of
various metrics, logs, traces, and other telemetry data from a software
system to gain visibility into its performance, reliability, and behavior.

Understanding observability and its significance in Knative

Observability is an important consideration for Knative because it
provides a way to monitor and understand the behavior of Knative
applications and the underlying infrastructure. Knative applications are
typically composed of multiple components, such as event sources,
brokers, and services, which can make it difficult to debug and analyze the
issues or understand the performance of the whole system.

Understanding the Knative observability stack

As shown in Figure Knative typically includes tools for collecting, storing,
and analyzing metrics, logs, and traces from Knative applications and the
K8S infrastructure. Some common components of an observability stack for
Knative include:

Metrics collection and This involves collecting and storing metrics from
Knative components, such as the number of requests and response times for
services. Common tools for this include Prometheus and Grafana.

Log collection and This involves collecting logs from Knative components
and analyzing them to identify issues or troubleshoot problems. Common
tools for this include Elasticsearch and Kibana.

Tracing and distributed involves tracing requests as they flow through a
Knative application to understand the end-to-end performance and identify
issues. Common tools for this include Jaeger and Zipkin.

By using a good observability stack, developers and operators can gain
insights into the behavior of their Knative applications and make informed
decisions about how to optimize performance, diagnose issues, and improve
the overall user experience:

Figure 3.1: Observability stack for Knative

Now, let’s discuss and understand some of Observability tools for metrics, log
collection and tracing, we will also provide steps of installing these tools in
next section.

Loki

Loki is a horizontally-scalable, highly-available, multi-tenant log
aggregation system. Loki can be used to store and query logs from the
applications as well as infrastructure. Loki can be installed on the K8S
Cluster by following the installation guide provided in the official Loki
documentation, which we will follow in the next section. Post installation,
it requires configuration for log storage and query. It provides a range of
configuration options that you can use to specify how logs are to be
stored, indexed, and queried.

Installing Loki

To install Loki on the K8S Cluster, we will be using Helm charts. To
proceed further, one should have a helm installed on their local machine,
which is already covered in the earlier Chapter Installation and
Configuration of Knative.

The Grafana helm charts present several alternatives for Loki to choose
from. In this case, we will go with installing grafana/loki charts. It is
always a good practice to keep the separate environment of our logging
stack as this gives more control over the permission and helps in keeping
resource consumption in check. Let us start by downloading charts and
creating new namespace:

Add grafana helm charts

helm repo add grafana https://grafana.github.io/helm-charts

#update helm charts using the following code

helm repo update

create a new namespace for loki

kubectl create ns loki

#to install Loki

helm upgrade --install --namespace loki logging grafana/loki -
f values.yml --
set

 loki.auth_enabled=
false

Prometheus

Prometheus is a popular open-source monitoring tool that can collect
metrics from your applications and infrastructure. Once you have installed
Prometheus, you need to instrument your applications to expose the
relevant metrics that you want to monitor. Prometheus provides a range of
client libraries that you can use to instrument your code, as well as an API
that you can use to expose custom metrics.

Installing Prometheus

#Create a namespace for Prometheus

kubectl create ns prometheus

#Add charts repository for Prometheus

helm install prom-logging prometheus-community/prometheus -
n prometheus

Jaeger

It is an open-source, end-to-end distributed tracing system that is designed
to help developers and DevOps teams to troubleshoot and optimize
complex distributed systems. When deployed in a K8S Cluster, Jaeger
provides a powerful observability stack that can help you to monitor,
analyze and troubleshoot the behavior of your microservices.

Installing Jaeger

Jaeger mainfests are being installed in istio-system namespace.

kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-
1.17/samples/addons/jaeger.yaml -n istio-system

Grafana

Grafana is a popular open-source data visualization tool that can be used
to visualize metrics and logs from your applications and infrastructure. It
provides visualization options, including dashboards, alerts, and plugins.

To fully leverage the capabilities of the monitoring stack, you need to
integrate Grafana with Prometheus, Loki, and Jaeger. Grafana provides a
range of data sources that you can use to connect to these systems, and
you can use the built-in query language to create custom visualizations
and alerts.

Installing Grafana

#Install Grafana using below downloaded charts if not done in prior step

helm repo add grafana https://grafana.github.io/helm-charts

#To install Grafana from the charts

helm upgrade --install --namespace=loki loki-grafana grafana/grafana

This completes the understanding and installation of the tools required to
enable observability for Knative.

Conclusion

In this chapter, we have covered the rest of the installation and
configuration of various Knative’s pre-requisites software and its
components. We have installed Kafka broker, Argo CD for GitOps, and
Observability stack. We also understood their significance and various
ways of installation.

In the next chapter, we will take a deep dive into the Knative functions,
their significance, and how to implement them.

Multiple choice questions

ArgoCD is a tool to implement:

DevOps in GitOps way

Control Plane in Kubernetes

Cloud agnostic storage

None of these

Which of the following combination is not the correct one from
observability perspective?

Logs - Loki

Metrics - Prometheus

Traces - Prometheus

Traces - Jaeger

Answers

a

c

Key terms

The Operator Framework in Kubernetes is a collection of tools and best
practices for building, deploying, and managing complex applications as
Kubernetes Operators, which are custom controllers that automate the
management of applications and services on Kubernetes.

GitOps is a DevOps approach in which the desired state of a system's
infrastructure and applications is declared in Git repositories, and changes
are automatically applied to the live environment through continuous
deployment pipeline.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
4

Knative Functions – An Overview

Introduction

In Chapter Serverless and Knative in a nutshell, we learned about the
Knative project on a high level. We also learned Knative installation and
related components in Chapter Installation and Configuration of Knative
and Chapter Setting Up DevSecOps and Observability.

In this chapter, we will deep dive into Knative We will learn how to
create, build, deploy, and run Knative Functions using func CLI using
hands-on code recipes.

Structure

In this chapter, we will discuss the following topics:

Introduction to Knative Functions

Installing Knative Function

Creating function

Building and deploying the function

Objectives

At the end of this chapter, you should have learned all about Knative
Functions. You should be able to create, build and deploy Knative
Functions on local as well as remote K8S Cluster using Knative’s func
CLI.

Knative Functions

In Chapter Serverless and Knative in a nutshell, we learnt about Function-
as-a-Service and its benefits. Hyperscalers provide managed FaaS service
to developers to build Serverless Functions. Knative provides an
alternative to managed FaaS service from the Hyperscalars, which is
Knative Functions. Knative provides an easy way to create, build and
deploy self-managed Functions on K8S cluster. For this, there is no need
for developers to have in-depth knowledge of Kubernetes, containers, and
Knative as well. And the best part is these Functions can be
executed/tested on a local machine without need of K8S or Knative
running.

To create and manage Function workflows, the func CLI or kn func plugin
needs to be installed. Upon building a Function, an Open Container
Initiative image is generated and pushed to the container registry of
choice.

Knative provides a functions template that helps in generating a
boilerplate Function project. This helps developer to focus on writing
business logic and increases productivity. Function templates are available
in the following languages

Node.js

Python

Go

Quarkus

Rust

Spring Boot

TypeScript

In this chapter, we will use the Spring Boot template to create a simple
Function. We will run this Function also, we will deploy the same on the
K8S Cluster.

Installing Knative functions

Knative Functions can be installed on the local machine in two ways:

Install func CLI

Install the kn func plugin

Both work in a very similar fashion and are pretty straightforward to
install. Follow the instructions on
https://knative.dev/docs/functions/install-func/ to install any of them on a
local machine as per the Operating System. We will use func CLI in this
chapter.

func CLI installation can be verified using the following command, which
should give an installed version of the func CLI:

Let us go ahead and create a Function.

Creating function

Let us create a function using func CLI. Use the func create command to
generate a boilerplate project of a Spring Boot-based Knative Function:

Let us now look at the arguments of the above command. -l denotes the
language to be used for the generated Function as the first argument; it
could be any of the languages from the list of supported languages
mentioned in the previous section. The second argument is the name of
the Function. After executing the above command, you should see the
output:

The is an absolute path where Function project code is generated, which is
a Maven project. Now, let us take a closer look at the generated code
starting with pom.xml as shown in the following snippet. It uses Spring
Boot version 3.0.2 and Spring Cloud version 2022.0.0:

<
project

xmlns
=
"http://maven.apache.org/POM/4.0.0"

xmlns:xsi
=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation
=
"http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven
-4.0.0.xsd"
>

 <
modelVersion
>4.0.0
modelVersion
>

 <
parent
>

 <
groupId
>org.springframework.boot
groupId
>

 <
artifactId
>spring-boot-starter-parent

artifactId
>

 <
version
>3.0.2
version
>

 <
relativePath
/>

parent
>

 <
groupId
>com.example.events
groupId
>

 <
artifactId
>function
artifactId
>

 <
version
>0.0.1-SNAPSHOT
version

>

 <
name
>Spring Cloud Function::Http Example
name
>

 <
description
>A Spring Cloud Function, Http Example
description
>

 <
properties
>

 <
java.version
>17
java.version
>

 <

spring-cloud.version
>2022.0.0
spring-cloud.version
>

properties
>

 <
dependencyManagement
>

 <
dependencies
>

 <
dependency
>

 <
groupId
>org.springframework.cloud
groupId
>

 <
artifactId

>spring-cloud-dependencies
artifactId
>

 <
version

>${spring-cloud.version}
version
>

 <
type
>pom
type
>

 <
scope
>import
scope
>

dependency
>

dependencies
>

dependencyManagement
>

The func CLI function template generates the Spring Boot main class with
a function which simply prints the request headers and payload (if getting
passed). This is just a boilerplate example of which func CLI function
template generates, which can be modified as per the actual business
requirements.

