

This draft has been stuck this way since
June 16, 2023. The current edition is at
https://www.delayinsensitive.com.

Copyright © 2019 – 2023 Dennis Furey.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

See https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en for more information. Commer-
cial licenses are available on request.

ISBN: 978-1-9161681-0-7

Plumstead Publishing House, London

https://www.delayinsensitive.com
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

. . . dedicated to Mark Josephs, who patiently mentored a recalcitrant student of this subject

CONTENTS

Contents 4

I Background and Motivation 15

1 Why to Study Delay Insensitive Circuits 17
1.1 Audience . 18
1.2 Motivation . 19

1.2.1 Technological neutrality . 19
1.2.2 Configurable devices . 20
1.2.3 Concurrency theory . 21

1.3 Random tips on reading this book . 22

2 Why Delay Insensitive Design is Challenging 25
2.1 How not to do it with logic gates . 25

2.1.1 Towards a reusable implementation . 26
2.1.2 A concept of signaling protocols . 27

2.2 How not to do it with DI primitives . 27
2.2.1 Better building blocks . 28
2.2.2 Implications of the current solution . 29
2.2.3 Ways forward from the current solution . 30

2.3 How not to compromise . 32
2.3.1 A two-output primitive . 32
2.3.2 DI versus QDI . 33
2.3.3 Yet another majority gate . 33
2.3.4 Back to the drawing board . 35

2.4 Judgment day . 37
2.4.1 What a sequencer does . 37
2.4.2 How a sequencer enables a majority gate . 38
2.4.3 Implications of this solution . 38

3 The Lay of the Land 41
3.1 Overview . 42
3.2 The process model . 42

3.2.1 Process concepts . 44
3.2.2 Generality . 44

4

CONTENTS 5

3.2.3 Environments . 44
3.3 Block diagrams . 44

3.3.1 Notation . 45
3.3.2 Methodology . 45
3.3.3 Flattening . 46

3.4 Towards a process semantics . 47
3.4.1 Trace structural composition . 47
3.4.2 Deficiencies of a naive trace structural composition 49

3.5 Petri nets . 49
3.5.1 Notation and conventions of Petri nets . 49
3.5.2 Expressiveness of Petri nets . 51
3.5.3 Compositionality of Petri nets . 52
3.5.4 Limitations of Petri nets . 54

3.6 Procedural description . 55
3.6.1 Combinator examples . 55
3.6.2 Repetition . 58
3.6.3 Conditional execution . 60
3.6.4 Adaptation to an environment . 61

4 Success 67
4.1 Reachability graphs . 67

4.1.1 Example of a reachability graph . 68
4.1.2 Reachability graph algorithms . 68

4.2 The transducer model . 71
4.2.1 Operation . 71
4.2.2 Limitations . 73
4.2.3 Utility . 74

4.3 Traces revisited . 75
4.3.1 Progress obligations . 75
4.3.2 Quiescent traces . 75
4.3.3 Refinement . 76
4.3.4 Trace analysis . 76

4.4 From transducers to trace recognizers . 77
4.4.1 A preliminary subgraph . 78
4.4.2 The complete graph . 79
4.4.3 Edge cases . 79
4.4.4 Other trace recognizers . 80

4.5 Interim remarks . 83

II Formal Models 85

5 Petri Net Plumbing 87
5.1 Mathematical conventions . 88

5.1.1 Mapping . 88
5.1.2 Domains and ranges . 88
5.1.3 Cases . 89

6 CONTENTS

5.1.4 Ordinals . 89
5.2 From Petri nets to processes . 90

5.2.1 A concrete model . 90
5.2.2 Presets and postsets . 91
5.2.3 Hacking the universe . 92
5.2.4 Open Petri nets . 92
5.2.5 Process models . 93

5.3 Editing operations . 94
5.3.1 Rewriting . 94
5.3.2 Sums . 97
5.3.3 Differences . 99
5.3.4 Completion . 99

5.4 Process combinators . 102
5.4.1 Communication . 102
5.4.2 Parallel composition . 102
5.4.3 Environmental restriction . 103
5.4.4 Sequential composition . 103
5.4.5 Choice . 105
5.4.6 Recursion . 111

6 Reachability Graph Wrangling 121
6.1 Math usage . 121

6.1.1 Graphs . 122
6.1.2 Partitions . 127
6.1.3 Ordinals . 127

6.2 Initial reachability graph . 128
6.2.1 Overview . 128
6.2.2 Derivation . 129

6.3 Divergence propagation . 130
6.3.1 Divergent vertices . 132
6.3.2 Disabled inputs . 132
6.3.3 Numbered vertices . 134

6.4 Anonymous edge reduction . 135
6.4.1 Overview . 137
6.4.2 Derivation . 138

6.5 Redundant path elimination . 141
6.5.1 Overview . 143
6.5.2 Derivation . 144

6.6 Partition fusion . 149
6.6.1 Overview . 149
6.6.2 Derivation . 153

7 Transducer Tuning 157
7.1 Finite automata . 157

7.1.1 Sequences . 158
7.1.2 Bracket notation . 159
7.1.3 State graphs . 159

CONTENTS 7

7.1.4 Deterministic finite automata . 160
7.1.5 Non-deterministic finite automata . 161

7.2 The transducer . 161
7.2.1 Overview . 162
7.2.2 Derivation . 166

7.3 Serial transducers . 169
7.3.1 Overview . 169
7.3.2 Derivation . 172

7.4 Trace recognizers . 175
7.4.1 Non-deterministic relational trace recognizer 175
7.4.2 Deterministic relational trace recognizer . 177
7.4.3 Behavioral equivalence . 179
7.4.4 Alternative extensional descriptions . 179

7.5 A canonical form for Petri nets . 181
7.5.1 Overview . 181
7.5.2 Preparation . 186
7.5.3 Specification . 191

7.6 Process combinators revisited . 193

8 Block Building 195
8.1 On lists . 196

8.1.1 Creating a list . 196
8.1.2 Deleting from a list . 197
8.1.3 Folding over a list . 198
8.1.4 Mapping over a list . 198
8.1.5 Inverse of a list . 198
8.1.6 Flattening a list . 200
8.1.7 Transposing a list . 200

8.2 Primitive blocks . 200
8.3 Hierarchical blocks . 201

8.3.1 Block combinators . 203
8.3.2 Block algebra . 204

8.4 Netlists . 205
8.4.1 Conventions about schematics . 205
8.4.2 Specifying a schematic by a netlist . 206

8.5 From hierarchical blocks to netlists . 207
8.5.1 Primitive blocks . 208
8.5.2 Non-unit lists . 208
8.5.3 Unit lists . 209
8.5.4 The transformation . 210

8.6 From hierarchical blocks to primitive blocks . 210
8.6.1 Non-unit lists . 210
8.6.2 Unit lists . 211
8.6.3 The transformation . 212

8.7 From blocks and netlists to processes . 212
8.7.1 Alphabet soup . 213

8 CONTENTS

8.7.2 More transformations . 215
8.7.3 Generalized refinement . 216

8.8 Connection patterns . 216
8.8.1 Schematic capture . 217
8.8.2 Permutations . 221
8.8.3 Generalized terminal rotations . 230

8.9 Repetitive structures . 233
8.9.1 Arrays . 233
8.9.2 Cascades . 233

III Module Families 235

9 As Primitive as Can Be 237
9.1 Petri net optimizations . 237

9.1.1 Parallel fusion . 238
9.1.2 Serial transition fusion . 239
9.1.3 Serial place fusion . 241
9.1.4 Self-loop place removal . 243
9.1.5 Self-loop transition removal . 244
9.1.6 Redundant cycle removal . 244
9.1.7 Miscellaneous static optimizations . 246
9.1.8 The whole mix . 247

9.2 Block optimizations . 248
9.2.1 Overview . 248
9.2.2 Specifications . 249

9.3 DI primitives . 252
9.3.1 The continuing saga . 252
9.3.2 Universality . 253
9.3.3 Cardinality and modularity . 253
9.3.4 Specifications . 254
9.3.5 Implications . 260

9.4 Generalized DI primitives . 265
9.4.1 Three-terminal primitive generalizations . 265
9.4.2 Arbiter generalizations . 268

10 Decisions, Decisions 271
10.1 Ordered trees . 272

10.1.1 Definition . 273
10.1.2 Terminology . 273
10.1.3 Computation . 273
10.1.4 Notation . 274

10.2 Cascading planar decision waits . 275
10.2.1 Lateral . 275
10.2.2 Bilateral . 277
10.2.3 General . 281

10.3 Quadrangular decision waits . 285

CONTENTS 9

10.3.1 Basic . 287
10.3.2 Vertical . 291
10.3.3 General . 295
10.3.4 A revised planar decision wait generating function 296

10.4 Multidimensional decision waits . 298
10.4.1 Dendriform . 299
10.4.2 Crossbar . 301

10.5 Decision wait transformations . 303
10.5.1 Permuting along the axes . 304
10.5.2 Permuting the axes . 305
10.5.3 Permuting and rotating . 306

10.6 Optimized decision waits . 306
10.6.1 Global decompositions . 307
10.6.2 Quadrangular . 308
10.6.3 Dendriform . 309
10.6.4 Crossbar . 310
10.6.5 General . 311

11 Thin on the Ground 315
11.1 Notation . 316

11.1.1 Ordinals . 316
11.1.2 Transposing . 317
11.1.3 Flattening . 318
11.1.4 Coordinates . 318

11.2 Sparse decision wait transformations . 319
11.2.1 Coordinate transformations . 319
11.2.2 Permuting along the axes . 320
11.2.3 Permuting the axes . 321

11.3 Fallback position . 322
11.3.1 Degenerate . 323
11.3.2 Separable . 324

11.4 Planar sparse decision waits . 327
11.4.1 Spanning . 327
11.4.2 Enmeshed . 333

11.5 Multidimensional sparse decision waits . 342
11.5.1 Dendriform . 343
11.5.2 Crossbar . 345

11.6 Optimization . 352
11.6.1 Sparse global decompositions . 353
11.6.2 General combining form . 354
11.6.3 Decomposition strategies . 355

11.7 Verification . 357
11.7.1 Alphabet ordering . 357
11.7.2 Input symbol assignment . 357
11.7.3 Output symbol assignment . 358
11.7.4 Process specification . 358

10 CONTENTS

11.7.5 Correctness . 359

12 All About Arbiters 361
12.1 Notation . 362

12.1.1 Scalar multiplication . 362
12.1.2 Permutations . 362
12.1.3 Zipped function application . 363
12.1.4 Probability theory . 363

12.2 Arbiter decompositions . 364
12.2.1 Mesh . 364
12.2.2 Dendriform . 374
12.2.3 Token ring . 381
12.2.4 General . 388

12.3 Transfer functions . 390
12.3.1 Probability vectors and distributions . 391
12.3.2 Incremental transfer function . 393
12.3.3 Incremental token distribution . 398
12.3.4 Cumulative transfer function . 399

12.4 Access patterns . 401
12.4.1 Spatial locality . 402
12.4.2 Temporal locality . 402

12.5 Metrics . 405
12.5.1 Expectation . 405
12.5.2 Optimization . 406

13 Putting the Word Out 411
13.1 Pep talk . 411

13.1.1 A two-wire protocol . 411
13.1.2 1-hot codes . 412
13.1.3 Dual rail codes . 412
13.1.4 Constant weight codes . 413
13.1.5 General delay insensitive codes . 414
13.1.6 Terminology . 415

13.2 Encoders . 415
13.2.1 Basic . 417
13.2.2 Front optimized . 418
13.2.3 Back optimized . 419

13.3 Decoders . 420
13.3.1 Basic . 421
13.3.2 Joinable . 429
13.3.3 Factorable . 430
13.3.4 Partitionable . 434
13.3.5 General . 436

13.4 Completion detectors . 437
13.4.1 Sequencers . 437
13.4.2 Majority gates . 439
13.4.3 Recurrence . 440

CONTENTS 11

13.5 Transcoders . 440
13.5.1 Basic . 442
13.5.2 Partitionable . 444
13.5.3 General . 446

14 Working on the Railroad 449
14.1 Arithmetic units . 450

14.1.1 Adders . 450
14.1.2 Subtracters . 458
14.1.3 Buffers . 462

14.2 Dual rail to Sperner code conversion . 467
14.2.1 Transcoding algorithm . 467
14.2.2 Circuit derivation . 469

14.3 Sperner to dual rail conversion . 473
14.3.1 Preparation . 474
14.3.2 Derivation . 475

14.4 Parallelism . 480
14.4.1 Dual rail toggles . 480
14.4.2 Channel demultiplexers . 481
14.4.3 Channel multiplexers . 482
14.4.4 Micropipeline controllers . 484
14.4.5 A parallel transcoder . 486

IV Synthesis 489

15 State Based Synthesis 491
15.1 Overview . 492

15.1.1 The uncomplicated case . 492
15.1.2 Complications . 493
15.1.3 Non-quiescent processes . 494
15.1.4 Non-deterministically concurrent processes . 495

15.2 Transducer types . 499
15.2.1 Anti-refined transducers . 499
15.2.2 Feedback anti-refined transducers . 500

15.3 Basic synthesis . 505
15.3.1 Decomposition . 507
15.3.2 Building blocks . 509
15.3.3 Combining form . 516
15.3.4 Loose ends . 516

15.4 Input reduction . 519
15.4.1 Decomposition . 520
15.4.2 Combining form . 525

15.5 State reduction . 526
15.5.1 Decomposition . 527
15.5.2 Combining form . 527

15.6 Separation . 528

12 CONTENTS

15.6.1 Decomposition . 528
15.6.2 Combining form . 530

16 Direct Mapping Synthesis 533
16.1 Overview . 533
16.2 Mutual recurrences . 535

16.2.1 Ad hoc solution . 536
16.2.2 Solution by lists of functions . 537
16.2.3 Solution by dependence graphs . 538

16.3 Refined canonical forms . 540
16.4 Decomposition . 542
16.5 Interacting state based synthetic communities . 543

16.5.1 Places . 544
16.5.2 State based transition arrays . 545
16.5.3 Communities . 547
16.5.4 Combining form . 548

16.6 Interacting direct mapped synthetic communities . 551
16.6.1 Overview . 553
16.6.2 Transitions . 554
16.6.3 Lockable transitions . 559
16.6.4 Monitors . 562
16.6.5 Direct mapped transition arrays . 567
16.6.6 Communities . 569

16.7 State implosion . 569
16.7.1 A naive solution . 569
16.7.2 A better solution . 570
16.7.3 Concluding remarks . 571

V Appendices 573

A Supplementary Remarks on Quasi-Delay Insensitivity 575
A.1 CMOS inverters . 575
A.2 Unexposed delays . 576
A.3 Conclusions . 577

B Complete Partial Orderings and Fixed Points 579
B.1 Theoretical primer . 579

B.1.1 Standard fixed point construction . 580
B.1.2 Continuity . 580
B.1.3 Ordering of functions . 581

B.2 Relevance to DI processes . 582
B.2.1 CPO Structure . 582
B.2.2 Least upper bounds . 583
B.2.3 Continuity of process combinators . 584

B.3 Further work . 585

CONTENTS 13

C Decision Wait Metrics 587
C.1 Component count . 588

C.1.1 Multidimensional . 588
C.1.2 Quadrangular . 588
C.1.3 Cascading . 589

C.2 Critical path length . 590
C.2.1 Cascading . 592
C.2.2 Quadrangular . 594
C.2.3 Dendriform . 597
C.2.4 Crossbar . 599
C.2.5 General . 601

D Latency Arithmetic 603
D.1 Latencies as a vector space . 603
D.2 Comparison of latency vectors . 604

D.2.1 Manhattan distances . 604
D.2.2 Expected separations . 605
D.2.3 Expected wire delays . 605

D.3 Parallel combination of latency vectors . 606

E Arbiter Metrics 609
E.1 Contention . 609
E.2 Critical path length . 612

E.2.1 Tree . 612
E.2.2 Mesh . 613
E.2.3 Token ring . 615
E.2.4 General . 618

F Dual Rail Buffer Cell Theory of Operation 621

Bibliography 631

Part I
Background and Motivation

15

We are called to be architects of the
future, not its victims.

R. Buckminster Fuller

C
H

A
P

T
E

R 1
WHY TO STUDY DELAY INSENSITIVE CIRCUITS

The quest for performant, robust electronics for data and signal processing applications has often
depended on the help of a small close-knit faction of specialists in asynchronous circuit design
working on the margins of the broader engineering
community [40]. On those rare but dreaded occasions
when its technical debt comes due, the deeply held
assumption of discrete global time in synchronous
design (as opposed to asynchronous design) harshly
reaffirms the need for their esoteric skills. Sometimes
incremental progress is achievable by a combination
of synchronous and asynchronous circuitry carefully organized as far as possible to insulate the
majority of engineers from unwelcome contingencies. For example, when following the Globally
Asynchronous Locally Synchronous (GALS) methodology [67, 282, 295], the mainly synchronous
designer proceeds more warily but otherwise the same as usual for circuits up to a certain size and
complexity, and defers reluctantly to asynchronous interface techniques only at the point where
the liabilities of synchronous design become impossible to ignore (due to heat dissipation, clock
skew, power consumption, metastability, electromagnetic interference, or the prohibitive cost and
performance penalties of a global clock distribution network).1

The ingenuity of the GALS methodology as a response to a given regime of cultural and business
constraints can only be admired, but it invites speculation about the greater things that could be
achieved if the asynchronous designer were allowed a freer hand. A notable effort in this direction
was the investigation of so called Delay Insensitive (DI) circuits, pioneered mainly during the
1990s. A style of circuits designed from the ground up for asynchronous operation and scalable to
any size, they were seen to lend themselves to a tightly cohesive theoretical framework enabling
a full complement of rigorously well founded synthesis and verification tools. Among the most

1See [68, 275] for an introductory overview of asynchronous design, [50, 140] for an anecdotal history from the trenches,
and [281] for more recent industrial applications.

17

18 CHAPTER 1. WHY TO STUDY DELAY INSENSITIVE CIRCUITS

promising implications were fewer bugs, less tedium for the designer, lower power consumption,
and mechanically checkable semantics-preserving optimization.

1.1 Audience

The aim of this book is to present a curated study of one possible route to the topic of delay
insensitivity. While the treatment is meant to be accessible to non-specialists, the level of detail
is pitched to enable a sufficiently motivated reader to
replicate any of the techniques discussed. Whether a
spectator or participant, the ideal reader is envisioned
as an inpert: the opposite of an expert, self-directed
with an eye on the future, not unduly constrained by
preconceptions, nor lacking in skepticism, but willing
to forgive an occasional departure from convention
in the service of a worthy cause. Prior knowledge of
digital circuit design is not required and could well be
a hindrance, but a basic college undergraduate-level
or auto-didactic acquaintance with discrete math is
assumed (e.g., functions, sets, relations, graphs, state machines etc. [159, 163], and maybe a splash
of probability theory for just one chapter). Readers wishing to dig more deeply should find enough
material in the bibliography to keep them busy. Where possible, freely available books, dissertations,
technical reports, and draft articles are cited in preference to their paywalled equivalents.

While all prospective readers are more than welcome, it is only fair to temper the expectations
of some. Working engineers who have come to grief over timing issues at a late stage of an existing
project probably would be better served either by the GALS approach cited above or by [267], the
best available reference on Speed Independent (SI) design (i.e., not quite DI but close), especially
for its strong practical emphasis. See [20, 21, 134, 187, 264, 308] for advice on automated tool
support. The present text is geared more toward full custom designs, most likely starting from a
clean slate.

Nor should job seekers expect their knowledge of this subject to be much of a talking point.
In past years at the IEEE “Async” conferences, a team leader from a large well known company
beginning with the letter “I” claimed to recruit asynchronous designers under the savvy assumption
that they are more capable than most, even if he had no specific need for their asynchronous
design skills [192], but learning this subject as a job hunting strategy will remain a long shot until
such managerial shrewdness becomes commonplace. It would be more effective to familiarize
oneself with industry standard technologies at least to the level of [38] than to rely on dazzling an
interviewer with arcana.

Rather, this book calls for being read in the spirit in which it was written, as an idle diversion for
a bored student, engineer, entrepreneur, academic researcher, or maybe even a forward thinking
manager given to wondering whether our current working practices are really the best we can
do. It may be suitable reading for the summer vacation, the daily commute, the long haul flight,
the extended convalescence, or any other off-duty time, especially Part I, which can serve as a
self-contained bluffer’s guide to the subject by virtue of soft pedaling the math. Subsequent sections
may inspire more technically oriented readers who enjoy working through intricate programming
problems in the classic traditions of SICP [272] and TAOCP [143], especially those with interests in
compilers, design automation, formal methods, or combinatorial optimization.

1.2. MOTIVATION 19

1.2 Motivation

The delay insensitive style presented in this book is not the only way of designing circuits, nor even
the only way of designing asynchronous circuits. Alternative design philosophies differ in their
assumptions about timing [104]. Before exploring the details, it is reasonable for a reader to ask
whether DI circuits are worth studying at all, especially with their dearth of recent research activity.
Several possible motivations are explained in the remainder of this section.

1.2.1 Technological neutrality

Despite the wave of academic research publications extolling the benefits and “increasing interest”
in asynchronous design during the 1990s, there could hardly have been a less opportune time for
an upstart to challenge the established practice of digital system development. The steady advance
in performance of CMOS technology following Moore’s law [197], with synchronous methods
and tools, fueled a juggernaut that posed an insurmountable barrier to entry for almost anything
asynchronous, with delay insensitive design possibly the hardest hit. Whatever their supposed
merits, delay insensitive circuits were deemed uncompetitive by the market and fell by the wayside
as a research topic. However, with the initial trends in
speed and device densities having abated somewhat since
then, there is a renewed appetite among some technol-
ogists to contemplate possible successors to CMOS (e.g.
[33, 76, 92, 216, 229, 248, 251]), along with the recog-
nition that familiar assumptions might not always apply
to novel contexts.

Modularity

A truism in college engineering curricula holds that a
whole computer can be built in principle from nothing
but a single type of device called a NAND gate, implying
that this device is universal in some sense. In its stark simplicity, the NAND gate alone suffices for any
computation whatsoever purely through local interactions with other NAND gates.2 An appealing
idea, its assertion customarily entails the unstated assumption of a clock, because everyone knows
the clock always goes without saying. However, a global clock distribution network, much like
scaffolding on an unfinished building, amounts to the biggest, ugliest, costliest, noisiest, least robust
non-local interaction of all, and without it the whole flimsy edifice collapses.

What would happen if someone were to take seriously the idea of practical general purpose
computation emerging from genuinely local interactions among simple entities, and was prepared
even to disregard familiar conventions of circuit design? It turns out that logic gates such as the NAND

and other standard modules would become largely irrelevant, but a different class of comparably
primitive components would come to light that are more versatile and less tied to any particular
implementation technology [81, 136, 223, 294]. This outcome follows naturally from a relaxation
of the demand to simulate a timing regime that is fundamentally at odds with physics [83].

The upshot is that while the technological landscape may change, DI circuits travel well. Being
quintessentially modular, their semantics is always completely determined by the local interactions of

2A less wrong statement is that a NAND gate suffices to implement any Boolean logic function [137].

20 CHAPTER 1. WHY TO STUDY DELAY INSENSITIVE CIRCUITS

a limited assortment of simple primitive components as intended. The primitive components form a
fixed set that can be understood in strictly operational terms by the designer without reference to the
underlying implementation technology. Much of the job of porting a design from one manufacturing
process to another reduces to porting the primitives.

Migration

At this writing (late 2010s), the successor to CMOS is anyone’s guess, and it is prudent to be
prepared for whatever may follow. It would be most unfortunate if a future physicist, chemist,
biologist, or materials scientist were to overlook some natural phenomenon that could support
the implementation of DI primitives (e.g., [46, 205, 224, 238]), and the risk of such setbacks is
aggravated by a general lack of awareness of this topic. Specialists in other fields can hardly be
expected to second-guess a near universal consensus among electrical engineers that logic gates are
the fundamental building blocks of all digital systems, much less to infer the tacit qualification that
these devices are practically useless at scale without either some very delicate timing assumptions
or a clock. Hence we may sometimes hear of biochemists discovering ingenious ways to implement
molecular logic gates [70, 100], but doing so quite possibly in vain by neglecting to discover a
molecular clock distribution network to go with them. Alternatively, in the more optimistic scenario
of a discoverer of naturally occurring DI primitives recognizing the implications, the intellectual
labor to be saved by prevailing on the extant body of knowledge should justify its preservation.

1.2.2 Configurable devices

Often the driving force behind an up and coming technology, from
microcomputers during the early years through the current crop
of embedded development kits and graphics co-processors, is a de-
voted following of hobbyists and enthusiasts. Field Programmable
Gate Arrays (surveyed in [61, 151]) would seem ideally situated
to attract similar interest, but have achieved only limited success in
that regard at best.3 Although undoubtedly due in part to the marketing focus on commercial devel-
opers by the major FPGA vendors, this unfortunate circumstance might be more aptly explained by
the hard truth that FPGA programming is a little too much like work to fit most people’s idea of a
recreational activity. The true hacker’s satisfaction derives from seeing the emergent properties of
the brainchild take on a life of their own [37]. By contrast, a system that must be dragged, cajoled,
prodded, and kicked, only to yield a less interesting return than the sum of the effort expended,
lacks this essential allure.

Difficulties with FPGAs

The current state of FPGA technology relegates the bulk of the developer’s working life to an endless
routine of troubleshooting problems with timing. A correct and complete design with respect to the
semantics of the specification language [11, 302] is only the beginning of the real work. It may yet
fail in practice due to wire or component latencies that are not modeled in the language. Nor can
they be, subject as they are to the vagaries of the subsequent routing phase (i.e., the part about
connecting it all together). Chaotic phenomena are said to be their own simplest descriptions (hence

3See [91, 303] for a couple of FPGA hobby projects if the links are still alive, and [206] for a contrasting opinion.

1.2. MOTIVATION 21

impossible to simulate predictively [97, 173]), and support for simulation in FPGA development is
tellingly fragmented and proprietary [15, 198]. While pedagogical examples of putting a few gates
together may suffice for introductory tutorials and student projects, high performance custom FPGA
applications at scale remain the preserve of an elite few who rightly command ample compensation
(e.g., [234, 300]), belying the ideal of FPGAs empowering individuals and small enterprises with
in-house hardware development capability [13].

Routing is clearly a computationally intensive problem and is not solved as such by delay
insensitive design [8, 62, 117, 147, 160, 164, 165, 286]. However, a delay insensitive style of
specification would be robust against timing variations introduced by the routing algorithm, and
hence would succeed at least where the current state of FPGA technology fails to impart a viable
abstraction boundary between specification and implementation. Beyond its philosophical appeal,
this simple improvement would have the very practical consequence of putting realistic FPGA
development within the grasp of anyone in a position to comprehend a programming language,
while incidentally easing the workload of experienced FPGA developers.

Ways forward for FPGAs

It is not possible to implement a complete set of DI primitives with any combination of the logic
elements typically provided by industry standard FPGA boards [31, 105], and hence not currently
possible to implement general purpose delay insensitive circuits as FPGAs without building a custom
research prototype. Moreover, the dominant FPGA vendors are firmly committed to a course of
synchronous architectures with ever more baroque embellishments intended to remedy their inherent
shortcomings [54, 307]. However, nothing compels a less entrenched stakeholder to follow suit.

• A crowd funded campaign to produce a new delay insensitive FPGA board would attract small
enterprises, hobbyists, and advocates of open standards (e.g., [259, 263, 265, 266, 269]).

• Another relevant player might turn out to be a VC funded start-up. While not likely to advance
open standards, it would at least create wealth for its founders and investors by catering to
an untapped market.

• Furthermore, a moderate level of sporadic interest in asynchronous FPGAs persists among
academic research groups, albeit focused mainly on quasi-delay insensitive [90, 177, 228,
283, 304] or other hybrid delay models [119, 167] that do not fully relieve the designer of
the need to cope with timing issues.

1.2.3 Concurrency theory

Some of the most important but infamously slippery problems in
computer science pertain to concurrent and distributed systems,
such as cache coherence [123] and lock free synchronization [107].
Rigorously defined models of concurrent computation have occa-
sionally proved helpful for reasoning about them, including state
machines [115], Petri nets [201], and various process description
formalisms [36, 106, 113, 156]. Aside from their application to
hardware design, delay insensitive circuits occupy a niche in the taxonomy of process networks as a
physically realistic model of distributed computation characterized by blocking reads, non-blocking
writes, unbuffered channels, and non-deterministic processing elements as network nodes. If the

22 CHAPTER 1. WHY TO STUDY DELAY INSENSITIVE CIRCUITS

length of this book is any indication, this simple combination of conditions is also demonstrably
fertile. The model deserves coverage in standard computer science curricula for whatever further
insights it may bring.

Generalizations of DI circuits

For purposes of hardware design, it is appropriate to limit the processing elements to finitely many
states, and the channels to carriers of nullary signals, but these constraints need not apply to other
contexts where such a model might be of interest. These might include the design of a process
architecture for a real-time embedded control system, or the multi-threaded software implementation
of a custom network communication protocol. In these cases, the primitive components would
map onto threads of control rather than circuit elements, and the channels would map onto the
relevant inter-process communication infrastructure rather than physical wires. Although software
applications are not investigated in this book, one might envision verification of such a design
against the constraints of delay insensitivity helping to establish its avoidance of dropped packets
due to buffer overruns.

An intermediate level of abstraction

Petri nets have been the method of choice to model many problems of this nature with good reason,
because desirable and useful system properties such as safety and liveness are usually mechanically
verifiable in terms of the Petri net model. Of course, these assurances are reliable only insofar
the Petri net model actually corresponds to the system under consideration. A potential strength
of delay insensitive circuits is the kind of straightforward mapping between the model and the
implementation mentioned above, diminishing the opportunity for human error in identifying one
with the other. Moreover, as introduced in Chapter 3 and explored further in Part III, DI circuits
can be interpreted as a restricted form of Petri nets, allowing automated semantics-preserving
transformation between the two and combining their advantages.

1.3 Random tips on reading this book

There are four main parts to the book and several ap-
pendices, with material allocated to the latter based on
various criteria. Some of it is not specifically topical for
the main text, and some is more speculative. Some may
be too detailed to interest the majority of readers, and not all of it adheres to the aforementioned
prerequisite of an undergraduate-level discrete math background. Giving the appendices a miss
would not in itself dilute the main message of the book, but reading them may provide some ideas
for further work in this area.

Some readers, otherwise known as graduate students, reputedly prefer the bibliography as their
first point of entry to any publication. To assist this audience, every bibliographical reference lists
the pages in the text where it is cited. In electronic versions of the book, these page numbers
are clickable hyperlinks. In this way, a reader can quickly gauge its credibility by scanning the
bibliography for a familiar name or title and jumping to the relevant section to ascertain whether
the reader’s interpretation of the cited work accords with the author’s (which is normally that it
corroborates, amplifies or exemplifies a point being made).

1.3. RANDOM TIPS ON READING THIS BOOK 23

Some readers may wonder whether it is worth charging through all the math just to pick
up a few circuit design ideas. Despite appearances, this book is not a math book; it employs
mathematical notation only as needed to communicate unambiguously.4 Perhaps this claim will
meet with skepticism from non-mathematicians. To test it, any reader thus inclined is invited to
ignore the math and just look at the circuit diagrams, go off and code them up in VHDL or Verilog
[214, 225], preferably run some simulations, and return to the text for a few pointers only in the
event of any unforeseen difficulty.5 Similarly, software developers may elect to code a few of the
algorithms in their preferred style by referring only to the informal narrative and ignoring anything
with lambda notation or an equation number in it. If there turns out to be no difficulty whatsoever,
then by all means write up an appendix to that effect and submit a pull request.

Each chapter or appendix ends with a short series of questions limited to one page. These
questions include verbatim reminders of key points, straightforward tests of understanding, kōans
(i.e., deliberately ill-posed questions whose contemplation elicits insight), conversation starters,
coffee break sized problems, weekend projects, and open ended projects. Undoubtedly a reader will
be more drawn to some than others, but should be extremely cautious about assuming a question
is easy without actually answering it. This subject seems to have an unusual affinity for simple
questions whose answers demand serious thought, and some of the most innocuous questions posed
here are distilled from epic historical debates. Nevertheless, because this chapter is only the first,
we can start with some genuinely easy ones with no imminent cause for alarm if any of the answers
is not yet clear.

Easy-peasy questions

1. What is the difference between synchronous and asynchronous
circuits?

2. How long has asynchronous design been going on? (A lower
bound is sufficient.)

3. By what criteria should a circuit designer choose
among DI, SI, and GALS?

4. What is a DI primitive?

5. Why should circuit designers care about technology migration?

6. How street-credible is the author’s take on FPGAs?

7. In light of the footnote on page 19, are the remarks about universality of NAND gates
refuted by the argument that any finite computation can be realized in principle by
a giant look-up table? (hint: See [118] or look up the term “hazard-free”.)

4Indeed, DI circuits are virgin territory for anyone interested in automated theorem proving. Synchronous operation is
not even a stated axiom in mainstream work on verified hardware, but a fixture of the formalism itself [207].

5not to claim this is possible, but presumably a grumpy enough reader will be the judge of that

Whenever you find yourself on the
side of the majority, it is time to
pause and reflect.

Mark Twain

C
H

A
P

T
E

R 2
WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

A running example in this chapter serves as a gentle introduction to some of the subtleties that
distinguish delay insensitive design as a discipline worthy of a book-length exposition. These
ideas are refined through a series of unsuccessful but pro-
gressively more careful iterations on a deceptively simple
delay insensitive design problem. This chapter is written
both for readers with no prior knowledge of circuit de-
sign, and for those who would like to know why more
familiar approaches to circuit design are inadequate to
ensure delay insensitivity.

The task is to design what is called a 2-of-3 majority
gate. It has three input terminals and one output terminal.
Whenever it receives a request on any two input terminals,
it emits an acknowledgment on the output. Although it is perhaps not the most sophisticated
application in itself, it brings a great many important issues into sharp focus, and it provides a
context for the graceful début of a fair amount of jargon and terminology.

2.1 How not to do it with logic gates

To avoid any misunderstanding, let the input terminals be named a, b, and c, and let the output be
named x . Then the requirement can be restated that concurrent inputs to a and b, or to a and c,
or to b and c, should cause an output to appear on x . To be even more precise, we can rephrase
this statement as a logical equivalence using symbols ^ for conjunction (i.e., meaning both left and
right operands are true) and _ for disjunction (when either is true).

x ô pa ^ bq _ pa ^ cq _ pb ^ cq (2.1)

25

26 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

a ^ b

b ^ c

a ^ c x

abc

Figure 2.1: logic circuit for a 2-of-3 majority gate corresponding to Equation 2.1

A normal college engineering textbook style of solution would draw inspiration from this logical
relationship to construct the circuit shown in Figure 2.1. Each of the inputs a, b and c is carried
by a forked wire to two of the three D-shaped devices known as AND gates, which evaluate the
conjunctions of their inputs. The intermediate results a ^ b etc. are transmitted by them to the
remaining device, an OR gate, which computes the disjunction of its three inputs, and transmits the
result to the output x .

Although the logic may seem unassailable, the crucial test of this design hinges on the operative
word “whenever” in the specification, i.e., on repeatably yielding correct results. To claim success
when initial concurrent inputs of a and b are acknowledged by the output x , followed by a subsequent
input of c alone that is not, presupposes some mutually agreed protocol between the circuit and its
user to distinguish one usage from the next. If another input of b were to follow immediately, the
required output behavior would differ depending on whether the latter b were counted in isolation
or in conjunction with the preceding c. At a minimum, more consideration is necessary before
declaring this problem solved.

2.1.1 Towards a reusable implementation

A traditional approach to resolving the current issue would be to revise the specification by imposing
time constraints on both the user and the circuit. To be regarded as concurrent, two of a, b, or c
must be transmitted by the user either at exactly the same time (arguably a zero-probability event)
or within some limited interval of each other. An acknowledgment on x (or lack thereof) must be
given by the circuit within yet another specified interval. The implementation could then be deemed
correct if and only if it performs according to this revised specification. How these conditions might
be enforced in practice is another matter, but if this solution could be made to work, it would
be called a bounded delay model design. Failing that, the next step in this direction is simply a
synchronous design with all of its attendant pitfalls.

A more promising approach eschews fixed time constraints in favor of delimiting the interactions
between the user and the circuit by its natural rhythm. After transmitting a pair of inputs, the user is
required to wait for the acknowledgment from the circuit before proceeding. However, this solution
raises a related issue to the one noted above when one of the same inputs (e.g., b) is used in each
of two consecutive interactions. Without properly formulated signal coding conventions, two short
consecutive signals on the same input could be indistinguishable from one long one.

2.2. HOW NOT TO DO IT WITH DI PRIMITIVES 27

2.1.2 A concept of signaling protocols

An explicit statement of something usually taken for granted may help to elucidate this issue. With
networks of logic gates such as those used in this circuit, standard practice associates one of two
states (e.g., true or false) with each wire at any moment.
Each gate is modeled by a function that maps each possi-
ble set of current input states to a corresponding output,
either true or false, depending on the particular semantics
of the gate being modeled (e.g., whether it is an AND gate
or an OR gate).

In the intuitive justification given above for the circuit
in Figure 2.1, a signal is tacitly identified with a true state,
and the absence of a signal with a false state. Two consec-
utive occurrences of the same signal therefore would cor-
respond to a wire holding a true state unchanged for the
duration. While this coding convention might be made
to work in a synchronous design, it is insufficient as an
asynchronous protocol, which would depend on always
being able to detect the arrival of a fresh signal.

4Φ signaling

One well known way of working around this problem has been to require that all inputs and outputs
return to the false state at the end of each interaction. This practice, sometimes known as level
signaling or 4Φ (four phase) signaling, becomes something of an organizing principle in the theory
of Null Convention Logic (NCL) [85, 86]. However, this remedy alone would not suffice in the
current setting without further revisions to the circuit, because as it stands, dropping either of two
true inputs to false could cause the output to drop prematurely before the other input is dropped,
thereby misleading the user into thinking the circuit is ready for another interaction.

2Φ signaling

Another workaround would be to encode a signal as the change from true to false or from false to
true, without regard for the wire’s logical state at any time between changes and hence without
distinguishing between the two possible directions of a change. This signaling convention, sometimes
called NRZ (non-return-to-zero), transition signaling, or 2Φ (two phase) signaling, was advocated
influentially in [273]. An advantage of this technique is that less time and energy are wasted on
redundant activity, but employing it in this example would require an even more radical redesign of
the circuit.

2.2 How not to do it with DI primitives

These difficulties might have been avoided with more forethought. If the most natural statement of
the specification is in terms of the signals the circuit sends and receives, it is appropriate to build
it from components that can be understood similarly. The AND gates and OR gate used in the first
iteration of this design, being defined only as maps from steady state input logic levels to output
levels, appear in retrospect to be the wrong tools for the job.

28 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

x

c b a

Figure 2.2: improved majority gate using DI primitives

“

Figure 2.3: implementation of a MERGE by XOR gates

2.2.1 Better building blocks

What we really need instead of an AND gate is a device that detects a confluence of signals. That is,
it should wait for a signal from each of its inputs, which may arrive at different times, and then
send a signal on its output. This behavior requires it to have some form of internal memory or state,
which precludes an implementation by any device whose output is fully determined by its current
input alone. In place of an OR gate, we need a device that merges two streams of signals. That is, it
must wait for a signal on either of its inputs and then send it to the output.

Assuming for the moment the availability of devices having these imprecisely stated properties,
we might redesign the circuit as shown in Figure 2.2. The circular schematic symbol standing in for
the AND gates in the original design is sometimes called a C gate, a C element, a Muller C element,
or even a rendez-vous elsewhere, but is designated more briefly and descriptively as a JOIN in this
book (following [42, 78, 136] among others). The triangular component replacing the OR gate from
the previous design is known as a MERGE.

With this step, it also becomes possible to discuss DI circuits in a technology-independent way.
Whether a signal is conveyed by an inversion in logic level, a change in the concentration of chemical
solution, or a projectile blown through a tube is immaterial provided the components relay the
signal the same way.1 However, their implementations in conventional technology with 2Φ signaling
may merit a momentary digression.

Implementation of a MERGE

The familiar two-input logic element known as an XOR gate (as in “exclusive or”) outputs a true
value whenever either but not both of its inputs is true. However, a device with this logic function

1In the case of a signal mediated by a physical particle, an active particle-duplicating FORK device is also needed.

2.2. HOW NOT TO DO IT WITH DI PRIMITIVES 29

«

Figure 2.4: approximate implementation of a JOIN by AND gates and an OR gate

can also serve a different purpose in the context of 2Φ signaling. An ordinary two-input XOR gate
performs a 2-way merge because a change to either of its inputs in either direction results in a
change to its output (not necessarily in the same direction). The merging of three or more channels
can be achieved by forming a tree of XOR gates (i.e., by connecting the outputs of some gates to the
inputs of others as in Figure 2.3).

Although it can be shown by Boolean algebra or truth tables that a tree of XOR gates does not
generally output the appropriate truth value for a multi-way XOR logic function, it readily suits our
present purpose of merging streams of level transitions (barring contention). As 2Φ DI designers, we
care only about the logic level changes themselves, not the values they attain. A rigorous justification
of the latter claim using only Boolean algebra would be a chore, but a gestalt shift to 2Φ thinking
makes this proposition easily intuitive.

Implementation of a JOIN

As noted above, no logic gate can implement a JOIN by itself. However, a serviceable implementation
subject to certain caveats can be attempted using the circuit shown in Figure 2.4. The intuition is
that an initially low (i.e., false) output remains so until both inputs force the central AND gate high
(i.e., true), and then the output feeds back through either of the other AND gates to hold itself high
until both inputs drop.

There are two possible problems with a gate level implementation of a JOIN primitive. One is a
race condition. The circuit could malfunction if the propagation delay along the internal feedback
paths significantly exceeds the time taken for the output signal to be received externally. In this
case, the JOIN performs no differently than an AND gate for the duration of some unspecified time
interval following the first rising output (with more complicated knock on effects possible thereafter),
contrary to the intended signaling protocol. Correcting this problem might require timing analysis
based on physical parameters beyond the scope of logic design. The other problem is inefficiency. A
custom designed implementation is likely both to outperform and to require less hardware than an
equivalent network of logic gates, at least in CMOS technology [250].

2.2.2 Implications of the current solution

Leaving aside potential implementation issues with these devices, we return to the question of
whether the solution in Figure 2.2 successfully implements a 2-of-3 majority gate. There is good
news and bad news.

30 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

• The good news is that with the first arrival of signals a and b, the uppermost JOIN sends a
signal to the MERGE, which relays it to the output as required. In contrast to the previous
iteration of this design in Figure 2.1, a subsequent (2Φ convention) input on a or b does not
immediately affect the output from the MERGE until a signal on another input is received, also
in accordance with the specification. Similar reasoning applies to any of the three possible
pairs of inputs.

• The bad news is that this circuit does not cope with the case of an initial input pair followed
by a different input pair. For example, if initial inputs of a and b are acknowledged by the
output, and then inputs b and c are applied, the behavior of the circuit is undefined. The
problem is due to the b input being forked to both the upper JOIN and the lower one, and
therefore being received by the latter both times.

– If the c precedes the second b, the lower JOIN can output immediately, having already
received the first b, and cause the MERGE to output prematurely.

– If the c lags the second b, there will have been two consecutive signals due to b received
by the same input to the lower JOIN, with no signal received by the other input. The
behavior of the JOIN itself under these circumstances is undefined (i.e., unpredictable).

2.2.3 Ways forward from the current solution

A skeptical reader might consider blaming the failure of this design on a point of pedantry in its
construction. Because a JOIN is just an abstraction, it should be straightforward to resolve the last
issue mentioned above by stipulating henceforth that a JOIN may indeed receive two consecutive
signals on the same input.2 In the case of two consecutive signals on the same input, the definition
of the JOIN could be extended to prescribe a reversion to its previous state. Reverting to its previous
state is what “really” happens anyway based on the gate level implementation in Figure 2.4, provided
we assume that signals are conveyed by changes in logic level and the previous state happens to be
where both inputs are false. Such a device is not unknown, and is sometimes called an NCEL [79].

4Φ solution using an NCEL

Using this newly defined component, a pragmatic engineer can forge ahead to rescue this design by
insisting on a four phase protocol. The initial inputs of a and b from the user (for example), followed
by an acknowledgment x from the circuit, are to be followed necessarily by another transmission
of a and b from the user to cancel the extra a that went to the middle NCEL (previously a JOIN)
and the extra b that went to the lower NCEL. Precisely these cancellations, previously ruled out in
the case of a JOIN, are now legitimately within the specification of an NCEL. This second pair of
inputs also triggers the upper NCEL again, and is consequently acknowledged by another x from the
circuit, indicating that the circuit has returned fully to its initial state and is ready for any new pair
of inputs.

If doubling the latency and energy dissipation per operation by this latest innovation is of no
consequence, perhaps introducing a race condition is harder to discount. The sticking point is that
this proposed remedy enforces no particular deadline for any of the “extra” signals mentioned above
to be canceled. If the latter phase inputs of a and b propagate more swiftly though the top NCEL

2There are well informed theoretical arguments against this change to the definition [288]. Its inadequacy to solve the
present problem suffices for this discussion.

2.2. HOW NOT TO DO IT WITH DI PRIMITIVES 31

x

c b atime

Figure 2.5: First, concurrent inputs of a and b are acknowledged by x (top). Then the resets of
a and b are prematurely acknowledged by that of x (center). Finally, an input of c all by itself is
wrongly acknowledged (bottom).

and outgoing MERGE than along their respective internal branches, there is still the same possibility
of a subsequent input reaching a partially charged NCEL as in the case of a JOIN before.

This syle of reasoning about a circuit normally can be somewhat difficult, but fortunately if
the signals are carried by worms leaving a trail of glowing radioactive slime along the wires they
traverse until it dissipates, the failure mode described above is easy
to visualize. As shown in Figure 2.5, the slime trail along the branch
from the input b to the bottom JOIN or NCEL is stickier than the
others, and therein lies the trouble.

Speed-independent design

If still not yet deterred, one could continue in this vein along the lines of another well trodden
workaround for this sort of problem. The job of an asynchronous designer would be so much easier
if only the signals propagating through every fork were accommodating enough to reach both ends

32 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

at the same time. This state of affairs with a bit of help would suffice to salvage the current situation,
for example. Fortunately, it is not just a matter of wishful thinking but the basis of an actual design
philosophy called Speed Independence, or SI [148, 149, 218, 267]. Its plausibility relies on the
premise that two events occurring within a minimum gate delay of each other can be regarded as
simultaneous for practical purposes. Hence, to justify the assumptions of speed-independent design,
it is necessary to establish that wire delays are negligible compared to component latencies. That is,
the propagation delay associated with the longest wire anywhere in the system must be materially
less than the latency of the fastest gate or component anywhere else in the system.

Regardless of the technology, the propagation delay of any physical communication channel
can be expected to increase at least in proportion to its length,3 while component latencies race
to the bottom with each new generation, pitting these two parameters against each other in any
sufficiently complex system [111]. Similarly to the implications of a global clock distribution network
in synchronous systems, some limitation on scalability must be anticipated as a fixture of SI design.

Quasi-delay insensitive design

A variation on SI potentially escaping this limitation could provide
for some but not necessarily all forks to have this special relationship
with the signals they carry, amounting in practice to a requirement
for the difference in propagation delays between the prongs to be
dominated by that of the shortest feedback path.4 Each of these so
called isochronic forks must be verified individually by recourse
to physical measurements, rules of thumb, gut feelings, or other
techniques extrinsic to the circuit’s logical organization [24]. This
modus operandi is known as quasi-delay insensitive (QDI) design.

2.3 How not to compromise

QDI design was most influentially advocated originally as a prag-
matic necessity based on a formal argument characterizing the class
of delay insensitive circuits as severely limited, with isochronic forks
being the “weakest possible compromise” needed for them to be
of any real use [182]. While our present difficulties would appear
to support this conclusion, due diligence before abandoning this project requires attending to a
condition noted by several authors since then, whereby this argument was arbitrarily restricted to
circuits made from forks and single-output devices [44, 68, 104, 210]. Further consideration of this
matter follows in Section 2.3.1 and Section 2.3.2, with a revised design attempt after that.

2.3.1 A two-output primitive

An example of something other than a single-output device known at least as early as [79] is the
TOGGLE. As shown in Figure 2.6, it has one input terminal and two output terminals, with one of the
output terminals distinguished by a dot in the schematic symbol. The first time a TOGGLE receives
a signal on the input terminal, it acknowledges the input signal by sending an output signal from

3barring wormholes, time travel, teleportation, temporal anomalies, warp drive, etc. [166, 199, 211]
4See [138, 178] for a definition of isochronic forks by a slightly less restrictive but more technical delay assumption.

2.3. HOW NOT TO COMPROMISE 33

Figure 2.6: schematic symbol of a TOGGLE, an example of a multiple-output device

the dotted terminal. The second time it receives an input signal, it sends an acknowledgment from
the other output. The third time, it uses the dotted output again to acknowledge the input, and
continues to alternate between the outputs in this way for each subsequent input. This behavior is
illustrated in Figure 2.7.

Readers familiar with synchronous design may notice a similarity between the TOGGLE and the
conventional T-flip-flop element [38], a state-holding device to be found in any logic designer’s
metaphorical tool box. As incidental as it may seem to the deeper questions at hand, lifting the
prohibition against the humble TOGGLE is enough to disqualify the often cited but seldom examined
case against delay insensitivity mentioned above, because a general analysis involving multiple-
output devices is expressly beyond its scope.

2.3.2 DI versus QDI

In deference to the QDI school, one hastens to add that any real implementation of a TOGGLE in
standard logic gates or even at the transistor level would certainly depend on isochronic forks
in one way or another. Presumably the device must attain internal stability before emitting an
acknowledgment signifying its readiness to receive another input. Verification of such a condition is
bound to entail some form of physical timing analysis to confirm simultaneity or other temporal
relationships among multiple internal events. It could be argued that the use of isochronic forks
therefore is not really avoided by postulating multiple-output devices, so the original claim stands.

The best chance of reconciling the philosophies of DI and QDI design might be to regard DI
design as a separate paradigm where these concerns, while valid, are less prominent and others
more so. By definition, a primitive such as a TOGGLE is not expected to have a DI implementation in
terms of other primitives. Moreover, if a circuit is made of primitives concealing isochronic forks,
its technology migration is easier than it would be if they had been exposed (cf. Section 1.2.1),
especially if isochronic forks are not needed for implementing the primitives in the target technology.
If technology migration is of no interest or if isochronic forks turn out to be common to all present
and future technologies (a big “if”), there is some merit nevertheless in preventing a complication
properly belonging to a lower abstraction layer from insinuating itself into the daily design and
verification work flow. For the class of DI circuits with unrestricted output arity, the timing analysis
required to verify the isochronic forks inherent in the primitives would be done at most once, when
the set of primitives is standardized in a reusable component library (as argued eloquently in [294]).
See Appendix A for supplementary remarks on this subject.

2.3.3 Yet another majority gate

To return to our running example, the majority gate design in Figure 2.8 avoids the race conditions
plaguing the first two iterations and performs correctly under a broader range of conditions by
dispensing with all forks. An input signal on any of a, b, or c propagates through the MERGE to the
TOGGLE. Upon receipt of this first input signal, the TOGGLE acknowledges it on the dotted output,

34 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

Figure 2.7: six snapshots animating the way signals, visualized as distinct particles, flow from left
to right through a TOGGLE, with each successive input signal routed to the alternate output

2.3. HOW NOT TO COMPROMISE 35

a

c

b x

Figure 2.8: third attempt at a majority gate, made from a MERGE and a TOGGLE

which is floated or ignored. A second signal on any of a, b or c propagates again to the TOGGLE,
but this time the acknowledgment is sent to the other output, x , because the TOGGLE alternates
between its outputs. The next input signal, whatever it may be, leads to an acknowledgment on
the floating output, but the one after is acknowledged on x , and so on for each subsequent pair of
inputs. The user therefore observes an acknowledgment on x for each pair of inputs.

Unfortunately, this solution does not conform exactly to the original 2-of-3 majority gate specifi-
cation.

• A minor issue is that two consecutive signals on the same input could also cause an acknowl-
edgment. This behavior is not required by the specification, but on the other hand, it is not
explicitly prohibited.5 If this extra feature were the only point of discrepancy, the implemen-
tation would be called a refinement of the specification.

• A more serious issue is that this circuit reacts unpredictably to contention between concurrent
inputs (e.g., if inputs on a and b occur at the same time). The behavior of a MERGE is undefined
if two input signals are sent to it concurrently.

2.3.4 Back to the drawing board

Several possible ways to improve on this design are considered below, leading to the conclusion
that a fresh start with still more care and attention would
be best.

Semantic enhancements

Similarly to the previous solution, this one may appear
to fail due to a point of semantics. Whereas previously
a JOIN was undefined for sequential signals on the same
input, in this case a MERGE is undefined for concurrent
signals on different inputs. Nor will attempted extensions
to the definition be any more fruitful in this case. If a
MERGE is implemented by XOR gates as in Figure 2.3, then simultaneous 2Φ inputs can be shown by
Boolean algebra to cancel each other, and nearly simultaneous inputs to cause a transient or indistinct
output. Furthermore, there is no obviously reasonable way even in a technology-independent sense
to extend the definition of a MERGE to cover concurrent inputs.

5However, consecutive identical inputs without an intervening output are always implicitly prohibited in any delay
insensitive specification [288].

36 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

Fundamental mode

Less like correcting the defects of this design than banishing them by decree, we may simply insist
that only one input at a time be provided to the circuit, and that sufficient time be alloted between
inputs for the circuit to reach a stable state internally. If this length of time is not indicated to the
user by observable signals from the circuit, it will have to be divined by other means. This timing
regime, known as fundamental mode,6 has been suggested as a way of adapting synchronous logic
to the design of a limited class of asynchronous state machines [284]. Among the earliest work in
asynchronous design, fundamental mode remains an enduring staple of optional chapters in college
engineering textbooks along with stern warnings against anything asynchronous [38].

For our purposes, fundamental mode raises the more pointed question of whether it is consistent
with the spirit of the original specification. Although a circuit designed according to fundamental
mode assumptions could conceivably adhere to a delay insensitive signaling protocol when inter-
acting with its environment, it happens not to be possible for this particular application (related
discussion in [42]). By way of a brief hand-waving explanation, the notion of a stable state is not
rigorously established in the context of a delay insensitive circuit specification given by the interface
between a system and its environment.7 To interact delay insensitively with a fundamental mode
circuit, the user must be reliably informed as to its “stability” (i.e., its readiness to receive an input
signal), effectively requiring every input signal to be acknowledged individually, which is contrary
to the majority gate specification.

Burst mode

Newer methodologies known as burst mode [210] and extended burst mode [311] have re-
moved some of the limitations of fundamental mode on state machine synthesis. In burst mode
specifications, a prescribed set of input signals may occur concurrently and be acknowledged as a
unit. Burst mode designs have benefited in the past from a
relatively well established infrastructure of end-to-end CAD
support and technology mapping [124], albeit based on soft-
ware whose current maintenance status, availability, and li-
cense conditions are unclear.

Although the range of behavior encompassed by burst mode
specifications is less restricted than that of fundamental mode,
it is not completely general. Input signals may not occur con-
currently with outputs, non-deterministic choice and arbitra-
tion are excluded, and it remains incumbent on the user not
to intrude on the circuits thus synthesized at times of insta-
bility. Whether a formal mandate or not, this last condition is a de facto feature of the model in
combination with the existing tool set, arguably due to its reliance on standard logic gates.

Fortunately, a majority gate fits well within the scope of expressible burst mode specifications.
Relinquishing an engineering design job to burst mode synthesis tools is an option whenever the
fundamental mode environmental condition and associated behavioral limitations are acceptable.
However, to fulfill the current brief of a delay insensitive design, another approach is necessary.

6The term “fundamental mode” may have been chosen originally for its connotation of a system not driven beyond its
minimum resonant frequency. In modern parlance, the opposite of fundamental mode is the regrettable coinage “i/o mode”.

7Some alternative theories of delay insensitivity have explicitly invoked a formal concept of state (most notably [43, 172]),
but an extensional theory is preferred in this text for a more parsimonious refinement relation among other reasons.

2.4. JUDGMENT DAY 37

R1

R3

R2

G1

G1

G2

Ack

Figure 2.9: a three way sequencer

2.4 Judgment day

Although the design in Figure 2.8 does not meet the specification, it performs correctly under certain
restricted conditions (namely the absence of contention) and may be refined into a correct solution.
In many DI applications, failures due to contention among concurrent inputs can be prevented by
arbitration. To incorporate arbitration into the current design, a device not previously introduced
known as a sequencer is needed (sometimes also called an arbiter in other sources).8 A leisurely
explanation is in order here because this concept tends not to be widely appreciated [49, 50].

2.4.1 What a sequencer does

The particular form of sequencer shown in Figure 2.9 is a three way sequencer. Each of the three
inputs R1 through R3 is associated with one of the three outputs G1 through G3 (mnemonic for
“request” and “grant”). The input labeled Ack on the bottom depicted as a stylized caret is special.
The first time the sequencer receives a signal from one of R1, R2 or R3, it sends a signal to the
corresponding output G1, G2, or G3. After that, it waits for an acknowledgment on the Ack input. If
that acknowledgment is the next thing to happen, then life is easy and the sequencer resumes its
former slumber until obliged to repeat this process by another request.

A sequencer always reacts eventually to every request by sending a signal to the corresponding
grant, and then always waits for an acknowledgment, but things get complicated if new requests
arrive before the sequencer is finished with the current grant or acknowledgment cycle.

• One possible complication would be for a second request to arrive after the sequencer is-
sues the first grant but before it receives an acknowledgment. In this case, the sequencer
does not yet grant the new request, but continues waiting for the forthcoming acknowledg-
ment. The sequencer never sends a grant while an acknowledgment is pending. When the
acknowledgment finally arrives, the sequencer then issues the grant it has been withholding.

• A similar situation occurs when the sequencer receives two requests within such a short
interval that it has not even granted the first one before before the second one arrives. In this
case, the sequencer grants the first request and then proceeds as above.

• Yet another possibility, however unlikely, is that two requests arrive at exactly the same time.
In this case, the sequencer makes an arbitrary, non-deterministic choice about which request

8There is no unanimous consensus on terminology. The sequencer is not treated as a primitive in this book and is
regarded as distinct from an arbiter, which is a primitive. A sequencer is constructed from simpler primitives including an
arbiter.

38 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

a

c

b

x

Figure 2.10: a correct 2-of-3 majority gate using a sequencer

to grant first, and acts as if the other request had arrived second. This capability is the most
important feature of a sequencer.

• More pathological cases are not ruled out. If three requests arrive initially at the same time, the
sequencer grants only one request at first. After the sequencer receives an acknowledgment
to the first grant, it chooses one at random between the two remaining requests and grants
it. After the sequencer receives the acknowledgment to this latest grant, it finally grants sole
remaining request.

In summary, the sequencer is an asynchronous designer’s secret weapon. It takes signals almost
any way the environment can throw them at it and lets them through one at a time in an orderly
queue. The only way to derail a sequencer is to send the same requesting signal to it repeatedly
without waiting for the corresponding grant output inbetween, but a similar rule applies to any
delay insensitive device [288].

2.4.2 How a sequencer enables a majority gate

The sequencer in Figure 2.10 solves the problem with contention from the previous design. To
understand how, it may be helpful to imagine signals flowing through the circuit like physical
particles or to perform a worm-level simulation in the style previously noted (page 31). Whether
any two input signals a, b or c arrive separately or together, one gets through the sequencer, while
the other, if any, is detained. The one that gets through then proceeds through the first MERGE, then
through the TOGGLE, out by the dotted output, through the second MERGE, and back around to the
acknowledgment on the sequencer. Only then is the second signal allowed through the sequencer,
precluding any possibility of contention for the first MERGE. If the second signal has not arrived
yet, the sequencer waits for it and then lets it through. Otherwise it goes through immediately. The
second signal reaches the TOGGLE and triggers the undotted output, which sends an output signal
on x . This signal also feeds back through the second MERGE to acknowledge the sequencer again,
allowing the cycle to repeat for two more inputs. Hence, a single x output is observed for each pair
of inputs.

2.4.3 Implications of this solution

This exercise draws to a close at last with this design. Unlike the previous attempts, there is nothing
to go wrong with this one. No combination of wire or component delays, however malicious or well
coordinated, can conspire to cause this circuit to malfunction, assuming only that they are finite and
non-negative. This condition is the intuitive essence of delay insensitivity, which can be appreciated

2.4. JUDGMENT DAY 39

Figure 2.11: A three way TOGGLE can be made from the ordinary TOGGLE and a MERGE by connecting
the wires with a little ingenuity on a TOGGLE-shaped breadboard.

fully at this point in view of the alternatives considered along the way (i.e., synchronous, bounded
delay, NCL, SI, QDI, fundamental mode, burst mode, and extended burst mode).

Although a DI implementation of a majority gate is shown to be possible by this exercise,
this implementation is more costly than what could be achieved in a no-holds-barred transistor
level design verified by analog simulation [24]. If majority gates are a known bottleneck for the
performance or area of project, investing in a custom designed primitive library module to that
effect may be justified.

A few final observations about this exercise set the agenda for the rest of the book.

• Each of the four solutions including the incorrect ones has been well supported by a hand-
waving argument. Some method of formal verification would be helpful to avoid misplaced
confidence.

• At each iteration, the circuit becomes less intuitive, leading ultimately to a solution justifiable
only in hindsight. Without automated synthesis or at least some systematic methodology, DI
design remains a black art.

• It should not be standard operating procedure to invent new DI primitives along the way to
every solution. A finite set of primitives sufficient for any purpose should be sought.

40 CHAPTER 2. WHY DELAY INSENSITIVE DESIGN IS CHALLENGING

Puzzle page

1. What else could go wrong in Figure 2.5?

2. What happens next in Figure 2.7?

3. A generalization of the TOGGLE primitive has
three outputs instead of two.

The first time it receives a signal, the 3-way TOGGLE acknowledges it by the dotted
output. The second time, it uses the middle output to acknowledge the signal, and
the third time, the bottom output. The cycle repeats after that. Improvise a 3-way
TOGGLE by wiring three ordinary TOGGLE primitives and a MERGE to the external
terminals shown in Figure 2.11 so as to leave a user none the wiser.

4. A change in the manufacturing process has made the MERGE primitive ten times
faster than the TOGGLE primitives. Modify the 3-way TOGGLE design above as needed
to compensate for the difference. (hint: This question is a kōan.)

5. What extra feature does the circuit in Figure 2.10 have that is not strictly required
by the 2-of-3 majority gate specification? (hint: What happens when there are three
concurrent input signals?)

a) Should we conclude that the circuit does not meet the specification? Why or
why not?

b) What simpler primitive than a sequencer could enable a more efficient design
that just meets the specification without exceeding it? (hint: Figure 13.7)

6. Modify the circuit in Figure 2.10 to make

a) a 2-of-4 majority gate

b) a 3-of-4 majority gate.

Assume the availability of a component library equipped with a sequencer, a TOGGLE,
and a MERGE having any required number of inputs or outputs.

7. A software manager wants a sequencer to give priority to a request R1 whenever
R1 and R2 occur simultaneously, but to grant them in the order received otherwise.
What issues should the hardware team raise in their next meeting?

Nothing is more practical than a
good theory.

Ludwig Boltzmann

C
H

A
P

T
E

R 3
THE LAY OF THE LAND

Taking a DI circuit design from an initial concept to a working implementation is generally too big
of a job to do in one step because there are too many details to remember and too many ways for
it to go wrong. Like an experienced caravan leader, the
competent designer stops at one or more intermediate
destinations to confirm that everything is in order up to
that point. There may be a choice of routes, with some
better than others depending on the circumstances [60].

For the DI designer, each intermediate destination is a
particular concrete representation of the design. Each of
these representations completely determines the design,
but emphasizes some aspects of it over others, both as
an aid to intuition and to facilitate automated checking
of desired properties. Furthermore, the transformations
from one representation to another are also automated
to avoid introducing errors en route.

The management of complexity through abstraction
and sound engineering methodology is nothing new, but
the great strength of DI design in this regard is its capacity to benefit from a set of well honed
end-to-end algorithmic tools that do not readily extend to asynchronous design styles with stronger
delay assumptions. For example, the question of whether a supposedly improved version of a circuit
is a compatible replacement for the original (i.e., a refinement of it) can be answered automatically
for DI circuits by methods described here without need of manual intervention or ad hoc proof
techniques. QDI and SI designers faced with similar questions would need to look further afield
(e.g., [32, 72, 232]).

41

42 CHAPTER 3. THE LAY OF THE LAND

The balance of this chapter gives an overview of the ways DI circuits may be specified and
understood, along with some related informal commentary on specific areas as a prelude to a more
rigorous development in Part II. The remaining aspects of a normal work flow, involving methods
for transformation, optimization, verification and review, are described in Chapter 4.

3.1 Overview

A graph of the main concrete representations of interest and the known transformations among
them is shown in Figure 3.1. This diagram is not a flow chart of steps to be followed in sequence,
but rather a map of the relationships among entities a designer may find useful for establishing
confidence in a design. Each solid arrow corresponds to a transformation algorithm discussed
somewhere in this book, and each box corresponds to a concrete representation.

The concrete representations are broadly divided between two groups, either human-writable or
compiler generated. The compiler generated group further includes a group of finite automata in
the familiar sense of recognizers for regular languages [115].

• The human-writable group constitutes the entry points for a designer to construct a specifica-
tion using a text editor or visual development environment.

• The compiler generated representations are not expected to be convenient to construct manu-
ally, but may provide useful feedback to a designer in graphical form or through automated
test results.

Some details are omitted from the diagram to avoid unnecessary clutter. An arrow from most
representations back to themselves could also be included because many of them permit semantics
preserving transformations to more efficient or compact forms. Certain intermediate representations
of no independent interest are also omitted.

Although it is not formally part of the theory as such, a box corresponding to the target technology
is also included in the diagram to show the most likely technology mapping path (from the flat netlist
representation). The nature of the target is beyond the scope of this book because it is technology
dependent and not specific to DI design. Nor is the dotted arrow discussed further in this book,
although it might correspond to an automated transformation as well. For an FPGA target, it might
encompass the final placement and routing phases. For a custom VLSI target, it might involve layout
generation. For some unknown future technology, it might be whatever the reader envisions.

3.2 The process model

Along with this assortment of concrete representations, it is also convenient to keep in mind an
abstract concept of a DI circuit independent of any of them. As noted in Chapter 2, an abstract
model of DI circuits as a function that statically maps inputs to outputs is inappropriate and
unworkable, however useful such a model may be for Boolean networks. Fortunately, there is a
comparable abstraction sufficiently expressive to capture the essence of a DI circuit in quite a natural
way, known as a process. There is a rich and sometimes impenetrable literature on this subject, but
fundamentally processes are a simple and readily approachable idea.

3.2. THE PROCESS MODEL 43

compiler generated

human-writable

finite automata

proceduraldescription

Petri net

reachabilitygraph transducer

relationaltracerecognizer
quiescenttracerecognizer

divergenttracerecognizer

flatnetlist

blockdiagram

targettechnology

Figure 3.1: automated transformations among DI circuit representations

44 CHAPTER 3. THE LAY OF THE LAND

3.2.1 Process concepts

A process can be understood informally as an extensional agent (or in engineering terms, a “black
box”) that interacts with its environment according to a specified protocol. The notion of a protocol
can be made precise for the most part by identifying it with the (usually infinite) set of sequences of
discrete, atomic actions deemed to be compatible with it.

• In any sequence of actions, some are taken by the environment and some by the process being
modeled.

• The actions of a process associated with a DI circuit and its environment are the manifestations
of signals on the input and output terminals.

• Input signals to the circuit correspond to actions taken by the environment, and outputs from
the circuit correspond to actions taken by the process.

3.2.2 Generality

By judiciously allowing some sequences into the set and excluding others, we can construct protocols
encoding arbitrarily complex constraints on the future actions of either the process or its environment
due to previous actions. Concurrency is expressed by admitting a multiplicity of similar sequences
differing only in the ordering among concurrent actions. The process abstraction is therefore
an extremely powerful one, subsuming functions, state machines, and many general purpose
computational models, all with remarkable conceptual economy. In addition, a process model is
more conducive to a satisfactory account of communication among multiple agents.1

3.2.3 Environments

The concept of an environment is essential to the understanding of a process, far more so than in
the case of other computational models. Our cultivated agnosticism regarding the inner workings of
a process allows only the interface with its environment as the recognized venue for its activity. For
the process associated with an individual component within a circuit, the environment is the rest of
the circuit. For two interacting circuits, the environment of each is the other circuit. For an isolated
circuit, the environment is the user. Similarly to people, a process that thrives in one environment
could falter in another. It is therefore essential to consider compatibility with an environment when
assessing correctness.

3.3 Block diagrams

As shown in Figure 3.1, the procedural description and the block diagram are two complementary
ways for a designer to describe a DI circuit. Block diagrams are a generic technique widely used
in many areas of engineering, whereas the procedural description outlined here is specific to DI
circuits. Any project may involve a combination, depending on the nature of the specification and
preferences of the designer. Typically procedural descriptions are suitable when the flow of control
is more cumbersome to describe than the dataflow, and block diagrams are more appropriate in
the alternative. Block diagrams are the topic of the remainder of this section, and the procedural
description is introduced in Section 3.6.

1Fairness properties and progress obligations can be problematic, but the rest will do nicely for now.

3.3. BLOCK DIAGRAMS 45

completion
detector

“

Figure 3.2: A subsystem in a block diagram is encapsulated in an opaque block identified by a
descriptive name (for example, a “completion detector”) and defined by its contents.

3.3.1 Notation

A block diagram is rendered as system of blocks interconnected by arrows. Although block diagrams
are often used informally in other disciplines, we will insist on the block diagram of a DI circuit
having rigorous semantics. Each arrow corresponds to a wire in the circuit, and each block represents
a constituent part of the circuit, best envisioned as a process. Circuit diagrams such as Figure 2.2,
Figure 2.8, and Figure 2.10 are block diagrams in which the blocks are either primitive DI components
or hidden combinations of them depicted as a unit, such as the sequencer in Figure 2.10. Because
blocks can be made up of multiple primitives, there might be more than one way to partition a given
circuit into blocks. It is left to the designer’s discretion to designate the block boundaries, but the
intent should be to decompose the design into parts serving individually meaningful purposes.

3.3.2 Methodology

A basic illustration of how a designer might use block diagrams wisely is sketched in Figure 3.2,
which shows a dual rail completion detector.2 To transmit two bits concurrently, two channels are
used, requiring two pairs of wires. To confirm the arrival of both bits, a circuit on the receiving
end needs to detect a signal from either wire of both pairs. The reader should take a moment to
convince himself or herself the circuit on the right of Figure 3.2 meets this need. Many instances
of a completion detector might be deployed in a large design. To avoid revisiting the same train
of thought repeatedly and to avoid cluttering the diagram, the designer abstracts the concept of a
completion detector as a single block, shown on the left of Figure 3.2.

Block diagrams are most effective when developed hierarchically, as illustrated in Figure 3.3.
Rather than constructing every block starting only from primitive components, blocks can be built by
combining smaller blocks into larger ones. Hierarchical block diagrams facilitate a certain flexibility
in design styles.

• Some designers may prefer a top-down design, whereby a course version of the diagram
consisting of just the main blocks is constructed initially without advance knowledge of their
precise semantics. Each of these blocks is successively elaborated until the specification is
complete.

2In a dual rail coded channel, a stream of 1’s and 0’s is carried by two wires. A signal sent on one of the wires
communicates a 0, and a signal on the other communicates a 1. [14, 293].

46 CHAPTER 3. THE LAY OF THE LAND

“ “

Figure 3.3: Blocks in a block diagram can be nested as an aid to abstraction.

• Other designers opt for a bottom-up design, whereby blocks performing simple operations
are constructed first, and subsequently assembled into larger configurations until the whole
system is specified.

• A lesser known alternative approach, sometimes called edge-in design, consists of a concur-
rent top-down and bottom-up design. Letting the big picture and the detailed view inform
each other, the designer is sure to arrive at a viable result when they meet in the middle.

Each of these design styles has its advantages and disadvantages. Mistaken assumptions tend to
be discovered later in top-down designs than in the others. Bottom-up designs are more prone than
the others to prematurely completed work needing to be discarded or revised subsequently. An edge-
in design can be difficult to plan or to delegate among a team, and may demand multi-disciplinary
expertise from an individual designer.

3.3.3 Flattening

By recursively substituting each composite block in a block diagram with the network of con-
stituent blocks it represents, a block diagram can be transformed automatically to a flat netlist (per
Figure 3.1). The flat netlist representation contains only
primitive components and their connecting wires, having
been stripped of any hierarchical or symbolic information
meaningful to the designer.

This transformation might be made when no further
modifications to the design are anticipated, as the last
step before a final technology mapping phase. While
the route from the block diagram to the target technology
via flat netlists is agreeably short, it bypasses any formal verification and could allow errors to
remain unnoticed until the product is finished, which would be expensive to correct by then. A
more prudent course might allow for a detour through safer territory, as we explore from this point
onwards through Chapter 4.

3.4. TOWARDS A PROCESS SEMANTICS 47

3.4 Towards a process semantics

Whatever the methodology, block diagrams are helpful for keeping a large design organized, and
they easily lend themselves to automated tool support. However, without some sort of a semantics
underlying them, they are not much of an advancement over drafting circuit diagrams on paper. We
need some way of establishing that a circuit will perform as intended. To this end, there are at least
three basic characteristics any worthwhile semantics should have.

• It should be prescriptive, meaning that it can be used to express the designer’s intention
about what a circuit should do in some simpler or more compact manner than the finished
circuit design itself.

• It should also be descriptive, in the sense of enabling an unambiguous automatic derivation
of what a given circuit really does.

• Furthermore, it should be analytical, in that it equips a designer to compare the intended
with the realized behavior, also preferably by automatic means.

3.4.1 Trace structural composition

It would be straightforward to attempt a process oriented semantics for block diagrams fulfilling
these three desiderata by specifying a chosen set of DI primitives as processes (according to some
formalized the notion of a process), and then by specifying a semantics for composition among
processes that corresponds to physical connection among blocks. However, pursuing this course
too naively could lead to unforeseen difficulty. The typical construction goes something like the
description below, and a deconstruction follows in Section 3.4.2.

1. Ignoring cosmetic differences among various sources for the moment [55, 72, 80, 128, 171,
262, 288, 294], we formalize a process as a trace structure pA, Tq with a finite alphabet
A partitioned into disjoint input and output alphabets I and O, and a set T P A˚ of traces,
containing finite sequences of symbols from the alphabet.

2. To define composition, suppose two trace structures X “ pAX , TX q and Y “ pAY , TY q have
input alphabets IX and IY , respectively, and output alphabets OX and OY , respectively (i.e.,
AX “ IX Y OX and AY “ IY Y OY). Their composition Z “ pAZ , TZ q should interact with its
environment the same way the circuits represented by X and Y would interact jointly with
their environment if they were thrown together somehow.

a) The inputs and outputs exposed by Z therefore should be the same as those those exposed
by X and Y for the most part, except in the case of an input to X being an output from
Y or vice versa. Any terminal that is an input to one of X or Y and an output from the
other becomes neither an input nor an output of their composition Z , but an internal
connection hidden from the environment instead. Hence we define AZ as the union of
input alphabet IZ and output alphabet OZ , where they satisfy

IZ “ pIX ´ OY q Y pIY ´ OX q (3.1)

OZ “ pOX ´ IY q Y pOY ´ IX q. (3.2)

48 CHAPTER 3. THE LAY OF THE LAND

a

b

c

d

e

f

a

e

g

f

b

h

f

d

hg

a

c

X

Y

Z

Figure 3.4: In a trace structural composition, common inputs a are forked, common outputs f are
merged, and signals b and e that are both inputs and outputs are connected internally and hidden.

b) The traces TZ of the composition Z are given by the interleaved traces of X and Y
running concurrently and synchronized with each other by the now hidden symbols, if
any (sometimes called the weave of TX and TY). The following definition captures this
idea more formally.

TZ “

t 1 P A˚
Z | Dt P pAX Y AY q˚. t � AX P TX ^ t � AY P TY ^ t 1 “ t � AZ

(

(3.3)

The notation t � A for a trace t and an alphabet A means the trace obtained by deleting
all non-members of A from t, also known as the projection of t onto A. In Equation 3.3,
the component processes X and Y participate in a trace t with each other, but the
environment sees only t 1, which is t with the hidden symbols suppressed.

If the equations above seem complicated, it may be helpful to regard them simply as a precise
way of describing the situation depicted in Figure 3.4 in general terms. Here we have two trace
structures X and Y whose input alphabets IX and IY are respectively ta, b, cu and ta, e, gu, and
whose output alphabets OX and OY are respectively td, e, f u and t f , b, hu. What should it mean to
compose X and Y when these alphabets intersect? For better or worse, the theory stipulates that
the shared input a is forked to both, the shared output f is merged from both, and the signals b
and e are connected between them and hidden from the environment. The combined process is
whatever results from X and Y running normally to interact with each other and the environment,
but with b and e no longer visible externally.

3.5. PETRI NETS 49

3.4.2 Deficiencies of a naive trace structural composition

Although this theory may look good on paper, its shortcomings yield to a moment of scrutiny, starting
with the concept of a trace set.

• For any process of practical interest, the trace set T is infinite, and hence impossible to exhibit
directly in any rigorous sense or to manipulate without further embellishment to the theory,
such as regular expressions, process algebras, or something more imaginative.

• If a trace set is interpreted to represent all acceptable interactions between a process and
its environment up to a point in time, it fails to express a crucial distinction. A trace set
ta, ab, aba, abab . . . u could represent a process that always answers an input of a with an
output of b, or could just as well represent one that chooses non-deterministically to refuse
all further communication at any moment. If this point seems pedantic because the latter
obviously would never be intended or expected in practice, then it is arguably even more
important for a semantic model to be able to raise the alarm when it happens. In the jargon
of the trade, the trace set is said to be unable to represent progress obligations.

• With this interpretation of a trace set, it is also impossible to construct a useful refinement
relation (for checking whether one circuit can be a compatible replacement for another).

• A careful reading of Equation 3.3 reveals that any shared inputs between circuits in a compo-
sition are effectively broadcast to both, but we would soon find out the hard way that some
form of arbitration or alternation between them would be far more useful in practice, and it
boggles the mind to contemplate generalizing Equation 3.3 accordingly.

To top off all of these issues, the definition of composition in Equation 3.3 suggests no efficient
procedure for computing it. This style of semantics as it stands therefore is neither prescriptive, nor
descriptive, nor analytical in the sense described at the beginning of Section 3.4.

3.5 Petri nets

A more holistic diagnosis of the present difficulty might be that the semantic gap between block
diagrams and processes either precludes a direct correspondence between them or incurs a risk
of oversimplification. To make the situation more manageable, a Petri net can be used as an
intermediate representation. As a graphical formalism, Petri nets lend themselves to easy translation
from a block diagram. On the other hand, a Petri net induces a process model in a straightforward
way that is both finitely describable and more expressive than a trace set alone.

3.5.1 Notation and conventions of Petri nets

A substantial body of literature has accumulated around Petri nets, but they are based on fundamen-
tally simple ideas. A Petri net is envisioned informally as a collection of vertices, with some vertices
connected to others by arcs. There are two kinds of vertices: transitions and places. Transitions can
be connected only to places and places can be connected only to transitions. Every arc is considered
to have a direction from some vertex to some other one.3

3Some sources define Petri nets as directed bi-partite graphs, but a construction in terms of adjacency matrices is equally
valid, and the choice between them is arguably a matter of implementation [201].

50 CHAPTER 3. THE LAY OF THE LAND

a b

a b

a b

a b

a b

a b

time

Figure 3.5: animation of six snapshots of a simple Petri net, showing a token absorbed and/or
emitted each time a transition fires, until the Petri net reverts to its original tokenless condition

Depiction

Conventionally a Petri net is drawn with circular places and rectangular transitions, and with the
arcs depicted as arrows, as shown in Figure 3.5. For our purposes, some transitions are labeled
as inputs or outputs, with inputs in green and outputs in red, and the remaining transitions are
anonymous. We think of inputs and outputs as tangible entities capable of exchanging signals with
their environment. The rest of the Petri net exists only as a drawing on paper or pixels, but explains
how the behaviors of the inputs and outputs are related.

Operation

To express this relationship, the Petri net is marked with movable tokens depicted as black balls,
like playing pieces in a board game, which advance across transitions or rest in places according to
these simple rules.

• Whenever every incoming arc on a transition is connected to a place marked with a token,
that transition is said to be enabled.

3.5. PETRI NETS 51

a b a b

Figure 3.6: Petri nets clearly distinguish betwen two processes with similar interfaces but different
progress obligations. The left Petri net always acknowledges an input on a with an output on b,
which the right one need not.

• To avoid any misunderstanding, we stipulate that transitions with no incoming arcs are always
enabled, and any transition that is not enabled by either of these criteria is disabled.

• Whenever any transitions are enabled, the next thing to happen will be for exactly one of the
enabled transitions to fire.

• When a transition fires, every place connected to any of its incoming arcs loses a token, and
every place connected to any of its outgoing arcs gains a token.

• The rearrangement of tokens due to a transition firing causes transitions to be newly enabled
or disabled accordingly.

An example of a Petri net

To convey a feel for the way a Petri net works, Figure 3.5 depicts an animation of six possible
consecutive states for a Petri net consisting of a simple linearly connected sequence of transitions
and places. In the first state shown at the top, only the input a is enabled. Eventually it must fire, as
shown in the next image below. In so doing, it deposits a token in the first place on the left, which
enables the firing of the anonymous transition to its right. As a result, the token is evacuated from
the left place and deposited in the middle, enabling the next anonymous transition. When that one
fires, the token moves to the right again, enabling the output b, which then fires and removes the
token.

3.5.2 Expressiveness of Petri nets

There is much more to be said about Petri nets, but this incomplete description will suffice for now
as we return to some of the questions that motivated their introduction. The cumulative effect of
the Petri net in Figure 3.5 is to constrain tokens to propagate from left to right, causing every firing
of a to be followed inevitably by a firing of b, so that the set of possible firing sequences (projected
onto the set of observable transitions) spells out the trace set ta, ab, aba, abab . . . u.4 A charitable
reader might grant that Petri nets can be constructed to express a great variety of trace sets, but to
what end?

4subject to a provision restricting consideration to so called 1-safe firing sequences, to be described on page 53, and
neglecting the empty trace ε

52 CHAPTER 3. THE LAY OF THE LAND

a b

a b

a b

a b

a b

Figure 3.7: Petri nets model non-determinacy. From the marking above, either course may be taken,
depending on which transition fires next.

Part of the answer can be seen in Figure 3.6, which shows two Petri nets side by side. Similarly to
the Petri net in Figure 3.5, each of these Petri nets induces a trace set ta, ab, aba, abab . . . u. However,
the one on the left always acknowledges an input of a with an output of b, while the one on the right
need not. A walk through the latter shown in Figure 3.7 demonstrates the reason. An input of a
deposits a token in the upper place, which enables both the output transition b and the anonymous
transition. The choice of the next transition to fire is non-deterministic. If the anonymous transition
fires, no output on b is received by the environment. Hence, a Petri net model expresses progress
obligations or lack thereof in a way that eludes trace sets alone, at least as they are conceived up to
this point (cf. Section 3.4).

3.5.3 Compositionality of Petri nets

Another way Petri nets come out ahead of a naive trace structural semantics for block diagrams is by
making composition easier to implement than Equation 3.3. That is, a Petri net model for a network

3.5. PETRI NETS 53

a

b

cca
b

“

Figure 3.8: Petri net model of a MERGE primitive

of connected circuits is derivable from the models of the individual circuits without any complex
calculations required. Although we have yet to take proper account of all DI primitives and their
Petri net models, a sneak preview of a simple but important case supports this claim.

Model of a primitive

The Petri net model for a MERGE primitive is shown in Figure 3.8. Why is the model as shown and
not anything else? The firing of either input a or b would deposit a token in the place, which would
enable the output c to fire subsequently, as expected of a MERGE. Concurrent inputs to a MERGE are
prohibited, as explained on page 35, and the Petri net model reflects this requirement as well. If the
input transitions a and b both fired without the output c firing inbetween, the place would be filled
with two tokens. We can and will consider any marking with multiple tokens in the same place a
sign that something has gone wrong, and call it an unsafe marking. Any firing sequence that could
lead to an unsafe marking is outside the range of behavior the Petri net expresses. Hence, the Petri
net model as shown tells us everything there is to know about a MERGE.

Model of a composite circuit

Although it is simple enough to construct a Petri net model for a primitive component such as a
MERGE and to justify it by reasoning as above, it would be unproductive to pursue a similar analysis
for every circuit we design. For example, it should be a consequence of the semantics and not a
matter of hand waving or ad hoc axiomatization that a tree of connected MERGE primitives behaves
as a multi-way MERGE.

How well the Petri net model succeeds in this regard can be judged from Figure 3.9. As shown
in the figure, composition of Petri nets consists of replacing each pair of similarly labeled input
and output transitions with a single anonymous transition. This operation is the graphical analog
of Equation 3.1 and Equation 3.2. Moreover, the trace structure induced by this construction
corresponds precisely to the weave of the two constituent trace structures as given by Equation 3.3,
not to mention the behavior of the three way MERGE circuit it represents. That is, the firing of
any input a, b or d leads directly or indirectly to the firing of the output e. Any consecutive (or
simultaneous) input firings without an intervening output can cause multiple tokens to accumulate
in the same place and are therefore prohibited.

Readers having a certain mathematical disposition may find it helpful to view Figure 3.9 as an
example of a commutative diagram, which in this form asserts an essential sanity check on any
semantic model aspiring to a property known as compositionality. Simply stated (maybe a little
too simply for some tastes), this property requires the semantics of any compound entity to be fully

54 CHAPTER 3. THE LAY OF THE LAND

a

b

c

c

d

e

a

b

d

e

composition

a
b

c
d

e

c a
b

d
ephysical

connection

abstraction
separately

abstraction
together

Figure 3.9: A Petri net model accurately describing a network of interconnected circuits is trivial to
construct from their respective individual Petri net models by connecting them the same way. This
trick does not work with state machines.

determined by the respective semantics of its constituent parts, disallowing any dependence on
context, scope, environment, phase of the moon, etc. [276]. The diagram expresses this idea by
showing that obtaining the Petri net models for two circuits independently and then composing the
models leads to the same result as connecting the circuits first and then finding a Petri net model
for the connected circuit.

3.5.4 Limitations of Petri nets

Using Petri nets as an intermediate representation alle-
viates some of the shortcomings of a naive trace based
circuit semantics, but not all. It would be fair to claim
that it meets the descriptive criterion mentioned in Sec-
tion 3.4 because Petri nets readily capture the behavior of arbitrarily complex circuits with ease.
However, the Petri net representation is not convenient in itself for evaluating refinement or equiva-
lence between circuits (not least because Petri nets with different innards could exhibit the same
outwardly observable behavior), and hence is less effective as an analytical semantic model. Nor is
the Petri net representation profitably prescriptive. The effort required to construct a Petri net model
manually to some non-trivial behavioral specification is comparable to that of manually designing a

3.6. PROCEDURAL DESCRIPTION 55

Type Mnemonic Description

T Ñ D get receive a signal
put send a signal

pDˆDq Ñ D seq do one after the other
par do both concurrently
alt do either but not both
env do no more than required to interact

pD Ñ Dq Ñ D fix act as the solution to a recurrence

Table 3.1: Combinators defined as functions operating on signal terminals of type T and DI processes
modeled by Petri nets of type D are the primitive operations of a procedural circuit description
formalism.

circuit to that specification.
Keeping in mind that the semantic framework outlined in Figure 3.1 employs various mutually

fungible concrete representations, we need not count these limitations on Petri nets as serious
obstacles. The need for a prescriptive semantics is met by block diagrams along with the procedural
description to be explained next. The analytical aspects are discussed starting in Chapter 4.

3.6 Procedural description

By an approach complementary to block diagrams also indicated in
Figure 3.1, a procedural narrative determines a target representation
similarly to a software development work flow. While the ultimate
target is hardware, Petri nets serve as an intermediate representation
here as well, both to maintain a layer of technology independence,
and to promote interoperability with block diagram specifications.

The translation is fairly straightforward. Table 3.1 shows a small fixed set of combinators chosen
to facilitate circuit specification. They operate on signal names and Petri net fragments to build
them into useful arrangements and are suitable as the core primitives for the back end of a compiler.
A front end could expose these operations in a domain specific language either by leveraging an
established DSL framework [66, 209, 215, 296, 297] or a parser generator tool [74, 190, 217], or
alternatively just by way of a no-frills hand-coded recursive descent parser [7].

3.6.1 Combinator examples

Without delving into the formal semantics at this point, we can get an idea of the translation method
by exploring some of the combinators listed in Table 3.1 informally. By design, they always generate
Petri net fragments with initially marked places having no incoming arcs. The combinators also
designate certain places as final, which have no outgoing arcs. The final places are where the tokens
in a Petri net fragment should end up if they start in the initial places and follow the rules from
page 50. The final places are depicted with shading to suggest a golf course hole or any comparable
potential well in the page surface.

56 CHAPTER 3. THE LAY OF THE LAND

a

get a

b

put b

a

b

seq

seq pget a,put bq

Figure 3.10: Petri net fragments generated by the input, output, and sequential composition
combinators, shown with the initial places at the top and the final places (indented) at the bottom

Sequential composition

The definitions of the get , put and seq combinators follow intuitively from these invariants as shown
in Figure 3.10. The initially marked place is shown at the top of each Petri net fragment, and the
final place at the bottom. For these examples, it is helpful to imagine a thread of execution carried
by downward flowing tokens, and signals carried by tokens flowing from left to right. A Petri net
fragment of the form get a accepts a single input signal of a and then reaches a terminal marking,
whereas put b sends a signal by firing an output transition b and then terminates.5 The sequential
composition of two Petri net fragments is obtained by connecting the final places of the first to the
initial places of the second through a newly created transition, and unmarking the latter. In this
way, the second Petri net fragment is blocked from executing until the first one finishes.

Parallel composition

Parallel composition is simpler than sequential composition because there is no need for any blocking.
Given two Petri nets with no inputs or outputs in common, the par combinator creates a Petri net
containing both in their entirety as disconnected components. If an input to one is an output from
the other, the input and output are fused and anonymized (cf. Figure 3.9). It can also be useful to
combine two Petri net fragments where the same signal is an input to both or an output from both.
For shared outputs, the effect is the same as if the outputs were combined by a MERGE. When an
input is shared, any signal on that input can be absorbed by either Petri net fragment. The Petri net
model expresses arbitration between shared inputs in an obvious, natural way compared to a trace

5Actually, the output transition is enabled at the same time the final place is marked and therefore fires only subsequently,
but this ordering of internal events has no observable consequences.

3.6. PROCEDURAL DESCRIPTION 57

P

Q

a

b

Pa

b

c

Q

c

a

b

par

Figure 3.11: how the par combinator for Petri net fragments P and Q merges shared outputs b,
arbitrates between shared inputs a, and hides a shared input and output c (cf. Figure 3.4)

58 CHAPTER 3. THE LAY OF THE LAND

structural semantics, dispensing with arbitration problem mentioned in Section 3.4. These three
cases are illustrated in Figure 3.11. Similar conventions also apply to shared signals with the seq
combinator.

3.6.2 Repetition

The sequential composition example in Figure 3.10 has only the finite trace set tε, a, ab, abau (where
ε is the empty trace). No more than one output signal of b is ever emitted, and no more inputs
of a after the second are acceptable. Obviously a circuit built to this specification is not useful
in practice. In general, any useful circuit that works today should also work tomorrow. The fix
combinator solves this problem by generating cyclic Petri net structures (whose details need not
concern us at the moment) and could be used to implement loops or recursion in a higher level
language. Alternatively, it could be exposed directly in a lightweight functional compiler front
end making reasonable provisions for defining and referring to Petri net-valued functions in the
language. Understanding how to use the fix combinator requires a quick sketch of the theory behind
it.

Lambda abstraction

Probably the oldest and still unsurpassed programming language feature for expressing functions
“anonymously” (i.e., without having to name them) is lambda abstraction, especially if there is a
need for functions that operate on other functions (so called higher order functions). Here is a
crash course on lambda abstraction.

1. To define a function f that takes a number as an input and returns the successor of that
number as a result, we write f “ λx . x ` 1. This expression can be read as a recipe to
compute the function f by substituting its argument for the variable following the λ (Greek
letter lambda) in the formula following the dot, and returning whatever answer we get by
evaluating the formula.

2. Higher order functions are made from nested lambda expressions. An expression like h “

λk. λx . x ` k defines h as a second order function, in that it takes a number as an argument
and returns a function as a result. To find hp42q, we substitue 42 for k (the outermost variable)
and get λx . x ` 42, which is still a function, but now a first order function that adds 42 to its
argument.

Specifying these rules properly and covering all of the edge cases leads to a formal system of symbol
manipulation (i.e., a calculus) known as lambda calculus, a foundational topic in computer science
but not one central to this text.6

Fixed points

Using lambda abstraction, we could define a function f that takes a Petri net fragment as input, and
returns a Petri net fragment as a result.

f “ λp. seq pseq pget a,put bq, pq

6See [236] for an introductory tutorial, [18] or [110] for a canonical reference, and [3] for an advanced but lucidly
written treatment with implications for programming language semantics.

3.6. PROCEDURAL DESCRIPTION 59

There is nothing paradoxical or self-referential about f . Given any Petri net fragment x , it simply
returns a Petri net fragment that waits for an input of a, outputs b, and then does whatever x does.

f pxq “ seq pseq pget a,put bq, xq

The next step to understanding the fix combinator is to ask the Zen-like question of what it would
mean for a Petri net fragment w to satisfy w “ f pwq. That is,

w “ seq pseq pget a,put bq, wq

Substituting the right hand side for w in the right hand side, we have

w “ seq pseq pget a,put bq, seq pseq pget a,put bq, wqq

“ seq pseq pget a,put bq, seq pseq pget a,put bq, seq pseq pget a,put bq, wqqq

...

Such a w, if it existed, would be something like an infinite chain of alternating Petri net fragments
of the form get a and put b, with the final place of each fragment connected to the initial place of
the next by a transition, similarly to Figure 3.10, and shared signals combined as in Figure 3.11. In
this way, it would express the behavior of a circuit that acknowledges an input a with an output b
infinitely many times.

Given a function f and an argument w satisfying w “ f pwq, we call w a fixed point of f (because
transforming it by f leaves it unchanged). Fixed points are not always impossible in mathematics,
but it is usually taken as part of the formal definition of a Petri net that it should be finite, so no
such w can exist as a Petri net fragment. Nor would it be useful if it did, being impossible to write
down or to simulate.

Pseudo-fixed points

Despite this technical issue, it is convenient to think of the fix combinator as one that constructs fixed
points to order. To specify a circuit with infinitely repeatable behavior, we could write something
like the following.

w “ fix λp. seq pseq pget a,put bq, pq (3.4)

Although w is not a fixed point of the function λp. seq pseq pget a,put bq, pq in any formal sense,
for practical purposes it exhibits the same observable behavior as the fixed point would. The fix
combinator creates a cycle of arcs in the Petri net, but typically the cyclic structures are removed by
compiler optimizations where possible. In combination with this and other optimizations, w could
be transformed to the Petri net shown on the left of Figure 3.6.

For functional programming aficionados, it is also straightforward to use the fix combinator to
encapsulate common patterns of control flow, such as the following definition of an infinite loop
constructor.

loop “ λp. fix λ f . seq pp, f q (3.5)

This definition of a loop combinator allows the following simplification of Equation 3.4, as the reader
is in a position to verify.7

w “ loop seq pget a,put bq

7hint: λp. hppq is the same as λ f . hp f q

60 CHAPTER 3. THE LAY OF THE LAND

a

b

P

c

d

Q

a c

b d

alt

alt pP,Qq

Figure 3.12: In the simplest case, the alt combinator fuses the respective initial and final places of
its operands.

3.6.3 Conditional execution

In addition to doing things sequentially, concurrently, and repeatedly, circuits sometimes need to
be selective about what they do. The alt combinator enables this behavior. Given two Petri net
fragments, the alt combinator embeds them in a structure that allows one of them to execute and
blocks the other. Because all Petri net fragments generated by the combinators in Table 3.1 have
initial places with tokens in them, blocking one before it begins can always be done by evacuating
the initial places.

Choices determined by the environment

In the simple case of two Petri net fragments each having only one initial place and one final place,
the alt combinator constructs a Petri net fragment containing copies of both fragments with these
places shared between them. An example is shown in Figure 3.12. The Petri net P is equivalent
to seq pget a,put bq after routine local optimizations (cf. Figure 3.10), and Q is equivalent to
seq pget c,put dq. Because the token in the shared initial place can go only one way or the other,
the combination alt pP,Qq either acknowledges an input of a with an output of b, or acknowledges

3.6. PROCEDURAL DESCRIPTION 61

an input of c with an output of d, but not both. If the environment were to send both inputs, only
one would be acknowledged, with the choice being made non-deterministically by the circuit if
necessary. However, in most designs including this one, the intended effect is for the flow of control
through the Petri net to be directed by signals received from an appropriate environment.

Provision for atomicity

In the general case, Petri net fragments may have multiple initial and final places, as any Petri
net fragment resulting from the par combinator typically does. This case is more complicated for
the alt combinator because of some extra housekeeping needed to ensure mutual exclusion with
atomicity (i.e., “all or nothing” selection of one alternative or the other). Provision for the general
case is part of the formal specification of the alt combinator in Section 5.4.5, which this informal
discussion omits. As a result, the necessary invariants are maintained automatically whenever the
alt combinator is invoked, without any extra effort required of the designer.

3.6.4 Adaptation to an environment

While it is always important to meet the demand for circuits of ever increasing sophistication, there
can also be cost benefits in making them no more capable than necessary for their assigned job,
and sometimes even performance benefits as well if
doing so makes them smaller and faster. For example,
a common practice in conventional logic design is to
exploit any input conditions expected not to occur
in deployment (so called “don’t care” conditions) by
designing the circuit to respond to them in whatever
way simplifies the implementation [38, 53].

In a similar vein, it is sometimes convenient to
overspecify DI circuits at first and then to relieve
them of unnecessary obligations afterwards. A nat-
ural way of proceeding is to describe the expected
environment for a circuit using process combinators just as we would describe the circuit, except
that the inputs to the circuit are the outputs from the environment and vice versa. The effect of
using the env combinator to combine the circuit with the environment is a specification similar
to the original circuit but incapable of any behavior not exercised by interacting with the given
environment.

When to use the env combinator

Even though this approach seems to require writing two specifications instead of one, it is often a
net win. The environment specification is typically much simpler than the circuit, comparable to
a test driver in software development. Moreover, in some realistic applications, especially those
involving circuits that interact with multiple non-interacting peers, attempting to specify exactly the
minimum required behavior of a circuit by itself is considerably more difficult than achieving the
same effect by approximating it in conjunction with an environment. The classic example is the
so called nacking arbiter [133], which is something like a non-blocking version of the sequencer
described in Section 2.4.

62 CHAPTER 3. THE LAY OF THE LAND

env

par

loop

seq

put

Ack

seq

get

G2

put

R2

loop

seq

put

Ack

seq

get

G1

put

R1

loop

seq

get

Ack

alt

seq

put

G2

get

R2

seq

put

G1

get

R1

Figure 3.13: abstract syntax of the procedural description of a 2-way sequencer

Example usage of the env combinator

A simpler example than the nacking arbiter is a 2-way version of the sequencer as given by the
specification shown in Figure 3.13, which is an abstract syntax tree such as a compiler might use to
represent the following process combinator expression. This expression also incidentally exemplifies
the full set of combinators including fix by way of Equation 3.5.

S “ env p (3.6)

loop seq palt pseq pget R1,put G1q, seq pget R2,put G2qq,get Ackq,

par ploop seq pseq pput R1,get G1q,put Ackq, loop seq pseq pput R2,get G2q,put Ackqqq

In this example, the environment is a pair of concurrent processes, each repeatedly and independently
issuing requests and acknowledgments to the sequencer. Although it may not be obvious, there is a
difference between the sequencer alone

T “ loop seq palt pseq pget R1,put G1q, seq pget R2,put G2qq,get Ackq (3.7)

and the combined system S. Due to the Petri net semantics, the sequencer specification T by itself
without the environment would mean an acknowledgment arriving in advance of an initial request
should be buffered until needed. Although it would do no harm, this capability is not used in practice,
so the environment specification revokes it, thereby allowing for a less costly implementation.

Implementation of the env combinator

Despite its expressive power, the implementation of the env combinator is strikingly simple, at least
in the special case where it occurs at the outermost or root level of a process combinator expression.
As shown in Figure 3.14, it is similar to the par combinator except that it does not anonymize any
shared transitions (cf. Figure 3.11). By forming a closed system containing the circuit specification
and its environment, this operation also drastically reduces the space of reachable markings in

3.6. PROCEDURAL DESCRIPTION 63

P

a

b

c

d

E

a

b

c

d

P

a

b

c

d

E

env

Figure 3.14: For Petri net fragments P and E, the combination env pP, Eq behaves like P only as far
as necessary to interact with E.

practice, which has certain computational benefits. In the general case, an additional semantics-
preserving transformation described in Chapter 7 is automatically invoked along with the env
combinator to maintain the invariant of open input and output transitions, as required when the
result is used as an operand to other combinators.

64 CHAPTER 3. THE LAY OF THE LAND

Brainteasers

1. A mathematically minded colleague seeks to discover the algebraic laws governing
process combinators. He proposes a “do nothing” process given by

skip “ seq pput x ,get xq

as an identity element for the seq and par combinators, in that
the following behavioral equivalences should hold for all
processes P.

P ” seq pskip, Pq ” seq pP, skipq

P ” par pskip, Pq ” par pP, skipq

a) Sketch the Petri net model of the skip process. What happens to the x? (hint:
See Figure 3.11.)

b) What would be another way to define a “do nothing” process?

c) Define a process like skip, but having the algebraic properties of an identity
element for the alt combinator. What would be a good name for it?

d) Which of these equivalences could fail in some contexts? Demonstrate by
constructing a process combinator expression that can behave differently when
the substitution is made. (hint: It involves the alt combinator and may call
for a sketch or two. See the next question for inspiration.) What explains this
apparent loss of compositionality? (See page 53 for a definition.)

2. A contract programmer tasked with implementing a process combinator library
proposes simplifying the specification by requiring all Petri net fragments to have
exactly one initial place and exactly one final place. This condition is easily met
by redefining the par combinator as shown in Figure 3.15, and has the purported
benefits of making the alt combinator implementation always resemble the simple
case of Figure 3.12 and beautifying the algebraic laws.

a) Sketch the Petri net model of the process P using the proposed par combinator
definition.

P “ alt pseq pget a,put xq, seq ppar pget b,get cq,put yqq

b) Based on the expression, what should happen if the environment sends a to P?

c) Based on the sketch, what might really happen instead?

d) Does the contractor have a good idea?

3. Construct an exact behavioral equivalent to Equation 3.6 without using the env
combinator. (hint: Equation 16.6) What could be done in principle to convince a
skeptical reviewer of the equivalence?

3.6. PROCEDURAL DESCRIPTION 65

P Q P Qpar

Figure 3.15: An alternative definition of the par combinator maintains a single initial and final place
as an invariant for all Petri net fragments (cf. Figure 3.11).

Think not those faithful who praise
all thy words and actions, but those
who kindly reprove thy faults.

Socrates

C
H

A
P

T
E

R 4
SUCCESS

By opting for a Petri net model over a naive trace structural semantics, we gain a useful repertoire
of computationally efficient composition operations, interoperable translation targets for textual
and graphical circuit description formalisms, and a satisfactory
treatment of progress obligations. It now remains to incorpo-
rate analytical features into this semantic framework so that
questions bearing on correctness can be settled, thereby ad-
dressing the last remaining point noted in Section 3.4.2. For
this purpose, we resume a line of investigation toward a work-
able extensional process model involving trace analysis.

4.1 Reachability graphs

A first step in this direction is the transformation of a Petri net
to its verbose relative known as a reachability graph. The
reachability graph is a graph in the formal sense of a collection
of vertices connected by directed edges. Each vertex in the
reachability graph corresponds not to a place or transition in
the Petri net, but to an instance of the whole Petri net with a
particular marking (i.e., a particular assignment of tokens to
places). An edge from one vertex in the reachability graph to
another indicates that the marking associated with the latter is obtained from that of the former by
the firing of an enabled transition. Not every possible assignment of tokens to places is necessarily a
reachable marking. Only the initial marking and those obtained directly or indirectly from it by
firing enabled transitions are included in the graph, hence the terminology.

67

68 CHAPTER 4. SUCCESS

G1

G2

R1

Ack

R2

Ack

R1

R2 G1

G2

“

Figure 4.1: Petri net model of a 2-way sequencer in an environment

4.1.1 Example of a reachability graph

For concreteness, we can make further use of the sequencer example from Section 3.6.4. Shown
in Figure 4.1 is a Petri net model resulting from Equation 3.6 with its initial marking, after some
aggressive optimization using Petri net reductions [158, 219, 253]. In the initial marking, the
transitions R1 and R2 are enabled. Firing either of them results in a new marking. Each of these
new markings is therefore connected to the initial marking by an edge in the reachability graph. We
may infer that the reachability graph contains at least the three vertices in Figure 4.2 connected
as shown. However, the graph does not end here, because each of the new markings contains two
enabled transitions. Firing them leads to other markings that need to be added to the graph, and
these lead to further markings. Continuing until no further markings are found leads to the graph
in Figure 4.3.

4.1.2 Reachability graph algorithms

Building a reachability graph is costly but straightforward in principle by generalizing from this
example to Algorithm 4.1. An algorithm like this one might not terminate if unsafe markings are
explored (see page 53) because in that case arbitrarily many tokens could accumulate in the same
place, with each multiplicity constituting a distinct marking. However, termination is guaranteed
by refraining from enumerating the successors of unsafe markings, which contribute no further
information about the behavior the of the system being modeled. (This issue does not affect the
current example, wherein all reachable markings are safe.)

Because reachability graph sizes tend to increase exponentially with those of the of the Petri nets
associated with them, more sophisticated algorithms than this one are needed in practice to cope
with them effectively. One well known family of algorithms is based on the stubborn set method
[241, 290, 291, 292] another, the sleep set method [98], and another, the ample set method [227],
all of which can be classified as partial order reduction methods [59]. These aim to save time by
generating only a subset of the reachable markings while trying not to miss those deemed relevant
to the property under consideration (e.g., safety, liveness, or in our case, language preservation).
Orthogonal to these efforts, data structures suitable for compact storage and fast retrieval of large

4.1. REACHABILITY GRAPHS 69

G1

G2

R1

Ack

R2

G1

G2

R1

Ack

R2

G1

G2

R1

Ack

R2

...
...

...
...

R1 R2

R2 R1

Figure 4.2: The reachability graph of the sequencer in Figure 4.1 is enumerated starting from the
initial marking by searching for enabled transitions and firing them. Each vertex represents a distinct
marking.

70 CHAPTER 4. SUCCESS

R1 R2

R1 G2

G2 R1 R2 Ack

Ack R2 R1 Ack R2

G1 R2

Ack R1 R2 G1

R1 Ack R2 AckR1

R1 R2
AckAck

R1R2

R2 R1

R1R2

Figure 4.3: Extending Figure 4.2 as far as possible leads to the full reachability graph. Edges due to
named transitions are labeled accordingly.

sets of markings allow for the solution of larger problems than would be feasible otherwise (in many
cases). These include binary decision diagrams [41] and related methods involving hierarchical
decomposition [45, 56].

Further optimizations are possible if we decouple the reachability graph from the Petri net model
by relaxing the requirement of a precise correspondence between vertices and markings. This
flexibility permits another small step toward extensionality by upgrading the reachability graph to
an independent description of the process, amenable as such to comparable notions of semantics-
preserving transformation. A straightforward adaptation of the standard textbook algorithm for state
machine minimization by partitioning [115], whereby behaviorally equivalent states are merged,
does the same for a reachability graph. This optimization entails the merger of all unsafe markings,
and all markings connected to an unsafe marking by an output or an unlabeled transition, which
for practical purposes are also unsafe. Safe markings reachable as a result only through unsafe
markings may be deleted. Furthermore, most unlabeled edges can be removed according to a simple

4.2. THE TRANSDUCER MODEL 71

Input: An initially marked Petri net
Output: A reachability graph

1: Create the graph of a single vertex with the initial marking.
2: repeat
3: Select an unvisited vertex N with marking M from the graph.
4: if M is safe then
5: for each transition T enabled in M do
6: Generate a marking M 1 from M by firing T .
7: if no vertex with marking M 1 is already in the graph then
8: Add a vertex with marking M 1 to the graph.
9: Add an edge to the graph from N to the vertex with marking M 1.

10: Mark N visited.
11: until there are no more unvisited vertices in the graph

Algorithm 4.1: one way to build a reachability graph

rewrite rule without altering the observable firing sequences encoded by the graph. The effect of
these additional optimizations on the current example is shown in Figure 4.4.

4.2 The transducer model

Even in its most compact form, the reachability graph leaves something to be desired as an aid
to intuition or as an object of analysis. Its real purpose is to be an intermediate representation
bridging the gap between a Petri net and a transducer model (cf. Figure 3.1). A transducer model
can be made more compact than the corresponding reachability graph by labeling its edges with
sets of concurrent signals if their order is immaterial. Significant portions of the reachability graph
concerned with expressing interleaving among signals are unnecessary in the transducer, leading
to a graph with fewer vertices as shown in Figure 4.5, yet another step removed from Petri net
markings.

The algorithm to construct a transducer starts with an initial version isomorphic to the optimized
reachability graph excluding unsafe markings, which are not explicitly represented in the transducer.1

In the initial version, each edge is labeled with at most one input or output signal, as in the reachability
graph. The transducer is then simplified according to semantics-preserving local reduction rules,
resulting in a form that generally entails multiple edge labels. A final minimization phase removes
unreachable or redundant vertices by partitioning.

4.2.1 Operation

The intuitive interpretation of a transducer as a process is as follows.

1An empty transducer results from the degenerate case of the reachability graph containing only unsafe markings.

72 CHAPTER 4. SUCCESS

R1 R2

G1 G2
Ack R1R2

R1 R2

G1 G2

R2 R1

AckG2 G1

Ack Ack

R2 R1

Figure 4.4: A reduced reachability graph obtained from Figure 4.3 by local optimizations eliminates
unlabeled edges and many vertices.

Ack, R2{G2Ack, R1{G1

Ack, R1{G1 Ack, R2{G2

R1, R2{G1 R1, R2{G2

Ack, R2{G1

Ack, R1{G2

Ack, R1, R2{G1

Ack{G2

Ack, R1, R2{G2

Ack{G1

R2{G2
R1{G1

Figure 4.5: Edges labeled with i/o bursts enable an even more compact description than the reduced
reachability graph as a transducer model, with vertices no longer corresponding to markings.

4.2. THE TRANSDUCER MODEL 73

• Each vertex represents a state of the process, of which the process may occupy only one at a
time. An initial state is distinguished in the diagram by an unlabeled incoming edge with no
origin.

• For clarity, the set of signals labeling each edge is partitioned between a set of inputs (the
input burst) and a set of outputs (the output burst).

• Upon finding the process in a particular state, the environment may transmit any input burst
associated with an outgoing edge from that state.

• Upon receiving an acceptable input burst in its entirety, the process assumes the state reached
by traversing the associated edge, while simultaneously transmitting the corresponding output
burst to the environment.

Unlike the situation of a burst mode automaton (page 36), input bursts and output bursts may
happen concurrently within these constraints. That is, the environment may issue an input from the
moment it makes enough of a determination of the current state to
establish its acceptability, even if an output burst is still in progress
or not fully received. If there were more than one possibility, this
determination would be based on the receipt of a disambiguating
subset of the output burst associated with a transition from the
previous state.

It should also be noted in passing that there is no prohibition
on input bursts being proper subsets of one another, or of identical
input bursts leading to different states. The process may make non-
deterministic choices in these cases.

4.2.2 Limitations

Being arguably clearer and more intuitive than the Petri net or
reachability graph, the transducer model may be used to establish
confidence in a design by visual inspection or manual simulation
alone in simple cases. In light of this possibility, an inquisitive
reader might wonder why the transducer is not advocated as a
method of human-writable specification along with block diagrams
and procedural descriptions via process combinators. The answer is that constructing transducers
manually would probably be a bad idea for reasons of delay insensitivity, compositionality, and
abstraction.

Delay insensitivity Not every transducer graph that can be drafted manually makes sense as a
model of a delay insensitive process. For example, an output enabled by an input burst must not be
precluded in the same state by a proper superset of that input burst [288]. Conditions like these
should not be the responsibility of a designer to establish manually, but they are always met when
the transducer is automatically generated.

Compositionality The transducer model of a network of interacting transducers increases in size
as the product of their state spaces, bears no resemblance to any of them, and is no mean feat to
construct either manually or automatically. The transducer contrasts sharply with the Petri net

74 CHAPTER 4. SUCCESS

model in this regard (Section 3.5.3), making the latter essential as an intermediate representation
in any non-trivial design.

Abstraction Transducers lose their intuitive appeal as they grow to moderate sizes, which happens
easily. An n-bit memory register is modeled by a transducer with 2n states and an even more rapidly
growing number of edges. When a family of circuits is parameterized by a natural number n, a
better approach than solving each case separately is to strive for a general form. A domain specific
language based on process combinators with adequate abstraction features is better equipped for
this challenge than an ad hoc practice of transducer construction. For spatially iterated structures
such as registers, even block diagrams are preferable.

4.2.3 Utility

The transducer model is nevertheless a helpful accessory to the design work flow for its use in Petri
net optimization, state based synthesis, and verification as explained below.

Petri net optimization One interesting characteristic of the transducer model is its ability to be
transformed automatically back to an equivalent Petri net model often simpler than the one from
which it is derived. Where feasible, the round trip from an initial
Petri net through a reachability graph, through a transducer, and
back to a Petri net would make an excellent global optimization
algorithm if the most compact attainable representation of a process
as a Petri net were of interest for any reason. A version of this
algorithm is actually used in connection with the env combinator
(Section 3.6.4) when it is necessary to transform a closed Petri net
to one with open input and output transitions.

State-based synthesis The transducer can also be the input source for a class of state-based
circuit synthesis algorithms targeting the flat netlist representation. A standard construction consists
of a sequencer as a front end serving to serialize the inputs to a network encoding a state table,
which maps inputs and current states to outputs and successor states. Wires act effectively as state-
holding elements [221]. Generalizations and enhancements to this basic construction are reviewed
extensively in Chapter 15 because they form the theoretical foundation for a crucial link in an
automated development tool chain.

Regarding the development work flow, an important implication of this class of algorithms is
the completion of a course through Figure 3.1 starting from the procedural description and leading
to the flat netlist by way of the reachability graph and the transducer. Given a feasible technology
mapping path from the flat netlist representation, this methodology enables the design of space
efficient DI circuits from end to end with minimal hardware knowledge required of the novice
designer, and frees the expert designer to focus on the aspects that can not be automated. This
route is also a slight improvement over the block diagram to flat netlist work flow mentioned in
Section 3.3.3 because it allows a better chance of detecting obvious errors by inspection of the
transducer. The space efficiency of circuits synthesized by this method will normally surpass the
results of alternative algorithms for direct mapping synthesis from Petri nets to netlists (Chapter 16)
unless the circuit is of some particularly repetitious form. However, this benefit comes at the cost of
state space enumeration as a prerequisite to synthesis, which can be prohibitive for large systems.

4.3. TRACES REVISITED 75

Verification Equally as important as synthesis is the use of the transducer model for verification.
Although there is no designated canonical form, behaviorally equivalent designs and specifications
tend to converge to identical transducer models up to isomorphism, facilitating comparison often
without need of further analysis. As noted at the beginning of Section 4.2.2, a subjective verification
can suffice in simple cases. For more complicated cases, the transducer gives rise to an ensemble
of finite automata describing the behavior of the process in a way that lends itself to efficiently
computable equivalence and refinement relations. These models are described in Section 4.4
following a brief theoretical primer.

4.3 Traces revisited

Parsimonious treatments of behavioral equivalence and refinement win by ignoring inessential
differences between processes. Whatever its flaws, the trace semantics contemplated in Section 3.4,
by virtue of omitting all operational details, approaches this ideal of extensionality more closely than
the alternatives considered thereafter. On the other hand, having met the needs for prescriptive and
descriptive semantic models via the latter, we can focus more effectively on the analytical at this
point by reconsidering a trace semantics without being obliged to account for process composition
in terms of trace theory.

4.3.1 Progress obligations

As noted previously, one problem with a trace set is its inability to express progress obligations.
What a process is allowed to do and what it is obligated to do by its specification can be two different
things. For example, the complete specification of a process with an input a, an output b, and a
trace set tε, a, ab, aba, abab, . . . u would need an additional bit of information about each trace to
say whether the process is required to output upon completing it. Perhaps the designer has it in
mind that by engaging in aba, the process enters into a binding commitment to output another b.
Maybe by the time the process completes ababa it is free either to halt or to continue. The progress
obligation in the first case can not be inferred merely from the presence of longer traces in the set.
As the theory stands, any extra conditions like these would need to be stipulated in some ad hoc way.

4.3.2 Quiescent traces

A more systematic way of preserving these distinctions would be to record an additional set containing
only the traces that are definitely required to be followed up by further output. In the current
example, aba would be a member of this extra set, but ababa would not, so the distinction would be
clear. Process models using more than a single trace set are not unprecedented (e.g., [55, 72]), and
many variations are possible. An opposite but equally valid convention would be to note the set
of traces whereupon the process may refuse to output (or definitely will refuse) instead of being
required to output. These traces are usually called quiescent.2

In addition, the latter convention allows a summary of the behavior of a process including
progress obligations with a single set, because the quiescent trace set requires no other information
about the process to recover the original trace set. Forming the set of all prefixes of quiescent traces
(the so called prefix closure of the quiescent trace set) would recover it if required for any reason.

2but see [243] for a testament to the disarray of terminology in this area

76 CHAPTER 4. SUCCESS

For example, the prefix closure of a quiescent trace set tε, ab, abab, ababab, . . . u would include the
rest of the traces such as a, aba, ababa, and so on.

4.3.3 Refinement

Thanks to the effective treatment of progress obligations, the quiescent trace set would seem
sufficiently expressive to enable well informed determinations of compatibility between processes.
It should be justifiable at least to assert the behavioral equivalence of any two processes whose
quiescent trace sets are identical.3 However, behavioral equivalence is usually of secondary interest
to the more practical propositions of whether a circuit meets its speci-
fication, or whether one circuit is a compatible replacement for another.
Although it implies these conditions, demanding behavioral equivalence
in cases like these places the bar higher than necessary and is often in-
convenient or inappropriate. An already well behaved circuit should not
require modification for the sake of an ill-conceived theoretical property.

The weaker condition we seek in these situations goes by the name of
refinement, as noted previously. If a process T is a compatible replace-
ment for a process S in any environment, then T is called a refinement
of S, or is said to refine S. A circuit T correctly implementing a specifica-
tion S need not be equivalent to S, but must refine it. If T refines S but
is not equivalent to S, we envision T as having extra features not posessed by S but not in conflict
with it. Refinement therefore is not a symmetric relation, but a pair of processes may nevertheless
refine each other if and only if they happen to be equivalent. For the mathematically minded reader
trying to keep track, it follows also that refinement is transitive and reflexive, hence a partial order
relation.

4.3.4 Trace analysis

If the refinement relation is computable at all and if a quiescent trace set completely determines
a process, intuition suggests the existence of a decision procedure for refinement taking as input
only a pair of quiescent trace sets (in some finite concrete representation). In fact, quiescent trace
sets arising in practical applications belong to the class of regular languages, making most standard
decision problems about them computable by well known algorithms [115]. The difficulty lies only
in formulating the exact criteria corresponding to refinement as properties of the sets.

Quiescent trace set containment

An obvious suggestion is to identify refinement with quiescent trace set containment based on the
intuition that a process T refining a process S can do anything S can do and maybe more. However,
this proposal is destined to be short-lived. If S has quiescent traces tε, ab, abab, ababab, . . . u and T
has all those in addition to aba, then the containment holds but the refinement does not. S must
always acknowledge a with b, but T has the potential to stop upon the second receipt of a, thereby
shirking a progress obligation of S. Relying on T as a replacement for S therefore could deadlock
the system.

3ignoring fairness, real-time deadlines, fault tolerance, or other criteria beyond the scope of trace models

4.4. FROM TRANSDUCERS TO TRACE RECOGNIZERS 77

Divergent trace sets

A more nuanced intuition would entail the idea that T may differ freely in good ways from the
process S it refines, but must refrain from any undesirable innovations, whatever that might mean.
Taking this notion seriously if possible calls for clearer conventions regarding undesirable behavior.

The complement of the set of acceptable traces is the set of traces representing breaches of pro-
tocol between a process and its environment. Some of these prohibited traces represent misbehavior
of the process, and the rest that of the environment. The latter are called the divergences of the
process, whereas the former have no conventional designation. To be a divergence, a trace necessar-
ily begins with some (possibly empty) prefix of an acceptable trace, and then goes wrong due to an
unauthorized input signal (sent by the environment), with any signals occurring subsequently in it
unconstrained. With the possible exceptions of some degenerate cases, any process has an infinite
set of divergences, because anything at all may follow after the first bad input in a divergence with
no prospect of redemption.

Combined quiescent and divergent trace set containment

The key insight attributable to [128] is that a useful concept of refinement is indeed captured by a set
containment relation, albeit one of a subtle form. Following the seemingly whimsical step of mixing a
process T ’s set of quiescent traces QT with its divergences DT into a combined set RT “ QT Y DT , and
similarly obtaining RS “ QS Y DS for a process S, the astonishing outcome is that the formal criterion
RT Ď RS coincides almost invariably with the intuitive notion of T refining S pursued above. This
relation therefore is taken as the definition of refinement, which mathematically minded readers
will note is a partial order as expected. However, the definition is contingent on the processes in
question having identical alphabets, without which refinement is impossible (and irrelevant) due to
obviously incompatible interfaces.

Terminology in this context has a troubled history, with divergent and quiescent traces sometimes
designated collectively as failure traces or just plain failures in the literature. Cognate internet
memes aside, some authors not unreasonably reserve the
word “failure” for traces pertaining to something actually
failing [72], and others appear to have used it synony-
mously with quiescence [128]. The lack of any generally
accepted intuitively transparent term prompts the neutral
designation of refinement relational traces for members
of the set R “ Q Y D hereafter in this book, or relational
traces more briefly.

4.4 From transducers to trace recognizers

To compute the refinement relation in practice requires a concrete representation of the relational
trace set. A conventional textbook-style state machine is suitable for this purpose. Also known as a
deterministic finite automaton (DFA), it can be described informally as a graph of states joined
by labeled directed edges, with a distinguished initial state and a subset of the states designated
as accepting states. A DFA is said to recognize the set of all sequences of symbols in which each
member sequence is spelled out by the edge labels along a walk from the initial state to an accepting
state. The set of sequences recognized by a DFA is also called its language. As the name implies,

78 CHAPTER 4. SUCCESS

pta, bu, tcuq

ptau, Hq ptbu, Hq

ptbu, Hq ptau, Hq

pH, tcuq

Figure 4.6: In preparation to derive the relational trace set recognizer, i/o bursts in a transducer
model are transformed to singleton sets by introducing intermediate states.

a DFA is always finite even if the language it recognizes is infinite, which is possible if the graph
contains cycles (details on page 160).

This theory is of immediate interest for two reasons. One is that a transducer model such as the
one shown in Figure 4.5 can be transformed automatically into a corresponding relational trace
set recognizer by a method to be outlined presently. The other is that well understood decision
procedures (whose details need not concern us at the moment) exist for testing containment
between any two languages given by their recognizers [1, 115]. We therefore have the means to test
refinement automatically between circuit designs or specifications originating from block diagrams
or process combinators by transforming them to the relational trace set representation and applying
this decision procedure. This capability enables a regime of quality control whereby bugs introduced
through modifications to a previously verified design need never escape detection.

4.4.1 A preliminary subgraph

The derivation of a relational trace set recognizer from a transducer proceeds first by rewriting the
transducer to limit every i/o burst to at most one input or output signal. As shown in Figure 4.6,
this transformation is always possible by introducing new intermediate states where needed.4 The
graph thus obtained is isomorphic to a subgraph of the relational trace set recognizer, with the
initial state of the transducer mapping to the initial state of the relational trace set recognizer, and
the edges similarly labeled as shown in Figure 4.7.

The accepting states in this subgraph are determined by the quiescent traces of the process it
represents, which the relational trace recognizer must accept. A quiescent trace by definition leads

4This step does not necessarily restore the transducer to an isomorphism of its antecedent reachability graph, because
intervening transducer-specific optimizations may have applied.

4.4. FROM TRANSDUCERS TO TRACE RECOGNIZERS 79

a b

b a

c

Figure 4.7: A subgraph of the relational trace set recognizer is isomorphic to the expanded transducer.
Accepting states depicted with an inner circle are those without an output-labeled outgoing edge.

to a state from which no further progress is made until the environment supplies an input. A state
having a way forward through an output-labeled edge is not quiescent, and hence not accepting.
There is one such state in Figure 4.7, implying that all other states are accepting.

4.4.2 The complete graph

This construction is incomplete as a DFA because for many possible traces it gives no indication of
whether or not they are accepted. In a well defined DFA, every state needs exactly one outgoing
edge labeled by each member of the alphabet. Adding the missing edges to the graph also requires
adding the right states for them to reach. Fortunately, in any relational trace set recognizer, only
two additional states are ever needed. Each of the additional states is a trap state, meaning that
every outgoing edge points back to it. One of the trap states is designated as an accepting state, and
the other is not.

A simple rule supplies the remaining edges needed in the graph. For each state, we create any
missing output-labeled edges and connect them to the non-accepting trap state. Any missing input-
labeled edges are created and connected to the accepting trap state. These latter edges correspond
to the first prohibited input occurring by definition in divergent traces, which the relational trace
recognizer must accept. The resulting graph for the current example is shown in Figure 4.8.

4.4.3 Edge cases

One technical point not evident from this illustration is that a state in the preliminary subgraph
could have too many outgoing edges rather than not enough, with some edges having the same label
as others. This situation occurs in cases of non-deterministic behavior reflected in the transducer
model. A similar procedure for building the full graph applies, resulting in a non-deterministic

80 CHAPTER 4. SUCCESS

a b

c

b a

c

c bca

c
a b

a

b

a

b

c

a

b

c

Figure 4.8: Two trap states and a full complement of edges finish the job of constructing a relational
trace recognizer.

finite automaton (NFA). The NFA can be converted to an equivalent DFA via the standard power set
construction [115], or can be used for refinement testing directly by efficient algorithms discovered
more recently [1].

Another technicality pertains to the case of an empty transducer resulting from a reachability
graph with an unsafe initial marking. In this case, the preliminary subgraph is also empty, but the
trap states are to be added to it nevertheless. The only adjustment needed to accommodate this
situation is to take the accepting trap state as the initial state. This convention makes every trace a
relational trace, so that the relational trace set is too large to be contained in any other trace set.
Under the refinement ordering, such a process does not meet any specification but itself.

4.4.4 Other trace recognizers

As illustrated in Figure 3.1, the relational trace recognizer can be transformed automatically to a
quiescent trace recognizer and to a divergent trace recognizer. These transformations are trivial.
The quiescent trace recognizer is obtained by changing the accepting trap state to non-accepting,
and the divergence recognizer by making the accepting trap state the only accepting state.

Usage

These other automata are not needed for checking refinement, but may help in understanding
or troubleshooting a design by determining a set of traces attesting to discrepancies between
processes, which can be more informative than the knowledge of their refinement ordering alone.
For example, subtracting the quiescent trace set of an intended specification from that of its proposed
implementation can reveal the specific chain of events leading to a failure due to deadlock. Similarly,

4.4. FROM TRANSDUCERS TO TRACE RECOGNIZERS 81

Ack, R1, R2{G1, G2

R2{G2R1{G1

R1, R2{G2R1, R2{G1

Ack, R2{G2Ack, R1{G1

R2{G2R1{G1

R1, R2{G2R1, R2{G1

Ack, R1{G1 Ack, R2{G2

Ack, R1{G2

Ack, R2{G1

Ack{G1

Ack, R1, R2{G2

Ack{G2

Ack, R1, R2{G1

Ack, R2{G2Ack, R1{G1

Figure 4.9: transducer model of the process defined in Equation 3.7, which is a refinement of the
2-way sequencer as defined in Equation 3.6, whose transducer model is shown in Figure 4.5

the difference between the divergent trace sets can indicate the combination of inputs that break an
incorrect implementation. These operations, along with any based on union or intersection, can be
performed efficiently on sets represented as regular automata.

A familiar example

A concrete example of the sort of inquiry facilitated specifically by quiescent and divergent trace
recognizers comes from an aspect of the sequencer design mentioned briefly in Section 3.6.4. The
claim is that the process T described by Equation 3.7 is more complex and does more than necessary
for the sequencer specification S described in Equation 3.6, albeit compatible with it (hence the use
case for the env combinator). Visual comparison of the transducer models for S and T in Figure 4.5
and Figure 4.9 respectively shows the latter to be more complex. The refinement relation, though
not immediately evident from the transducer models, is confirmed as expected by algorithmic
comparison of their relational trace sets.

The complexity of T relative to S may seem counterintuitive in view of the simpler form of its

82 CHAPTER 4. SUCCESS

Ack
R1 R2

Ack
R2 R1

Ack

R1 R2

AckR2 R1

G1 G2

R2 R1

G1 G2

G2 G1
Ack

R2 R1

Ack Ack

R1 R2

G1 G2

Ack R2R1

Figure 4.10: a DFA recognizing the traces that demonstrate the many ways a refinement of the
sequencer can exceed the specification (cf. Equation 3.6, Equation 3.7, Figure 4.5 and Figure 4.9)

4.5. INTERIM REMARKS 83

x
a

b

c

Figure 4.11: a majority gate with a bug in it (cf. Figure 2.10)

process combinator expression, but this effect can be understood as a consequence of the restrictive
influence of the environment attached to it in S. Unlike the closed system S, the Petri net model of T
alone contains open input transitions, which may fire therefore at any time, allowing the reachability
graph to venture into spaces precluded by the environmental restrictions.

However, the real question motivating the present discussion is not whether T refines S, but how.
In other words, what can T do that S can not? There is an unsupported assertion in Section 3.6.4
to the effect that premature acknowledgments are acceptable for T but not S. It is possible to
substantiate to this claim in terms of trace recognizing automata. A recognizer for the intersection
of QT , the quiescent trace set of T , with DS , the divergent trace set of S, is shown in Figure 4.10.
This DFA can be generated automatically by standard algorithms. To interpret this construction,
we note that any trace in QT X DS is handled reliably by T but breaks S. For example, the trace
R1 Ack G1 leads to an accepting state of the DFA, being therefore appropriate for T but beyond the
ability of S. The salient feature of any trace in this set is that an Ack input precedes the first grant.

4.5 Interim remarks

The informal introductory treatment of our subject draws to a close with this chapter, to be followed
in Part II onwards with more math and less chat (or at least more math). The balance between ease
of exposition and technical detail must shift toward the latter hereafter if interested readers are to
acquire any genuine command of the material. Whatever its aesthetic appeal, this subject finds true
vindication only as a tool in capable hands.

Nevertheless, the remaining chapters contained here should not be considered the last word.
At this juncture, a rare confluence exists between a level of maturity in this subject and a near
absence of significant competition for anyone with ambitions to capitalize on it either commercially
or academically. For better or worse, this book can be expected to become obsolete in due course.

84 CHAPTER 4. SUCCESS

Hack toff

1. How can the reduced reachability graph in Figure 4.4 be
simplified further? What would an optimization algorithm
have to do in general to cover this case? Would that be a
good idea? (hint: Section 6.5)

2. Consider these two processes.

X “ put b

Y “ seq pput b,put bq

Are they equivalent, and if not, which one refines the other? Demonstrate by manu-
ally constructing the Petri net models, (reduced) reachability graphs, transducers,
and relational trace recognizers for both, with attention to any relevant conventions
regarding degenerate cases. (hint: The answer is not a matter of opinion.)

3. The prime minister’s old university chum fulfills a government DI circuit procurement
contract with a block of wood, arguing that it meets every specification by virtue of
its empty relational trace set (having read something like that in a book once [72]).

a) Is the statement technically correct that a process with an empty relational
trace set meets every specification, or should it be qualified in some way?

b) What is the relational trace set of a block of wood and what class of specifications
does it meet? (hint: Remember the alphabet.)

c) Ruled to be in breach of contract but no quitter he, our man makes amends by
stapling one end of a labeled wire to the block for each input or output signal
in the contract specification. Has his dialectical position improved?

4. The circuit designed by hand in Figure 4.11 was proposed as an implementation of
a 2-of-3 majority gate.

a) What is wrong with it?

b) How might the error be demonstrated in terms of the theory described in this
chapter?

c) Suggest a methodology to detect errors of this nature as a matter of policy.
Assume any transformation illustrated in Figure 3.1 except technology mapping
can be performed at no cost.

5. What would be a realistic example of a practical DI circuit that is clearly a compatible
replacement for another but nevertheless does not meet the formal criteria for
refinement? (hint: item 4 and item 5, page 488)

Part II
Formal Models

85

Everything is vague to a degree you
do not realize till you have tried to
make it precise.

Bertrand Russell

C
H

A
P

T
E

R 5
PETRI NET PLUMBING

A reasonable starting point to develop an understanding of DI circuits would be with a description
of the primitive components from which all other DI circuits are to be built. Depending on the
methodology, it is incumbent on the designer or the circuit
synthesis tool developer to be familiar with them, because
they form the basic abstraction layer above the underlying
technology. Beyond certain minimal requirements, the
range of possibilities in the choice of a set of primitives
presents an engineering decision in itself. The approach
favored in this book is to derive a standard assortment of
useful modules from an extremely simple set of primitives.

This goal requires the entirety of Part II as a prerequi-
site due to the amount of technical detail involved, with
our actual starting point being the development of a con-
sistent style of specification for DI processes. The main
purpose of this chapter is to establish a small core of pro-
cess combinators to that end. This formalism not only
enables a set of primitive components to be defined pre-
cisely in Chapter 9, but enables high level behavioral cir-
cuit descriptions in a form suitable for automated synthesis as seen in Part IV.

As noted in Part I, Petri nets are well suited to specifying delay insensitive processes, so this chapter
focuses on nothing but Petri nets. While drawing pictures of Petri nets is adequate for an introductory
overview, taking the subject any further makes it unavoidable to have some way of writing them
down and manipulating them formally. A bare minimum of mostly standard mathematical notation
described in Section 5.1 facilitates this task. Section 5.2 takes a stab at a formal definition of Petri
net-modeled DI processes. Subsequently a few algebraic operators proposed in Section 5.3 allow
certain very frequently used Petri net manipulations to be expressed without undue repetition or

87

88 CHAPTER 5. PETRI NET PLUMBING

verbosity. Finally, the rest of the chapter constructs seven process combinators explicitly in terms of
Petri net models, which suffice for all process specifications of interest.

5.1 Mathematical conventions

Quite a few sets, functions, relations, tuples and related concepts show up in the sections to follow.
These concepts are treated as fundamental, which is to say not derived from anything more basic. It
would probably be a good idea for a reader completely unfamiliar with these terms to look them up
somewhere (e.g., [163, 271]), but a quick primer covering a handful of relevant conventions should
be enough for those having a nodding acquaintance with them.

5.1.1 Mapping

One way of operating on a set s is to transform every member v P s to a new entity f pvq according
to some function f . The result of this transformation is expressible as a set pµ f q s in terms of an
operator µ defined as follows.

µ“ λ f . λs.
ď

vPs

t f vu (5.1)

We could think of µ as the operator that “maps” a function over any set. For example, a set
s “ tv1, v2, v3u could be transformed to pµ f q s “ t f v1, f v2, f v3u. The result pµ f q s could have
fewer members than s if f transforms more than one of them to the same result.

Technically Equation 5.1 does not formally define µ as a function because it does not fully specify
its domain, but an expression of the form µ f does determine a function

pµ f q : Ppdq Ñ Ppcq

for a known function f : d Ñ c with domain d and codomain c, where Ppdq denotes the set of
all subsets of d, also known as its power set. Software practitioners might nevertheless tolerate
µ as an example of a “polymorphic function”, suspending judgment on whether this usage can be
justified. Like many to follow in this chapter, the lambda term in Equation 5.1 may be regarded as
a pseudo-code template for the computation of any member of a class of functions, forming the
rigorous specification of a particular function only in combination with a concrete input type left to
the reader’s discretion.

