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Preface

Feedback control systems analysis and design is one of the main courses of electrical engineer-
ing and the fundamental course of control engineering major which is taught for junior students.
The subjects include different representations of linear time-invariant (LTI) systems, stability
analysis of LTI systems, analysis of transient response, analysis of steady state response,
graphical analysis and design, and controller design.

In the chapters concerning with the graphical analysis and design in time domain as well as
the controller design in time domain, MATLAB has been applied to accurately plot the root
locus of the control systems and design the related controllers.

Like the previously published textbooks, the textbook includes very detailed and multiple
methods of problem solutions. It can be used as a practicing textbook by students and as a
supplementary teaching source by instructors.

To help students study the textbook in the most efficient way, the exercises have been
categorized in nine different levels. In this regard, for each problem of the textbook a difficulty
level (easy, normal, or hard) and a calculation amount (small, normal, or large) have been
assigned. Moreover, in each chapter, problems have been ordered from the easiest problem with
the smallest calculations to the most difficult problems with the largest calculations. Therefore,
students are suggested to start studying the textbook from the easiest problems and continue
practicing until they reach the normal and then the hardest ones. On the other hand, this
classification can help instructors choose their desirable problems to conduct a quiz or a test.
Moreover, the classification of computation amount can help students manage their time during
future exams and instructors give the appropriate problems based on the exam duration.

Since the problems have very detailed solutions and some of them include multiple methods
of solution, the textbook can be useful for the under-prepared students. In addition, the textbook
is beneficial for knowledgeable students because it includes advanced exercises.

In the preparation of problem solutions, it has been tried to use typical methods to present
the textbook as an instructor-recommended one. In other words, the heuristic methods of
problem solution have never been used as the first method of problem solution. By considering
this key point, the textbook will be in the direction of instructors’ lectures, and the instructors
will not see any untaught problem solutions in their students’ answer sheets.

The Iranian University Entrance Exams for the master’s and PhD degrees in electrical
engineering major is the main reference of the textbook; however, all the problem solutions
have been provided by me. The Iranian University Entrance Exams is one of the most
competitive university entrance exams in the world that allows only 10% of the applicants to
get into prestigious and tuition-free Iranian universities.

Butte, MT, USA Mehdi Rahmani-Andebili
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Problems: Different Representations of Linear
Time-Invariant (LTI) Systems 1

Abstract
In this chapter, different representations of linear time-invariant (LTI) systems, including differential equation representation,
impulse response representation, transfer function representation, block-diagram representation, signal flow graph (SFG) represen-
tation, and state space representation, are studied.Herein,Mason’s gain formulawill be applied to determine the transfer function of
system from its block-diagram or signal flow graph (SFG). In this chapter, the problems are categorized in different levels based on
their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Additionally, the problems are
ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations.

1.1 Determine the characteristic equation of a control system with the block-diagram shown in Fig. 1.1.
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) 1 + G2H2 � G1G2G3H1H2

2) 1 + G1G2H2 � G1G2G3H1H2

3) 1 + G2H2 + G1G2H1

4) 1 + G2H2 + G1G2H1 � G1G2G3H1H2

1.2 Figure 1.2 illustrates the signal flow graph (SFG) of a control system. Determine its transfer function.
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large

1) G1þG2
1�G2HþG1G2

2) G1þG2
1þG2H�G1G2

3) G1þG2
1�G2H

4) G1þG2
1þG2H

Figure 1.1 The control system of problem 1.1
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1.3 The state transition matrix of a control system with the state equation of _x tð Þ½ � ¼ A½ � x tð Þ½ � þ B½ � u tð Þ½ � is as follows.
Determine [A].

φ tð Þ½ � ¼ 1þ tð Þe�t te�t

�te�t 11tð Þe�t

� �

Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large

1)
0 �1

1 �2

� �

2)
�1 1

0 �1

� �

3)
0 1

�1 �2

� �

4)
0 1

�3 �2

� �

1.4 In the block-diagram, shown in Fig. 1.3, determine the transfer function of Y sð Þ
X sð Þ.

Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) 5
s sþ2ð Þ

2) 5
s2þ22sþ5

3) 4sþ1
s2þ22sþ5

4) 1þ 5 4sþ1ð Þ
s sþ2ð Þ

Figure 1.2 The control system of problem 1.2

Figure 1.3 The control system of problem 1.4
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1.5 The state equations of a LTI control system, which is in zero-state, are as follows. Determine the steady-state value of its
output.

_X ¼ �5 1

�3 �1

� �
Xþ 0

1

� �
u tð Þ, Y=X

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large

1)
� 1
8

� 5
8

2
64

3
75

2)
� 5
8

� 1
8

2
64

3
75

3)

1
8
5
8

2
64

3
75

4)

5
8
1
8

2
64

3
75

1.6 In the block-diagram shown in Fig. 1.4, determine the value of k1, k2, k3, so that the transfer function is as follows:

T sð Þ ¼ 6
sþ 2ð Þ sþ 3ð Þ

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) k1 ¼ 1, k2 ¼ 2
3 , k3 ¼ 6

2) k1 ¼ 2
3 , k2 ¼ 1, k3 ¼ 6

3) k1 ¼ 3
2 , k2 ¼ 3

2 , k3 ¼ 6

4) k1 ¼ 1, k2 ¼ 3
2 , k3 ¼ 6

Figure 1.4 The control system of problem 1.6
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1.7 The differential equation of a control system is as follows:

d3

dt3
y tð Þ þ 3

d2

dt2
y tð Þ þ 6

d
dt
y tð Þ þ 4y tð Þ ¼ u tð Þ

Determine the state and output equations of the system in the matrices form.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) d
dt

x1

x2
x3

2
64

3
75 ¼

0 1 0

0 0 1

�4 �6 �3

2
64

3
75

x1

x2
x3

2
64

3
75þ

0

0

1

2
64

3
75u tð Þ, y tð Þ ¼ �1 0 0½ �

x1

x2
x3

2
64

3
75

2) d
dt

x1
x2
x3

2
64

3
75 ¼

0 1 0

0 0 0

4 6 3

2
64

3
75

x1
x2
x3

2
64

3
75þ

0

0

1

2
64

3
75u tð Þ, y tð Þ ¼ 1 0 0½ �

x1
x2
x3

2
64

3
75

3) d
dt

x1
x2
x3

2
64

3
75 ¼

0 1 0

0 0 1

�4 �6 �3

2
64

3
75

x1
x2
x3

2
64

3
75þ

0

0

1

2
64

3
75u tð Þ, y tð Þ ¼ 1 0 0½ �

x1
x2
x3

2
64

3
75

4) d
dt

x1
x2
x3

2
64

3
75 ¼

0 1 0

0 0 1

4 6 3

2
64

3
75

x1
x2
x3

2
64

3
75þ

0

0

�1

2
64

3
75u tð Þ, y tð Þ ¼ 1 0 0½ �

x1
x2
x3

2
64

3
75

1.8 Determine matrix A in the state equations ( _X=AXþ Bu) for the block-diagram of Fig. 1.5 if X ¼ x1 tð Þ
x2 tð Þ

� �
.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1)
0 �β

1 �α

� �

2)
�α �β

1 0

� �

3)
0 1

�β �α

� �

4)
�α 1

�β 0

� �

Figure 1.5 The control system of problem 1.8
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1.9 Determine the transfer function of a control system with the following state equations:

_X=AXþ Bu

Y=CX

(
,A=

0 1

� k
m

� b
m

" #
,B ¼

0
1
m

" #
,C= 1 0½ �

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) m

s2þbsþk

2) k
bs2þmsþk

3) b
ms2þbsþk

4) 1
ms2þbsþk

1.10 The state equations of a control system are as follows. Determine the state-transition matrix of the system (φ(t)).

_x1 tð Þ
_x2 tð Þ

� �
¼ �1 1

�1 �3

� �
x1 tð Þ
x2 tð Þ

� �
þ 0

b

� �
r tð Þ

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1)
1þ tð Þe�2t te�2t

te�2t 1� tð Þe�2t

� �

2)
2e�2t e�2t

�e�2t �2e�2t

� �

3)
1þ tð Þe�2t te�2t

�te�2t 1� tð Þe�2t

� �
4) The value of b is needed to determine the state-transition matrix.

1.11 Consider the LTI control system below.

_X ¼ AX, y=CX

Determine the output of the system based on the following information:

A ¼
� 3
2

3
2

1
6

� 3
2

2
64

3
75,C ¼ 1 0½ �, x1 0ð Þ

x2 0ð Þ

� �
¼ 2

0

� �

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) e�t + e�2t

2) e�t + 2e�2t

3) e�t + 1.5e�2t

4) 1.5e�t + e�2t

1.12 Determine the state equations of the control system shown in Fig. 1.6.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1 Problems: Different Representations of Linear Time-Invariant (LTI) Systems 5



1) d
dt

x1
x2
x3

2
64

3
75 ¼

�1 �1 0

0 0 1

1 �1 �3

2
64

3
75

x1
x2
x3

2
64

3
75þ

1

0

0

2
64

3
75u tð Þ

2) d
dt

x1
x2
x3

2
64

3
75 ¼

�1 �1 0

0 0 1

0 0 1

2
64

3
75

x1
x2
x3

2
64

3
75þ

1

0

0

2
64

3
75u tð Þ

3) d
dt

x1
x2

x3

2
64

3
75 ¼

�1 �1 0

1 �1 1

1 0 1

2
64

3
75

x1
x2

x3

2
64

3
75þ

1

0

0

2
64

3
75u tð Þ

4) d
dt

x1

x2
x3

2
64

3
75 ¼

�1 �1 0

0 0 1

1 �1 2

2
64

3
75

x1

x2
x3

2
64

3
75þ

1

0

0

2
64

3
75u tð Þ

1.13 In the rotational mechanical system shown in Fig. 1.7, determine the transfer function of θ2 sð Þ
T sð Þ .

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) J1s2þk
s2 J1J2s2þk J1þJ2ð Þð Þ

2) J2s2þk
s2 J1J2s2þk J1þJ2ð Þð Þ

3) k
s2 J1J2s2þk J1þJ2ð Þð Þ

4) k
J1J2s4þk J1þJ2ð Þs2þ2k2

Figure 1.6 The control system of problem 1.12

Figure 1.7 The control system of problem 1.13
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Solutions of Problems: Different Representations
of Linear Time-Invariant (LTI) Systems 2

Abstract
In this chapter, the problems of the first chapter are fully solved, in detail, step-by-step, and with different methods.

2.1 To determine the characteristic equation of the system (Δ), we can use Mason's gain formula, as follows:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

where:P
a
La: The sum of gains of loops

P
a, b

LaLb: The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc: The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 2.1, we have:

X
a
La ¼ �G1G2H1ð Þ þ �G2H2ð Þ þ G1G3H2G2H1ð Þ

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� �G1G2H1ð Þ þ �G2H2ð Þ þ G1G3H2G2H1ð Þð Þ þ 0� 0

) Δ ¼ 1þ G1G2H1 þ G2H2 � G1G3H2G2H1

Choice (4) is the answer.
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2.2 To determine the transfer function of a system, we can use Mason’s gain formula, as follows:

P ¼ 1
Δ

XN
k¼1

pkΔk

where:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

P: The total gain from the input point to the output one

Δ: The determinant of the graph which is the same as the characteristic equation of the system

N: The number of forward paths from the input point to the output one

k: The index of forward path from the input point to the output

pk: The gain of the k’th forward path from the input point to the output one

Δk: The determinant of the graph if the k’th forward path is removedP
a
La: The sum of gains of loops

P
a, b

LaLb: The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc: The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 2.2, we have:

N ¼ 2

p1 ¼ 1� 1� G1 � 1 ¼ G1

p1 ¼ 1� 1� G1 � 1� 1 ¼ G2

Δ1 ¼ 1

Δ2 ¼ 1

)
XN
k¼1

pkΔk ¼ p1Δ1 þ p2Δ2 ¼ G1 þ G2

Figure 2.1 The control system of solution of problem 2.1
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X
a
La ¼ 1� G2 � �Hð Þ ¼ �G2H

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� �G2Hð Þ þ 0� 0 ¼ 1þ G2H

) T sð Þ ¼ R sð Þ
C sð Þ ¼

G1 þ G2

1þ G2H

Choice (4) is the answer.

2.3 Based on the information given in the problem, the state transition matrix of the control system with the state equation of
_x tð Þ½ � ¼ A½ � x tð Þ½ � þ B½ � u tð Þ½ � is as follows:

φ tð Þ½ � ¼ 1þ tð Þe�t te�t

�te�t 11tð Þe�t

� �
ð1Þ

From one of the properties of state transition matrix, we know that:

A½ � ¼ d
dt

φ tð Þ½ �
���
t¼0

ð2Þ

Solving (1) and (2):

A½ � ¼ �te�t 1� tð Þe�t

t � 1ð Þe�t t � 2ð Þe�t

� �����
t¼0

) A½ � ¼ 0 1

�1 �2

� �

Choice (3) is the answer.

2.4 To determine the transfer function of the system, we can use Mason’s gain formula, as follows:

P ¼ 1
Δ

XN
k¼1

pkΔk

where:

Figure 2.2 The control system of solution of problem 2.2
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Δ ¼ 1�
X
a
La þ

X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

P: The total gain from the input point to the output one

Δ: The determinant of the graph which is the same as the characteristic equation of the system

N: The number of forward paths from the input point to the output one

k: The index of forward path from the input point to the output

pk: The gain of the k’th forward path from the input point to the output one

Δk: The determinant of the graph if the k’th forward path is removedP
a
La: The sum of gains of loops

P
a, b

LaLb: The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc: The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 2.3, we have:

N ¼ 1

p1 ¼ 5
sþ 2

� 1
s
¼ 5

s sþ 2ð Þ

Δ1 ¼ 1

)
XN
k¼1

pkΔk ¼ p1Δ1 ¼ 5
s sþ 2ð Þ � 1 ¼ 5

s sþ 2ð Þ

X
a
La ¼ � 5

sþ 2
� 1

s

� �
þ � 5

sþ 2
� 4

� �
¼ � 5

s sþ 2ð Þ �
20

sþ 2

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� � 5
s sþ 2ð Þ �

20
sþ 2

� �
þ 0� 0 ¼ 1þ 5

s sþ 2ð Þ þ
20

sþ 2

) T sð Þ ¼ Y sð Þ
X sð Þ ¼

5
s sþ2ð Þ

1þ 5
s sþ2ð Þ þ 20

sþ2

¼
5

s sþ2ð Þ
s sþ2ð Þþ5þ20s

s sþ2ð Þ
¼ 5

s2 þ 22sþ 5

) Y sð Þ
X sð Þ ¼

5
s2 þ 22sþ 5

Choice (2) is the answer.
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2.5 Based on the information given in the problem, we have:

_X ¼ �5 1

�3 �1

� �
Xþ 0

1

� �
u tð Þ ð1Þ

Y ¼ X ð2Þ

When a system is in its steady-state condition, its state variables are constant. In other words, the first time derivate of the
state variables is zero, as can be seen in the following:

_x1 tð Þ
_x2 tð Þ

� �
¼ 0

0

� �
ð3Þ

Solving (1) and (3) for unit step input (u(t) ¼ 1):

�5 1

�3 �1

� �
x1 tð Þ
x2 tð Þ

� �
þ 0

1

� �
¼ 0

0

� �
) �5x1 tð Þ þ x2 tð Þ

�3x1 tð Þ � x2 tð Þ þ 1

� �
¼ 0

0

� �
) x1 tð Þ ¼ 1

8
, x2 tð Þ ¼ 5

8
ð4Þ

Solving (2) and (4):

Y ¼ x1 tð Þ
x2 tð Þ

� �
¼

1
8
5
8

2
64

3
75

Choice (3) is the answer.

2.6 Based on the information given in the problem, we know that:

T sð Þ ¼ 6
sþ 2ð Þ sþ 3ð Þ ¼

6
s2 þ 5sþ 6

ð1Þ

To determine the transfer function of the system, we can use Mason's gain formula, as follows:

P ¼ 1
Δ

XN
k¼1

pkΔk

where:

Δ ¼ 1�
X
a
La þ

X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

Figure 2.3 The control system of solution of problem 2.4
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P: The total gain from the input point to the output one

Δ: The determinant of the graph which is the same as the characteristic equation of the system

N: The number of forward paths from the input point to the output one

k: The index of forward path from the input point to the output

pk: The gain of the k’th forward path from the input point to the output one

Δk: The determinant of the graph if the k’th forward path is removedP
a
La: The sum of gains of loops

P
a, b

LaLb: The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc: The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 2.4, we have:

N ¼ 1

p1 ¼ k3 � 1
sþ 1

� 1
s
¼ k3

s sþ 1ð Þ

Δ1 ¼ 1

)
XN
k¼1

pkΔk ¼ p1Δ1 ¼ k3
s sþ 1ð Þ � 1 ¼ k3

s sþ 1ð Þ

X
a

La ¼ �k3 � 1
sþ 1

� k2
� �

þ �k3 � 1
sþ 1

� 1
s
� k1

� �
¼ � k3k2

sþ 1
� k3k1
s sþ 1ð Þ

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� � k3k2
sþ 1

� k3k1
s sþ 1ð Þ

� �
þ 0� 0 ¼ 1þ k3k2

sþ 1
þ k3k1
s sþ 1ð Þ

) T sð Þ ¼
k3

s sþ1ð Þ
1þ k3k2

sþ1 þ k3k1
s sþ1ð Þ

¼
k3

s sþ1ð Þ
s sþ1ð Þþk3k2sþk3k1

s sþ1ð Þ

) T sð Þ ¼ k3
s2 þ 1þ k3k2ð Þsþ k3k1

ð2Þ

Solving (1) and (2):

k3
s2 þ 1þ k3k2ð Þsþ k3k1

¼ 6
s2 þ 5sþ 6

)
k3 ¼ 6

k3k1 ¼ 6 ) k1 ¼ 1

1þ k3k2 ¼ 5 ) k2 ¼ 2
3

8>><
>>:

Choice (1) is the answer.
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2.7 Based on the information given in the problem, we know the differential equation of the control system.

d3

dt3
y tð Þ þ 3

d2

dt2
y tð Þ þ 6

d
dt
y tð Þ þ 4y tð Þ ¼ u tð Þ ð1Þ

By choosing the variables of x1(t), x2(t), and x3(t) as the state variables, we can write:

x1 tð Þ≜y tð Þ 2ð Þ
x2 tð Þ≜ d

dt
y tð Þ 3ð Þ

x3 tð Þ≜ d2

dt2
y tð Þ 4ð Þ

8>>>><
>>>>:

)

d
dt
x1 tð Þ ¼ d

dt
y tð Þ 5ð Þ

d
dt
x2 tð Þ ¼ d2

dt2
y tð Þ 6ð Þ

d
dt
x3 tð Þ ¼ d3

dt3
y tð Þ 7ð Þ

8>>>>><
>>>>>:

Solving (3) and (5):

d
dt
x1 tð Þ ¼ x2 tð Þ ð8Þ

Solving (4) and (6):

d
dt
x2 tð Þ ¼ x3 tð Þ ð9Þ

Solving (1) and (7):

d
dt
x3 tð Þ ¼ �3

d2

dt2
y tð Þ � 6

d
dt
y tð Þ � 4y tð Þ þ u tð Þ

2ð Þ, 3ð Þ, 4ð Þ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) d
dt
x3 tð Þ ¼ �3x3 tð Þ � 6x2 tð Þ � 4x1 tð Þ þ u tð Þ ð10Þ

By arranging (8), (9), and (10) in the form of matrices, we will achieve the state equations of the system, as follows:

d
dt

x1
x2

x3

2
64

3
75 ¼

0 1 0

0 0 1

�4 �6 �3

2
64

3
75

x1
x2

x3

2
64

3
75þ

0

0

1

2
64

3
75u tð Þ

Moreover, from (2), we can achieve the output equation of the system, as follows:

Figure 2.4 The control system of solution of problem 2.6
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y tð Þ ¼ 1 0 0½ �
x1
x2
x3

2
64

3
75

Choice (3) is the answer.