package
 functions;

import
 org.springframework.boot.SpringApplication;

import
 org.springframework.boot.autoconfigure.SpringBootApplication;

import
 org.springframework.context.annotation.Bean;

import
 org.springframework.messaging.Message;

import
 java.util.function.Function;

@SpringBootApplication

public

class

CloudFunctionApplication
 {

public

static

void

main
(String[] args) {

 SpringApplication.run(CloudFunctionApplication.
class
,
args
);

 }

@Bean

public
 Function, String> echo() {

return
 (inputMessage) -> {

var
 stringBuilder =
new
 StringBuilder();

 inputMessage.getHeaders()

 .forEach((key, value) -> {

 stringBuilder.append(key).append(
": "
).append(value).append(
" "
);

 });

var
 payload = inputMessage.getPayload();

if

 (!payload.isBlank()) {

 stringBuilder.append(
"echo: "
).append(payload);

 }

return
 stringBuilder.toString();

 };

 }

}

The above files are normal Java maven project files. The only new type of
file func CLI generates is which is used as configuration for the function
project. func CLI makes use of values specified in func.yaml while
executing its commands. Many of the fields of func.yaml are populated
automatically when create, build, and deploy commands of func CLI are
executed:

specVersion:

0.35.0

name:

hello-function

runtime:

springboot

registry:

""

image:

""

imageDigest:

""

created:

2023-02
-11T20:24:45.366219+05:30

build:

buildpacks:

[]

builder:

""

buildEnvs:

-

name:

BP_NATIVE_IMAGE

value:

"false"

-

name:

BP_JVM_VERSION

value:

"17"

-

name:

BP_MAVEN_BUILD_ARGUMENTS

value:

-Pnative

-Dmaven.test.skip=true

--no-transfer-progress

package

run:

volumes:

[]

envs:

[]

deploy:

namespace:

""

remote:

false

annotations:

{}

options:

{}

labels:

[]

healthEndpoints:

liveness:

/actuator/health

readiness:

/actuator/health

The following are some of the important fields of func.yaml file:

Specifies the name of the function, also used as the Knative service name
when the function is deployed.

Specifies the language runtime for the function. For example, Spring
Boot, as shown in the above example.

Specifies image registry URL for function image

Image name of the function. It gets populated automatically after the
function is built.

Field contains the SHA256 hash of the image manifest and is populated
automatically after the Function is deployed. Do not modify this value.

Building function

After making desired changes to the Spring Boot project as per the
business requirements, func CLI helps to build the Knative Function. The
outcome of this build process is an OCI container image of the developed
function, which is then pushed to the container registry. Two types of
builds are supported. They have been discussed below:

Local build

As the name suggests, local build builds a container image of the Function
locally without deploying it on the cluster. Use the following command to
build our Function locally.

The above command accepts any container registry name like local docker
registry, Google Cloud Registry, IBM Cloud Registry, and so on. In our
case, we have set up and provided a local registry in the command above.

To set up a local registry, you can follow
https://docs.docker.com/registry/deploying/

Note: Knative Function works with Docker or Podman only. You will not
be able to build or run Knative Functions locally if Docker or Podman is
not installed on your machine.

You will see the following output on a successful build:

Now if we look at the func.yaml file once again, we will see registry and
image details are embedded automatically by the func CLI as

name:

hello-function

registry:

localhost:5000

imageDigest:

""

build:

builder:

pack

buildEnvs:

-

name:

BP_NATIVE_IMAGE

-

name:

BP_JVM_VERSION

-

name:

BP_MAVEN_BUILD_ARGUMENTS

run:

envs:

[]

deploy:

namespace:

""

annotations:

{}

labels:

[]

healthEndpoints:

liveness:

/actuator/health

Use the following command to run this Function locally:

You should see the following output on the successful execution of the
command above:

Function

already

built.

Use

--build

to

force

a

rebuild.

Function

started

on

port

8080

Setting

Active

Processor

Count

to

4

Calculating

JVM

memory

based

on

2542392K

available

memory

For

more

information

on

this

calculation,

see

https://paketo.io/docs/reference/java-reference/#memory-calculator

Calculated JVM Memory Configuration:

-XX:MaxDirectMemorySize=10M

-Xmx2146641K

-XX:MaxMetaspaceSize=88550K

-XX:ReservedCodeCacheSize=240M

-Xss1M

(Total

Memory:

2542392K,

Thread Count:

50

,

Loaded Class Count:

13220
,

Headroom:

0
%)

Enabling

Java

Native

Memory

Tracking

Adding

124

container

CA

certificates

to

JVM

truststore

Spring

Cloud

Bindings

Enabled

Picked up JAVA_TOOL_OPTIONS:

-Djava.security.properties=/layers/paketo-buildpacks_bellsoft-
liberica/java-security-properties/java-security.properties

-XX:+ExitOnOutOfMemoryError

-XX:ActiveProcessorCount=4

-XX:MaxDirectMemorySize=10M

-Xmx2146641K

-XX:MaxMetaspaceSize=88550K

-XX:ReservedCodeCacheSize=240M

-Xss1M

-XX:+UnlockDiagnosticVMOptions

-XX:NativeMemoryTracking=summary

-XX:+PrintNMTStatistics

-Dorg.springframework.cloud.bindings.boot.enable=true

.

_

__

_

_

/\\

/

___'_

__

_

()_

__

__

_

\

\

\

\

(

(

)___

|

'_ | '_|

|

'_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ‹
|____|

.__|_|

|_|_|

|___,

|

/

/

/

/

=========|_|==============|___/=/_/_/_/

::

Spring Boot ::

(v3.0.2)

2023-03
-05T16:29:06.621Z

INFO

1

[

main]

functions.CloudFunctionApplication :

Starting

CloudFunctionApplication

v0.0.1-SNAPSHOT

using

Java

17.0.6

with

PID

1

(/workspace/BOOT-INF/classes

started

by

cnb

in

/workspace)

2023-03
-05T16:29:06.626Z

INFO

1

[

main]

functions.CloudFunctionApplication :

No

active

profile

set,

falling back to 1 default profile:

"default"

2023-03
-05T16:29:10.000Z

INFO

1

[

main]

o.s.b.w.embedded.tomcat.TomcatWebServer :

Tomcat

initialized

with

port(s):

8080

(http)

2023-03
-05T16:29:10.032Z

INFO

1

[

main]

o.apache.catalina.core.StandardService :

Starting

service

[Tomcat]

2023-03
-05T16:29:10.033Z

INFO

1

[

main]

o.apache.catalina.core.StandardEngine : Starting Servlet engine:

[Apache

Tomcat/10.1.5]

2023-03
-05T16:29:10.297Z

INFO

1

[

main]

o.a.c.c.C.[Tomcat].[localhost].[/]

:

Initializing

Spring

embedded

WebApplicationContext

03
-05T16:29:10.313Z

INFO

1

[

main]

w.s.c.ServletWebServerApplicationContext : Root WebApplicationContex
t:

initialization

completed

in

3516

ms

2023-03
-05T16:29:12.286Z

INFO

1

[

main]

o.s.c.f.web.mvc.FunctionHandlerMapping : FunctionCatalog:

org.springframework.cloud.function.context.catalog.BeanFactoryAwareFu
nctionRegistry@78b7f805

2023-03
-05T16:29:12.362Z

INFO

1

[

main]

o.s.b.a.e.web.EndpointLinksResolver :

Exposing

1

endpoint(s)

beneath

base

path

'/actuator'

2023-03
-05T16:29:12.594Z

INFO

1

[

main]

o.s.b.w.embedded.tomcat.TomcatWebServer :

Tomcat

started

on

port(s):

8080

(http)

with

context

path

''

2023-03
-05T16:29:12.642Z

INFO

1

[

main]

functions.CloudFunctionApplication :

Started

CloudFunctionApplication

in

6.984

seconds

(process

running

for

8.467
)

The above output shows your Function successfully started running as a
service and will be able to serve requests on You can also use the
following command to this Function locally

func

invoke

This command should generate the following output

Received response

content-length

:
25

host
:
localhost
:
8080

content-type
: application/json
id
: a4e2eec1-ecff-e7d2-
2957
-c730e7b97896

uri
: /
accept-encoding
: gzip
user-agent
: Go-http-client/
1.1

timestamp
:
1678034297984

echo
: {

"message"
:
"Hello World"
}

You can also send test data to this newly developed Function using the --
data flag, as shown in the following snippet

func

invoke --data “Hello Knative function!"

The above command should generate the output as:

Received response

content-length:
23
 host: localhost:
8080
 content-
type
: application/json id:
56
d633ed-dd11-f4a4
-353
d-d5e24693bf3a uri:
/ accept-encoding: gzip user-agent: Go-http-client/
1.1
 timestamp:
1678034746440
 echo: Hello Knative

function
!

Remote build

This will push your created image to your registry, and the Function is
deployed as a Knative service to the cluster. To deploy the Function on the
cluster, use the following command.

func

deploy
 --
build
=
false

Note: The func remote build command will use the Kubernetes cluster,
which is set in the kubectl config. You can use the kubectl config set-
cluster command in case you want to use/set a particular cluster for the
remote build of the Knative Function.

The above command generates the output as

⬆️

Deploying

function

to

the

cluster

✅

Function

deployed in
namespace

"default"

and
 exposed at URL:

http
:
//hello-function.default.127.0.0.1.sslip.io

To verify the Function deployed on the Kubernetes cluster using the
remote build, you can use the func invoke command as

func

invoke

The following output verifies that your Function deployed successfully on
the cluster. You can see the host header value, which is your Functions
route.