5.1.2 Domains and ranges

Any set s of pairs pa, bq can be regarded as a relation, making it meaningful to refer to its domain
and range in terms of the µ operator defined by Equation 5.1.

Dpsq “ pµ λpa, bq. aq s (5.2)

Rpsq “ pµ λpa, bq. bq s (5.3)

That is, the domain Dpsq of a set s is the set of all left sides a of pairs pa, bq in the set, and the range
Rpsq is the set of all right sides b of pairs pa, bq in the set.

5.1. MATHEMATICAL CONVENTIONS 89

5.1.3 Cases

We often have to define functions by cases predicated on their arguments, but sometimes can do so
more easily in terms of the Kronecker delta operator, which is defined conventionally as follows.

δi
j “

"

0 if i ‰ j
1 if i “ j (5.4)

The i and j in this expression are normally taken to be natural numbers, but a useful “polymorphic”
generalization is obtained by allowing any expressions for i and j whose comparison is meaningful.1

For example, if s is a set, then the expression δs
sYtxu

is unity whenever x is a member of s.
The Kronecker delta operator used in combination with an expression

of the form xa, byk for k P t0,1u, makes it possible to define functions
by cases. This expression is interpreted as

xa, byk “

"

a if k “ 0
b if k “ 1

so that either term a or b is selected depending on whether or not i is equal to j in an expression of
the following form.

pλk. xa, bykq δi
j

The angle bracket notation introduced above pertains to a type of ordered sequence defined formally
in Chapter 7 and used more generally from Chapter 8 onwards, but for purposes of this chapter and
Chapter 6 it can be regarded purely as a notational device.

5.1.4 Ordinals

The last notational device to be defined for now makes certain expressions shorter and far more
easily readable than they would have to be without it. Let any totally ordered set s induce a
bijective and monotonic function

s0 : s� tn P N | n ă |s|u

denoted as shown. The expression s0paq should be read as “the ordinal of a with respect to s”, and
is a number. With regard to terminology:

• A totally ordered set is one in which every member either precedes or follows every other
member according to some known ordering.

• A bijective function is another term for a one-to-one function, meaning that every argument
in its domain is mapped to a unique result in its codomain, and every result in its codomain
has some argument in the domain that maps to it.

• A monotonic function always maps a lesser argument to a lesser result than that of a greater
argument according to whatever ordering is relevant to the context.

• The notation� above is used instead of Ñ to emphasize that a function is either bijective
or injective. An injective function also maps every argument to a unique result, but some
members of its codomain might not have any argument in the domain mapped to them.

1May Leopold Kronecker forgive us.

90 CHAPTER 5. PETRI NET PLUMBING

It is possible to give a precise definition of the ordinal function as

s0 “ λx . log2 |tp P Ppsq | x “ maxppqu| (5.5)

if the maximum of any set p with respect to the ordering is given by maxppq, because luckily the
cardinality of tp P Ppsq | x “ maxppqu always lands on a power of two. Explicitly specifying the
order is mostly unnecessary in this chapter, although there is more to say about it in Chapter 6.
For subsets s of N, the usual ordering on natural numbers applies. For example, a set s “ t3,7,9u

satisfies s0p3q “ 0, s0p7q “ 1, and s0p9q “ 2. Furthermore, because s0 is bijective, it is meaningful to
express its inverse as

s0´1 : tn P N | n ă |s|u� s.

5.2 From Petri nets to processes

To upgrade our understanding of Petri nets from the pictorial to something more substantial, we can
start by ignoring superfluous information about the way they are depicted and focusing on what
matters. What places and transitions are in the Petri net, how are they all connected, and what
places are initially marked? Any reasonable model of a Petri net could be expected to determine
at least a set P of places and a set T of transitions. Then it should not be too far fetched to
envision a set M Ď P containing the places that are initially marked, unless already this step is
overly presumptuous. Could a place ever hold more than one token, for example if the Petri net
is unsafe? In that case the marking might need to be modeled by a function M : P Ñ N such that
Mppq indicates the number of tokens in a place p. Could there be more than one type of token, for
example in a colored Petri net? Maybe N is not big enough. The possibilities are endless.

As for the connections from places to transitions and vice versa, a relation A Ď pP ˆ Tq Y pT ˆ Pq

containing a pair pa, bq for each arc from a vertex a to a vertex b would seem sufficient, unless this
too is an oversimplification. Maybe some arcs are more important than others so some sort of a
weighting function should be involved. Maybe an adjacency matrix would be more convenient than
any weighting function or relation in this form so that we can apply matrix algebra to it (assuming
we know which place or transition corresponds to each row or column).

The point of these digressions is that there is no right way to build a concrete model of a Petri
net, only the way that best suits the intended application. This activity is more like provisioning a
tool box than enacting legislation, so it should come as no surprise if the proposals in this section
are similar but not identical to those of other sources. Fortunately the Petri nets needed for our
purposes are toward the simple-minded end of the spectrum.

5.2.1 A concrete model

To get down to business, a set P of places, a set T of tran-
sitions, a set M Ď P of initially marked places, and a set
A Ď pP ˆ Tq Y pT ˆ Pq of arcs with the interpretation above
will do nicely, and there is no compelling reason for them not to feature explicitly as such in the
concrete model. It may be recalled from Chapter 3 that a set of finally marked places also has a role
to play. Although no final marking is explicitly represented in most conventional Petri net models,2

2but see Petri nets with Boundaries [235] or Petri Box Calculus and related work [25, 26] for something similar

5.2. FROM PETRI NETS TO PROCESSES 91

there is no impediment to including one as a set F Ď P. Without getting too creative, we can model
a Petri net as a tuple

pP, T, A, M, Fq P P

where P is the universe of tuples of this form, but for this statement to make sense, something
should also be said about the universes from which P and T are drawn. We return to this point
shortly.

It may also be recalled from Chapter 3 that some transitions in the Petri net are to represent
externally observable signals, while others are hidden or anonymous, but the model hitherto does
nothing to express this distinction. A simple remedy is to regard observable transitions as members
of a universe T, and the rest as members of a universe V disjoint from T. Then for a Petri net with
transitions T , we write T XT for the observable transitions, T XV for the unobservable transitions,
and just T in contexts where the distinction is immaterial. This convention implies in general that
the transitions T in any member of P belong to the universe T YV.

No such distinction is necessary for places in a Petri net, which are always unobservable. If we
require P Ă V to hold for the set of places P in any member of P, then the issue mentioned above is
resolved by defining P as the following product.

P “ PpVq ˆPpT YVq ˆPppT YVq ˆ pT YVqq ˆPpVq ˆPpVq (5.6)

However, not every member of P by this definition makes sense as a Petri net. To be extra precise, a
tuple pP, T, A, M, Fq P P is called well formed if it satisfies these conditions

• P X T “ H

• M Y F Ď P

• A Ď pP ˆ Tq Y pT ˆ Pq

• T XV Ď DpAq XRpAq

• @t P T XT. RpA X pttu ˆVqq⊖DpA X pV ˆ ttuqq ‰ H

where x ⊖ y denotes the symmetric set difference operation px ´ yq Y py ´ xq or equivalently
px Y yq ´ px X yq. The first three conditions mean every vertex is either a place or a transition,
only places can be marked, and arcs connect only places to transitions or vice versa. The fourth
means that unobservable transitions must be both the origin and the terminus of at least one arc
(i.e., not “open”), and the last implies that observable transitions must be at least one or the other.
The last two conditions are not quite as essential but still a sign that something is amiss if they do
not hold. In particular, without them an observable transition could fire uncontrollably with no
safety violation. We allow P to contain non-well formed Petri nets because they are convenient in
computations.

5.2.2 Presets and postsets

We may note in passing that another way of expressing the last condition above uses the more
conventional preset and postset notations ‚t and t‚.

@t P T XT. t‚⊖ ‚t ‰ H

92 CHAPTER 5. PETRI NET PLUMBING

For an individual vertex v, whether a place or transition, the postset v‚ Ă TYV is defined as the set
of vertices at the termini of its outgoing arcs, and the preset ‚v is defined as the set of vertices whose
postsets contain v. If v is a set of vertices, then v‚ denotes the union of all sets t‚ for members
t P v, and ‚v is analogous.

This notation has the advantage of being widely used in the Petri net literature and being
independent of the concrete representation, but the disadvantage of being ambiguous if a vertex v
belongs to more than one Petri net in the same context, or even if v belongs to just one Petri net but
the usage is something like ‚v‚. The notation is therefore confined mostly to informal discussions
in this book as an aid to intuition except in Chapter 9 where it proves irresistibly accommodating.

5.2.3 Hacking the universe

As noted above, this theory already requires the set of unobserv-
able vertices V to be disjoint from the set of observable vertices T,
but a few further assumptions about them make life easier with
no downside. Taking V to be countably infinite and totally ordered justifies the use of functions V0

and V
0´1 for tapping an unlimited supply of distinct vertices. For example, if v “ P Y pT XVq is

the set of unobservable vertices in a Petri net pP, T, A, M, Fq, then a new vertex that differs from all
of them is given by V

0´1
p1 `V

0 max vq.
At a stretch, we might also deem T to be countably infinite, but the imposition of a universal

total ordering on it would be artificial and awkward in practice because T is envisioned to contain
tangible objects (i.e., the terminals interfacing a process with its environment). A pair of weaker
assumptions is sometimes invoked as a workaround. An injective function η : S � N mapping
terminals to numbers can be fixed temporarily for any finite subset S Ă T, and another arbitrary
unspecified function γ : PpTq Ñ T, not necessarily injective, takes any finite subset S of T to a
non-member thereof, γ S P T ´ S. Formally γ S is a terminal, but it should be regarded intuitively
as a placeholder for a terminal used only in calculations.

5.2.4 Open Petri nets

The Petri net model considered up to this point makes a bit of progress toward specifying a DI
process by capturing its observable behavior precisely. It also provides a hook for stringing multiple
DI processes together in sequence by explicitly indicating their termination conditions via the final
marking. However, the job is not yet done. Any DI process also has an input alphabet I Ă T and
an output alphabet O Ă T associated with it, and it would be better to have them written down
somewhere than to try to remember them.

One could argue that the alphabets can always be inferred from a Petri net model by inspecting
its observable transitions T X T. Doing so might yield the union I Y O of the alphabets but not
identify either of them unambiguously. Based on numerous illustrations in Chapter 3, it might be
countered that the ambiguity is easily resolved insofar as any input transition i P I has an empty
preset ‚t “ H, and any output transition o P O has an empty postset o‚ “ H. It is not a formal
requirement that every observable transition in a Petri net must have at least one or the other set
empty, but we could make it one by defining

P̂ “

pP, T, A, M, Fq P P | DpAq XRpAq XT “ H
(

(5.7)

as the universe of open Petri nets. However, a blanket restriction to open Petri nets would be
onerous for both theoretical and practical reasons (e.g., difficulties defining the env combinator and

5.2. FROM PETRI NETS TO PROCESSES 93

a a”

Figure 5.1: A permanently disabled/unsafe input transition a is expressible as such in an open Petri
net by an unmarked preset place disable it (left) or by a marked postset place to make it unsafe
(right), with either alternative being semantically equivalent to the other.

more costly enumeration of reachability graphs), and the rule proposed above for distinguishing
inputs from outputs admits exceptions even then (e.g., Figure 5.1).

5.2.5 Process models

The takeaway from this discussion is that a record of the input and output alphabets of a DI process
must be kept independently of the Petri net model. To ensure that process alphabets are recorded
along with other aspects of their specifications, let the set D of Petri net-modeled DI processes be
that of all tuples pI , O, Nq P PpTq ˆPpTq ˆP meeting these conditions.

• I X O “ H

• N is well formed.

• T XT Ď I Y O where pP, T, A, M, Fq “ N is the Petri net model in the tuple pI , O, Nq.

A subset rD Ă D restricted to open Petri net models nevertheless has its uses, so it is defined as

rD “

pI , O, Nq P D | N P rP
(

(5.8)

for a universe rP Ă P̂ Ă P of Petri nets that are not only open, but meet the additional condition that
all presets and postsets of their observable transitions are mutually disjoint.

rP “

"

pP, T, A, M, Fq P P̂

ˇ

ˇ

ˇ

ˇ

´

λp. δ
ř

sPp |s|

|
Ť

p|

¯

ď

tPT

DpA X pV ˆ ttuqq,RpA X pttu ˆVqq
(

“ 1

*

(5.9)

This condition turns out to be a matter of technical convenience for defining process combinators
and incurs no loss of generality because any Petri net has a behavioral equivalent of this form.

The main benefit of requiring disjoint alphabets and well formed Petri nets by definition of
the universe D (and by implication rD) is to avoid repeatedly having to say what happens when a
function of D is applied to a tuple pI , O, Nq where the alphabets intersect or N is not well formed,
because it is implicitly undefined. In either definition, we allow T XT Ď I YO instead of demanding
T XT “ I Y O in case the Petri net N can be consequently simplified, because any possible way of
simplifying the Petri net without altering its semantics is a net win.

This last relaxation necessarily allows some members of the alphabet not to appear as transitions
in the Petri net, and raises the question of how these missing signals should be interpreted. The short
answer is that any input signal absent from the Petri net is always unsafe, and any output signal
absent from the Petri net is never emitted. A longer answer follows from the semantic interactions
of the input and output completion operators to be defined presently in Section 5.3, and their effects
on the trace semantics following from the constructions of the reachability graph in Chapter 6 and
the transducer model in Chapter 7.

94 CHAPTER 5. PETRI NET PLUMBING

5.3 Editing operations

Having a few intuitively clear but rigorously defined operations on Petri nets at our disposal makes
the job of building interesting and useful Petri net-modeled DI processes run smoothly. Some
operations relevant to visibility and scope are developed in Section 5.3.1, operations similar to the
usual binary operations on sets are developed in Section 5.3.2 and Section 5.3.3, and a few more
designed to make alphabets easier to handle are developed in Section 5.3.4.

5.3.1 Rewriting

A unary operator and three binary operators introduced in this section
are useful for Petri net transformations. A general way of consistently
rewriting the vertices in a Petri net enables coalescence of anonymous
vertices and anonymization of observable vertices. The last operator
helps to prevent anonymous vertices from clashing when two Petri nets
are combined.

Mapping

Just as the µ operator defined by Equation 5.1 maps a function over a set, a concept of mapping a
function over a Petri net is also useful. If a function f : T Y V Ñ T Y V transforms a vertex v to
a vertex f v, then we can envision f ˛ : P Ñ P as a function that transforms all occurrences of v
throughout a Petri net X P P consistently to f v in the Petri net f ˛ X . A definition scoring no points
for subtlety is as follows.

f ˛pP, T, A, M, Fq “ ppµ f q P, pµ f q T, pµ pλpa, bq. p f a, f bqqq A, pµ f q M , pµ f q Fq (5.10)

Note that f need not be injective, so it could happen that distinct vertices v and w are mapped to
the same vertex f v “ f w. In this case, the application of f ˛ to a Petri net X coalesces them in f ˛ X ,
which can be useful when done deliberately. Although it is not needed until Chapter 8, a related
notation

f ˛ pI , O, Nq “ ppµ f q I , pµ f q O, f ˛ Nq (5.11)

is useful for expressing a change of symbols mapped over a whole process X “ pI , O, Nq P D.

Coalescence

An easy way of expressing the idea of coalescence in general is by X {S, read “X coalesced by S”.
If X P P is a Petri net and S P PpPpVqq is a set of mutually disjoint sets of vertices, then X {S is a
Petri net derived from X by rewriting every vertex v P p in every set p P S to the same member of p.
Non-members of

Ť

S are the same in X {S as in X .
It is usually adequate to rewrite a vertex v P p to the minimum member of p, where p is a

member of S, but an explicit provision is appropriate for the case when some but not all members
of p are initially marked (i.e., members of M with respect to the Petri net X “ pP, T, A, M, Fq in the
expression X {S). The issue is whether the members of p should be coalesced into a marked place in
X {S or an unmarked place.

There is a good reason to prefer one convention over the other. One of the uses for this operation
is in parallel composition. As shown in Figure 3.11, when the same input transition appears in both

5.3. EDITING OPERATIONS 95

a

ba

b

Figure 5.2: The coalescence of a marked place with an unmarked place should be a marked place
so that the parallel composition of these two processes is equivalent to the lower one.

operands to be composed in parallel, the places adjacent to it are coalesced, with the intuition being
that an input signal can propagate either way. With regard to the parallel composition of the two
processes depicted in Figure 5.2, an input signal initially could propagate safely to the top one or
unsafely to the bottom one, so it is initially unsafe. With no initial input signal, an output signal
eventually appears, after which the initially marked place is unmarked and an input is safe. This
behavior is indistinguishable from that of the lower process by itself. The coalescence operator
would naturally do the right thing if combining an unmarked place with a marked place were to
result in a marked place.

To describe this operation more formally, we have the set p P S containing a vertex v given by

p “
Ť

tl P s | v P lu

assuming there is one and the members of S are pairwise disjoint. Having found this set, we can
then ask whether it intersects M , the set of initially marked places, and express its restriction to M
in that case as

pλ j. xp X M , py jq δ
pXM
H

to describe the desired image of the vertex v under the transformation as either the minimum
member of p or the minimum marked member of p as appropriate

min pλ j. xp X M , py jq δ
pXM
H

whenever v is a member of p, but as v itself otherwise.

pλi. xv,min pλ j. xp X M , py jq δ
pXM
H

yiq δ
tvuX p
tvu

Summarizing this result as N0pX , Sq v in terms of a function N0 : PˆPpPpVqq Ñ pV Ñ Vq given by

N0 “ λppP, T, A, M, Fq, Sq. λv.
`

λp. pλi. xv,min pλ j. xp X M , py jq δ
pXM
H

yiq δ
tvuX p
tvu

˘
Ť

tl P s | v P lu

we have the following definition for the coalescence operator based on Equation 5.10.

X {S “ N0pX , Sq˛ X (5.12)

96 CHAPTER 5. PETRI NET PLUMBING

Anonymization

Another useful operation can also be motivated by the example of parallel composition shown in
Figure 3.11. When an observable transition is an input to one and an output from the other operand,
it should be made anonymous in the result. A Petri net X P P resulting
from a parallel composition and a set of observable transitions S P PpTq

common to the operands as inputs to one and outputs from the other should
be transformed to X zS, read “X anonymized by S”, by transforming each
member of S to an anonymous transition wherever it occurs in X .

The only technical difficulty is ensuring that the anonymous vertices
created for this occasion do not clash with any already present in the Petri
net X . That is, they should all be non-members of N1 X for a function
N1 : P Ñ PpVq defined by

N1 “ λpP, T, A, M, Fq.
`

λs.
@

s, tmin Vu
D

δ
H
s

˘

ppP Y Tq XVq (5.13)

taking a Petri net X P P to the minimum non-empty set containing its anonymous vertices. For this
purpose we need to invoke the assumption of a function η : S�N taking any member t of S to a
unique natural number η t P N as discussed in Section 5.2.3. Then we can associate an anonymous
transition

V
0´1

p1 ` pη tq `V
0 max N1 X q

with each t P S, which is certain not to clash with any in X because its ordinal exceeds theirs. In
general for an arbitrary vertex t that may or may not be a member of S, the desired image under
the transformation is

pλi. xV0´1
p1 ` pη tq `V

0 max N1 X , tyiq δ
S´ttu

S

which is to say that non-members of S are invariant. Taking this expression to induce a function of
t and mapping it over X according to Equation 5.10 yields the full specification.

X zS “
`

λt. pλi. xV0´1
p1 ` pη tq `V

0 max N1 X , tyiq δ
S´ttu

S

˘˛
X (5.14)

Separation

The last operator concerned primarily with vertex rewriting is perhaps more difficult to visualize
but at least as useful as those above. When Petri nets X , Y P P are to be combined by parallel
composition or some other operation, the result normally includes vertices from both. Whereas
the observable vertices they have in common may be fused or anonymized, nothing meaningful is
implied by an anonymous vertex v P V appearing in both X and Y . To avoid mistakenly fusing the
two copies of it, we could apply a function f ˛ to one of X or Y that moves the anonymous vertices
they have in common out of the way in preparation to combine them without clashes. That is, if v
is an anonymous vertex in X and also in Y , then its image f v P V should be one that belongs to
neither X nor Y . A function f suitable for this purpose would have to be tailored specifically to X
and Y . Let such a function be known as the separation function of X and Y and denoted X o Y .

To define a separation function formally, let x “ N1 X denote the set of anonymous vertices in
the Petri net X P P, and similarly let y “ N1 Y denote those of Y by Equation 5.13. Then to avoid
any clashes, a vertex v P x X y common to both could be mapped to a new vertex

V
0´1

p1 ` ppx X yq0 vq `V
0 max px Y yqq

5.3. EDITING OPERATIONS 97

whose ordinal exceeds that of any in x Y y and differs from those of other members of x X y.
Expressing this result as N2pX , Y q v in terms of a function N2 : PˆP Ñ pV Ñ Vq defined by

N2 “ λpX , Y q. pλpx , yq. λv. V0´1
p1 ` ppx X yq0 vq `V

0 max px Y yqqq pN1 X , N1 Y q

we have most of the separation function already. To maintain invariance of vertices v outside of the
intersection s “ x X y under the transformation, we need only generalize this result to

pλi. xN2pX , Y q v, vyiq δ
s´tvu
s

in the definition overall.

X o Y “ pλs. λv. pλi. xN2pX , Y q v, vyiq δ
s´tvu
s q ppN1 X q X pN1 Y qq (5.15)

5.3.2 Sums

In this section we investigate what a binary operation like union might mean for Petri nets, starting
from a naive concept and progressing to a more sophisticated one.

Separated sums

The simplest analog to the union of a pair of sets for a pair of Petri nets X , Y P P would be their
componentwise union N3pX , Y q given by a function N3 : PˆP Ñ P defined as

N3 “ λppP, T, A, M, Fq, pP 1, T 1, A1, M 1, F 1qq. pP Y P 1, T Y T 1, A Y A1, M Y M 1, F Y F 1q.

By itself this operation is not useful in practice because it could yield differing results for semantically
equivalent operands depending on whether their anonymous vertices clash. A minimally useful
form of Petri net union would invoke the separation function defined by Equation 5.15.

X ⊎ Y “ N3pX , pX o Y q˛ Y q (5.16)

This operation, denoted as shown and called a separated sum hereafter, fuses the visible vertices
but segregates the anonymous ones according to their provenance.

Coalesced sums

A more sophisticated form of Petri net union than the separated sum could support the desired
semantics of parallel composition and other process combinators better. As noted in Section 3.6, the
most useful thing to happen by default when processes are composed is for their common outputs to
be merged and their common inputs arbitrated. This behavior finds a natural expression in terms of
a Petri net model when places adjacent to the terminals common to both operands are coalesced, as
shown in Figure 3.11. The less desirable alternative of keeping them separate results in a Petri net
that behaves as if common inputs are broadcast to both operands and common outputs are barrier
synchronization points.

A straightforward remedy is to coalesce the preset ‚t and the postset t‚ of every observable
transition t P T XT in the Petri net Z “ pP, T, A, M, Fq resulting from a separated sum X ⊎ Y . The set

98 CHAPTER 5. PETRI NET PLUMBING

a

a

a

a⊎

⊍

Figure 5.3: A separated sum of two Petri nets with an input a in common fuses only the input
(above), while a coalesced sum also fuses its adjacent places (below).

of all relevant presets and postsets is easily constructed in terms of a function N4 : rP Ñ PpPpVqq

defined by

N4 “ λpP, T, A, M, Fq.
ď

tPTXT

DpA X pV ˆ ttuqq,RpA X pttu ˆVqq
(

so that a Petri net behaving more in keeping with expectations can be expressed

W “ pλZ . Z{pN4 Zqq pX ⊎ Y q

using the coalescence operator defined by Equation 5.12. Note that this result is undefined unless Z
is a member of rP, because only then are the members of N4 Z mutually disjoint as required by the
coalescence operator.

This coalescence operation is invariably followed by another when Petri nets are combined,
which is to anonymize all of the hitherto observable transitions that have become hidden from
the environment due to being connected on both sides. These transitions are easily identified as
members of DpAqXRpAqXT, where A is the set of arcs in the result W “ pP, T, A, M, Fq. An enhanced
Petri net union operator bundling both the coalescence and anonymization steps therefore can be
defined by

X ⊍ Y “ pλW. pλpP, T, A, M, Fq. WzpDpAq XRpAq XTqq W q pλZ . Z{pN4 Zqq pX ⊎ Y q (5.17)

in terms of Equation 5.14 and denoted as shown. This operation is called a coalesced sum
hereafter. Figure 5.3 illustrates the difference between separated and coalesced sums at least as far
as coalescence is concerned.

5.3. EDITING OPERATIONS 99

a

a

b

c

c

a
c

a
c

b

b

X

Y

“

“

Figure 5.4: Two processes X “ pI , O, Nq and Y “ pI , O, N 1q have the same alphabets and different
Petri net models. X diverges on an input of b because b is not a transition in its Petri net model N .

5.3.3 Differences

An analog to the set difference operation is mostly straightforward to extend to Petri nets X , Y P P

as N5pX , Y q in terms of a function N5 : PˆP Ñ P specifying their componentwise difference.

N5 “ λppP, T, A, M, Fq, pP 1, T 1, A1, M 1, F 1qq. pP ´ P 1, T ´ T 1, A ´ A1, M ´ M 1, F ´ F 1q

To make this operation a bit more convenient, we can make it more conducive to a well formed
result given a well formed left operand by restricting the arcs and markings to refer only to surviving
vertices.

X ´ Y “ pλpP, T, A, M, Fq. pP, T, A X ppP ˆ Tq Y pT ˆ Pqq, M X P, F X Pq N5pX , Y q (5.18)

This operation does not need a special name other than perhaps the Petri net difference, but is
denoted hereafter as shown.

5.3.4 Completion

As noted in Section 5.2.5, the alphabets I and O are specified separately from the Petri net model N
in a triple pI , O, Nq P D to decouple the interface from the behavioral specification, so the situation
could arise where a member of the input alphabet I is not a transition in N . An intuitive case could
be made that such an input would be silently ignored because it is not connected to anything inside
the box, but a simpler semantics follows if we allow a more radical interpretation. When a process
specification provides no information about the effect of an input, the most reasonable assumption
is not that the input is silently ignored, but that there is nothing further to assume, or in other words
that the process is rendered wholly unpredictable by the input.

This interpretation fits with the idea that the missing input, viewed as a Petri net transition, is
never enabled. The only other way for an input transition to be disabled is for it to have a preset
containing an unmarked place as shown at the left of Figure 5.1. This configuration could appear

100 CHAPTER 5. PETRI NET PLUMBING

a

b

c

Figure 5.5: the coalesced sum N ⊍ N 1 of the Petri nets from Figure 5.4

in a closed Petri net specified by the env combinator to indicate that this input is not needed, so
the specification imposes no requirements about its effects. (See Section 3.6.4 for motivation.)
Having the same interpretation for disabled input transitions in open and closed Petri nets causes
less trouble all around.

We may often loosely refer to such an input as “prohibited” for lack of a better term, but it should
be intuitively clear that no physically realistic process or its designer can ever literally prohibit the
environment from transmitting an input signal to it.3 A more appropriate adjective, if it existed,
would describe these inputs not exactly as prohibited but as inputs with unknown and presumptively
displeasing effects.

The reason for dwelling on this point is to cope effectively with processes having prohibited
inputs, for which it is not always valid to obtain the Petri net model of their parallel composition
simply as the coalesced sum of their respective Petri net models. The rest of this section suggests a
way of encapsulating this knowledge in terms of three so called completion operators on Petri nets
and alphabets.

Input completion

The example in Figure 5.4 motivates the idea of input completion. There are two processes X , Y P rD

both with an input alphabet ta, bu and an output alphabet tcu, and for reasons explained above, X
diverges given an input of b whereas Y acknowledges either input. In a parallel composition of
these two processes, an input signal of b could propagate to either of them. If it goes to X , then the
system diverges, so it is appropriate to regard b as unsafe for the combined system even though it
would be safe for Y alone.

One might normally expect the Petri net model of a parallel composition to be something like
the coalesced sum of the operands’ Petri net models, but in this example that would be as shown in
Figure 5.5, which is behaviorally equivalent to the Petri net model N 1 of Y . This result misrepresents
the process semantics because it gives no indication that b is unsafe.

This problem could be avoided by modifying the Petri net model N of X to reflect the complete
input alphabet ta, bu in its transitions as shown in Figure 5.6. Then by Equation 5.12 and Equa-
tion 5.17, the postset place for b in the coalesced sum would be marked, indicating that an input
of b is unsafe. This remedy is always effective when N is a member of rP so that the postsets of its
observable transitions are mutually disjoint. It might not always be necessary, but let us hold that
thought.

3Processes subject to this limitation, as opposed to those that magically are not, used to be called receptive [72, 128].

5.3. EDITING OPERATIONS 101

a

b

ca
c

b

Figure 5.6: Input completion of N with tbu makes the prohibition of b explicit.

To proceed along these lines, let the expression N Ž S denote a Petri net N “ pP, T, A, M, Fq P rP

with all input transitions t P S added to it that are missing from T , and a separate marked postset
place for each of them. Each arc in a set

a “ pµ λt. pt,V0´1
η tqq pS ´ Tq

has a member t P S ´ T at its origin and the place V0´1
η t at its terminus, the latter being arbitrarily

selected to have the ordinal η t by an injective function η : S � N assumed to be fixed for this
purpose. (See Section 5.2.3.) A Petri net assembling all of the necessary places, transitions, arcs,
and markings to be added to N as a tuple is then

pRpaq,Dpaq, a,Rpaq, Hq

so a definition for input completion can be summarized as follows.

N ŽS “ pλpP, T, A, M, Fq. N ⊎pλa. pRpaq,Dpaq, a,Rpaq, Hqq pµ λt. pt,V0´1
η tqq pS´Tqq N (5.19)

Output completion

Notably there is no need for a corresponding operation in the way of output completion as far as
parallel composition is concerned. An output transition missing from a Petri net means the process
never emits that output. The parallel composition of two processes can output whatever either of
them can, and this behavior is exhibited automatically by the coalesced sum of their respective Petri
net models.

However, output completion may be appropriate for a process representing the environment of
another process in the context of the env combinator. Every input transition on the latter process
needs a matching output transition from the environment, even if only to disable it. Otherwise, the
input is left open and always enabled.

The output completion N Ż S for a Petri net N “ pP, T, A, M, Fq P rP and a set S Ă T represents a
Petri net similar to N but with permanently disabled open output transitions S ´ T added to it. This
effect is easily achievable by the transitions in S ´ T each having an unmarked place in their preset.
The definition is similar to Equation 5.19 but with the arcs oppositely directed.

N Ż S “ pλpP, T, A, M, Fq. N ⊎ pλa. pDpaq,Rpaq, a, H, Hqq pµ λt. pV0´1
pη tq, tqq pS ´ Tqq N

102 CHAPTER 5. PETRI NET PLUMBING

Mutual input completion

Any process pI , O, Nq P rD always has an equivalent pI , O, N Ž Iq wherein every member of the
input alphabet is explicitly represented in the Petri net model, so converting it to this form before
composing it with anything would mean never having to worry about prohibited inputs. However, a
more parsimonious alternative may be possible depending on the process pI 1, O1, N 1q with which it is
to be composed. If an input t P I is prohibited according to N (i.e., absent from its set of transitions)
but also prohibited according to N 1, then there is no need for the input completion operand to
include t because it would still be prohibited in the coalesced sum N ⊍ N 1. In other words, rather
than N Ž I , only the simpler Petri net N Ž I X v N 1 is needed, where v N 1 is the set of transitions T
associated with N 1 by a function

v “ λpP, T, A, M, Fq. T.

Similarly, the Petri net N 1 of the other process requires only an input completion by I 1 X v N .
To take advantage of these observations, we need to know something about both Petri nets

N , N 1 P rP and their respective input alphabets I , I 1 P PpTq, so a concept of mutual input completion
as a binary operation like pN , Iq ’ pN 1, I 1q is unavoidable. Let this expression denote the pair
of minimally input completed Petri nets needed to compose two processes with the given input
alphabets and Petri net models. A definition is straightforward based on the discussion above.

pN , Iq ’ pN 1, I 1q “ pλv. ppN Ž I X v N 1q, pN 1 Ž I 1 X v Nqqq λpP, T, A, M, Fq. T (5.20)

5.4 Process combinators

The process combinators introduced in informally in Section 3.6 are now ready to be specified
formally in this section with the help of the Petri net operators defined in Section 5.3. For some
specifications, the notation Ąseq , Ąpar , etc. emphasizes their restriction to open Petri net modeled
processes in rD. Removal of this restriction concludes in Chapter 7.

5.4.1 Communication

The combinators pertaining to communication between a process and its environment are the
simplest to specify. Fixing distinct vertices vi arbitrarily as V0´1 i for i ranging from 0 to 3, we may
define the combinators get : T Ñ rD and put : T Ñ rD as

get paq “ ptau, H, ptv0, v1, v2u, ta, v3u, tpa, v1q, pv0, v3q, pv1, v3q, pv3, v2qu, tv0u, tv2uqq

put pbq “ pH, tbu, ptv0, v1, v2u, tb, v3u, tpv1, bq, pv0, v3q, pv3, v1q, pv3, v2qu, tv0u, tv2uqq

following Figure 3.10. In other words, get a is a process pI , O, Nq P rD satisfying I “ tau, O “ H,
and N “ pP, T, A, M, Fq P rP with P “ tv0, v1, v2u P PpVq, and so on.

5.4.2 Parallel composition

Parallel composition captures the effect of putting two processes together such that they run
concurrently and interact with their environment as noted previously. That is, an input signal
belonging to both input alphabets can go to one process or the other, signals belonging to the input
alphabet of one process but the output of the other pass unobserved between them, and all other
output signals pass independently to the environment.

5.4. PROCESS COMBINATORS 103

In keeping with this interpretation, the input alphabet of the parallel composition contains all
input symbols from either process except those that are also output symbols, and the output alphabet
is similar. For two processes pI , O, Nq and pI 1, O1, N 1q in rD, the parallel composition therefore has
the input alphabet pI Y I 1q ´ pO Y O1q and the output alphabet pO Y O1q ´ pI Y I 1q, expressible more
succinctly as i ´ o and o ´ i respectively in terms of i “ I Y I 1 and o “ O Y O1.

The Petri net model of each process requires completion with respect to its own input alphabet
and the input transitions visible in that of other process. The Petri net model of the parallel
composition of the two is therefore x ⊍ y for Petri nets px , yq “ pN , Iq ’ pN 1, I 1q by Equation 5.20,
implying a whole process

Ąpar ppI , O, Nq, pI 1, O1, N 1qq “ pλpi, o, px , yqq. pi ´ o, o ´ i, x ⊍ yqq pI Y I 1, O Y O1, pN , Iq ’ pN 1, I 1qq.

5.4.3 Environmental restriction

So much for the one-liners, next we seek a definition for Ąenv : rDˆ rD Ñ D to take a process X P rD

and an environment E P rD to a process env pX , Eq P D capable of exhibiting only the features of X
exercised by interacting with E. For X of the form pI , O, Nq, this operation need only be defined for
values of E of the form pO, I , N 1q, meaning that the input alphabet of X coincides with the output
alphabet of E and vice versa.

The result could be given almost immediately by pI , O, N ⊎N 1q were it not for the need to attend
to input and output completion of the Petri net models N and N 1. If a set i Ă T contains output
transitions of N 1 that are not input transitions of N , then something like N Ž i is needed in place of
N . If in addition a set o Ă T contains input transitions from N 1 that are not output transitions of N ,
then something like N Ž i Ż o is more appropriate. Even if nothing needs to be done to N , analogous
transformations to N 1 could be necessary.

Narrowing down the sets i, o Ă T mentioned above is easy enough by observing that i “ T X I
and o “ T X pT ´ Iq should hold for the input alphabet I and the set of transitions T in the Petri
net of the separated sum N ⊎ N 1 “ pP, T, A, M, Fq. By these criteria, i and o also include transitions
already present in N , but these have no effect on the input and output completion N Ž i Ż o.

Expressing this result as epN ⊎ N 1q pI , Nq in terms of a function e : P Ñ ppPpTq ˆ rPq Ñ rPq

defined by
e “ λpP, T, A, M, Fq. λpI , Nq. pλpi, oq. N Ž i Ż oq pT X I , T X pT ´ Iqq

yields the analogous transformation to N 1 for free as epN ⊎ N 1q pO, N 1q, and the overall definition
for the Ąenv combinator as follows.

Ąenv ppI , O, Nq, pO, I , N 1qq “ pI , O, pλ f . p f pI , Nq⊎ f pO, N 1qq epN ⊎ N 1qq (5.21)

5.4.4 Sequential composition

The sequential composition of two processes should have the effect of starting one process first and
then the other when the first process attains its designated final marking. The same conventions
about alphabets and input completion explained in Section 5.4.2 apply to sequential composition as
to parallel composition.

Referring again to Figure 3.10, we note first that sequential composition requires the creation of
a new anonymous transition not present in either of the given Petri nets. For open Petri net modeled
processes pI , O, Nq and pI 1, O1, N 1q, the pair of Petri nets px , yq “ pN , Iq ’ pN 1, I 1q after mutual input

104 CHAPTER 5. PETRI NET PLUMBING

completion by Equation 5.20 determines a unit set of vertices t “ s0px , yq P PpVq not present in
either in terms of the function s0 : PˆP Ñ PpVq given by

s0 “ λpx , yq. pλt. pµ ppx ⊎ yq o pH, t, H, H, Hqqq tq tmin Vu (5.22)

based on Equation 5.15 and Equation 5.16.
Normally there should be exactly one new anonymous transition created, but if the final marking

of x or the initial marking of y were empty, then at least one of the preset or the postset of the new
transition would be empty in the sequential composition, which would violate one of the conditions
for a well formed Petri net stipulated on page 91. To allow for this possibility, let the set of created
transitions t “ s1px , yq s0px , yq be given by a function s1 : PˆP Ñ pPpVq Ñ PpVqq defined as

s1 “ λppP, T, A, M, Fq, pP 1, T 1, A1, M 1, F 1qq. λt. pλi. xt, Hyiq δ
|F ||M 1|

0

which coincides with s0px , yq if both markings are non-empty but is empty otherwise.
The next thing needed is a set of arcs connecting the finally marked places of the first Petri net

x to the new transition in t and the new transition to the initially marked places of the second
Petri net y . The required set of arcs is expressible as the result a “ s2ppx , yq, tq P PpV ˆVq of the
function s2 : pPˆPq ˆPpVq Ñ PpV ˆVq defined by

s2 “ λppx , yq, tq. pλppP, T, A, M, Fq, pP 1, T 1, A1, M 1, F 1qq. pF ˆ tq Y pt ˆ pµ px o yqq M 1qq px , yq

where the separation function x o y is mapped over M 1 in anticipation of adding this set of arcs to
the coalesced sum of x and y . Note that s2ppx , yq, tq is empty whenever t is empty.

A Petri net s3px , yq P P including both the new transition set t and the new arcs a with respect to
the Petri nets x and y is conveniently summarized by a function s3 : PˆP Ñ P defined as follows.

s3 “ λz. pλt. pλa. pH, t, a, H, Hqq s2pz, tqq ps1 zq ps0 zq

The overall Petri net model for the sequential composition is almost px ⊍ yq⊎ s3px , yq, that is,
the coalesced sum of the originals with the extra transition and arcs given by s3px , yq thrown in,
except that its set of initially marked places should be limited to those of x , and its set of finally
marked places should be limited to those of y. If we replace x in the coalesced sum with a Petri
net x ´ pH, H, H, H,Vq, which is similar to x by Equation 5.18 but has an empty final marking,
and replace y with a Petri net y ´ pH, H, H,V, Hq, which is similar to y but has an empty initial
marking, then the result is as it should be. A Petri net s4px , yq P P incorporating this last adjustment
is expressible in terms of a function s4 : PˆP Ñ P defined as follows.

s4 “ λpx , yq. ppx ´ pH, H, H, H,Vqq⊍ py ´ pH, H, H,V, Hqqq⊎ s3px , yq

The rest of the definition of the sequential composition combinator Ąseq : rDˆ rD Ñ rD deals only
with the conventions regarding input and output alphabets mentioned above.

ĄseqppI , O, Nq, pI 1, O1, N 1qq “ pλpi, oq. pi ´ o, o ´ i, s4ppN , Iq ’ pN 1, I 1qqqq pI Y I 1, O Y O1q (5.23)

That is, the input alphabet overall is the union of the given input alphabets excluding the outputs,
and the output alphabet is constructed similarly.

5.4. PROCESS COMBINATORS 105

x y

Figure 5.7: Two Petri nets x and y each with two initial places need to be combined by Ăalt with
mutual exclusion, not with transitions allowed to fire concurrently in x and y as shown here.

x y

Figure 5.8: An arc from every initially marked place in y to every initially enabled transition in x
disables y when x starts executing.

5.4.5 Choice

The definition of the Ăalt combinator in this section unfortunately continues the trend toward
increasing difficulty. For two open Petri net modeled DI processes pI , O, Nq and pI 1, O1, N 1q, the
process

ĂaltppI , O, Nq, pI 1, O1, N 1qq P rD

should interact with the environment as if exactly one process or the other executes in a mutually
exclusive and atomic (i.e., all-or-nothing) way. Similar conventions regarding alphabets and input
completion to parallel and sequential combination are also relevant. A brief overview of the
difficulties involved in initialization and termination follows before the formal specification.

Initialization

When Petri nets x , y P rP are combined due to the Ăalt combinator, one aspect of the behavior to be
avoided is shown in Figure 5.7. If one of them starts executing due to one of its initially enabled
transitions firing, the other one must be prevented from doing so. One way of constructing a
combined Petri net to address this issue is to form the separated sum of x and y , and then to insert
extra arcs as needed to enforce the required mutual exclusion.

106 CHAPTER 5. PETRI NET PLUMBING

x y

Figure 5.9: Arcs in both directions let them disable each other.

x y

Figure 5.10: Unfortunately, after the left transition in x fires, not only is y disabled, but also the
other transition in x .

For a first attempt along these lines, let two Petri nets x and y have initially marked places
and initially enabled transitions as shown in Figure 5.8. For the sake of this discussion, let the
initially marked places in each operand, their postset transitions, and the arcs connecting them be
described informally as the operand’s initialization network. If the initially marked places in y
are connected by arcs (shown in blue) to the transitions in the initialization network of x , then the
onset of any activity in x immediately evacuates them. With its initially marked places emptied,
y can not execute, so mutual exclusion is ensured. Alternatively, if y starts executing first, then
x should be similarly disabled. Hence, the arcs shown in red in Figure 5.9 should be created to
connect the initially marked places x to transitions in the initialization network of y .

This solution would be perfect were it not for the disadvantage illustrated in Figure 5.10. The
firing of the left transition in x has caused the evacuation of the initially marked places in y, as
intended. However, these vacant places now have an inhibitory effect on the remaining transition
in x due to the arcs created to evacuate them if it had fired first. Although mutual exclusion is
certain, deadlock is inevitable as well. A similar argument applies of course to any transition in
either initialization network.

To solve this problem, we have to do something like what is shown in Figure 5.11, which is to
keep the arcs between the operands x and y as in the first attempt above, but to create a copy of the
initialization network in each operand. The result is an initialization network in two stages for each

5.4. PROCESS COMBINATORS 107

first
stage

second
stage

to other
operand

from other
operand

to same destinations

loomoon

Figure 5.11: Making a copy of the initialization network of an Ăalt combinator operand in a second
stage lets it block the other operand (not shown) without deadlocking itself.

operand. The first stage contains the original initialization network, and the second stage contains
a substitute for each place and each transition in the first stage, with no connections between the
second stage and the other operand.

The two-stage initialization network avoids deadlock by creating a second execution path. When
any transition in the first stage fires, it marks every place in the second stage other than those
substituting for members of its own preset. Although the other operand indirectly disables the other
transitions in the first stage, the transition that fires in the first stage enables their substitutes in
the second stage. Each of the second stage transitions has the same postset as the one for which it
substitutes in the first stage, hence the same effect when it fires. It also empties the corresponding
initially marked places in the first stage.

Termination

As well as initializing the combined Petri net correctly, terminating it
is also important. The operand that executes indicates termination
of the combination when it terminates. In general each operand
may have more than one finally marked place, so a construction
like the one shown in Figure 5.12 must coordinate them. For each
Petri net model x and y , a new transition synchronizes its finally marked places. These transitions
must feed into a newly created finally marked place, which receives a token therefore whenever
either of them fires. The marking of this place signifies termination of the combination.

It would be unsafe for both transitions in the termination network to fire concurrently, because

108 CHAPTER 5. PETRI NET PLUMBING

.

x y

Figure 5.12: general form of the termination network for a pair of Petri nets x and y with multiple
final places when combined by the Ăalt combinator (new additions in green)

then the new final place would receive two tokens. Only mutually exclusive execution of x and y
during initialization prevents this outcome.

Specification

Similarly to sequential composition, the bulk of the formal specification of the Ăalt combinator
concerns the construction of the Petri net model resulting from the pair of mutually input completed
Petri nets px , yq “ pN , Iq ’ pN 1, I 1q determined by the operands pI , O, Nq and pI 1, O1, N 1q. This
construction relies heavily on the foregoing overview for context and motivation.

Initialization networks The initialization network is a good place to start. A Petri net x P P

induces a pair
pM , tq “ c0 x P PpVq ˆPpVq

of initially marked places and their postset transitions with c0 : P Ñ PpVq ˆPpVq given by

c0 “ λpP, T, A, M, Fq. pM ,RpA X pM ˆVqqq (5.24)

wherein the right side t determines the whole initialization network x 1 “ c1pt, xq P P for x , including
the arcs local to it, with c1 : PpVq ˆP Ñ P given by

c1 “ λpt, pP, T, A, M, Fqq. pM , t, A X ppM ˆ tq Y pt ˆ Mqq, H, Hq.

Internal arcs Because the second stage initialization network is a
copy of the original, we can expect something of the form x ⊎ x 1 to
figure in the result, with arcs added to it as shown in Figure 5.11.
Focusing just on the arcs between x and its second stage initializa-
tion network x 1 for the moment, let f “ x o x 1 denote the separation
function, let t denote the postset transitions of initially marked
places in x as above, and let A and M denote arcs and the initial marking of x respectively. Then

5.4. PROCESS COMBINATORS 109

for example a transition a P t is a first stage transition in x ⊎ x 1, but f a is the corresponding second
stage transition. The arcs needing to be added to x ⊎ x 1 to make all of the connections shown in the
figure fall into three classes:

• arcs from the second stage transitions to the postsets of the first stage transitions
ď

pa,bq P AXptˆVq

tp f a, bqu

• arcs from the first stage places to the second stage transitions
ď

pc,dq P AXpVˆtq

tpc, f dqu

• and arcs from the first stage transitions to the second stage places.

Ť

pµ λi.
ď

e P M´DpAXpVˆtiuqq

tpi, f equq t

Note that places c in members pc, dq of AX pV ˆ tq may include more than just members of M , such
as the postset places of any input transitions, which is as it should be. The last expression is more
complicated because each first stage transition i P t connects only to the second stage places f e
corresponding to first stage places e P M that are outside the preset of i.

Let the set of all arcs in any of these three classes be denoted c2px o x 1, t, xq in terms of a function

c2 : ppT YVq Ñ pT YVqq ˆPpVq ˆP Ñ PpV ˆVq

defined as follows

c2 “ λp f , t, pP, T, A, M, Fqq.
ď

pa,bq P AXptˆVq

tp f a, bqu Y
ď

pc,dq P AXpVˆtq

tpc, f dqu Y
Ť

pµ λi.
ď

e P M´DpAXpVˆtiuqq

tpi, f equq t

so that the concept of a Petri net x augmented by its second stage initialization network corresponds
roughly to c3 x in terms of a function c3 : P Ñ P given by

c3 “ λx . pλpM , tq. pλx 1. px ⊎ x 1q⊎ pH, H, c2px o x 1, t, xq, H, Hqq c1pt, xqq c0 x . (5.25)

Termination networks Passing on to the termination network, we can start by augmenting each
Petri net x and y by a set a of arcs connecting each member of its final marking to an arbitrary
distinct anonymous transition. For a Petri net x “ pP, T, A, M, Fq and a set of arcs a “ F ˆ tmin Vu,
this effect is achievable by transforming x to x ⊎ pH,Rpaq, a, H, Hq. After this change, there is no
further use for what was formerly the final marking F , so x can be transformed further to

px ⊎ pH,Rpaq, a, H, Hqq ´ pH, H, H, H, Fq

emptying the final marking, or more briefly to c4 x in terms of a function c4 : P Ñ P defined as

c4 “ λx . pλpP, T, A, M, Fq. pλa. px ⊎ pH,Rpaq, a, H, Hqq ´ pH, H, H, H, Fqq pF ˆ tmin Vuqq x

110 CHAPTER 5. PETRI NET PLUMBING

with c4 y expressing a similar transformation of the other Petri net y. Petri nets of the form c4 x
or c4 y are not well formed because the new anonymous transitions added to them have empty
postsets, but a remedy is imminent. Note that this transformation has no effect if the final marking
F is already empty.

The rest of the termination network consists of a single place distinct from any vertices in the
two Petri nets, and an arc connecting each of the newly created transitions to it. Given a Petri net
z “ x ⊍ y with x and y both transformed already by c4, we express a singleton set p of places
disjoint from their vertices and the newly created transitions as p “ c5 z with c5 : P Ñ PpVq given
by

c5 “ λpP, T, A, M, Fq. tminpV ´ pP Y Tqqu. (5.26)

To effect the connections, z can be transformed to z ⊎ pp, H, t ˆ p, H, pq, where t contains the
new anonymous transitions in z, thereby adding an arc from them to the new place in p. Finding t
is easy because it contains the only anonymous transitions with empty postsets, making it stand out
as pT XVq ´DpAq, where T is the set of transitions and A is the set of arcs in z. Let this result be
denoted pc6 c5 zq z in terms of a function c6 : PpVq Ñ pP Ñ Pq given by

c6 “ λp. λz. pλpP, T, A, M, Fq. pλt. z ⊎ pp, H, t ˆ p, H, pqq ppT XVq ´DpAqq z. (5.27)

Inter-operand arcs Having dealt with the initialization and termination networks for the most
part, we are still faced with the inter-operand arcs depicted in Figure 5.11. There needs to be an arc
from every initially marked place in each operand to every transition in the postset of any initially
marked place in the other. Roughly speaking, if pM , tq “ c0 x and pM 1, t 1q “ c0 y are the initially
marked places and their postsets for each operand by Equation 5.24, then we need arcs from M to
t 1 and from M 1 to t. However, by the time these arcs are added, x and y will have been combined
as a coalesced sum, so some members of M 1 or t 1 could be different. Letting f “ µ px o yq denote
their mapped separation function, we can allow for this possibility by connecting M to f t 1 and f M 1

to t in a set of arcs c7px , yq, with c7 : PˆP Ñ PpV ˆVq defined as

c7 “ λpx , yq. pλp f , pM , tq, pM 1, t 1qq. pM ˆ f t 1q Y pp f M 1q ˆ tqq pµ px o yq, c0 x , c0 yq.

Synthesis To start wrapping things up, we can add the set of arcs c7px , yq to coalesced sum x ⊍ y

z “ px ⊍ yq⊎ pH, H, c7px , yq, H, Hq

temporarily denoting that result z, and then add the termination network as discussed above to a
result c8px , yq with c8 : PˆP Ñ P given by

c8 “ λpx , yq. pλz. pc6 c5 zq zq ppx ⊍ yq⊎ pH, H, c7px , yq, H, Hqq.

For this function to be useful, the arguments x and y should have their second stage initialization
networks already incorporated by c3 (Equation 5.25) and their termination network transition
already incorporated by c4, but rather than remembering all that, let c9 : PˆP Ñ P take Petri nets
x and y in their original forms to the same result c9px , yq by

c9 “ λpx , yq. c8pc4 c3 x , c4 c3 yq.

With c9ppN , Iq ’ pN 1, I 1qq accounting for the Petri net model, the rest of the Ăalt combinator
definition is similar to that of sequential composition, with unions of the corresponding alphabets
and the internal signals hidden.

Ăalt ppI , O, Nq, pI 1, O1, N 1qq “ pλpi, oq. pi ´ o, o ´ i, c9ppN , Iq ’ pN 1, I 1qqqq pI Y I 1, O Y O1q

5.4. PROCESS COMBINATORS 111

f xfx

I O

Figure 5.13: Feeding an argument x with empty alphabets to a function f generates a result f x
with possibly non-empty alphabets I and O.

5.4.6 Recursion

One more process combinator completes the set of those
necessary for describing interesting and useful behavior,
especially when repetition is required. A function

fix : pD Ñ Dq Ñ D

takes a function f : D Ñ D to a process fix f P D satisfying fix f ” f pfix f q by a definition of
behavioral equivalence to be made precise in Chapter 7. The function fix is called a pseudo-fixed
point combinator instead of a fixed point combinator because the latter would imply equality between
fix f and f pfix f q. Behavioral equivalence is a weaker condition than equality but adequate for our
purposes.

In any case, a function that behaves like a fixed point combinator is a general and flexible
primitive for various patterns of flow and control. For the simplest example, an expression of the
form fix λx . Ąseq pp, xq for some constant process p P D is equivalent to p repeated infinitely many
times. See Section 3.6.2 for further discussion and motivation.

The rest of this section contains an intuitive overview of how one might go about defining a
pseudo-fixed point combinator, followed by a fairly short formal specification, followed by a few
examples exploring its implications.

Overview

Unlike other process combinators, fix does not take a process or a signal as an operand, but a
function f , so there is no opportunity to inspect or deconstruct the operand in any way. The only
way to gather information about f is by applying it to selected inputs and observing the results. For
example, applying f to a block of wood x “ pH, H, pH, H, H, H, Hqq, we obtain

f pH, H, pH, H, H, H, Hqq “ pI , O, Nq (5.28)

with some alphabets I and O and some possibly not very useful Petri net N . This operation is
depicted in Figure 5.13.

112 CHAPTER 5. PETRI NET PLUMBING

f r

t

f

t

r

I O

Figure 5.14: Feeding f an operand r with an output alphabet ttu disjoint from the alphabets I and
O in Figure 5.13 generates a result f r with the output t visible.

Nevertheless, this operation at least allows particular input and output alphabets to be associated
with f . If f is defined by process combinators, then the alphabets of f pI 1, O1, N 1q for an arbitrary
operand pI 1, O1, N 1q P D can not vary unpredictably. By a routine inductive argument, they may
contain symbols only from I 1, O1, I , and O, the latter two being given by Equation 5.28.

This insight suggests that a reference operand r with an empty input alphabet and an output
alphabet ttu for some t specially chosen to be a non-member of I Y O by Equation 5.28 would
yield a result f r with an input alphabet I and an output alphabet O Y ttu for any f expressible by
process combinators. This operation is depicted in Figure 5.14.

Interesting though it may be, this exercise seems to bring us no closer to defining the pseudo-
fixed point combinator, so a more radical approach is in order. Generally f takes an operand x
having some Petri net model associated with it and builds some bigger and better DI process from it
with another Petri net model. If we search carefully through the Petri net model of f x and ignore
all the ways this plan could go wrong, we might find one or more copies of that of x in it as shown
in Figure 5.15. From this point, it is not much more of a leap to reason as follows.

• If the sought-after pseudo-fixed point x satisfying x ” f x were known in advance by magic,
it could be plugged into f like any other operand, and its image would occupy the same
positions in the resulting Petri net model of f x as the image of any operand normally would.

• Moreover, if the flow of control (manifested in the progress of Petri net tokens) were to reach
one of these x images within f x , the externally observable behavior thereafter would be the
same as if the whole process f x had restarted, because x is behaviorally equivalent to f x by
hypothesis.

• It would be tempting therefore to optimize the Petri net model of f x by connecting the initial
transitions in each x image directly to the initial places of f x instead of leaving them connected
to the rest of the x image, because doing so would have no observable consequences inasmuch
as x is behaviorally equivalent to f x .

• With this optimization, the rest of the x images would be cut off from any reachable execution
path and could be deleted, also without consequences, as shown in Figure 5.16.

5.4. PROCESS COMBINATORS 113

x

f

x

x

x

Figure 5.15: Plugging an operand x into f can create a Petri net model f x with copies of x
embedded in it.

• Because the rest of each x image is either absent or never reached as a result of this opti-
mization, any operand with an initial place connected to an initial transition could have been
supplied for x with the same effect.

This line of reasoning could lead to a formal specification for the pseudo-fixed point combinator
were it not for two obstacles. One is the lack of an efficient and reliable procedure for locating the
images of the operand x in the resulting model f x . The other is that these images might not even
be present if the Petri net has been transformed extensively along the way. Such transformations
may be necessary if the operand or any intermediate result is a closed Petri net in need of conversion
to an open form as described in Chapter 7.

There is nevertheless something to be gathered from this investigation. Computing the pseudo-
fixed point of a function can indeed start by applying the function to some operand x . Contrary to
the impossible requirement of a solution known in advance, an arbitrary reference input suffices.
Furthermore, a reference input whose execution manifests an observable signal would be preserved
by any semantically valid Petri net transformation, thereby overcoming the remaining obstacles.
For any function f built from process combinators, such an input r is easily obtained as mentioned
previously. Proceeding as above, then anonymizing the signal transition t due to r and finally
connecting it to the initially marked places would yield the pseudo-fixed point as a result. This
operation is depicted in Figure 5.17.

Specification

The formal specification of the pseudo-fixed point combinator presupposes a function γ : PpTq Ñ T

taking any finite subset s Ă T to a non-member of its operand γ s R s as discussed in Section 5.2.3.
The output alphabet symbol t “ r0 f P T needed for the reference input to f then follows from a

114 CHAPTER 5. PETRI NET PLUMBING

x

x

x

Figure 5.16: If x were a pseudo-fixed point of f , it would make no observable difference to connect
the initial transitions of the copies of x to the initial places of f x and delete the rest.

fix ff r

t

I O I O

Figure 5.17: Anonymizing and connecting the reference output on f r to the initially marked places
yields the pseudo-fixed point of f (cf. Figure 5.14).

5.4. PROCESS COMBINATORS 115

function r0 : pD Ñ Dq Ñ T given by

r0 “ λ f . pλpI , O, Nq. γpI Y Oqq f pH, H, pH, H, H, H, Hqq (5.29)

and the reference input itself from r1 t with r1 : T Ñ D given by

r1 “ λt. pλp. pH, ttu, ptpu, ttu, tpp, tqu, tpu, Hqqq min V (5.30)

as shown in Figure 5.14. Based on everything up to this point, the next logical step would be to
define fix f as

pλt. pλpI , O, Nq. pI , O, pr2 tq Nqq f r1 tq r0 f

where r2 : T Ñ pP Ñ Pq takes the signal t to a function r2 t : P Ñ P capturing the transformation
depicted in Figure 5.17 by a definition

r2 “ λt. λpP, T, A, M, Fq. pP, T, ttu ˆ M, M, Fqzttu

using the anonymization operator given in Equation 5.14. However, for reasons to be justified
shortly, it is advantageous to create an additional marked place to accompany those already in M if
they all happen to land within the preset of t. (Essentially this feature renders t unsafe and declares
the resulting process divergent when the condition holds.) To this end, the preset of t expressed as

p “ DpA X pV ˆ ttuqq

and the condition captured by i “ δ
pXM
M make the expression

m “ xH, tmin Vuyi P PpVq

accordingly either empty or a unit set. The Petri net pm, H, H, m, Hq given by pr3 tq N with the
function r3 : T Ñ pP Ñ Pq defined as

r3 “ λt. λpP, T, A, M, Fq. pλm. pm, H, H, m, Hqq pλi. xH, tmin Vuyiq pλp. δpXM
M q DpA X pV ˆ ttuqq

allows for the substitution of N ⊎ pr3 tq N for N in the pseudo-fixed point definition originally
proposed above, with the actual definition as follows.

fix f “ pλt. pλpI , O, Nq. pI , O, ppr2 tq pN ⊎ pr3 tq Nqqqq f r1 tq r0 f (5.31)

Examples

The rest of this section concerns several examples of the fix combinator, the first being somewhat
useful, and the others involving divergent processes constructed to investigate certain edge cases.
The useful one is about using the fix combinator to solve

X ” Ąseq pC , X q

for X P D in terms of a known constant process C P D. One way of reading this equation is that
X is equivalent to a process that starts by behaving like C and then proceeds to behave like itself.
Another reading is that performing C first and then X is the same as just performing X . In either
case, a process that repeats C ad infinitum would fill the bill.

116 CHAPTER 5. PETRI NET PLUMBING

C

t

C

t

C

Figure 5.18: Evaluation of fix λx . Ąseq pC , xq starts with C and the reference input, left, combined
by sequential composition, center, followed by the rerouting of an arc to the initial place, right.

A solution given by the fix combinator as defined above is of course

X “ fix λx . Ąseq pC , xq.

To spell out the computation in greater detail than usual, we are solving for X by applying the
operand of the fix combinator, λx . Ąseq pC , xq, to the reference argument

r1 r0 λx . Ąseq pC , xq

per Equation 5.29 and Equation 5.30 using the usual definition of sequential composition by
Equation 5.23 in

pλx . Ąseq pC , xqq r1 r0 λx . Ąseq pC , xq “ Ąseq pC , r1 r0 λx . Ąseq pC , xqq.

This computation entails connecting the final place of C to the intial place in the reference input as
shown in Figure 5.18. The anonymization of t and its connection to the initial place of C completes
the construction.

Does this solution accord with intuition? The result shown at the right of Figure 5.18 is notable
for not having a final marking. If it were sequentially composed with another process, the latter
would never get a chance to execute. However, if C is a process that always terminates, then X is a
process that repeats C forever.

A less useful but more instructive example is easily found in the case of

X ” Ąseq pX , Cq.

5.4. PROCESS COMBINATORS 117

C

t

C

t

C

Figure 5.19: For fix λx . Ąseq px , Cq a specially created place ensures a divergent process model.

Proceeding as above, we could read X as a process that starts by behaving like itself and then like C ,
or as a process for which performing C afterwards would make no observable difference. Despite
superficial similarities, this behavior is much less constrained than the previous example. A process
X that repeats C indefinitely fits this description, but so does one that deadlocks immediately, one
that engages in some arbitrary interaction and then deadlocks, and even one that behaves completely
unpredictably at all times. With multiple solutions available, we are obliged to decide on one.

The decision implicit in the fix combinator definition for a case like this one is a matter of routine
calculation by evaluating

X “ fix λx . Ąseq px , Cq.

Applying λx . Ąseq px , Cq to a reference operand with an output alphabet ttu results in a process with
a Petri net model N whose only initially marked place is in the preset of t. This condition calls for
an additional marked place in N ⊎ pr3 tq N leading to the result shown in Figure 5.19

The marked place in the postset of the initially enabled transition in the Petri net shown at
the right of Figure 5.19 means the Petri net is unsafe. Any process modeled by an initially unsafe
Petri net is divergent and by convention completely unpredictable. It may be tempting to make
stronger inferences about this particular process, for example due to the lower part C being disabled
and therefore unable to output, but any such inference would be mistaken because the semantics
implied by the work of Chapter 6 and Chapter 7 admits no gradations in divergence.

Hence we have our answer about the solution indicated by definition of the fix combinator, but
is this solution ideal? Anything more useful than a completely unpredictable process would seem
preferable, such as an infinite repetition of the constant C , but oddly enough, there are good reasons
to think the worst solution is actually the best:

118 CHAPTER 5. PETRI NET PLUMBING

C

t

C

Figure 5.20: evaluation of fix λx . Ąpar px , Cq, which is the same as fix λx . Ąpar pC , xq

• Process combinator expressions are intended not just to be translated into useful circuits,
but to define the environments in which circuits are required to operate. The most cautious
assumption about an environment is the least constrained.

• Even in the case of process combinators being used for writing circuit specifications, the
divergent interpretation helps to avoid any misunderstanding because the most expressive
specification clearly identifies the least capable circuit meeting it.

• Sequential composition is not generally commutative, so nothing is achieved aesthetically by
forcing it to be so in this case (i.e., by equating fix λx . Ąseq px , Cq to fix λx . Ąseq pC , xq). If any
mathematical theory were relevant, it would be that of complete partial orderings, where
least fixed points are the most natural solutions. (See Appendix B.)

In summary, for an equation that does not fully constrain its
solution, the best solution is the least specific one that satisfies it.
The least specific process of all is one that may behave unpredictably.
This process is associated with any Petri net model possessed of an
initially unsafe marking. The fix combinator is defined to produce
such a model when appropriate.

This observation suggests a rule of thumb whereby a divergent
process should be the first solution attempted for any equation, with
no need to look further if it works. For example, the equation

X ” Ąpar pX , Cq

where C is some constant process, has a divergent process as a solution because if X interacts
unpredictably with its environment, then so does X running concurrently with something else.
This conclusion holds despite the divergent solution being in some sense a less natural choice
here than in the previous example. An intuitive way of thinking about the solution is as the
limit of C composed with itself infinitely many times in parallel. For many useful instances of C ,
parallel composition is idempotent (up to behavioral equivalence) and this limit is arguably C , but

5.4. PROCESS COMBINATORS 119

this property evidently does not extend to non-quiescent processes (e.g., C “ put b), whereas the
divergent solution covers everything. It is reassuring to note that the solution obtained by the fix
combinator is the divergent one as shown in Figure 5.20, even without needing to create any extra
places.

120 CHAPTER 5. PETRI NET PLUMBING

Zombie zone

1. Assuming n P N is a natural number, what
distinction is made by writing nxlog n, 0yδn

0

instead of just n log n?

2. A pair of zombie processes X and Y are in a
mutually recursive co-dependent relationship.

X ” Ąseq pget a, Y q

Y ” Ąseq pput b, X q

How could a zombie psychiatrist solve for each of them independently of the other
using the fix combinator?

3. What is the general form of the solution for X ” f pX , Y q and Y ” gpX , Y q? (hint:
nested λ abstractions)

4. Give a formal specification for a transformation taking any well formed Petri net
x P P̂ to a behavioral equivalent in rP. Can it be made idempotent? How useful is it?

5. Would a definition of input completion (Equation 5.19) based on the configuration
on the left of Figure 5.1 (instead of the right) interoperate badly with anything?

6. Could an alternative definition of mutual input completion (Equation 5.20) work by
deleting vertices instead of creating them?

7. Even though the intuitive justification for the fix combinator invokes an assumption
of functions expressible by process combinators, what happens in these cases? Do
the results make any sense?

a) fix λx . x

b) fix λx . C

8. For what processes C P rD does the behavioral equivalence C ” Ăalt pC , Cq hold?

9. What happens if the postset of an initially marked place in an operand to the Ăalt
combinator contains observable transitions?

10. What are the solutions to X ” Ăalt pX , Cq for a constant C P rD, and what is the Petri
net model for the solution obtained by fix λx . Ăalt px , Cq?

11. Is there any good reason for having the condition

@t P T XT. RpA X pttu ˆVqq⊖DpA X pV ˆ ttuqq ‰ H

on page 91 instead of just T XT Ď DpAq YRpAq? (hint: item 6, page 194)

Each success only buys an admission
ticket to a more difficult problem.

Henry Kissinger

C
H

A
P

T
E

R 6
REACHABILITY GRAPH WRANGLING

In this chapter, we develop reachability graphs in preparation for the transducers and finite au-
tomaton models of DI processes to follow in Chapter 7. Together, these constructions allow a
formal definition of a refinement relation as motivated in Part I, and also complete the program
started in Chapter 5 to define a robust core of process combina-
tors. Whereas up to this point some process combinators have
been limited to operating on processes modeled by open Petri
nets (i.e., members of rD) the ability to transform any open or
closed Petri net model to an equivalent open canonical form
effectively relieves this restriction. This capability is helpful
among other reasons because it allows the env combinator
(Equation 5.21) to be used liberally along with the others to
write circuit specifications, even though its result is closed in
general.

The initial construction of the reachability graph is fairly
straightforward, with the remainder of this chapter given over
to various possible graph transformations and optimizations.
These are not sought for their own sake, but for the benefit of more efficient circuit synthesis and
verification methods. Doing more work to simplify the reachability graph leaves less work to be
done on simplifying the transducer, whose complexity directly impacts that of the synthesized circuit.
Whether transducer optimizations alone could compensate is an open question. Our present purpose
is only to promote flexibility in the implementation of a development tool chain.

6.1 Math usage

In principle, any of the models constructed in this chapter and the next can be defined by first
order logic and set comprehension alone, but the nature of the material makes it worthwhile to

121

122 CHAPTER 6. REACHABILITY GRAPH WRANGLING

m1 m2 m3
t1 t2

Figure 6.1: a reachability graph

m1 m2

m4

m3
t1 t2

t3

Figure 6.2: another reachability graph

extend the usual notation of mathematics temporarily with a limit construction and an assortment
of strategically chosen higher order functions. Doing so also allows for a presentation supportive of
software tool development without being overly prescriptive. Most of the relevant notation and
conventions are introduced subsequently on the fly after a brief head start in this section.

6.1.1 Graphs

As a reminder, a reachability graph maps the space of markings a Petri net can attain in any number
of steps by starting from a known initial marking and firing an enabled transition at each step. Two
examples are shown in Figure 6.1 and Figure 6.2.

• The reachability graph in Figure 6.1 describes a Petri net that can start with a marking m1
where a transition t1 is enabled. If t1 fires, then the marking changes to m2 with t2 enabled.
If t2 fires when the marking is m2, the marking changes to m3, whereupon no transitions are
enabled.

• The reachability graph in Figure 6.2 describes a different Petri net, wherein two transitions t2
and t3 are both enabled in the marking m2. If t2 fires, the marking changes to m3, but if t3
fires, the marking changes to m4.

Although doing so may be intuitively helpful, drawing pictures of reachability graphs gets us only
so far. To express algorithms for constructing and transforming reachability graphs, we need to be
able to describe graphs more formally in general.

Describing a graph

The conventional method of specifying a graph entails a pair of sets pV, Eq with V being the vertices
in the graph, and E Ď V ˆ V the edges. According to this convention, the graph in Figure 6.1 is

6.1. MATH USAGE 123

described by the pair
ptm1, m2, m3u, tpm1, m2q, pm2, m3quq

which is to say V “ tm1, m2, m3u is the set of vertices and E “ tpm1, m2q, pm2, m3qu is the set of
edges connecting them.

Time honored though it may be, this description of the graph neglects to indicate the transition
that fires (e.g., t1, t2, or t3) when the Petri net changes from one marking to the next, so it would be
advantageous to take the liberty of extending it for our purposes. Instead of pairs pmi , m jq as above,
edges could take the form of triples pmi , t, m jq, where mi is the marking at the origin of the edge, t
is the transition labeling the edge, and m j is the marking at the terminus of the edge. According to
this convention, the graph in Figure 6.2 would be represented as the following pair of sets pV, Eq.

ptm1, m2, m3, m4u, tpm1, t1, m2q, pm2, t2, m3q, pm2, t3, m4quq

However, having tampered to this extent with the usual style of describing a graph, we might as
well go further by opting for a shorter one. The two edges pm2, t2, m3q and pm2, t3, m4q above have
the same origin m3, so rather than repeating it, we could gather them into a single pair

pm2, eq “ pm2, tpt2, m3q, pt3, m4quq

and call e “ tpt2, m3q, pt3, m4qu the adjacency set of m2. What we might term the adjacency set
representation of a graph is then a set containing exactly one pair pm, eq for each vertex. For the
graph in Figure 6.2, the adjacency set representation would be as follows,

tpm1, tpt1, m2quq, pm2, tpt2, m3q, pt3, m4quq, pm3, Hq, pm4, Hqu

where an empty adjacency set indicates an absence of outgoing edges from a vertex. Pairs of the
form pm, Hq are included nevertheless to avoid the need for a separate set V enumerating the
vertices. The adjacency set representation for a graph is the preferred form used subsequently in
this chapter.

Operating on graphs

Several ways of operating on graphs recur frequently enough to be
worth adopting particular notations for them. These are summa-
rized here for reference. The rest of this section may be worth a
look even to readers conversant with graph theory because some of the notation is non-standard.

Reification As a set of pairs pm, eq with each m distinct, a graph in the adjacency set representation
induces a function. Depending on who their high school teacher was, some readers might say
it is a function, making the operator to be defined presently appear superfluous. While it is
uncontroversial to identify a graph in adjacency set form as a relation, the convention in this book
is to maintain a distinction between functions and relations regardless (following [19, 163, 271],
but admittedly contrary to most introductory texts). When a graph g is to be used deliberately as a
function, we denote the function Ψ g : Dpgq Ñ Rpgq explicitly in terms of an operator Ψ defined
as follows.

Ψ“ λg. λm.
Ť

Rpg X ptmu ˆRpgqqq (6.1)

This operator is known by the quasi-standard term of reification hereafter. To keep score, we are
up to one informal and two formal equivalent descriptions of a graph as shown in Figure 6.3.

124 CHAPTER 6. REACHABILITY GRAPH WRANGLING

m1 m2

m4

m3
t1 t2

t3

g “ t

pm1, tpt1, m2quq,
pm2, tpt2, m3q, pt3, m4quq,
pm3, Hq,
pm4, Hqu

Ψ g “ λm.

$

’

’

&

’

’

%

tpt1, m2qu if m “ m1
tpt2, m3q, pt3, m4qu if m “ m2
H if m “ m3
H if m “ m4

as a diagram

as a relation
as a set-valued function

Figure 6.3: three equivalent descriptions of the reachability graph in Figure 6.2

6.1. MATH USAGE 125

M

M

M

one step

sufficiently many steps

Figure 6.4: The space of known reachable markings is extended to its limit by starting with an initial
marking M and engulfing the adjacent markings at each step (cf. Algorithm 4.1).

126 CHAPTER 6. REACHABILITY GRAPH WRANGLING

Percolation An initial vertex and some procedure for constructing adjacent vertices should nor-
mally suffice to determine a whole connected graph by iterating the procedure. The idea depicted
intuitively in Figure 6.4 and indicated in somewhat greater detail by Algorithm 4.1 is not especially
difficult to encapsulate as follows by yet another “polymorphic function” that turns out to be useful
in various contexts.

First, a function f composed with itself i times for a natural number i P N is expressed by f i

and defined according to this recurrence.

f ipxq “

"

x if i “ 0
f p f i´1pxqq otherwise (6.2)

Next, a function f composed with itself infinitely many times is expressed as f∞ and defined
roughly as follows in terms of the notation above.

f∞ “ lim
nÑ∞

f n “ f ˝ f ˝ f ¨ ¨ ¨ (6.3)

The expression y “ f∞ x can be read constructively as the result of iterating f starting from x until
a fixed point is reached (if one exists). Platonistically, it is the unique y from which f n x differs by
less than any arbitrarily small εą 0 for all but finitely many n P N. For discrete set-valued functions
f such as those that concern us in this chapter, the measure of the cardinality |y ⊖ f n x | ă ε of their
symmetric difference is more than adequate to make sense of this definition.

With this preparation and a known universe of vertices v, we can define a function

ρ : pv Ñ Ppvqq Ñ pPpvq Ñ Ppvqq

such that a function f : v Ñ Ppvq mapping a given vertex pm, eq P v to a set of adjacent vertices
f pm, eq P Ppvq determines a function pρ f q : Ppvq Ñ Ppvq that takes a non-empty subset g P Ppvq

of a graph to the subgraph pρ f q g P Ppvq reachable from members of g.

ρ“ λ f . pλg. g Y
Ť

pµ f q gq
∞ (6.4)

There is no standard term for the ρ operator to the author’s knowledge. Maybe it should be called
percolation, which is as good a name for it as any.

Pruning How many of these operators can be squeezed meaningfully into
a single expression, and would defining one more provide enough ways of
operating on graphs to get us started? Percolating a function that maps the
reification Ψ g of a graph g over the range Rpeq of the adjacency set e of each
member pm, eq P g might be expected to rebuild the whole graph when starting
from the initial marking M . An operator ΓM induced by any chosen marking
M and defined by

ΓM “ λg. pρ λpm, eq. pµ λm1. pm1, pΨ gq m1qq Rpeqq pg X tpM , pΨ gq Mquq (6.5)

effects this procedure. It should also work if M is not in g, in which case the result is H.
Clearly this operator satisfies ΓM g “ Γ2

M g “ ¨ ¨ ¨ “ Γ∞M g, but not necessarily g “ ΓM g, which is
what makes it useful. If a graph g has been transformed so as to delete any of the edges, then a vertex
in g could lose all of its incident edges as a result, making it unreachable. A more parsimonious
equivalent to g would be a subset omitting the unreachable vertices. We can read the expression
ΓM g hereafter as the graph g pruned to the vertices reachable from M by way of any number of
intermediate vertices.

6.1. MATH USAGE 127

Figure 6.5: A set of shapes s partitioned by their number of sides is given by pπ f q s where f is the
function that maps any shape to its number of sides.

6.1.2 Partitions

Following convention, a set p Ă Ppsq is called a partition on s if
Ť

p is equal to s and all sets c P p
are pairwise disjoint. Each set c P p is called an equivalence class. Any function f defined on s
induces a partition pπ f q s whereby any two members q, r P s belong in the same class c whenever
the condition f pqq “ f prq holds. The partitioning operator π consistent with this understanding
can be defined as follows.

π“ λ f . λs.

c P Ppsq | ppµ f q cq X pµ f q ps ´ cq “ H ^ |pµ f q c| “ 1
(

(6.6)

Intuitively, f can be viewed as the function extracting the characteristic that members of the same
class have in common with one another. For example, the partition on a set of shapes shown
in Figure 6.5, for which any shapes in the same class always have the same number of sides, is
determined by a function f that maps each shape to its number of sides. That is f pxq is 3 if x is a
triangle, 4 if x is a square, etc..

A related transformation on sets of pairs px , yq is occasionally useful. For such a set s, the
expression Π s denotes the set of all pairs px , Y q where Y is the set of all right sides y of pairs
px , yq P s whose left side is x . For example, a set s “ tp1, aq, p1, bq, p2, cq, p2, dqu would imply a
value of Π s “ tp1, ta, buq, p2, tc, duqu. The presence of one pair in the result Π s for each possible
left side x in the given set s suggests a definition for Π that starts with a partition and then forms
the union of a singleton set derived from each class.

Π“
`

λp.
ď

cPp

Dpcq ˆ tRpcqu
˘

˝π λpx , yq. x (6.7)

6.1.3 Ordinals

The ordinal function notation defined in Section 5.1.4 is used extensively in this chapter on sets s
outside of PpNq and PpVq. We refrain hereafter from explicitly specifying the ordering on a set s
inducing an ordinal function s0 if it is covered by any of the following cases, which apply inductively.

• If s is a subset of N, the usual ordering on natural numbers applies.

• If s is a subset of Petri net vertices, the ordering postulated by definition of V applies.

128 CHAPTER 6. REACHABILITY GRAPH WRANGLING

p0

t0 t1 t2 t3 t4

p1 p2 p3 p4 p5

Figure 6.6: a Petri net with an initial marking

• A member px , yq of a product of totally ordered sets precedes another member px 1, y 1q if x
precedes x 1 or if x is equal to x 1 and y precedes y 1.

• Subsets of a totally ordered set are ordered such that

– no set precedes itself

– the empty set precedes any non-empty set

– and a set u precedes a set v if either minpuq precedes minpvq, or their minima are equal
and u ´ tminpuqu precedes v ´ tminpvqu.

6.2 Initial reachability graph

To keep the problem manageable, the reachability graph is constructed in several stages starting
with the easy one in this section, but not all difficulties can be deferred. At a minimum, the formal
definition of a Petri net pP, T, A, M, Fq P P developed in Chapter 5 is a prerequisite. The initial and
final markings M and F along with any other reachable markings m are subsets of the places P Ă V,
so it is natural to use a representation

g P PpPpVq ˆPppT YVq ˆPpVqqq (6.8)

for the reachability graph in adjacency set form as planned in Section 6.1.1. Here T is the universe
of observable transitions as always.

6.2.1 Overview

Although this representation is a good start, we can go no further without making some provision
for unsafe markings. As the example in Figure 6.6 shows, the transitions t0 and t1 are enabled
because their preset tp0u is marked, but unsafe because their respective postsets tp1u and tp2u are
also marked. The reachability graph should indicate that these transitions are enabled by exhibiting
edges labeled by them, but where in the graph should these edges point? A temporary solution is to
make their terminus a marking denoted

KP “ tminpV ´ Pqu (6.9)

6.2. INITIAL REACHABILITY GRAPH 129

consisting of the singleton set of the first vertex in V that can not appear in any marking of a Petri
net with places P. The vertex with the marking KP can serve as the terminus of any edge associated
with an unsafe transition. It necessarily has an empty postset, enables no transitions, and therefore
can have no successors in the graph. This condition is appropriate because exploring the successors
of unsafe markings yields no further information about the process being modeled. The solution is
“temporary” because a way of removing this vertex without altering the trace semantics after the
graph has been built is discussed in Section 6.3.

Another technicality we can not afford to ignore pertains to the transition t2 in Figure 6.6, whose
preset and postset both contain the place p0. The transition is enabled because its preset is marked,
but is nevertheless safe even though a place in its postset is marked. When t2 fires, a token is both
debited and credited to p0 atomically, which is not considered a safety violation. This example is a
reminder that the safety condition for a transition t and a marking m is not that the postset t‚ is
disjoint from m, but that the difference t‚ ´ ‚t between the postset and the preset is.

One more point of detail is exemplified by the transitions t3 and t4 in Figure 6.6. Both are
enabled, at most one can fire, and the same successor marking ensues in either case. This example
is a reminder that the successor marking does not uniquely determine the transition leading to it, so
whatever method we use to enumerate successor markings when building the graph had best take
note of their associated transitions as well.

6.2.2 Derivation

The reachability graph generating function ultimately takes the form of
a percolation from the initial marking to the whole graph. Building the
reachability graph of a process X “ pI , O, Nq P D with a Petri Net model
N “ pP, T, A, M, Fq P P depends on being able to identify the enabled transitions with respect to an
arbitrary marking m Ď P. To this end, the set T of transitions and the inverse

ď

pa,bq P AXpPˆTq

tpb, aqu

of the adjacency relation A determine a set of pairs pt, pq P pJ0 Aq T by a function

J0 : PpT YVq ˆPppT ˆVq Y pV ˆTqq Ñ PppT YVq ˆPpVqq (6.10)

defined as
J0 “ λpT, Aq.

ď

t P T´RpAq

tpt, Hqu YΠ
ď

pa,bq P AXpDpAqˆTq

tpb, aqu

wherein each left side t is a transition in the Petri net N and the corresponding right side p “ ‚t is
its set of preset places by Equation 6.7. Hence a transition t P T is enabled with respect to a marking
m Ď P if and only if there is a pair pt, pq P pJ0 Aq T for which p is a subset of m, or equivalently if
the following conditions holds.

pt, pq P J0pT, Aq X pT ˆPpmqq

For a transition t having a preset p enabled with respect to a marking m, the set of postset places

t‚ “ s “ pΨ Π Aq t

130 CHAPTER 6. REACHABILITY GRAPH WRANGLING

contributes to the successor marking pm ´ pq Y s unless t is unsafe due to m intersecting s ´ p as
noted previously. For unsafe transitions, we identify a fictitious marking KP with the successor by
Equation 6.9, implying a result expressible in either case as

pλi. xKP , pm ´ pq Y syiq δ
mXps´pq

H
.

Accordingly, the adjacency set e for a vertex pm, eq with a marking m in the reachability graph
contains an edge

pt, pλi. xKP , pm ´ pq Y syiq δ
mXps´pq

H
q P e

for each transition t enabled with respect to m, or more explicitly

pt, pλs. pλi. xKP , pm ´ pq Y syiq δ
mXps´pq

H
q pΨ Π Aq tq

determining the whole adjacency set
ď

pt,pq P J0pT,AqXpTˆPpmqq

tpt, pλs. pλi. xKP , pm ´ pq Y syiq δ
mXps´pq

H
q pΨ Π Aq tqu

for that vertex, which we can abbreviate as ppJ1 J0q pP, T, Aqq m in terms of a function

J1 “ λ j. λpP, T, Aq. λm.
ď

pt,pq P jpT,AqXpTˆPpmqq

tpt, pλs. pλi. xKP , pm ´ pq Y syiq δ
mXps´pq

H
q pΨ Π Aq tqu

Then if we write hpmq for the unit set tpm, equ of the vertex with marking m and its adjacency
set e in terms of a function temporarily denoted

h “ λm. tpm, ppJ1 J0q pP, T, Aqq mqu

the whole reachability graph follows as

pρ λpm, eq.
ď

n PRpeq

h nq ph Mq

from the initial marking M and Equation 6.4 in a definition of a reachability graph generating
function

RG0 : D Ñ PpVq ˆPpPppT YVq ˆPpVqqq

given by

RG0 “ λpI , O, pP, T, A, M, Fqq. pλh. pρ λpm, eq.
ď

n PRpeq

h nq ph Mqq λm. tpm, ppJ1 J0q pP, T, Aqq mqu.

6.3 Divergence propagation

Evaluating RG0pX q for a process X “ get a results in the reachability graph shown in Figure 6.7,
where the vertices are visualized as translucent orbs revealing within each of them the marking it
contains. The vertex labeled M pertains to the initial marking and the one labeled F pertains to the
final marking.

6.3. DIVERGENCE PROPAGATION 131

a

a

a

a

a

a

KP

a

a

M

F

Figure 6.7: the initial reachability graph RG0pX q with X “ pI , O, pP, T, A, M, Fqq “ get a

132 CHAPTER 6. REACHABILITY GRAPH WRANGLING

This example raises a couple of puzzling questions. Why should the “final” marking have a
successor? More troublingly and not unrelated, does the process accept an input of a twice, or
just once? On one hand, after the first input of a, the time will come for the internal transition
to fire, whereupon a second input of a will be safe. On the other hand, the internal transition is
unobservable, so it will never be safe to assume that time has come. Clearly something that might be
unsafe is as bad as something that is unsafe, so the correct interpretation is that it accepts the input
only once, but what rewrite rule in general would remove only the spurious edges like the second a
in Figure 6.7 from a reachability graph without ever mistakenly altering the process semantics?

Puzzling indeed, let us hold that thought and stick to something
easier for now, which is to get rid of the vertex labeled KP as mentioned
in Section 6.2.1.

6.3.1 Divergent vertices

If we are going to get rid of KP , then it is only fair to get rid of other
markings that are no better. Any vertex pm, eq with a marking m and an
adjacency set e containing an edge pt, KPq is as unsafe as KP itself if t
is an anonymous transition or if t is an output, because it means the Petri net having attained the
marking m can devolve spontaneously to KP beyond the control of the environment.

Finding these stealthily unsafe markings is easy by walking backwards from KP through the
reachability graph g “ RG0pI , O, Nq along any edges not labeled by inputs in I . A graph like g with
the directions of the edges reversed and the input labeled edges deleted

Π
ď

pm,eq P g

ď

pt,nq P e´pIˆRpeqq

tpn, pt, mqqu

pruned to the vertices reachable from KP contains only unsafe markings in its domain

D
`

ΓKP
Π

ď

pm,eq P g

ď

pt,nq P e´pIˆRpeqq

tpn, pt, mqqu
˘

which we can denote for the moment as Y0pI , Pq g P PpPpVqq in terms of a function

Y0 : PpTq ˆPpVq Ñ pPpPpVq ˆPppT YVq ˆPpVqqq Ñ PpPpVqqq

defined by

Y0 “ λpI , Pq. λg. D
`

ΓKP
Π

ď

pm,eq P g

ď

pt,nq P e´pIˆRpeqq

tpn, pt, mqqu
˘

.

6.3.2 Disabled inputs

It would appear justifiable to rewrite every member of Y0pI , Pq g to KP wherever it occurs in any
marking or its adjacency set throughout the graph g, and even to empty the adjacency sets of
markings thus rewritten by leaving their vertices as pKP , Hq because their successor markings are
of no practical consequence, but that transformation in itself would not rid the graph entirely of KP
as planned. To justify excising the sole surviving instance of pKP , Hq and all edges reaching it, we
may reason as follows.

6.3. DIVERGENCE PROPAGATION 133

m0

m1

m2

KP

a

a

a m0

m1

m2

KP

a

a

a

Figure 6.8: Deleting an edge labeled a from m0 to the divergent vertex labeled KP without changing
the semantics requires deleting the edges labeled a from m0 to safe markings m1 and m2.

• In an open Petri net-modeled DI process, every input transition is always enabled because its
preset is empty, whereas in a closed one, which can only be the form env pX , Eq, an input is
disabled when the specification restricts the environment E from emitting it.

• In the reachability graph, a disabled input with respect to a marking m is indicated by the
lack of an outgoing edge from the vertex pm, eq labeled by that input.

• The effect of a disabled input in a closed Petri net model is to relieve the process of any
obligations in the event of its reception. Hence its behavior is undefined.

• Therefore a disabled input is equivalent to an enabled input that causes divergence.

• In a reachability graph where all vertices containing an unsafe marking are rewritten to
pKP , Hq, no vertex has an outgoing edge connected to pKP , Hq unless that edge is labeled
by an input, because if it were labeled by an output or an anonymous transition, the vertex
would have been transformed to pKP , Hq itself.

• If an edge from a vertex pm, eq to pKP , Hq is labeled by an input a, then deleting all edges
labeled a from pm, eq disables a with respect to m, and because a has been deemed to cause
divergence, disabling it makes no semantic difference.

• All incident edges to pKP , Hq can be deleted without changing the semantics, thereby making
it unreachable and appropriate for deletion.

The only slippery part of this argument concerns the case of an input a labeling more than one
edge from the same vertex, of which only one points to KP . To disable it, we have to delete not
only the one pointing to KP , but the others as well, which may point to perfectly safe vertices. This
situation is depicted in Figure 6.8.

It should be clear nevertheless that deleting all similarly labeled edges from a vertex is the right
thing to do when one of them leads to divergence. The reachability graph in Figure 6.8 describes
a Petri net that may choose non-deterministically among three alternatives when it receives an
input of a after having attained the marking m0. If one of those alternatives is unsafe, and the
environment has no control over which alternative is chosen, then the input a must be regarded
as unsafe at this point. If only the edge leading to divergence were deleted and the others were
allowed to remain, then the semantics would be altered to express that the input a is safe.

134 CHAPTER 6. REACHABILITY GRAPH WRANGLING

With that settled, there is no impediment to eliminating all explicit references to unsafe markings
at once by replacing the graph g with one like

g ´ ppy gq ˆRpgqq

where y g “ Y0pI , Pq g contains all unsafe markings in g, along with removing the “dangling
references” to the erstwhile vertices in

ď

pm,eq P g´ppy gqˆRpgqq

tpm, e ´ pDpeq ˆ py gqqqu

and topping it off with a prune in

ΓM

ď

pm,eq P g´ppy gqˆRpgqq

tpm, e ´ pDpeq ˆ py gqqqu

to eliminate any vertices that may have been safe themselves but reachable only through unsafe
vertices, and therefore are not reachable any more. Here M is the initial marking of the Petri net
model N “ pP, T, A, M, Fq in the process X “ pI , O, Nq whose reachability graph is g “ RG0pX q as
usual. This improved graph is still subject to further improvements, but worth denoting for future
reference as ppY1 Mq Y0pI , Pqq g in terms of a function

Y1 “ λM . λy. λg. ΓM

ď

pm,eq P g´ppy gqˆRpgqq

tpm, e ´ pDpeq ˆ py gqqqu.

6.3.3 Numbered vertices

From this point onwards, much of the process semantics can be inferred from the way the reachability
graph is connected without reference to the Petri net from which it is derived, so there is little reason
to maintain a record of its markings. A marking m P PpVq for every vertex pm, eq P g seems like
excess baggage when a graph of the form

g P PpNˆPppT YVq ˆNqq

with numeric values in place of markings should serve just as well (cf. Equation 6.8). A full account
of the process semantics (i.e., one that would enable the recovery of an equivalent Petri net model
to the original from the reachability graph) would require identifying one vertex in the reachability
graph with the initial marking and one with the final marking if any, but this need could be met by
a numbering scheme that always maps the initial marking M to 1 and final marking F to 0 (or the
opposite, but this way turns out to be more convenient for reasons that are presently impossible to
motivate). Our last task in this section therefore is to tidy up the reachability graph representation
accordingly.

A numbering function

Any numbering function that takes a marking m to δM
m whenever m is a member of tM , Fu would

be adequate, with the numbers assigned to other markings unconstrained, so we can expect it to be
some function of the form

λm. pλi. xδM
m , 2 ` f myiq δ

tM ,Fu´tmu

tM ,Fu

6.4. ANONYMOUS EDGE REDUCTION 135

where the index
i “ δ

tM ,Fu´tmu

tM ,Fu

is unity whenever m is neither M nor F , and f is some numbering function applicable to all other
markings m. The part about f is not difficult either, because the set of all other markings in the
graph g is expressible as

Dpg ´ ptM , Fu ˆRpgqqq

and a function that maps each member of this set to a unique natural number is expressible in terms
of the ordinal function notation defined in Section 5.1.4.

f “ pDpg ´ ptM , Fu ˆRpgqqqq0

Hence our whole numbering function for a graph g with initial and final markings M and F can be
denoted Y2pM , Fq g in terms of a function Y2 defined as follows.

Y2 “ λpM , Fq. λg. λm. pλi. xδM
m , 2 ` pDpg ´ ptM , Fu ˆRpgqqqq0 myiq δ

tM ,Fu´tmu

tM ,Fu

Anonymous edge unification

Applying this function to every marking in the graph g leaves no trace of the markings in their
original concrete representation as sets of Petri net places, so the unobservable Petri net transitions
in V labeling the anonymous edges can have no further significance other than as place holders.
Further transformations in Section 6.4 and Section 6.6 are simplified by erasing distinctions among
them, for which it suffices to map every remaining anonymous edge label t P V to the same minimum
member of V in the course of renumbering the vertices as part of a combined transformation
Y3 Y2pM , Fq with Y3 given by

Y3 “ λy. λg.
ď

pm,eq P g

tppy gq m,
ď

pt,nq P e

tppλi. xt,min Vyiq δ
ttu´V

H
, py gq nququ.

An aptly named reachability graph generating function to improve on RG0 would be

RG1 : D Ñ PpNˆPppT YVq ˆNqq

showing Y0 through Y3 together in the context of an explicit formal parameter X P D.

RG1pX q “ pλpI , O, pP, T, A, M, Fqq. pY3 Y2pM , Fqq ppY1 Mq Y0pI , Pqq RG0 X q X

6.4 Anonymous edge reduction

Although the work of Section 6.3 reduces the reachability graph in
Figure 6.7 from five vertices to four as shown in Figure 6.9, it does
not address the issues raised at the outset regarding trace semantics
and final markings. With no resolution at hand, perhaps simplifying the
graph further may yield some insight.

136 CHAPTER 6. REACHABILITY GRAPH WRANGLING

1

2

0

3

a

a

M

F

Figure 6.9: revised reachability graph RG1pX q with X “ pI , O, pP, T, A, M, Fqq “ get a

6.4. ANONYMOUS EDGE REDUCTION 137

m0

m1

m3m2 m4 m5

a
b c

m0

m1

m3m2 m4 m5

a
b c

a
b c

Figure 6.10: An anonymous edge from m0 to m1 is replaced by edges from m0 directly to the termini
of all edges originating from m1 and labeled similarly.

6.4.1 Overview

An obvious way to simplify a reachability graph is shown in Figure 6.10. If the Petri net can slip
silently from a marking m0 to m1 by firing an unobservable transition, then for practical purposes
it is as if anything that can happen when the marking is m1 can happen when the marking is m0,
so why not bypass m1 and connect m0 directly to its successors m2 through m5? If m1 becomes
unreachable as a result, so much the better because the graph then can be simplified by pruning it.
By the time this transformation is applied throughout the graph, maybe all the edges labeled by
unobservable transitions will be eliminated along with quite a bit of dead wood.

There is unfortunately something wrong with this idyllic picture. If the observable transitions a,
b, and c are outputs, then there is no problem, but if any of them is an input, this transformation
alters the semantics. In the graph at the left, none of them is enabled with respect to m0, so based
on the reasoning in Section 6.3.2, any of them that is an input causes divergence if it is received
when the marking is m0. In the graph subsequent to the transformation shown at the right, voilà,
they are all safe. This change is significant. The edge from m0 to m1 in the original graph implies
that they eventually become safe, but because there is no way to discern when they do, they must
always be considered unsafe.

Theoretically this sword should cut both ways. If a vertex numbered m with an enabled input a
connects by an anonymous edge to a successor m1 where a is disabled, that means a is temporarily
safe while the marking is m but eventually becomes unsafe when the marking changes to m1, which
the environment can not observe or control. Perhaps a should be considered unsafe with respect
to the current marking m as well. While it is straightforward to delete edges found to correspond
to unsafe inputs by this criterion from a reachability graph, it is unnecessary because they can not
occur in a reachability graph whose Petri net is expressible by the process combinators developed in
Chapter 5. This effect is by design. It is incompatible with delay insensitivity for a process to disable
its own inputs without intervention from the environment [288].

Alternatively, inputs that are temporarily disabled before spontaneously becoming enabled cer-
tainly can occur in reachability graphs derived from valid DI process specifications, this characteristic
being evident in Figure 6.9. Graphs like this one can be simplified without altering their semantics
by a slightly restricted version of the transformation illustrated in Figure 6.10. The restricted trans-
formation refrains from creating any outgoing edges from vertices numbered m that are labeled by
inputs disabled with respect to m, but otherwise proceeds as shown. Transforming the graph in

138 CHAPTER 6. REACHABILITY GRAPH WRANGLING

Figure 6.9 by this rule would delete the edge from vertex 2 to vertex 0, but would not create an
edge labeled a from 2 to 3 because a is disabled with respect to vertex 2.

Not only would this transformation make the graph possible to prune by excising vertices 0 and
3, but it would also allow the elimination of the edge labeled a from vertex 0 to vertex 3. This
outcome is desirable because it would make the trace semantics readily apparent from the graph.
The input a is acceptable only once, and exactly one edge labeled a would remain. This effect is not
a coincidence, but exactly the right way for spurious edge labels like the latter a to be removed.

However, having stumbled onto this solution to one of the problems first observed in Section 6.3,
we may have created a worse problem. Previously the final marking F may have had an unwanted
successor, but at least there was a final marking. Following the current plan would leave the graph
without one because the vertex numbered 0 would be pruned. Losing track of the final marking
obliterates potentially useful semantic information. To keep it from being lost, we have to follow
this transformation by another rewrite rule: if there is no final marking in the graph after pruning,
then any surviving vertices that were originally connected to vertex 0 through a path of anonymous
edges are identified with it by renumbering them to 0. If there are more than one of them, the
renumbering effectively fuses them, but let us ignore this situation for the moment.

According to this new plan, the graph in Figure 6.9 would be transformed to two vertices,
with vertex 0 deleted and vertex 2 renumbered to 0 to represent the final marking, which is
an improvement. We are left with a graph of one vertex for the initial marking, one for the final
marking, and an input-labeled edge between them, fortunately just as it should be.

Maybe not so fortunately, this last manipulation unhelpfully rewards a cavalier attitude. It is
not generally valid to apply this transformation when the terminus of the anonymous edge to be
deleted has no reachable successors. A vertex pm, Hq with no successors expresses deadlock. A
vertex pm1, eq with several outgoing edges and one anonymous edge pt, mq P e to a vertex pm, Hq

with no successors expresses a process with an option to deadlock at its own discretion. Taking
away that option changes the semantics. We might not like it, but suppressing it artificially amounts
to killing the messenger. The need to specify the exact conditions whereby the transformation
preserves semantics calls for a more formal discussion.

6.4.2 Derivation

A fair amount of technical detail warrants breaking a derivation of anonymous edge reduction
into several parts retracing the ideas above more systematically. Traversing the graph exhaustively
through only the anonymous edges starting at each vertex essentially creates all necessary additional
edges at once, but eliminating the edges thus made redundant is complicated by considerations of
final markings and deadlock semantics, which have to be discussed at some length as a prerequisite.
When these matters are resolved, attention to an anomalous corner case prolongs the discussion
again, but at last we arrive at another revision of the reachability graph with most if not all
anonymous edges removed.

Traversing anonymous edges

To start with the obvious, let a reachability graph g restricted to its anonymous edges

pµ λpm, eq. pm, e X pV ˆRpeqqqq g

6.4. ANONYMOUS EDGE REDUCTION 139

induce a function taking a vertex number n to the set of numbers of vertices reachable from the
vertex numbered n through any number of anonymous edge traversals

λn. DpΓn pµ λpm, eq. pm, e X pV ˆRpeqqqq gq

denoted Z0 g for Z0 : PpNˆPppT YVq ˆNqq Ñ pN Ñ PpNqq defined by

Z0 “ λg. λn. DpΓn pµ λpm, eq. pm, e X pV ˆRpeqqqq gq.

Creating new edges

Any node pm, eq P g with an adjacency set e is connected by a sequence of anonymous edges to
every vertex numbered n P pZ0 gq m, whose collective adjacency sets are

d “
ď

n PpZ0 gq m

pΨ gq n P PppT YVq ˆNq.

It would be tempting to enlarge the adjacency set e to e Y d so as to bypass the intermediate vertices
along the anonymous edge paths as in Figure 6.10, but following from the discussion of disabled
inputs above, we should at least restrict it to

e Y d ´ ppI ´Dpeqq ˆRpdqq

where I is the input alphabet of the process whose reachability graph is g, so as not to enable
any currently disabled inputs in I ´ Dpeq. Although it should never be necessary for a valid DI
process specification, we can also explicitly disable transiently enabled inputs as an extra sanity
check following the earlier discussion by rewriting the adjacency set e to

e Y d ´ ppI ´ pDpeq⊖Dpdqqq ˆRpe Y dqq

where the symmetric difference Dpeq⊖Dpdq contains any edge labels in one of e or d but not the
other. In this way, we decouple the reachability graph from complicated assumptions about the
Petri net model. Let the rewritten graph up to this point be denoted ppZ1 Iq Z0q g according to the
following definition.

Z1 “ λI . λz. λg. pµ λpm, eq. pλd. pm, e Y d ´ ppI ´ pDpeq⊖Dpdqqq ˆRpe Y dqqqq
ď

nPpz gq m

pΨ gq nq g

Identifying final marking equivalents

The next step should be to eliminate the anonymous edges that are now redundant in the graph.
If a vertex pm, eq P g is connected by an anonymous edge pt, m1q P e to another vertex pm1, e1q P g
where the adjacency set e1 of the terminus is a subset of the adjacency set e of the origin, then it
would seem reasonable to eliminate the edge pt, m1q from e, but as noted previously we can not do
so indiscriminately. For one thing, we have to keep the vertex representing the final marking from
becoming unreachable unless we can designate others to take its place.

Candidates to replace the final marking vertex would be those connected to it by an anonymous
edge, which are members of Z2 g with Z2 defined explicitly for the sake of concreteness as

Z2 “ λg. tm P Dpgq | pΨ gq m X pV ˆ t0uq ‰ Hu.

140 CHAPTER 6. REACHABILITY GRAPH WRANGLING

In the unlikely case of multiple vertices indicated by Z2 g with conflicting adjacency sets, it is best
to refrain from using any of them as replacements and to leave the original vertex 0 in place along
with any anonymous edges leading to it. Hence we look for a cardinality |i| “ 1 in the set

i “ pµ Ψ gq Z2 g

of adjacency sets of members of Z2 g as a prerequisite (relying implicitly on anonymous edge
unification as proposed in Section 6.3.3). A further condition necessary for preserving semantics
when members of Z2 g are rewritten to 0 should be

p
Ť

iq ´ pV ˆ t0uq Ď pΨ gq 0

meaning that none of them indicates any behavior contrary to that of the original 0 numbered vertex
(at least in the context of a graph already transformed by pZ1 Iq Z0). A restriction pZ3 Z2q g to a set
that either meets these conditions or devolves to t0u follows from Z3 given by

Z3 “ λz. λg. pλi. pλ j. pλk. xt0u, z gykq δ
|i|
1 δ

H

j q p
Ť

iq ´ pV ˆ t0uq ´ pΨ gq 0q pµΨ gq z g

and justifies fusing its members into a single new vertex numbered 0 while allowing the alternative
to become unreachable.

Preserving deadlock semantics

We are still not ready to eliminate any anonymous edges from the graph until arranging to retain
those terminating on vertices with no successors, which express deadlock as noted previously. For
an adjacency set e in a vertex pm, eq P g, we could eliminate every anonymous edge in e terminating
on a vertex whose adjacency set is a subset of e as originally proposed, except the termini with empty
adjacency sets, by rewriting e to

e ´ pV ˆDpg X pNˆ pPpeq ´ tHuqqqq

and if we can remember at the same time to avoid edge deletions that might make the vertex
numbered by 0 or its replacement candidates pZ3 Z2q g unreachable, then the given adjacency set e
should be rewritten to

e ´ pV ˆDpg X ppN´ pZ3 Z2q gq ˆ pPpeq ´ tHuqqqq

which prevents eliminating any edge terminating at a vertex indicated by pZ3 Z2q g, whether 0 or
its replacements. This transformation also depends on anonymous edge unification as mentioned
above.

Eliminating redundant edges

Compared to the rewrite rule above for the adjacency set e, the one for the vertex number m is
easy. If m is a member of pZ3 Z2q g, then it refers either to a vertex connected to the 0 vertex by an
anonymous edge or to 0 itself, and can be rewritten to 0. A compact description of the rewritten
vertex number

mδppZ3 Z2q gq´tmu

pZ3 Z2q g

6.5. REDUNDANT PATH ELIMINATION 141

(or possibly not) in the whole rewritten vertex

`

mδppZ3 Z2q gq´tmu

pZ3 Z2q g , e ´ pV ˆDpg X ppN´ pZ3 Z2q gq ˆ pPpeq ´ tHuqqqq
˘

leaves no further obstacle to eliminating redundant edges from a graph g by its transformation to
pZ4 Z3 Z2q ppZ1 Iq Z0q g in terms the following definition.

Z4 “ λz.λg.
`

µ λpm, eq.
`

mδpz gq´tmu
z g , e ´ pV ˆDpg X ppN´ z gq ˆ pPpeq ´ tHuqqqq

˘˘

g

However, we are left with a minor anomaly when 0 is not a member of z g “ pZ3 Z2q ppZ1 Iq Z0q g
but the vertex numbered 0 in g has an empty adjacency set, which is not implausible. Excluding a
number m from z g allows but does not require anonymous edges terminating at m to be deleted,
whereas having an empty adjacency set prohibits edges to it from being deleted. On the other
hand, membership of m in z g requires it to be rewritten to 0. These conditions imply an edge
from a formerly m-numbered vertex pointing to the 0 vertex (or ambiguously to itself), and the
original vertex p0, Hq P g remaining distinct from that one. To correct this anomaly, we have to
apply one further transformation that explicitly fuses all similarly numbered vertices by unifying
their adjacency sets, forcibly removes any anonymous edge from a vertex to itself, and then takes
the opportunity to prune all unreachable vertices, the last being worthwhile in any case.

Z5 “ λg. Γ1 pµ λm. pm, ppΨ gq mq ´ pV ˆ tmuqqq Dpgq

We might be stuck with a few lingering anonymous edges in rare cases even after this transformation
to the graph, but this last revision completes a new improved version g “ RG2 X of the reachability
graph expressible in terms of a function

RG2 : D Ñ PpNˆPppT YVq ˆNqq

given by
RG2pX q “ pλpI , O, Nq. Z5 pZ4 Z3 Z2q ppZ1 Iq Z0q RG1 X q X .

6.5 Redundant path elimination

The next improvement to the reachability graph is motivated by the example shown in Figure 6.11,
which is based on a practical process specification discussed in Section 4.1.1. According to the
graph in Figure 6.11, an initial input of R1 followed immediately by an input of R2 could lead either
to a vertex where the system can only output G1, or to a vertex where the system must choose
non-deterministically between the outputs G1 and G2. Furthermore, if the system outputs G1, then
it reaches the same vertex regardless of the path it takes to get there, which the user can neither
influence nor observe.

This reachability graph is more complicated than necessary. If the environment transmits R1 and
then R2 without waiting for an output inbetween, then whatever happens internally, the net effect is
that an output of either G1 or G2 must be expected. If one path encompasses both alternatives, then
the other path is redundant and can be eliminated without consequence. A similar argument applies
to R2 followed by R1 and to both inputs concurrently. As far as the environment is concerned, the
reachability graph might as well be the one shown in Figure 6.12, which has two vertices and four
edges fewer than that of Figure 6.11.

142 CHAPTER 6. REACHABILITY GRAPH WRANGLING

R1 R2

G1 G2
Ack R1R2

R1 R2

G1 G2

R2 R1

AckG2 G1

Ack Ack

R2 R1

Figure 6.11: two paths, highlighted, with the same labels leading to the same vertex (cf. Figure 4.4)

R1 R2

G1 G2
Ack

R1 R2

R2 R1

AckG2 G1

Ack Ack

R2 R1

Figure 6.12: the reachability graph in Figure 6.11 reduced by redundant path elimination

6.5. REDUNDANT PATH ELIMINATION 143

A general formulation of this optimization is the subject of this section. As usual, we require
it to preserve the trace semantics and the presence of a vertex numbered 0 associated with the
final marking if any. A guaranteed optimal result would probably require a costly depth-first search
of the graph, but the approach taken in this section procures an approximate solution efficiently
by iterating a local rewrite rule. In some cases the rule creates new vertices in the hope of a net
improvement by making others unreachable and thus subject to pruning, but each iteration must be
conditional on a strict decrease in the number of edges or vertices in the graph to ensure termination.
Further informal discussion of the transformation follows in Section 6.5.1, and a derivation in detail
follows in Section 6.5.2.

6.5.1 Overview

To generalize from this example, a redundant path always starts where a vertex has multiple outgoing
edges with identical labels, such as a member pm, eq P g of a graph g with edges

e “ tpt0, m0q, pt1, m1qu

satisfying t0 “ t1. Maybe in this case either edge pt0, m0q or pt1, m1q is the beginning of a redundant
path and can be eliminated from e, but undoubtedly some other conditions apply.

The redundancy of either path depends on what follows from it, which would depend on the
outgoing edges from the vertices numbered m0 and m1. A conservative assumption is that if the
adjacency sets of m0 and m1 are identical, meaning pΨ gq m0 “ pΨ gq m1 holds, then whatever can
happen to m0 could also happen to m1, so one of the edges would certainly be redundant. However,
this criterion is too restrictive to be much help, and is covered in any case by partition fusion as
described in Section 6.6.

A less conservative assumption would be that if the adjacency set associated with m0 is a subset
of that of m1, meaning pΨ gq m0 Ă pΨ gq m1 holds, then any behavior associated with m0 is
included in that of m1, so the edge pt0, m0q is redundant and can be eliminated from e. Though
superficially plausible, this proposition is not quite correct. If m1 has an outgoing edge labeled with
an input i1, but m0 does not, then i1 is enabled when the system attains m1, but not when it attains
m0. Because being disabled is the same as being unsafe (Section 6.3.2), the input i1 is not safe with
respect to m0. If the system starts at m and undergoes a transition t equal to either t0 or t1 (which
are equal to each other by hypothesis), then the safety of i1 following t depends on whether the
system reaches m0 or m1. One can only assume that t followed by i1 is not generally safe under
these circumstances. Eliminating the path from m through m0 would change the trace semantics by
making it safe.

If pΨ gq m0 Ă pΨ gq m1 does not imply that the path through m0 is redundant, does it imply
instead that the path through m1 is redundant? One might argue that it does because any inputs
disabled in m0 must be presumed unsafe, so it makes no difference if they are enabled in m1.
However, there could be an outgoing edge from m1 labeled by an output o2, but not from m0.
Whether the output o2 can occur following the transition t from m depends on whether the system
reaches m0 or m1. One must assume that it could happen. Eliminating the path through m1 would
change the semantics by asserting that it could not, so neither is this path redundant.

Although neither path by itself provides for the elimination of the other in this situation, there
could be yet a third path making both of them redundant, which brings us to Figure 6.13. This
path would also have to originate at m and be labeled by t, but would pass through another vertex
whose enabled inputs are the intersection of those of m0 and m1, and whose enabled outputs are

144 CHAPTER 6. REACHABILITY GRAPH WRANGLING

m

m0 m1

t0 t1

i0
o0

o1 i0 i1

o2

m

m0 m1

t0 t1

i0
o0

o1 i0 i1

o2

i0

o0 o1

o2

t

Figure 6.13: Neither extant path from m makes the other redundant, but a newly created vertex
enables a path making both of them redundant.

the union of those from m0 and m1. In this way, any inputs disabled from either of m0 and m1 are
also disabled from this vertex, but any outputs enabled from either of them are enabled from it.
This vertex need not be in the graph already; it might be a net gain to create it if doing so allows
both m0 and m1 to be eliminated. This insight is enough to get started on the formal specification
in the rest of this section.

6.5.2 Derivation

The relevance to this transformation of an adjacency set e “ pΨ gq m in a vertex pm, eq P g having
members pt, m0q and pt, m1q with different termini m0 and m1 but the same edge label t suggests
that a partition Π e “ tpt, tm0, m1 . . . uq, . . . u might be useful. With that, we could seek to rewrite
the adjacency set e to a replacement with just one edge in it for each member pt, sq P Π e, where the
new edge has the original label t but a new terminus derived from the set s of original termini mi .
If the set s “ tm0u contains only one member m0, then the edge remains unchanged as pt, m0q by
the transformation.

Last things first

With many details left to address, we can dispense fortunately with two of the more worrisome in
one swoop at the outset, one being to ensure the continued reachability of the node representing
the final marking, and the other being to preserve semantics pertaining to deadlock. By partitioning
the set s in a pair pt, sq P Π e further according to the conditions

`

π λn. pδ
ppΨ gq nq´I
H

,δn
0q
˘

s

where I is the input alphabet of the process whose reachability graph g is being transformed, we
ensure that any vertex numbered n “ 0 is in a class by itself, and any vertices lacking outputs in
their adjacency sets (hence exhibiting deadlocking or quiescent behavior) are separated from any

6.5. REDUNDANT PATH ELIMINATION 145

with outputs. The first of these conditions requires any edge of the form pt, 0q P e to induce a pair
pt, t0uq P s rewritable to the same edge pt, 0q as before, so that edges pointing to the 0 vertex never
disappear. The other condition is motivated by the idea that the new vertex to be derived from s,
if any, must have an output-labeled edge in its adjacency set matching each output-labeled edge
in any member of s. A union of adjacency sets of which some contain output-labeled edges but
others do not results in one that necessarily contains output-labeled edges, and therefore no longer
expresses the option not to output, but keeping dissimilar adjacency sets separate prevents this
misunderstanding (albeit at the possible cost of separately created vertices). To capture these ideas
more formally, let ppW0 Iq gq m denote the set of pairs pt, sq associated with the vertex numbered m
in the graph g with input alphabet I according to a function

W0 : PpTq Ñ pPpNˆPppT YVq ˆNqq Ñ pN Ñ PppT YVq ˆPpNqqqq

defined as follows.

W0 “ λI . λg. λm.
ď

pt,sqPΠpΨ gq m

ttu ˆ
`

π λn. pδ
ppΨ gq nq´I
H

,δn
0q
˘

s

Adjacency sets

On the subject of adjacency sets, the one associated with the set s P Dpgq of vertex numbers obtained
by pW0 Iq g above consists of two subsets, one being the intersection of the input-labeled edges in
all adjacency sets e P pµ Ψ gq s, and the other being the union of all output-labeled or anonymous
edges therein. The latter is easy to express formally as one might expect by

ď

ePpµΨ gq s

e ´ pI ˆRpeqq

but the former is not quite the analogous cumulative intersection. If an input labels at least one
edge in every adjacency set e in pµΨ gq s, then that input is enabled with respect to the vertex to be
created for s, so all edges labeled by it are allowed in the result even if no particular edge so labeled
is common to every e P pµΨ gq s due to varying termini. To capture this requirement precisely, we
need to be clear about allowing the set of enabled inputs

i “
č

dPpµΨ gq s

Dpdq X I

to include any input common to the domains of all adjacency sets in pµΨ gq s regardless of the
termini of the edges they label, so that any edge labeled by any of them

ď

ePpµΨ gq s

e X pi ˆRpeqq

is allowed in the result. An expression ppW1 Iq gq s combining both subsets is then straightforward
in terms of a function

W1 : PpTq Ñ pPpNˆPppT YVq ˆNqq Ñ pPppT YVq ˆPpNqq Ñ PppT YVq ˆNqqq

given by

W1 “ λI . λg. λs. ppλi.
ď

ePpµΨ gq s

e X pi ˆRpeqqq
č

dPpµΨ gq s

Dpdq X Iq Y
ď

ePpµΨ gq s

e ´ pI ˆRpeqq.

146 CHAPTER 6. REACHABILITY GRAPH WRANGLING

Vertex numbers

Having obtained an adjacency set a “ ppW1 Iq gq s as above, we lack only a vertex number n P N for
the new vertex pn, aq determined by s. The number n can be chosen arbitrarily as any non-member
of Dpgq, but a value of

n “ pmax Dpgqq `PpDpgqq0 s

suffices to guarantee a unique assignment for any s P PpDpgqq. However, it would be wasteful to
create a new vertex if there is already a member of g having exactly a “ ppW1 Iq gq s as its adjacency
set, and even invalid to do so if s “ t0u refers to the final marking, whose number 0 must be kept
invariant. To express the appropriate vertex number in either case, the relation

tpa, pmax Dpgqq `PpDpgqq0 squ Y pµ λpm, eq. pe, mqq gq

consisting of the inverse of the reachability graph g and one additional related pair pa, nq determines
a function

Ψ Π ptpa, pmax Dpgqq `PpDpgqq0 squ Y pµ λpm, eq. pe, mqq gq

taking any adjacency set in tau YRpgq to a set of corresponding vertex numbers, from which the
minimum given by

min
`

Ψ Π ptpa, pmax Dpgqq `PpDpgqq0 squ Y pµ λpm, eq. pe, mqq gq
˘

a

is always the best choice to associate with the given adjacency set a. Denote this result pW2 gq pa, sq
in terms of a function W2 : PpNˆPppTYVq ˆNqq Ñ ppPppTYVq ˆNq ˆPpNqq Ñ Nq defined by

W2 “ λg. λpa, sq. min
`

Ψ Π ptpa, pmax Dpgqq `PpDpgqq0 squ Y pµ λpm, eq. pe, mqq gq
˘

a.

Rewrite rule

With this preparation, we can formulate the rewrite rule up to this point roughly in terms of the
functions W0, W1, and W2. For every vertex number m P Dpgq and every pair pt, sq of edge labels t
and sets s of termini in ppW0 Iq gq m, the adjacency set a “ ppW1 Iq gq s and the new or used vertex
number n “ pW2 gq pa, sq determine a tuple ppm, pt, nqq, pn, aqq (yes, with two copies of n). The set
of all such tuples

u “
ď

mPDpgq

ď

pt,sqPppW0 Iq gq m

pλa. pλn. tppm, pt, nqq, pn, aqquq pW2 gq pa, sqq ppW1 Iq gq s

determines a pair pd, rq “ pΠDpuq,Rpuqq of sets of partly rewritten vertices where all adjacency
sets in d are up to date but some in r may be stale. Before addressing this last issue, let us summarize
this result as pd, rq “ W3pxW0 I , W1 Iy, W2q g with W3 defined as follows.

W3 “ λpw, vq. λg.
`

λu. pΠDpuq,Rpuqq
˘

ď

mPDpgq

ď

pt,sqPpw0 gq m

pλa. pλn. tppm, pt, nqq, pn, aqquq pv gq pa, sqq pw1 gq s

Staleness

The issue of stale adjacency sets in the result pd, rq obtained by W3 stems from vertices pn, aq P r
that are also members of the previous iteration of the graph g because a matching adjacency set

6.5. REDUNDANT PATH ELIMINATION 147

a P Rpgq is found by W2. If the adjacency set corresponding to the vertex number n is rewritten
to something other than a in d, then there are two vertices both numbered n in with different
adjacency sets in d and r. Although the adjacency sets are semantically equivalent, clearly the one
in d should take precedence or else the effort to rewrite it is wasted. A revised reachability graph

d Y pr ´ pDpdq ˆRprqqq

includes all newly created vertices from r along with their adjacency sets but ignores any members
of r whose current or updated versions appear in d. Some members of d should also be ignored
henceforth, namely those that have been made unreachable due to edges deleted from the adjacency
sets. This further step is expressible as W4pd, rq by a transformation

W4 : PpNˆPppT YVq ˆNqq ˆPpNˆPppT YVq ˆNqq Ñ PpNˆPppT YVq ˆNqq

defined as suggested above with an additional pruning operation.

W4 “ λpd, rq. Γ1 pd Y pr ´ pDpdq ˆRprqqqq

Iteration

It is not unlikely that transforming the graph g by w “ W4 ˝ W3pxW0 I , W1 Iy, W2q would lead to a
result enabling further improvements by the same transformation, and that the limit w∞ g would
be the most improved of all, but some restraint is necessary because this limit need not exist. The
issue at stake is illustrated in Figure 6.14. Visible at the upper left, a vertex with two outgoing edges
labeled a connects to two vertices each having an outgoing edge labeled b. In the first step, a new
vertex is created on that basis, which necessarily has two outgoing edges labeled b, as shown in the
center image. The newly created vertex allows another opportunity to apply the rewrite rule. This
time, a new vertex is created requiring two outgoing edges labeled a, as shown at the lower right.
The graph is now back where it started except for the two new vertices. This process obviously can
continue indefinitely.

Fortunately, this issue is not difficult to remedy once recognized. To guarantee termination, each
application of the rewrite rule to a graph g must be made conditional on the strict decrease of a
metric }g} chosen as any measure of the size of the graph that can not become arbitrarily small. A
natural choice would be the sum of the number of vertices and the number of edges in the graph.

}g} “ |g| `
ÿ

pm,eqPg

|e|

Other reasonable alternatives are the number of vertices only or the number of edges only. The
specific choice is largely an implementation decision best guided by its effects in typical production
settings.

A modified rewrite rule that alters the graph only when doing so implies a net improvement in
the size metric is expressible as W5 pW4 ˝ W3pxW0 I , W1 Iy, W2qq based on a function W5 given by

W5 “ λw. λg. pλi. xw g, gyiq
`

λm. δ}g}
m

˘

min

}g}, }w g}
(

This rule always reaches a fixed point when iterated exhaustively.
Not a moment too soon, the next major edition of the reachability graph for a process X P D

becomes RG3pX q in terms the previous edition RG2pX q and a function

RG3 : D Ñ PpNˆPppT YVq ˆNqq

148 CHAPTER 6. REACHABILITY GRAPH WRANGLING

a

a

a

b

a

b

b

b

a

b

a

ba

a

a

a

b

a

bba

Figure 6.14: For some graphs, a redundant edge removal transformation can create new vertices ad
infinitum, which is undesirable.

6.6. PARTITION FUSION 149

defined as follows.

RG3pX q “ pλpI , O, Nq. pW5 pW4 ˝ W3pxW0 I , W1 Iy, W2qqq
∞ RG2 X q X

6.6 Partition fusion

The final transformation of the reachability graph considered in this chapter is motivated by Fig-
ure 6.15. Why should we tolerate the tangled mess at the top of the figure when the nice clean
alternative at the bottom obviously does the same job of expressing the cyclic repetition of four
signals a, b, c, and d? There is no good reason, especially when a well known algorithm for state
machine minimization is readily adaptable to the problem of converting one to the other [115].

6.6.1 Overview

The core idea of the transformation is that if some of the vertices in a graph are behaviorally equivalent
to one another, then they can be merged into a single vertex. In Figure 6.15, the vertices of the
upper graph form natural equivalence classes based on similarity of outgoing edge labels. However,
similar edge labels alone are not generally sufficient for equivalence, because the edges could lead
to different destination vertices having different observable behavior. In this example, the edges
from any two “equivalent” vertices do indeed lead to different destination vertices. Nevertheless,
the destinations always fall within the same equivalence class, which is crucial. For two vertices to
be behaviorally equivalent to each other, they must not only have the same set of labels on their
outgoing edges, but have behaviorally equivalent destination vertices for each label as well.

An insightful reader might perceive an impasse at this point. To decide whether two vertices are
behaviorally equivalent to each other requires a determination as to whether the vertices at the other
ends of their outgoing edges are behaviorally equivalent. Determining
their behavioral equivalence in turn requires looking still further ahead.
A correct partition would seem to be justifiable only in retrospect, having
been found only by a costly exhaustive search.

An iterative algorithm

Nevertheless, there is an efficient algorithm for obtaining the desired partition that avoids infinite
regress. The algorithm starts with a course approximation to the partition determined only by edge
labels, and refines it iteratively until a termination condition is satisfied.

• The termination condition requires that if the edges labeled t from a vertex in a class c are
connected to vertices in classes d0, d1 . . . dn, then every other vertex in c also has at least one
outgoing edge labeled t connected to some vertex each class di , and no edges labeled t to
vertices in any classes other than those.

• The operation performed when the condition is not met is to find a class c in which an edge
labeled t can lead from one member to a class d but not from another member, and then to
subdivide p so that the members connecting to d are assigned to one subdivision and rest are
assigned to the other.

This operation must be iterated until the condition is met because subdividing any class may require
classes containing predecessors of its members also to be subdivided, which may require subdivisions

150 CHAPTER 6. REACHABILITY GRAPH WRANGLING

aa a

b

b

b

c

c

c
d

d d

ab

c d

Figure 6.15: Partition fusion reduces each equivalence class (above, shaded) to a single vertex
(below).

6.6. PARTITION FUSION 151

m0

m2m1

m3

a

a a

a

bb b

b

Figure 6.16: In the initial partition, m0 through m3 are classed together because they each have an
outgoing edge labeled a and one labeled b.

m0

m1

m2

m3

a

a

a

a

bb b

b

Figure 6.17: Because edges labeled a from m0 and m1 lead to a different class than those from m2
and m3 in Figure 6.16, m0 and m1 have to be put into a different class than m2 and m3.

152 CHAPTER 6. REACHABILITY GRAPH WRANGLING

m0

m1

m2

m3

a

a

a

a

bb b

b

Figure 6.18: The class containing m2 and m3 in Figure 6.17 has to be subdivided further because
their edges labeled b lead to different classes.

of other classes, and so on. However, termination can be guaranteed because the condition is
trivially satisfied if every class is reduced to a single vertex. To complete the transformation after
the termination condition is satisfied, every equivalence class in the graph is transformed to a single
vertex.

A partial example

Three snapshots of the graph transformation are shown in Figure 6.16 through Figure 6.18. These
may be helpful for visualizing this algorithm in action.

• In Figure 6.16, a graph is partitioned initially with respect only to the edge labels, resulting in
several classes, including one containing the vertices m0 through m3. These vertices are in
the same class because each of them has an outgoing edge labeled a and an outgoing edge
labeled b. Outgoing edges from vertices in other classes are not shown.

• In Figure 6.17, the former class containing m0 through m3 has been subdivided into one for
m0 and m1, and another for m2 and m3. This operation is indicated because edges labeled a
from m0 and m1 lead to vertices in the class on the left, whereas edges labeled a from m2 and
m3 lead to vertices in the class on the right.

• The former class containing m2 and m3 is further subdivided in Figure 6.18, because the
outgoing edges labeled b from these vertices go to different classes.

Not represented in the figures are possible knock-on effects from these subdivisions. Any other classes
with vertices connected by similar labels to different members of the class originally containing m0
through m3 may need to be subdivided due to this class being subdivided.

6.6. PARTITION FUSION 153

Final markings

The preservation of a vertex numbered 0 to be identified with the final marking is more straight-
forward for this transformation than for previous ones. Mainly it involves an assignment of the
number 0 to the vertex identified with the class containing vertex 0 when the classes are converted
to vertices at the end. There is one potential pitfall in the case of a graph with distinct initial and
final vertices being transformed to one in which they end up in the same equivalence class. Although
it is not clear that such a graph could emerge from a valid DI process specification, a provision to
avoid this outcome is nevertheless part of the formal specification discussed next.

6.6.2 Derivation

To start somewhat from the bottom up, much of this transformation, known hereafter as partition
fusion, entails a representation of a graph as a set g of equivalence classes c whereby the usual
graph representation as a set of vertices is recoverable as

Ť

g P PpNˆPppTYVqˆNqq. It is helpful
in this context to be able to write pP0 gq m P PpNq for the set of all vertex numbers belonging to
vertices in the same class c as that of a vertex numbered by a given m P Dp

Ť

gq. This function is
easily expressible as

P0 “ λg. Ψ
ď

cPg

Dpcq ˆ tDpcqu.

The part about subdividing the partition described above then permits a straightforward expres-
sion as pP1 P0q g for a graph in this representation with P1 defined as follows.

P1 “ λp. λg.
ď

cPg

pπ λpm, eq. pµ λpt, nq. pt, pp gq nqq eq c

That is, each vertex pm, eq in a set c is equivalent only to the others in that set for which every
outgoing edge pt, nq labeled by a transition t in its adjacency set e points to a member of the same
set pP0 gq n of vertex numbers as the one containing n. If two members of any set c P g are not
equivalent by this criterion, they separate in pP1 P0q g, and if their separation causes others not to
belong together, the rest all separate eventually in pP1 P0q

∞ g.
This step would usually suffice to determine the reduced graph were it not for the requirement

to preserve individually identifiable initial and final vertices, numbered 1 and 0 respectively by
convention. If both of these vertices land in the same class due to being otherwise equivalent, we
must separate them by hand in P2 pP1 P0q

∞ g according to

P2 “ λg.
ď

cPg

`

π λpm, eq. δm
0 δ

DpcqYt1u

Dpcq

˘

c

which puts the final vertex numbered m “ 0 in a class by itself only if it has shared a class hitherto
with the initial one. This action may affect the equivalence of other vertices connected to either of
them, so another round of subdivisions pP1 P0q

∞ P2 pP1 P0q
∞ g must be invoked to ensure a correct

partition.
When the partition is conclusively determined, it is time to convert each class to an individual

vertex, which requires choosing a number for it. Numbering the classes c lexicographically by the
numbers of the vertices they contain provides for the class containing the vertex numbered 0 to map
to 0 and the class containing 1 to map to 1 unless there is no vertex numbered 0, which is allowed.

154 CHAPTER 6. REACHABILITY GRAPH WRANGLING

In that case, the successor of the lexicographic ordinal correctly numbers at least the class containing
the vertex numbered 1 if any. An approach to this task by way of a function pP3 P0q g : N Ñ N

taking old vertex numbers n directly to new vertex numbers ppP3 P0q gq n based on such an ordering
starts with a definition

P3 “ λp. λg. λn. pt0u Y pµ pq Dp
Ť

gqq0 p n (6.11)

where pµ pq Dp
Ť

gq “ pµ P3q Dp
Ť

gq is the set of all sets of vertex numbers by classes, so that the
ordinal of the set p n of vertex numbers containing n with respect to it gives most of the result. The
remaining term increments it as intended whenever 0 is not a member of any vertex number set. A
result pP4 P3 P0q g follows from mapping this function throughout all vertices and adjacency sets in
all classes by

P4 “ λp. λg. Π
ď

pm,eq P
Ť

g

tpp gq mu ˆ
ď

pt,nqPe

tpt, pp gq nqu

to effect the rest of the renumbering.
All that remains for specifying the whole operation is a way of obtaining the initial partition of

the graph, which can be inferred from the edge labels alone as noted previously. A graph in the
adjacency set representation transformed by π λpm, eq. Dpeq enables the rest of the partition fusion
transformation according to a definition

Φ“ pP4 P3 P0q ˝ pP1 P0q
∞

˝ P2 ˝ pP1 P0q
∞

˝π λpm, eq. Dpeq (6.12)

in terms of P0 through P4 and denoted by a fancy symbol in case we want to refer to it again. The
final form of the reachability graph for a process X P D then follows directly in terms of a function

RG : D Ñ PpNˆPppT YVq ˆNqq

as the partition fusion of the previous version RG3 X .

RGpX q “ΦRG3 X (6.13)

6.6. PARTITION FUSION 155

Wrangling roundup

1. How many cycles are there in each of the graphs in Fig-
ure 6.15?

2. After partition fusion, every vertex in the graph has at most
one outgoing edge for each label. True or false?

a) If true, what happens to processes capable of non-
deterministic behavior?

b) If false, what good is it to insist on a class consensus
about the destinations of similarly labeled edges?

3. To avoid getting thrown off by all the wild corner cases, describe the reachability
graph of a process that is initially

a) divergent

b) deadlocked

c) quiescent but not deadlocked

d) not quiescent but not divergent

4. To what function space does each function J1 through P4 used in this chapter belong?
In other words, what expression comparable to Equation 6.10 corresponds to each
of them? Is any of them “polymorphic”? (Functional programmers beware: f g x
conventionally means f pgpxqq, and f : s Ñ t Ñ u differs from f : s ˆ t Ñ u.)

5. How does anonymous edge unification benefit partition fusion?

6. Sketch a hand waving argument by structural induction on process combinator
expressions showing that vertex 0 can have no successors in the reachability graph
RG2pX q of any process X P D expressible by process combinators.

In each action we must look beyond
the action at our past, present, and
future state, and at others whom it
affects, and see the relations of all
those things. And then we shall be
very cautious.

Blaise Pascal

C
H

A
P

T
E

R 7
TRANSDUCER TUNING

With scarcely time for a breather, the material in this chapter continues the program started in
Chapter 6 because the task is not yet complete. The next challenge is to develop the much anticipated
transducer representation for a DI process. Compared to the reachability graph, the transducer in its
optimal form is more abstract and compact, but its main motivation is its convertibility to a netlist,
a trace recognizer, and even back to a simpler canonical form of the original Petri net model.

A netlist is essentially the target representation of the whole design work flow, whose development
occupies much of the rest of the book, but the others mentioned above are covered in this chapter
along with the transducer model. Trace recognizers are of interest because they allow us to discuss
behavioral equivalence and refinement precisely and to verify them automatically. Petri nets are
revisited here to effect the promised generalization of the process combinators introduced in
Chapter 5 to processes having closed Petri net models, which can occur as intermediate results in
expressions invoking the env combinator. The construction depends on the ability to transform any
transducer to a behaviorally equivalent open Petri net whether it is derived from an open or a closed
one. The transformation is somewhat lengthy but otherwise straightforward.

This chapter continues to use some of the notation and conventions introduced in Chapter 6,
both standard and idiosyncratic, without much further explanation because they economize the
presentation considerably. Readers proceeding non-sequentially through the book are requested to
consult Chapter 6 in case of any unfamiliar Greek letters.

7.1 Finite automata

We digress in this section for a quick primer on finite automata and related concepts to benefit a
reader who might not be already familiar with them. More knowledgeable readers best proceed
even more quickly to Section 7.2 before the newcomer surpasses them.

157

158 CHAPTER 7. TRANSDUCER TUNING

As if the Petri net, reachability graph, and transducer models considered up to this point were
not enough, yet another representation for DI processes is about to be added to the mix, but
not without good reason. A finite automaton (plural: “automata”) does one thing well, which
is to encode a possibly infinite set of sequences in a form conducive to comparison. While it
may be intuitively clear that simulating a transducer and recording the signals it exchanges with
its environment could accumulate the set of possible traces, a finite automaton summarizes this
information comprehensively and far more elegantly.

7.1.1 Sequences

As noted above, finite automata are concerned with encoding sets of sequences, so it might help to be
clear about the concept of a sequence. Sequences, traces, lists, and strings are used interchangeably
in this book. While it is possible to treat sequences as fundamental entities like sets and to develop
them axiomatically, our present purpose is adequately served by modeling a sequence as a function
of a natural variable.

• For a set A and a natural number n, let An denote the set of sequences of length n on A.

• Each sequence of length n on A is modeled by a function s : ti P N | i ă nu Ñ A.

• The length of a sequence s is denoted |s|, similarly to the cardinality of a set.

• A0 is allowed and contains a single sequence of length 0 only, denoted ε.1

• A˚ is defined as
Ť

nPN An.

• The i-th item or term of a sequence, spiq, can also be written as si .

By the above criteria, any usual way of specifying a function can be used to specify a sequence,
but an additional notational device can also be appropriate. If s is a sequence, the expression a : s,
read “a cons s”, is defined as the following sequence.

a : s “ λi.
"

a if i “ 0
si´1 otherwise (7.1)

Similarly, the concatenation of two sequences s and t is denoted as s q t, which is defined as follows.

s q t “ λi.
"

si if i ă |s|
t i´|s| otherwise (7.2)

It is also convenient to generalize the concept of concatenation to sets of strings X and Y , and to
use the same notation for it. For strings s, t and sets X , Y, concatenation is defined as follows.