2.8 Based on the information given in the problem, we have:

_X ¼ AXþ Bu ð1Þ

X ¼ x1 tð Þ
x2 tð Þ

� �
ð2Þ

From the block-diagram, shown in Fig. 2.5, we can write:

X2 sð Þ ¼ 1
s
X1 sð Þ 3ð Þ

X1 sð Þ
1
s

¼ U sð Þ � αX1 sð Þ � βX2 sð Þ 4ð Þ )

8>>><
>>>:

sX2 sð Þ ¼ X1 sð Þ 5ð Þ
sX1 sð Þ ¼ �αX1 sð Þ � βX2 sð Þ þ U sð Þ 6ð Þ

	

By transferring from Laplace domain to time domain, we have:

_x2 tð Þ ¼ x1 tð Þ 7ð Þ
_x1 tð Þ ¼ �αx1 tð Þ � βx2 tð Þ þ u tð Þ 8ð Þ

	

By arranging (7) and (8) in the form of matrices, we will achieve the state equations of the system, as follows:

_x1 tð Þ
_x2 tð Þ

� �
¼ �α �β

1 0

� �
x1 tð Þ
x2 tð Þ

� �
þ 1

0

� �
u tð Þ

) A ¼ �α �β

1 0

� �

Choice (2) is the answer.

Figure 2.5 The control system of solution of problem 2.8
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2.9 Based on the information given in the problem, we have:

_X ¼ AXþ Bu

Y ¼ CX

(
,A ¼

0 1

� k
m

� b
m

" #
,B ¼

0
1
m

" #
,C= 1 0½ � ð1Þ

The transfer function of a system can be determined from its state equations, as follows:

T sð Þ ¼ Y sð Þ
U sð Þ ¼ C sI2Að Þ�1Bþ D

Therefore:

T sð Þ ¼ 1 0½ �
s �1
k
m

sþ b
m

" #�1 0
1
m

" #
þ 0 ¼ 1 0½ � 1

s2 þ b
m sþ k

m

sþ b
m

1

� k
m

s

2
64

3
75 0

1
m

" #

) T sð Þ ¼ 1
s2 þ b

m sþ k
m

sþ b
m

1
h i 0

1
m

" #
¼

1
m

s2 þ b
m sþ k

m

) T sð Þ ¼ 1
ms2 þ bsþ k

Choice (4) is the answer.

2.10 Based on the information given in the problem, the state equations of the control system are as follows:

_x1 tð Þ
_x2 tð Þ

� �
¼ �1 1

�1 �3

� �
x1 tð Þ
x2 tð Þ

� �
þ 0

b

� �
r tð Þ ð1Þ

The state-transition matrix of a system (φ(t)) can be determined by using the following relation:

φ tð Þ= L�1 sI2Að Þ�1
n o

ð2Þ

Solving (1) and (2):

φ tð Þ ¼ L�1 sþ 1 �1

1 sþ 3

� ��1
( )

¼ L�1 1
s2 þ 4sþ 4

sþ 3 1

�1 sþ 1

� �	 

¼ L�1 1

sþ 2ð Þ2
sþ 3 1

�1 sþ 1

� �( )

φ tð Þ ¼ L�1

sþ 3

sþ 2ð Þ2
1

sþ 2ð Þ2

� 1

sþ 2ð Þ2
sþ 1

sþ 2ð Þ2

2
664

3
775

8>><
>>:

9>>=
>>; ¼ L�1

1
sþ 2

þ 1

sþ 2ð Þ2
1

sþ 2ð Þ2

� 1

sþ 2ð Þ2
1

sþ 2
� 1

sþ 2ð Þ2

2
664

3
775

8>><
>>:

9>>=
>>;

φ tð Þ ¼ 1þ tð Þe�2t te�2t

�te�2t 1� tð Þe�2t

� �

Choice (3) is the answer.
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2.11 Based on the information given in the problem, we have:

_X ¼ AX, y ¼ CX ð1Þ

A ¼
� 3
2

3
2

1
6

� 3
2

2
64

3
75,C ¼ 1 0½ �, x1 0ð Þ

x2 0ð Þ

� �
¼ 2

0

� �
ð2Þ

The output of a system can be determined from its state equations, as follows:

Y sð Þ ¼ C sI2Að Þ�1x 0ð Þ ð3Þ

Solving (1), (2), and (3):

Y sð Þ ¼ 1 0½ �
sþ 3

2
� 3
2

� 1
6

sþ 3
2

2
64

3
75
�1

2

0

� �
¼ 1 0½ � 1

s2 þ 3sþ 2

sþ 3
2

3
2

1
6

sþ 3
2

2
64

3
75 2

0

� �

Y sð Þ ¼ 1
s2 þ 3sþ 2

sþ 3
2

3
2

h i 2

0

� �
¼ 2sþ 3

sþ 1ð Þ sþ 2ð Þ ¼
1

sþ 1
þ 1
sþ 2

y tð Þ ¼ L�1 1
sþ 1

þ 1
sþ 2

� �
) y tð Þ ¼ e�t þ e�2t

Choice (1) is the answer.

2.12 As can be seen from Fig. 2.6, x1, x2, and x3 have been chosen as the state variables.

Now, we can write:

X1 sð Þ
1

sþ1

¼ R sð Þ � X2 sð Þ ) sþ 1ð ÞX1 sð Þ ¼ R sð Þ � X2 sð Þ ð1Þ

X2 sð Þ
1

sþ1ð Þ2
¼ X1 sð Þ � X3 sð Þ ) s2 þ 2sþ 1

� �
X2 sð Þ � X1 sð Þ þ X3 sð Þ ¼ 0 ð2Þ

X3 sð Þ ¼ sX2 sð Þ ð3Þ

Solving (2) and (3):

sX3 sð Þ þ 2X3 sð Þ þ X2 sð Þ � X1 sð Þ þ X3 sð Þ ¼ 0 ) sX3 sð Þ þ 3X3 sð Þ þ X2 sð Þ � X1 sð Þ ¼ 0 ð4Þ

By transferring the equations of (1), (3), and (4) from Laplace domain to time domain, we have:

_x1 tð Þ ¼ �x1 tð Þ þ r tð Þ � x2 tð Þ ¼ 0 ð5Þ

_x2 tð Þ ¼ x3 tð Þ ð6Þ

_x3 tð Þ ¼ �3x3 tð Þ � x2 tð Þ þ x1 tð Þ ð7Þ

By arranging (5), (6), and (7) in the form of matrices, the state equations of the system are as follows:
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d
dt

x1
x2
x3

2
64

3
75 ¼

�1 �1 0

0 0 1

1 �1 �3

2
64

3
75

x1
x2
x3

2
64

3
75þ

1

0

0

2
64

3
75u tð Þ

Choice (1) is the answer.

2.13 Based on Newton’s second law for a rotational system, we have:

X
i

T i tð Þ ¼ J€θ tð Þ ð1Þ

where T(t), J, and θ(t) are torque, rotational inertia or moment of inertia, and angular position, respectively.

By applying Newton’s second law on the first mass of the system shown in Fig. 2.7, we can write

T tð Þ � k θ1 tð Þ � θ2 tð Þð Þ ¼ J1€θ1 tð Þ ð2Þ

Applying Newton’s second law on the second mass:

0� k θ2 tð Þ � θ1 tð Þð Þ ¼ J2€θ2 tð Þ ð3Þ

By transferring the equations of (2) and (3) from time domain to Laplace domain, we have:

T sð Þ � J1s
2 þ k

� �
θ1 sð Þ þ kθ2 sð Þ ¼ 0 ð4Þ

kθ1 sð Þ � J2s
2 þ k

� �
θ2 sð Þ ¼ 0 ð5Þ

Solving (4) and (5):

T sð Þ ¼ J1s
2 þ k

� � J2s2 þ k
k

� �
θ2 sð Þ � kθ2 sð Þ ) T sð Þ

θ2 sð Þ ¼ J1s
2 þ k

� � J2s2 þ k
k

� �
� k

) T sð Þ
θ2 sð Þ ¼

J1J2s4 þ k J1 þ J2ð Þs2
k

) θ2 sð Þ
T sð Þ ¼ k

s2 J1J2s2 þ k J1 þ J2ð Þð Þ

Choice (3) is the answer.

Figure 2.7 The control system of solution of problem 2.13

Figure 2.6 The control system of solution of problem 2.12
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Problems: Stability Analysis of Linear
Time-Invariant (LTI) Systems 3

Abstract
In this chapter, the stability of linear time-invariant (LTI) systems is studied. Herein, Routh-Hurwitz table is applied to
determine the stability status of the closed-loop system. In this chapter, the problems are categorized in different levels
based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Additionally,
the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the
largest calculations.

3.1. The equation below shows the characteristic equation of a closed-loop control system. Determine its stability status.

s4 þ 2s3 þ s2 þ 4sþ 4 ¼ 0

Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) The system is stable.
2) The system has one unstable root.
3) The system has two unstable roots.
4) The system has three unstable roots.

3.2. Which one of the transfer functions below has a non-zero primary time response?
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) 1
s2þ2sþ2

2) s
s2þ2sþ2

3) sþ1
s2þ2sþ2

4) s2þ2sþ1
s2þ2sþ2

3.3. Which one of the following choices is correct about a closed-loop control system with the characteristic equation of
4s3 + 2s2 + ks + 1 ¼ 0?
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large

1) For k ¼ 2, it oscillates with the angular frequency of
ffiffi
2

p
2 rad= sec .

2) For k ¼ 2, it oscillates with the angular frequency of 1 rad/sec.
3) For k > 2, it is stable without any oscillation.
4) For k ¼ 4, it oscillates with the angular frequency of 2 rad/sec.

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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3.4. The open-loop transfer function of a control system with a negative unity feedback is as follows:

G sð Þ ¼ k
s� 1ð Þ sþ 3ð Þ sþ 5ð Þ

For what value of k, does the closed-loop system response oscillate?
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) �15
2) 15
3) 34
4) 64

3.5. Determine the period of oscillations of the closed-loop control system’s response illustrated in Fig. 3.1.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) 11.2 sec
2) 6.5 sec
3) 2.2 sec

4) 2
ffiffiffiffiffi
10

p
sec

3.6. The differential equations of a control system are as follows:

_x1 tð Þ þ x1 tð Þ � 2u tð Þ þ ax2 tð Þ ¼ 0

_x2 tð Þ � bx1 tð Þ þ 4u tð Þ ¼ 0

�

For what value of “a” and “b”, the system is stable?
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) ab � 0
2) a > 0, b < 0
3) a > 0, b ¼ 0
4) a < 0, b < 0

3.7. The state equations of a control system are as follows. For what value of “k”, the system is stable?

_x1 tð Þ
_x2 tð Þ

� �
¼ �k � 2 �2k � 3

k þ 1 0

� �
x1 tð Þ
x2 tð Þ

� �
� 0

1

� �
u tð Þ

y tð Þ ¼ 1 0½ � x1 tð Þ
x2 tð Þ

� �

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

Figure 3.1 The control system of problem 3.5
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1) k > � 2
2) k > � 1
3) �2 < k < � 1.5
4) (�2, �1.5) [ (�1, 1)

3.8. In the control system shown in Fig. 3.2, determine the range of “p”, so that the system is stable.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) p > 0
2) p > � 1
3) �3 < p < � 1
4) �3 < p < 1

3.9. For a control system with the signal flow graph (SFG), shown in Fig. 3.3, and the transfer function of C sð Þ
R sð Þ, which one of

the following choices is correct?
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) The system is always unstable.
2) For k < 1, the system is stable.
3) For k ¼ � 1, the system has an undamped response.
4) For k < 1, the system is unstable.

3.10. For the control system, shown in Fig. 3.4, determine the hidden modes of the system.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 1, � j
2) 0
3) �1, 0
4) 1, 0

Figure 3.2 The control system of problem 3.8

Figure 3.3 The control system of problem 3.9
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3.11. For what range of k, the control system, shown in Fig. 3.5, is stable?
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) � 4
3 < k < 0

2) � 1
3 < k < 0

3) � 5
3 < k < 0

4) � 2
3 < k < 0

3.12. The equation below shows the characteristic equation of a control system. How many unstable poles does it have?

s5 þ s4 þ 5s3 þ 5s2 þ 12sþ 10 ¼ 0

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ● Small ○ Normal ○ Large
1) 1
2) 2
3) 3
4) 0

3.13. The differential equations of a control system are as follows:

_x1 tð Þ ¼ ax1 tð Þ þ x2 tð Þ þ u tð Þ
_x2 tð Þ ¼ �2x1 tð Þ þ x2 tð Þ þ u tð Þ
_x3 tð Þ ¼ �x3 tð Þ

8><
>:

For what value of “a” the system is stable?
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

Figure 3.4 The control system of problem 3.10

Figure 3.5 The control system of problem 3.11
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1) a < � 1
2) a > � 2
3) �2 < a < � 1
4) 1 < a < 2

3.14. Determine the transfer function of C sð Þ
R sð Þ for the control system, shown in Fig. 3.6. Is this system internally stable or

unstable?
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

1) 3
sþ1ð Þ sþ2ð Þ, stable

2) 3
sþ1ð Þ s�4ð Þ, unstable

3) 3
sþ2ð Þ s�4ð Þ, unstable

4) 3
sþ1ð Þ sþ2ð Þ, unstable

3.15. In the control system, shown in Fig. 3.7, the controller is in the form of Gc sð Þ ¼ kP þ kI
s . Which one of the choices,

illustrated in Fig. 3.8, graphically shows the stability area of the closed-loop system?
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

Figure 3.6 The control system of problem 3.14

Figure 3.7 The control system of problem 3.15
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3.16. For a control system with a negative unity feedback and the following open-loop transfer function, which one of the
choices, shown in Fig. 3.9, graphically shows the stability area of both open-loop and closed-loop systems?

G sð Þ ¼ k1
s3 þ 2s2 þ 2sþ k2

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large

Figure 3.8 The control system of problem 3.15

Figure 3.9 The control system of problem 3.16
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Solutions of Problems: Stability Analysis
of Linear Time-Invariant (LTI) Systems 4

Abstract
In this chapter, the problems of the third chapter are fully solved, in detail, step-by-step, and with different methods.

4.1 To determine the stability status of a control system, we can use Routh-Hurwitz table. Suppose that the characteristic
equation of a system is as follows:

Δ sð Þ ¼ ans
n þ an�1s

n�1 þ an�2s
n�2 þ . . .þ a2s

2 þ a1s
1 þ a0s

0 ð1Þ

The structure of Routh-Hurwitz table is presented in the following. As can be seen, the coefficients of the characteristic
equation are placed on the first two rows of the table with the specific pattern. However, the coefficients of the next rows
need to be determined by using (2) and (3), until the last row (s0) is filled.

sn an an�2 an�4 ⋯
sn�1 an�1 an�3 an�5 ⋯
sn�2 bn�1 bn�3 bn�5 ⋯
⋮ ⋮ ⋮ ⋮ ⋯
s1

s0

bn�1 ¼ � 1
an�1

an an�2

an�1 an�3

����
���� ¼ an�2an�1 � anan�3

an�1
ð2Þ

bn�3 ¼ � 1
an�1

an an�4

an�1 an�5

����
���� ¼ an�4an�1 � anan�5

an�1
ð3Þ

Based on Routh-Hurwitz table rule, the number of sign changes in the first column of the table determines the number of
poles in the right-half plane (RHP) or the number of unstable poles.

Based on the information given in the problem, the characteristic equation of the closed-loop control system is as follows:

Δ sð Þ ¼ s4 þ 2s3 þ s2 þ 4sþ 4

Therefore, for this problem, we have:
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s4 1 1 4

s3 2 4

s2 �1 4

s1 12

s0 4

As can be seen, there are two sign changes in the first column of the table. Therefore, the system has two unstable roots.
Choice (3) is the answer.

4.2 Unit step function is the input of the system. Therefore:

x tð Þ ¼ u tð Þ ) X sð Þ ¼ 1
s

The output of the system can be determined by using its transfer function as follows:

T sð Þ ¼ Y sð Þ
X sð Þ ) Y sð Þ ¼ T sð ÞX sð Þ

X sð Þ ¼ 1
s¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) Y sð Þ ¼ 1

s
� T sð Þ

From initial value theorem, we know that:

lim
t!0

y tð Þ ¼ lim
s!1sY sð Þ

Applying the theorem on choice (1):

lim
t!0

y tð Þ ¼ lim
s!1s�

1
s
� 1
s2 þ 2sþ 2

¼ 0

Applying the theorem on choice (2):

lim
t!0

y tð Þ ¼ lim
s!1s�

1
s
� s
s2 þ 2sþ 2

¼ 0

Applying the theorem on choice (3):

lim
t!0

y tð Þ ¼ lim
s!1s�

1
s
� sþ 1
s2 þ 2sþ 2

¼ 0

Applying the theorem on choice (4):

lim
t!0

y tð Þ ¼ lim
s!1s�

1
s
� s2 þ 2sþ 1
s2 þ 2sþ 2

¼ 1

Choice (4) is the answer.

4.3 Based on the information given in the problem, the characteristic equation of the closed-loop control system is as follows:

Δ sð Þ ¼ 4s3 þ 2s2 þ ksþ 1

26 4 Solutions of Problems: Stability Analysis of Linear Time-Invariant (LTI) Systems



The Routh-Hurwitz table for the system is as follows:

s3 4 k

s2 2 1

s1 2k � 4

s0 1

To have an oscillating system, all the components in one of the rows of the Routh-Hurwitz table corresponding to an odd
exponent must be zero. For k ¼ 2, the row corresponding to s1 becomes zero.

Moreover, the angular frequency of the oscillations can be determined by solving the equation of the previous row (A(s2),
as the auxiliary equation), as follows:

A s2
� � ¼ 2s2 þ 1 ¼ 0 ) s ¼ �j

ffiffiffi
2

p
2

) ω ¼
ffiffiffi
2

p
2

rad= sec

Choice (1) is the answer.

4.4 Based on the information given in the problem, the open-loop transfer function of the control system is as follows:

G sð Þ ¼ k
s� 1ð Þ sþ 3ð Þ sþ 5ð Þ

The characteristic equation of the closed-loop control system with a negative unity feedback can be determined as
follows:

Δ sð Þ ¼ 1þ G sð Þ ¼ 0

1þ k
s� 1ð Þ sþ 3ð Þ sþ 5ð Þ ¼ 0 ) Δ sð Þ ¼ s3 þ 7s2 þ 7sþ k � 15

The Routh-Hurwitz table for this system is as follows:

s3 1 7

s2 7 k � 15

s1 64� k

s0 k � 15

To have an oscillating system, all the elements in one of the rows of the Routh-Hurwitz table corresponding to an odd
exponent must be zero. In this control system, for k ¼ 64, one of the rows, that is, the row corresponding to s1, becomes
zero. Choice (4) is the answer.

4.5 The characteristic equation of the closed-loop control system, shown in Fig. 4.1, can be determined as follows:

Δ sð Þ ¼ 1þ G sð ÞH sð Þ ¼ 0

1þ k

sþ 1ð Þ sþ 2ð Þ2 ¼ 0 ) Δ sð Þ ¼ s3 þ 5s2 þ 8sþ k þ 4

The Routh-Hurwitz table for the system is as follows:
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s3 1 8

s2 5 k þ 4

s1 36� k

s0 k þ 4

To have an oscillating system, all the elements in one of the rows of the Routh-Hurwitz table corresponding to an odd
exponent must be zero. In this control system, for k ¼ 36, one of the rows, that is, the row corresponding to s1,
becomes zero.

The angular frequency of the oscillations can be determined by solving the equation of the previous row (A(s2), as the
auxiliary equation), as follows:

A s2
� � ¼ 5s2 þ k þ 4ð Þ ¼ 0

k ¼ 36¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) A s2
� � ¼ 5s2 þ 36þ 4ð Þ ¼ 0

) s2 þ 8 ¼ 0 ) s ¼ �j2
ffiffiffi
2

p
) ω ¼ 2

ffiffiffi
2

p
rad= sec

The period of the oscillations of the closed-loop control system’s response can be calculated as follows:

) T ¼ 2π
ω

¼ 2π

2
ffiffiffi
2

p ) T � 2:2 sec

Choice (3) is the answer.