Received response

x-request-id:
46929
acc
-4564-4
f26
-8850
-e3792043dfa8 content-length:
25
 x-forwarded-proto: http host: hello-
function
.
default
.127.0.0.1.
sslip
.
io

content
-
type
:
application
/
json

id
: 1595
bd2f
-59

ca
-
bf31
-3881-4
e81f1236bbd

k
-
proxy
-
request
:
activator

uri
: /
accept
-
encoding
:
gzip

forwarded
:
for
=10.244.0.12;proto=http user-agent: Go-http-client/

1.1
 timestamp:
1678036170154

echo
: {
"message"
:
"Hello World"
}

To check Function details, use the func describe command as

kn
func

describe

Output generated would have Function name, namespace, and routes as
shown in the following snippet

Function

name:

hello-function

Function

is built in image:

Function

is deployed in namespace:

default

Routes
:

http
:
//hello-function.default.127.0.0.1.sslip.io

You can also invoke the deployed Function using the route url given in the
above output of the func describe command on the browser of your choice

http
:
//hello-function.default.127.0.0.1.sslip.io

Finally, if we look at the func.yaml file again, we will see the image digest
embedded along with registry and image details automatically by the CLI,
as shown in the following snippet:

specVersion:

0.35.0

name:

hello-function

runtime:

springboot

registry:

localhost:5000/hello-function

image:

localhost:5000/hello-function:latest

imageDigest:

sha256:cdc930883c662fa044e405059012c6c85eaf253c84bea278e9744ce0
5ffa9ccf

created:

2023-03
-05T21:40:03.090159+05:30

build:

buildpacks:

[]

builder:

pack

buildEnvs:

-

name:

BP_NATIVE_IMAGE

value:

"false"

-

name:

BP_JVM_VERSION

value:

"17"

-

name:

BP_MAVEN_BUILD_ARGUMENTS

value:

-Pnative

-Dmaven.test.skip=true

--no-transfer-progress

package

run:

volumes:

[]

envs:

[]

deploy:

namespace:

default

remote:

false

annotations:

{}

options:

{}

labels:

[]

healthEndpoints:

liveness:

/actuator/health

readiness:

/actuator/health

Conclusion

Knative Function is a developer-friendly, self-managed Function-as-a-
Services with very good language support. It has got a few limitations,
like dependency on Docker and Podman and limited documentation. In
this chapter, we covered how to install, build, deploy, and run Knative
Function. We also covered how developers can execute Knative Function
on their local machine.

In the next chapter, we will start learning Knative Serving in detail. We
will also start building a use case using Knative Serverless.

Multiple choice questions

Knative Functions require in-depth knowledge of Knative and Kubernetes.

True

False

Knative function templates are available only in Springboot and Node.js
language.

True

False

Answers

b

b

Key terms

Image Registry: An Image Registry in Knative Functions is a container
image repository that stores the container images used for running
serverless functions. It allows developers to store, version, and distribute
their function images, making them accessible for deployment and
execution in the serverless environment.

Image Digest: In Knative Functions, an Image Digest is a unique identifier
that represents the specific content of a container image. It is derived from
the image's contents and serves as a fingerprint of the image's state. By
using Image Digests, Knative ensures that the correct version of the
function is deployed and executed, providing integrity and version
tracking for the function images.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
5

Knative Serving

Introduction

In previous chapters we learned about Knative Functions. How to create,
build, deploy and run Knative Functions using func CLI using hands-on
code recipes.

In this chapter we will understand the concept of Knative We will learn
how to build, deploy, and run serverless containers using Knative Serving
on Kubernetes. We will discuss and implement a case study to understand
the concept using hands-on code recipes.

Structure

In this chapter, we will discuss the following topics:

Knative Serving

Benefits of Knative Serving

Case study – Online order processing system

Functional architecture

Deployment architecture

Flow diagram

Recipes

Service implementation

Build and deploy services

Validate services

Knative serving – Services runtime behavior

Objectives

By the end of this chapter, you should have a clear understanding of
Knative Serving and should be able to build, and deploy Knative Serving
based services on Kubernetes cluster.

Knative Serving

Knative Serving provides a mechanism to deploy, run, and manage
serverless, cloud-native workloads on Kubernetes. Knative Serving has
objects defined as Kubernetes Custom Resource Definitions The
following are primary custom resources of Knative Serving:

Please refer Knative Serving section of Chapter Serverless and Knative in
a Nutshell, for detailed understanding of custom resources.

Following are some good examples where Knative Serving could be
useful:

For rapid serverless containers deployments on Kubernetes

Pods autoscaling, including scale down to zero

Multiple networking layers support like Kourier, Gloo, Istio for
integration into existing environment

Benefits of Knative Serving

To understand the benefits of Knative Serving, we need to understand how
Knative Serving eases out the process of application deployment on
Kubernetes Cluster. Let us first understand the process of a simple application
deployment on Kubernetes cluster without Knative. The following
Kubernetes artifacts are required to deploy an application on cluster:

A deployment to manage ReplicaSets which creates Pods in the background.

A service to expose your application to the cluster.

A route to expose your application outside the cluster.

An HorizontalPodAutoscaler to support autoscaling.

So, there is lot to consider for a simple application deployment on Kubernetes
cluster and somehow it slows down the core development process.

With Knative you need to create only one resource that is a Knative Service,
using Knative command line interface with kn create name> command. Or by
using a service YAML file and applying that using kubectl Knative by default
creates all the necessary resources required to run and expose your
application externally on Kubernetes cluster. Figure 5.1 depicts the typical
deployment of Knative Service and its associated resources:

Figure 5.1: Knative serving resources

Let us understand the benefits of Knative Serving in detail:

Simplified deployment

The Knative service automatically creates routes and configurations.
Configuration keeps track of revisions; each has Kubernetes Deployment and
Knative Pod Autoscaler You can access all these created resources in your
Kubernetes cluster using certain set of commands that we discuss later in the
chapter. You can use the exposed Route URL to access your application.

Autoscaling and scale to zero

As we can see in the Figure 5.1 above, traffic reaches Kubernetes cluster
through Knative Route. By default, the route sends 100% of traffic to the
latest revision. Knative Pod Autoscaler KPA continuously monitors the
number of incoming requests to the revision and automatically scales pods up
and down, and when there is no traffic going to your application, it scales
number of Pods to zero.

Easier release management via revisions

Knative configuration CRD manages multiple revisions. Revisions can be
defined as point-in-time snapshots of your code and configuration. Suppose
you want to update your application configuration, update configuration using
kn service update or in service YAML file and apply. This will create the
latest revision and by default 100% of traffic via Routes reaches latest
revision.

Knative also allows you to split traffic between multiple revisions as depicted
in the Figure Suppose you are rolling out a new release, which creates
Revision-2 and you want to test some scenarios before sending out all traffic
to new release. You can configure Knative Service to send small amount of
traffic let us say 20% to new Revision-2 and 80% will be served from your
stable release Revision-1. You can gradually increase traffic on Revision-2
and once you are sure by running all your tests, you can configure to serve
100% of traffic from new version.

Figure 5.2: Knative serving revisions and traffic split

Easier rollback:

Since Knative configuration CRD manages multiple revisions, you can jump
back to any version of your application. This will help in easier rollback of
applications.

To understand the Knative Serving concept better, let us implement a simple
use case of Online order processing system. We will implement important
Knative Serving features and observe run time behaviors. Let us begin with
implementing the use case.

Case study – Online order processing system

This case study involves creating simple microservices that process orders
placed for a product by an online buyer. Our system accepts and captures
customer orders, allocates purchased products from inventory and deducts
product cost from customer's wallet. To implement the use case, we will
be creating three microservices, order product service and customer
service used to fulfill the requested order. To keep the implementation
simple, we have taken following assumptions:

We will create backend services only used to fulfil orders.

Users who purchase products pre-exist in the database.

There is no actual payment integration. There are dummy payments made
from user pre-loaded wallet amount saved in database.

In memory database used to store customers, products, and order details.

No admin service exposed to add/update customer and product details in
database.

Functional architecture

To build this simple system, we require the following services:

Order This service provides restful APIs responsible for accepting product
purchase requests from the customer. This service captures orders requested
by the customer and its status. This service is also responsible for updating
orders and status to product and customer service.

Product This service is responsible for allocating products requested by
customers from the product inventory. This service captures product
information and manages product inventory. This service updates order
service on successful allocation of product purchased.

Customer This service is responsible for deducting purchased product costs
from customer wallet. This service captures customer information and
manages their wallet amount. This service is responsible for updating order
service on successful deduction of amount from customer wallet.

Figure 5.3 illustrates how these components work together:

Figure 5.3: Order processing system – functional architecture

While building the final architecture we made several architectural decisions.
Let us review them:

Microservices We decided to create all the services on microservices
architecture, so that it is easier to manage and work independently. We choose
Spring Boot as it is a proven framework for microservices development to
develop services along with Java 11 as a development language. We will use
Spring cloud functions to publish functions as a service

Storage: We use In-memory H2 database to store data about orders,
customers, and products. Since this is a test use case, we will be using this H2
to store information.

Service communication: We decided to use HTTP based communication to
communicate with different services in the System

Let us know look at the deployment architecture on Kubernetes Cluster. The
following section assumes you have a good understanding of Kubernetes.

Deployment architecture

Figure 5.4 illustrates the deployment architecture of our components in
Kubernetes cluster:

Figure 5.4: Order processing system – deployment architecture

Let us understand the above diagram in detail:

Order service deployment: This deployment has Knative Serving
implementation of Order Service using Spring Boot with Spring cloud
function. This service exposes endpoint for accepting orders from users. This

service maintains user order and its status in H2 database. This service
communicates with Product and Customer service for order fulfilment.