X q Y “ pµ λps, tq. s q tq pX ˆ Y q (7.3)

s q Y “ tsu q Y
X q t “ X q ttu

That is, the concatenation of a pair of sets of strings is the set of all pairwise concatenations of their
elements, and the concatenation of a string with a set of strings is the set of concatenations of that
string with each element.

1Technically every alphabet A induces a different zero-length sequence if sequences are defined this way, but this
distinction is unlikely to cause confusion and is henceforth ignored.

7.1. FINITE AUTOMATA 159

a

b

b

a

b a

Figure 7.1: a finite automaton accepting any string of alternating a’s and b’s that starts with an a
and ends with a b

7.1.2 Bracket notation

Instead of writing a list of three items as a : b : c : ε, we may express the same list as xa, b, cy using
the angle bracket notation. A list containing a single item a can be expressed xay. In general, a list
x can be expressed by the comma separated sequence of its items enclosed in angle brackets.

x “ xx0, x1, x2 . . . x|x|´1y

This notation is a generalization to any number of terms of the notation xa, by used previously. The
subscript notation x i is applicable to a list denoted by a variable x as well as a literal list in angle
bracket notation, hence the familiar equivalences xa, by0 “ a and xa, by1 “ b.

7.1.3 State graphs

Finite automata can be visualized as graphs of states with labeled directed edges similar to a
reachability graph or a transducer, but with some extra features to help them specify a set of strings
on an alphabet. One feature is the ability to have specially designated accepting states. Another is
the requirement of a well defined rule for succession in every state for every member of the alphabet.

Figure 7.1 depicts an example of a finite automaton. It has one
accepting state, drawn with an inner circle at the upper left, which
is also the initial state. This finite automaton is concerned with
strings on an alphabet ta, bu. Every edge is labeled with one of a
or b. Any walk through the graph determines the sequence of a’s
and b’s given by the edge labels in the order they are traversed.

A finite automaton specifies a set of strings by a simple rule: if
a walk through the graph starts from the initial state and ends in an
accepting state, then the sequence of edge labels traversed along
the way is in the set. Otherwise, it is not. This rule enables us to test
whether any given string is in the set by following the path whose

160 CHAPTER 7. TRANSDUCER TUNING

a

b

b

a

b a a

b

b

a

b a

ab aa

Figure 7.2: The string ab is accepted because a walk traversing edges labeled a and then b ends at
an accepting state (left), but the string aa is not accepted (right).

edge labels are spelled out by the string. Trying out this rule for the current example on the strings
ab and aa in Figure 7.2 shows that the former is accepted but the latter is not. The automaton also
accepts the empty string ε, because a walk that starts in the initial state and goes nowhere ends in
an accepting state, so the empty string is also in the set.

It is hard not to infer that the finite automaton in Figure 7.1 accepts the set of all strings of the
form ε, ab, abab, ababab, and so on. As a result, it gives us an exact finite characterization of an
infinite set of strings.

7.1.4 Deterministic finite automata

The formal treatment of finite automata is long established [115, 260], and it differs from the graph
representation by adjacency sets used in this book for transducers and reachability graphs. To follow
convention, a distinction is needed between deterministic and non-deterministic finite automata.
The DFA is discussed first and the NFA subsequently to the extent they differ.

In its usual presentation, a DFA consists of a quintuple pQ,Σ,δ, q0, Fq where Q is a set of states, Σ
is an alphabet, and δ : Q ˆΣÑ Q is a total function taking a current state and an alphabet symbol to
a successor state. This function specifies the adjacency relation for the graph. Furthermore, q0 P Q is
the initial state, and F Ď Q is the set of accepting states. These components of a DFA work together
to specify the set of strings it accepts, also known as its language, according to the formula

LpQ,Σ,δ, q0, Fq “ ts P Σ˚ | δ̂pq0, sq P Fu (7.4)

where δ̂ is the state transition function δ extended in the obvious way to strings s P Σ˚.

δ̂pq, sq “

"

q if |s| “ 0
`

λpa : tq. δ̂pδpq, aq, tq
˘

s otherwise
(7.5)

7.2. THE TRANSDUCER 161

7.1.5 Non-deterministic finite automata

The NFA is also packaged as a quintuple pQ,Σ,δ, q0, Fq as above, but differs insofar as the state
transition function δ : Q ˆ pΣY tεuq Ñ PpQq takes a current state and an optional alphabet symbol
to a set of possible successor states rather than to a specific successor. It must be a total function of
Q ˆ pΣY tεuq, but its result may of course be H for some combinations of states and symbols.

Providing ε instead of a member of Σ as an input to δ has the intuitive significance of letting a
state change occur without consuming a symbol. A definition of δ using any arbitrary non-member
of Σ in place of ε would work just as well, but traditionally the empty string ε is stipulated despite
the confusion it may cause about whether δ operates on symbols or strings.

An extension of the transition function δ analogous to Equation 7.5 for an NFA would be a
function δ̂ : PpQq ˆΣ˚ Ñ PpQq taking a set of possible current states u and a string s to a set of
possible future states. An expression for δ̂ is seldom written down explicitly lest it turn out like this,

δ̂pu, sq “

$

’

&

’

%

pρ λq. δpq,εqq u if |s| “ 0

δ̂ppρ λq. δpq,εqq u, sq Y
ď

qPu

`

λpa : tq. δ̂pδpq, aq, tq
˘

s otherwise (7.6)

which could have been worse without the percolation operator ρ defined in Equation 6.4. The
expression

pρ λq. δpq,εqq u

refers to the set of all states reachable through any number of ε-transition traversals from any
member of u, also known as the ε-closure of u.

For a string to be accepted by an NFA requires only that there exist a walk from the initial state
to an accepting state with the right edge labels. The sequence of edge labels traversed along the
walk must match the string after all occurrences of ε are deleted from it. This condition is implicit
in Equation 7.6, and allows the language of an NFA to be defined as follows,

LpQ,Σ,δ, q0, Fq “ ts P Σ˚ | δ̂ptq0u, sq X F ‰ Hu

upholding the confusing tradition of using exactly the same notation for the operator L that maps
an NFA to the language it recognizes as we use in the case of a DFA (cf. Equation 7.4).

7.2 The transducer

To recapitulate the description from Section 4.2, the transducer model is also a graph like the
reachability graph, but differs from it by associating each edge with a set of concurrent signals rather
than just an individual signal or anonymous Petri net transition. This feature makes it more compact
than an equivalent reachability graph because the transducer does not require a separate path to
express each possible interleaving of concurrent signals. The vertices in a transducer correspond to
states of a DI process in a course sense, which may vary from its Petri net markings, so a state is a
preferable term to a marking for a vertex in a transducer. In this way, the transducer promotes a
transactional understanding of the process by specifying sets of acceptable inputs for each state,
with a corresponding range of outputs and successor states for each set of inputs.

An example of a reachability graph and an equivalent transducer is shown in Figure 7.3. In
the reachability graph at the left, there are two inputs a and b initially enabled. If a happens first,
then only b is enabled, and vice versa. After both of them happen, two outputs c and d are enabled

162 CHAPTER 7. TRANSDUCER TUNING

a b

b a

c d

d c

pta, bu, tc, duq

reachability
graph transducer

Figure 7.3: A transducer absorbs multiple paths from a reachability graph into a single edge labeled
by an i/o burst with inputs a, b and outputs c, d.

in either order. This information is summarized by the equivalent transducer at the right, which
requires only a single edge labeled by an ordered pair of an input burst ta, bu Ă T and an output
burst tc, du Ă T, known collectively as an i/o burst. The convention is always that all inputs in an
input burst must be received by the system before any outputs in the corresponding output burst
can be emitted by it.

The rest of this section is concerned with articulating a transformation to construct transducer
models automatically.

7.2.1 Overview

Like the reachability graph, the transducer representation of a given process is not unique. A large
unnecessarily complicated graph can often be simplified to a smaller semantic equivalent. A good
way to achieve the optimum result is to start with a known valid form and then make incremental
semantics-preserving improvements. A readily available starting point is always a transducer that
is isomorphic to the reachability graph with at most one signal in each i/o burst as shown in the
Figure 7.4.

If we overlook temporarily that each i/o burst pi, oq P PpTq ˆPpTq expresses the inputs and
outputs respectively by separate sets i, o P PpTq in favor of a combined set t “ i Y o P PpTq,
then maybe the transducer can be improved by the intuitively appealing rewrite rule illustrated in
Figure 7.5. Instead of taking two hops to get from state m to state m2 with separate i/o bursts t
and t 1, a more parsimonious transducer can do so in a single hop with their union t Y t 1 (provided
any inputs in t 1 are safe for m). If this rule is applied to the graph in Figure 7.4 where t “ tau and

7.2. THE TRANSDUCER 163

ptau, Hq ptbu, Hq

ptbu, Hq ptau, Hq

pH, tcuq pH, tduq

pH, tduq pH, tcuq

Figure 7.4: A suboptimal transducer equivalent to the one in Figure 7.3 is isomorphic to the
reachability graph.

m

m2

m1

t

t 1

m

m2

m1

t

t 1

t Y t 1

Figure 7.5: the basic rewrite rule for optimizing a transducer

164 CHAPTER 7. TRANSDUCER TUNING

m

m2

pH, tauq

pH, tduq

ptbu, tcuq

...

¨ ¨ ¨

ptbu, tcuq

m

m2

pH, tauq

pH, tduq

ptbu, tcuq

...

¨ ¨ ¨

ptbu, tcuq

m1

pH, Hq

ptbu, tcuq
ptbu, tcuq

ı

Figure 7.6: Transforming the left transducer to the right would create an output obligation where
there was none.

t 1 “ tbu are the i/o bursts, then from the outside it still looks as if a and b can happen concurrently,
so nothing is changed, and with no edge needed from m to m1 anymore, maybe m1 can be pruned
out of the graph because it is unreachable.

Safely creating edges

Although the rule works well enough in this example, it might not be this easy in general. If both t
and t 1 contain mixtures of inputs and outputs, then putting them together results in an i/o burst
t Y t 1 that no longer reflects the original semantics. The i/o burst t Y t 1 implies that all inputs in
both of t and t 1 must be received by the system first, and only then are all outputs emitted. The
original semantics specifies that the outputs in t can start being emitted as soon as all inputs in t
are received regardless of those in t 1, and that the remaining outputs can be emitted only after the
rest of the inputs are received. We can avoid this pitfall by remembering two criteria, which need
not be mutually exclusive.

• Any edge from a state m to a state m1 together with any edge from m1 to m2 whose labels
include no inputs induces a new edge from m to m2 labeled by the inputs on the former and
their union of output labels.

• Almost any edge from a state m to a state m1 whose labels include no outputs together with
any edge from m1 to m2 whose labels include no unsafe inputs for m induces a new edge from
m to m2 labeled by the outputs on the latter and their union of input labels.

The latter condition needs qualification for the pathological situation depicted in Figure 7.6. With
no input from the environment, the transducer on the left may choose to output a, or it may follow
the edge labeled pH, Hq to the quiescent state labeled m1, where it waits forever. The transducer on
the right follows a more robust protocol. If the environment never transmits an input, the transducer
must output a eventually. If the transducer on the left resulted from a circuit designed that way by
mistake, transforming it to the one on the right would allow the mistake to go unnoticed, but this
undesirable effect is precisely what follows from combining the incident and outgoing edges on m1

based on the latter condition above (along with the pruning of m1 subsequently).

7.2. THE TRANSDUCER 165

In more general terms, the problem with applying this transformation indiscriminately is that it
can create an output obligation not mandated by the original semantics, which could result in a
possible deadlock being overlooked. To guard against the possibility of creating a spurious output
obligation, the latter condition above should be revised as follows.

• Any edge from a state m to a state m1 whose labels include no outputs together with any edge
from m1 to m2 whose labels include no unsafe inputs for m induces a new edge from m to
m2 labeled by the outputs on the latter and their union of input labels if at least one of these
conditions holds.

piq The edge from m to m1 is labeled by at least one input.

piiq All other edges from m are labeled by at least one input.

piiiq At least one edge from m1 is labeled by no inputs.

The intuitive argument for condition piq is that whether the state m is quiescent or not, attaching yet
more input-guarded edges to it changes nothing about its quiescence. The intuition underlying piiq
is that all remaining edges from m are still blocked by inputs even if the path through m1 is removed,
so there is no opportunity to mandate any hitherto optional output activity. The justification for
piiiq is that if the edge from m to m1 and some edge from m1 onwards are both unlabeled, they
preserve any extant unlabeled path from m to a quiescent state as needed to avoid creating an
output obligation, but if piq and piiq fail and all edges from m1 without input labels have output
labels, then there is already an output obligation.

Safely deleting edges

Another difficulty is the need for careful consideration about deleting edges. One way of looking at
the problem is that an edge can be deleted safely only if it contributes no additional information
about the behavior of the process. For example, in Figure 7.5, m1 is connected only to m2, and m2

is reachable anyway from m by an edge with the same labels, so maybe the edge labeled t from m
to m1 is deletable because it contributes no additional information. However, if there were other
edges from m1, then obviously deleting this edge might change things by cutting off the path from
m to another state. Even if there were no such path, the edge might have to be retained if m1 were
state number 0, which represents the final marking in the original process specification. This state
must be prevented from becoming unreachable to avoid the loss of relevant semantic information
(when it comes to converting the transducer back to a Petri net).

Removing an edge that should have been retained would be a bigger mistake than retaining
one that is redundant, so a conservative approach is in order. In the algorithm to be proposed,
an edge labeled by an input burst j and arbitrary outputs can be deleted only if there is another
edge ppi, oq, nq labeled by pi, oq from the same state such that i is a proper superset of j. Every path
beginning with the edge labeled by j is explored as far as possible along edges whose input labels
are within i, and deletable edges must satisfy three further conditions.

• The union of labels along all explored paths precisely matches pi, oq.

• The terminus of the edge to be deleted is not 0.

• The union of all outgoing edges from states at the ends of the explored paths coincides with
the union of all outgoing edges from states n connected to the origin by edges labeled pi, oq.

166 CHAPTER 7. TRANSDUCER TUNING

The general approach to deriving the transducer from the reachability graph therefore is to start
with an intermediate representation based on the reachability graph as in Figure 7.4, but with only
one set of signals for each edge label as in Figure 7.5, then to create all of the new edges at once,
then to convert the edge labels to i/o bursts, then to delete the redundant edges, and then to finish
with pruning and partition fusion phases.

7.2.2 Derivation

The intermediate representation g “ V0 RG X P PpN ˆ PpPpTq ˆ Nqq of the transducer can be
derived immediately from the reachability graph by transforming it via the function

V0 : PpNˆPppT YVq ˆNqq Ñ PpNˆPpPpTq ˆNqq

defined as follows.
V0 “ λg.

ď

pm,eq P g

tpm,
ď

pt,nq P e

pttu ´V, nqqu (7.7)

The result is isomorphic to the reachability graph RG X in the sense depicted in Figure 7.4, but
every anonymous edge in RG X maps to an edge labeled by the empty set in the result, and every
edge labeled by an input or output t P T maps to an edge labeled with the singleton set ttu.

Union of output labels

To derive the transducer, we first add all edges to the graph that can be made by combining any
extant edge with an edge that follows from its terminus and is labeled without inputs. That is, for
every vertex pm, eq P g, every edge pb, nq in the adjacency set e, and every succeeding edge po, lq in
the adjacency set pΨ gq n, we form a new edge pb Y o, lq originating from pm, eq, provided that the
label o of the succeeding edge is disjoint from I , the input alphabet the process of X “ pI , O, Nq.
The transformed graph pV1 Iq g is determined by a function

V1 “ λI . λg.
ď

pm,eq P g

tpm, pρ λpb, nq.
ď

po,lq P ppΨ gq nqXpPpT´IqˆNq

tpb Y o, lquq equ (7.8)

taking the opportunity to percolate this operation exhaustively by Equation 6.4.

Union of input labels

Next we add the edges that can be made by combining an edge labeled without outputs with
succeeding edges subject to the conditions mentioned previously. To recapitulate, each edge
pi, nq P PpTqˆN in an adjacency set e of a vertex pm, eq P g in a transducer g with an input alphabet
I leading to a terminus n is eligible to be combined with every succeeding edge pb, lq P pΨ gq n not
labeled by any unsafe inputs for m

b P PpT ´ pI ´Dpeqqq

if any of three conditions holds. With p “ PpT ´ Iq temporarily denoting the set of pure output
bursts, a candidate edge pi, nq is suitable if its label i contains at least one input

i R p

7.2. THE TRANSDUCER 167

or if all other edges in e from m are labeled by at least one input

pDpeq ´ tiuq X p “ H

or if at least one edge in pΨ gq n from n is labeled by no inputs

ppΨ gq nq X p ‰ H

or in other words if pi, nq is a member of V2pPpT ´ Iq, g, eq in terms of a function

V2 : PpPpTqq ˆPpNˆPpPpTq ˆNqq ˆPpPpTq ˆNq Ñ PpPpTq ˆNq

given by

V2 “ λpp, g, eq.

pi, nq P e | i R p _ pDpeq ´ tiuq X p “ H _DppΨ gq nq X p ‰ H
(

.

On this basis we could augment the adjacency set e with the additional edges
ď

pi,nq P V2pPpT´Iq,g,eq

ď

pb,lq P ppΨ gq nq X pPpT´pI´DpeqqqˆNq

tpi Y b, lqu

connecting the state m directly to states l, but doing so might create further opportunities to add
more edges according to the same criteria, so it is better to rewrite e to the whole set

pλd. d Y
ď

pi,nq P V2pPpT´Iq,g,dq

ď

pb,lq P ppΨ gq nq X pPpT´pI´DpdqqqˆNq

tpi Y b, lquq
∞

e

by Equation 6.3. A version of the transducer g with every adjacency set rewritten this way thoughout
is expressible as ppV3 V2q Iq g in terms of a function

V3 “ λv. λI . λg.Π
ď

pm,eq P g

tmu ˆ pλd. d Y
ď

pi,nq P vpPpT´Iq,g,dq

ď

pb,lq P ppΨ gq nq X pPpT´pI´DpdqqqˆNq

tpi Y b, lquq
∞

e

and Equation 6.7.

Edge deletion

This result leaves no further need for the intermediate representation g P PpN ˆ PpPpNq ˆNqq

having only a single set of inputs and outputs labeling each edge, so it can be converted to the
representation pV4 Iq g P PpNˆPppPpTq ˆPpTqq ˆNqq where the i/o burst on each edge consists
of separate sets of inputs and outputs with V4 defined in the obvious way.

V4 “ λI .
ď

pm,eq P g

tpm,
ď

pb,nq P e

tppb X I , b ´ Iq, nququ (7.9)

To follow through with the algorithm sketched previously for edge deletion, we envision an
input burst i P PpTq and an edge r “ pp j, kq, lq P ppPpiq ´ tiuq ˆPpTqq ˆN originating from the
same state of a transducer g as an edge labeled by i, but whose input burst j is a proper subset of i.
A set of edges whose input bursts are contained in i located consecutively along paths beginning
with r is expressible as

t “ pρ λpb, lq.
ď

v P ppΨ gq lqXppPpiqˆtHuqˆNq

tvuq tru

168 CHAPTER 7. TRANSDUCER TUNING

such that each path stops short of the first non-empty output burst along it. More edges obtained by
continuing along the same paths as far as possible without further input are expressible as

pρ λpb, lq.
ď

v P ppΨ gq lqXpptHuˆPpTqqˆNq

tvuq t

so that the set of all edges along paths beginning with r encompassing at most one input burst
followed by at most one output burst is expressible as pV5 gq pi, rq for V5 defined as

V5 “ λg. λpi, rq. pρ λpb, lq.
ď

v P ppΨ gq lqXpptHuˆPpTqqˆNq

tvuq pρ λpb, lq.
ď

v P ppΨ gq lqXppPpiqˆtHuqˆNq

tvuq tru. (7.10)

To check whether an edge r is safely deletable, it is necessary to check not only the labels on the
edges within a set pV5 gq pi, rq, but the effect of traversing one step further. Letting

s “ RppV5 gq pi, rqq

denote the set of termini of edges in pV5 gq pi, rq, we may write pV6 gq s with V6 given by

V6 “ λg. λs.
ď

l P s

ppΨ gq lq ´ pDp
Ť

Rpgqq ˆ sq (7.11)

for the set of edges originating from a state in s and terminating on a state outside of s. In terms of
Equation 7.10 and Equation 7.11, one of the necessary conditions noted previously on page 165 for
an edge r “ pp j, kq, lq to be deletable is

pV6 gq RppV5 gq pi, rqq “ pV6 gq u

where u P PpDpgqq is the set of termini n of edges ppi, oq, nq originating from the same state as
r satisfying j Ă i. Roughly speaking, this condition means that there is nowhere to go by way of
r that can not also be reached by way of the edge ppi, oq, nq. Another one of the three necessary
conditions is captured by

i Y o “
ď

p j,kq PDppV5 gq pi,rqq

t j Y ku

meaning roughly that the observable signals are the same in either alternative. These two conditions
along with the requirement for the terminus of deleted edges to be non-zero allow the set of deletable
edges from a particular vertex with adjacency set e to be expressible as

ď

ppi,oq,uq PΠ e

ď

r P eXpppPpiq´tiuqˆPpTqqˆpN´t0uqq

`

λa. pλt. xH, truytq δ
iY o
a δ

pV6 gqRppV5 gq pi,rqq

pV6 gq u

˘

ď

p j,kq PDppV5 gq pi,rqq

t j Y ku

and the transducer g with redundant edges deleted from every vertex to be expressible as V7xV5, V6y g
with V7 defined by

V7 “ λv. λg. Π
ď

pm,eq P g

tmu ˆ
`

e ´
ď

ppi,oq,uq PΠ e

ď

r P eXpppPpiq´tiuqˆPpTqqˆpN´t0uqq

`

λa. pλt. xH, truytq δ
iY o
a δ

pv1 gqRppv0 gq pi,rqq

pv1 gq u

˘

ď

p j,kq PDppv0 gq pi,rqq

t j Y ku
˘

.

7.3. SERIAL TRANSDUCERS 169

m

n

tau

tbu

tcu

tb, cu

ta, cu

ta, bu

m

n

ta, b, cu

Figure 7.7: Serializing the transducer requires creating a new state for each member of the i/o
burst ta, b, cu. Each created state has an outgoing edge whose i/o burst excludes the corresponding
member.

Summary

Two finishing touches on the transducer model are to prune the unreachable vertices using the Γ1
operator defined by Equation 6.5, and to optimize it by partition fusion as defined by Equation 6.12.
The result overall is summarized by a function

T : D Ñ PpNˆPppPpTq ˆPpTqq ˆNqq

taking a process X P D to its transducer model TpX q according to this definition.

TpX q “ pλpI , O, Nq.Φ Γ1 V7xV5, V6y pV4 Iq ppV3 V2q Iq pV1 Iq V0 RG X q X (7.12)

The definitions of the operators Γ1 and Φ on reachability graphs fortunately require no modification
for transducers.

7.3 Serial transducers

Taking the trouble to aggregate the signals into concurrent bursts as much as possible in the previous
section has been an important step toward the upcoming construction of open Petri net models
in Section 7.5, but before that we have to do the opposite by teasing the bursts apart. This job
needs to be done as a means of deriving the trace recognizing automata in Section 7.4, and the
netlist eventually. The resulting transducer has at most one signal labeling each edge, much like the
depiction in Figure 7.4 but may be an improvement on it because it benefits from partition fusion
performed on a more abstract representation.

7.3.1 Overview

The transformation to a serial transducer is built on the rewrite rule illustrated in Figure 7.7. It
is convenient here as well to use an intermediate representation temporarily featuring i/o bursts
b P PpTq that do not distinguish between inputs and outputs. The idea is to transform any edge
labeled b between a state m and a state n with |b| ą 1 to a set of |b| edges each pointing from m to

170 CHAPTER 7. TRANSDUCER TUNING

a

b

x

y

z

ptau, txuq ptbu, tyuq

pta, bu, tzuq

Figure 7.8: a transducer with one input burst containing another

a newly created vertex. The edge from m to each new vertex is labeled by a set containing a distinct
member of b, and the edge from that vertex to n is labeled by the rest of the members of b. The
serial transducer is obtained for the most part by applying this rule repeatedly throughout the graph
until all i/o bursts are worn down to at most one member.

The rewrite rule might not always be as easy to apply as shown in Figure 7.7 if the i/o burst b
contains both inputs and outputs. Then we must deal with the inputs first and postpone dealing
with the outputs. Otherwise, it might be possible for outputs to get ahead of inputs they are meant
to follow along the created path. Following this plan requires inspecting b to see if it intersects I ,
the input alphabet of the process. If it does, then only edges labeled by members of b X I should be
created. If b contains no inputs, then the rule applies uniformly to all of its members.

Another difficulty with this rewrite rule is the assignment of unique state numbers to the
newly created vertices so as not to clash with any state numbers in the given transducer g already.
Potentially any state m connected to a state n by an edge labeled b could spawn a whole hypercube
of up to 2|b| ´ 2 intervening states. It might be worth planning in advance to reserve that many
state numbers for every combination of states and i/o bursts.

In any case, the above considerations are minor compared to one that becomes apparent from
looking ahead to the matter of deriving a trace recognizer. According to the method sketched
informally in Section 4.4, the end game is to identify accepting states in the trace recognizer with
quiescent states in the transducer, which are recognizable as such when their outgoing edge labels
contain only input signals. However, this decision procedure is not always adequate.

It is easy to construct an example of a process specification that isolates the issue. Nothing
prevents a process from being specified as

P “ loop pb Ăaltq Ąseq›xpget a,put xq, pget b,put yq, pĄpar pget a,get bq,put zqy (7.13)

leading to a transducer model in which one input burst is a proper subset of another associated with
the same state as shown in Figure 7.8.2 The protocol mandated by this specification requires the
process to acknowledge an input of a with an output of x , an input of b with an output of y, and
concurrent inputs of a and b with an output of z. When the process receives concurrent or nearly
concurrent inputs, it may of course choose to treat the inputs as concurrent or sequential, because
there is no enforceable alternative consistent with delay insensitivity. However, having received a
single input, the process does not get to choose whether to wait for the next one. If the environment
never sends another input, the process must nevertheless transmit an output.

2The illustrated Petri net results from local optimizations described in Chapter 9.

7.3. SERIAL TRANSDUCERS 171

m n

m1 n1pH, tzuq

ptau, Hq ptbu, Hq

ptbu, Hq ptau, Hq

ptbu, Hq

pH, tyuq

ptau, Hq

pH, txuq

ptau, txuq ptbu, tyuq

pta, bu, tzuq

ı

Figure 7.9: The traces xay and xby are quiescent for one transducer and not the other.

Figure 7.9 shows what happens when we serialize this transducer by transforming each edge to
an ensemble of intermediate states, with the original version on the left and the serialized version
on the right. The path in the serialized version from the initial state to m1 can be taken upon receipt
of an input a, whereupon no progress is possible without an input of b. Regardless of the availability
of a path to m, this condition is sufficient for the trace xay to be quiescent, contrary to the original
specification. Similar reasoning applies to xby.

At this point we could go back to the drawing board and demand a more sophisticated serializ-
ing transformation that preserves behavioral equivalence, and indeed we revisit this question in
Chapter 15 on state based circuit synthesis when it is not so easily avoided. However, if the serial
transducer is regarded only as a stepping stone from the transducer T X to a trace recognizing
automaton, then a simple workaround is to exclude m1 and n1 from the set of accepting states. The
combined solution can be a pair

ST X “ pg, Sq

where g is a serial transducer and S Ď Dpgq is an explicit record of its quiescent states retained
during the course of the transformation. In the current example S “ t1u should contain only the
initial state.

To be included in the set S of quiescent states without misrepresenting the semantics of the
original process specification, a state of the serial transducer must meet two necessary conditions.
The first is that all of its outgoing edges must be labeled by at least one input signal, as usual. The
second applies additionally to states that are created for the serial transducer along a path between
two states q0 and q1 of the original. The intermediate states are counted as quiescent only if it
is also true that the union of input bursts labeling the edges along the path from the most recent
original state q0 does not coincide with any complete input burst labeling an outgoing edge from
q0 in the original transducer. This condition would exclude m1 in the current example because the
path from the initial state to m1 is labeled by the set tau, which is the whole input burst along an
outgoing edge from the initial state (to itself) in the original transducer at the left of Figure 7.9.
This condition never affects transducers in which no input burst is a proper subset of any other.

172 CHAPTER 7. TRANSDUCER TUNING

Keeping track of the information needed to evaluate these conditions calls for another temporary
alteration to the representation of a transducer. Not only are the i/o bursts pi, oq P PpTq ˆPpTq

reduced to single sets b “ i Y o P PpTq as noted above, but each transducer state s P Dpgq is
represented as a pair

s “ pq, wq “ pxq0, q1y, xw0, w1yq P N
2 ˆPpTq2

with q0 and q1 interpreted as above, w0 containing the input signals needed to change the state
from q0 to s, and w1 containing the input or output signals needed to change the state the rest of the
way from s to q1. Because the set of pairs pq, wq is countable when w is restricted to any particular
finite alphabet, there is no obstacle to converting later from this representation to states encoded by
natural numbers.

7.3.2 Derivation

The preceding overview should serve to motivate the more detailed elaboration of the serial trans-
ducer transformation to follow in this section, now taken in several steps due to its length.

Adjacency sets

Expressing the ideas in Section 7.3.1 more precisely starts with an observation that any intermediate
state represented by a pair pq, wq as interpreted above immediately determines its whole adjacency
set. Each outgoing edge from such a state is labeled by a signal j P w1 and points to a state

pq, xw0 Y pI X t juq, w1 ´ t juyq

with one less signal ahead of it and maybe one more behind it on the path from q0 to q1. The
term w0 need only record input signals, so j is added to it only if j is a member of I , the input
alphabet of the process. To maintain the condition that input bursts must be received in full before
the corresponding outputs are emitted, the edge

pt ju, pq, xw0 Y pI X t juq, w1 ´ t juyqq

can be present for outputs j only if outputs are the only members left in w1, and is restricted to
inputs otherwise. The whole adjacency set in either case is given by pV8 Iq pq, wq in terms of a
function

V8 : PpTq Ñ ppN2 ˆPpTq2q Ñ PpPpTq ˆ pN2 ˆPpTq2qqq

defined as
V8 “ λI . λpq, wq.

ď

j P pλk. xw1XI ,w1ykqδ
w1XI
H

 `

t ju, pq, xw0 Y pI X t juq, w1 ´ t juyq
˘(

. (7.14)

Origins and termini

Whereas this function would appear to generate all edges needed to populate the serial transducer
along any path through intermediate states, further provisions are needed for the states at the
beginnings and ends of these paths, which correspond to the states in the original transducer g
prior to the transformation. Rewriting each outgoing edge ppi, oq, nq P e from a vertex pm, eq P g to
a set of edges pV8 Iq pxm, ny, xH, i Y oyq originating at whatever state pq, wq we choose to identify

7.3. SERIAL TRANSDUCERS 173

with m accounts for first edge in each path. The last edge in each path lands on the state identified
with n without modification to Equation 7.14 if we identify all pairs of the form

pxq0, ny, xw0, Hyq

with the state numbered n in the original transducer. The arbitrary choice of

px0, my, xH, Hyq

as the representation of the state m beginning the path is consistent with this constraint. A subset of
the serial transducer representation including only the vertices identified with those in g therefore
is expressible as

Π
ď

pm,eq P g

tpx0, my, xH, Hyqu ˆ
ď

ppi,oq,nq P e

pV8 Iq pxm, ny, xH, i Y oyq.

Filling in the rest of the edges and the intermediate states is a matter of percolating from this initial
form to g 1 “ pV9 V8 Iq g for V9 given by

V9 “ λv. λg.
`

ρ λps, aq.
ď

pb,tq P a

tpt, v tqu
˘

Π
ď

pm,eq P g

tpx0, my, xH, Hyqu ˆ
ď

ppi,oq,nq P e

vpxm, ny, xH, i Y oyq.

State numbering

Converting states pq, wq in the intermediate representation of the serial transducer to natural
numbers in the final result can be done by any choice of function from N

2 ˆPpTq2 to N that maps
arguments of the form pxq0, ny, xw0, Hyq to n as noted above, but that otherwise yields a distinct
value different from any state m P Dpgq of the original transducer. For concreteness, let η : T�N

denote an arbitrary fixed injective function defined at least for members of the process alphabet as
proposed in Section 5.2.3. Then the set

Dpgq2 ˆ ppµ2 ηq
ď

b PDpDp
Ť

Rpgqqq YRpDp
Ť

Rpgqqq

Ppbqq2 Ă N
2 ˆPpNq2

of all combinations of states and i/o burst images possible to associate with the transducer g is totally
ordered according to conventions specified in Section 6.1.3, procuring existence and uniqueness of
an ordinal

pDpgq2 ˆ ppµ2 ηq
ď

b PDpDp
Ť

Rpgqqq YRpDp
Ť

Rpgqqq

Ppbqq2q0 pq, pµ ηq› wq P N

for any state
pq, wq P Dpgq2 ˆPpDpDp

Ť

Rpgqqq YRpDp
Ť

Rpgqqqq2.

To ensure a result that does not clash with any state m P Dpgq, we can safely offset this value to

pmax Dpgqq ` pDpgq2 ˆ ppµ2 ηq
ď

b PDpDp
Ť

Rpgqqq YRpDp
Ť

Rpgqqq

Ppbqq2q0 pq, pµ ηq› wq

for all pq, wq ‰ xx0,0y, xH, Hyy and ensure the last condition in pV10 gq pq, wq for V10 defined by

V10 “ λg. λpq, wq. xpmax Dpgqq ` pDpgq2 ˆ ppµ2 ηq
ď

b PDpDp
Ť

Rpgqqq YRpDp
Ť

Rpgqqq

Ppbqq2q0 pq, pµ ηq› wq, q1yδw1
H

. (7.15)

174 CHAPTER 7. TRANSDUCER TUNING

Quiescent states

The quiescent states pq, wq P Dpg 1q of the serial transducer g 1 according to the criteria described in
Section 7.3.1 are restricted to vertices ppq, wq, rq P g 1 with adjacency sets

r P PppPpIq ´ tHuq ˆDpg 1qq

wherein every edge label contains a symbol from I , the input alphabet of the process, and also
restricted to states with w0 absent from the set of input bursts

ď

ppi,oq,nq P pΨ gq q0

tiu

relative to the original (not serialized) transducer g. The set of quiescent states is expressible more
succinctly as

ď

ppq,wq,rq P g1XpDpg1qˆPppPpIq´tHuqˆDpg1qqq

pλk. xtpq, wqu, Hykq δ
tw0u´ f q0

H
P PpN2 ˆPpTq2q

in terms of a function
f “ λm.

ď

ppi,oq,nq P pΨ gq m

tiu

with respect to g, or we can take the opportunity to convert them to natural numbers by
ď

ppq,wq,rq P g1XpDpg1qˆPppPpIq´tHuqˆDpg1qqq

pλk. xtpV10 gq pq, wqu, Hykq δ
tw0u´ f q0

H
P PpNq.

Preferred representation

Converting the serial transducer to the preferred form of numerical states and pairs of edge labels is
a straightforward matter of writing

ď

ps,aq P g1

tppV10 gq s,
ď

pb,tq P a

tppb X I , b ´ Iq, pV10 gq tququ

with g 1 and I as above. To pair the serial transducer in its final form with the set of quiescent states
as planned, we may write

ppV11 Iq xV10 g,λm.
ď

ppi,oq,nq P pΨ gq m

tiuyq g 1

for V11 given by

V11 “ λI . λv. λg 1.
`

ď

ps,aq P g1

tpv0 s,
ď

pb,tq P a

tppb X I , b ´ Iq, v0 tququ,
ď

ppq,wq,rq P g1XpDpg1qˆPppPpIq´tHuqˆDpg1qqq

pλk. xtv0pq, wqu, Hykq δ
tw0u´v1 q0

H

˘

.

We may note in passing that this result as written would be prone to an exponentially sparse state
space, but the state numbers could be transformed to a consecutive set if desired by substituting a
function

v1
0 “ pt0u Y pµ v0q Dpg 1qq0 ˝ v0

for v0 in this expression without affecting the semantics (cf. Equation 6.11).

7.4. TRACE RECOGNIZERS 175

Overall transformation

Attentive readers will have noted that V10 g is undefined according to Equation 7.15 when the
transducer g is empty, as in the case of an initially divergent process (cf. item 3, page 155). To cover
this case while also taking the opportunity to express the serial transducer in terms of a process
specification X P D, let

ST : D Ñ PpNˆPppPpTq ˆPpTqq ˆNqq ˆPpNq

be defined as

STpX q “ pλpI , O, Nq. pλg. xppV11 Iq xV10 g,λm.
ď

ppi,oq,nq P pΨ gq m

tiuyq pV9 V8 Iq g, pg, Hqy
δ

H
g

q T X q X . (7.16)

7.4 Trace recognizers

Trace recognizing automata settle questions of equivalence and compatibility between DI circuits,
making them essential for quality control in any sensible engineering work flow. A formal specifica-
tion of the refinement relational trace recognizer and the concepts of behavioral equivalence and
refinement are the subjects of this section. These specifications rely on the serial transducer model
developed in Section 7.3. See Section 4.3 for more motivation.

7.4.1 Non-deterministic relational trace recognizer

The relational trace recognizer for a DI process X P D is the first order of business. We start with
the NFA for this purpose because it is easier than a DFA based on the serial transducer model. An
equivalent DFA version derived from this one follows in Section 7.4.2.

States and symbols

It may be recalled from Section 4.3.4 that the relational trace set includes all quiescent traces and
all divergent traces, where a quiescent trace is defined as one for which no progress is possible
at its conclusion until the environment provides another input. A divergent trace follows from
any prohibited input, and any trace with a divergent prefix is also divergent. An automaton that
recognizes this set for a process X “ pI , O, Nq P D therefore can have the same alphabet

Σ“ I Y O

and the same state space as the serial transducer g in pg, Sq “ ST X with the addition of one trap
state to serve as the destination of divergent traces. For a non-empty graph g, a state space

Q “ Dpgq Y t1 ` max Dpgqu

suffices for the NFA, where 1 ` max Dpgq is the number of the trap state. The initial state number

q0 “ 1

is inherited from the serial transducer via the transducer and the reachability graph.

176 CHAPTER 7. TRANSDUCER TUNING

Accepting states

As for the set of accepting states F , the trap state 1 ` max Dpgq must be a member because the
automaton accepts divergent traces. Quiescent states must also be members of F , because quiescent
traces are also accepted. The set of quiescent states is given already as S in pg, Sq “ ST X , so we
have

F “ pU0 Sq g

in terms of a function U0 defined as follows.

U0 “ λS. λg. S Y t1 ` max Dpgqu

Transition function

We have now covered everything needed for an automaton pQ,Σ,δ, q0, Fq except the transition
function δ. In addition to simulating the adjacency relation of the serial transducer, the transition
function must send the system to the trap state 1 ` max Dpgq in the event of an unspecified input
and always keep it there subsequently.

Simulation To address the simulation aspect first, a state q P Dpgq determines an adjacency set
pΨ gq q containing edges of the form ppi, oq, m1q. As far as the automaton is concerned, the set of
successor states δpq, tq from state q for a signal or epsilon transition t P I Y O Y tεu should contain
precisely those states m1 for which either t is the signal in the corresponding i/o burst i Y o, or for
which i Y o is empty if t is ε.

t P i Y o _ pt “ ε^ i Y o “ Hq

A function U1 g that takes a pair pq, tq to this set of states

U1 “ λg. λpq, tq. R
`

tppi, oq, m1q P pΨ gq q | t P i Y o _ pt “ ε^ i Y o “ Hqu
˘

simulates the serial transducer for valid combinations of signals and states other than the trap state
1 ` max Dpgq but yields the empty set otherwise.

Trapping Extending the transition function to take account of the trap state is straightforward in
the form of a function pU2 uq g, where u “ U1 is defined above, and U2 is defined as follows.

U2 “ λu. λg. λpq, tq. pλi. xpu gq pq, tq, t1 ` max Dpgquyiq δ
1`max Dpgq
q

By this definition, if q is the trap state 1`max Dpgq, then pU2 gq pq, tq is t1`max Dpgqu regardless
of t, but is otherwise identical to pu gq pq, tq.

Divergence The remaining requirement of the transition function mentioned above is to ensure
the acceptance of divergent traces. It suffices for it to yield the trap state for any input signal t P I
and any state q for which the serial transducer shows no outgoing edge from q labeled by t. This
condition is met when the set of states d “ pu gq pq, tq is empty with u “ U2 U1 as defined above
and t is an input. A set equal to t1 ` max Dpgqu in this case but d otherwise

pλi. xd, t1 ` max Dpgquyiq δ
H

d δ
IYttu

I

suggests a complete transition function ppU3 Iq uq g with U3 given by

U3 “ λI . λu. λg.
`

λd. pλi. xd, t1 ` max Dpgquyiq δ
H

d δ
IYttu

I

˘

˝ pu gq.

7.4. TRACE RECOGNIZERS 177

Summary

While on the subject of divergence, we should also attend to the case of an initially divergent process,
whose reachability graph and serial transducer are therefore empty (cf. item 3, page 155), especially
because the derivation up to this point assumes a non-empty transducer g for the trap state number
expressed as 1 ` max Dpgq to be well defined. The relational trace set of a divergent process with
an alphabet a “ I YO contains every string in a˚, so its non-deterministic relational trace recognizer
could be

pQ,Σ,δ, q0, Fq “ pt1u, a,λpq, tq. t1u, 1, t1uq

with only a single state 1, which is also its initial state, the only accepting state, and the only possible
output of its transition function. An expression ppU4 aq xU0 S, pU3 Iq U2 U1yq g covering either case
follows from a definition of U4 given by

U4 “ λa. λu. λg. xpDpgq Y t1 ` max Dpgqu, a, u1 g, 1, u0 gq, pt1u, a,λpq, tq. t1u, 1, t1uqy
δ

H
g

This definition enables a summary of the non-deterministic relational trace recognizer for any
process X P D expressible as NRpX q in terms of the serial transducer ST X and a function defined as
follows.

NRpX q “ pλpI , O, Nq. pλpg, Sq. pU4pI Y Oq xU0 S, pU3 Iq U2 U1yq gq ST X q X

7.4.2 Deterministic relational trace recognizer

There is no need to look further than the NFA for testing behavioral equivalence or refinement
between DI processes as described in Section 7.4.3, because this representation is most conducive
to an efficient decision procedure for language inclusion [1]. However, a DFA may be of interest as
an aid to intuition or may simplify ad hoc investigations of trace set properties on small examples
(e.g., as in Section 4.4.4).

The standard way of converting an NFA to an equivalent DFA is the power set construction,
whereby each state of the DFA is identified with a set of states in the NFA. In the worst case, the state
space of the DFA can be exponentially larger than that of the NFA. In typical cases it is larger but not
unmanageable. Details of this construction along with pruning and partition fusion optimizations
are noted briefly in the remainder of this section.

Power sets

Formally it is straightforward to express the DFA equivalent d to an NFA n as d “ U5 n in terms of a
function U5 defined by

U5 “ λpQ,Σ,δ, q0, Fq. pPpQq, Σ, λpu, tq.
ď

qPpρλs.δps,εqq u

δpq, tq, tq0u, PpQq ´PpQ ´ Fqq.

That is, the state space of d is the power set of that of n, the alphabets are the same, the initial state
of d is the singleton set of the initial state of n, and the set of accepting states of d is the set of all
sets of states of n in which any member is an accepting state of n.

The transition function is the only complicated part, operating on a DFA state u, hence a set
of NFA states, and a signal t. The transition function expresses a connection from a state u of the
DFA by an edge labeled t to whatever any member of q P u in the NFA would reach by edges with

178 CHAPTER 7. TRANSDUCER TUNING

that label. Generally there are multiple successor states δpq, tq in the NFA, so the result of the DFA
transition function is given by their union, which becomes a unique state in the DFA. To allow
for ε-transitions, the union of δpq, tq is taken not over all q P u, but over the ε-closure of u. (See
page 161.)

Reachable states

Many members of the state space PpQq according to U5 n may be unreachable and therefore not
worth enumerating. A better definition of d “ U6 U5 n restricts the DFA to reachable states by
percolating the transition function starting from the initial state as shown.

U6 “ λpQ,Σ,δ, q, Fq. pλQ1. pQ1,Σ,δ, q, F X Q1qq pρ λs. pµ δq ptsu ˆΣqq tqu

Partition fusion

The DFA can be improved further by a state minimization algorithm similar to the one discussed in
Section 6.6 but simpler where state machines are concerned following [115] and relying on notation
introduced in Equation 6.3 and Equation 6.7. According to this algorithm, the state space Q of a
DFA pQ,Σ,δ, q0, Fq is partitioned initially into accepting and non-accepting states

p “ tF,Q ´ Fu

and thereafter every class c P p is partitioned further into subclasses as needed to ensure that all
states q P c share a common value of

ď

tPΣ

ttu ˆ td P p | δpq, tq P du

which is the set of all pairs pt, dq of destination classes d connected to q by edges labeled with the
alphabet symbol t according to the transition function δ, to yield a partition

r “
`

λp.
ď

cPp

pπ λq.
ď

tPΣ

ttu ˆ td P p | δpq, tq P duq c
˘∞

tF,Q ´ Fu.

Each class c P r corresponds to a state in a reduced state space, and a function

λq. r0
Ť

tc P r | q P cu

transforms any state q P Q from the original state space to its equivalent in the new state space,
which is the ordinal relative to r of the class c P r containing q. To summarize up to this point, we
can express a state conversion function f “ U7pΣ,δq tF,Q ´ Fu : Q Ñ N by

U7 “ λpΣ,δq.
`

λr. λq. r0
Ť

tc P r | q P cu
˘

˝
`

λp.
ď

cPp

pπ λq.
ď

tPΣ

ttu ˆ td P p | δpq, tq P duq c
˘∞

.

The rest is only a matter of transforming the given DFA accordingly by mapping f over the sets of
states Q and F , rewriting the initial state q as f q, and replacing the transition function δ with

λpu, tq. f min
ď

e P ts PQ | u“ f suˆttu

tδ eu

7.4. TRACE RECOGNIZERS 179

which defines a function of a new state u and an alphabet symbol t as the new state corresponding
an arbitrary result obtained by the original transition function δ from any pair e “ ps, tq containing
an original state s corresponding to u. Denoting this transformation U8 U7 in terms of a function U8
defined by

U8 “ λh. λpQ,Σ,δ, q, Fq. pλ f . ppµ f q Q,Σ,λpu, tq. f min
ď

e P ts PQ | u“ f suˆttu

tδ eu, f q, pµ f q Fqq hpΣ,δq tF,Q ´ Fu

results in an optimal deterministic relational trace recognizer for a process X P D as RRpX q given by

RRpX q “ pU8 U7q U6 U5 NR X (7.17)

in terms of the non-deterministic relational trace recognizer NR X .

7.4.3 Behavioral equivalence

The relational trace set of a process is important enough to deserve a fancy notation because it
embodies a great deal of information about the process and what can be done with it. The relational
trace set of a process X hereafter is denoted

¹Xº“ L RRpX q

using the L operator defined in Equation 7.4 and the deterministic relational trace recognizer
defined in Equation 7.17. Brackets like these are used customarily in the literature of denotational
semantics to enclose arbitrary verbiage whose “meaning” is of interest, which is to say its image in
some designated (ideally more abstract) semantic domain.

The concept of behavioral equivalence now yields easily to a formal specification implying a
computable decision procedure. Two processes are behaviorally equivalent to each other when they
are not distinguishable by any inputs or outputs they might exchange with an environment. For
processes X “ pIX , OX , NX q P D and Y “ pIY , OY , NY q P D, the behavioral equivalence relation X ” Y
is defined as that which satisfies

X ” Y ô IX “ IY ^ OX “ OY ^ ¹Xº“ ¹Yº.

Refinement is an even more useful concept than behavioral equivalence, and also easily express-
ible in these terms. A process Y refines a process X when Y is a compatible replacement for X in
any environment. Compatibility implies that Y can not deadlock or diverge in any circumstance
where X would not, but is unconstrained where X diverges. This relation is defined as follows.

X Ď Y ô IX “ IY ^ OX “ OY ^ ¹XºĚ ¹Yº (7.18)

Note that the relational operators are oppositely directed. That is, X precedes Y in the refinement
ordering if the relational trace set of X is a superset of that of Y . This ordering is consistent with
the least refined process being the most unpredictable. As such, it is capable of participating in any
trace in pIX Y OX q˚ with the environment. See Section 4.3.3 for further discussion and motivation.

7.4.4 Alternative extensional descriptions

However useful it may be, the relational trace set is built from the union of two sets with more
readily intuitive descriptions: the quiescent trace set, containing the traces whereupon the process

180 CHAPTER 7. TRANSDUCER TUNING

waits for further input before proceeding, and the divergent trace set, whose members render the
process unpredictable due to a prohibited input. If an automaton QRpX q and an automaton DRpX q

respectively recognizing the quiescent and divergent traces of X were known, then another way of
defining the relational trace set ¹Xº would be as follows.

¹Xº“ L QRpX q YL DRpX q (7.19)

The relational trace set is preferable as an extensional description of a DI process because it
facilitates the relations defined above, but this choice is only a matter of convenience. Any of the
three sets in Equation 7.19 uniquely determines the other two and hence describes the process
completely (with one minor exception noted below). If only the quiescent traces of a process
X “ pI , O, Nq P D were known, then the divergences could be inferred as

L DRpX q “ ppµ λp. p q I1 q pI Y Oq˚q
Ť

pµ λq.
ď

iPN

tq ∣ iuq LQRpX qq ´L QRpX q (7.20)

using the notation for concatenation per Equation 7.3, because every divergence consists of a prefix
p of a quiescent trace q followed by an input in I , followed by any sequence of signals (in pI Y Oq˚)
that is not also a quiescent trace. If only the divergences were known, the quiescent trace set could
be inferred as

LQRpX q “ p
Ť

pµ λd.
ď

iPN

td ∣ iuq LDRpX qq ´LDRpX q

being the set of all prefixes of divergences d that are not divergences themselves. The relational
trace set also determines the divergences,

L DRpX q “

s P ¹Xº
ˇ

ˇ @t P pI Y Oq˚. s q t P ¹Xº
(

because the divergences are the only members of ¹Xº that can be found as a prefix to every possible
suffix. (However, this test is inconclusive when the output alphabet is empty, as one might expect
from a process that is inherently unresponsive.) The way to infer the remaining one of the three
sets by any of these relationships follows trivially from Equation 7.19.

Despite being no more informative than one another in any technical sense, the divergent and
quiescent trace sets may be more useful to a designer than the relational trace set for understanding
a process, especially when displayed in graphical form. (See Section 4.4.4 for motivation.) An easy
way of obtaining the automata to recognize the quiescent and divergent trace sets is by these minor
modifications to the relational trace recognizer.

QRpX q “ pλpQ,Σ,δ, q0, Fq. pQ,Σ,δ, q0, F ´ tq P Q | @t P Σ. δpq, tq “ quqq RRpX q

DRpX q “ pλpQ,Σ,δ, q0, Fq. pQ,Σ,δ, q0, F X tq P Q | @t P Σ. δpq, tq “ quqq RRpX q

In these expressions, the condition on a state q that δpq, tq is equal to q for all t P Σ means that q is
a trap state. The relational trace recognizer is always built with a single accepting trap state whose
sole purpose is to attract the divergent traces. Excluding trap states from the set of accepting states
excludes divergent traces from L QRpX q but allows quiescent traces. Making trap states the only
accepting states excludes quiescent traces but retains divergences in L DRpX q.

7.5. A CANONICAL FORM FOR PETRI NETS 181

...
...

...

...
...

error trapping
transitions

edge simulating
transitions

state-coding placesinput buffer places output buffer places

Figure 7.10: simulation of a transducer by an open Petri net with one transition for each edge, a set
of places for each state, and arcs organized to implement succession, input, output, and divergence

7.5 A canonical form for Petri nets

As noted at the beginning of this chapter, a transformation from a transducer to an open Petri net
model is the last remaining prerequisite for the algebraic closure needed to complete the development
of the process combinators started in Chapter 5. In an open Petri net, all input transitions have
empty presets and all output transitions have empty postsets, making it a suitable operand for any
process combinator. A transformation from transducers to open Petri nets is the subject of this
section. Something like a generic template for the transformation is illustrated by an example in
Section 7.5.1 and a formal specification follows in Section 7.5.2 and Section 7.5.3.

7.5.1 Overview

Unlike the finite automata discussed in Section 7.4, Petri nets are well suited to describing concur-
rency, so this construction can start from the transducer model defined originally by Equation 7.12
with concurrent i/o bursts rather than the serial transducer defined by Equation 7.16. The target in
general is a Petri net following the basic floorplan shown in Figure 7.10.

182 CHAPTER 7. TRANSDUCER TUNING

• There is an input transition and an adjacent input buffer place for each member of the input
alphabet, and a similar arrangement for each output symbol.

• The instantaneous state of the transducer is recorded in the pattern of tokens marking a
designated set of state-coding places.

• A change from one state to another is effected by the firing of an edge simulating transition,
of which there is one for each edge in the transducer’s state graph.

• Each of these transitions is enabled by the buffer places of the input burst labeling the edge it
simulates, and by the state coding places representing the state from which the edge originates.

• The postset of each edge simulating transition contains the buffer places for the members of
the output burst labeling the edge it represents, so as to transmit the required outputs in due
course, and the places encoding the state where the edge terminates.

• Any combination of input signals not covered by the outgoing edges from the current state of
the transducer being simulated enables one of the error trapping transitions, whose firing is
unsafe by design. In this way, the Petri net models both what the transducer can do and what
it can not.

To illustrate the way a Petri net model can be derived from a transducer, a specific example is
shown in Figure 7.11. The transducer has three states and two edges. The edge from the initial
state 1 to its successor state 2 is labeled by the input burst ta, bu and the output burst tc, du. The
edge from state 2 to the remaining state 0 is labeled by the input burst tbu and the output burst teu.
The final state has no successors. The features of this transducer determine the places, transitions,
and arcs in the Petri net as follows.

Places Each of the three states is encoded by a separate place. A buffer place is needed for each of
the two inputs a and b, and the three outputs c, d, and e, which is adjacent to the corresponding open
transition. An additional marked place forms the common postset of the error trapping transitions,
making it unsafe for them ever to fire.

Transitions Each of the two edges in the transducer maps to an anonymous transition. Three
more anonymous transitions correspond to the prohibited combinations of states and inputs. These
three error trapping transitions simulate divergence in case of prohibited inputs.

• Because state 2 has no outgoing edge labeled by an input burst containing b, the place coding
that state and the place adjacent to the input b enable an error trapping transition.

• Because state 0 has no outgoing edges labeled by input bursts containing either a or b, there
is an error trapping transition for state 0 with a and for state 0 with b.

If any of these inputs occurs while the Petri net is simulating the relevant state, one of the error
trapping transitions is enabled and the Petri net becomes unsafe.

7.5. A CANONICAL FORM FOR PETRI NETS 183

a

b

c

d

e

21 0
ta, bu{tc, du tbu{teu

Figure 7.11: A transducer with three states and two edges maps to a Petri net with three state-coding
places, two edge simulating transitions, and three error trapping transitions.

184 CHAPTER 7. TRANSDUCER TUNING

enabled in q enabled in m (and in q)

encoding of q
encoding of m

Figure 7.12: If the set of places marked to encode a state q contains the set of places encoding m,
then any transitions meant to be enabled during state m are also wrongly enabled during q.

Arcs The arrangement of the remaining arcs in the Petri net provides for it to simulate state
changes in the transducer.

• Arcs from the buffer places adjacent to the transitions for a and b are connected to the
transition corresponding to the edge labeled by the input burst ta, bu. An arc from the
place encoding state 1 also points to this transition. The transition’s postset is made by arcs
connected to the buffer places adjacent to the transitions for c and d, and to the place coding
state 2.

• The edge simulating transition labeled by the input burst tbu has an arc from the place
adjacent to the transition for b and an arc from state 2 connected to it. It also has an arc
connecting from it to the place adjacent to the transition e because of the output burst teu,
and an arc to the place coding state 0.

State coding

This example encodes three transducer states with three Petri net places by having exactly one place
marked to simulate each state, but for larger state spaces there are other possibilities. With four
state-coding places, there are six ways to mark two of them at the same time, and hence the ability
to encode up to six states. For five places, the maximum increases to ten states, and for six places,
twenty. The numbers grow rapidly, with no more than 23 places needed for 106 states, but not as
rapidly as the 2n total possible ways to mark n places. The difference results from a constraint on
state encodings whereby no marking may be a proper subset of another.

Without this constraint, a transition enabled in a state m would also be enabled in any state q
whose encoding were a superset of that of m, regardless of whether it should be, just because of the
way the states are encoded. This situation is illustrated in Figure 7.12. In this sense, state coding is
similar to the problem of delay insensitive communication codes (Chapter 13), although the issues
of error detection and decoding are probably less relevant to Petri nets than to communication
channels.

7.5. A CANONICAL FORM FOR PETRI NETS 185

With so many alternatives, the best way of encoding the states is the next question. The minimum
number of state coding places needed to encode n states would be the minimum p satisfying

ˆ

p
tp{2u

˙

ě n (7.21)

which is to say the minimum p whose binomial coefficient with the truncated quotient p{2 equals
or exceeds the number of states n. This number of places is adequate if each state is encoded by
a marking in which exactly tp{2u state-coding places are marked. Such an encoding necessarily
satisfies the requirement that no marking is a proper subset of any other.

While this choice of encoding would minimize the number of places, it might not minimize the
number of arcs, nor the maximum in-degree or out-degree of any vertex, nor their averages, nor
the number of tokens in circulation, nor any other complexity or cost metric whose importance in
practice is impossible to anticipate. For this reason, the exact specification of a state encoding must
be left as an implementation decision.

Complementary inputs

In addition to its trivial state encoding, another misleading aspect of the example in Figure 7.11 is
the simplicity of the error trapping transitions. If an input symbol a does not label any outgoing
edge from a state m, then a suffices to cause divergence in m, so clearly there is requirement for
an error trapping transition enabled by the confluence of m and a, but in general the situation is
more complicated. For example, in a circuit implementing a dual-rail decoder [293] with inputs i0
and i1, a state m may allow either i0 or i1 but not both, so there would have to be an error trapping
transition enabled by the combination of i0, i1, and m, but not by any proper subset thereof.

More elaborate scenarios are easy to invent. Suppose the input alphabet is ta, b, c, d, eu, and
suppose the following input bursts are acceptable in a state m.

ta, b, cu ta, du ta, eu tb, c, du tcu tdu

Then it follows that there must be no fewer than five error trapping transitions associated with m,
where each of them is enabled by one of the following combinations of inputs.

ta, b, du ta, c, du tb, eu tc, eu td, eu

For another example, if the following input bursts were acceptable,

ta, bu ta, d, eu tb, d, eu tb, eu tc, eu

then these would be the ones to enable the error trapping transitions.

ta, b, du ta, b, eu ta, cu tb, cu tc, du

The common pattern is that if any of these latter combinations of inputs has been received while the
transducer is in state m, then there is no longer any possibility of a valid complement of forthcoming
signals to constitute an acceptable input burst for m, because there is bound to be one or another
left over. A general solution to this puzzle is needed for coping with arbitrary transducers.

186 CHAPTER 7. TRANSDUCER TUNING

Figure 7.13: Empty transducers map to this Petri net instead of one like Figure 7.10.

Degenerate cases

We should also ask what happens to the template shown in Figure 7.10 when the transducer has no
states. Obliviously following the same procedure as the example in Figure 7.11 when the transducer
is empty would seem to lead to an empty Petri net, or at least to one with no transitions. An
empty transducer comes from an empty reachability graph, which is the result of applying the
transformations in Chapter 6 to an initially divergent process, but does an empty (or disconnected)
Petri net mean the same thing?

A specific interpretation of an empty Petri net is inevitable. A
Petri net marking, being only a set of places, is still a marking even
if the set is empty. However, it can have no successors if the Petri net
is empty because it enables no transitions. The reachability graph
of an empty Petri net therefore would consist of a single vertex with
no edges, implying a transducer with a single state and no edges.
This behavior is more like deadlock than divergence, which is a
significant difference even if both are undesirable.

A DI process X “ pI , O, Nq P D can have non-empty alphabets
I and O even if the Petri net N is empty, but the conclusion is the
same regardless. To follow the conventions mandated in Chapter 5, any process with an empty
Petri net N and a non-empty input alphabet I is equivalent to the process pI , O, N Ž Iq, whose Petri
net model N Ž I is the input completion of N by I as defined by Equation 5.19. The Petri net N Ž I
would imply only that any possible input in I causes the process to diverge but that it remains
quiescent otherwise. (See Section 5.3.4 for further discussion and rationale.) In the reachability
graph, there is a tangle of paths consisting of input-labeled and anonymous edges from the initial
marking leading ultimately nowhere but to the vertex representing divergence. When these are
removed by the divergence propagation transformation described in Section 6.3, the result again is
a reachability graph consisting of a single vertex with no edges.

The upshot is that if the transducer is empty, we might as well forget about Figure 7.10 and
cut to the chase by generating the Petri net in Figure 7.13 instead. This Petri net does nothing but
diverge, just like the one from which the empty transducer must have been derived.

7.5.2 Preparation

The the formal construction of an open Petri net equivalent to a given transducer employs five
functions υg , ωg , βg , σg , and ξg induced by the transducer g “ T X to generate the edge simulat-
ing transitions, error trapping transitions, buffer places, state coding places, and the error place
respectively as shown in Figure 7.10, and one further function

ī : PpNˆPppPpTq ˆPpTqq ˆNqq Ñ pPppPpTq ˆPpTqq ˆNq Ñ PpPpTqqq

taking the transducer g to a function

ī g : PppPpTq ˆPpTqq ˆNq Ñ PpPpTqq

7.5. A CANONICAL FORM FOR PETRI NETS 187

such that pī gq e P PpPpTqq covers the set of all prohibited input bursts in any state m of a vertex
pm, eq P g whose adjacency set is e.

We could think of all of these functions except ī as “vertex factories” in that they generate vertices
on demand to populate various parts of the Petri net model of a transducer g. As such, they
are constrained to generate mutually distinct vertices. Ensuring this condition raises a similar
issue to the serial transducer construction in Section 7.3 with regard to its dependence on an
arbitrary fixed injective function η : T�N as a way of avoiding clashes between generated state
numbers. A function of this type is needed again in the coming derivation, along with a related
device V

0´1 : N� V, the inverse ordinal function taking any natural number to a distinct vertex in
V per the notation defined by Equation 5.5.

The rest of this section first develops the function ī needed to specify prohibited input bursts,
followed by each of the vertex factories, in preparation for putting them together into a function
P : D Ñ rD expressed in terms of the transducer model in Section 7.5.3. The effect of P is to take
any DI process X P D to an equivalent PpX q P rD having an open Petri net model.

Prohibited input bursts

Let a process X “ pI , O, Nq P D have an input alphabet I and a transducer g “ T X . The transducer
contains members of the form pm, eq with each e a set of edges ppi, oq, m1q, where i Ď I is an
input burst. With the acceptable input bursts i given by e and the set to enable the error trapping
transitions for m sought, the general requirement is that it cover

Ť

s for a set

s “ P
`
Ť

D
`

D
`
Ť

Rpgq
˘˘˘

´
ď

ppi,oq,m1qPe

Ppiq

containing all possible input bursts other than any subset of an acceptable one, where the expression

Ť

D
`

D
`
Ť

Rpgq
˘˘

is the set of input signals mentioned explicitly in the transducer graph g, which may be a subset of
I . The set s itself would be a trivial solution to the problem of finding a cover for

Ť

s but is larger
than necessary. A minimal sufficient subset with the required coverage is given by

s ´
ď

bPs

tb1 P s | b Ă b1u.

The graph g therefore can be said to determine a function ī g that takes any adjacency set e exhibited
by g to a set of input bursts p ī gq e that suffice to cause undefined behavior.

ī “ λg. λe. pλs. s ´
ď

bPs

tb1 P s | b Ă b1uq pPp
Ť

D
`

D
`
Ť

Rpgqqqq ´
ď

ppi,oq,mqPe

Ppiqq (7.22)

Edge simulating transitions

The Petri net model of a transducer g “ TpI , O, Nq requires an anonymous transition to simulate
each edge connecting a state m to a state m1 labeled by an i/o burst pi, oq associated with g. Hence
it requires a distinct member of V for every possible tuple pm, ppi, oq, m1qq where pm, eq P g is a
vertex and ppi, oq, m1q is an edge in e. To ensure a distinct member of V, we can take it to be the

188 CHAPTER 7. TRANSDUCER TUNING

image of a tuple pm, ppi, oq, m1qq with respect to some injective function from tuples of this type to
V. Any injective function

υg : Dpgq ˆ ppPpdq ˆPprqq ˆDpgqq� V

would suffice, where

d “
Ť

i P PpIq | pi, oq P Dp
Ť

Rpgqq
(

r “
Ť

o P PpOq | pi, oq P Dp
Ť

Rpgqq
(

are the sets of signals appearing in input and output bursts respectively of the transducer g, but for
the sake of concreteness, we can venture an explicit construction in terms of ordinal functions.

Tuples of the form pm, ppi, oq, m1qq are not totally ordered because they contain members of T,
but an ordering can be inferred for tuples of the form

pm, pppµ ηq i, pµ ηq oq, m1qq P Dpgq ˆ ppPpNq ˆPpNqq ˆDpgqq

by fixing an injective function η : T�N as discussed above. These in turn would be members of

Dpgq ˆ pPppµ µ ηq Dpaqq ˆPppµ µ ηq Rpaqqq ˆDpgq

where
a “ Dp

Ť

Rpgqq

is the set of all i/o bursts appearing in g, suggesting that they could be assigned a unique ordinal

p 9C0 gq pm, pppµ ηq i, pµ ηq oq, m1qq

in terms of a function 9C0 defined as

9C0 “ λg. pλa. pDpgq ˆ pPppµ µ ηq Dpaqq ˆPppµ µ ηq Rpaqqq ˆDpgqq0q Dp
Ť

Rpgqq

and that a tuple pm, ppi, oq, m1qq could be uniquely numbered pC0 gq pm, ppi, oq, m1qq by a function
C0 defined as follows.

C0 “ λg. p 9C0 gq ˝ λpm, ppi, oq, m1qq. pm, pppµ ηq i, pµ ηq oq, m1qq

Based on the injective function V
0´1 : N� V discussed above, the complete specification for υg

follows easily.
υg “ V

0´1
˝ pC0 gq (7.23)

Error trapping transitions

The Petri net simulating the transducer g also needs a distinct error trapping transition for every
combination of a state m and a prohibited input burst b where pm, eq P g is a vertex and b P p ī gq e
is prohibited in m according to the adjacency set e. Any injective function

ωg : Dpgq ˆ
Ť

pµ ī gqRpgq� V

7.5. A CANONICAL FORM FOR PETRI NETS 189

would suffice to ensure the uniqueness of the error trapping transition ωgpm, bq P V for a pair
pm, bq relative to other error trapping transitions, but error trapping transitions are also required to
be outside the range of edge simulating transitions

pµ υgq
ď

pm,eqPg

tmu ˆ e

by Equation 7.23. An explicit construction ofωg satisfying both requirements using ordinal functions
as above would transform a pair pm, bq P Dpgq ˆPpTq to a pair u “ pm, pµ ηq bq P Dpgq ˆPpNq,
whose ordinal with respect to the set

Dpgq ˆ pµ µ ηq
Ť

pµ ī gq Rpgq

is well defined. This value is then offset by the maximum edge simulating transition ordinal

max pt0u Y pµ C0 gq
ď

pm,eqPg

tmu ˆ eq

to avoid clashing with any of them, for a result of p 9C1 gq u P N with 9C1 given by

9C1 “ λg. λu. 1 ` pmax pt0u Y pµ C0 gq
ď

pm,eqPg

tmu ˆ eqq ` pDpgq ˆ pµ µ ηq pµ ī gqRpgqq0 u

or a result pC1 gq pm, bq P N in terms of the original pair pm, bq P Dpgq ˆPpTq and a function C1
defined by

C1 “ λg. p 9C1 gq ˝ λpm, bq. pm, pµ ηq bq

so that the appropriate error trapping transition factory follows as

ωg “ V
0´1

˝ pC1 gq. (7.24)

Buffer places

Having covered edge simulating transitions and error trapping transitions, we move on to the buffer
places needed by the Petri net to simulate the transducer g. Each observable input or output t P i Yo
in any i/o burst pi, oq labeling an edge ppi, oq, m1q P e in any adjacency set e of a vertex pm, eq P g
corresponds to an open transition in the Petri net as shown in Figure 7.10, and each of them needs
a distinct buffer place adjacent to it.

A buffer place factory βg : T Ñ V that ensures a distinct place βg t P V for each transition t P T

could be constructed with not much effort as something like

V
0´1

˝ η

using the functions η : T � N already assumed, but this solution is inadequate because it does
not prevent the buffer places from clashing with the edge simulating transitions or error trapping
transitions. However, offsetting the value of η t by the maximum of the error trapping transition
ordinal according to the construction above

pµ C1 gq
ď

pm,eqPg

tmu ˆ p ī gq e

190 CHAPTER 7. TRANSDUCER TUNING

implicitly prevents a clash with edge simulating transitions as well, suggesting a total pC2 gq t in
terms of a function C2 given by

C2 “ λg. λt. 1 ` pη tq ` max pt0u Y pµ C1 gq
ď

pm,eqPg

tmu ˆ p ī gq eq

so that a correct buffer place factory function is expressible as follows.

βg “ V
0´1

˝ pC2 gq (7.25)

The error place

The initially marked place in the postset of the error trapping transitions in Figure 7.10 is needed
only if the set of error trapping transitions

Ť

pµ ī gq Rpgq

implied by the transducer g is non-empty, so a suitable error place factory ξg P PpVq need only be
a set of at most one vertex. Selecting the vertex arbitrarily as one whose ordinal with respect to
V

0´1 exceeds the maximum of the set

pµ C2 gq
ď

pi,oqPDp
Ť

Rpgqq

i Y o

prevents it from clashing with any buffer place, error trapping transition, or edge simulating
transition determined by the constructions above. Let the error place factory be defined accordingly
as

ξg “ pµ V
0´1

q C3 g (7.26)

in terms of the following function C3.

C3 “ λg.
`

λs.
@

t1 ` max pt0u Y pµ C2 gq
ď

pi,oqPDp
Ť

Rpgqq

i Y oqu, H
D

δ
H
s

˘
Ť

pµ ī gq Rpgq

State coding places

As noted previously, the state coding places σg m P PpVq of a state m in the transducer g must be
left as an implementation decision subject to the state coding place factory σg satisfying

@m P Dpgq. @m1 P Dpgq ´ tmu. σg m Ę σg m1

but whatever way the other vertex factory functions are constructed, the latter must belong to the
function space

σg : N�P
`

V ´ ξg ´ ppµ βgq
ď

pi,oqPDp
Ť

Rpgqq

i Y oq ´ ppµ υgq
ď

pm,eqPg

tmu ˆ eq ´ pµ ωgq
ď

pm,eqPg

tmu ˆ p ī gq e
˘

to avoid generating vertices that clash with them. It is also convenient to have σg as a total function
of N in the specification to follow.

@m P N. m R Dpgq ô σg m “ H (7.27)

7.5. A CANONICAL FORM FOR PETRI NETS 191

7.5.3 Specification

Having arrived at satisfactory understandings of state coding, complementary inputs, and certain
degenerate cases pertaining to the transformation from transducers to open Petri nets in Section 7.5.1
and Section 7.5.2, we are now in a position to attempt its formal specification, which should flow
mostly automatically as a consequence of the way everything is defined up to this point.

Vertices

The set of places P in a Petri net pP, T, A, M, Fq simulating a transducer g consists of the union of the
buffer places, the error place if any, and the state coding places as discussed previously. These can
be given by p g for a function p defined as follows

p “ λg. ppµ βgq
ď

pi,oqPDp
Ť

Rpgqq

i Y oq Y ξg Y
ď

pm,eqPg

σg m (7.28)

based on Equation 7.25 and Equation 7.26.
Similarly, the set of transitions T is the union of the sets of edge simulating transitions, error

trapping transitions, and all signals appearing in any i/o burst. This set is expressible as t g in terms
of a function

t “ λg. ppµ υgq
ď

pm,eqPg

tmu ˆ eq Y ppµ ωgq
ď

pm,eqPg

tmu ˆ p ī gq eq Y
ď

pi,oqPDp
Ť

Rpgqq

i Y o (7.29)

based on Equation 7.22, Equation 7.23, and Equation 7.24.

Arcs

Aside from the vertices, there are the arcs A in the Petri net pP, T, A, M, Fq. There are enough arcs to
be worth partitioning them into five subsets, each expressed as ~ai g in terms of a function ~ai for i
ranging from 0 to 4.

First are the arcs connecting the state coding places with the edge simulating transitions. We
can dispense with these all at once as ~a0 g where ~a0 is defined as follows.

~a0 “ λg.
ď

pm,eqPg

ppσg mq ˆ pµ υgq ptmu ˆ eqq Y
ď

pb,m1qPe

tυgpm, pb, m1qqu ˆσg m1 (7.30)

That is, there is an arc from each member of σg m to the transition simulating each edge pm, pb, m1qq

in e, and an arc from the that transition to each member of σg m1. In this way, the firing of any of
these transitions unmarks the places encoding m and marks the places encoding m1.

Then there are the arcs in ~a1 g connecting the state coding and input buffer places to the error
trapping transitions.

~a1 “ λg.
ď

pm,eqPg

pµ λb. ppσg mq Y pµ βgq bq ˆ tωgpm, bquqq p ī gq e (7.31)

Each prohibited input burst b in p ī gq e for a state m calls for an arc from every state coding place
in σg m and from the buffer place of every member of b to the error trapping transition ωgpm, bq.
This arrangement enables an error trapping transition precisely when a prohibited combination of
inputs from the environment happens concurrently with a state in which they are prohibited.

192 CHAPTER 7. TRANSDUCER TUNING

The arcs from the error trapping transitions to the error place are in ~a2 g, with ~a2 given by

~a2 “ λg.
ď

pm,eqPg

ppµ ωgq ptmu ˆ p ī gq eqq ˆ ξg . (7.32)

This one is easy because every error trapping transition due to every combination of states m and
prohibited input bursts in p ī gq e connects only to the error place in ξg .

The only arcs left are those connecting the buffer places with the observable transitions and the
edge simulating transitions. Taking the input side first, we have a set of arcs ~a3 g given by

~a3 “ λg.
ď

sPDpDp
Ť

Rpgqqq

tps,βg squ Y
ď

pm,eqPg

tβg su ˆ pµ υgq ptmu ˆ tppi, oq, m1q P e | s P iuq. (7.33)

That is, a single arc connects every input transition s to its buffer place βg s, and the buffer place
βg s is connected by an arc to every transition simulating an edge ppi, oq, m1q whose input burst i
contains the signal s. The former marks the buffer place whenever the input transition fires, and the
latter inhibits the edge simulating transition when the input s is unavailable. On the output side,
we have

~a4 “ λg.
ď

sPRpDp
Ť

Rpgqqq

tpβg s, squ Y
ď

pm,eqPg

ppµ υgq ptmu ˆ tppi, oq, m1q P e | s P ouqq ˆ tβg su (7.34)

complementing the inputs, which is mostly the same except that s is an output and the arcs are
oppositely directed. Output buffer places do not inhibit the edge simulating transitions but become
marked whenever they fire, thus enabling observable output transitions.

The rest

Something still needs to be said about the initial and final markings M and F in the Petri net
pP, T, A, M, Fq simulating the transducer g. Because the initial state of the transducer is numbered 1
by convention, the initial marking M of the Petri net is ξg Yσg 1, which includes the encoding of
state 1 and the error place if any. The final marking is easier, being unconditionally σg 0 because
the state corresponding to the final marking is always numbered 0 if there is one. Otherwise, the
final marking is H by Equation 7.27.

Some provision is also needed for the degenerate case of an empty transducer to map to a Petri
net like the one shown in Figure 7.13. A Petri net denoted K can be constructed for this purpose
using the three arbitrarily chosen vertices vi “ V

0´1 i for i ranging from 0 to 2 as follows.

K “ ptv0, v1u, tv2u, tpv0, v2q, pv2, v1qu, tv0, v1u, Hq (7.35)

With that, we have everything needed to define the transformation P : D Ñ rD taking any process
X P D to its open equivalent PpX q P rD based on Equation 7.28 through Equation 7.35.

PpX q “
`

λpI , O, Nq. pI , O, pλg. xpp g, t g,
4
ď

i“0

~ai g,ξg Yσg 1,σg 0q, Ky
δ

H
g

q T X q
˘

X (7.36)

7.6. PROCESS COMBINATORS REVISITED 193

7.6 Process combinators revisited

Any of the binary process combinators specified in Chapter 5 under the assumption of open Petri
net-modeled processes can be generalized by transforming each operand X and Y to the equivalent
canonical forms PpX q and PpY q before composing them. For example, a general form of parallel
composition defined as

par pX , Y q “ Ąpar pPpX q,PpY qq

would always work whether X and Y are open or closed. However, this transformation is potentially
costly because it requires enumeration of a state space whose size can increase exponentially with
the number of Petri net places in X and Y . It is frequently possible to mitigate this cost by computing
canonical forms only for members of D ´ rD and leaving members of rD as they are. A less costly
alternative to P that avoids computing canonical forms unnecessarily

pP “ λX . pλi. xX ,P X yiq δ
rD´tX u

rD

allows for the following definitions of the four binary process combinators.

seq pX , Y q “ Ąseq ppPpX q,pPpY qq

par pX , Y q “ Ąpar ppPpX q,pPpY qq

alt pX , Y q “ Ăalt ppPpX q,pPpY qq

env pX , Y q “ Ąenv ppPpX q,pPpY qq

These definitions provide the desired algebraic closure of these combinators
over D, allowing us to bid a fond farewell to the wavy lines when putting the
combinators to use henceforth.

194 CHAPTER 7. TRANSDUCER TUNING

Canonical curiosa

1. Can the canonical form PpX q of a process model X P D

always be inferred from its relational trace set ¹Xº
alone? Why or why not? (hint: When is behavioral
equivalence not the whole story?)

2. Modify Equation 7.36 to allow for the possibility that
the initial and final markings of the Petri net N are
equal to each other and non-empty. Is there any justi-
fication for ignoring this possibility?

3. Which process refines the other in each of Figure 7.6 and Figure 7.9?

4. What makes each of these “optimizations” superficially plausible but actually too
clever by half (except, of course, for the one that is valid)?

a) simplifying Equation 7.20 to

L DRpX q “ ppLQRpX q q I1q ´LQRpX qq q pI Y Oq˚

b) allowing σgpmq Ă σgpqq if both states m and q have the same i/o bursts labeling
their outgoing edges

c) transforming seq pX , Y q to X whenever X “ pI , O, pP, T, A, M, Fqq has an empty
final marking F “ H

d) letting pP transform X “ pI , O, Nq with N P P̂ ´ rP directly to an equivalent
pI , O, N 1q with N 1 P rP without going through P X (cf. item 4, page 120)

5. In an example on page 185, a prohibited input burst ta, b, du is a superset of an
acceptable input burst ta, bu. Could an error trapping transition and an edge
simulating transition be enabled simultaneously, and if so, how should this condition
be interpreted?

6. A process A P PpTq ˆPpTq ˆP (for “angelic”) with an input a and an output b has
the Petri net model ptpu, ta, bu, tpa, pq, pp, aq, pp, bq, pb, pqu, tpu, Hq as shown.

a b

a) What is special about A? (hint: item 3, page 84)

b) What process combinator expression yields a behavioral equivalent to A? (hint:
This question is a kōan.)

c) What are RGpAq, TpAq, RRpAq, and PpAq?

d) Does A” PpAq hold, and if not, where did it all go wrong? (hint: page 91)

Chaos is inherent in all compounded
things. Strive on with diligence.

the Buddha

C
H

A
P

T
E

R 8
BLOCK BUILDING

The extensional style of description developed in various guises over the preceding chapters has
been a prerequisite to an informed discussion of circuit semantics, but at some point the rubber
needs to meet the road. Ultimately a circuit is a system of com-
ponents wired together, and the task remains to account specifi-
cally for the components and the ways of connecting them. This
chapter makes a start at closing the gap between the behavioral
description of a circuit and the structural.

Calling a component primitive is another way of saying we
choose not to contemplate its inner workings in further detail,
but are interested nevertheless in its observable behavior as man-
ifested by the signals it exchanges with its environment. A Petri
net-modeled DI process is ideal for describing any primitive com-
ponent precisely to this extent subject to a few technical provi-
sions. The MERGE, TOGGLE, and JOIN components encountered
informally in Part I are examples of primitives, along with a few
others to be introduced and specified rigorously in Part III.

When the primitives are understood, a treatment of their combination into potentially useful
circuits follows. Two complementary equivalent representations are relevant. The term hierarchical
block is used in a technical sense in this chapter for one of these two representations. This term is
used interchangeably with the term block diagram. Either of these refers to a formal model for
the graphical depiction of a circuit as interconnected blocks. It consists of either a single primitive
component or a collection of smaller block diagrams and primitives. Block diagrams give a full
account of the connections among their constituent blocks implicitly as a programmer-friendly
algebraic expression, but they also enable a straightforward schematic capture algorithm supportive
of user-friendly interactive graphical circuit design tools.

The complementary representation to a block diagram is called a flat netlist or a netlist more

195

196 CHAPTER 8. BLOCK BUILDING

briefly. A netlist consists of an enumeration of the primitive components in a circuit and a description
of the interconnection in the simplest way possible via numbered wires. A block diagram can always
be converted to a netlist. Netlists of any substantial size are neither human readable nor convenient
to transform algorithmically, but they are likely to be useful as an interchange format when the
finished design is handed off to standard placement, routing, or other technology mapping tools.

Not only can block diagrams be converted to netlists, but transformations among primitive
components, block diagrams, netlists, and DI processes are all readily attainable. As a result, it
becomes possible to compare one circuit to another or to compare a circuit to a specification by
converting both to DI processes and testing for refinement as described in Chapter 7, which implies
a refinement relation among circuits themselves. It also becomes possible to make verification more
efficient during a bottom-up design by combining each intermediate-level block diagram into a
single block before proceeding.

The rest of this chapter is concerned with elaborating on these ideas, but first a few words about
lists are appropriate.

8.1 On lists

The nature of this material makes lists more frequently used in this chapter than previously. For
example, it is preferable to regard a block in a block diagram as having an ordered sequence of
terminals instead of an alphabet. To soften the blow, the concept of a list defined in Section 7.1 is
upgraded now with some convenient notation and a few useful operators, while maintaining the
model of a list as a function of a natural variable proposed previously. Hence, we may generalize
the concepts of the domain and range of a relation (Equation 5.2 and Equation 5.3) to a list x as

Dpxq “ ti P N | i ă |x |u (8.1)

Rpxq “ pµ xq Dpxq (8.2)

which is to say that the range is defined as the set of its terms using the µ operator defined in
Equation 5.1. Note that this usage constitutes a deliberate overloading or abuse of notation.1

Functional composition of lists, as in x ˝ y for lists x and y, may also be invoked without further
comment provided that Rpyq is a subset of N. A list viewed as a function is called injective if it has
no duplicate items.

8.1.1 Creating a list

A couple of easy ways to create lists of known simple forms from thin air are helpful enough to have
their own notation. The list ιn (Greek letter iota) is famous for containing every natural number
from 0 through n ´ 1 in ascending order.

ιn “

"

ε if n “ 0
ιn´1 q xn ´ 1y otherwise (8.3)

For example, ι5 “ x0,1,2,3,4y. If lists are modeled as functions as discussed above, then ιn is the
identity function for natural numbers less than n but is undefined elsewhere. This device is useful

1Because functions are not identical to their graphs, Dp f q means something different for a function f than Dprq does
for a relation r. See page 123.

8.1. ON LISTS 197

already for defining the notation u n as the list of n identical copies of u.

u n “ pλi. uq ˝ ιn (8.4)

That is, an underlined natural number as a superscript denotes a list containing that number of
copies, as in the example ρ 3 “ xρ,ρ,ρy.

It is sometimes helpful to be able to express a list of consecutive numbers whose initial value is
greater than zero, for example x3, 4, 5, 6y. Lists of this form could always be written as pλi. m` iq˝ιn,
where m is the first and m ` n ´ 1 is the last number in the list, but they occur frequently enough to
be worth defining ιmn as a notation for them.

ιmn “ pλi. m ` iq ˝ ιn (8.5)

The example of four consecutive natural numbers in ascending order starting from 3 mentioned
above is ι34 “ x3,4,5,6y. This notation is ambiguous insofar as ιmn could also mean ιn composed
with itself m times as defined by Equation 6.2, but there is never any reason to compose ιn with
itself. Viewed as a function, ιn is idempotent, meaning ιn “ ιn ˝ ιn “ ιn ˝ ιn ˝ ιn Hence there is
no downside to the convention of always interpreting ιmn according to Equation 8.5.

8.1.2 Deleting from a list

Several operations pertain to the deletion of selected items from a list. For a list x and a natural
number n, the expression x « n, read “x drop n” or “x shifted left n”, represents the list obtained
from x by deleting the first n items.

x « n “ λi. x i`n (8.6)

For example xa, b, c, dy « 2 is equal to xc, dy. It follows from this definition that if n is greater than
or equal to the length |x | of a list x , then x « n is equal to the empty list ε.

On a related note, an expression of the form x ∣ n, read “x take n”, refers to the list obtained
from x by deleting all but the first n items, where x is a list and n is a natural number.

x ∣ n “ x ˝ ιn (8.7)

For example xa, b, c, dy∣ 3 is equal to xa, b, cy. This definition also depends on the concrete model
of lists as functions discussed above.

One further way of deleting items from a list is by way of the projection operator used previously
in Equation 3.3 on page 48. For a list x and a set s, the expression x � s denotes the list obtained by
deleting all non-members of the set s from x while preserving the relative order of those that are
not deleted. The projection operator satisfies the following recurrence.

x � s “

$

&

%

ε if x “ ε
x0 : px « 1 � sq if x0 P s
x « 1 � s otherwise

(8.8)

For example, xa, b, c, a, c, b, c, dy � ta, cu is equal to xa, c, a, c, cy.

198 CHAPTER 8. BLOCK BUILDING

8.1.3 Folding over a list

Any function f : pr ˆ sq Ñ s taking a pair pu, vq to a result w with u P r and v, w P s can be
transformed to a function pbc f q : r˚ Ñ s taking a list x P r˚ to a result y P s, where a constant c P s
induces an operator bc defined as follows.

bcp f q “ λx .

"

c if x “ ε
pλph : tq. f ph, pbc f q tqq x otherwise (8.9)

An expression pbc f q xx0, x1, x2y is a functional programmer’s way of saying f px0, f px1, f px2, cqqq

without mentioning recursion or iteration. The classic example is b0 λpa, bq. a` b for a function that
sums a list of numbers, although the b notation used here (Greek letter digamma) is non-standard.

An alternative form of the folding operator without the subscript c is also frequently useful. In
this case, the innermost right argument to the operand f is taken as the last item of the list x rather
than a constant.

bp f q “ λx . pbx|x|´1
f q px ∣ |x | ´ 1q

For example, pb f q xx0, x1, x2, x3y is f px0, f px1, f px2, x3qqq. This definition uses the list truncation
operator defined in Equation 8.7. A function of the form b f is defined only for non-empty lists x .

8.1.4 Mapping over a list

A function f : r Ñ s induces a function f › : r˚ Ñ s˚, read “map f ”, that takes a list x P r˚ to a list
y P s˚ with |x | “ |y|, and every yi equal to f px iq for all 0 ď i ă |x |.

f › “ bε λph, tq. p f hq : t (8.10)

For example, f ›xa, b, cy is equal to x f a, f b, f cy. The map operator is similar to the µ operator
defined by Equation 5.1, except that f › operates on a lists whereas µ f operates on sets.

An astute reader might notice that f › x is the same as f ˝ x if lists are understood as functions,
so it might have been simpler to define f › by itself as λx . f ˝ x . However, mapping and composition
are conventionally regarded as separate concepts, and lists need not be modeled by functions. The
definition in Equation 8.10 relies only on the cons operator (Equation 7.1), and is probably more in
keeping with the way this operation might be computed in practice.

8.1.5 Inverse of a list

For an injective list x , the inverse x´1 : Rpxq Ñ N is defined as the function that takes an item x i
in Rpxq to the corresponding index i P N. The inverse function x´1 is undefined for arguments
outside the range of x . It satisfies the following definition.

x´1 “ λy. |ti P Dpxq | y P Rpx « iqu| ´ 1

The inverse of a list x is not a list itself unless x contains only natural numbers less than |x | in addition
to being injective. In this case, x is called a permutation, and satisfies x ˝ x´1 “ x´1 ˝ x “ ι|x|.

8.1. ON LISTS 199

y0

x0

y4

x1

y8

x2

y1

x3

y5

x4

y9

x5

y2

x6

y6

x7

y10

x8

y3

x9

y7

x10

y11

x11

x

y

Figure 8.1: A list x of length 12 transposed by 4 is y “ xx0, x3, x6, x9, x1, x4, x7, x10, x2, x5, x8, x11y,
as seen by laying it out in array of 4 rows and traversing it in column-major order.

200 CHAPTER 8. BLOCK BUILDING

8.1.6 Flattening a list

A list flattening operator 5 : S˚˚ Ñ S˚ takes any list of lists to its cumulative concatenation.

5 “ bε λph, tq. h q t (8.11)

This notation is non-standard but readily mnemonic at least to those who are musically inclined. In
this example, an empty list in the operand necessarily vanishes.

5 xxa, b, cy, xd, ey,ε, x f , g, h, iy, x jyy “ xa, b, c, d, e, f , g, h, i, jy.

The list flattening operator may be used to avoid summations in some contexts based on the following
identity.

|5 x | “

|x|´1
ÿ

i“0

|x i |

8.1.7 Transposing a list

One way of reordering the items of a list turns out to be particularly relevant to circuit description,
which is to transpose them. Unfortunately there is no standard notation for this operation in the
binary form proposed here, so a bit of license is necessary.

If x is a list whose length |x | is divisible by a natural number n, the transpose of x by n, denoted
x � n, is the list y satisfying |y| “ |x | and yi`n j “ x j`mi for i ă n and j ă m, where m “ |x |{n. An
expression in closed form for x � n can be given as follows.

x � n “
`

λi. pλ j. x jq
`

ti{nu ` pi mod nq|x |{n
˘˘›
ι|x| (8.12)

The transpose of a list can be visualized as shown in Figure 8.1, by laying out its items in a rectangular
array with n rows and m columns in row-major order. The transpose can then be read off by
traversing the array in column-major order.

8.2 Primitive blocks

While it is simple enough to envision a block diagram where
each primitive block is described by a Petri net, the devil is in
the details. Typically multiple distinct instances of the same
primitive are deployed in a circuit. An adequately expressive
formalism needs to distinguish one instance from another even
though they share a common archetype. It would seem natural
to model each type of primitive as a process, but it is problematic to speak of two copies of the
same process in the style of process models developed up to this point. Process alphabets inhabit a
global name space. One process is connected to another when their alphabets intersect. Conversely,
keeping two processes separate from each other requires a choice of mutually disjoint alphabets.
The closest thing to creating multiple instances of the same process might be to make them mostly
the same but to vary the alphabets arbitrarily.

Another small but bothersome problem with modeling a primitive component as a process is that
of associating the input and output alphabets of the process with the terminals on the component.
A physical device can have a number of terminals, and generally they are not interchangeable:

8.3. HIERARCHICAL BLOCKS 201

q r

Figure 8.2: an instance of p1,1,λpxay, xbyq. ptau, tbu, ptpu, ta, bu, tpa, pq, pp, bqu, H, Hqqq

wiring the first terminal to something and the second to something else can have a different effect
from connecting them the other way around. When a process has an input alphabet of ta, b, cu, no
ordering of the alphabet is implied. If b represents the first terminal of a device modeled by this
process, a the second, and c the third, then somehow this correspondence needs to be expressed.

The right abstraction to model the general form of a class of primitive components that addresses
both of these issues is not exactly a process, but a member of the function space pT˚ ˆT

˚q Ñ D

meeting certain conditions. A function B : T˚ ˆT
˚ Ñ D can be constructed to take a pair of lists of

alphabet symbols in T to a process in D whose input and output alphabets are respectively the ranges
of its arguments by Equation 8.2. The correspondence between alphabet symbols and terminals
on the associated device is determined by the order of the alphabet symbols in the lists. Multiple
distinct instances of the device are expressed by applying B to different arguments, and connected
components by applying their respective semantic functions to overlapping arguments.

To consolidate this idea and embellish it slightly, let the universe B of possible primitive blocks
be defined as a set of triples

B “ NˆNˆ ppT˚ˆT
˚q Ñ Dq (8.13)

where each pI , O, Bq P B is said to have an input arity I P N, an output arity O P N and a
semantic function B as described above. The additional terms I and O allow us to infer the alphabet
cardinalities of any result returned by B without knowing any more about B provided that they
satisfy

@pi, oq P T
I ˆT

O. Rpiq XRpoq “ H ñ Bpi, oq P pRpiq ˆRpoq ˆPq XD (8.14)

where P is the universe of Petri nets defined by Equation 5.6, and D is the set of DI processes defined
in Section 5.2.5 whose Petri net models are well formed. Hence we stipulate Equation 8.14 as a
condition of any well formed primitive block pI , O, Bq.

A simple example of a well formed member of B is the following,

I “ p1,1,λpxay, xbyq. ptau, tbu, pλp. ptpu, ta, bu, tpa, pq, pp, bqu, H, Hqq minVqq (8.15)

This block is important subsequently in this chapter, so it is given a name of I for future reference. It
has an input arity of 1 and an output arity of 1. The symbols a and b appearing in Equation 8.15
are bound variables local only to the lambda abstraction defining the semantic function of the block
I, not literally members of the alphabets of any actual instance. In Figure 8.2, the alphabets are tqu

and tru to emphasize this distinction.

8.3 Hierarchical blocks

Now that primitive blocks are adequately described as members of B, a systematic way of assembling
them into hierarchies is the next priority. A simple solution would be to identify a non-primitive
block with a list of primitive blocks as shown in Figure 8.3. An ordering on the terminals of the
resulting block is implied by the order of the terminals on the primitives and their positions in the
list. This technique extends obviously to hierarchical blocks as nested lists.

202 CHAPTER 8. BLOCK BUILDING

x0

x1

x2

x3

xx0, x1, x2, x3y “

first input

last input

first output

last output

Figure 8.3: A list of primitive blocks x P B
˚ represents a non-primitive block of the members of x

with no connections among them and the terminals ordered as shown.

Although simple, this solution suffices completely,
barring some possible issues to be noted in Sec-
tion 8.3.2. The universe of block hierarchies can
be defined therefore as the smallest set H satisfying
this recurrence.

H “ BYH
˚ (8.16)

This equation is equivalent to an inductive definition
whereby any member of B is a member of H, and
any list of members of H is also a member of H. As
usual, a concept of well formed hierarchical blocks
is useful. A well formed hierarchical block is one that is non-empty and whose constituent primitive
blocks are all well formed according to Equation 8.14. Proceeding on this basis, we need to address
the remaining question of how connections between blocks within a hierarchy might be expressed.

Even with the terminals consecutively numbered, it is potentially burdensome in the case of a
large network to enumerate the origin and terminus of every connection. A simpler case would be
that of networks restricted to one block and one connection. Furthermore, if the connection could be
assumed always to be from the first output of the block to its last input as shown in Figure 8.4, then
life would be even easier and we could adopt a convention of using the unit list xxy to represent the
single block x connected in this way. This convention is somewhat at odds with that of letting a
list of blocks represent their combination as shown in Figure 8.3, but there is never a need for a
combination of just one block, so ambiguity can be avoided simply by reserving unit lists of blocks
for the present purpose.

8.3. HIERARCHICAL BLOCKS 203

...
...

x

xxy “

Figure 8.4: A list containing only x represents x with its first output connected to its last input.

8.3.1 Block combinators

With the reader’s indulgence, let us temporarily ignore the myriad of other ways one might wish to
connect the blocks in a network and formalize what has been proposed so far. It may have some
mnemonic value to define Z : H Ñ H as the first of several block combinators.

Z “ λx . xxy (8.17)

While Z takes any operand at all and returns the unit list of that operand, it is especially enlightening
in an expression of the form Zpxq where x is a block, because then it becomes a pictographic
reminder of Figure 8.4 subject to a momentary gestalt shift.

It is also fitting to describe the operation of forming a block from a list of blocks as shown in
Figure 8.3 by a block combinator, R : H ˆ H Ñ H, mnemonic for rack mounting. It is defined as
a binary operation, but could be folded over a list by the form b R as explained in Section 8.1.3.
Putting two blocks x and y together can always be done by forming the list of two items xx , yy,
but if x and y are already lists of multiple blocks, it may be advantageous to concatenate them.
Concatenation would be conducive to space-efficiency in the concrete representation and to the
desirable algebraic property of associativity,

Rpx ,Rpy, zqq “ RpRpx , yq, zq

which accords with intuition about an operator that purportedly puts two blocks together without
connecting them.

Concatenation of blocks is meaningful only for those given by lists, not for primitive blocks, which
are members of B. It is also incorrect to concatenate unit lists, which represent blocks connected to
themselves by the Z combinator as noted above. A definition of R that always does the right thing
for well formed (i.e., non-empty) operands would be as follows.

R “ λpx , yq.

$

’

’

&

’

’

%

x q y if x R H
1 YB^ y R H

1 YB

x q xyy if x R H
1 YB^ y P H

1 YB

x : y if x P H
1 YB^ y R H

1 YB

x : xyy if x P H
1 YB^ y P H

1 YB

(8.18)

The condition x P H
1 YB means that x is either a unit list or is a member of B, and therefore is

unsuitable for concatenation.
To return to the question of more general forms of interconnection, the answer is closer than

might be expected. The combinators R and Z, together with I as defined in Equation 8.15, which
may be regarded as a nullary combinator, suffice to express any finite network however complicated.
This point is argued more convincingly in Section 8.8. The upshot for the moment is that no loss of
generality is incurred by continuing to restrict attention to them.

204 CHAPTER 8. BLOCK BUILDING

8.3.2 Block algebra

The two main issues with the concept of block hierarchies as presented hitherto are whether we
should be thinking in these terms at all, and if so, whether we have gone about it the right way. The
remainder of this section is a brief digression to consider these two questions.

Cleaner models

With regard to the latter question, a cleaner presentation from a math-
ematical standpoint would postulate three combinators R, Z, and I first
as an abstract algebra, and then propose Equation 8.15, Equation 8.16,
Equation 8.17, and Equation 8.18 as a model for the algebra, acknowl-
edging it to be just one possible model. There is no inherent reason to
identify Rpx , yq with xx , yy, or Zpxq with xxy. It could be argued that
these matters should be left as implementation decisions.

The specification of a concrete model for the algebra is not even strictly necessary. For an
immaculate presentation, let H be defined non-constructively as the closure of B with respect to R
and Z, and elide any formal definition of R and Z beyond their type signatures and algebraic laws.
In practice this choice would probably amount to block hierarchies being represented as ordered
binary trees rather than nested lists.

Mathematically inclined readers opting for an alternative or generalized model are at liberty to
do so with minor adjustments to Equation 8.23 and Equation 8.26, which define transformations
from H to L and B respectively. Subsequent to this chapter, there is no further reliance on any
specific concrete representation for members of H.

Old school

Regarding the initial question above, a small community of academic researchers influenced by
functional programming developed various language-based approaches to the description of network
structures in the 1980s and 1990s with emphasis on repetitive arrays [57, 125, 126, 127, 169, 212,
254]. According to these methodologies, the circuit designer was expected to construct derivations
and proofs manually using a formal system of algebraic operators so that an implementation could
be “extracted” at the conclusion. One of the purest examples can be found in [252]. It would be
fair to say that this style was not widely embraced by practicing circuit designers despite much to
recommend it [255].

The importance of distinguishing between the roles of the user and the developer might be
one of several insights to be gathered in retrospect from this research effort. There is no doubt
of the value to a CAD tool developer of being able to describe a network in a form amenable to
automated transformation or synthesis at a high level. It does not follow that most circuit designers
are mathematicians manqués who would rather construct a proof than design a circuit, or that
compelling them to do so would lead somehow to better results than their usual practices.

A contemporaneous take on the same problem was that of a circuit algebra advocated in [72].
To address the issues of uniquely identified terminals and component instances mentioned at the
beginning of Section 8.2, named terminals were an inherent feature of the algebra, and a proposed
model for the algebra mandated a universal set of component names as well. A possibly non-injective
function specially crafted for each circuit would map its particular component names to a fixed
set of basic components. Issues related to naming conflicts prevented the most intuitive choice of

8.4. NETLISTS 205

foo

bar

baz1

4

6

5

2

0

3

7

0

0
2

1

1

0

1

0

1

0

1

0

1

Figure 8.5: a network of globally numbered connections among the primitive blocks foo, bar, and
baz, with each block having locally numbered input and output terminals

a model from satisfying the algebraic laws, but a model based on structural equivalence classes
thereof (i.e., equivalence up to renaming) was shown to be adequate (cf. Section B.2.1).

Lest anyone think this topic has run its course, work on algebraic descriptions of network
structures and semantics continues apace in far more sophisticated directions involving category
theory, with benefits too early to assess at the time of this writing [93, 312].

A perfect description method for network structures would be simultaneously intuitive, rigorous,
practical, and loved by all. Its existence is an open question. Fortunately, our present agenda is less
ambitious: a serviceable formalism with a clear semantics capable of capturing in writing simple
recurrences involving small circuit schematics. To meet even this modest goal, a layer of additional
apparatus atop the basic R, Z, and I combinators to be developed starting in Section 8.8 turns out to
be unavoidable. These conventions should not be misconstrued as a methodology advocated for
circuit designers. At best, they may serve as useful abstractions for CAD tool developers interested
in implementing the algorithms explored in Part III.

8.4 Netlists

After primitive blocks and hierarchical blocks, the next important circuit
representation is a netlist. A netlist is needed typically as an interchange
format for further technology mapping or layout, and is meant to be the
closest thing possible to a direct transcription of a circuit schematic. If
a schematic were available in graphical form, then it would be laborious
but straightforward to construct a netlist from it manually. However, it is more useful to be able to
transform a network automatically from a hierarchical block representation to a netlist. Netlists are
introduced and formally defined in this section.

8.4.1 Conventions about schematics

A circuit schematic is assumed to incorporate a collection of components, which for our purposes are
members of B, and a set of communication channels connecting them. For ease of discussion, these

206 CHAPTER 8. BLOCK BUILDING

channels are called wires, but the theory is independent of the underlying technology. Components
in a circuit schematic are depicted as boxes or schematic symbols and wires are depicted as lines or
arrows similarly to Figure 8.5.

In a valid circuit schematic, every terminal on every component is connected to exactly one wire.
Some wires are connected only to one terminal, and thereby determine the interface between the
network and its environment. These wires are called external for this discussion. All other wires are
connected from an output terminal on a component to an input terminal on the same or another
component. These latter wires are called internal for this discussion.

8.4.2 Specifying a schematic by a netlist

To specify a schematic completely by a netlist, the first step is to assign a unique natural number
to each wire. The choice of assignment is completely arbitrary, but the order of the external wires
according to the chosen numbering scheme affects the order in which they appear as terminals
when the whole network is viewed from the outside as a single block. For example, in Figure 8.5,
there are three external wires, consisting of two inputs and one output. One input is on the wire
numbered 0, which is connected to the component foo, and the other input on the wire numbered 2,
which is connected to the component bar. If this network were treated as a block, the block would
have two input terminals and one output terminal. The first input terminal would be connected
internally to foo, and the second to bar, because 0 precedes 2 in the numbering scheme. A different
numbering scheme could have the opposite effect.

It is also necessary for a netlist to distinguish clearly between one terminal and another with
respect to each component. It is not enough to say that foo is connected to baz and vice versa. Within
each component, the input terminals form an ordered sequence, as do the output terminals. In
Figure 8.5, each terminal is labeled explicitly by its ordinal in the sequence. Accordingly, a netlist
for this schematic would have to specify that output terminal 1 of foo is connected to input terminal
0 of baz by wire number 4, and output terminal 0 of baz is connected to input terminal 1 of foo by
wire number 3.

Example of a netlist

To keep all of this information manageable and well organized, a standard form for netlists is helpful.
A netlist can be represented as a list of triples pI , O, X q, with one such triple for each component
in the circuit. The semantics of the component is given by X P B, and the numbers of the wires
connected to its input and output terminals respectively are stored in lists I , O P N

˚. A netlist to
describe the circuit shown in Figure 8.5 could be as follows.

@ `

x0,3,5y, x1,4y, foo
˘

,
`

x1,2y, x5,6y, bar
˘

,
`

x4,6y, x3,7y, baz
˘D

A few points to note about this representation bear reiteration.

• The order of the wire numbers in the lists I and O for each triple is important for identifying
each wire number with the right terminal. For example, the input list for foo is x0, 3, 5y and
not x3,0,5y or x5,3,0y or any other permutation, because wire 0 is connected to the first
input terminal, 3 to the second, and 5 to the third.

8.5. FROM HIERARCHICAL BLOCKS TO NETLISTS 207

• A connection from one component to another can be inferred from the presence of a wire
number common to the output list of the former and the input list of the latter. For example,
the 5 in the output list of bar and the input list of foo shows they are connected (by wire 5).
Its position in each list indicates the specific terminals of foo and bar connected by wire 5.

• The order of the triples relative to one another is not important. It would make no difference
if the triple containing foo were to precede the one containing bar in the list. A netlist could
just as well be a set, but making it a set would be too unconventional even for a book like this
one.

Well formed netlists

A universal set L of netlists is defined as follows for future reference.

L “ pN˚ ˆN
˚ ˆBq˚ (8.19)

That is, any member of L is a list of triples pI , O, X q where I and O are lists of input and output wire
numbers respectively, and X is a primitive component.

It is worthwhile to standardize certain assumptions about well formed netlists whereby all bets
are off if they are not met. For one, a well formed netlist must be non-empty. Furthermore,
the component X of every term pI , O, X q in a well formed netlist must be well formed itself by
Equation 8.14, and the lengths of the input and output wire lists must match the arities of the
component they describe. That is, the condition

@pI , O, pI 1, O1, Bqq P Rpnq. |I | “ I 1 ^ |O| “ O1

holds for any well formed n P L. See the discussion of Equation 8.13 for a reminder about component
arities. Finally, there should never be an input connected to an input or an output connected
to an output. Hence all input wire lists must be injective and have ranges disjoint from those of
other input wire lists. A similar condition applies to the output wire lists. These conditions can be
summarized as follows.

| 5 pλpI , O, X q. Iq› n| “ |Rp5 pλpI , O, X q. Iq› nq|

|5 pλpI , O, X q. Oq› n| “ |Rp5 pλpI , O, X q. Oq› nq|

That is, the length of a list of all input lists in n laid end to end by the 5 operator defined in
Equation 8.11 would equal to the number of distinct terms in it by Equation 8.2, and the same
applies to the output lists.

8.5 From hierarchical blocks to netlists

As the preceding exercise suggests, drafting a circuit schematic manually and deriving a netlist from
it are tedious work. A block hierarchy h P H is potentially a simpler description at a higher level,
but is not much use unless it can be transformed to a netlist eventually. To realize its advantages,
we undertake in this section to construct a general transformation from block hierarchies to netlists.

This transformation is denoted THL : H Ñ L consistently with a naming convention to be
used for transformations between any two of H, B, D, and L. For example, TBL denotes the
transformation from B to L, and so on. An ensemble of these transformations serves subsequently

208 CHAPTER 8. BLOCK BUILDING

in Section 8.7.3 to establish a formal semantics for bisimulation and refinement across the various
circuit representations.

Based on the way H is defined in Equation 8.16, there are only three cases to consider when
transforming a member h P H to a member THLphq P L. Either it is a primitive block h P B, a unit
list h P H

1 or a list of some other length. If h is a unit list xh0y, then it is also of the form Zph0q,
and therefore represents the block h0 with its first output connected to its last input as shown
in Figure 8.4. If it is a list of any other length, then it represents the ordered arrangement of
disconnected blocks shown in Figure 8.3. These three cases are now taken in turn.

8.5.1 Primitive blocks

The case of a block h P B is the simplest of the three. A primitive block corresponds to a netlist with
just one block in it, and one wire connected to each input or output terminal of the block. This
result is given directly by TBLphq, where TBL is defined as follows

TBL “ λpI , O, Bq. xpιI , ι
I
O, pI , O, Bqqy (8.20)

using the ι operator defined in Equation 8.3. That is, a block can be converted to a netlist containing
a single block with external input and output wires numbered consecutively. An example with input
arity 2, output arity 3, and a semantic function q is the following.

TBLp2,3, qq “ xpx0,1y, x2,3, 4y, p2,3, qqqy

8.5.2 Non-unit lists

The next simplest case of the three mentioned above is that of an arbitrary length list h P H
˚

representing a combination of disconnected blocks. The netlist corresponding to the combination
is a concatenation of the respective netlists of the individual blocks with the wires renumbered to
avoid clashes. This operation is restricted to pairs of netlists at first and then generalized later to
lists of them by the b operator as needed (Equation 8.9). Denoting this operation by RL : L ˆ L Ñ L,
we can expect it to be something of the form

RL “ λpx , yq. x q y 1

where y 1 is y with the wires renumbered so that no wire number in y 1 coincides with any wire
number in x .

It remains to specify the renumbering of y . A simple way of renumbering y to prevent clashes
with x would be to add a sufficiently large constant offset to every wire number in y. Clearly the
successor of the maximum wire number in x

1 ` max
ď

pI ,O,X qPRpxq

RpI q Oq

would be sufficient as an offset. A function

f “ pλi. i ` 1 ` max
ď

pI ,O,X qPRpxq

RpI q Oqq›

to add this number to every term in a list would enable each term pI , O, X q P Rpyq to be rewritten as

λpI , O, X q. p f I , f O, X q

8.5. FROM HIERARCHICAL BLOCKS TO NETLISTS 209

and all of y to be renumbered consistently to

pλpI , O, X q. p f I , f O, X qq› y

without altering any of its connections. This reasoning suggests the following definition for RL.

RL “ λpx , yq. x q ppλ f . λpI 1, O1, X q. p f I 1, f O1, X qq pλi. i ` 1 ` max
ď

pI ,O,X qPRpxq

RpI q Oqq›q› y (8.21)

8.5.3 Unit lists

The remaining of the three cases to be considered when transforming a hierarchical block h P H

to a netlist THLphq P L is that of a unit list h P H
1. As noted previously, a block of the form xh0y

corresponds to Zph0q, which is to say h0 with its first output connected to its last input. Hence if
x P L is a netlist representation of h0, then a netlist representation of Zph0q may differ from x by as
little as the change of a single output wire number to a particular input wire number. Let this netlist
be given by ZLpxq for a function ZL : L Ñ L yet to be determined.

First and last terminals have a well defined meaning in reference to a netlist. For any x P L,
the wire ranges pi, oq “ u0pxq P PpNq ˆ PpNq are obtained by a function u0 : L Ñ PpNq ˆ PpNq

defined as follows.

u0 “ λx . pλs. p
Ť

Dpsq,
Ť

Rpsqqq RppλpI , O, X q. pRpIq,RpOqqq› xq

Their intersection i X o is the set of internal wires, the difference o ´ i is the set of external output
wires, and the difference i ´ o is the set of external input wires. The first output from x is therefore
numbered t “ minpo ´ iq and the last input, maxpi ´ oq.

A simple way of defining ZLpxq would be as a function that rewrites t to maxpi ´ oq wherever it
occurs in any output wire list O of a term pI , O, X q P Rpxq while keeping all other wire numbers
w P RpOq invariant, which would mean rewriting O to

pλw. pλk. xw,maxpi ´ oqykq δt
wq› O

but then t would be unused as a wire number in the result. A tidier solution would close the gap
by decrementing every external output wire number other than t in an output wire list. Any wire
number w in o ´ i would satisfy i ´ twu “ i and therefore could be rewritten to

w ´ δ
i´twu

i

when it differs from t by rewriting O to

pλw. pλk. xw ´ δ
i´twu

i ,maxpi ´ oqykq δt
wq› O.

This reasoning suggests a rewrite rule u1 u0 x applicable to every output list O in x , in terms of a
function u1 : PpNq ˆPpNq Ñ pN˚ Ñ N

˚q given by

u1 “ λpi, oq. pλt. pλw. pλk. xw ´ δ
i´twu

i ,maxpi ´ oqykq δt
wq›q minpo ´ iq

and the corresponding definition for ZL.2

ZL “ λx . pλpI , O, X q. pI , pu1 u0 xq O, X qq› x (8.22)
2erratum: u1 as originally defined above is incorrect, but defining u1 “ λpi, oq. λw. pλk. xw,maxpi ´ oqykq δt

w suffices.

210 CHAPTER 8. BLOCK BUILDING

8.5.4 The transformation

A recursive definition of THL now follows directly from Equation 8.20, Equation 8.21, Equation 8.22
and the folding operator defined in Equation 8.9.

THLphq “

$

&

%

TBL h if h P B

ZL THL h0 if h P H
1

pb RLq T›
HL

h otherwise
(8.23)

This transformation enables us to convert any hierarchical block h P H to an equivalent netlist in L.

8.6 From hierarchical blocks to primitive blocks

Although transforming a block diagram to a netlist as described in the previous section is necessary
when the work on a design is finished, something like the opposite needs to be done most of the
time up until then. Progress during the work is made by suppression of distracting or repetitious
details and abstraction of common patterns, which is achieved only through a diligent practice
of hierarchical organization. As it stands, our theory of block diagrams poses no impediment to
treating an arbitrarily complex hierarchical block h P H nominally as a primitive in subsequent use,
but the theory can do better by temporarily making a hierarchical block’s primitive status official,
which is to say by transforming it to an equivalent primitive block THBphq P B.

This transformation is advantageous because it allows the whole block to be modeled by a single
Petri net instead of a large system of small Petri nets interacting with one another. Often the Petri net
model of a whole block can be dramatically simpler after optimization than the sum of the models
of its constituent blocks. (See Section 9.2.) This effect is to be expected when the circuit observes a
simple protocol with its environment while hiding its inner complexity, as any well designed circuit
should. A simpler Petri net model implies more efficient simulation, and is a prerequisite to the
method of refinement checking by trace analysis to be discussed in Section 8.7.

The transformation THB itself is simpler than the foregoing THL due to having only two cases in
need of consideration. If a block h P H is already a member of B, then there is nothing to be done.
We are left only with unit lists h P H

1, which connect the first output of h0 to its last input, and lists
of other lengths, which represent a collection of disconnected blocks (cf. Section 8.5).

8.6.1 Non-unit lists

The case of a list h P H
˚ with |h| ‰ 1 pertains to a circuit containing mutually isolated blocks as

shown in Figure 8.3. An equivalent primitive block would be modeled by a Petri net consisting of
|h| disconnected components. Because the transformation THB will have been applied recursively to
each of the blocks, the current task reduces to one of combining a list of primitives in B into a single
primitive. It is reduced further by restricting it to a binary operation on B, which can be generalized
later to lists by folding (Equation 8.9). Let a function RB : BˆB Ñ B denote this operation.

To construct RB, we need to account for the block arities and the semantic function. For a pair of
blocks pI , O, Bq, pI 1, O1, B1q P B, it should be clear that putting them in parallel with no connections
between them would result in a block RBppI , O, Bq, pI 1, O1, B1qq with I ` I 1 inputs and O ` O1 outputs.

Combining the semantic functions B and B1 is almost as easy. Recall from Section 8.2 that a
block in B is modeled by a function B : T˚ ˆT

˚ Ñ D that takes a pair of lists of alphabet symbols to
a process in D having those symbols in its alphabets. We must therefore build a semantic function

8.6. FROM HIERARCHICAL BLOCKS TO PRIMITIVE BLOCKS 211

i0

b0

in

a0

om

o0

...

...

a0

b0

i0

in

om

o0

...

...

Figure 8.6: Connecting the first output of a Petri net Bpi q xb0y, xa0y q oq to the last input can be
done by parallel composition with a wire whose terminals a0 and b0 match those to be connected.

from B and B1 that takes pair of lists pi, oq as an argument whose lengths respectively are I ` I 1 and
O `O1. To keep the terminals in the right order, the first I terms in the list of input alphabet symbols
i should be fed to B, and the remaining I 1 inputs to B1. A similar condition applies to the output
alphabets. For useful choices of i and o (meaning disjoint in their ranges and both injective), the
alphabets of Bpi ∣ I , o ∣Oq and B1pi « I , o « Oq are disjoint by Equation 8.14. Forming their parallel
composition using the par process combinator (Section 5.4.2) results therefore in a Petri net model
with two disconnected components, as required, suggesting the following definition for RB.

RB “ λppI , O, Bq, pI 1, O1, B1qq. pI ` I 1, O ` O1,λpi, oq. par pBpi ∣ I , o ∣Oq, B1pi « I , o « Oqqq (8.24)

8.6.2 Unit lists

A block h P H
1 of unit length represents a circuit derived from that of h0 by connecting the first

output to the last input. We can assume that h0 is a member of B and express the corresponding
result for h as ZBph0q in terms of function ZB : B Ñ B that edits the block representation accordingly.
Because of the connection, ZBph0q has one less input terminal and one less output available to the
environment than h0 does, so ZB must decrement the arities as shown,

ZB “ λpI , O, Bq. pI ´ 1, O ´ 1, u3 Bq (8.25)

along with transforming the semantic function B to some modified semantic function u3 B by a
function

u3 : ppT˚ ˆT
˚q Ñ Dq Ñ ppT˚ ˆT

˚q Ñ Dq

to be determined presently.
An easy and robust modification to the semantic function would have it generate a small

additional Petri net similar to that of Figure 8.2 connected like a wire to the original Petri net
generated by B. When the input and output terminals of the wire are chosen to coincide respectively
with the first output and the last input of the original, their parallel composition forms the required
connection. This operation is depicted in Figure 8.6.

212 CHAPTER 8. BLOCK BUILDING

The additional Petri net should be of the form B1pa, bq for unit alphabet lists a “ xqy and b “ xry

with the semantic function B1 being that of the nullary combinator I “ pI 1, O1, B1q by Equation 8.15,
and the alphabet symbols p, q P T chosen not to clash with any that might be supplied in the
argument pi, oq to B, the semantic function in Equation 8.25 we seek to modify. To ensure the
latter condition, we need to invoke the function γ : PpTq Ñ T satisfying γ s R s as postulated in
Section 5.2.3. Then any pi, oq P T

˚ ˆ T
˚ induces a pair pa, bq “ u2pi, oq P T

1 ˆ T
1 of unit lists of

symbols different from those in i and o when

u2 : T˚ ˆT
˚ Ñ T

1 ˆT
1

is defined as

u2 “ λpi, oq. pλs. pλr. pλq. pxqy, xryqq γ ps Y truqq γ sq Rpiq YRpoq.

In keeping with the reduction in arity indicated by Equation 8.25, the modified semantic function
u3 B must take a pair of lists pi, oq whose lengths are one less than the lengths of the lists required
by the original semantic function B. Extending a pair pi, oq meant for u3 B to a pair pi q b, a q oq,
where pa, bq is u2pi, oq, makes it an appropriate argument for B. Evaluating Bpi q b, a q oq results in
a Petri net whose first output and last input are respectively the specific values q “ a0 and r “ b0.
Applying the semantic function of the I combinator defined in Equation 8.15 to the same pair pa, bq

would generate a Petri net whose parallel composition with Bpi q b, a q oq anonymizes these signals
and leaves it in the desired form shown in Figure 8.6. Hence we can define u3 in full as follows,

u3 “ λB. λpi, oq. pλpa, bq. par pBpi q b, a q oq, ppλpI 1, O1, B1q. B1q Iq pa, bqqq u2pi, oq

thus completing the definition of ZB in Equation 8.25.

8.6.3 The transformation

In summary, a primitive block THBphq P B equivalent to an arbitrary hierarchical block h P H can be
obtained by Equation 8.24, Equation 8.25 and the following recurrence.

THBphq “

$

&

%

h if h P B

ZB THB h0 if h P H
1

pb RBq T›
HB

h otherwise
(8.26)

8.7 From blocks and netlists to processes

The effort in this chapter to develop the transformations TBL, THL and THB combined with the title
of this section may seem like the beginning of a campaign to develop transformations in both
directions between every possible pair of circuit representations including D, but we need not go
that far. Netlists are a low level target representation with no need to be converted back to block
diagrams, and conversion from B to H is trivial because B is a subset of H. Conversion from D to
H in general deserves to be called circuit synthesis, which is certainly useful but well beyond the
scope of this chapter and deferred to Part IV. A conversion from D to B shows up in Chapter 9 for
reasons motivated therein, but otherwise only the conversions from B, H, or L to D remain, and
only if there is some good reason to care about them.

Those of a cautious disposition might find reason enough as follows. If a block diagram or
netlist is designed manually, there is always a possibility of human error, and if it is generated

8.7. FROM BLOCKS AND NETLISTS TO PROCESSES 213

algorithmically, there is always a possibility of the algorithm being incorrect. If the algorithm has
been proved correct, there is always a possibility of a bug in the implementation [144], and if no
bugs affect a particular production run, there is always that possibility in the next one. It can be
difficult or costly to discern by inspection whether any of these possibilities has been realized.

To mitigate some of this uncertainty, it would be helpful to have the tools to test for behavioral
equivalence and refinement between circuits in other representations, just as we already can for DI
processes as members ofD according to Equation 7.18. If behavioral equivalence could be established
between a simple trustworthy version of a netlist or block diagram and a painstakingly hand
optimized version, some confidence in the latter would be justified. If a new method of generating
families of block diagrams algorithmically or according to some template is under development, it is
useful to the developer be able to judge the test results more effectively than by manual simulation.

Having opened this can of worms, one can not help but notice that any verification algorithm is
subject in principle to some of the same weaknesses as the design methodology it purports to verify.
However, with due care and attention, it can at least curtail the class of undetected errors to those
resulting from a malicious collaboration between separate bugs in independent circuit synthesis and
verification algorithms. Such an error would require a synthesis algorithm to generate a plausible
but defective design, and a generally reliable verifier to disregard defects of that very same nature.3

Hence the work of defining these transformations is motivated by a strategy for verification
based on extending the concept of refinement to any pair of circuits or processes X , Y P L YHYD

by transforming them to members of D as needed and then leveraging the definition of refinement
given by Equation 7.18. To this end, the first thing we should ask is whether there is anything
half baked about the idea of converting a circuit to a process. Never mind that multiple Petri
net models N could be behaviorally equivalent to one another; no circuit uniquely determines a
process pI , O, Nq P D because the alphabets I and O still have to be formally modeled somehow. A
casual answer is to choose them arbitrarily, but then nothing prevents equivalent circuits from being
converted to incompatible processes due to different choices of alphabets, thereby defeating the
purpose of this endeavor.

Doing something about the alphabets is the subject of Section 8.7.1, using them in transformations
TBD, THD, and TLD is done in Section 8.7.2, and with that out of the way, a generalized refinement
relation is formulated in Section 8.7.3.

8.7.1 Alphabet soup

Any choice of alphabets assigned to the process derived from a
circuit in a different representation is arbitrary to some extent. The
trick is to choose them consistently enough to avoid introducing
gratuitous differences between otherwise equivalent circuits. A first
step in this direction is to restrict all of the chosen alphabet symbols to a set G Ă T, mnemonic
for “generic”, where T is the universe of alphabet symbols used by processes in D as explained in
Section 5.2.1. There is no telling in advance how many generic alphabet symbols might be required
so we need G to be countably infinite, which is achievable by defining it as

G “
ď

nPN

pbH λph, tq. t Y tγ tuq ιn (8.27)

3See [12] for the seminal reference in support of software reliability through the use of multiple independent algorithms,
[141, 142] for lively polemics on the subject, and [10] for a more modern perspective.

214 CHAPTER 8. BLOCK BUILDING

using the γ function discussed in Section 8.6.2. We can also define a total ordering on G such that a
generic symbol a P G precedes b P G precisely when this condition holds

Dn P N. a P g n ^ b R g n (8.28)

where g : N Ñ PpGq is defined as

g “ λn. pbH λph, tq. t Y tγ tuq ιn

so that it is meaningful to refer to the ordinal of a generic symbol a as G0 a, and to the n-th generic
symbol as G

0´1 n using the ordinal notation defined in Section 5.1.4. If a block or a netlist is
transformed by convention to a process with a generic alphabet such that the n-th terminal on the
circuit corresponds to the n-th generic symbol, then the processes derived from any two circuits
should be equivalent whenever the circuits are equivalent.

Alphabet orderings

In addition to comparing two circuits, we might also want to compare a circuit to a known process,
perhaps by converting the circuit to a process first and then comparing the two processes, but this
approach is problematic insofar as a process with a generic alphabet derived from a circuit might not
match the alphabet of the process with which it is to be compared. Associating a different arbitrarily
chosen alphabet with the circuit could imply a different conclusion about their equivalence. This
problem is partly solved by transforming the alphabet of the given process to a generic form so that
it coincides with that of the process derived from the circuit, provided the arities are compatible,
but not completely solved because there is generally more than one way to rewrite the alphabet of a
process. For example, a process with an input alphabet ta, bu could be transformed to one where a
is replaced by G

0´1 0 and b is replaced by G
0´1 1, or the other way around. Not every circuit with

two inputs supports using them interchangeably, so the assignment of the symbols could make a
difference as to whether it is equivalent to the process under consideration.

There is no satisfactory solution to the latter part of this problem except to recognize that it
is ill posed. Whether a process is equivalent to a circuit rightly depends on which terminal of the
circuit is assigned to each member of the process’s alphabet. It should be no surprise that a different
assignment may imply a different conclusion because neither the terminals nor the alphabet symbols
are interchangeable in general with respect to the behavior.

The closest we can come to a sensible question about equivalence between processes and circuits
is therefore to ask whether they are equivalent up to a specified alphabet ordering. For a process
X “ pI , O, Nq P D, any injective function α P T

˚ satisfying I Y O Ď Rpαq determines an alphabet
ordering on X in that a symbol x precedes a symbol y under the ordering whenever α´1 x is less
than α´1 y. It is easy to construct an alphabet ordering for a known process just by making a list
of its alphabet symbols wherein each occurs exactly once, and just as easy to construct a different
alphabet ordering for the same process by listing them in a different order. Listing them in the
order of the terminals associated with them on a circuit of interest establishes a context for settling
questions about equivalence.

Generically alphabetized processes

To run with this idea, a process X “ pI , O, Nq P D with arbitrary alphabets and an alphabet ordering
α determine a generically alphabetized process Tα

DD
pX q isomorphic to X such that the n-th generic

8.7. FROM BLOCKS AND NETLISTS TO PROCESSES 215

symbol G0´1 n appears in Tα
DD

pX q wherever the n-th alphabet symbol with respect to α appears in
X . Unlike X , this process is worth comparing with a process derived from a circuit because it stands
a chance of having the same alphabet as one.

For a process X “ pI , O, Nq P D and an alphabet ordering α, any alphabet symbol t P I Y O
determines an ordinal

ppα � Iq q pα � Oqq´1 t P N

corresponding to its position in the list pα � Iq q pα � Oq, and a generic symbol

G
0´1

ppα � Iq q pα � Oqq´1 t P G.

A function mapping any such t P I Y O to the corresponding generic symbol but mapping non-
members of I Y O to themselves is expressible as

pλt. pλk. xG0´1
ppα � Iq q pα � Oqq´1 t, tykqδ

ttuXpIYOq

H
: T YV Ñ GYV

and one that rewrites every symbol accordingly throughout the process X as

pλt. pλk. xG0´1
ppα � Iq q pα � Oqq´1 t, tykqδ

ttuXpIYOq

H
q˛ : D Ñ D

in terms of the notation defined by Equation 5.11. A simple way of defining the transformation Tα
DD

from a process to a generically alphabetized version of itself follows as

Tα
DD

pX q “ pλpI , O, Nq. pλt. pλk. xG0´1
ppα � Iq q pα � Oqq´1 t, tykqδ

ttuXpIYOq

H
q˛ X q X . (8.29)

8.7.2 More transformations

We can now briefly dispense with the specifications for three transformations TBD, THD, and TLD
from primitive blocks, hierarchical blocks, and netlists respectively to processes.

A primitive block X “ pI , O, Bq P B with I inputs and O outputs maps to a process TBDpX q P D

whose input alphabet contains the first I generic symbols and whose output alphabet contains the
next O generic symbols when TBD is defined as

TBD “ λpI , O, Bq. pλg. Bpg ∣ I , g « Iqq pG0´1
q› ιI`O (8.30)

In this way, primitive blocks with similar arities always map to processes with similar alphabets, so
only their behavior is left to distinguish them for purposes of comparison.

A function following the same convention for hierarchical blocks X P H follows immediately by
defining THD as

THD “ TBD ˝THB (8.31)

in terms of THB as given by Equation 8.26.
For a netlist X P L, every term pI , O, pI 1, O1, Bqq P RpX q with a block pI 1, O1, Bq P B determines

a process BppG0´1
q› I , pG0´1

q› Oq P D with generic alphabets obtained by applying the semantic
function B of the block to the pair of lists of generic symbols whose ordinals are the wire numbers in
I and O. Because the wires are numbered globally within a netlist, these processes have alphabets
that intersect precisely as needed to effect connections among them in their parallel composition
analogous to those of the blocks in the netlist. A result of the form

pb parq pλpI , O, pI 1, O1, Bqq. BppG0´1
q› I , pG0´1

q› Oqq› X P D

216 CHAPTER 8. BLOCK BUILDING

therefore would be a process with a generic alphabet corresponding in some way to the netlist X ,
but not necessarily having minimal alphabet ordinals per convention. We can attend to this detail
by generically alphabetizing the result in the following definition of TLD

TLD “ TG
0´1

DD
˝ pb parq ˝ pλpI , O, pI 1, O1, Bqq. BppG0´1

q› I , pG0´1
q› Oqq› (8.32)

using G
0´1 as the alphabet ordering in TG

0´1

DD
as defined by Equation 8.29, which is appropriate

because the alphabet is already generic.

8.7.3 Generalized refinement

A refinement relation encompassing circuits represented as blocks, netlists, or processes depends on
transforming them all to processes before comparing them. Each of the transformations developed
above plays a part in enabling this result. A transformation Tα

D
: L Y H Y D Ñ D defined with

respect to an alphabet ordering α P T
˚

Tα
D

pX q “

$

&

%

TLD X if X P L

TBD THB X if X P H

Tα
DD

X if X P D

(8.33)

gives rise to a refinement relation applicable to any X , Y P LYHYD denoted X
α
Ď Y and read “X is

refined by Y under α”, or equivalently, “Y refines X under α”, where α P T
˚ is an alphabet ordering.

This relation is defined as that which satisfies

X
α
Ď Y ô Tα

D
pX q Ď Tα

D
pY q (8.34)

where the ordinary refinement relation Ď on D is given by Equation 7.18. Generalized forms of
equivalence and antirefinement under an alphabet ordering are defined similarly. As noted in
Section 8.7.1, defining an alphabet ordering is simply a matter of making a list of the alphabet
symbols. Whether α is chosen in an ad hoc way or according to some convention is left open.

Although this relation is rarely invoked as such in this book after this point, it achieves an
important milestone by unifying the relevant semantic models within a common framework, thereby
allowing some chance in principle of settling arguments about compatibility or correctness whenever
circuits and processes are both mentioned together. It also summarizes in one line the central
problem of DI circuit verification.

8.8 Connection patterns

The discussion of the block combinators R, Z, and I up to this point could give the impression that
they restrict the ways of connecting the blocks. Connecting the first output terminal of a block X to
its last input is expressed ZpX q, and connecting the first output of X to the last input of Y could be
expressed ZRpX , Y q, but there is no apparent provision for connecting arbitrarily selected terminals
in larger networks. Two remedies are described below. A method supportive of schematic capture
in Section 8.8.1 works with explicitly enumerated wire origin and terminus addresses, while a
method described in Section 8.8.2 routes a bundle of connections en masse according to a specified
permutation.

8.8. CONNECTION PATTERNS 217

X

ZRpX , Iq

I

X

ZRpI, X q

I

Figure 8.7: At left, ZRpX , Iq is equivalent to X with the output terminals rolled up by one position,
whereas at right, ZRpI, X q is equivalent to X with the input terminals rolled down by one.

8.8.1 Schematic capture

Although the Z combinator applies only to terminals at the first and last positions on a block, it
incurs no loss of generality. Any terminal of a block X can be mapped to another position by some
combination of X with R, Z and I. Following a justification of this claim and some suggestions for a
workable notation, this section concludes with a discussion of a more systematic approach.

Terminal rotation

The achievement of general connection patterns from the basic
block combinators is built on expressions in two simple forms.
The expression ZRpX , Iq describes a block with the same arity
as X and a similar semantics, but with the output terminals
in a different order. If ZRpX , Iq were used as a replacement for
X in a fixed environment, then every time X would have sent
an output signal from its first output terminal, ZRpX , Iq would
send one from its last. Every time X would have sent a signal
from an output other than the first, ZRpX , Iq would send one from the preceding terminal in the
ordering. This behavior is apparent from Figure 8.7 as a direct consequence of the block combinator
semantics and the understanding that I acts as a wire. In effect, the second terminal is moved to the
first position, and therefore could be connected subsequently to something else by the Z combinator.

A related effect can be inferred from Figure 8.7 for the expression ZRpI, X q. In this case, the
order of the outputs is unaffected but the input order differs. Whenever a signal is sent to the first
input terminal of ZRpI, X q, it reacts as X would have reacted if a signal were sent to its last input.
Whenever a signal is sent to any input other than the first, it reacts as X would have reacted if a
signal were sent to the preceding one in the input terminal ordering. The effect is as if the inputs
had been cyclically shifted or “rolled” one position downward in the diagram at right, whereas in
the case of ZRpX , Iq at left, the outputs are rolled up by one.

The implication for the example of ZRpX , Y q at the beginning of this section is that alternative
connection patterns are not at all precluded. To express a connection originating from the second

218 CHAPTER 8. BLOCK BUILDING

output of X instead of the first, we can write ZRpZRpX , Iq, Y q. To express it terminating at the
penultimate input of Y instead of the last, we could write ZRpX ,ZRpI, Y qq. To do both, we could
write ZRpZRpX , Iq,ZRpI, Y qq.

There is no need to stop at this point. A connection would be indicated from the third output
of X if ZRpZRpX , Iq, Iq were used in place of X in ZRpX , Y q, assuming X has more than two output
terminals, and could terminate at the preceding input of Y if ZRpI,ZRpI, Y qq were used in place of Y .
Clearly these expressions can be nested independently to the depth required to achieve a connection
between any choice of terminals.

Terminal rotations are required frequently enough to justify a notation encapsulating the equiva-
lent block combinator expressions with less clutter. In the remainder of this section, three variations
on this theme are proposed.

Rolling forward The following notation is applicable to express a downward rotation of input
terminals by n,

X å n “ pZ ˝ λx . RpI, xqqn X (8.35)

along with this notation for an upward rotation of output terminals by n,

X æ n “ pZ ˝ λx . Rpx , Iqqn X

where X P H and n is a natural number. The intended mnemonic significance is that the direction of
the arrow indicates that of the rotation, and the side of the arrowhead indicates whether it pertains
to inputs or outputs, because blocks are often drawn with the input terminals along the left side
and the first input or output terminal at the top. If the displacement n in either of the expressions
above is a multiple of the block input or output arity, respectively, then the terminals are effectively
rolled back to their original positions and the result is behaviorally equivalent to X .

Using this notation to express a network containing X and Y with the i-th output of X (numbered
from zero) connected to the j-th input of Y , we could write

ZRpX æ i, Y å kq

where j ` k ` 1 is the input arity of Y . In this way, the i-th output rolls up to the top position, while
the j-th input rolls down to the last.

Rolling backwards If we could roll the outputs down or the inputs up, many networks could be
expressed more simply without explicit reference to the arity, and there would be no further need to
remember which directions are undefined. Terminal rotations in the other directions can be defined
easily like this.

X ä n “ X å pλpI , O, Bq. I ´ pn mod Iqq THB X

X ç n “ X æ pλpI , O, Bq. O ´ pn mod Oqq THB X

That is, to roll the terminals the other direction, we actually roll them in the same direction as
before, but by a complementary displacement with respect to the block arity. In this notation, the
expression for the network above is at least partly simplified.