4.6 Based on the information given in the problem, the differential equations of the control system are as follows:

_x1 tð Þ þ x1 tð Þ � 2u tð Þ þ ax2 tð Þ ¼ 0

_x2 tð Þ � bx1 tð Þ þ 4u tð Þ ¼ 0

�

By choosing x1(t) and x2(t) as the state variables, the state equations of the system in the form of matrices are as follows:

_x1 tð Þ
_x2 tð Þ

� �
¼ �1 �a

b 0

� �
x1 tð Þ
x2 tð Þ

� �
þ 2

�4

� �
u tð Þ

The characteristic equation of the system can be determined as follows:

Δ sð Þ ¼ sI2Aj j ¼ sþ 1 a

�b s

����
���� ¼ s sþ 1ð Þ þ ab ¼ s2 þ sþ ab ð1Þ

For a second-order system with the characteristic equation of a2s
2 + a1s + a0, the system is stable if and only if all the

coefficients are non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð2Þ

Figure 4.1 The control system of solution of problem 4.5
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Solving (1) and (2):

ab > 0 ) a, b > 0

a, b < 0

�

Choice (4) is the answer.

4.7 Based on the information given in the problem, the state equations of the control system are as follows:

_x1 tð Þ
_x2 tð Þ

� �
¼ �k � 2 �2k � 3

k þ 1 0

� �
x1 tð Þ
x2 tð Þ

� �
� 0

1

� �
u tð Þ

y tð Þ ¼ 1 0½ � x1 tð Þ
x2 tð Þ

� �

The characteristic equation of the system can be determined as follows:

Δ sð Þ ¼ sI2Aj j ¼ sþ k þ 2 2k þ 3

�k � 1 s

����
���� ¼ s2 þ k þ 2ð Þsþ k þ 1ð Þ 2k þ 3ð Þ ð1Þ

For a second-order system with the characteristic equation of a2s
2 + a1s + a0, the system is stable if and only if all the

coefficients are non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð2Þ

Solving (1) and (2):

k þ 2 > 0

k þ 1ð Þ 2k þ 3ð Þ > 0

�
) k > �2

k > �1, k < �1:5

�
) k > �2f g \ k < �1:5f g [ k > �1f gf g

) k 2 �2,�1:5ð Þ [ �1,1ð Þf g

Choice (4) is the answer.

4.8 To determine the characteristic equation of the system (Δ), we can use Mason’s gain formula, as follows:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

where:P
a
La : The sum of gains of loopsP

a, b
LaLb : The sum of product of gains of any two non-touching loops (without any common nodes)P

a, b, c
LaLbLc : The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system, shown in Fig. 4.2, we have:

X
a
La ¼ � 1

sþ 1
þ � 1

sþ p

	 

þ � 1

sþ 1
1

sþ p

	 

¼ � sþ pþ sþ 1þ 1

sþ 1ð Þ sþ pð Þ
	 


¼ � 2sþ pþ 2
sþ 1ð Þ sþ pð Þ
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X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� � 2sþ pþ 2
sþ 1ð Þ sþ pð Þ

	 

¼ 0 ) Δ ¼ s2 þ pþ 3ð Þsþ 2pþ 2 ð1Þ

As we know, for a second-order system with the characteristic equation of a2s
2 + a1s + a0, the system is stable if and only

if all the coefficients are non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð2Þ

Solving (1) and (2):

p > �3

p > �1

�
) p > �1

Choice (2) is the answer.

4.9 As can be noticed form the choices, we need to determine the stability status of the system that can be done by using the
characteristic equation of the control system. To determine the characteristic equation of the system (Δ), we can use
Mason’s gain formula, as follows:

Δ ¼ 1�
X
a
La þ

X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

where:P
a
La : The sum of gains of loops

P
a, b

LaLb : The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc : The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 4.3, we have:

X
a

La ¼ � 1
sþ 1

� �
þ � 1

s

� �
þ 5k

s

	 

þ � 2k

s

	 

¼ �s� s� 1þ 5k sþ 1ð Þ � 2k sþ 1ð Þ

s sþ 1ð Þ ¼ s �2þ 3kð Þ � 1þ 3k
s sþ 1ð Þ

Figure 4.2 The control system of solution of problem 4.8

30 4 Solutions of Problems: Stability Analysis of Linear Time-Invariant (LTI) Systems



X
a, b

LaLb ¼ � 1
sþ 1

� �
� � 1

s

� �
þ � 1

sþ 1

� �
� 5k

s

	 

þ � 1

sþ 1

� �
� � 2k

s

	 

¼ 1� 5k þ 2k

s sþ 1ð Þ ¼ 1� 3k
s sþ 1ð Þ

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� s �2þ 3kð Þ � 1þ 3k
s sþ 1ð Þ þ 1� 3k

s sþ 1ð Þ
	 


¼ s2 þ sþ 2s� 3ks
s sþ 1ð Þ ¼ s sþ 3� 3kð Þ

s sþ 1ð Þ ¼ 0

) s sþ 3� 3kð Þ ¼ 0 ) s ¼ 0, 3k � 3

For stability, all the poles must be in left-half plane (LHP). Therefore:

3k � 3 < 0 ) k < 1

Choice (2) is the answer.

4.10 The hidden modes of the control system are those poles that are cancelled by the same zeros. Now, we need to determine
the transfer function of the system illustrated in Fig. 4.4, as follows. Herein, we assume that the main system includes
two cascaded subsystems.

Y sð Þ
X sð Þ ¼ 1þ s� 1

s2 þ 1

	 

� 1
1� sþ2

s3þ2

¼ s2 þ 1þ s� 1
s2 þ 1

� s3 þ 2
s3 þ 2� s� 2

¼ s sþ 1ð Þ
s2 þ 1

� s3 þ 2
s s2 � 1ð Þ ð1Þ

Y sð Þ
X sð Þ ¼

s3 þ 2
s2 þ 1ð Þ s� 1ð Þ ð2Þ

As can be noticed from (1) and (2), the term of s(s + 1), corresponding to the poles of s ¼ 0, � 1, has been cancelled by
the same zeros; thus they are the hidden modes of the system.

Choice (3) is the answer.

Figure 4.3 The control system of solution of problem 4.9

Figure 4.4 The control system of solution of problem 4.10
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4.11 The characteristic equation of the positive unity feedback system, shown in Fig. 4.5, can be determined as follows:

Δ sð Þ ¼ 1� G sð ÞH sð Þ ¼ 0

1� � k
s

	 

s� 1

s2 þ 2sþ 1

	 

¼ 0 ) Δ sð Þ ¼ s3 þ 2s2 þ k þ 1ð Þs� k

The Routh-Hurwitz table for the system is as follows:

s3 1 k þ 1

s2 2 �k

s1
3k þ 2

2
s0 �k

For the stability of the closed-loop system, the constraints below must be held.

3k þ 2
2

> 0

�k > 0
)

(
� 2
3
< k < 0

Choice (4) is the answer.

4.12 Based on the information given in the problem, the characteristic equation of the control system is as follows:

Δ sð Þ ¼ s5 þ s4 þ 5s3 þ 5s2 þ 12sþ 10

The Routh-Hurwitz table for the system is as follows. In the first column of the third row, the quantity is zero. Therefore,
determining the quantity in the first column of the fourth row is impossible, as it needs to be divided by zero. Based on
the rule, the zero needs to be replaced by a very small positive quantity (ε), and then the process is continued.

s5 1 5 12

s4 1 5 10

s3 0 ! ε 2

s2 A ¼ 5ε� 2
ε

10

s1 B ¼ 2A� 10ε
A

s0 10

The value of A is negative, but the value of B is positive. Therefore, the table includes two sign changes in its first
column. Consequently, the system has two unstable poles. Choice (2) is the answer.

Figure 4.5 The control system of solution of problem 4.11

32 4 Solutions of Problems: Stability Analysis of Linear Time-Invariant (LTI) Systems



4.13 Based on the information given in the problem, the differential equations of the control system are as follows:

_x1 tð Þ ¼ ax1 tð Þ þ x2 tð Þ þ u tð Þ
_x2 tð Þ ¼ �2x1 tð Þ þ x2 tð Þ þ u tð Þ
_x3 tð Þ ¼ �x3 tð Þ

8><
>:

By choosing x1(t), x2(t), and x3(t) as the state variables, the state equations of the system in the form of matrices are as
follows:

_x1 tð Þ
_x2 tð Þ
_x3 tð Þ

2
64

3
75 ¼

a 1 0

�2 1 0

0 0 �1

2
64

3
75

x1 tð Þ
x2 tð Þ
x3 tð Þ

2
64

3
75þ

1

1

0

2
64

3
75u tð Þ

The characteristic equation of the system can be determined as follows:

Δ sð Þ ¼ sI2Aj j ¼
s� a �1 0

2 s� 1 0

0 0 sþ 1

�������
������� ¼ sþ 1ð Þ s2 � aþ 1ð Þ þ aþ 2

� � ð1Þ

In (1), (s + 1) is a stable pole. For a second-order system with the characteristic equation of a2s
2 + a1s + a0, the system is

stable if and only if all the coefficients are non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð2Þ

Solving (1) and (2):

� aþ 1ð Þ > 0

aþ 2 > 0
)

�
�2 < a < �1

Choice (3) is the answer.

4.14 To determine the transfer function of the system, we can use Mason's gain formula, as follows:

P ¼ 1
Δ

XN
k¼1

pkΔk

where:

Δ ¼ 1�
X
a
La þ

X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

P: The total gain from the input point to the output one

Δ: The determinant of the graph which is the same as the characteristic equation of the system

N: The number of forward paths from the input point to the output one

k: The index of forward path from the input point to the output

pk: The gain of the k’th forward path from the input point to the output one

Δk: The determinant of the graph if the k’th forward path is removedP
a
La: The sum of gains of loopsP

a, b
LaLb: The sum of product of gains of any two non-touching loops (without any common nodes)
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P
a, b, c

LaLbLc: The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 4.6, we can have:

N ¼ 2

p1 ¼ � 1
s
� 1

s
� 1

s
� 12 ¼ � 12

s3

Δ1 ¼ 1

p2 ¼ 1
s
� 1

s
� 3 ¼ 3

s2

Δ2 ¼ 1

)
XN
k¼1

pkΔk ¼ � 12
s3

� 1þ 3
s2

� 1 ¼ 3s� 12
s3

X
a

La ¼ 1
s
þ 1

s
� 1

s
� 10þ 1

s
� 1

s
� 1

s
� 8 ¼ s2 þ 10sþ 8

s3

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� s2 þ 10sþ 8
s3

¼ s3 � s2 � 10s� 8
s3

) C sð Þ
R sð Þ ¼

3s�12
s3

s3�s2�10s�8
s3

¼ 3s� 12
s3 � s2 � 10s� 8

¼ s s� 4ð Þ
s� 4ð Þ sþ 1ð Þ sþ 2ð Þ

) C sð Þ
R sð Þ ¼

s
sþ 1ð Þ sþ 2ð Þ

Although no unstable pole is seen in the transfer function, the system is internally unstable because one unstable pole
and zero, that is, (s � 4) has been canceled from the transfer function. Herein, s ¼ 4 is called the hidden mode of the
system.

Choice (4) is the answer.

Figure 4.6 The control system of solution of problem 4.14
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4.15 First, we need to determine the characteristic equation of the control system (shown in Fig. 4.8) as follows:

1þ Gc sð ÞG sð Þ ¼ 0 ) 1þ kP þ kI
s

	 

2

s3 þ 4s2 þ 5sþ 2

	 

¼ 0

) 1þ 2 skP þ kIð Þ
s s3 þ 4s2 þ 5sþ 2ð Þ ¼ 0 ) Δ sð Þ ¼ s4 þ 4s3 þ 5s2 þ 2 1þ kPð Þsþ 2kI

For the given system, the table will be as follows:

s4 1 5 2kI
s3 4 2 1þ kPð Þ
s2

20� 2 1þ kPð Þ
4

2kI

s1 A

s0 2kI

where:

A ¼ 2 1þ kPð Þ � 8kI
20�2 1þkPð Þ

4

¼ 2 1þ kPð Þ 18� 2kPð Þ � 32kI
18� 2kPð Þ ¼ � kPð Þ2 þ 8kP þ 9� 8kI

4:5� 0:5kP

For the stability of the system, all the elements in the first column of the table must be positive. Therefore, the constraints
below must be held.

20� 2 1þ kPð Þ
4

> 0

� kPð Þ2 þ 8kP þ 9� 8kI
4:5� 0:5kP

> 0

2kI > 0

)

8>>>><
>>>>:

18� 2kP > 0

� kPð Þ2 þ 8kP þ 9� 8kI > 0

2kI > 0

8><
>: )

kP < 9 1ð Þ
kI < � 1

8
kPð Þ2 þ kP þ 9

8
2ð Þ

kI > 0 3ð Þ

8>><
>>:

From (2), it can be noticed that the graph is a parabola that opens downward (the vertex is a maximum point). Cases
3 and 4 have this feature. However, in (2), kI ¼ 0 is achieved for kP ¼ 9. Choice (3) is the answer.

Figure 4.7 The control system of solution of problem 4.15
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4.16 Based on the information given in the problem, the transfer function of the open-loop system is as follows:

G sð Þ ¼ k1
s3 þ 2s2 þ 2sþ k2

Based on the problem, both open-loop and closed-loop systems must be stable. Therefore, we need to evaluate the
characteristic equations of the open-loop and closed-loop systems by using Routh-Hurwitz table.

The characteristic equation of the open-loop system is as follows:

Δ1 sð Þ ¼ s3 þ 2s2 þ 2sþ k2

Moreover, the characteristic equation of the close-loop system with a negative unity feedback can be determined as
follows:

1þ G sð Þ ¼ 0

1þ k1
s3 þ 2s2 þ 2sþ k2

¼ 0 ) Δ2 sð Þ ¼ s3 þ 2s2 þ 2sþ k2 þ k1

The Routh-Hurwitz table for the open-loop system is as follows:

s3 1 2

s2 2 k2

s1
4� k2

2
s0 k2

For the stability of the open-loop system, the constraints below must be held.

4� k2
2

> 0

k2 > 0
)

(
0 < k2 < 4 ð4Þ

In addition, the Routh-Hurwitz table for the closed-loop system is as follows:

s3 1 2

s2 2 k1 þ k2

s1
4� k1 þ k2ð Þ

2
s0 k1 þ k2

For the stability of the closed-loop system, the constraints below must be held.

Figure 4.8 The control system of solution of problem 4.15
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4� k1 þ k2ð Þ
2

> 0

k1 þ k2 > 0
)

8<
: 0 < k1 þ k2 < 4 ð5Þ

From (5), we have the equations below that are the equations of straight lines.

k2 > �k1 ð6Þ

k2 < 4� k1 ð7Þ

Considering (4), (6), and (7) and drawing them on a plot result in the graph shown in choice 2. Choice (3) is the answer.

Figure 4.9 The control system of solution of problem 4.16
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Problems: Analysis of Transient Response 5

Abstract
In this chapter, the transient response of second-order control systems is analyzed based on several parameters such as
damping ratio, overshoot percentage, rise time, settling time, and peak time. Herein, the transient response of the second-
order systems is categorized in different classes, including overdamped response, critically damped response,
underdamped response, and undamped response. In this chapter, the problems are categorized in different levels based
on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Additionally, the
problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the
largest calculations.

5.1 The open-loop transfer function of a control system with a negative unity feedback is as follows:

G sð Þ ¼ 10
s sþ 1ð Þ sþ 10ð Þ

Which one of the following choices is a good approximation for the open-loop transfer function?

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large

1) eG sð Þ ¼ 1
s sþ10ð Þ

2) eG sð Þ ¼ 10
s sþ1ð Þ

3) eG sð Þ ¼ 10
s sþ10ð Þ

4) eG sð Þ ¼ 1
s sþ1ð Þ

5.2 The control system, shown in Fig. 5.1, has the following state equations in matrix form:

A ¼
�2 1 1

1 �1 0

1 0 �1

2
64

3
75,B ¼

1

0

0

2
64

3
75,C ¼ k 0 0½ �

Which one of the following choices is correct about the system?
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) The system is unstable for k > 1.
2) The system is unstable for k > 0.
3) The system’s transient response is overdamped for k > 0.
4) The system’s transient response can be overdamped, critically damped, or underdamped for k > 0.
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5.3 Determine the value of parameters “a” and “b,” so that the control system, shown in Fig. 5.2, has the fastest response
without any damping oscillation to a unit step function.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1)
a2 � 4b < 28

a > 0

�

2)
a2 � 4b ¼ 28

a > 0

�

3)

a2 � 4b < 28

a > 0

b > �7

8><
>:

4)

a2 � 4b ¼ 28

a > 0

b > �7

8><
>:

5.4 In the control system, shown in Fig. 5.3, the value of k has been designed to have the fastest response but without any
overshooting. In this condition, determine the settling time of the system response.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 4 sec
2) 2 sec
3) 3 sec
4) 0.5 sec

Figure 5.1 The control system of problem 5.2

Figure 5.2 The control system of problem 5.3

Figure 5.3 The control system of problem 5.4
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5.5 The open-loop transfer function of a control system is as follows:

G sð Þ ¼ k
s τsþ 1ð Þ

Determine the value of k so that the closed-loop system has an underdamped response to a unit step input. Moreover,
determine the damping ratio of the system response.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) k > 1
4τ , ξ ¼ 1

2
ffiffiffiffi
τk

p

2) k < 1
4τ , ξ ¼ 1

2τ
ffiffi
k

p

3) k > 1
4τ , ξ ¼ 1

2τ
ffiffi
k

p

4) k < 1
4τ , ξ ¼ 1

2
ffiffiffiffi
τk

p

5.6 In the control system, shown in Fig. 5.4, determine the value of “k1” and “k2,” so that the damping ratio and the settling
time (5% criterion) of the closed-loop system are 0.5 and 2 seconds, respectively.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ○ Normal ● Large
1) k1 ¼ 4, k2 ¼ 3
2) k1 ¼ 16, k2 ¼ 3
3) k1 ¼ 9, k2 ¼ 2
4) k1 ¼ 3, k2 ¼ 2

5.7 In the control system, shown in Fig. 5.5, determine the value of “k1” and “k2,” so that the settling time (2% criterion) and
the peak time of the closed-loop system are 4

3 seconds and
π
4 seconds, respectively.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ○ Normal ● Large
1) k1 ¼ 25, k2 ¼ 0.02
2) k1 ¼ 25, k2 ¼ 0.04
3) k1 � 16, k2 ¼ 0.02
4) k1 � 16, k2 � 1

16

Figure 5.4 The control system of problem 5.6
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5.8 The differential equation of a control system with the zero-primary condition is as follows:

y00 tð Þ þ 4y0 tð Þ þ 20y tð Þ ¼ r tð Þ

Determine the time that the second peak in the system response occurs if the input is r(t) ¼ 4u(t).
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

1) 3π
4

2) π
3

3) π
2

4) π
20

5.9 A unit step function ( f(t) ¼ u(t)) is applied on the mechanical system shown in Fig. 5.6.1. The output is the horizontal
position of the mass which is illustrated in Fig. 5.6.2. Determine the damping ratio of the system response if M ¼ 1 kg,
B ¼ 1.
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large
1) 1

4

2) 1
2

3) 1ffiffi
k

p

4) 1
2k

Figure 5.5 The control system of problem 5.7

Figure 5.6 The control system of problem 5.9
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5.10 Figure 5.7 illustrates the unit step response of a second-order control system. Determine its approximate closed-loop
transfer function.
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large

1) 240
s2þ136sþ240

2) 2402

s2þ136sþ2402

3) 336
s2þ240sþ336

4) 3362

s2þ240sþ3362

Figure 5.7 The control system of problem 5.10
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Solutions of Problems: Analysis of Transient
Response 6

Abstract
In this chapter, the problems of the fifth chapter are fully solved, in detail, step-by-step, and with different methods.

6.1 Based on the information given in the problem, the open-loop transfer function of the control system with a negative unity
feedback is as follows:

G sð Þ ¼ 10
s sþ 1ð Þ sþ 10ð Þ ð1Þ

As can be noticed from (1), the pole of (s + 10) is nondominant as it is very far from the origin compared to the other poles.
Thus, this pole can be ignored to decrease the order of the open-loop transfer function.

~G sð Þ ¼ k
s sþ 1ð Þ ð2Þ

However, the steady-state gain (DC value) of the transfer function must be left intact. Therefore, the value of k can be
determined as follows:

10
s sþ 1ð Þ sþ 10ð Þ

����
s¼0

� k
s sþ 1ð Þ

����
s¼0

) 10
sþ 10ð Þ

����
s¼0

� k
1

���
s¼0

) 10
10

¼ k
1
) k ¼ 1 ð3Þ

Solving (2) and (3):

~G sð Þ ¼ 1
s sþ 1ð Þ

Choice (4) is the answer.