Product service deployment: This deployment has Knative Serving
implementation of product service using Spring Boot with Spring cloud
function and Spring Kafka. This service maintains and manages product
inventory in H2 database. This service updates Order Service about product
status.

Customer service deployment: This deployment has Knative Serving
implementation for customer service using Spring Boot with Spring Cloud
function. This service maintains customer information in H2 database. This
service updates order service about product cost deduction from customer
wallet.

Now that, we have understood the details of deployment architecture of our
order processing system. Let us now look at the way our services
communicate with each other.

Flow diagram

Figure 5.5 illustrates the way and the sequence in which our services
communicate with each other:

Figure 5.5: Order processing system – Flow diagram

Let us understand above flow diagram in detail:

User places an order with user (ID, amount) and product details (product ID,
product count).

Request reaches order service, which updates order DB with order details,
maintains order status=NEW and calls product and customer service over http
with order details.

Product service updates Product DB to block product and Customer Service
updates Customer DB to block amount.

Product service and customer service call order service over http with
status=PRODUCT_CONFIRMED and status=CUSTOMER_CONFIRMED
respectively to confirm order.

Order service updates order DB as order status=SUCCESS

Order service with calls Product Service to update product inventory and
Customer Service to update customer amount.

Order service finally returns the response back to user as order accepted.

Let us go ahead now and create our services.

Service Implementation

So far we have defined functional and deployment architecture for our use
case. We have also laid out the way the services will interact with each
other. Let us now start implementing them as per the architecture laid out
and using technologies as per architectural decisions.

Order service

Assuming you already have Knative Serving installed on our system to
Chapters 2 and 3 for detailed installation and verification steps with a fair
understanding of Maven, Spring Boot and Spring Cloud Functions.

Let us implement Order Service using Spring Initializr which generated
boilerplate code and required packages as a zip file. You can import the zip
file in any IDE of your choice and start building the service. Figure 5.6 is
from the Spring Initializr website; to implement our service we have chosen
development language as Java version 11 and Spring Boot version 2.7.11.

Figure 5.6: Order processing system – Spring initalizr

The following are the main dependencies we have chosen to implement this
service:

For database connection and operations.

To expose functions as a service.

H2 As an in-memory database. Use the following link to learn and understand
more on Spring boot in-memory database H2.

H2 DB is not recommended for production environment.

Code generator for minimizing the code.

The following snippet is from generated pom.xml with dependencies:

org.springframework.boot

spring-boot-starter-data-jpa

<
dependency>

org.springframework.boot

spring-boot-starter-webflux

org.springframework.cloud

spring-cloud-starter-function-web
artifactId>

org.projectlombok

<
artifactId>lombok

true

com.h2database

h2

<
scope>runtime

<
dependencies>

org.springframework.cloud

${spring-cloud.version}

pom

<
scope>import

Now to create Order we will start adding our own classes and configurations
in the generated code. Following are few important classes and configurations
added to complete the service. Refer to the GitHub repository of the book to
clone and download full Order Service code.

An Order Database, having order_details table contains order information and
status. Table 5.1 shows the table structure:

Table 5.1 : Order Details

A model class OrderDetails represents database table which is used to save
order details.

@Entity

@Table(name = "order_details")

@Getter

@Setter

@NoArgsConstructor

@ToString

public class OrderDetails {

 @Id

 private Integer id;

 @Column(name = "customer_id")

 private Integer custId;

 @Column(name = "product_id")

 private Integer prodId;

 @Column(name = "amount")

 private Integer amount;

 @Column(name = "product_count")

 private Integer prodCount;

 @Column(name = "product_order_status")

 private String productOrderStatus;

 @Column(name = "customer_order_status")

 private String customerOrderStatus;

 @Column(name = "order_status")

 private String orderStatus;

}

An OrderStatus class which holds the order status constants:

public enum OrderStatus {

 NEW,

 IN_PROGRESS,

 CUSTOMER_CONFIRMED,

 PRODUCT_CONFIRMED,

 CONFIRMED

}

Let us understand above status:

Initial order request by user

When an order accepted by order service

When order confirmed by customer service

When order is confirmed by product service

When order service updates customer and product service after successful
completion

Following snippets are from OrderApplication class which contains the main
method that starts application context. This class also contains functions
place() and confirm() which are exposed as a service.

Function place() is used to accept users order request and update customer
and product services.

@Bean

public
 Function> place(){

 }

private
 ResponseEntity doPlaceOrder(OrderDetails orderDetails) {

 orderDetails.setOrderStatus(orderDetails.getOrderStatus() !=
null
 ? orderDetails.getOrderStatus() : OrderStatus.NEW.toString());

 String orderStatus = orderDetails.getOrderStatus();

 LOGGER.info(
"order-service :: Order Status in Request :: "
 + orderStatus);

if(OrderStatus.NEW.toString().equalsIgnoreCase(orderStatus)) {

this.callCustomer(orderDetails);

this.callproduct(orderDetails);

 .statusMessage(
"Request Processed Successfully")

 .build(), HttpStatus.ACCEPTED);

 }

return
 new ResponseEntity<>
(OrderResponse.builder().status(OrderStatus.IN_PROGRESS.toString())

 .build(), HttpStatus.ACCEPTED);

 }

Function confirm() is used to check status of product and customer service for
order confirmation and update final order details with status in database.

@Bean

public
 Function confirm(){

 }

private

 String doConfirmOrder(OrderDetails orderDetails) {

 LOGGER.info(
"order-service :: Order Status :: "
 + orderDetails.getOrderStatus());

 Optional order = orderDetailsRepository.findById(orderDetails.getId());

if(order.isPresent()) {

//In progress Order

 String orderStatus = orderDetails.getOrderStatus();

if(OrderStatus.CUSTOMER_CONFIRMED.toString().equalsIgnoreCase(ord
erStatus)) {

 order.
get().setCustomerOrderStatus(orderStatus);

 orderDetailsRepository.save(order.
get());

 order.
get().setOrderStatus(OrderStatus.IN_PROGRESS.toString());

 order.
get().setCustomerOrderStatus(order.get().getCustomerOrderStatus());

 }

 order = orderDetailsRepository.findById(orderDetails.getId());

if
(OrderStatus.CUSTOMER_CONFIRMED.toString().equalsIgnoreCase(order
.get().getCustomerOrderStatus()) &&

 order.
get().setOrderStatus(OrderStatus.CONFIRMED.toString());

this.callCustomer(order.get());

 LOGGER.info(
"Final Order Status :: "
 + order.
get());

 }

 }

 }

Following application.yml file holds important properties along with database
information:

spring.cloud.function.web.path:

/orders

spring:

h2:

datasource:

username:

sa

password:

driverClassName:

org.h2.Driver

jpa:

defer-datasource-initialization:

true

generate-ddl:

true

hibernate:

ddl-auto:

create-drop

Now with the help of application.yml the functions place() and confirm() are
exposed as a service and are accessible at end points /orders/place and
/orders/confirm respectively.

Create Dockerfile with following content to build Docker image:

FROM openjdk:11-jre-slim

ARG JAR_FILE=target/*.jar

COPY ${JAR_FILE} order-service.jar

ENTRYPOINT ["java","-jar","order-service.jar"]

This completes the implementation of Order Later in this chapter, we will
build and deploy this as Knative Serving service on Kubernetes Cluster.

Now let us start implementing our next service that is, Product Service which
takes care of Products Inventory of our Order Processing System.

Product service

We will implement this service in a similar fashion as Order Service.
Please refer and follow Order Service implementation steps.

Here, we will discuss a few important components used to implement
product service functionalities. For full code access please refer to the
book’s GitHub repository.

A Product Database, having product_details table contains information
about Products. Table 5.2 shows the table structure:

Table 5.2 : Product details

Table 5.2 will be created in H2 database and product related data will be
inserted upon application start-up.

A ProductDetails class is created to map Java properties with
product_table columns:

@Entity

@Table(name = "product_details")

@Getter

@Setter

@NoArgsConstructor

@ToString

public class ProductDetails {

 @Id

 private Integer id;

 @Column (name = "product_name")

 private String prodName;

 @Column (name = "product_available
"
)

 private Integer productAvailable;

 @Column (name = "product_blocked")

 private Integer productBlocked;

}

A ProductOrderStatus class which holds the product status constants:

public

enum

ProductOrderStatus
 {

NEW
,

PRODUCT_CONFIRMED

,

CONFIRMED

}

Let us understand each one of the above elements:

Initial o‹rder request by user

When product service confirms the order

order service updates product service after successful fulfilment of order

A Spring Boot main class ProductApplication is created to start up
Product Service Application Context using Java main method. This class
also contains function block() with business logic for product and will be
exposed as a REST Endpoint that Order Service uses for processing
requests. This function blocks products for users in Product Inventory and
updates product count upon final confirmation from Order Service.
Following is the code snippet of block() function:

@Bean

public Consumer block(){

 }

private void doBlockProduct(OrderDetails orderDetails) {

 LOGGER.info(
"product-service :: Order Status :: "
 + orderDetails.getOrderStatus());

if(orderDetails != null) {

 ProductDetails productDetails = productDetailsRepository.findById(
orderDetails.getProdId()).orElseThrow();

 productDetails.setProductBlocked(productDetails.getProductBloc
ked() + orderDetails.getProdCount());

 productDetails.setProductAvailable(productDetails.getProductAva
ilable() - orderDetails.getProdCount());

 orderDetails.setOrderStatus(ProductOrderStatus.PRODUCT_CO
NFIRMED.toString());

 productDetailsRepository.save(productDetails);

this.callOrder(orderDetails);

 productDetails.setProductBlocked(productDetails.getProductBloc
ked() - orderDetails.getProdCount());

 productDetailsRepository.save(productDetails);

 }

 }

 }

Function block() is accessible as a service using URI /products/block.