ZRpX æ i, Y ä j ` 1q

8.8. CONNECTION PATTERNS 219

Rolling both ways Sometimes it is may be useful to rotate both the inputs and the outputs of a
block, either in the same or opposite directions, and on rare occasions, by the same displacement.
Expressions in these cases might be abbreviated as follows,

X Û n “ X å n ç n

X ë n “ X å n æ n

X ê n “ X ä n ç n

X Ú n “ X ä n æ n

which is to say that the displacement need only be written once.

Wire wrapping

Useful though it may be to connect any two terminals of our choice between blocks X and Y as
shown in the previous section, it is obviously not enough, and the difficulty escalates even in the
next simplest case. For two specified connections between two blocks, an expression of the following
form might be needed.

ZppZRpX æ a, Y ä bqq æ c ä dq

The inner displacements a and b are much as before, but the correct values of c and d depend on
a, b, and the arities of X and Y , all of which interact during the initial rotations to displace the
terminals involved in the second connection from their initial positions.

A uniform approach inspired by a wire wrapping work flow stands a better chance of coping
with complex connection patterns than continuing in this vein [189]. To follow this methodology
for the circuit in Figure 8.5, we would list the blocks foo, bar and baz in some arbitrary order, such
as X “ pbRq xfoo, bar, bazy, and then number the input and output terminals globally in separate
consecutive sequences from zero as shown in Figure 8.8. That is, if one block precedes another in
the list, then the terminals of the preceding block must be assigned lower numbers, and any two
terminals of the same type on the same block must be numbered consistently with their relative
order on the block. Next we would enumerate the wires in the circuit with each identified by its
source output terminal number and destination input terminal number. In the current example,
they are p0,3q, p1,5q, p2,2q, p3,6q, and p4,1q by inspection of Figure 8.5 and Figure 8.8.

This technique is applicable more generally and worth automating. Let X % w denote the block
derived from X by making all connections indicated by a bijective relation w P PpNˆNq. How hard
can its specification be in terms of block combinators and terminal rotations? If w contained only
one pair po, iq, then we could write

ZpX ä i ` 1 æ oq

to make the connection from output number o to input number i and then

z “ X % tpo, iqu “ pZpX ä i ` 1 æ oqq å i ç o

to put the rest of the terminals back into their original order. If another connection po1, i1q P w were
also indicated, it would not be correct to continue by writing

pZpz ä i1 ` 1 æ o1qq å i1 ç o1

because the terminal numbers i1 and o1 might not be applicable to the block z left by the first
connection. If o1 is greater than o, then the output terminal numbered o1 on X corresponds to the

220 CHAPTER 8. BLOCK BUILDING

foo

bar

baz

1

0

2

3

4

5

6

0

1

2

3

4

5

0 1

2

0

1

0

1

0 1

0

1

0

1

Figure 8.8: The expression ppbRq xfoo, bar, bazyq % tp0,3q, p1,5q, p2,2q, p3,6q, p4,1qu encodes the
network in Figure 8.5 as a member of H and is captured from the schematic by listing it as shown.

one numbered o1 ´ 1 on z. We might say in general that it corresponds to the output terminal
numbered u4po,Dpwqq o1 in terms of a function u4 : NˆPpNq Ñ pN Ñ Nq given by

u4 “ λpo, dq. pλs. λo1. o1 ´ δ1`s0o1

d0o1 q pd ´ touq

which is to say the predecessor of o1 whenever the ordinal of o1 with respect to Dpwq differs from
its ordinal with respect to Dpwq ´ tou. Similarly, input terminal number i1 on X corresponds to
input terminal number u4pi,Rpwqq i1 on z, and hence the pair of terminal numbers po1, i1q on X
corresponds to the pair pu5po, iq wq po1, i1q for a function

u5 : pNˆNq Ñ pPpNˆNq Ñ ppNˆNq Ñ pNˆNqqq

given by
u5 “ λpo, iq. λw. λpo1, i1q. pu4po,Dpwqq o1, u4pi,Rpwqq i1q.

8.8. CONNECTION PATTERNS 221

Y

Z

X

Figure 8.9: Interposing a permutation network between X and the parallel combination of Y and Z
separates the even from the odd outputs.

on z. This observation suggests a strategy of making a list w0´1
P pNˆNq˚ of the members of w

and transforming it to a list

c “ pbε λph, tq. pppu5 hq Rph : tqq› tq q xhyq w0´1

whose last term c|c|´1 is numbered relative to the original block X but whose other terms are num-
bered relative to a block derived from X by making every connection indicated by their succeeding
terms. Provided we make the connection indicated by each term in c in an order starting from the
last one and working backwards as

pbX λppo, iq, zq. pZpz ä i ` 1 æ oqq å i ç oq c

we should have a correct result for X % w, and therefore the following definition.

X % w “ pbX λppo, iq, zq. pZpz ä i ` 1 æ oqq å i ç oq pbε λph, tq. pppu5 hq Rph : tqq› tq q xhyq w0´1

8.8.2 Permutations

The wire wrap operator % defined above demonstrates the universality of the block combinators
with regard to network connection patterns, and is well suited to automated schematic capture
for small manual designs, but more parsimonious descriptions are necessary for coping effectively
with realistic requirements. Often a circuit is better described in aggregate terms than on the level
of individual connections, particularly when there are symmetric or repetitive structures involved.
Connecting two blocks by a bus is one obvious example. Connecting each terminal on a block to
one of an array of blocks is another.

These examples point to a general need for organizing the connections into meaningfully related
groups. Maybe some non-contiguous set of output terminals on a block is to be connected to one
destination, and the rest to another, as in Figure 8.9, where the even outputs from the block X at
the left are meant for the block Y at the upper right, and the odd outputs for Z at the lower right.
Despite its conceptual simplicity, this network would be difficult to express transparently by block
combinators alone, even with the use of the wire wrap or terminal rotation operators.

222 CHAPTER 8. BLOCK BUILDING

0

1

2

0

1

2

0

1

2

0

1

2

Figure 8.10: Left, the permutation network described by x2, 0, 1y acknowledges input 0 with output
2, input 1 with output 0, and input 2 with output 1, contrary to that of x2,0, 1y´1, right.

However, there is quite a simple way to describe the network in Figure 8.9 and many others
like it, which is to treat the shaded region of the figure as a block in itself even though it has no
internal components, and let it encapsulate most of the complexity. A block having the same number
of output terminals as inputs, with nothing but a wire from each input to one of the outputs, is
called a permutation network hereafter. Any desired rearrangement of the terminal order on a
block can be expressed as a combination of that block with a suitably chosen permutation network,
and any permutation network itself can be described completely by a permutation (Section 8.1.5).
Useful permutations for connection patterns exhibiting some form of regular structure are likely to
have succinct descriptions in terms of familiar list operations such as shuffling and transposition
(Section 8.1.7). For example, the permutation network in Figure 8.9 is described by ι8 � 2.

Permutation networks always can be built manually from block combinators with sufficient
effort, but it is easier to generate them automatically to order. This section starts with a discussion of
a simple recursive algorithm to derive a block combinator representation of a permutation network
implementing any given permutation, to be followed by some notational suggestions for the use of
permutation networks in buses and terminal rotations.

Permutation network synthesis

Permutation networks were studied extensively and perhaps exhaustively following the seminal con-
tribution of [298], which specified an algorithm to construct a multi-stage interconnection network
implementing any given permutation of length 2n using only the two possible binary permutation
networks as building blocks. Whereas the early work was motivated by telephone switching net-
works [22], subsequent research was motivated by shared-memory multiprocessor architectures,
focusing on optimization [132] and generalization [52] of the class of synthesizable permutation
networks, improvements to the synthesis algorithm [162], complexity analysis [6], and dynamic
reconfigurability [161]. In this context, our present agenda could be classified as a restriction to
non-reconfigurable (i.e., “hard wired”) single-stage interconnection networks, eschewing a standard
cell approach, and hence momentarily ignoring matters of placement, latency, and whatever else
may threaten to make it the least bit difficult except for a modest concession to efficiency noted
below.

A permutation network is specified by a bijective list s P N
˚ with the understanding that a signal

imparted to the i-th input is acknowledged on the si-th output as Figure 8.10 illustrates. (The
inverse of this convention would also work, but we must choose one and stick to it.) Our sole aim is
to construct a new block combinator P : N˚ Ñ H whereby Ppsq can denote a permutation network
described by s, with P defined ultimately in terms of the basic block combinators R, Z and I.

8.8. CONNECTION PATTERNS 223

Pps1qä ä

0 0

Ppsq

Figure 8.11: A permutation network Ppsq where s0 “ 0 is of the form TPps1q, which is a wire in
parallel with a permutation network Pps1q with |s1| “ |s| ´ 1.

One way of defining the permutation network combinator would be in terms of the wire wrap
operator defined in Section 8.8.1

P “ λs. I2|s| % pµ λn. pn, |s| ` snqq Dpsq (8.36)

but this approach is inefficient in both the size of the block combinator expressions it generates and
the time needed to generate them. A bit of further inquiry leads to a way of generating efficient
permutation networks directly with less effort.

This task is aided by something like a change of variables first. In place of R and Z, let us
temporarily define two alternative block combinators T and S as follows.

T “ λx . RpI, xq (8.37)

S “ Z ˝ T (8.38)

The T combinator has the effect of preceding its argument with a wire in parallel, while SpX q

is equivalent to X å 1, a downward rotation of the inputs by one position. (See Figure 8.7 and
Equation 8.35.) For example, the network at the left in Figure 8.10 can be expressed as STTI, or
more briefly ST2I, which expands to ZRpI,RpI,RpI, Iqqq. Clearly any block combinator expression
featuring T, S and I can be rewritten in terms of R, Z and I.

Aside from trivial cases like Px0y “ I, finding an algorithm to compute Ppsq for an arbitrary
bijective s P N

˚ could be a tough nut to crack. Our one chance to catch a break is by noting that if
s0 is 0, then the first input of the permutation network must be wired directly to the first output
however tangled the rest of it may be. This observation implies a form of TPps1q for Ppsq, meaning
RpI,Pps1qq by Equation 8.37, because it is a wire in parallel with a smaller permutation network
Pps1q as shown in Figure 8.11.4 The permutation s1 does not reflect the wire described by s0 “ 0 but
is similar to s otherwise, in that each item of s1 is the corresponding item of s offset by 1. Hence we
can infer the relationship

Ppsq “ pλs1. TPps1qq pλi. i ´ 1q› ps « 1q (8.39)

4A wire with a slash through it in a circuit schematic represents a number of wires in parallel.

224 CHAPTER 8. BLOCK BUILDING

at least for the special case of s0 “ 0. This relationship is helpful for computing Ppsq only if Pps1q is
known, which can be found recursively only if every subsequent s1

0 is 0. The effect is to limit the
scope of this result somewhat disappointingly to identity permutations ιn.

The key to generalizing Equation 8.39 to an arbitrary permutation s is that any permutation
network Ppsq can be obtained by an input terminal rotation from some permutation network of
the form TPps1q with |s1| “ |s| ´ 1. The problem is to choose s1 and a rotational displacement h so
that ShTPps1q becomes the desired permutation network Ppsq. Fortunately, it is easy to see that the
only choice for the displacement h is s´1p0q, because for the network TPps1q, input terminal 0 is
acknowledged by output 0, so only after rolling down its inputs by s´1p0q can we have input s´1p0q

of the resulting network acknowledged by output 0 as required for Ppsq. Hence the problem reduces
to that of solving the equation

Ppsq “ ShTPps1q (8.40)

for the permutation s1 describing a network that morphs into Ppsq when a wire is placed in parallel
with it and its inputs are rotated downward by h “ s´1p0q.

Solving Equation 8.40 is not as hopeless as it looks if we observe that the S, T, and P combina-
tors satisfy certain identities, which can be confirmed by drawing diagrams similar to the one in
Figure 8.11.

TPpxq “ Pp0 : pλi. i ` 1q› xq

SPpxq “ Ppx|x|´1 : px ∣ |x | ´ 1qq

For any natural number n ď |x |, the latter generalizes to

SnPpxq “ Pppx « |x | ´ nq q px ∣ |x | ´ nqq

which is to say that applying S to a permutation network n times is equivalent to starting with a
permutation rotated by n indices from the original. With that, we have

Ppsq “ ShTPps1q

“ ShPp0 : pλi. i ` 1q› s1q

“ Pppλq. pq « |q| ´ hq q pq ∣ |q| ´ hqq 0 : pλi. i ` 1q› s1q.

Equating the permutations from both sides yields

pλq. pq « |q| ´ hq q pq ∣ |q| ´ hqq 0 : pλi. i ` 1q› s1 “ s

0 : pλi. i ` 1q› s1 “ ps « hq q ps ∣ hq

pλi. i ` 1q› s1 “ ps « h ` 1q q ps ∣ hq

s1 “ pλi. i ´ 1q›pps « h ` 1q q ps ∣ hqq

which agrees with Equation 8.39 when h is equal to 0.
This result makes Ppsq expressible as a recurrence for any bijective s P N

˚ subject to a minor
additional provision for the degenerate case of s “ ε.

Ppsq “

"

xZI, Iy|s| if |s| ď 1
pλh. ShTPppλi. i ´ 1q›pps « h ` 1q q ps ∣ hqqq s´1p0q otherwise

(8.41)

Here, ZI represents the nullary permutation network because it has no inputs and no outputs. Some
examples of permutation networks generated according to Equation 8.41 for permutations up to
length 4 are shown in Table 8.1.

8.8. CONNECTION PATTERNS 225

s Ppsq s Ppsq s Ppsq

ε ZI x0,2,1, 3y TSTSTI x2,1, 0,3y S2TS2TSTI
x0y I x0,2,3, 1y TS2T2I x2,1, 3,0y S3TSTSTI

x0,1y TI x0,3,1, 2y TST2I x2,3, 0,1y S2T3I
x1,0y STI x0,3,2, 1y TS2TSTI x2,3, 1,0y S3TS2T2I

x0,1, 2y T2I x1,0,2, 3y STS2T2I x3,0, 1,2y ST3I
x0,2, 1y TSTI x1,0,3, 2y STS2TSTI x3,0, 2,1y STSTSTI
x1,0, 2y STSTI x1,2,0, 3y S2TST2I x3,1, 0,2y S2TS2T2I
x1,2, 0y S2T2I x1,2,3, 0y S3T3I x3,1, 2,0y S3TST2I
x2,0, 1y ST2I x1,3,0, 2y S2TSTSTI x3,2, 0,1y S2T2STI
x2,1, 0y S2TSTI x1,3,2, 0y S3T2STI x3,2, 1,0y S3TS2TSTI

x0,1, 2,3y T3I x2,0,1, 3y ST2STI
x0,1, 3,2y T2STI x2,0,3, 1y STST2I

Table 8.1: networks generated by Equation 8.41 for all permutations up to length 4 using the T and
S combinators defined respectively in Equation 8.37 and Equation 8.38

Permutation bus notation

One way of using a permutation network is as a bus to connect two blocks together. If a block X has
n outputs and a block Y has n inputs, then a permutation network Ppsq with |s| “ n could interface
between them to form the block ZnRpX ,ZnRpPpsq, Y qq. A more transparent and succinct notation for
this expression would be the following

X s
ÝÑ Y

so that for example the network in Figure 8.9 could be expressed

X
ι8�2
ÝÝÑ RpY, Zq.

However, the expression ZnRpX ,ZnRpPpsq, Y qq is not a completely satisfactory definition for X s
ÝÑ Y

because it yields confusing and unintuitive results when the arities of X and Y do not precisely
match |s|, which could happen if X and Y have other inputs or outputs than those on the bus.

The meaning of X s
ÝÑ Y with non-matching arities would be less confusing if it were as shown in

Figure 8.12, because then it would be safe to assume that the inputs and outputs of the combined
block were ordered consistently with those of the block pb Rq xX ,Ppsq, Y y, which is like X s

ÝÑ Y
without the connections. That is, the first outputs from the block are the unconnected outputs from
X , if any, the next are from Ppsq, and the remainder are from Y . Similarly the inputs to X are first,
but any unused inputs to Ppsq come next, and unused inputs to Y follow.

An expression that captures the relationships in Figure 8.12 would have to depend on the number
of connections CXs made from X to Ppsq, and the number of connections CsY from Ppsq to Y . Neither
of these can be greater than |s|, nor can CXs or CsY exceed the output and input arities of X and Y
respectively. To keep track of these conditions, let CXs and CsY be defined as

CXs “ mintOX , |s|u (8.42)

CsY “ mint|s|, IY u (8.43)

226 CHAPTER 8. BLOCK BUILDING

OX

|s| |s|

IY

Ppsq

X

Yä

ää

ä

ä

ä

ä

ä

ä

ä

ä

ä

ot

ob

x t

xb

it

ib

yt

yb

CXs

CsY

Figure 8.12: Bus width labels indicate the number of unused inputs and outputs at each end of
blocks X , Ppsq, and Y when not all arities in X s

ÝÑ Y match.

where the output and input arities of X and Y are defined as follows

OX “ pλpI , O, Bq. Oq THB X (8.44)

IY “ pλpI , O, Bq. Iq THB Y (8.45)

using the transformation THB given by Equation 8.26.
As the figure also suggests, let us further restrict attention to permutation buses connected

to contiguous ranges of terminals on their source and destination blocks rather than to arbitrary
subsets thereof. Then in general there could be x t unused output terminals on X , followed by
CXs connected terminals, followed by another xb unused outputs satisfying x t ` CXs ` xb “ OX ,
assuming |s| ă OX holds. Alternatively, if OX is less than |s|, then all of the output terminals on X
are connected, but some of the inputs on Ppsq are not. Allowing only a contiguous range connected
inputs to Ppsq, we have possibly it unused inputs, followed by CXs connected inputs, followed by
ib unused inputs to Ppsq, where it ` CXs ` ib is |s|. Similar conventions apply to the permutation
network outputs and the inputs to Y , which are grouped into ranges of size ot , ob, yt and yb as
shown, with ot ` CsY ` ob “ |s| and yt ` CsY ` yb “ IY .

A pattern that appears twice in Figure 8.12 features some number of connections from one
block to another, excluding some number of leading outputs on the former and some number of
trailing inputs on the latter. To describe this pattern in general, let a pair of blocks x and y require
c connections from x to y excluding the first t outputs from x and the last b inputs to y . Then the
combination

ZcpRpx , yq æ t å bq

contains the required connections. Restoring the remaining unconnected terminals to their original
relative order on the result can be accomplished by undoing the terminal rotations above.

pZcpRpx , yq æ t å bqq ç t ä b

8.8. CONNECTION PATTERNS 227

x

y

ä
c

ä
t

ä
b

y

x
ä
c

ä
c

ä
t

ä
b

y

x
ä
t

ä
c

ä
c

ä
b

x

y

ä
c

ä
b

ä
t

Rpx , yq

Rpx , yq æ t å b

ZcpRpx , yq æ t å bq

pZcpRpx , yq æ t å bqq ç t ä b

“

“

“

“

Figure 8.13: how to make c connections from x to y excluding the first t outputs of x and the last
b inputs of y without changing the order of the excluded terminals

228 CHAPTER 8. BLOCK BUILDING

These operations are illustrated in Figure 8.13. A second order function 9N parameterized by natural
numbers c, t, and b maps a pair of blocks px , yq to a result in this pattern.

9Npc, t, bq “ λpx , yq. pZcpRpx , yq æ t å bqq ç t ä b (8.46)

Using this function, we can specify a general form of X s
ÝÑ Y by reading it from Figure 8.12.

First we have the partial result

z “ 9NpCsY , ot , ybq pPpsq, Y q (8.47)

which is a block with it ` CXs ` ib ` yt ` yb inputs. To connect the right CXs outputs from X to the
right CXs inputs on z, we need to avoid the first x t outputs on X and the last ib ` yt ` yb inputs on
z, which is easily done as follows.

z1 “ 9NpCXs, x t , ib ` yt ` ybq pX , zq (8.48)

The only remaining problem is to choose the parameters shown in Figure 8.12. Fortunately xb,
it , and ob are not explicitly needed in the formula, and for a given X , Y , and s, the value of yb is
fully determined by yt . This process of elimination leaves x t , yt , ib, and ot . The latter two are
non-zero only when |s| is greater than OX or IY respectively. These cases would not usually occur
in practice for appropriate choices of |s|, so it is not overly restrictive to opt for a fixed convention
regarding ib and ot .

ib “ rp|s| ´ CXsq{2s (8.49)

ot “ tp|s| ´ CsY q{2u (8.50)

These definitions imply that if the permutation network is too big for the blocks it interfaces, then
only the middle inputs and outputs of the permutation network are connected. If there is an odd
number of unconnected inputs or unconnected outputs to the permutation network, then the extra
one is at the end. We retain only x t and yt as free parameters in light of a few useful ways of varying
them to be noted shortly.

To summarize everything from Equation 8.42 up to this point, we can define a second order
function based on Equation 8.47 and Equation 8.48 in the style of Equation 8.46, but now param-
eterized by a permutation s and bus widths x t and yt , that takes a pair of blocks X and Y to the
configuration shown in Figure 8.12.

:Nps, x t , ytq “ λpX , Y q. pλyb. 9NpCXs, x t , ib ` yt ` ybq pX , 9NpCsY , ot , ybq pPpsq, Y qqq IY ´ yt ´ CsY

Here, CXs and CsY are given by Equation 8.42 and Equation 8.43, IY is given by Equation 8.45, and
ib and ot are given by Equation 8.49 and Equation 8.50 with respect to the formal parameters X
and Y .

If X s
ÝÑ Y is defined to utilize only the middle outputs of X and the middle inputs of Y when

there are insufficiently many permutation bus lines to connect all of them, it can be specified as
follows (cf. Equation 8.49 and Equation 8.50).

X s
ÝÑ Y “ :Nps, tpOX ´ CXsq{2u, tpIY ´ CsY q{2uq pX , Y q (8.51)

However, there are other potentially useful alternatives, such as interfacing the first |s| outputs from
X with the first |s| inputs of Y , or the first |s| outputs with the last |s| inputs, or the last |s| with the

8.8. CONNECTION PATTERNS 229

X YPpsq

X YPpsq

X Y

Ppsq

X YPpsq

X Y

Ppsq

X s
Ýá Y

X
s
↘ Y

X s
ÝÑ Y

X
s
↗ Y

X s
Ýã Y

“

“

“

“

“

Figure 8.14: A permutation network Ppsq of lesser arity than blocks X and Y allows at least five
memorable ways to interface them depending on which groups of terminals are left unused.

230 CHAPTER 8. BLOCK BUILDING

X ä

0

1

2

2

0

1

Figure 8.15: x2, 0, 1y ¸ X denotes a block X with its inputs permuted by x2, 0, 1y. (cf. Figure 8.10)

last |s|, or the last with the first. These possibilities are illustrated in Figure 8.14. We can retain the
flexibility to choose any of these configurations by distinguishing among them notationally and in
their definitions by the second and third parameters to :N .

X s
Ýá Y “ :Nps, 0, 0q pX , Y q X

s
↘ Y “ :Nps, 0, IY ´ CsY q pX , Y q

X s
Ýã Y “ :Nps, OX ´ CXs, IY ´ CsY q pX , Y q X

s
↗ Y “ :Nps, OX ´ CXs, 0q pX , Y q

8.8.3 Generalized terminal rotations

In addition to interfacing between two blocks, another use for a permutation network is to express
an arbitrary reordering of the terminals on a single block. Three alternatives are discussed in this
section, which are general input terminal permutations, general output terminal permutations, and
a family of specialized terminal permutations suitable mainly for repetitive arrays of blocks.

Input permutations

An expression s ¸ X , denoting the block X with its inputs reordered according to a permutation s,
can be defined in a way that covers all of the edge cases due to mismatched arities by leveraging
the permutation bus operator defined above.

s ¸ X “ Ppsq
ι|s|
Ýá X (8.52)

The identity permutation ι|s| is used to connect the permutation network Ppsq to X with no further
reordering. For example, if X is a block with three inputs, then

x2,0, 1y ¸ X

is made from X by putting it inside a box with three exposed terminals, and wiring the first input
terminal on the box internally to input number 2 on X , the next terminal on the box to input number
0 on X , and the last on the box to terminal number 1 on X . This operation is illustrated in Figure 8.15.

Output permutations

A complementary operation is to permute the outputs of a block. The notation X ˙ s refers to a
block X with its output terminals permuted by s. It is most natural to define it as follows,

X ˙ s “ X
ι|s|
Ýã Pps´1q (8.53)

8.8. CONNECTION PATTERNS 231

Xä

0

1

2

2

0

1

Figure 8.16: X ˙ x2, 0, 1y denotes a block X with its outputs permuted by x2, 0, 1y, which involves
the permutation network Px2,0, 1y´1 (cf. Figure 8.15 and Figure 8.10).

using the inverse of s rather than s itself as in the case of input terminal permutations. This operation
is illustrated in Figure 8.16.

The reason for using s´1 in Equation 8.53 but only s in Equation 8.52 is to enable a memorable
rule of thumb for working with these operators: input permutation numbers describe where the
wires go, and output permutation numbers whence they come. The mnemonic device is to envision
terminal numbers written on the block X as shown in Figure 8.15 and Figure 8.16, and each wire as
a fiber optic camera or borescope focused on the number of the terminal it reaches. Each terminal
number is displayed externally at the point where the wire crosses the outer box boundary, so that
the permutation supplied as the operand to ¸ or ˙ is visible to an observer as the sequence of
numbers thus displayed. This technique applies to both input and output terminal permutations.

Array oriented permutations

A shorter notation for a particularly useful class of terminal permutations is helpful when blocks form
repetitive arrays. The situation is illustrated in Figure 8.17, which shows a count of c similar blocks
x1 . . . xc , each with m output terminals, for a total of cm outputs from the aggregate pb Rq xx1 . . . xcy.
The first n outputs from each block x i are segregated into a single bus of width cn shown at the
top, and the remaining cpm ´ nq output lines are routed to an alternate bus shown below. Perhaps
the latter m ´ n lines from each block x i carry the data resulting from some calculation performed
by x i , while the first n carry status signals having some other interpretation. In any case, there is
bound to be some permutation s for which X ˙ s captures this pattern precisely, but it would be
more convenient to abbreviate the desired network simply as X én

m.
A definition for X én

m can be sought in terms of the permutation s whereby X ˙ s “ X én
m. To find

s, we start with the identity permutation ιcm because at least it has the right length. The transpose

a “ ιcm � c “ x0, m, 2m . . . pc ´ 1qmy q x1, m ` 1,2m ` 1 . . . pc ´ 1qm ` 1y q . . . (8.54)

gets further toward the desired result by reordering it conceptually as a concatenation of sublists of
length c (cf. Figure 8.1), such that the i-th term of the k-th sublist is the index of the k-th output
from the block x i . Hence the truncation a ∣ cn would contain exactly the indices of the first n
outputs from every block. Transforming a∣ cn from a concatenation of n lists of length c to c lists of
length n would put the indices back in ascending order, and is accomplished by another transpose
operation.

a ∣ cn� n

232 CHAPTER 8. BLOCK BUILDING

m

m

cm

x1

xc

...

ä ä

n cn

ä

ä ä

ä

m ´ n

m ´ n

n

cpm ´ nq

Figure 8.17: For a block X “ pb Rq xx1 . . . xcy with m outputs from each x i and cm outputs in total,
X én

m partitions the outputs into groups of m and routes the first n of each group to the top.

Similarly, dropping the first cn items of a and transposing the result by m´n yields the list of indices
of all but the first n outputs from each block in the correct order.

a « cn�m ´ n

The concatenation of these two lists therefore should be the permutation s needed to reorder all of
the terminals.

s “ pa ∣ cn� nq q pa « cn�m ´ nq

To express this result as a function of the parameters c, n, and m given originally, we may write

Apc, n, mq “ pλa. pa ∣ cn� nq q pa « cn�m ´ nqq pιcm � cq.

For a spot check of the permutation that separates the first three of ten outputs from each of two
blocks, let c “ 2, n “ 3, and m “ 10.

Ap2,3, 10q “
@

n
hkkikkj

0,1, 2 ,

n
hkkkkikkkkj

10,11, 12,

m´n
hkkkkkkkikkkkkkkj

3,4, 5,6, 7,8, 9,

m´n
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

13,14, 15,16, 17,18, 19
D

If X has OX output terminals per Equation 8.44, then the number c of blocks can be inferred as
OX {m assuming they are divisible. This result leads to the following definition for X én

m.

X én
m “ X ˙ ApOX {m, n, mq

There is no need to stop here without throwing in a few other variations. A similar operation for
input terminals can be defined as follows, where IX is given by pλpI , O, Bq. Iq THB X .

X èn
m “ ApIX {m, n, mq ¸ X

Finally, alternate versions of these operators that move the first n of every m connections to the
bottom instead of the top can be defined in the obvious way.

X ên
m “ X èn

m ä nIX {m (8.55)

X ën
m “ X én

m æ nOX {m (8.56)

8.9. REPETITIVE STRUCTURES 233

8.9 Repetitive structures

The assortment of techniques proposed in the previous section to specify connection patterns
would be complemented by a similarly expressive means of enumerating the blocks they connect
if there were one, but therein lies the rub. The repetitive array structures and cascades essential
to many designs are the least of our worries, because anything of interest is far more complicated.
Nevertheless, this chapter concludes briefly with a few notational suggestions to the extent such
things may be useful, as indeed they are when we have to eat our own dog food starting in Part III.

8.9.1 Arrays

A block X P H superscripted with a natural number n P N represents a disconnected array of n
identical copies of X .

X n “ pbZI Rq X n (8.57)

This notation is defined using the constant list operator in Equation 8.4. It is a matter of technical
convenience for blocks of the form X n to be well defined even when n “ 0. The vacuous case result
of ZI is a block with no inputs or outputs, which is an identity element for the R combinator up to
behavioral equivalence.

8.9.2 Cascades

A step up from an array of identical disconnected blocks is one of arbitrarily varied blocks with
each one connected to its neighbor, called a cascade hereafter. A simple way of defining a cascade
leverages the permutation bus notation while restricting it to identity permutations. Five families
of block combinators expressing cascades, with one for each operator depicted in Figure 8.14, are
defined as follows.

Dn “ b λpx , yq. x
ιn
↘ y

Fn “ b λpx , yq. x
ιn
Ýá y

Cn “ b λpx , yq. x
ιn
ÝÑ y

Ln “ b λpx , yq. x
ιn
Ýã y

Un “ b λpx , yq. x
ιn
↗ y

The names are mnemonic respectively for “down”, “first”, “center”, “last”, and “up”. Each combinator
takes a non-empty list of blocks to a single block consisting of each item in the list connected to
the next by a bus of width n. For example, to express a cascade of four blocks with each connected
centrally to the next by an eight line bus, we could write

C8xw, x , y, zy.

For some choices of bus widths and arities, the associativity might make a difference. If so, right
associative evaluation is implied by definition of the folding operator in Section 8.1.3.

C8xw, x , y, zy “ w
ι8

ÝÑ px
ι8

ÝÑ py
ι8

ÝÑ zqq

A bus width value of 1 is implicit in this notation if the subscript n is omitted.

234 CHAPTER 8. BLOCK BUILDING

Blockbusters

1. To what old song does ρ 3 pertain?

2. Write a program to implement the permutation network
combinator definition in Equation 8.41 and confirm that it
reproduces Table 8.1.

a) What is its asymptotic running time?

b) Does this algorithm always produce the shortest valid
expression possible (in terms of R, Z and I) for a
given permutation network? (hint: Try an exhaustive
search.)

3. What general form would the final term have in Equation 8.54?

4. Is there anything fishy about the function 9N defined by Equation 8.46 reversing the
order of the connections?

5. What makes Equation 8.36 an inefficient way to defined the permutation network
combinator? (hint: question 2. a) Can it be fixed?

6. Let a block X P H have input arity IX and output arity OX . Consider the behavioral
equivalence

pX æ OX q
α
” pX ç OX q

α
” pX ä IX q

α
” pX å IX q

α
” X

where α is an arbitrary alphabet ordering.

a) What does this statement mean and why should it be true?

b) What definitions would have to be tweaked, and in what way, to make this
statement hold not just as a behavioral equivalence but as an equality?

7. Further to Section 8.3.2, a lesser known school of avant garde mathematicians (the
Boreblocky group) defines a blockoid as an abstract algebra pb, r, z, iq consisting
of a set b, a binary operator r : b ˆ b Ñ b, a unary operator z : b Ñ b, and a
distinguished element i P b. Reverse engineer the algebraic laws that admit only
the following structures and natural transformations thereof as blockoid models.

• pH,R,Z, Iq
• pB,RB,ZB, Iq
• pL,RL,ZL,TBL Iq

It is acceptable to restrict attention to well formed members of H, B, and L, and to
assume a solution to question 6. b. (hint: The equivalence in question 6 should be
either axiomatic or derivable from the algebraic laws.)

Part III
Module Families

235

Great things are not done by
impulse, but by a series of small
things brought together.

Vincent van Gogh

C
H

A
P

T
E

R 9
AS PRIMITIVE AS CAN BE

A warm welcome is extended to readers who have skipped Part I and Part II to jump directly to the
fun part, which begins here. At this point, we are in a credible position to go about establishing a set
of primitive components suitable for DI circuit design, which is done
in Section 9.3. Also discussed in this chapter are straightforward
generalizations of some of the basic primitives to any number of
inputs or outputs via tree-like structures, making good use of the
block combinators and related notation proposed in Chapter 8.

In the broader context, this chapter inaugurates the development
of several families of circuits needed for a general purpose state-
based circuit synthesis algorithm in Chapter 15 (that is, one for
circuits whose state space is feasible to enumerate). This subproject
corresponds to the transformation from the transducer model to
the flat netlist representation depicted in Figure 3.1.

Before all that, some unfinished business regarding Petri net and block optimization needs
attention. As noted in Section 8.6, transforming a hierarchical block to a primitive block and
then optimizing it can facilitate simulation and verification of bottom-up designs. Details about
a block optimization method are deferred until Section 9.2 because they depend on the Petri net
optimizations discussed first in Section 9.1. The latter are of immediate interest for the current
chapter because they simplify the Petri net models of the proposed primitive components from their
specifications by process combinators (Chapter 5) to an obviously correct cruft-free form.

9.1 Petri net optimizations

Along with making Petri nets easier to understand, transformations that simplify them can often
make their analysis more efficient. Each place eliminated from a Petri net could reduce the size of its
reachability graph by up to half, so it is worthwhile to eliminate any where possible without altering

237

238 CHAPTER 9. AS PRIMITIVE AS CAN BE

Figure 9.1: A pair of anonymous vertices in a Petri net sharing a common preset and postset may be
combined by parallel fusion, provided they are both marked or both unmarked if they are places.

the observable behavior. The set of transformations presented here adapts common features to the
current formalism from methods honed by various authors over the years in the areas of asynchronous
circuit design [219], software reliability [77, 253] and industrial work flow management [158, 305,
306]. These transformations can be classified as parallel fusion, serial fusion, and cycle removal.
The details are discussed in the remainder of this section.

9.1.1 Parallel fusion

The idea of parallel fusion is that any group of Petri net vertices sharing a common preset and
postset usually can be combined into a single vertex without changing anything observable. While a
properly formal justification of this claim can be found in the cited references, some examples of
parallel fusion illustrated in Figure 9.1 may help to justify it intuitively.

• When two transitions are in parallel as shown at the top of the figure, they can only be enabled
together. When enabled, only one of them can fire. The choice is immaterial to the subsequent
marking, so there is no need for two of them.

• When two unmarked places are in parallel as shown in the middle of the figure, they can
only become marked simultaneously, and until then they inhibit their postset transition, as
either could do alone. If they were to become marked, they would enable the same postset
transition as they would if there were only one of them.

9.1. PETRI NET OPTIMIZATIONS 239

• When two marked places are in parallel, they indicate that it is unsafe for their preset transition
to fire, and that their postset transition is enabled. These same conditions could be expressed by
just one marked place. When the postset transition fires, the situation reverts to the unmarked
case.

These examples do not cover the case of a marked place in parallel with an unmarked place, or
of a labeled externally visible transition (i.e., a member of T), in parallel with anything. The most
conservative and correct approach in these cases is to refrain from transforming them, which is no
great loss because they are unlikely to occur in practice.

A specification of parallel fusion is straightforward in terms of the Petri net coalescence operator
defined in Equation 5.12, the preset and postset notation defined in Section 5.2.2, the set mapping
operator µ defined in Equation 5.1, and the partition operator π defined in Equation 6.6. A function
χ0 : P Ñ P mapping a Petri net to its equivalent by parallel fusion is defined as the first of several
Petri net optimizations.

χ0pP, T, A, M, Fq “ pP, T, A, M, Fq
L
Ť

pµ π λv. p‚v, v‚qq tM, P ´ M, T ´Tu (9.1)

This expression can be unpacked as follows.

• The function λv. p‚v, v‚q maps a vertex v to the pair of its preset and postset vertices in the
context of the given Petri net.

• The function π λv. p‚v, v‚q takes a set of vertices and partitions it into equivalence classes of
vertices such that within each class, each member has the same preset as any other and the
same postset.

• This function is applied by the µ operator to each of the three sets: the marked places M , the
unmarked places P ´ M , and the unobservable transitions T ´T.

• The Petri net is coalesced with respect to the union of the partitions of each of these three
sets, meaning that each vertex is merged with the minimum member of its equivalence class.

9.1.2 Serial transition fusion

The general idea of serial fusion is that a long chain of alternating places and transitions can be
shortened to just a single vertex. Serial fusion has more edge cases to consider than parallel fusion
when multiple vertices are involved, so it is simpler to proceed by discussing serial transition fusion
first in this section followed by a separate treatment of serial place fusion in Section 9.1.3.

Serial transition fusion involves the deletion of a place and the fusion of its preset and postset
transitions with each other. Three examples of serial transition fusion are shown in Figure 9.2. The
intuition is that whenever the top transition fires, the place gets marked and the bottom one gets
enabled by it, so the place might as well be eliminated and the bottom transition enabled directly
by whatever enabled the top one.

This transformation is valid only under certain conditions, each of which makes sense on
reflection. For one, the place v to be eliminated must not have any other preset transitions, or else
there may be another way for it to get marked and hence another way for the bottom transition to
be enabled, contrary to the post-fusion semantics.

|‚v| “ 1

240 CHAPTER 9. AS PRIMITIVE AS CAN BE

Figure 9.2: An unmarked place with a disjoint unit preset and postset may be deleted and its
adjacent transitions merged by serial transition fusion, provided they are not both visible as inputs
or outputs.

Furthermore, the place must not have any other postset transitions, or else removing it would
eliminate the inhibitory effect on them.

|v‚| “ 1

Obviously the preset and postset must also be disjoint, or else this configuration would be a loop
rather than a chain.

‚v ‰ v‚

Before this list of conditions gets any longer, let the set of all vertices in a set S meeting these
conditions be abbreviated as follows,

κ0pSq “

v P S
ˇ

ˇ ‚v ‰ v‚ ^ |‚v| “ 1 ^ |v‚| “ 1
(

(9.2)

with the understanding that this notation is meaningful only in the context of a known Petri net
inducing the associated preset and postset relations.

Equation 9.2 is relevant to both serial transition fusion and serial place fusion, but there are
three further conditions specific to serial transition fusion. First, the place v to be eliminated from
a Petri net pP, T, A, M, Fq must be unmarked. Otherwise, the postset transition would be already
enabled even if the other were not, and this distinction would not be preserved.

v P P ´ M

9.1. PETRI NET OPTIMIZATIONS 241

Second, the preset and postset transitions of v must not both be externally observable, or else there
would be no way to fuse them without changing the observable behavior by sacrificing one or the
other.

pv‚ Y ‚vq ´T ‰ H

Third, there must be no other places in the preset of the postset transition. Otherwise, it might not
always become enabled under the same conditions as the preset transition, contrary to what their
fusion would imply.

|‚pv‚q| “ 1

A restriction of Equation 9.2 to the set of all places satisfying these three additional conditions for
serial transition fusion is easy to express as follows.

9κ1pP, Mq “ tv P κ0pP ´ Mq | pv‚ Y ‚vq ´T ‰ H ^ |‚pv‚q| “ 1u (9.3)

The symmetric restriction |p‚vq‚| “ 1 is not required in Equation 9.3 because any additional
places in the postset of the preset transition would end up connected to the fused transition pair,
which would have the same effect on them. However, fusion in this configuration could sometimes
make an open Petri net a closed one. Specifically, if the postset transition is initially an externally
visible output, it could acquire a non-empty postset. This effect is not a problem in itself, but it could
make any subsequent parallel composition involving the resulting Petri net prohibitively expensive
by requiring its prior conversion to canonical form as explained in Section 7.6. A restriction on 9κ1
excludes this possibility by allowing a slightly suboptimal Petri net to persist.

:κ1pP, Mq “ tv P 9κ1pP, Mq | pv‚ ´Vq‚ ‰ H _ |p‚vq‚| “ 1u

In any case, if we take at most one member from the designated set of candidate places

κ1pP, Mq “

"

H if :κ1pP, Mq “ H

tmin :κ1pP, Mqu otherwise

then it is no trouble to write the following specification for serial transition fusion using the
componentwise difference operator defined in Section 5.3.3.

χ1pP, T, A, M, Fq “ pP, T, A, M, Fq
L

tκ1pP, Mq‚ Y ‚κ1pP, Mqu ´ pκ1pP, Mq, H, H, H, Hq (9.4)

By iterating χ1 to eliminate one place at a time instead of trying to coalesce whole chains at once,
we avoid a technical difficulty, namely the possibility of multiple observable transitions in the same
batch.

9.1.3 Serial place fusion

Serial place fusion pertains to a chain of alternating places and transitions similarly to serial transition
fusion, but it involves the deletion of an anonymous transition and the fusion of its adjacent places.
Some illustrations of this operation are given in Figure 9.3. The idea is that if a single preset place
suffices to enable a transition, and the firing of that transition marks only a single postset place,
then the transition might as well be removed and the latter place identified with the former.

To be precise, certain conditions are required of any transition suitable for removal. The transition
v must have |‚v| “ |v‚| “ 1, and its preset and postset places must differ. These conditions are

242 CHAPTER 9. AS PRIMITIVE AS CAN BE

Figure 9.3: An internal transition with a disjoint unit preset and postset may be deleted and its
adjacent places merged by serial place fusion, provided they are not both marked.

expressed by Equation 9.2. Three other conditions are also necessary. For a Petri net pP, T, A, M, Fq,
the transformation requires the transition v not to be externally visible.

v P T ´T

Otherwise, its removal could change the trace semantics. It is also necessary for at least one of the
preset or postset places of v to be unmarked.

pv‚ Y ‚vq ´ M ‰ H

If both places were marked, the Petri net would be unsafe, but fusing the places would hide the
issue. Although safety is desirable, changing the semantics arbitrarily is not. For the third condition,
the preset place must have no other transitions in its postset.

|p‚vq‚| “ 1

This condition is necessary because an alternative transition to v would allow another way for the
token to flow. It would not be inevitable for the transition v to fire and its postset place to be marked
whenever the preset place were marked, so it would not be justified to identify the postset with the
preset of v. The set of transitions suitable for removal according to these conditions can be denoted

9.1. PETRI NET OPTIMIZATIONS 243

Figure 9.4: A marked place whose preset coincides with its postset and contains only one transition
may be deleted.

as follows (cf. Equation 9.3).

9κ2pT, Mq “ tv P κ0pT ´Tq | pv‚ Y ‚vq ´ M ‰ H ^ |p‚vq‚| “ 1u

Similarly to the case of serial transition fusion, it is simpler to fuse one pair of places at a time
than a whole chain. We therefore denote a single member of the set 9κ2pT, Mq as follows.

κ2pT, Mq “

"

H if 9κ2pT, Mq “ H

tmin 9κ2pT, Mqu otherwise

With that, the definition of serial place fusion comes easily in terms of the coalescence operator
(Equation 5.12) and the componentwise difference operator (Section 5.3.3).

χ2pP, T, A, M, Fq “ pP, T, A, M, Fq
L

tκ2pT, Mq‚ Y ‚κ2pT, Mqu ´ pH,κ2pT, Mq, H, H, Hq (9.5)

9.1.4 Self-loop place removal

An optimization illustrated in Figure 9.4 does not reduce the number of reachable markings itself,
but may be helpful for enabling other optimizations. The optimization is to remove marked self-loop
places. A self-loop place is one whose preset and postset contain the same transition. The set of
marked self-loop places v in a Petri net pP, T, A, M, Fq is captured mainly by

9κ3pMq “ tv P M | ‚v “ v‚ ^ |v‚| ď 1 ^ ‚pv‚q ‰ 1u

which also includes disconnected marked places for free. The idea is that if the transition in v‚ is
enabled, then it is enabled anyway without any help from v, and if it is disabled, v does not suffice
to enable it. Whether the transition fires or not, the marking of v never changes. Therefore, v has no
effect on anything. The requirement of ‚pv‚q ‰ 1 prevents accidentally creating an open anonymous
transition when v is the only member of its postset transition’s preset. (See page 91.) If a transition
is connected to nothing but self-loop places, not all of them should be removed. Similarly to serial
fusion, we therefore take the precaution of removing only one at a time.

κ3pMq “

"

H if 9κ3pMq “ H

tmin 9κ3pMqu otherwise

A specification of this optimization by a function χ3 : P Ñ P could hardly be simpler.

χ3pP, T, A, M, Fq “ pP, T, A, M, Fq ´ pκ3pMq, H, H, H, Hq

By definition of the componentwise difference operator, removing κ3pMq from the set of places also
removes it from the marking and removes any arcs connected to it.

244 CHAPTER 9. AS PRIMITIVE AS CAN BE

Figure 9.5: An unmarked place that does nothing but regulate the flow of tokens through a marked
place can be deleted under certain conditions.

9.1.5 Self-loop transition removal

Removable self-loop transitions are rare in Petri nets derived from process combinator expressions,
but can occur frequently in Petri nets derived from recursive or conditional block combinator
expressions. By Equation 8.57, any subexpression of the form X n evaluates to the zero-arity block
ZI when n is equal to 0. This block maps to a self-loop place connected to a self-loop transition
as in Figure 9.4, but disconnected from the rest of the Petri net containing it. Both the place and
the transition can be removed, but not by χ3, so a specific transformation for self-loop transition
removal is needed. If the associated place becomes isolated as a result, it may be removed by χ3 or
χ6 (Section 9.1.7) depending on whether it is marked or unmarked.

To specify the optimization formally, a self-loop transition has a place common to both its preset
and its postset. For the transition to be suitable for removal, the preset and postset must both have
only one member, and the transition must be unobservable. The set of transitions meeting these
conditions in a Petri net pP, T, A, M, Fq is denoted

κ4pTq “ tv P T ´T | ‚v “ v‚ ^ |v‚| “ 1u.

The transformation removing the transitions meeting these criteria is defined as follows.

χ4pP, T, A, M, Fq “ pP, T, A, M, Fq ´ pH,κ4pTq, H, H, Hq

9.1.6 Redundant cycle removal

One further cycle removal optimization is a bit less obvious but worthwhile because it is applicable
frequently. As shown in Figure 9.5, the optimization pertains to a cycle of two transitions and two
places, with one place marked and the other unmarked. Under certain conditions, it is reasonable
to remove the unmarked place.

Overview

The intuition underlying this transformation relies on the places not being connected to any other
transitions outside of the cycle, so that the rest of the Petri net can interact with the cycle only by
way of the transitions in it. At the left of Figure 9.5, before the transformation, the unmarked place
inhibits the top transition, whereas afterwards at right, there is nothing to inhibit it, so it could be
enabled, albeit unsafely, if its preset were marked. While it may seem that this alteration introduces
a danger not present initially, there is actually no practical difference. In either case, it is not safe
for the preset of the top transition to be marked.

9.1. PETRI NET OPTIMIZATIONS 245

time

Figure 9.6: If redundant cycle removal can make a Petri net unsafe (upper right), then it would
have become unsafe anyway two firings later (lower left).

• With or without the unmarked place in Figure 9.5, the bottom transition is enabled and its
firing is imminent. If any arc from the bottom transition leads to a marked place, then the Petri
net is already unsafe in either case and hence equivalent with respect to the transformation.

• If arcs from the bottom transition lead only to unmarked places, then they are soon to be
marked when the bottom transition fires. This firing also unmarks the marked place and
marks the unmarked place in the figure, thereby enabling the top transition if its preset is
marked.

• Should the top transition fire, the initially marked place in the figure becomes marked again,
and the bottom transition is re-enabled. When the bottom transition fires for the second
time, it can overflow the previously unmarked but now marked places in its postset, thereby

246 CHAPTER 9. AS PRIMITIVE AS CAN BE

violating safety as a direct and inevitable result of the preset of the top transition having been
marked. This line of reasoning is illustrated in Figure 9.6.

An attentive reader may notice a loophole in this argument. If the bottom transition had neither
any marked nor unmarked places in its postset other than the one shown in Figure 9.5 (i.e., if the
outgoing arcs at the bottom went nowhere), then it would be perfectly safe for the preset of the top
transition to be marked, because then there would be no places to overflow provided the redundant
cycle removal transformation were not performed. The formal specification will have to cover this
edge case.

Specification

To start at the beginning, we seek an unmarked place v P P ´ M from a Petri net pP, T, A, M, Fq as a
candidate for redundant cycle removal. Because v should have only a single preset transition and
a single postset transition, which differ from each other, we may abbreviate these conditions by
writing

v P κ0pP ´ Mq

in terms of Equation 9.2. Another condition is that v should be a member of a cycle, which is
captured by writing

‚‚v “ v‚‚

and that the cycle has one other place, which can be expressed as follows.

|v‚‚| “ 1

Because the other place is required to be marked, we also have

v‚‚ Ď M . (9.6)

To take care of the loophole mentioned above, the postset of the preset transition of v should contain
at least one place other than v.

|p‚vq‚| ą 1

There is also the requirement that the places in the cycle are connected to no other transitions than
those in the cycle, which is not quite implied by these conditions unless we strengthen Equation 9.6.

v‚‚ Ď κ0pMq

The set of all vertices v meeting these conditions is abbreviated

κ5pP, Mq “ tv P κ0pP ´ Mq | ‚‚v “ v‚‚ ^ v‚‚ Ď κ0pMq ^ |v‚‚| “ 1 ^ |p‚vq‚| ą 1u

allowing redundant cycle removal to be specified succinctly as a a function χ5 : P Ñ P given by

χ5pP, T, A, M, Fq “ pP, T, A, M, Fq ´ pκ5pP, Mq, H, H, H, Hq.

9.1.7 Miscellaneous static optimizations

Two further optimizations have no effect on the size of the reachability graph, nor do they enable
any other optimizations, but they may simplify a Petri net for purposes of visual inspection and are
easy enough to throw in.

9.1. PETRI NET OPTIMIZATIONS 247

Dead code elimination

The first of these optimizations pertains to the removal of regions of a Petri net that can never
execute because they are permanently inhibited by an unmarked place with an empty preset. This
situation might occur if an infinitely repeating process is mistakenly combined with another process
by sequential composition. This optimization is comparable to dead code elimination in conventional
compilers [7]. The set of unmarked places with empty presets can be denoted by

κ6pP, Mq “ tv P P ´ M | ‚v “ Hu

and the removal of these places and their postsets defined as follows.

χ6pP, T, A, M, Fq “ pP, T, A, M, Fq ´ pκ6pP, Mq,κ6pP, Mq‚, H, H, Hq

Even the observable transitions in κ6pP, Mq‚ may be removed without changing the trace semantics
because none of them can ever fire. In general, it may be more effective to iterate this transformation
than to apply it just once.

Error place fusion

The remaining optimization pertains to marked places with empty postsets. These typically appear
when a closed Petri net representing a process in a restricted environment is converted to its
equivalent canonical form (Section 7.5). The passage of control to a so called error place is a
deliberate safety violation intended to model divergence of the process. Multiple error places are
possible in Petri nets obtained by parallel composition, and they may be fused with impunity. The
set of marked places with empty postsets is straightforward to express,

κ7pMq “ tv P M | v‚ “ Hu

as is their fusion using the notation defined in Equation 5.12.

χ7pP, T, A, M, Fq “ pP, T, A, M, Fq{tκ7pMqu

9.1.8 The whole mix

More sophisticated Petri net optimizing transformations are always conceivable, but the ones
specified by χ0 through χ7 get rid of most of the cruft that accrues to Petri nets built by the process
combinators introduced in Chapter 5, so they will suffice for now.

It should also be noted that although optimization does not alter the trace semantics of a
Petri net model, it may violate some of the invariants on which process combinators depend. For
example, nothing prevents the removal of every initially marked place from a Petri net if they are
all self-loop places, making any subsequent combination by sequential composition difficult. As
discussed presently in Section 9.2, these optimizations are more suitable for Petri nets associated
with physical components in block diagrams or netlists (to which process combinators other than
parallel composition are not relevant), than they are for process combinator operands. Fortunately,
parallel composition is not impeded by any of these optimizations.

There are two remaining issues of interest on this subject. As noted in connection with self-loop
place removal, it is often the case that one optimization is a prerequisite for another. Also, the
discussions of serial fusion and self-loop place mention a need to iterate them exhaustively for the

248 CHAPTER 9. AS PRIMITIVE AS CAN BE

full effect. A general purpose Petri net optimization function χP : P Ñ P addresses both of these
concerns by iterating the optimizations exhaustively in every useful order.

χP “ pχ7 ˝ χ6 ˝ χ5 ˝ χ4 ˝ χ3 ˝ χ2 ˝ χ1 ˝ χ0q
∞ (9.7)

This function incorporates all of the optimization functions defined hitherto with the limit operator
defined in Equation 6.3, and is the function to be used for Petri net optimization in the next section.

9.2 Block optimizations

Part of the motivation for the transformation THB developed in Section 8.6, which converts a
hierarchical block h P H to an equivalent primitive block THBphq P B, is more efficient verification
when THBphq is substituted for h. In some scenarios, efficiency of verification can make the difference
between whether or not it is feasible to establish the correctness of a design before production,
which is a matter of quite practical interest. However, the block representation THBphq, amounting
as it does to the parallel composition of possibly a large number of Petri net models, is not especially
conducive to more efficient verification than the original representation h would be unless it can be
simplified in some way. It is now appropriate to revisit this problem with the benefit of the Petri net
optimizations developed in the previous section.

9.2.1 Overview

An obvious approach to transforming a hierarchical block h P H not just to an
equivalent primitive block in B but to an optimized equivalent is to transform
it to an equivalent member of B first with THB and then to optimize the result
with Petri net optimizations. Unfortunately, a member of B is not a Petri net,
but a triple pI , O, Bq with I , O P N and B : TI ˆ T

O Ñ D for good reasons
explained in Section 8.2. The Petri net model associated with a block comes
only as a result of applying its semantic function B to a specific pair of lists of input and output
terminals, and even then only as the Petri net N P P within a triple pI 1, O1, Nq P D. To make the
semantic function optimize the Petri net after generating it, we could replace a block pI , O, Bq with
pI , O, pλpI 1, O1, Nq. pI 1, O1,χP Nqq ˝ Bq using the optimization function χP defined in Equation 9.7,
but this solution is not completely satisfactory.

• Although the resulting Petri net is simpler, the semantic function becomes more costly by
incorporating the optimization function χP. The complexity of the semantic function is already
at least proportional to the size of the hierarchical block h from which this primitive block is
derived by THB, which is bad enough as it stands.

• This cost multiplies needlessly if the block is used more than once in a design, because
substantially similar optimizations are performed for each instance.

A better solution is the seemingly indirect route of transforming the block to a process in D,
optimizing the Petri net in the result just once, and then reverse engineering a block to have a
simple semantic function that generates the optimized Petri net immediately. The transformation
of a block X P B to a member of D is the easy part, because it is expressible as TBDpX q according
to Equation 8.30. Putting it back to a block after optimization would be just as easy by an inverse
transformation TDB, except that there is no TDB defined in Chapter 8. Such a transformation would

9.2. BLOCK OPTIMIZATIONS 249

involve generalizing a particular Petri net to a function that generates a Petri net of that form for an
arbitrary given alphabet. This problem is not well posed unless an alphabet ordering is also stipulated
(page 214), or else there is no way of deciding which terminal on the block to associate with each
alphabet symbol of the process. The solution actually proposed below involves a transformation Tα

B

comparable to Tα
D

defined in Equation 8.33, whereby an alphabet ordering α induces a primitive
block Tα

B
pX q P B for any hierarchical block, netlist, or process X P HY L YD.

9.2.2 Specifications

Much like the proverbial multi-threaded software application, the problem of block optimization
has turned into two problems. One is that of a general transformation from D to B as noted in
Section 9.2.1, and the other that of somehow sandwiching the Petri net optimizations developed
in Section 9.1 into the transformation along the way. The remainder of this section discusses the
transformation first before turning to the latter problem.

Transformation

Only the transformation from D to B afforded by Tα
B

is necessary for the present development, but
the cases of H and L come relatively cheaply as a byproduct. We therefore define the transformation
Tα
B

as a recurrence in three cases, the simplest being X P H, for which Tα
B

pX q “ THBpX q. A netlist
argument X P L is first converted to a process TLD X as defined by Equation 8.32, and then recursively
converted to a block T

g
B
TLD X using the generic alphabet ordering g “ G

0´1. For the last and most
important case, a process X P D determines an equivalent block Tα

DB
X P B, with the transformation

Tα
DB

remaining to be defined.

Tα
B

pX q “

$

’

&

’

%

THB X if X P H

TG
0´1

B
TLD X if X P L

Tα
DB

X if X P D

(9.8)

An equivalent block Tα
DB

X to a process X “ pI , O, Nq would be of the form p|I |, |O|, Bq, which is
to say with input and output arities |I | and |O| equal to the cardinalities respectively of the input
and output alphabets of X . The semantic function B needs to take a parameter pi, oq P T

|I| ˆT
|O|

consisting of a pair of lists of alphabet symbols to a process isomorphic to X but with an input
alphabet determined by i and an output alphabet determined by o.

An intermediate step to constructing the block Tα
DB

X is to construct a generically alphabetized
process Tα

DD
X by Equation 8.29. Then we only need a function B that returns a process Bpi, oq P D

just like the process Tα
DB

X except with the n-th generic symbol

t “ G
0´1 n

rewritten to the n-th term of the formal parameter i when n is less than |I |, or to the pn ´ |I |q-th
term of the formal parameter o for |I | ă n ă |I | ` |O|, or in other words to

pi q oqn “ pi q oqpG0 tq P T

in general throughout the process. Vertices t outside input and output alphabets of Tα
DD

X can be
the same in Bpi, oq as they are in Tα

DD
X . It is clear from Equation 8.29 that the rewritable vertices

are restricted to
pµG

0´1
q pI Y Oq

250 CHAPTER 9. AS PRIMITIVE AS CAN BE

in terms of alphabets I and O of the original process X “ pI , O, Nq, so a function that handles either
case is expressible as

λt. pλk. xt, pi q oqpG0 tqykq δ
ttu´pµG

0´1
q pIYOq

H

and the rewritten process follows as

pλt. pλk. xt, pi q oqpG0 tqykq δ
ttu´pµG

0´1
q pIYOq

H
q˛ Tα

DD
X

based on the notation of Equation 5.11. Treating this expression as a function of i and o leads to
the desired semantic function

B “ λpi, oq. pλt. pλk. xt, pi q oqpG0 tqykq δ
ttu´pµG

0´1
q pIYOq

H
q˛ Tα

DD
X

required for the transformation from X P D to p|I |, |O|, Bq “ Tα
DB

X P B defined as

Tα
DB

pX q “ pλpI , O, Nq. p|I |, |O|,λpi, oq. pλt. pλk. xt, pi q oqpG0 tqykq δ
ttu´pµG

0´1
q pIYOq

H
q˛ Tα

DD
X qq X

thereby concluding the specification of Tα
B

in Equation 9.8.
We may note in passing that Tα

B
enables a couple of more ways to discuss refinement. If X P D

is a process, and Y P HY L is either a block diagram or a netlist, then this equivalence holds

X
α
Ď Y ô Tα

B
X
ε
Ď Y

because converting X to a block according to an alphabet ordering α and comparing the block to Y
under an empty alphabet ordering is the same as comparing X to Y under α. The empty alphabet
ordering is valid in this context because alphabet orderings are irrelevant to comparison between
circuits by Equation 8.33, but perhaps it would be more intuitive and less confusing to be able to
express a refinement relationship based on an equivalence

X
α
Ď Y ô X Ď pTα

B
q´1 Y

where we envision the circuit Y being converted to a process according to an alphabet ordering α by
an inverse of the transformation Tα

B
, and then compared to X with the ordinary refinement relation

among processes. If this way of discussing refinement between a circuit and a process seems more
straightforward, it may be because it evokes the conventional practice of labeling the terminals on a
generic device with meaningful symbols to the specification instead of somehow doing the opposite.

Unfortunately Tα
B

does not have an inverse because it can map multiple circuits or processes to
the same result, but we can certainly have a function ` : T˚ Ñ ppHY Lq Ñ Dq to capture the notion
of labeling a block with a given alphabet by defining ` as follows.

`“ λα. pλpI , O, Bq. Bpα∣ I ,α « Iqq ˝Tα
B

(9.9)

The function `α : HY L Ñ D is something like an inverse to Tα
B

in that a process X converted to a
block Tα

B
X can always be converted back to an equivalent process X 1 ” p`αq Tα

B
X .

9.2. BLOCK OPTIMIZATIONS 251

Optimization

To resume the topic of optimization, one further technique should
not be overlooked. The nuclear option for a Petri net resistant to
the optimizations described in Section 9.1 is to transform its process
X to the canonical form PpX q as detailed in Section 7.5.1 This
transformation may be more effective because it depends only on
the externally observable behavior of the process at a global level
regardless of how complicated the Petri net model may be internally.
However, unlike the transformations in Section 9.1, this transformation is costly and not necessarily
an improvement, especially if the state encoding is chosen suboptimally (page 185). This outcome
is to be expected inasmuch as the canonical form is constrained to preserve the invariants required
by the process combinators introduced in Chapter 5. To use it nevertheless as an optimization, we
are better off thinking in terms of a tentative canonical form

9PpX q “

"

PpX q if }X } ă K ^ }PpX q} ă }X }

X otherwise

where }X } denotes some freely chosen complexity metric for a process X P D, for example the
number of places in the Petri net model, and K is some freely chosen constant. For example, it is
probably futile to attempt to compute canonical forms of Petri nets with many thousands of places,
even though Petri nets of that size are well within the realm of feasibility for local optimizations.

If some combination of local and global optimizations can be helpful, there is no need to choose
between them. A single expression combining both would be something like this one based on
Equation 9.7.

χD “ ppλpI , O, Nq. pI , O,χP Nqq ˝ 9Pq
∞

(9.10)

The exhaustive iteration may be advantageous if the first iteration simplifies the process enough to
enable subsequent optimization by 9P that would not have been feasible initially. This transformation
pertains only to processes in D, but can be generalized to blocks or netlists X P HY L by writing

ppλpI , O, Nq. pI , O,χP Nqq ˝ 9P ˝Tε
D

q
∞

using the transformation Tα
D

defined in Equation 8.33 with an empty list ε for the alphabet ordering.
However, this result achieves only an optimized process model in D with a generic alphabet, falling
short of the original goal of an optimized primitive block in B suitable for further use in block
diagrams.

The short step from here to the desired solution incorporates the transformation Tα
B

defined by
Equation 9.8. By substituting pI , O,χP Nq above with an expression of the form Tα

B
pI , O,χP Nq, we

arrive at a member of B. The appropriate alphabet ordering α is always G0´1 because Tε
D

X has a
generic alphabet, so a general purpose block optimization function χ : HY L Ñ B can be defined as
follows.

χB “ ppλpI , O, Nq. TG
0´1

B
pI , O,χP Nqq ˝ 9P ˝Tε

D
q
∞

(9.11)

That is, χB with the subscript B refers to the block optimization rather than the Petri net optimization
function.

1not to be confused with the permutation network combinator P developed in Section 8.8.2

252 CHAPTER 9. AS PRIMITIVE AS CAN BE

9.3 DI primitives

The block optimizations developed in the previous section clear the way for the formal specification
of a set of primitive components for DI design. The selection of a set of primitives is important
because it creates an abstraction boundary between different engineering disciplines. On one
side are those conversant with the physics and manufacturing technologies of circuit fabrication
suitable for asynchronous design (e.g., [249]), and on the other are readers and writers of books
like this one. While they have the serious job of ensuring that each primitive component has the
necessary electrical or chemical properties to serve its purpose, our remit is limited to connecting
the components together not too ineptly. In this section, a workable set of primitives is proposed
and its basic consequences established.

9.3.1 The continuing saga

The choice of a set of primitives is not set in stone, but nor should it change with the wind. Similarly
to the case of a stable software API or the instruction set of a conventional computer, retooling
likely incurs a cost. This consideration motivates the search for a set of primitives that is resistant to
obsolescence or “future-proof” in some sense. Other desiderata are that the primitives should be
few in number, simple to describe, low in arity, and of course efficient to implement. The choice of
primitives to be advocated presently builds on various historical influences.

• The set of primitive modules developed for the Macromodules project in the 1960s predated
and anticipated many current ideas about delay insensitivity [58, 213]. While the modules
were chosen mainly to support register-transfer, control flow, and arithmetic operations, there
was also a capability for arbitration inherent in the interlock unit, and a form of barrier
synchronization by way of the junction unit.

• Fast forward to the seventies, the first formal treatment of DI primitives is to be found in
[136], which notably introduced a concept of universality and the insight that arbitration is
not achievable by any combination of JOIN or MERGE modules.

• An otherwise uneventful decade, the eighties saw another step forward for DI primitives
with the arrival of Micropipelines [273]. A specialized architectural paradigm emphasizing
asynchronous elastic buffered channels, it popularized the TOGGLE as a primitive and furthered
the cause of arbitration.

• The story was to resume in the nineties, with [222] building directly on [136]. The set of prim-
itives became more imaginative, intuitive, and versatile, especially regarding generalizations
of the JOIN, with several primitives reaching the forms currently to be proposed.

• The above-mentioned primitives partly overlapped with those appearing contemporaneously in
the literature of trace theory [82, 244]. However, the latter featured an explicitly non-quiescent
two-terminal primitive, namely the IWIRE, whose inclusion eliminated the complications
otherwise required in the way of complemented terminals.

• As of the current millennium, any universal set of primitives yet published still contains at
least one member with five or more terminals. This issue complicates connectivity, especially
in non-traditional settings such as regular arrays or cellular automata, to the point where
some authors have considered cutting corners on delay insensitivity as a workaround [4, 5].

9.3. DI PRIMITIVES 253

Although less immediately relevant to this discussion, it should be mentioned in passing that
other selections of DI primitives have also been used successfully. Null Convention Logic relies
on majority gates and threshold gates as DI primitives [86, 261], while handshake components
have been used for both DI and QDI design in another alternative [17, 226, 285]. A rigorous
treatment of reversibility informs a different choice of primitives in [200].

9.3.2 Universality

In addition to its theoretical appeal, the concept of universality noted above may be a safeguard
against obsolescence. The attraction is that a universal set of DI primitives would suffice to implement
any delay insensitive circuit that may ever be needed in the future. One way of stating this condition
formally as a property of a set of primitives p Ă B would be

@pI , O, Nq P D. Dα P pI Y Oq˚. Dn P L X pN˚ ˆN
˚ ˆ pq˚. pI , O, Nq

α
Ď n (9.12)

using the generalized refinement relation under an alphabet ordering defined in Equation 8.34. The
expression pI , O, Nq can be any well formed DI process specification whatsoever. The expression
pN˚ ˆN

˚ ˆ pq˚ restricts the netlists n P L to blocks in the set p whose universality is asserted, and
despite this restriction the refinement relation still holds.

The mind recoils at proving Equation 9.12 ab initio because a constructive proof would be at
least as complicated as a general purpose circuit synthesis algorithm (Chapter 15) and far less useful,
but fortunately there is a passable substitute. If p is a known universal set of primitives, and p1 is a
proposed set of primitives, then p1 is also universal if every member of p can be implemented by
some combination of members of p1.

@b P p. Dn P pN˚ ˆN
˚ ˆ p1q˚. b

ε
Ď n (9.13)

Intuitively we could imagine starting with the netlist n for any given pI , O, Nq P D containing only
blocks b P p by Equation 9.12, and then flattening each block b into its implementation by p1,
resulting in a new netlist n1 that implements the original process pI , O, Nq but does it using only
members of p1. Based on the generally accepted universal set of primitives in [222], proving the
universality of the current set by Equation 9.13 entails only the construction of a few specific
schematic diagrams and their automated verification by Equation 8.34.

9.3.3 Cardinality and modularity

With this strategy, a universal set of seven primitives is attainable.
These can be appropriated mostly from the cited references with
technical adjustments to the current formalism, but a few judgment
calls are unavoidable on matters of terminology, notation, or phi-
losophy where a consensus appears lacking.

Universal sets of fewer than seven primitives are known, but the cardinality of the set would
be an easy metric to game by letting a single unnaturally complex “primitive” emulate others like
a programmable gate in an FPGA. A more meaningful figure of merit to minimize is the so called
i/o-modularity of the set, which is the maximum total arity of any member.

By this criterion, the set to be proposed has an i/o-modularity of 4, making it a long overdue
improvement on previously published results and pessimistic conjectures. Lower cardinality with the
same or lower i/o-modularity might be desirable but remains an open question. This improvement

254 CHAPTER 9. AS PRIMITIVE AS CAN BE

is achieved by a minor break with tradition in the way of a novel four-terminal memory or state
holding device called a SHUNT, which is not far from a conventional flip-flop element but different
enough to require some explanation. Combinations of a SHUNT with other primitives of less or
equal arity implement three better known devices of arities 5 and 7, thereby enabling a route to
universality by the argument in [222] as planned. Details are given in Section 9.3.5.

9.3.4 Specifications

Most of the seven primitives are specified by an expression of the form χBpI , O,λt. loop pptqq P B,
where pptq is an expression involving the formal parameter t and the process combinators defined
in Chapter 5 and Chapter 7, χB : H Y L Y B Ñ B is the block optimization function defined by
Equation 9.11, and the improvised process combinator loop : D Ñ D is defined by Equation 3.5,
repeated here for convenience.

loop “ λp. fix λ f . seq pp, f q

As explained in Section 3.6.2, this function maps any process p to one that repeats p forever, which
is appropriate for the model of a physical component. The block optimization function accounts
for the Petri net models having the simplified forms shown in Figure 9.7 and Figure 9.8, and the
expression pptq gives a procedural description of a single loop of the component’s operation. The
remainder of this section formally defines and briefly describes each primitive individually.

PUSH

The only two-terminal primitive, and the only non-quiescent one, is the PUSH. It sends a signal
initially on the output and behaves thereafter as a wire. As the Petri net model in Figure 9.7 shows,
it is not safe for the environment to send an input to the PUSH until after the first output signal is
transmitted.

PUSH “ χBp1,1,λpxay, xbyq. loop seq pput b,get aqq

The schematic symbol for the PUSH is taken from that of the IWIRE device used in trace theory, as is
its semantics, but the mnemonic is influenced by related usages in handshake circuits. The change
of the mnemonic to a normal word harmonizes it with the other primitive mnemonics, which are
usable as both nouns and verbs.

MERGE

The MERGE is a three terminal primitive with two inputs and one output, introduced in advance for
motivation in Chapter 2 and Chapter 3 but now formally defined.

MERGE “ χBp2,1,λpxa, by, xcyq. loop seq palt pget a,get bq,put cqq

As the Petri net model in Figure 9.7 indicates, it accepts an input on either terminal and acknowledges
it on the output, but concurrent inputs are not allowed. See Section 3.5.3 for further discussion.

FORK

A FORK is also a three terminal primitive, with one input and two outputs. When it receives a signal
on the input, it acknowledges the signal concurrently on both outputs.

FORK “ χBp1,2,λpxay, xb, cyq. loop seq pget a,par pput b,put cqqq

9.3. DI PRIMITIVES 255

a b

a

b

c

b

c

a

a

b

c

a

b

c

a b

ca
b

a
b

c

a

b
c

a b
c

PUSH

MERGE

FORK

JOIN

TOGGLE

Figure 9.7: two-terminal and three-terminal DI primitive mnemonics, schematic symbols, and Petri
net model instances

256 CHAPTER 9. AS PRIMITIVE AS CAN BE

The protocol implied by the Petri net model in Figure 9.7 constrains the environment to wait
until both outputs are observed before sending another input. The output signals may happen
concurrently or in either order with unpredictable latency. Contrary to an isochronic fork, detection
of either output signal does not imply that the other has been manifested.

Because a FORK is trivial to implement as a split wire in conventional technologies, it hardly
seems to merit consideration as a component in itself. However, it is important within the current
theoretical framework nevertheless to express the protocol it embodies, and because there is formally
no other way to indicate a connection in a circuit from one terminal to two others.

JOIN

The JOIN is another three terminal primitive familiar from some examples in Chapter 2, with two
inputs and one output. A pair of concurrent input signals is acknowledged by the output.

JOIN “ χBp2,1,λpxa, by, xcyq. loop seq ppar pget a,get bq,put cqq

A safety condition mentioned informally in Chapter 2 and now evident from the Petri net model
in Figure 9.7 is that consecutive signals on the same input are not allowed without an intervening
output.

TOGGLE

The TOGGLE primitive, whose behavior is illustrated in Figure 2.7, is the last three-terminal primitive
in this list. As noted previously, the TOGGLE has a single input terminal, and input signals are
acknowledged alternately by one output terminal or the other.

TOGGLE “ χBp1,2,λpxay, xb, cyq. loop pb seqq xget a,put b,get a,put cyq

The specification involves the sequential composition of four events, which is expressed for brevity
by folding the seq combinator over the list of them using the notation explained in Section 8.1.3.

ARB

Moving on to four-terminal primitives, we have the ARB, which is short for either “arbitrate” or
“arbiter” depending on whether the intent is imperative or declarative. This device is also called
a mutex in some sources, but the ARB mnemonic is preferred here because it is closer to a real
word and has the programmer-friendly feature of allowing recognizable truncation of all primitive
mnemonics to their first letter.

The purpose of an arbiter is to help the environment manage mutually exclusive access to a
shared resource by engaging in only one four-phase (4Φ) handshake at a time.

• There are two input terminals and two output terminals. For the sake of illustration, the
inputs are labeled a and c, and the outputs are labeled b and d.

• In the absence of contention, a request on a is acknowledged on b. The next input to a
signifies a release of the resource, which is also acknowledged on b. Similar conventions
apply to c and d.

9.3. DI PRIMITIVES 257

a b

c d

c

d

ba

a
c

b
d

a

c

b

d

ARB

SHUNT

Figure 9.8: four-terminal DI primitive mnemonics, schematic symbols, and Petri net model instances

258 CHAPTER 9. AS PRIMITIVE AS CAN BE

• If a request on c arrives from the environment while the handshake between a and b is in
progress, it is buffered until the current handshake completes and the next one can begin. A
handshake in progress between c and d similarly precludes the alternative.

• If no handshake is currently in progress and signals arrive simultaneously on both inputs, the
ARB makes a non-deterministic choice between them, allowing one 4Φ handshake to complete
first and then the other.

The formal specification of an arbiter using process combinators involves a choice between two
4Φ handshakes expressed by folded sequential composition combinators as discussed in connection
with the TOGGLE primitive.

ARB “ pλB. χBp2,2, Bqq λpxa, cy, xb, dyq. loop alt p (9.14)

pb seqq xget a,put b,get a,put by,

pb seqq xget c,put d,get c,put dyq

No special provisions for buffering, arbitration, or atomicity are required in this expression, because
they are inherent in the alt process combinator semantics.

There is no standard schematic symbol for an arbiter. A default choice would be a square box.
Some authors have used a box inscribed with “ME” [28, 72, 73, 247, 309] or A [191], and others
have used an unexplained glyph that looks something like [181, 294, 295]. The constricted
box symbol in Figure 9.8 is used in this book to distinguish the
ARB from the proliferation of other boxes in block diagrams. The
shape is meant to be a visual reminder that only one handshake
can fit through it at a time, and to evoke the general outline of
its Petri net model in Figure 9.8, which is obtained automatically
after optimization from the process combinator expression in
Equation 9.14.

SHUNT

The last primitive in this set is a four-terminal device called a SHUNT. As mentioned previously in
Section 9.3.3, it furnishes the missing link to universality by enabling a rudimentary form of mutable
memory or state, which no combination of the other primitives in this set can provide. In general, a
memory element stores one bit of information, and the environment may set, clear, or read it. Given
the limitation to four terminals, a delay insensitive memory element practically designs itself.

• There must be at least two input terminals, or else there would be no way for the environment
to communicate its choice of state to the device.

• There must be at least two output terminals, or else there would be no way for the device to
distinguish between expressing one state and the other in response to a read request.

• Because there can be no more than four terminals, there must be exactly two input terminals
and two output terminals.

• With only two input terminals available, one of them must effect at least two of the three set,
clear, or read request operations needed for a memory element.

9.3. DI PRIMITIVES 259

• We can rule out any protocol that involves setting and clearing the state by the same signal,
because these two requests contradict each other.

• A read request signal therefore also must indicate either a set or a clear request atomically,
depending on a design decision.

• Whatever the read request does not also indicate (either set or clear) must be requestable
separately by a signal to the other input terminal.

• With only two output terminals available, at least one of them must serve the dual purpose of
expressing a possible state in response to a read request, and acknowledging a set or clear
request.

Having mapped the design space, we have only to choose from a narrow range of protocols
consistent with it. Suppose the two input terminals are labeled a and c, and the two outputs are
labeled b and d. Let an input signal to a atomically read and clear the current state, and let an input
to c set it. In response to a read request on a, an output signal from b indicates a (formerly) clear
state, and an output from d the alternative. The remaining design decision is the choice between
outputs b and d to acknowledge a set request on c. For reasons to be clarified momentarily, the
choice of d is preferable.

The designation of this primitive as a SHUNT rather than a memory derives from an alternative
view of its operation: it conditionally routes an input signal to one of two outputs depending on
whether it has previously received a control signal. The routable signal is to the input a, and it
normally goes to the output b. The control signal is to the input c, and it causes the signal to a to be
routed to d instead. Acknowledging the control signal on d makes it convenient often to separate
the control acknowledgment from the shunted signal by connecting the output from d to the input
of a TOGGLE.

This understanding leads to a simple way of specifying the SHUNT by process combinators as
a choice between two alternative handshaking sequences. One sequence is a simple two-phase
handshake involving only a and b, while the other is a sequence of input and output signals on c, d,
a, and d.

SHUNT “ pλB. χBp2,2, Bqq λpxa, cy, xb, dyq. env p

loop alt pseq pget a,put bq, pb seqq xget c,put d,get a,put dyq,

loop alt pseq pput a,get bq, pb seqq xput c,get d,put a,get dyqq

Normally a is acknowledged on b, but if there is an input on c, which is always acknowledged on d,
the next input on a is also acknowledged on d. The env combinator is used here in a way that may
seem redundant, but allows for an easier implementation based on the simplifying assumption that
no buffering or arbitration are required. The environment sends only one input at a time, and waits
for an acknowledgment before sending another one. It also refrains from initiating two consecutive
handshakes on c without any on a inbetween. This process combinator expression generates the
Petri net model of a SHUNT shown in Figure 9.8 after optimization.

The lack of an established precedent compels an improvised drafting convention. The schematic
symbol suggested for a SHUNT is a deformed box as shown in the figure. Its shape is meant to evoke
the image of the control input on c deflecting the input on a toward d instead of straight ahead to
its usual destination b, not to mention being vaguely reminiscent of the shape of the Petri net.

260 CHAPTER 9. AS PRIMITIVE AS CAN BE

“

Figure 9.9: the 2-by-1 decision wait schematic symbol and implementation, DWp2,1q

9.3.5 Implications

A set of four primitives with i/o-modularity 7 was argued to be universal in [222] based on [136].
Aside from inconsequential technical differences (e.g., state machines instead of Petri nets), two of
them are identical respectively to the MERGE and FORK primitives presented in Section 9.3.4. The
third is none other than the 2-way sequencer used as an example in Section 3.6.4 and Section 4.1.1,
and the fourth is a multi-way synchronization element not previously discussed. A case for univer-
sality of the current set of primitives therefore can be made by exhibiting implementations of the
latter two. However, it is convenient to base the sequencer implementation on a similar module
called a decision wait, which is described first.

Decision wait implementation

An indispensable family of building blocks, decision waits are developed more thoroughly in
Chapter 10, but here is a quick preview.

• An n-by-m decision wait has n row inputs, m column inputs, and nm outputs.

• The outputs are depicted as a rectangular array of bullets in n rows and m columns with an
implied row-major order.

• Only two input signals are allowed at a time, with one being a row input and the other a
column input.

• The decision wait responds to concurrent signals on the i-th row input and the j-th column
input with an acknowledgment on the pi, jq-th output.

The complete family of decision waits is given by a function DW : NˆN Ñ H taking the row and
column lengths as natural numbers to a hierarchical block. A full definition of this function follows in
Chapter 10, but only a special case is needed presently for the sequencer construction. A schematic
for the 2-by-1 decision wait is shown in Figure 9.9 and defined as follows.

DWp2,1q “ x0,2, 1y ¸ pZFxMERGE, JOIN, SHUNT, TOGGLE ç 1yq (9.15)

9.3. DI PRIMITIVES 261

d00

d10

r0

r1

c0
c0

r0

r1

d10

d00

Figure 9.10: Labeling the terminals and transforming a decision wait to a Petri net model by
`xr0, r1, c0, d00, d10y DWp2,1q confirms correct semantics and the desired terminal ordering.

Using the block combinators defined in Chapter 8, the schematic is captured by a list of the four
primitives in the order shown with the first output of each connected to the first input of the next
by the F combinator. The outputs of the TOGGLE are rotated and the TOGGLE is connected to the
MERGE by the Z combinator. The output terminals are already in row-major order according to this
expression, but the inputs need reordering by the permutation shown so as to follow the convention
of having the row inputs precede the column inputs.

Figure 9.9 contains the first of several manually designed circuits whose correctness is a matter
of interest due to subsequent results depending on it. The circuit’s observance of both the terminal
ordering convention and the decision wait protocol are required. If the theory developed in Part II
is to be of any use for verifying it, now is the time.

Up to this point, we have worked with an informal specification of these requirements, but the
latter at least can be made precise and reasonably clear by writing a process combinator expression.

X “ env p

loop alt pseq ppar pget r0,get c0q,put d00q, seq ppar pget r1,get c0q,put d10qq, (9.16)

loop alt pseq ppar pput r0,put c0q,get d00q, seq ppar pput r1,put c0q,get d10qqq

That is, the process X we would like the circuit to implement has row inputs r0 and r1, a column
input c0, and outputs d00 and d01 that acknowledge the inputs appropriately. It needs to work only
in a benevolent environment devoid of any contention between row inputs.

As a member of H, the decision wait can be converted to a process in D for comparison with
X by the transformation `α defined by Equation 9.9 for some choice of α. An argument to ` of
α“ xr0, r1, c0, d00, d10y generates a function `α that labels the first terminal of a circuit with r0, the
second with r1, and so on, when transforming it to a process in D. Hence, if we compute

`xr0, r1, c0, d00, d10y DWp2,1q

The result should refine X as defined in Equation 9.16 if and only if there are no mistakes in the
terminal ordering implied by the definition of DWp2,1q in Equation 9.15. The Petri net model

262 CHAPTER 9. AS PRIMITIVE AS CAN BE

“

Figure 9.11: A 2-way sequencer is an ARB with a wrapper around it.

obtained by evaluating this expression is shown in Figure 9.10. Some would deem this simple Petri
net model obviously correct, but in any case the refinement relationship

X Ď `xr0, r1, c0, d00, d10y DWp2,1q

is computable by Equation 7.18.

Sequencer implementation

The decision wait implementation described above is a stepping stone to that of the sequencer on our
current quest for universality, which might be summarized intuitively as an arbiter with a wrapper
around it using a decision wait to make it follow a sequencer protocol. As shown in Figure 9.11, the
feedback paths via the TOGGLE and the MERGE primitives through the decision wait mean a grant
is issued by the sequencer only upon completion of a 4Φ handshake internally by the ARB. The
first handshake is allowed to complete because the PUSH initially enables the column input of the
decision wait. Subsequent handshakes are blocked by the decision wait until the acknowledgment
of the previous grant unblocks them via the PUSH. The decision wait not only synchronizes grants
with acknowledgments, but remembers which handshake is in progress.

Generalizations of a sequencer to any number of request and grant pairs are useful enough to
merit the construction of a function SEQ : N Ñ H. This function is fully defined in Chapter 13, but
for the present purpose of establishing universality, only the case of SEQp2q is needed.

SEQp2q “ Z2ppZ2RpC2xMERGE2è1
2, ARB, TOGGLE2é1

2y,DxPUSH,DWp2,1qyqq ê 2q (9.17)

This expression is mainly a straightforward transcription of the schematic in Figure 9.11. A pair
of identical blocks in parallel with each other is indicated by squaring the block as explained in
Section 8.9.1. A cascade of the MERGE pair, the ARB, and the TOGGLE pair is made by the C2
combinator, which connects the first two outputs of each to the first two inputs of the next. Input
terminal rotations on the MERGE pair and output terminal rotations on the TOGGLE pair imply a
connection to one of each. This cascade is connected to the combined PUSH and decision wait block,
with the loops closed by the Z2 combinators.

9.3. DI PRIMITIVES 263

R1

G2

G1

R2

Ack

R1

R2

G1

G2

Ack

Figure 9.12: Petri net model of `xR1, R2, Ack, G1, G2y SEQp2q

As usual, the sequencer design and its justification up to this point are pure hand waving and can
not be trusted without formal verification. If it is correct, the block defined by Equation 9.17 should
associate requests with the first two input terminals, an acknowledgment with one remaining input
terminal, and grants with each of two outputs in the same order as the corresponding requests, all
following a sequencer protocol. Some confidence is gained by running through the computation of

`xR1, R2, Ack, G1, G2y SEQp2q

according to Equation 9.9 to yield the process whose Petri net model is shown in Figure 9.12, a
striking example of block optimization if nothing else. Checking this result by Equation 7.18 for
refinement against the sequencer specification in Equation 3.6 can lend it further credibility if its
correctness is not sufficiently obvious from the figure.

LJOIN implementation

After the FORK, MERGE, and sequencer, the remaining ingredient for universality according to [222]
is a synchronization element called the LJOIN. This device belongs to a useful family of circuits
called sparse decision waits. In sparse decision waits, not every combination of row and column
inputs is valid. In the simplest case, the LJOIN has two row inputs r0 and r1 and two column inputs
c0 and c1, but only three outputs, d00, d10, and d01, because the combination of r1 and c1 is not
acceptable. The schematic symbol is an L-shaped array of bullets similar to that of a decision wait,
with an empty space in the position of the excluded output.

The LJOIN has meaningful generalizations to arbitrary row and column lengths, and the full
range of possibilities is covered in Chapter 11 but is deferred because only this is needed at present
for universality. It can be defined as follows.

LJOIN “ pZ2pUxL2xFxTOGGLE, MERGEy2, JOINy,FpSHUNT 2q æ 1y ê 2qq è1
2 ˙x2,1, 0y (9.18)

As the schematic in Figure 9.13 might suggest, it is an ad hoc design based on an embellishment of
the decision wait shown in Figure 9.9. The only regular structure is the SHUNT, TOGGLE, and MERGE

cascade repeated twice. There are multiple ways this circuit could be expressed, but a good choice
is to start by treating the TOGGLE, MERGE, and JOIN subnetwork as a separate unit fromt the SHUNT

cascade as shown here. (See Equation 8.4 and Equation 8.52 for reminders about this notation.)
The formal verification of this circuit is less straightforward than previous examples. A Petri

net model derived from the expression `xr0, r1, c0, c1, d00, d01, d10y LJOIN would lack the simplicity

264 CHAPTER 9. AS PRIMITIVE AS CAN BE

r0

r1

c0 c1

d00

d01

d10

r0

r1

c0 c1

d00

d01

d10

“

Figure 9.13: The synchronization element LJOIN is an example of a sparse decision wait. Only three
combinations of inputs are valid.

and obvious correctness evident in Figure 9.10 and Figure 9.12, because the implementation is not
equivalent to the specification. Whereas the effect of concurrent inputs to r1 and c1 is undefined
as far as the specification is concerned, the circuit accepts them without diverging and issues an
acknowledgment on d10. Divergence follows only if the next pair of concurrent inputs includes c1,
which would entail a second consecutive control input to a SHUNT. The circuit can avoid divergence
indefinitely if subsequent inputs are always r1 and c0, or can return to its initial state given an input
of r0 and c0 (albeit with the wrong acknowledgment). This analysis is confirmed by inspection of
the transducer model shown in Figure 9.14, which can be derived automatically from the process
model. (See Equation 7.12 for the definition of a transducer.)

Those possessed of a certain delicate intuitive sensibility might deem the circuit in Figure 9.13
compatible with the specification based solely on Figure 9.14 because only the initial state matters.
If it had only the initial state, the circuit would be precisely equivalent to the specification, and the
other state can be ignored because it is reached only by a prohibited input combination. Whatever
the merits of this argument, there is no harm in taking a systematic approach as insurance. A
formal specification of the behavior required of the LJOIN is similar to that of the decision wait (cf.
Equation 9.16).

X “ env p

loop pb altq seq›x

ppar pget r0,get c0q,put d00q,

ppar pget r0,get c1q,put d01q,

ppar pget r1,get c0q,put d10qy,

loop pb altq seq›x

ppar pput r0,put c0q,get d00q,

ppar pput r0,put c1q,get d01q,

ppar pput r1,put c0q,get d10qyq

This expression allows for automated confirmation of X Ď `xr0, r1, c0, c1, d00, d01, d10y LJOIN, thereby

9.4. GENERALIZED DI PRIMITIVES 265

ptr1, c0u, td10uq

ptr1, c1u, td10uq
ptr0, c0u, td01uq

ptr0, c0u, td00uq

ptr0, c1u, td01uq

ptr1, c0u, td10uq

Figure 9.14: The transducer model computed from Tp`xr0, r1, c0, c1, d00, d01, d10y LJOINq shows how
the circuit refines the specification unnecessarily. Only the initial state is required.

conclusively supporting the claim of universality for the set of primitives presently proposed. This
result is reassuring in view of our longer term agenda of developing a general circuit synthesis
algorithm to target this set.

9.4 Generalized DI primitives

The primitives developed in Section 9.3.4 are certainly powerful enough to implement any DI process
by themselves, but designing a few well chosen modules from them first and then building a circuit
by putting the modules together can make the job easier and the results more understandable. Many
useful modules are not just one of a kind, but members of a family of modules parameterized by
numbers, such as the 2-way sequencer or the 2-by-1 decision wait noted previously in Section 9.3.5,
which are instances of the n-way sequencer family or the n-by-m decision wait family respectively.
Having defined the initial set of primitives, we turn now to organizing them effectively along these
lines.

Before tackling the more sophisticated module families in subsequent chapters, we can practice
on some that are both necessary prerequisites for them and conceptually more approachable as
straightforward generalizations of the existing primitives to higher arities. Each of the three-terminal
primitives generalizes as one might expect to a multi-way version as a tree structure, whereas the
ARB primitive generalizes to a multi-way arbiter by sometimes more interesting means. The former
are discussed together in Section 9.4.1, and the latter in Section 9.4.2.

9.4.1 Three-terminal primitive generalizations

The protocol followed by a MERGE, JOIN, FORK, or TOGGLE primitive extends intuitively to any
number of inputs or outputs. It is easy to imagine a circuit that does what a MERGE would do if
it had more than two inputs: accept a signal on any one of its inputs and acknowledge it on the
output, with multiple concurrent inputs prohibited. Similarly, a multi-way version of a JOIN would
issue an acknowledgment only after a signal were received on every input. A multi-way FORK would
acknowledge a single input concurrently on however many outputs it has, and a multi-way TOGGLE

would cycle through its outputs sequentially when acknowledging each successive input.

266 CHAPTER 9. AS PRIMITIVE AS CAN BE

Figure 9.15: A cascaded sequence of five MERGE primitives FpMERGE 5q implements a 6-way merge
protocol.

First attempt

For a MERGE, JOIN or FORK, this behavior is readily achievable by a cascaded sequence as shown in
Figure 9.15. For example, the block

FpMERGE n´1q

would do the job of a MERGE with n inputs for any n ě 2. However, there are two reasons to try
harder. One is that this trick fails spectacularly for a TOGGLE. The block FpTOGGLE n´1q generates
a complex periodic pattern of output signals with relative frequencies forming a geometric series.
The other reason is that the average case latency (i.e., the time taken for an input signal to be
acknowledged) is proportional to n, the input or output arity, as is its standard deviation assuming
uniformly distributed component delays and all input signals equally probable. A logarithmic latency
in n would scale better, and it can be achieved at no additional hardware cost.

Logarithmic latency

The way of achieving logarithmic latency is to organize the devices into trees rather than cascades
as shown in Figure 9.16. The MERGE and JOIN networks each have eight inputs, but a signal passes
through only three devices to reach the output. In general, for n inputs, there would be only
rlog2pnqs devices in the critical path (hence the terminology). Nevertheless, these networks contain
the same number of devices as a cascade for a given number of inputs. Similarly, the input to the
TOGGLE network passes through only logarithmically many devices to reach the output. The input
signal to the FORK network necessarily passes through every node, but delay is still logarithmic
because the nodes on each level are traversed concurrently.

Unbalanced trees

Specifying all of the structures in Figure 9.16 would be easy even with that worrisome output
permutation in the TOGGLE network if the arity were always a power of two, but in general the trees
are not balanced and some sort of workaround is needed. For a multi-way TOGGLE, sometimes the
tree is not only unbalanced but technically not even a tree because it must include a feedback path
through a MERGE to work correctly. An example of this situation is shown in Figure 9.17. If a 3-way
TOGGLE were desired, it would be necessary to build a 4-way TOGGLE first and then feed one of the
outputs back through a MERGE to reduce the output arity to 3.

Recurrences

It is possible nevertheless to handle all of these cases with some uniformity. A specification can be
developed as a recurrence whereby a tree with arity n is made by combining two trees having an

9.4. GENERALIZED DI PRIMITIVES 267

Figure 9.16: Latency-optimized generalizations of three-terminal primitives are made from balanced
binary trees where possible.

Figure 9.17: A 3-way TOGGLE is made from a 4-way TOGGLE by feeding back one of the outputs
through a MERGE.

268 CHAPTER 9. AS PRIMITIVE AS CAN BE

arity as near as possible to n{2 with an additional device as a new root. For a TOGGLE with odd
arity, a TOGGLE with the next even arity is created and one of its outputs is fed back through a
MERGE to the input. Using camel case typography to distinguish these function mnemonics from
their homonymous primitive counterparts, we define each generalized primitive as a function in
N´ t0u Ñ H with the desired arity n as an argument.

FORKpnq “ xF2xFORK, pb Rq FORK› xrn{2s, tn{2uyy, Iyδn
1

(9.19)

MERGEpnq “ xF2xpb Rq MERGE› xrn{2s, tn{2uy, MERGEy, Iyδn
1

(9.20)

JOINpnq “ xF2xpb Rq JOIN› xrn{2s, tn{2uy, JOINy, Iyδn
1

(9.21)

TOGGLEpnq “ xF2xTOGGLE, pTOGGLE n{2q2y ˙ ιn � 2, xZ2RpMERGE, TOGGLE n ` 1q, Iyδn
1
yn mod 2

For example, the JOIN function is a member of N Ñ H, whereas the JOIN primitive is a member
of B. It should also be noted that superscripts are used in two different ways. A superscripted
function such as Z2 denotes Z composed with itself twice (Equation 6.2), whereas a block with a
superscript such as pTOGGLE n{2q2 denotes a two copies of the block in parallel (Equation 8.57).
Furthermore, the output permutation

ιn � 2 “ x0, n{2,1, n{2 ` 1,2, n{2 ` 2, . . . n{2 ´ 1, n ´ 1y (9.22)

interleaves the TOGGLE outputs as shown in Figure 9.16.

9.4.2 Arbiter generalizations

The remaining primitive having an intuitive generalization to higher arity is the arbiter. A multi-way
ARB may have more than two input terminals, along with an output terminal for each. A request
(e.g., to acquire a shared resource) is conveyed by the environment as a signal to an input terminal
of the arbiter, and each request is acknowledged by the arbiter as a signal from the corresponding
output terminal. A subsequent signal by the environment to the same arbiter input terminal (e.g., to
release the resource) is acknowledged by the arbiter on the same output terminal, thus completing
a 4Φ handshake. Simultaneous requests on any number of inputs are allowed, but only one is
acknowledged at a time, and only after any pending 4Φ handshake completes, even if the arbiter
has to choose among them non-deterministically. This capability helps the environment manage
any number of peers competing for mutually exclusive access to a shared resource up to the number
of input and output terminal pairs on the arbiter. It is customary to refer to each associated pair of
terminals as a handshake port.

Unlike the three-terminal primitives, the ARB has more than one reasonable method of general-
izing it to higher arities. For some arities, there is a tradeoff between latency and space efficiency
depending on which method is used, and for others the same choice optimizes both. These issues
and the importance of arbiters in practice warrant a chapter of their own, so a discussion in depth is
deferred to Chapter 12. However, a single example follows in the rest of this section as a taster.

Theory of operation

Designing an n-way arbiter is like organizing a competition wherein each of n contestants is required
to compete directly or indirectly against every other in a way that guarantees exactly one winner. It
also involves an inductive way of thinking in that we pretend to have solved the problem already
for n ´ 1 and need only accommodate one more. One way of putting these two ideas together leads

9.4. GENERALIZED DI PRIMITIVES 269

“

Figure 9.18: An n-way arbiter made from nothing but ARB primitives takes n2{2 ´ n{2 of them.

to the construction shown in Figure 9.18. The idea of this design is to accommodate a latecomer to
a competition among five contestants after the first four have already competed. The overall winner
is decided by having the latecomer compete against the winner of the other four, which is done by
threading it through a cascade of four ARB primitives so as to meet the 4-way winner wherever it
emerges. However, no synchronization is involved. If the latecomer is so late that the winner has
already gone through, then we wish it better luck next time as it waits for the winner to complete
its handshake, and if it is so early that it whisks through the cascade before any other competitor
emerges from the 4-way arbiter, then we congratulate it.

Specification

It is not inordinately difficult express an arbiter of this form through the recursive definition of a
function ARB : N Ñ H.

ARBpnq “ pλk. LkxARB k,UppARB ç 1q
k
qyq n ´ 1 (9.23)

The cascade of n ´ 1 ARB primitives is given by UppARB ç 1q
k
q, where the U operator connects the

last output of each term to the first input of the next as explained in Section 8.9.2. Because the ARB

outputs are rolled by one, actually the first output of each ARB gets connected to the first input of
the next, but the last output from the last ARB becomes the penultimate output from the cascade. In
this way, the k outputs of ARB k connected by Lk to the last k inputs of the cascade correspond to
the first k outputs from the whole network, leaving the first input to the cascade and hence the last
input to the network disconnected. This input corresponds to the latecomer and is threaded through
the cascade to the first input on the last ARB, and hence the last output of the network, as required.

The definition of ARB in Equation 9.23 would be fine except that as a recursive definition it also
needs a base case. If n “ 2, then ARBpnq should reduce to the ARB primitive, or perhaps ARBp1q “ I
would be more appropriate as a base case. (See Equation 8.15 for the definition of I.) An elegant
solution avoids an overtly recursive definition by reformulating ARBpnq as a fold over ιn´1 using the
b combinator.

ARBpnq “ pbI λpi, tq. pλk. Lkxt,UppARB ç 1q
k
yq n ´ i ´ 1q ιn´1 (9.24)

As usual, it would be prudent to verify this design against the desired specification. Viewed as a
process, a generalized ARB primitive could have an input alphabet tReq0, Req1, Req2, . . . Reqn´1u and

270 CHAPTER 9. AS PRIMITIVE AS CAN BE

an output alphabet tAck0, Ack1, Ack2, . . . Ackn´1u when there are n ports, and could be expressed for
any given n as Apnq using a function A : N Ñ D defined as follows.

Apnq “ loop pb altq pλi. pb seqq xget Reqi ,put Acki ,get Reqi ,put Ackiyq› ιn

If the specification of ARB is correct, then the following refinement relationship should hold. (See
Equation 9.9 for the definition of `.)

Apnq Ď `pppλi. Reqiq
›ιnq q ppλi. Ackiq

›ιnqq ARBpnq (9.25)

For any fixed n, this proposition can be checked automatically, thereby establishing the correctness
of a given candidate circuit for an arbiter with n ports.

Although it is adequate for a practical engineering methodology, Equation 9.25 may be weaker
than it looks. Verifying an individual arbiter generated by Equation 9.24 is not equivalent to proving
that Equation 9.24 is a correct algorithm for generating arbiters. Correctness of Equation 9.24 would
be equivalent to Equation 9.25 universally quantified with respect to n. Higher order propositions
like these open the door to undecidability and require ad hoc proof techniques. These are not
explored further in this book, but we should note in passing that results of this nature could save
some of the time normally spent on verification, which can become costly even if it is automated.

The gateless gate

1. In addition to dead code elimination (Section 9.1.7), what
other transformations used in programming language com-
pilers suggest analogous Petri net optimizations, and how
might they work? (See [7] for a review.)

2. How could a circuit be designed to implement the LJOIN

specification exactly instead of refining it?

3. A process W “ loop seq pget a,put bq models a wire, but no WIRE primitive is
proposed in Section 9.3 despite its traditional usage in trace theory [82, 244].

a) What would be one way of implementing a wire using the given set of primi-
tives?

b) What other ways are there? (hint: at least three, excluding trivial variations)

c) How are they expressed by block combinators?

d) The nullary block combinator I defined by Equation 8.15 is like a WIRE primitive
built into the theory. Is it necessary for universality? (That is, do all of the
answers above depend on it?)

4. What is the Petri net model of an isochronic fork? (hint: This question is a kōan.)

5. How long is the critical path of the arbiter depicted in Figure 9.18? Is it the same
for all inputs? If not, what are the worst, best, and average critical paths?

We think in generalities, but we live
in detail.

Alfred North Whitehead

C
H

A
P

T
E

R 10
DECISIONS, DECISIONS

In this chapter, we resume development of the decision wait family of modules introduced in
Section 9.3.5 by generalizing from the 2-by-1 case to n-by-m for arbitrary positive n, m P N, and then
generalize it further to more than two dimensions in preparation for the development of arbitrary
dimensional sparse decision waits in Chapter 11.

A sensible reader might well ask why such a small topic warrants two chapters of gnarly
schematics and equations and a lengthy appendix featuring more of the same. There are several
reasons. The sequencer example incorporating a decision wait
discussed previously typifies the practice of requisitioning a
decision wait from a mental warehouse as a matter of course,
thus avoiding any distraction from the main task at hand. A
ready supply of decision waits of all shapes and sizes is a load
off the designer’s mind because it means any problem that
can be reduced to a decision wait can be considered solved.
The decision wait is also an advantageous abstraction for auto-
mated verification because it has a simple and regular process
level description or optimized Petri net model compared to
its netlist representation. This property means the protocol it
exchanges with its environment is much faster to simulate than whatever takes place internally.
Furthermore, the decision wait has a role to play in automated synthesis (Chapter 15), where it
implements a state transition table derived from a transducer model, and in data communication
(Chapter 13), where it makes some types of decoders more efficient.

Even so, could this story not be told more succinctly? The dark side of decision waits is their
reputation as large and inefficient structures. A naive formulation would certainly make for a
shorter exposition, but would result most likely in circuits with objectionable latencies. Optimal
performance demands attention to any factors that may affect it. Similarly to arbiter networks
(Chapter 12), decision waits can be of various general forms, each with considerable scope for
further variations within it, and each possibly optimal over different ranges of dimensions, but hard

271

272 CHAPTER 10. DECISIONS, DECISIONS

and fast rules for decision wait decomposition are elusive because there are multiple dimensions
to consider and subtle critical path dependences. Instead, we opt for an unbiased approach to
enumerating and selectively sampling the design space.

This approach requires consideration of various possible decision wait transformations, such
as permutation and rotation, that may affect performance in certain contexts. For example, if an
n-by-m decision wait is bigger and slower than an m-by-n decision wait of a similar form, then it
makes sense to use the latter in place of the former by permuting the inputs and outputs accordingly.
A complete description of such a decision wait would include not only the dimensions n and m,
but the classification of its form and an indication of whether or not it has been rotated. If it is
composed of lower dimensional decision waits glued together, the same information would be
needed in reference to them, and so on.

A formal concept of a decision wait decomposition as a hierarchical structure encapsulating
this information turns out to be useful as something like a temporary intermediate representation
of a decision wait. It sits between the high level specification pn, mq P N ˆN, and the low level
description DWpn, mq P H to supply all of the details that impact performance but do not interest
the designer. The decision wait generating function DW : NˆN Ñ H is defined in terms of a fixed
function f taking the given dimensions n and m to the optimum decomposition for those dimensions.
Such a function, called a decomposition strategy in this chapter, would be determined empirically
by optimizing over various possibilities with respect to technology dependent factors and updated
ideally only as often as the fabrication technology changes.

This chapter is organized as a rabbit hole from which a reader can retreat profitably at several
points after some routine math notation is out of the way in Section 10.1. By the end of Section 10.2,
everything necessary to the construction of simple two dimensional decision waits of any size is
covered. These would be subject to linear latencies, but Section 10.3 takes them a step further
to gain logarithmic latency and hence better performance in the limit of large sizes. Section 10.4
introduces two alternative routes to higher dimensional decision waits, one simple and the other
more sophisticated, thereby taking the subject as far as possible before involving the rotations and
permutations on decision waits proposed in Section 10.5 as a prerequisite to their optimization.
Construction of arbitrary dimensional decision waits is revisited in Section 10.6 in terms of general
hierarchical decomposition strategies incorporating these transforma-
tions. Readers interested in detailed examples of putting these ideas
to work at selecting optimum decomposition strategies are referred to
Appendix C, which discusses the two metrics of component count and
critical path length.

10.1 Ordered trees

A hierarchical structure such as a decision wait decomposition is conve-
nient to package as a tree, a term previously used informally but now in
need of some firming up. In graph theory, trees are envisioned as acyclic
graphs, directed or undirected, with no more than one path connecting
any two nodes. The trees needed in this chapter are finite, directed, and
connected, with each node having at most one incident edge and any
number of outgoing edges. It would be least troublesome philosophically to think of the edges as
anonymous but distinguishable and the nodes as labeled, with identical labels possible for nodes
that are nevertheless distinct. We stipulate further that among the outgoing edges of any node,

10.1. ORDERED TREES 273

some are deemed to precede others according to a total order relation, hence the terminology of
ordered trees.

10.1.1 Definition

A simple concrete model is possible for trees meeting these conditions. For a set S, the set OpSq

modeling the ordered trees whose node labels are members of S is the smallest set T satisfying
T “ S ˆ T ˚, or equivalently satisfying the following inductive definition.

• If x is a member of S, then px ,εq is a member of T , where ε denotes the empty list.

• If x is a member of S and y is a member of T ˚ then px , yq is a member of T .

10.1.2 Terminology

Ignoring the distinction henceforth between the concrete model and the abstract concept of an
ordered tree,1 we regard two ordered trees px , yq and px 1, y 1q in a set OpSq as equal to each other
if and only if x “ x 1 and y “ y 1, provided equality is defined for members of S. By way of further
terminology, for a tree px , yq P OpSq

• x is the root of the tree

• y is the list of subtrees

• and px , yq is terminal if and only if y is ε.

For example, if S “ tu, v, wu is a set, then pu, xpw, xpu,εqyq, pv,εqyq is a member of OpSq. It has a
root u, a first subtree pw, xpu,εqyq, and a second subtree pv,εq, which is terminal.

10.1.3 Computation

Our main use for ordered trees in this chapter is to evaluate
decision waits as a function of their decompositions, which are
represented as ordered trees. Functions of ordered trees could
be expressed as recurrences, but every case that concerns us
follows a similar pattern of bottom-up traversal that is simple
to encapsulate by a tree folding combinator Λ (Greek upper case lambda) analogous to the list
folding combinator b (Section 8.1.3).

The tree folding combinator can be defined as follows. For arbitrary sets S and R, a second order
function

Λ : ppS ˆ R˚q Ñ Rq Ñ pOpSq Ñ Rq

takes a function f : S ˆ R˚ Ñ R to a function Λp f q : OpSq Ñ R satisfying this recurrence.

Λp f q “ λpx , yq. f px , pΛ f q› yq (10.1)

1Otherwise to be completely correct we might have to say that equality of models implies no more than a label-preserving
and order-preserving isomorphism between the trees they model.

274 CHAPTER 10. DECISIONS, DECISIONS

That is, to compute the function Λp f q given a tree px , yq P OpSq as an argument, we would map
Λp f q recursively over the list of subtrees y , make a list v “ pΛ f q› y of the results, and then apply
f to the pair px , vq.

A function of the form Λp f q always takes a tree as an argument but need not return a tree. For
example, a function h : OpSq Ñ N that maps a tree t P OpSq to the number hptq P N of nodes in t
could be defined like this.

h “ Λ λpx , vq. 1 `

|v|´1
ÿ

i“0

vi (10.2)

A more interesting example is a function g : OpSq Ñ S˚ that takes a tree t P OpSq to the list
gptq P S˚ of its node labels in level order

g “ 5 ˝Λ λpx , vq. xxy :
`

bε λpa, bq. pλm. ppλi. ai q biq
› ιmq q pa « mq q pb « mqq min

|a|, |b|
(˘

v

which would imply hptq “ |gptq|.

10.1.4 Notation

Sums of lists of natural numbers v P N
˚ such as the one in Equation 10.2 appear frequently in this

chapter, so a notation omitting the limits

ř

v “

|v|´1
ÿ

i“0

vi

is used hereafter to express the summation over the whole list. The usage

ř

pv ∣ nq “

$

’

&

’

%

n´1
ÿ

i“0

vi if n ă |v|

ř

v otherwise

follows from Equation 8.7, with the conventional vacuous sum
ř

pv ∣ 0q “
ř

ε “ 0 implicit
throughout. The analogous notations

ś

v and
ś

pv ∣ iq for products also apply, with vacuous
products

ś

ε“ 1 per convention. Furthermore, the sum and product operators can also be treated
as functions to be mapped over a list of lists w P N

˚˚ in expressions like these
ř› w “ pλv.

ř

vq› w
ś› w “ pλv.

ś

vq› w

which both reduce to lists in N
˚.

A notion of arrays or lattices also tends to pervade any discussion of decision waits, in the sense
of an n-dimensional space of discrete points with each point identified by a list of n coordinates.
The idea is readily intuitive that a list of non-zero dimensions d P N

n should determine a set of
ś

d
points p P N

n satisfying 0 ď pi ă di for all 0 ď i ă n, but expressing it repeatedly is tiresome unless
we take another liberty with notation. A higher dimensional analog ῑd to the notation ιn defined in
Equation 8.3 pertains to a list d P N

˚ appearing in the subscript, and denotes the list

ῑd “ pbxεy λph, tq. 5 pλi. pλ j. i : jq› tq› ιhq d P pN|d|q
ś

d (10.3)

of all points p meeting the condition above ordered lexicographically.

10.2. CASCADING PLANAR DECISION WAITS 275

Figure 10.1: A lateral decision wait has one row and any number of columns.

10.2 Cascading planar decision waits

Many useful decision waits have only two dimensions, (i.e., rows and columns), and are called
planar decision waits hereafter to distinguish them from higher dimensional decision waits. A
simple way to construct planar decision waits is by repetitive arrays of standard cells, which are
the focus of this section. Decision waits of this form are described as cascading for the sake of
discussion, as opposed other organizations considered in Section 10.3.

Cascading planar decision waits are simple because building them to arbitrarily large dimensions
is only matter of combining sufficiently many cells according to an obvious pattern. By some metrics,
(e.g., component count) cascading planar decision waits are also likely to be the best alternative,
but perhaps not the fastest for reasons illustrated shortly. Nevertheless, they are the foundation for
all subsequent constructions in this chapter.

To make them even simpler, we break down cascading planar decision waits further into three
cases. Section 10.2.1 dispenses quickly with lateral decision waits, which are those having one row
and any number of columns. Section 10.2.2 develops bilateral decision waits, which have two rows
and any number of columns, and Section 10.2.3 treats the case of sizes greater than two in both
dimensions.

10.2.1 Lateral

A minor rearrangement of Figure 9.9 in Figure 10.1 suggests a way of building lateral decision
waits by the yard: we need only cascade a SHUNT and a TOGGLE combination onto the right for

276 CHAPTER 10. DECISIONS, DECISIONS

c0

r0

r1

c1

d01

d00

d10

d11r0

r1

c0

c1

d00

d01

d10

d11

Figure 10.2: a 2-by-2 decision wait using an LJOIN and a FORK as building blocks

each additional column. The intuition is that an input signal to any column but the last sets the
corresponding SHUNT, propagates through the TOGGLE below it and then to the left through the
MERGE network to synchronize with the row input at the JOIN. The output signal from the JOIN

propagates back to the right until it reaches the same SHUNT again, where it gets shunted out
through the TOGGLE below it. Alternatively, an input signal to the last column on the right bypasses
the SHUNT cascade but still synchronizes with the row input signal at the JOIN, whose output signal
passes unimpeded through the whole cascade.

This construction makes economical use of the components, using no more than linearly many
of any type, but could also exhibit large latencies when the number of columns is large because a
signal has to traverse a number of stages proportional on average to the number of columns. Linear
latency may be undesirable and worth trading for other costs if performance is critical, but it is
premature to address this issue in depth at this point.

For the moment, we note that a lateral decision wait with n columns is easy to express as Ωl n P H

in terms of a function Ωl : N Ñ H defined as follows.

Ωlpnq “ xpλc. ZpFcxFpJOIN : SHUNT cq, TOGGLEcé1
2,MERGE ny ê 1qq n ´ 1, JOINyδn

1
(10.4)

That is, letting c “ n ´ 1 denote the predecessor of the number of columns, we have the JOIN

connected to c instances of a SHUNT

FpJOIN : SHUNT cq

10.2. CASCADING PLANAR DECISION WAITS 277

ri ro

d

ci

co

bi

bo d00

ri ro

d

ci

co

bi

bo d01

ri ro

d

ci

co

bi

bo d02

ri ro

d

ci

co

bi

bo d10

ri ro

d

ci

co

bi

bo d11

ri ro

d

ci

co

bi

bo d12

c0 c1 c2

d13

d03r0

r1

c3

Figure 10.3: A bilateral decision wait made of bilateral decision wait cells has two rows and any
number of columns.

a similarly sized cascade TOGGLEcé1
2 with the dotted outputs bundled together, and the network

MERGE n combined in the expression

FcxFpJOIN : SHUNT cq, TOGGLEcé1
2,MERGE ny

whose last output (from the MERGE network) is connected to its first input (to the JOIN) in

ZpFcxFpJOIN : SHUNT cq, TOGGLEcé1
2,MERGE ny ê 1q

by rolling each of them by one. The case of a 1-by-1 decision wait reduces to a single JOIN primitive,
which is indicated separately in Equation 10.4.

10.2.2 Bilateral

The lateral decision wait does not generalize in any obvious way to a bilateral form, so a more
creative solution is necessary. One particularly elegant solution shown in Figure 10.2 was reported
in [222], but there are reasons to try harder. Although this construction works for a 2-by-2 decision
wait, a 2-by-n version of a similar form remains an enigma. Furthermore, at a total cost of 32

278 CHAPTER 10. DECISIONS, DECISIONS

ro bo

d

ci bi

ri

co

Figure 10.4: a bilateral decision wait cell BC as defined by Equation 10.5

primitives based on the LJOIN implementation in Figure 9.13, perhaps it comes at too high of a price.
(In fairness, it would be only 6 primitives if the LJOIN itself were considered a primitive as in [222].)

To design bilateral decision waits with arbitrarily many columns, we fall back instead on the
cascading form shown in Figure 10.3, assuming some type of standard cell can be found to make
it work. Successful operation is possible via three associated pairs of inputs and outputs on each
cell labeled pci, coq, pri, roq, and pbi, boq, along with the output labeled d visible externally to the
cascade.

• Similarly to the lateral decision wait, this network accepts a column input shown from above.
On any column but the last, it changes the state of a cell on the top row and then propagates
to its neighbor below via the output labeled co.

• A cell on the lower row receives a signal on the input labeled ci, changes its own state
accordingly, and relays the signal via co to the MERGE network, from which it reaches the
column input on the 2-by-1 decision wait.

• An input signal to the last column bypasses the cells, proceeds directly to the MERGE network,
and then synchronizes similarly with the row input.

• After synchronizing with the column input, a row input to the 2-by-1 decision wait propagates
to the input labeled ri on the first cell in the opposite row.

• A cell receiving an input signal on ri without previously having received one on ci simply
relays it to its neighbor on the right via the output labeled ro.

• A cell receiving an input signal on ri that has previously received one in ci conveys an output
signal to bo (to its vertical neighbor) and resumes its original state.

• A cell receiving an input signal on bi (from its vertical neighbor) transmits a signal on the
output labeled d and resumes its original state.

A short summary of the required behavior of a typical cell in this cascade is that it can participate
in a handshake ri-ro on the terminals thus labeled if it receives no column input signal, ci-co-ri-bo if
it receives a column input and then a row input, or ci-co-bi-d if it receives a column input and no

10.2. CASCADING PLANAR DECISION WAITS 279

b0 c

d ä
c

ro
co ä

c

bo ä
c

d ä
c

ro

ciä
c

biä
c

ri
ri

)

n

)

n

Figure 10.5: A network b0 c defined by Equation 10.6 contains the repetitive parts of the bilateral
decision wait.

row input, before returning to its original state in each case. A design for a cell with this behavior is
shown in Figure 10.4 and specified by the expression

BC “ ZpUpMERGE : pLxSHUNT, TOGGLEyq
2
q ê 2q (10.5)

whose input terminals correspond to those labeled ci, bi, and ri in the figure in that order, and whose
outputs correspond to d, ro, co, bo in that order.

To describe the circuit shown in Figure 10.3, let c “ n ´ 1 denote the predecessor of the number
of columns, so that the expression

UppBC å 1 æ 2q
c
q

describes a cascade of c instances of BC by Equation 10.5 each with its output labeled ro connected
to the input labeled ri on its neighbor to the right. Affixing an output permutation network

F3cxUppBC å 1 æ 2q
c
q, I3c ˙ ι3c � cy

bundles all outputs labeled co, bo and d into three buses of c lines each, in that order, followed by
the output labeled ro from the last cell in the cascade. Rolling the inputs up and then connecting an
input permutation network

F2cxI2cè1
2,F3cxUppBC å 1 æ 2q

c
q, I3c ˙ ι3c � cy ä 1y

organizes the inputs labeled ci and bi into two buses of c lines each in that order, followed by the
input labeled ri to the first cell. A list containing an instance of this cascade for each of the two rows

pF2cxI2cè1
2,F3cxUppBC å 1 æ 2q

c
q, I3c ˙ ι3c � cy ä 1yq

2
P H

2

leads to a network b0 c P H having the co and bo output buses from the top row connected to the ci
and bi buses on the bottom row with b0 : N Ñ H defined as follows.

b0 “ λc. F2cppF2cxI2cè1
2,F3cxUppBC å 1 æ 2q

c
q, I3c ˙ ι3c � cy ä 1yq

2
q (10.6)

This network has c column inputs followed by c inputs connected to terminals labeled bi on the
top row, followed by two row inputs. On the output side, there are n external outputs from the top
row, (c labeled d and one more labeled ro) followed by c outputs labeled co from the bottom row,

280 CHAPTER 10. DECISIONS, DECISIONS

followed by another c outputs labeled bo from the bottom row, followed by n external outputs from
the bottom row as shown in Figure 10.5.

The next step is to connect the bus labeled co on this block to the MERGE network shown in
Figure 10.3 while also connecting the bus labeled bo to the one labeled bi and keeping the latter
bus lines in the same order. A block pb0 cq æ n positions both output buses at the beginning so that

Z2cRppb0 cq æ n,RpIc ,MERGE nq å 1q

would connect the co bus to the MERGE network, while leaving the bo outputs unconnected but
reversed, and one MERGE input free. With the additional rotations

pZ2cRppb0 cq å 2 æ n,RpIc ,MERGE nq å 1qq ç n

the connections from bo to bi can be concluded in

ZcppZ2cRppb0 cq å 2 æ n,RpIc ,MERGE nq å 1qq ç nq

with the original order restored, although this result leaves the output bus labeled d from the bottom
row ahead of that of the top. To correct this effect while maintaining the interchanged order of the
last ro outputs as shown in Figure 10.3, we can apply an output permutation as shown

pZcppZ2cRppb0 cq å 2 æ n,RpIc ,MERGE nq å 1qq ç nqq ˙ 5 xιnc , xcy, ιc , xn ` cyy

and abbreviate this result as pb1 b0q n in terms of a function b1 : pN Ñ Hq Ñ pN Ñ Hq defined as
follows.

b1 “ λb. λn. pλc. pZcppZ2cRppb cq å 2 æ n,RpIc ,MERGE nq å 1qq ç nqq ˙ 5 xιnc , xcy, ιc , xn ` cyyq n ´ 1

The block pb1 b0q n has two inputs to the terminals labeled ri on the cells in the first column
followed by n column inputs (the last being to the MERGE network). On the output side, it has the
output from the MERGE network first, followed by the 2n external outputs in the correct order. All
that remains is to attach the 2-by-1 decision wait shown in Figure 10.3. A 2-by-1 decision wait is
expressible in terms of Equation 10.4, and is straightforward to connect to pb1 b0q n in an expression

F2xΩl 2 ç 1, pb1 b0q ny

where the rows are interchanged as shown in Figure 10.3. The first input to this block is the row
input on Ωl 2 (hence the column input on a 2-by-1 decision wait derived from it) and the first output
still comes from the MERGE network. The expression

ZpF2xΩl 2 ç 1, pb1 b0q ny ä 1q

therefore effects the remaining connection from the MERGE network to the decision wait.
Taking one further precaution to allow for the possibility of bilateral decision wait with only one

column, which can be given by Ωl 2 ä 1, we define the bilateral decision wait generating function
Ωb : N Ñ H as follows.

Ωbpnq “ xZpF2xΩl 2 ç 1, pb1 b0q ny ä 1q,Ωl 2 ä 1yδn
1

(10.7)

10.2. CASCADING PLANAR DECISION WAITS 281

10.2.3 General

Upgrading from two rows to any number of rows now requires another round of rumination. The
construction in Figure 10.3 works by having a cell in one row tell its neighbor in the other row to
clear itself and emit an output. This protocol is appropriate for two rows because there is only one
choice for the other row, but does not extend to more than two rows. Any more than one other cell
responding similarly would cause multiple outputs to be emitted.

A more promising alternative protocol depends on a cyclic connection among the cells in a
column. One cell starts a chain of events by sending a message to its neighbor telling it to clear
itself, and the neighbor does not emit an externally visible output but only passes the message along
to the next cell in the cycle. When the original cell gets a message back again, the chain of events is
complete because the rest of the column is clear, so it clears itself and emits an output.

A column of cells observing this protocol but behaving similarly to the bilateral decision wait
cells in other respects would enable a planar decision wait with any number of rows along the lines
of Figure 10.6. This diagram may look simpler than Figure 10.3 in that there are no wires crossed
between the rows, and it would also work for just two rows, but the bilateral decision wait design
previously obtained is still preferable for that case because the bilateral decision wait cell is simpler
internally than the planar decision wait cell needed for the more general form. Specifically, the
latter must be able to handshake on the terminals labeled ri-ro if there is a row input but no column
input, ci-co-pi-po if there is a column input and no row input, or ci-co-ri-po-pi-d otherwise, and then
return to its initial state in each case. This operation requires something more like the circuit shown
in Figure 10.7 than Figure 10.4.

Planar decision wait cell

To specify this cell, let s “ LxSHUNT, TOGGLEy denote the combination of a SHUNT connected to a
TOGGLE that appears three times in it. Taking the two on the right first, we write

Upps Ú 1q
2
q

to express the connection from the middle SHUNT to the one on the right, and then

ZpUpps Ú 1q
2
q ê 1q

to express the connection from the right SHUNT to the middle one. Augmenting this expression with

D3xZpUpps Ú 1q
2
q ê 1q, MERGE2y

connects the first output from the middle TOGGLE to the first MERGE, the second output from the
middle TOGGLE to the second MERGE and the first output from the right TOGGLE also to the second
MERGE, which therefore becomes the one whose output is labeled po. The output from the first
MERGE needs to be connected to the remaining SHUNT, so we roll down the outputs and write

UxD3xZpUpps Ú 1q
2
q ê 1q, MERGE2y ç 1, sy

to make the connection. A connection is still needed from the last output on the left TOGGLE, which
is the last output from this block, to the first input on the middle SHUNT, which is the first input on
this block, which we could express by writing

ZpUxD3xZpUpps Ú 1q
2
q ê 1q, MERGE2y ç 1, sy ê 1q

282 CHAPTER 10. DECISIONS, DECISIONS

ri ro
d

ci

co

pi

po
d00

ri ro
d

ci

co

pi

po
d01

ri ro
d

ci

co

pi

po
d02

ri ro
d

ci

co

pi

po
d10

ri ro
d

ci

co

pi

po
d11

ri ro
d

ci

co

pi

po
d12

ri ro
d

ci

co

pi

po
d20

ri ro
d

ci

co

pi

po
d21

ri ro
d

ci

co

pi

po
d22

d03

d13

d23

c0 c1 c2

r0

r1

r2

c3

Figure 10.6: A planar decision wait made of planar decision wait cells has any numbers of rows and
columns.

10.2. CASCADING PLANAR DECISION WAITS 283

ro

poco

ri

pi

d

ci

Figure 10.7: planar decision wait cell defined by Equation 10.8

and hence define the planar decision wait cell PC P H as

PC “ pλs. ZpUxD3xZpUpps Ú 1q
2
q ê 1q, MERGE2y ç 1, sy ê 1qq LxSHUNT, TOGGLEy (10.8)

This block corresponds to Figure 10.7 when the input terminals are labeled pi, ri, and ci in that
order, and the outputs are labeled po, d, ro, and co in that order.

Planar decision wait cascade

To describe the cascade in Figure 10.6, we start with a single row of c cells

UppPC ê 1q
c
q

where c “ m ´ 1 denotes the predecessor of the number of columns m, and the output labeled ro
on each cell is connected to the input labeled ri on its neighbor to the right. An additional output
permutation network

F3cxUppPC ê 1q
c
q, ι3c � c ¸ I3cy

collects all outputs labeled co, po and d respectively in that order into three buses of c lines each,
with a last output labeled ro at the end, and an input permutation network

L2cxI2cè1
2,F3cxUppPC ê 1q

c
q, ι3c � 3 ¸ I3cyy

leaves an input labeled ri at the beginning followed by a bus of c inputs connected to terminals
labeled ci and another bus of c inputs connected to terminals labeled pi with respect to Figure 10.6.
To make this block easier to connect to those of other rows, we apply two terminal rotations and
denote the result p0 c P H in terms of a function p0 : N Ñ H defined as

p0 “ λc. L2cxI2cè1
2,F3cxUppPC ê 1q

c
q, ι3c � 3 ¸ I3cyy ä 1 ç c ` 1 (10.9)

which leads to the block depicted in Figure 10.8 having two buses connected to inputs labeled ci and
pi respectively followed by a single input to a terminal labeled ri, an output bus from c terminals

284 CHAPTER 10. DECISIONS, DECISIONS

p0 c

d ä
c

ro
co ä

c

po ä
c

ciä
c

piä
c

ri

)

m

Figure 10.8: A block p0 c defined by Equation 10.9 contains most of a planar decision wait row.

labeled d, a single output from a terminal labeled ro, and two buses following, each of width c, from
terminals labeled co and po respectively.

The next obvious step is to stack the rows by writing

U2cppp0 cq
n
q

where n is the number of rows, which connects the co and po labeled outputs from each row
respectively to the ci and pi labeled inputs on the row below. The resulting block has c column
inputs first, followed by c inputs to terminals labeled pi, followed by n inputs to terminals labeled
ri. The output side starts with n buses of m lines each, with each bus consisting of c lines from
terminals labeled d followed by one from a terminal labeled ro. Subsequently there are c lines from
terminals labeled co and c from terminals labeled po. To close the loop from the po labeled outputs
on the bottom row to the pi labeled inputs on the top row, a block

ZcRpU2cppp0 cq
n
q ê c, Icq

rotates the relevant outputs downward and reverses their order while rotating the corresponding
inputs to the end, so that

ZcpZcRpU2cppp0 cq
n
q ê c, Icqq

effects the required connections with their order restored, leaving a block with n row inputs followed
by c column inputs, and nm external outputs followed by c outputs from the bottom row terminals
labeled co. The addition of a MERGE network

LcxZcpZcRpU2cppp0 cq
n
q ê c, Icqq,MERGE my

contributes the last required column input while dispensing with the last co labeled outputs. This
block lacks only the columnar decision wait shown at the left of Figure 10.6, whose connection to
the row inputs is expressible by

FnxΩl n,LcxZcpZcRpU2cppp0 cq
n
q ê c, Icqq,MERGE myy

based on Equation 10.4, and whose connection to the MERGE network is expressible by

ZpFnxΩl n,LcxZcpZcRpU2cppp0 cq
n
q ê c, Icqq,MERGE myy ê 1q

or more succinctly by pp1 p0q pn, mq in terms of a function p1 : pN Ñ Hq Ñ ppNˆNq Ñ Hq given by

p1 “ λp. λpn, mq. pλc. ZpFnxΩl n,LcxZcpZcRpU2cppp cq
n
q ê c, Icqq,MERGE myy ê 1qq m ´ 1. (10.10)

10.3. QUADRANGULAR DECISION WAITS 285

Cascading planar decision wait generating function

A generalization of p1 p0 covering the edge cases of dimensions less than two follows as

Ωppn, mq “ xxxxpp1 p0q pn, mq,Ωb n ä 2 ˙ ι2n � 2yδm
2
,Ωl n ä 1yδm

1
,Ωb myδn

2
,Ωl myδn

1
. (10.11)

That is, for a number of rows n “ 1 or n “ 2, it reduces to a lateral or bilateral decision wait
respectively with m columns by Equation 10.4 or by Equation 10.7. For any other number of
rows and a number of columns m “ 1 or m “ 2, it is always better to rotate either a lateral or a
bilateral decision wait with n columns into a columnar or bicolumnar decision wait respectively with
n rows. In all other cases, the cascading planar decision wait Ωppn, mq reduces to pp1 p0q pn, mq by
Equation 10.9 and Equation 10.10.

Readers who have had enough already could stop here and get by with this definition of a planar
decision wait generating function

DWpn, mq “ Ωppn, mq (10.12)

but the more intrepid may find worthwhile improvements on it in subsequent sections.

10.3 Quadrangular decision waits

As noted previously, the cascading planar decision wait suffers
from linear latency. An alternative investigated in this section
overcomes this limitation by routing the input signals more
directly to where they are needed than by traversing the whole
sequence of rows and columns. Figure 10.9 shows an example
of the kind of thing proposed, which owes a debt to [220], and
is called a quadrangular decision wait hereafter for lack of a
better term.

To reduce clutter in this diagram and others, any network of the form

LnxFORKné1
2,MERGE ny

can be depicted as exemplified in Figure 10.10 hereafter, and called a 1-hot completion detecting
bus for the moment. More general discussions of delay insensitive bus protocols and completion
detection are deferred to Chapter 13.

The theory of operation can be summarized roughly as follows by using Figure 10.9 as an
example. This quadrangular decision wait lets any of the first i row inputs enable the top row of the
bilateral decision wait routing stage by way of a completion detecting bus, and any of the latter j
row inputs enable the other row. The bilateral routing stage thereby routes the column inputs either
to the upper or lower level of the array of internal decision waits accordingly. A similar mechanism
routes the row inputs to either the left or the right side of the array of internal decision waits, so that
the net effect is for exactly one of the internal decision waits to receive a row and a column input
signal, and the rest to receive none. A permutation network (not shown) rearranges the output lines
from the four internal decision waits to an order consistent their respective roles as one quarter of
the whole.

A hand waving argument for this construction being faster than the cascading form in the limit
of large sizes is that its latency is determined by that of a decision wait only one quarter of its

286 CHAPTER 10. DECISIONS, DECISIONS

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

y0 y1

y2 y3

. . .

...

x0

x1

äi

äj

ä

k

ä

l

ä

i

ä

j

ä k

ä l

ä

j

ä

i

ä k

ä l

ä

i

ä

j

äk äl

ä

i

ä

j
ä k ä l

ä

jk

ä

ik
ä

il

ä

jl

Figure 10.9: A quadrangular decision wait with dimensions xxi, jy, xk, lyy all greater than 1 has an
array of four internal decision waits y0 through y3, a bicolumnar row input routing stage x0 , a
bilateral column input routing stage x1, and four completion detecting buses.

size plus whatever time the input signals take to propagate through
the front end routing stages, which might be similarly decomposed.
This total is plausibly logarithmic rather than linear in the dimensions.
An exact critical path analysis can be found in Section C.2.

The rest of this section is devoted to the formal specification of
quadrangular decision waits. A basic construction in Section 10.3.1 covers any configuration, while
that of Section 10.3.2 reduces the cost for the special case of a columnar array of internal decision
waits yi . Section 10.3.3 adapts the latter to lateral arrays and subsumes these three alternatives
along with the degenerate case of a 1-by-1 array into a general form.

10.3. QUADRANGULAR DECISION WAITS 287

ä

4

ä

4

ä

4

“

Figure 10.10: schematic abbreviation of a 4-line 1-hot bus with completion detection

10.3.1 Basic

A quadrangular decision wait need not be limited to a 2-by-2 array of internal decision waits as
shown in Figure 10.9, but may contain an array of any number of them provided their dimensions
match up. That is, all decision waits in the array must have the same number of rows as their
neighbors to the sides, and the same number of columns as their neighbors above and below. When
there are more than two across, the routing stage at the left needs more than two columns, and
when there are more than two in the vertical direction, the routing stage below needs more than
two rows.

A concise account of all relevant dimensions therefore can be given by a list d P N
˚2 such that

|d0| is the number of decision waits along the vertical dimension of the array, |d1| is the number
along the horizontal dimension, d0i is the number of rows of the decision waits in the i-th vertical
position of the array, and d1 j is the number of columns common to all decision waits in the j-th
horizontal position of the array. It also follows that

• the routing stage for the row inputs has dimensions
ř

d0-by-|d1|

• the other routing stage has dimensions |d0|-by-
ř

d1

• the number of decision waits in the internal array is |d0||d1|

• and the dimensions of the whole result are
ř

d0-by-
ř

d1.

It might seem appropriate at this point to seek a function :Ωq analogous to Ωp that takes the
list d P N

˚2 to a quadrangular decision wait with these dimensions, but d does not fully determine
the quadrangular decision wait if we want to allow complete flexibility in the decompositions of
its constituent parts. Ideally each routing stage and each member of the array might be a smaller

288 CHAPTER 10. DECISIONS, DECISIONS

quadrangular decision wait specified by a separate list d of its own or might be of the form Ωppn, mq.
Hence we take a broader view by thinking of :Ωq only as a combining form

:Ωq : N˚2 ˆH
2 ˆH

˚ Ñ H

such that :Ωqpd, x , yq P H refers to a quadrangular decision wait with given dimensions d, given
routing stage decision waits x P H

2, and given internal decision waits y P H
|d0||d1|. By way of further

convention, we construct :Ωq based on x0 being the stage with dimensions
ř

d0-by-|d1| and x1 being
the stage with dimensions |d0|-by-

ř

d1. The members of y are taken to be listed in “row major”
order, which is to say that yi|d1|` j has dimensions d0i-by-d1 j for 0 ď i ă |d0| and 0 ď j ă |d1|.