6.2 Based on the information given in the problem, the state equations of the open-loop system are as follows:

A ¼
�2 1 1

1 �1 0

1 0 �1

2
64

3
75,B ¼

1

0

0

2
64

3
75,C ¼ k 0 0½ � ð1Þ

The transfer function of a system can be determined from its state equations, as follows:
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G sð Þ ¼ C sI2Að Þ�1Bþ D ð2Þ

By solving (1) and (2), the transfer function of the open-loop system is determined as follows:

G sð Þ ¼ k 0 0½ �
sþ 2 �1 �1

�1 sþ 1 0

�1 0 sþ 1

2
64

3
75
�1 1

0

0

2
64

3
75 ¼ k sþ 1ð Þ

s sþ 3ð Þ ð3Þ

Moreover, the transfer function of the closed-loop system can be determined as follows.

T sð Þ ¼ Y sð Þ
U sð Þ ¼

k sþ1ð Þ
s sþ3ð Þ

1þ k sþ1ð Þ
s sþ3ð Þ

¼ k sþ 1ð Þ
s2 þ 3þ kð Þsþ k

ð4Þ

The denominator of a transfer function is the characteristic equation of the system. Thus:

Δ sð Þ ¼ s2 þ 3þ kð Þsþ k ð5Þ

A second-order system with the characteristic equation of a2s
2 + a1s + a0 is stable if and only if all the coefficients are

non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð6Þ

Solving (5) and (6):

k > �3

k > 0

� \¼) k > 0 ð7Þ

Therefore, Cases 1 and 2 are incorrect.

In a system with the characteristic equation ofΔ(s)¼ a2s
2 + a1s + a0, the system is in the overdamped status if and only if:

Discriminant ¼ a1ð Þ2 � 4a2a0 > 0 ð8Þ

Therefor:

Discriminant ¼ 3þ kð Þ2 � 4k ¼ k2 þ 2k þ 9 ð9Þ

Solving (7) and (9):

Discriminant > 0 ð10Þ

Therefore, the system’s transient response is overdamped for k > 0. Choice (3) is the answer.

Figure 6.1 The control system of solution of problem 6.2
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6.3 Critically damped response is the fastest response without any damping oscillation. In a system with the characteristic
equation of Δ(s) ¼ a2s

2 + a1s + a0, the system has a critically damped response if and only if:

a1ð Þ2 � 4a2a0 ¼ 0 ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð ÞH sð Þ ¼ 0 ) 1þ 7
s2 þ asþ b

¼ 0

) Δ sð Þ ¼ s2 þ asþ bþ 7 ð2Þ

Solving (1) and (2):

að Þ2 � 4� 1� bþ 7ð Þ ¼ 0 ) a2 � 4b ¼ 28 ð3Þ

Moreover, the system must be stable. A second-order system with the characteristic equation of a2s
2 + a1s + a0 is stable if

and only if all the coefficients are non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð4Þ

Solving (2) and (4):

a > 0&b > �7 ð5Þ

Solving (3) and (5):

a2 � 4b ¼ 28

a > 0

b > �7

8><
>:

Choice (4) is the answer.

6.4 Critically damped response is the fastest response without any damping oscillation. In a system with the characteristic
equation of Δ(s) ¼ a2s

2 + a1s + a0, the system has a critically damped response if and only if:

a1ð Þ2 � 4a2a0 ¼ 0 ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð ÞH sð Þ ¼ 0 ) 1þ 2k
s sþ 4ð Þ ¼ 0

Figure 6.2 The control system of solution of problem 6.3
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) Δ sð Þ ¼ s2 þ 4sþ 2k ð2Þ

Solving (1) and (2):

42 � 4� 1� 2k ¼ 0 ) k ¼ 2 ð3Þ

Therefore, the characteristic equation of the closed-loop system is as follows:

Δ sð Þ ¼ s2 þ 4sþ 4 ð4Þ

The standard second-order characteristic equation of a control system is presented as follows:

Δ sð Þ ¼ s2 þ 2ξωnsþ ωn
2 ð5Þ

where, its settling time can be determined as follows:

ts ¼ 4
ξωn

ð6Þ

By comparing (4) and (5), it is concluded that:

ωn ¼ 2, ξ ¼ 1 ð7Þ

Solving (6) and (7):

ts ¼ 4
ξωn

¼ 4
1� 2

¼ 2 sec

Choice (2) is the answer.

6.5 Based on the information given in the problem, the open-loop transfer function of the control system is as follows:

G sð Þ ¼ k
s τsþ 1ð Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð Þ ¼ 0 ) 1þ k
s τsþ 1ð Þ ¼ 0

) Δ sð Þ ¼ τs2 þ sþ k ) Δ sð Þ ¼ s2 þ 1
τ
sþ k

τ
ð1Þ

In a system with the characteristic equation of Δ(s) ¼ a2s
2 + a1s + a0, the system has an underdamped response if:

Figure 6.3 The control system of solution of problem 6.4
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a1ð Þ2 � 4a2a0 < 0 ð2Þ

Solving (1) and (2):

1
τ

� �2

� 4� 1� k
τ
< 0 ) 1� 4kτ < 0 ) k >

1
4τ

Moreover, the damping ratio of the unit step response can be determined by comparing the characteristic equation of the
system (see (1)) with the standard second-order characteristic equation, that is, Δ(s) ¼ s2 + 2ξωns + ωn

2, as follows:

ξ ¼
1
τ

2ωn
¼

1
τ

2
ffiffi
k
τ

q ) ξ ¼ 1

2
ffiffiffiffiffi
τk

p

Choice (1) is the answer.

6.6 Based on the information given in the problem, the damping ratio and the settling time (5% criterion) of the closed-loop
system are 0.5 and 2 seconds, respectively. In other words:

ξ ¼ 0:5 ð1Þ

ts ¼ 2 sec ð2Þ

The settling time (5% criterion) of a second-order system can be determined as follows:

ts ¼ 3
ξωn

ð3Þ

Solving (1), (2), and (3):

2 ¼ 3
0:5� ωn

) ωn ¼ 3 rad= sec ð4Þ

The transfer function of the inner closed-loop system, shown in Fig. 6.4, can be determined as follows:

G sð Þ ¼
1

s sþ1ð Þ
1þ k2s

s sþ1ð Þ
¼ 1

s2 þ k2 þ 1ð Þs ð5Þ

Then, the transfer function of the whole closed-loop system can be determined as follows:

T sð Þ ¼ Y sð Þ
R sð Þ ¼

k1 � G sð Þ
1þ k1 � G sð Þ ¼

k1 � 1
s2þ k2þ1ð Þs

1þ k1 � 1
s2þ k2þ1ð Þs

¼ k1
s2 þ k2 þ 1ð Þsþ k1

ð6Þ

The denominator of a transfer function is its characteristic equation. Thus, by comparing (6) with the standard second-
order characteristic equation, that is, Δ(s) ¼ s2 + 2ξωns + ωn

2, we have:

k1 ¼ ωn
2 7ð Þ

k2 þ 1 ¼ 2ξωn 8ð Þ

�

Solving (4) and (7):
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k1 ¼ 32 ) k1 ¼ 9

Solving (1), (4), and (8):

k2 þ 1 ¼ 2� 0:5� 3 ) k2 ¼ 2

Choice (3) is the answer.

6.7 Based on the information given in the problem, the settling time (2% criterion) and the peak time of the closed-loop
system are 4

3 seconds and
π
4 seconds, respectively. In other words:

ts ¼ 4
3

sec ð1Þ

tp ¼ π
4

sec ð2Þ

The settling time (2% criterion) of a second-order system can be determined as follows:

ts ¼ 4
ξωn

¼ 4
σ

ð3Þ

Moreover, the peak time of a second-order system can be determined as follows:

tp ¼ π
ωd

ð4Þ

Solving (1) and (3):

4
3
¼ 4

σ
) σ ¼ 3 ð5Þ

Solving (2) and (4):

π
4
¼ π

ωd
) ωd ¼ 4 ð6Þ

The undamped natural angular frequency of a second-order control system can be determined as follows:

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωd

2 þ σ2
p

ð7Þ

Solving (5), (6), and (7):

Figure 6.4 The control system of solution of problem 6.6
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ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωd

2 þ σ2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 32

p
¼ 5 ð8Þ

The transfer function of the inner closed-loop system, illustrated Fig. 6.5, can be determined as follows:

G sð Þ ¼
k1
sþ5

1þ k1k2
sþ5

¼ k1
sþ 5þ k1k2

ð9Þ

Then, the transfer function of the whole closed-loop system can be determined as follows:

T sð Þ ¼ Y sð Þ
R sð Þ ¼

G sð Þ � 1
s

1þ G sð Þ � 1
s

¼
k1

sþ5þk1k2
� 1

s

1þ k1
sþ5þk1k2

� 1
s

¼ k1
s2 þ 5þ k1k2ð Þsþ k1

ð10Þ

The denominator of a transfer function is its characteristic equation. Thus, by comparing (10) with the standard second-
order characteristic equation, that is, Δ(s) ¼ s2 + 2σs + ωn

2, we have:

k1 ¼ ωn
2 11ð Þ

5þ k1k2 ¼ 2σ 12ð Þ

�

Solving (8) and (11):

k1 ¼ 25 ð13Þ

Solving (5), (12), and (13):

5þ 25k2 ¼ 2� 3 ) k2 ¼ 0:04

Choice (2) is the answer.

6.8 Based on the information given in the problem, the differential equation of the control system with the zero-primary
condition is as follows:

y00 tð Þ þ 4y0 tð Þ þ 20y tð Þ ¼ r tð Þ ð1Þ

The transfer function of the system can be determined, as follows:

y00 tð Þ þ 4y0 tð Þ þ 20y tð Þ ¼ r tð Þ Laplace Trans:¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) s2 þ 4sþ 20
� �

Y sð Þ ¼ R sð Þ

Figure 6.5 The control system of solution of problem 6.7
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) T sð Þ ¼ Y sð Þ
R sð Þ ¼

1
s2 þ 4sþ 20

ð2Þ

In an underdamped system, the time that different peaks in the system response occur can be determined as follows:

tpn ¼ 2n� 1ð Þπ
ωd

ð3Þ

Therefore, the time of the second peak is as follows:

tp2 ¼ 2� 2� 1ð Þπ
ωd

¼ 3π
ωd

ð4Þ

The denominator of a transfer function is the characteristic equation of the system. Thus, by comparing (2) with the
standard second-order characteristic equation, that is, Δ(s) ¼ s2 + 2σs + ωn

2, we have:

ωn
2 ¼ 20 5ð Þ

2σ ¼ 4 ) σ ¼ 2 6ð Þ

�

The damped angular frequency of a second-order control system can be determined as follows:

ωd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn

2 � σ2
p

ð7Þ

Solving (5), (6), and (7):

ωd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20� 22

p
¼ 4 ð8Þ

Solving (4) and (8):

tp2 ¼ 3π
ωd

¼ 3π
4

Choice (1) is the answer.

6.9 Based on the information given in the problem, we have:

f tð Þ ¼ u tð Þ ð1Þ

M ¼ 1 kg,B ¼ 1 ð2Þ

Moreover, from the graph, shown in Fig. 6.6.2, it is noticed that:

lim
t!1x tð Þ ¼ 1

4
ð3Þ

Based on Newton’s second law for a translational system, we have:

X
f tð Þ ¼ M€x tð Þ ð4Þ

where f(t), M, and x(t) are force, mass, and position, respectively.

Therefore, by applying Newton’s second law on the system (see Fig. 6.6.1), we have:
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f tð Þ � f k tð Þ � f B tð Þ ¼ M€x tð Þ ) f tð Þ � kx tð Þ � B _x tð Þ ¼ M€x tð Þ ð5Þ

Solving (2) and (5):

f tð Þ � kx tð Þ � _x tð Þ ¼ €x tð Þ Laplace Trans:¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) F sð Þ � kX sð Þ � sX xð Þ ¼ s2X tð Þ

T sð Þ ¼ X sð Þ
F sð Þ ¼

1
s2 þ sþ k

ð6Þ

Equation (6) shows the transfer function of the system.

) X sð Þ ¼ 1
s2 þ sþ k

F sð Þ ð7Þ

From final value theorem, we know that:

lim
t!1x tð Þ ¼ lim

s!0
sX sð Þ ð8Þ

Solving (1), (7), and (8), and knowing that F sð Þ ¼ L f tð Þð Þ ¼ 1
s:

lim
t!1x tð Þ ¼ lim

s!0
s� 1

s2 þ sþ k
� 1

s
) lim

t!1x tð Þ ¼ 1
k

ð9Þ

Solving (3) and (9):

1
k
¼ 1

4
) k ¼ 4 ð10Þ

Solving (6) and (10):

T sð Þ ¼ 1
s2 þ sþ 4

ð11Þ

The denominator of a transfer function is its characteristic equation. Thus, by comparing (11) with the standard second-
order characteristic equation, that is, Δ(s) ¼ s2 + 2ξωns + ωn

2, the damping ratio of the unit step response can be
determined, as follows:

ωn
2 ¼ 4 ) ωn ¼ 2

2ξωn ¼ 1

�
) ξ ¼ 1

4

Choice (1) is the answer.

Figure 6.6 The control system of solution of problem 6.9
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6.10 The information below can be extracted from the graph, shown in Fig. 6.7.

r tð Þ ¼ u tð Þ ð1Þ

lim
t!1c tð Þ ¼ 1 ð2Þ

tp ¼ 0:01 ð3Þ

O:S:% ¼ 30% ð4Þ

The peak time of a second-order control system can be determined as follows:

tp � π
ωd

ð5Þ

Solving (3) and (5):

0:01 ¼ π
ωd

) ωd � 314 rad= sec ð6Þ

The damping ratio of a second-order control system can be determined as follows:

ξ � ln O:S:%
100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ O:S:%

100

� �2q ð7Þ

Solving (4) and (7):

ξ � ln 30
100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ 30

100

� �2q � 0:35 ð8Þ

The undamped natural angular frequency of a second-order control system can be determined as follows:

ωn ¼ ωdffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p ð9Þ

Solving (6), (8), and (9):

ωn ¼ 314ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:352

p � 336 ð10Þ

The standard transfer function of a second-order control system has the following from:

T sð Þ ¼ C sð Þ
R sð Þ �

A
s2 þ 2ξωnsþ ωn

2 ð11Þ

Solving (6), (8), (10), and (11):

T sð Þ ¼ C sð Þ
R sð Þ �

A

s2 þ 240sþ 3362
ð12Þ

From final value theorem, we know that:
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lim
t!1c tð Þ ¼ lim

s!0
sC sð Þ ð13Þ

Solving (12) and (13), and knowing that R sð Þ ¼ L r tð Þð Þ ¼ 1
s:

lim
t!1c tð Þ � lim

s!0
s� A

s2 þ 240sþ 3362
� 1

s
¼ A

3362
ð14Þ

Solving (3) and (14):

A

3362
¼ 1 ) A � 3362 ð15Þ

Solving (12) and (15):

T sð Þ � 3362

s2 þ 240sþ 3362

Choice (4) is the answer.

Figure 6.7 The control system of solution of problem 6.10
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Problems: Analysis of Steady-State Response 7

Abstract
In this chapter, the steady-state error of a closed-loop control system to a reference input and a disturbance or noise is
studied. In this chapter, the problems are categorized in different levels based on their difficulty levels (easy, normal, and
hard) and calculation amounts (small, normal, and large). Additionally, the problems are ordered from the easiest problem
with the smallest computations to the most difficult problems with the largest calculations.

7.1 Consider the system shown in Fig. 7.1. Determine the type of the system and the steady-state error of the closed-loop
control system to a unit ramp function. Assume that the closed-loop system is stable.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) 1, k1
k2

2) 0, 0
3) 0, 1
4) 1, k2

k1

7.2 In the closed-loop control system shown in Fig. 7.2, calculate the steady-state error to a unit step function.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 1
2) 5
3) 1

6

4) 0

Figure 7.1 The control system of problem 7.1

Figure 7.2 The control system of problem 7.2
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7.3 Determine the static error constant to a unit ramp function if the transfer function of the closed-loop control system, shown
in Fig. 7.3, is as follows:

T sð Þ ¼ sþ 6
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) kv ¼ 3
5

2) kv ¼ 5
6

3) kv ¼ 5
3

4) kv ¼ 6
5

7.4 Determine the steady-state error to a unit step function if the closed-loop control system includes a negative unity
feedback and the open-loop transfer function is as follows:

G sð Þ ¼ 10 sþ 4ð Þ
s2 sþ 1ð Þ

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 0
2) 40
3) 1

40

4) 1

7.5 Determine the steady-state error to a unit ramp function if the closed-loop control system includes a negative unity
feedback and the open-loop transfer function is as follows:

G sð Þ ¼ 1
s sþ að Þ , a > 0

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ● Small ○ Normal ○ Large
1) 0
2) 1
3) a
4) 2a

7.6 The open-loop transfer function of a control system with a negative unity feedback is as follows:

G sð Þ ¼ 2k
s3 þ 4s2 þ 5sþ 2

Figure 7.3 The control system of problem 7.3
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Determine its minimum steady-state error to a unit step function.

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) 0.1
2) 0
3) 1
4) 1

7.7 Consider the control system shown in Fig. 7.4. Determine the steady-state error resulted from the input of R(s) and the
noise of N(s) that all are unit step functions.

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large
1) Zero, zero
2) Nonzero constant, infinite
3) Nonzero constant, zero
4) Zero, infinite

7.8 Consider the control system shown in Fig. 7.5. Determine the total steady-state error resulted from the input of R(s), which
is a unit ramp function, and the disturbance of D(s), which is a step function with the amplitude of d.

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large

1) dþkkh
k � B

k

2) Bþkkh
kh

� d
kh

3) B
k � d

k

4) Bþkkh
k � d

k

Figure 7.4 The control system of problem 7.7

Figure 7.5 The control system of problem 7.8
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Solutions of Problems: Analysis of Steady-State
Response 8

Abstract
In this chapter, the problems of the seventh chapter are fully solved, in detail, step-by-step, and with different methods.

8.1 Based on the information given in the problem, the closed-loop system is stable. Therefore, checking the stability status of
the system is not needed.

Moreover, the open-loop transfer function of the system (see Fig. 8.1) is as follows:

G sð Þ ¼ k1
s sþ k2ð Þ ð1Þ

Based on the definition, type of a control system can be determined from its open-loop transfer function as follows:

G sð Þ ¼
k ∏

m

i¼1
sþ zið Þ

sT ∏
n

j¼1
sþ p j

� � )

T ¼ 0 ) type 0

T ¼ 1 ) type 1

T ¼ 2 ) type 2

⋮

8>>>><
>>>>:

ð2Þ

Therefore, the type of the system is one because T ¼ 1.

Moreover, the steady-state error of a type-one closed-loop control system to a unit ramp function can be determined as
follows (see the table below). Herein, kv is called velocity error constant.

ess ¼ 1
kv

¼ 1
lim
s!0

sG sð Þ ð3Þ

Solving (1) and (3):

ess ¼ 1
lim
s!0

sG sð Þ ¼
1

lim
s!0

s� k1
s sþk2ð Þ

¼ 1
k1
k2

¼ k2
k1

Choice (4) is the answer.
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Type of system
Zero One Two Three

Reference input Step function (Au(t)) A
1þ kp

¼ A
1þ lim

s!0
G sð Þ

0 0 0

Ramp function (Atu(t)) 1 A
kv

¼ A
lim
s!0

sG sð Þ
0 0

Parabola function (A t2

2 u tð Þ) 1 1 A
ka

¼ A
lim
s!0

s2G sð Þ
0

8.2 First, we need to determine the stability status of the system. The characteristic equation of the closed-loop control
system, shown in Fig. 8.2, can be determined as follows:

Δ sð Þ ¼ 1þ Gc sð ÞG sð Þ ¼ 0

) 1þ 10
s
� 1

sþ 1ð Þ sþ 2ð Þ ¼ 0 ) s3 þ 3s2 þ 2sþ 10
s sþ 1ð Þ sþ 2ð Þ ¼ 0 ) Δ sð Þ ¼ s3 þ 3s2 þ 2sþ 10 ð1Þ

To determine the stability status of a control system, we can use Routh-Hurwitz table. Suppose that the characteristic
equation of a system is as follows:

Δ sð Þ ¼ ans
n þ an�1s

n�1 þ an�2s
n�2 þ . . .þ a2s

2 þ a1s
1 þ a0s

0 ð2Þ

The structure of Routh-Hurwitz table is presented in the following. As can be seen, the coefficients of the characteristic
equation are placed on the first two rows of the table with the specific pattern. However, the coefficients of the next rows
need to be determined by using (3) and (4), until the last row (s0) is filled.

bn�1 ¼ � 1
an�1

an an�2

an�1 an�3

����
���� ¼ an�2an�1 � anan�3

an�1
ð3Þ

bn�3 ¼ � 1
an�1

an an�4

an�1 an�5

����
���� ¼ an�4an�1 � anan�5

an�1
ð4Þ

Based on Routh-Hurwitz table rule, the system is stable if all the elements in the first column of the table are positive.