Finally create Dockerfile which we will use later to build image and push
this into registry.

Now let us start implementing next service that is, Customer Service
which performs customer related operations in our order processing

Customer service

This service is implemented in a similar fashion as order and product
services using similar dependencies.

Here, we will discuss a few important components used to implement
customer service functionalities. For the full code access please refer to
the book’s GitHub repository.

A Customer having a customer_details table contains information about
Products. Table 5.3 will be created in H2 database and products related
data will be inserted upon application startup:

Table 5.3: Customer details

A CustomerDetails class is created to map Java properties with Customer
DB table columns using JPA.

@Entity

@Table(name = "customer_details")

@Getter

@Setter

@NoArgsConstructor

@ToString

public class CustomerDetails {

@Id

 private Integer id;

@Column(name = "customer_name")

 private String custName;

@Column(name = "wallet_amount")

 private Integer walletAmount;

@Column(name = "wallet_amount_blocked")

 private Integer walletAmountBlocked;

}

An enum CustomerOrderStatus which holds the service status constants:

NEW,

CUSTOMER_CONFIRMED,

CONFIRMED

}

Let us understand each one of the above:

Initial order requested by user.

When customer service confirms the order.

When order service updates customer service upon successful fulfilment
of order.

A Spring Boot main class CustomerApplication is created to start up
customer service application context using Java main method. This class
also contains function blockAmount() having business logic for customer
service, which will be exposed as a REST Endpoint and is used by Order
Service for processing requests. This function blocks amounts for users
from the customer wallet and updates amount upon final confirmation
from Order Service. Following is the code snippet of blockAmount()
function:

@Bean

public Consumer blockAmount(){

 }

private void doBlockAmount(OrderDetails orderDetails) {

 LOGGER.info(
"Customer-service :: Order Details :: "
 +orderDetails.toString());

if(orderDetails != null) {

 CustomerDetails customerDetails = customerDetailsRepository.find
ById(orderDetails.getCustId()).orElseThrow();

if
 (CustomerOrderStatus.NEW.toString().equalsIgnoreCase(orderDetails.get
OrderStatus())) {

 customerDetails.setWalletAmountBlocked(customerDetails.getWa
lletAmountBlocked() + orderDetails.getAmount());

 customerDetails.setWalletAmount(customerDetails.getWalletAmo
unt() - orderDetails.getAmount());

 orderDetails.setOrderStatus(CustomerOrderStatus.CUSTOMER_
CONFIRMED.toString());

 customerDetailsRepository.save(customerDetails);

this.callOrder(orderDetails);

 }
else

if
 (CustomerOrderStatus.CONFIRMED.toString().equalsIgnoreCase(order
Details.getOrderStatus())) {

 customerDetails.setWalletAmountBlocked(customerDetails.getWa
lletAmountBlocked() - orderDetails.getAmount());

 customerDetailsRepository.save(customerDetails);

 }

 }

 }

The function blockAmout() created is accessible using URI

We will use Docker to build a customer service image and push this into
the registry.

Till now we have built all the required services. In the next section, we
will build and deploy our services as Knative Serving component on
Kubernetes Cluster.

Build and deploy

Now that, we have completed the implementation our services, let us build
them using Maven and Docker and deploy them as Knative Serving
service on Kubernetes Cluster.

Order service

Navigate to your project directory and run following Maven command to
build Order Service as jar:

mvn clean install

Following is the expected output:

[INFO]

Installing

order-service-0.0.1-SNAPSHOT.jar

to
 /
com/knative/order/order-service/0.0.1-SNAPSHOT/order-service-0.0.1-
SNAPSHOT.jar

[INFO]

--

Navigate to the created Dockerfile in your project directory and run
following command to create Docker image:

docker build -t knativedemo/order-service .

Following is expected output on successful execution of command:

 => exporting to image .3s

 => => exporting layers .3s

 => => writing image sha256:0db17358c2df72df743b6d393e0cda8b3a709
d2dc89249abc24e2a2463dc4ed6 0.0s

 => => naming to docker.io/knativedemo/order-service

Next step is to push the image to an image registry. We have setup Docker
Hub as image registry to push images. You can use registry of your own
choice as well like Google Cloud Registry and so on.

docker push knativedemo/order-service

The command will generate following output:

The push refers to repository [docker.io/knativedemo/order-service]

ef9e1367b730: Pushed

d7802b8508af: Layer already exists

e3abdc2e9252: Layer already exists

eafe6e032dbd: Layer already exists

92a4e8a3140f: Layer already exists

latest: digest: sha256:686e89c77880d3a375e11a4b648ac36d788c9057abc
eed4cf52c7f361c7923c5 size: 1371

Now, that we have completed all the required steps to build Order let us
deploy it on the Kubernetes cluster. We are using default Kubernetes
namespace for deployment. To deploy order service, run the following
command:

--image docker.io/knativedemo/order-service \

--port 8080 \

--env customer-service-ep=http://customer-
service.default.svc.cluster.local \

--env product-service-ep=http://product-service.default.svc.cluster.local

The above Knative command creates a service with the name order-
service by pulling the image from Docker repository and running on port
8080. We are also setting environment variables available to service after
successful deployment. The command will start deployment of our Order
Service on cluster and generates following output:

http://order-service.default.127.0.0.1.sslip.io

This completes the deployment Order

Product and customer service

Product and customer service can be built in a similar way like Order
Service using Maven and Docker. Refer Order Service deployment steps
to build them. Let us deploy product services on Kubernetes cluster by
running following command:

--image docker.io/knativedemo/product-service \

--port 8080 \

--env order-service-ep=http://order-service.default.svc.cluster.local

Following is the expected output:

http://product-service.default.127.0.0.1.sslip.io

Similarly, deploy customer service by running following command:

--image docker.io/knativedemo/customer-service \

--port 8080 \

--env order-service-ep=http://order-service.default.svc.cluster.local

Following is the expected output:

http://customer-service.default.127.0.0.1.sslip.io

Finally, verify that all our services are deployed successfully and are ready
to serve by running following command:

Kn services ls

Following is the expected output:

This completes the verification of all our services required for our use
case.

With this we have completed the creation and deployment of all three
services order service, product service and customer service for
implementation our use case Order Processing System.

Validate services

Now we will do a simple demonstration of how our services worked
together to complete the order requested by a customer. We will check
logs generated against of each of the service.

Let us start by creating a new order request using our Order Service REST
Endpoint with the following request:

{

 "id": 1,

 "custId": 1,

 "prodId": 1,

 "amount": 100,

 "prodCount": 1

}

Following curl command executes Order Service, and we can see response
retuned along with statusCodeValue as

-H 'Content-Type:application/json' \

Let us go through the following logs generated by Product and Customer
Service:

INFO

1

[nio-8080-exec-2]

c.knative.customer.CustomerApplication : Customer-
service :: Order Status ::

NEW

INFO

1

[nio-8080-exec-5]

c.knative.customer.CustomerApplication : Customer-
service :: Order details ::

CustomerDetails(id=1,

custName=Cust1,

walletAmount=49900,

walletAmountBlocked=0)

INFO

1

[nio-8080-exec-2]

com.knative.product.ProductApplication : product-
service :: Order Status ::

NEW

INFO

1

[nio-8080-exec-5]

com.knative.product.ProductApplication : product-
service ::Order details ::

ProductDetails(id=1,

prodName=Product1,

productAvailable=999,

productBlocked=0)

In both logs, we can observe the initial and final order status provided by
Order Service to both Customer and Product Service.

Now, let us go through logs generated by Order Service. We can see new
order requests received by order service and finally confirmation received
from Product Service as PRODUCT_CONFIRMED and Customer
Service as CUSTOMER_CONFIRMED to update the final status of order
as

Invoking function:
 confirmwith input
type:
 class com.knative.order.model.OrderDetails

INFO 1
 --- [nio-
8080-exec-8] com.knative.order.OrderApplication : order-
service :: Order Status :: PRODUCT_CONFIRMED

So, that is the complete validation of our Case Study.

Knative Serving – Services runtime behavior

As we discussed initially in this chapter, we just need to focus on service
development, and the rest like creation of routes, revisions, and
autoscaling are being handled by Knative Serving.

Let us first verify the creation of Knative custom resources against our
services:

Verify automatically by Knative using the following command:

kn routes list

URLs returned in the following output confirm the creation of routes
against each service which will be used as REST Endpoints:

customer-service

http://customer-service.default.127.0.0.1.sslip.io

True

product-service

http://product-service.default.127.0.0.1.sslip.io

True

traffic with the following command:

kn revision ls

The following output confirms the latest revisions created and serving
100% of traffic:

customer-service-00001

customer-service

100
%

1

3h24m

3

OK

/

4

True

product-service-00001

product-service

100
%

1

3h23m

3

OK

/

4

True

We will see the magic of Knative Serving now by showing, how our Pods
scale up upon a request and scales down to zero when there is no request.

Let us once again check status of our services using following command:

Kn services ls

The output of the command shows our services are ready to serve
requests:

customer-service

http://customer-service.default.127.0.0.1.sslip.io

customer-service-00001

3h49m

3

OK

/

3

True

product-service

http://product-service.default.127.0.0.1.sslip.io

product-service-00001

3h48m

3

OK

/

3

True

Let us now check status of our Pods using the following command:

The following output shows no resources in the namespace, that is, all
Pods are scaled down to zero because of no requests on services:

Let us generate an order using the following request and check the pod’s
status once again:

-H 'Content-Type:application/json' \

Finally, analyze the following output to see power of Serverless containers
using Knative Serving and check how our Pods scale up on receiving a
request and again down to zero when there is no request:

As you can see, in line number 2, no Pods are running and upon receiving
a new order request. Order Service Pods start scaling up (line number 4)
and once Order service calls Customer and Product Service endpoints,
both the services Pods start scaling up (line numbers 11 and After
completing the order and again on no request, Pods start terminating (line
numbers 25, 26, 27) and finally scale down to zero (line number 29).