Completion detecting buses

To work our way toward a formal definition of :Ωq from the front inwards, we can start by describing
the completion detecting buses in the quadrangular decision wait as pbRq q›

0 d P H in terms of a
function q0 : N˚ Ñ H taking a list of dimensions a P Rpdq to a network of |a| completion detecting
buses. Each term h P Rpaq calls for a network

LhxFORKhé1
2,MERGE hy

suggesting a folded function over a

pbZI λph, tq. RpLhxFORKhé1
2,MERGE hy ç 1, tq æ 1q a

resulting in a network of |a| completion detecting buses with their MERGE outputs segregated for
easier connection to the opposite routing stage. This expression unfortunately reverses the order of
the MERGE outputs relative to their respective buses, so a definition of q0 correcting for this effect is
preferable.

q0 “ λa. Z|a|RpppbZI λph, tq. RpLhxFORKhé1
2,MERGE hy ç 1, tq æ 1q aq ç |a|, I|a|q (10.13)

Front permutation network

Next we envision the completion detecting bus network pbRq q›
0 d connected to the parallel combi-

nation of input stages Rpx0, x1q by a permutation network described by a permutation as in

pbRq q›
0 d

q1 d
ÝÑ Rpx0, x1q

for some function q1 : N˚2 Ñ N
˚. The permutation network is fully determined by its input coming

from four buses of widths
ř

d0, |d0|,
ř

d1 and |d1| in that order and its output going to four buses
of these same widths but in the order

ř

d0, |d1|, |d0| and
ř

d1. The latter order results from the
row inputs of x0 followed by the column inputs of x0, both followed by the row inputs of x1 with
the column inputs of x1 last. These conditions imply the following definition for q1.

q1 “ λd. 5 xιř d0
, ι|d1|`

ř

d0

|d0|
, ι|d0|`|d1|`

ř

d0
ř

d1
, ι

ř

d0

|d1|
y (10.14)

10.3. QUADRANGULAR DECISION WAITS 289

ä
i

ä
i

ä

j
ä
k

ä
i

ä
i

ä

j
ä
l

ä
k

ä

j

ä
l

ä
k

ä
k

ä

j

ä
l

ä
l

y0

y1

y2

y3

x0 ˙ ι2pi` jq � i ` j

x1

Figure 10.11: the central permutation network given by q2 d for a basic quadrangular decision wait
with dimensions d “ xxi, jy, xk, lyy

Central permutation network

Continuing inward, next we need a permutation network to connect the routing stages to the
internal array pbRq y P H according to a permutation q2 d in terms of a function q2 : N˚2 Ñ N

˚.
This specification would be complicated by the requirement for non-consecutive outputs from x0 to
connect to consecutive inputs on terms of y , but could be simplified if x0 were replaced by

x0 ˙ ι|d1|
ř

d0
�
ř

d0

thereby bundling each of the |d1| columns of outputs from x0 into a separate bus of width
ř

d0 in

pbRq q›
0 d

q1 d
ÝÑ Rpx0 ˙ ι|d1|

ř

d0
�
ř

d0, x1q
q2 d
ÝÑ pbRq y.

No changes to Equation 10.14 are needed because the input order of x0 is unaffected.
Even so, a formula for q2 is not obvious. Reading the permutation in Figure 10.11 from

Figure 10.9 suggests no clear generalization to arbitrary dimensions. To break it down a bit further,
let

p “ 5 pλr. pλc. xr, cyq› d1q› d0 P pN2q|d0||d1| (10.15)

denote the list of dimensions of the items of y, with each pn “ xr, cy P N
2 expressing the number

of rows r and the number of columns c in the n-th item of y. Then the value of p pertaining to
Figure 10.11 would be xxi, ky, xi, ly, x j, ky, x j, lyy, for example, and the permutation might be more
easily described in reference to p.

The permutation consists of two concatenated parts, the first accounting for the connections
from x0 to the row inputs in y , and the second accounting for the connections from x1 to the column
inputs in y . Each part has one sublist for each term of p. To consider the row inputs first, a typical
bundle of them, such as the n-th, is carried by a bus of width pn0, corresponding to r in the list xr, cy

noted above. If this bus is connected to the n-th decision wait in y , then the initial line in this bus

290 CHAPTER 10. DECISIONS, DECISIONS

connects to the input terminal numbered
ř

5 pp ∣ nq on pbRq y, the total number of inputs on all
decision waits in pbRq y preceding the n-th. We could almost write

5 pλn. ι
ř

5 pp∣nq
pn0

q› ι|p|

to put all of the line numbers together were it not for the fact that the n-th bundle of row inputs to y
does not necessarily come from the n-th position relative to x0 ˙ ι|d1|

ř

d0
�
ř

d0. Taking a cue from
Figure 10.11, we note that the output bus ordering is permuted further in addition to the output
permutation already associated with x0. A simple transpose by |d0| accounts for this effect, making

5 pppλn. ι
ř

5 pp∣nq
pn0

q› ι|p|q� |d0|q

the correct expression of this part of the permutation.
The second part of the permutation is more straightforward because the outputs from x1 are

already in an order that matches the column input buses on pbRq y. The n-th term in y has a
number of column inputs pn1, whose first is on the terminal numbered pn0 `

ř

5 pp ∣ nq relative to
pbRq y , which is the total number of inputs due to preceding terms plus the number of row inputs
on the n-th. The list of all of the input terminal numbers for column inputs to y therefore would be

5 pλn. ιpn0`
ř

5 pp∣nq
pn1

q› ι|p|

and the entire permutation q2 d therefore given by

q2 “ λd. pλp. 5 pppλn. ι
ř

5 pp∣nq
pn0

q› ι|p|q� |d0| q pλn. ιpn0`
ř

5 pp∣nq
pn1

q› ι|p|qq 5 pλr. pλc. xr, cyq› d1q› d0.

Back permutation network

One last consideration is a permutation network to order the outputs from pbRq y as if they came
from a single decision wait with dimensions

ř

d0-by-
ř

d1. Without an output permutation network,
all of the outputs from the first decision wait y0 would be first, followed by all of the outputs from
y1, and so on, and within those of each decision wait, the outputs would emerge row by row. The
correct order takes one row from each of the first |d1| decision waits y0 through y|d1|´1, and then
the next row from each of the first |d1|, until all rows of all decision waits y0 through y|d1|´1 are
taken, and then moves on to first row of the next group of |d1| decision waits, and so on.

A formal description of this ordering starts with a row from a typical decision wait in the j-th
horizontal position of the array, which is carried by a bus of width d1 j .

• If this bus were from the top row of one of the first |d1| decision waits, then its first line would
reach a position numbered

ř

pd1 ∣ jq relative to all other bus lines, which is the sum of the
bus widths due to the first rows of the decision waits preceding it in the array.

• If this bus were from the k-th row of one of the first |d1| decision waits, the destination position
of its first line would be offset additionally by k

ř

d1, the total widths of all buses from the
rows above.

• If the bus came not necessarily from one of the first |d1| decision waits in the array but from
the i-th group of them, then the destination of its first line would be further offset by the total
widths of all buses due to all groups of decision waits above it in the array, p

ř

pd0 ∣ iqq
ř

d1.

10.3. QUADRANGULAR DECISION WAITS 291

In general, a bus of d1 j lines coming from the k-th row of the j-th decision wait in the i-th group of
|d1| decision waits has an offset of

pk `
ř

pd0 ∣ iqqp
ř

d1q `
ř

pd1 ∣ jq

relative to the other bus lines. Any decision wait in the i-th group has d0i rows, so the full list of
destination positions for outputs from this typical decision wait would be

5 pλk. ιpk`
ř

pd0∣iqqp
ř

d1q`
ř

pd1∣ jq
d1 j

q› ιd0i

those of the whole group would be

52 pλ j. pλk. ιpk`
ř

pd0∣iqqp
ř

d1q`
ř

pd1∣ jq
d1 j

q› ιd0i
q› ι|d1|

and those of the whole array would be q3 d for q3 : N˚2 Ñ N
˚ given by

q3 “ λd. 53 pλi. pλ j. pλk. ιpk`
ř

pd0∣iqqp
ř

d1q`
ř

pd1∣ jq
d1 j

q› ιd0i
q› ι|d1|q

› ι|d0|.

The list q3 d as defined above can be viewed as a function that maps an output terminal number
on the block pbRq y to the corresponding output terminal number on the quadrangular decision
wait :Ωpd, x , yq. Using it correctly in a formal definition of :Ω requires inverting it to maintain
the convention stipulated along with Equation 8.53, whereby output permutations map external
terminal numbers to internal ones. Hence we define :Ωq as follows.

:Ωqpd, x , yq “ pbRq q›
0 d

q1 d
ÝÑ Rpx0 ˙ ι|d1|

ř

d0
�
ř

d0, x1q
q2 d
ÝÑ pbRq y ˙ pq3 dq´1 (10.16)

10.3.2 Vertical

Quadrangular decision waits built according to Equation 10.16 work for any valid choice of pa-
rameters d, x , and y, but are suboptimal for some. For example, if d1 “ xd10y had only one item,
then y would be arranged in an array of just one column, leaving no need for an explicit |d0|-by-1
routing stage x0 or for the completion detector network q0 d1. Instead, the whole result could be
constructed as shown in Figure 10.12. Further economies would be possible if any term d0i were
equal to 1, because then the 1-by-d10 lateral decision wait yi could be omitted from the result in
favor of taking the corresponding d10 outputs directly from the i-th row of the routing stage x1 as
shown in Figure 10.13.

Constructing a quadrangular decision wait to exploit both of these optimizations under the
assumption of a unit list d1 is best done mostly from scratch. One of the things needed repeatedly
for this job is a list of two functions

l “ xλa. a �N´ t1u,λa. |a � t1u|y P ppN˚ Ñ Nq Y pN˚ Ñ N
˚qq2

such that l0 : N˚ Ñ N
˚ takes a list of dimensions a P N

˚ to the list l0 a P N
˚ derived from a by

deleting all items equal to 1 from it (by Equation 8.8), and l1 : N˚ Ñ N takes a list of dimensions
a P N

˚ to the number l1 a of items equal to 1 in it.

292 CHAPTER 10. DECISIONS, DECISIONS

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

. . . ä

k

ä

i

ä

j

ä

i

ä

j

ä

i

ä

j
ä k

ä

ik

ä

jk

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

ä

pi ` jqk
ä

i ` j

ä k

“

ä k

Figure 10.12: a quadrangular decision wait with dimensions xxi, jy, xkyy with i and j both greater
than 1

...
...

...
¨ ¨ ¨

¨ ¨ ¨

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

. . .
...

...
¨ ¨ ¨

¨ ¨ ¨

ä

pi ` jqk
“ä

i ` j
ä k

ä

ik

ä

jk

ä

i

ä

i

ä

i

ä

j

ä k

ä k

Figure 10.13: a quadrangular decision wait with dimensions xi : 1 j , xkyy and i, j ą 1

10.3. QUADRANGULAR DECISION WAITS 293

Front end permutations

The first use for l is in the specification of an input permutation network that interfaces
ř

l0 d0 of
the

ř

d0 external row inputs with a completion detecting bus network q0 l0 d0 by Equation 10.13,
whose MERGE outputs connect to the row inputs on x1 as in the basic construction, but connects the
remaining l1 d0 external row inputs directly to the row inputs on x1 as shown in Figure 10.13. The
permutation would look something like

5 pλi. xι
ř

l0pd0∣iq
d0i

, xp
ř

l0 d0q ` l1pd0 ∣ iqyy
δ

d0i
1

q› ι|d0|

so that each term d0i greater than 1 would induce an input bus of width d0i ordered among those of
similar terms, but any unit term d0i “ 1 would indicate a destination position offset by

ř

l0 d0 in
addition to the number l1pd0 ∣ iq of preceding unit terms. A network described by this permutation
connected to the front of a block Rpq0 l0 d0, Il1 d0 q would route each of the

ř

d0 external row inputs
to the completion detecting bus network q0 l0 d0 or not as appropriate, but the block’s last l1 d0
outputs might not match the row input order of x1 without another permutation network of a
related form between them. A permutation describing the latter would look something like

pλi. x|l0pd0 ∣ iq|, |l0 d0| ` l1pd0 ∣ iqy
δ

d0i
1

q› ι|d0|

for the similar reason that the MERGE outputs would form a separate sequence from those associated
with the unit inputs. Because these two permutations have much in common, we can express both
of them at once more succinctly as

xp0, p1y “ 5›pppλi. xxι
ř

l0 r
ai

, x|l0 r|yy, xxp
ř

l0 aq ` l1 ry, x|l0 a| ` l1 ryyyδai
1

q› ι|a|q� |a|q

where a “ d0 is the list of row dimensions and r “ d0 ∣ i is the list of row dimensions preceding the
i-th, or more formally as p “ q4pl, d0q for a function

q4 : ppN˚ Ñ Nq Y pN˚ Ñ N
˚qq2 ˆN

˚ Ñ N
˚2

defined by

q4 “ λpl, aq. 5›pppλi. pλr. xxι
ř

l0 r
ai

, x|l0 r|yy, xxp
ř

l0 aq ` l1 ry, x|l0 a| ` l1 ryyyδai
1

q pa ∣ iqq› ι|a|q� |a|q.

Front end stages

As intended, we can now incorporate the routing stage x1, the completion detecting bus network
q0 l0 d0 and the external row inputs correctly into a block pq5xq0, q4yq pl, d0, x1q for a straightforward
choice of

q5 “ λq. λpl, a, xq. pλp. U|a|xp0 ¸ Rpq0 l0 a, Il1 aq ˙ p1, xyq q1pl, aq.

Only one of the routing stages x1 is used, because x0 can be ignored based on the assumption of
a unit list of column dimensions d1. Note that q1 is instantiated as q4 in the context of a formal
parameter q “ xq0, q4y.

294 CHAPTER 10. DECISIONS, DECISIONS

Central permutation

Whereas the block above completes the front end, the back end consists of an array of decision
waits selected from y. As noted previously, this array should omit the lateral terms in y as an
optimization, which are the terms yi for which d0i is unity, leaving only the remaining |l0 d0| terms
y› l0 d0, which have a total of

ř

pq4pl, d0q
´1
0 ∣ |l0 d0|q

row inputs interspersed with d10|l0 d0| column inputs in buses of d10 “
ř

d1 lines each.
The number of surviving terms in y matches the number of completion detecting buses in the

front end by design, so a specification for a permutation network connecting the FORK outputs from
the front end to the row inputs in this array could take the form

5
`

λi. ι
id10`

ř

ppq4pl,d0q
´1
0 q∣iq

pq4pl,d0q
´1
0 qi

˘›
ι|l0 d0|

when concatenated with one that describes the connections from the d10
ř

d0 outputs from x1 to
the column inputs. This total generally exceeds the number of column inputs d10|l0 d0| in the array
due to the l1 d0 lateral terms omitted from y, so we envision the array in parallel with l1 d0 extra
buses each of width d10 to reconcile the front and back end arities.

RppbRq y› l0 d0, Id10pl1 d0qq

The i-th row of x1 then connects by a bus of width d10 either to the j-th bundle of column inputs in
the array for j ă |l0 d0|, or to the p j ´ |l0 d0|q-th extra bus at the end, where j is given by q4pl, d0q1i
according to the same permutation used to map the MERGE outputs and some of the external row
inputs to the row inputs of x1. In either case, the first line from this bus reaches a terminal on the
back end whose position is offset by the jd10 column inputs preceding it, plus the

ř

ppq4pl, d0q
´1
0 q∣ jq

row inputs preceding it, suggesting the rest of the desired permutation network specification.

5 pλi. pλ j. ι
jd10`

ř

ppq4pl,d0q
´1
0 q∣ jq

d10
q q4pl, d0q1iq

› ι|d0|

Concatenating, we have

`

5
`

λi. ι
id10`

ř

ppq4pl,d0q
´1
0 q∣iq

pq4pl,d0q
´1
0 qi

˘›
ι|l0 d0|

˘

q
`

5 pλi. pλ j. ι
jd10`

ř

ppq4pl,d0q
´1
0 q∣ jq

d10
q q4pl, d0q1iq

› ι|d0|

˘

or more briefly pq6 q4q pl, dq with q6 given by

q6 “ λq. λpl, dq. pλp. 5 pppλi. ι
id10`

ř

pp´1
0 ∣iq

pp´1
0 qi

q› ι|l0 d0|q q ppλi. ι
p1i d10`

ř

pp´1
0 ∣p1iq

d10
q› ι|d0|qqq qpl, d0q

after some routine simplification.

Back end

The back end RppbRq y› l0 d0, Id10pl1 d0qq assumed above contains |l0 d0| decision waits followed by
l1 d1 buses, whose outputs may need rearrangement. Specifically, the outputs from the i-th decision
wait or bus should appear externally in the j-th position relative to those of the others, where

j “ pq4pl, d0q
´1
1 qi

10.3. QUADRANGULAR DECISION WAITS 295

Figure 10.14: Rotating a 4-by-3 decision wait turns it into a 3-by-4 decision wait.

is determined by the permutation applied to the rows on the front end. These outputs would be
carried by a bus of width d0 jd10 whose first line attains a position offset by d10

ř

pd0∣ jq, the number
of outputs preceding it. A permutation mapping all back end outputs to their correct external
positions therefore could be given by

5 pλi. pλ j. ιd10
ř

pd0∣ jq
d10d0 j

q pq4pl, d0q
´1
1 qiq

› ι|d0|

and the adjusted back end by pq7 q4q pl, d, yq for a function q7 defined as

q7 “ λq. λpl, d, yq. RppbRq y› l0 d0, Id10pl1 d0qq ˙ p5 pλi. pλ j. ιd10
ř

pd0∣ jq
d10d0 j

q pqpl, d0q
´1
1 qiq

› ι|d0|q
´1

where the output permutation is inverted per convention. As a result, we have the following
definition for a vertical quadrangular decision wait combining form

9Ωqpd, x , yq “ pλl. pq5 xq0, q4yq pl, d0, x1q
pq6 q4q pl,dq
ÝÝÝÝÝÑ pq7 q4q pl, d, yqq xλa. a �N´ t1u,λa. |a � t1u|y

equivalent to :Ωq only for |d1| “ 1, but more efficient in that case.

10.3.3 General

Even better than :Ωq and 9Ωq would be a quadrangular decision wait combining form that always
generates the preferable result for the given dimensions whether vertical or not, and perhaps also
does something smarter for the horizontal case as well. These matters are addressed briefly in this
section.

Horizontal quadrangular decision waits

The latter problem is solvable without deriving a horizontal analog to 9Ωq ab initio. Rotating each
constituent decision wait of its parameters and a few other tweaks make it useful for the horizontal
case. More general decision wait transformations are discussed in Section 10.5, but for a sneak
preview, the simple form of rotation restricted to planar decision waits as illustrated in Figure 10.14
is captured by a function q8 : NˆN Ñ pH Ñ Hq defined by

q8 “ λpr, cq. λp. p ä r ˙ ιrc � r (10.17)

which takes any pair of dimensions pr, cq P N ˆ N to a function q8pr, cq : H Ñ H that takes any
r-by-c decision wait p P H to a c-by-r decision wait q8pr, cq p P H. This transformation amounts

296 CHAPTER 10. DECISIONS, DECISIONS

to interchanging the row inputs with the column inputs while transposing the output order (cf.
Equation 10.11).

A horizontal quadrangular decision wait is determined by a triple of parameters

pd, x , yq P N
˚2 ˆH

2 ˆH
|d0||d1|

with |d0| “ 1, but we can use 9Ωq nevertheless to achieve a better result than :Ωqpd, x , yq by apply-
ing it to parameters xd1, d0y in place of d and rotating x0 and the terms of y. That is, by using
q8pd00,

ř

d1q x0 in place of x1 and q8pd00, d1iq yi in place of each yi we obtain the vertical quadran-
gular decision wait

9Ωqpxd1, d0y, xZI, q8pd00,
ř

d1q x0y, pλi. q8pd00, d1iq yiq
› ι|d1|q

with dimensions
ř

d1-by-d00, which can be rotated to a horizontal form

q8p
ř

d1, d00q 9Ωqpxd1, d0y, xZI, q8pd00,
ř

d1q x0y, pλi. q8pd00, d1iq yiq
› ι|d1|q

at no cost. Let this result be denoted ppq9 q8q 9Ωqq pd, x , yq in terms of a function

q9 : ppNˆNq Ñ pH Ñ Hqq Ñ pppN˚2 ˆH
2 ˆH

˚q Ñ Hq Ñ ppN˚2 ˆH
2 ˆH

˚q Ñ Hqq

defined by

q9 “ λq. λ f . λpd, x , yq. qp
ř

d1, d00q f pxd1, d0y, xZI, qpd00,
ř

d1q x0y, pλi. qpd00, d1iq yiq
› ι|d1|q.

Covering all cases

Now that we can cope equally well with either |d0| “ 1 or |d1| “ 1 in a quadrangular decision wait
specification, there is a choice between 9Ωqpd, x , yq and ppq9 q8q 9Ωqq pd, x , yq for the oddball case of
both |d0| and |d1| equal to 1. For valid parameters, this condition would imply |y| “ |d0||d1| “ 1
with no need for either of x0 or x1 in the construction, nor for any
completion detecting bus network, and hence a result equivalent
to y0. Perhaps handling it specially is appropriate even if only a
petaQ would try to decompose a decision wait into just one part.2

Our generalized quadrangular decision wait combining form Ωq
(without the dots) is therefore defined as follows.

Ωqpd, x , yq “

$

’

’

&

’

’

%

y0 if |d0||d1| “ 1
9Ωqpd, x , yq if |d0| ą 1 ^ |d1| “ 1
ppq9 q8q 9Ωqq pd, x , yq if |d0| “ 1 ^ |d1| ą 1
:Ωqpd, x , yq otherwise

(10.18)

10.3.4 A revised planar decision wait generating function

A decision wait generating function generalizing the one defined by Equation 10.12 to incorporate
quadrangular decision waits advantageously could satisfy some sort of a recurrence reducing to
Equation 10.12 for dimensions below some low threshold, but not too low. For example, there is

2Klingon word for “idiot”, as in “A doctor who treats himself has a petaQ for a patient.”

10.3. QUADRANGULAR DECISION WAITS 297

probably no good reason for 1-by-1 quadrangular decision wait as alluded above, nor even for a
1-by-2, 2-by-1, or 2-by-2, because the routing stages would outweigh the internal array.

Beyond these constraints there is considerable scope for variation. Should any decision wait
with either dimension greater than two be decomposed, and if so, into parts of what size, or are
cascading forms best for all but the very largest? These questions motivate further investigation
in Appendix C. Suffice it to say that informed answers are elusive, but facile and probably wrong
answers are readily at hand. For example, a strategy based on the premise that asymptotically
logarithmic latency is always preferable, that it is achievable only by quadrangular decomposition,
that at least one but no more than two subdivisions along each dimension are ever justified, and that
they should be as balanced as possible, implies that an n-by-m decision wait should be decomposed
as Ωqpd, x , yq with d “ fqxn, my for a function fq : N2 Ñ N

˚2 given by

fq “ pλa. xxay, xta{2u, ra{2syy
δ

t1,2u´tau

t1,2u

q›

and appropriate choices of x and y to match. Fixing fq as shown allows for a revised decision wait
generating function satisfying the recurrence

DWpn, mq “

"

Ωppn, mq if fqxn, my P pN1q2

pλd. Ωqpd,DW› f d,DW› b dqq fqxn, my otherwise (10.19)

where the function f : N˚2 Ñ N
˚ extracts the correct front end routing stage dimensions from d

f “ λd. xp
ř

d0, |d1|q, p|d0|,
ř

d1qy

and b : N˚2 Ñ pNˆNq˚ extracts the necessary back end array dimensions (cf. Equation 10.15).

b “ λd. 5 pλr. pλc. pr, cqq› d1q› d0

On the other hand, maybe quadrangular decision waits are over the top and cascading decision
waits should be used for everything. In that case, the choice of

fqxn, my “ xxny, xmyy

indicates the cascading form unconditionally in Equation 10.19, making it equivalent to Equa-
tion 10.12.

A third alternative is to keep an open mind about how decision waits should be decomposed
pending further analysis. This outlook calls for a concept of fq not as something set in stone, but as
just one member chosen preferably by rational criteria from a broad class of functions f : N2 Ñ N

˚2

satisfying
@s P N

2. s “
ř› f s

many of which effect other decompositions than the two extremes noted above in the context
of Equation 10.19. Such a function might also be called a local quadrangular decomposition
strategy hereafter.

With regard to terminology, this type of decomposition strategy is called local rather than global
because it provides no means for the decomposition to depend on how the decision wait being
decomposed is used within some larger decision wait. Figure 10.13 illustrates a situation where this
constraint might be an issue. Suppose a strategy is sought that minimizes the average latency over
all inputs. Each of the top i row inputs in the figure depends on a critical path passing through the

298 CHAPTER 10. DECISIONS, DECISIONS

d000

d001

d010

d011

d100

d101

d110

d111

r0

r1

c0

c1

p0

p1

Figure 10.15: A 2-by-2-by-2 decision wait has two planes, two rows, and two columns.

top row of the lower decision wait. Maybe these rows outnumber the lower j rows. If critical paths
through different rows are not necessarily identical, could it ever happen that the average latency
over all i ` j rows would be improved by a strategy that opts for a minimal latency through the
top row of the lower decision wait at a cost of increasing the overall average for the lower decision
wait? If so, then a strategy that always minimizes the averages locally might not always minimize
them globally.

In other words, could this rabbit hole get any deeper? Global decomposition strategies are
conceivable, but not without a few other things to cover first.

10.4 Multidimensional decision waits

Deferring further discussion of decomposition strategies temporarily,
we have an opportunity to explore the design space in literally a
different dimension. The decision waits described up to this point,
whether cascading or quadrangular, are all planar. Planar decision
waits are two dimensional, but higher dimensions are possible. An n-
dimensional decision wait has input terminals partitioned into n sets
and accepts a signal on exactly one input from each set concurrently
before emitting exactly one output signal. The number of output
terminals is equal to the product of the cardinalities of the sets of input terminals in the partition.
For example, a 2-by-2-by-2 decision wait would be three dimensional, with two input terminals in
each dimension, and eight outputs. A design for a 2-by-2-by-2 decision wait due to [294] is shown
in Figure 10.15.

Two salient questions about multidimensional decision waits are whether they can be designed
in any uniform way for arbitrary dimensions, and whether they are of any use. One use for a 2-by-2-
by-2 decision wait would be as a three bit dual rail decoder. (See the footnote on page 45.) As such,

10.4. MULTIDIMENSIONAL DECISION WAITS 299

MDW d0

MDW d|d|´1

MDW
ś› d

ä

ś

d0

ä

ś

d|d|´1

ä

d00

ä

pd0q|d0|´1

ä

pd|d|´1q0

ä

pd|d|´1q|d|d|´1|´1

...

...

...
... ä

ś ś› d

Figure 10.16: a dendriform multidimensional decision wait with dimensions d P N
˚˚

it allows for the communication of any of eight possible code words over a bus with only six lines,
which may be a worthwhile tradeoff if bus lines are expensive. An n-bit dual rail decoder would
require an n-dimensional decision wait, and would cut down the number of bus lines from 2n to
2n. There are many other delay insensitive codes and decoders for them using multidimensional
decision waits discussed in Chapter 13.

The other question posed above occupies the rest of this section. There are at least two reasonably
straightforward ways to design arbitrary multidimensional decision waits in general, each subject to
many variations, but both easier than the quadrangular decomposition for planar decision waits.
One designated as the dendriform decision wait follows in Section 10.4.1, and the other designated
as the crossbar decision wait follows in Section 10.4.2, the latter being a direct generalization of
the idea behind Figure 10.15. Their development proceeds similarly to the quadrangular decision
wait in that a combining form and a complementary decomposition strategy determine a decision
wait generating function defined by a recurrence.

10.4.1 Dendriform

The dendriform decision wait is the simpler of the two. The idea is to build a tree of lower
dimensional decision waits as shown in Figure 10.16, in which all of the outputs from each leaf
node connect to the inputs along a single dimension of the root. For example, a couple of 2-by-2
planar decision waits could be used as leaves connected in this way to a 4-by-4 planar decision
wait used as the root to create a 2-by-2-by-2-by-2 decision wait. All four outputs from the first leaf
would be connected to the row inputs of the root, and all four outputs from the second leaf would
be connected to the column inputs of the root.

In general, this construction allows any number of leaves greater than one, each having any
positive number of positive dimensions, provided the root has compatible dimensions. Even a one
dimensional decision wait is allowed, which is just a bus. Compatibility in this context depends
on the fact that an |s|-dimensional decision wait with dimensions s P N

˚ has
ř

s inputs and
ś

s
outputs. Its dendriform decomposition into |d| leaves whose i-th leaf has dimensions di P N

˚

for some d P N
˚˚ satisfying 5 d “ s requires a |d|-dimensional root with dimensions

ś›d P N
˚,

300 CHAPTER 10. DECISIONS, DECISIONS

hence
řś›d inputs and

śś›d outputs. Best of all, there is no need to bother with permutation
networks because all of the inputs and outputs fall naturally into the right order.

Combining form

Similarly to a quadrangular decision wait, the dendriform decision wait is appropriate to describe
by a combining form Ωd parameterized by the dimensions and taking its parts to the whole. For
dimensions s P N

˚, these parameters would be a list d P N
˚˚ meeting the conditions above, a list

x P H
|d| of multidimensional decision waits for the leaves wherein each x i has dimensions di , and a

multidimensional decision wait y P H for the root with dimensions
ś› d. The combining form

Ωd : N˚˚ ˆH
˚ ˆH Ñ H

could hardly be simpler.

Ωdpd, x , yq “ Cřś›dxpb Rq x , yy (10.20)

Local decomposition strategy

To determine a particular multidimensional decision wait generating function MDW : N˚ Ñ H based
on Ωd , a local dendriform decomposition strategy fd : N˚ Ñ N

˚˚ would have to fix all of the its
discretionary features. At a minimum, it should satisfy

• s “ 5 fd s

• |fd s| ą 1

• ε R Rpfd sq

for all lists s P pN´ t0uq˚ ´
Ť2

i“0N
i . For example, a strategy opting exclusively for planar nodes

throughout the tree (and therefore admitting only binary trees) would be

fdpsq “ xs ∣ ts{2u, s « ts{2uy.

Generating function

For any valid choice of fd , we have a corresponding multidimensional decision wait generating
function

MDWpsq “

"

xIs0 ,DWps0, s1qy
δ

|s|
2

if |s| ď 2

pλd. Ωdpd,MDW› d,MDW
ś› dqq fd s otherwise

(10.21)

assuming a fixed planar decision wait generating function DW : N ˆ N Ñ H. Regrettably, a
dendriform decomposition strategy fd is even more localized than fq in the sense that it can not
affect the choice of planar decision waits supporting it, further incentivizing a more comprehensive
solution.

10.4. MULTIDIMENSIONAL DECISION WAITS 301

MDWpd0 q xd10yq

MDWpd0 q xpd1q|d1|´1yq

MDW d1

MDW d1

ä

ř

d0
ä

ř

d0

ä
ř

d0

ä

d10

ä

pd1q|d1|´1

ä

d10

ä

d10

ä

pd1q|d1|´1

ä

pd1q|d1|´1

ä

ś

d1

ä

ś

d1

...
...

...

...

...

...

Figure 10.17: a crossbar multidimensional decision wait combining form with dimensions d P N
˚2

10.4.2 Crossbar

Staying focused on the task at hand, we have another way of designing multidimensional decision
waits to consider. The design in Figure 10.15 is not a special snowflake but an instance of a class of
decompositions consisting of two arrays of lower dimensional decision waits with each member
of the first array connected to every member of the second, as shown in Figure 10.17. For an |s|-
dimensional decision wait, this construction entails a split of the dimensions s into exactly two
non-empty sublists d0 and d1 with d0 q d1 “ s.

• The back end consists of
ś

d0 decision waits each with dimensions d1, while the front end
consists of |d1| decision waits each having |d0| ` 1 dimensions.

• The front end decision waits differ only in their last dimension, having one representative for
each term of d1, while their other dimensions are identically d0.

• Each decision wait in the back end receives the inputs associated with its i-th dimension on a
bus of width d1i coming from the i-th decision wait in the front end.

• Each decision wait in the front end sees the same signals for all inputs in its first d0 dimensions,
but receives a signal specific to itself along its last dimension.

The idea is that the first |d0| input buses select the same output bus on every front end decision wait
(of which there are

ś

d0 on each), thereby causing whatever signal each of them receives along
its last dimension to be routed to exactly the same back end decision wait and no other. Having
received a full complement of |d1| input signals, only one back end decision wait emits an output.

302 CHAPTER 10. DECISIONS, DECISIONS

Combining form

A crossbar decision wait Ωcpd, x , yq P H with dimensions 5 d P N
˚ is specified by a combining form

Ωc : N˚2 ˆH
˚ ˆH

˚ Ñ H

a list of two lists of dimensions d P ppN´ t0uq˚ ´ tεuq2, a list x P H
|d1| of front end stage decision

waits, and a list y P H
ś

d0 of back end stage decision waits, where each front end term x i has
dimensions d0 q xd1iy and each back end term y j has identical dimensions d1. In front of the front
end, it has an array of

ř

d0 FORK networks each having |d1| outputs

pFORK|d1|q
ř

d0

to connect each of the
ř

d0 inputs from the first |d0| input buses to the same position on each of the
front end decision waits in x . A further

ř

d1 inputs are bundled into a block I
ř

d1 of |d1| buses such
that the i-th bus is destined for the last d1i inputs on x i . A rearrangement of the FORK outputs

pFORK |d1|q
ř

d0 ˙ ι|d1|
ř

d0
�
ř

d0

provides for the i-th of the first |d1| consecutive groups of
ř

d0 outputs to be associated with the
i-th front end decision wait x i just as the i-th of the next |d1| buses is already, in an expression

RppFORK |d1|q
ř

d0 ˙ ι|d1|
ř

d0
�
ř

d0, I
ř

d1 q

making it a bit easier to find a permutation k0 d P N
˚ whereby the whole front end can be expressed

RppFORK |d1|q
ř

d0 ˙ ι|d1|
ř

d0
�
ř

d0, I
ř

d1 q
k0 d
ÝÑ pbRq x

for some k0 : N˚2 Ñ N
˚.

Among the first |d1| buses from here, which each have a width of
ř

d0, the permutation k0 d
must route the i-th to a position on pbRq x offset by the pi

ř

d0q `
ř

pd1 ∣ iq terminals preceding it

5 pλi. ιpi
ř

d0q`
ř

pd1∣iq
ř

d0
q› ι|d1|

and it must route the i-th of the next |d1| buses, which has a width d1i , to a similar position offset
by the additional

ř

d0 terminals preceding it

5 pλi. ιppi`1q
ř

d0q`
ř

pd1∣iq
d1i

q› ι|d1|

suggesting the result

k0 “ λd. 5pppλi. ιpi
ř

d0q`
ř

pd1∣iq
ř

d0
q› ι|d1|q q ppλi. ιppi`1q

ř

d0q`
ř

pd1∣iq
d1i

q› ι|d1|qq.

Connecting the front end to the back end pbRq y in terms of another permutation k1 d P N
˚

suggests an expression

Ωcpd, x , yq “ RppFORK |d1|q
ř

d0 ˙ ι|d1|
ř

d0
�
ř

d0, I
ř

d1 q
k0 d
ÝÑ pbRq x

k1 d
ÝÑ pbRq y (10.22)

for the whole combining form, subject only to finding a suitable k1 : N˚2 Ñ N
˚. This permutation

can be inferred from the fate of the j-th output bus on the i-th front end decision wait x i , which has

10.5. DECISION WAIT TRANSFORMATIONS 303

a width of d1i and is one of
ś

d0 output buses from x i . It must reach the j-th back end decision
wait y j , whose j predecessors have a combined input arity of j

ř

d1. Relative to y j , it must follow
the i input buses preceding it, whose combined width is

ř

pd1 ∣ iq. Hence it accounts for a sublist

ι
p j
ř

d1q`
ř

pd1∣iq
d1i

of the permutation k1 d. Combined with the rest of the
ś

d0 buses from x i , it accounts for a sublist

5 pλ j. ιp j
ř

d1q`
ř

pd1∣iq
d1i

q› ιś d0

whose combination with the sublists due to the rest of the |d1| terms of x makes up all of k1 d based
on a definition

k1 “ λd. 52 pλi. pλ j. ιp j
ř

d1q`
ř

pd1∣iq
d1i

q› ιś d0
q› ι|d1|

thus completing the specification of Ωc in Equation 10.22.

Generating function

A local crossbar decomposition strategy fc : N˚ Ñ N
˚2 must meet the same conditions as a local

dendriform decomposition strategy mentioned on page 300 in addition to

@s P N
˚ ´

Ť2
i“0N

i . |fc s| “ 2

obviously, and is subject to the same limitations mentioned on page 300. Any valid local crossbar
decomposition strategy determines a multidimensional decision wait generating function satisfying
this recurrence.

MDWpsq “

#

xIs0 ,DWps0, s1qy
δ

|s|
2

if |s| ď 2

pλd. Ωcpd, pλi. MDWpd0 q xiyqq› d1, pMDW d1q
ś

d0 qq fc s otherwise
(10.23)

For example, one that always opts for planar front ends would be

fcpsq “ xxs0y, s « 1y.

With Equation 10.21 and Equation 10.23, we now have two competing definitions of a multidi-
mensional decision wait generating function MDW : N˚ Ñ H with no indication of which to prefer
and no smooth way of integrating one with the other. There can be little hope for any improvement
in this state of affairs without further investigation, but fortunately the chapter is not over yet.

10.5 Decision wait transformations

Although decision wait rotations have proved helpful for expressing hor-
izontal quadrangular forms in Section 10.3.3, is a deep dive into general
rotations and permutations for decision waits of arbitrary dimensions
really justified? While they are not useful for expressing decision waits
of yet more general shapes and sizes (because there are none), they may
be of interest for performance reasons. For example, if some rows in a
decision wait built according to a particular local decomposition strategy
were slower than others due to some unavoidable asymmetry, then a
cascading sequence of identically oriented instances could exhibit a cumulative imbalance in la-
tency. This effect might be correctable just by reversing the rows on alternating instances. Such
transformations are worth having at our disposal and are readily amenable to analysis.

304 CHAPTER 10. DECISIONS, DECISIONS

Figure 10.18: To maintain behavioral equivalence, the outputs from each row have to be permuted
inversely to the column input permutation, and the buses from the rows have to be permuted
inversely to the row input permutation (inset).

10.5.1 Permuting along the axes

The transformation suggested above requires both an input and an output permutation network
to preserve behavioral equivalence. A decision wait could have not just its rows but its inputs in
every dimension reversed, and not just reversed but permuted arbitrarily. A complete description
of any such transformation to an |s|-dimensional decision wait with dimensions s P N

˚ could be
specified by a list of permutations p P N

˚|s| of length |s| satisfying |pi | “ si for all 0 ď i ă |s|. For
example, the two dimensional decision wait in Figure 10.18 with dimensions s “ x3, 2y is subject to
both a row input permutation p0 “ x1, 2, 0y and a column input permutation p1 “ x1, 0y. The result
is still a decision wait with the same dimensions because the outputs are permuted in a way that
compensates for the input permutations.

To describe this transformation formally, we envision an |s|-dimensional decision wait x P H

having a behavioral equivalent pφ0 pq x P H permuted according to a list of permutations p P N
˚|s|

meeting the conditions above in terms of a function φ0 p : H Ñ H determined by second order
function φ0 : N˚˚ Ñ pH Ñ Hq. The result pφ0 pq x should be something like x with a wrapper of
input and output permutation networks around it depending on p.

The input permutation network is the easy part, requiring only an array of individual permutation
networks a ¸ I|a| in parallel for each permutation a P Rppq

pλa. a ¸ I|a|q› p

and hence a partial result
C|5 p|xpbRq pλa. a ¸ I|a|q› p, xy.

The output permutation is best to build incrementally by generalizing from Figure 10.18. The
outputs from any |s|-dimensional decision wait naturally form a number of consecutive buses each
having a width s|s|´1, the last dimension. Each of these buses must be permuted inversely to the
last permutation p|p|´1, so we can expect a pattern of some number of replicated copies of p|p|´1
in the network. On a higher level, the buses themselves are permuted relative to one another

10.5. DECISION WAIT TRANSFORMATIONS 305

inversely to the penultimate permutation in p, and this pattern repeats on yet another level for
each dimension. At the highest level, we would make s0 copies of a network described by some
permutation t, and then permute the copies by p0 relative to one another. This network would be
described by a concatenated sequence of lists of the form

pλ j. i|t| ` jq› t

with a different value of i for each term in the permutation p0.

5 pλi. pλ j. i|t| ` jq› tq› p0

The whole output permutation is therefore given by a fold over p

pbx0y λpa, tq. 5 pλi. pλ j. i|t| ` jq› tq› aq p

and the whole definition for the transformation by

φ0 “ λp. λx . C|5 p|xpbRq pλa. a ¸ I|a|q› p, xy ˙ pbx0y λpa, tq. 5 pλi. pλ j. i|t| ` jq› tq› aq p. (10.24)

10.5.2 Permuting the axes

The other kind of decision wait transformation not covered by the forego-
ing is a rotation generalizing Equation 10.17, which changes an n-by-m
decision wait to an m-by-n decision wait. This problem escalates with
higher dimensions. For example, an l-by-n-by-m decision wait could be
rotated into one with dimensions l-by-m-by-n, m-by-l-by-n, m-by-n-by-l, n-by-l-by-m, or n-by-m-by-l.
In general, an |s|-dimensional decision wait with dimensions s P N

˚ has |s|! possible orientations,
one for each permutation of the dimensions, so even a rotation is really a permutation.

The idea of a rotational transformation to a decision wait x P H with dimensions s P N
˚ is

captured by a function φ1 : N˚ ˆN
˚ Ñ pH Ñ Hq such that φ1pp, sq x P H is a decision wait derived

from x with dimensions s˝p “ pλr. srq› p, where p P N
|s| is a permutation of length |s|. The resulting

decision wait φ1pp, sq x P H exposes
ř

s input terminals on a permutation network of |s| “ |p|

consecutive buses wherein the i-th bus has a width of spi
and connects to x starting at the terminal

numbered
ř

ps ∣ piq, implying an input permutation network described by

5 pλr. ι
ř

ps∣rq
sr

q› p P N

ř

s.

To get a handle on the output permutation, we can regard each output from the |s|-dimensional
decision wait x before the transformation as a point with coordinates

b “ xb0 . . . b|s|´1y P N
|s|

in an |s|-dimensional lattice, with each coordinate bi ranging from 0 to si ´ 1. The output with
coordinates b is the one that emits a signal whenever the bi-th of si possible inputs is received along
i-th axis for all 0 ď i ă |s|. The list ῑs P pN|s|q

ś

s contains the coordinates of all
ś

s outputs from
x in lexicographic or “row major” order, which is the order of their output terminals. After the
transformation, the dimensions s ˝ p of the result φ1pp, sq x mean there should be an output with
coordinates a “ b ˝ p associated with it for each point b associated with x . To maintain the row
major order convention, the position of the output terminal with coordinates a relative to the other

306 CHAPTER 10. DECISIONS, DECISIONS

output terminals on the result should be the position of a in the list ῑs˝p. Because a corresponds
to b, the output permutation network should run a wire to this terminal from the terminal with
coordinates b “ a ˝ p´1 on x , which comes from the position pῑsq

´1 pa ˝ p´1q of the output bus
from x , implying an output permutation

pλa. pῑsq
´1 pa ˝ p´1qq› ῑs˝p

and the following definition for φ1 overall.

φ1 “ λpp, sq. λx . 5 pλr. ι
ř

ps∣rq
sr

q› p ¸ x ˙ pλa. pῑsq
´1 pa ˝ p´1qq› ῑs˝p

10.5.3 Permuting and rotating

A general transformation that integrates both of those above is convenient to encapsulate in a single
function φ : N˚˚ Ñ pH Ñ Hq parameterized by the list of permutations p P N

˚˚.

φppq “ pλp1. φ1pp0, pλa. |a|q› p1q ˝φ0 p1q pp « 1q (10.25)

The intent is that φ p : H Ñ H permutes a decision wait x having dimensions s to one φ0pp « 1q x
still having dimensions s, and rotates that to a final decision wait φ1pp0, sq φ0pp « 1q x having
dimensions s ˝ p0. Dimensions s satisfying |s| “ |p0| “ |p| ´ 1 and si “ |pi`1| are inferred from p.

10.6 Optimized decision waits

As noted previously, the best way to decompose a decision wait might depend on its context. Local
decomposition strategies are not always accommodating of this possibility, but there is an alternative.
A global decomposition takes the form of an ordered tree (Section 10.1), balanced or unbalanced,
binary, ternary, or m-ary, and as flat or as deeply nested as we please, with every decision wait used
as a building block in the construction described explicitly by its own particular subtree. In this
way, decision waits with similar dimensions but different decompositions are readily expressible as
such by different subtrees within the same global decomposition (preferably to some worthwhile
end). A global decomposition strategy is a function that takes any desired dimensions to a global
decomposition describing a decision wait with those dimensions.

The advantage of working with global decompositions is that they map the design space with far
better coverage than local decompositions can. An explicit concrete model of global decompositions
as ordered trees establishes a framework for enumerating many possible designs algorithmically
or heuristically in search of an optimum with respect to any given metric, hence the title of this
section. Reducing the problem to these terms could perhaps leverage the techniques of Monte Carlo
Tree Search (MCTS) normally used for finding optimum game playing
strategies (surveyed in [39]), particularly as they pertain to single player
games [239], based on players’ utility functions derived from cost or
performance metrics.

However, the rest of this section sticks to the subject at hand. Just
as a local decomposition strategy such as fq relies on an associated
combining form like Ωq to be useful in a recurrence like Equation 10.19,
global decomposition strategies also entail corresponding combining forms. Both are described for
each of the quadrangular, dendriform, and crossbar decompositions, along with one that ultimately
unifies all of them, in Section 10.6.2 through Section 10.6.5 respectively after a few formalities are
out of the way in Section 10.6.1.

10.6. OPTIMIZED DECISION WAITS 307

10.6.1 Global decompositions

A global decomposition for a decision wait is defined formally as an ordered tree in OpN˚˚ ˆN
˚˚q

wherein each node pp, dq P N
˚˚ ˆN

˚˚ contains a list of permutations p P N
˚˚ and a list of lists of

dimensions d P N
˚˚ with the following intended interpretations.

• To generate the decision wait described by a non-terminal subtree ppp, dq, vq whose root
node is pp, dq, the list of lists of dimensions d is used as the first parameter to one of the
combining forms Ωq, Ωd , or Ωc (Equation 10.18, Equation 10.20 or Equation 10.22), with
other parameters obtained from the decision waits generated from the subtrees v.

• The list of permutations p parameterizes the function φ defined by Equation 10.25 in a
function φ p : H Ñ H to be applied to the decision wait constructed by the combining form
above, implying dimensions of pλr. |pr`1|q› p0 P N

˚ for the result if the dimensions of d and
the subtrees are consistent with it.

• To generate the decision wait described by a terminal subtree ppp, dq,εq, a similar interpreta-
tion applies to the list of permutations p, but p

ř

d0,
ř

d1q parameterizes Ωp (Equation 10.11)
instead of d parameterizing Ωq, Ωd , or Ωc .

To start filling some of the gaps in this description, let the universe of decision wait decompositions
be constrained to a set S Ă OpN˚˚ ˆN

˚˚q defined as

S “

t P OppN˚ ´ tεuq˚ ˆ ppN´ t0uq˚ ´ tεuq˚q | pΛ λppp, dq, vq.
ś
`

v q
`

λa. δRpaq

Dpaq

˘˘›
pq t “ 1

(

which is to say that p can contain only non-empty permutations (lists with domains equal to their
ranges), and d can contain only non-empty lists of non-zero dimensions. (See Equation 10.1 for a
reminder about the tree folding combinator notation.)

Even then, not all members t P S are meaningful as global decompositions because this constraint
does nothing to reconcile dimensional inconsistencies among p, d, and v. A global decomposition
with a root pp, dq and subtrees v describes a decision wait with the dimensions pλr. |pr`1|q› p0 noted
above only if d and v also meet certain conditions. These conditions may depend on the relevant
combining form Ωp, Ωq, Ωd or Ωc . One way of indicating them verifiably is by a function

ψ ∆ : S Ñ N
˚

taking a decomposition t “ ppp, dq, vq P S to a list of dimensions pψ ∆q t equal to pλr. |pr`1|q› p0 if t
meets the conditions, but to an empty list ε otherwise. Then the function ψ ∆ can be parameterized
by a function

∆ : N˚˚ ˆN
˚˚ ˆN

˚˚ Ñ t0,1u

such that ∆ takes p, d, and the list s P N
˚˚ of lists of dimensions similarly obtained from the subtrees

v to a non-zero value ∆pp, d, sq P t0, 1u only if d, v, and s are as they should be for the given p and
the stipulated combining form. This convention implies a second order function

ψ : ppN˚˚ ˆN
˚˚ ˆN

˚˚q Ñ t0,1uq Ñ pS Ñ N
˚q

given by

ψ“ λ f . Λ λppp, dq, sq. xpλi. xε, pλr. |pr`1|q› p0yiq δ
|p0|`1
|p|

f pp, d, sq,εyδp
ε

(10.26)

taking the opportunity to require the condition |p| “ |p0| ` 1 regardless, which simplifies the tasks
ahead insofar as ∆ need not provide for the alternative.

308 CHAPTER 10. DECISIONS, DECISIONS

10.6.2 Quadrangular

A global decomposition t P S for a planar decision wait describes the cascading form or a bus when
t is terminal and the quadrangular form otherwise. A terminal t implies dimensions pψ ∆t

qq t P N
2

with respect to Equation 10.26 when t is valid, where ∆t
q is defined as

∆t
q “ λpp, d, sq. λpp, d, sq.

`

λi.
@

0,δ|d0||d1|

1 δ
|p1|

d0
δ

|p2|

d1

D

i

˘

δ
|d|

2 δ
|p|

3 δ
ε
s

meaning there are three permutations, two unit lists of dimensions respectively matching the latter
permutation lengths, and no subtrees. These conditions are in keeping with the specification for a
cascading decision wait Ωpp

ř

d0,
ř

d1q P H stated above.
The conditions for non-terminal trees t P S differ in that the dimensions of the first two subtrees

must be those of the front end routing stages x in a quadrangular decomposition, and the dimensions
of the rest of the subtrees must be those of the internal decision waits y in row major order as
shown in Figure 10.9. A related function ∆n

q captures these conditions

∆n
q “ λpp, d, sq. x0, pλk.δ|p1|

ř

d0
δ

|p2|
ř

d1
δs

kq x
ř

d0, |d1|y : x|d0|,
ř

d1y : 5 pλi. pλ j. xi, jyq› d1q› d0qy
δ

|p|

3 δ
|d|

2

and one that covers both the terminal and non-terminal cases with respect to Equation 10.26 is
given by

∆q “ λr. p∆t
q rq ` p∆n

q rq (10.27)

meaning that any decomposition t P S with dimensions pψ ∆qq t P N
2 can be said to describe a

planar decision wait in quadrangular or cascading form.
This characterization enables a precise definition for a global quadrangular decomposition

strategy as any function f̂q : N2 Ñ S satisfying

@s P pN´ t0uq2. s “ pψ ∆qq f̂q s (10.28)

which is to say that for two positive dimensions n, m P N, a global decomposition of an n-by-m
decision wait is available as f̂qxn, my. This decomposition then determines a decision wait

DWpn, mq “ Ω̂q f̂qxn, my (10.29)

with the combining form Ω̂q : S Ñ H defined in the obvious way

Ω̂q “ Λ λppp, dq, vq. pφ pq xΩqpd, v ∣ 2, v « 2q,Ωpp
ř

d0,
ř

d1qyδv
ε

(10.30)

based in Equation 10.11, Equation 10.18, and Equation 10.25.
Equation 10.29 could be taken as our most sophisticated candidate yet for a definition of a

decision wait generating function if only some global decomposition strategy f̂q were known. It is
at least as capable as Equation 10.19 because the global decomposition strategy could always be
chosen as

f̂qpsq “ pλ f . f fq sq λd.

"

ppxι2, ιř d0
, ιř d1

y, dq,εq if d P pN1q2

ppxι2, ιř d0
, ιř d1

y, dq, 5 pλi. pλ j. f̂qxi, jyq› d1q› d0q otherwise

for any local decomposition strategy fq (i.e., with no rotations, no permutations, and no context
dependence) to yield results identical to those of Equation 10.19, including fqxn, my “ xxny, xmyy

for exclusively cascading results. However, the strength of this approach would be in choosing

f̂q “ λs. pλpm, tq. tq min
 `

}Ω̂q t}, t
˘

P R ˆS | pψ ∆qq t “ s
(

10.6. OPTIMIZED DECISION WAITS 309

for some real-world real valued metric }z} P R on circuits z P H to optimize the global decomposition
strategy by sampling all decompositions t having the desired dimensions s. For example, the metric

}z} “ |THL z|

would select the strategy having the minimum component count as determined by the length of
the netlist (Equation 8.23), but this metric by itself is one of the least interesting and is possible to
compute in any case directly from the decomposition without generating the circuit (Section C.1).

10.6.3 Dendriform

A way of benefiting in part from a global decomposition strategy for multidimensional decision waits
is to restrict attention to a family of trees u P S whose non-terminal nodes express local dendriform
decompositions and whose terminal nodes express the dimensions of the planar building blocks
but not their decompositions. A valid choice of u along with a fixed quadrangular decomposition
strategy f̂q would then provide a recipe for building a dendriform decision wait. If these restrictions
are acceptable, the solution is at hand. If not, there are still Section 10.6.4 and Section 10.6.5.

Global dendriform decompositions

Normally a dendriform decision wait decomposition u “ ppp, dq, vq P S entails a list d P N
˚˚ of any

number of lists of dimensions di P N
˚, with each being the dimensions of a building block, but at the

lowest level the number of building blocks reduces to |d| “ 1, and the one lowly building block has
either |d0| “ 1 or |d0| “ 2 dimensions. A one dimensional decision wait reduces to a bus Id00 , while
a two dimensional d00-by-d01 decision wait is a quadrangular or cascading form Ω̂q f̂q d0 as usual.
Inferring the dimensions d0 from u in these cases subject also to the validity of u as a decomposition
would be a matter of evaluating pψ ∆t

dq u P N
˚ with ∆t

d defined as

∆t
d “ λpp, d, sq. δ|d|

1 δ
s
εx0,

ś

pλi. δ
|pi`1|

p5 dqi
q› ι|5 d|yδ|5 d|`1

|p|

(10.31)

which is non-zero only if u is terminal and has permutations p compatible with d. When u is non-
terminal, it describes a |5 d|-dimensional decision wait built of |d| ą 1 blocks, of which the i-th
has dimensions di “ si matching those of the i-th subtree vi . An additional subtree v|d| describes
a decision wait having dimensions s|d| “

ś›d conforming to the root block in a dendriform
decomposition parameterized by d according to Equation 10.20 if the sanity check 5 d “ pψ ∆dq u
holds for a function

∆d “ λr. p∆t
d rq ` p∆n

d rq

with the non-terminal cases covered by

∆n
d “ λpp, d, sq. p1 ´ δ

|d|

1 qppλk. δs
kq pd q x

ś›dyqqx0,
ś

pλi. δ
|pi`1|

p5 dqi
q› ι|5 d|yδ|5 d|`1

|p|

(10.32)

to ensure compatible permutation lengths.

Decomposition strategies

These observations suggest a formal definition for a global dendriform decomposition strategy
as any function f̂d : N˚ Ñ S satisfying

@s P pN´ t0uq˚ ´ tεu. s “ pψ ∆dq f̂d s

310 CHAPTER 10. DECISIONS, DECISIONS

(cf. Equation 10.28) and a related combining form Ω̂d f̂q : S Ñ H parameterized by a global
quadrangular decomposition strategy f̂q : N2 Ñ S with the function Ω̂d : pN2 Ñ Sq Ñ pS Ñ Hq

defined as
Ω̂d “ λ f . Λ λppp, dq, vq. pφ pq xΩdpd, v ∣ |d|, v|d|q, Ω̂q f d0yδv

ε

based on Equation 10.30.

Decision wait generating function

From here it is a short step to define MDW : N˚ Ñ H as the multidimensional decision wait generating
function

MDW “ pΩ̂d f̂qq ˝ f̂d

analogous to Equation 10.29, potentially improving on Equation 10.21 for some strategically chosen
f̂q and f̂d . For a known metric of interest } ¨ }, the best choice of f̂d would be

f̂d “ λ f . λs. pλpm, tq. tq min
 `

}pΩ̂d f q t}, t
˘

P R ˆS | pψ∆dq t “ s
(

which can be optimized only with respect to a fixed choice of f “ fq as noted previously.

10.6.4 Crossbar

Global crossbar decomposition strategies optimized with respect to a fixed quadrangular decom-
position strategy are also a possibility, and may be an acceptable alternative to the method in
Section 10.6.3 if using the crossbar in place of the dendriform decomposition is the only de-
sired alteration. A global crossbar decomposition u “ ppp, dq, vq P S meets the same condition
d0 “ pψ ∆t

dq u captured by Equation 10.31 for its terminal nodes, and |5 d| “ pψ ∆cq u in general,
where ∆c is defined as

∆c “ λr. p∆t
d rq ` p∆n

c rq (10.33)

for a function ∆n
c given by

∆n
c “ λpp, d, sq. x0,δ|5 d|

|p0|
ppλk. δs

kq ppλi. d0 q xiyq› d1q q pd1

ś

d0 qqy
δ

|5 d|`1
|p|

δ
|d|

2
(10.34)

constraining the dimensions the first |d1| subtrees v∣ |d1| to those required of the front end stages in
a crossbar decision wait parameterized by d, and those of the remaining

ś

d0 “ |v| ´ |d1| subtrees
to d1, the dimensions required of the back end stages. These conditions lead directly to the concept
of a global crossbar decomposition strategy defined as any function f̂c : N˚ Ñ S satisfying

@s P pN´ t0uq˚ ´ tεu. s “ pψ ∆cq f̂c s

where the optimal choice is

f̂c “ λ f . λs. pλpm, tq. tq min
 `

}pΩ̂c f q t}, t
˘

P R ˆS | pψ∆cq t “ s
(

with respect to a fixed metric, a fixed quadrangular decomposition strategy f “ f̂q, and a combining
form

Ω̂c “ λ f . Λ λppp, dq, vq. pφ pq xΩcpd, v ∣ |d1|, v « |d1|q, Ω̂q f d0yδv
ε
.

The corresponding multidimensional decision wait generating function MDW : N˚ Ñ H is then

MDW “ pΩ̂c f̂qq ˝ f̂c .

10.6. OPTIMIZED DECISION WAITS 311

10.6.5 General

Nothing prevents a multidimensional decision wait from being built of planar building blocks
whose decompositions vary depending on their contexts, so the restriction to multidimensional
decomposition strategies parameterized by fixed planar decomposition strategies mentioned in
Section 10.6.3 and Section 10.6.4 is not at all natural or obligatory. While removing it in this last
section of the chapter, we might also take the opportunity to eliminate the need mentioned at the
end of Section 10.4.2 to choose exclusively between dendriform and crossbar decompositions.

A decomposition u P S describing a multidimensional decision wait with dimensions s P N
˚

whose building blocks are less constrained than in previous constructions need only satisfy

s “ pψ ∆gq u

by Equation 10.26 for a function ∆g : N˚˚ ˆN
˚˚ ˆN

˚˚ Ñ t0,1u defined as

∆g “ λr. p∆n
d rq ` p∆n

c rq ` p∆q rq ` p∆t
g rq (10.35)

based on Equation 10.27, Equation 10.32, Equation 10.34, and the additional condition

∆t
g “ λpp, d, sq.

`

λi.
@

0,δ|d0|

1 δ
|p1|

d0

D

i

˘

δ
|d|

1 δ
|p|

2 δ
ε
s

pertaining to terminal trees describing 1-dimensional decision waits. This definition is reasonable
because at most one of ∆n

d r, ∆n
c r, ∆q r or ∆t

g r can ever be non-zero for any r “ pp, d, sq. It
would be straightforward to build a decision wait given a decomposition u P S having this property
according to a recurrence Ω̂g “ Λ Ωg : S Ñ H with

Ωg “ λppp, dq, vq. pφ pq

$

’

’

&

’

’

%

xId00 ,Ωpp
ř

d0,
ř

d1qy|d|´1 if |v| “ 0
Ωdpd, v ∣ |d|, v|d|q if |v| “ |d| ` 1

Ωcpd, v ∣ |d1|, v « |d1|q if |v| “ |d1| `
ś

d0

Ωqpd, v ∣ 2, v « 2q if |v| “ p
ř

d0qp
ř

d1q ` 2

(10.36)

determining a decision wait Ω̂g u P H based on Equation 10.18, Equation 10.20, Equation 10.25
and Equation 10.22, because the conditions on |v| in Equation 10.36 are mutually exclusive for
arguments u P S with non-empty values of pψ ∆gq u. We therefore define a general class of decision
wait decomposition strategies as those functions f̂g : N˚ Ñ S satisfying

@s P pN´ t0uq˚ ´ tεu. s “ pψ ∆gq f̂g s

whose optimal representative with respect to a fixed real valued metric is

f̂g “ λs. pλpm, tq. tq min
 `

}Ω̂g t}, t
˘

P R ˆS | pψ ∆gq t “ s
(

and gives rise to the best multidimensional decision wait generating function of all.

MDW “ Ω̂g ˝ f̂g

312 CHAPTER 10. DECISIONS, DECISIONS

ri ro
d

ci

co

pi

po

ri ro
d

ci

co

pi

po

ri ro
d

ci

co

pi

po

ri ro
d

ci

co

pi

po

¨ ¨ ¨

c j

¨ ¨ ¨ ¨ ¨ ¨

Figure 10.19: Broadcasting the column input concurrently to every cell in a cascading decision wait
column might shave something off the critical path during the ci-co handshake phase, but the rest
still takes linear time (cf. Figure 10.6).

10.6. OPTIMIZED DECISION WAITS 313

Decision support

1. Is there a higher dimensional analog to Figure 10.2?

2. What is the output permutation in Figure 10.18? Does it
match Equation 10.24?

3. Solve Ω̂gptq “ I for t by Equation 10.36.

4. Write a program that calculates the number of decompositions
u P S satisfying s “ pψ ∆gq u for a given input list of dimensions
s P N

˚. For how large of a decision wait is an unguided exhaustive search for an
optimum decomposition feasible? (hint: Generalize Equation 12.18.)

5. Figure 10.19 leads to an unexplored corner of the design space, cheaper than a
quadrangular decision wait but maybe faster than a cascading one, where some
or all of the cells in a column can be grouped together to receive their ci inputs
concurrently and to synchronize their co outputs.

a) To cut costs, redesign this column to have two groups of two consecutive
cells each such that both sets receive their ci concurrently but co propagates
sequentially within them. What is the reduction in cost?

b) How many other ways are there to separate the column into groups of consec-
utive cells? Which is the fastest and which is the cheapest? How many would
there be in a column of n cells, and how many in total for m independently
decomposed columns of n cells each?

c) Make up a convention for identifying a given decomposition d P N
˚˚ with a

particular way of grouping all of the cells in an n-by-m cascading decision wait.

d) Make up an example of a decomposition strategy fp : N2 Ñ N
˚˚ that takes

dimensions xn, my P N
2 to a decomposition d “ fpxn, my P N

˚˚ specifying
a cascading decision wait following the convention in part c). Is there any
way and any reason to make fp prioritize the speed of the higher numbered
columns?

e) Upgrade the cascading decision wait combining form defined in Equation 10.11
to a new version Ωp : N˚˚ Ñ H whereby a decision wait generating function
could be defined as DWpn, mq “ Ωp fp xn, my to implement the decomposition
as indicated in part d). (N.B. This is the hard part.)

f) Define a function ∆p analogous to ∆q (Equation 10.27) but for global cascading
decompositions, and upgrade Equation 10.35 and Equation 10.36 accordingly
to enable optimization over a broader class of decompositions.

Never increase, beyond what is
necessary, the number of entities
required to explain anything.

William of Ockham

C
H

A
P

T
E

R 11
THIN ON THE GROUND

The cost of a decision wait sometimes can be drastically reduced by permanently eliminating the
output terminals and all relevant circuitry associated with any unwelcome input combinations. For
example, with only three valid combinations of inputs instead of four, an LJOIN does its job using
less than half the number of components of a 2-by-2 decision wait (cf. Figure 9.13, Figure 10.3 and
Figure 10.4). In an environment where only three combinations were needed, it would be wasteful
to do otherwise. Savings like these generalize to larger
dimensions when the specifications permit, and can make
sparse decision waits viable in many applications where an
ordinary (i.e., dense) decision wait would be suboptimal or
prohibitive.

Designing a sparse decision wait of arbitrary dimensions
using no more hardware than necessary has nothing but
upside, but is infeasibly difficult to do manually. Fortunately
this task can be automated based on techniques explored
in this chapter, taking yet another load off the designer’s mind and fitting into an overall theme
of progressing toward higher level circuit synthesis, especially insofar as sparse decision waits
have applications to state based circuit synthesis (Chapter 15) and to certain transcoding problems
(Chapter 13). Moreover, readers who consider Chapter 10 too easy should find this chapter more
agreeable, which develops sparse decision waits in a way that reduces to dense decision waits as
a special case. However, the presentation is ordered similarly where possible to keep the simpler
material self contained towards the beginning for the sake of whoever is not in for the whole
shooting match.

One reason to regard dense decision waits as special cases of sparse decision waits is that the
interface between a dense decision wait and its environment is always fully described by a list of
dimensions s P N

˚ implying a total of
ř

s inputs organized into |s| input buses, and
ś

s outputs. It
may also be recalled from Chapter 10 that any ensemble of |b| input signals whose i-th is transmitted

315

316 CHAPTER 11. THIN ON THE GROUND

along the bi-th line of the i-th input bus for b P N
|s| causes an output from the ppῑsq

´1 bq-th output
terminal, provided that bi is less than si for all 0 ď i ă |s|.

The same can not be said of sparse decision waits with dimensions s in general. The effect
of an ensemble of inputs b “ x1,1y to an LJOIN, for example, is undefined because there is no
output in row 1 and column 1 as shown in Figure 9.13, even though it is reasonable to associate
the dimensions of s “ x2, 2y with an LJOIN and the inputs b are within this
range. To express conditions like this one, we need to adopt a convention
of specifying a sparse decision wait by its coordinates rather than by
its dimensions alone. If an LJOIN is defined as the sparse decision wait
whose coordinates are c “ tx0,0y, x0,1y, x1,0yu P PpN|s|q, then there
is no uncertainty about which combinations of inputs are allowed. We
may loosely refer to a set c P PpN˚q hereafter as the coordinates of a
sparse decision wait, or refer more precisely to each member b P N

˚

of c as a point and each term bi P N of b as a coordinate when such
distinctions are useful. The output arity of a sparse decision wait is not necessarily the product

ś

s
of its dimensions s, but is given directly by the number |c| of points, which is generally less. A dense
decision wait with coordinates c and dimensions s satisfies c “ Rpῑsq by Equation 10.3.

The rest of this chapter starts with a discussion of some unavoidable mathematical notation
and conventions in Section 11.1, to be followed by a general treatment of sparse decision wait
permutations and rotational transformations in Section 11.2, these being a prerequisite to some
of the basic combining forms. For readers in a hurry, Section 11.3 describes a general sparse
decision wait generating function as a simple recurrence that works for any specification but is
usually suboptimal. Following in Section 11.4 are improvements to this basic construction that
should yield somewhat better results for the special case of planar sparse decision waits if a bit
more math is tolerable. Section 11.5 provides an alternative for multidimensional sparse decision
waits by generalizing the dendriform and crossbar decompositions from Section 10.4 to them, and
Section 11.6 adapts the idea of decomposition strategies introduced in Chapter 10 to sparse decision
waits with a view to global optimality. Section 11.7 concludes with some remarks on how far these
ideas can be trusted.

11.1 Notation

Specifying sparse decision waits by sets of points as proposed above requires all sorts of recurrences,
partitions, transformations and miscellaneous manipulations of coordinates to generate circuits
from them. Several notational devices introduced in this section that appear constantly in the sequel
pertain to a form of ordinal functions, various concepts of a transpose, and a flattening operation.

11.1.1 Ordinals

The notation S0 introduced in Section 5.1.4 for the ordinal function on a set S is used frequently in
this chapter and subsequently. The same conventions noted previously with regard totally ordered
sets continue to apply, but are extended henceforth to entail the following conditions pertaining to
sets of lists S˚ where S is totally ordered.

• No list precedes itself.

• The empty list ε precedes any non-empty list.

11.1. NOTATION 317

• A list u P S˚ precedes a list v P S˚ if either u0 precedes v0, or u0 is equal to v0 and u « 1
precedes v « 1.

In other words, the implicit total ordering on lists of a totally ordered set is lexicographic.
A further idiomatic twist is to use this notation in an expression of the form S0´1, which is

the inverse function of S0 in that it takes any number ranging from 0 through |S| ´ 1 to a unique
member of S. Because lists are modeled as functions, this expression can also be interpreted as the
list of length |S| containing all elements of S in ascending order, and is treated as such hereafter.

11.1.2 Transposing

The expression xᵀ, read “x transpose”, denotes the transpose of an entity x when x is any expression
devolving either to a set of lists, a list of lists, or a list of sets. The interpretation varies depending
on the type of x .

Sets of lists

For a set of lists c “ txm, n, oy, xp, q, ry, xs, t, uyu, the transpose cᵀ “ xtm, p, su, tn, q, tu, to, r, uuy is
the list whose i-th term is the set of all i-th terms of members of c. This transformation is useful
only when every member of c has the same length, so cᵀ is identified with the empty list otherwise
by definition. Specifically, for a set of lists c P PpS˚q, the list of sets cᵀ P PpSq˚ is given by

cᵀ “ pλn. pλi. pµ λb. biq cq› ιnq pλs. x0,max sy
δ

|s|
1

q pµ λb. |b|q c (11.1)

using the µ operator defined by Equation 5.1, and the maximum with respect to the usual ordering
on natural numbers. Whenever c is a set of lists of equal length, which should be clear from the
context, we can write cᵀi for pcᵀqi without ambiguity. If c contains the coordinates for a sparse
decision wait, then |cᵀ| is its number of dimensions, and |cᵀi | is the length of the i-th dimension.

Lists of lists

The transpose of a list d P S˚˚ of equal-length lists to a list dᵀ P S˚˚ is completely analogous.

dᵀ “ pλn. pλ j. pλi. si jq
› ι|s|q

› ιnq pλs. x0,max sy
δ

|s|
1

q Rppλb. |b|q› dq

For example, xxm, n, oy, xp, q, ry, xs, t, uyyᵀ is xxm, p, sy, xn, q, ty, xo, r, uyy. This operation is its own
inverse.

Lists of sets

It might seem appropriate to define the transpose of a list of sets as the inverse of the transpose
of a set of lists, but that operation lacks a unique inverse. A more practical alternative for a list of
sets l P PpSq˚ is a set lᵀ P PpS˚q containing every possible list of length |l| whose n-th term is a
member of the n-th term of l.

lᵀ “
`

btεu λph, tq. pµ λpi, jq. i : jq ph ˆ tq
˘

l

This operation would satisfy c Ď cᵀᵀ for a set c P PpS˚q of lists of equal length. Another example is

xRpιaq,Rpιbq,Rpιcqyᵀ “ Rpῑxa,b,cyq

for natural numbers a, b, c P N (cf. Equation 10.3).

318 CHAPTER 11. THIN ON THE GROUND

11.1.3 Flattening

The list flattening operator 5 : S˚˚ Ñ S˚ defined on lists of lists by Equation 8.11 suggests a
comparable operation on lists of sets. If the members of a set s P PpSq are totally ordered, then
s induces a list s0´1

P S˚ as proposed in Section 11.1.1. Transforming each set x i Ď S in a list of
sets x P PpSq˚ to the list x0

i
´1

P S˚ results in a list of lists pλs. s0´1
q› x P S˚˚, which can then be

flattened by 5. An operator denoted
85 : PpSq˚ Ñ S˚

and defined as follows encapsulates this transformation more briefly hereafter.

85 “ 5 ˝ pλs. s0´1
q› (11.2)

For example, Rp85 xq “
Ť

Rpxq expresses the union of a list x of sets, and |85 x | is equal to |Rp85 xq|

if all sets x i in the list are mutually disjoint.

11.1.4 Coordinates

Two operations specific to sets of sparse decision wait coordinates are ubiquitous enough to warrant
particular notations. These notations refer to the dimensions of a sparse decision wait with known
coordinates, and to the local renumbering of a list of sparse decision wait specifications.

Dimensions

The coordinates c P PpN˚q of a sparse decision wait determine a list of dimensions σ c P N
˚ under

one condition. An empty row in a sparse decision wait (i.e., with no outputs in it), would mean no
signal is ever allowed on the input terminal for that row, and therefore that terminal plays no role
in the operation of the device. Because this case can be neglected without loss of generality, the
set a “ cᵀi P PpNq of input terminal numbers along the i-th dimensional axis can be assumed to
contain every number from zero through |a| ´ 1 and be non-empty. A definition of σ : PpN˚q Ñ N

˚

contingent on valid sets of coordinates is given by

σ“ λc. pλd. xε, dy
δ

d�t0u
ε

q
`

λa. |a|δ
ι|a|�a
ι|a|

˘›
cᵀ (11.3)

in that σ c is empty if the condition fails.

Local renumbering

The other operation is frequently applicable to subsets of the coordinates of a sparse decision wait
that feature in its decomposition. If the rows and columns of a sparse decision wait are partitioned
into multiple regions each representing a sparse decision wait to be generated separately and then
glued together somehow, then some of the regions might exhibit non-consecutive sets of row or
column coordinates contrary to the condition above. For sparse decision wait coordinates c P PpN˚q

and any list d P PpN˚q˚ of regions satisfying
Ť

Rpdq “ c, this issue would be resolved easily by
renumbering points b P s locally relative to each region s P Rpdq. That is, for each dimension i ă |b|,
a renumbered coordinate bi to something in the range of 0 through |sᵀi | ´ 1 without affecting their
order is expressible as psᵀi q0 bi , its ordinal with respect to the set of all coordinates bi in members b
of the region s. The renumbered list η d follows from this definition of η : PpN˚q˚ Ñ PpN˚q˚.

η“ pλs. pµ λb. pλi. psᵀi q0 biq
› ι|b|q sq› (11.4)

11.2. SPARSE DECISION WAIT TRANSFORMATIONS 319

11.2 Sparse decision wait transformations

Aside from their potential benefits for optimization, permutations and rotational transformations of
sparse decision waits analogous to those of dense decision waits described in Section 10.5 are needed
in various combining forms. For sparse decision waits, the constructions are more complicated
because they depend not just on the dimensions but specifically on the coordinates, and so are
expressed as a function

ϕpp, cq : H Ñ H

parameterized by a list of permutations p P N
˚˚ and a set c P PpN˚q in terms of a composition

ϕpp, cq “ pλpu, qq. ppϕ1 uq pϕ̂0 qq cq ˝ pϕ0 qq cq pp0, p « 1q (11.5)

where ϕ1 effects the rotation of the axes, ϕ0 effects the permutations along each axis, and ϕ̂0 models
the effect on the coordinates c due to the permutations q on the axes, which have an indirect effect
on the result of ϕ1. This result is well defined only if there is one permutation in the list p for the
rotation and one for each dimension

|p| “ 1 ` |σ c|

with the rotational permutation having a length matching the number of dimensions first in the list

|u| “ |p0| “ |σ c|

and the rest having a length matching the j-th dimension for each 0 ď j ă |σ c|.

|q j | “ |p j`1| “ pσ cq j

With these conventions established, it remains only to specify the functions ϕ̂0, ϕ0, and ϕ1
appearing in Equation 11.5 to complete the construction. These derivations occupy Section 11.2.1,
Section 11.2.2 and Section 11.2.3 respectively.

11.2.1 Coordinate transformations

When we rotate a k-by-l-by-m decision wait, we can expect a result
with dimensions k, l, and m in some other order, even if the inputs
along each axis are also permuted, but if a sparse decision wait x
described by coordinates c is permuted or rotated to ϕpp, cq x , then the coordinates of the result
might differ in more complicated ways from those of x . In particular, for each coordinate b j in a
point b P c, a point in the intermediate result ppϕ0 qq cq x after permutation but before rotation has
a j-th coordinate ppq jq

´1qb j
, where q “ p « 1 is the list of permutations relevant to this phase. The

complete set of them would be

pµ λb. pλ j. ppq jq
´1qb j

q› ι|b|qq c P PpN˚q

denoted as pϕ̂0 qq c in terms of the desired function

ϕ̂0 : N˚˚ Ñ pPpN˚q Ñ PpN˚qq

taking the liberty of specifying an empty result whenever c has dimensions incompatible with q.

ϕ̂0 “ λq. λc. xH, pλi. xH, pµ λb. pλ j. ppq jq
´1qb j

q› ι|b|qq cyiq
ś

pλk. δpσ cqk

|qk|
q› ι|q|yδ|σ c|

|q|

(11.6)

320 CHAPTER 11. THIN ON THE GROUND

Although it is not needed until Section 11.6, it is worth taking the opportunity at this point to
note the overall effect on the coordinates due to both transformations ϕ0 and ϕ1. The difference
between the intermediate result v “ pϕ̂0 qq c and the coordinates of the final result ϕpp, cq x is that
each point b P v must be reordered to b ˝ u where u “ p0 is the permutation specifying the rotation
of the axes in Equation 11.5. The complete set of them would be

pµ λb. b ˝ uq v P PpN˚q

when v reflects the effects of the other permutations q. For future reference let these coordinates be
denoted pϕ̂ pq c in terms of a function ϕ̂ : N˚˚ Ñ pPpN˚q Ñ PpN˚qq given by

ϕ̂ “ λp. pϕ̂1 p0q ˝ ϕ̂0pp « 1q (11.7)

and the effect of the rotation

ϕ̂1 “ λu. λv. xH, pµ λb. b ˝ uq vy
δ

|σ v|

|r|

(11.8)

also defined to yield an empty result in cases of incompatible dimensions as a matter of technical
convenience.

11.2.2 Permuting along the axes

The function ϕ0 : N˚˚ Ñ pPpN˚q Ñ pH Ñ Hqq for transforming a sparse decision wait x P H with
coordinates c P PpN˚q to a sparse decision wait ppϕ0 qq cq x P H with coordinates pϕ̂0 qq c has the
effect of permuting the inputs along the n-th dimensional axis according to the permutation a “ qn.
The result ppϕ0 qq cq x can be pictured as x with a wrapper around it consisting of an input and an
output permutation network. The input permutation network

pb Rq pλa. a ¸ I|a|q› q

depends only on q and would be the same even for a dense decision wait as discussed in Section 10.5.
The output permutation network is best to understand as a recurrence intuitively similar to the

one depicted in Figure 10.18 but more complicated in the details. A sparse decision wait could
have a different number of outputs in each row and therefore output buses of different widths
from different rows. If the columns are permuted by a permutation r P Rpqq, and the i-th row
has outputs only in columns k P PpNq with |k| ă |r|, then the output bus from the i-th row needs
an output permutation network described by a permutation consistent in some sense with r but
not identical to r. The projection si “ r � k containing only the terms of r corresponding to extant
outputs in k would almost work, but it is not generally a permutation unless it is renumbered to

pλt. Rpsiq
0 tq› si

thereby maintaining the order of those that remain. Furthermore, to derive the permutation network
for the whole decision wait, we have to consider not just the permutation of the i-th row, but those
of all rows 0 ď i ă |s|. Flattening a list of them into a single permutation 9o s P N

˚ entails offsetting
each term t of the i-th permutation by the cumulative sum of the lengths |5 ps∣ iq| of its predecessors
in the list as follows.

9o “ λs. 5 pλi. pλt. |5 ps ∣ iq| `Rpsiq
0 tq› siq

› ι|s| (11.9)

11.2. SPARSE DECISION WAIT TRANSFORMATIONS 321

The treatment of sparse decision waits with arbitrarily many dimensions n “ |σ c| calls for
a more general definition of the output permutation network in terms of a recurrence opq, cq as
indicated above. A set c P PpNnq with n ą 1 for an n-dimensional sparse decision wait determines
a list of |cᵀ0 | sets

d “ pµ λb. b « 1q› ppπ λb. b0q cq0´1
P PpNn´1q˚ (11.10)

each describing an pn ´ 1q-dimensional sparse decision wait (subject to renumbering). For example,
for a three dimensional sparse decision wait (n “ 3), this expression would represent a list of planar
sparse decision waits ordered by their plane indices. (See Equation 6.6 for a reminder about the
partitioning operator π.) For the inductive case of the recurrence opq, cq, we can assume a known
solution opq « 1, eq for any p|q|´1q-dimensional e P Rpdq by Equation 11.10. Each of these solutions
describes the output permutation network for one of these lower dimensional building blocks, and
by similar reasoning to that of Section 10.5, the buses themselves should be permuted according
to the higher dimensional permutation q0 and then combined by 9o per Equation 11.9 as proposed
above.

9o
``

pλe. opq « 1, eqq› pµ λb. b « 1q› ppπ λb. b0q cq0´1˘
˝ q0

˘

A recurrence with this inductive case implies a base involving a set c P PpN1q of one-dimensional
points, with cᵀ0 not necessarily forming a set of consecutive indices unless the whole decision wait is
only one-dimensional (i.e., a bus). More generally, c in the base case might represent the column
indices of the outputs in just one row of some larger sparse decision wait. The relevant segment of
the output permutation would then follow from the projection q0 � cᵀ0 according to the discussion
above, suggesting this definition for the recurrence overall.

opq, cq “

"

q0 � cᵀ0 if |cᵀ| “ 1
9o
``

pλe. opq « 1, eqq› pµ λb. b « 1q› ppπ λb. b0q cq0´1˘
˝ q0

˘

otherwise

Putting both permutation networks together into a wrapper around an operand x P H leads to a
definition

ϕ0 “ λq. λc. λx . C|5 q|xpbRq pλa. a ¸ I|a|q› q, xy ˙ opq, cq

for this phase of the transformation ϕ in Equation 11.5.

11.2.3 Permuting the axes

The other phase ϕ1 : N˚ Ñ pPpN˚q Ñ pH Ñ Hqq that rotates a
sparse decision wait x P H with coordinates v P PpN˚q into a sparse
decision wait ppϕ1 uq vq x with coordinates pϕ̂1 uq v also amounts
to putting a wrapper of input and output permutation networks
around the operand x .

The input permutation network specification is fairly straightforward with coordinates v implying
dimensions σ v and an ensemble of |σ v| input buses with the j-th bus inside the wrapper having a
width pσ vq j . The given permutation u specifies a route for the i-th bus from the outside to the ui-th
position on the inside relative to the other buses, and hence an offset for its first line of

ř

ppσ vq∣ sq,
the sum of the widths of the buses preceding it, where s “ ui is the i-th term of u. The permutation
describing the whole input permutation network is therefore

5
`

λs. ι
ř

ppσ vq∣sq
pσ vqs

˘›
u.

322 CHAPTER 11. THIN ON THE GROUND

To affect a sparse decision wait with coordinates pϕ̂1 uq v by Equation 11.8, the output per-
mutation network should run a wire to an externally visible terminal on ppϕ1 uq vq x pertaining
to a point b P pϕ̂1 uq v, which appears at position Rppϕ̂1 uq vq0 b relative to the other externally
visible output terminals. This wire should come from the internal output terminal on x due to the
point b ˝ u´1, which appears at position v0pb ˝ u´1q relative to the other output terminals on x .
The whole output permutation is therefore the list of the internal output terminal positions on x
ordered lexicographically by the coordinates b of their external destinations on ϕ1pu, vq x .

pλb. v0 pb ˝ u´1qq› ppϕ̂1 uq vq0´1

Putting the operand x together with its input and output permutations gives the following
definition for ϕ1

ϕ1 “ λu. λv. λx . 5
`

λs. ι
ř

ppσ vq∣sq
pσ vqs

˘›
u ¸ x ˙ pλb. v0 pb ˝ u´1qq› ppϕ̂1 uq vq0´1 (11.11)

which completes the construction ϕ in Equation 11.5.

11.3 Fallback position

In this section we examine a couple of easy ways to construct sparse
decision waits in case the rest of the chapter is too long or too much
trouble. They may also be useful as a last resort when none of the
more sophisticated techniques is appropriate. The degenerate sparse
decision wait construction described in Section 11.3.1 relies in the
worst case on building a dense decision wait and then ignoring some
of the outputs, and the separable sparse decision wait discussed in Section 11.3.2 relies on dumb
luck when the coordinate specification just happens to permit a decomposition into non-interacting
parts.

The combination of these two constructions suffices for a basic sparse decision wait generating
function SDW : PpN˚q Ñ H satisfying the recurrence

SDWpcq “

"

pλd. Ωspd, SDW›η dqq fs c if fs c ‰ ε
Ωnpc,MDW σ cq otherwise (11.12)

in terms of any multidimensional decision wait generating function MDW : N˚ Ñ H defined in
Chapter 10, where fs : PpN˚q Ñ PpN˚q˚ is the decomposition function taking sparse decision wait
coordinates c P PpN˚q to a list of separate coordinate specifications fs c P PpN˚q˚.

• The separable combining form Ωs : PpN˚q˚ ˆH
˚ Ñ H takes a list of separate specifications

d P PpN˚q˚ and a list of sparse decision waits x P N
˚ where x i implements di for all 0 ď i ă |d|

to a sparse decision wait Ωspd, xq P H implementing the original specification c.

• The degenerate combining form Ωn : PpN˚q ˆH Ñ H simply takes the coordinates c and a
dense decision wait with the same dimensions implied by c to a sparse decision wait with
coordinates c.

11.3. FALLBACK POSITION 323

coordinates c permutations p

tx0,0y, x0,1y, x1,0yu xι2, x0,1y, x0,1yy

tx0,0y, x0,1y, x1,1yu xι2, x0,1y, x1,0yy

tx0,0y, x1,0y, x1,1yu xι2, x1,0y, x0,1yy

tx0,1y, x1,0y, x1,1yu xι2, x1,0y, x1,0yy

Table 11.1: permutation lists p P N
˚˚ needed to synthesize a 2-by-2 sparse decision wait with

coordinates c P Ppt0,1u2q as ϕpp, t0,1u2 ´ t1u2q LJOIN by Equation 11.5 and Equation 9.18

Figure 11.1: The useless circuit Z2RpPUSH, JOINq has one input terminal and no outputs but lays a
trap for any signal coming its way during simulation.

11.3.1 Degenerate

If the only sparse decision wait ever required were an LJOIN, then the degenerate case combining
form Ωn would be especially easy because its result would be given already by Equation 9.18.
Moreover, any 2-by-2 sparse decision wait with three outputs can always be implemented by some
permutation of an LJOIN as shown in Table 11.1. That is, interchanging the rows, columns, or both
as needed relocates the missing output in the lower right corner of Figure 9.13 to any desired corner.
The coordinates

t0,1u2 ´ t1u2 “ tx0,0y, x0,1y, x1,0yu

supplied in the operand to ϕ are required to match the actual coordinates of an LJOIN. Expressing p
in terms of c consistently with Table 11.1 is a matter of code golf, but

p “ xι2, pc0´1
q1, pλi. xδi

2,δi
1yq

ř

pc0´1
q
ᵀ
1y

is good enough for our purposes.
In all other cases, a sparse decision wait with coordinates c is expressible in terms of a dense

decision wait with dimensions σ c and the outputs associated with the unused input combinations
suppressed, which are the input combinations b P Rpῑσ cq ´ c. Rather than just making a mental
note of them, we can indicate explicitly the outputs that are suppressed by connecting an instance
of the circuit shown in Figure 11.1 to each one of them as shown in Figure 11.2. This bookkeeping
step is necessary to reduce the number of observable outputs on the circuit from

ś

σ c to the correct
value of |c| for a sparse decision wait with coordinates c. It also has the effect of prohibiting the
input combinations leading to any of these outputs in the sense that the Petri net model of the circuit
attains an unsafe marking according to the theory developed in Part II of this book. This condition
is desirable because it ensures that events whose effects are unspecified never go unnoticed during
formal verification.

To implement the degenerate sparse decision wait in general, we envision the dense decision
wait x P H with dimensions σ c connected by a bus of width

ś

σ c to an array of
ś

σ c blocks in

324 CHAPTER 11. THIN ON THE GROUND

Figure 11.2: If there were no better way to implement an LJOIN, it could be made from a dense
decision wait of similar dimensions with the outputs due to invalid input combinations suppressed.

which the i-th block is a wire if b “ pῑσ cqi is a member of c, but is Z2RpPUSH, JOINq otherwise.

Cśσ c

@

x , pbRq pλb. xZ2RpPUSH, JOINq, Iy
δ

tbuYc
c

q› ῑσ c

D

A definition for the degenerate sparse decision wait combining form Ωn follows directly from
the two alternatives considered above.

Ωnpc, xq “

#

ϕpxι2, pc0´1
q1, pλi. xδi

2,δi
1yq

ř

pc0´1
q
ᵀ
1y, t0,1u2 ´ t1u2q LJOIN if δ|c|

3 δ
c´t0,1u2

H
“ 1

Cśσ c

@

x , pbRq pλb. xZ2RpPUSH, JOINq, Iy
δ

tbuYc
c

q› ῑσ c

D

otherwise

This method is of course quite an inept way of constructing almost any sparse decision wait other
than an LJOIN without a few optimizations to come.

11.3.2 Separable

One such optimization that is always to be preferred where applicable is
illustrated in Figure 11.3. If the outputs from a decision wait can be separated
into regions having no rows or columns in common, then each region can be
implemented separately with nothing but suitably chosen permutation networks needed to combine
them (at no cost). This optimization generalizes to any number of dimensions, and does not require
the regions to be contiguous.

Identifying the separable regions from a set of coordinates is equivalent to identifying the
connected components in an undirected graph, a well understood problem solvable by efficient
algorithms [65, 139]. Each hyperplane perpendicular to the major dimension corresponds to a node
in the graph, and any two nodes are connected by an edge whenever there is an output at the same
position in both of them. For example, in a planar sparse decision wait, each node is a row and two
nodes are connected whenever both of them have an output in the i-th column for at least one i.

Decomposition function

To specify an algorithm for decomposing a specification given by a set of coordinates c P PpN˚q, let
a function

f “ λb. tt P N
˚ | b0 : t P cu

map any point b P c to the major hyperplane containing b expressed as a set of lower dimensional
coordinates t, which we envision as a node in a graph as discussed above. Then the region of the
graph including the hyperplane f b and any hyperplanes directly adjacent to it is

tm P c | f b X f m ‰ Hu “ pλn. tm P c | f n X f m ‰ Huq b

11.3. FALLBACK POSITION 325

Figure 11.3: an example of a separable sparse decision wait

and the extension of this region to all hyperplanes connected directly or indirectly to the one
containing b is the percolation

pρ λn. tm P c | f n X f m ‰ Huq tbu

by Equation 6.4. A partition of the whole graph into similarly extended regions by Equation 6.6

pπ ρ λn. tm P c | f n X f m ‰ Huq c P PpPpN˚qq

determines a list thereof ordered by their major coordinate index

ppπ ρ λn. tm P c | f n X f m ‰ Huq cq0´1
P PpN˚q˚

suggesting a definition for the separable decomposition function along the lines of

λc.
`

λ f . ppπ ρ λn. tm P c | f n X f m ‰ Huq cq0´1˘
λb. tt P N

˚ | b0 : t P cu

unless this formula yields a unit list, meaning the graph has only one connected component and the
specification c therefore lacks a useful separable decomposition. As a matter of technical convenience
the result in this case is the empty list by definition.

fs “ pλd. xd,εy
δ

|d|

1
q ˝ λc.

`

λ f . ppπ ρ λn. tm P c | f n X f m ‰ Huq cq0´1˘
λb. tt P N

˚ | b0 : t P cu

Inverse decomposition function

Given a non-empty decomposition d “ fs c, we can always recover the coordinates c “
Ť

Rpdq,
as we need to do shortly when deriving the combining form Ωs, but fs is only the first of several
decompositions to be developed in this chapter, and when it comes to defining sparse decision wait
generating functions by cases, it is more helpful to have an explicit inverse f´1

s for which

c “ f´1
s d

326 CHAPTER 11. THIN ON THE GROUND

does not hold unless d “ fs c holds. To meet this condition, the regions e P Rpdq each inducing a
list of sets of input indices eᵀ P PpNq|σ c| must collectively determine a list of lists of sets

a “ ppλe. eᵀq› dqᵀ P pPpNq|d|q|σ c| (11.13)

wherein the i-th term ai P PpNq|d| is a list of mutually disjoint sets covering cᵀi for all 0 ď i ă |σ c|,
and d must have a length greater than 1. In other words,

pλa. x0,δι2�t|d|u
ε

ś

pλi. δ
Ť

Rpaiq

cᵀi
δ

|85 ai |

pσ cqi
q› ι|a|yδ|σ c|

|a|

q ppλe. eᵀq› dqᵀ

would have to be non-zero, calling for a definition of f´1
s as follows.

f´1
s “ λd. pλc. pλ j. xH, cy jq pλa. x0,δι2�t|d|u

ε

ś

pλi. δ
Ť

Rpaiq

cᵀi
δ

|85 ai |

pσ cqi
q› ι|a|yδ|σ c|

|a|

q ppλe. eᵀq› dqᵀq
Ť

Rpdq

Combining form

Being concerned with a list of separate non-interacting decision waits x P H
˚ as shown in Fig-

ure 11.3, a definition for the combining form Ωs should feature only the parallel combination pbRq x
surrounded by an input permutation network and an output permutation network.

The output permutation is the easy one. The i-th externally visible output terminal is associated
with a point b “ pc0´1

qi , where c “ f´1
s d is the specification from which the separable decom-

position d “ fs c is derived. The signal to this output terminal comes from the output terminal
numbered

p85 dq´1 b

on the array of building blocks pbRq x , because 85 d expresses the list of points in order of their
output terminal positions on the array. Hence the whole output permutation is simply

p85 dq´1› pf´1
s dq0´1

in terms of d alone.
For the input permutation, we recall temporarily the list a “ ppλe. eᵀq› dqᵀ from Equation 11.13.

Each term ai is a list of |σ c| sets of input terminal numbers, with the j-th set pertaining to the j-th
dimension of the i-th building block. The initial set ai0 therefore contains the actual line numbers
of the lines to be connected to the i-th block along its major dimensional axis relative to the whole
externally visible input bus. However, the numbers in a set ai j with j ą 0 must be interpreted as
being relative to that part of the externally visible input bus connected only to inputs along the j-th
dimensional axis. The absolute input bus line numbers associated with members of ai j are obtained
only by offsetting each of them with

ř

ppσ cq∣ jq

which is the number of all preceding bus lines due to other dimensions, in an expression like

pµ λk. k `
ř

ppσ cq∣ jqq ai j .

Stringing together the list of all input line numbers connected to the i-th block over all dimensions j

85 pλ j. pµ λk. k `
ř

ppσ cq∣ jqq ai jq
› ι|σ c|

11.4. PLANAR SPARSE DECISION WAITS 327

and doing the same for all building blocks associated with the decomposition d

5 pλi. 85 pλ j. pµ λk. k `
ř

ppσ cq∣ jqq ai jq
› ι|σ c|q

› ι|d|

would result in the inverse of the required input permutation, because it lists the external line number
for each internal terminal rather than the internal terminal number for each line per convention.
The actual input permutation p d P N

˚ is given by a function p : PpN˚q˚ Ñ N
˚ defined as

p “ λd. pλc. p5 pλi. 85 pλ j. pµ λk. k `
ř

ppσ cq∣ jqq ppλe. eᵀq› dq
ᵀ
i jq

› ι|σ c|q
› ι|d|q

´1q f´1
s d.

A definition for the combining form Ωs follows easily from these two permutations

Ωspd, xq “ pbRq p d ¸ x ˙ p85 dq´1› pf´1
s dq0´1

and completes the specification of our first iteration of a sparse decision wait generating function
SDW in Equation 11.12.

11.4 Planar sparse decision waits

A small investment of effort in the way of a few further
planar decompositions yields a large improvement to the
basic construction of Equation 11.12 in the way of effi-
ciency. The vertical and horizontal spanning decompositions described in Section 11.4.1 separate
the specification into two parts, and the enmeshed decomposition discussed in Section 11.4.2 em-
ploys three. The combination of these decompositions along with the separable decomposition leads
to the more robust sparse decision wait generating function in Equation 11.14, which need never
resort to the degenerate form for any planar sparse decision wait larger than 2-by-2.

SDWpcq “

$

’

’

’

’

&

’

’

’

’

%

pλd. Ωspd, SDW›η dqq fs c if fs c ‰ ε
pλd. Ωvpd, SDW pη dq0, SDW pη dq1qq fv c if fv c ‰ ε
pλd. Ωhpd, SDW pη dq0, SDW pη dq1qq fh c if fh c ‰ ε
pλd. Ωepd, SDW d0, SDW›η xd1, d2y, SDW›η pd « 3qq fe c if fe c ‰ ε
Ωnpc,MDW σ cq otherwise

(11.14)

Even if the parts are not separable in the sense of Section 11.3.2, the other decompositions compen-
sate through the use of routing circuitry that incurs no more than a logarithmic increase in path
length.

11.4.1 Spanning

Figure 11.4 shows a high level schematic representation of a planar sparse decision wait obtained
by vertical spanning combination. A horizontal spanning combination differs only in that the blocks
x and y, which are planar decision waits, would appear side by side, with the roles of rows and
columns interchanged. The intuition behind this construction is roughly as follows.

• For a planar sparse decision wait with coordinates c P PpN2q, a vertical spanning decomposi-
tion, if one exists, is determined by a proper subset t Ă c covering a whole number of more
than one but fewer than |cᵀ0 | rows such that the most populous row r Ă t has an output in

328 CHAPTER 11. THIN ON THE GROUND

x

y

ä |pd0q
ᵀ
1|

ä

ä

ä

|pd1q
ᵀ
0|

ä

|pd0q
ᵀ
0| ´ 1

ä

|d0| ´ |pd1q
ᵀ
1|

ä

|pd1q
ᵀ
1|

ä

|d1|

Figure 11.4: spanning combination Ωvpd, x , yq where x and y have coordinates pη dq0 and pη dq1

every non-empty column of t. That is, the row r “spans” t, meaning this condition among
others holds.

rᵀ1 “ tᵀ1

• The coordinates of y in Figure 11.4 are a locally renumbered version of t, and the coordinates
of x are a locally renumbered version of pc ´ tq Y r. That is, some chosen spanning row r
is replicated in both x and y. Advantageous choices of t will probably satisfy |tᵀ1| ă |cᵀ1 |,
corresponding to a block y with fewer columns than x .

• A completion detecting bus to the row inputs on y also triggers the input to row r on x , and
a bus from row r on x drives the column inputs on y .

• Input and output permutation networks not depicted in the figure make the combination
appear to have coordinates c from the outside.

Figure 11.5 shows a concrete example of a vertical spanning decomposition using these terms.
The rest of this section elaborates on the details.

Decomposition functions

As the description above suggests, there is generally more than one way to obtain a spanning
decomposition, and the same is true for all decompositions considered subsequently in this chapter.
Rather than seeking a specific vertical spanning decomposition function fv , we define only a set
valued function

∇v : PpN˚q Ñ PpPpN2q2q

taking a set c P PpN˚q to the set ∇v c P PpPpN2q2q of all possible vertical spanning decompositions
of a sparse decision wait with coordinates c. We may then write fv to denote any function of the

11.4. PLANAR SPARSE DECISION WAITS 329

...

äi

ä

i
ä

i
ä

i

...ä

i ` 1

ä

i

“

Figure 11.5: vertical spanning decomposition for coordinates c “ Rpxιi`1, 0 i`1yᵀq Y tι2u, a dense
columnar subset t “ Rpxι1i`1, 0 iyᵀq, and a spanning row r “ tx1,0yu

reader’s choice satisfying
@c P PpN2q. fv c P p∇v cq Y tεu. (11.15)

This convention is especially relevant when the same coordinates c simultaneously permit horizontal,
vertical, and enmeshed decompositions, because then the judicious choice of at most one of fv c ‰ ε,
fh c ‰ ε, or fe c ‰ ε to be true ensures a deterministic definition for SDW in Equation 11.14
respecting the reader’s preferences.

It is straightforward to give a naive definition for ∇v by starting with a function

p “ π λb. b0

that partitions any set c P PpN2q into a set of rows p c P PpPpN2qq. Then any proper subset of
the rows s P Ppp cq ´ tp cu determines a set of points t “

Ť

s covering a whole number of rows. If
the set t covers at least two rows, then it stands a chance of having a proper subset r P pp tq ´ ttu

satisfying rᵀ1 “ tᵀ1 . If so, the pair pt, rq determines a member xpc ´ tq Y r, ty of ∇v c, which therefore
can be specified in full as follows.

∇v “ λc. pµ λpt, rq. xpc ´ tq Y r, tyq pλp.
ď

sPpPpp cq´tp cuqXPpN2q

pλt. pttu ˆ tr P pp tq ´ ttu | rᵀ1 “ tᵀ1uqq
Ť

sq π λb. b0

The problem with this definition of ∇v is that it might be difficult to
compute efficiently if it depends on enumerating the power set of the
rows. In the end at most one decomposition fv c P∇v c can be selected
for a particular c, so if an approximation of ∇v c were to contain the
decomposition of interest, then it might save time to compute only the
approximation. A reasonable approximation follows from the assump-
tions that a choice of t Ă c in a decomposition is always preferable to
a proper subset t 1 Ă t thereof, and that the lexicographically minimal
spanning row r Ă t is as good as any other. These assumptions admit only a single decomposition
for the specification in Figure 11.5 for example, which would have the columnar decision wait as
tall as possible, and generally would favor taller blocks y in Figure 11.4 over shorter ones with the
same width.

330 CHAPTER 11. THIN ON THE GROUND

One way of computing this approximation starts by making a list v0 c P PpN˚q˚ of the rows that
are not fully populated in order of decreasing cardinality.

v0 “ λc. pµ λpm, rq. rq› ppµ λr. p|cᵀ1 | ´ |r|, rqq pπ λb. b0q cq ´ pt0u ˆPpN˚qq0´1 (11.16)

To find any additional rows e for which eᵀ1 Ď rᵀ1 holds, only the rows after r in the list v0 c need to
be searched, and having been found, they can be eliminated from further consideration. For a list of
the form r : z “ v0 c, the set of all such rows is expressible as

Rpz �PpN1 q prᵀ1 q1qq P PpPpN2qq

this being the set of rows in the range of z containing only points in N
1 q prᵀ1 q1, whose column

indices therefore match a member of rᵀ1 (cf. Equation 7.3 on concatenation of sets of lists). If there
is at least one such row e, then the union t of all rows e with r determines a possible decomposition
candidate. Denote this result t “ v1pr : zq with v1 : PpN˚q˚ Ñ PpN2q defined as

v1 “ λpr : zq. pλt. xt, Hyδr
t
q pr YRpz �PpN1 q prᵀ1 q1qqq.

Any decomposition candidates not covered by t in the rest of the list z can be found more quickly
with all subsets of t filtered out of it

z � pPpPpN2qq ´Pptqq

suggesting a recursively defined function v2 : PpN˚q˚ Ñ PpPpPpN2qq ˆPpPpN2qqq

v2 “ λw.

"

H if w “ ε

pλt. tpt, w0qu Y v2ppw « 1q � pPpPpN2qq ´Pptqqqq v1 w otherwise

whereby all pairs pt, rq P PpPpN2qq ˆ PpPpN2qq of maximal sets of rows t with their respective
spanning rows r follow as v2 v0 c. A set of vertical spanning decompositions

pµ λpt, rq. xpc ´ tq Y r, tyq v2 v0 c

obtained by this line of reasoning however might not exclude the anomalous result xc, Hy, so the
restriction to

v3 pµ λpt, rq. xpc ´ tq Y r, tyq v2 v0 c

for v3 : PpN˚q˚ Ñ pPpN2q ´ tHuq˚ defined by

v3 “ µ λd. d X pPpN2q ´ tHuq˚ (11.17)

leads to a more suitable definition for the approximate alternative to ∇v .

∇v “ λc. v3 pµ λpt, rq. xpc ´ tq Y r, tyq v2 v0 c

In any case, a definition for the set of horizontal spanning decompositions ∇h c follows immedi-
ately almost for free from a reversal of the coordinates before and after

∇h “ λc. pλ f . pµ f ›q∇v f cq µ bε λph, zq. z q xhy

with the decomposition function fh following a similar convention to that of Equation 11.15.

11.4. PLANAR SPARSE DECISION WAITS 331

Inverse decomposition functions

Even though the choice of a decomposition function fv satisfying fv c P∇v c Y tεu is somewhat
flexible, there are clear criteria for deciding whether a given list d P PpN˚q˚ constitutes a valid
vertical spanning decomposition for some coordinates c P PpN2q, so no need for more than one
inverse decomposition function

f´1
v : PpN˚q˚ Ñ PpN2q

in the sense that it can satisfy

@c P PpN˚q. @d P∇v c. f´1
v d “ c (11.18)

regardless of how fv is chosen. These criteria include the number of building blocks |d| “ 2, the
number of dimensions |σ c| “ 2 for coordinates c “

Ť

Rpdq, the intersection d0 X d1 occupying
exactly one row r P pπ λb. b0q c spanning d1, and non-separability implied by d0 spanning c.

f´1
v “ λd. pλpr, cq. xH, pλp. pλi. xH, cyiqδ

pd0q
ᵀ
1

cᵀ1
δ

pd1q
ᵀ
1

rᵀ1
δpYtru

p q pπλb. b0q cy
δ

|d|

2 δ
|σ c|

2
q
`
Ş

Rpdq,
Ť

Rpdq
˘

The inverse horizontal spanning decomposition function is obtained analogously by a reversal of
the coordinates.

f´1
h “ pλ f . f ˝f´1

v ˝ f ›q µ bε λph, zq. z q xhy (11.19)

Combining forms

The combining form Ωv : PpN2q2 ˆHˆH Ñ H appearing in Equation 11.14 is required to take a
vertical spanning decomposition d P PpN2q2, a block x P H, and a block y P H to a result

Ωvpd, x , yq P H

with coordinates c “ f´1
v d as shown in Figure 11.5 provided c is non-empty, x has coordinates

pη dq0, and y has coordinates pη dq1. A prominent feature of this construction is the completion
detecting bus

FvxFORKvé1
2,MERGE vy

where v “ |pd1q
ᵀ
0| is the number of rows of y. A block S0pd, yq P H combining the completion

detecting bus with y is expressible in terms of

S0 : PpN2q2 ˆH Ñ H

defined as
S0 “ λpd, yq. pλv. FvxFvxFORKvé1

2,MERGE vy, yy æ 1q |pd1q
ᵀ
0|

with the completion detection signal moved to the last output position. To connect x with this block,
it would be helpful to have the spanning row input in rᵀ0 as the first input to x

ppd0q
ᵀ
0q0› 85 xrᵀ0 , pd0q

ᵀ
0 ´ rᵀ0 y ¸ x

where r “ d0 X d1 is the set of spanning row coordinates, and the output bus from this row in the
last position

ppd0q
ᵀ
0q0› 85 xrᵀ0 , pd0q

ᵀ
0 ´ rᵀ0 y ¸ x ˙ d´1›

0
85 xd0 ´ r, ry

332 CHAPTER 11. THIN ON THE GROUND

so that the last |r| outputs from x reach the column inputs on y and the completion detector output
can be rolled into alignment with the spanning row input on x in an expression like

L|r|xppd0q
ᵀ
0q0› 85 xrᵀ0 , pd0q

ᵀ
0 ´ rᵀ0 y ¸ x ˙ d´1›

0
85 xd0 ´ r, ry, S0pd, yqy ê 1

to provide for a combined block with one further connection

ZpL|r|xppd0q
ᵀ
0q0› 85 xrᵀ0 , pd0q

ᵀ
0 ´ rᵀ0 y ¸ x ˙ d´1›

0
85 xd0 ´ r, ry, S0pd, yqy ê 1q

expressible more succinctly as S1pd, xq S0pd, yq in terms of S1 : PpN2q2 ˆH Ñ pH Ñ Hq given by

S1 “ λpd, xq. λs. pλr. ZpL|r|xppd0q
ᵀ
0q0› 85 xrᵀ0 , pd0q

ᵀ
0 ´ rᵀ0 y ¸ x ˙ d´1›

0
85 xd0 ´ r, ry, sy ê 1qq pd0 X d1q.

It remains only to effect the required input and output permutations. The first externally visible
inputs to the block derived up to this point reach the |pd0q

ᵀ
0| ´ 1 row inputs left exposed on x , the

next j “ |pd0q
ᵀ
1| reach the column inputs on x , and the last |pd1q

ᵀ
0| go to the completion detecting

bus leading to the row inputs on y . Reordering them in a block pS2 dq S1pd, xq S0pd, yq P H with a
function S2 : PpN2q2 Ñ pH Ñ Hq given by

S2 “ λd. λs. pλ j. pλk. LkxIk ä j, syq |pd1q
ᵀ
0| ` jq |pd0q

ᵀ
1|

puts all row inputs ahead of the column inputs. This result nevertheless places the outputs from x
ahead of those from y , leaving a sparse decision wait with coordinates S3 d for S3 : PpN2q2 Ñ PpN2q

given by

S3 “ λd. ppµ λb. xppd0 ´ d1q
ᵀ
0q0 b0, b1yq pd0 ´ d1qq Y pµ λb. xpppd1q

ᵀ
0q0 b0q ` |pd0q

ᵀ
0| ´ 1, b1yq d1

whose rows therefore still need reordering to match the coordinates c “ f´1
v d even if the columns

are already in order. In particular, the i-th row input terminal on this intermediate result needs to
be driven by the ui-th row input visible externally on the final result based on a list

u “ 85 xpd0 ´ d1q
ᵀ
0, pd1q

ᵀ
0y

containing the row input indices associated with x followed by those of y . The transformation that
reorders just the rows consistently without upsetting anything else would be

pϕ0 xp85 xpd0 ´ d1q
ᵀ
0, pd1q

ᵀ
0yq´1, ι|pd0q

ᵀ
1|yq S3 d : H Ñ H

based on Equation 11.6, which is expressible more concisely as pS4 S3q d in terms of a function

S4 : pPpN2q2 Ñ PpN2qq Ñ pPpN2q2 Ñ pH Ñ Hqq

defined as
S4 “ λs. λd. pϕ0 xp85 xpd0 ´ d1q

ᵀ
0, pd1q

ᵀ
0yq´1, ι|pd0q

ᵀ
1|yq s d.

In terms of the foregoing functions, a combining form suitable for vertical spanning decomposi-
tions follows as

Ωvpd, x , yq “ ppS4 S3q dq pS2 dq S1pd, xq S0pd, yq

with the horizontal form not far off. To leverage the vertical form, we transform a triple

pd, x , yq P PpN2q2 ˆHˆH

11.4. PLANAR SPARSE DECISION WAITS 333

specifying a vertical decomposition to the analogous horizontal decomposition

S5pd, x , yq P PpN2q2 ˆHˆH

by reversing the coordinates in d to pµ λb. b ˝ x1,0yq› d and rotating the building blocks x and y
respectively to r0 x and r1 y using a list r of two rotational transformations

r “ pϕ1x1,0yq›η d

by Equation 11.11 in a definition of S5 : PpN2q2 ˆHˆH Ñ PpN2q2 ˆHˆH given by

S5 “ λpd, x , yq. pλr. ppµ λb. b ˝ x1,0yq› d, r0 x , r1 yqq pϕ1x1,0yq›η d.

It would be meaningful to write Ωv S5pd, x , yq for a vertical analog to the given horizontal decom-
position, but the coordinates of this result would be the reversals pµ λb. b ˝ x1, 0yq c of the required
coordinates c “ f´1

h d by Equation 11.19 due to these rotations. Correcting for this effect is straight-
forward by one further transformation S6 d : H Ñ H based on a function S6 : PpN2q2 Ñ pH Ñ Hq

defined as
S6 “ λd. pλc. ϕpxx1,0y, ιpσ cq1

, ιpσ cq0
y, pµ λb. b ˝ x1,0yq cqq f´1

h d

by Equation 11.5 in the specification of the horizontal combining form.

Ωhpd, x , yq “ pS6 dq Ωv S5pd, x , yq

11.4.2 Enmeshed

When it is not possible or desirable to decompose a planar sparse decision wait vertically or
horizontally, the enmeshed decomposition is another alternative. Figure 11.6 illustrates the ten
thousand foot view. The idea is to clear a space in the lower right
quadrant by shifting the more populous rows and columns upwards
and to the left, and then to deal only with the three non-empty
quadrants left over. A single large empty quadrant is conducive
to a small routing network as shown in Figure 11.7, so unlike the
quadrangular decomposition discussed in Section 10.3, this one
sticks to a fixed number of quadrants.

Even so, the overhead due to the routing network in Figure 11.7
entails a trade-off. A degenerate combination Ωnpc,MDW σ cq costs
only an amount proportional to p

ś

σ cq ´ |c| more than the dense decision wait MDW σ c with
dimensions σ c. For instances of |c| close to

ś

σ c (that is, for nearly dense decision waits), this cost
could be less than that of the routing network, to say nothing of performance, and maybe even less
than the cost of the routing network discounted by the omission of the empty quadrant. An optimal
decomposition therefore requires the right choice of a decomposition functionfe : PpN˚q Ñ PpN2q˚

to be used in Equation 11.14. As noted in the discussion of Equation 11.15, it can be chosen as any
that satisfies

@c P PpN2q. fe c P p∇e cq Y tεu (11.20)

for a function ∇e : PpN˚q Ñ PpPpN2q˚q to be defined presently.

334 CHAPTER 11. THIN ON THE GROUND

Figure 11.6: An inseparable enmeshed sparse decision wait (top) has its rows and columns permuted
to clear a contiguous empty quadrant (center) so that the three remaining non-empty quadrants
can be implemented individually and then glued together as in Figure 11.7 (bottom).

11.4. PLANAR SPARSE DECISION WAITS 335

ä
b

ä
b

äl

y0

y1

z0

z2

z1ä
w

ä
e

ä s

ä n

ä

|d3|

ä

|d4|

ä

|d5|

ä
r

äl

ärä
l

är

ät

ä
t

ä
t

äb

Figure 11.7: the enmeshed combination Ωepd, x , y, zq, where d “ fe c is an enmeshed decomposi-
tion for some coordinates c, x is an LJOIN, the coordinates of y are η xd1, d2y, and the coordinates
of z are η xd3, d4, d5y (cf. Figure 10.9)

Decomposition functions

To generalize from Figure 11.6, an enmeshed decomposition is determined by any non-empty,
non-full, non-spanning set of rows containing points u Ă c within a planar sparse decision wait
specification c P PpN2q. Hence u must be a union of one or more members of Rpv0 cq by Equa-
tion 11.16 for which the proper subset relationships uᵀ0 Ă cᵀ0 and uᵀ1 Ă cᵀ1 both hold, although the
latter implies the former because there are no empty columns. Perhaps not always an easy thing to
compute efficiently, the set s P PpPpcqq of candidates u P Ppcq may yield in some cases to a formula
like s “ pv4 v0q c, with

v4 : pPpN˚q Ñ PpN˚q˚q Ñ pPpN˚q˚ Ñ PpPpN˚qqq

defined in terms of a fold over a list of the non-spanning rows rather than a naive enumeration of
their power set.

v4 “ λv. λc. ppbtHu λph, zq. z Y tu P PpN2q | u ´ h P z ^ uᵀ1 Ă cᵀ1uq v cq ´ tHu (11.21)

336 CHAPTER 11. THIN ON THE GROUND

Any known set u P pv4 v0q c then induces a list of three sets of points d “ xt ´ r, r, uy corresponding
to the top left, top right, and bottom left quadrants respectively in Figure 11.6 with

t “ c ´ ppuᵀ0q1 q pcᵀ1q1q

covering the rows disjoint from u and

r “ t ´ pptᵀ0q1 q puᵀ1q1q

covering the columns disjoint from u. The set of all lists d of sets of points meeting these conditions
is convenient to summarize as pv5 v4 v0q c in terms of

v5 : pPpN˚q˚ Ñ PpPpN˚qqq Ñ pPpN˚q Ñ PpPpN˚q3qq

given by

v5 “ λv. λc. pµ λu. pλt. pλr. xt ´ r, r, uyq pt ´ pptᵀ0q1 q puᵀ1q1qqq pc ´ ppuᵀ0q1 q pcᵀ1q1qqq v c

but perhaps even better to summarize as v3 pv5 v4 v0q c P PpPpN2q3q by Equation 11.17 to avoid
empty quadrants that should be non-empty or other spurious results in cases of separable or higher
dimensional coordinates c.

Auxiliary decomposition functions

The result derived up to this point indicates coordinates only for the three blocks z “ xz0, z1, z2y

in the enmeshed combination shown in Figure 11.7 and not for the blocks y “ xy0, y1y, but the
complete decomposition should describe all five. The latter blocks are bicolumnar and bilateral
sparse or dense decision waits respectively serving a similar purpose to the input routing stages
of the quadrangular decision wait shown in Figure 10.9. That is, the choice of a column input to
y0 determines whether the top t row inputs to the combination should be routed west to the row
inputs on z0 or east to the row inputs in z1. Similarly, the row input signal to y1 selects either the
north output bus to the column inputs on z0 as the destination for a signal from the left l column
bus lines, or south one to z2.

To serve their intended purpose, the two blocks y in Figure 11.7 are restricted by any fixed choice
of z having coordinates d P PpN2q3 to uniquely determined coordinates ηu P PpN2q2 depending on
d. Specifically, there must be one point of the form xa, 0y in u0 indicating the presence of an output
in the left column of y0 for each row of z0, and one point of the form xb, 1y indicating the presence
of an output in the right column of y0 for each row of z1, implying coordinates pηuq0 P PpN2q for
y0 as the local renumbering of

u0 “ pppd0q
ᵀ
0q1 q t0u1q Y pppd1q

ᵀ
0q1 q t1u1q.

Similarly, there must be one output in the top row of y1 for each column of z0, and one output in
the bottom row of y1 for each column of z2.

u1 “ pt0u1 q ppd0q
ᵀ
1q1q Y pt1u1 q ppd2q

ᵀ
1q1q

The coordinates of yi for either value of i P t0,1u therefore would be a locally renumbered

ui “ pt0ui q ppd0q
ᵀ
i q1 q t0u1´iq Y pt1ui q ppdi`1q

ᵀ
i q1 q t1u1´iq “

ď

jPt0,1u

t jui q ppdpi`1q jq
ᵀ
i q1 q t juδ

i
0 .

11.4. PLANAR SPARSE DECISION WAITS 337

To cover both cases, we may write u “ 9fe d in terms of a function designated 9fe : PpN˚q˚ Ñ PpN2q˚

to connote some sort of auxiliary enmeshed decomposition function. However, the expression for ui
above is undefined unless d is a list of at least three sets of two-dimensional points. It is helpful in
other contexts to define 9fe d as an empty list ε when these conditions do not hold.

9fe “ λd. pλk. xε, pλi.
ď

jPt0,1u

t jui q ppdpi`1q jq
ᵀ
i q1 q t juδ

i
0 q› ι2ykq δ

|
Ť

Rpdq|

|85 d|
δ
f´1

s d
H

δ
|d|

3 δ
|σ

Ť

Rpdq|

2 (11.22)

The condition |
Ť

Rpdq| “ |85 d| that the terms of d are mutually disjoint and the conditionf´1
s d “ H

that they are not separable (Section 11.3.2) are not strictly necessary to ensure a well defined
value of 9fe d, but they simplify the definition of the inverse decomposition function f´1

e coming up
shortly by precluding anomalous results when d does not represent an enmeshed decomposition.

Complete decomposition functions

At this point, we could identify the set of enmeshed decompositions for coordinates c P PpN2q as
something like

pµ λd. p 9fe dq q dq v3 pv5 v4 v0q c P PpPpN2q5q

to account for the coordinates d of the blocks z and the coordinates 9fe d of the blocks y in each
possible decomposition (subject to local renumbering). However, the LJOIN x needed for the
enmeshed combination is an explicit parameter to the combining form Ωe in case there is more than
one way to construct an LJOIN (which there is), so it is less troublesome in the long run to let its
coordinates feature explicitly in the decomposition as well.

pµ λd. pt0,1u2 ´ t1u2q : p 9fe dq q dq v3 pv5 v4 v0q c P PpPpN2q6q

Hence we define ∇e : PpN˚q Ñ PpPpN2q6q in its most general form as

∇e “ pµ λd. pt0,1u2 ´ t1u2q : p 9fe dq q dq ˝ v3 ˝ pv5 v4 v0q. (11.23)

Approximate decomposition functions

Similarly to spanning decompositions, there is at most one best choice offe c P∇e c for a specification
c, and because ∇e may difficult to compute efficiently, it is worthwhile to ask whether it can be
approximated without missing too much. If one subscribes to the view that larger empty quadrants
are always preferable to smaller ones, then there is nothing to lose by lumping the identically
populated rows together in advance using

`

pµ λs.
Ť

sq ˝ pπ λr. rᵀ1 q ˝ λc. Rpv0 cq
˘0´1

in place of v0 in Equation 11.23. In many cases this optimization implies a shorter list to fold in
Equation 11.21 (a likely computational bottleneck), with less work to do on each round. A definition
of an approximate version of ∇e incorporating this optimization would be as follows.

∇e “ pµ λd. pt0,1u2 ´ t1u2q : p 9fe dq q dq ˝ v3 ˝
`

v5 v4

`

pµ λs.
Ť

sq ˝ pπ λr. rᵀ1 q ˝ λc. Rpv0 cq
˘0´1˘

338 CHAPTER 11. THIN ON THE GROUND

Inverse decomposition functions

An inverse function for enmeshed decomposition should be able to take any form of sparse decision
wait decomposition d P PpN˚q˚, determine whether it corresponds to an enmeshed decomposition
(as opposed to some other form), and recover the coordinates c “ f´1

e d P PpN2q if it does. Although
the choice of fe may vary, a fixed inverse f´1

e : PpN˚q˚ Ñ PpN2q is adequate for any choice of fe
satisfying Equation 11.20. It need only map d either to the union

Ť

Rpd « 3q of its last three terms
or to the empty set H depending on certain conditions.

The obvious conditions are the that length |d| is 6, the initial term d0 “ t0, 1u2 ´ t1u2 contains
the coordinates of an LJOIN, and the next two terms xd1, d2y match the value 9fepd « 3q of the last
three by Equation 11.22. This last condition would imply a planar non-separable list of sets of points
d « 3 occupying a contiguous sequence of rows and columns.

To nail it down more completely, we can require the upper right and lower left quadrants to
have no rows or columns in common,

ppd4q
ᵀ
0 X pd5q

ᵀ
0q Y ppd4q

ᵀ
1 X pd5q

ᵀ
1q “

5
č

j“4

pd jq
ᵀ
0 Y

5
č

j“4

pd jq
ᵀ
1 “

1
ď

i“0

5
č

j“4

pd jq
ᵀ
i “ H

and the upper left quadrant to have no columns in common with the upper right

pd3q
ᵀ
1 X pd4q

ᵀ
1 “

č

kPt3,4u

pdkq
ᵀ
1 “ H

or rows in common with the lower left

pd3q
ᵀ
0 X pd5q

ᵀ
0 “

č

kPt3,5u

pdkq
ᵀ
0 “ H

all of which can be summarized as

t “

1
ď

i“0

5
č

j“4

pd jq
ᵀ
i Y

č

kPt3,i`4u

pdkq
ᵀ
δi

0
“ H

in a definition for f´1
e of the following form.

f´1
e “ λd.

`

λs.
@

H, pλt. xH,
Ť

Rpd « 3qy
δ

H
t

q

1
ď

i“0

5
č

j“4

pd jq
ᵀ
i Y

č

kPt3,i`4u

pdkq
ᵀ
δi

0

D

s

˘

δ
|d|

6 δ
xt0,1u2´t1u2y

d∣1 δ
9fepd « 3q

pd « 1q∣2

Combining form

Now that we know how to decompose the coordinates c P PpN2q of a desired planar sparse decision
wait into those of the building blocks shown in Figure 11.7, which could be implemented separately
more easily, all we need is a way of putting them together to finish the job. This task is best
understood in terms of a combining form

Ωe : PpN2q6 ˆHˆH
2 ˆH

3 Ñ H

taking a decomposition d “ fe c P PpN2q6 of the desired coordinates c, an LJOIN x P H, two known
routing stages y P H

2, and three sparse decision waits z P H
3 for the three non-empty quadrants, also

11.4. PLANAR SPARSE DECISION WAITS 339

presumed given, to a result Ωepd, x , y, zq P H with coordinates c. The coordinates of the building
blocks are assumed to match d after renumbering, with the coordinates of the routing stages y
equal to η xd1, d2y and z equal to η xd3, d4, d5y, whereas anything else there is to know about c
can be inferred without ambiguity from c “ f´1

e d. These conditions are met by hypothesis in
Equation 11.14.

Lengthy but mostly straightforward in its derivation, the enmeshed combinator takes the form
of a front end containing x and y connected to a back end pbRq z by a central permutation
network depending on d, with a further input permutation network on the front end and an output
permutation network on the back end.

Ωepd, x , y, zq “ F4 F1 d ¸ pF3 F2 F0pd, x , yqq F1 d
F5 d
ÝÑ pbRq z ˙ F6 d (11.24)

The rest of this section specifies the functions F0 through F6 needed to make it work.

Front end To jump into the thick of it, the LJOIN x shown Figure 11.7 needs a FORK connected to
its first output, as in ZRpx , FORKq, with one output from the FORK to the first column or row input to
each of y0 and y1 respectively, and each of remaining outputs from x connected to the other column
or row input on one of y0 or y1. Shuffling the outputs from the former in a block ZRpx , FORKqé1

2
and the inputs to the latter in a block

Rpϕ1x1,0y pη xd1, d2yq0 y0, y1 ä 2q ä 2

with y0 transformed by Equation 11.11 from bicolumnar to bilateral, then combining both in parallel

RpZRpx , FORKqé1
2,Rpϕ1x1,0y pη xd1, d2yq0 y0, y1 ä 2q ä 2q

enables all four connections from the FORK and LJOIN to the routing stages y in a block

Z4RpZRpx , FORKqé1
2,Rpϕ1x1,0y pη xd1, d2yq0 y0, y1 ä 2q ä 2q

with the inputs to the LJOIN moved to the last positions in

pZ4RpZRpx , FORKqé1
2,Rpϕ1x1,0y pη xd1, d2yq0 y0, y1 ä 2q ä 2qq ä 4

hereafter abbreviated F0pd, x , yq P H with F0 : PpN2q6 ˆHˆH
2 Ñ H given by

F0 “ λpd, x , yq. pZ4RpZRpx , FORKqé1
2,Rpϕ1x1,0y pη xd1, d2yq0 y0, y1 ä 2q ä 2qq ä 4.

Hence F0pd, x , yq exposes the outputs corresponding to the buses whose widths are labeled w, e, n,
and s in that order in Figure 11.7 (mnemonic for “west”, “east”, “north” and “south”). On the input
side, the t row inputs to y0 are first, followed by the l column inputs to y1 (for “top” and “left”),
followed by the four LJOIN inputs meant for the four MERGE outputs from the completion detecting
buses with widths t, b (for “bottom”), l, and r (for “right”) in that order.

Focusing next on the bus widths t, b, l, and r, we note that they follow from the cardinalities
respectively of the list of four sets of coordinates F1 d P PpNq4 for F1 : PpN2q6 Ñ PpNq4 given by

F1 “ λd. xpd1q
ᵀ
0, pd5q

ᵀ
0, pd2q

ᵀ
1, pd4q

ᵀ
1y

these being the sets of row inputs to y0, row inputs to z2, column inputs to y1, and column inputs
to z1 in that order numbered relative to the original specification c. We could therefore make a list

pλk. L|k|xFORK|k|é1
2,MERGE |k|yq› F1 d P H

4

340 CHAPTER 11. THIN ON THE GROUND

t
ä

b
ä

l
ä

r
ä

w
ä

e
ä

n
ä

s
ä

t
ä

b
ä

l
ä

r
ä

t
ä

l
ä

pF2 F0pd, x , yqq F1 d

Figure 11.8: A partial description of the front end can be transformed to pF3 F2 F0pd, x , yqq F1 d by
making the indicated connections.

of the four completion detecting buses folded into a single network

pb λph, uq. Rph ç 1, uq æ 1q pλk. L|k|xFORK|k|é1
2,MERGE |k|yq› F1 d P H

whose inputs would be for buses with widths t, b, l, and r in that order, and whose outputs would be
from these buses in the same order followed in the last four positions by their respective completion
detection signals in the reverse order. Connecting the rest of the routing network F0pd, x , yq to the
completion detecting buses takes only a rotation and four more connections

Z4Rpppb λph, uq. Rph ç 1, uq æ 1q pλk. L|k|xFORK|k|é1
2,MERGE |k|yq› F1 dq ç 4, F0pd, x , yqq

enabling a description pF2 F0pd, x , yqq F1 d P H with F2 : H Ñ pPpNq4 Ñ Hq given by

F2 “ λ f . λv. Z4Rpppb λph, uq. Rph ç 1, uq æ 1q pλk. L|k|xFORK|k|é1
2,MERGE |k|yq› vq ç 4, f q

and having input and output buses whose ordering and widths are depicted in Figure 11.8.
The figure also suggests that the next connections worth making are from the output buses

having widths t and l to the input buses of those widths. These connections are achievable by a
parallel combination with a bus of width t ` l in a block

RppF2 F0pd, x , yqq F1 d, It`lq

followed by a connection of the top t outputs from the existing block to the parallel bus, then by
a roll of the next b outputs out of the way, and then by a connection of the next l outputs to the
parallel bus in

ZlppZtRppF2 F0pd, x , yqq F1 d, It`lqq æ bq

which leaves buses of widths l, t, and b in the last output positions, so by rolling them to the top
and connecting two of them to the last two input buses

Zt`lppZlppZtRppF2 F0pd, x , yqq F1 d, It`lqq æ bqq ç t ` b ` lq

11.4. PLANAR SPARSE DECISION WAITS 341

we have a result resembling Figure 11.8 with the connections made. Denote this revised version
of the front end pF3 F2 F0pd, x , yqq F1 d in terms of a function F3 : pPpNq4 Ñ Hq Ñ pPpNq4 Ñ Hq

defined as

F3 “ λ f . λv. pλpt, b, lq. Zt`lppZlppZtRp f v, It`lqq æ bqq ç t ` b ` lqq p|v0|, |v1|, |v2|q.

Input permutation network The inputs shown in Figure 11.8 are probably in the wrong order
for the original specification c “ f´1

e d, but fortunately are easy to correct. Letting

xt, b, l, ry “ F1 d P PpNq4

refer momentarily to the list of sets of externally visible line numbers associated with each of the
internal input buses (that is, not just their widths), we construct permutations for the rows and
columns separately

p “ 85›xxt, by, xl, ryy P N
˚2

whose inverses combine to specify the input permutation network

p´1
0 q pλi. |p0| ` iq› p´1

1 P N
˚

by way of a concatenation of the row input permutation with a list of column terminal numbers
derived from the column input permutation offset by the number of rows. This list is more easily
expressible as F4 F1 d with F4 : PpNq4 Ñ N

˚ defined as

F4 “ λxt, b, l, ry. pλp. p´1
0 q pλi. |p0| ` iq› p´1

1 q 85›xxt, by, xl, ryy

so that at this point we have the whole front end

F4 F1 d ¸ pF3 F2 F0pd, x , yqq F1 d P H

including the input permutation network.

Central permutation network Having derived the front end as shown above and assuming a
parallel combination of the blocks z for the back end in Equation 11.24, we are obliged to implement
the central permutation network as shown in Figure 11.9 because the input buses to the back end
are ordered differently from their sources on the front end. The bus widths ordered by their back
end destinations are expressible easily enough as

u “ xw, n, e, r, b, sy “ 5 pσ›η d « 3q P N
6

in terms of the dimensions σ›η d « 3 P pN2q3 of the back end blocks z0, z1, and z2 as given by the
decomposition d, but the first b lines out of the front end are destined for the row inputs on z2, the
next r for the column inputs on z1, etc., with no obvious pattern. To take an ad hoc approach, we
can first form the list

v “ pλi. ι
ř

pu∣iq
ui

q› ι|u| P pN˚q6

of the six lists of input terminal numbers relative to the parallel combination pbRq z for which the
length ui of each list vi is that of the i-th of six rows and columns of pbRq z and the terms in each vi
are offset by the cumulative length

ř

pu∣ iq of its predecessors. By inspection of the Figure 11.9,
permuting the whole list v by x4, 3, 0, 2, 1, 5y and flattening the result should lead to the necessary
permutation F5 d overall for F5 : PpNq6 Ñ N

6 defined as

F5 “ λd. 5 pppλu. pλi. ι
ř

pu∣iq
ui

q› ι|u|q 5 pσ›η d « 3qq ˝ x4,3, 0,2, 1,5yq.

342 CHAPTER 11. THIN ON THE GROUND

z0ä
w

ä
n

z1ä
e

ä
r

z2ä
b

ä
s

ä
b

ä
r

ä
w

ä
e

ä
n

ä
s

F4 F1 d ¸ pF3 F2 F0pd, x , yqq F1 d

Figure 11.9: central permutation network F5 d, with xw, n, e, r, b, sy “ 5 pσ›η d « 3q (cf. Figure 11.7
and Figure 11.8)

Output permutation network The output lines from the back end blocks z0, z1, and z2 are in a
different order from what is required to implement the original specification c “ f´1

e d, with all
outputs from z0 preceding those of z1 and z1 preceding those of z2, but an output permutation
network can compensate by reordering them.

The way the output lines from z need to be interwoven is readily apparent from the three lists
d3, d4, and d5 indicated by the decomposition, which correspond to the coordinates of z but are
numbered globally relative to c. Although c is not separable, the
three lists d « 3 have mutually disjoint ranges whose union is c
as in a separable decomposition, so the same idea for an output
permutation described on page 326 works here as well. That is, a
list pf´1

e dq0´1 of the points in c ordered by the positions of their
corresponding output terminals induces a list

`

85 pd « 3q
˘´1›

pf´1
e dq0´1

of the positions of the output terminals on pbRq z driving each one
in the corresponding order, which completely describes the output
permutation as F6 d for F6 : PpN2q6 Ñ N

˚ defined as follows.

F6 “ λd.
`

85 pd « 3q
˘´1›

pf´1
e dq0´1

This result concludes not only the specification of Equation 11.24 for enmeshed combination, but
the sparse decision wait generating function in Equation 11.14.

11.5 Multidimensional sparse decision waits

Nothing stops sparse decision waits from having more than two coordinates per point, which would
imply sparse versions of the multidimensional decision waits developed in Section 10.4. Because

11.5. MULTIDIMENSIONAL SPARSE DECISION WAITS 343

the output arities of the latter grow cubically or more with their input arities, a multidimensional
sparse alternative is all the more economical where applicable. However, the sparse decision wait
generating function defined by Equation 11.14 does not take full advantage of this possibility
unless the coordinate specification is separable, which is probably rare in practice. A generalization
catering more effectively to multidimensional sparse decision waits by adapting the dendriform
(Section 10.4.1) and crossbar (Section 10.4.2) decompositions to them might look something like
this.

MSDWpcq “

$

’

’

&

’

’

%

pλd. Ωspd,MSDW›η dqq fs c if fs c ‰ ε
pλd. Ω 9dpd,MSDW›pη d ∣ |d| ´ 1q,MSDW d|d|´1qq f 9d c if f 9d c ‰ ε

pλd. pλn. Ω9cpd,MSDW›pη d ∣ nq,MSDW›pη d « nqq |pd|d|´1qᵀ|q f9c c if f9c c ‰ ε

SDW c otherwise

Using the same functions fs and Ωs as before for separable coordinates, and devolving to one of the
previously defined sparse decision wait generating functions SDW in planar and degenerate cases,
this upgraded version needs only the new decomposition functions f 9d and f9c for dendriform and
crossbar decompositions respectively, and their associated combining forms Ω 9d and Ω9c . More about
dendriform sparse decision waits follows presently in Section 11.5.1, with a discussion of crossbar
sparse decision waits in Section 11.5.2.

11.5.1 Dendriform

The dendriform sparse decision wait follows the same pattern as Figure 10.16, with at least two
leaf blocks driving a central root, but any of the building blocks can be either a sparse or a dense
decision wait, so the bus widths are not necessarily products of the dimensions. Another difference
is that the coordinates of the root are not uniquely determined by those of the leaves (even though
its dimensions are), so any valid decomposition function f 9d : PpN˚q Ñ PpN˚q˚ needs to specify a
result d “ f 9d c with one term di for each leaf x i , and an additional term d|d|´1 for the root y, by
convention the last in the list. The good news is that the combining form

Ω 9d : PpN˚q˚ ˆH
˚ ˆH Ñ H

under these assumptions is quite simple

Ω 9dpd, x , yq “ pλk. CkxpbRq x , yyq
ř

σ d|d|´1 (11.25)

requiring only one big bus from a parallel combination pbRq x of the leaves x to the root y, with
no twists or turns, whose width k “

ř

σ d|d|´1 is the total number of inputs to the root. With that
settled, the rest of this section focuses only on dendriform decomposition functions and inverse
decomposition functions.

Decomposition functions

A dendriform decomposition function f 9d chosen freely from the family of functions satisfying

@c P PpN˚q. f 9d c P p∇9d cq Y tεu (11.26)

allows unlimited discretion regarding the use of dendriform decompositions in the context of a
sparse decision wait generating function where there may be other alternatives, so its choice is left
open subject only to the definition of ∇9d : PpN˚q Ñ PpPpN˚q˚q proposed presently.