Figure 8.1 The control system of solution of problem 8.1
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For this problem, we have:

As can be seen, there are two sign changes in the first column of the table. Therefore, the system is unstable, and
consequently the steady-state error to a unit step function will be infinite. Choice (1) is the answer.

8.3 Based on the information given in the problem, the transfer function of the closed-loop control system is as follows:

T sð Þ ¼ sþ 6
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ ð1Þ

However, to calculate the steady-state error or the static error constant, we need to identify the open-loop transfer function
(G(s)).

Since the system has a negative unity feedback, the relation below exists between its open-loop and closed-loop transfer
functions.

T sð Þ ¼ G sð Þ
1þ G sð Þ ð2Þ

Solving (1) and (2):

sþ 6
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ ¼

G sð Þ
1þ G sð Þ ) G sð Þ ¼

sþ6
sþ1ð Þ sþ2ð Þ sþ3ð Þ

1� sþ6
sþ1ð Þ sþ2ð Þ sþ3ð Þ

) G sð Þ ¼ sþ 6
s s2 þ 6sþ 10ð Þ ð3Þ

Therefore, the type of the system is one since the type of a control system can be determined from its open-loop transfer
function as follows:

G sð Þ ¼
k ∏

m

i¼1
sþ zið Þ

sT ∏
n

j¼1
sþ p j

� � )

T ¼ 0 ) type 0

T ¼ 1 ) type 1

T ¼ 2 ) type 2

⋮

8>>>><
>>>>:

ð4Þ

The static error constant to a unit ramp function can be determined as follows (see the table below).

Figure 8.2 The control system of solution of problem 8.2
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kv ¼ lim
s!0

sG sð Þ ¼ lim
s!0

s� sþ 6
s s2 þ 6sþ 10ð Þ ) kv ¼ 3

5

This static error constant is called velocity error constant. Choice (1) is the answer.

Type of system
Zero One Two Three

Reference input

Step function (Au(t)) A
1þ kp

¼ A
1þ lim

s!0
G sð Þ

0 0 0

Ramp function (Atu(t)) 1 A
kv

¼ A
lim
s!0

sG sð Þ
0 0

Parabola function (A t2

2 u tð Þ) 1 1 A
ka

¼ A
lim
s!0

s2G sð Þ
0

8.4 Based on the information given in the problem, the open-loop transfer function of the control system that includes a
negative unity feedback is as follows:

G sð Þ ¼ 10 sþ 4ð Þ
s2 sþ 1ð Þ ð1Þ

First, we need to check the stability status of the system. The characteristic equation of the closed-loop control system can
be determined as follows:

Δ sð Þ ¼ 1þ G sð Þ ¼ 0

) 1þ 10 sþ 4ð Þ
s2 sþ 1ð Þ ¼ 0 ) s3 þ s2 þ 10sþ 40

s2 sþ 1ð Þ ¼ 0 ) Δ sð Þ ¼ s3 þ s2 þ 10sþ 40 ð2Þ

To determine the stability status of a control system, we can use Routh-Hurwitz table. Suppose that the characteristic
equation of a system is as follows:

Δ sð Þ ¼ ans
n þ an�1s

n�1 þ an�2s
n�2 þ . . .þ a2s

2 þ a1s
1 þ a0s

0 ð3Þ

The structure of Routh-Hurwitz table is presented in the following. As can be seen, the coefficients of the characteristic
equation are placed on the first two rows of the table with the specific pattern. However, the coefficients of the next rows
need to be determined by using (4) and (5), until the last row (s0) is filled.

Figure 8.3 The control system of solution of problem 8.3
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bn�1 ¼ � 1
an�1

an an�2

an�1 an�3

����
���� ¼ an�2an�1 � anan�3

an�1
ð4Þ

bn�3 ¼ � 1
an�1

an an�4

an�1 an�5

����
���� ¼ an�4an�1 � anan�5

an�1
ð5Þ

Based on Routh-Hurwitz table rule, the system is stable if all the elements in the first column of the table are positive.
For this problem, we have:

As can be seen, there are two sign changes in the first column of the table. Therefore, the system is unstable, and
consequently the steady-state error to a unit step function will be infinite. Choice (4) is the answer.

8.5 Based on the information given in the problem, the closed-loop control system includes a negative unity feedback and the
open-loop transfer function below.

G sð Þ ¼ 1
s sþ að Þ , a > 0 ð1Þ

First, we need to determine the stability status of the system. The characteristic equation of the closed-loop control system
can be determined as follows:

Δ sð Þ ¼ 1þ Gc sð ÞG sð Þ ¼ 0

) 1þ 1
s sþ að Þ ¼ 0 ) s2 þ asþ 1

s sþ að Þ ¼ 0 ) Δ sð Þ ¼ s2 þ asþ 1 ð2Þ

A second-order system with the characteristic equation of a2s
2 + a1s + a0 is stable if and only if all the coefficients are

non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð3Þ

Solving (2) and (3):

a > 0 ð4Þ

By considering (1) and (4), it is noticed that the system is stable.

Based on the definition, the type of a control system can be determined from its open-loop transfer function as follows:

G sð Þ ¼
k ∏

m

i¼1
sþ zið Þ

sT ∏
n

j¼1
sþ p j

� � )

T ¼ 0 ) type 0

T ¼ 1 ) type 1

T ¼ 2 ) type 2

⋮

8>>>><
>>>>:

ð5Þ

As can be noticed from (1) and (5), the type of the system is one. Hence, based on the table below, the steady-state error to
a unit ramp function can be determined as follows:
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ess ¼ 1
kv

¼ 1
lim
s!0

sG sð Þ ¼
1

lim
s!0

s� 1
s sþað Þ

¼ 1
1
a

) ess ¼ a

Choice (3) is the answer.

Type of system
Zero One Two Three

Reference input Step function (Au(t)) A
1þ kp

¼ A
1þ lim

s!0
G sð Þ

0 0 0

Ramp function (Atu(t)) 1 A
kv

¼ A
lim
s!0

sG sð Þ
0 0

Parabola function (A t2

2 u tð Þ) 1 1 A
ka

¼ A
lim
s!0

s2G sð Þ
0

8.6 Based on the information given in the problem, the open-loop transfer function of the control system that includes a
negative unity function is as follows:

G sð Þ ¼ 2k
s3 þ 4s2 þ 5sþ 2

ð1Þ

First, we need to check the stability status of the system. The characteristic equation of the closed-loop control system can
be determined as follows:

Δ sð Þ ¼ 1þ G sð Þ ¼ 0

) 1þ 2k
s3 þ 4s2 þ 5sþ 2

¼ 0 ) s3 þ 4s2 þ 5sþ 2þ 2k
s3 þ 4s2 þ 5sþ 2

¼ 0

) Δ sð Þ ¼ s3 þ 4s2 þ 5sþ 2þ 2k ð2Þ

To determine the stability status of a control system, we can use Routh-Hurwitz table. Suppose that the characteristic
equation of a system is as follows:

Δ sð Þ ¼ ans
n þ an�1s

n�1 þ an�2s
n�2 þ . . .þ a2s

2 þ a1s
1 þ a0s

0 ð3Þ

The structure of Routh-Hurwitz table is presented in the following. As can be seen, the coefficients of the characteristic
equation are placed on the first two rows of the table with the specific pattern. However, the coefficients of the next rows
need to be determined by using (4) and (5), until the last row (s0) is filled.

bn�1 ¼ � 1
an�1

an an�2

an�1 an�3

����
���� ¼ an�2an�1 � anan�3

an�1
ð4Þ

bn�3 ¼ � 1
an�1

an an�4

an�1 an�5

����
���� ¼ an�4an�1 � anan�5

an�1
ð5Þ

Based on Routh-Hurwitz table rule, the system is stable if all the elements in the first column of the table are positive.
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For this problem, we have:

Therefore, the system is stable if:

18� 2k
4

> 0

2þ 2k > 0

(
) k < 9

k > �1

� \¼) � 1 < k < 9 ð6Þ

As can be noticed from (1), the type of the system is zero. Therefore, the steady-state error to a unit step function can be
determined as follows (see the table below). Herein, kp is called position error constant.

ess ¼ 1
1þ kp

¼ 1
1þ lim

s!0
G sð Þ ¼

1
1þ lim

s!0

2k
s3þ4s2þ5sþ2

¼ 1
1þ k

ð7Þ

As can be noticed from (7), the minimum steady-state error to a unit step function will occur for the maximum possible
value of k while considering the stability criterion mentioned in (6).

Solving (6) and (7):

ess ¼ 1
1þ 9

) ess ¼ 0:1

Choice (1) is the answer.

Type of system
Zero One Two Three

Reference input Step function (Au(t)) A
1þ kp

¼ A
1þ lim

s!0
G sð Þ

0 0 0

Ramp function (Atu(t)) 1 A
kv

¼ A
lim
s!0

sG sð Þ
0 0

Parabola function (A t2

2 u tð Þ) 1 1 A
ka

¼ A
lim
s!0

s2G sð Þ
0

8.7 Based on the information given in the problem, we know that:

r tð Þ ¼ n tð Þ ¼ u tð Þ Laplace Trans:¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) R sð Þ ¼ N sð Þ ¼ 1
s

ð1Þ

The open-loop transfer function of the system with the input and output of R(s) and Y(s), respectively, is as follows:

G sð Þ ¼ kP �
k

s τsþ1ð Þ
1þ k

s τsþ1ð Þ � kDs
¼ kPk

s τsþ 1þ kkDð Þ ð2Þ

As can be noticed, the type of the system is one. Hence, the steady-state error of the closed-loop control system to the
reference input of unit step function (R(s)) will be zero, as can be seen in the table below.

ess,R ¼ 0 ð3Þ
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Type of system
Zero One Two Three

Reference input Step function (Au(t)) A
1þ kp

¼ A
1þ lim

s!0
G sð Þ

0 0 0

Ramp function (Atu(t)) 1 A
kv

¼ A
lim
s!0

sG sð Þ
0 0

Parabola function (A t2

2 u tð Þ) 1 1 A
ka

¼ A
lim
s!0

s2G sð Þ
0

To calculate the steady-state error resulted from the noise of N(s), we can determine the output (Y(s)), while the input of
R(s) is turned off. In other words:

r tð Þ ¼ 0 ð4Þ

As we know, an error is defined as follows:

E sð Þ ¼ R sð Þ � Y sð Þ Laplace Inv: Trans:¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) e tð Þ ¼ r tð Þ � y tð Þ ð5Þ

Solving (4) and (5) for the input of noise in the steady-state condition:

ess,N ¼ �yss,N ð6Þ

Herein, we can use Mason's gain formula to determine the related transfer function, as follows:

P ¼ 1
Δ

XN
k¼1

pkΔk

where:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

P: The total gain from the input point to the output one

Δ: The determinant of the graph which is the same as the characteristic equation of the system

N: The number of forward paths from the input point to the output one

k: The index of forward path from the input point to the output

pk: The gain of the k’th forward path from the input point to the output one

Δk: The determinant of the graph if the k’th forward path is removedP
a
La : The sum of gains of loops

P
a, b

LaLb : The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc : The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system, shown in Fig. 8.4, we have the following calculations to determine the transfer function of Y sð Þ
N sð Þ,

which is from the input of N(s) to the output of Y(s):

N ¼ 1

p1 ¼ 1
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Δ1 ¼ 1

)
XN
k¼1

pkΔk ¼ p1Δ1 ¼ 1

X
a

La ¼ � k
s τsþ 1ð Þ � kDs

� �
þ �kP � k

s τsþ 1ð Þ
� �

¼ � kkDs
s τsþ 1ð Þ �

kkP
s τsþ 1ð Þ

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� � kkDs
s τsþ 1ð Þ �

kkP
s τsþ 1ð Þ

� �
¼ 1þ kkDs

s τsþ 1ð Þ þ
kkP

s τsþ 1ð Þ

Y sð Þ
N sð Þ ¼

1
1þ kkDs

s τsþ1ð Þ þ kkP
s τsþ1ð Þ

¼ s τsþ 1ð Þ
τs2 þ kkD þ 1ð Þsþ kkP

) Y sð Þ ¼ s τsþ 1ð Þ
τs2 þ kkD þ 1ð Þsþ kkP

N sð Þ ð7Þ

From final value theorem, we know that:

lim
t!1y tð Þ ¼ lim

s!0
sY sð Þ ð8Þ

Solving (1), (7), and (8):

yss,N ¼ lim
t!1yN tð Þ ¼ lim

s!0
s� s τsþ 1ð Þ

τs2 þ kkD þ 1ð Þsþ kkP
� 1

s
¼ 0 ð9Þ

Solving (6) and (9):

ess,N ¼ �yss,N ¼ 0

Choice (1) is the answer.

Figure 8.4 The control system of solution of problem 8.7
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8.8 Based on the information given in the problem, we have:

r tð Þ ¼ tu tð Þ Laplace Trans:¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) R sð Þ ¼ 1
s2

ð1Þ

d tð Þ ¼ du tð Þ Laplace Trans:¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) D sð Þ ¼ d
s

ð2Þ

To calculate the total error (E(s) indicated in Fig. 8.5) resulted from the reference input of R(s) and the disturbance ofD(s),
we can apply superposition theorem. Therefore, to calculate the error (ER(s)) resulted from the reference input of R(s), we
need to turn off D(s). Likewise, to calculate the error (ED(s)) resulted from the disturbance of D(s), we must turn off
R(s). Then:

E sð Þ ¼ ER sð Þ þ ED sð Þ ð3Þ

After that, the steady-state error can be calculated using final value theorem, as follows:

ess ¼ lim
s!0

sE sð Þ ¼ lim
s!0

s ER sð Þ þ ED sð Þð Þ ð4Þ

Herein, to calculate the errors, we can use Mason's gain formula, as follows:

P ¼ 1
Δ

XN
k¼1

pkΔk

where:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

P: The total gain from the input point to the output one
Δ: The determinant of the graph which is the same as the characteristic equation of the system
N: The number of forward paths from the input point to the output one
k: The index of forward path from the input point to the output
pk: The gain of the k’th forward path from the input point to the output one
Δk: The determinant of the graph if the k’th forward path is removedP
a
La : The sum of gains of loopsP

a, b
LaLb : The sum of product of gains of any two non-touching loops (without any common nodes)P

a, b, c
LaLbLc : The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the input of R(s) and the output of ER(s), we have (see Fig. 8.5):

N ¼ 1

p1 ¼ 1

Δ1 ¼ 1� �k � 1
Jsþ B

� kh
� 	

¼ 1þ kkh
Jsþ B
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)
XN
k¼1

pkΔk ¼ p1Δ1 ¼ 1þ kkh
Jsþ B

¼ Jsþ Bþ kkh
Jsþ B

X
a
La ¼ �k � 1

Jsþ B
� kh

� 	
þ �k � 1

Jsþ B
� 1

s

� 	
¼ � kkh

Jsþ B
� k
s Jsþ Bð Þ

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� � kkh
Jsþ B

� k
s Jsþ Bð Þ

� �
¼ 1þ kkh

Jsþ B
þ k
s Jsþ Bð Þ

ER sð Þ
R sð Þ ¼

JsþBþkkh
JsþB

1þ kkh
JsþB þ k

s JsþBð Þ
¼ s Jsþ Bþ kkhð Þ

Js2 þ kkh þ Bð Þsþ k

) ER sð Þ ¼ s Jsþ Bþ kkhð Þ
Js2 þ kkh þ Bð Þsþ k

R sð Þ ð5Þ

Likewise, for the input of D(s) and the output of ED(s), we have (see Fig. 8.5):

N ¼ 1

p1 ¼ � 1
Jsþ B

� 1
s
¼ � 1

s Jsþ Bð Þ

Δ1 ¼ 1

)
XN
k¼1

pkΔk ¼ p1Δ1 ¼ � 1
s Jsþ Bð Þ

X
a
La ¼ �k � 1

Jsþ B
� kh

� 	
þ �k � 1

Jsþ B
� 1

s

� 	
¼ � kkh

Jsþ B
� k
s Jsþ Bð Þ

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1� � kkh
Jsþ B

� k
s Jsþ Bð Þ

� �
¼ 1þ kkh

Jsþ B
þ k
s Jsþ Bð Þ

ED sð Þ
D sð Þ ¼

� 1
s JsþBð Þ

1þ kkh
JsþB þ k

s JsþBð Þ
¼ � 1

Js2 þ kkh þ Bð Þsþ k
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) ED sð Þ ¼ � 1
Js2 þ kkh þ Bð Þsþ k

D sð Þ ð6Þ

Solving (1), (2), (4), (5), and (6):

ess ¼ lim
s!0

s
s Jsþ Bþ kkhð Þ

Js2 þ kkh þ Bð Þsþ k
� 1
s2

� 1
Js2 þ kkh þ Bð Þsþ k

� d
s

� �

) ess ¼ lim
s!0

Jsþ Bþ kkh
Js2 þ kkh þ Bð Þsþ k

� d
Js2 þ kkh þ Bð Þsþ k

� �

) ess ¼ Bþ kkh
k

� d
k

Choice (4) is the answer.

Figure 8.5 The control system of solution of problem 8.8
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Problems: Graphical Analysis and Design in Time
Domain 9

Abstract
In this chapter, root locus analysis method as a graphical analysis method is applied on the transfer function of an open-loop
control system to examine how the poles of the closed-loop system change with the variation of a specific system parameter
(loop gain). The analysis includes studying the stability status of the closed-loop control system and evaluating its transient
and steady-state responses. In this chapter, the problems are categorized in different levels based on their difficulty levels
(easy, normal, and hard) and calculation amounts (small, normal, and large). Additionally, the problems are ordered from the
easiest problem with the smallest computations to the most difficult problems with the largest calculations.

9.1 Figure 9.1 illustrates the root locus of a control system with a negative unity feedback (for k > 0). Determine the maximum
value of loop gain so that the closed-loop system is stable.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 1
2) 2
3) 3
4) 6

Figure 9.1 The control system of problem 9.1
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9.2 Consider the problem of 9.1 and assume that the system is in the oscillating status. Determine the angular frequency of the
oscillations.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 1 rad/sec

2)
ffiffiffi
2

p
rad= sec

3)
ffiffiffi
3

p
rad= sec

4) 4 rad/sec

9.3 Figure 9.3 shows the root locus (k > 0) of the control system shown in Fig. 9.2. Determine the value of loop gain where the
root locus crosses jω � axis.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 16
2) 160
3) 1.6
4) 0

Figure 9.2 The control system of problem 9.3

Figure 9.3 The control system of problem 9.3
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9.4 If the root locus of the control system of Fig. 9.4 passes from the points of �1 � j, determine the value of the parameters
a and b.

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) 5, 4
2) 5, 3
3) 3, 4
4) 3, 3

9.5 In a control system with a negative unity feedback and the open-loop transfer function below, if the parameter of τ
increases about 10%, which one of the following choices is correct?

G sð Þ ¼ 1
s 1þ τsð Þ

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) The damping ratio will decrease about 5%.
2) The damping ratio will increase about 5%.
3) The damping ratio will decrease about 10%.
4) The damping ratio will increase about 10%.

9.6 Which one of the following choices shows the root locus of the control system of Fig. 9.5 for k > 0?

Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ○ Normal ● Large

Figure 9.4 The control system of problem 9.4

Figure 9.5 The control system of problem 9.6
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9.7 Which one of the following choices illustrates the root locus of the control system shown in Fig. 9.7 (k > 0)?

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ● Small ○ Normal ○ Large
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Figure 9.6 The control system of problem 9.6

Figure 9.7 The control system of problem 9.7
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9.8 The root locus of a control system is shown in Fig. 9.9. Determine the stability status of the system for k ¼ 40.