Conclusion

In this chapter we covered the concept of Knative Serving and understood
its various features. We implemented a case study, Online Order
Processing System using Microservices Architecture and implemented
various concepts of Knative Serving. We also saw the power of Knative
Serving using live examples of Pods scaling up and down to zero
automatically.

In the next chapter, we will get to learn about Knative Eventing and
related concepts. We will enhance our case study by implementing
Knative Eventing concepts and features.

Multiple choice questions

What does Knative Serving provide in a Kubernetes environment?

Networking capabilities for the cluster.

A serverless platform to run applications.

Automatic scaling of Kubernetes nodes.

Tools for monitoring resource utilization.

Which component of Knative automatically scales the number of pods
based on incoming traffic?

Knative Eventing

Knative Build

Knative Serving

Knative Networking

Answers

b

c

Key terms

HPA Horizontal Pod Autoscaler, which automatically adjusts the number
of replicas for a Knative Service based on CPU utilization or custom
metrics, ensuring efficient resource utilization.

KPA stands for Knative Pod Autoscaler, a component that dynamically
scales the number of pods in a Knative Service to handle incoming traffic
based on the defined concurrency targets, enabling automatic scaling for
event-driven workloads.

C

HAPTER
6

Knative Eventing

Introduction

In the previous chapter, we learned about Knative Serving, detailing how
to create, build, deploy, run services built using Knative Serving and
demonstrated with hands-on code recipes.

In this chapter, we will understand the concept of Knative We will learn
how to build, deploy, and run services using Knative Eventing on
Kubernetes. We will enhance our use case – order processing system to
understand the concepts of various Knative Eventing patterns using hands-
on code recipes.

Structure

In this chapter we will discuss the following topics:

Knative Eventing

Knative Eventing patterns

Source to Sink pattern

Broker and Trigger pattern

Case study – Online order processing system

Functional architecture

Deployment architecture

Order processing system with Source to Sink pattern

Recipes

Service implementation

Build and deploy services

Event source installation

Create Event sources

Validate services

Order processing system with Broker and Triggers pattern

Recipes

Service implementation

Build and deploy services

Broker installation

Create event source

Create triggers

Validate services

Objectives

By the end of this chapter, you should have clear understanding of Knative
Eventing and should be able to build, and deploy Knative Eventing based
services on Kubernetes Cluster.

Knative Eventing

As described in Chapter Knative Eventing is a set of APIs that provides
the mechanism to use event-driven architecture for Serverless
applications.

These APIs are composed of the following:

Event source

Broker

Filter

Trigger

Subscription

Sink

Knative Eventing enables the development of asynchronous applications
through event delivery from anywhere. It is primarily focused on three
main areas:

Developer It provides a uniform experience for developers when sourcing
events from systems which enables them to develop, support and maintain

event driven applications. It also provides standard experience in event
creation and consumption using the Cloud Event standards. Refer
https://cloudevents.io/ to learn more about Cloud

Event delivery: It simplifies the event delivery mechanism and provides a
pluggable architecture which helps developers to choose the correct event
delivery pattern for their requirements.

Event sourcing: It provides tools and specifications for creating events and
integrating in Cloud Event environment.

Refer Knative Eventing section of Chapter Serverless and Knative in a
Nutshell, to better understand the above components.

Knative Eventing patterns

The following are primary Eventing patterns with Knative Eventing:

Source to Sink pattern

This is the basic pattern with Knative Eventing which contains two
Knative Eventing components:

Event source: Event source acts as a link between an event producer and
an event sink. Table 6.1 lists few important event sources maintained by
Knative:

Knative:

Knative: Knative: Knative: Knative: Knative: Knative: Knative:
Knative: Knative: Knative: Knative: Knative: Knative: Knative:
Knative:

Knative: Knative: Knative: Knative: Knative: Knative: Knative:
Knative: Knative: Knative: Knative: Knative: Knative: Knative:
Knative:

Knative: Knative: Knative: Knative: Knative: Knative: Knative:
Knative: Knative: Knative:

Knative: Knative: Knative: Knative: Knative:

Table 6.1: Event Sources supported by Knative

Sink: Sink could be a Knative Service, a broker or a channel that receives
events from event Sources as shown in Figure

Figure 6.1: Source to Sink pattern

Broker and Trigger pattern

This pattern supports filtering of events. This implies that out of multiple
events from broker, it delivers only those events to a subscribed service where
it shows interest. As shown in Figure this pattern consists of:

Brokers which is a Kubernetes Custom resource and acts as a sink for event
sources. The Brokers in Table 6.2 are supported by Knative:

Table 6.2 : Brokers supported by Knative

subscribe to a broker with filtering configuration on cloud events. They route
filtered events to its configured subscription service.

Event source which acts as a link between event producer and broker.

Figure 6.2: Broker and Triggers pattern.

We will enhance our use case order processing system from the previous
chapter with Knative Eventing and apply patterns discussed above to
understand Eventing concepts better.

Case study – Online order processing system

We already described this case study in the previous chapter. The core
services order, product and customer service required to build the system
will remain same. From here onwards in each section, we only discuss the
changes required to implement this use case using Knative Eventing.

Functional architecture

Figure 6.3 illustrates how the various components of our use case work
together. As you can see, we introduced a messaging component Apache
Kafka for async communication between services. Events published to this
component will be consumed by services of the system for further processing:

Figure 6.3: Order processing system – Functional architecture

While building the final architecture we have taken various architectural
decisions. Let us review them:

Micro services: We decided to create all the services on microservices
architecture so that it is easier to manage and work independently. We choose
Spring Boot as it is a proven framework for microservices development to
develop services, along with Java 11 as a development language. We will use
Spring cloud functions to publish functions as a service.

Storage: We use In-memory H2 database to store data about orders,
customers, and products. Since this is a test use case, we will be using this H2
to store information.

Service communication: We decided to use Apache Kafka for asynchronous
communication between various services of the system.

Deployment architecture

Figure 6.4 illustrates the deployment architecture of our components in the
Kubernetes cluster. A key change from the previous chapters is the
introduction of asynchronous communication between services using Apache
Kafka:

Figure 6.4: Order processing system – Deployment architecture

We will discuss about components which are added to our use case for
Knative Eventing as follows:

Refer Chapter Knative Serving, for detailed description of other components.

Messaging Service deployment: This deployment has Apache Kafka Cluster
which contains Brokers as an instance of Kafka and holds partitions of Kafka
Topics.

Let us now understand Knative Eventing and its various patterns by applying
them in our order processing system use case. As illustrated in previous
chapter of Knative Serving, our use case remains same and the services
required to implement the system also remain same. There will be changes in
communication patterns. In Chapter Knative Serving, our services
communicate over HTTP, now with Knative Eventing we will implement the
use case with event driven architecture and communication will be done
asynchronously using Kafka as a messaging service. We will discuss about
changes required at code level in each service to implement system using
Knative Eventing.

Order processing system with Source to Sink pattern

Till now, we understood functional and deployment architecture of our
services. Let us now start implementing them using Knative Eventing
Source to Sink pattern. As per our architectural decisions, we will use
Apache Kafka as messaging service and as a communication mechanism
between our services. If you have not installed Kafka yet, please refer
Apache Kafka Installation steps from Chapter Installation and
Configuration of Knative.

Service implementation

Figure 6.5 illustrates the flow of new order using Source to Sink pattern:

Figure 6.5: Order processing system – Source to Sink pattern

Let us understand the flow first and later we will discuss about required code
changes in the services:

User purchases a product which generates a new order request in the system.

Order Service accepts request and responds back to user with request
accepted.

Order service then generates CloudEvents and pushes the event to Kafka
topics block-products and

The product event source then reads the message from Kafka Topic and
delivers this to its configured Sink, product service. Similarly, the customer
event source reads the message from Kafka Topic and delivers it to its Sink
customer service. We will discuss about these configurations later in the
chapter.

Product and customer service does the required processing and pushes the
events stating their confirmation in place-order Kafka Topic.

Order event source then reads message from Kafka Topic and delivers this to
its configured Sink, Order Service.

Order service once again pushes events to Kafka topics block-products and
block-amount confirming order status.

Finally, Product and customer event source reads and delivers messages to its
configured Sink, product and customer service respectively.

Refer the book’s Github repository to download or clone the code.