344 CHAPTER 11. THIN ON THE GROUND

One way to enumerate the possible dendriform decompositions of a specification c P PpN˚q is to
start by enumerating all lists s P N

˚˚ whose concatenation 5 s “ σ c coincides with the dimensions
inferred from c. Then |s| would be the number of leaves, si would be the dimensions of the i-th
leaf, and presumably their coordinates and those of the root would be constrained enough by c
somehow to determine a decomposition. Working backwards from σ c to cut it into consecutive
proper sublists amounts to selecting a set of places to cut it

p P PpRpι1n´1qq

inducing an ordered list t “ p0´1, where n “ |σ c| is the
number of dimensions,1 such that we envision each sublist
si to contain terms pσ cqt i

through pσ cqt i`1´1, at least if we
“pad” t by defining it as a member of v6 c for

v6 : PpN˚q Ñ PpN˚q

given by
v6 “ λc. pλn. ppµ λp. 0 : p0´1 q xnyq PpRpι1n´1qqq ´ pN2 YN

n`1qq |σ c|

where we also take the opportunity to exclude decompositions with only one leaf and with nothing
but one-dimensional leaves.

We can now get a step further by pondering a set of lists of lists of coordinates derived from the
specification c P PpN˚q and a particular choice of t P v6 c as

r “ pµ λb. pλi. pb « t iq∣ t i`1 ´ t iq
› ι|t|´1q c P PpN˚˚q

from which the first part of the decomposition d describing leaves follows trivially as rᵀ P PpN˚q˚,
and the last term of d describing the root is soon to be at hand. Each member e P r is a list of lists
of coordinates wherein the i-th term ei is a list of coordinates associated with the i-th leaf. The
lexicographic ordinal of ei relative to the set rᵀi of i-th terms of all members of r identifies an output
terminal number from the i-th leaf, hence the i-th coordinate of one point of the root. The whole
point would be given by

pλi. rᵀi
0eiq

› ι|e|

and therefore the whole set of points in the root by pµ λe. pλi. rᵀi
0eiq

› ι|e|q r. Before it becomes
any more of a mouthful, let the dendriform decomposition of coordinates c P PpN˚q induced by a
particular t P v6 c be denoted pv7 tq c P PpN˚q˚ with

v7 : N˚ Ñ pPpN˚q Ñ PpN˚q˚q

defined as

v7 “ λt. pλr. rᵀ q xpµ λe. pλi. rᵀi
0 eiq

› ι|e|q ryq ˝µ λb. pλi. pb « t iq∣ t i`1 ´ t iq
› ι|t|´1.

To wrap up the definition of ∇9d , an expression encompassing the decompositions due to all
possible values of t P v6 c would be the map pµ v7q v6 c, but technically this result constitutes a

1There is no escape from the exponentially large number of sets p relative to n, so a resource constrained approach
might limit choices of p to low cardinalities. The worst that would happen would be dendriform decompositions limited to
binary or ternary trees, etc..

11.5. MULTIDIMENSIONAL SPARSE DECISION WAITS 345

set of functions each needing to be applied to c to yield a decomposition d, so the actual set of
decompositions is expressible as pµ λt. pv7 tq cq v6 c. Furthermore, there is never a good reason
to use a dendriform decomposition when a separable decomposition is possible, so it is worth
suppressing dendriform decompositions by hand if c is separable, meaning fs c ‰ ε. On a related
note, there is no guarantee that a dendriform decomposition d for coordinates c by these criteria
might not coincide with the separable decomposition of some other coordinates. For reasons to
become clearer in Section 11.6, it is desirable to avoid ambiguity in this unlikely event, so we must
forgo members of pµ fsq PpPpN˚qq even if they are otherwise valid (in practice, by deleting any d
satisfying f´1

s d ‰ H from the set of results) to arrive at the following definition overall.

∇9d “ λc. pλi. xH, pµ λt. pv7 tq cq v6 cyiq δ
fs c
ε ´ pµ fsq PpPpN˚qq (11.27)

Inverse decomposition functions

Inferring coordinates c P PpN˚q from a non-empty decomposition d P PpN˚q˚ whenever d is of the
form f 9d c for some f 9d satisfying Equation 11.26 would proceed by inspecting each point b P N

˚ in
the set of points d|d|´1 describing the root. Its i-th term bi P N is associated with a point

d0
i

´1 bi P N
˚

in the i-th leaf, which is described by the i-th term di of the decomposition d. A concatenation of
these points

5 pλi. d0
i

´1 biq
› ι|b|

recovers a member of c, thus given in its entirety as 9f´1
9d

d for 9f´1
9d

: PpN˚q˚ Ñ PpN˚q defined by

9f´1
9d

“ λd. pλe. xH, pµ λb. 5 pλi. d0
i

´1 biq
› ι|b|q d|d|´1y

δ
H
e

q f´1
s d

and taking the precaution not to infer anything in the unlikely event of d also describing a separable
decomposition, in keeping with Equation 11.27.

Maybe not cautious enough, this result is either undefined or misleading if d is not a dendriform
decomposition, because it relies on the conditions of d having more than two terms, the dimen-
sionality of the last term matching the number of preceding terms, and the dimensionality of each
preceding term di matching the i-th dimension of the last term. A generalization of 9f´1

9d
defined as

f´1
9d

“
`

λ j.
@

H, pλk. xH, 9f´1
9d

dykq
`

λm. pλl. x0,
ś

pλi. δpσ dmqi

|di |
q› ιmylq δ

|σ dm|
m

˘

|d| ´ 1
D

j

˘

δ
ι3�t|d|u
ε

satisfies f´1
9d

d “ H when any of these three conditions fails but is otherwise equal to 9f´1
9d

d.

11.5.2 Crossbar

The crossbar decomposition for sparse decision waits follows the same pattern shown in Figure 10.17,
with a combination of front end blocks in parallel each connected to every one of a combination of
back end blocks in parallel. It is also similar in that the front end blocks share most of their inputs
through a FORK network except for those along their respective last dimensional axes. Furthermore,
the dimensionality of each front end block matches the number of back end blocks, all of which
have the same number of dimensions, and the sum of the front and back dimensionalities is the

346 CHAPTER 11. THIN ON THE GROUND

successor of that of the whole, as in the dense crossbar decomposition. The theory of operation is
also broadly similar to the description on page 301, but the rest of the details differ.

One difference is that the back end blocks are not necessarily identical beyond their dimensions,
but may vary in their coordinates as the front also must. A valid decomposition function

f9c : PpN˚q Ñ PpN˚q˚

needs to provide a full account of all coordinates in a list d “ f9c c P PpN˚q˚ with one term di for
each block, front end blocks first by convention. As usual, the choice of a decomposition function is
flexible subject only to

@c P PpN˚q. f9c c P p∇9c cq Y tεu (11.28)

for the function ∇9c : PpN˚q Ñ PpPpN˚q˚q to be defined shortly.
Another difference is that the number of back end blocks in a crossbar decomposition d “ f9c c

for a sparse decision wait with coordinates c is not fully determined by the dimensions σ c, being
given instead by

|pµ λb. b ∣ kq c|

the number of unique prefixes of length k of points b P c, where k “ |pd0qᵀ| ´ 1 is the predecessor
of the front end dimensionality. The number of back end blocks attains a maximum of

ś

ppσ cq∣ kq

only when the decision wait is sufficiently dense.
While there are invariably |pd|d|´1qᵀ| “ |cᵀ| ´ k front end blocks each having |pµ λb. b ∣ kq c|

dimensions as implied above, the length along the j-th dimension may vary from one front end
block to another. This effect is due to the need for a dedicated line within j-th bus from the i-th front
end block to drive every i-th dimensional input of the j-th back end block, which is not generally
constant, but instead something more like

ˇ

ˇppppπ λb. b ∣ kq cq0´1
q jq
ᵀ
k`i

ˇ

ˇ

if we had to put a number to it. Further analysis along these lines leads to the requisite decomposition
functions, inverse decomposition functions, and combining form derived in the rest of this section
to complete the definition of a multidimensional sparse decision wait generating function.

Decomposition functions

To continue the discussion above, let k range from 1 to |cᵀ| ´ 2 inclusive for coordinates c P PpN˚q

with |cᵀ| ą 2. Then the crossbar decomposition determined by any fixed k features a list of back end
blocks with coordinates obtained as a partition of the points in c by equality of their first k terms

ppπ λb. b ∣ kq cq0´1

and the prefixes discarded once the list is made.

pµ λb. b « kq› ppπ λb. b ∣ kq cq0´1

On the front end, the i-th block of |cᵀ| ´ k contains a point of the form

pb ∣ kq q xbk`iy

for each point b P c, reflecting the shared k input buses among all front end blocks and the additional
input in the pk ` iq-th dimension specific to that block, but the number of distinct points of this

11.5. MULTIDIMENSIONAL SPARSE DECISION WAITS 347

form is generally less than |c| because of the omitted coordinates. The whole i-th front end block
specification is therefore

pµ λb. pb ∣ kq q xbk`iyq c

so the whole front end specification is

pλi. pµ λb. pb ∣ kq q xbk`iyq cq› ι|cᵀ|´k

and a concatenation of the front and back end specifications makes a whole decomposition

ppλi. pµ λb. pb ∣ kq q xbk`iyq cq› ι|cᵀ|´kq q pµ λb. b « kq› ppπ λb. b ∣ kq cq0´1
P PpN˚q˚

still for a fixed choice of k. To obtain a set of decompositions over the range of k P Rpι1
|cᵀ|´2q, let a

function v8 : PpN˚q Ñ pPpNq Ñ PpPpN˚q˚qq defined by

v8 “ λc. µ λk. ppλi. pµ λb. pb∣kq q xbk`iyq cq› ι|cᵀ|´kq q pµ λb. b « kq› ppπ λb. b ∣ kq cq0´1 (11.29)

induce the result pv8 cq Rpι1
|cᵀ|´2q P PpPpN˚q˚q in the definition

∇9c “ λc. pλi. xH, pv8 cq Rpι1
|cᵀ|´2qyiq δ

fs c
ε δι3�t|cᵀ|u

ε ´ pµ fsq PpPpN˚qq

mentioned in Equation 11.28, which satisfies ∇9c c “ H for planar or separable specifications c, and
excludes separable results for similar reasons to Equation 11.27.

Inverse decomposition functions

To recover the coordinates c P PpN˚q from a crossbar decomposition d “ f9c c P PpN˚q˚, we
note from Equation 11.29 that each point b P dl of a back end block specification dl is derived
originally from a member of c with a prefix of length k deleted from it, for a value of k that is easy
to deduce from d, so restoring the right prefix to all of them should suffice. The set of prefixes is
not much harder to obtain by inspecting the first k coordinates of all front end block points, and the
lexicographically i-th prefix corresponds to the i-th back end block dn`i , where n is the number of
front end blocks, also easy to deduce from d.

Less vaguely, we have k “ |pd0qᵀ| ´ 1, the predecessor of the front end block dimensionality as
discussed previously, and a number of front end blocks

n “ |pd|d|´1qᵀ|

equal to the back end block dimensionality, leading to the list a “ v9 d P pNkq|d|´n of prefixes
ordered lexicographically for v9 : PpN˚q˚ Ñ N

˚˚ given by

v9 “ λd. ppµ λb. b ∣ |pd0qᵀ| ´ 1q
Ť

Rpd ∣ |pd|d|´1qᵀ|qq0´1 (11.30)

and hence a prefix ai for each back end block specification dn`i for i ranging from 0 through |a| ´ 1.
The original specification c “ :f´1

9c d is then recoverable by

:f´1
9c “ λd. pλa. pλn.

ď

iPDpaq

ai q dn`iq |d| ´ |a|q v9 d (11.31)

348 CHAPTER 11. THIN ON THE GROUND

where the concatenation ai q dn`i P PpN|cᵀ|q of a list ai P N
k with a set of lists dn`i P PpN|cᵀ|´kq

may be interpreted according to Equation 7.3.
However, this inverse decomposition function is not completely satisfactory because it ignores

all but the first k coordinates of each point in any front end block. If the rest of the coordinates are
not consistent with a crossbar decomposition, then the coordinates c obtained by Equation 11.31
should not be inferred. The exact requirement for the j-th front end block is that each point with a
prefix of ai should have a member of the set of inputs along the j-th axis of the i-th back end block

ppdn`iq
ᵀq j P PpNq

as its next and last coordinate prior to the truncation to length k inherent in Equation 11.30, so that
the whole j-th front end block specification should be

ď

iPDpaq

ai q ppdn`iq
ᵀq1

j P PpN˚q

and the whole front end should be

f “
`

λ j.
ď

iPDpaq

ai q ppdn`iq
ᵀq1

j

˘›
ι|n| P PpN˚q˚.

A better inverse decomposition function 9f´1
9c : PpN˚q˚ Ñ PpN˚q satisfying 9f´1

9c d “ H when this
condition fails but devolving to the previous one otherwise can be defined as follows.

9f´1
9c “ λd. pλa. pλn. pλ f . xH, :f´1

9c dyδd∣n
f

q
`

λ j.
ď

iPDpaq

ai q ppdn`iq
ᵀq1

j

˘›
ι|n|q |d| ´ |a|q v9 d (11.32)

A further improvement on this inverse decomposition function would refrain from invalid
inferences due to separable decompositions d and exclude anomalous or undefined results if d is
too long or too short to be a valid crossbar decomposition. Both Equation 11.31 and Equation 11.32
rely on the assumption of

n ` |a| “ |pd|d|´1qᵀ| ` |v9 d| “ |d|

and therefore |d| ą 0 for the result to be well defined. A function satisfying f´1
9c d “ H even

without these conditions met but otherwise matching the previous one would be best to define as
follows.

f´1
9c “ λd. pλe. xH, xpλv. xH, 9f´1

9c dy
δ

|d|
v

q |pd|d|´1qᵀ| ` |v9 d|, Hyδd
ε

y
δ

H
e

q f´1
s d

Combining form

The crossbar combining form Ω9c : PpN˚qˆH
˚ ˆH

˚ Ñ H takes a triple pd, x , yq P PpN˚qˆH
˚ ˆH

˚

consisting of a crossbar decomposition d and two lists of sparse decision waits x and y to a sparse
decision wait Ω9cpd, x , yq P H with coordinates c P PpN˚q provided that

d “ f9c c P PpN˚q˚

is derived from c by Equation 11.28, each x i has coordinates pη dqi for 0 ď i ă |x |, and each yi has
coordinates pη dq|x|`i for 0 ď i ă |y|, where |x | ` |y| is equal to |d|.

11.5. MULTIDIMENSIONAL SPARSE DECISION WAITS 349

One way to specify the crossbar combining form with respect to formal parameters d, x , and
y as above is by a parallel combination of a FORK network and a bus connected through a front
permutation network to the combination of front end blocks pbRq x , connected further through
a central permutation network to the combination of back end blocks pbRq y as shown in the
following expression.

Ω9cpd, x , yq “ R`E1 E0 d, I|5 E3 d|
˘ p5 5›pxE2 E0 d,E3 dyᵀqq´1

ÝÝÝÝÝÝÝÝÝÝÝÝÑ pbRq x
E4 d
ÝÑ pbRq y (11.33)

The rest of this section examines each of aspect of this construction at greater length.

FORK network To focus momentarily on the input arities of the front end blocks x , we consider
only the front end block specifications d ∣ n, where n “ |x | “ |pd|d|´1qᵀ| is the number of front
end blocks as noted previously, and even more specifically on only the first k dimensional inputs
to each front end block, where k “ |pd0qᵀ| ´ 1 is the parameter determining much of the rest of
the decomposition as also discussed previously. By truncating the last coordinate from each point
b P d j , we arrive at this goal via the expression

pλt. tᵀq› pµ λb. b ∣ |b| ´ 1q› d ∣ |pd|d|´1qᵀ| P PpNq˚˚

referring to a list of lists of sets of globally scoped input terminal numbers for the front end blocks
x , with one term for each of n blocks and one set of input terminal numbers within each term for
each of k dimensions. A list indexed by dimensions first and then block numbers is somewhat more
convenient and easily obtained as the transpose E0 d of the expression above for a function

E0 : PpNq˚˚ Ñ PpNq˚˚

defined by
E0 “ λd.

`

pλt. tᵀq› pµ λb. b ∣ |b| ´ 1q› d ∣ |pd|d|´1qᵀ|
˘ᵀ

. (11.34)

The externally visible inputs to the crossbar combination begin with the first input in the first
dimension, followed immediately by subsequent inputs in the first dimension, followed by all inputs
in the next dimension, and so on, with each of the first k dimensional inputs connected to a FORK

tree as shown in Figure 10.17. However, in a sparse decision wait, the FORK output arities may
vary. In particular, the arity of the l-th FORK tree in the i-th dimension is equal to the number of
terms in pE0 dqi having l as a member, this being the number of front end blocks possessing an input
terminal numbered l along their i-th axis. This arity could be expressed succinctly as the cardinality
of the projection

|p85 pE0 dqiq � pPpNq ´PpN´ tluqq|

for this particular combination of dimension i and input l relative to i. Letting t “ 85 pE0 dqi P N
˚

denote the list of all input terminal numbers in the i-th dimension (which necessarily contains
duplicates if the same terminal number l appears on multiple blocks), we can scale up production
by making the list

`

λl. FORK |t � pPpNq ´PpN´ tluqq|
˘›

Rptq0´1
P H

˚

of all FORK trees driven by the i-th dimensional input bus in the right order with the right arity for
each. To make that a list of lists covering all k dimensions 0 ď i ă k, we have

`

λt.
`

λl. FORK |t � pPpNq ´PpN´ tluqq|
˘›

Rptq0´1˘› 85› E0 d P H
˚˚

350 CHAPTER 11. THIN ON THE GROUND

from which the whole FORK network follows as the parallel combination E1 E0 d for a function

E1 : PpNq˚˚ Ñ H

given by

E1 “ pbRq ˝ 5 ˝
`

λt.
`

λl. FORK |t � pPpNq ´PpN´ tluqq|
˘›

Rptq0´1˘›
˝ 85›

which makes modest progress towards Equation 11.33.

Front permutation network Although the number of outputs from the FORK network derived
above matches the number of inputs to the first k dimensions of the front end blocks pbRq x , the
outputs are not in the right order to be connected directly without a permutation network. The
front end requires all inputs to the first block x0 first, followed by the inputs to the next block, etc.,
and the inputs local to each block are ordered by their dimensions, including not just the first k but
also the remaining dimension. On the other hand, the outputs from the FORK network are ordered
mainly by dimensions, and then by the individual FORK tree within each dimension, each with
various outputs destined for possibly non-consecutive blocks, and only for the first k dimensions.

Constructing the permutation is manageable in two steps, with the first step focusing on a typical
l-th input in the i-th of the first k dimensions to the j-th block x j , for which we seek the output
terminal on the FORK network driving it. Letting e “ E0 d by Equation 11.34 denote the list of lists
of sets of input terminal numbers on all blocks x grouped by dimensions and imagining the FORK

outputs to be numbered globally and consecutively in the order described above, we note first that
the FORK terminal number driving our hypothetical input must be at least

|85 5 pe ∣ iq|

the number of all FORK outputs in dimensions preceding the i-th. Furthermore, it must exceed this
number by at least

|p85 eiq �Rpιlq|

the total number of outputs from all FORK trees preceding the l-th FORK tree in the i-th dimension,
which we infer indirectly by counting the number of i-th dimensional inputs numbered less than l
on any block. Finally, it must be further offset by

|p85 pei ∣ jqq � tlu|

the number of outputs from the l-th FORK tree in the i-th dimension connected to blocks preceding
the j-th, or in other words the number of i-th dimensional inputs numbered l on blocks numbered
less than j. The set of all FORK output terminal numbers associated with any input terminal l P ei j
along the i-th axis of the j-th block x j is therefore

pµ λl. |85 5 pe ∣ iq| ` |p85 eiq �Rpιlq| ` |p85 pei ∣ jqq � tlu|q ei j P PpNq

and a list of these sets indexed by the corresponding dimension i for 0 ď i ă k is

pλi. pµ λl. |85 5 pe ∣ iq| ` |p85 eiq �Rpιlq| ` |p85 pei ∣ jqq � tlu|q ei jq
› ι|e| P PpNq˚

11.5. MULTIDIMENSIONAL SPARSE DECISION WAITS 351

for a fixed block x j . The sublist of the desired permutation due to this block would be the ordered
list of all FORK terminal numbers in these sets

85 pλi. pµ λl. |85 5 pe ∣ iq| ` |p85 eiq �Rpιlq| ` |p85 pei ∣ jqq � tlu|q ei jq
› ι|e| P N

˚

designated hereafter as pE2 E0 dq j P N
˚ for a function E2 : N˚˚ Ñ N

˚˚ defined by

E2 “ λe. pλ j. 85 pλi. pµ λl. |85 5 pe ∣ iq| ` |p85 eiq �Rpιlq| ` |p85 pei ∣ jqq � tlu|q ei jq
› ι|e|q

› ι|eᵀ|

which concludes the first step toward deriving the front permutation network.
The second step concerns the inputs along the last axis of each front end block. These input

terminals are exposed externally and therefore not connected to the FORK network, but because
they correspond to dimensions k through |cᵀ| ´ 1 as seen from the outside, it is right that they be
driven by a bus in parallel with the FORK network as in Equation 11.33. Hence we envision the
output terminals from this bus as a continuation of the sequence of FORK output terminals, with the
bus output terminals numbered starting from

ř

5 psᵀ ∣ kq

the total number of outputs from the FORK network. This sum is inferred from the total number of
inputs in the first k dimensions of the front end blocks x , whose dimensions

s “ σ›η d ∣ n P N
˚˚

are based on n “ |pd|d|´1qᵀ| as noted previously.
In these terms, the j-th block x j has s jk inputs along its last axis, which must be driven by s jk

bus lines starting from the output terminal numbered

p
ř

5 psᵀ ∣ kqq `
ř

psᵀk ∣ jq

on the FORK network and bus combination, the latter sum being due to bus lines connected to lower
numbered blocks. These connections account for a sublist

ι
p
ř

5 psᵀ∣kqq`
ř

psᵀk∣ jq
s jk

of the desired permutation, designated more briefly as pE3 dq j P N
˚ for E3 : PpN˚q˚ Ñ N

˚˚ with

E3 “ λd.
`

λpk, nq. pλs. pλ j. ι
p
ř

5 psᵀ∣kqq`
ř

psᵀk∣ jq
s jk

q› ιnq pσ›η d ∣ nq
˘`

|pd0qᵀ| ´ 1, |pd|d|´1qᵀ|
˘

which also makes the bus expressible as I|5 E3 d|, its width equal to the combined widths of all buses
connected to the last axes of front end blocks in x .

To assemble the whole permutation, we have to concatenate each pE2 E0 dq j with the corre-
sponding pE3 dq j to get the whole sublist for the j-th block x j for all 0 ď j ă n in

5› pxE2 E0 d, E3 dyᵀq P N
˚˚

and then flatten it again and invert it to get a permutation

p5 5› pxE2 E0 d, E3 dyᵀqq´1 P N
˚

that assigns an input terminal number on pbRq x to each output terminal number on the FORK

network and bus as required in Equation 11.33.

352 CHAPTER 11. THIN ON THE GROUND

Central permutation network The last needed feature of the crossbar combination is the permu-
tation network that connects the front end blocks x to the back end blocks y . For this part, let the
list si P N

˚ denote the dimensions of the i-th back end block yi with

s “ σ›η d « n P N
˚˚

and |s| “ |y| “ |d| ´ n for n “ |x | “ |pd|d|´1qᵀ| as usual. Then each front end block x j for 0 ď j ă n
can be viewed as driving

k “ |pd0qᵀ| ´ 1 “ |s|

output buses such that the i-th bus has si j lines.
We would like to connect this bus to the j-th dimensional axis of the i-th back end block yi .

In the sequence of input terminals to the combination pbRq y used in Equation 11.33, those of yi
start at the position numbered

ř

5 ps ∣ iq, the total number of input terminals on back end blocks
numbered less than i, and those of its j-th axis start at

a “
ř

psi ∣ jq q 5 ps ∣ iq

with the dimensions s P N
˚˚ as denoted above. A sequence of si j consecutive numbers starting from

a in these terms specifies the destination terminals of i-th bus from x j as a sublist of the permutation
describing the central permutation network.

For the sublists of the permutation to be ordered consistently with the buses from pbRq x whose
destinations they specify, they should start with that of the initial bus from x0 followed by the rest
of the sublists due to x0, and those of other blocks x j should similarly be bundled together in a list

5 pλi. pλa. ιasi j
q
ř

psi ∣ jq q 5 ps ∣ iqq› ι|s| P N
˚

for each 0 ď j ă n concatenated into a list

5 pλ j. 5 pλi. pλa. ιasi j
q
ř

psi ∣ jq q 5 ps ∣ iqq› ι|s|q
› ιn P N

˚

accounting for all front end blocks x j . Hence we define the whole central permutation E4 d P N
˚

appearing in Equation 11.33 in terms of a function E4 : PpN˚q˚ Ñ N
˚ given by

E4 “ λd.
`

λn. pλs. 5 pλ j. 5 pλi. pλa. ιasi j
q
ř

psi ∣ jq q 5 ps ∣ iqq› ι|s|q
› ιnq pσ›η d « nq

˘

|pd|d|´1qᵀ|

which also concludes a discussion of multidimensional sparse decision waits overall to the extent of
providing a workable ad hoc methodology for their synthesis, but may leave something to be desired
by readers who prefer a more comprehensive approach and are not overly averse to further reading.

11.6 Optimization

The loose end throughout this chapter has been the incompletely specified functions fv through f9c
needed to narrow down the range of possible implementations of MSDW c to a single one. Suggested
heuristics such as choosing fe to maximize the area of the empty quadrant in Figure 11.6 are not
guaranteed optimal, and even if they were locally optimal they might not always procure global
optimality in the sense discussed on page 298. A decomposition function that unfailingly maps any
coordinates c P PpN˚q to the optimal sparse decision wait having those coordinates, or at least the
optimal one with respect to some fixed metric, needs to be of a different type than those previously
considered. The rest of this section is about constructing and using one.

11.6. OPTIMIZATION 353

11.6.1 Sparse global decompositions

The distinguishing feature of such a function is that it indicates all of the decompositions in a
complete nested hierarchy of building blocks with commensurate discretion. For example, instead
of always maximizing the empty quadrant in an enmeshed decomposition, it could do so in some
cases and not others depending on whatever best suits the building blocks below. More crucially, the
decompositions of the blocks below can depend in effect not just on their own coordinates but on
their roles in the hierarchy. This agenda may benefit from the following more explicit formulation.

Hierarchical structures The expressiveness envisioned above presupposes a hierarchical structure
of a type convenient to model as a member of the set of ordered trees

9S “ OpN˚˚ ˆ pN˚˚ YPpN˚q˚qq

containing all sparse global decompositions, which also happens to be a superset of the set S of
dense global decompositions defined in Section 10.6.1. Any sparse global decomposition

t “ ppp, dq, sq P 9S

consists of a list of permutations p P N
˚˚, a dense or sparse local decomposition

d P N
˚˚ YPpN˚q˚

and a list s P 9S˚ of sparse global decompositions with the intended significance that d P N
˚˚

means t describes a dense decision wait as do all subtrees listed in s, and p determines an optional
transformation by Equation 10.25 or Equation 11.5.

Well formed decompositions We can characterize valid sparse global decompositions precisely
as those for which non-empty dimensions or coordinates can be inferred by way of a function

9ψ : PpppPpN˚q˚ ˆPpN˚q˚q Ñ PpN˚qqq Ñ p 9S Ñ pN˚ YPpN˚qq

analogous to the function ψ defined by Equation 10.26 for dense decision waits as follows.

9ψ“ λh. Λ λppp, dq, vq.

$

’

’

&

’

’

%

pλi. xε, pλ j. xε, pλr. |pr`1|q› p0y jq δ
|p|`1
|p0|

yiq ∆gpp, d, vq if td, vu Ă N
˚˚

pϕ̂ pq
ď

f Ph

f
`

d,
`

λt. pλi. xt,Rpῑtqyiq δ
N

˚Yttu

N˚

˘›
v
˘

if d P PpN˚q

H otherwise

That is, if d is a dense decomposition and the values inferred for all subtrees in v are lists of
dimensions, then we infer a list of dense decision wait dimensions from the permutation lengths
subject to∆g by Equation 10.35, but if d is a sparse decomposition, then where applicable we promote
any dimensions t P N

˚ inferred from the subtrees v to coordinates Rpῑtq P PpN˚q and infer the
coordinates overall by members f P h of the set of functions h P PppPpN˚q˚ ˆPpN˚q˚q Ñ PpN˚qq

parameterizing
9ψ h : 9S Ñ N

˚ YPpN˚q.

The additional term ϕ̂ p (Equation 11.7) transforms the coordinates that would otherwise be
inferred from d and v consistently with those of the sparse decision wait to be generated from the
decomposition as described presently in Section 11.6.2.

354 CHAPTER 11. THIN ON THE GROUND

Characterizing valid sparse global decompositions now reduces to the question of suitable
coordinate inference functions f : PpN˚q˚ ˆPpN˚q˚ Ñ PpN˚q whereby f pd, vq P PpN˚q is non-
empty for valid combinations of d and v. (Incompatible permuations p would necessarily yield an
empty result by Equation 11.6 and Equation 11.8.) There are three main possibilities.

• If the decomposition describes a degenerate sparse decision wait, there should be a single
subtree describing a dense decision wait and a single decomposition term d0 Ď v0 matching
the coordinates given by

∆tpd, vq “
`

λi.
@

H,
`

λ j.
@

H, d0

D

j

˘

δpd0qᵀᵀ

v0

D

i

˘

δ
|d||v|

1 .

• If the decomposition at the top level describes anything other than an enmeshed combination,
then the coordinates of the subtrees should coincide with the decomposition d subject to local
renumbering, and the coordinates inferred for the result should be given by one of the inverse
decomposition functions derived throughout this chapter.

∆npd, vq “
`

λi.
@

H,
`

λs.
ď

f Ps

f d
˘

f´1
s ,f´1

v ,f´1
h ,f´1

9d
,f´1

9c

(D

i

˘

δη d
v

• If the decomposition describes an enmeshed combination, then non-empty coordinates∆epd, vq

can be inferred according to the inverse enmeshed decomposition function only if d and v
both meet this raft of conditions by Equation 11.22.

∆epd, vq “
`

λi.
@

H,
`

λ j. xH,f´1
e dy j

˘

δ
η d « 3
v « 3 δ

η 9fepd « 3q

xv1,v2y
δt0,1u2´t1u2

v0

D

i

˘

δ
|v|

6

With a minor abuse of notation, we can call a sparse global decomposition t P 9S valid or well
formed if and only if it satisfies

| 9ψ

∆t ,∆n,∆e

(

t| ą 0

whether 9ψ

∆t ,∆n,∆e

(

t is a list of dimensions or a set of points, and regard
this value as the coordinates or dimensions of the decision wait t describes.

11.6.2 General combining form

A combining form Ω̂ 9g : 9S Ñ H confers a circuit semantics on sparse global decompositions t P 9S that
are well formed based on the general dense combining form Ωg : S Ñ H defined by Equation 10.36
and the transformational operator ϕ defined by Equation 11.5.

Ω̂ 9g “ Λ λppp, dq, vq.

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ϕpp, d0q Ωnpd0, v0q if |d||v| “ 1
ϕpp,f´1

s dq Ωspd, vq if f´1
s d ‰ H

ϕpp,f´1
v dq Ωvpd, v0, v1q if f´1

v d ‰ H

ϕpp,f´1
h dq Ωhpd, v0, v1q if f´1

h d ‰ H

ϕpp,f´1
e dq Ωepd, v0, xv1, v2y, v « 3q if f´1

e d ‰ H

ϕpp,f´1
9d

dq Ω 9dpd, v ∣ |v| ´ 1, v|v|´1q if f´1
9d

d ‰ H

ϕpp,f´1
9c dq pλn. Ω9cpd, v ∣ n, v « nqq |pd|d|´1qᵀ| if f´1

9c d ‰ H

Ωgppp, dq, vq otherwise

(11.35)

As noted above, degenerate sparse decision waits are expressible by trees ppp, dq, sq P 9S having
exactly one subtree s0 P S such that v0 “ Ω̂ 9g s0 “ Ω̂g s0 P H is dense with dimensions σ d0.

11.6. OPTIMIZATION 355

11.6.3 Decomposition strategies

To revisit the issue motivating this discussion in more precise terms, a decomposition function
capable of specifying globally optimized sparse decision waits as a rule would be one like

f 9g : PpN˚q Ñ 9S

taking coordinates c P PpN˚q to a well formed sparse global decomposition t “ f 9g c P 9S such that

c “ 9ψ

∆t ,∆n,∆e

(

f 9g c

holds for any coordinates c with |σ c| ą 0, and would induce the more capable multidimensional
sparse decision wait generating function

MSDW “ Ω̂ 9g ˝f 9g (11.36)

by Equation 11.35 in place of the one considered in Section 11.5. A function like f 9g meeting these
conditions may be called a sparse global decomposition strategy hereafter. Now all we need is to
find one, which is done in this section by enumerating the possibilities first and then narrowing
them down.

Enumeration

Ultimately an informed choice of a strategy depends on searching or sampling the space of well
formed sparse global decompositions in some way. Whereas enumerating dense decompositions
is a routine exercise (item 4, page 313), doing the same for sparse decompositions is a bit more
of a challenge. One way to approach it is by taking each component p, d, and s of a sparse global
decomposition ppp, dq, sq in turn.

Local decomposition An easier task than generating all possible trees ppp, dq, sq P 9S would be to
generate just the set G0 c P PpPpN˚q˚q of all possible sparse local decompositions d P PpN˚q˚ for
coordinates c P PpN˚q by a function G0 : PpN˚q Ñ PpPpN˚q˚q defined as

G0 “ λc. txcyu Y pλg.
ď

f Pg

f cq

∇s,∇v ,∇h,∇e,∇9d ,∇9c

(

in terms of functions ∇s through ∇9c derived throughout this chapter. The obligatory singleton
decomposition d “ xcy pertains to the degenerate case.

Permutations If a member d P G0 c were to appear in a sparse global decomposition ppp, dq, sq P 9S

for a decision wait with coordinates c, what permutations p would be suitable accompaniments?
Anything other than a list of identity permutations would usually invalidate the result by changing its
coordinates to something other than c. However, if instead of G0 c we started with decompositions
G0 pϕ̂ p1q c for some arbitrary list of permutations p1, then any permutations p that effect an inverse
transformation to p1 would leave the result intact. Technically p1 can not be completely arbitrary
but must be a member of G1 c with G1 : PpN˚q Ñ PpN˚˚q given by

G1 “ λc.
``

λn. Nn X pDpιnq�Rpιnqq
˘› `

|σ c| : σ c
˘˘ᵀ

356 CHAPTER 11. THIN ON THE GROUND

where N
n X pDpιnq�Rpιnqq refers to the set of all permutations of length n expressed as injective

lists, or else p1 would not match the dimensions of c. In any case, the list p of permutations appearing
in the root of the sparse global decomposition ppp, dq, sq could then be any member of G2pp1, cq for
the function G2 : N˚˚ ˆPpN˚q Ñ PpN˚˚q given by the deceptively simple definition

G2 “ λpp1, cq.

p P N
˚˚ | c “ pϕ̂ pq pϕ̂ p1q c

(

for which the author is unable to propose any reasonable algorithm. Fortunately it always includes
and rarely exceeds the approximation obtained by individually inverting the permutations in p1 and
neglecting possible synergies peculiar to c.2

G2 “ λpp1, cq.

pp1
0q´1 : ppλq. q´1q› ppp1 « 1q ˝ p1

0qq
(

In summary, the original lone coordinate specification c P PpN˚q now gives rise to a whole set of
sparse global decomposition roots G3 c according to G3 : PpN˚q Ñ PpN˚˚ ˆPpN˚q˚q expressed
less awkwardly with the primes dropped.

G3 “ λc.
ď

pPG1 c

G2pp, cq ˆ G0 pϕ̂ pq c.

Subtrees Having enumerated the roots pp, dq of all sparse global decompositions ppp, dq, sq P 9S

given coordinates c, we have only the subtrees s left to assign. If d were always a unit list then it
would be easy, with s invariably a member of

tt P S | pψ ∆gq t “ σ d0u1

the set of unit lists of dense decompositions with dimensions σ d0 befitting a degenerate sparse
decision wait with coordinates d0 by Equation 10.26 and Equation 10.35. More generally we might
have to assume a recursively defined function

∇9g : PpN˚q Ñ Pp 9Sq

taking coordinates c P PpN˚q to the set of all sparse global decompositions ∇9g c P Pp 9Sq describing
decision waits with coordinates c. Then for |d| ą 1, the list s of subtrees would be a member of

p∇›
9g η dqᵀ

the set of all lists of sparse global decompositions wherein the i-th term describes a decision wait
with coordinates pη dqi , the coordinates of the locally renumbered i-th term of the value d in the
root, for all 0 ď i ă |d|. The recurrence overall therefore should look something like this.

∇9g “ λc.
ď

pp,dqPG3 c

tpp, dqu ˆ
@

p∇›
9g η dqᵀ, tt P S | pψ ∆gq t “ σ d0u1

D

δ
|d|

1

2Whoever is intrigued should chase up Pólya’s enumeration theorem [69, 287] or see [103] for an accessible overview
of related topics in combinatorics and group theory.

11.7. VERIFICATION 357

Selection

Do these efforts lead to a straight answer to the question of what sparse global decomposition
strategy f 9g should be plugged into Equation 11.36 to yield optimum results? The element of
discretion is now confined in principle to the matter of a cost metric }x} P R considered desirable to
minimize for circuits x P H. Subject to this modest requirement, the exact optimum sparse global
decomposition strategy of

f 9g “ λc. pλpm, tq. tq min pµ λt. p}Ω̂ 9g t}, tqq∇9g c

is attainable with sufficient resources, but approximations might be unavoidable in practice.

11.7 Verification

Perhaps overdue is a discussion of what it would mean for the decision
wait generating functions defined in this chapter and Chapter 10 to
be correct, and furthermore, whether they are. A clear answer to the
first question is a matter of routine construction in terms of the theory
developed in Part II. The second is beyond the scope of this book because
its answer would require a hand written or at best a machine assisted
proof. However, the correctness of an individual decision wait with
respect to its specification can always be established automatically regardless of its provenance, and
of course the same applies to any finite number of decision waits.

Correctness of a decision wait with respect to its specification amounts to the satisfaction of
Equation 8.34, the generalized refinement relation, with the specification on the left and the
implementation on the right. The most transparent and least error prone way to describe the
specification is as a Petri net modeled DI process expressed by the process combinators introduced
in Chapter 5. On the other side, the implementation is what we want to verify, so it might be
constructed by hand, by a decision wait generating function, or by a wild guess, subject only to
being either a netlist or a hierarchical block in L YH. The rest of this section focuses mostly on the
process specification and returns to the questions of correctness at the last hurdle.

11.7.1 Alphabet ordering

A process behaving like a sparse decision wait with coordinates c P PpN˚q has to have one input
or output symbol for each terminal on the decision wait, so it needs

ř

σ c input symbols and |c|

output symbols in its alphabet. Generalized refinement between a process and a circuit presupposes
an alphabet ordering, so it might as well consist of the first |c| `

ř

σ c generic alphabet symbols by
Equation 8.27 in ascending order, denoted α c P G

˚ with α : PpN˚q Ñ G
˚ given by

α“ λc. pλa. G0´1›
ιaq |c| `

ř

σ c.

11.7.2 Input symbol assignment

Aligning the alphabet to the actual ordering of the terminals on the device is the next trick. With
regard to the input alphabet, the terminals are organized into |σ c| buses with the j-th bus having a
width pσ cq j and the j-th of b0 through b|b|´1 coordinates in any point b P c referring to the b j-th
terminal on the j-th bus. The input alphabet symbol associated with this terminal must be distinct

358 CHAPTER 11. THIN ON THE GROUND

from any of the
ř

ppσ cq ∣ jq symbols associated with a terminal on any of the j preceding buses
and from the other pσ cq j ´ 1 symbols associated with other terminals on the same bus. If α c is to
list the input symbol associated with each terminal in ascending order of terminals on each bus in
ascending order of buses, then it would be best to identify b j with the alphabet symbol

pα cq pb j `
ř

ppσ cq∣ jqq

in the forthcoming process combinator expression determined by c, or the whole point b with

pλ j. pα cq pb j `
ř

ppσ cq∣ jqqq› ι|b|.

11.7.3 Output symbol assignment

If we think of the output side as one large bus having a width |c|, then a point b P c as a whole
refers to the n-th output bus line with n “ c0 b being the lexicographic ordinal of b with respect to
c, which is natural to identify with the pc0 bq-th output alphabet symbol

pα cq ppc0 bq `
ř

σ cq.

A self-contained intermediate representation p0 c P pG˚ ˆGq˚ of the specification c summarizes
these assignments of input and output symbols with p0 : PpN˚q Ñ pG˚ ˆGq˚ defined by

p0 “ λc. pλb. ppλ j. pα cq pb j `
ř

ppσ cq∣ jqqq›ι|b|, pα cq ppc0 bq `
ř

σ cqqq› c0´1

so that each term pi, oq P Rpp0 cq has a list i P G
˚ of input symbols on the left and the corresponding

output symbol o P G on the right.

11.7.4 Process specification

Each pair pi, oq P G
˚ ˆ G obtained above indicates that receiving the input signals in i and then

transmitting the output signal o is one way for the decision wait to behave. Describing this behavior
as a process, we have

seq ppb parq get› i,put oq P D

and enumerating all such behaviors indicated in p “ p0 c in the list of processes

pλpi, oq. seq ppb parq get› i,put oqq› p P D
˚

leads to a specification for a process that can repeatedly exhibit any of them by Equation 3.5.

loop pb altq pλpi, oq. seq ppb parq get› i,put oqq› p P D

However, this specification as written describes a process that must arbitrate among contentious
inputs, which is more than we demand of a decision wait. In practice a decision wait has the much
easier job of interacting with a pleasant environment like

loop pb altq pλpi, oq. seq ppb parq put› i,get oqq› pq

which sends exactly one of the agreed input bursts i at a time and then politely waits for the
acknowledgment o before sending another one. We make this assumption explicit by defining the

11.7. VERIFICATION 359

x0,2, 1y

x2,1, 0y

Figure 11.10: For this particular 3-by-3 sparse decision wait, permuting the rows by x0,2,1y and
the columns by x2,1, 0y yields a behaviorally equivalent result.

process specification as p1 p0 c for p1 : pG˚ ˆ Gq˚ Ñ D expressed using the env combinator (cf.
Equation 9.16).

p1 “ λp. env p

loop pb altq pλpi, oq. seq ppb parq get› i,put oqq› p,

loop pb altq pλpi, oq. seq ppb parq put› i,get oqq› pq

11.7.5 Correctness

Given that p1 p0 c P D is an accurate description of the behavior expected of a purported sparse
decision wait MSDW c P H with coordinates c P PpN˚q, the exact requirement for its correctness is

p1 p0 c
α c
Ď MSDW c

by Equation 8.34. Whether the function MSDW yields correct results in other cases is irrelevant.
However, if a sparse decision wait generating function f : PpN˚q Ñ H itself were on trial, then a
formal statement of its correctness would be more like

@c P PpN˚q. |σ c| ą 0 ñ p1 p0 c
α c
Ď f c

which entails universal quantification over all valid coordinates c. As noted previously, the former is
mechanically verifiable while the latter would require an ad hoc proof.

360 CHAPTER 11. THIN ON THE GROUND

Idea management

1. If a separable decomposition corresponds to the connected
components in a graph (page 324), in what similar way could
an enmeshed decomposition be determined by a clique? (hint:
The nodes of the graph are still rows of the decision wait, but
the adjacency relation is different.)

2. Assuming union, intersection, subtraction, and comparison of
sets of points are linear time operations, what would be the time
complexity of a naively implemented algorithm for enmeshed
decomposition that always maximizes the height of the empty
quadrant in Figure 11.6?

3. The maximum clique problem is known to be NP-hard [30, 95, 260]. What stands in
the way of fame and fortune for the first person to solve arbitrary instances efficiently
by transforming them to enmeshed decomposition problems and solving them as
proposed above?

4. With regard to the circuit Z2RpPUSH, JOINq used in the degenerate sparse decision
wait construction (Figure 11.1), what would be the effects of

a) omitting the PUSH?

b) replacing the JOIN with a MERGE?

5. Further to the footnote on page 356, Figure 11.10 shows an example of a 3-by-3
sparse decision wait that can be transformed to itself by something other than a pair
of identity permutations on its rows and columns.

a) How many 3-by-3 sparse decision waits are there?

b) How many are invariant with respect to some pair of row and column permu-
tations not both the identity (i.e., x0,1, 2y)?

c) How many are invariant with respect to more than one such pair?

d) Would allowing rotations affect anything?

e) Are analogous instances more common in higher dimensions, or less?

6. How good of an idea would it be to generalize enmeshed combination directly to
higher dimensions as an alternative to the dendriform and crossbar combinations?

7. A manager distrusts the line of reasoning in Section 11.7 because the process
specification p1 p0 c is too complicated, but would feel a lot better about seeing a
graphical representation of its Petri net model (especially if it were generated and
optimized automatically). How should it look? How would an optimal transducer
model look?

The general who wins the battle
makes many calculations in his
temple before the battle is fought.
The general who loses makes but
few calculations beforehand.

Sun Tzu

C
H

A
P

T
E

R 12
ALL ABOUT ARBITERS

Arbiters are crucial to any application where multiple clients compete for limited resources, such
as a network hub or a bus controller, and can have a major impact for better or worse on the
overall quality of a design. One aspect of addressing this issue effectively is in the physical-level
implementation of primitives such as the two-input ARB described in Chapter 9, a matter of scrutiny
from its earliest investigations [179, 180, 245, 246, 310] all the way through to contemporary
research [194, 204]. The job of designing an arbiter does not end there, because the next problem
is to combine these carefully engineered primitives into
arbiters having the number of inputs required by the
application (i.e., the number of competing clients) in
a way that optimizes whatever metrics are of interest.
This chapter focuses exclusively on the latter aspect,
taking the primitives as given.

Even with the focus thus narrowed, this topic may
prove to be more than enough of a challenge all by
itself. Readers in a hurry should probably stick with the
multi-way arbiter design illustrated in Figure 9.18 (called a triangle mesh arbiter in [120]) and
hope for the best. Indeed, if there were ever a time to heed the counsel of textbook authors against
undue preoccupation with asynchronous circuits [175], it would be now.

To expand less flippantly on this point, undoubtedly some readers are already painfully aware
of the need for arbiters by being forced to use one as the only asynchronous part of an otherwise
conventional synchronous design, and have probably helicoptered directly into this chapter to
requisition some arbiter know-how and nothing else. This battle plan is questionable due to the
reliance of this chapter on prior chapters. The best survival tactic for a reader in this position would
be to skim the chapter long enough to be convinced, refer to Section 9.4.2 to address the immediate
need, and then ideally devise a new plan either to give the book a thorough reading in the distant
future when time permits, or to retreat, retrench, and lower expectations to less ambitious circuit
design projects from now on.

361

362 CHAPTER 12. ALL ABOUT ARBITERS

For those undeterred, the payoff of this chapter is a quantitative framework for optimizing the
aforementioned metrics, which encompass fairness, contention, and critical path length, as well
as any others the reader may be in a position to formulate. In other words, what is at stake is no
less than a decision procedure for establishing whether one design surpasses another in a statistical
sense with respect to any freely specified traffic patterns and performance criteria.

The culmination of this result in Section 12.5 comes not without significant preparation in the
intervening sections. Aside from a bit of admittedly non-standard but justifiably helpful notation
proposed in Section 12.1, this preparation consists mainly of playing the same game with arbiters
as with decision waits in previous chapters, which can be summarized far more succinctly this
time around thanks to its familiarity. That is, multi-way arbiters are described by hierarchical
decompositions represented as members of a countable set A of ordered trees (Section 10.1).
A decomposition strategy fa : N Ñ A that can be optimized relative to any fixed metric maps
a given arity n P N to the decomposition fa n P A of an arbiter having that arity, a generalized
combining form Ωa : A Ñ H maps decompositions to the circuits they describe, and an arbiter
generating function ARB “ Ωa ˝fa defined in terms of the preferred choice of fa maps an arity n to
an optimized arbiter ARB n P H.

The middle parts of this chapter entail a proposed taxonomy of arbiter decompositions in
Section 12.2, a concept of time evolution formalized as a transfer function in Section 12.3, and an
approach to the specification of access patterns supporting tunable load and locality conditions in
Section 12.4, all the more reason for an imminent end to this introductory blather.

12.1 Notation

A few ideas to make life easier in this chapter that have not been needed previously, such as scalar
multiplication and probability distributions, are worth a short explanation.

12.1.1 Scalar multiplication

For lists x P R
˚ of real numbers and scalars k P R, the notation

k ¨ x “ x ¨ k “ pλt. ktq› x (12.1)

refers to the list obtained from multiplying every term of x by k. For example, 2 ¨ x3,4,5y has a
value of x6,8, 10y. This notation extends to lists of lists z P R

˚˚ in the obvious way.

k ¨ z “ z ¨ k “ pλx . k ¨ xq› z

12.1.2 Permutations

For any list x P S˚, we write ℘ x P PpS˚q for the set of all lists derivable from x by rearranging its
terms in any order.

℘ x “ pµ λp. x ˝ pq pN|x| X pDpxq�Dpxqqq (12.2)

The expression N
|x| X pDpxq�Dpxqq refers to the set of all permutations of length |x | as usual.

For example, ℘ xa, b, cy has a value of

℘ xa, b, cy “ txa, b, cy, xb, a, cy, xb, c, ay, xa, c, by, xc, a, by, xc, b, ayu.

12.1. NOTATION 363

12.1.3 Zipped function application

For a list of functions f P pS Ñ Tq˚ and a list of arguments x P S˚, the expression f Ÿ x denotes the
list of results y P T ˚ obtained by applying each function in f to the corresponding argument in x .

f Ÿ x “ pλi. fi x iq
› ιmint| f |,|x|u (12.3)

For example,
@

λa. a ` 1,λb. b2,λc.
?

c
D

Ÿ x2,3,4y has a value of x3,9,2y. Extra functions or
arguments are allowed and any surplus on either side is ignored.

12.1.4 Probability theory

Some familiarity with basic probability theory would be useful for an understanding of arbiter
performance analysis. The introductions in any of [27, 101, 159] contain more than enough
background for this chapter. The rest of this section is a brief survival guide covering the bare
minimum.

Probability

An informal operational definition of the probability of an event, as in “a grant appears on the i-th
terminal with probability p”, is the fraction 0 ď p ď 1 of experimental trials toward which that
event tends to be observed over the course of sufficiently many repetitions.1 Hereafter we use the
conventional notation

r0,1s “ tp P R | 0 ď p ^ p ď 1u

for the set of real numbers in this range.

Conditional probability

The related concept of conditional probability pertains to two events. For events denoted a and b,
the conditional probability of a | b, read “a given b”, would correspond in the current context to the
number of trials in which both a and b occur divided by the number of trials in which b occurs with
or without a, under the continued assumption of a large number of trials.

• The conditional probability of a | b is not uniquely determined by the total probabilities of a
and b, and need not match that of b | a, but the conditional probability of a | a is always 1.

• If the conditional probabilities of a | b and b | a are zero, then the events a and b are said to
be mutually exclusive, meaning if either of them happens, the other can not.

• If the conditional probability of a | b matches the total probability of a, and likewise the
conditional probability of b | a matches the total probability of b, then the events a and b are
said to be independent, meaning the occurrence of one implies nothing about the other.

1This concept of probability, known as the “frequentist” interpretation [278], has long been superseded by more rigorous
alternatives, but is adequate on an intuitive level for a survival guide like this one. Do not cite this definition on a math test
or in a job interview.

364 CHAPTER 12. ALL ABOUT ARBITERS

Joint probabilities

However abstract they may seem at the moment, a couple of rules of thumb become important
when we want to estimate or calculate the probability of a chain of events.

• If an event is deemed to have occurred precisely when either of two mutually exclusive events
with respective probabilities p0 and p1 occurs, then its probability is necessarily p0 ` p1.

• An event deemed to have occurred if and only if both of two independent events with respective
probabilities p0 and p1 occur necessarily has a probability equal to the product p0p1.

Distributions

A common setting features the possibility of n mutually exclusive events of which it is known a
priori that exactly one must occur, for example when one grant must issue from an n-input arbiter
subject to n concurrent requests. Being both mutually exclusive and exhaustive, these events must
have probabilities p “ xp0 . . . pn´1y P r0,1s˚ satisfying

ř

p “ 1. The list p P r0,1sn regarded as a
function in this situation is called a distribution.

Expectation

If a quantifiable result x i P R (such as the latency of a grant) is obtained
whenever the i-th of n mutually exclusive events occurs, and these events are
described by a distribution p P r0, 1sn, then the expectation of x is defined as

n´1
ÿ

i“0

pi x i “
řś›

xp, xyᵀ

also called the mean or average. Expectation in this context is a technical term, not necessarily
what anyone literally expects. (For example, no one expects a score of 3 1

2 on a dice roll.) See
Section 11.1.2 for a reminder about the transpose notation.

12.2 Arbiter decompositions

There are at least three distinct ways of putting arbiters together before even contemplating all the
ways to mix them up. Arbiters in the form of a mesh are one alternative [120], trees are another,
and the rest take the form of a token ring. Each of these is the topic of one of the next few sections.

12.2.1 Mesh

A mesh arbiter with n inputs consists of several cascaded stages each having n inputs and n outputs.
Each stage partitions the inputs into several subsets so that each signal competes against others
within the same subset. The connections between stages are permuted to shuffle the subsets. No
two signals that have competed against each other in previous stages meet again in any subsequent
stage, but every signal gets a chance in some stage to compete with any other signal that has not
otherwise been eliminated.

An example of a mesh arbiter with six inputs is shown in Figure 12.1. A way of seeing that
it meets the condition explained above is to trace the path from an input labeled by any letter to

12.2. ARBITER DECOMPOSITIONS 365

a

b
c

d
e
f

a

b
c

d
e
f

Figure 12.1: A six-way square mesh arbiter has five stages and three ARB primitives in each stage.

a

b
c

d
e
f

a

b
c

d
e
f

Figure 12.2: Broadcasting one of the signals to the first two stages shortens its critical path.

an output labeled by the same letter, confirming that it passes through the same ARB primitive as
that of any other letter exactly once. Less evident from this example is that an arbiter of this form
generalizes to any number of inputs and can be built from arbiters of varying arities in place of the
primitives.

A disadvantage of the mesh arbiter is the latency incurred by the large number of arbiters required
in series [194]. Is there any way of speeding it up? If a small additional hardware cost is acceptable,
one remedy is to broadcast a signal to multiple stages as shown in Figure 12.2. The input labeled a
still competes with every other by passing through five ARB primitives, but conceivably takes less
time than five ARB delays to emerge at the output by competing with d and f simultaneously if
necessary.

If some concurrency is good then maybe more is better. Instead of broadcasting just one of the
signals to the first two stages, we could broadcast every signal to every stage. As an extra benefit,
such a design would be fairer because it would not favor any one signal over the others. The only
problem is that the resulting circuit would no longer be an arbiter because the output stage could
emit three concurrent grants in response to six requests, having received all six directly from the
proposed broadcast network including those blocked by other stages.

Less concurrent but less wrong would be to broadcast every signal to the first two stages and
let them propagate sequentially as normal through the rest. This more conservative approach
guarantees mutual exclusion, but unfortunately suffers from deadlock. If there are six concurrent
requests, with those labeled a, b, and c competing successfully against their respective alternatives
in the first stage, and the other three prevailing in the second stage, then no further progress is
possible because each of the six JOIN primitives driving the third stage will have received a signal
on one of its inputs and not the other.

366 CHAPTER 12. ALL ABOUT ARBITERS

Nevertheless, Figure 12.2 is not the only solution. A more concurrent middle ground achieving
both mutual exclusion and freedom from deadlock is possible by staggering the broadcast zones
separately for each signal, but only in more complicated ways than should be attempted manually.
Developing an algorithm to generate precisely the valid combinations of broadcast zones for a given
mesh arbiter turns out to be the relatively easy part. Constructing the family of mesh arbiters for a
given arity is the first order of business.

Mesh enumeration

If we temporarily ignore the ordering of the stages in a mesh, then it is determined by a set of
stages where each stage is determined by a set of arbiters and each arbiter is determined by the set
of signals it is wired to receive. If each signal is identified with one of a consecutive sequence of
natural numbers starting from zero, then everything there is to know about the mesh is summarized
by a set k P PpPpPpNqqq. For a given arity n P N, we would know all meshes having n inputs if
some function B0 : N Ñ PpPpPpPpNqqqq were known for which B0 n P PpPpPpPpNqqqq contains
all values of k corresponding to them.

To construct B0, we can start by formalizing the conditions a mesh must satisfy as constraints on
the set k. The set of signals associated with each arbiter in a stage must be disjoint from the sets
associated with other arbiters in the same stage, but collectively they form a partition on the set of
signals. Letting u t P PpPpPpsqqq denote the set of all partitions on a set t based on a definition

u “ λt.
ď

f P tÑt

tpπ f q tu

and Equation 6.6 means one thing to be said about a set k describing a mesh with arity n is that it is
a member of Ppu Rpιnqq.

Another constraint on the mesh implies a requirement for any two signals i, j P Rpιnq to be
common to exactly one class c P p of exactly one partition p P k. Letting v p denote the set of all
unordered pairs of signals associated with each other by any class in a partition p based on the
definition

v “ λp.
ď

c P p

ď

i P c

ď

j P c´tiu

tti, juu (12.4)

allows us to write pµ vq k by Equation 5.1 for the set of all sets of unordered pairs of signals in
competition with each other at any point throughout the mesh. The requirement that any two
signals have exactly one opportunity to compete with each other is then equivalent to the condition

pµ vq k P u v tRpιnqu

meaning the sets of unordered pairs of competitors per stage form a partition themselves on the set
of possible unordered pairs of competitors over the full range of signals. These conditions suggest
the following definition for the desired function B0.

B0 “ λn.
`

λpu, vq.
ď

kPPpu Rpιnqq

pλl. xH, tkuylq δ
tpµ vq kuY u v tRpιnqu

u v tRpιnqu

˘`

λt.
ď

f P tÑt

tpπ f q tu,λp.
ď

c P p

ď

i P c

ď

j P c´tiu

tti, juu
˘

Smarter mesh enumeration

Unfortunately, any computation based naively on this definition of B0 is absolutely infeasible for all
but miniscule values of n, so we have to look for better algorithms, useful approximations, or both.

12.2. ARBITER DECOMPOSITIONS 367

• One way of approximating this function without missing anything important is to exclude
most of the results that give rise to the same meshes as others because they differ only in the
way the signals are numbered.

• Another approximation excludes any results k having a stage described by a partition p P k in
which every class c P p contains only one signal, because such a stage is only a bus.

• With regard to computational shortcuts, some partitions p P k describing mesh stages may
contain some sets c P p with |c| “ 1, especially when the arity n is odd, but there is no need
to record the unit sets explicitly because a subset p1 Ď p excluding them would enable the
recovery of p based on Rpιnq ´

Ť

p1.

• Similarly, some partitions p P k may contain a single set c P p with |c| “ 2 and the rest unit
sets. Excluding these partitions from a subset k1 Ď k would still allow k to be inferred easily
from Rpιnq ´

ŤŤ

k1.

More ideas follow shortly, but these are an adequate start. Algorithms for generating partitions
of a set are well known and not hard to improvise [146], so we omit any constructive definition and
assume a set B1 n P PpPpPpNqqq of subsets of partitions on Rpιnq specified as

B1 “ λn.
`

pµ λr. tc P pπ rq Rpιnq | 1 ă |c|^|c| ă nuq Rpιnqn
˘

´

p P PpPpNqq | 2 ě |
Ť

p|
(

. (12.5)

As noted above, B1 n excludes classes of c of the form c “ ti0u from the partitions, and also excludes
partitions of the form p “ tti0, i1uu and p “ H.

Next, to formalize the notion of equivalence among meshes with respect to renumbering, let the
shape of a stage t P PpPpNqq in a mesh m P PpPpPpNqqq be understood as the list

pλpu, cq. uq› ppµ λc. p|c|, cqq tq0´1
P N

˚

of the arities |c| of its arbiters in ascending order, and the shape of a mesh
m as the list B2 m P N

˚˚ of shapes of its stages in ascending lexicographic
order, with B2 defined as

B2 “
`

λl. λt. pλpu, iq. uq› ppµ λi. pl i, iqq tq0´1˘2
λc. |c|.

Then two sets m0, m1 P PpPpPpNqqq determine the same mesh whenever B2 m0 is equal to B2 m1,
so we need not seek more than one set for each shape.

A reasonable way forward is to phrase the problem in terms of graph theory. A partition subset
p P B1 n representing a stage in a mesh corresponds to a vertex in an undirected graph whose edges
connect any two vertices p and q satisfying pv pq X v q ‰ H by Equation 12.4, which is to say that
two of the same signals compete with each other somewhere in both stages. The adjacency set
B3pp, tq of an arbitrary vertex p in a graph g with vertices t “ Dpgq “ B1 n under this interpretation
is given by

B3 “ λpp, tq.
`

λv. tq P t ´ tpu | pv pq X v q ‰ Hu
˘

λp.
ď

c P p

ď

i P c

ď

j P c´tiu

tti, juu (12.6)

and the whole graph g therefore by

g “ Π
ď

hPt

thu ˆ B3ph, tq

368 CHAPTER 12. ALL ABOUT ARBITERS

with notation defined in Equation 6.7. A valid mesh should never have the same two signals
competing with each other in multiple stages, so the vertices describing its stages should be pairwise
non-adjacent in the graph, forming what is known as an independent set. If the set

i “ ts P Ppgq | Dpsq X
Ť

Rpsq “ Hu (12.7)

of all independent sets induced by the graph g were known, it would be only a small step further to
write

pµ λu. min uq pπ B2q pµ λs. Dpsqq i

for the subset of materially distinct mesh specifications.

A hard place

Solving Equation 12.7 entails finding the maximum independent sets (among others), which is a
notorious NP-hard problem, but valiant efforts to game it abound in the literature. Along with well
studied heuristics [9, 88, 170, 208], efficient algorithms are known for restricted families of graphs,
most notably chordal graphs [84, 96, 108] and their generalizations [87].

Of possible interest in the current setting would be the minor restriction to meshes m whose
stages are identically shaped (that is, with |RpB2 mq| “ 1, meaning the arbiters have similar arities
in every stage). This restriction would procure vertex transitive graphs, so that obtaining just one
independent set would yield all others of the same cardinality through permutations of the signal
numbers. The graphs would also benefit from a tight (but not exact) upper bound of

npn ´ 1q

2pv pq

on the maximum independent set size, with n being the number of input signals, p P Dpgq being
any vertex in the graph, and v given by Equation 12.4, because there are npn´1q{2 unordered pairs
of competing signals, and v p competitions taking place in each stage. Knowing an upper bound on
the maximum independent set size saves time in a heuristic search by providing a stopping criterion,
and this upper bound beats the more general results in [48, 99, 154, 168] for graphs of comparable
sizes. Furthermore, graphs following from this restriction can often be chordal, as easily checked by
a lexicographic breadth-first search [257, 280], making their maximum independent set problem
efficiently solvable as noted above.

Mesh enumeration concluded

Computing the exact solution to Equation 12.7 with certainty in the unrestricted case takes ex-
ponential time but can be made relatively space efficient by a recurrence that does not require
enumerating the power set of the graph in advance. For any non-empty list h : t “ pB1 nq0´1 of
subsets of partitions on signal numbers, there is always one independent set thu. There may be
other independent sets s P PpRptqq built from the tail of the list h : t, and there may be still others
of the form m Y thu where m is an independent set satisfying

m P PpRpt �Rptq ´ B3ph,Rptqqqq

meaning m is inferred from a list derived from t with terms adjacent to h left out by Equation 12.6.
These observations suggest that a function B4 : PpPpNqq˚ Ñ PpPpPpPpNqqqq satisfying the

12.2. ARBITER DECOMPOSITIONS 369

recurrence

B4pbq “
@`

λph : tq. pµ λu. min uq pπ B2q
`

pB4 tq Y tthuu Y
ď

m P B4pt�Rptq´B3ph,Rptqqq

tm Y thuu
˘˘

b, H
D

δεb
(12.8)

would make the full complement of distinct mesh specifications expressible as B4 pB1 nq0´1, where
redundant results are suppressed by pµ λu. min uq ˝π B2 as noted previously. This formulation does
not rely on the argument b being lexicographically ordered, and certain other orderings may be
conducive to small additional time efficiencies.2

A fitting conclusion depends on two conditions previously deferred: each k P B4 pB1 nq0´1 needs
to be transformed to a member of B0 n having precisely the interpretation proposed on page 366,
and the omitted triangular mesh needs to be supplied explicitly in the result. The first condition
calls for a stage containing ti, ju to be added to k for every two signals i, j P Rpιnq not explicitly
appearing together in some extant class c P

Ť

k. In terms of the function v defined by Equation 12.4,

k Y
ď

c P vtRpιnqu´v
Ť

k

ttcuu

expresses a set derived from k extended with the necessary additional stages. Consistency with B0 n
as originally conceived also requires any stage l P k lacking any members of Rpιnq in its classes c P l
to be padded with unit sets to make up the difference. That is, the stage l should be transformed to

l Y
ď

iPRpιnq´
Ť

l

ttiuu

Both of these transformations to all relevant sets k would be summarized conveniently by a function

B5 “ λn. pλv. pµ2 λl. l Y
ď

iPRpιnq´
Ť

l

ttiuuq ˝ pµ λk. k Y
ď

c P vtRpιnqu´v
Ť

k

ttcuuq λp.
ď

c P p

ď

i P c

ď

j P c´tiu

tti, juu

in the context pB5 nq B4 pB1 nq0´1 were it not for the second condition noted above.
With regard to this latter condition, the so called triangular mesh arbiter of arity n features

npn ´ 1q{2 stages each containing a primitive two-input arbiter for two of the signals and wires to
carry the other n´ 2. For an arity of n “ 3, there is no other alternative. However, in the interests of
both mathematical simplicity and computational efficiency, B4 pB1 nq0´1 as defined omits this mesh,
obliging us to insert it manually. Fortunately, it emerges naturally from nothing as pB5 nq tHu, so
that the complete set of explicit mesh specifications follows as B6 n with

B6 “ λn. pB5 nq
`

tHu Y B4 pB1 nq0´1˘

taken for a less redundant and computationally simpler compatible replacement version of B0.

Broadcast zone enumeration

With mesh enumeration somewhat settled, we return to the question of selecting broadcast zones
deferred since page 366. That is, we seek ways to save time by transmitting the same signals to

2Sorting by shapes can help. As a spot check for readers interested in replicating this result, the author’s implementation
reports 0, 4, 17, 131, and 898 distinct meshes respectively for arities n ranging from 3 to 7. In strict adherence to Equation 12.5
and Equation 12.8, these figures exclude the implicit triangular mesh of each arity.

370 CHAPTER 12. ALL ABOUT ARBITERS

multiple stages of a mesh concurrently, but without impairing its operation. The plan is for each
signal to have its own independent sequence of broadcast zones, with each zone covering one or
more consecutive stages of the mesh. The outputs of the same signal from each stage of a zone
synchronize in a JOIN and then are broadcast through a FORK to the inputs for that signal in every
stage of the next zone, and so on. Because the signal propagates through the stages in each zone
concurrently and only through consecutive zones sequentially, and because there may be fewer
zones than stages, the signal might have the opportunity to finish faster than it would otherwise.

Further progress in this task requires fixing an order among the stages by modeling a mesh m
henceforth as a list of stages instead of a set, with m0 representing the front end stage and m|m|´1
the back. Two meshes having the same stages in different orders are regarded as distinct, and
this distinction is reasonable because they might perform differently or permit different broadcast
networks. While there is no comparable reason to regard one arbiter as preceding another within
the same stage, it is technically convenient to make a list of them as well, with the lexicographic
ordering by signal numbers as good as any. A specification m P PpNq˚˚ of the form now under
consideration can be obtained from

m P ℘ pλl. l0´1
q› k0´1 (12.9)

by Equation 12.2 for any k P B6 n previously derived.
When there are n inputs, the broadcast network can be described by a parameter b P N

˚n, with
the broadcast zones for the i-th signal described by bi P N

˚ for 0 ď i ă n. Each term bi j records the
number of stages covered by the j-th zone of the i-th signal. For example, if for signal number 3 we
have b3 “ xb30, b31, b32y “ x2, 3, 1y, then that signal has three broadcast zones covering 2, 3, and 1
stages respectively, with the first zone covering stages 0 and 1, the next covering stages 2 through 4,
and the last covering stage 5. Other signals in the same mesh might have a different number of
zones or have zones of different sizes, but clearly a mesh m with n inputs is compatible only with
broadcast networks b satisfying

ř

bi “ |m| for all 0 ď i ă n.
However, even among those meeting this condition, not all broadcast networks b are valid for a

mesh m. A wrong choice of b could enable deadlock or could compromise mutual exclusion. Short
of building the circuit or simulating it as a Petri net, how might
we divine the validity of a broadcast network in advance? We can
start by envisioning all n requests being made simultaneously to the
mesh. Whatever broadcast zones there are and whatever happens
in the rest of the stages, we have the set

pm0qᵀ P PpN|m0|q

of possible lists of signals that can pass through the first stage, where
each xs0, s1 . . . s|m0|´1y P pm0qᵀ contains a signal s0 P m00 from the
first arbiter in the stage, s1 P m01 from the next, and so on, with
always exactly one signal from each arbiter (Section 11.1.2).

If it were known by psychic power that a particular list of signals s P pm0qᵀ were destined to pass
the first stage, then we could simplify the analysis of subsequent stages by excluding the signals
blocked in the first stage due to s, which would be K0pm0, sq P N

˚ in terms of a function

K0 “ λpm, sq. pp
Ť

Rpmqq ´Rpsqq0´1

that makes a list of everything left over when terms of s are removed from those of m0. Excluding
these signals means rewriting m to a smaller mesh with the signals deleted from subsequent stages,

12.2. ARBITER DECOMPOSITIONS 371

and then treating the latter as the whole mesh for purposes of further analysis. However, because
some signals h P RpK0pm0, sqq might have a large initial broadcast zone bh0 ą 1, they should be
deleted only from stages m « bh0 beyond the zone and retained in the initial stages m∣ bh0, to which
h is broadcast regardless. Accordingly for a single h, the mesh m is rewritten to

pm∣ bh0q q pλc. c ´ thuq›› pm « bh0q

but to account for all of K0pm0, sq we need

pbm λph, tq. pt ∣ bh0q q pλc. c ´ thuq›› pt « bh0qq K0pm0, sq

as the rewritten mesh, or even more specifically

m1 “ ppbm λph, tq. pt ∣ bh0q q pλc. c ´ thuq›› pt « bh0qq K0pm0, sqq « 1 (12.10)

for the rewritten subsequent stages of the mesh.
Because the actual list of signals s P pm0qᵀ passing the first stage is unpredictable, a realistic

solution to this problem entails generalizing from this fanciful hypothetical case to all possible
instances of s and the corresponding reduced meshes m1, preferably organized manageably. A
directed graph with edges labeled by lists s is a good start. Each node in the graph is a pair
pb1, m1q describing a broadcast network b1 and a mesh m1 reduced as in Equation 12.10 relative to
its antecedent node pb, mq according to the list s labeling the edge connecting them. A reduced
broadcast network b1 reflecting the removal of the first stage would be b1 “ K1 b with

K1 “ pλz. xpλph : tq. xh ´ 1 : t, tyδh
1
q z,εyδεz

q›

being the function that either decrements the size of every first broadcast zone or deletes it.
Enumerating the tuples ps, pb1, m1qq for all s P pm0qᵀ with respect to a pair pb, mq would yield

the adjacency set of the node pb, mq in the graph for the most part, but to summarize this operation
in general with respect to an arbitrary node, we should take into account that m may have been
reduced previously, and so could be empty or could have stages containing empty sets. To avoid
anomalous results in these cases, let the edge label s be drawn from the set

ppm q xεyq0 � PpNq ´ tHuqᵀ´ tεu

as a more robust alternative to pm0qᵀ, which is empty rather than undefined when m is empty,
ignores empty members of m0, and excludes s “ ε. Then with the adjacency set K2pb, mq given by

K2 “ λpb, mq.
ď

s P ppm q xεyq0 �PpNq´tHuqᵀ´tεu

tps, pK1 b, ppbm λph, tq. pt ∣ bh0q q pλc. c ´ thuq›› pt « bh0qq K0pm0, sqq « 1qqu

we are well on the way to building a graph g “ K3pb, mq of nodes pv, eq with edges ps, v1q P e labeled
by lists of signals s P Rpιnq˚ based on

K3 “ λpb, mq. Γpb,mq pµ λv. pv, K2 vqq ppN´ t0uq˚˚ ˆPpNq˚˚q

and notation defined in Equation 6.5.
The payoff from building this graph is that it answers the question of whether a proposed list b

describes a valid broadcast network for a given mesh m. There may be several ways to characterize

372 CHAPTER 12. ALL ABOUT ARBITERS

this validity. If there is no deadlock, then every path from the initial node pb, mq to a terminal node
has a length |m| equal to the number of stages, because progress is always possible at each stage. If
in addition mutual exclusion is preserved, then every edge leading to a terminal node is labeled by
a unit list, because there is only one signal the back end stage can emit. A simple condition that
appears to subsume both requirements is to have precisely Rpιnq1 as the set of incident edge labels
on terminal nodes. With respect to the graph g “ K3pb, mq, we may write

Ť

Rpgq for the set of
edges, Dpg X pDpgq ˆ tHuqq for the set of terminal nodes, and K4 g for the set of labels on edges
leading to terminal nodes in terms of

K4 “ λg. D
`

pN˚ ˆDpg X pDpgq ˆ tHuqqq X
Ť

Rpgq
˘

.

Then for a given m P PpNq˚˚ describing a mesh of arity n, the set of valid broadcast zone specifica-
tions b P N

˚˚ is K5pn, mq for K5 defined as follows.

K5 “ λpn, mq.

b P pN´ t0uq˚n |
ř› b “ |m|

n
^ K4 K3pb, mq “ Rpιnq1

(

(12.11)

This analysis can confirm, for example, that there are no valid broad-
cast networks for the mesh in Figure 12.1 with any zones covering more
than three stages, but several valid networks admit sporadic three-way
zones, such as

xx3,1, 1y, x1,1, 1,1, 1y, x1,3,1y, x3,1, 1y, x1,3, 1y, x1,1, 1,1, 1yy

under the assumption of signals being numbered alphabetically. A few
mixtures of two-way and three-way zones are also valid, such as the following.

xx1,3, 1y, x1,3, 1y, x1,3, 1y, x1,2, 1,1y, x1,3, 1y, x1,2, 1,1yy

The latter cuts down the critical paths to at most four arbiters in series from the original five.

Mesh decompositions

The space of mesh arbiter decompositions includes a base case not represented by any k P B6 n,
namely the single-input arbiter implemented by a wire I. The single-input arbiter can be included
specially in a definition of

∇u : N Ñ PpN˚˚ ˆPpNq˚˚q

taking a positive arity n P N to the set of pairs pb, mq P N
˚n ˆ PpNq˚˚ describing arbiters with

arity n, broadcast networks b P N
˚n, and meshes m P PpNq˚˚, which we construct now for future

reference. A pair pb, mq pertaining to the base case arbiter has exactly |m| “ 1 stage with |m0| “ 1
arbiter in the stage, the sole broadcast zone b00 “ 1 and the unit set m00 “ t0u, implying

pb, mq “ pxx1yy, xxt0uyyq.

For larger arities n, we have m given by Equation 12.9 and b being any member of K5pn, mq by
Equation 12.11, suggesting the expression

ď

k P B6 n

ď

m P℘pλl. l0´1q› k0´1

K5pn, mq ˆ tmu

for the set of all pairs pb, mq, and hence the following definition for ∇u overall.

∇u “ λn. xH, tpxx1yy, xxt0uyyquyδn
1

Y
ď

k P B6 n

ď

m P℘pλl. l0´1q› k0´1

K5pn, mq ˆ tmu (12.12)

12.2. ARBITER DECOMPOSITIONS 373

Mesh arbiter combining form

When a specification pb, mq P∇u n for a mesh arbiter of arity n is decided and the list x P H
|5 m| of

its constituent arbiters is ready, combining them into the specified mesh arbiter Ωuppb, mq, xq P H

is the next step. A description of this transformation in general terms calls for a definition of the
combining form.

Ωu : pN˚˚ ˆPpNq˚˚q ˆH
˚ Ñ H

This construction follows the convention that the first |m0| arbiters in x are for the front end
stage, the next |m1| are for the succeeding stage, and so on to the last |m|m|´1| terms of x forming
the back end stage. Furthermore, the first arbiter associated with the i-th stage for any i arbitrates
among signals identified by mi0, the next with mi1, and so on throughout the stage. Hence we have
the i-th stage consisting of arbiters in the sublist

x ˝ ι
| 5pm∣iq|

|mi |
P H

˚

of x , which can be used to express the block

p85 miq
´1 ¸ pbRq px ˝ ι

| 5pm∣iq|

|mi |
q ˙ 85 mi P H

having its n “ |85 mi | signals permuted into ascending numerical order on the input and output sides.
(See Equation 11.2 for a reminder about this notation.) It is only a short step further to express the
full block of stages as

pbRq pλi. p85 miq
´1 ¸ pbRq px ˝ ι

|5pm∣iq|

|mi |
q ˙ 85 miq

› ι|m|

with the inputs and outputs both grouped into n buses of |m| lines each in D0pm, xq by

D0 “ λpm, xq. pλp. p ¸ pbRq pλi. p85 miq
´1 ¸ pbRq px ˝ ι

|5pm∣iq|

|mi |
q ˙ 85 miq

› ι|m| ˙ p´1q ι
|m|| 85 m0|

� |m|.

Before connecting anything to anything else in this block, we have to contemplate the broadcast
network described by b. For any 0 ď i ă n, every zone size h P Rpbiq in the list bi P N

˚ of zone
sizes for the i-th signal calls for a network FORK h feeding into certain arbiters across h consecutive
stages, and a network JOIN h collecting the same signals from the other side of the same arbiters.
Then the output from the JOIN network in each zone needs to be connected to the FORK input on
the next. Attending to these latter connections first can be done with a cascade

pbI λph, tq. LxRpFORK h, JOIN hq, ty ä 1q bi

taking care to connect the last output from RpFORK h, JOIN hq in each zone to the last input of the
result t from the rest of the zones, which is really the first input to the next zone due to the inputs
of the block LxRpFORK h, JOIN hq, ty being rolled up on each iteration. This operation applied to
every zone results in a list of blocks

z “ pbI λph, tq. LxRpFORK h, JOIN hq, ty ä 1q› b

in which each block zi has |m| ` 1 input terminals and |m| ` 1 outputs, with the last input and
output meant to be exposed to the environment and the rest meant to interface between the stages
of the mesh. The terminals for interfacing between stages are organized into |bi | buses with one

374 CHAPTER 12. ALL ABOUT ARBITERS

input and one output bus for each zone, the j-th bus of each having bi j lines. A block combining
the whole broadcast network in a way that collects the intended external terminals at the end in
reverse order of signal numbers is given by D1 b with D1 : N˚˚ Ñ H defined as

D1 “ pbZI λph, tq. Rph Û 1, tq Ú 1q ˝ pbI λph, tq. LxRpFORK h, JOIN hq, ty ä 1q›

where it should be noted that the rest of the terminals are ordered normally. That is, the first |m|

outputs from D1 b should be connected to the inputs associated with the first signal on arbiters
throughout the mesh, the next |m| with the second signal, and so on, while the first |m| inputs to
D1 b should come from the outputs of the first signal throughout the mesh, and so on.

The block D0pm, xq as defined above enables all connections from outputs of the broadcast
network to inputs of the mesh in the simple expression

FtxD1 b, D0pm, xqy

for a total number of bus lines t “ n|m| “
ř

5 b. The result exposes t ` n inputs on the broadcast
network, n outputs on the broadcast network, and t outputs on the mesh in that order, of which the
last still need connecting to the first t inputs on the broadcast network in the same order. To this
end, we route the latter outputs through a bus It

ZtRpFtxD1 b, D0pm, xqy ç t, Itq

which temporarily reverses their order, and then wrap the bus outputs around to the front

ZtppZtRpFtxD1 b, D0pm, xqy ç t, Itqq ê tq

which restores it. Although this expression leaves the n external inputs in the reverse order with
respect to the signal numbering scheme, correctness is unaffected because the outputs are similarly
ordered.

This expression could constitute the whole definition of Ωuppb, mq, xq, or we could make it a
tiny bit smarter by having it infer one of the two possible results regardless of x whenever |m| “ 1
indicates a single stage. The latter option turns out to be more convenient when Ωu serves as the
base case of a general arbiter combining form, so we take

Ωu “ λppb, mq, xq. xpλt. ZtppZtRpFtxD1 b, D0pm, xqy ç t, Itqq ê tqq
ř

5 b, xI, ARBy|b|´1y
δ

|m|

1
(12.13)

as the definition of the mesh arbiter combining form hereafter.

12.2.2 Dendriform

A different way of designing an arbiter from a mesh is with a tree structure as shown in Figure 12.3.
The nodes in the tree effect arbitration by cooperating according to the following protocol.

• Every node arbitrates between two incoming requests from the environment or from its
descendants (shown to the left in the figure), forwards a request to its ancestor on behalf of
the winner, and waits for a grant from its ancestor.

• Upon receiving a grant from the ancestor, it relays the grant back to the winning descendant.
(The root node in this design issues a grant to itself.)

12.2. ARBITER DECOMPOSITIONS 375

Figure 12.3: A branching arrangement of the blocks in Figure 12.4 achieves arbitration with
logarithmic critical paths.

• The winning client can assume mutually exclusive access to a resource protected by the arbiter
from this point until the client issues a release signal.

• When the arbiter tree node receives a release signal from the winner, it forwards the release
to its ancestor and waits for an acknowledgment.

• Upon receiving one, it relays the acknowledgment to the descendant that signaled the release,
and may concurrently issue a pending request to its ancestor on behalf of the other descendant
if any.

The sales pitch for this design is that a balanced tree requires no more than logarithmically many
arbiters in any critical path, but takes no more than linearly many components of any type to build.

This asymptotic efficiency comes at the cost of some constant amount of overhead per input
typically in excess of what would be required for a mesh. Each node in the tree is not just an arbiter,
but an arbiter with additional state-holding circuitry including a decision wait as illustrated in

376 CHAPTER 12. ALL ABOUT ARBITERS

Req0

Ack0

Req1

Ack1

Reqout

Ackin

“

Figure 12.4: A dendriform arbiter cell pD3 D2q xl, s, ay mediates between s passive 4Φ ports on the
left and one active 4Φ port on the right with an s-way arbiter a and an s-by-1 decision wait l, shown
here for s “ 2.

Req0

Req1

Ack0

Ack1

Reqout Ackin

Figure 12.5: Petri net model of the circuit in Figure 12.4

12.2. ARBITER DECOMPOSITIONS 377

...
...

...
...

...
...

...
...

Figure 12.6: request phase (top) and grant phase (bottom) in one slice of an arbiter tree node

Figure 12.4 to implement the protocol described informally above and modeled by the Petri net in
Figure 12.5. As for why the circuit needs to be this complicated, see Figure 12.6 and Figure 12.7 for
a worm-level walk through a complete 4Φ cycle.

An obvious optimization on space would be to replace the self-acknowledging root node in
Figure 12.3 with a single ARB primitive, or even the top two levels with a 4-way mesh. This
optimization provides just one example of the potential benefits of mixing more than one form
of arbiter in the same design, a matter we investigate in due course after considering each one in
isolation.

However, constructing the dendriform arbiter with a view to mixing it in practice with other
forms demands advance consideration along different lines. The two-port arbiter tree node shown
in Figure 12.4 is straightforward to generalize to s ports for s ą 2 with an s-by-1 decision wait, an
s-way arbiter, and roughly one half of the rest of Figure 12.4 for each port. Taking s “ 3 would
allow ternary trees, for example, which would have fewer levels and conceivably shorter critical
paths than binary trees with similar numbers of leaves. The internal s-way arbiter could be a mesh,
a token ring (Section 12.2.3) or even another tree. The arbiter tree node calls for being defined in
general enough terms to accommodate these possibilities.

378 CHAPTER 12. ALL ABOUT ARBITERS

...
...

...
...

...
...

...
...

...
...

...
...

Figure 12.7: release phase (top) and acknowledge phase (center and bottom) in an arbiter tree
node slice

12.2. ARBITER DECOMPOSITIONS 379

Combining form

Rather than committing globally to a particular tree shape, we envision building a dendriform
arbiter incrementally in levels having possibly varying attributes by a function

Ω:d : S˚ ˆH
˚ ˆH Ñ H

taking a tuple pc, x , yq P S
˚ ˆH

˚ ˆH to a dendriform arbiter Ω:dpc, x , yq P H with just a single level
of |c| “ |x | leaves below a root y P H, which can be an arbiter of any form including a tree. For
each value of 0 ď i ă |x |, the term a “ x i P H is the arbiter inside the i-th leaf node of the arbiter
to be built, and the corresponding term ci P S is the decomposition as defined in Section 10.6.1 for
the columnar decision wait

l “ Ω̂q ci P H (12.14)

appearing in the same node according to Equation 10.30. The arity of the arbiter a “ x i can be
inferred from

s “ ppψ ∆qq ciq0 (12.15)

by Equation 10.26 and Equation 10.27, being equal to the number of rows in the decision wait. The
input arity of y is simply the number |c| of leaves.

To start by constructing a typical arbiter tree node, Figure 12.7 suggests that each of s “slices”
has three TOGGLE primitives and three MERGE primitives, with each of the former connected to
exactly two of the latter, as in

C6xTOGGLE3, MERGE3 ä 1ys

or with all inputs and outputs both grouped into three buses of s lines each in D2 s according to

D2 “ λs. ι3s � s ¸ C6xTOGGLE3, MERGE3 ä 1ys ˙ ι3s � s ä s

including a roll of the inputs up by s for reasons to become clear shortly. This block is suitable for
connecting the first s outputs to the s inputs on the arbiter a, the next s outputs to an array of s
FORK primitives leading to the decision wait l and the output network MERGE s in

L2sxFORKsé1
2,Rpl å 1,MERGE sqy

and the last s outputs to the s external acknowledgment lines, as in

D2sxD2 s,Rpa,L2sxFORKsé1
2,Rpl å 1,MERGE sqyq Û 1y.

Outputs connected in this way constrain the first s inputs of D2 s to be connected to the outputs
from the arbiter a, the next s inputs to be connected to the outputs from the decision wait l, and
the rest to serve as the external request lines for consistency with Figure 12.4, so we route the 2s
lines through a bus I2s in

Z2sppZ2sRpD2sxD2 s,Rpa,L2sxFORKsé1
2,Rpl å 1,MERGE sqyqy, I2sqq ê 2sq

which covers everything but the case of s “ 1, an arbiter tree node having just one passive port.
With no need for arbitration, requests and acknowledgments through a node with s “ 1 can be
relayed by a two-line bus I2, so we write pD3 D2q xl, s, ay for the general arbiter tree node with D3
defined as follows.

D3 “ λd. λxl, s, ay. xZ2sppZ2sRpD2sxd s,Rpa,L2sxFORKsé1
2,Rpl å 1,MERGE sqyqy, I2sqq ê 2sq, I2yδs

1

380 CHAPTER 12. ALL ABOUT ARBITERS

This result features s ` 1 inputs and s ` 1 outputs, with the last of each pertaining to the active port
interfacing the node with its ancestor in the tree.

To complete the construction, each leaf h “ pD3 D2q xl, s, ay must be connected to the root y.
The combination

ZppZRph Û 1, yqq ê 1q

of any h with y interfaces the active port on h with the last port on y , which is necessarily passive.
We need only do the same with all terms in the list

pD3 D2q› xΩ̂›
q c, ppψ ∆qq› cq

ᵀ
0, xyᵀ P H

˚

of leaves h, which follows from Equation 12.14 and Equation 12.15, by folding over it as shown.

Ω:dpc, x , yq “
`

by λph, tq. ZppZRph Û 1, tqq ê 1q
˘

pD3 D2q› xΩ̂›
q c, ppψ ∆qq› cq

ᵀ
0, xyᵀ (12.16)

Decompositions

It would be useful for the purpose of global optimization to have a way of enumerating or sam-
pling the space of dendriform arbiter designs similarly to the way Equation 12.12 facilitates the
enumeration of n-way mesh arbiters by ∇u n. A limited approach to this problem for the moment
that we revisit more broadly in Section 12.2.4 is simply to enumerate the population of lists c P S

˚

of columnar decision wait decompositions that can be associated with the leaf nodes in dendriform
arbiters of a given fixed arity. For an input arity n, there can be some number of leaves containing
arbiters whose input arities sum to n, and therefore whose decision wait rows also sum to n. The
rest is mostly a mathematical exercise.

The condition
ř

s “ n for a list s P N
˚ of row counts and a fixed n P N mentioned above can be

specified more constructively as s P B7 n in terms of B7 : N Ñ PpN˚q defined by

B7 “ λn. pbH λph, tq. txn ´ hyu Y
ď

lPt

℘p1 : lq Y
ď

jPDplq

℘ pλi. δi
j ` liq

› ι|l|q ιn (12.17)

(among other alternatives) based on Equation 12.2, which is to say that B7 takes a natural number
n to the set of all lists of positive natural numbers summing to n.

Equation 12.17 is useful initially for enumerating decompositions of columnar decision waits of
a given arity. Recall from Chapter 10 that any r-by-1 decision wait decomposition ppp, dq, vq P S

features a list of dimensions d “ xs, x1yy satisfying
ř

s “ r and a list of permutations

p P xι2y q p℘ιrq1 q xι1y

meaning only the row permutation p1 P ℘ιr can vary, with p0 “ ι2 fixing the columnar orientation
and p2 “ ι1 being the only permutation of a single column. The list v of subtrees can be empty
for the cascading form, or can have |v| “ |s| “ |d0| for the quadrangular form, with each vi P S

being the decomposition of a decision wait with si rows for 0 ď i ă |s|. To avoid infinite regress, the
quadrangular form is valid only for |s| ą 1 and s ‰ x1, 1y. Hence we write B8 r P PpSq for the set of
all r-by-1 decision wait decompositions with B8 defined by this recurrence.

B8prq “
ď

s P B7 r

ppxι2y q p℘ιrq1 q xι1yq ˆ txs, x1yyuq ˆ pλk. xpB›
8 sqᵀ, tεuykq δ

|s|
1 ` δx1,1y

s (12.18)

12.2. ARBITER DECOMPOSITIONS 381

We now make further use of Equation 12.17 to enumerate dendriform arbiter decompositions
as planned. A survey of dendriform arbiters could reasonably exclude any with fewer than three
ports because either a single wire or an ARB primitive is adequate to implement them. It might also
exclude those having only a single leaf, which are no improvement on the leaf’s internal arbiter,
and those whose every leaf has only a single passive port, which are equivalent to the root by itself.
These latter exclusions have the added benefit of limiting the decompositions for any fixed arity to a
finite set. Formally they amount to any dendriform arbiter with n ą 2 ports worthy of consideration
having |s| leaves subject to the restriction

s P pB7 nq ´ pN1 Y t1u˚q

such that the i-th leaf has si ports for all 0 ď i ă |s|, and having a corresponding list

c P pB›
8 sqᵀ

of decision wait decompositions describing the decision waits in the leaves (that is, a list c in which
each term ci is a member of B8 si). An expression for the set of lists of decision wait decompositions
in terms of an arbitrary n

ď

s P pB7 nq´pN1Yt1u˚q

pB›
8 sqᵀ

includes all such lists provided n exceeds two but is empty otherwise.
One way of summarizing this result for future reference might be in terms of a function taking

an input arity n P N to the set of lists c of decision wait decompositions, but if we opt instead for a
function

∇:d : N Ñ PpS˚˚q

taking the arity n P N to the set of unit lists xcy of lists c of decision wait decompositions based on a
definition

∇:d “ λn.
`

ď

s P pB7 nq´pN1Yt1u˚q

pB›
8 sqᵀ

˘1
(12.19)

then it becomes more convenient subsequently to incorporate token ring arbiters within a common
framework, whose description entails two decision wait decompositions per cell.

12.2.3 Token ring

Next in this tour of arbiter decompositions is the much anticipated token ring. A token ring arbiter
involves a collection of cyclically connected cells depicted as squares in Figure 12.8. Each cell
interacts with the environment outside the ring using the same 4Φ protocol as a dendriform arbiter,
and cooperates with its neighbors in such a way as to ensure that no more than one of them grants
a request from the environment at any time.

• If a cell is authorized to grant a request from the environment, that cell and no other is said
to be the holder of the token. The token is intangible but may be visualized as a soccer ball.

• If the environment makes a request to the cell holding the token, and that cell is not already
serving another request, it grants the request immediately. Otherwise, it grants the request
after finishing the previous one.

382 CHAPTER 12. ALL ABOUT ARBITERS

ä
ä

ä ä

ä
ä

ä
ä

ä
ä

ä
ä

ää

ä
ä

ä

ä

Figure 12.8: Cells in a token ring arbiter kick an imaginary token around the ring, and only the cell
that holds the token can grant a request from the environment outside the ring.

12.2. ARBITER DECOMPOSITIONS 383

• If the environment makes a request to a cell that is not holding the token, the cell requests the
token from its counterclockwise neighbor and grants the request only after it subsequently
receives the token from its counterclockwise neighbor. It then becomes the new holder of the
token.

• If the cell holding the token receives a request for the token from its clockwise neighbor, and
is not currently serving any request, it kicks the token to its clockwise neighbor and stops
being the holder. If it is currently serving a request, it does so after finishing.

• If a cell that does not hold the token receives a request for the token from its clockwise
neighbor, it requests the token from its counterclockwise neighbor. After receiving the token
from its counterclockwise neighbor, it kicks the token immediately to its clockwise neighbor,
holding it neither before nor afterwards.

The innards of a token ring arbiter cell depicted in Figure 12.9 feature
an inventory of one arbiter of any size and form, a columnar decision wait
of a matching size to remember which external request is being served, a
2-by-2 decision wait to remember whether or not it holds the token, and
miscellaneous glue, all of which are specified in detail presently, but the sales
pitch is not so simple.

• One of the most important things about an arbiter supposedly is fairness.
However, the token ring arbiter at least by some metrics is unfair. Given
multiple concurrent requests, the cell holding the token has the biggest
advantage, followed by the cells closest to it in the counterclockwise
direction. Even worse, this advantage can persist over time if more
requests to the same cells arrive fast enough.

• Another important thing about an arbiter unquestionably is performance. Whereas a request
to a dendriform arbiter passes through only logarithmically many nodes if the tree is balanced,
a request to a randomly selected cell in a token ring arbiter incurs a linear latency on average,
even when uncontended, for the time needed by the token to propagate from the cell holding
it to the cell granting the request.

• Cost is another criterion. The extra circuitry needed in a token ring arbiter cell in addition
to the internal arbiter and columnar decision wait exceeds that of a dendriform arbiter tree
node (designed under similar assumptions), not to mention a mesh.

In view of these ostensible drawbacks, why should anyone ever consider using a token ring
arbiter? The answer follows from thinking like a computer architect. An insidiously pervasive
phenomenon, locality of reference historically has mandated a storage hierarchy encompassing
CPU caches, virtual memory, secondary storage, and network infrastructure for any competitively
performant system to an extent that would be difficult to overstate [71]. Requests for a resource
are overwhelmingly likely in many applications to follow repetitious patterns, not to be random in
the vague sense implied above. Like a cache, a token ring arbiter “remembers” the most recently
active cell and optimizes the next request to it and its neighbors. Token rings have been shown to
outperform trees in applications characterized by long runs of accesses to nearby cells with relatively
infrequent changes, such as neural networks [121], and the analysis starting in Section 12.3 can
take some of the guesswork out of this assessment. As for the high cost of a token ring compared to
a tree, there are those who would take issue even with that [258].

384 CHAPTER 12. ALL ABOUT ARBITERS

...

...ä
s

äs

...

ä s

ää ss

grant in

request out

äs

...

grant/acknowledgerequest/release

request in

grant out

Figure 12.9: A token ring arbiter cell D7ps, aq D6xD4pt, mq, D5ps, lqy interacts with the environment
below by s passive 4Φ ports, with a cell to the right by an active 2Φ port, and with a cell to the left
by a passive 2Φ port, using an s ` 1-way arbiter a, an s-by-1 decision wait l, and a 2-by-2 decision
wait m. The bottom row outputs of m are enabled only when the cell holds the token, shown here
for the case t “ 0 specifying an initially tokenless cell.

Combining form

A worm-level walk through Figure 12.9 analogous to Figure 12.6 and Figure 12.7 to understand the
token ring arbiter cell implementation should pose no surprises and is left for an exercise as we
proceed directly to the construction of its exact block or netlist representation (cf. Section E.2.3).
To this end, we seek a combining form

Ωo : S˚ ˆS
˚ ˆH

˚ Ñ H

taking a triple v “ pc, b, xq P S
˚ ˆS

˚ ˆH
˚ to a token ring arbiter Ωo v P H of |c| “ |b| “ |x | cells,

with c P S
˚ being a list of columnar decision wait decompositions having one term for each cell,

b P S
˚ being a list of one 2-by-2 decision wait decomposition for each cell, and x P H

˚ being a list
of arbiters also with one for each cell. The columnar decision waits need not have the same number

12.2. ARBITER DECOMPOSITIONS 385

of rows in every cell, but any arbiter
a “ x i P H

for 0 ď i ă |x | is assumed to have exactly one more port than the number of rows

s “ ppψ ∆qq ciq0 P N

on the columnar decision wait
l “ Ω̂q ci P H

in the same cell (cf. Equation 12.14 and Equation 12.15). The first port on the arbiter a mediates
exchanges of the token with neighboring cells, and the other ports are accessible to the environment.

To have exactly one token in circulation requires one cell in the ring designed to hold the token
initially and the rest not, so there are really two kinds of cells. However, the two designs are
similar enough to be defined by a single expression parameterized in part by a value t P t0, 1u with
t “ 1 indicating the initial presence of a token. The difference amounts only to whether the 2-by-2
decision wait

m “ Ω̂q bi P H

within the cell has a PUSH connected to its first row input, or its second. Following a convention
whereby the bottom row outputs are enabled whenever the cell holds the token, a block

F2xRpPUSH, Iq Û t, my

behaves as a 2-by-2 decision wait with a signal initially sent to the bottom row only for t “ 1, and
to the top row otherwise.

Token storage The 2-by-2 decision wait and surrounding parts are primarily concerned with
storage and querying of the token. As shown in Figure 12.9, each output from the 2-by-2 decision
wait is connected to a separate MERGE except for the upper right, which is connected indirectly to
all three by way of a SHUNT leading to one MERGE and a TOGGLE leading to the other two. Putting
these five components into a block

F2xSHUNT,Z2RpTOGGLE, MERGE3è1
2q å 1y

achieves a solution D4pt, mq P H effecting the required connections with the decision wait after
some amount of trial and error.

D4 “ λpt, mq. L4xF2xRpPUSH, Iq Û t, my æ 1,F2xSHUNT,Z2RpTOGGLE, MERGE3è1
2q å 1yy

The result has five inputs and three outputs. The first input is the token-clearing control to be used
when the cell relinquishes the token, the next is the token-setting control, the next two are the left
and right column inputs to the decision wait used for querying the token, and the last is the grant
input associated with the active 2Φ port shown on the right side of Figure 12.9. The last output is
the request associated with the active 2Φ port, and the other two are each destined for a FORK to be
included presently, the first involved with clearing the token and the second with setting it. In a
lengthy construction like this one, making some rough notes as in Figure 12.10 can be helpful for
keeping track of the details.

386 CHAPTER 12. ALL ABOUT ARBITERS

D4pt, mq

clear
set

left query
right query

grant in

clear
set
req

D5ps, lqä äTOGGLE

column
grant/ack
right query

D6 d
ä äTOGGLE

grant in
left query

grant/ack
clear
req

Figure 12.10: excerpt from a crib sheet purportedly having something to do with token ring arbiter
cell building blocks

External port management While the 2-by-2 decision wait stores the token status for the cell,
the columnar decision wait l keeps track of which 4Φ port has signaled a request, if any, and also
withholds a grant if necessary until the token is acquired. As such, it needs s rows, one for each
port, as well as a TOGGLE, a FORK, and a MERGE for each row, and an s-way MERGE network to query
the token status on behalf of all of them. Proceeding outwards from a block

RpMERGE s, lq

with s inputs to the MERGE followed by s row inputs to l enables 2s connections from a FORK network

F2sxFORKsé1
2,RpMERGE s, lqy

and another s connections from the s dotted TOGGLE outputs to the FORK inputs

FsxTOGGLEsé1
2,F2sxFORKsé1

2,RpMERGE s, lqyy

which would leave the other s TOGGLE outputs at the beginning, followed by a single MERGE output,
followed by the s decision wait outputs. Rolling the decision wait outputs to the beginning allows a
block D5ps, lq P H with

D5 “ λps, lq. F2sxFsxTOGGLEsé1
2,F2sxFORKsé1

2,RpMERGE s, lqyy ç s, MERGEsè1
2y

incorporating an output MERGE network to drive each of s external grant outputs from the corre-
sponding pair of TOGGLE and decision wait outputs. The s-way MERGE output comes last on D5ps, lq,
and the column input to l is its last input.

Glue To combine these two parts of the cell, we first add the FORK pair with feedback paths to
connect each of the two MERGE outputs on D4pt, mq to the appropriate respective token control
inputs

Z2RpD4pt, mq, FORK2é1
2q

and roll the grant input and the unused token clearing FORK output out of the way on a block

pZ2ppZ2RpD4pt, mq, FORK2é1
2qq ê 2

having the last column input on the 2-by-2 decision wait in the last input position and the unused
token setting FORK output in the last output position. Then rolling the s-way MERGE output and the
decision wait column input of D5ps, lq both to the top of

D5ps, lq Û 1

12.2. ARBITER DECOMPOSITIONS 387

enables the required connection from the s-way MERGE output to the last column of the 2-by-2
decision wait in

ZRpD5ps, lq Û 1, pZ2ppZ2RpD4pt, mq, FORK2é1
2qq ê 2qq Û 1q

along with the one from the token-setting FORK output to the columnar decision wait column input.

ZppZRpD5ps, lq Û 1, pZ2ppZ2RpD4pt, mq, FORK2é1
2qq ê 2qq Û 1q ê 1q

The result has s inputs to the TOGGLE array due to D5ps, lq followed by the 2Φ grant input and the
first column input to the 2-by-2 decision wait in that order. The s outputs from the MERGE array are
followed by a token clearing FORK output and the 2Φ request output in that order. It may be more
easily denoted as D6xD4pt, mq, D5ps, lqy with D6 : H2 Ñ H defined by

D6 “ λd. ZppZRpd1 Û 1, pZ2ppZ2Rpd0, FORK2é1
2qq ê 2qq Û 1q ê 1q.

Arbiter integration The rest of the cell consists of the arbiter a with a MERGE and a TOGGLE

connected to its first port
FxMERGE, a, TOGGLEy

allowing the remaining s outputs from the arbiter to connect to the TOGGLE array exposed as the
first s inputs by d “ D6xD4pt, mq, D5ps, lqy

FsxFxMERGE, a, TOGGLEy, dy

and the first output from the TOGGLE to connect to the remaining column input on the 2-by-2
decision wait still exposed as the last input to d.

ZFsxFxMERGE, a, TOGGLEy, dy

One further connection from the token clearing FORK in the penultimate output position on d to the
MERGE leading to the arbiter is expressible by

ZppZFsxFxMERGE, a, TOGGLEy, dyq ê 2q

which leaves a block having s inputs to the arbiter followed by the 2Φ grant input and then the 2Φ
request input shown at the left of Figure 12.9 in that order. The outputs are the 2Φ request, the 2Φ
grant, and the s MERGE outputs in that order. More useful for a cascade of cells would be to have
the handshake lines in a matching order, the input bus last, and the output bus first on each cell, as
in D7ps, aq d defined by

D7 “ λps, aq. λd. pZppZFsxFxMERGE, a, TOGGLEy, dyq ê 2qq ë 2 ˙ x1,0y.

Ring cascade With the work of constructing the cell complete, we turn to the matter of connecting
multiple cells in a ring. Separate values of the parameters t, l, m, s, and a for each cell can be
inferred from the given parameters c, b, and x by D8pc, b, xq according to

D8 “ λpc, b, xq. x1 : p0 |x| « 1q, Ω̂›
q c, Ω̂›

q b, ppψ ∆qq› cq
ᵀ
0, xyᵀ (12.20)

388 CHAPTER 12. ALL ABOUT ARBITERS

so that D8pc, b, xq0 is the list of parameters xt, l, m, s, ay pertaining to the first cell, D8pc, b, xq1
pertains to the next, and so on. The value t “ 1 is associated only with the first cell to make it the
only one that initially holds the token in a cascade

U2 pλxt, l, m, s, ay. D7ps, aq D6xD4pt, mq, D5ps, lqyq› D8pc, b, xq

which lacks only the connections between the 2Φ handshake ports at either end to make a token
ring arbiter. Hence we take the following as the definition overall.

Ωopvq “ Z2pU2 pλxt, l, m, s, ay. D7ps, aq D6xD4pt, mq, D5ps, lqyq› D8 v ˙ x1,0y ê 2q (12.21)

Decompositions

A step toward sampling the space of token ring arbiters in the interest of optimization would
be to enumerate the possible combinations of decision waits in their cells, of which there is one
columnar and one 2-by-2 in each. Despite having fixed dimensions, 2-by-2 decision waits admit
eight alternative decompositions

q “ pp℘ι2q3 ˆ tx2,2yuq ˆ tεu P PpSq (12.22)

when all permutations and rotations are taken into account. Taking r P B7 n ´N
1 to be a non-unit

list of positive natural numbers summing to an arity n by Equation 12.17 gives rise to the set

pB›
8 rqᵀ P PpS›q

of lists of decompositions of columnar decision waits whose row dimensions sum to n by Equa-
tion 12.18. Each list c P pB›

8 rqᵀ of columnar decision wait decompositions along with a matching
list b P q|c| of 2-by-2 decision wait decompositions could then describe all of the decision waits in a
particular token ring arbiter of n ports.

To make it official, let ∇o n P PpS˚2q denote the set of lists xc, by P S
˚2 where c P S

˚ is any list
of columnar decision wait decompositions whose rows sum to n and b P S

|c| is a list of the same
number of 2-by-2 decision wait decompositions with ∇o defined as follows.

∇o “ λn.
ď

r P B7 n´N1

ď

c P pB›
8 rqᵀ

pµ λb. xc, byq ppp℘ι2q3 ˆ tx2,2yuq ˆ tεuq|c| (12.23)

The range of r P B7 n´N
1 has the deliberate effect of excluding token ring arbiters with just one cell

from this survey, both to keep the set ∇o n finite for all n P N and to exclude obviously suboptimal
designs.

12.2.4 General

As noted on page 377, it may be advantageous to build an arbiter
using more than one kind of decomposition. In addition to the
example of using a mesh as the root of a tree, one might envision
trees of rings, rings of trees, rings of rings nested to any depth,
etc., the last being analogous to a multi-level CPU cache in terms
of the discussion on page 383. Performance advantages might also accrue from permuting the
inputs on individual arbiters to fine-tune the critical path lengths within a larger construction, a

12.2. ARBITER DECOMPOSITIONS 389

matter mostly ignored up to this point. Informed engineering decisions would depend on a way of
automatically enumerating, searching, or sampling the space of arbiters built by any combination of
decompositions, and more crucially a way of evaluating them.

Postponing the evaluation aspect for the moment, we can dispense with the easier part at least
by capturing any arbiter decomposition as member of the set

A “ OpN˚ ˆ ppN˚˚ ˆPpNq˚˚q YS
˚˚qq

of ordered trees ppp, dq, vq, where p P N
n is a permutation on the inputs of an n-way arbiter described

by the tree, v P A
˚ is a list of the decompositions of the arbiters that make it up, and d is either

• a pair pb, mq P N
˚n ˆ PpRpιnqq˚˚ describing a mesh arbiter with n ports as proposed in

Section 12.2.1

• a unit list xcy P S
˚1 of decompositions c P S

˚ of the columnar decision waits in the leaves of
a dendriform arbiter as proposed in Section 12.2.2

• or a two-item list xc, by P S
˚2 of columnar decision wait decompositions c P S

˚ and 2-by-2
decision wait decompositions b P S

|c| for a token ring as proposed in Section 12.2.3.

Not all members of A have sensible interpretations as arbiter decompositions unless the arities
and permutation lengths are consistent throughout. However, for a fixed positive arity n P N, any
member of the set ∇a n P PpAq is a valid decomposition of an n-way arbiter by construction of a
function

∇a : N Ñ PpAq

defined by the recurrence

∇a “ λn.
ď

pp,dq P p℘ιnqˆpp∇u nqYp∇:d nqY∇o nq

tpp, dqu ˆ pλv. p∇›
a vqᵀq

$

’

&

’

%

pλc. c q x|c|yq ppψ ∆qq› d0q
ᵀ
0 if d P S

˚1

pλc. ppψ ∆qq cq0 ` 1q› d0 if d P S
˚2

pλpb, mq. pλc. |c|q› 5 xm,εy
δ

|m|

1
q d otherwise

(12.24)

and by Equation 12.12, Equation 12.19 and Equation 12.23, where each of the three cases specifies
the arities assumed about the list x of arbiters parameterizing the combining form Ω:d , Ωo or Ωu
relevant to the type of decomposition d. Because Ωu is defined by Equation 12.13 to infer either a
wire or a primitive arbiter without regard for the parameter x when there is only one stage |m| “ 1,
the subtrees of the decomposition can be omitted in this case. The set of all valid decompositions
in A follows as the union of ∇a n for n P N´ t0u, and the validity of a given tree ppp, dq, vq P A is
equivalent to the condition

ppp, dq, vq P∇a |p|.

An arbiter decomposition t P A enables considerable analysis (to follow presently) without
need of the fully elaborated block or netlist form of the arbiter it describes, but omits none of the
information needed for its construction. We can think of a decomposition t P A as an abstract or
intermediate representation of a circuit Ωa t P H available on demand through a function

Ωa : A Ñ H

390 CHAPTER 12. ALL ABOUT ARBITERS

defined by the recurrence

Ωa “ Λ λppp, dq, vq. pλa. p ¸ a ˙ pq

$

&

%

Ω:dpd0, v ∣ |d0|, v|d0|q if d P S
˚1

Ωopd0, d1, vq if d P S
˚2

Ωupd, vq otherwise
(12.25)

and by Equation 12.13, Equation 12.16, and Equation 12.21. See Equation 10.1 for a reminder
about the tree folding combinator notation.

With the transformation from a decomposition to a circuit fully determined by Equation 12.25,
the job of designing arbiters reduces to one of choosing an arbiter decomposition strategy

fa : N Ñ A

from among those satisfying
@n P N´ t0u. fa n P∇a n

to enable an arbiter generating function ARB : N Ñ H by a definition

ARB “ Ωa ˝fa (12.26)

preferably better informed than Equation 9.23. The choice of a decomposition strategy is justifiable
only with respect to a cost or performance metric, hence the preoccupation with metrics in the
balance of this chapter.

12.3 Transfer functions

What makes one arbiter better than another? One way to find out is
to send some requests to both of them and see what happens. A more
thorough way is to calculate based on their decompositions what would
happen in the event of any conceivable pattern of requests, but pursuing
this course immediately poses an obvious problem: the response of an
arbiter to a pattern of requests is unpredictable due to the element of
non-deterministic choice involved.

Not to worry, we can settle for an answer in terms of probability distributions, but then there
is still a problem. The grant probability distribution of a token ring arbiter would have to depend
on which cell holds the token, and every time the arbiter grants a request, the token circulates to
the cell granting it, thereby generally changing the distribution. As noted previously, biasing the
response possibly for the better is the whole reason for using token rings, so ignoring this effect
would make the forthcoming analysis useless for comparisons among the various decompositions.
Moreover, to the extent that the choice of a grant is uncertain, the subsequent location of the token is
also uncertain, so we are limited to drawing inferences based on a distribution of the token location
rather than a definite value.

With grants and token locations causally influencing each other, and no better than probabilistic
information about either, subtlety and small steps are the way forward.

• Seeking a behavioral description of the arbiter as a transfer function taking a set of concurrent
requests in some form to the induced grant probabilities, we ask as a first step only for an
incremental transfer function assigning to each possible grant its probability of being the
first. It is reasonable to treat token distributions as temporarily fixed for this purpose.

12.3. TRANSFER FUNCTIONS 391

• From the incremental transfer function, we then infer an incremental token distribution
modeling the effect of the first grant on the rearrangement of tokens throughout all affected
parts of the arbiter.

• Following the assumed release and acknowledgment of the first request, the incremental
transfer function yields the probability of each remaining grant being the next, contingent on
an updated token distribution and the resolution of prior requests.

• A calculation that amounts to performing these steps alternately leads to a cumulative
transfer function assigning to each possible grant its probability being the last. The analogous
cumulative token distribution evolves similarly.

• When all members of a set of concurrent requests are acknowledged and released, the next
step is to calculate the effect of another set of concurrent requests sequentially following the
first set using the previously obtained cumulative token distribution as a starting point. In
doing so repeatedly we get a broad overview of the arbiter’s time evolution.

Despite not saying much with any certainty, this analysis can lead to meaningful comparative cost
and performance metrics in a statistical sense to be developed subsequently.

12.3.1 Probability vectors and distributions

Carrying out the plan outlined above requires establishing a few conventions about the description
of requests, grants, and token distributions ahead of the main derivations.

Request probability vectors

For a set of concurrent requests to an arbiter with n ports, a list r P r0,1sn with ri “ 1 indicates a
request to the i-th port for any 0 ď i ă n, and with ri “ 0, it indicates the absence of such a request.
This representation also admits values of 0 ă ri ă 1, which express the probability of a request
whose status is not known with certainty. A list r in this context is called a request probability
vector hereafter, and is notably not a distribution because its terms need not sum to unity. However,
we assume independence so that inferences about joint request probabilities follow accordingly, at
least until seeing what can be done about this restriction in Section 12.4.

Grant probability vectors

Grants are describable similarly by a grant probability vector g P r0, 1sn for an arbiter with n ports.
There can be no more than one grant at a time from an arbiter, but a grant probability vector can
have multiple non-zero terms when the specific port issuing the grant in not known with certainty.
A single request probability vector describing multiple concurrent requests determines a sequence
of grant probability vectors, with one for the first grant chronologically, one for the next after the
first is released, and so on.

Probability vector examples

An example of the grant probability vector describing the first grant issuing from a primitive arbiter
with a request probability vector r P r0, 1s2 is sketched in Figure 12.11. Many seemingly complicated
questions about probability yield without a struggle to a picture like this one. The arbiter at the

392 CHAPTER 12. ALL ABOUT ARBITERS

g1 “ r1 ´
1
2 r0r1

g0 “ r0p1 ´ r1q `
1
2 r0r1 “ r0 ´

1
2 r0r1

0
0

1
0

0
1

1
1

0
0

1
0

0
1

r0
r1

p1 ´ r0qp1 ´ r1q

r0p1 ´ r1q

p1 ´ r0qr1

r0r1

1
2

1
2

1
1

0
1

1
1

1
0

Figure 12.11: Independent requests made to a primitivie arbiter with probabilities r0 and r1 imply
initial grants with probabilities r0 ´

1
2 r0r1 and r1 ´

1
2 r0r1 as shown by this state diagram.

left can be viewed informally as an initial state with request probabilities r0 and r1 leading to four
possible next states each characterized by requests known with certainty. Each arrow is labeled
by the probability of the arbiter going that way, obtained as a product of request probabilities or
complements thereof. The state reached with probability r0r1 due to both requests being present
can result in either grant with probability 1

2 , as depicted by two further arrows.
As noted on page 364, probabilities of mutually exclusive events combine additively and proba-

bilities of independent events combine multiplicatively. For present purposes, these rules of thumb
mean the total probability of each grant is the sum of the products of the probabilities labeling the
arrows leading to each final state where it appears. Simplifying a bit, we have

g “ xr0 ´
1
2 r0r1, r1 ´

1
2 r0r1y P r0,1s2 (12.27)

as the grant probability vector. As this example shows, not all values of r P r0, 1s˚ imply
ř

g “ 1, so
neither is a grant probability vector generally a distribution, but unlike a request probability vector
it can not sum to more than one.

12.3. TRANSFER FUNCTIONS 393

Initial token distributions

Continuing in a similar vein suggests that the token distribution pertaining to an arbiter decom-
position t “ ppp, dq, vq P A could be specified by a list k P r0,1s|v| for t representing a token ring
arbiter as indicated by d P S

˚2. However, this convention would be inadequate for more complex
decompositions such as nested rings. To provide a separate distribution for each token ring arbiter
indicated at any level within the decomposition, the most workable solution entails a universe of
annotated decompositions

9A “ OpN˚ ˆ ppN˚˚ ˆPpNq˚˚q YS
˚˚q ˆ r0,1s˚q

such that each tree t 1 “ ppp, d, kq, vq P 9A corresponds to a decomposition t P A with the additional
feature of a token distribution k P r0,1s˚ in each node. The correspondence is made explicit by a
function

H0 : A Ñ 9A

taking any arbiter decomposition t P A to an annotated decomposition H0 t P 9A according to this
recurrence.

H0 “ Λ λppp, dq, vq.

#

ppp, d, 1 : 0 |p|´1
q, vq if d P S

˚2

ppp, d, p1{|p|q
|p|

q, vq otherwise
(12.28)

Something to note about this definition is that it specifies only the initial token distribution
for a token ring arbiter, which is always of the form x1, 0, 0 . . . y because only the first cell can hold
the token initially based on Equation 12.20. Another thing to note is that because tokens are not
relevant to meshes or trees, simple uniform distributions are associated with them and are mostly
ignored in the calculations to follow.

12.3.2 Incremental transfer function

The example shown in Figure 12.11 determines an incremental transfer function because it associates
a grant probability vector g describing the first grant with any request probability vector r. Whereas
the example pertains only to a primitive arbiter, in this section we seek the incremental transfer
function for an arbiter specified by any given decomposition t P 9A in terms of a second order function

9H1 : 9A Ñ pr0,1s˚ Ñ r0,1s˚q

taking the decomposition to the transfer function 9H1 t : r0,1s˚ Ñ r0,1s˚. Inevitably 9H1 is defined
by a recurrence over 9A based on a list v P pr0, 1s˚ Ñ r0, 1s˚q˚ of transfer functions already known
hypothetically for the subtrees of the decomposition, and the root pp, d, kq. Derivations specific to
meshes, trees, and token rings follow individually in preparation for the recurrence in general.

Mesh

Most of the difficulty in deriving the incremental transfer function for a mesh arbiter is due to most
of the arbiters in it receiving their input signals from arbiters in previous stages, so it is worthwhile
to tackle this aspect first. In a mesh arbiter with a broadcast network specified by a list b P N

˚˚ as
explained on page 370, each list z P Rpbq of broadcast zone sizes for an individual input signal s
determines a list

pλt. ι
ř

pz∣tq
zt

q› ι|z| P N
˚˚

394 CHAPTER 12. ALL ABOUT ARBITERS

of the stage numbers in the mesh from front to back grouped by the broadcast zones of the signal
numbered s. Except for the first zone, any arbiter in the i-th stage receiving that signal receives it
only by way of arbiters in the last zone preceding the i-th stage, which would be those whose stages
are numbered among the last term of the list

ppλt. ι
ř

pz∣tq
zt

q› ι|z|q �Rpιiq
˚

as given by ph0 bqs i for h0 : N˚˚ Ñ pN Ñ N
˚q˚ defined by

h0 “ pλz. λi. pλl. xl|l|´1,εyδεl
q ppλt. ι

ř

pz∣tq
zt

q› ι|z|q �Rpιiq
˚q›. (12.29)

Knowing the source of each signal is useful only if its request probability is also known. Whereas
the request probabilities to arbiters in the first zone are assumed to be given, those of subsequent
zones must be inferred from the grant probabilities of arbiters connected to them in the intervening
zones. Although it is obviously not known in advance, we can build a list g P r0,1s˚˚˚ of lists of
grant probability vectors incrementally by stages to meet this need, with gi j P r0,1s˚ being that of
the j-th arbiter in the i-th stage. For a mesh specified by a list m P PpNq˚˚ as explained in reference
to Equation 12.9, a signal numbered s in the i-th stage would be routed to the j-th arbiter with

j “ m´1
i

`

Ψ
ď

aPRpmiq

a ˆ tau
˘

s

and if g is built to at least i ` 1 stages, then the grant probability for the signal numbered s from
the arbiter that grants it in the i-th stage (numbered from zero) follows as pph1 gq pm, sqq i for

h1 : R˚˚˚ Ñ ppPpNq˚˚ ˆNq Ñ pN Ñ Rqq

defined by
h1 “ λg. λpm, sq. λi. pλ j. pλk. gi jkq m0

i j sq m´1
i

`

Ψ
ď

aPRpmiq

a ˆ tau
˘

s (12.30)

with k “ m0
i j s identifying the port number associated with the signal numbered s on the j-th arbiter

in the i-th stage.
Computing the i-th term to be appended to an extant list g of grant distributions requires

assembling the request probability vectors locally applicable to all arbiters in the i-th stage and
applying their respective transfer functions to them. For the j-th arbiter in the i-th stage, a request
due to the signal numbered s P mi j generally depends on the list of grant probabilities

pph1 gq pm, sqq› ph0 bqs i P r0,1s˚

from the previous zone, and its probability is necessarily the product of these grant probabilities
because the request does not reach the arbiter unless all of these grants are issued. In the special
case of a stage within the first zone, the request probability is simply rs, where r is the argument to
the incremental transfer function under construction. In either case, the whole request probability
vector relevant to the j-th arbiter in the i-th stage is obtained by

pλs. pλl. x
ś

pph1 gq pm, sqq› l, rsyδεl
q ph0 bqs iq› pmi jq

0´1

with s ranging over mi j in ascending order, and hence the ensemble of request probability vectors
for the i-th stage by h2xh0 b, h1 gy pm, rq i with h2 defined as

h2 “ λh. λpm, rq. λi.
`

λ j. pλs. pλl. x
ś

h1pm, sq› l, rsyδεl
q ph0qs iq› pmi jq

0´1˘›
ι|mi |

. (12.31)

12.3. TRANSFER FUNCTIONS 395

The remaining task mentioned above about applying each arbiter’s respective incremental transfer
function to the corresponding request probability vector presupposes the list v of transfer functions
available by hypothesis as noted previously. Then the grant probability vectors g0 P r0,1s˚˚ from
the first stage would be

g0 “ pv ˝ ι|m0|q Ÿ ph2xh0 b, h1 εy pm, rqq 0

by Equation 12.3, which immediately suggests a way of building the list of all |m| lists of grant
probability vectors as h3pb, m, vq r for h3 defined by

h3 “ λpb, m, vq. λr. pλg. g q xpv ˝ ι
|5 g|

|m|g||
q Ÿ ph2xh0 b, h1 gy pm, rqq |g|yq|m| ε. (12.32)

The incremental transfer function overall would follow for the most part as

h4ppb, mq, vq : r0,1s˚ Ñ r0,1s˚

with
h4 : ppN˚˚ ˆPpNq˚˚q ˆ pr0,1s˚ Ñ r0,1s˚q˚q Ñ pr0,1s˚ Ñ r0,1s˚q

defined as
h4 “ λppb, mq, vq. pλg. p 5 g|g|´1q ˝ p 85 m|m|´1q´1q ˝ h3pb, m, vq (12.33)

where the grant probability vectors of the back end stage represented by the last term of g are
flattened into a single one and reordered by signal numbers, but let us hold that thought until
deriving the analogous results for dendriform and token ring arbiters.

Dendriform

Incremental transfer functions for dendriform arbiters are more straightforward than for meshes or
token rings. From a list c “ d0 P S

˚ of columnar decision wait decompositions, we infer a list

s “ ppψ∆qq› cq
ᵀ
0 P N

˚

of input arities for the arbiters in the leaves, and by Equation 12.3, a list

g “ v Ÿ h5pc, rq P r0,1s˚˚

of grant probability vectors from the arbiters in the leaves based on transfer functions

v P pr0,1s˚ Ñ r0,1s˚q|c|

and a function h5 : S˚ ˆ r0,1s˚ Ñ r0,1s˚˚ defined by

h5 “ λpc, rq. pλs. pλi. r ˝ ι
ř

ps∣iq
si

q› ι|s|q ppψ ∆qq› cq
ᵀ
0 (12.34)

that splits the request probability vector r into sublists whose lengths match the leaf arbiter arities.
The rest of the derivation follows from a few basic observations.

• The j-th leaf makes a request to the root with probability
ř

g j , the sum of its grant probability
vector, which makes the request probability vector to the root due to all of the leaves

ř› g,
resulting in a grant probability vector of v|c|p

ř› gq from the root.

396 CHAPTER 12. ALL ABOUT ARBITERS

• Because each leaf waits for a grant from the root before forwarding a grant to the environment,
a grant from the k-th port on the j-th leaf emerges only with probability g jkpv|c|p

ř› gqq j ,
which is to say that it depends on both the leaf choosing the k-th port and the root choosing
the j-th leaf as beneficiaries.

• The j-th leaf therefore accounts for a sublist g j ¨ pv|c|p
ř› gqq j of the overall grant probability

vector ph6 h5pc, rqq v with h6 : r0,1s˚˚ Ñ ppr0,1s˚ Ñ r0,1s˚q˚ Ñ r0,1s˚q defined by

h6 “ λh. λv. pλg. 5 pλ j. g j ¨ pv|h|p
ř› gqq jq

› ι|g|q pv Ÿ hq. (12.35)

The resulting incremental transfer function analogous to h4pd, vq by Equation 12.33 for a dendriform
arbiter follows as λr. ph6 h5pd0, rqq v.

Token ring

Attempting to express a token ring incremental transfer function similarly to the dendriform case
leads immediately to the difficulty of deducing the correct request probability vectors. While the
latter |h5pc, rq j | ports on the arbiter in the j-th cell are exposed to the environment, the first port
interfaces with the cell numbered j ´ 1 in a cyclic sense, so the request probability relevant to
the first port is not known until the grant probability vector for the neighboring cell is known, an
apparent impasse.

To dial down the difficulty temporarily, suppose quite unrealistically that the token is known to
be held by the last or the highest numbered cell in the ring. Then it follows that the grant probability
vector from the arbiter in the first cell is given by

g0 “ v0p0 : h5pc, rq0q P r0,1s˚.

This expression features the first transfer function v0 applied to a request probability vector specifying
a request to the first port with probability zero and requests to the remaining ports with probabilities
h5pc, rq0, the first sublist of the external request probability vector r. This value of g0 is assured
because the last cell, which already holds the token and is adjacent to the first, has no need to
request the token.

On the other hand, any cell numbered j that does not hold the token requests it from the cell
numbered j ` 1 with probability

ř

g j as determined by its incremental transfer function v j , which
is another way of saying it does so as surely as it grants any request at all. Continuing under this
unrealistic assumption, we can build the whole list g “ h7pv, h5pc, rqq P r0, 1s˚˚ of grant probability
vectors according to

h7 “ λpv, hq.
`

λg. g q xv|g|px
ř

g|g|´1, 0yδεg
: h|g|qy

˘|v|
ε (12.36)

(cf. Equation 12.32).
In practice, the location of the token is not always the last cell, so this result needs to be

generalized. If the token were in the first cell, then the grant probability vectors could be obtained
by the same method with the ring and the requests rolled by one position

g « 1 q g ∣ 1 “ h7pv « 1 q v ∣ 1, h5pc, rq « 1 q h5pc, rq∣ 1q

and if the token were held by the l-th cell (numbered from zero), the result would be

g “ pλi. h7pv ˝ i, h5pc, rq ˝ iq ˝ i´1q pι l`1
|v|´l´1 q ιl`1q.

12.3. TRANSFER FUNCTIONS 397

However, not even this result is general enough because no particular cell is known to hold the
token. The token is only suspected of being in the l-th cell with probability kl , where k is the token
distribution given by the annotated decomposition whose incremental transfer function is presently
sought. The right way forward is to evaluate the expectation of the grant probability vectors from
the list

9g “ ppλl. kl ¨ pλi. h7pv ˝ i, h5pc, vq ˝ iq ˝ i´1q pι l`1
|v|´l´1 q ιl`1qq› ι|k|q

ᵀ P r0,1s˚˚˚

wherein any term 9g j P r0,1s˚˚ is an ensemble of |k| grant probability vectors associated with the
j-th cell, with 9g jl P r0, 1s˚ being the grant probability vector of the j-th cell when the token is held
by the l-th cell. Then the expectation of e “ 9g j with respect to k follows as

ř› eᵀ, and the list of
mean grant probability vectors as h8xh5pd0, rq, h7y pk, vq according to

h8 “ λh. λpk, vq. pλe.
ř› eᵀq› ppλl. kl ¨ pλi. h1pv ˝ i, h0 ˝ iq ˝ i´1q pι l`1

|v|´l´1 q ιl`1qq› ι|k|q
ᵀ. (12.37)

The externally observed grant probabilities are the cumulative concatenation of the individual grant
probability vectors excluding the first term of each, so the actual result expressed as a function of
the requests is

λr. 5 pλg. g « 1q› h8xh5pd0, rq, h7y pk, vq.

General

The two remaining requirements for an incremental transfer function defined by a recurrence over
annotated decompositions ppp, d, kq, vq P 9A are to define a result for the base case v “ ε, and to
allow for the effects of the permutation p.

Base case The base case pertains to a mesh arbiter with only one stage, and either one or two
ports, for which the list of subtrees in the decomposition is empty as noted previously in reference
to Equation 12.24. The arity of the arbiter can be inferred from the length |p| P t1,2u of the
permutation. A unit length permutation limits the arbiter to a single port implemented as a wire I
by Equation 12.13, and hence the identity function λr. r as its incremental transfer function. The
other alternative is a primitive arbiter with an incremental transfer function

λr. xr0 ´
1
2 r0r1, r1 ´

1
2 r0r1y

based on Equation 12.27 and the discussion of Figure 12.11.

Permutation networks The permutation p in the decomposition expresses an arbiter wrapped in
input and output permutation networks described by p as in Equation 12.25. When the environment
requests with probability ri to the i-th port visible on the outside of the combined arbiter and
wrapper, the arbiter inside the wrapper sees a request on port pi with probability ri , and hence a
request probability vector r ˝ p overall (cf. Figure 8.15). If the inner arbiter has an incremental
transfer function f , then the combined system has λr. f pr ˝ pq as its incremental transfer function.

From these last two points and Equation 12.33 through Equation 12.37, we have the following
general form for the incremental transfer function of an arbiter described by any decomposition.

9H1 “ Λ ppp, d, kq, vq. pλ f . λr 1. f pr 1 ˝ pqq

$

’

’

&

’

’

%

xλr. r,λr. xr0 ´
1
2 r0r1, r1 ´

1
2 r0r1yy|p|´1 if v “ ε

λr. ph6 h5pd0, rqq v if d P S
˚1

λr. 5 pλg. g « 1q› h8xh5pd0, rq, h7y pk, vq if d P S
˚2

h4pd, vq otherwise

398 CHAPTER 12. ALL ABOUT ARBITERS

12.3.3 Incremental token distribution

Now that g “ p 9H1 tq r predicts the first grant from an arbiter of decomposition t “ ppp, d, kq, uq P 9A

and a request probability vector r, it would seem appropriate to follow through for the remaining
requests, but this task is not just a matter of applying 9H1 t to each of them. Each time a token ring
arbiter grants a request, the token moves to the cell whose port grants it. This change affects how
the arbiter handles subsequent requests, so it must be modeled by the token distribution k in the
annotated decomposition t for correct results.

Grant gathering

If the cell in the token ring arbiter described by t that grants the request is known only up to a
probability w “

ř› h5pd0, p 9H1 tq rq, then the best estimate of the next token distribution is most
probable where w is greatest,

k1 “
1

ř

w
¨ w

normalized to ensure
ř

k1 “ 1 holds for the distribution. By Equation 12.34, this choice of k1

assigns to the i-th cell a probability proportional to wi , the probability of a grant issuing from
anywhere in the i-th range of ports as determined by the summation

ř

h5pd0, p 9H1 tq rqi of grant
probabilities g “ p 9H1 tq r over the individual ports in that range. Alternatively, if t describes an
arbiter of some other form, then the token distribution is not relevant, and if no grant is issued (due
to no request being made), then the token distribution stays the same. To cover all cases, the root
pp, d, k1q “ Ĝpp, d, kq g of the adjusted decomposition can be defined as follows.

Ĝ “ λpp, d, kq. λg.

"

pλw. pp, d, p1{
ř

wq ¨ wqq
ř› h5pd0, gq if d P S

˚2 ^ g R t0u˚

pp, d, kq otherwise (12.38)

Request reckoning

Transforming t similarly at every level including the root is necessary if there are token rings nested
within other forms, but more involved because the value of g parameterizing Ĝ differs. Instead
of being expressible as g “ p 9H1 tq r directly in terms of the request probability vector r overall,
the token distribution in a node other than the root depends on whatever request probabilities are
manifested locally to the arbiter it represents. Fortunately, this subproblem is already solved at least
for the subtrees u immediately below the root in terms of the list v “ 9H›

1 u P pr0, 1s˚ Ñ r0, 1s˚q˚ of
their incremental transfer functions if we temporarily fix the permutation p as the identity.

• If the root represents a dendriform arbiter, then there is a list l “ h5pd0, rq of request probability
vectors to the leaves and an additional request probability vector

ř› v Ÿ l to the root.

• If the root represents a mesh with d “ pb, mq, then the list h3pb, m, vq r of grant probability
vectors by Equation 12.32 determines a list 5 ph2xh0 b, h1 h3pb, m, vq ry pm, rqq› ι|m| of request
probability vectors by Equation 12.29 through Equation 12.31.

• If the root represents a token ring, then the first term g0 of the i-th grant probability vector g
in the list h8xh5pd0, rq, h7y pk, vq by Equation 12.34, Equation 12.36 and Equation 12.37 is the
first request probability to the arbiter in the succeeding cell, whose other request probabilities
are the pi ` 1q-st term of h5pd0, rq cyclically.

12.3. TRANSFER FUNCTIONS 399

To summarize, let R̂pd, k, vq r P r0, 1s˚˚ denote the list of request probability vectors that propagate
to the subtrees of a decomposition with root pp, d, kq, where p is an identity permutation, v is the
list of transfer functions of the subtrees, and r is the request probability vector imparted to the
whole system, according to a function R̂pd, k, vq : r0,1s˚ Ñ r0,1s˚˚ defined as follows.

R̂ “ λpd, k, vq. λr.

$

’

&

’

%

pλl. l q x
ř› v Ÿ lyq h5pd0, rq if d P S

˚1

pλi. 5›xpλg. xg0yq› h8xi, h7y pk, vq ˝ p|i| ´ 1 : ι|i|´1q, iyᵀq h5pd0, rq if d P S
˚2

pλpb, mq. 5 ph2xh0 b, h1 h3pb, m, vq ry pm, rqq› ι|m|q d otherwise

Generalizing this result to unrestricted permutations is as simple as writing R̂pd, k, vq pr ˝ pq.

Token transit

Based on this preparation, the notion of updating the token distributions in a decomposition t P 9A

can be captured formally by a second order function

9H2 : 9A Ñ pr0,1s˚ Ñ 9Aq

parameterized by the given t, whereby 9H2 t : r0,1s˚ Ñ 9A is the function that takes a request
probability vector r to the annotated decomposition p 9H2 tq r P 9A differing from t only in its
token distributions and only insofar as they might change due to a single grant prompted by
request probabilities r. Awkward though it may be in prose, this style of specification enables a
short definition of the function 9H2 as the solution to this recurrence.

9H2ptq “ pλppp, d, kq, uq. λr. pĜpp, d, kq p 9H1 tq r, p 9H›
2 uq Ÿ R̂pd, k, 9H›

1 uq pr ˝ pqqq t (12.39)

12.3.4 Cumulative transfer function

Resuming now better equipped for the problem of modeling the effect of multiple concurrent
requests leads in part to a cumulative transfer function

H1 : 9A Ñ pr0,1s˚ Ñ r0,1s˚q

of the same type as the incremental transfer function 9H1 but notably different in its construction
and interpretation. Whereas the incremental transfer function parameterized by a decomposition t
maps a request probability vector r to a grant probability vector p 9H1 tq r pertaining to the first grant,
the grant probability vector pH1 tq r pertains to the last grant after all others concurrently enabled
by r are released and acknowledged. A corresponding cumulative token distribution function

H2 : 9A Ñ pr0,1s˚ Ñ 9Aq

then follows with no further effort as

H2ptq “ pλppp, d, kq, uq. λr. pĜpp, d, kq pH1 tq r, pH›
2 uq Ÿ R̂pd, k, H›

1 uq pr ˝ pqqq t (12.40)

(cf. Equation 12.39) and fulfills the last prerequisite for passing from one set of concurrent requests
to the next in the evaluation of any chosen cost or performance metric.