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) Stable.
2) Unstable.
3) Marginally stable.
4) Its stability depends on the other parameters.

0.05

-0.05

0.2

0.1

0

-0.1

-0.2
-4 -2 0 2

(2)(1)

0.2

0.20 10.4 0.6 0.8

4

2

-2

-4
-5 50 10

0

0.1

0

-0.1

-0.2
-2 -1 0 1 2

(3) (4)

Real Axis (seconds-1) Real Axis (seconds-1)

Real Axis (seconds-1) Real Axis (seconds-1)

Im
ag

in
ar

y 
A

xi
s 

(s
ec

o
n

d
s-1

)
Im

ag
in

ar
y 

A
xi

s 
(s

ec
o

n
d

s-1
)

Im
ag

in
ar

y 
A

xi
s 

(s
ec

o
n

d
s-1

)
Im

ag
in

ar
y 

A
xi

s 
(s

ec
o

n
d

s-1
)

0

Figure 9.8 The control system of problem 9.7

Figure 9.9 The control system of problem 9.8
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9.9 Which one of the following options shows the root locus of a closed-loop control system (for k > 0) with a negative unity
feedback and the open-loop transfer function below?

G sð Þ ¼ s� k
s sþ 1ð Þ

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

9.10 Consider a closed-loop control system with a negative unity feedback and the open-loop transfer function below (k > 0).
If the settling time of the system for the large k is about eight seconds, determine the value of parameter a.

G sð Þ ¼ k sþ 4ð Þ
s sþ 2ð Þ sþ að Þ

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) 1
2) 2
3) 3
4) 4
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Figure 9.10 The control system of problem 9.9
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9.11 Consider a closed-loop control system with a negative unity feedback and the open-loop transfer function below (k > 0).
Which one of the following statements is correct and complete?

G sð Þ ¼ k sþ 0:5ð Þ
s2 s2 þ 4sþ 8ð Þ

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) The points �1 � j are on the root locus of the system.
2) The points �1 � j are on the root locus of the system, but they are NOT break-away/break-in points.
3) The points �1 � j are NOT on the root locus of the system.
4) The points �1 � j are on the root locus of the system and they are break-away/break-in points.

9.12 Consider a closed-loop control system with a negative unity feedback and the open-loop transfer function below (k > 0).
Determine the range of p, so that the transient response of the closed-loop system is always overdamped.

G sð Þ ¼ k sþ 3ð Þ
sþ 1ð Þ sþ pð Þ

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) 0 < p < 1
2) 1 < p < 3
3) p > 3
4) p > 0

9.13 Which one of the following choices shows the root locus of the control system (k < 0) illustrated in Fig. 9.11?
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

Figure 9.11 The control system of problem 9.13
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9.14 In a control system with a negative unity feedback, the open-loop transfer function is as follows:

G sð Þ ¼ ω2
n

s sþ 2ξωnð Þ

Determine the sensitivity of the maximum overshoot percentage of the closed-loop system’s response to a unit step input

with respect to the damping ratio (SO:S:ξ ) around the rated damping ratio (ξ ¼
ffiffi
2

p
2 ).

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) �2π
2) �π
3) 2π
4) π

9.15 Consider a closed-loop control system with a negative unity feedback and the open-loop transfer function below (k > 0).
Determine the characteristic equation of the closed-loop system if its root locus has a break-away/break-in point on the
real axis in � 4

9 and the straight-line asymptotes intersection in � 11
9 .

G sð Þ ¼ k
s sþ αð Þ sþ βð Þ

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large
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Figure 9.12 The control system of problem 9.13
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1) s3 + 11s2 + 8s + k
2) s3 þ 11

3 s
2 þ 8sþ k

3) s3 þ 11s2 þ 8
3 sþ k

4) s3 þ 11
3 s

2 þ 8
3 sþ k

9.16 The state-transition matrix of a closed-loop control system with a negative unity feedback is as follows:

φ tð Þ½ � ¼
2e�t � 2e�2t þ e�3t e�t � e�2t 0

0 e�2t �e�2t þ e�3t

k e�2t � e�3tð Þ 0 e�3t

2
64

3
75

Herein, k is the forward gain of the system. Determine the break-away/break-in point and the asymptotes intersection on
the real axis.

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large

1) �6þ ffiffi
3

p
3 , � 6

2) �6þ ffiffi
3

p
3 , � 2

3) �6� ffiffi
3

p
3 , � 2

4) �6� ffiffi
3

p
3 , � 6
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Solutions of Problems: Graphical Analysis
and Design in Time Domain 10

Abstract
In this chapter, the problems of the ninth chapter are fully solved, in detail, step-by-step, and with different methods.

10.1. Based on the zeros’ and poles’ locations shown in the root locus of the system in Fig. 10.1, we can determine the open-
loop transfer function of the system, as follows:

G sð Þ ¼ 1
s sþ 1ð Þ sþ 2ð Þ ð1Þ

The characteristic equation of the closed-loop system can be determined as follows:

1þ kG sð ÞH sð Þ ¼ 0

) 1þ k
s sþ 1ð Þ sþ 2ð Þ ¼ 0 ) s3 þ 3s2 þ 2sþ k

s sþ 1ð Þ sþ 2ð Þ ¼ 0 ) Δ sð Þ ¼ s3 þ 3s2 þ 2sþ k ð2Þ

To determine the stability status of a control system, we can use Routh-Hurwitz table. Suppose that the characteristic
equation of a system is as follows:

Δ sð Þ ¼ ans
n þ an�1s

n�1 þ an�2s
n�2 þ . . .þ a2s

2 þ a1s
1 þ a0s

0 ð3Þ

The structure of Routh-Hurwitz table is presented in the following. As can be seen, the coefficients of the characteristic
equation are placed on the first two rows of the table with the specific pattern. However, the coefficients of the next rows
need to be determined by using (4) and (5), until the last row (s0) is filled.

bn�1 ¼ � 1
an�1

an an�2

an�1 an�3

����
���� ¼ an�2an�1 � anan�3

an�1
ð4Þ
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bn�3 ¼ � 1
an�1

an an�4

an�1 an�5

����
���� ¼ an�4an�1 � anan�5

an�1
ð5Þ

Based on Routh-Hurwitz table rule, the system is stable if all the elements in the first column of the table are positive.

For this problem, we have:

Based on Routh-Hurwitz rule, the system is stable if:

6� k
3

> 0

k > 0

(
) k < 6

k > 0

� \¼) 0 < k < 6 ð6Þ

As can be seen from (6), the maximum value of k that the system is stable is 6.

) k ¼ 6

Choice (4) is the answer.

10.2. To have an oscillating system, all the elements in one of the rows of the Routh-Hurwitz table corresponding to an odd
exponent must be zero. As can be seen in the Routh-Hurwitz table, the row corresponding to s1 is zero if k ¼ 6.

Moreover, the angular frequency of the oscillations can be determined by using the equation of the previous row (A(s2),
as the auxiliary equation), as follows:

Figure 10.1 The control system of solution of problem 10.1
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A s2
� � ¼ 3s2 þ k ¼ 0

k ¼ 6¼¼¼¼¼¼¼¼¼¼¼¼¼¼) A s2
� � ¼ 3s2 þ 6 ¼ 0 ) s ¼ �j

ffiffiffi
2

p
) ω ¼

ffiffiffi
2

p
rad= sec

Choice (2) is the answer.

10.3. Based on the zeros’ and poles’ locations shown in the root locus of the system in Fig. 10.3, we can determine the open-
loop transfer function of the system, as follows:

G sð Þ ¼ 1
s sþ 2ð Þ sþ 8ð Þ ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ kG sð ÞH sð Þ ¼ 0

) 1þ k
s sþ 2ð Þ sþ 8ð Þ ¼ 0 ) s3 þ 10s2 þ 16sþ k

s sþ 2ð Þ sþ 8ð Þ ¼ 0

) Δ sð Þ ¼ s3 þ 10s2 þ 16sþ k ð2Þ

Based on the information given in the problem, we know that the root locus crosses jω � axis. Therefore, by applying
Routh-Hurwitz table rule for the system, one of the rows of the table, corresponding to an odd exponent, must be zero
since the root locus crosses the jω � axis and the system is marginally stable.

Applying Routh-Hurwitz table for this problem:

160� k
10

¼ 0 ) k ¼ 160

Choice (2) is the answer.

Figure 10.2 The control system of solution of problem 10.3
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10.4. Based on the information given in the problem, the root locus passes through the points of �1 � j. Therefore, these
points are on the roots of the system. By assuming the third pole as (s + p), the characteristic equation of the closed-loop
system can be in the following form:

Δ sð Þ ¼ sþ 1þ jð Þ sþ 1� jð Þ sþ pð Þ ¼ s2 þ 2sþ 2
� �

sþ pð Þ

) Δ sð Þ ¼ s3 þ pþ 2ð Þs2 þ 2 pþ 1ð Þsþ 2p ð1Þ

The characteristic equation of the closed-loop system can be determined by using another method, as follows:

Δ sð Þ ¼ 1þ G sð ÞH sð Þ ¼ 0

) 1þ 1
s2 þ asþ b

� 1
sþ 1

¼ 0 ) s3 þ aþ 1ð Þs2 þ aþ bð Þsþ bþ 1
s2 þ asþ bð Þ sþ 1ð Þ ¼ 0

) Δ sð Þ ¼ s3 þ aþ 1ð Þs2 þ aþ bð Þsþ bþ 1 ð2Þ

Solving (1) and (2):

pþ 2 ¼ aþ 1

2 pþ 1ð Þ ¼ aþ b

2p ¼ bþ 1

) a ¼ b ¼ 3

8><
>:

Choice (4) is the answer.

Figure 10.4 The control system of solution of problem 10.4

Figure 10.3 The control system of solution of problem 10.3
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10.5. Based on the information given in the problem, the control system includes a negative unity feedback, and its open-loop
transfer function is as follows:

G sð Þ ¼ 1
s 1þ τsð Þ ð1Þ

Based on the choices, it is noticed that the sensitivity of the damping ratio of the system response with respect to the
value of parameter of τ is requested.

The characteristic equation of the closed-loop system can be determined as follows:

1þ kG sð ÞH sð Þ ¼ 0

) 1þ 1
s 1þ τsð Þ � 1 ¼ 0 ) τs2 þ sþ 1

s 1þ τsð Þ ¼ 0 ) τs2 þ sþ 1 ¼ 0 ) Δ sð Þ ¼ s2 þ 1
τ
sþ 1

τ
ð2Þ

By comparing the characteristic equation of the closed-loop control system with the standard second-order characteris-
tic equation, that is, Δ(s) ¼ s2 + 2ξωns + ωn

2, we can determine the damping ratio, as follows:

ωn
2 ¼ 1

τ
) ωn ¼ 1ffiffiffi

τ
p

2ξωn ¼ 1
τ

8><
>: ) ξ ¼

1
τ

2 1ffiffi
τ

p ¼ 1
2
ffiffiffi
τ

p ð3Þ

Sensitivity of a parameter (a) with respect to value of another parameter (b) is defined as follows:

Sab ¼
b
a
� da
db

ð4Þ

Solving (3) and (4):

Sξτ ¼
τ
ξ
� dξ

dτ
¼ τ

1
2
ffiffi
τ

p �
d 1

2
ffiffi
τ

p
� �
dτ

¼ 2τ
ffiffiffi
τ

p � � 1
4τ

ffiffiffi
τ

p
	 


¼ � 1
2

Therefore, if the parameter of τ increases about 10%, the damping ratio will decrease about 5%. Choice (1) is the
answer.

10.6. Based on the information given in the problem, the root locus of the control system for k > 0 has been requested.

The characteristic equation of the system can be determined by using Mason's formula, as follows:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

where:P
a
La : The sum of gains of loopsP

a, b
LaLb : The sum of product of gains of any two non-touching loops (without any common nodes)P

a, b, c
LaLbLc : The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 10.5, we have:

X
a

La ¼ 1
sþ 1

� �
þ � 1

sþ 1
� 1þ 1

s

� �
� k

� �
¼ 1

sþ 1
� k

s
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X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ sð Þ ¼ 1� 1
sþ 1

� k
s

	 

¼ 0 ) Δ sð Þ ¼ 1� 1

sþ 1
þ k

s
¼ s2 þ s� sþ ksþ k

s sþ 1ð Þ ¼ s2 þ k sþ 1ð Þ
s sþ 1ð Þ ¼ 0

) s2 þ k sþ 1ð Þ ¼ 0
� 1
s2¼¼¼¼¼¼¼¼¼¼¼¼) Δ sð Þ ¼ 1þ k

sþ 1
s2

ð1Þ

By comparing (1) with the standard format of a characteristic equation (Δ(s) ¼ 1 + kG(s)H(s)), we can determine the
open-loop transfer function of the system, as follows:

L sð Þ ¼ G sð ÞH sð Þ ¼ sþ 1
s2

ð2Þ

To draw the root locus of the system, the rules below must be followed.

L sð Þ ¼ G sð ÞH sð Þ ¼ N sð Þ
D sð Þ ð3Þ

L(s) is the open-loop transfer function excluding k (design gain).
N(s) is the numerator polynomial.
D(s) is the denominator polynomial, or the open-loop characteristic equation.
m is the order of N(s), or the number of open-loop finite zeros.
n is the order of D(s), or the number of open-loop poles, n � m.
zi is the i’th open-loop finite zero.
pj is the j’th open-loop pole.
si is a point on the root locus

Rule 1: Number of branches is equal to the number of open-loop poles (n) or the number of closed-loop poles.

Rule 2: On the real axis, the root locus exists to the left of an odd number of open-loop poles and zeros.

Rule 3: Root locus is symmetrical about the real axis. Poles are always in conjugate pairs.

Rule 4: Root loci start at pj and for k ¼ 0 and end at zi (finite zeros) and infinite zeros of L(s) for k ! 1.

Rule 5: n� m loci approach infinity and converge to straight line asymptotes as k!1. Asymptotes are defined by the
real-axes intercept σ and the angle θ as follows:

σ ¼

Pn
j¼1

p j �
Pm
i¼1

zi

n� m
ð4Þ

θ ¼ 2qþ 1ð Þπ
n� m

, q ¼ 0, � 1, � 2, . . . ð5Þ

Rule 6: Departure angle of a locus from a complex pole is given by the following relation. Herein, ∠( pk + zi) and
∠( pk + pj) are the angle of the vector from the complex pole of pk to the zero of zi and to the pole of pj, respectively.

θk ¼
Xm
i¼1

∠ pk þ zið Þ �
Xn
j ¼ 1

j 6¼ k

∠ pk þ p j

� �� π ð6Þ
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Rule 7: The breakaway and break-in points from the real axis occur at s, where s can be calculated by using the
following equation. Herein, only those s are accepted that are on the root locus.

Xm
i¼1

1
s� zi

¼
Xn
j¼1

1
s� p j

) s ¼ si ð7Þ

Alternatively, s can be determined by using the relation below.

1þ kL sð Þ ¼ 0 ) k ¼ �1
L sð Þ

d
ds¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
L sð Þ
	 


¼ 0 ) s ¼ si ð8Þ

Herein, only those s are accepted that are on the root locus. In other words, those si are accepted that their corresponding
ki (use (9)) are real quantities and in the range of (0, 1).

ki ¼ �1
L sð Þ

����
s¼si

ð9Þ

For this system, the practical rules that we need to apply are as follows:

Rule 2: On the real axis, the left side of the zero is part of root locus.

Rule 6: The departure angles of the loci from the poles can be determined as follows:

θp1¼0 ¼
Xm
i¼1

∠ pk þ zið Þ �
Xn
j ¼ 1

j 6¼ k

∠ pk þ p j

� �� π ¼ 0� π
2
� π ) θp1¼0 ¼ � 3π

2
¼ π

2
ð10Þ

θp2¼0 ¼
Xm
i¼1

∠ pk þ zið Þ �
Xn
j ¼ 1

j 6¼ k

∠ pk þ p j

� �� π ¼ 0� � π
2

� �
� π ) θp2¼0 ¼ � π

2
ð11Þ

Rule 7: The breakaway and break-in points from the real axis can be determined as follows:

d
ds

kð Þ ¼ d
ds

�1
sþ1
s2

 !
¼ d

ds
� s2

sþ 1

	 

¼ � 2s sþ 1ð Þ � s2

sþ 1ð Þ2 ¼ 0 ) s2 þ 2s ¼ 0 ) s ¼ 0, � 2 ð12Þ

k1 ¼ � s2

sþ 1

����
s¼0

¼ 0 ð13Þ

k2 ¼ � s2

sþ 1

����
s¼�2

¼ � 4
�1

¼ 4 ð14Þ

From (13), it is noticed that the breakaway and break-in points directly start from the poles (k ¼ 0). Moreover,
k2 2 (0, 1); hence, it is a breakaway and break-in point. Therefore, s ¼ 0, � 2 are the breakaway and break-in points.

Based on the abovementioned calculations, the root locus of the system is shown in Fig. 10.6. Choice (4) is the answer.
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10.7. The open-loop transfer function of the system is as follows:

G sð ÞH sð Þ ¼ k
s
e�s ð1Þ

Herein, we can use the first-order Pade approximation for the term of e�s, as follows:

e�θs � 1� θ
2 s

1þ θ
2 s

ð2Þ

Solving (1) and (2):

) G sð ÞH sð Þ � k
s
1� s

2

1þ s
2
� �k s� 2ð Þ

s sþ 2ð Þ ð3Þ

Because of the negative sign in the open-loop transfer function, the root locus rules change, and the root locus must be
drawn for k < 0, or it can be assumed that the system includes a positive unity feedback. The updated rules are as
follows:

L(s) is the open-loop transfer function excluding k, where k is the design gain.

L sð Þ ¼ G sð ÞH sð Þ ¼ N sð Þ
D sð Þ ð4Þ

N(s) is the numerator polynomial.
D(s) is the denominator polynomial or the open-loop characteristic equation.

Figure 10.6 The control system of solution of problem 10.6

Figure 10.5 The control system of solution of problem 10.6
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m is the order of N(s) or the number of open-loop finite zeros.
n is the order of D(s) or the number of open-loop poles, n � m.
zi is the i’th open-loop finite zero.
pj is the j’th open-loop pole.
si is a point on the root locus.

Rule 1 (like a negative unity feedback system): Number of branches is equal to the number of open-loop poles (n) or the
number of closed-loop poles.

Rule 2: On the real axis, the root locus exists to the left of an even number of open-loop poles and zeros.

Rule 3 (like a negative unity feedback system): Root locus is symmetrical about the real axis. Poles are always in
conjugate pairs.

Rule 4 (like a negative unity feedback system): Root loci start at pj and for k ¼ 0 and end at zi (finite zeros) and infinite
zeros of L(s) for k ! 1.

Rule 5: n� m loci approach infinity and converge to straight line asymptotes as k!1. Asymptotes are defined by the
real-axes intercept σ and the angle θ as follows:

σ ¼

Pn
j¼1

p j �
Pm
i¼1

zi

n� m
ð5Þ

θ ¼ 2qπ
n� m

, q ¼ 0, � 1, � 2, . . . ð6Þ

Rule 6: Departure angle of a locus from a complex pole is given by the following relation. Herein, ∠( pk + zi) and
∠( pk + pj) are the angle of the vector from the complex pole of pk to the zero of zi and to the pole of pj, respectively.

θk ¼
Xm
i¼1

∠ pk þ zið Þ �
Xn
j ¼ 1

j 6¼ k

∠ pk þ p j

� � ð7Þ

Rule 7: The breakaway and break-in points from the real axis occur at s, where s can be calculated by using the
following equation. Herein, only those s are accepted that are on the root locus.

Xm
i¼1

1
s� zi

¼
Xn
j¼1

1
s� p j

) s ¼ si ð8Þ

Alternatively, s can be determined by using the relation below.

1þ kL sð Þ ¼ 0 ) k ¼ �1
L sð Þ

d
ds¼¼¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
L sð Þ
	 


¼ 0 ) s ¼ si ð9Þ

Herein, only those s are accepted that are on the root locus. In other words, those si are accepted that their corresponding
ki (use (10)) are real quantities and in the range of (�1, 0).

ki ¼ �1
L sð Þ

����
s¼si

ð10Þ

In this problem, applying only Rules 2 is enough to identify the root locus. Figure 10.8 approximately shows the root
locus of the system. Choice (4) is the answer.
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10.8. If we determine the range of k for the stability of the system, we will be able to determine the stability of the system for
k ¼ 40.