The following changes have been done in services and configuration to
implement Knative Eventing using Source to Sink pattern. We have added
Spring Cloud Kafka Streams for sending messages to Apache Kafka. The
following dependencies are added in pom.xml of all the Services:

org.springframework.cloud

spring-cloud-starter-stream-kafka

dependency>

io.cloudevents

2.3.0

io.cloudevents

cloudevents-kafka

io.cloudevents

cloudevents-http-basic

2.4.2

An OrderSourceToSink class is added in order service which contains a
function place() exposed as a service which accepts orders and responds back
to user. This function also saves order in database, generates cloud event from
the request and pushes the generated event to block-product and block-
amount Kafka topics as highlighted in the

@Bean

public

Function> place()
 throws JsonMappingException, JsonProcessingException {

}

 LOGGER.info("order-service-es :: Order Request Recieved :: "

 + order.toString());

String orderStatus = order.getOrderStatus();

 LOGGER.info("order-service-es :: Order Status in Request :: "
 + orderStatus);

 CloudEvent event = null;

 try
 {

 event = orderUtil.generateCloudEvent(order);

} catch
 (JsonProcessingException e) {

 LOGGER.error("Error in creating order :: ", e);

}

if(OrderStatus.NEW.toString().equalsIgnoreCase(orderStatus)) {

 orderDetailsRepository.save(order);

 kafkaTemplate.send(TOPIC_NAME_PRODUCT, event);

 kafkaTemplate.send(TOPIC_NAME_CUSTOMER, event);

 return

 new

 ResponseEntity<>
(OrderResponse.builder().status(OrderStatus.IN_PROGRESS.toString()).stat
usMessage(
 "Request Processed Successfully").build(), HttpStatus.ACCEPTED);

}

 return

 new
 ResponseEntity<>
(OrderResponse.builder().status(OrderStatus.IN_PROGRES
S.toString()).statusMessage(
 "Request Processed Successfully").build(), HttpStatus.BAD_REQUEST);

}

This class also contains a Consumer Function confirm() which consumes
events from product and customer service, processes the events and finally
pushes the events with final order status to block-product and block-amount
topics as highlighted:

@Bean

public

Consumer> confirm(){

 }

OrderDetails
 orderDetails = msg.getPayload();

LOGGER.info("order-service-es :: Message Recieved :: "+ orderDetails);

LOGGER.info("order-service-
es :: Order Status :: "+ orderDetails.getOrderStatus());

Optional order = orderDetailsRepository.findById(orderDetails.getId());

if(order.isPresent()) {

if(OrderStatus.
CUSTOMER_CONFIRMED.toString().equalsIgnoreCase(orderStatus)) {

 order.
get().setCustomerOrderStatus(orderStatus);

 orderDetailsRepository.save(order.
get());

 order.

get().setOrderStatus(OrderStatus.
IN_PROGRESS.toString());

 order.
get().setCustomerOrderStatus(order.get().getCustomerOrderStatus());

 }

 order = orderDetailsRepository.findById(orderDetails.getId());

if(
OrderStatus.CUSTOMER_CONFIRMED.toString().equalsIgnoreCase(order.
get().getCustomerOrderStatus()) &&

OrderStatus.PRODUCT_CONFIRMED.toString().equalsIgnoreCase(order.ge
t().getProductOrderStatus())) {

 order.
get().setOrderStatus(
OrderStatus.CONFIRMED.toString());

LOGGER.info("Final Order Status :: "
 + order.
get());

kafkaTemplate.send(TOPIC_NAME_CUSTOMER, orderUtil.generateCloud
Event(order.get(), "call-customer"));

 }
catch
 (
JsonProcessingException
 e) {

LOGGER.error("Error Occurred :: ", e);

 }

 }

 }

 }

A new class CustomerSourceToSink was added in customer service with the
function blockAmount() which consumes Events generated by order service
and process request. This function also pushes events to place-order topics
consumes by Order Service:

@Bean

public
 Consumer> blockAmount(){

 }

 OrderDetails orderDetails = msg !=
null
 ? msg.getPayload() :

null;

 LOGGER.info(
"Customer-service-es :: Order Status"
 + orderDetails.getOrderStatus());

if(orderDetails != null) {

 CustomerDetails customerDetails = customerDetailsRepository.findByI
d(orderDetails.getCustId()).orElseThrow();

 customerDetails.setWalletAmountBlocked(customerDetails.getWallet
AmountBlocked() + orderDetails.getAmount());

 customerDetails.setWalletAmount(customerDetails.getWalletAmount
() - orderDetails.getAmount());

 orderDetails.setOrderStatus(CustomerOrderStatus.CUSTOMER_CO
NFIRMED.toString());

 customerDetailsRepository.save(customerDetails);

try
 {

 }
catch
 (JsonProcessingException e) {

 }

 customerDetails.setWalletAmountBlocked(customerDetails.getWallet
AmountBlocked() - orderDetails.getAmount());

 customerDetailsRepository.save(customerDetails);

 }

 LOGGER.info(

"Customer-service-es :: Order details :: "
 + customerDetails);

 }

 }

Similarly, a new class ProductSourceToSink was added in Product Service
with the function block() which consumes Events generated by order service
and process request. This function also pushes events to place-order topics
consumed by Order Service:

@Bean

public
 Consumer> block(){

 }

 OrderDetails orderDetails = msg !=
null
 ? msg.getPayload() :
null;

 LOGGER.info(
"product-service-es :: Order Status :: "

 + orderDetails.getOrderStatus());

 ProductDetails productDetails = productDetailsRepository.findById(ord
erDetails.getProdId()).orElseThrow();

 productDetails.setProductBlocked(productDetails.getProductBlocked
() + orderDetails.getProdCount());

 productDetails.setProductAvailable(productDetails.getProductAvaila
ble() - orderDetails.getProdCount());

 orderDetails.setOrderStatus(ProductOrderStatus.PRODUCT_CONFI
RMED.toString());

 productDetailsRepository.save(productDetails);

try
 {

 }
catch
 (JsonProcessingException e) {

 }

 productDetails.setProductBlocked(productDetails.getProductBlocked
() - orderDetails.getProdCount());

 productDetailsRepository.save(productDetails);

 }

 }

 }

Let us now deploy of our services on cluster:

Build and deploy services

Please refer Chapter Knative Serving, for steps to build services. As
mentioned there, build all the three services using Maven and Docker.
Upon successful build and pushing image to docker repository, let us
deploy our services.

Deploy order service: Following command will deploy order service with
minimum one pod running on Kubernetes Cluster:

--image docker.io/knativedemo/order-service-eventing \

--port 8080 \

-a autoscaling.knative.dev/min-scale=1

Following is the expected output:

http://order-service-eventing.default.127.0.0.1.sslip.io

Deploy product Following command will deploy product service with
minimum one pod running on Kubernetes Cluster.

--image docker.io/knativedemo/product-service-eventing \

--port 8080 \

-a autoscaling.knative.dev/min-scale=1

Following is the expected output:

http://product-service-eventing.default.127.0.0.1
.sslip.io

Deploy customer Following command will deploy customer service on
Kubernetes Cluster:

--image docker.io/knativedemo/customer-service-eventing \

--port 8080 \

-a autoscaling.knative.dev/min-scale=1

Following is the expected output:

http://customer-service-eventing.default.127.0.0.1.sslip.io

Following command will list services created along with its routes and
state:

After successful deployment of services, we need to create Apache Kafka
Event Source.

Event source installation

Since we are using Apache Kafka, we will first install Apcahe Kafka
Source which will read messages from Apache Kafka topics and send
them to its configured sink. Following are the installation steps:

Install Kafka Source Controller using the following

Install Kafka Source data the following

Verify the successful installation by entering the following command:

Output must contain kafka-contoller and kafka-source-dispatcher pods
running along with other pods:

kafka-controller-749dd9cfc5-jb2pr

1/1

Running

0

4d21h

After successful installation of Kafka Event Source, let us create event
sources required for our services.

Create event sources

Now we will create event sources required for our System. We will create
following three event sources:

Product Event Kafka reading the messages from block-product topic and
delivering events to its configured sink URI /products/block as illustrated in
Figure

Figure 6.6: Product event Kafka Source to Sink

To create the Product Kafka Source, the following YAML file should be
created. This will create block-products topic along with Product Event
source with name You can also create your own topic separately and provide
details of it in YAML file. This YAML will also have details about Kafka
Bootstrap servers (Refer Chapter Installation and Configuration of Knative,
for Kafka Bootstrap servers) along with Sink, product service with sink URI

apiVersion: sources.knative.dev/v1beta1

kind: KafkaSource

metadata:

name: order-product-event-source

spec:

bootstrapServers:

topics:

 - block-products

sink:

ref:

apiVersion: serving.knative.dev/v1

kind: Service

name: product-service-eventing

uri: /products/block

Apply the YAML by entering following command:

Following output is expected on successful completion of command:

Customer Event Kafka Source reading the messages from block-customers
topic and delivering events to its configured sink URI /products/blockAmount
as illustrated in Figure

Figure 6.7: Customer Event Kafka Source and Sink

To create the Customer Kafka Source, the following YAML file will be used:

apiVersion: sources.knative.dev/v1beta1

kind: KafkaSource

metadata:

name: order-customer-event-source

spec:

bootstrapServers:

topics
:

sink:

ref:

apiVersion: serving.knative.dev/v1

kind: Service

name: customer-service-eventing

Apply the YAML by entering following command:

Following output is expected on successful completion of command:

kafkasource.sources.knative.dev/order-customer-event-source created

Order Event Kafka reading the messages from place-orders topic and
delivering events to its configured sink URI illustrated in Figure

Figure 6.8: Order Event Kafka Source and Sink

Following YAML file will be used to create Order Event Source:

apiVersion: sources.knative.dev/v1beta1

kind: KafkaSource

metadata:

name: order-event-source

spec:

bootstrapServers:

topics:

sink:

ref:

apiVersion: serving.knative.dev/v1

kind: Service

name: order-service-eventing

uri: /orders/confirm

Apply the YAML by entering the following command:

Following output is expected on successful completion of command:

kafkasource.sources.knative.dev/order-event-source created

You can verify all the event sources created by entering following command:

This will give you the list of Event Sources created and their state, type and
the configured Sink details:

order-customer-event-source

KafkaSource

kafkasources.sources.knative.dev

ksvc:customer-service-eventing

True

order-product-event-source

KafkaSource

kafkasources.sources.knative.dev

ksvc:product-service-eventing

True

You can also use kubectl to list sources by entering following command:

This command also lists sources with their state and topics from which it
reads messages:

kafkasource.sources.knative.dev/order-customer-event-source ["block-
customers"] ["my-cluster-kafka-bootstrap.kafka:9092"] True 2d12h

kafkasource.sources.knative.dev/order-product-event-source ["block-
products"] ["my-cluster-kafka-bootstrap.kafka:9092"] True 8m28s

Till now, we have successfully built and deployed our services, we also
created event sources. It is time to validate our services and observe runtime
behaviour.