Deriving the grant probability vector for the last grant is mainly a math problem solvable without
reference to the details of the arbiter under consideration. Lacking any obvious closed form or
recursive solution, the problem is best broken into two parts.

400 CHAPTER 12. ALL ABOUT ARBITERS

• For the first part, we focus on computing the probability of a given sequence of n events
encoded by xs0, s1, . . . sn´1y P ℘ιn such that sn´1 is the port number of the first grant issued
by an n-way arbiter with a given initial request probability vector r, sn´2 is port number of
the next grant after the request to port sn´1 is released and acknowledged, and so on down
to s0, the port number of the last grant. This calculation is feasible by adjusting the token
distributions and request probability vectors accordingly at each step.

• For the second part, we identify the probability of any port s0 being that of the last grant with
the probability of some random sequence in ℘ ιn having s0 as its first term. Following the rule
of thumb for mutually exclusive events, this result is given by a summation of the probabilities
obtained as proposed above over the set of such sequences. While we consider only the exact
solution here, in practice this set may be large enough to mandate some form of sampling or
extrapolation [35].

As discussed previously at great length, the probability of the first grant being on the i-th port of
an arbiter with a decomposition t and a request probability vector r is pp 9H1 tq rqi , and as a side
effect of these requests, t must be discarded in favor of a new decomposition p 9H2 tq r for the next
step toward evaluating the probability of a sequence. Along with modified token distributions, a
modified request probability vector

pλ j. p1 ´ δi
jqr jq

› ι|r|

derived from the original with the i-th request suppressed is appropriate for evaluating the joint
probability of the first and second grants. If the latter were on the l-th port, it would be nearly
correct to write the product

pp 9H1 tq rqipp 9H1 p 9H2 tq rq pλ j. p1 ´ δi
jqr jq

› ι|r|ql

as their joint probability were it not for a subtle issue: if the first grant has definitely occurred
on the i-th port, as we are assuming temporarily it has, then the token distribution should say so
unequivocally, but p 9H2 tq r does not. The appropriate distribution for a token ring arbiter in this
situation is zero-valued everywhere except the cell associated with the i-th port, where its value is
unity. Conversely, not every token distribution in t is necessarily determined. If the i-th port belongs
to a token ring in a leaf of a dendriform arbiter, the assumption of a grant from the i-th port implies
nothing about the other leaves.

Rather than attempting ad hoc adjustments to all token distributions throughout the decomposi-
tion t, we can let the arbiter decide which distributions collapse and which survive by feeding it a
second request probability vector

pλ j. δi
jq

› ι|r|

expressing a single request with certainty on the same port i as the assumed first grant. If a sublist
of this request probability vector containing only zeros propagates anywhere within the arbiter, it
leaves the associated token distribution unchanged by Equation 12.38, whereas any non-zero sublist
leaves behind only a crisp clean binary token distribution indicative of certainty. Formally this effect
is achieved by writing

pp 9H1 tq rqipp 9H1 p :H2 tq pr, iqq pλ j. p1 ´ δi
jqr jq

› ι|r|ql

in place of the expression above, with :H2 defined by

:H2 “ λt. λpr, iq. p 9H2 p 9H2 tq rq pλ j. δi
jq

› ι|r|.

12.4. ACCESS PATTERNS 401

Generalizing this product from a pair of grants to a list is straightforward. A port number i P Rpsq
in a permutation s P N

˚, along with a partial product q P r0, 1s, decomposition t P∇a |s|, and request
probability vector r P r0,1s|s|, determines the succeeding product qpp 9H1 tq rqi , decomposition
p :H2 tq pr, iq, and request probability vector pλ j. p1 ´ δi

jqr jq
› ι|r| necessary for a function

λpi, pq, pt, rqqq. pqpp 9H1 tq rqi , pp :H2 tq pr, iq, pλ j. p1 ´ δi
jqr jq

› ι|r|q

folded over s with any vacuous case result of the form p1, uq P r0,1s ˆ pp∇a |s|q ˆ r0,1s|s|q. The
complete product follows as ph9 uq s for h9 : p 9A ˆ r0,1s˚q Ñ pN˚ Ñ r0,1sq given by

h9 “ λu. pλpq, u1q. qq ˝ bp1,uq λpi, pq, pt, rqqq. pqpp 9H1 tq rqi , pp :H2 tq pr, iq, pλ j. p1 ´ δi
jqr jq

› ι|r|qq

and can be interpreted as the probability of the sequence of grants whose port numbers are listed in
reverse by s.

The rest of the cumulative transfer function derivation follows first by building on this result to
obtain the function

f “ Ψ Π pµ λs. ps0, h9pt, rq sqq ℘ι|r| : Dprq Ñ Ppr0,1sq

induced by a given decomposition t P 9A and request probability vector r P r0, 1s˚ by Equation 6.1,
Equation 6.7, and Equation 5.1. For a given port number s0 P Dprq as an argument, f s0 obtains the
set of all probabilities q “ h9pt, rq s P r0, 1s of sequences of grants appearing on ports numbered in
reverse by lists s P ℘ ι|r| whose first term is s0. Then we can write

ř

q P f i q for the total probability of
the i-th port being the last to exhibit a grant, and hence the following cumulative transfer function
definition.

H1 “ λt. λr. pλ f . pλi.
ÿ

q P f i

qq› ι|r|q Ψ Π pµ λs. ps0, h9pt, rq sqq ℘ι|r|

12.4 Access patterns

Learning something useful about an arbiter from its transfer function depends on plugging useful
arguments into it. For example, if the anticipated operating conditions were to imply some ports
being busier than others, then testing the transfer functions of various designs on a request probability
vector calibrated against empirical data to that effect would be an excellent way to find the one
that performs best on average by optimizing the busier ports. However, this analysis by itself would
neglect any spatial or temporal locality in the access pattern, whose effect could be more significant
to performance overall, especially when token rings take advantage of it (page 383).

• Spatial locality is the tendency for a request to appear concurrently with another request
regardless of their respective probabilities.

• Temporal locality is the tendency for a subsequent request to appear on the same port as a
previous one more frequently than its probability alone would suggest.

Spatial and temporal locality can be modeled by conditional probabilities as defined in Section 12.1.4,
fortunately in a way that builds on the previous analysis without need of revision in Section 12.4.1
and Section 12.4.2 respectively, clearing the way for a precise concept of expectation of a metric
with respect to a general access pattern in Section 12.5.

402 CHAPTER 12. ALL ABOUT ARBITERS

12.4.1 Spatial locality

To start with a simple question, assuming a request probability vector r P r0,1sn in the sense
proposed in Section 12.3.1, what should we infer as the probability of a binary valued request
vector q P t0, 1un, where qi “ 1 holds if and only if there is actually a request on the i-th port? If the
requests are spatially independent as assumed previously, then clearly the probability is the product

ś

pλi. x1 ´ ri , riyqi
q› ιn

of the individual request probabilities or their complements, but if independence can not be assumed,
then the probability could be anything within r0, 1s subject only to the constraint that the probabilities
of all request vectors q P t0,1un sum to unity. Conversely, there should be a way to express any
desired spatial locality consistently with the request probability vector r by letting some distribution
f : t0,1un Ñ r0,1s determine the probability f q P r0,1s accordingly.

The space of all such distributions is larger than necessary to cover the access patterns of interest,
for which a family of distributions

Θnpr, cq : t0,1un Ñ r0,1s

parameterized by the request probabilities r P r0,1sn and the spatial conditional probabilities
c P pr0, 1snqn is adequate. The value of ci j P r0, 1s specifies the conditional probability of a request
on the i-th port given that there is concurrently a request on the j-th port. Aside from the obvious
constraint

@i, j P Rpιnq. i “ j ñ ci j “ 1

we can dial in any values of ci j P r0,1s supported by empirical or theoretical studies to obtain
Θnpr, cq as the solution to the system of 2n linear equations in 2n unknowns

ř

Θnpr, cq› pλt. ῑtq
`

λv. 1 ` δ
u´tvu
u

˘›
ιn “

ř
`

λi. pri

ź

jPu

ci jq{
ř

r
˘›
ιn (12.41)

for all u P PpRpιnqq. (See Equation 10.3 for a reminder about the notation ῑt .) It may give some
consolation to note that this system although large is relatively sparse, with the number of non-zero
coefficients growing only as 3n, and that a correct solution is verifiable as such by these conditions.

r “ pλi.
ÿ

qPt0,1un

qipΘnpr, cq qqq› ιn c “ pλi. pλ j.
1
r j

ÿ

qPt0,1un

qiq jpΘnpr, cq qqq› ιnq› ιn

12.4.2 Temporal locality

An access pattern parameterized by r P r0, 1sn and c P pr0, 1snqn exhibits temporal locality whenever
the probability of a sequence s P pt0,1unqk of k consecutive request vectors relative to the sample
space pt0,1unqk differs from the probability

p
ś

Θnpr, cq› sq {
ÿ

tPpt0,1u|r|qk

ś

Θnpr, cq› t

it would normally have if there were no temporal locality (i.e., the one fully determined by the
product of the individual request vector probabilities). By favoring some sequences over others, a
family of deliberately skewed distributions for arities n and sequence lengths k

Θk
npr, c, lq : pt0,1unqk Ñ r0,1s

12.4. ACCESS PATTERNS 403

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

time

¨ ¨ ¨q P t0,1un

Figure 12.12: A k-partite graph associating a request vector with each node and a transition
probability with each edge reveals the probability of a sequence s “ xx1, 0y, x1, 1y, x0, 1y, x0, 1y . . . y

of k request vectors (among others) as the product of the initial request probability Θnpr, cq s0 and
the transition probabilities from each request in the sequence to the next.

parameterized additionally by temporal conditional probabilities l P r0, 1sn indicates a conditional
probability li for a request on the i-th port given that the preceding request vector in the sequence
also exhibits a request on the i-th port precisely when l satisfies

l “

ˆ

λw.
ř›

ˆ

ÿ

vPw

ˆ

λt.
pΘk

npr, c, lq vᵀq
ř

pλi. t i t i`1q› ιk´1

p
ř

bPwΘ
k
npr, c, lq bᵀq

ř

pt ∣ k ´ 1q

˙›

v
˙ᵀ˙

`

t0,1uk ´ pt0u˚ q t0,1u1q
˘n

where each v P w is the transpose of a member of pt0,1unqk excluding any terms t P Rpvq whose
non-final terms t ∣ k ´ 1 are all zero. The partial result inferred from each instance of t in this
expression is weighted by the probability of vᵀ given v P w.

In practice r, c, and l are obtained empirically and a distribution Θk
npr, c, lq consistent with

this equation is sought for a value of k fixed by the available computing resources. To find it, we
envision a directed k-partite graph as in Figure 12.12 and identify each sequence s P pt0, 1unqk with
a path.3 Associating a transition probability ~Θnpr, c, lq pq, uq with each edge in the graph reduces
the problem to one of expressing Θk

npr, c, lq as a product of an initial request probability with the
transition probabilities along the subsequent path

Θk
npr, c, lq “ λs. pΘnpr, cq s0q

k´2
ź

i“0

~Θnpr, c, lq psi , si`1q (12.42)

where ~Θnpr, c, lq : t0, 1un ˆ t0, 1un Ñ r0, 1s applied to a pair pq, uq gives the conditional probability
of the next request vector being u given that the current one is q, or intuitively the weight of an
edge from node q to node u.

3This technique is popular in the financial derivatives literature, where the graph is often called a lattice [94], not to be
confused with other usages of the term as in Appendix B.

404 CHAPTER 12. ALL ABOUT ARBITERS

Certain healthiness conditions constrain any contrivance of this ilk. Because ~Θnpr, c, lq is a
distribution, it satisfies

ÿ

uPt0,1un

~Θnpr, c, lq pq, uq “ 1 (12.43)

for all q P t0,1un, which can be visualized as the weights on the outgoing edges from each node
summing to unity. Furthermore, the total probability Θnpr, cq u of every request vector u P t0,1un

must coincide with the sum

Θnpr, cq u “
ÿ

qPt0,1un

pΘnpr, cq qqp ~Θnpr, c, lq pq, uqq (12.44)

of conditional probabilities contributed by all paths leading to it through nodes q in the previous
partition class.

More specific to the problem at hand, we require

li “
`

λv.
ÿ

q Pv

ÿ

u Pv

Θnpr, cq q
Θnpr, cq u

p ~Θnpr, c, lq pq, uqq
˘

t P t0,1un | t i “ 1 ^Θnpr, cq t ‰ 0
(

(12.45)

for 0 ď i ă n to enforce the given temporal conditional probabilities l. For example, with n “ 2, the
conditional probability l0 of u0 “ 1 in a request u given q0 “ 1 in the preceding request q must be

l0 “
pΘnpr, cq x1,0yqp ~Θnpr, c, lq px1,0y, x1,0yqq ` pΘnpr, cq x1,1yqp ~Θnpr, c, lq px1,1y, x1,0yqq

Θnpr, cq x1,0y

`
pΘnpr, cq x1,0yqp ~Θnpr, c, lq px1,0y, x1,1yqq ` pΘnpr, cq x1,1yqp ~Θnpr, c, lq px1,1y, x1,1yqq

Θnpr, cq x1,1y

if neither Θnpr, cq x1,0y nor Θnpr, cq x1,1y vanishes.
These conditions would establish a system of linear equations that could be solved for ~Θnpr, c, lq

at every point pq, uq were it not for the system being grossly underdetermined. With 4n unknown
transition probabilities and the constraints above implying only 2n`1 ` n equations, we are free to
choose the value of ~Θnpr, c, lq at almost every point.

• A reasonable choice would have the conditional probability ~Θnpr, c, lq pq, uq smoothly approach
the total probability Θnpr, cq u as l approaches r, and match it exactly for q P t0un regardless
of l.

• More generally, the conditional probability could be made to differ from the total probability
by a factor of li{ri for every i with qi “ ui “ 1, and by a factor of p1 ´ liq{p1 ´ riq for every i
with qi “ 1 and ui “ 0.

Following this plan, let ~Θnpr, c, lq take values of

~Θnpr, c, lq pq, uq “ pΘnpr, cq uq

ˆ

λ f .
f l

δ
f r
0 ` f r

˙

λv.
ś

pλi. x1, x1 ´ vi , viyui
yqi

q› ι|v| (12.46)

for all members pq, uq of a set w Ă t0,1un ˆ t0,1un of 4n ´ 2n`1 ´ n arbitrarily sampled points
satisfying

@q P Dpwq. |w X ptqu ˆRpwqq| ă 2n ^ @u P Rpwq. |w X pDpwq ˆ tuuq| ă 2n

12.5. METRICS 405

to avoid contradicting Equation 12.43 or Equation 12.44 and

@i P Rpιnq. t0,1ui´1 q x1y q t0,1un´i Ę w

to avoid contradicting Equation 12.45, so that ~Θnpr, c, lq induces a well defined distribution in
Equation 12.42.

12.5 Metrics

Because there could be many quantitative questions about arbiters in
need of good answers, and because not everyone is interested in the
same ones, we refrain for a short while longer from getting more specific
than necessary and refer only to a metric in the abstract. An arbiter
metric for our purposes can be any freely chosen function

Q : 9A Ñ pt0,1u˚ Ñ Rq

allowed to depend in any way at all on the annotated decomposition t P 9A of an arbiter (and
implicitly, on its token distributions) to yield a function Q t : t0,1u˚ Ñ R, which may optionally
depend further on a current request vector r P t0, 1u˚ to yield a value pQ tq r P R quantifying some
cost or performance characteristic of interest. While possibly useful by itself, a metric can often
yield further insight when averaged over a variety of sequences of requests representative of actual
operating conditions, and this calculation is expressible without any other assumptions about the
metric in terms of the theory developed in Section 12.3 and Section 12.4. A precise account of this
idea follows in Section 12.5.1, with some concluding remarks and implications in Section 12.5.2.

12.5.1 Expectation

A decomposition t P A of an arbiter with the token distribution it has when initially powered up
and a sequence of request vectors s P pt0, 1umqk determine a sequence of annotated decompositions

pλh. h q xpH2 h|h|´1q s|h|´1yqk´1 xH0 ty P 9Ak

derived from t by Equation 12.28 and Equation 12.40, so that the metric Q parameterized by the
decomposition appropriate to each request in the sequence is evaluated accordingly by

pQ› pλh. h q xpH2 h|h|´1q s|h|´1yqk´1 xH0 tyq Ÿ s P R
k.

As a property of an arbiter, the result should not really depend on the length k of the sequence used
to evaluate the metric, so we might regard

1
k

ř

pQ› pλh. h q xpH2 h|h|´1q s|h|´1yqk´1 xH0 tyq Ÿ s P R

as the preferable form for purposes of comparison. Then a tuple v “ pr, c, lq of request probabil-
ities and locality parameters as proposed in Section 12.4 leads to the concept of an expectation
pΘ̄n vq pQ, tq P R of a metric Q on a decomposition t with respect to an access pattern v in terms of
a function

Θ̄n v : p 9A Ñ pt0,1un Ñ Rqq ˆA Ñ R

406 CHAPTER 12. ALL ABOUT ARBITERS

defined based on Equation 12.42 by

Θ̄n v “ λpQ, tq. lim
kÑ∞

ÿ

s P ppt0,1unqk

ppΘk
n vq sq

1
k

ř

pQ› pλh. h q xpH2 h|h|´1q s|h|´1yqk´1 xH0 tyq Ÿ s. (12.47)

12.5.2 Optimization

Whereas Equation 12.47 may be useful for inquiring about a proposed decomposition t P A, a better
question would be that of how to propose one. For a known input arity n P N, there is no obstacle in
principle to obtaining the optimum decomposition with respect to a metric Q and an access pattern
v by searching the set of decompositions ∇a n Ă A (Equation 12.24), which is always finite, or
sampling it to the extent time permits, provided the limit in Equation 12.47 exists. Formally we can
express the optimum decomposition pΘ̂n vq Q P A as that which minimizes the metric Q given v in
terms of a function

Θ̂n : r0,1sn ˆ pr0,1snqn ˆ r0,1sn Ñ pp 9A Ñ pt0,1u˚ Ñ Rqq Ñ Aq

defined by

Θ̂npvq “ λQ. pλpm, tq. tq min

pm, tq P R ˆ∇a n | m “ pΘ̄n vq pQ, tq
(

.

Decomposition strategies

A decomposition strategy fa fit for Equation 12.26 would generalize this result to multiple arities
by way of a family of access patterns vn P r0,1sn ˆ pr0,1snqn ˆ r0,1sn determined empirically or
otherwise, and a fixed choice of the metric Q.

fa “ λn. pΘ̂n vnq Q

Example of a metric

Because this chapter long enough already, we conclude with only the simplest “hello world” example
of an arbiter metric and save the more interesting examples for Appendix E (also because they
depend on material from Appendix C).

Everyone knows the meaning of fairness, so what could go wrong with putting a number to it,
and what could be fairer than an arbiter that grants all requests with equal probability, favoring none?
If not all arbiters can be perfectly fair, then one is fairer than another when its grant probabilities
are closer to being equal than those of the other. Hence the metric should quantify in some way the
dispersion of grant probabilities about a common value. For a decomposition t P 9A and a request
vector r P t0,1un, the first grant probabilities are given conveniently by p 9H1 tq r P r0,1sn in terms
of the incremental transfer function, which reduces to

h “ pp 9H1 tq rq �R ´ t0u

if we ignore the necessarily zero-valued grant probabilities due to requests not made. Then a
standard statistical measure of dispersion

ř
`

λu.
`

u ´
1

|h|

ř

h
˘2˘›

h

12.5. METRICS 407

10 20 30 40 50

0

1,000

2,000

3,000

4,000

5,000
triangular mesh
crossbar mesh
binary tree

number of components

number of ports

Figure 12.13: Plots of component counts of three families of arbiters illustrate quadratic spatial
complexity with the number of ports for meshes and linear for trees.

(i.e., the variance) would seem to do the trick, unless perhaps the dispersion should also be
normalized with respect to the number of grants being dispersed, as in the metric

Qhw “ λt. λr.
ˆ

λh.
1

δ
|h|

0 ` |h|

ř
`

λu.
`

u ´
1

|h|

ř

h
˘2˘›

h
˙

`

pp 9H1 tq rq �R ´ t0u
˘

.

On the other hand, the metric Qhw is open to various criticisms as a measure of fairness. For one
thing, an arbiter that grants all requests with equal probability but consistently takes longer for some
ports than others might not deserve to be called fair, so maybe the critical path metric developed in
Section E.2 should factor into it. For another thing, the latency even then is theoretically unbounded
due to metastability in the presence of contention [49, 51, 174, 191], which this metric completely
ignores. Maybe the contention metric developed in Section E.1 should be incorporated as well, and
undoubtedly further embellishments are possible. The takeaway should be that despite the air of
mathematical rigor, any choice of a metric is ultimately a judgment call with no guarantee that it
captures the quality it purports to measure.

408 CHAPTER 12. ALL ABOUT ARBITERS

Figure 12.14: A balanced crossbar arbiter is either a primitive or has a front end stage consisting of
two smaller balanced crossbar arbiters with equal or nearly equal arities connected to an array of
primitive arbiters.

12.5. METRICS 409

Rear bit

1. Draw circuit diagrams illustrating the broadcast zone examples on page 372. How
many components do they need in addition to the primitive arbiters?

2. What process combinator expression p P D has the Petri net model in Figure 12.5?
What environment e P D would make env pp, eq a better specification for the circuit
in Figure 12.4, and what would be better about it?

3. Write a program to implement an arbiter decomposition strategy fa that generates
a mesh for small arities, a tree for medium sized arities, and a token ring for large
ones depending on compile-time constants. What would be a plausible use case?

4. Write out Equation 12.41 the hard way (with no fancy notation) for the two cases
n “ 2 and n “ 3. How many terms are there on the left sides?

5. (for math geniuses only) Is there a more sophisticated alternative to Equation 12.46
that directly yields an exact analytical solution for all of ~Θnpr, c, lq consistent with
Equation 12.43, Equation 12.44, and Equation 12.45 by construction?

6. With regard to the crossbar arbiter in Figure 12.14:

a) What specific family of decompositions t P A precisely expresses arbiters of
this form? (hint: meshes with particular broadcast zones)

b) If the two-dimensional array of primitive arbiters visible in the figure were
generalized to a k-dimensional array of k-way arbiters, would the crossbar
arbiter still be expressible as a mesh? Would it still be an arbiter?

c) How many primitive components of any type are there in the average critical
path as a function of the number of ports n? (hint: less than linearly many but
more than logarithmic; assume a power of two ports if easier)

7. Write recurrences expressing the total number of primitive components as a function
of the number of ports n for triangular mesh arbiters, balanced crossbar arbiters,
and binary trees. What are the crossover points in Figure 12.13?

8. An alternative dendriform arbiter proposed in [196] allows each node to serve
repeated requests from its descendants without having to issue any release to its
parent until it is idle, thereby achieving similar cache-like effects to a token ring.

a) What process combinator expression specifies this type of arbiter tree node?

b) What delay insensitive circuit design would implement it?

c) How could the definitions of Ωa, A and H0 be generalized to accommodate it?

d) How should the incremental transfer function 9H1, the token distribution func-
tion Ĝ, and the request propagation function R̂ be generalized accordingly?

The oldest, shortest words – “yes”
and “no” – are those which require
the most thought.

Pythagoras

C
H

A
P

T
E

R 13
PUTTING THE WORD OUT

At this juncture, much of the preparation for the discussion of general high level circuit synthesis to
follow in Part IV is achieved, and readers who have mastered the material in previous chapters can
be commended for their persistence. However, one small but important topic could still do with a
good mulling over. The problem of conveying information from one place to another in a DI circuit
is inherent in any significant project, and is best approached systematically.

The road map for this chapter is as follows. As an aid to
understanding the rest, Section 13.1 presents a crash course
on some issues pertaining to delay insensitive communication
that might not be obvious. Following that, Section 13.2 gives an
algorithmic construction of an encoder for any delay insensitive
code. The inverse problem of decoding rises and shines in
Section 13.3, which generalizes the multidimensional sparse decision wait, and a closely related
construction for completion detectors follows in Section 13.4. Finally, Section 13.5 exhibits a class
of circuits for transcoding between any two delay insensitive codes.

13.1 Pep talk

The only data communication needed up to this point hardly merits the term: acknowledgments
and completion detection signals are limited to communicating that an event has occurred. The
situation changes when other types of data are involved. The need to communicate binary, numeric,
and more general types of data motivates various solutions discussed in this section.

13.1.1 A two-wire protocol

An immediate difficulty arises even for something as simple as providing a yes or no answer in
response to a request, which is that a signal carried by a wire in a DI circuit is unable to distinguish

411

412 CHAPTER 13. PUTTING THE WORD OUT

between the two alternatives. This proposition may be counterintuitive to a reader accustomed to
thinking of two-valued logic circuitry, but is inescapable if one envisions a technology of signals
mediated by pulses, particles, projectiles, etc., given the technology independence of DI design. A
reader unaccustomed to thinking of logic levels has less to unlearn.

If the communication is to be delay insensitive, then at least two wires are needed. The sending
and the receiving parts of the circuit would then abide by a protocol identifying a yes answer with a
signal on one of the wires and a no with a signal on the other.

13.1.2 1-hot codes

Whereas we may have dodged a bullet above, further difficulties are sure to follow. If the information
to be conveyed represents a character of a text message, does delay insensitive communication
demand a separate wire for each letter of the alphabet? For very small alphabets, this convention
might be feasible, and would be called a 1-hot code. This terminology should be familiar from
the mention of completion detecting buses in Section 10.3. A 1-hot code becomes quite infeasible
however for larger alphabets, such as the set of all 128, 172 unicode characters at this writing [63],
not to mention for numeric data, because the space needed for that number of wires is prohibitive.

13.1.3 Dual rail codes

Fortunately, the two-wire protocol for binary data described in Section 13.1.1 admits other general-
izations than the 1-hot code that cope more effectively with other data communication applications
while maintaining delay insensitivity. One generalization, mentioned briefly for motivation in Sec-
tion 10.4, is the dual rail code, and is particularly suitable for numeric data. In a dual rail code, an
m bit number is encoded simply by replicating the two-wire solution m times, with one pair of wires
for each bit. Arithmetic units operating on numbers in this format are straightforward to design
based on conventional algorithms [223]. Dual rail codes are important enough to deserve special
consideration in Chapter 14.

The only drawback of dual rail codes is that a cost of two lines per bit is higher than necessary,
albeit a considerable improvement on 1-hot coding. How is it possible that two bus lines per bit
are excessive while one line per bit is insufficient? Let a
code word be defined informally for the moment as a unit
of information communicable by a given code. An m-bit
dual rail code takes a bus with 2m wires to transmit one
of 2m possible code words at a time, with each code word
representing some number from 0 through 2m ´ 1, but a
bus having 2m wires would allow more than 2m ways to
encode a word on it if we cared to use them all. Identifying
each possibility with a number would allow a wider range of
numbers to be communicated via the bus (i.e., more than we
could count using numbers with only m bits), so in an information theoretic sense each bit requires
something less than two bus lines when the bus is used at full capacity. For the mathematically
inclined, that would be

2m{ log2 N

bus lines per bit, where the number N , called the code size hereafter, is the number of words
communicable in the code and 2m is the number of lines in the bus.

13.1. PEP TALK 413

13.1.4 Constant weight codes

More efficient codes than dual rail treat the bus not as m separate pairs of lines with one pair for
each bit, but as a homogenous set of n “ 2m lines. With n lines on the bus, there are 2n subsets
of bus lines and therefore 2n different ways to send a set of signals concurrently. If each subset
were identified with a unique code word, we could have a code size of N “ 2n, but contrary to
expectations based on Section 13.1.1 this code would imply a need for no more than one bus line
per bit. Although we can do better than dual rail codes, we can not do that much better.

To see why the ideal of one bus line per bit is unattainable, consider the dubious case of a
code with eight words and a bus with three lines numbered from 0 through 2. Each code word is
communicated by concurrent signals on a particular subset of the lines. Let each subset be identified
by its line numbers. Then there are eight sets

Ppt0,1, 2uq “ tH, t0u, t1u, t2u, t0,1u, t0,2u, t1,2u, t0,1, 2uu

with one for each code word.
Suppose we try to use this code in practice. When the receiver receives no signals, is it because

the sender has communicated the code word associated with H, or because the bus is idle? There
is no resolution compatible with delay insensitivity other than to exclude H from the set of valid
encodings, which already raises the cost per bit above one bus line. However, disallowing empty
encodings does not solve the problem completely. If the receiver receives a signal on line number 1,
should it recognize it as the encoding of the word associated with the subset t1u, or should it allow
for the possibility that the rest of either t0, 1u, t1, 2u or t0, 1, 2u is still in transit? The only resolution
is to restrict the set of valid encodings further. Exclusion of empty encodings is a consequence of
the more general condition that in a delay insensitive code, no encoding may be a proper subset of
any other.

A fancy designation for a set of sets meeting this condition is
as an antichain [130]. For example, if the only valid encodings
were t0,1u, t0,2u, and t1,2u, they would form an antichain and
the uncertainty noted above would be eliminated. Having received
a signal on line number 1, the receiver would be obliged to wait
for exactly one more signal, which would determine whether the
transmitted set was meant to be t0,1u or t1,2u.

As this example suggests, a sufficient way to construct an antichain is to restrict all sets to a
constant cardinality k ą 0. The case of k “ 1 reduces to a 1-hot code. The current example would
be called a 2-of-3 code, because there are two lines used in any encoding on a three line bus. In
general, a code fitting this pattern is called a k-of-n code, or alternatively a constant weight code.

Being the number of subsets of cardinality k of a set of cardinality n, the code size for a k-of-n
code is always the binomial coefficient

ˆ

n
k

˙

“
n!

k!pn ´ kq!

shown diagrammatically in Figure 13.1. This number is maximized for a given n when k is close
to n{2, and maximizing the code size for a given bus width maximizes the rate of communication,
or what is conventionally called the channel capacity (a term to be used only informally for
our purposes). Codes satisfying k “ n{2 when n is even or k P ttn{2u, rn{2su when n is odd
are often called balanced codes [145, 277], but also come under the headings of DC-free and
RDS-minimizing codes as special cases thereof [109, 122].

414 CHAPTER 13. PUTTING THE WORD OUT

2

3 3

4 6 4

5 10 10 5

6 15 20 15 6

7 21 35 35 21 7

8 28 56 70 56 28 8

9 36 84 126 126 84 36 9

10 45 120 210 252 210 120 45 10

11 55 165 330 462 462 330 165 55 11

12 66 220 495 792 924 792 495 220 66 12

13 78 286 715 1287 1716 1716 1287 715 286 78 13

14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14

15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15

16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16

Figure 13.1: k-of-n code sizes for n ranging from 2 to 16 and k ranging from 1 to n ´ 1 are binomial
coefficients, shown here in a segment of Pascal’s triangle.

13.1.5 General delay insensitive codes

A constant cardinality k is a sufficient but not a necessary condition for an antichain, whereas any
antichain whatsoever over a finite set determines a delay insensitive code. It is therefore appropriate
to ask whether better ones than k-of-n codes are possible. That is, can the channel capacity be
optimized by tweaking the code to have fewer than k signals in some of the encodings and more
than k in others provided that the encodings still form an antichain? Other things being equal, this
question is settled by Sperner’s theorem, a standard result in combinatorics, which implies that no
code size greater than that of a balanced k-of-n code is possible for a bus with n lines [130].

Nevertheless, balanced codes might not be the only kind of codes ever worth using. Trading
channel capacity for reduced circuit complexity can be a perfectly valid engineering option in some
circumstances. For example, there are no known algorithms other than look-up tables for doing
arithmetic directly on numbers in optimal k-of-n format, hence the justification for dual rail codes.
Furthermore, “other things” are not equal in the presence of noise on the channel insofar as error
correction may incur cost or performance penalties that affect the right choice of a code. Any error

13.2. ENCODERS 415

correcting code works ultimately by prohibiting the use of certain patterns as valid encodings, so
that an error is identified whenever one of them occurs. This consideration could motivate the
use of a subset of the full balanced code, or even a non-constant weight code depending on the
peculiarities of the error correction mechanism. Finally, a code may have fewer words than possible
for its bus width simply because the number of semantically useful messages an application needs
to communicate turns out to be some number other than a binomial coefficient.

It should be mentioned in passing that balanced error correcting codes pose unique challenges,
and the situation becomes more problematic when delay insensitivity is involved [155, 188, 256,
299]. Spurious events generating more than k signals in a k-of-n code are likely to induce divergence
in the receiver, and events that suppress any signals necessarily cause deadlock. Theoretically, errors
that maintain invariance of the code weight would be amenable to detection and correction at the
level of a DI circuit, but current technologies do not oblige signals to observe any such conservation
principle.

To summarize, the most general class of delay insensitive codes includes codes that are balanced
or unbalanced, with constant weight or not, as well as any arbitrary subset of those, provided their
respective sets of encodings form an antichain. All of them may well have their uses even if some
of them are less efficient. We therefore target this class in the remainder of this chapter for our
decoders, completion detectors, encoders, and transcoders.

13.1.6 Terminology

To discuss them more succinctly henceforth, we model delay insensitive codes as finite non-empty
antichains

c P PpPpNqq

which is to say that they satisfy
@v, w P c. v Ć w

as noted in Section 13.1.4, and we refer to the model c itself as a code. We also refer to the members
w of a code c simply as its code words rather than as the encodings thereof, dropping the distinction
maintained above. In addition, a member i of a code word w is called a symbol when there is a
need to refer to it specifically. The set of symbols

Ť

c associated with a code c is called its alphabet,
and as a matter of convenience we insist on the alphabet of any code c forming a consecutive set
containing zero.

|
Ť

c| “ 1 ` max
Ť

c (13.1)

13.2 Encoders

This section describes encoders because they are the simplest family of circuits in this chapter and a
prerequisite to those that follow. An encoder transforms a stream of 1-hot coded input words into
output words in some arbitrary code, usually with fewer symbols on the output side and therefore a
narrower bus. The design in Figure 13.2, which generalizes to any encoder, never needs more than
a FORK network, a permutation network, and a MERGE network. An enumeration of the code words,
such as

tt0,1, 2u, t0,1, 3u, t0,1, 4u, t0,1, 5u, t0,2, 3u,
t0,2, 4u, t0,2, 5u, t0,3, 4u, t0,3, 5u, t0,4, 5u,
t1,2, 3u, t1,2, 4u, t1,2, 5u, t1,3, 4u, t1,3, 5u,
t1,4, 5u, t2,3, 4u, t2,3, 5u, t2,4, 5u, t3,4, 5uu

416 CHAPTER 13. PUTTING THE WORD OUT

ä
3

ä
3

ä
10

ä
10

0

19

0

5

...
...

Figure 13.2: An example of an encoder interfacing a 20-line 1-hot channel with a 3-of-6 coded
channel has twenty 3-way FORK networks, a permutation network, and six 10-way MERGE networks.

for the example of a 3-of-6 code, should tell us everything necessary to build the encoder, and it
does. If the MERGE networks are numbered from 0 to 5, then each code word w indicates the need
for a FORK with |w| “ 3 outputs, and the members of w identify the destination MERGE numbers of
the FORK outputs via the permutation network. There is probably even a formula for the set

tt0,1, 2,3, 4,5, 6,7,8, 9u, t0,1, 2,3, 10,11, 12,13, 14,15u,
t0,4, 5,6, 10,11,12, 16,17, 18u, t1,4, 7,8, 10,13, 14,16, 17,19u,
t2,5, 7,9, 11,13,15, 16,18, 19u, t3,6, 8,9, 12,14, 15,17, 18,19uu

enumerating the source FORK numbers ranging from 0 to 19 for each 10-way MERGE if such a thing
is of any use.

Another way of thinking about an encoder, possibly more intuitive from a computer architect’s
point of view, is as a read-only memory with a 1-hot address bus in and a data bus out. The number
of memory locations is equal to the number of address lines, and each memory location stores a
code word. The alphabet of the stored code words determines the data bus width, which has a
value of 6 in this example.

This way of thinking about encoders suggests a minor enhancement to make them slightly more
interesting. Just as there is no need for the words in a memory to be mutually distinct, there is
no need to limit the number of memory locations to the number of possible code words. It might
be useful for application specific reasons for an encoder to implement a look-up table containing
duplicate entries. To specify an encoder having this capability, it is best to parameterize a function
EC : PpNq˚ Ñ H by a list

c P PpNq˚

of the code words w P Rpcq in order of their addresses in the encoder (or memory) ECpcq P H. The
code carried by the output data bus is technically Rpcq P PpPpNqq according to the terminology
proposed in Section 13.1.6.

Although a list of code words is more appropriate for an encoder specification than a set because
it makes any desired ordering expressible and enables duplicate entries, the analogous condition to
Equation 13.1 is worth requiring of it nevertheless to simplify the derivations to follow, and doing
so incurs no loss of generality.

|
Ť

Rpcq| “ 1 ` max
Ť

Rpcq (13.2)

That is, we can always assume that the set of data line numbers forms a consecutive sequence
starting with zero, or equivalently that every symbol appears in at least one memory location or
table entry. The alternative would imply a data line that is never used and therefore would be

13.2. ENCODERS 417

better to eliminate from the specification. In practice, the code words Rpcq should normally form an
antichain as well if the encoder is to be useful for anything, but technically only their non-emptiness
is required for the forthcoming constructions to yield valid results.

H R Rpcq

The rest of this section focuses constructing the encoder generating function EC envisioned
above, first limited to the basic encoder depicted in Figure 13.2, and then generalized by two
possible optimizations.

13.2.1 Basic

For the basic encoder, there are |c| multi-way FORK networks connected to |
Ť

Rpcq| multi-way
MERGE networks as shown in Figure 13.2, where c P PpNq˚ is the list of code words. The output
arity of the j-th FORK is simply |c j |, the cardinality of the j-th code word in the list, but the input
arity of the i-th MERGE network must match the number of code words with an i in them. It is
therefore evident from the total number of i’s appearing in all terms throughout c,

|p85 cq � tiu|

also expressible as |a � tiu| with a “ 85 c, for all symbols i in the alphabet Rpaq. A list of the MERGE

input arities in order of their associated output alphabet symbols is expressible as A0 c with the
function A0 : PpNq˚ Ñ N

˚ defined by

A0 “
`

λa.
`

λi. |a � tiu|
˘›

Rpaq0´1˘
˝ 85. (13.3)

The permutation network between the FORK and the MERGE networks in Figure 13.2 should
connect f -th FORK to the m-th MERGE for each m P c f . The position of any terminal on this MERGE

relative to all other MERGE input terminals must be at least

|p85 cq �Rpιmq|

the total number of input terminals due to any MERGE numbered less than m, in addition to an offset

|p85 pc ∣ f qq � tmu|

due to all inputs on the same MERGE connected to any FORK numbered less that f . These conditions
determine a permutation A1 c P N

˚ with A1 : PpNq˚ Ñ N
˚ given by

A1 “ λc. 85
`

λ f .
`

µ λm. |p85 cq �Rpιmq| ` |p85 pc ∣ f qq � tmu|
˘

c f

˘›
ι|c| (13.4)

and therefore a general specification of the encoder EC0 c P H in Figure 13.2 for a function
EC0 : PpNq˚ Ñ H given by

EC0pcq “ pbRq pλ f . FORK | f |q› c
A1 c
ÝÑ pbRq MERGE› A0 c (13.5)

denoted as such in light of a couple of optimizations to follow.

418 CHAPTER 13. PUTTING THE WORD OUT

p85 pq´1 EC0
85 pµ cq› p ä

|
Ť

Rpcq|

ä

|p0|

ä

|p|p|´1|

ä

|c|
...

Figure 13.3: A front optimized encoder EC1pcq uses a list p “ ppπ cq Dpcqq0´1
P PpNq› of equiva-

lence classes of input code word indices inferred from the list c P PpNq˚ of code words, with one
basic encoder input for each class.

13.2.2 Front optimized

One way of improving on the basic encoder generating function EC0 in Equation 13.5 is by taking
advantage of duplicates in the list c of code words. If two words ca “ cb are identical for distinct
indices a ‰ b, then a signal to the a-th input line causes same set of output lines numbered m P ca
to transmit signals as an input signal to the b-th line does. It would make no observable difference
to put the a-th and b-th input lines through a MERGE and then to treat the MERGE output as a single
input to a smaller encoder. Compared to implementing the same specification as a basic encoder,
this optimization would save the cost of at least one front end FORK network, and also would reduce
the input arity by at least one on |ca| of the back end MERGE networks (hence eliminating a MERGE

primitive from each of them).
To gain this advantage, we first construct the lexicographically ordered list of equivalence classes

p “ ppπ cq Dpcqq0´1
P PpNq›

of input word indices such that any two input word indices a, b P Dpcq satisfying ca “ cb are
members of the same class pi for some 0 ď i ă |p| ď |c| by Equation 6.6 (using the list c implicitly
as a function here, with π c short for π λa. ca). In the improved encoder, the i-th of |p| MERGE

networks in parallel has an input arity of |pi | and connects to all lines numbered a P pi from the
external input bus, or reduces to a single wire by Equation 9.19 if there is only one such a P pi .
With pi identifying the set of source input indices to the i-th MERGE for each i, these connections
require an input permutation network described by the permutation

p85 pq´1

between the input bus and the MERGE network to maintain the original order of inputs visible
externally.

The outputs from the MERGE network connect to an internal basic encoder having |p| inputs as
shown in Figure 13.3, but because |p| is less than |c| if there are any duplicates in c, the internal
encoder is specified by an abbreviated list of code words. For consistency with the MERGE network,
the i-th term in the abbreviated list must be a code word ca for some member a P pi , which could
be any member of pi because c is the same for all of them by construction. Evaluating pµ cq› p
therefore yields a list of |p| singleton sets of code words, which can be flattened into a list

85 pµ cq› p

13.2. ENCODERS 419

p85 pq´1EC1

`

µ pp´1 ˝Ψ
ď

sPRppq

s ˆ tsuq
˘›

c ...

ä

|p0|

ä

|p|p|´1|

ä

|
Ť

Rpcq|

ä

|c|

Figure 13.4: A back optimized encoder ECpcq partitions the outputs into equivalence classes p “ A2 c
by Equation 13.6 with a FORK network and only one internal encoder output for each class.

of |p| code words of the required length and order.
These observations lead to the following definition for a function EC1 : PpNq˚ Ñ H taking a list

of code words c P PpNq to a front optimized encoder ECpcq P H.

EC1pcq “
`

λp. p85 pq´1 ¸ C|p|

@

pbRq pλm. MERGE |m|q› p, EC0
85 pµ cq› p

D˘

ppπ cq Dpcqq0´1

13.2.3 Back optimized

Another improvement to the basic encoder is possible by
taking advantage of specifications wherein two or more
symbols always appear together whenever any of them is
present in a code word. This condition implies that an output data line numbered m is equivalent
to some other line n in that a signal transmitted on either of them indicates that one must also
be transmitted on the other. In this case, we achieve the same effect by eliminating the back end
MERGE network associated with one of them (e.g., m) and connecting a FORK to the other one (e.g.,
n) with an output permutation network to route the outputs from the FORK to positions n and m
on the data bus. We can also use this technique on a front optimized encoder instead of a basic
encoder to obtain one that is optimized at both ends.

To describe the FORK network more precisely, let a “
Ť

Rpcq denote the output alphabet
determined by the list of code words c P Ppaq˚ and let o P a denote an output alphabet symbol, so
that the set a ´ tou of alphabet symbols other than o and the list

c �Ppa ´ touq P Ppaq˚

of code words not containing o induces a partition

pπ λo. c �Ppa ´ touqq a P PpPpaqq

whereby any two symbols n, m P a are in the same class only if both are members of exactly the same
words. A lexicographically ordered list p “ A2 c P Ppaq˚ of these equivalence classes is obtained by
a function A2 : PpNq˚ Ñ PpNq˚ defined as

A2 “ λc. pλa. ppπ λo. c �Ppa ´ touqq aq0´1
q
Ť

Rpcq. (13.6)

420 CHAPTER 13. PUTTING THE WORD OUT

Then for each 0 ď i ă |p|, there is a FORK with output arity |pi | in parallel with the others as shown
in Figure 13.4, whose output terminals transmit the signals associated with members of pi . Ordering
the output terminals consecutively with respect to the alphabet requires an output permutation
network from the FORK network described by the permutation

p85 pq´1 P a|a|.

The internal decoder needed by the back optimized form has the same number |c| of inputs as
the original specification, but only |p| ď |c| outputs because of the combined output symbols, so it is
described by a list of |c| words v each derived from the corresponding word w P Rpcq. Each symbol
o P w is a member of a class pi P Rppq, and the corresponding word v in the list parameterizing the
internal encoder is the set of all class indices i P Dppq of any classes containing symbols o P w.

A formal expression of this idea starts with a class s P Rppq determining a set of pairs s ˆ tsu
whose left is a member of the class (that is, a symbol from the alphabet) and whose right is the
whole class. The union of all such sets determines a function

Ψ
ď

sPRppq

s ˆ tsu

by Equation 6.1 mapping any symbol to the class containing it, which determines a function

p´1 ˝Ψ
ď

sPRppq

s ˆ tsu

taking any symbol to the ordinal of its class relative to p. The word v described above comes from
mapping this function over a word w P Rpcq

v “
`

µ pp´1 ˝Ψ
ď

sPRppq

s ˆ tsuq
˘

w

which implies |v| ă |w| whenever any two or more symbols in w belong to the same class s P Rppq.
The list of words parameterizing the internal encoder follows from mapping this function over all
words in the original specification c.

`

µ pp´1 ˝Ψ
ď

sPRppq

s ˆ tsuq
˘›

c

Putting the internal encoder, the FORK network, and the permutation network together based on
the foregoing leads to back optimized encoder ECpcq P H in terms of a function EC : PpNq˚ Ñ H

defined as follows

ECpcq “
`

λp. C|p|

@

EC1

`

µ pp´1 ˝Ψ
ď

sPRppq

s ˆ tsuq
˘›

c, pbRq pλ f . FORK | f |q› p
D

˙ p85 pq´1
˘

A2 c (13.7)

which is also front optimized by the function EC1 defined previously.

13.3 Decoders

This section is concerned with constructing delay insensitive decoders algorithmically based on a
specification c P PpPpNqq for a code as proposed in Section 13.1.6 (N.B., not a list of code words as

13.3. DECODERS 421

1

2

0

t0,1u

t1,2ut0, 2u

Figure 13.5: A TRIA has a schematic symbol resembling a decision wait. Concurrent inputs to any
two sides cause an output from their common corner.

in the case of an encoder). A decoder is defined for our purposes as a circuit that interfaces an input
bus carrying an arbitrary delay insensitive code c with an output bus carrying a 1-hot code such
that each code word received via the input bus results in a distinct code word transmitted via the
output bus (that is, one individual output signal). A decoder for a code c therefore has |

Ť

c| inputs
and |c| outputs. The 1-hot output bus is intuitively appropriate for a decoder because it unpacks the
code to the point of uniquely identifying each word, hence leaving nothing further about it to be
decoded. Decoders are conceptually important because they provide an assurance that the encoded
information is completely recoverable.

An expression DCpcq P H denoting a decoder in terms of a generating function DC : PpPpNqq Ñ H

and a code specification c is the main goal for this section. Other relevant conventions are to associate
the i-th input symbol i P

Ť

c with the i-th input terminal on DCpcq, and the j-th output terminal
on DCpcq with c0´1 j, the j-th code word in lexicographic order. Any other arbitrary terminal
ordering is always achievable in practice through additional permutation networks. We begin
with a solution in Section 13.3.1 that always works when all else fails, and then consider possible
shortcuts applicable to codes of particular forms thereafter (e.g., factorable and partitionable codes).
A general recurrence incorporating any of these methods to construct a decoder for a given code is
proposed in Section 13.3.5.

13.3.1 Basic

To revisit the example of the 2-of-3 decoder in a more concrete form, we would have a code consisting
of three words on a three-symbol alphabet

c “ tt0,1u, t0,2u, t1,2uu

and therefore a decoder with three inputs and three outputs. The first input would be for the symbol
0, the next for the symbol 1, and the last for the symbol 2. The first output would correspond to
the code word t0,1u, this being the first code word in lexicographic order. This output would be
signaled by the decoder whenever it receives the inputs on line 0 and line 1. The next output would
be for the code word t0, 2u, and the last for t1, 2u. A 2-of-3 decoder is called a TRIA in [222], one
of the few decoders anyone has considered it worthwhile to name. The schematic symbol for a TRIA

with terminals labeled according to the current convention is shown in Figure 13.5.

422 CHAPTER 13. PUTTING THE WORD OUT

Figure 13.6: an incorrect implementation of a TRIA

The TRIA suggests an implementation along the lines of Figure 13.6. This implementation is
deliberately incorrect but is worth contemplating momentarily because it motivates a correct one to
follow. Although an output signal emerges from the expected JOIN the first time any two inputs
are applied, a couple of stale input signals forked to the other two are waiting to cause trouble the
next time around (cf. Figure 2.5). If the previously unused input is applied next, then the other
two outputs emerge concurrently, which is bad enough, but if either of the previously used inputs is
applied again, nothing more can be predicted because the whole system diverges.

If only the signals sent to the other two JOIN primitives during the first use could be unsent to
them somehow after they have been detected by the one that needs them, then everything would
be fine. For example, if signals on lines 0 and 1 are received, they are useful to the JOIN associated
with the output t0,1u and not needed by the other two. Unsending a signal is problematic to say
the least, but the next best thing might be to send yet another signal that effectively resets any
device that should not have received it. When signals on lines 0 and 1 arrive, the other two JOIN

primitives are both stuck waiting for one on line 2. If the JOIN associated with t0,1u were to send
both of them a simulated input signal on line 2, then wait for them to get back to normal, and only
then transmit an external acknowledgment, correct decoding would be accomplished.

As far fetched as it may seem, this method of operation is precisely the intuition underlying the
design in Figure 13.7, but filling in the details leads to a few complications. Because every input
to a front end JOIN could be either real or simulated, it feeds through a MERGE driven by signals
originating either locally or externally. The output from each front end JOIN has to feed through a
cascade of two SHUNT and TOGGLE combinations, because it may need to be diverted in either of
two ways. The first signal to propagate through both stages of its respective cascade forks to the
control inputs on two of the others, resetting the corresponding JOIN only after arranging for its
output signal to be diverted via the SHUNT. The diverted signals take the alternate route out of the
SHUNT and TOGGLE combination and synchronize on the appropriate output stage JOIN as required.

Slicing and dicing

The best thing about this TRIA implementation is that it generalizes to a decoder for any delay
insensitive code c P PpPpNqq. The pattern of three horizontal slices evident from Figure 13.7
becomes one slice for each of the |c| code words, with each slice containing a MERGE network, a
multi-way JOIN in front feeding into a SHUNT cascade ending with a FORK, a TOGGLE array, and
another multiway JOIN in the back.

13.3. DECODERS 423

t0,1u0

t0,2u1

t1,2u2

Figure 13.7: A correct TRIA implementation in three slices suggests a general form for any decoder.

The FORK network shown at the left of Figure 13.7 has one input for each of the |
Ť

c| alphabet
symbols regardless of the number of slices, and corresponds roughly to the FORK primitives appearing
in Figure 13.6, but the internal FORK primitives in Fig-
ure 13.7 have no counterpart in Figure 13.6. The latter are
used to broadcast the so called reset signals to the other
slices. Their use is based on a design decision favoring
performance over cost analogous to that of Figure 10.19.
An alternative featuring a sequential communication from
one slice to another as in Figure 10.6 is also possible and
would eliminate the need for the back end JOIN array. The
difference in cost is loosely bound by a constant factor of the cost of the whole decoder, whereas a
difference between linear and logarithmic latency in the alphabet cardinality is at stake. Although it
is not necessarily always the inferior choice, the alternative is not developed further here.

424 CHAPTER 13. PUTTING THE WORD OUT

SHUNT cascade

The rest of this section is about putting a generalization of Figure 13.7 with respect to an arbitrary
code c P PpPpNqq into writing, starting with the SHUNT cascade that appears in the middle of a
typical slice pertaining to a word w P c. Before getting even that far, we have to ascertain the length
of the cascade. If the decoder receives another word v containing some of the same symbols as w,
then the front JOIN associated with the slice for w receives their common symbols as well and needs
resetting. Each reset signal from another slice connects to the control input on one SHUNT in the
cascade, so there must be one for each word v P c that intersects w. Letting t “ pI0 cq w denote the
lexicographically ordered list of all other words in c intersecting w according to a function

I0 : PpPpNqq Ñ pPpNq Ñ PpNq˚q

defined in the obvious way by

I0 “ λc. λw. pc ´PpN´ wq ´ twuq0´1

we have a cascade in s “ |t| stages given already by the expression

UppLxSHUNT, TOGGLEy æ 1q
s
q ç 1

where the first output from each SHUNT connects to the first input of the next. The first input to
the cascade is the first input to the first SHUNT, and the next s are the reset inputs to the slice. The
output from the last SHUNT is rolled from the last position to the top so that the TOGGLE outputs can
be separated into two buses of s lines each in I1 s with I1 : N Ñ H defined by

I1 “ λs. UppLxSHUNT, TOGGLEy æ 1q
s
q ç 1 ˙ ι2s � s æ 1

before the SHUNT output rolls back to the bottom.

MERGE network

The next thing to organize is the MERGE network shown at the left of Figure 13.7 interfacing the
TOGGLE outputs with the front JOIN in each slice. The first s outputs from the cascade I1 s come
from the first TOGGLE output on each stage and need to be connected to the MERGE inputs. There is
in general one multi-way MERGE in the slice for each alphabet symbol in w, which puts them not
necessarily into one to one correspondence with the stages of the cascade despite being that way in
Figure 13.7. More precisely, the output from the j-th TOGGLE in the cascade should be connected to
the k-th MERGE for every symbol k P w ´ t j (via a multi-way FORK of the appropriate output arity),
where t j following the discussion above is the lexicographically j-th word in c that intersects w. In
this way, only the additional inputs to the slice that have not already been received as an unwanted
side effect of receiving the word v “ t j are fed to the JOIN to reset it, as required.

The easy way to implement most of the interface between the TOGGLE and MERGE networks
is to recognize that a block consisting of a FORK network connecting a 1-hot channel to a MERGE

network fits the pattern of an encoder according to Section 13.2. The list of code words specifying
the encoder is something like

pλv. w ´ vq› t

because each word w ´ v enumerates the set of destinations in the MERGE network for signals to be
sent when the receipt of a word v mandates a reset of the slice for w. The list of words is not exactly

13.3. DECODERS 425

as above because its range might not satisfy Equation 13.1, a condition assumed in the derivation of
Equation 13.7, but this issue is resolved by an encoder EC e P H for a list of words

e “ pλv. pµ pw ´
Ť

Rptqq0q pw ´ vqq› t P PpNq˚ (13.8)

whose alphabet a “
Ť

Rpeq renumbers the symbols in w that are not members of any v P Rptq while
preserving their order. If this specification enables any front or back optimizations by Equation 13.7,
so much the better.

In addition to the MERGE network built into the encoder, another layer of MERGE inputs needs to
be exposed to the FORK network carrying the external inputs shown at the left of Figure 13.7. If the
encoder alphabet a has the same cardinality as the word w, then an array of |a| “ |w| additional
MERGE primitives each having one input connected to an encoder output and the other left exposed
is sufficient. However, the word w could also contain symbols not common to any other words v,
which would mean |w| exceeds |a| and some of the inputs to the JOIN come directly from the front
end FORK network without going through a MERGE. To cover both cases, a block

F|a|xEC e,RpMERGE|a|è1
2, I|w´a|qy

has s inputs first to interface with the TOGGLE array, followed by |w| inputs to a combination of
|a| half-connected MERGE primitives and |w ´ a| extra wires to make up the total. It would be
helpful for these last |w| inputs to be ordered consistently with the symbols in w corresponding to
them whether or not a given symbol appears in any other words v, which is possible by an input
permutation network connected to the bottom |w| inputs, as in

I|w| p
Ýã F|a|xEC e,RpMERGE|a|è1

2, I|w´a|qy

for a permutation p “
`

85 xa, w ´ ay
˘´1

, which we might summarize as pI2 wq e P H for

I2 : PpNq Ñ pPpNq˚ Ñ Hq

defined by

I2 “ λw. λe.
`

λa. pλp. I|w| p
Ýã F|a|xEC e,RpMERGE|a|è1

2, I|w´a|qyq
`

85 xa, w ´ ay
˘´1˘ Ť

Rpeq

or more conveniently as I3pw, tq P H based on Equation 13.8 and a function

I3 : pPpNq ˆPpNq˚q Ñ H

defined by
I3 “ λpw, tq. pI2 wq pλv. pµ pw ´

Ť

Rptqq0q pw ´ vqq› t

where it should be noted that its first |w| inputs on the block I3pw, tq are to the exposed MERGE

network or extra |w ´ a| bus lines and the next s “ |t| inputs are for encoder. There are |w| outputs
in total, which come from the extra bus mixed with the MERGE network outputs driven by the encoder.

Extra toppings

If we were to assemble the block DsxI1 s, I3pw, tqy containing the SHUNT cascade I1 s and the MERGE

network I3pw, tq for a word w P c and a list t “ pI0 cq w of words in c intersecting w, it would have

426 CHAPTER 13. PUTTING THE WORD OUT

the first s “ |t| outputs from the TOGGLE array in the SHUNT cascade connected to the s inputs on
the encoder in the MERGE network as it should, bringing together most of the slice pertaining to the
word w, but it would still need to be topped off with a JOIN in the front and a FORK in the back.
There is also a back end JOIN visible in Figure 13.7 for each slice, which we defer for the moment.
Attaching a multi-way JOIN to the MERGE network is straightforward in an expression

L|w|xDsxI1 s, I3pw, tqy, JOIN |w|y

for a block with the JOIN output last and the first input to the first SHUNT first, so that a roll and one
more connection from the JOIN to the SHUNT

ZpL|w|xDsxI1 s, I3pw, tqy, JOIN |w|y ê 1q

finishes everything but the FORK. The FORK is driven by the last and only remaining exposed output
from the SHUNT cascade, which has become the first output from the block above, and the FORK

output arity not coincidentally is also s, because it is responsible for broadcasting a reset signal to
every slice represented in t. A block like

ZRpZpL|w|xDsxI1 s, I3pw, tqy, JOIN |w|y ê 1q, FORK sq

would conclude the construction with s reset inputs followed by |w| MERGE network inputs, and
s exposed TOGGLE outputs followed by s FORK outputs. The hitherto unused TOGGLE outputs are
destined for the back end JOIN network yet to be considered as shown in Figure 13.7. The whole
slice except for the back end JOIN therefore can be abbreviated hereafter as I4pc, wq in terms of a
function

I4 “ λpc, wq. pλt. pλs. ZRpZpL|w|xDsxI1 s, I3pw, tqy, JOIN |w|y ê 1q, FORK sqq |t|q pI0 cq w.

Stacking the slices

The decoder requires one slice of the form I4pc, wq for each code word w P c, with the reset outputs
from each slice connected to the reset inputs of some subset of other slices. These connections can
be specified next.

The number of reset inputs and outputs on each slice is not constant but varies with the word w
in terms used above as s “ |t| “ |pI0 cq w|, so a simple approach to separating the reset terminals
from the rest of the terminals on the slices is to roll them off individually in a block I5 c given by a
function

I5 “ λc.
`

bZI λpw, zq. pλs. RpI4pc, wq ç s, zq Ú sq |pI0 cq w|
˘

c0´1

defined as a fold over the lexicographically ordered list c0´1 of code words. With the reset inputs
and outputs on each slice rolled to the bottom of the parallel combination of itself with its successors
in the list, the main effect on the result is to have all of the MERGE network inputs to all slices
preceding all of the reset inputs, and all of the TOGGLE outputs from all slices preceding all of the
reset outputs, along with a few other effects that are important to note.

• The first inputs to this block form |c| buses, one for each slice, with the j-th bus connected to
the MERGE network on the lexicographically j-th slice as one might expect.

• The rest of the inputs form |c| additional buses, but the j-th of these buses connects to the
remaining exposed SHUNT inputs (i.e., the so called reset inputs) on the j-th slice in reverse
lexicographic order. That is, the last input bus leads to the first slice.

13.3. DECODERS 427

• Within each bus of either group, the order of the lines matters, with each line required to be
driven by a specific source as detailed shortly. The order of the lines within each bus of the
latter group relative to other lines on the same bus is not reversed.

• The organization of the output side is analogous, with |c| groups of TOGGLE outputs followed
by |c| groups of FORK outputs (the so called reset outputs). The first group of outputs is in
order of the slices but in the second, the last group is associated with the first slice.

To connect the FORK outputs to the SHUNT inputs on the block I5 c of slices, we restrict attention
to these terminals for the moment and disregard the MERGE and TOGGLE terminals. The FORK

outputs and SHUNT inputs are each divided into |c| groups such that the j-th group pertains to the
slice induced by the word w “ d j , where

d “ r c0´1

is the list of code words in reverse lexicographic order as explained above and r “ bε λph, zq. z q xhy

is a list reversal function improvised for this occasion. The output terminals on the slice associated
with the word w should be connected to input terminals on slices associated with words in the list
i w for i “ I0 c. The range of terminals on the slice due to a typical word v in this reversed list of
buses begins at an offset

|85 pd ∣ d´1 vq|

with pi vq´1 w being the specific position within this range allotted to the connection from the slice
induced by w. These conditions suffice to determine a permutation pI6 I0q d according to a function

I6 : pPpPpNqq Ñ pPpNq Ñ PpNq˚qq Ñ pPpNq˚ Ñ N
˚q

defined by

I6 “ λi. λd. 85 pλw. pλv. |85 pd ∣ d´1 vq| ` pi vq´1 wq› i wq› d

that could be used to specify a permutation network interfacing one group of terminals to the other
if they were on separate blocks.

The groups of terminals are actually both on the same block I5 c in the last positions, of course,
requiring something more along the lines of a feedback path

Z|p|pI5 c ˙ p ç |p|q

whereby the FORK outputs are first permuted by p “ r pI6 iq d and then rolled from the bottom to
the top in preparation for being connected to the SHUNT inputs at the bottom. A further reversal of
the permutation by r as shown is needed to preempt the effect of Z|p| reversing the order of the
connections. Ordinarily it would also be necessary to invert a permutation pI6 iq d if it has been
derived as a map from sources to destinations and is repurposed as an output permutation (which
maps destinations to sources), but not here because pI6 iq d is its own inverse. In any case, let the
block overall be denoted I7 c in terms of a function

I7 “ λc. pλp. Z|p|pI5 c ˙ p ç |p|qq
`

λr. r pI6 I0 cq r c0´1˘ bε λph, zq. z q xhy.

428 CHAPTER 13. PUTTING THE WORD OUT

Combining form

The block I7 c includes everything needed for a decoder of a code c except the front FORK network
and the back JOIN network. To specify either of these, we envision the slices numbered from 0 to
|c| ´ 1 and seek the destination or source slice numbers of each FORK or JOIN. With regard to the
front end, there should be one multi-way FORK for each symbol a P

Ť

c in the alphabet of the code c,
where the a-th FORK connects to each slice whose word has an a in it, which would be any member
of

c ´PpN´ tauq P PpPpNqq

implying a set of slice numbers for the a-th FORK

pµ c0q pc ´PpN´ tauqq P PpNq

and a list of these sets in alphabetical order

i “ pµ c0q› pλa. pc ´PpN´ tauqqq p
Ť

cq0´1
P PpNq˚

whereby the whole front end FORK network could be expressed

pbRq pλ f . FORK | f |q› i

and connected to the slices by a permutation network as in

pbRq
`

λ f . FORK | f |
˘›

i
A1 i
ÝÑ I7 c

using the permutation A1 i already defined by Equation 13.4 because it fits the same pattern as the
front end FORK network in a basic encoder with a list i of sets of MERGE network ordinals. As for the
back end, the TOGGLE outputs from a slice associated with a word w must be connected to the back
multi-way JOIN in any other slice whose word intersects w, which would be those whose words are
in the set

c ´PpN´ wq ´ twu P PpPpNqq

implying the analogous list of sets of slice numbers

o “ pµ c0q› pλw. c ´PpN´ wq ´ twuq› c0´1
P PpNq˚

for a whole back end JOIN› A0 o by Equation 13.3 based on pA0 oq j being defined as the number of
terms in o containing j. Connecting the slices to the back end is possible by a permutation network
using a permutation A1 o by Equation 13.4 as in

pbRq
`

λ f . FORK | f |
˘›

i
A1 i
ÝÑ I7 c

A1 o
ÝÑ pbRq JOIN› A0 o

because the interface between the TOGGLE outputs and the JOIN inputs also fits a basic encoder
pattern. An expression for xi, oy “ I8 c follows from a definition of I8 : PpPpNqq Ñ PpNq›2 as

I8 “ λc. pµ c0q››
@

pλa. c ´PpN´ tauqq› p
Ť

cq0´1, pλw. c ´PpN´ wq ´ twuq› c0´1D

allowing the basic decoder combining form Ωi : PpPpNqq Ñ H to be defined as follows.

Ωipcq “
`

λxi, oy. pbRq
`

λ f . FORK | f |
˘›

i
A1 i
ÝÑ I7 c

A1 o
ÝÑ pbRq JOIN› A0 o

˘

I8 c

This result enables the simplest decoder generating function DC : PpPpNqq Ñ H to be defined as

DCpcq “ Ωi c (13.9)

by readers who have had enough of decoders already, but more efficient decoders discussed in the
rest of this section may interest the more intrepid.

13.3. DECODERS 429

p85 aq´1 DC a ä

|c|

ä

|a0|

ä

|a|a|´1|

ä

|
Ť

c|
...

Figure 13.8: a decoder Ω jpc,DC aq for a joinable code c with decomposition a “ f j c

13.3.2 Joinable

An improvement on the basic decoder analogous to the front optimized encoder is applicable
whenever two symbols always appear together in any code word where either appears, and never
separately. In that case, the input lines associated with the two symbols can be fed into a JOIN, and
the output of the JOIN fed to the decoder of a reduced code having one less symbol in its alphabet.

A decoder of this form is determined by a list A3 c P PpNq˚ of equivalence classes of members
of the alphabet

Ť

c of a code c according to a function A3 : PpPpNqq Ñ PpNq˚ defined by

A3 “ λc. ppπ λi. c ´PpN´ tiuqq
Ť

cq0´1

based on Equation 6.6, which is to say a symbol i is equivalent to any other symbol present in the
same set of words as i. A decomposition function f j : PpPpNqq Ñ PpPpNqq taking a code c to a
possibly reduced code f j c is obtained in terms of A3 c by

f j “ λc. pλa. pµ µ pa´1 ˝Ψ
ď

sPRpaq

s ˆ tsuqq cq A3 c

which transforms each symbol in each word in c to its equivalence class ordinal with respect to the
code A3 c by similar reasoning to that of Section 13.2.3.

To complete the construction, a combining formΩ j : PpPpNqqˆH Ñ H takes a code c P PpPpNqq

and a decoder x P H for the reduced code f j c to a decoder Ω jpc, xq P H of the code c as in
Figure 13.8. For a list of input equivalences classes a “ A3 c, each JOIN network in the front end

pbRq pλ j. JOIN | j|q› a

has an input arity matching the cardinality | j| of the corresponding class, and with one for each
class, it connects to the inner decoder x by a bus of width |a|.

C|a|xpbRq
`

λ j. JOIN | j|
˘›

a, xy

An input permutation network given by p85 aq´1 connects the input lines numbered according to the
original code c with their destinations on the front end JOIN network, for a result overall as shown.

Ω jpc, xq “
`

λa. p85 aq´1 ¸ C|a|xpbRq
`

λ j. JOIN | j|
˘›

a, xy
˘

A3 c

Together the decomposition function f j and combining form Ω j feature in a recursively defined
generalization of Equation 13.9 to be discussed in Section 13.3.5.

430 CHAPTER 13. PUTTING THE WORD OUT

1

2

0

3 4

Figure 13.9: A decoder for tt0,1,3u, t0,2,3u, t1,2,3u, t0,1,4u, t0,2,4u, t1,2,4uu incorporates a
decision wait.

13.3.3 Factorable

Other improvements on the basic decoder than the one in Section 13.3.2 may be applicable if we
pursue them diligently. For example, if a code c had an alphabet t0,1, 2,3u and code words

c “ tt0,2u, t0,3u, t1,2u, t1,3uu (13.10)

then a decoder Ωi c would resemble Figure 13.7 with four slices instead of three and would work
perfectly well, but a moment’s reflection prompts the realization that a 2-by-2 decision wait would
do the same job at a lower cost. If the code did not include the word t1,3u, then an even better
solution would be available in the way of an LJOIN (Figure 9.13).

The previous examples may seem contrived because a decision wait probably would have been a
more obvious solution than a decoder in any practical applications giving rise to them, but sometimes
an optimization exploiting this relationship might not be so obvious. For example, the code

c “ tt0,1, 3u, t0,2, 3u, t1,2, 3u, t0,1, 4u, t0,2,4u, t1,2, 4uu

can not be decoded by a decision wait alone, but can be decoded by a combination of a TRIA and a
3-by-2 decision wait as shown in Figure 13.9. It boggles the mind to contemplate spotting such a
pattern when it involves higher dimensional or sparse decision waits. What can be done to ensure
never missing this trick?

An awkward way of approaching this question is to reframe it as the question of whether there
are two antichains f , g P PpPpNqq with disjoint alphabets such that every word w P c in a code
c P PpPpNqq is expressible as a union w “ u Y v for some pu, vq P f ˆ g. If so, then c is a factorable
code with factors f and g. The problem of implementing the decoder would then reduce to that
of implementing a separate decoder for each factor, which can be done because the factors are
antichains, and feeding the outputs from these decoders into a decision wait whose dimensionality
matches the number of factors (e.g., a planar decision wait if there are two factors), with one decoder
output bus connected to each dimensional axis on the decision wait.

A less awkward way of approaching this question, which occupies the rest of this section, starts
with a decomposition function

f f : PpPpNqq Ñ PpPpNqq˚

taking a code c P PpPpNqq to a list f f c P PpPpNqq˚ of its factors, however many factors there are,
preferably obtained more easily than by an exhaustive search. Following that, a combining form

Ω f : PpPpNqq ˆH
˚ Ñ H

13.3. DECODERS 431

taking a factorable code c P PpPpNqq and a list x P H
˚ of the decoders of its factors to a decoder

Ω f pc, xq P H for c conjures up the implied multidimensional sparse decision wait and permutation
networks necessary to combine the individual decoders x . Together these two functions determine
yet another case in a recurrence defining a general decoder to come in Section 13.3.5.

Decomposition function

To follow up specifically on the matter of a decomposition function, any factor f of a code c is fully
determined by its alphabet s “

Ť

f , because f can be reconstructed from just the alphabet and the
code as f “ pµ λw. w X sq c given that all factors must have mutually disjoint alphabets. Factoring a
code c is therefore equivalent to finding the right partition on its alphabet

Ť

c. Furthermore, any
code c has at least one factor, namely itself, so there is always a starting point for finding more.
If we know that a Ă Pp

Ť

cq is a set of alphabets of the factors of a code, the next step should be
to inspect each alphabet s P a to ascertain whether the corresponding factor can be decomposed
further. Naively we could test all 2|s| subsets of s for being the alphabet of a factor, but if removing
any one symbol from s disqualifies it, there is no need to look further, so a restriction to the |s|
subsets u Ă s with |u| “ |s| ´ 1 is enough for one step. These subsets u are expressible formally as
members of the set

t “ pµ λi. s ´ tiuq s.

To be the alphabet of a factor, u must intersect every word w P c so we write

v “ tu P t | @w P c. u X w ‰ Hu “
ď

u P pµλi. s´tiuq s

pλk. xH, tuuykq δ
cXPpN´uq

H

for the set of all alphabets of smaller factors than that of s inferred from t. If v is empty, then the
alphabet s should be retained as representing a factor that can not be decomposed further, but
otherwise we should disregard it henceforth and examine the expanded set of alphabets

ď

s P a

pλv. xv, tsuy
δ

H
v

q
ď

u P pµλi. s´tiuq s

pλk. xH, tuuykq δ
cXPpN´uq

H

at our next step. Let A4 c P PpPp
Ť

cqq denote the set of all smallest alphabets of factors of c thus
obtained in any number of steps with A4 : PpPpNqq Ñ PpPpNqq defined by

A4 “ λc.
`

λa.
ď

s P a

pλv. xv, tsuy
δ

H
v

q
ď

u P pµλi. s´tiuq s

pλk. xH, tuuykq δ
cXPpN´uq

H

˘∞
Ť

c
(

.

Obtaining the set a “ A4 c of alphabets s as above allows some efficiencies in exchange for an
inexact solution insofar as the alphabets s are not guaranteed disjoint. To compensate, an alphabet
s P a extended to encompass all other members of a that intersect it as well as any that intersect
those is obtained partly by the percolation

pρ λr. a ´PpN´ rqq tsu

based on Equation 6.4 and merged into the single alphabet

s1 “ pλp.
Ť

pq pρ λr. a ´PpN´ rqq tsu

432 CHAPTER 13. PUTTING THE WORD OUT

x0

x|x|´1

MSDW e ä

|c|

ä

|d0|

ä

|d|d|´1|

ä

|
Ť

d0|

ä

|
Ť

d|d|´1|

...pä

|
Ť

c|
q ä

|c|

Figure 13.10: A decomposition d “ f f c of a factorable code c determines an input permutation

network p “ p85 pλ f .
Ť

f q› dq´1, decision wait coordinates e “ pµ λw. pλi. d0
i pw X

Ť

diqq› ι|d|q c,

and an output permutation q “ pλb. c0
Ť

iPDpbq d0
i

´1 biq
› e0´1 in the decoder Ω f pc, xq.

suggesting an expression for a set of mutually disjoint alphabets derived from a as

pµ λs. pλp.
Ť

pq pρ λr. a ´PpN´ rqq tsuq a.

This set is suitable for inferring the factors of c as described above by pA5 cq A4 c with

A5 : PpPpNqq Ñ pPpPpNqq Ñ PpPpPpNqqqq

defined by

A5 “ λc. λa. pµ λs1. pµ λw. w X s1q cq pµ λs. pλp.
Ť

pq pρ λr. a ´PpN´ rqq tsuq a.

The set f “ pA5 cq A4 c of factors of c always satisfies
ŤŤ

f “
Ť

c as it must if c is an antichain,
meaning that no symbols in the alphabet of the code are omitted. In lieu of a proof of this
proposition presumably obliging a formally verified implementation of the algorithm to go with it, a
decomposition function taking the easy way out incorporates a sanity check

f f “ λc.
`

λ f .
`

λa.
`

λi.
@

ε, f 0´1D

i

˘

δ
Ť

a
Ť

c

˘
Ť

f
˘

pA5 cq A4 c (13.11)

to yield the lexicographically ordered list of factors only if it is true.

Combining form

The generalization of Figure 13.9 to any factorable code c includes any number of decoders x P H
˚

connected in parallel to a multidimensional sparse decision wait as shown in Figure 13.10, along
with input and output permutation networks to make the whole combination behaviorally equivalent
to a decoder of c. For this construction to be described in terms of the combining form Ω f pc, xq

mentioned previously, each term x i must be a decoder for the i-th factor di where d “ f f c is the
decomposition defined by Equation 13.11.

13.3. DECODERS 433

Input permutation network It is easy to dispense with the input permutation network first by
noting that the decoder x i of the i-th factor di is allocated a subset s “

Ť

di Ă
Ť

c of the externally
visible inputs for 0 ď i ă |d|. A list of the input alphabet symbols in

Ť

c in order of the decoders
receiving them and in numerical order relative to their neighbors on the same decoder

85 pλ f .
Ť

f q› d

specifies the externally visible bus line to be connected to each terminal in the order they appear
internally, hence the inverse of the permutation describing the input permutation network. Along
with the array of decoders pbRq x , we have enough to make a start at defining the combining form

Ω f pc, xq “ pλd. p85 pλ f .
Ť

f q› dq´1 ¸ C
|85 d|

xpbRq x , :Ω f pc, dqyq f f c (13.12)

in terms of a block :Ω f pc, dq P H yet to be determined that includes the sparse decision wait and the
output permutation network.

Sparse decision wait With regard to the sparse decision wait, the requirement for the decoder to
emit exactly one signal along a 1-hot channel for any chosen input word w P c implies a bijective
correspondence between members of the code c and members of a set e P PpN˚q specifying the
sparse decision wait coordinates in the manner described at length in Chapter 11. This observation
combined with the plan of one dimension for each factor suggests sparse decision wait coordinates
e based on an expression of some form for a typical point b P e of length |b| “ |d| in terms of a
typical word w P c. Furthermore, because the output bus from the i-th decoder is connected to the
i-th dimensional axis of the decision wait, bi must range from 0 to |di | ´ 1.

If these conditions do not yet give it away, the same intuition applies to a coordinate bi of a
point b P e as in the root block of a dendriform sparse decision wait with the decoders x taking the
place of the leaf blocks. That is, its value should match the number of the output terminal that emits
a signal on the i-th decoder whenever the word w associated with b is received on the main input
bus. Following from the discussion of the input permutation network, the i-th decoder receives only
the subset

w X
Ť

di

of symbols in the word w, and therefore emits a signal on the output terminal numbered

bi “ d0
i pw X

Ť

diq (13.13)

whereby the whole point b P e follows immediately as

b “ pλi. d0
i pw X

Ť

diqq› ι|d|

and the complete sparse decision wait specification as

e “ pµ λw. pλi. d0
i pw X

Ť

diqq› ι|d|q c.

Output permutation network Arranging for the n-th visible output bus line to transmit a signal
whenever the lexicographically n-th input word w P c is received as an input generally requires an
output permutation network to untangle it. Looking backwards from the output side, we see that

434 CHAPTER 13. PUTTING THE WORD OUT

the m-th output terminal on the sparse decision wait MSDW e emits a signal when the word w P c
corresponding to the lexicographically m-th point

b “ pe0´1
qm

in e is received as an input. Each coordinate bi of the point b accounts for a subset of the corre-
sponding word w per Equation 13.13, so putting together the subsets due to all coordinates in the
point should reconstruct the whole input word

w “
ď

iPDpbq

d0
i

´1 bi

whose ordinal relative to the rest of the code words in c

n “ c0 w “ pλb. c0
ď

iPDpbq

d0
i

´1 biq pe0´1
qm

is the position where we would like the signal to appear on the output bus, not the m-th where
we actually see it. A list of these desired positions ordered lexicographically by the points in e and
hence by the output terminals on MSDW e

pλb. c0
ď

iPDpbq

d0
i

´1 biq
› e0´1

determines an output permutation network for the multidimensional sparse decision wait

MSDW e ˙ ppλb. c0
ď

iPDpbq

d0
i

´1 biq
› e0´1

q´1

that puts the signal acknowledging each word w in the position where it belongs when the list is
inverted to map word ordinals n to point ordinals m. Consequently the term :Ω f pc, dq representing
the whole decision wait in Equation 13.12 with the permutation network built in is given by

:Ω f pc, dq “
`

λe. MSDW e ˙ ppλb. c0
ď

iPDpbq

d0
i

´1 biq
› e0´1

q´1
˘

pµ λw. pλi. d0
i pw X

Ť

diqq› ι|d|q c

to complete the definition of the factorable decoder combining form.

13.3.4 Partitionable

A less costly and simpler way of decomposing a code than factoring
it is to split it into codes that allow decoding in parallel by multiple
decoders with only a front end and a back end permutation network
to combine them (i.e., with no need for a decision wait). This
decomposition applies to any partitionable code, which is any
code c P PpPpNqq expressible as the union c “ d Y e of disjoint
non-empty subsets d and e with disjoint alphabets. Rare but not
unknown, a 1-hot code is a ubiquitous example of a partitionable
code.

13.3. DECODERS 435

x0

x|x|´1

ä

|d0|

ä

|d|d|´1|

ä

|
Ť

d0|

ä

|
Ť

d|d|´1|

...pä

|
Ť

c|
q ä

|c|

Figure 13.11: A partitionable combination Ωkpc, xq determined by a decomposition d “ fk c has an
input permutation p “ p85 pλ f .

Ť

f q› dq´1 and an output permutation q “ pc0› 85 dq´1.

Decoding a partitionable code c by an ensemble of basic decoders offers no advantage over
decoding the whole code by a single basic decoder Ωi c. However, some advantage may accrue if
some subset is factorable or joinable and decoded accordingly. It is worthwhile for this reason to
seek a decomposition function and a corresponding combining form for partitionable codes. That
is, partitioning them may enable other optimizations in the context of a hierarchically constructed
decoder as in Section 13.3.5.

Decomposition function

A decomposition function fk : PpPpNqq Ñ PpPpNqq˚ needs to take a code c P PpPpNqq to a list
of mutually disjoint subsets fk c P Ppcq˚ with mutually disjoint alphabets such that |fk c| is greater
than 1 whenever the code c is partitionable. A lazy way to express the function is to envision growing
an equivalence class from each word w P c by percolating it outward to anything it intersects until it
can grow no further because there are no other intersecting words.

pρ λv. c ´PpN´ vqq twu P Ppcq

Operating similarly on every word w P c yields the full partition

pµ λw. pρ λv. c ´PpN´ vqq twuq c P PpPpcqq

with any distinct words that belong together growing into the same class. Disregarding the obviously
more efficient procedure for computing this result that springs to mind (for no other reason than
brevity in exposition), we capture the lexicographically ordered list of classes formally as follows.

fk “ λc. ppµ λw. pρ λv. c ´PpN´ vqq twuq cq0´1 (13.14)

Combining form

The method for combining the decoders x P H
˚ of the subsets fk c P Ppcq˚ of a partitionable

code c P PpPpNqq into a decoder Ωkpc, xq P H for the whole code c is depicted in Figure 13.11.
As a parallel combination pbRq x of the given decoders with permutation networks, it incurs no
additional cost.

436 CHAPTER 13. PUTTING THE WORD OUT

The input permutation network is completely analogous to that of a factorable combination
because the input alphabets of the subsets are mutually disjoint. Based on the discussion of
Equation 13.12, we can write

p85 pλ f .
Ť

f q› dq´1

for the input permutation induced by a decomposition d “ fk c without further comment.
As for the output permutation, it must route the sequence of output terminals on the array of

decoders pbRq x , whose m-th terminal transmits a signal when the code word

w “ p85 dqm

is received, to an externally visible output bus whose n-th line transmits a signal when w is received,
where n “ c0 w is the lexicographic ordinal of w, for any word w P c. The list

c0› 85 d

enumerates the lexicographic ordinals n of all words w P c ordered by the terminal numbers m
acknowledging them, so its inverse maps the desired observable bus line number n to its source
terminal number m on the array and makes it useful as an output permutation.

These two permutations suffice to determine the combining form Ωk : PpPpNqq ˆH
˚ Ñ H for

partitionable codes as follows.

Ωkpc, xq “
`

λd. p85 pλ f .
Ť

f q› dq´1 ¸ pbRq x ˙ pc0› 85 dq´1
˘

fk c (13.15)

13.3.5 General

A smarter alternative decoder generating function to that of Equation 13.9 taking advantage of the
optimizations developed subsequently in Section 13.3.2 through Section 13.3.4 is now at hand.
With the help of a local renumbering function 9η : PpPpNqq˚ Ñ PpPpNqq˚ defined as

9η“ pλd. µ µ p
Ť

dq0q› (13.16)

transforming any factor or subset d obtained by Equation 13.11 or Equation 13.14 to a corresponding
code satisfying Equation 13.1 (cf. Equation 11.4) we have the following recurrence.

DCpcq “

$

’

’

’

’

&

’

’

’

’

%

ZI if c “ H

Ωkpc,DC› 9η fk cq if |fk c| ą 1
Ω jpc,DC f j cq if |fk c| “ 1 ^ |

Ť

f j c| ă |
Ť

c|

Ω f pc,DC› 9η f f cq if |fk c| “ 1 ^ |
Ť

f j c| “ |
Ť

c| ^ |f f c| ą 1
Ωi c otherwise

(13.17)

Whether it makes sense to call the empty set c “ H a code, there is no harm designating ZI as its
decoder, the circuit having no inputs or outputs, thus covering a case that would be undefined in
the alternative. Nor is there a need for any great variety of decomposition strategies, because the
one implicit in this recurrence is generally applicable. That is, the partitionable decomposition is
always preferable when it applies because it incurs no cost. The joinable decomposition is the next
best choice, followed by the factorable, with the basic decomposition only as a last resort.

13.4. COMPLETION DETECTORS 437

13.4 Completion detectors

Another thing we might want to do with a delay insensitive code besides decoding it is to build a
completion detector for it. Completion detectors for 1-hot codes are mentioned in Chapter 10 and
a completion detector for a 2-bit dual rail code is used as an example in Chapter 3, but completion
detectors are applicable to any delay insensitive code. A completion detector for a code c P PpPpNqq

is similar to its decoder in that they both have |
Ť

c| inputs, but whereas a decoder has a number of
outputs equal to the code size |c|, a completion detector has only one output regardless of the code
size. An output signal from a completion detector indicates that a code word has been received,
but does not identify the code word. Completion detectors are useful in various contexts, but our
present interest in them is as a prerequisite to the design of transcoder circuits in Section 13.5.

Based on this description, it may seem trivial to
construct a completion detector for any code c by con-
necting a decoder DCpcq given by Equation 13.17 to
a 1-hot completion detector MERGE |c| in a cascade
C|c|xDCpcq,MERGE |c|y. However, a completion detector
in this form is often suboptimal and is appropriate only
when there is no better alternative. A completion detector
for any constant weight code can be implemented at a
lower cost as a majority gate such as the one developed in
Chapter 2. Furthermore, even if a code is not a constant
weight code, it may have factors or subsets that are, allowing at least partial use of majority gates in
its completion detector if we make a point of constructing it hierarchically.

To have efficient completion detectors for arbitrary codes, we need to generalize the 2-of-3
majority gate developed in Chapter 2 to a k-of-n majority gate for arbitrary k, n P N with 0 ă k ď n,
but as Figure 2.10 shows, the majority gate depends on a sequencer, which must also be generalized
to any size. Section 13.4.1 therefore attends to sequencers, followed by Section 13.4.2 on majority
gates, before a recursively defined completion detector is proposed in Section 13.4.3.

13.4.1 Sequencers

It is not much of a stretch to upgrade the manually designed 2-way sequencer shown in Figure 9.11 to
the n-way version shown in Figure 13.12 based on the intervening development of multi-way arbiters
and decision waits. Following Equation 9.17, the central block becomes a parallel combination of n
MERGE primitives, and n-way arbiter, and a parallel combination of n TOGGLE primitives cascaded
together.

CnxMERGEnè1
2, ARB n, TOGGLEné1

2y

This block has 2n inputs to the MERGE network and 2n outputs from the TOGGLE network, each
segregated into two buses of width n. The rest of the components are in a block of the form

DxPUSH,DWpn, 1qy

with n ` 1 inputs and n outputs, whose first input is to the PUSH, and whose last n inputs are to the
decision wait rows. To connect the dotted outputs from the TOGGLE network to the decision wait
rows in the reverse order, we write

ZnRpCnxMERGEnè1
2, ARB n, TOGGLEné1

2y,DxPUSH,DWpn, 1qyq

438 CHAPTER 13. PUTTING THE WORD OUT

...

...
...

ä
n

ä
n

“

Figure 13.12: An n-way sequencer is made from an n-by-1 decision wait, an n-way arbiter, n MERGE

primitives, n TOGGLE primitives, and a PUSH. (cf. Figure 9.11).

Figure 13.13: a 1-way sequencer, FxPUSH, JOINy ä 1

resulting in a block with 2n ` 1 inputs and 2n outputs, where the first 2n inputs are to the MERGE

network, the remaining input is to the PUSH, the first n outputs are from the TOGGLE network, and
the last n outputs are from the decision wait. To roll n of the MERGE inputs to the end and the n
decision wait outputs to the beginning, we write

pZnRpCnxMERGEnè1
2, ARB n, TOGGLEné1

2y,DxPUSH,DWpn, 1qyqq ê n

and then connect the decision wait outputs to n of the MERGE inputs by writing

ZnppZnRpCnxMERGEnè1
2, ARB n, TOGGLEné1

2y,DxPUSH,DWpn, 1qyqq ê nq

where these connections are also in the reverse order to compensate for the connections to the
decision wait inputs being in the reverse order. That is, the last decision wait output goes to the first
MERGE because the last decision wait column input comes from the first TOGGLE.

We could leave the definition of an n-way sequencer at that, or throw in an optimized version for
the degenerate case of n “ 1 as shown in Figure 13.13, saving a MERGE and a TOGGLE. Taking the
latter approach leads to the following definition for the sequencer generating function SEQ : N Ñ H,
which is defined only for positive values of n.

SEQpnq “

" FxPUSH, JOINy ä 1 if n “ 1
ZnppZnRpCnxMERGEnè1

2, ARB n, TOGGLEné1
2y,DxPUSH,DWpn, 1qyqq ê nq otherwise

13.4. COMPLETION DETECTORS 439

13.4.2 Majority gates

To generalize a majority gate, we can work directly from Figure 2.10 by transcribing it to a block
combinator expression. For a k-of-n majority gate, the TOGGLE has to count up to k signals received,
so the primitive TOGGLE should be replaced by a network TOGGLE k. The MERGE network following
the TOGGLE network therefore needs k inputs, giving it the form MERGE k. Combining the MERGE

network with the FORK first, we have

FxFORK,MERGE ky

which has the FORK input first followed by k ´ 1 MERGE inputs, and a FORK output followed by a
MERGE output. The FORK input should be connected to the last output from the TOGGLE network so
that the output from the FORK is transmitted externally only after the TOGGLE network has cycled
through the first k ´ 1. To roll the FORK input to the end, we write

FxFORK,MERGE ky ä 1

so that this block can be combined directly with the TOGGLE network in a cascade with k connections.

CkxTOGGLE k,FxFORK,MERGE ky ä 1y

On the front end we have a block consisting of a sequencer with n inputs connected necessarily to
an n-way MERGE,

CnxSEQ n,MERGE ny

which is simple to cascade with the back end block just constructed above.

CxCnxSEQ n,MERGE ny,CkxTOGGLE k,FxFORK,MERGE ky ä 1yy

This block has n ` 1 inputs, the last being to the acknowledgment on the sequencer, and 2 outputs,
the first being from the FORK and the second being from the MERGE network. To connect the MERGE

network output to the sequencer, we have to roll the latter to the beginning by writing

CxCnxSEQ n,MERGE ny,CkxTOGGLE k,FxFORK,MERGE ky ä 1yy ç 1

and then make the connection via the Z combinator.

ZpCxCnxSEQ n,MERGE ny,CkxTOGGLE k,FxFORK,MERGE ky ä 1yy ç 1q

This expression suffices to define most majority gates, but two significant optimizations are
possible in edge cases. A k-of-n majority gate satsifying k “ n reduces to an n-way JOIN, and the
case of k “ 1 reduces to an n-way MERGE. If k and n are both 1, then both the JOIN and the MERGE

network reduce to a wire so there is no need to distinguish between them. Putting these ideas
together, we have the following definition for a function MG : NˆN Ñ H taking a pair of positive
numbers pk, nq P NˆN with k ď n to a k-of-n majority gate MGpk, nq P H.

MGpk, nq “

"

xMERGE n, JOIN nyδk
n

if k P t1, nu

ZpCxCnxSEQ n,MERGE ny,CkxTOGGLE k,FxFORK,MERGE ky ä 1yy ç 1q otherwise

440 CHAPTER 13. PUTTING THE WORD OUT

13.4.3 Recurrence

A recurrence defining the completion detector for an arbitrary code c P PpPpNqq can be split into
four cases for best results. If the code is partitionable, then a separate completion detector for each
subset combined by a MERGE network should be the first choice. If the code is not partitionable
but is factorable, then a separate completion detector for each factor combined by a JOIN network
is preferable. If the code is neither partitionable nor factorable but has a constant weight, then a
majority gate should be used, and when all else fails, a decoder cascaded with a MERGE network as
proposed at the beginning of Section 13.4 is needed. Note that constant weight codes that are also
factorable, such as dual rail codes, are worth factoring first.

The same decomposition functions f f and fk defined for decoders by Equation 13.11 and Equa-
tion 13.14 are applicable to completion detectors, but slightly modified versions of the combining
forms Ωk and Ω f are appropriate.

9Ω f pc, xq “ p85 pλ f .
Ť

f q›f f cq´1 ¸ C|x|xpb Rq x , JOIN |x |y

9Ωkpc, xq “ p85 pλ f .
Ť

f q›fk cq´1 ¸ C|x|xpb Rq x ,MERGE |x |y

Because every completion detector in the formal parameter x is assumed to have only one output,
and the resulting completion detector 9Ωkpc, xq or 9Ω f pc, xq also has only one output, there is no
need for any output permutation network, but there is a need for either a MERGE network or a
JOIN network to combine them as noted above. The input permutation networks are identical to
those of the original combining forms Ω f and Ωk as given by Equation 13.11 and Equation 13.14
respectively.

The rest of the construction for a function CD : PpPpNqq Ñ H taking a code c P PpPpNqq to a
completion detector CDpcq P H follows naturally.

CDpcq “

$

’

’

&

’

’

%

9Ωkpc, CD› 9η fk cq if |fk c| ą 1
9Ω f pc, CD› 9η f f cq if |fk c| “ 1 ^ |f f c| ą 1
MGpmin pµ λw. |w|q c, |

Ť

c|q if |fk c| “ 1 ^ |f f c| “ 1 ^ |pµ λw. |w|q c| “ 1
xC|c|xDCpcq,MERGE |c|y,ZIy

δ
H
c

otherwise

The renumbering function 9η is defined by Equation 13.16, and the condition |pµ λw. |w|q c| “ 1
specifies that the code c has a constant weight of min pµ λw. |w|q c. The last case provides for an
empty code to have an empty completion detector and a brute force solution otherwise.

13.5 Transcoders

Whereas encoders and decoders always interface a 1-hot channel with something, a transcoder
interfaces two channels carrying arbitrarily chosen delay insensitive codes. Like an encoder, a
transcoder may also be envisioned as a read-only memory or look-up table, but instead of being
restricted to a 1-hot address bus, it could be queried by a dual rail or k-of-n address bus, for example.
Transcoders are the topic of this section, being the next and last step for this chapter.

Designing a transcoder would seem to be a straightforward matter of cascading a decoder with
an encoder, but some brief consideration before dismissing it as trivial raises at least a few notable
aspects. If a transcoder is designed in the obvious way, then interfacing between two channels even
with moderate bus widths could be prohibitive when their code sizes are large, because the code
sizes determine the width of the internal 1-hot channel. This problem is serious enough to motivate

13.5. TRANSCODERS 441

Figure 13.14: A randomizer cell RC acknowledges an input by either of two outputs.

a custom approach to the important special case of conversions between dual rail and Sperner codes
in Chapter 14, but some optimizations on space are possible even for the general case. In particular,
if some subset of the input code words happens to map to a single output code word, then it may be
possible under certain conditions to use a completion detector (Section 13.4) somewhere in place
of a decoder to cut down on the internal bus width.

The last point raises the issue of code sizes not matching exactly. There could be more input
than output code words, or more output than input code words, and there could also be repetitions
among the output code words similarly to an encoder. An enumeration of the output code words
simply as a function of the input words like an encoder specification is not sufficiently expressive for
every transcoder that might be of interest. A relation that can be one-to-one, one-to-many, many-to-
one, many-to-many, or any combination would be needed to cover everything.

On the other hand, is there ever a good reason for a one-to-many relation as a transcoder
specification? Such a specification would allow multiple output code words u, v, and w for a
single input code word a, as if the transcoder somehow should choose one at random. Perhaps
unexpectedly, as Figure 13.14 shows, there is no impediment in principle to a circuit doing just
that, so this interpretation is an option.1 Rather than arbitrarily restricting the range of expressible
specifications, we lose nothing by accepting any that has a valid interpretation and generating the
transcoder corresponding to it as faithfully as possible.

Following this plan, an acceptable transcoder specification is a relation

t P PpPpNq ˆPpNqq

whose domain Dptq represents the input code and whose range Rptq represents the output code.
The relation t is unrestricted except insofar as its domain and range are both expected to be

1An actual implementation might be partly predictable due to physical asymmetry, crosstalk, or environmental conditions.
Do not rely on this circuit as a cryptographically secure source of entropy without careful analysis [157].

442 CHAPTER 13. PUTTING THE WORD OUT

DC d pbRq pλr. RND |r|q› e EC 85 eä

|d|

ä

|85 e|

ä

|
Ť

Rptq|

ä

|
Ť

Dptq|

Figure 13.15: A basic transcoder Ωx t with a domain d “ Dptq and an encoder specification
e “ pΨ Π tq› d0´1, has a decoder in front, randomizers or a bus in the middle, and an encoder in
the back.

antichains satisfying Equation 13.1. As such, it describes a transcoder having exactly |
Ť

Dptq|

input terminals and |
Ť

Rptq| output terminals. For any pair of words pa, bq P t, a set of signals
concurrently received on all input terminals numbered i P a enables the transcoder to transmit
concurrent signals on all output terminals numbered o P b.

The rest of this section develops a method for constructing a transcoder circuit from any
specification having this interpretation. Section 13.5.1 presents a basic method for constructing
transcoders without any optimizations, Section 13.5.2 proposes a decomposition function and
a combining form usable when the input code is partitionable, and Section 13.5.3 describes a
transcoder generating function as a recurrence with a view to employing completion detectors
where possible as an optimization.

13.5.1 Basic

The transcoder design required when no optimizations are applicable is mainly a decoder cascaded
with an encoder as mentioned above, but may have an additional middle stage of non-deterministic
circuits as shown in Figure 13.15 sending individual inputs to multiple outputs at random if the
specification is a one-to-many relation. If the specification indicates no more than one output for
each input code word, then the middle stage should reduce to a bus. We can break it down by stages
as follows.

Front end decoder

Whatever comes after it in the other stages, the decoder on the front end must be able to recognize
any input code word a P d in the domain d “ Dptq of the transcoder specification t and emit a
signal on the line numbered n “ d0 a. This requirement restricts it to a block of the form DC d by
Equation 13.17.

Back end encoder

For the back end encoder stage of the transcoder, we need to infer a specification as a list of code
words from the transcoder specification t P PpPpNq ˆPpNqq, which is a relation. If it were a one-
to-one relation, then a lexicographically ordered list Rptq0´1 of the range of t would suffice, but in
general, any input word a P Dptq may be related to multiple output words b P Rptq. To allow for
this possibility, we could consider a slightly more complicated relation

Π t P PpDptq ˆPpRptqqq

13.5. TRANSCODERS 443

expressed by theΠ operator defined in Equation 6.7, which associates each input code word a P Dptq

with the set of all output code words b P Rptq related to a by t. Technically this relation would be
injective for any choice of t, so it could induce a function

Ψ Π t : Dptq Ñ PpRptqq

taking any input code word a P Dptq to the set of output code words pΨ Π tq a P PpRptqq by
Equation 6.1, which could induce a list e of sets of output code words ordered lexicographically by
the corresponding input.

e “ pΨ Π tq› Dptq0´1
P PpRptqq˚ (13.18)

The resulting list e is not quite valid as an encoder specification because each term of e is a set of
code words rather than a specific code word, but a flattened version

85 e P Rptq˚

could specify a back end encoder EC 85 e handily.

Middle stage randomizers

The back end encoder specification EC 85 e implies an output arity of |85 e| for the middle stage, while
the front end constrains its input arity to |d| “ |Dptq| “ |e|. To reconcile the output with the input
arity, we envision the n-th of |e| outputs from the front end connected to a multi-way generalization
of the circuit shown in Figure 13.14 having output arity |en|. Denoting this circuit RND |en| in terms
of a function RND : N Ñ H to be defined presently implies a middle stage consisting of an array of
the form pbRq pRND |r|q› e, because then the range of |en| inputs to the back end associated with
the n-th code word are driven directly or indirectly by the n-th output line from the front end via
the |en| outputs from the n-th block of the middle stage.

We can easily generalize the circuit depicted in Figure 13.14, called a randomizer hereafter for
lack of a better term, to any arity by building a binary tree, and have it reduce to a wire as required
in the case of a single output by writing a recurrence accordingly for RND : N Ñ H.

RNDpmq “

" I if m “ 1
Z2 pbRq RC : RND›

@

tm{2u, rm{2s
D

otherwise
(13.19)

The constant RC P H in Equation 13.19 represents the 2-way randomizer, which we can describe
by a block combinator expression as follows. A block of two SHUNT and TOGGLE combinations in
parallel

LxSHUNT, TOGGLEy2

has two inputs and three outputs for each combination, the first input of each being the data line in
to the SHUNT and the first output being the data line out of the SHUNT (i.e., its horizontal input and
output in Figure 13.14). Rolling the first input and the first output of each to the beginning of the
block

LxSHUNT, TOGGLEy2 è1
2 é1

3

enables a connection from the data output of each SHUNT to the control input of the other (i.e., the
vertical input in the figure), resulting in a block with two inputs and four outputs.

Z2pLxSHUNT, TOGGLEy2 è1
2 é1

3q

444 CHAPTER 13. PUTTING THE WORD OUT

The four outputs are from the two TOGGLE primitives, whose dotted outputs are rolled to the
beginning by the expression

pZ2pLxSHUNT, TOGGLEy2 è1
2 é1

3qqé1
2

and connected to a MERGE by two lines in a cascade.

F2xpZ2pLxSHUNT, TOGGLEy2 è1
2 é1

3qqé1
2, MERGEy

The two remaining inputs are the SHUNT data lines, which can be connected to a FORK and sequencer
combination (Section 13.4.1)

F2xFORK, SEQ 2y

by another two lines in a cascade.

C2xF2xFORK, SEQ 2y,F2xpZ2pLxSHUNT, TOGGLEy2 è1
2 é1

3qqé1
2, MERGEy

This expression leaves two inputs (one to the FORK and one to the sequencer) and three outputs
(one from each TOGGLE and one from the MERGE). Rolling the MERGE output to the top enables a
connection from it to the sequencer input, which is already at the bottom,

ZpC2xF2xFORK, SEQ 2y,F2xpZ2pLxSHUNT, TOGGLEy2 è1
2 é1

3qqé1
2, MERGEy ç 1q

hence sufficient for the 2-way randomizer RC needed in Equation 13.19.

RC “ ZpC2xF2xFORK, SEQ 2y,F2xpZ2pLxSHUNT, TOGGLEy2 è1
2 é1

3qqé1
2, MERGEy ç 1q

Combining form

The back end encoder EC 85 e considered previously allows for a cascade with the front and middle
stages discussed above

C|d|xDC d,C
|85 e|

xpbRq pλr. RND |r|q› e, EC 85 eyy

because the arities of the three stages now match up. This expression suggests the following
definition for a basic transcoder combining form Ωx : PpPpNq ˆPpNqq Ñ H.

Ωx “ λt.
`

λd.
`

λe. C
|85 e|

xC|d|xDC d, pb Rq pλr. RND |r|q› ey, EC 85 ey
˘

pΨ Π tq› d0´1˘
Dptq (13.20)

13.5.2 Partitionable

A decomposition of a transcoder into smaller transcoders raises the possibility of locally optimized
components even if the decomposition is not advantageous in itself. A decomposition and comple-
mentary combining form described briefly in this section work together to this end in a recursively
defined transcoder generating function following in Section 13.5.3.

13.5. TRANSCODERS 445

Decomposition function

The decomposition function fk for partitionable decoders defined by Equation 13.14 has a direct
analog

fy : PpPpNq ˆPpNqq Ñ PpPpNq ˆPpNqq˚

for transcoders given by

fy “ λt. pλp.
ď

wPp

twu ˆ pΨ Π tq wq› fk Dptq (13.21)

based on the partitionable decompositionfk Dptq of the input code Dptq for the transcoder specified
by t into a list of equivalence classes. Each word w P p of each equivalence class p P Rpfk Dptqq is
also an input word in Dptq, hence associated with the set of output words pΨ Π tq w Ď Rptq and
the subset twu ˆ pΨ Π tq w Ď t of the transcoder specification, along with the larger subset obtained
by letting w range over p (cf. Equation 13.18). Each of the latter subsets is treated as one of |fy t|

relations able to specify a separate transcoder. Although the domains of these relations are mutually
disjoint by construction, their ranges need not be, a matter to which we return shortly.

Combining form

A combining formΩy : PpPpNqˆPpNqqˆH
˚ Ñ H complementary to the decomposition functionfy

proposed above would take a transcoder specification t P PpPpNq ˆPpNqq and a list of transcoders
x P H

˚ to a transcoder Ωypt, xq P H described by t whenever each term x i is described by the
relation pfy tqi for 0 ď i ă |x |. A partial solution inspired by the partitionable decoder combination
in Equation 13.15 features an input permutation network and parallel combination

p85 dq´1 ¸ pbRq x

where d is a list of subsets di “
Ť

Dppfy tqiq of the input alphabet allocated to blocks x i respectively
for 0 ď i ă |x |. The analogous reasoning to that of Equation 13.12 applies.

However, a complete solution must take into account the back end of the combined transcoder,
for which no similar permutation network based on flattening a list of subsets ri “

Ť

Rppfy tqiq

exists because they are not necessarily mutually disjoint. For this part, we can draw inspiration
from the basic encoder combination discussed in Section 13.2.1, with each transcoder x i playing
the role of a FORK network in Figure 13.2 transmitting the subset ri of the output alphabet. The
same reasoning leads inevitably to a back end MERGE network

pbRq MERGE› A0 r

wherein the j-th MERGE has as many inputs as the number pA0 rq j of j’s appearing throughout all
sets ri by Equation 13.3. This network is connected to the front end by a permutation network
specified by the permutation A1 r as in

p85 dq´1 ¸ pbRq x
A1 r
ÝÑ pbRq MERGE› A0 r

by Equation 13.4, because the i-th transcoder x i needs to connect to the j-th MERGE for each j P ri .
Consequently we may write

Ωypt, xq “ pλxd, ry. p85 dq´1 ¸ pbRq x
A1 r
ÝÑ pbRq MERGE› A0 rq

``

λp.
@
Ť

Dppq,
Ť

Rppq
D˘›fy t

˘ᵀ

as the definition of the combining form using the transpose notation explained in Section 11.1.2.

446 CHAPTER 13. PUTTING THE WORD OUT

13.5.3 General

The best opportunity to optimize a transcoder with a specification t P PpPpNq ˆ PpNqq knocks
when every input word a P Dptq maps to exactly the same output word b P Rptq, as indicated
whenever |Rptq| “ 1 holds. In this case, no encoders, decoders or randomizers are needed because
a circuit of the form

ZR`CD Dptq, FORK |
Ť

Rptq|
˘

achieves the same result using a completion detector CD Dptq connected to a FORK network with an
output arity matching the output alphabet cardinality. Such a specification is unlikely in isolation, but
could come more plausibly from a term p P Rpfy tq for some useful specification t decomposable
by fy (Equation 13.21). Some reduction in cost would then be achievable by implementing each
term separately and combining them by Ωy .

Following through with this idea involves a small technicality. Decomposing the relation t into
parts p P Rpfy tq generally invalidates the conditions that the domain Dppq and the range Rppq

are codes with consecutively numbered alphabets per Equation 13.1 as assumed in the derivation of
the basic transcoder combinator Ωx (Equation 13.20). There may be gaps in the input or output
alphabet of any term due to its missing symbols appearing only in other terms. To correct for this
effect, let each pair of words pa, bq P p be reassigned the value

ppµ p
Ť

Dppqq0q a, pµ p
Ť

Rppqq0q bq

so that input symbol i P a and each output symbol o P b maps to its ordinal relative only to the
input or output alphabet local to p. A renumbering function

:η : PpPpNq ˆPpNqq˚ Ñ PpPpNq ˆPpNqq˚

achieves this effect on every pair of words pa, bq P p in every term p P Rpfy tq for :η fy t when
defined in the obvious way (cf. Equation 13.16).

:η“ pλp. pµ λpa, bq. ppµ p
Ť

Dppqq0q a, pµ p
Ť

Rppqq0q bqq pq›

Resolving this issue now clears the way for a definition of TC : PpPpNq ˆ PpNqq Ñ H as a
transcoder generating function by way of a recurrence.

TCptq “

$

&

%

Ωypt, TC› :η fy tq if |fy t| ą 1
ZR`CD Dptq, FORK |

Ť

Rptq|
˘

if |fy t| “ 1 ^ |Rptq| “ 1
Ωx t otherwise

(13.22)

As in Equation 13.17, there is no need for a decomposition strategy any more complicated than this
one. The decomposition by fy is always preferable when applicable because it incurs no additional
cost and may be conducive to the optimization by a completion detector in the second case. In less
fortunate circumstances, the strategy is to fall back on a basic transcoder of the form Ωx t as in
Section 13.5.1.

13.5. TRANSCODERS 447

Figure 13.16: a local optimization for encoders

448 CHAPTER 13. PUTTING THE WORD OUT

Communication skills

1. What question has this answer?

1
n

log2

ˆ

n
k

˙

2. Simulate the TRIA in Figure 13.7 on paper by tracing the signals with highlighter
pens. What is the asymptotic latency or critical path length in general of a k-of-n
basic decoder (in terms of k and n)?

3. Develop a formal specification for the low cost alternative basic decoder form
mentioned on page 423, and compare it to Ωi c with regard to cost and performance.

4. Is there a way to build large sequencers as binary trees of small ones, and if so, is it
preferable to the method in Section 13.4.1 for either cost or performance?

5. What is the asymptotic average critical path length of a k-of-n majority gate MGpk, nq?
(An upper bound is sufficient but ignore metastability.) Is there a performance
argument for or against using one as a completion detector?

6. What is the optimal open Petri net model of a 2-way randomizer RNDp2q? (hint: It
is extremely simple.)

7. Are any analogous optimizations to the joinable decoder, the factorable decoder, or
the back end optimized encoder applicable to transcoders (aside from their implicit
use in the internal encoders and decoders), and if so, how beneficial are they?

8. If any generating function derived in this chapter, whether for encoders, decoders,
completion detectors, sequencers, majority gates, or transcoders, were at all untrust-
worthy, what specific machine-checkable conditions comparable to those given in
Section 11.7 for decision waits could keep it honest? (hint: Sparse decision waits
are restricted decoders. Decoders are generalized sparse decision waits.)

9. Are encoders as simple as they seem? A local optimization depicted in Figure 13.16
reduces the number of FORK and MERGE elements in a circuit fragment without
affecting the observable behavior.

a) Is the optimization valid, and if so, how could we be sure?

b) Is it ever applicable to a supposedly already optimized encoder ECpcq?

c) If a circuit presents multiple opportunities for this transformation, could the
order in which they are taken have any adverse effect on performance?

d) Is there an efficient algorithm for generating optimal encoders?

So in all human affairs one notices,
if one examines them closely, that it
is impossible to remove one
inconvenience without another
emerging.

Niccolo Machiavelli

C
H

A
P

T
E

R 14
WORKING ON THE RAILROAD

As noted in Chapter 13, two of the most useful types of delay insensitive codes are dual rail codes
and optimal k-of-n codes (also called Sperner codes hereafter) for different reasons. Dual rail
codes enable straightforward arithmetic and logical operations, whereas Sperner codes optimize the
channel capacity while in transit. These encodings need not
be mutually exclusive. For example, a system consisting of
multiple chips connected by a communication network could
use the dual rail form on each chip but the Sperner coded form
on the network. However, to realize the advantage of such
a scheme, methods of converting between the two encodings
are needed. These conversions are the subject of this chapter.

Theoretically the problems of transcoding in either direc-
tion between dual rail and Sperner codes are already solved
as special cases of Equation 13.22, but there are several rea-
sons for taking an interest in custom solutions. The main reason is space efficiency. The space
needed by the construction in Equation 13.22 grows at least linearly with the code size, to the point
that using it for something like a 32 bit code would be absolutely infeasible, whereas a code of this
size could well be amenable to the methods described in this chapter. Another reason is to gain
a sense of how delay insensitive circuits involving arithmetic operations and realistic data paths
get things done. A third reason is that this area historically has attracted its share of trivial and
overly broad patents (citations left as an exercise). While some of these fortunately have expired or
are nearing expiration at this writing, cultivating a communal knowledge base about dual rail and
Sperner coding is a prudent mitigation against similar ligations in the future.

Unlike most previous chapters, this one does not require any substantial new theory or mathemat-
ical notation to be introduced, but does require wielding it effectively. We start small by developing
dual rail unsigned integer adders, subtracters, and buffers in Section 14.1, a task fortunately made
even smaller by restricting attention to single operands with hard wired constants added or sub-

449

450 CHAPTER 14. WORKING ON THE RAILROAD

tracted. The buffers and subtracters are needed for a family of dual rail to Sperner code conversion
networks specified in Section 14.2 that work by implementing a simple recursive algorithm. A
specification for a family of Sperner to dual rail conversion networks developed in Section 14.3
uses the adders to implement something like an inverse of this algorithm, and in Section 14.4 we
investigate a more concurrent implementation.

14.1 Arithmetic units

The three kinds of arithmetic units needed for the transcoders in
this chapter have certain features in common. Each of them is made
of a cascade of standard cells, with each cell built around a 2-by-2
decision wait and dual rail channels in and out. The adder and
the subtracter cells interact with neighboring cells, but the buffer
cells share common control and status signals in parallel. A further
similarity between the adder and the subtracter is that they are both
made from essentially the same standard cell shown in Figure 14.1
and described by the expression

AC “ Z2RpFORK,ZRpZ4RpDWp2,2q, pZRpFORK, MERGEqq2 ä 1q, MERGEqq (14.1)

with its input and output signals ordered and interpreted slightly differently depending to the
context. Discussions of how these circuits specifically perform addition, subtraction, and buffering
follow respectively in Section 14.1.1, Section 14.1.2, and Section 14.1.3.

14.1.1 Adders

An adder implements the same algorithm for addition taught in elementary school, but with binary
numbers instead of decimal. That is, two numbers are added bit by bit starting with their respective
least significant bits, each bitwise addition yields a sum bit and a carry out bit, and the carry
out is added together with the next two least significant bits. When its value is 1, the carry out
represents that the sum has overflowed the current place, for example because 1 plus 1 is 10 in
binary arithmetic, which is too wide to fit into a single bit.

The work of executing this algorithm in hardware is allocated to a cascade of cells as mentioned
above, with one cell for each pair of bits to be added. Consequently, each cell has a sum and a carry
out as outputs, data as inputs, and maybe also a carry input if the cell is not the lowest. Before
designing the circuit, we can get an overview of what its inputs and outputs should be by tabulating
them as in Table 14.1. By way of a quick check, the carry out and sum entries in each row should
express the count of 1’s in the rest of the row as a binary number ranging from 0 to 11.

Any textbook on logic design includes a discussion of adders comparable to the foregoing
[38, 135, 175], but we have to take it in a different direction from here. One difference is that the
data, carries, and sums for our adders are transmitted in dual rail form. In other words, a data
input is conveyed via two lines, labeled x and x in Figure 14.1, with the understanding that a signal
received on x is interpreted as a data value of 0, and a signal on x as a 1. The same convention
applies to the other input and output labels.

Another difference is that our adders take only one operand, with the other operand h from
Table 14.1 being a hard wired constant. Consequently, we need two kinds of adder cells, one that
adds 0 to the data input when the corresponding bit of h is 0, and the other that adds 1 to it when

14.1. ARITHMETIC UNITS 451

s s

co

co

x x

ci

ci

d d

bo

bo

x x

bi

bi

s s

co

co

xx

ci

ci

d d

bo

bo

xx

bi

bi

Figure 14.1: An adder of zero (upper left) and an adder of one (upper right) have carries in and
carries out, while a subtracter of zero (lower left) and a subtracter of one (lower right) have borrows
in and borrows out. All have one bit of dual rail data in and a sum or difference out.

452 CHAPTER 14. WORKING ON THE RAILROAD

x h ci co s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 14.1: specification of a one-bit adder in terms of the sum s and carry out co determined by
each combination of addends x and h and carry in ci

the corresponding bit of h is 1. This condition accounts for the distinction between an adder of 0 in
Figure 14.1 and an adder of 1.

Given these interpretations, the reader should be able to confirm by manual simulation that both
of the adder cells in Figure 14.1 behave consistently with Table 14.1. Depending on their experience
and outlook, it might also either delight or chagrin readers familiar with synchronous logic design
to note that an adder made from a cascade of these cells would be of the carry lookahead variety,
because it does not wait for the carry in before generating the carry out when adding 0 to 0 or 1 to 1.
Carry lookahead adders are considered more performant than the alternative of ripple carry adders,
but designing a carry lookahead adder in conventional synchronous logic is extremely painful by
almost any means other than retrieving it from a component library designed by someone else.

Edge cases

To obtain any member of a family of adders, we seek a function ADD : NˆN Ñ H taking a pair of
natural numbers pk, nq P NˆN to a circuit ADDpk, nq P H with a dual rail input bus of the minimum
width sufficient to communicate a natural number up to n inclusive and an output bus of the
minimum width sufficient to emit n ` k in dual rail form. Unfortunately these simple requirements
already indicate a few worrisome edge cases neglected by the discussion above.

• Because the output bus is always wide enough for outputs up to n ` k, the adder should never
overflow, so there is no need for a carry out from the most significant bit cell. However, if
the output bus is exactly one bit wider than the input bus, then the carry out from the cell
computing the second most significant bit of the sum can be used as the most significant bit
of the sum.

• If n is not the predecessor of a power of 2, then numbers greater than n are possible to transmit
to the adder on the input bus, but no particular output need be specified for those cases and
divergence would be acceptable.

• If k is even, or more generally if k satisfies k mod 2w “ 0 for a positive w, then we should
save the cost of w adder cells for the low order bits by replacing them with dual rail channels
connecting the data input lines directly to the sum output lines.

14.1. ARITHMETIC UNITS 453

a0a3a4 ä
2

a3a4

ä2pw0 nq

ä2|w1pk, nq|

ä

ä2 ä2|w2pk, nq « 1|

ä

ä2 ä2|w2pk, nq « 1|

a2

ä2

ä2

ä2pw0 nq ´ 2

a0a1

ä2pw0 nq ´ 2

ä2|w1pk, nq| ´ 2

ä
2

ä2

ä2

ä2pw0 nq

Figure 14.2: Four ways an adder of a constant k to a dual rail coded number up to n might turn out
are for k “ 0 (top), for input and output buses of equal width (second from top), for k wider than n
with all low order bits 0 (third), and for k wider than n in general (bottom). Blocks are labeled by
functions a0 through a4 responsible for creating them.

454 CHAPTER 14. WORKING ON THE RAILROAD

x

x

s

co
co

s
x

x

ci

ci

s

s

Figure 14.3: An adder of 0 cell L2xLJOIN, MERGEy with no carry out (left) and an adder of 1 cell
FORK2 ç 1 with no carry in (right).

• If k exceeds n sufficiently, then some cells in the adder computing the high order bits lack
data inputs but must still output a sum dependent on the carries in. A carry out from some
lower order cells is needed in this case even if all low order bits of k are 0, perhaps limiting
the scope of the optimization proposed above.

Bus widths

A way of allowing for each of these possibilities is to define the ADD function in four cases corre-
sponding to those illustrated by Figure 14.2 in terms of the annotations given by w0 through w2 as
shown. The function w0 : N Ñ N defined by

w0 “ λn. rlog2pn ` 1qs ` δn
0 (14.2)

takes a number n P N to the number of bits w0 n P N in a dual rail channel sufficient to transmit
any number up to n. The expression w1pk, nq P t0, 1uw0 n represents a suffix of the list of the bits in
k P N viewed as binary number, with the least significant bit last in the list, and the length of the list
either restricted to the width w0 n or padded out to it with leading zeros depending on which of k
or n is wider.

w1 “ λpk, nq.
`

λ j.
`

λi. tk2i`1´ ju mod 2
˘›
ι j
˘

w0 n (14.3)

The expression w2pk, nq P t0,1uw0pn`kq´w0 n represents a list of any remaining bits of k in order of
decreasing significance, of which some are necessarily non-zero if k exceeds n, and any leading
zeros needed to pad it out to a width of w0pn ` kq ´ w0 n regardless.

w2 “ λpk, nq. w1pk, n ` kq∣w0pn ` kq ´ w0pnq (14.4)

Equal bus widths

The simplest case for the adder is with k “ 0, for which ADDp0, nq is just a bus I2pw0 nq, so we can pass
immediately to the next simplest, which is with input and output buses of exactly the same width
2w0pnq “ 2w0pn ` kq due to a small positive value of k, and hence |w2pk, nq| “ 0 by Equation 14.4.
This condition implies that w1pk, nq0, the most significant bit of k padded out to the width of n,
must be zero, or else the output bus would have to be one bit wider than the input to hold n ` k, so
the cell computing the most significant bit of the sum is an adder of 0 with no carry out as shown at
the left of Figure 14.3. The behavior of this cell is unspecified when the data and carry in are both

14.1. ARITHMETIC UNITS 455

1, but this possibility is precluded for all operands up to n so the effect is a matter of indifference as
discussed above. In addition to this cell, the two adder cells shown in Figure 14.1, and a dual rail
channel I2 for low order 0 bits as discussed previously, the cell FORK2 ç 1 implementing an adder of
1 with no carry in shown at the right of Figure 14.3 is needed for the lowest order non-zero bit in k.

Ordering the terminals of the adder of 0 cell from Figure 14.1 consistently with those of the
cells in Figure 14.3 requires an expression like

x0,3, 1,2y ¸ AC ˙ x2,0, 3,1y

in terms of the general arithmetic cell AC from Equation 14.1, and an expression like

x3,0, 2,1y ¸ AC ˙ x0,2, 1,3y

for the adder of 1. That is, the inputs are ordered x , x , ci, ci and outputs are ordered s, s, co, co by
the permutations shown.

This arrangement of input and output terminals implies that in a cascade of cells forming an
adder, the last two outputs of each cell that generates a carry out should be connected to the last
two inputs of the one next to it on the most significant bit side. Those that do not generate carries
out require no connection to their neighbors on the most significant bit side (if any) and need only
be put in parallel with them. An expression a0pw1pk, nq « 1q accounting for all cells in the cascade
except the one computing the most significant bit of the sum therefore follows from a definition of
the function a0 : t0,1u˚ Ñ t0,2u ˆH as

a0 “ bp0,ZIq λph, pc, tqq.

$

’

’

&

’

’

%

p0,Rpt, I2qq if h “ 0 ^ c “ 0
p2,Rpt, FORK2 ç 1qq if h “ 1 ^ c “ 0
p2,L2xt, x0,3, 1,2y ¸ AC ˙ x2,0, 3,1yyq if h “ 0 ^ c “ 2
p2,L2xt, x3,0, 2,1y ¸ AC ˙ x0,2, 1,3yyq if h “ 1 ^ c “ 2

(14.5)

which folds a function taking an operand of the form ph, pc, tqq over the list w1pk, nq « 1, which is
the binary representation of k by Equation 14.3. The intuition is that h P t0,1u in this expression
represents the bit of k determining the kind of adder cell appropriate for the current position in the
cascade along with the number c P t0, 2u of carry out lines from the cascade due to the lower order
cells, and t P H is the actual cascade of lower order cells. The resulting circuit has a dual rail input
data bus with the least significant bit first, dual rail output bus carrying the sum also with the least
significant bit first, and two carry out lines (based on the current condition of not all instances of h
being 0).

The complete adder including the most significant bit is expressible as a1 a0pw1pk, nq « 1q P H

in terms of a function a1 : NˆH Ñ H defined by

a1 “ λpc, tq. L2xt, LJOIN, MERGEy

which connects the cell on the left of Figure 14.3 to the result above.

Unequal bus widths with low order bits all zero

In all other cases, the output bus width 2w0pn ` kq of an adder exceeds the input bus width 2pw0 nq.
The n least significant bits of the sum can still be computed as above, but the rest of the sum has to
be inferred somehow by a cascade of cells with no input data.

456 CHAPTER 14. WORKING ON THE RAILROAD

ci

ci

s

co
co

s

s

sci

co

ci

ci
s

co

s

s
s

co

ci

Figure 14.4: Among adders of 0 (left) and adders of 1 (right) with no data in and either half carries
in (above) or full carries in (below), only the adder of 1 with a full carry in needs a full carry out.

An especially odd situation is that of all low order bits of k up to the width of n being zero, as
shown second from the bottom of Figure 14.2. Passing all w0 n low order bits through a bus in this
case would yield a correct result for the low order bits of the sum, but would give no signal to the
rest of the adder to generate the high order bits. The figure shows a solution to this problem by
passing all but the top one of the low order bits straight through a bus and taking a carry out from
the top one on its way through to control the rest of the adder. Because the carry out from adding a
word of zeros to anything is necessarily zero, only one carry out line is needed instead of the usual
dual rail form, which can come from a MERGE of the data lines. An expression describing the whole
block including the bus is given by a2 w0 n for a function a2 : N Ñ NˆH defined as

a2 “ λw. p1,RpI2pw´1q,L2xFORK2é1
2, MERGEyqq

where the left side 1 in the result indicates that there is only one carry out line instead of the usual
two, hereafter called a half carry for the sake of discussion, as opposed to a full carry transmitted
on two lines.

The high order bits of a sum with no data inputs and only a single carry in that is always zero are
necessarily constant, but it is just as well to approach the rest of the design like that of a modified
adder built from a cascade of cells based on the simplifying assumption of input data being always
zero. That is, we have one type of cell that adds 0 to its inferred input of 0, and the other that adds
1, in either case with a half carry in and a half carry out as shown on the top row of Figure 14.4.
These cells are expressible respectively as RpFORK,Z FORKq æ 1 and RpZ FORK, FORKq.

Formally the block Z FORK has an input arity of zero and a single output terminal that never emits
a signal. This specification evokes the idea of a floating terminal but it could also be implemented
as a grounded terminal depending on whatever is appropriate for the technology. An even better
idea is to regard it as a hook for subsequent local optimizations whereby its combination with a
MERGE is replaced by a wire (cf. item 9, page 448).

These cells suffice for computing the rest of the sum except for the most significant bit, which
must be handled in some other way to avoid generating a carry out. Restricting attention therefore to

14.1. ARITHMETIC UNITS 457

s
ci s

ci s
ci s

s

ci s

s

ci s

ci

Figure 14.5: Four types of adder cells with no data in and no carries out are adders of 0 (left column)
and adders of 1 (right column), with either half carries in (top row), or full carries in (bottom row).

w2pk, nq « 1, which includes all high order bits in k except the most significant by Equation 14.4, we
can evaluate the cascade pa3 a2 w0 nq pw2pk, nq « 1q by a function a3 : NˆH Ñ pt0, 1u› Ñ pNˆHqq

defined as

a3 “ λb. bb λph, pc, tqq.

$

’

’

&

’

’

%

p1,L1xt,RpFORK,Z FORKq æ 1yq if h “ 0 ^ c “ 1
p1,L1xt,RpZ FORK, FORKqyq if h “ 1 ^ c “ 1
p1,L2xt,RpFORK, Iq æ 1yq if h “ 0 ^ c “ 2
p2,L2xt, FORK2 ç 1yq if h “ 1 ^ c “ 2

(14.6)

which folds a function that operates on a tuple ph, pc, tqq with the same interpretation as in Equa-
tion 14.5 over the list of bits w2pk, nq « 1 P t0,1u˚ using b “ a2 w0 n P N ˆ H as the base. This
function also copes with full carries using the cells in the lower row of Figure 14.4. Although they
are not needed in the current case of w1pk, nq P t0u˚, they become relevant shortly.

One more cell would complete the construction of the adder by computing the most significant
bit of the sum. Depending on the most significant bit of the constant k as given by w2pk, nq0, it
should transmit either its carry in or the complement thereof to the sum as shown in Figure 14.5, and
generate no carry out of its own. The result a4pw2pk, nq0, pa3 a2 w0 nq pw2pk, nq « 1qq expresses the
connection of the appropriate cell in Figure 14.5 to the cascade for the current case of w1pk, nq P t0u˚

when the function a4 : t0,1u ˆ pt1,2u ˆHq Ñ H is defined as follows

a4 “ λph, pc, tqq.

$

’

’

&

’

’

%

L1xt,RpI,Z FORKqy if h “ 0 ^ c “ 1
L1xt,RpZ FORK, Iqy if h “ 1 ^ c “ 1
L2xt, I2y if h “ 0 ^ c “ 2
L2xt,RpRpZ FORK, Iq,Z2RpPUSH, JOINqqy if h “ 1 ^ c “ 2

(14.7)

with h, c, and t interpreted as above. To make it more general, this function is also defined for full
carries in. However, an adder of 1 with a full carry in and no carry out overflows when the carry in
is 1. This event should never be possible with correctly chosen bus widths, so as an aid to formal
verification (also known as a sanity check) the cell is deliberately constructed to diverge under those
circumstances by laying a trap for the carry in (cf. Figure 11.1).

458 CHAPTER 14. WORKING ON THE RAILROAD

Unequal bus widths with low order bits not all zero

The last case for an adder specification depicted at the bottom of Figure 14.2 pertains to an output
bus width 2w0pn ` kq exceeding the input bus width 2pw0 nq along with the assumption of at least
one non-zero bit in the range of w1pk, nq, the low order bits of k up to the width of n. In this case we
can construct the first stage of the adder as a0 w1pk, nq by Equation 14.5 instead of a0pw1pk, nq « 1q

as required for equal bus widths, and use it in the expression pa3 a0 w1pk, nqq pw2pk, nq « 1q in place
of a2 w0 n, which is needed only for low order bits all zero, to express the rest of the adder except
for the most significant bit cell. The full carry out associated with the cascade given by a0 w1pk, nq

necessitates the latter two cases in the definition of a3 by Equation 14.6. The rest of the construction
is completed as above by a4pw2pk, nq0, pa3 a0 w1pk, nqq pw2pk, nq « 1qq in terms of the function a4
defined by Equation 14.7. The cases in this definition pertaining to full carries are relevant here as
well.

In summary, we have the following definition for the function ADD : N ˆN Ñ H to cover all
cases. Where these conditions overlap, the first that applies is preferable.

ADDpk, nq “

$

’

’

&

’

’

%

I2pw0 nq if k “ 0
a1 a0pw1pk, nq « 1q if |w2pk, nq| “ 0
a4pw2pk, nq0, pa3 a2 w0 nq pw2pk, nq « 1qq if w1pk, nq P t0u˚

a4pw2pk, nq0, pa3 a0 w1pk, nqq pw2pk, nq « 1qq otherwise

14.1.2 Subtracters

Subtracters of constant subtrahends k can be organized similary to adders
as cascades of cells wherein each cell is hard wired to subtract one bit
of k from the corresponding bit of the input data. Instead of sending a
carry out, each cell sends a borrow signal to its neighboring cell or to the
environment. Unlike adders, subtracters always have a borrow output
from the most significant bit position. The output data bus is never wider
than the input, but it can be narrower or even empty if k is large, in which case at least some of the
cells have data and borrows in but no data out. The subtracter function SUB : NˆN Ñ H taking a
pair of numbers pk, nq P NˆN to a block SUBpk, nq P H needs to cope with at least the four cases
illustrated in Figure 14.6.

• If k is zero and n is positive, then the subtracter only needs to pass the data unaltered to the
output and generate a borrow out that is always zero.

• If k is equal to n, there is no data bus out because the difference can be at most zero, and the
borrow out always transmits a value of one unless the input is exactly n.

• If all low order bits of k up to the width of the maximum possible output n ´ k are zero, a half
borrow derived from one of the low order bits connects to the borrow propagation network
generated by s1, and the low order bits pass on a bus to the output.

• In the general case, bits of the difference up to the width of n ´ k are computed by subtracter
cells, whose top borrow out reaches the borrow propagation network if applicable.

The useless case of k ą n is safe to ignore, but because k “ n is allowed, it is only fitting to
handle the case of k “ n “ 0 consistently with k “ n in general, which is with an empty output data

14.1. ARITHMETIC UNITS 459

s1 s0ä
2

ä 2|w6pk, nq|

ä 2pw0 nq

s1

ä2|w7pk, nq|

ä
2

ä
2

a2

ä 2

ä 2

ä 2w0pn ´ kq ´ 2

a2

ä 2

ä 2

ä 2

ä 2

ä 2pw0 nq ´ 2

s1

ä 2|w1pk, nq|

ä
2

Figure 14.6: Four cases of a subtracter of a constant k ă n from a dual rail coded number up to
n for k “ 0 (top), for k “ n (second from top) for low order bits of k equal to 0 (third), and for
general k (bottom) reusing a2 from the adder with new functions s0 and s1 (cf. Figure 14.2).

460 CHAPTER 14. WORKING ON THE RAILROAD

x h bi bo d

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Table 14.2: specification of a one-bit subtracter in terms of the difference d and borrow out bo
determined by each combination of data x , constants h and borrows in bi (cf. Table 14.1)

bus. A circuit of the form

pbRq xI,Z2RpPUSH, JOINq,Z FORKy

similar but not identical to one in Figure 14.5 covers this case by having two input lines x and x of
which the second is prohibited and two output lines bo and bo of which the second never sends a
signal, so that a signal to x representing a zero data input causes a signal on bo representing a zero
borrow out.

To construct the cells needed for subtraction in general, we can start by consulting Table 14.2,
which displays the borrow out and difference bits corresponding to each combination of data,
constant bits, and borrows in according to the usual algorithm for unsigned binary subtraction. The
table shows that subtraction is not far from addition, with the only change being that the borrow out
is the complement of what the carry out would be for an adder. Complementing a dual rail signal is
achievable by interchanging the bus lines, so specifications for the subtracter cells in Figure 14.1
are obtained relatively easily by switching the last two numbers of the output permutations of the
adder cells used in Equation 14.5. The subtracter of 0 cell is therefore

x0,3, 1,2y ¸ AC ˙ x2,0, 1,3y

and the subtracter of 1 cell is

x3,0, 2,1y ¸ AC ˙ x0,2, 3,1y.

These cells have a full borrow in, but a cascade implementing a subtracter would need at least
one cell with no borrow in for the least significant bit. If the least significant bit of the constant
is 0, then that cell needs no borrow out and can be implemented by a pair of wires I2 as in an
adder. No borrow in or out is involved therefore from the least significant bit position up to the
position of the least significant 1 bit in the constant. A subtracter of 1 with no borrow in is given by
FORK2 ˙ x2, 0, 3, 1y based on the corresponding case for an adder in Equation 14.5 with the last two
output lines interchanged (cf. Figure 14.3), and has a full borrow out. Based on these four cases, a
function s0 : t0,1u˚ Ñ t0,2u ˆH analogous to a0 generating a subtracter as a cascade of cells is

14.1. ARITHMETIC UNITS 461

x

x

bi

bi

x

x

bi

bi

bo

bo

bo

bo

x

x

bi

bo

bo

bi

x
x

bo

Figure 14.7: A cascade of subtracters of 0 (left column) and 1 (right column) with half borrows in
(top row) or full borrows in (bottom row) but no data out forms the borrow propagation network.

expressible as follows.

s0 “ bp0,ZIq λph, pb, tqq.

$

’

’

&

’

’

%

p0,Rpt, I2qq if h “ 0 ^ b “ 0
p2,Rpt, FORK2 ˙ x2,0, 3,1yq if h “ 1 ^ b “ 0
p2,L2xt, x0,3, 1,2y ¸ AC ˙ x2,0, 1,3yyq if h “ 0 ^ b “ 2
p2,L2xt, x3,0, 2,1y ¸ AC ˙ x0,2, 3,1yyq if h “ 1 ^ b “ 2

The output data bus of this cascade should be only as wide as necessary to carry the maximum
possible difference n ´ k in dual rail form, which may be less than the width of input bus needed to
carry the input n. To restrict it to this width, we should apply s0 only to the low order bits

w6pk, nq “ w1pk, nq « pw0 nq ´ w0pn ´ kq

of the list w1pk, nq by Equation 14.3 (assuming k ă n) and make other arrangements for the high
order bits

w7pk, nq “ w1pk, nq∣ pw0 nq ´ w0pn ´ kq.

The rest of the subtracter in the general case takes the form of a borrow propagation network
having an input data bus fed by the high order bits w7pk, nq, no output data bus, and a full borrow
out. This network can also be specified as a cascade of cells similar to those considered already, but
simpler due to the lack of data outputs, in terms of a function s1 yet to be defined. As shown in
Figure 14.6, the borrow propagation network appears in three contexts where it might have either
no borrow in, a half borrow in, or a full borrow in, which along with two possible subtrahend bits
makes six possible cells to consider in its definition.