Based on the zeros’ and poles’ locations shown in the root locus of the system in Fig. 10.9, we can determine the open-
loop transfer function of the system, as follows:

G sð ÞH sð Þ ¼ 1
s sþ 2ð Þ sþ 2þ j2ð Þ sþ 2� j2ð Þ ¼

1
s sþ 2ð Þ s2 þ 4sþ 8ð Þ ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ kG sð ÞH sð Þ ¼ 0

) 1þ k
s sþ 2ð Þ s2 þ 4sþ 8ð Þ ¼ 0 ) s4 þ 6s3 þ 16s2 þ 16sþ k

s sþ 2ð Þ s2 þ 4sþ 8ð Þ ¼ 0

) Δ sð Þ ¼ s4 þ 6s3 þ 16s2 þ 16sþ k ¼ 0 ð2Þ

Applying Routh-Hurwitz table rule for this problem:

Figure 10.7 The control system of solution of problem 10.7

Figure 10.8 The control system of solution of problem 10.7
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Based on Routh-Hurwitz table rule, the system is stable if all the elements in the first column of the table are positive.
Therefore, the system is stable if:

80� 16� 36k
80

> 0

k > 0

(
) k <

80� 16
36

k > 0

(
) 0 < k < 35:5 ð3Þ

From (3), it is seen that the system is unstable for k ¼ 40. Choice (2) is the answer.

10.9. Based on the information given in the problem, the system includes a negative unity feedback, and its open-loop transfer
function is as follows:

G sð Þ ¼ s� k
s sþ 1ð Þ ð1Þ

As can be noticed from (1), the open-loop transfer function is not in the standard form. The standard format of an open-
loop transfer function is as follows:

G sð ÞH sð Þ ¼ 1þ
k ∏

m

i¼1
sþ zið Þ

∏
n

j¼1
sþ p j

� � ð2Þ

The open-loop transfer function can be converted to the standard format as follows:

1þ G sð ÞH sð Þ ¼ 0

) 1þ s� k
s sþ 1ð Þ � 1 ¼ 0 ) s2 þ 2s� k

s sþ 1ð Þ ¼ 0 ) s sþ 2ð Þ � k ¼ 0

� 1
s sþ 2ð Þ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼) 1þ �k

s sþ 2ð Þ ð3Þ

By comparing (2) and (3), it is noticed that:

G sð ÞH sð Þ ¼ �1
s sþ 2ð Þ ð4Þ

Because of the negative sign in the open-loop transfer function, the root locus rules change, and the root locus must be
drawn for k < 0, or it can be assumed that the system includes a positive unity feedback. The updated rules are as follows:

Figure 10.9 The control system of solution of problem 10.8
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L(s) is the open-loop transfer function excluding k, where k is the design gain.

L sð Þ ¼ G sð ÞH sð Þ ¼ N sð Þ
D sð Þ ð5Þ

N(s) is the numerator polynomial.
D(s) is the denominator polynomial or the open-loop characteristic equation.
m is the order of N(s) or the number of open-loop finite zeros.
n is the order of D(s) or the number of open-loop poles, n � m.
zi is the i’th open-loop finite zero.
pj is the j’th open-loop pole.
si is a point on the root locus

Rule 1 (like a negative unity feedback system): Number of branches is equal to the number of open-loop poles (n) or the
number of closed-loop poles.

Rule 2: On the real axis, the root locus exists to the left of an even number of open-loop poles and zeros.

Rule 3 (like a negative unity feedback system): Root locus is symmetrical about the real axis. Poles are always in
conjugate pairs.

Rule 4 (like a negative unity feedback system): Root loci start at pj and for k ¼ 0 and end at zi (finite zeros) and infinite
zeros of L(s) for k ! 1.

Rule 5: n� m loci approach infinity and converge to straight line asymptotes as k!1. Asymptotes are defined by the
real-axes intercept σ and the angle θ as follows:

σ ¼

Pn
j¼1

p j �
Pm
i¼1

zi

n� m
ð6Þ

θ ¼ 2qπ
n� m

, q ¼ 0, � 1, � 2, . . . ð7Þ

Rule 6: Departure angle of a locus from a complex pole is given by the following relation. Herein, ∠( pk + zi) and
∠( pk + pj) are the angle of the vector from the complex pole of pk to the zero of zi and to the pole of pj, respectively.

θk ¼
Xm
i¼1

∠ pk þ zið Þ �
Xn
j ¼ 1

j 6¼ k

∠ pk þ p j

� � ð8Þ

Rule 7: The breakaway and break-in points from the real axis occur at s, where s can be calculated by using the
following equation. Herein, only those s are accepted that are on the root locus.

Xm
i¼1

1
s� zi

¼
Xn
j¼1

1
s� p j

) s ¼ si ð9Þ

Alternatively, s can be determined by using the relation below.

1þ kL sð Þ ¼ 0 ) k ¼ �1
L sð Þ

d
ds¼¼¼¼¼¼¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
L sð Þ
	 


¼ 0 ) s ¼ si ð10Þ

Herein, only those s are accepted that are on the root locus. In other words, those si are accepted that their corresponding
ki (use (11)) are real quantities and in the range of (�1, 0).
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ki ¼ �1
L sð Þ

����
s¼si

ð11Þ

Figure 10.10 shows the root locus of the system. Herein, applying Rules 2 and 4 are enough to draw the root locus. Choice
(2) is the answer.

10.10. Based on the information given in the problem, we know that the control system includes a negative unity feedback,
and its open-loop transfer function is as follows:

G sð Þ ¼ k sþ 4ð Þ
s sþ 2ð Þ sþ að Þ ð1Þ

Moreover, the settling time of the system is about eight seconds. In other words:

ts ¼ 8 sec ð2Þ

The settling time of a second-order system in its underdamped status can be determined by the following relation.

ts ¼ 4
σ

ð3Þ

Solving (2) and (3):

4
σ
¼ 8 ) σ ¼ 0:5 ð4Þ

Figure 10.11 shows the root locus of the system for each value of for the parameter of a, presented in the choices. As
can be seen in Fig. 10.11.1, the system is unstable for a¼ 1 and large k. Moreover, Fig. 10.11.2 shows that the system
is in the undamped status for a ¼ 2 and large k.

However, the system has the underdamped response for a ¼ 3, 4 and large k, illustrated in Figs. 10.11.3-4. As can be
seen, the system has two loci in the infinity for large k, and the value of real part of the dominant poles (σ � jωd) is
equal to the real-axes intercept of the asymptotes (σ).

Figure 10.10 The control system of solution of problem 10.9
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σ ¼

Pn
j¼1

p j �
Pm
i¼1

zi

n� m
ð5Þ

Solving (4) and (5):

�0:5 ¼ �2� að Þ � �4ð Þ
3� 1

¼ 2� a
2

) 2� a ¼ �1 ) a ¼ 3

Choice (3) is the answer.

10.11. Based on the information given in the problem, we know that the control system includes a negative unity feedback,
and its open-loop transfer function is as follows:

G sð Þ ¼ k sþ 0:5ð Þ
s2 s2 þ 4sþ 8ð Þ ð1Þ

In this problem, we only need to apply Rule 7 as follows.

Rule 7: The breakaway and break-in points from the real axis occur at s, where s can be calculated by using the
following equation. Herein, only those s are accepted that are on the root locus.

Xm
i¼1

1
s� zi

¼
Xn
j¼1

1
s� p j

) s ¼ si ð2Þ

Alternatively, s can be determined by using the relation below.
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Figure 10.11 The control system of solution of problem 10.10
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1þ kL sð Þ ¼ 0 ) k ¼ �1
L sð Þ

d
ds¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
L sð Þ
	 


¼ 0 ) s ¼ si ð3Þ

Herein, only those s are accepted that are on the root locus. In other words, those si are accepted that their
corresponding ki (use (4)) are real quantities and in the range of (0, 1).

ki ¼ �1
L sð Þ

����
s¼si

ð4Þ

By applying the second method of Rule 7, we have:

1þ k
sþ 0:5ð Þ

s2 s2 þ 4sþ 8ð Þ ¼ 0 ) k ¼ �1
sþ0:5ð Þ

s2 s2þ4sþ8ð Þ

d
ds¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
sþ0:5ð Þ

s2 s2þ4sþ8ð Þ

0
@

1
A ¼ 0

) d
ds

� s4 þ 4s3 þ 8s2

sþ 0:5

	 

¼ 0 ) 4s3 þ 12s2 þ 16sð Þ sþ 0:5ð Þ � s4 þ 4s3 þ 8s2ð Þ

sþ 0:5ð Þ2 ¼ 0

) 4s4 þ 12s3 þ 16s2 þ 2s3 þ 6s2 þ 8s� s4 � 4s3 � 8s2 ¼ 0

) 3s4 þ 10s3 þ 14s2 þ 8s ¼ s 3sþ 4ð Þ s2 þ 2sþ 2
� � ¼ 0

) s ¼ �1� j, 0, � 4
3

ð5Þ

Now, we need to check to see if �1 � j are on the root locus or not, as follows:

k1 ¼ � s2 s2 þ 4sþ 8ð Þ
sþ 0:5

����
s¼�1þj

¼ � s4 þ 4s3 þ 8s2

sþ 0:5

����
s¼�1þj

¼ � �1þ jð Þ4 þ 4 �1þ jð Þ3 þ 8 �1þ jð Þ2
�1þ jð Þ þ 0:5

¼ 8

Since k1¼ 8 2 (0, 1), the point of�1� j and its complex conjugate value, that is,�1 + j are the break-away/break-in
points, and consequently they are on the root locus of the system. Choice (4) is the answer.

10.12. Based on the information given in the problem, the control system includes a negative unity feedback, and its open-
loop transfer function (k > 0) is as follows:

G sð Þ ¼ k sþ 3ð Þ
sþ 1ð Þ sþ pð Þ ð1Þ

Based on the problem, the transient response of the closed-loop system must always be overdamped. Therefore, the
root locus of the system must only be on the real axis.

The open-loop system includes one zero and one pole, other than the pole of p. Hence, there are three statuses for the
position of the pole of p. Figure 10.12.1-3 show the root locus of the system for 0 < p < 1, 1 < p < 3, and p > 3,
respectively.

As can be seen, p > 3 is acceptable for the range of the parameter, as in this condition, the system is stable, the root
locus is only on the real axis, and consequently the transient response of the closed-loop system is always overdamped.
Choice (3) is the answer.
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10.13. Based on the information given in the problem, the root locus of the control system for k < 0 has been requested.

The characteristic equation of the system can be determined by using Mason's formula, as follows:

Δ ¼ 1�
X
a

La þ
X
a, b

LaLb �
X
a, b, c

LaLbLc þ . . .

where:P
a
La : The sum of gains of loops

P
a, b

LaLb : The sum of product of gains of any two non-touching loops (without any common nodes)

P
a, b, c

LaLbLc : The sum of product of gains of any three pairwise non-touching loops (without any common nodes)

Now, for the system shown in Fig. 10.13, we can have:

X
a

La ¼ k � 4
sþ 2

� 1
3

� �
þ �k � 4

sþ 2
� 1

s

� �
¼

4
3 k

sþ 2
� 4k
s sþ 2ð Þ

X
a, b

LaLb ¼ 0

X
a, b, c

LaLbLc ¼ 0

) Δ ¼ 1�
4
3 k

sþ 2
� 4k
s sþ 2ð Þ

	 

¼ 0 ) Δ ¼ 1þ 4� 4

3 s
� �

k

s sþ 2ð Þ ¼ 1þ� 4
3 s� 3ð Þk
s sþ 2ð Þ ð1Þ

By comparing (1) with the standard format of a characteristic equation (Δ(s) ¼ 1 + kG(s)H(s)), we have:
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Figure 10.12 The control system of solution of problem 10.12
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L sð Þ ¼ G sð ÞH sð Þ ¼ � 4
3 s� 3ð Þ
s sþ 2ð Þ ð2Þ

Because of the negative sign in the open-loop transfer function as well as k < 0, the root locus rules do not change;
therefore, the root locus must be drawn for k > 0, as is shown in Fig. 10.14. Herein, applying only Rules 2 and 4 are
enough to draw the root locus. Choice (2) is the answer.

10.14. Based on the information given in the problem, the control system includes a negative unity feedback, and its open-
loop transfer function is as follows:

G sð Þ ¼ ω2
n

s sþ 2ξωnð Þ ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ kG sð ÞH sð Þ ¼ 0

) 1þ ω2
n

s sþ 2ξωnð Þ � 1 ¼ 0 ) s2 þ 2ξωnsþ ωn
2

s sþ 2ξωnð Þ ¼ 0 ) Δ sð Þ ¼ s2 þ 2ξωnsþ ωn
2 ð2Þ

By comparing the characteristic equation of the system with the standard second-order characteristic equation, that is,
Δ(s)¼ s2 + 2ξωns + ωn

2, it is noticed they are the same. For a second-order system with the standard format, maximum
overshoot percentage is defined as follows:

Figure 10.13 The control system of solution of problem 10.13

Figure 10.14 The control system of solution of problem 10.13
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O:S: ¼ e
�πξffiffiffiffiffiffi
1�ξ2

p � 100 ð3Þ

Sensitivity of a parameter (a) with respect to value of another parameter (b) is defined as follows:

Sab ¼ b
a � da

db (3)

Solving (3) and (4):

SO:S:ξ ¼ ξ

e
�πξffiffiffiffiffiffi
1�ξ2

p � 100
� d
dξ

e
�πξffiffiffiffiffiffi
1�ξ2

p � 100

	 


) SO:S:ξ ¼ ξ

e
�πξffiffiffiffiffiffi
1�ξ2

p � 100
�
�π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
� �2ξ

2
ffiffiffiffiffiffiffiffi
1�ξ2

p �πξð Þ
1� ξ2

e
�πξffiffiffiffiffiffi
1�ξ2

p � 100

) SO:S:ξ ¼ �ξπ

1� ξ2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
p ð4Þ

Solving (4) for ξ ¼
ffiffi
2

p
2 :

SO:S:ξ

���
ξ¼
ffiffi
2

p
2

¼ �
ffiffi
2

p
2 π

1� 1
2

� � ffiffiffiffiffiffiffiffiffiffi
1� 1

2

q ) SO:S:ξ

���
ξ¼
ffiffi
2

p
2

¼ �2π

Choice (1) is the answer.

10.15. Based on the information given in the problem, the control system includes a negative unity feedback, and its open-
loop transfer function (k > 0) is as follows:

G sð Þ ¼ k
s sþ αð Þ sþ βð Þ ð1Þ

Moreover, the root locus has a break-away/break-in point on the real axis in � 4
9 and the straight-line asymptotes

intersection in � 11
9 . In other words:

si ¼ � 4
9

ð2Þ

σ ¼ � 11
9

ð3Þ

Hence, we need to apply Rules 5 and 7 as follows.

Rule 5: n�m loci approach infinity and converge to straight line asymptotes as k!1. Asymptotes are defined by the
real-axes intercept σ and the angle θ as follows:

σ ¼

Pn
j¼1

p j �
Pm
i¼1

zi

n� m
ð4Þ

Rule 7: The breakaway and break-in points from the real axis occur at s, where s can be calculated by using the
following equation. Herein, only those s are accepted that are on the root locus.
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Xm
i¼1

1
s� zi

¼
Xn
j¼1

1
s� p j

) s ¼ si ð5Þ

Alternatively, s can be determined by using the relation below.

1þ kL sð Þ ¼ 0 ) k ¼ �1
L sð Þ

d
ds¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
L sð Þ
	 


¼ 0 ) s ¼ si ð6Þ

Herein, only those s are accepted that are on the root locus. In other words, those si are accepted that their
corresponding ki (use (7)) are real quantities and in the range of (0, 1).

ki ¼ �1
L sð Þ

����
s¼si

ð7Þ

Solving (3) and (4):

� 11
9

¼ �α� βð Þ � 0ð Þ
3� 0

) αþ β ¼ 11
3

ð8Þ

Solving (1) and (6):

d
ds

kð Þ ¼ d
ds

�1
1

s sþαð Þ sþβð Þ

 !
¼ d

ds
�s sþ αð Þ sþ βð Þð Þ ¼ 0

)(s + α)(s + β) + s(s + β) + s(s + α) ¼ 0 ) 3s2 + 2(α + β)s + αβ ¼ 0 (9)

Solving (2) and (9):

3 � 4
9

� �2
þ 2 αþ βð Þ � 4

9

� �
þ αβ ¼ 0 ) αβ ¼ 8

3
ð10Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ kG sð ÞH sð Þ ¼ 0

) 1þ k
s sþ αð Þ sþ βð Þ ¼ 0 ) Δ sð Þ ¼ s3 þ αþ βð Þs2 þ αβsþ k ð11Þ

Solving (8), (10), and (11):

Δ sð Þ ¼ s3 þ 11
3
s2 þ 8

3
sþ k

Choice (4) is the answer.

10.16. Based on the information given in the problem, the state-transition matrix of the closed-loop control system with a
negative unity feedback is as follows:

φ tð Þ½ � ¼
2e�t � 2e�2t þ e�3t e�t � e�2t 0

0 e�2t �e�2t þ e�3t

k e�2t � e�3tð Þ 0 e�3t

2
64

3
75 ð1Þ

As we know, the relation below exists for any state-transition matrix.
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A½ � ¼ d
dt

φ tð Þ½ �
���
t¼0

ð2Þ

Solving (1) and (2):

A½ � ¼
�2e�t þ 4e�2t � 3e�3t �e�t þ 2e�2t 0

0 �2e�2t 2e�2t � 3e�3t

k �2e�2t þ 3e�3tð Þ 0 �3e�3t

2
64

3
75
�������
t¼0

¼
�1 1 0

0 �2 �1

k 0 �3

2
64

3
75 ð3Þ

As we know, the characteristic equation of a system can be determined as follows if we know its state matrix ([A]).

Δ sð Þ ¼ s I½ � � A½ �j j ¼ 0 ð4Þ

Solving (3) and (4):

Δ sð Þ ¼
s 0 0

0 s 0

0 0 s

2
64

3
75�

�1 1 0

0 �2 �1

k 0 �3

2
64

3
75

�������
������� ¼

sþ 1 �1 0

0 sþ 2 1

�k 0 sþ 3

�������
������� ¼ 0

) Δ sð Þ ¼ sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ þ �kð Þ �1ð Þ ¼ 0 ) Δ sð Þ ¼ 1þ k
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ ð5Þ

By comparing (5) with the standard format of a characteristic equation (Δ(s) ¼ 1 + kG(s)H(s)), we have:

L sð Þ ¼ G sð ÞH sð Þ ¼ 1
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ ð6Þ

Now, we can use Rules 5 and 7, as follows.

Rule 5: n�m loci approach infinity and converge to straight line asymptotes as k!1. Asymptotes are defined by the
real-axes intercept σ and the angle θ as follows:

σ ¼

Pn
j¼1

p j �
Pm
i¼1

zi

n� m
ð7Þ

Rule 7: The breakaway and break-in points from the real axis occur at s, where s can be calculated by using the
following equation. Herein, only those s are accepted that are on the root locus.

Xm
i¼1

1
s� zi

¼
Xn
j¼1

1
s� p j

) s ¼ si ð8Þ

Alternatively, s can be determined by using the relation below.

1þ kL sð Þ ¼ 0 ) k ¼ �1
L sð Þ

d
ds¼¼¼¼¼¼¼¼¼¼¼¼) d

ds
kð Þ ¼ d

ds
�1
L sð Þ
	 


¼ 0 ) s ¼ si ð9Þ

Herein, only those s are accepted that are on the root locus. In other words, those si are accepted that their
corresponding ki (use (10)) are real quantities and in the range of (0, 1).
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ki ¼ �1
L sð Þ

����
s¼si

ð10Þ

Solving (5) and (9):

d
ds

kð Þ ¼ d
ds

�1
1

sþ1ð Þ sþ2ð Þ sþ3ð Þ

 !
¼ d

ds
� sþ 1ð Þ sþ 2ð Þ sþ 3ð Þð Þ ¼ 0 ) s ¼ �6� ffiffiffi

3
p

3
ð11Þ

k1 ¼ � sþ 1ð Þ sþ 2ð Þ sþ 3ð Þj
s¼�6� ffiffi3p

3
< 0 ð12Þ

k2 ¼ � sþ 1ð Þ sþ 2ð Þ sþ 3ð Þj
s¼�6þ ffiffi3p

3
> 0 ð13Þ

Therefore, only the point of �6þ ffiffi
3

p
3 is accepted as a breakaway/break-in point of the system. Alternatively, based on

the root locus of the system, shown in Fig. 10.15, it is seen that only the point of �6þ ffiffi
3

p
3 is the breakaway/break-in point.