Validate services

Now we will validate our services by doing a simple demonstration of
how our services worked together to complete the order requested by a
customer. We will check logs generated against of each of the service.

Let us start by creating a new order request using our order service REST
Endpoint http://order-service-eventing.127.0.0.1.sslip.io/orders/place with
following request:

{

 "id": 1,

 "custId": 1,

 "prodId": 1,

 "amount": 100,

 "prodCount": 1

}

Following curl command executes Order Service, and we can see the
following response retuned along with statusCodeValue as

-H 'Content-Type:application/json' \

Let us go through the following logs generated by Customer and Product
Service:

INFO

1

[nio-8080-exec-9]

c.k.es.customer.CustomerSourceToSink : Customer-service-
es :: Order Status ::

NEW

INFO

1

[io-8080-exec-10]

c.k.es.customer.CustomerSourceToSink : Customer-service-
es :: Order Details ::

OrderDetails(id=5,

custId=1,

amount=100,

orderStatus=CONFIRMED)

INFO

1

[io-8080-exec-10]

c.k.es.customer.CustomerSourceToSink : Customer-service-
es :: Order details ::

CustomerDetails(id=1,

custName=Cust1,

walletAmount=49900,

walletAmountBlocked=0)

INFO

1

[nio-8080-exec-5]

c.k.es.product.ProductSourceToSink : product-service-
es :: Order Status ::

NEW

INFO

1

[nio-8080-exec-8]

c.k.es.product.ProductSourceToSink : product-service-
es :: Order Recieved ::

OrderDetails(id=5,

prodId=1,

prodCount=1,

orderStatus=CONFIRMED)

INFO

1

[nio-8080-exec-8]

c.k.es.product.ProductSourceToSink : product-service-
es :: order details ::

ProductDetails(id=1,

prodName=Product1,

productAvailable=999,

productBlocked=0)

In both the logs, we can observe initial and final order status provided by
order service to both Customer and Product Service.

Now, let us go through logs generated by Order Service. We can see new
order request received by order service and finally the confirmation
received from product service as PRODUCT_CONFIRMED and
customer service as CUSTOMER_CONFIRMED to update final status of
order as

INFO

1

[nio-8080-exec-4]

com.knative.es.order.OrderSourceToSink : order-service-
es :: Order Request Recieved ::

OrderDetails(id=5,

custId=1,

prodId=1,

amount=100,

prodCount=1,

productOrderStatus=null,

customerOrderStatus=null,

orderStatus=null)

INFO

1

[nio-8080-exec-5]

com.knative.es.order.OrderSourceToSink : order-service-
es :: Message Recieved ::

OrderDetails(id=5,

custId=null,

prodId=1,

amount=null,

prodCount=1,

productOrderStatus=null,

customerOrderStatus=null,

orderStatus=PRODUCT_CONFIRMED)

INFO

1

[nio-8080-exec-6]

com.knative.es.order.OrderSourceToSink : order-service-
es :: Message Recieved ::

OrderDetails(id=5,

custId=1,

prodId=null,

amount=100,

prodCount=null,

productOrderStatus=null,

customerOrderStatus=null,

orderStatus=CUSTOMER_CONFIRMED)

INFO

1

[nio-8080-exec-6]

com.knative.es.order.OrderSourceToSink : Final Order Status ::

OrderDetails(id=5,

custId=1,

prodId=1,

amount=100,

prodCount=1,

productOrderStatus=PRODUCT_CONFIRMED,

customerOrderStatus=CUSTOMER_CONFIRMED,

orderStatus=CONFIRMED)

Now let us see the messages produced at different topics:

block-products topic is associated with Product Event source and the
following messages is produced when the request is processed. The first
one is for new order details and second is final order status message
published by Order Service.

kubectl -n kafka run kafka-consumer -ti --image=strimzi/kafka:0.14.0-
kafka-2.3.0 --rm=true --restart=Never -- bin/kafka-console-consumer.sh --
bootstrap-server my-cluster-kafka-bootstrap:9092 --topic block-products

If you don't see a command prompt, try pressing enter.

{"id":1,"custId":1,"prodId":1,"amount":100,"prodCount":1,"productOrder
Status":null,"customerOrderStatus":null,"orderStatus":"NEW"}

{"id":1,"custId":1,"prodId":1,"amount":100,"prodCount":1,"productOrder
Status":"PRODUCT_CONFIRMED","customerOrderStatus":"CUSTOM
ER_CONFIRMED","orderStatus":"CONFIRMED"}

block-customers topic is associated with Customer Event source and here
too we can see new order details and final order status events published by
Order

kubectl -n kafka run kafka-consumer -ti --image=strimzi/kafka:0.14.0-
kafka-2.3.0 --rm=true --restart=Never -- bin/kafka-console-consumer.sh --
bootstrap-server my-cluster-kafka-bootstrap:9092 --topic block-customers

If you don't see a command prompt, try pressing enter.

{"id":1,"custId":1,"prodId":1,"amount":100,"prodCount":1,"productOrder
Status":null,"customerOrderStatus":null,"orderStatus":"NEW"}

{"id":1,"custId":1,"prodId":1,"amount":100,"prodCount":1,"productOrder
Status":"PRODUCT_CONFIRMED","customerOrderStatus":"CUSTOM
ER_CONFIRMED","orderStatus":"CONFIRMED"}

place-order topic is associated with Order Event Source. As we can see in
following output, there are two messages published to this topic, first one
by product service to confirm order and second by customer service to
confirm the order:

kubectl -n kafka run kafka-consumer -ti --image=strimzi/kafka:0.14.0-
kafka-2.3.0 --rm=true --restart=Never -- bin/kafka-console-consumer.sh --
bootstrap-server my-cluster-kafka-bootstrap:9092 --topic place-order

If you don't see a command prompt, try pressing enter.

{"id":1,"custId":1,"amount":100,"orderStatus":"CUSTOMER_CONFIRM
ED"}

{"id":1,"prodId":1,"prodCount":1,"orderStatus":"PRODUCT_CONFIRM
ED"}

So, that is the complete validation of our Use Case using Knative
Eventing with Source to Sink pattern. Here we observed, how our Kafka

Sources reads messages from Kafka topics and delivers them to its
configured Sink. In the next section, we will implement and validate same
use case using Broker and Triggers Pattern.

Order processing system with Broker and Triggers Pattern

To understand Source to Sink pattern, let us now implement our case
study using Knative Eventing Broker and Trigger pattern.

Service implementation

Figure 6.9 illustrates the flow of new order using Broker and Trigger pattern:

Figure 6.9: Order processing system – Broker and Triggers Pattern

Let us understand the flow and later we will discuss about required code
changes in the services:

User purchases a product which generates a new order request in the system.

Order service accepts request and responds back to user with request
accepted.

Order service then generates CloudEventspushed two events to Kafka topics
create-orders with value and Refer https://cloudevents.io/ to learn more about
CloudEvents and its

Order event source then reads the message from Kafka Topic and delivers this
to its configured Sink, Kafka Broker. We will discuss about these
configurations later in the chapter.

Product events using ce-subject header value as call-product and delivers
them to its subscriber reference product service for processing. Similarly,
Customer events with ce-subject header value as call-customer and delivers
them to its subscriber reference customer service for further processing.

Customer and product service then publish events again to create-order Kafka
Topic and deliver this to its configured Sink, Kafka Broker.

Order Triggers filters events with ce-subject header value as call-order and
delivers them to its subscriber reference order service for further processing.
After processing, order service once again pushed events to Kafka topics
create-order confirming order status.

Finally, Product Triggers and Customer Triggers once again filter events
based on ce-subject header and deliver them to its subscriber references
Product and customer services respectively for further processing.

Refer to the book’s Github repository to download or clone the code.

The following changes have been done in services and configuration to
implement Knative Eventing with Broker and Triggers pattern:

An OrderBrokerTrigger class added in order service which contains a
function create() exposed as a service. It accepts orders and responds back to
user. This function also saves orders in database, generates CloudEvents for
Product and customer service with ce-subject header value as call-product
and call-customer respectively and pushes the generated event to create-order
Kafka topics as

@Bean

public

Function> create() throws JsonMappingException, JsonProcessingException
 {

 }

doCreateOrder(OrderDetails order){

 LOGGER.info(
"order-service-es :: Order Request Recieved BT :: "
 + order.toString());

 String orderStatus = order.getOrderStatus();

if(OrderStatus.NEW.toString().equalsIgnoreCase(orderStatus)) {

 orderDetailsRepository.save(order);

try
 {

kafkaTemplate.send(TOPIC_NAME_BT, orderUtil.generateCloudEvent(orde
r, "call-customer"));

 kafkaTemplate.send(TOPIC_NAME_BT, orderUtil.generateCloudEvent(or
der,
"call-product"));

 LOGGER.error(
"Error while pushing message in topic :: ", e);

 }

return

new
 ResponseEntity<>
(OrderResponse.builder().status(OrderStatus.IN_PROGRESS.toString())

 .build(), HttpStatus.ACCEPTED);

 }

return

new
 ResponseEntity<>
(OrderResponse.builder().status(OrderStatus.IN_PROGRESS.toString())

 .build(), HttpStatus.BAD_REQUEST);

 }

This class also contains a Consumer Function confirmOrder() which
consumes events from Product and customer service, processes the events
and finally pushes the events with final order status again to create-header
topics as highlighted:

@Bean

public

Consumer
Object>> confirmOrder(){

 }

private
 void doConfrimOrder(

Message

	Start