Regarding the asymptote’s intersection on the real axis, we can write:

σ ¼ �1� 2� 3ð Þ � 0ð Þ
3� 0

) σ ¼ �2

Choice (2) is the answer.

Figure 10.15 The control system of solution of problem 10.16
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Problems: Controller Design in Time Domain 11

Abstract
In this chapter, different types of controllers, including proportional controller, proportional-derivative (PD) controller,
proportional-integrate (PI) controller, and proportional-integrate-derivative (PID) controller, are designed to achieve the
desirable goals in the transient and steady-state responses of the closed-loop control system. In this chapter, the problems
are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small,
normal, and large). Additionally, the problems are ordered from the easiest problem with the smallest computations to the
most difficult problems with the largest calculations.

11.1. The open-loop transfer function of a control system with a negative unity feedback and a proportional-derivative
(PD) controller is as follows:

G sð ÞGc sð Þ ¼ 10 kP þ kDsð Þ
s2

Determine the parameters of the controller, so that the closed-loop system is stable and the steady-state error to a unit
parabola input is 0.01.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) kP > 0, kD ¼ 10
2) kP ¼ 10, kD ¼ 100
3) kP ¼ 10, kD > 0
4) kP > 0, kD > 0

11.2. The open-loop transfer function of the control system, shown in Fig. 11.1, is as follows:

G sð Þ ¼ 2
sþ 3ð Þ sþ 6ð Þ

Design a proportional controller, in the form of Gc(s) ¼ kp, so that the damping ratio of the closed-loop system is 0.7.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) Gc(s) ¼ 11.25
2) Gc(s) ¼ 22.5
3) Gc(s) ¼ 5.62
4) Gc(s) ¼ 45
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11.3. The open-loop transfer function of a control system that includes a negative unity feedback is as follows:

G sð Þ ¼ k
s 1þ T1sð Þ 1þ T2sð Þ

Determine the proportional controller gain (kP) for a proportional-integral-derivative (PID) controller in Ziegler-
Nichols’s method.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large

1) T1þT2
T1T2

2) 5 T1þT2ð Þ
3T1T2

3) 3T1T2
5 T1þT2ð Þ

4) 3 T1þT2ð Þ
5T1T2

11.4. The open-loop transfer function of a control system is as follows:

G sð Þ ¼ k

s sþ 1ð Þ2

Determine the integral time constant (TI) for a proportional-integral-derivative (PID) controller in Ziegler-Nichols’s
method.
Difficulty level ○ Easy ● Normal ○ Hard
Calculation amount ○ Small ● Normal ○ Large
1) π

2

2) π
3) 3π

2

4) 2π

11.5. The open-loop transfer function of a control system is as follows:

G sð Þ ¼ 1
s2

Design a controller (Gc(s)) in the feedback structure, so that �1 � j2 are the closed-loop poles of the system.
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large

1) 25 sþ2
sþ12

2) 25 sþ12
sþ2

3) 12 sþ2
sþ3

4) 12 sþ3
sþ2

Figure 11.1 The control system of problem 11.2
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11.6. Which type of the controllers below must be used in a closed-loop control system, with the following open-loop transfer
function and a negative unity feedback, to set the undamped natural frequency at ωn¼ 10 rad/s but without affecting the
damping ratio.

G sð Þ ¼ 25
s sþ 8ð Þ

Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ● Normal ○ Large
1) Proportional-integral (PI) controller
2) Proportional (P) controller
3) Lead controller with the minimum lead angle of 37�

4) Lead controller with the minimum lead angle of 53�

11.7. The open-loop transfer function of a control system that includes a negative unity feedback is as follows:

G sð Þ ¼ k
s sþ 4ð Þ sþ 6ð Þ

The uncontrolled closed-loop system response has the overshoot and settling time of 16% and 3.32 seconds,
respectively. Design a proportional-derivative (PD) controller (with the format of Gc(s) ¼ s + zc), so that, without
changing the overshoot of the system response, a threefold reduction happens in its settling time.
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large
1) Gc(s) � s + 1
2) Gc(s) � s + 2
3) Gc(s) � s + 3
4) Gc(s) � s + 4

11.8. The open-loop transfer function of the control system, which is shown in Fig. 11.2, is as follows:

G sð Þ ¼ 2
sþ 3ð Þ sþ 6ð Þ

Design a proportional-integrate (PI) controller, in the form of Gc sð Þ ¼ kp þ kI
s , so that the damping ratio of the closed-

loop system is 0.7.
Difficulty level ○ Easy ○ Normal ● Hard
Calculation amount ○ Small ○ Normal ● Large

1) Gc sð Þ ¼ 9þ 27
s

2) Gc sð Þ ¼ 9þ 9
s

3) Gc sð Þ ¼ 1þ 27
s

4) Gc sð Þ ¼ 27þ 9
s

Figure 11.2 The control system of problem 11.8
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Solutions of Problems: Controller Design
in Time Domain 12

Abstract
In this chapter, the problems of the eleventh chapter are fully solved, in detail, step-by-step, and with different methods.

12.1. Based on the information given in the problem, the closed-loop system that includes a negative unity feedback is stable.
In addition, the open-loop transfer function of the system, with a proportional-derivative (PD) controller, is as follows:

G sð ÞGc sð Þ ¼ 10 kP þ kDsð Þ
s2

ð1Þ

Moreover, the steady-state error of the system to a unit parabola input is 0.01. In other words:

ess ¼ 0:01 ð2Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð ÞGc sð ÞH sð Þ ¼ 0

) 1þ 10 kP þ kDsð Þ
s2

� 1 ¼ 0 ) s2 þ 10kDsþ 10kP
s2

¼ 0 ) Δ sð Þ ¼ s2 þ 10kDsþ 10kP ð3Þ

A second-order system with the characteristic equation of a2s
2 + a1s + a0 is stable if and only if all the coefficients are

non-zero and have the same sign. In other words:

a2, a1, a0 > 0 ð4Þ

Solving (3) and (4):

kD, kP > 0 ð5Þ

The steady-state error of a type-two system to a unit parabola input can be determined as follows:

ess ¼ 1
lim
s!0

s2G sð ÞGc sð ÞH sð Þ ð6Þ

Solving (1), (2), and (6):
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0:01 ¼ 1

lim
s!0

s2 10 kPþkDsð Þ
s2 � 1

¼ 1
10kP

) kP ¼ 10 ð7Þ

From (5) and (7), it is noticed that kP ¼ 10, kD > 0. Choice (3) is the answer.

12.2. Based on the information given in the problem, the open-loop transfer function of the control system, shown in
Fig. 12.1, is as follows:

G sð Þ ¼ 2
sþ 3ð Þ sþ 6ð Þ ð1Þ

Moreover, we know that the design objective and the requested controller are as follows:

ξ ¼ 0:7 ð2Þ

Gc sð Þ ¼ kp ð3Þ

From (1) and (3), we have:

G sð ÞGc sð Þ ¼ 2kp
sþ 3ð Þ sþ 6ð Þ ð4Þ

The root locus of the system is illustrated in Fig. 12.2.

From (2), the angle of ξ � line can be determined as follows:

θ ¼ cos �1ξ ¼ cos �10:7 ¼ 45� ð5Þ

By intersecting the ξ � line with the root locus, shown in Fig. 12.3, the design point can be determined. As can be
noticed, the ξ � line intersects the vertical branch which is the asymptote of the root locus. Therefore:

σ ¼ 0� 6þ 3ð Þ
2� 0

¼ �4:5 ð6Þ

From Fig. 12.3, we can write:

tan 45� ¼ ωd

4:5
) ωd ¼ 4:5 ð7Þ

From (6) and (7), the design point is:

s ¼ �4:5þ j4:5 ð8Þ

By applying magnitude criterion, we have:

kp ¼ 1
L sð Þ
����

����
s¼�4:5þj4:5

¼ sþ 3ð Þ sþ 6ð Þ
2

����
����
s¼�4:5þj4:5

¼ 11:25 ) Gc sð Þ ¼ 11:25

Choice (1) is the answer.
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12.3. Based on the information given in the problem, the open-loop transfer function of the control system that includes a
negative unity feedback is as follows:

G sð Þ ¼ k
s 1þ T1sð Þ 1þ T2sð Þ ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð ÞH sð Þ ¼ 0

Figure 12.3 The control system of solution of problem 12.2

Figure 12.1 The control system of solution of problem 12.2

Figure 12.2 The control system of solution of problem 12.2
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) 1þ k
s 1þ T1sð Þ 1þ T2sð Þ � 1 ¼ 0 ) T1T2s3 þ T1 þ T2ð Þs2 þ sþ k

s 1þ T1sð Þ 1þ T2sð Þ ¼ 0

) Δ sð Þ ¼ T1T2s
3 þ T1 þ T2ð Þs2 þ sþ k ð2Þ

The proportional controller gain (kP) for a proportional-integral-derivative (PID) controller in Ziegler-Nichols’s method
can be determined as follows:

kP ¼ 0:6ku ð3Þ

where ku is the loop gain that puts the system in the oscillating status. In other words, this loop gain causes one of the
rows of the Routh-Hurwitz table to be zero.

To apply Routh-Hurwitz rule, suppose that the characteristic equation of a system is as follows.

Δ sð Þ ¼ ans
n þ an�1s

n�1 þ an�2s
n�2 þ . . .þ a2s

2 þ a1s
1 þ a0s

0 ð4Þ

The structure of Routh-Hurwitz table is presented in the following. As can be seen, the coefficients of the characteristic
equation are placed on the first two rows of the table with the specific pattern. However, the coefficients of the next rows
need to be determined by using (5) and (6), until the last row (s0) is filled.

bn�1 ¼ � 1
an�1

an an�2

an�1 an�3

����
���� ¼ an�2an�1 � anan�3

an�1
ð5Þ

bn�3 ¼ � 1
an�1

an an�4

an�1 an�5

����
���� ¼ an�4an�1 � anan�5

an�1
ð6Þ

For this problem, we have:

The row corresponding to s1, can be zero as follows:

1� kT1T2

T1 þ T2
¼ 0 ) ku ¼ k ¼ T1 þ T2

T1T2
ð7Þ

Solving (3) and (7):

kP ¼ 3 T1 þ T2ð Þ
5T1T2

Choice (4) is the answer.
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12.4. Based on the information given in the problem, the open-loop transfer function of the control system that includes a
negative unity feedback is as follows:

G sð Þ ¼ k

s sþ 1ð Þ2 ð1Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð ÞH sð Þ ¼ 0

) 1þ k

s sþ 1ð Þ2 � 1 ¼ 0 ) s3 þ 2s2 þ sþ k

s sþ 1ð Þ2 ¼ 0

) Δ sð Þ ¼ s3 þ 2s2 þ sþ k ð2Þ

The integral time constant (TI) for a proportional-integral-derivative (PID) controller in Ziegler-Nichols’s method can
be determined as follows:

TI ¼ 0:5Tu ð3Þ

where Tu is the time constant of the oscillations that can be determined from the auxiliary equation (A(s2)). An auxiliary
equation is the row of polynomial (corresponding to an even exponent) which is just above the row (corresponding to an
odd exponent) containing only zeros in Routh-Hurwitz table.
Applying Routh-Hurwitz rule for this problem:

As can be seen, for k ¼ 2, the row corresponding to s1 becomes zero. Therefore, the auxiliary equation can be
determined as follows:

A s2
� � ¼ 2s2 þ 2 ¼ 0 ) s ¼ �j ) ωu ¼ 1 rad= sec

) Tu ¼ 2π
ωu

¼ 2π
1

¼ 2π ð4Þ

Solving (3) and (4):

TI ¼ π

Choice (2) is the answer.

12.5. Based on the information given in the problem,�1� j2 are the design points, and the open-loop transfer function of the
control system is as follows:

G sð Þ ¼ 1
s2

ð1Þ
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Figure 12.4 shows the root locus of the uncontrolled closed-loop system. As can be seen, the desirable closed-loop poles
of �1 � j2 are in the left-side of the root locus. By using this point and the format of the controllers presented in the
choices, it is noticed that the controller must be a lead controller that its format is as follows:

Gc sð Þ ¼ k
sþ z
sþ p

, z < p ð2Þ

By assigning the zero of the controller at s¼ � 2, the open-loop transfer function of the controlled system is as follows:

G sð ÞGc sð Þ ¼ k
sþ 2

s2 sþ pð Þ ð3Þ

Now, by using angle criterion in Fig. 12.5, we can write:

θz¼�2 � 2θp¼0 � θp ¼ � 2qþ 1ð Þπ

) tan �1 2
1

� �
� 2 π � tan �1 2

1

� �� �
� θp ¼ �π

) θp � π � 2π þ 3 tan �1 2
1

� �
� �π þ 3� 63:4 � 10:3� ð4Þ

Next, in Fig. 12.5, for θp ¼ 10.3�, we can write:

tan 10:3�ð Þ � 2
p� 1

) p� 1 � 11 ) p � 12 ð5Þ

Solving (3) and (5):

G sð ÞGc sð Þ ¼ k
sþ 2

s2 sþ 12ð Þ ð6Þ

In addition, by using magnitude criterion, we have:

k ¼ 1
L sð Þ
����

����
s¼�1þj2

¼ 1
G sð ÞGc sð Þ
����

����
s¼�1þj2

¼ s2 sþ 12ð Þ
sþ 2

����
����
s¼�1þj2

k ¼ �1þ j2ð Þ2 �1þ j2þ 12ð Þ
�1þ j2þ 2

����
���� � 25 ð7Þ

Solving (2), (5), and (7):

Gc sð Þ ¼ 25
sþ 2
sþ 12

Choice (1) is the answer.
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12.6. Based on the information given in the problem, we have:

ωn2 ¼ 10 rad=s ð1Þ

ξ1 ¼ ξ2 ð2Þ

The characteristic equation of the closed-loop control system can be determined as follows:

1þ G sð ÞH sð Þ ¼ 0

) 1þ 25
s sþ 8ð Þ ¼ 0 ) s2 þ 8sþ 25 ¼ 0 ð3Þ

The damping ratio of the system response can be determined by comparing the characteristic equation of the system
(presented in (3)) with the standard second-order characteristic equation, that is, Δ(s) ¼ s2 + 2ξωns + ωn

2, as follows:

ωn
2 ¼ 25 ) ωn ¼ 5

2ξωn ¼ 8

�
) ξ ¼ 8

2� 5
) ξ1 ¼ 0:8 ð4Þ

Solving (2) and (4):

ξ2 ¼ 0:8 ð5Þ

By considering (1) and (5), the design points (desirable points) can be determined as follows:

Figure 12.5 The control system of solution of problem 12.5

Figure 12.4 The control system of solution of problem 12.5
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s2 ¼ �ξ2ωn2 � jωn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

2
q

¼ �0:8� 10� j10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:82

p
¼ �8� j6 ð6Þ

By using angle criterion for the design point of �8 + j6, we can write:

Phase angle of L sð ÞGc sð Þ ¼ Phase angle of
25

s sþ 8ð ÞGc sð Þ
	 
����

s¼�8þj6

¼ � 2qþ 1ð Þπ

) Phase angle of
25

�8þ j6ð Þ j6ð ÞGc �8þ j6ð Þ
	 


¼ �π

) � θ1 � θ2 þ θc ¼ �π

� π � tan �1 6
8

	 
	 

� π

2
þ θc ¼ �π ) � 143� � π

2
þ θc ¼ �π ) θc ¼ 53�

Therefore, a lead controller with the minimum lead angle of 53� must be used. Choice (4) is the answer.

12.7. Based on the information given in the problem, the system includes a negative unity feedback, and its open-loop transfer
function is as follows:

G sð Þ ¼ k
s sþ 4ð Þ sþ 6ð Þ ð1Þ

Moreover, we know that:

Gc sð Þ ¼ sþ zc ð2Þ

O:S1 ¼ O:S2 ¼ 16% ð3Þ

ts1 ¼ 3:32 sec ð4Þ

ts2 ¼ ts1
3

¼ 3:32
3

¼ 1:107 sec ð5Þ

As we know:

ts ¼ 4
σ

ð6Þ

Solving (5) and (6):

σ2 ¼ 4
1:107

¼ 3:613 ð7Þ

The damping ratio can be determined as follows:

ξ ¼ � ln O:S
100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln O:S

100

� �� �2q ð8Þ

Solving (3) and (8):

ξ2 ¼
� ln 16

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln 16

100

� �� �2q ¼ 0:504 ð9Þ
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By using (7) and (9) and considering ωn ¼ σ
ξ, we have:

ωn2 ¼ σ2
ξ2

¼ 3:613
0:504

¼ 7:168 ð10Þ

By considering (7) and (10), the design points (desirable points) can be determined as follows:

s2 ¼ �σ2 � jωn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

2
q

¼ �3:613� j6:193 ð11Þ

In Fig. 12.6, by using angle criterion for the design point of �3.613 + j6.193, we can write:

Phase angle of L sð ÞGc sð Þ ¼ Phase angle of
1

s sþ 4ð Þ sþ 6ð ÞGc sð Þ
	 
����

s¼�3:613þj6:193

¼ � 2qþ 1ð Þπ

Phase angle of
1

�3:613þ j6:193ð Þ 0:387þ j6:193ð Þ 2:387þ j6:193ð ÞGc �3:613þ j6:193ð Þ
	 


¼ �π

) θc � θ1 � θ2 � θ3 ¼ �π

) θc � π � tan �1 6:193
3:613

	 
	 

� tan �1 6:193

0:387

	 

� tan �1 6:193

2:387

	 

¼ �π

) θc � 120:25� 86:42� 68:92 ¼ �π

) θc ¼ �π þ 120:25þ 86:42þ 68:92 ) θc ¼ 95:6� ð12Þ

Now, for θc ¼ 95.6�, we can write:

tan π � 95:6�ð Þ � 6:193
3:613� zc

) 3:613� zc ¼ 0:61 ) zc � 3 ð13Þ

Solving (2) and (13):

Gc sð Þ � sþ 3

Choice (3) is the answer.

Figure 12.6 The control system of solution of problem 12.7
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12.8. Based on the information given in the problem, the open-loop transfer function of the control system (see Fig. 12.7) is as
follows:

G sð Þ ¼ 2
sþ 3ð Þ sþ 6ð Þ ð1Þ

Moreover, we know that the design objective and the requested controller are as follows:

ξ ¼ 0:7 ð2Þ

Gc sð Þ ¼ kp þ kI
s
¼

kP sþ kI
kP

� �
s

ð3Þ

From (1) and (3), we have:

G sð ÞGc sð Þ ¼
2kP sþ kI

kP

� �
s sþ 3ð Þ sþ 6ð Þ ð4Þ

Let us assume:

kI
kP

≜ 3 ð5Þ

Then we have:

G sð ÞGc sð Þ ¼ 2kP
s sþ 6ð Þ ð6Þ

The root locus of the compensated system is shown in Fig. 12.8.

From (2), the angle of ξ � line can be determined as follows:

θ ¼ cos �1ξ ¼ cos �10:7 ¼ 45� ð7Þ

By intersecting the ξ � line with the root locus, shown in Fig. 12.9, the design point can be determined. As can be
noticed, the ξ � line intersects the vertical branch, which is the asymptote of the root locus. Therefore:

σ ¼ 0� 0þ 6ð Þ
2� 0

¼ �3 ð8Þ

From Fig. 12.9, we can write:

tan 45� ¼ ωd

3
) ωd ¼ 3 ð9Þ

From (8) and (9), the design point is:

s ¼ �3þ j3 ð10Þ

By applying magnitude criterion, we have:

kp ¼ 1
L sð Þ
����

����
s¼�3þj3

¼ s sþ 6ð Þ
2

����
����
s¼�3þj3

) kp ¼ 9 ð11Þ

Solving (5) and (11):
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kI ¼ 3� 9 ¼ 27 ð12Þ

Solving (3), (11), and (12):

) Gc sð Þ ¼ 9þ 27
s

Choice (1) is the answer.

Figure 12.8 The control system of solution of problem 12.8

Figure 12.9 The control system of solution of problem 12.8

Figure 12.7 The control system of solution of problem 12.8
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