• An easy case is a subtracter of 0 with no borrow in. Neither possible input incurs any debt, so
the cell reduces to a MERGE whose inputs are x and x and whose output maps to bo, the half
borrow out.

462 CHAPTER 14. WORKING ON THE RAILROAD

• Also pretty easy is a subtracter of 1 with no borrow in, which has a full borrow out given by
the complement of the data in. This cell only needs to interchange two wires in a circuit of
the form I2 ç 1.

• The two cases with half borrows in are similar to the foregoing except insofar as the data are
synchronized with the borrow in before the cell propagates the half or full borrow out to its
neighbor as shown along the top row of Figure 14.7.

• The last two cases require a decision wait and a MERGE to generate the same borrow for three
out of four combinations. A subtracter of 0 never borrows unless the data bit is 0 and the
borrow in is 1, while a subtracter of 1 always borrows unless the data bit is 1 and the borrow
in is 0. These cases are shown on the bottom row of Figure 14.7.

In light of these observations, a construction of a function s1 : t0, 1, 2u ˆH Ñ pt0, 1u˚ Ñ Hq by
six cases follows directly.

s1 “ λc. pλpb, tq. tq ˝ bc λph, pb, tqq.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p1, MERGEq if h “ 0 ^ b “ 0
p2, I2 ç 1q if h “ 1 ^ b “ 0
p1,L1xt,ZRpMERGE, JOINqyq if h “ 0 ^ b “ 1
p2,L1xt,DWp2,1q ç 1yq if h “ 1 ^ b “ 1
p2,L2xt,L3xDWp2,2q æ 1,MERGE 3y ç 1yq if h “ 0 ^ b “ 2
p2,L2xt,F3xDWp2,2q ç 1,MERGE 3yyq if h “ 1 ^ b “ 2

It is convenient to make s1 a second order function parameterized by a pair c P t0, 1, 2uˆH specifying
the subtracter of the lower order bits along with the width of the borrow in. As shown in Figure 14.6,
this parameter could be a2 w0pn ´ kq or s0 w6pk, nq if there are any lower order bits, or p0,ZIq if not,
and would serve as the base for folding a function over the list of high order bits w7pk, nq or the
whole list w1pk, nq respectively. The composition with λpb, tq. t extracts the network and discards
the borrow width from the result, so writing ps1 a2 w0 nq ε would be a way of extracting it from the
result of s1 a2 w0 n suitably for the case of k “ 0 and n ‰ 0. Consequently, we have the following
specification of a function to generate subtracters.

SUBpk, nq “

$

’

’

’

’

&

’

’

’

’

%

pbRq xI,Z2RpPUSH, JOINq,Z FORKy if k “ 0 ^ n “ 0
Rpps1 a2 w0 nq ε,Z FORKq if k “ 0 ^ n ‰ 0
s1p0,ZIq w1pk, nq if k ‰ 0 ^ k “ n
ps1 a2 w0pn ´ kqq w7pk, nq if k ‰ 0 ^ k ‰ n ^ w6pk, nq P t0u˚

ps1 s0 w6pk, nqq w7pk, nq otherwise

(14.8)

14.1.3 Buffers

The last prerequisite for a dual rail to Sperner transcoder is a dual rail buffer made from an array
of cells such as the one shown in Figure 14.8. The buffer supports two types of interaction with
its environment. One type has the environment write dual rail data to the buffer and receive an
acknowledgment from it, and the other has the environment send a read request to the buffer
and receive dual rail data from it in return. The buffer implements a limited form of storage by
returning the same data most recently written to it in response to the first subsequent read request.
However, because it is only a buffer and not a register, reading from it also erases its contents, so
any subsequent read requests always cause it to return zero until after the next write. Multiple
writes without an intervening read are also allowed and duly acknowledged, which cause previously
written data to be overwritten by new data.

14.1. ARITHMETIC UNITS 463

o

o

a

r

i

i

Figure 14.8: A dual rail buffer cell, BU, initially holds a zero bit and is cleared by every read. It has
a pair of dual rail write inputs i and i, a read request input r, a pair of dual rail data outputs o and
o, and an acknowledgment output a (in that order).

464 CHAPTER 14. WORKING ON THE RAILROAD

i

i

Figure 14.9: BU0 “ ZpF4xpb Rq xMERGE, I,ZRpMERGE, PUSHq,ZRpMERGE, FORKqy,DWp2,2qy ç 1q

BU0

a

o

i
i

Figure 14.10: BU1 “ ZRpFORK,ZppZ2RpBU0,FxMERGE, FORK, MERGEyqq Û 2qq

14.1. ARITHMETIC UNITS 465

o

r

Figure 14.11: BU2 “ ZpFxMERGE,ZppZppZpLxSHUNT, TOGGLEy3qq æ 4qq ä 2qy ä 1q

Theory of operation

Figure 14.8 shows a schematic for the dual rail buffer cell. The main idea is to use a 2-by-2 decision
wait as a state holding device such that a write input of either i or i causes an output from the left
column when the cell holds a value of zero, and the right column otherwise. Writing the current
value maintains this state, and writing the alternative changes it. Holding a value of one also implies
that the control input to the SHUNT at the lower left has been signaled to redirect the read input
signal from the default o output to o, and the rest of the circuit follows from the need to maintain
all of these conditions. For an explanation in greater detail, see Appendix F.

Specification

Specifying the buffer cell by block combinators might not be the most fun in the world but is
achievable in about four steps. First we describe the decision wait and everything that feeds directly

466 CHAPTER 14. WORKING ON THE RAILROAD

BU2 BU1

o
i
i

r o
a

Figure 14.12: BU “ Z2ppBU2 ç 1
x1,2,3,0y
ÝÝÝÝá BU1q Û 2q

into it by the expression

BU0 “ ZpF4xpb Rq xMERGE, I,ZRpMERGE, PUSHq,ZRpMERGE, FORKqy,DWp2,2qy ç 1q (14.9)

as depicted in Figure 14.9. Then we throw on the FORK and the two more MERGE primitives
appearing near the top of Figure 14.8 by writing

BU1 “ ZRpFORK,ZppZ2RpBU0,FxMERGE, FORK, MERGEyqq Û 2qq

in terms of Equation 14.9 as depicted in Figure 14.10, which is drafted in keeping with the way
a straightforward transcription of this expression might appear. The three SHUNT and TOGGLE

combinations, the remaining MERGE, and whatever connections are local to them can be packaged
in the expression

BU2 “ ZpFxMERGE,ZppZppZpLxSHUNT, TOGGLEy3qq æ 4qq ä 2qy ä 1q

as depicted in Figure 14.11, also drafted to reflect the way it is expressed, and then at last we can
put them together in the expression

BU “ Z2ppBU2 ç 1
x1,2,3,0y
ÝÝÝÝá BU1q Û 2q

as depicted in Figure 14.12 (with the terminals labeled in the correct order) to arrive at the whole
buffer cell. Although there is no reason to take it on faith, a circuit specification this size fortunately
is an ideal candidate for automated verification against a process level description as explained at
length in Part II of this book.

One last consideration about buffers is that of putting individual buffer cells together into a
dual rail buffer capable of storing words of arbitrary width. An n-bit dual rail buffer would need a
single read request broadcast to all cells by a FORK network, and a single write acknowledgment
synchronized from all of them by a multi-way JOIN. An array of n buffer cells transformed to

BUn ê2
3 ë2

3

by Equation 8.55 and Equation 8.56 would help by aggregating the read request lines as the first n
inputs and the write acknowledgment lines as the first n outputs. We could then define a function

14.2. DUAL RAIL TO SPERNER CODE CONVERSION 467

DBU : N Ñ H taking a number of bits n P N to an n-bit dual rail buffer DBUpnq P H as

DBUpnq “ FnxFORK n, BUn ê2
3 ë2

3, JOIN ny (14.10)

so that the first input to DBUpnq is the read request, and the first output from it is the collective
acknowledgment.

14.2 Dual rail to Sperner code conversion

Having established a precedent in Section 14.1 for circuits that implement simple mathematical
algorithms, we might try something more challenging now, such as a circuit that computes a unique
word in a constant weight code for any number up to the code size. A dual rail to Sperner transcoder
corresponds to the special case for which the weight k of the code is equal to tn{2u, where n is the
number of lines in the output bus. The input bus would carry a number i ranging from 0 to c ´ 1
inclusive in dual rail form for a code size c not exceeding the binomial coefficient of n and k.

What happens when we start to think seriously about a circuit performing this operation? Try as
we might, there is no avoidance of some unused channel capacity on one side or the other. Dual rail
channels suit code sizes that are powers of two, k-of-n channels suit code sizes that are binomial
coefficents, and never the twain shall meet. For example, an 8 bit dual rail channel can transmit
numbers from 0 to 255 for a code size of 256, which is slightly more
than a 5-of-10 channel with a code size of 252, so it would need to be
transcoded to at least a 5-of-11 channel on the output, whose code size
of 462 is considerably more than necessary, but not quite enough for a
9 bit dual rail channel with a code size of 512, and so on.

A transcoding algorithm therefore is always stuck with at least two
cases. Numbers on the low end, for example from 0 to 251 on an eight
bit channel, can be transcoded to words selected from only the first 10
of the 11 available output symbols in a 5-of-11 code, whereas the words
generated for the remaining numbers 252 to 255 must include the 11th,
but only 4 of the other 10 to make up the constant weight of 5. The latter 4 signals in these left over
words could be generated by a circuit designed for a 4-of-10 channel and only a 2 bit input bus,
which might be small enough to implement naively by Equation 13.22, or maybe even a smaller
channel if the left over code words are insufficient to use all 10 lines (cf. Equation 13.2).

The need to allow for two cases persists even if the transcoder makes full use of the output
channel and only partial use of the input channel. For a 5-of-10 output channel and an 8 bit dual
rail input channel with inputs above 251 prohibited, half of the numbers (e.g., those up to 125
inclusive) could be encoded using only the first 9 of the available 10 lines, but then the other half of
them would need the hitherto unused line and only 4 of the rest.

Undoubtedly there are the ingredients of a dual rail to Sperner transcoder in these ideas
somewhere. Turning them into an algorithm is the subject of Section 14.2.1, and designing a circuit
to implement it occupies Section 14.2.2.

14.2.1 Transcoding algorithm

To generalize from these observations, the conversion of a number a to a word in a k-of-n code
involves a test for whether a could be encoded by a k-of-pn ´ 1q code, which is true whenever it is

468 CHAPTER 14. WORKING ON THE RAILROAD

less than a code size of

s “

ˆ

n ´ 1
k

˙

in which case we do that instead. Otherwise, we convert a ´ s to a word in a pk ´ 1q-of-pn ´ 1q code,
and remember to put n ´ 1 into the resulting word afterwards. This method suggests a recursive
algorithm whose base case is with k “ n. The k-of-k code contains only the word Rpιkq, which is
the set of natural numbers less than k, and which must be the result if a is valid. This algorithm is
expressible as a recurrence

f n
k :

"

a P N | a ă

ˆ

n
k

˙*

�PpRpιnqq

defined as follows.

f n
k paq “

ˆ

λ 9f . 9f
ˆ

n ´ 1
k

˙˙

λs.

$

’

&

’

%

Rpιkq if k “ n

f n´1
k paq if a ă s

f n´1
k´1 pa ´ sq Y tn ´ 1u otherwise

(14.11)

Output word format

Although this function always maps any input number within its domain to a distinct code word, it
has the quirky feature of being non-monotonic with respect to the lexicographic ordering. That is,
inputs a and a1 satisfying a ă a1 do not imply that f n

k paq lexicographically precedes f n
k pa1q. They do

not even imply the contrary. For an increasing sequence of inputs, the algorithm actually generates
code words in the reverse of the lexicographic order that would be implied by a reversal of the
numerical order of the members of the words. For example, a routine calculation of p f 5

3 q› ι10 yields
the list of words

xt0,1, 2u, t0,1, 3u, t0,2, 3u, t1,2, 3u, t0,1, 4u, t0,2, 4u, t1,2, 4u, t0,3, 4u, t1,3, 4u, t2,3, 4uy

which would be in reverse lexicographic order if 4 were the smallest number and 0 were the biggest.
More formally, if

Ccpk, nq “ tw P PpRpιnqq | k “ |w|u (14.12)

denotes the constant weight k-of-n code, then a closed form of the recurrence is

f n
k paq “ pµ λi. n ´ i ´ 1q Ccpk, nq0´1

ˆ

n
k

˙

´ a ´ 1

in terms of Ccpk, nq0´1 : N Ñ PpNq, which maps a lexicographic ordinal to its code word as usual.
The definition of the function f n

k is worth keeping as it is nevertheless because it lends itself to a
hardware implementation as shown in Section 14.2.2, but its particular output word format needs
to be taken into account for recovering the original data when transcoding in the opposite direction.

Input word format

The input word format is also worth contemplating. Because a circuit that implements f k
n involves a

subtracter, the representation of the numerical input a P N must match the representation required

14.2. DUAL RAIL TO SPERNER CODE CONVERSION 469

b

b
SUBps, cq

ra

DBU rlog2pc ´ sqs

ä 2rlog2pc ´ sqs

a r
ä 2rlog2 cs

ä

2rlog2 ss
DBU rlog2 ss

DCT ftpc, k, nq1ä

DCT ftpc, k, nq0ä

0

n ´ 2

n ´ 1

¨ ¨ ¨

¨ ¨ ¨

...

ä

2rlog2 cs

Figure 14.13: A dual rail to k-of-n transcoder DCTpc, k, nq with code size c, weight k, and bus width
n uses a constant subtracter of s, two dual rail buffers, and two smaller transcoders, where s is the
binomial coefficient pn ´ 1q!{pk!pn ´ 1 ´ kq!q.

by a subtracter according to Section 14.1.2. This representation has the least significant bit first (i.e.,
starting at bus line number 0) and has the line coding for zero within each pair of lines preceding the
other line. As fate would have it, the word representing the number a in this form is not necessarily
the a-th word in the code lexicographically, but rather the word

Rppλi. 2i ` pta2´iu mod 2qq› ιrlog2 csq P PpNq

for a code size of c and hence rlog2 cs bits in each word.
This expression turns out to be useful in formulating the base case of a recurrence for generating

dual rail to Sperner transcoder circuits (i.e., the result for k “ 1, k “ n, and optionally for other
small values of k and n) in terms of the transcoder generating function TC defined by Equation 13.22.
A basic transcoder with the same input and output format as the inductive case would be given by

TC Rppλa. pRppλi. 2i ` pta2´iu mod 2qq› ιrlog2 csq, f n
k paqqq› ιcq

so as to associate the input word representing the number a with the output word f n
k paq.

14.2.2 Circuit derivation

A family of circuits implementing a dual rail to constant weight transcoder according to this algorithm
and interface specification for a choice of code size c, code weight k, and output bus width n is
expressible as DCTpc, k, nq in terms of a function DCT : NˆNˆN Ñ H defined by a recurrence as
suggested above. Along with the aforementioned base case, we have an inductive case

Ωtpc, k, n,DCT›ftpc, k, nqq

470 CHAPTER 14. WORKING ON THE RAILROAD

following the familiar pattern of a combining form Ωt : N ˆ N ˆ N ˆ H
2 Ñ H taking the given

parameters and the list of two lower order results to the result overall, and a corresponding
decomposition function ft : NˆNˆN Ñ pNˆNˆNq2 taking the parameters to the list of two
tuples of parameters determining each of the lower order results.

DCTpc, k, nq “

"

TC Rppλa. pRppλi. 2i ` pta2´iu mod 2qq› ιrlog2 csq, f n
k paqqq› ιcq if pk, nq P Ks

Ωtpc, k, n,DCT›ftpc, k, nqq otherwise

At a minimum, the set Ks Ď NˆN of base case parameters used in this recurrence contains all pairs
of the form p1, nq and pn, nq for n P N, and may also contain any others deemed advantageous for
implementation reasons. Other necessary conditions for valid results are

• 0 ă k ď n

• 0 ă c ď

ˆ

n
k

˙

• n ď |
Ť

Rpp f n
k q› ιcq|

with the last condition being a consequence of Equation 13.2, the constraint on encoders whereby
every output line has to be used in at least one word. Fortunately the members of any set of the
form

Ť

Rpp f n
k q› ιcq Ă N are consecutive starting from zero, or else there would be complications.

Decomposition function

A definition for the decomposition function ft is attainable based on this condition and a hard look
between the lines of Equation 14.11. A circuit that implements f n

k for a code size c would appear to
depend on one that implements f n´1

k for a code size s and one that implements f n´1
k´1 for a code size

c ´ s, except that the output bus width of the latter might need to be adjusted downward from n ´ 1
if c ´ s is small, specifically to |

Ť

Rpp f n´1
k´1 q› ιc´sq| in keeping with the condition above. Hence we

have ftpc, k, nq P pNˆNˆNq2 formed of the two triples as shown.

ftpc, k, nq “
`

λs.
@`

s, k, n ´ 1
˘

,
`

c ´ s, k ´ 1, |
Ť

Rpp f n´1
k´1 q› ιc´sq|

˘D˘

ˆ

n ´ 1
k

˙

(14.13)

Combining form

The combining form Ωt is the interesting part, amounting to a formal description of the circuit
shown in Figure 14.13. The way it works is as follows.

• An input word in dual rail form enters at the upper left on a bus of width 2rlog2 cs, where c is
the code size.

• The rlog2 ss low order bits of the input word are copied to the buffer at the top by a FORK

network while the whole word is fed to the subtracter, and the difference up to c ´ s goes
from the subtracter to the buffer at the bottom.

• If the subtracter asserts a borrow out by the signal labeled b, then the input word must be less
than s, so the signal passes through the decision wait to read the low order bits previously
stored in the upper buffer after the writes to both buffers are acknowledged via the JOIN.

14.2. DUAL RAIL TO SPERNER CODE CONVERSION 471

• If the subtracter transmits the complementary borrow signal labeled b, then the input word is
not less than s, so the borrow signal causes lower buffer to be read and also propagates itself
to the output bus via the FORK. This output signal corresponds to the inclusion of tn ´ 1u in
the result of Equation 14.11 and indicates that a high number is being transcoded.

• Depending on which buffer is read, either the low order slice of the input word or the
representation of the difference between the input word and s is fed to the corresponding
transcoder DCT ftpc, k, nq0 or DCT ftpc, k, nq1 respectively.

• Whichever transcoder is invoked, the results go to the same output bus via the MERGE network.
Figure 14.13 shows transcoders having the same output bus width n ´ 1, but in general there
may be fewer outputs from DCT ftpc, k, nq1 and hence fewer MERGE primitives.

A block combinator specification of the combining form proceeds in several steps. Starting with
the buffer sizes

w “
@

rlog2 ss, rlog2pc ´ sqs
D

P N
2 (14.14)

a list of the two buffers DBU› w P H
2 by Equation 14.10 is transformed to the block

pλb. Rpb0, b1 Ú 1q Û 1q DBU› w

whose inputs are the lower buffer’s read request, the upper read request, the upper dual rail bus,
and the lower dual rail bus in that order, with the outputs ordered similarly. The combination of the
decision wait and the FORK

FxDWp2,1q, FORKy æ 1

with its three outputs rotated as shown connected to the buffer block

F2xFxDWp2,1q, FORKy æ 1, pλb. Rpb0, b1 Ú 1q Û 1q DBU› wy

therefore has the bottom row output from the decision wait connected to upper buffer’s read request.
In the next step, connections from the buffer acknowledgments to the JOIN are expressed by

F2xFxDWp2,1q, FORKy æ 1, pλb. Rpb0, b1 Ú 1q Û 1q DBU› w, JOINy

and the connection from the JOIN to the column input of the decision wait by

ZpF2xFxDWp2,1q, FORKy æ 1, pλb. Rpb0, b1 Ú 1q Û 1q DBU› w, JOINy ä 3 ç 1q

or more briefly by L0 w for L0 : N2 Ñ H defined as

L0 “ λw. ZpF2xFxDWp2,1q, FORKy æ 1, pλb. Rpb0, b1 Ú 1q Û 1q DBU› w, JOINy ä 3 ç 1q

where it should be kept in mind that the last two inputs to L0 w are connected to the decision wait
rows due to the input terminal rotation, and the first output is from the FORK. Next we express the
subtracter SUBpd0, d0 ` d1q P H in terms of a list

d “ xs, c ´ sy P N
2 (14.15)

by Equation 14.8. The subtracter’s borrow lines and its output bus need to be connected to the last
2 ` 2w1 inputs on L0 w to reach the lower buffer’s input bus and the row inputs on the decision
wait respectively, as in the block

L2`2w1
xSUBpd0, d0 ` d1q, L0 wy

472 CHAPTER 14. WORKING ON THE RAILROAD

...

ä
m1

ä

m1

ä
m0 ´ m1

ä
m1

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

m0

Figure 14.14: RpMERGEm1 è1
2, Im0´m1 q ä m1

whose expression requires no terminal rotations. The two output buses from this block are connected
to the transcoders x “ DCT›ftpc, k, nq P H

2 in the block

L2w0`2w1
xL2`2w1

xSUBpd0, d0 ` d1q, L0 wy, pb Rq xy

abbreviated henceforth as ppL1 xq L0q d with L1 : H2 Ñ ppN2 Ñ Hq Ñ pN2 Ñ Hqq defined as

L1 “ λx . λl. λd. pλw. L2w0`2w1
xL2`2w1

xSUBpd0, d0 ` d1q, l wy, pb Rq xyq pλs. rlog2 ssq› d.

To attend to the MERGE network, we need the list

m “
@

n ´ 1, |
Ť

Rpp f n´1
k´1 q› ιc´s|

D

P N
2 (14.16)

of output bus widths according to Equation 14.13. The number of MERGE primitives is no more than
m1, the lesser of the two, with m0 ´ m1 wires making up the rest of the network in a block

RpMERGEm1 è1
2, Im0´m1 q ä m1.

The input terminal ordering is adjusted as shown in Figure 14.14 so it slots into the block

Lm0`m1
xppL1 xq L0q d,RpMERGEm1 è1

2, Im0´m1 q ä m1y

with the output buses from x connected appropriately to it, but the resulting block should have its
output bus rotated to put the output from the FORK last.

Lm0`m1
xppL1 xq L0q d,RpMERGEm1 è1

2, Im0´m1 q ä m1y æ 1

A shorter way of expressing this block is directly in terms of the parameters determined by the
decomposition

u “ ftpc, k, nq (14.17)

14.3. SPERNER TO DUAL RAIL CONVERSION 473

from which we have
m “ pλps, k, nq. nq› u (14.18)

and hence an expression pL2 ppL1 xq L0q dq u for L2 : H Ñ pH2 Ñ Hq given by

L2 “ λl. ppλm. Lm0`m1
xl,RpMERGEm1 è1

2, Im0´m1 q ä m1y æ 1q ˝ pλps, k, nq. nq›q.

Only the FORK network shown on the front end of Figure 14.13 remains to complete this construction.
Letting

pt, vq “ p2rlog2 cs, 2rlog2 ssq

denote the input bus width and the low order bus width respectively, we need v FORK primitives
and t ´ v wires for a block of the form

RpFORKvé1
2, It´vq

having t inputs and t ` v outputs to connect to the block pL2 ppL1 xq L0q dq u obtained above in

Ft`vxRpFORKvé1
2, It´vq, pL2 ppL1 xq L0q dq uy

expressible alternatively as L3pc, d0q pL2 ppL1 xq L0q dq u in terms of L3 : N ˆ N Ñ pH Ñ Hq as
defined by

L3 “ λpc, sq. λl. pλpt, vq. Ft`vxRpFORKvé1
2, It´vq, lyq p2rlog2 cs, 2rlog2 ssq.

However, u fully determines d according to Equation 14.13, Equation 14.15, and Equation 14.17 as

d “ pλps, k, nq. sq› u (14.19)

so it would be reasonable to express the block as L4pc, x , uq with L4 : NˆH
2 ˆ pNˆNˆNq2 Ñ H

defined as
L4 “ λpc, x , uq. pλd. L3pc, d0q pL2 ppL1 xq L0q dq uq pλps, k, nq. sq› u.

A definition for the combining form Ωt : NˆNˆNˆH
2 Ñ H then follows trivially as

Ωtpc, k, n, xq “ L4pc, x ,ftpc, k, nqq

thus completing the specification for dual rail to Sperner transcoders.

14.3 Sperner to dual rail conversion

Transcoding in the other direction, from Sperner to dual rail codes, amounts to implementing
a function gn

k “ p f n
k q´1 in hardware. Further insight is possible by expressing the function as a

recurrence in the same style as Equation 14.11.

gn
k pbq “

ˆ

λ 9g. 9g
ˆ

n ´ 1
k

˙˙

λs.

$

’

&

’

%

0 if k “ n

gn´1
k pbq if n ´ 1 R b

gn´1
k´1 pb ´ tn ´ 1uq ` s otherwise

(14.20)

Similarly to the dual rail to Sperner transcoder, a circuit implementing gn
k with a code size of c

apparently would depend on one implementing gn´1
k with a code size of s, and one implementing

gn´1
k´1 with a code size of c ´ s.

474 CHAPTER 14. WORKING ON THE RAILROAD

CD Ccpk, nq
...

än

. . .

¨ ¨ ¨

...

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

2n

n

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

...

Figure 14.15: A channel expander CXpk, nq interfaces a k-of-n input channel with an n-bit dual rail
output channel.

Along with a constant adder of s as described in Section 14.1.1 to the partial result in the latter
case, most of what is needed to complete the construction should be at hand. Nevertheless, we
work up to it gradually in the remainder of this section with some preliminary considerations in
Section 14.3.1 and the actual derivation in Section 14.3.2.

14.3.1 Preparation

Unlike the dual rail to Sperner transcoder, this one needs to test an input word b for the presence
of the maximum alphabet symbol n ´ 1 instead of performing a numerical comparison. Although
this test may seem like a simpler operation, there is a problem. If n ´ 1 is a member of the input
word b, then a signal on the last wire in the bus is due to arrive, but if not, then no such signal is
forthcoming and the circuit is obliged to detect and respond to a non-event, which is impossible for
a DI circuit.

On the other hand, a completion detector designed according to Section 13.4 can detect the
arrival of a code word even if no particular signal is common to every word in the code. If the
whole word has arrived, then every signal in it that is going to arrive has arrived, and any signal
not received by then is demonstrably absent. It remains only to design a circuit that can draw this
conclusion automatically.

Detecting a non-event

Figure 14.15 shows a candidate. The idea is to pass each of the n bus lines carrying words of the k-of-n
code Ccpk, nq through the control input of a SHUNT and then through a TOGGLE before letting them
reach a completion detector CD Ccpk, nq. (See Equation 14.12.) The output from the completion
detector then feeds concurrently into the data input of every SHUNT via the FORK network. There is
no chance of it reaching a SHUNT ahead of a control input to the same SHUNT because it emerges

14.3. SPERNER TO DUAL RAIL CONVERSION 475

from the completion detector only after the whole word is received. Next, the data signal to each
SHUNT either passes directly to its data output on the right, or is shunted downward through the
alternate output of the attached TOGGLE depending on whether the SHUNT has previously received
a control signal. The TOGGLE outputs shuffled together with the SHUNT data outputs form a dual
rail channel with 2n lines, which emits a signal on exactly one line in each of the n pairs.

To return to the problem above, we can detect whether or not the symbol n ´ 1 is a member of
the input word b by putting it through this circuit and monitoring the last two outputs. If the last
output emits a signal, then n ´ 1 is a member of the word b, and if the penultimate output emits a
signal, then n ´ 1 is not in the word b.

Expanded form

What should be done with the rest of the outputs? Keeping them around turns out to be useful
for further detection and routing in the transcoder. It might even be tempting to think this circuit
solves the whole problem of transcoding a k-of-n code to a dual rail code already, but it is not quite
that simple. Although the output is in dual rail form, it does not encode the number gn

k pbq P N as
required for compatibility with transcoding in the other direction. (One clue is that the output bus
has 2n lines regardless of the code size c instead of 2rlog2 cs lines.) Nevertheless, this encoding is
convenient as an intermediate representation and called the expanded form hereafter.

Channel expanders

Specifying the circuit in Figure 14.15, called a channel expander hereafter, is straightforward in
terms of a function CX : N ˆ N Ñ H taking a code weight k ą 0 and a bus width n ě k to the
corresponding channel expander CXpk, nq P H. A cascade

FnxFORK n, SHUNTn è1
2 ë1

2, TOGGLEné1
2, CD Ccpk, nqy

connecting the first n outputs from each stage to the first n inputs on the next takes care of connecting
the FORK network to the SHUNT data inputs, the SHUNT control outputs to the TOGGLE inputs, and
the dotted TOGGLE outputs to the completion detector. This block has a FORK input first and a
completion detector output last, whose connection is expressible as

ZpFnxFORK n, SHUNTn è1
2 ë1

2, TOGGLEné1
2, CD Ccpk, nqy ê 1q

by rolling them into position. The result has n data outputs from the SHUNT stage followed by n
TOGGLE outputs. To shuffle them into the order of a dual rail channel, an output permutation ι2n �2
is needed in the definition of CX.

CXpk, nq “ pZpFnxFORK n, SHUNTn è1
2 ë1

2, TOGGLEné1
2, CD Ccpk, nqy ê 1qq ˙ ι2n � 2

See Equation 8.12 and Equation 8.53 for reminders about this notation.

14.3.2 Derivation

The game plan at this point is to specify a Sperner to dual rail transcoder as a cascade in two stages,
with the first being a channel expander, and the second being defined by a recurrence with expanded
form data in and numerical dual rail data out. The base case of the recurrence pertains to small
values of n, the input bus width, or any values of n for which k the code weight is equal to n, so that

476 CHAPTER 14. WORKING ON THE RAILROAD

...

x0

...

ä

2pm0 ´ m1q

x1
...

ADDps, c ´ sq

ä2w1

...

¨ ¨ ¨

...

¨ ¨ ¨

...

ä r

ä m1äm1

2m1

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

...

,

/

.

/

-

2w0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

2r

Figure 14.16: A k-of-n to dual rail transcoder for a code size c with an input bus in expanded form
is recursively defined in terms of smaller versions x0 and x1, where w is given by Equation 14.14, m
is given by Equation 14.16, s is pn ´ 1q!{pk!pn ´ 1 ´ kq!q and r is rlog2 cs ´ w0.

a transcoder adhering to these input and output formats is feasible to implement by Equation 13.22.
The inductive case is given by a new combining form 9Ωt : NˆNˆNˆH

2 Ñ H to be defined by
block combinators following Figure 14.16, taking parameters c, k, n, and lower order results x P H

2

to the overall result 9Ωtpc, k, n, xq P H.

Base case

To take the base case first, we have output words encoding numbers
a P N ranging from 0 to c ´ 1 inclusive in dual rail form for a code size
of c. For compatibility with the dual rail to Sperner transcoder derived
in Section 14.2.2, the word encoding a number a should be the set

Rppλi. 2i ` pta2´iu mod 2qq› ιrlog2 csq P PpNq.

The compatible input word corresponding to this output would be b “ f n
k paq P PpRpιnqq as

given by Equation 14.11 were it not for the hypothesis of a front end channel expander stage
mentioned above. The actual input word as far as the latter stage of the transcoder is concerned is

14.3. SPERNER TO DUAL RAIL CONVERSION 477

a set of 2k symbols in the range of 0 to 2n ´ 1 inclusive. For each member i of the external word b,
there is a symbol 2i ` 1 in the internal expanded form, and for each non-member i P Rpιnq ´ b,
there is a symbol 2i in the expanded form. It would be more succinct therefore to describe the input
word as hn

kpaq in terms of a function hn
k : N Ñ PpNq defined as follows.

hn
k “ pλb. pµ λi. 2i ` δ

bYtiu
b q Rpιnqq ˝ f n

k

A transcoder specification by Equation 13.22 is parameterized by a set of pairs of input words
and their corresponding outputs for the whole code.

TC Rppλa. phn
kpaq,Rppλi. 2i ` pta2´iu mod 2qq› ιrlog2 csqqq› ιcq

This expression serves as the base case of a recurrence to be defined presently.

Inductive case

For the inductive case, we need to look at Figure 14.16 more carefully and find an expression for a
combining form 9Ωtpc, k, n, xq that captures it in writing, but first a walk through is in order.

• An input word in expanded form enters from the left, with the highest numbered lines 2n ´ 2
and 2n ´ 1 shown at the bottom left.

• A signal to the bottom input line indicates that n ´ 1 is a member of the input word b (with
respect to Equation 14.20), so it is broadcast by a FORK network to the bottom row inputs of
the decision waits, thereby routing all other signals on the bus to x1.

• By hypothesis, x1 generates the dual rail representation of b ´ tn ´ 1u, and transmits it to an
adder of s, which sends the sum to the output bus via the back end MERGE networks.

• A signal to the penultimate input indicates that n ´ 1 is not a member of the input word, so it
is broadcast to the top row inputs of the decision waits to route the rest of the signals to x0.

• In the case depicted, x0 has r fewer output bits than the adder, so this signal must also be
broadcast to the r most significant zero bits on the output bus to make up the full word via
the lower part of the back end MERGE network.

• By hypothesis, x0 generates the dual rail representation of b because it does not contain n ´ 1,
which is transmitted to the output via the upper part of the back end MERGE network.

A good place to start on this construction is with the block

F2w0
xx0, MERGE2w0 è1

2y

consisting of x0 and the upper part of the back end MERGE network by continuing to denote the
widths w according to Equation 14.14, so that w0 is rlog2 ss. Similarly, the block

C2w1
xx1, ADDpd0, d1qy

covers x1 and the adder based on d “ xs, c ´ sy as in Equation 14.15. Connections from the first
2w0 outputs of the adder to the remaining inputs on the upper MERGE network are expressible as

D2w0
xC2w1

xx1, ADDpd0, d1qy,F2w0
xx0, MERGE2w0 è1

2yy

478 CHAPTER 14. WORKING ON THE RAILROAD

and summarized as L5pd, xq in terms of a function L5 : N2 ˆH
2 defined by

L5 “ λpd, xq. pλw. D2w0
xC2w1

xx1, ADDpd0, d1qy,F2w0
xx0, MERGE2w0 è1

2yyq
`

λs. rlog2 ss
˘›

d

taking advantage of the relationship between w and d. If we continue to denote the input widths
m P N

2 according to Equation 14.16 and let

r “ rlog2 cs ´ rlog2 ss “ rlog2 cs ´ rlog2 d0s “ rlog2 cs ´ w0 (14.21)

this definition makes L5pd, xq a block with 2m1 inputs to x1 followed by 2m0 inputs to x0, and 2r
left over outputs from the adder (which may be none) followed by 2w0 outputs from the MERGE

network. Making a mental note that the inputs to x1 come before those of x0, we move on to the
array of m1 decision waits

DWp2,2qm1 è2
4 é2

4

with its inputs and outputs grouped into four buses of width 2m1 each, and the pair of FORK networks
in parallel

pbRq FORK›xm1 ` 1 ´ δr
0, m1y

whose first needs an extra output to broadcast to the lower back end MERGE network only if r is
non-zero. Shuffling the last 2m1 FORK outputs

pbRq FORK›xm1 ` 1 ´ δr
0, m1y ˙ ι2m1

� 2

enables each FORK network to reach one row on each decision wait in the block

U2m1
xpbRq FORK›xm1 ` 1 ´ δr

0, m1y ˙ ι2m1
� 2,DWp2,2qm1 è2

4 é2
4y

whose last 4m1 outputs would be better to permute by

ι
2m1
2m1
q ι2m1

thereby interchanging the first and second bundles of 2m1 bus lines from the decision waits in
preparation to connect them to L5pd, xq in that order. Let this block be denoted L6pm, rq in terms
of a function L6 : N2 ˆN Ñ H given by

L6 “ λpm, rq. U2m1
xpbRq FORK›xm1 ` 1 ´ δr

0, m1y ˙ ι2m1
� 2,DWp2,2qm1 è2

4 é2
4y ˙ ιm1

m1
q ιm1

where it should be noted that the two FORK network inputs come before the 2m1 decision wait
column inputs and therefore have to be rolled to the end at some point, but not yet, and the extra
FORK output for the back end, if any, precedes the 4m1 decision wait outputs. Before rolling the
FORK inputs, we first need to construct the block

U4m1
xL6 pm, rq, L5pd, xqy

whose first inputs are to the FORK networks, whose next 2m1 inputs are to the decision waits, and
whose last 2pm0 ´ m1q outputs are those of x0, so that writing

l “ U4m1
xL6 pm, rq, L5pd, xqy ä 2 (14.22)

would make l a network whose inputs have the order depicted in Figure 14.16, whose first output is
from a FORK to the back end if r is non-zero, whose next 2r outputs are from the adder, and whose

14.3. SPERNER TO DUAL RAIL CONVERSION 479

last 2w0 outputs are from the upper back end MERGE network. If r is zero, then l is already the
whole result, but otherwise it needs an additional network of the form

FrxFORK r,RpMERGE, Iqrè1
3y

representing a dual rail channel of r bits with an extra FORK input at the beginning that can cause it
to emit a word of zeros. Connecting l to this network is simple

F2r`1xl,FrxFORK r,RpMERGE, Iqrè1
3yy

and allowing for the possibility of r “ 0 likewise.

xF2r`1xl,FrxFORK r,RpMERGE, Iqrè1
3yy, lyδr

0

Letting this expression be denoted L7pl, rq in terms of a function L7 : HˆN Ñ H defined by

L7 “ λpl, rq. xF2r`1xl,FrxFORK r,RpMERGE, Iqrè1
3yy, lyδr

0

we can summarize the network as L8pc, d, m, xq in terms of a function L8 : NˆN
2 ˆN

2 ˆH
2 Ñ H

defined by

L8 “ λpc, d, m, xq. pλr. L7pU4m1
xL6 pm, rq, L5pd, xqy ä 2, rqq rlog2 cs ´ rlog2 d0s

using Equation 14.21 and Equation 14.22. The desired combining form 9Ωt to capture Figure 14.16
then follows directly in terms of L8, Equation 14.17, Equation 14.18, Equation 14.19, and the
decomposition function ft as defined by Equation 14.13.

9Ωtpc, k, n, xq “ pλu. L8pc, pλps, k1, n1q. sq› u, pλps, k1, n1q. n1q› u, xqq ftpc, k, nq

Recurrence

Now that both the base and inductive cases are derived, we can put them together into a function
L9 : NˆNˆN Ñ H defined by a recurrence.

L9pc, k, nq “

"

TC Rppλa. phn
kpaq,Rppλi. 2i ` pta2´iu mod 2qq› ιrlog2 csqqq› ιcq if pk, nq P Kt

9Ωtpc, k, n, L›
9 ftpc, k, nqq otherwise

The set Kt Ď NˆN specifies the values of k and n for which the transcoder is computed the hard
way by Equation 13.22. At a minimum, it must contain all pairs of the form p1, nq and pn, nq P NˆN,
and can include any others deemed advantageous for implementation reasons.

This result is not the whole transcoder because it relies on the input being in expanded form as
discussed in Section 14.3.1. The construction of a Sperner code to dual rail transcoder CDTpc, k, nq

is complete in combination with a channel expander as a front end CXpk, nq.

CDTpc, k, nq “ C2nxCXpk, nq, L9pc, k, nqy (14.23)

480 CHAPTER 14. WORKING ON THE RAILROAD

L9pc, k, nqä
2n

ä

2rlog2 cs

L9pc, k, nqä
2n

ä

2rlog2 cs

... MX
`

rlog2 cs, p
˘

ä

2rlog2 cs

DXpn, pqä
2n

MPpp ´ 1q
Ackout Ackin

CXpk, nqä
n ...

...

Figure 14.17: A parallel handshaking Sperner to dual rail transcoder transcodes up to p words
concurrently.

14.4 Parallelism

As inevitable as these transcoder designs may seem in
retrospect, they are not a fitting conclusion to this chapter
if the latency incurred by the conversion from one format
to the other negates any other advantages they may have.
In this section we investigate a way of speeding them up
if necessary by throwing more hardware at them. The general idea is to put a group of transcoders
in parallel, farm each incoming word out to a separate one, and then funnel all of their results into
a single channel on the other side. The number of parallel transcoders can be chosen so that in
steady state operation, the longest running transcoder in the group is ready for a new input word by
the time the rest are loaded, and the group of transcoders working together therefore can dispatch
the input words as fast as the channel can deliver them.

More easily said then done, this arrangement entails a bit of overhead in the way of the routing
and recombining stages, as well as some way of regulating the throughput to prevent overflow, but
is well worth developing because it exemplifies a pattern that is broadly applicable to tackling many
parallel computation problems other than transcoding. The rest of this section is organized around
elaborating on the hitherto undefined blocks in Figure 14.17, which pertains specifically to the
example of Sperner to dual rail transcoders, discussing their operation, and deriving an expression
for the result overall.

14.4.1 Dual rail toggles

A first step along these lines is the design of a network that can route a dual rail channel successively
to each of p destinations in a cyclic sequence. To make it simpler, we can start by considering the
case of a 1-bit dual rail channel with each word routed alternately to one of two destinations, which
reduces to the circuit shown in Figure 14.18. The TOGGLE triggered by each incoming bit, whatever
it may be, alternately selects either the top or the bottom row on the decision wait, thereby routing
the bit to one output channel or the other accordingly. This circuit is expressible as a one-liner

14.4. PARALLELISM 481

Figure 14.18: a dual rail toggle cell, DT P H

DT P H with not much further explanation needed.

DT “ C4xF2xFORK2é1
2,CxMERGE, TOGGLEyy æ 2,DWp2,2qy (14.24)

The next step is to generalize this circuit from two output channels to any p ą 0 output channels,
while still restricting attention to channels carrying one bit each. For this purpose, let DT : N Ñ H

denote a function taking a number of channels p P N to a dual rail toggle DTppq P H with a 1-bit
input channel and p 1-bit output channels.

The case of p “ 1 is trivially a pair of wires I2, but otherwise it is appropriate define the function
as a recurrence in two cases depending on whether p is odd or even, following patterns similar to
those shown in Figure 9.16 and Figure 9.17 for a generalized TOGGLE primitive.

• For even values of p, the result takes the form of a balanced tree rooted by the dual rail toggle
cell DT defined by Equation 14.24 and connected to a parallel combination of two of multi-way
dual rail toggles pDT p{2q2 each half the size in a block C4xDT, pDT p{2q2y. The necessary
output permutation to put the output buses in the right order is similar to ιn � 2 as shown in
Equation 9.22, except that it pertains to p pairs of bus lines instead of n bus lines. A simple
adjustment to 5 pλi. ι2i

2 q› pιp � 2q has the effect of expanding each line number to a pair of
consecutive line numbers.

• For odd values of p, we take a cue from Figure 9.17 by generating DT p ` 1 and feeding one
of the output channels back to the input. A parallel combination MERGE2 connected to the
toggle by C2xMERGE2,DT p ` 1y with the MERGE inputs shuffled in C2xMERGE2,DT p ` 1yè1

2
allows for the necessary two-line feedback path in Z2pC2xMERGE2,DT p ` 1yè1

2q.

Putting these cases together leads to the following definition.

DTppq “

"

xZ2pC2xMERGE2,DT p ` 1yè1
2q, I2yδp

1
if p mod 2 “ 1

C4xDT, pDT p{2q2y ˙ 5 pλi. ι2i
2 q› pιp � 2q otherwise

14.4.2 Channel demultiplexers

A multi-way toggle for an n-bit dual rail channel would be easy to obtain by putting n single bit
multi-way toggles together in parallel,

pDT pqn ˙ 5 pλi. ι2i
2 q› ιpn � n

482 CHAPTER 14. WORKING ON THE RAILROAD

DTppq

DTppq

...

ä

2p
ä

2p
ä
2

ä
2

ä
2

...

ä

2p
ä

2p
ä
2

ä
2

ä
2

...

*

2n
...

*

2n
...

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

2pn
...

Req

2n

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

...

Figure 14.19: a dual rail channel demultiplexer DXpn, pq for n bits and p channels

and permuting the outputs as shown to group them into p buses of 2n lines each. However, using it
effectively as part of the routing stage in Figure 14.17 requires it to have an additional completion
detection signal as an output. The completion detection signal should indicate that an input word
has worked its way through the decision waits in the toggles so that it is safe for the sender to
transmit another one, at least as far as the routing stage is concerned.

Something like what is shown in Figure 14.19 would do the trick, which is called a dual rail
channel demultiplexer for the sake of this discussion. In addition to the array of multi-way toggles,
it features a network pMERGE 2pqn synchronized by CnxpMERGE 2pqn, JOIN ny to generate the
completion detection signal. The inputs to the MERGE network are taken from the latter 2pn outputs
of a network FORK2pné1

2, all of which form a cascade

L2pnxpDT pqn, FORK2pné1
2,CnxpMERGE 2pqn, JOIN nyy

in combination with the toggle array. This expression describes a network whose completion
detection signal is the last output, and whose other outputs still need to be grouped into p buses of
2n lines each as discussed above. Hence we define

DXpn, pq “ L2pnxpDT pqn, FORK2pné1
2,CnxpMERGE 2pqn, JOIN nyy ç 1 ˙ 5 pλi. ι2i

2 q› ιpn � n

as a function DX : N ˆN Ñ H taking a number of bits n and a number of channels p to a block
DXpn, pq P H that demultiplexes an n-bit dual rail channel over p dual rail channels of n bits each,
and whose first output is a completion detection signal.

14.4.3 Channel multiplexers

The back end of the parallel transcoder shown in Figure 14.17, called a dual rail channel multiplexer
for this discussion, does the opposite of the demultiplexer by merging several channels into one.
Because each input channel carries a word from one of the blocks labeled L9pc, k, nq in the middle,

14.4. PARALLELISM 483

DWp2,1qn

än

ä
2n ...

DWp2,1qn

än

ä
2n ...

...

...

...

2pn

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

2n
...

Req

...

¨ ¨ ¨

Figure 14.20: a dual rail channel multiplexer MXpn, pq for n bits and p channels

there could be more than one of them available at the same time, but the multiplexer must send no
more than one at a time to the output channel. To avoid sending them too often, the multiplexer
sends a word only in response to a request signal, which we envision for the moment to be under
the control of whatever is on the receiving end of the output channel. Therefore the multiplexer
needs some way of buffering the input words it is waiting to send, and some way of selecting the
next one to send.

Buffering

The dual rail buffer developed in Section 14.1.3 is overkill for this situation because the acknowl-
edgment and overwriting functionality are unnecessary. A simple array of the form DWp2, 1qn does
the job of storing one word from an n-bit dual rail channel, and an array DWp2,1qpn can store a
word concurrently from up to p channels of n bits each. When combined with a FORK network in

LpnxpFORK nqp,DWp2,1qpnè2
3y

it becomes a block with p selection inputs followed by p buses of 2n lines each, and output buses
similarly organized. A signal to the i-th selection input causes dual rail data written to the i-th
input bus to be forwarded to the i-th output bus, either immediately if it has already been written
or subsequently after it is.

Selection

As a matter of maintaining data integrity, the multiplexer must transmit the output words in an
order corresponding to the order in which their antecedents are received by the transcoder. Because
the demultiplexer sends one word to each block labeled L9pc, k, nq in sequence starting with the

484 CHAPTER 14. WORKING ON THE RAILROAD

first, the multiplexer must select data from its input buses in the same order. A TOGGLE network
with p outputs connected to the selection inputs on the FORK network keeps track of this sequence
naturally.

FpxTOGGLE p,LpnxpFORK nqp,DWp2,1qpnè2
3yy

This expression describes a block with one request input followed by 2pn data inputs and 2pn data
outputs organized into p buses of 2n lines each.

Merging

The rest of the multiplexer only needs to merge the outputs from the block described above. An
array pMERGE pq2n has the right number of inputs, 2pn, and an input permutation network given
by ι2pn � p would let each block MERGE p in the array take an input from one of the p buses. Hence
we can complete the specification of the channel multiplexer as shown in Figure 14.20 by writing

MXpn, pq “ C2pnxFpxTOGGLE p,LpnxpFORK nqp,DWp2,1qpnè2
3y, ι2pn � p ¸ pMERGE pq2ny (14.25)

to define a function MX : NˆN Ñ H taking a number of bits n and a number of channels p to the
channel multiplexer MXpn, pq P H.

14.4.4 Micropipeline controllers

The last piece of the puzzle in Figure 14.17 is the mysterious
block labeled MPpp ´ 1q, which must interface the request
signals from the multiplexer and demultiplexer stages with
exposed acknowledgments in and out such that the parallel
transcoder acts as an intermediary between a k-of-n code pro-
ducer on the left and a dual rail code consumer on the right
(not shown). The acknowledgment out tells the producer to send another k-of-n word to the
transcoder, and the acknowledgment in tells the transcoder to send another dual rail word the
consumer.

One way this block could work is just by passing the buck. The request output from the
demultiplexer connected directly to the request input of the multiplexer would make the latter
forward a word to the consumer whenever the demultiplexer receives one from the producer, and
an acknowledgment in wired directly to the acknowledgment out would inform the producer of
the need for another word when the consumer is ready. This protocol would be correct but self
defeating, because there would never be more than one of the blocks labeled L9pc, k, nq active at
once, and hence no performance advantage over the design given by Equation 14.23.

A more sophisticated alternative would be for the block to acknowledge the first p ´ 1 requests
without waiting for an acknowledgment from the consumer just to get all p of the transcoder blocks
up and running as soon as possible. Then it could send one request to the multiplexer to start
the cycle, and then pass the buck as above. This alternative would enable concurrent transcoding
but would entail a permanent backlog of at least p ´ 1 words buffered by the multiplexer stage
that never move until the producer sends more, even if the consumer is ready to receive them.
Deadlock would be a possibility if the producer were dependent for any reason on the progress of
the consumer.

If neither of these ideas is acceptable, maybe the block needs to implement some sort of a
counter to keep track of the number of words currently being transcoded, which can be in the

14.4. PARALLELISM 485

Ackout

ReqoutReqin

Ackin

Figure 14.21: A micropipeline controller has a passive 2Φ port on the left, an active 2Φ port on the
right, and p stages between them, shown here for p “ 4. It can acknowledge up to p requests from
the left before waiting for an acknowledgment from the right.

range of 0 to p. The counter would have to be able to count up or down, with incoming requests
incrementing and incoming acknowledgments decrementing the count (presumably with arbitration
to deal with simultaneous inputs), such that it withholds acknowledgments out when the count
hits p and withholds requests out when the count hits 0, but otherwise emits them concurrently
according to a 2Φ protocol on each port whenever the count permits. To judge by the complexity of
the adders and subtracters developed in Section 14.1.1 and Section 14.1.2, this block is starting to
look like quite a complicated proposition.

It is all the more striking therefore that a design proposed in [273] called a micropipeline
controller solves this problem with such simplicity. The closest thing to poetry in circuit design, it
consists of a cascade of stages each composed of only three primitives as shown in Figure 14.21.
It has a passive 2Φ port shown at the left and an active one shown at the right, and can have any
number of stages including zero, in which case it reduces to a pair of wires I2. If attempts to visualize
its steady state operation evoke the imagery of a standing wave, then maybe some insight can come
from experimenting mentally with the boundary conditions.

• Regardless of the number of stages, the first request in from the left propagates to the request
out on the right without any blocking.

• If there is at least one stage, then the first request input is also reflected immediately back to
the left by the first stage without any acknowledgment needed from the right.

• If an acknowledgment comes from the right in response to the first outgoing request, and
there have been no more incoming requests, it propagates no further than the last stage (if
there is one), but blocks nothing because the initial request has already been acknowledged.

• Alternatively, up to p incoming requests can be acknowledged initially without any acknowl-
edgment from the right, where p is the number of stages, but no more than one request
emerges on the right until after the first acknowledgment is received there.

• After the first p requests and acknowledgments on the left with no acknowledgment from the
right, the 2Φ protocol allows another incoming request of course, but its acknowledgment is
blocked until at least one incoming acknowledgment arrives from the right.

• If a backlog of p incoming requests accumulates, each incoming acknowledgment from the
right lets out another one until they are used up, with no further requests needed from the
left. However, the first incoming acknowledgment in this case propagates all the way back
to the first stage, thereby enabling the previously blocked acknowledgment out and inviting
another request in.

486 CHAPTER 14. WORKING ON THE RAILROAD

In general, both ports can interact with the environment concurrently without interruption provided
neither of them ever gets more than p ` 1{2 handshakes ahead of the other.

A formal specification of a micropipeline controller is straightforward as a function MP : N Ñ H

taking a number of stages p P N to a micropipeline controller MPppq P H having p stages. The first
input of a single stage

FxPUSH, JOIN, FORKy

is the acknowledgment and the second input is the request. The outputs from the FORK are
interchangeable but as a matter of convention the first output is designated as the acknowledgment
out and the second as the request out. To connect a new first stage to a micropipeline controller t,
we first need to connect the request out from the first stage to the request in on t

LxFxPUSH, JOIN, FORKy, ty

and then connect the acknowledgment out from t, which is the second output on this block, to the
acknowledgment in on the first stage, which is the first input. Hence we roll both the inputs and the
outputs up and then connect the first output to the last input,

ZpLxFxPUSH, JOIN, FORKy, ty Ú 1q

resulting in a new micropipeline controller with one more stage than t but with the terminals
interchanged. To maintain the convention of acknowledgments first, we have to roll it one more
time.

pZpLxFxPUSH, JOIN, FORKy, ty Ú 1qq Û 1

A micropipeline controller with p stages is obtained by applying this operation p times to one with
zero stages, suggesting the following definition for MP : N Ñ H

MPppq “ pbI2 λph, tq. pZpLxFxPUSH, JOIN, FORKy, ty Ú 1qq Û 1q ιp

as a fold over ιp with vacuous case I2.

14.4.5 A parallel transcoder

The rest of this section is about putting everything in Figure 14.17 together. A combination of the
channel expander and the demultiplexer stages in a parallel constant weight to dual rail transcoder
is expressible as

C2nxCXpk, nq,DXpn, pqy

where n is the input bus width, k is the code weight, and p is the number of blocks labeled L9pc, k, nq

in the figure. The transcoder needs a micropipeline controller MPpp ´ 1q with one less stage than
the number of these blocks so that the producer sends at most p words until at least one of them
is consumed. For example, if there were only one of them, then only a degenerate micropipeline
controller MPp0q “ I2 would be appropriate. Recalling that the request line is the first output from
the demultiplexer and the last input to the micropipeline controller, we could combine them in an
expression of the form

ZRpL2pnxC2nxCXpk, nq,DXpn, pqy,MPpp ´ 1qq

but it would be better to rotate the micropipeline controller outputs putting the request output
ahead of the acknowledgment for reasons to become apparent shortly,

ZRpL2pnxC2nxCXpk, nq,DXpn, pqy,MPpp ´ 1q ç 1q

14.4. PARALLELISM 487

ä 2 ä 2 ä 2 ä 2 ä 2 ä 2 ä 2 ä 2

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä

ä
tick
tockdone

Figure 14.22: An eight bit loadable counter takes a number from 0 to 255 in dual rail form from
above, initiates that number of handshakes on the right, and then sends a signal to the left.

and to abbreviate this expression as l0pk, n, pq with l0 : NˆNˆN Ñ H defined as follows

l0 “ λpk, n, pq. ZRpL2pnxC2nxCXpk, nq,DXpn, pqy,MPpp ´ 1q ç 1q

so that its first 2pn outputs are dual rail buses, its next output is a request from the micropipeline
controller, and its last is an acknowledgment from the micropipeline controller. We also note an
input bus width of 2pm for the multiplexer stage, where m “ rlog2 cs depends on the output bus
widths of the blocks l “ L9pc, k, nq, which depend on the code size c, but this bus comes only after
the first input to the multiplexer, which is the request line, based on Equation 14.25. These blocks
fit together therefore in a block l1pc, pq L9pc, k, nq with l1 : pNˆNq Ñ pH Ñ Hq defined by

l1 “ λpc, pq. λl. pλm. L2pmxl p,MXpm, pqyq rlog2 cs

whose first 2pn inputs carry dual rail data and whose last is the request input to the multiplexer. To
specify the whole transcoder, it remains only to define

PCDTpc, k, n, pq “ F2pn`1xl0pk, n, pq, l1pc, pq L9pc, k, nqy

as a function PCDT : NˆNˆNˆN Ñ H taking a code size c, a code weight k, an input bus width n
and a degree of parallelism p to a parallel constant weight to dual rail transcoder PCDTpc, k, n, pq P H

with an input bus of width n followed by an acknowledgment input, and an acknowledgment output
followed by an output bus of width 2rlog2 cs.

488 CHAPTER 14. WORKING ON THE RAILROAD

Pipe dreams

1. What would have to be different about the adder and subtracter
cells shown in Figure 14.1 if they took two operands x and y
instead of just x and a hard wired constant?

2. Is there a cheaper implementation of the full borrow propaga-
tion network cells in Figure 14.7 that avoids using a decision
wait? Is there one for the dual rail toggle in Figure 14.18?

3. What asymptotic latency should we expect from a channel expander (Figure 14.15)
in terms of k and n? Is there any way to speed it up by parallelizing it?

4. Would it be a bigger mistake to make the micropipeline controller too short for the
rest of the parallel transcoder, or too long? Should we infer that shorter micropipeline
controllers refine longer ones, or vice versa? What is the answer according to
Equation 8.34?

5. The original application proposed in [273] for a micropipeline controller pertained
to data paths as elastic pipelines. How could it be modified for use in combination
with an array of decision waits to make a buffered dual rail channel, and when would
such a thing be useful? Is a longer pipeline always a more capable replacement for
a shorter one in that case?

6. Design a parallel dual rail to Sperner transcoder following the pattern of Section 14.4.
(hint: It may be convenient to use expanded form data as an intermediate rep-
resentation and something like the opposite of a channel expander on the back
end.)

7. Figure 14.22 shows a half baked idea for a loadable counter, which takes a number
in dual rail form, engages in that number of handshakes on an active 2Φ port, and
then issues a separate acknowledgment. Design the circuits that belong inside the
cells. Use any number of wires between cells but connect them only to their nearest
neighbors. (hint: Start with a verbal description of the protocol each cell observes.)

8. Is a generalization of the transcoder design in Figure 14.16 involving multidimen-
sional decision waits possible, and if so, what advantage could it have?

9. Suppose the time to transcode a word varies greatly, but transmitting the words out
of order is acceptable. Design load balancing versions of the channel multiplexer
and demultiplexer stages in Figure 14.17 for better performance. (hint: Use arbiters.)

10. Design an arbiter that grants up to a constant number p of concurrent requests,
reducing to an ordinary arbiter for p “ 1. (hint: Use micropipeline controllers.)

11. How about a token ring arbiter made from a busy-waiting circular micropipeline
controller and no more ARB primitives ever: genius or madness?

Part IV
Synthesis

489

Besides black art, there is only
automation and mechanization.

Federico Garcia Lorca

C
H

A
P

T
E

R 15
STATE BASED SYNTHESIS

The theme of circuit synthesis occupying the rest of the book pertains literally to synthesizing circuits
automatically from behavioral descriptions, but also entails a synthesis of concepts from previous
chapters within a common context. From Petri nets
and graph algorithms to transducers and refinement,
it happens that decision waits, arbiters, transcoders,
and some minor players all have a role before this
chapter is through. However, the motivation is not one
of yet more idle theoretical inquiry. Quite the contrary,
the end game should be to forget the theory and get
the job done, but as a start we can try forgetting about
everything but process combinators as introduced in Chapter 5, netlists as defined in Chapter 8, and
an algorithm for obtaining one from the other that suppresses the details.

Constructing such an algorithm unfortunately requires at least some attention to its inner
workings. The specific approach called state based synthesis pursued in this chapter depends on the
transducer model TpX q proposed in Chapter 7 as an intermediate representation between a source
Petri net modeled specification X P D and a target hierarchical block representation Tα

DH
pX q P H in

terms of a transformation Tα
DH

: D Ñ H to be developed presently through a sequence of incremental
improvements. To go end to end from a process level description to a netlist, we would begin
with process combinators as noted above, which directly yield a member of D, and finish with the
transformation THL : H Ñ L as defined by Equation 8.23 to obtain the netlist. These two phases are
taken for granted hereafter.

A word about the limitations of this approach is in order. The most severe limitation is that
the need for a transducer as an intermediate representation restricts this approach to applications
of low to moderate complexity. Obtaining the transducer from a Petri net depends on obtaining
its reachability graph as detailed in Chapter 6, whose computational cost increases steeply with
the size of the Petri net. A further limitation is that even for sufficiently small specifications, the

491

492 CHAPTER 15. STATE BASED SYNTHESIS

ptau, tcuq

ptbu, t f uq

ptbu, teuq ptau, tduq

c
d
e
f

a

b

Figure 15.1: A transducer with two states and two inputs is synthesized using a 2-by-2 decision
wait whose left column is associated with the initial state.

algorithm to be proposed can be outdone by a skilled human designer in some cases. For example,
a behaviorally equivalent dual rail buffer cell to the one in Appendix F could be synthesized easily
enough automatically, but at a higher cost. This limitation is a consequence of the algorithm
being mostly agnostic about the set of primitives, hence unable to make strategic use of a SHUNT

among other things. A third limitation, albeit a minor one, is that the algorithm sometimes opts
for a refinement to the specification rather than an exact behavioral equivalent under certain
unusual circumstances to be noted in Section 15.2.2. A refinement nevertheless is acceptable in an
implementation because it always meets the specification as explained in Chapter 4. In summary,
this method is best viewed as a tool for small non-critical parts of a larger project that affords some
protection against putting human circuit designers out of a job.

The rest of this chapter consists of an intuitive overview of state based synthesis in Section 15.1,
and a derivation of a transducer representation amenable to synthesis in Section 15.2 followed by a
basic but often suboptimal algorithm in Section 15.3. Readers in a hurry can skip Section 15.2.2
if they are concerned only with deterministic processes, and might take away something action-
able even by skipping everything after Section 15.3. An optimizing input stage is discussed in
Section 15.4, and an optimization relevant to single-state transducers follows in Section 15.5. The
chapter concludes in Section 15.6 with an optimization based on decomposing the specification into
concurrent components where possible.

15.1 Overview

Getting state based synthesis exactly right is no mean feat, so it is best dispel any illusions about the
subtleties involved at the outset before even thinking about formal algorithms.

15.1.1 The uncomplicated case

The core idea of state based synthesis is illustrated in Figure 15.1. A planar decision wait has
one row for each input and one column for each state of a transducer representing the process
specification to be implemented. The column associated with the initial state starts with its column
input enabled by a PUSH. When an external input arrives, the decision wait output specific to that

15.1. OVERVIEW 493

m3

m2
pH, tauq ...

¨ ¨ ¨

m3

m2
pH, tauq ...

¨ ¨ ¨

ptbu, tcuq ptbu, tcuq

Figure 15.2: a process that is optionally non-quiescent, left, and an anti-refinement, right, showing
an input-guarded edge and its terminus shifted to the terminus of the other edge

input and the current state drives a FORK whose outputs transmit the appropriate externally visible
acknowledgment and enable the next state, perhaps by way of a MERGE. For example, an input of
b when the system is in the initial state triggers the lower left output on the decision wait, which
causes a FORK to output e and a MERGE to enable the alternative state. The edge labeled ptbu, teuq

from the initial state to the alternative in the transducer model indicates this behavior.

15.1.2 Complications

How is it possible to fill up a whole chapter with such a simple idea? Generalizing from this example
to a realistic state based synthesis algorithm entails various technicalities.

• For most transducers in practice, not every combination of states and inputs is valid. This
issue is addressed for the most part by planar sparse decision waits (Section 11.4), but some
states might not admit any valid inputs at all, which would imply a decision wait with an
empty column unless there is some provision to the contrary, such as omitting the column for
those states.

• Many specifications allow concurrent inputs, but a decision wait can cope with only one row
input at a time. This issue can be resolved only by a front end stage performing the necessary
arbitration (Section 13.4.1) and a transformation to a serialized transducer model along the
lines of Section 7.3.

• Some specifications allow non-deterministic behavior. An implementation in this spirit would
require not just a FORK and MERGE network as shown, but a full transcoder featuring a non-
degenerate randomizing stage (Section 13.5.1).

• Furthermore, how do we know that a should connect to the first input and b to the second on
the circuit generated in Figure 15.1 instead of the other way around, when their effects are not
interchangeable? In practice, a synthesis algorithm requires not just a process specification
but an alphabet ordering as input (Section 8.7.1).

494 CHAPTER 15. STATE BASED SYNTHESIS

15.1.3 Non-quiescent processes

More trouble comes from processes that are not initially quiescent. In the case of an initially non-
quiescent process, the implementation must transmit one or more output signals initially before it
receives any input signals, requiring a PUSH somewhere other than the one shown in Figure 15.1.
Moreover, what are we to make of a process that decides at random whether to be quiescent, such
as the one shown at the left of Figure 7.6, or worse yet, one whose choice is influenced by the
environment, as in Figure 15.2 at the left? As a reminder, the exact protocol specified by the left
process in Figure 15.2 guarantees that the process emits the signal a if the environment waits long
enough, but the environment may also opt to transmit b instead of waiting, in which case the
process may either acknowledge b with c and change to the state labeled m3, or may transmit a
anyway because it has already decided to do so, and then respond to b in whatever way the state
labeled m2 prescribes.

Modified transducers

Deliberately specifying a process to make a non-deterministic
choice about whether to output as in Figure 7.6 may be a bad
idea, but ours is not to question why, and if that were the only
issue, then synthesizing its implementation would pose no more
of a problem than any other non-deterministic output. However,
the issue isolated in Figure 15.2 needs further consideration.
One way to approach it is by transforming the transducer on the
left to the one on the right. By transplanting the input-guarded
outgoing edges from every state to the termini of their unguarded sibling edges (and iterating if
necessary), we obtain a transducer whose every adjacency set contains only one kind of edge or
the other, so that every state is unequivocally quiescent or not. As implied above, only the non-
deadlocked quiescent states would need explicit representation as columns of the decision wait, with
equivalent output effects having been reassigned to their succeeding states by this transformation.

Refinement relationships

It is important to ask whether the transducer modified according to Figure 15.2 still meets the
original specification. If the environment postpones transmitting an input until after it receives
the initial output, then the subsequent behavior of the process is indistinguishable in either case.
However, if the environment transmits an input before receiving an initial output, the effect on
the process specified by the modified transducer is undefined, whereas the original has a required
acknowledgment. A more formal explanation is that xb, cy is a quiescent trace of the original process,
but a divergence of the modified process, whose divergences therefore also include all possible
traces prefixed by xb, cy. In terms of the theory explained in Section 7.4.3, the relational trace set of
the latter is a superset of that of the former, so the original transducer expresses a refinement of the
modified transducer.

A refinement relationship between a specification and its implementation normally would be
acceptable in lieu of equivalence were it not for their roles being reversed, as they are in this case with
the specification refining the implementation. Nevertheless, they are equivalent within a restricted
environment that always withholds further input until after any enabled outputs are observable, and
such an environment is implicit in the back end FORK and MERGE network in Figure 15.1. Because

15.1. OVERVIEW 495

a

yb

x

z

a

b

x

y

z

Figure 15.3: a correct but suboptimal implementation (left) and an irredeemably wrong implemen-
tation (right) of the process in Figure 7.8

a
b

a?
b?

a!
b!

x
y
z

Figure 15.4: vague but potentially correct and optimal implementation of the process in Figure 7.8

an output signal from the decision wait delimits a change in state before reaching the column input
enabling the next state, and because the row input signal is buffered in effect on the wire until then,
the result is the same as if the environment had withheld the input signal until after the change
from the initial state.

15.1.4 Non-deterministically concurrent processes

We are now ready for anything, or so it would seem until we recall the example of Figure 7.8. The
process depicted in the figure must acknowledge an input of a with an output of x and an input of b
with an output of y , but may optionally acknowledge concurrent inputs of a and b with an output of
z. As noted in Section 7.3, the serial transducer derived from it by the algorithm previously proposed
does not in itself faithfully model the original behavioral specification, so an implementation of
the serial transducer in the style of Figure 15.1 even with an arbitrating front end stage would be
incorrect.

A more general method of circuit synthesis is needed to cover this case. One way of implementing
this process would be by a circuit consisting of a wire from a to x , a wire from b to y and a floating
or grounded output terminal for z as shown at the left of Figure 15.3. This implementation meets
the specification in a pedantic sense but never avails itself of the option to output z when the inputs
are concurrent, making it most likely suboptimal in practice. A naive attempt to do better might
lead to something like the implementation on the right of Figure 15.3. This circuit outputs z when
there are concurrent inputs, but also outputs x and y regardless. Worse yet, it diverges whenever
it receives the same input twice unless there is both an intervening receipt of the other input and

496 CHAPTER 15. STATE BASED SYNTHESIS

current next
state input state output

1 a 2 a!
b 3 b!

2 b 4 z
a? 1 x

3 a 5 z
b? 1 y

4 a 2 ´

b 6 b!
a? 1 ´

5 a 7 a!
b 3 ´

b? 1 ´

6 a 8 z
a? 3 ´

b? 4 y

7 b 8 z
a? 5 x
b? 2 ´

8 a 7 ´

b 6 ´

a? 5 ´

b? 4 ´

Table 15.1: state table for the black box in Figure 15.4, with the initial state numbered 1

signals observed on all three outputs. Short of introducing a 5-terminal DI primitive (such as the
RCEL [79]), no amount of tweaking can rescue a design starting down this road.1

Figure 15.4 suggests a more promising approach. Here we envision a device with output
terminals a! and b! wired to inputs labeled a? and b? respectively, so that none of a!, b!, a? or
b? is exposed to the environment. The only externally visible terminals are labeled a, b, x , y and
z. Starting from an initially quiescent state, the device outputs a! if it receives an input on a and
outputs b! if it receives an input on b. (If it ever receives more than one input concurrently, it
arbitrates between them.) If the next input after an output of a! is a?, then it outputs x , and if the
next input after an output of b! is b?, then it outputs y . However, if it receives an input of b after
emitting a! or receives a after emitting b!, then it outputs z. By deliberately creating a race to be
resolved by arbitration between a? and b or between b? and a, the circuit is able to distinguish
between sequential and sufficiently concurrent external inputs of a and b with no deadlocks or
spurious outputs.

1or the author is a monkey’s uncle

15.1. OVERVIEW 497

1

4 5

8

2 3

6 7

ptau, ta!uq ptbu, tb!uq

ptbu, tzuq

pta?u, txuq

ptau, tzuq

ptb?u, tyuq

ptau, Hq

ptbu, tb!uq

pta?u, Hq

ptau, ta!uq

ptbu, Hq

ptb?u, Hq

ptau, tzuq

pta?u, Hq

ptb?u, tyuq

ptbu, tzuq

pta?u, Hq

ptb?u, Hq

ptau, Hqptbu, Hq

pta?u, Hqptb?u, Hq

Figure 15.5: transducer whose state table is listed in Table 15.1

This behavior would be trivial to implement by a 4-way sequencer and a circuit comparable to
the one in Figure 15.1 were it not for a few loose ends. Having transmitted z, the circuit is not fit
to resume its initial state because it must anticipate the input a? or b? still in transit, and usually
ignore it when it arrives. However, if there is a subsequent external input of a following an output of
z and a previous a! yet to arrive on a?, then the circuit must refrain from emitting another a! so as
not to interfere with the one in transit over the wire. Rather than ignoring the next a? in this case,
it can interpret it normally. Similar conditions apply to b, b? and b!, and there are further edge
cases to consider even beyond these. Nevertheless, they are not insurmountable if we enumerate
every possible state carefully as in Table 15.1.

As Figure 15.5 shows, there is no impediment to basing a transducer model on Table 15.1 even
if not every combination of states and inputs is valid, and even if there is not always an observable
output associated with every state transition. The single-state transducer in Figure 7.8 has ballooned

498 CHAPTER 15. STATE BASED SYNTHESIS

a

b

ä

feedback bus

x

y

z

Figure 15.6: implementation of the process in Figure 7.8 based on Figure 15.4 and Table 15.1, with
the left column of the decision wait corresponding to state 1 and the right to state 8

15.2. TRANSDUCER TYPES 499

into eight states, but the issue of non-deterministic concurrency is now resolved and a more specific
description of the circuit in Figure 15.4 in the style of Figure 15.1 is obtained in Figure 15.6.

The complexity of the revised transducer and the synthesized circuit for what is nearly the
simplest possible example of non-deterministic concurrency hints at the awkwardness of attempting
this transformation by hand in general. Instead, we look to incorporate it as a phase of the circuit
synthesis algorithm.

15.2 Transducer types

In a broad outline of state based synthesis, a given transducer
model should be transformed first to the form described in
Section 15.1.3 to cope with non-quiescence, which is called
the anti-refined transducer for the duration of this chapter,
then to a form comparable to Figure 15.6 if necessary to cope
with non-deterministic concurrency, which is called the feedback anti-refined transducer hereafter,
and then transformed at last as depicted in Figure 15.1 to the implementation. A derivation of
the anti-refined transducer follows in Section 15.2.1, and a derivation of the feedback anti-refined
transducer follows in Section 15.2.2.

15.2.1 Anti-refined transducers

To dispense first with a formal account of the transformation illustrated in Figure 15.2 needed as a
prerequisite to state based synthesis, we denote the anti-refined transducer of a process X P D by
AT X to distinguish it from the usual transducer T X defined by Equation 7.12, in terms of a function

AT : D Ñ PpNˆPppPpTq ˆPpTqq ˆNqq

yet to be determined, provided the function yields a transducer with these properties.

• All states are quiescent except possibly the initial state.

• If the initial state is not quiescent, then it has no input-guarded outgoing edges.

• AT X is behaviorally equivalent to T X except possibly in its initially non-quiescent state,
where it is allowed to diverge given any input.

The first point is already guaranteed by definition of the transducer according to Equation 7.8,
which effectively precludes empty input bursts labeling any edges other than those originating from
the initial state. To recapitulate the argument informally, each edge in the transducer g “ T X
labeled by an empty input burst can be transplanted to a predecessor of the edge’s origin while
remaining connected to the same terminus subject to a certain adjustment to the edge’s input and
output burst labels. In some cases the input burst labeling the edge might not be empty after the
edge is transplanted, but if it still is, then it can be transplanted repeatedly until either its input
burst is non-empty or it originates at the initial state.

More formally, let pm, eq P g denote the predecessor vertex of a state n P Rpeq connected to the
state m by an edge ppi, oq, nq P e. Suppose an outgoing edge pp j, kq, lq P pΨ gq n from the state n is
labeled by an empty input burst j “ H. Then an edge ppi, o Y kq, lq would be created directly from

500 CHAPTER 15. STATE BASED SYNTHESIS

the predecessor m of n to the successor l of n with the new label pi, o Y kq derived from the labels
pi, oq on the edge from m to n and pH, kq on the edge from n to l. A transducer

g 1 “ Π
ď

pm,eq P g

tmu ˆ pρ λppi, oq, nq.
ď

pp j,kq,lq P ppΨ gq nqXpptHuˆPpTqqˆNq

tppi, o Y kq, lquq e

containing all edges possible to create in this way is then behaviorally equivalent to the transducer

`

ρ λpm, eq. Π
ď

n PRpeq

tnu ˆ
ď

t P ppΨ g1q nq´pptHuˆPpTqqˆNq

ttu
˘

tp1, pΨ g 1q 1qu

pruned from it by deleting all edges labeled by empty input bursts other than those originating from
the initial state. We can assume without loss of generality that any transducer g “ T X is of this
form.

It remains to effect the transformation illustrated in Figure 15.2. Part of this operation consists
of adding every edge t P e labeled by a non-empty input burst in the adjacency set e of the initial
state to the adjacency set pΨ gq n of every state n P Rpeq connected to the initial state by an edge
labeled by an empty input burst. This change can be made by rewriting the transducer g “ T X to
T0 T X with a function T0 defined as follows.

T0 “ λg.
`

ρ λpm, eq. Π
ď

ppi,oq,nq P e

tnu ˆ ppΨ gq n Y xH,
ď

t P e´pptHuˆPpTqqˆNq

ttuy
δ

H

i
q
˘

tp1, pΨ gq 1qu

The rest of this operation consists of deleting all edges labeled by non-empty input bursts from the
adjacency set of the initial state if there are any edges labeled by empty input bursts. This effect is
achievable by rewriting e to e X s for

s “ ptHu ˆPpTqq ˆN

denoting the set of edges with empty input bursts whenever e X s is non-empty, but leaving e
unchanged otherwise. We therefore define the anti-refined transducer in general as

ATpX q “ pλpI , O, Nq.ΦΠ
ď

pm,eq P T0 T pI ,O,χP Nq

tmu ˆ pλs. xe X s, eyδeXs
H

q pptHu ˆPpTqq ˆNqq X (15.1)

with possible optimizations by Equation 6.12 and Equation 9.7 where applicable.2

15.2.2 Feedback anti-refined transducers

Mapping the single-state transducer in Figure 7.8 to the corresponding feedback anti-refined trans-
ducer in Figure 15.5 is just one instance of a problem tackled more generally in this section as a
necessary prerequisite to state based synthesis of non-deterministically concurrent processes. The
transformation to the feedback anti-refined transducer is reminiscent of the transformation to a
serial transducer described in Section 7.3 in that it reduces every input burst to at most one member,
but more complicated because it entails the creation not only of additional states but additional
input and output symbols (e.g., the symbols a?, a!, b? and b! in Table 15.1). These newly created

2Only local Petri net optimizations by χP are appropriate because converting X to canonical form by χD (Equation 9.10)
would probably waste more effort than it saves.

15.2. TRANSDUCER TYPES 501

symbols are called feedback symbols for the sake of further discussion because they are created
in pairs meant to be wired directly from output terminals to corresponding input terminals on the
result as in Figure 15.4 and Figure 15.6. On the other hand, the transformation is easier insofar
as only the input bursts and not the outputs need to be serialized. Because this transformation is
assumed to be used only within a context of circuit synthesis and not verification, we also allow it to
introduce refinements along the way when doing so is easier than precisely maintaining behavioral
equivalence. These refinements tend to rule out deadlock when it is allowed but not required.
For example, either of the transducers in Figure 7.9 can map to the same feedback anti-refined
transducer because it matters only for the resulting circuit to meet both specifications.

Input burst subsets

This transformation concerns transducers g wherein a vertex pm, eq P g might have an outgoing
edge ppi, oq, nq P e whose input burst i is a proper subset of the input burst on some other member
of the same adjacency set e. We can write pT1 gq m P PpPpTqq for the set of all input bursts meeting
this condition with respect to m with T1 given by

T1 “ λg. λm.
`

λe. DpDpeqq X
ď

ppi,oq,nq P e

Ppiq ´ ti, Hu
˘

pΨ gq m. (15.2)

Feedback symbols

Any input burst i P pT1 gq m requires a dedicated pair of feedback input and output symbols to
represent it in the alphabet of the feedback anti-refined transducer. To avoid clashes between these
synthetic symbols and any already present in the alphabet, we reserve the generic terminals G0´1

plq
and G

0´1
pl ` 1q for this purpose by Equation 8.27 for an ordinal l “ pT2pI , Oq gq i given by

T2 “ λpI , Oq. λg. λi. 2p1 ` maxpt0u Y pµG
0q pGX pI Y Oqqq ` ppµ2 ηq PpIqq0 pµ ηq iq (15.3)

where I , O P PpTq are the input and output alphabets of the process, and η : I � N is a total
injective function of the input alphabet as explained in Section 5.2.3.

Input bursts i outside of pT1 gq m require no feedback because their effect is fully determined
immediately upon receipt. A convenient way to note this distinction is to identify a list H 2 of two
empty sets with input bursts that do not need any feedback, and to identify a list

pµG
0´1

q› xtlu, tl ` 1uy

of two unit sets of generic terminals having ordinals obtained as above with those that do. The
result in either case for a state m and an input burst i of a transducer g with alphabets I and O is
then expressible as

ppT3xT1, T2pI , Oqyq gq pm, iq P PpGq2

in terms of a function T3 given by

T3 “ λt. λg. λpm, iq. pµG
0´1

q› pλk. xH 2, pλl. xtlu, tl ` 1uyq pt1 gq iykq δ
tiu´pt0 gq m
H

. (15.4)

502 CHAPTER 15. STATE BASED SYNTHESIS

State transitions

Relaxation of the requirement for this transformation to preserve behavioral equivalence enables a
succinct behavioral description of the transducer g in terms of a function

T4 “ λg. λm. Ψ
ď

ppi,oq,nq P pΨ gq m

tpi, tpo, nququ (15.5)

whereby ppT4 gq mq i P PpPpTq ˆNq expresses the set of possible output bursts o and successor
states n upon receipt of an input burst i from a current state m, and a function

T5 “ λg. λpm, iq. p
Ť

pDpDppΨ gq mqq ´PpT ´ iqqq ´ i (15.6)

expressing by pT5 gq pm, iq P PpTq the set of acceptable input signals remaining when the transducer
g starting from a state m has already received the set of inputs i. Normally the set of received
inputs does not fully determine the set of acceptable inputs remaining because a transducer having
received a subset of an input burst could commit to a path that prohibits the rest. A transducer that
does the right thing regardless constitutes a refinement of the original specification, which we now
allow as noted previously.

Intermediate representation

Moving on to the matter of building the graph of the feedback anti-refined transducer, we can benefit
by representing it temporarily as a graph of states each encoded by a triple

pm, i, f q P NˆPpTq ˆPpGq

interpreted such that

• m is a state of the original transducer from which the feedback anti-refined transducer is to
be derived

• i is a set of inputs acquired along a path from the state representing m to the state pm, i, f q in
the feedback anti-refined transducer

• and f is a set of feedback inputs assumed to be currently in transit that should be effectively
ignored by the feedback anti-refined transducer in state pm, i, f q.

For example, in state 4 shown in Table 15.1, the feedback input a? is ignored in the sense of having
no observable effect beyond causing a change back to the initial state. For a finite alphabet, the set
these triples is also finite, so a graph of them can be converted subsequently to a transducer with
numerical states as usual. Postponing the details of the conversion for the moment, we stipulate only
that states m of the original transducer be encoded as pm, H, Hq in the intermediate representation.

Adjacency sets

The benefit of this intermediate representation is that it clears a way to infer the whole adjacency
set of any given state pm, i, f q, thereby making it easy to build the graph, subject only to the list of
three functions

t “ xt0, t1, t2y “ xT3xT1, T2pI , Oqy g, T4 g, T5 gy

given by Equation 15.2 through Equation 15.6. As a reminder, for any state m and input burst i,

15.2. TRANSDUCER TYPES 503

• t0pm, iq0 contains the feedback input and t0pm, iq1 the output associated with i, if any

• pt1 mq i contains the pairs po, nq of enabled output bursts and successor states

• and t2pm, iq contains the remaining acceptable inputs after i.

Edges in the adjacency set of a state pm, i, f q fit into five subsets p~ek tq pm, i, f q for k ranging
from 0 through 4.

• Any acceptable input j P t2pm, iq might be the last one needed to complete an input burst
i Y t ju warranting a feedback output l P t0pm, i Y t juq1 and a change to a new state. The
new state is one step further removed from m due to having received inputs i Y t ju and being
prepared to ignore the feedback inputs f Y t0pm, iq0. The possibility of a transition to this
state is indicated by an edge in p~e0 tq pm, i, f q based on

~e0 “ λt. λpm, i, f q.
ď

j P t2pm,iq

ď

l P t0pm,iYt juq1

 `

pt ju, tluq, pm, i Y t ju, f Y t0pm, iq0q
˘(

.

• If the transducer is already in a state pm, i, f q of having received an input burst i associated
with a feedback input l P t0pm, iq0, then the receipt of l indicates an absence of concurrent
input, as in the example of a? in state 2 of Table 15.1. In this case, the transducer should emit
an ordinary output burst o and change to the corresponding successor state pn, H, f q for some
enabled po, nq P pt1 mq i. Edges expressing this behavior are members of p~e1 tq pm, i, f q for

~e1 “ λt. λpm, i, f q.
ď

l P t0pm,iq0

ď

po,nq P pt1 mq i

 `

ptlu, oq, pn, H, f q
˘(

.

• An acceptable input j P t2pm, iq for which the complete input burst iYt ju warrants no feedback
output because t0pm, i Y t juq is empty enables a transition to a state pn, H, f Y t0pm, iq0q

for some po, nq P pt1 mq pi Y t juq that additionally ignores any feedback input in t0pm, iq0
associated with the current state. The transition from state 2 to state 4 in Table 15.1 is an
example of this case, which is covered in general by members of p~e2 tq pm, i, f q as given by

~e2 “ λt. λpm, i, f q.
ď

j P t2 pm,iq

`

λk. xH,
ď

po,nq P ppt1 mq piYt juq

tppt ju, oq, pn, H, f Y t0pm, iq0qquyk

˘

δ
t0pm,iYt juq1

H
.

• An input j P t2pm, iq that is acceptable but not sufficient to complete any input burst i Y t ju
enabling a successor in pt1 mq pi Yt juq nevertheless enables a change to an intermediate state
one step further removed from m with no accompanying output burst. The intermediate state
indicates having received i Y t ju and ignores any pending feedback inputs in t0pm, iq0 as well
as those in f according to an edge belonging to p~e3 tq pm, i, f q for

~e3 “ λt. λpm, i, f q.
ď

j P t2pm,iq

`

λk. xH, tppt ju, Hq, pm, i Y t ju, f Y t0pm, iq0qquyk

˘

δ
pt1 mq piYt juq

H
.

• Finally we allow a transition from any state having a non-empty set f of ignorable feedback
inputs to a similar state having one less based on members of p~e4 tq pm, i, f q with

~e4 “ λt. λpm, i, f q.
ď

l P f

 `

ptlu, Hq, pm, i, f ´ tluq
˘(

.

504 CHAPTER 15. STATE BASED SYNTHESIS

To make use of these definitions for a transducer g, a list t “ xT3xT1, T2pI , Oqy, T4, T5y of three
higher order functions, and a state l “ pm, i, f q of the feedback anti-refined transducer in its
intermediate representation, we might abbreviate a unit set of vertices tpl, equ as

hplq “
 `

l,
4
ď

k“0

~ekpt Ÿ g 3q l
˘(

by Equation 12.3 in terms of a function temporarily denoted h to provide for an expression

pρ λpm, eq.
ď

pb,nq P e

h nq hp1, H, Hq

of the whole transducer obtained as a percolation by Equation 6.4 from the initial state p1, H, Hq,
but perhaps better to summarize as T6xT3xT1, T2pI , Oqy, T4, T5y g in terms of a function

T6 “ λt. λg. pλh. pρ λpm, eq.
ď

pb,nq P e

h nq hp1, H, Hqq λl.
 `

l,
4
ď

k“0

~ekpt Ÿ g 3q l
˘(

. (15.7)

State numbering

Converting the states pm, i, f q in the intermediate representation to natural numbers in the preferred
representation is mostly a matter of mapping each triple to its ordinal with respect to this state
space. This effect is partly achieved by constructing the set of pairs

ppµ ηq i, f q P PpNq ˆPpGq

induced by all subsets of input bursts i P DpDp
Ť

Rpgqqq and all sets of feedback inputs

f P
ď

m PDpgq

ď

i PDpDp
Ť

Rpgqqq

ppT3xT1, T2pI , Oqy gq pm, iqq0

inferred from a transducer g with alphabets I and O by Equation 15.2 through Equation 15.4, which
we can abbreviate as pT7 T3xT1, T2pI , Oqyq g in terms of a function

T7 “ λt. λg.
`

ď

i PDpDp
Ť

Rpgqqq

pµ2 ηq Ppiq
˘

ˆP
`

ď

m PDpgq

ď

i PDpDp
Ť

Rpgqqq

ppt gq pm, iqq0

˘

. (15.8)

In this way, the combination of a pair pi, f q with a function t “ T7 T3xT1, T2pI , Oqy determines a
unique natural number

pt gq0 ppµ ηq i, f q P N

and the combination of t with a triple pm, i, f q determines the unique natural number

m|t g| ` pt gq0 ppµ ηq i, f q

provided m is a state, i is a subset of an input burst, and f is a set of feedback inputs for the
transducer g, based on the total ordering on G stipulated by Equation 8.28. Offsetting this value to

1 ` maxpt0u YDpgqq ` m|t g| ` pt gq0 ppµ ηq i, f q

15.3. BASIC SYNTHESIS 505

prevents it from clashing with any extant state m P Dpgq. Assigning this number to pm, i, f q is
therefore satisfactory in all cases other than i and f both empty, for which Equation 15.7 constrains
the value to the original state m. Covering the latter case as well requires an assignment of

ppT8 T7 T3xT1, T2pI , Oqyq gq pm, i, f q P N

to the state pm, i, f q based on a function

T8 “ λt. λg. λpm, i, f q. x1 ` maxpt0u YDpgqq ` m|t g| ` pt gq0 ppµ ηq i, f q, my
δ

iY f
H

. (15.9)

Summary

Economizing somewhat on an expression of the feedback anti-refined transducer with renumbered
states, let t temporarily denote the list of five functions

t “ xT3xT1, T2pI , Oqy, T4, T5, T6, T8 ˝ T7y

based on Equation 15.2 through Equation 15.9 so that pt4 t0q g : NˆPpTq ˆPpGq Ñ N is the state
renumbering function for a transducer g with alphabets I and O, and

t3xt0, t1, t2y g P PppNˆPpTq ˆPpGqq ˆPppPpTq ˆPpTqq ˆ pNˆPpTq ˆPpGqqqq

is the feedback anti-refined transducer in its intermediate representation as a graph of triples. Then
the anti-refined transducer with numerical states is expressible as pT9 tq g for T9 defined by

T9 “ λt. λg.Φ
ď

pl,eq P t3xt0,t1,t2y g

 `

ppt4 t0q gq l,
ď

pb,nq P e

tpb, ppt4 t0q gq nqu
˘(

with state numbers reduced to more moderate consecutive values and any other optimizations
possible by Equation 6.12. An expression for the feedback anti-refined transducer in terms of a
function

FAT : D Ñ PpNˆPppPpTq ˆPpTqq ˆNqq

parameterized by process X and its anti-refined transducer by Equation 15.1 follows.

FATpX q “ pλpI , O, Nq. T9xT3xT1, T2pI , Oqy, T4, T5, T6, T8 ˝ T7y AT X q X

15.3 Basic synthesis

The simplest practical generalization of the example in Figure 15.1
to unrestricted process specifications consists mainly of the three
stages shown in Figure 15.7.

• The front end serializer stage corresponds to the sequencer in Figure 15.6, and is responsible
for interfacing between the input bus from the environment shown at the left, which may
transmit concurrent signals, and a 1-hot channel to the middle stage. Each concurrent input
requires an acknowledgment from the back end controller stage before the serializer allows
the next one through.

506 CHAPTER 15. STATE BASED SYNTHESIS

SE b pTT αq g pCTL αq gä

| Î g|

ä

T̂ g

ä

|Ô g|

ä

|Ŝ g|

ä

|Â g|

ä

| Î g|

Figure 15.7: A basic state-based synthetic circuit pΩαm f
α
mq g implementing a feedback anti-refined

transducer g consists of a serializer, a transition table, and a controller block, where α P T
˚ is an

alphabet ordering and b P PpNq˚ is a list of sets of sequencer input indices.

• The middle transition table stage corresponds to the decision waits in Figure 15.1 and Fig-
ure 15.6, with at most one column for each state of the feedback anti-refined transducer g,
and a PUSH to the column of the initial state if the process specification is initially quiescent.

• The back end controller stage is responsible for transmitting the outputs to the environment
associated with each state change, selecting the next state on the transition table stage, and
acknowledging the input to the serializer stage if it is one of several concurrent inputs. The
controller consists mainly of a transcoder taking a 1-hot bus from the decision wait as input,
but may also have a PUSH on an additional line if the process specification is not initially
quiescent.

Not shown in Figure 15.7 is the feedback bus indicated in Figure 15.4 and Figure 15.6. For processes
whose feedback anti-refined transducer g “ FAT X entails no alphabet symbols other than those of
the anti-refined transducer AT X , the feedback bus is absent and the whole implementation reduces
to Figure 15.7. In any case, we can postpone the discussion of the feedback bus and related details
while focusing momentarily on these basic building blocks.

In addition to a process X “ pI , O, Nq P D determining the transducer g “ FAT X to be imple-
mented, the synthesis algorithm is parameterized by an alphabet ordering α P T

˚ satisfying

@a P I Y O. |α � tau| “ 1

as usual, meaning that every member of the input and output alphabets appears exactly once in
α. The alphabet ordering is needed to associate each terminal on the circuit with a corresponding
alphabet symbol. The first input symbol in α corresponds to the first input terminal on the circuit,
the second symbol to the second terminal, and so on. The output terminals are ordered similarly.

The derivation of a transformation from a process X P D to a circuit proceeds in part from a
decomposition function

fαm : PpNˆ ppPpTq ˆPpTqq ˆNqq Ñ PpNq˚

induced by the alphabet ordering α and taking the transducer g “ FAT X to a list

b “ fαm g P PpNq˚

to keep a record of the possible ways the specification allows signals to arrive concurrently. Each
term of b corresponds to a sequencer in an array implementing the serializer as shown in Figure 15.8,

15.3. BASIC SYNTHESIS 507

ää

ää

...

¨ ¨ ¨

ä ä |r0||r|r|´1|

|r0|

|r|r|´1|

ä

| 85 b| ´ | 85 r|

| 85 r|

$

’

’

’

’

&

’

’

’

’

%

...

loomoon

| 85 r|

...

Figure 15.8: The front end serializer SE b in Figure 15.7 is made from sequencers and a bus, where
r is given by Equation 15.13.

such that the ordinals with respect to α of any two inputs that can arrive concurrently belong to the
same term.

To give a complete account of the basic circuit synthesis algorithm, Section 15.3.1 defines the
decomposition function explicitly, Section 15.3.2 defines the three main building blocks shown in
Figure 15.7, and Section 15.3.3 incorporates them into a combining form Ωαm enabling an expression
of the result as pΩαm f

α
mq FAT X P H for most valid process specifications X . To conclude, certain

ill-conceived specifications featuring unsafe or unused inputs and outputs are addressed and the
feedback bus is incorporated if necessary in Section 15.3.4.

15.3.1 Decomposition

To continue on the subject of unsafe inputs momentarily, a set Î g P PpTq would be more indicative
than the input alphabet I of the process X “ pI , O, Nq of the required bus widths in the circuit if it
were to contain only the input symbols that actually label an edge somewhere in the transducer
g “ FAT X . It is given by

Î “ λg.
Ť

D
`

D
`
Ť

Rpgq
˘˘

(15.10)

and can differ from I not only due to the presence of feedback inputs, but due
to inputs that are always unsafe. Normally the latter would be unintended,
so a formal distinction between I and Î g is worth preserving conspicuously.
The set Ô g P PpTq is analogous,

Ô “ λg.
Ť

R
`

D
`
Ť

Rpgq
˘˘

(15.11)

where members of O ´ Ô g would be the outputs that are never used because the designer forgot
about them.

508 CHAPTER 15. STATE BASED SYNTHESIS

More memorable perhaps is the current campaign to derive a decomposition b “ fαm g specifying
the concurrency of the feedback anti-refined transducer g as mentioned above. The complementary
problem to transforming a specification into a transducer with no more than one member in
each input burst is that of embedding the result in an environment that serializes any possible
concurrent inputs to it. One way of preventing any signals from reaching it concurrently would be
to interpose a sequencer as a front end between the process and its original environment. According
to the definition in Section 13.4.1, the sequencer requires each signal that passes through to be
acknowledged individually, so the process need never receive more than one at the same time.

This approach would be effective but may be more costly than necessary. If the process specifi-
cation does not mandate any particular response to concurrent inputs, then there is no reason to
guard against them. Its behavior is undefined when inputs are concurrent, so nothing an implemen-
tation might do in that event can violate the specification however surprising. On the other hand,
if a process has a large number of inputs with concurrency prohibited
among most of them but allowed on a small subset, then it would
be correct and less costly to route only that small subset of inputs
through a small sequencer and let the rest interface directly with the
external environment. The ideal solution is the least costly one that
meets any specification along this spectrum. Even if every input is
concurrent with another, a solution using multiple small sequencers
is preferable to a solution using a single large one if it exists.

Obtaining the best solution requires some knowledge of the
combinations of concurrent inputs the process specification allows.
Knowing that two signals can arrive concurrently enables us to route
both through a common sequencer as shown in Figure 15.8. Moreover, even if a given pair of
signals can never arrive concurrently, they are inevitably bound to pass through the same sequencer
if there is a third signal with which either of them can be concurrent at different times. In more
mathematical terms, we seek a partition on the input alphabet induced not by a relation of mutual
concurrency between pairs of inputs but by the transitive closure of this relation.

Although no input bursts in the feedback anti-refined transducer g “ FAT X contain multiple
signals, we can infer that an input i is allowed according to the original specification AT X to appear
concurrently with another input j if there is an edge pptiu, Hq, nq in

Ť

Rpgq terminating at some
state n wherein j is enabled, and crucially the edge is labeled by an empty output burst. The
concurrent inputs would be given in general by the function

λi.
ď

pb,nq P p
Ť

RpgqqXpptiuˆtHuqˆNq

ď

pp j,kq,lq P pΨ gq n

t ju

of an arbitrary input i P Î g. All members of an input burst b P Pp Î gq are concurrent at a minimum
with any members of the set

pρ λi.
ď

n PRpp
Ť

RpgqqXpptiuˆtHuqˆNqq

ď

pp j,kq,lq P pΨ gq n

t juq b

obtained by traversing all succeeding edges labeled by empty output bursts, and all sets of sets
of mutually concurrent inputs are obtained by mapping a related function over all input bursts
b P DpDp

Ť

Rpgqqq.

pµ ρ λi.
ď

n PRpp
Ť

RpgqqXpptiuˆtHuqˆNqq

ď

pp j,kq,lq P pΨ gq n

t juq DpDp
Ť

Rpgqqq

15.3. BASIC SYNTHESIS 509

In anticipation of synthesizing the circuit, it is more convenient to refer to the numerical ordinals of
the inputs relative to the alphabet ordering α than their symbols, which are obtained by

pµ2 pα � Î gq´1q pµ ρ λi.
ď

n PRpp
Ť

RpgqqXpptiuˆtHuqˆNqq

ď

pp j,kq,lq P pΨ gq n

t juq DpDp
Ť

Rpgqqq

and to simplify this collection of sets to a partition by eliminating redundant subsets.

pλt. t ´
ď

s P t

Ppsq ´ tsuq pµ2 pα � Î gq´1q pµ ρ λi.
ď

n PRpp
Ť

RpgqqXpptiuˆtHuqˆNqq

ď

pp j,kq,lq P pΨ gq n

t juq DpDp
Ť

Rpgqqq

Finally, to transform this partition to a lexicographically ordered list fαm g P PpNq˚ of equivalence
classes of input ordinals, we have the decomposition function

fαm “ λg.
`

pλt. t ´
ď

s P t

Ppsq ´ tsuq pµ2 pα � Î gq´1q pµ ρ λi.
ď

n PRpp
Ť

RpgqqXpptiuˆtHuqˆNqq

ď

pp j,kq,lq P pΨ gq n

t juq DpDp
Ť

Rpgqqq
˘0´1

.

(15.12)

15.3.2 Building blocks

Working toward the construction of a combining form Ωαm capturing the basic synthesis method
illustrated in Figure 15.7, we tackle the serializer, transition table, and controller block definitions
in this section.

Serializer

The serializer consists of an array of sequencers with a multi-way
MERGE connected to the acknowledgment input on each, and an
individual bus line for each input that is never concurrent with
any other. The sequencers and the bus are possible to express
concisely in terms of a list b “ fαm g given by the decomposition derived above. Each term h P Rpbq

with |h| ą 1 calls for a sequencer SEQ |h|, but each singleton set h indicates only a wire I. Hence the
whole array given by the fold

pbZI λph, tq. xRpSEQ |h| å 1, tq ä 1,RpI, tqy
δ

|h|

1
q b

with inputs rolled as shown aggregates the sequencer request inputs ahead of the acknowledgments
following in reverse order. A permutation

p “ p85 bq´1 P N
˚

specifying matching front and back permutation networks on a block

p ¸ pbZI λph, tq. xRpSEQ |h| å 1, tq ä 1,RpI, tqy
δ

|h|

1
q b ˙ p

arranges the requests and acknowledgments according to the alphabet ordering α regardless of
their particular concurrency relationships. We still need to construct the MERGE network for the

510 CHAPTER 15. STATE BASED SYNTHESIS

acknowledgments, but at least the requests and grants are covered by a block denoted SRG b P H in
terms of a function SRG : PpNq˚ Ñ H given by

SRG “ λb. pλp. p ¸ pbZI λph, tq. xRpSEQ |h| å 1, tq ä 1,RpI, tqy
δ

|h|

1
q b ˙ pq p 85 rq´1.

The acknowledgment signals feeding back from the controller in Figure 15.7 to the serializer
funnel through a MERGE network featuring one multi-way MERGE for each sequencer. As noted
above, not every term in h P Rpbq corresponds to a sequencer, only the terms h P Rprq with

r “ 5 pλs. xsy « δ|s|
1 q› b P PpNq˚ (15.13)

being the sublist whose terms each contain more than one element. The MERGE network, which
could be empty, follows as

pbZI Rq pλh. MERGE |h|q› r

but its inputs need reordering by a permutation network for consistency with the rest of the serializer,
whose inputs are arranged according to their ordinals in b. A permutation derived from a flattening
of r

pRp 85 rq0q› 85 r P N
˚

renumbers 85 r to obtain a bijection as required while otherwise preserving its order. A network
that receives the serializer acknowledgments is expressible in terms of a function SA : PpNq˚ Ñ H

defined by
SA “ λr. ppRp 85 rq0q› 85 rq´1 ¸ pbZI Rq pλh. MERGE |h|q› r

as SA r P H on behalf of the serializer SE b P H defined in terms of a function

SE “ λb. pλr. pZ|r|RpSA r, SRG bqq ä |85 r|q 5 pλs. xsy « δ|s|
1 q› b. (15.14)

Each MERGE output from SA r connects to the corresponding sequencer acknowledgment input in
SRG b, and the acknowledgment inputs are rolled to a position following the requests.

Transition table

The next block in the construction, the transition table, is mostly a planar sparse decision wait
possibly with a PUSH attached, whose coordinates encode the input feedback anti-refined transducer
model of the process being implemented.

A good start is to observe from Figure 15.1 and the related discussion that each edge in the
transducer graph corresponds to a unique output terminal on the decision wait. The columns
correspond roughly to the states in the transducer and the rows to the inputs. Any given column
exhibits an output terminal for each input-labeled outgoing edge from the corresponding state,
whose row coordinate is determined by the input labeling the edge. Hence the number of rows in
the decision wait is precisely | Î g|.

Similar precision as to the number of columns would be useful. Following the transformation
illustrated in Figure 15.2, any non-quiescent state is left with no input-labeled outgoing edges, so if
there were exactly one column for each state m P Dpgq, the column for each non-quiescent state
would exhibit no output terminals. The same would be true of any deadlocked state. However,
decision waits of this form are disallowed in Section 11.1.4. As suggested previously, we have to
insist on restricting the columns to non-deadlocked quiescent states m P Ŝ g by

Ŝ “ λg. D
`

tpm, eq P g |
Ť

DpDpeqq ‰ Hu
˘

(15.15)

and abide by whatever implications follow.

15.3. BASIC SYNTHESIS 511

Normally when the circuit executes a change of state, the
controller block yet to be specified is expected to transmit a
signal to the decision wait enabling the column representing the
succeeding state, but this action is impossible if the succeeding
state m P Dpgq ´ Ŝ g corresponds to no column in the decision
wait. Designing the controller with one less output poses no
problem, but where does that leave the rest of circuit? There are
three cases to consider.

1. For a deadlocked succeeding state (one with no outgoing edges at all), the decision wait would
block any further progress because no column would be enabled, even if another signal were
to arrive on a row input. Although this behavior is perhaps undesirable in itself, it conforms
nicely to that of a deadlocked transducer, so all is well.3

2. A non-quiescent successor would be problematic, but it is reasonable to ignore this possibility
because a transducer constructed according to Section 7.2.2 and Section 15.2.1 can not have
a non-quiescent state except for the initial state. Any incident edge on a non-quiescent state
would be rewritten to bypass it, making it unreachable and subject to pruning unless it is the
initial state.

3. For a non-quiescent initial state, this same lack of predecessors means it is never reached
again through any state transition during subsequent operation. In this case, the controller
can be designed to begin by actively enabling a successor to the initial state and emitting the
outputs associated with an initial state transition.

The conclusion is that we can implement the transition table with one column for each member of
Ŝ g as if those were the only states, and that even the initialization by a PUSH can be omitted if the
initial state is not among them.

Decision wait Recalling that a planar sparse decision wait is specified by a set c P PpN2q of points
each having a row and a column coordinate, we have for each state m P Ŝ g and each input symbol
r P

Ť

DpDpeqq indicated by the adjacency set e in pm, eq P g the list of two coordinates

xpα � Î gq´1 r, pŜ gq0 my

where pα � Î gq´1 r gives the row number in terms of the input symbol r by its position within
the alphabet ordering α, and pŜ gq0 m gives the column number in terms of the state m relative
to the other quiescent non-deadlocked states in Ŝ g. A sparse decision wait s “ SDW c P H is then
expressible in terms of the set of points

c “
ď

pm,eq P gXppŜ gqˆRpgqq

pµ λr. xpα � Î gq´1 r, pŜ gq0 myq
Ť

DpDpeqq (15.16)

by any of Equation 11.12, Equation 11.14, or Equation 11.36 depending on how sophisticated one
wants to be about sparse decision wait decomposition strategies. It would also suffice to write
pm, eq P g in place of pm, eq P g X ppŜ gq ˆ Rpgqq in this expression because

Ť

DpDpeqq is empty
when m is not a member of Ŝ g.

3Technically it amounts to a refinement because the transducer in this state diverges upon further input whereas the
circuit typically can be shown to deadlock at least initially, but an implementation that refines its specification is acceptable.

512 CHAPTER 15. STATE BASED SYNTHESIS

next state acknowledgeable input transitional outputs

|Ŝ g|
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

|Â g|
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

|Ô g|
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

0

Figure 15.9: positions, widths, and meanings of the three fields in the controller’s output bus format,
with line number 0 at the left

Initialization In the usual case of an initially quiescent process, the decision wait needs a PUSH

in series with the column input corresponding to the initial state to make up the transition table.
Whenever the condition 1 P Ŝ g holds, meaning state number 1 is quiescent, that column would be
numbered pŜ gq0 1, and the input terminal on the decision wait for that column would be numbered

i “ | Î g| ` pŜ gq0 1

to offset it by the number of rows | Î g|, for an overall transition table

FxPUSH, s ä iy å i P H

in this case or
pλk. xs, pλi. FxPUSH, s ä iy å iq p| Î g| ` pŜ gq0 1qykq δ

t1u´Ŝ g
H

P H

to cover the unusual case 1 R Ŝ g where no PUSH is needed. If we regard the conditional combination
with a PUSH as a transformation TTI g from a decision wait s to an initialized transition table in
terms of a function

TTI “ λg. λs. pλk. xs, pλi. FxPUSH, s ä iy å iq p| Î g| ` pŜ gq0 1qykq δ
t1u´Ŝ g
H

(15.17)

then an expression pTT αq g suffices for the transition table block in terms of the alphabet ordering
α, the serialized transducer g, and a function defined as follows.

TT “ λα. λg. pTTI gq SDW
ď

pm,eq P g

pµ λr. xpα � Î gq´1 r, pŜ gq0 myq
Ť

DpDpeqq (15.18)

Controller

The controller block outputs a word in three fields as shown in Figure 15.9, with one field for each
of the transition table, the serializer, and the external environment. The first has a width of |Ŝ g|

bus lines so that there is one line for each column of the decision wait in the transition table by
Equation 15.15, and carries a 1-hot code. The next field consists of |Â g| lines for Â defined by

Â “ λg. pλp.
ď

cPp

xc, Hy
δ

|c|

1
q pλt. t ´

ď

sPt

Ppsq ´ tsuq pµ ρ λi.
ď

pb,nqPp
Ť

RpgqqXpptiu,HqˆNq

ď

pp j,kq,lqPpΨ gq n

t juq DpDp
Ť

Rpgqqq (15.19)

15.3. BASIC SYNTHESIS 513

where Â g P PpTq can be viewed as the subset of “acknowledgeable” symbols in the input alphabet.
This set is restricted to inputs that are allowed by the specification to arrive concurrently with
other inputs, and are therefore made to pass through a sequencer in the serializer block, which
then requires acknowledgment from the controller to enable further progress. Members of Â g
are inferred from the feedback anti-refined transducer g similarly to the decomposition defined by
Equation 15.12, but are independent of any the alphabet ordering (cf. Equation 15.13). This field
by itself is also a 1-hot code. The last field covers |Ô g| bus lines transmitting output signals either
sequentially or concurrently to the external environment.

The controller is more complicated than the other blocks in this construction so its derivation is
divided into several parts.

Transcoders A simple approach to the controller is to regard it primarily as an instance of a
transcoder design problem and to rely on the solution given by Equation 13.22. It is not entirely a
transcoder because it may need an additional PUSH if the specification to be implemented is not
initially quiescent, but we may focus on the transcoding aspect of it for the moment.

Equation 13.22 provides an algorithm to generate a transcoder circuit from a set of pairs of
input and output code words, so the current problem needs to be cast in those terms. Because the
channel from the decision wait in the transition table to the controller transmits only one signal
at a time, the input code is naturally a 1-hot code, with each input code word therefore a unit set.
Because concurrent outputs may be needed, each output code word is a union of three sets, with
one for each field illustrated in Figure 15.9. More specifically, each edge ppi, oq, nq P

Ť

Rpgq in the
transducer graph determines a particular pair of input and output code words.

• The input word is the unit set containing the ordinal of that edge relative to the other edges
according to the alphabet ordering, because this ordinal is the position of the output terminal
on the decision wait in the transition table that issues the signal associated with the edge.

• The output word contains a number derived from the successor state n in the first field but
only if n is a member of Ŝ g, and a number derived from i in the second field offset by with
width of the first field, but only if i is a non-empty subset of Â g, with either or both fields
being empty otherwise. The last field contains all output ordinals derived from o offset by the
widths of the first two fields.

Points As an intermediate step toward transforming the set of edges in a transducer to the set of
pairs describing the transcoder circuit, we can transform it to a set s of points p P N

2 with

s “
ď

pm,eq P g

pµ λi. xpα � Î gq´1 i, myq
Ť

DpDpeqq

similar to the coordinate points in Equation 15.16 used to specify the decision wait in the transition
table, but with absolute state numbers m retained. Each point p “ xp0, p1y P s has a value of p0
matching the ordinal of an input alphabet symbol labeling an edge originating from a state m “ p1.
If the process specification is not initially quiescent, meaning the initial state 1 is not a member of
Ŝ g because no inputs are enabled in it, then we should manually include x| Î g|, 1y as an extra point
representing the non-input ordinal | Î g| and the initial state, which would otherwise be omitted,
and denote the set pM0 αq g P PpN2q as given by

M0 “ λα. λg.
`

λs. s Y pt| Î g|u1 q pt1u ´ Ŝ gq1q
˘

ď

pm,eq P g

pµ λi. xpα � Î gq´1 i, myq
Ť

DpDpeqq.

514 CHAPTER 15. STATE BASED SYNTHESIS

Words Part of the problem of identifying an edge in the transducer with a pair of words for the
transcoder is now readily solved by identifying each point p P pM0 αq g with a pair whose input word
is the unit set tppM0 αq gq0 pu, a well defined value consistent with the output terminal ordering on
the transition table block. However, a corresponding output word remains to be expressed. Usually
the output word depends on an edge ppi, oq, nq P e in the adjacency set e “ pΨ gq p1 whose input
burst i contains the input symbol whose ordinal is p0. There can be more than one such edge if the
process specification is non-deterministic, giving rise to multiple pairs with the same input word,
which Equation 13.22 allows in a transcoder specification. Usually the set of these edges would be

ppttpα � Î gqp0
uu ˆPpTqq ˆNq X e

when p1 is a a member of Ŝ g. In the unusual case of a non-quiescent initial state p1 “ 1 R Ŝ g,
there is an output word corresponding to every edge ppH, oq, nq P e. The result in either case is
expressible as ppM1 αq gq p for M1 defined as follows.

M1 “ λα. λg. λp. pptpλi. xH, tpα � Î gqp0
uyiq δ

tp1u´Ŝ g
H

u ˆPpTqq ˆNq X pΨ gq p1

Fields A transcoder specification associating an input word
tppM0 αq gq0 pu with an output word derived from a list xn, p0, oy

for every edge ppi, oq, nq P ppM1 αq gq p would now seem a step
closer, because it has the correct next state n, input p0, and out-
puts o to make up the fields on the bus shown in Figure 15.9, but
some technicalities remain.

• The next state n must be suppressed if it is not a member of Ŝ g because there is no column
for it in the transition table, and if it is a member of Ŝ g then it must be transformed to the
column number pŜ gq0 n.

• Similarly, the input p0 must be suppressed if its not acknowledgeable, meaning i is not a
subset of Â g, and must be transformed to its ordinal with respect to those of the rest of the
acknowledgeable inputs otherwise.

• The output symbols in o must be converted to their ordinals with respect to α � Ô g.

• Both the input p0 and the ordinals of the outputs in o must be offset by the widths of the
preceding fields on the bus.

An output word containing the subset pµ pŜ gq0q ptnu X Ŝ gq in place of n addresses the first point,
also expressible as p f Ŝ gq n for

f : PpNq Ñ pN Ñ PpNqq

defined temporarily as f “ λh. λ j. pµ h0q pt ju X hq. The second point is remedied similarly by

f ppµ pα � Î gq´1q Â gq p0

and the third by rewriting o to pµ pα � Ô gq´1q o in the result ppM2 αq gq Ÿ xn, p0, oy P PpNq3 by
Equation 12.3 with M2 defined by

M2 “ λα. λg. pλ f . x f Ŝ g, f ppµ pα � Î gq´1q Â gq,µ pα � Ô gq´1yq λh. λ j. pµ h0q pt ju X hq.

15.3. BASIC SYNTHESIS 515

The required offsets noted in the last point above and the union of the three fields to a single output
word are effected by writing

Ť

RppM3 gq Ÿ ppM2 αq gq Ÿ xn, p0, oyq P PpNq

with the list of three functions pM3 gq P pPpNq Ñ PpNqq3 defined according to

M3 “ λg. pλw. µ λt. w ` tq› x0, |Ŝ g|, |Ŝ g| ` |Â g|y

offsetting the second and third fields respectively by |Ŝ g| and |Ŝ g| ` |Â g|. With both the input and
the output word in each pair required by the transcoder specification derived above, an expression
for the whole transcoder amounts to

t “ TC M4pxM0 α, M1 α, M2 α, M3y Ÿ g 4q P H (15.20)

in terms of a function M4 combining each input word with its respective output words based on a
definition

M4 “ λm.
ď

p P m0

ttm0
0 puu ˆ pµ λppi, oq, nq.

Ť

Rpm3 Ÿ m2 Ÿ xn, p0, oyqq m1 p.

Initialization While Equation 15.20 defines the whole transcoder, it does not necessarily conclude
the construction of the controller block. As noted previously, initially non-quiescent processes require
special provisions. The extra member x| Î g|, 1y P pM0 αq g in the case of an initially non-quiescent
process, being its lexicographic maximum, creates an extra terminal reserved for this situation
in the last position on the transcoder’s input bus. An input signal applied to this terminal causes
the transcoder to emit the output signals o associated with an arbitrarily selected outgoing edge
ppH, oq, nq from the initial state and to enable the column numbered pŜ gq0 n on the transition table.
Because this turn of events should take place when the circuit is powered up with no prompting
from the environment, it is appropriate to drive the last input terminal on the transcoder with a
PUSH, even if there is nothing in particular to drive the PUSH. A circuit of this form derived from the
transcoder t is given by

LxZ2RpFORK, PUSHq, ty

where one of the outputs from the FORK feeds back to the input to avoid letting it float. Formally
mapping a transcoder to a controller block by a transformation CTLI g : H Ñ H analogous to
Equation 15.17 entails a definition along the lines of

CTLI “ λg. λt. pλk. xt,LxZ2RpFORK, PUSHq, tyykq δ
t1u´Ŝ g
H

which leaves the parameter t representing the transcoder by Equation 15.20 unchanged if the
specification is initially quiescent as indicated by the condition 1 P Ŝ g. With that we can write the
complete definition of the controller block as

CTL “ λα. λg. pCTLI gq TC M4pxM0 α, M1 α, M2 α, M3y Ÿ g 4q. (15.21)

516 CHAPTER 15. STATE BASED SYNTHESIS

15.3.3 Combining form

Putting the three building blocks together into the circuit as shown in Figure 15.7 is fairly straight-
forward aside from providing for an anomaly noted below. A serializer SE b by Equation 15.14 and
a transition table pTT αq g by Equation 15.18 combine into a block

F| Î g|xSE b, pTT αq gy

which combines in turn with a controller pCTL αq g by Equation 15.21

u “ CT̂ gxF| Î g|xSE b, pTT αq gy, pCTL αq gy (15.22)

in terms of a bus width T̂ g P N from the transition table to the controller given by a summation

T̂ “ λg.
ÿ

m P Ŝ g

| pΨ gq m|

of the adjacency set cardinality | pΨ gq m| of each state m P Ŝ g, this being the number of outputs
from the decision wait in the column numbered pŜ gq0 m. The feedback paths from the controller
to the serializer and the transition table are buses of widths |Â g| and |Ŝ g| respectively given by
Equation 15.19 and Equation 15.15, so that the whole combination folds together into pM5 gq u as
given by

M5 “ λg. λu. pbu λpl, rq. ZlppZlRpr, Ilqq ç lqq x|Â g|, |Ŝ g|y

connecting the first output bus to the last input bus twice on the block u derived in Equation 15.22
above. We can summarize this combination as

x “ ppM6 M5q gq pSE b, TTα, CTLαq (15.23)

with M6 defined by

M6 “ λm. λg. λps, t, cq. pm gq CT̂ gxF| Î g|xs, t gy, c gy

leading to a satisfactory definition of a combining form

Ωαm “ λd. λg. ppM6 M5q gq pSE d g, TT α, CTL αq (15.24)

whereby a state based synthetic implementation pΩαm f
α
mq g P H is expressible in terms of the

decomposition given by Equation 15.12 and a feedback anti-refined transducer g “ FAT X for a
process specification X P D.

15.3.4 Loose ends

A circuit of the form pΩαm f
α
mq g exposes an interface to its environment based on input and output

alphabets inferred from the feedback anti-refined transducer g “ FAT X by Equation 15.10 and
Equation 15.11, but these alphabets Î g and Ô g might not match the alphabets I and O of the
process X “ pI , O, Nq. One way Î g could differ from I is by omitting inputs i P I ´ Î g that are
mentioned in I but never appear anywhere in the transducer. As explained in Section 5.3.4, these
inputs could be due to an error by the designer and are interpreted as input terminals that exist on
the circuit but are never safe to use. The analogous error of outputs in O ´ Ô g indicates that they

15.3. BASIC SYNTHESIS 517

never transmit a signal (unless maybe the system diverges due to an unsafe input, in which case all
bets are off). A correct implementation of the process X should take these symbols into account if
for no other reason than to ensure the errors are noticed.

Another way the feedback anti-refined transducer alphabet might differ from the process alphabet
is by the presence of feedback signals created during the course of the transformation described
in Section 15.2.2. Each member of p Î FAT X q ´ Î AT X is a feedback input representing a terminal
meant to be connected to one represented by a corresponding member of pÔ FAT X q ´ Ô AT X and
not exposed to the environment. A correct implementation of the process X must incorporate these
connections through a feedback bus to meet the specification.

Feedback bus

With regard to the latter issue, let F̂ X P PpGq2 denote the feedback inputs and outputs inferred
from a process X P D in a list of two sets according to

F̂ “ λX . pλ f . p f FAT X q ´ f AT X q› x Î , Ôy.

To connect the feedback outputs pF̂ X q1 to the feedback inputs pF̂ X q0 on a synthesized circuit, we
need to know the positions of their terminals, which depend on the alphabet ordering. However,
an alphabet ordering α for X need not mention any of the feedback symbols in

Ť

RpF̂ X q at all, so
we have to improvise an extended alphabet ordering that puts them where we can find them. An
alphabet ordering prefixed by the feedback outputs in their lexicographic order

pF̂ X q0
1

´1

followed by a list excluding the feedback symbols of X in the order originally specified by α

α �T ´
Ť

RpF̂ X q

followed by the feedback inputs in reverse lexicographic order

pbε λph, tq. t q xhyq pF̂ X q0
0

´1

as given by M7pα, X q P T
˚ according to

M7 “ λpα, X q. 5
@

pF̂ X q0
1

´1
,α �T ´

Ť

RpF̂ X q, pbε λph, tq. t q xhyq pF̂ X q0
0

´1D

means a circuit synthesized as
pΩa

m f
a
mq FAT X

with Ωa
m and fa

m notably parameterized by a “ M7pα, X q instead of α, has an input bus arranged
with the ordinary input symbols preceding the feedback input symbols in reverse order, and an
output bus carrying the feedback output symbols followed by the ordinary output symbols. This
arrangement makes it easy to express the synthesized circuit complete with its feedback bus as

Z|pF̂ X q0| pΩa
m f

a
mq FAT X

because it has the first |pF̂ X q0| “ |pF̂ X q1| outputs on pΩa
m f

a
mq FAT X connected the last inputs on it

in the right order to match each feedback output with the corresponding feedback input.

518 CHAPTER 15. STATE BASED SYNTHESIS

Useless terminals

To complete the synthesized circuit with additional terminals accounting for any alphabet symbols
not appearing in the transducer, we could make a list of three sets

l “ xI , Î g, p Î FAT X q ´ Î AT X y P PpTq3

in reference to a process X “ pI , O, Nq P D and a transducer g “ FAT X so that the two-item list

xl1 ´ l2, l0 ´ l1y “ xp Î gq ´ ppFAT X q ´ Î AT X q, I ´ Î gy P PpTq2

contains the set of useful (non-feedback) input alphabet symbols as its first term and the set of
unsafe or useless inputs as its second term. A list of analogous results for both input and output
alphabet symbols

pλl. xl1 ´ l2, l0 ´ l1yq› xxI , Oy, x Î g, Ô gy, F̂ X yᵀ P pPpTq2q2

in combination with an alphabet ordering α for X indicates the terminal numbers

pλl. pµ pα � l0qq´1› xl1 ´ l2, l0 ´ l1yq› xxI , Oy, x Î g, Ô gy, F̂ X yᵀ P pPpNq2q2

required for each set of symbols on the resulting circuit, expressible more succinctly as M8pX , gq α
in terms of a function

M8 “ λpX , gq. λppI , O, Nq. λα. pλl. pµ pα � l0qq´1› xl1 ´ l2, l0 ´ l1yq› xxI , Oy, x Î g, Ô gy, F̂ X yᵀq X .

In other words, for a list m “ M8pX , gq α P pPpNq2q2, we have useful input ordinals m00 P PpNq,
useless inputs m01, useful outputs m10, and useless outputs m11.

Enhancing any circuit x P H with |m01| additional useless inputs and |m11| additional useless
outputs is a straightforward matter of embedding it in a booby trap

pbRq xx , pZ2RpPUSH, JOINqq|m01|, pZ FORKq|m11|y P H

which diverges when a signal is received on any of its last |m01| input terminals, and otherwise
never transmits a signal on any of its last |m11| outputs (cf. Figure 11.1 and Figure 15.3). If we have

x “ Z|pF̂ X q0| pΩa
m f

a
mq FAT X

with a “ M7pα, X q as proposed above, then p 85 m0q´1 and p 85 m1q´1 with m “ M8pX , gq α specify
the permutation networks by Equation 11.2 needed for the block pM9 mq x to implement X under
an alphabet ordering α based on a definition of

M9 “ λm. λx . p 85 m0q´1 ¸ pbRq xx , pZ2RpPUSH, JOINqq|m01|, pZ FORKq|m11|y ˙ p 85 m1q´1. (15.25)

Hence it might be helpful to define a comprehensive basic state based synthesis algorithm in terms
of a function SBS0 : T˚ ˆD Ñ H given by

SBS0 “ λpα, X q. pλpa, gq. pM9 M8pX , gq αq Z|pF̂ X q0| pΩa
mf

a
mq gq pM7pα, X q,FAT X q. (15.26)

15.4. INPUT REDUCTION 519

SE b1IR c pTT aq g 1 pCTL aq g 1ä

| Î g 1|

ä

T̂ g 1

ä

|Ô g|

ä

|Ŝ g 1|

ä

|Â g 1|

ä

| Î g 1|

ä

| Î g|

Figure 15.10: Synthesis of a transducer g with input reduction depends on the decomposition
pc, g 1q “ fα

9m g, an alphabet ordering a “ p Î g 1q0´1 q α, and an array of | Î g 1| completion detectors.

15.4 Input reduction

Although the method proposed in the Section 15.3 is ade-
quate to implement any specification, it neglects a possible
optimization in examples such as these.

• If two inputs a and b never appear together in the
same input burst, and substituting each with the other
in every input burst throughout the transducer leaves
it invariant, then it would be better to put both a and
b through a front end MERGE and treat the output of
the MERGE as a single input as far as the rest of the
implementation is concerned.

• If an input c always appears in any input burst containing an input d and vice versa, then a
similar optimization is appropriate with a JOIN instead of a MERGE.

• If every input burst containing any of e, f , and g always contains exactly two of them and
each pair is always interchangeable with the others as above, then all three should be fed
through a 2-of-3 completion detector whose output is treated as a single input thereafter.

Each of these optimizations requires some additional hardware on the front end, but is likely to be
a net improvement because it results in at least one less row on the decision wait in the transition
table block and at least one less input to the controller. The latter two examples also simplify the
serializer by reducing or eliminating a sequencer, and the first example may do so as well if either a
or b can be concurrent with other inputs.

These optimizations need not depend on fortuitous observations, but can be recognized and
applied systematically. In every case, there is a set of related inputs combined into one component
in the front end, and if we construct the intersection of this set with every input burst that intersects
it in the transducer, the result is an antichain. This antichain can be treated as a delay insensitive
code amenable to completion detection as explained in Section 13.4. Even a MERGE or a JOIN is a
special case of a completion detector.

A suitable analysis enables the implementation of a transducer g by an array pbRq CD› 9η c of
completion detectors labeled IR c in Figure 15.10 on the front end, and a back end implementing
a transducer g 1 of possibly lower input arity | Î g 1| ď | Î g| as in Figure 15.7. The analysis yields
the list of antichains c P PpPpRpι| Î g|qqq˚ to specify the completion detectors when renumbered by

520 CHAPTER 15. STATE BASED SYNTHESIS

Equation 13.16. A permutation network not shown concludes the construction by connecting each
input terminal numbered i “ pα � Î gq´1 a of an alphabet symbol a P Î g to the completion detector
associated with it, which is j-th in the array where i is a member of

Ť

c j .
This solution is split similarly to previous ones between a decomposition and a combining form.

The decomposition
fα

9m g “ pc, g 1q (15.27)

transforming the transducer g into the list of antichains c discussed above and the transducer g 1 of
reduced input arity is derived in Section 15.4.1. The combining form Ωα

9m derived in Section 15.4.2
provides for an expression of the circuit in Figure 15.10 as Ωα

9m f
α
9m g.

15.4.1 Decomposition

The derivation of the decomposition is lengthy enough by itself to need a few steps with some
explanation for each. A notion of interchangeable input bursts leads to the ensemble of delay
insensitive codes determining the front end array of completion detectors. This partial result then
suggests an algorithm for rewriting the alphabet of the transducer accordingly.

Interchangeable inputs

If some subset i P PpTq of the input alphabet is interchangeable with some other subset j P PpTq in
that a single input could substitute for both, it is still neither feasible nor worthwhile to make the
substitution unless no members of i or j are left over in the transducer afterwards. Some members
of i or j could be left over if they appear in an input burst that does not contain the rest of them.
A simple algorithm for finding usefully interchangeable input subsets by these criteria follows by
substituting one for the other in every input burst k P DpDpgqq of a transducer g where it is present
or rewriting k to exclude its members where it is not, and then checking that the transducer is
invariant with respect to this operation. The specific effect on an input burst k is achieved by
unpacking it into its subsets l P Ppkq and then repacking them into a set

ď

l PPpkq

xxl ´ pi Y jq, iyδl
j
, jyδl

i

such that either of i or j is exchanged for the other where applicable and suppressed otherwise. The
effect on an adjacency set e due to this transformation of every input burst k associated with every
edge ppk, oq, nq P e is a rewritten adjacency set

ď

ppk,oq,nq P e

tpp
ď

l PPpkq

xxl ´ pi Y jq, iyδl
j
, jyδl

i
, oq, nqu.

To put this idea to work, let i and j be members of the set

s “
ď

b PDpDpeqq

Ppbq P PpPpTqq

of subsets of acceptable input bursts b according to an adjacency set e, and form the partition on s
`

π λi. t j P s | e “
ď

ppk,oq,nq P e

tpp
ď

l PPpkq

xxl ´ pi Y jq, iyδl
j
, jyδl

i
, oq, nquu

˘

s P PpPpPpTqqq

15.4. INPUT REDUCTION 521

by Equation 6.6 such that any two input burst subsets i, j P s belong to the same class if and only if
rewriting e as explained above with respect to i and j makes no difference to it. Then we have in
d0 g P PpPpPpPpTqqqq the set of all such partitions throughout g as given by

d0 “ λg.
ď

pm,eq P g

 `

λs.
`

π λi. t j P s | e “
ď

ppk,oq,nq P e

tpp
ď

l PPpkq

xxl´piY jq, iyδl
j
, jyδl

i
, oq, nquu

˘

s
˘

ď

b PDpDpeqq

Ppbq
(

. (15.28)

That is, each member v P d0 g is a partition by interchangeability, each equivalence class t P v is a
set of input bursts, and each input burst i P t is a set of input alphabet symbols. It may be helpful to
think of every class t as an antichain because input bursts are not normally interchangeable with
proper subsets of themselves (or else an input in them is ignored the first time it arrives and causes
divergence the second time), but this assumption is neither necessary nor fully reliable. To provide
for pathological cases, we can transform d0 g to d1 d0 g by

d1 “ λw.
ď

v P w

ď

t P v

R
``

λph : zq. pλl. xl : h ´ l : z, h : zy
δ

H

l
q p

ď

i P h

Ppiq ´ hq
˘∞

xty
˘

(15.29)

which separates the lower links l Ă h from any chain h Ď t present in a class t successively until t
is separated into as many subsets as needed to ensure that each subset is an antichain. Ensuring
that each class is an antichain justifies treating it as a delay insensitive code from which to derive a
completion detector (Section 13.1.4).

This formulation makes some progress towards identifying all
interchangeable input bursts, but is not quite the solution. Notably
the membership of two input bursts i, j P t in the same class t P v
of some partition v P d1 d0 g implies only that there exists a
state m P Dpgq wherein they are interchangeable, not that they
are interchangeable unconditionally. Recall that the goal of this
analysis is to optimize the circuit by feeding all members of any
interchangeable input sets i and j through the same completion detector on the front end. This
optimization would not be valid unless they were interchangeable in every state.

Redefining d0 in terms of a union e “
Ť

Rpgq of all adjacency sets in the transducer g instead
of examining them individually would resolve this issue but would be suboptimal. Sets i and j of
inputs that are interchangeable in a state m (because the same output burst o and succeeding state
n follow in either alternative) can also be interchangeable in another state m1 though they might
then lead to a different output burst o1 and succeeding state n1. However, because the transducer
can occupy only one state at a time, it is correct to regard i and j as interchangeable regardless. We
would miss an opportunity for optimization by insisting on identical output bursts and succeeding
states globally, but this consequence would be inevitable without analyzing each adjacency set
individually as above.

Compatible partitions

Nevertheless, sticking with the given formulation admits incompatible partitions v P d1 d0 g needing
some sort of resolution whenever two bursts are interchangeable according to one but not another.
Occasionally this effect is due to partitions being disjoint from each other because their inputs are
never acceptable simultaneously in the same state. A reasonable course in this situation would be to
treat all equivalences implied by each partition as generally applicable in all states, because in states
where some of the inputs are prohibited, they either never arrive or relieve the implementation of

522 CHAPTER 15. STATE BASED SYNTHESIS

any obligations when they do. Disjoint partitions u, v P d1 d0 g whose classes contain none of the
same input bursts and whose input bursts contain none of the same inputs might just as well be the
single partition u Y v.

Occasionally the situation is more complicated because separate partitions can imply different
conditions about input bursts containing the same symbols. If there is a partition v containing a
class t “ ti, ju P v and another partition u containing a class s “ t j, ku P u, then for similar reasons
as above, it is appropriate to treat all three input bursts i, j, and k as mutually interchangeable
in every state even though i and k are prohibited in some. Generalizing from this example would
suggest a method of reconciling the two partitions by merging any classes that intersect. However,
this method fails on the example of

v “ tti, ju, tk, luu (15.30)

u “ tti, ku, t j, luu (15.31)

because it leads to a combined partition tti, j, k, luu asserting that every input burst is interchangeable
with every other, when clearly neither of k or l is interchangeable with i or j in the state from which
v has been inferred.

A better idea is to merge every class t P v with every class s P u that intersects t and crucially
does not intersect any other class in v. To make this idea more precise, we can express the set

u ´Ppp
Ť

uq ´ tq

of classes in u that intersect t, the set

u ´Ppp
Ť

uq ´
Ť

pv ´ ttuqq

of classes in u that intersect classes other than t in v, and therefore the set

pu ´Ppp
Ť

uq ´ tqq ´ pu ´Ppp
Ť

uq ´
Ť

pv ´ ttuqqq

of all classes s P u that should be merged with t. Then the combined partition contains all classes in

pµ λt.
ď

s P pu´Ppp
Ť

uq´tqq´pu´Ppp
Ť

uq´
Ť

pv´ttuqqq

t Y sq v

but this set is empty if the alphabet
ŤŤ

u Ă T of the partition u is disjoint from that of v as in the
simpler case considered above. To cover both cases, classes t P v whose input bursts i P t contain
no members of

ŤŤ

u should also be included in the result. These classes would be those members
of v that are also members of the set

PpPpT ´
ŤŤ

uqq

of all sets of input bursts made of non-members of the alphabet of u, or more succinctly v X f u for

f “ λw. PpPpT ´
ŤŤ

wqq.

Similarly, members of u whose input bursts are disjoint from the alphabet of v should be included
in the combined result

pv X f uq Y pu X f vq

15.4. INPUT REDUCTION 523

or more explicitly
pλ f .

ď

r P pvX f uqYpuX f vq

truq λw. PpPpT ´
ŤŤ

wqq

along with the results of intersecting classes in

p “ ppλ f .
ď

r P pvX f uqYpuX f vq

truq λw. PpPpT ´
ŤŤ

wqqq Y pµ λt.
ď

s P pu´Ppp
Ť

uq´tqq´pu´Ppp
Ť

uq´
Ť

pv´ttuqqq

t Y sq v.

However, even this result is empty in reference to Equation 15.30 and Equation 15.31 because
there is no class s P u compatible with any class t P v, and every member of v intersects some
member of u. The right answer for this example is

ď

a P
ŤŤ

puYvq

tttauuu

because any input a P i Y j Y k Y l excluded by both criteria belongs in a unit input burst tau in a
unit class ttauu signifying that the only condition it satisfies in every state is interchangeability with
itself. The combined partition associated with any arbitrary partitions u, v P PpPpPpTqqq taking
into account this case as well would be more like

pλp. p Y
ď

a P p
ŤŤ

puYvqq´
ŤŤ

p

tttauuuq ppλ f .
ď

r P pvX f uqYpuX f vq

truq λw. PpPpT ´
ŤŤ

wqqq Y pµ λt.
ď

s P pu´Ppp
Ť

uq´tqq´pu´Ppp
Ť

uq´
Ť

pv´ttuqqq

t Y sq vq.

Generally there are not just two partitions u and v of input bursts, but up to as many partitions
as states in the transducer g, all of which have to be reduced to the common partition describing the
front end completion detector stage. A reduction operating on a list of partitions can be obtained as
usual by folding a binary operation over the list, and a function

d2 : PpPpPpNqqq˚ Ñ PpPpPpNqqq

defined below operates on a list of partitions wherein the inputs are represented numerically
with respect to an alphabet ordering α in preparation for the upcoming definition of fα

9m, the
decomposition function.

d2 “ bH λpu, vq. pλp. p Y
ď

a P p
ŤŤ

puYvqq´
ŤŤ

p

tttauuuq ppλ f .
ď

r P pvX f uqYpuX f vq

truq λw. PpPpN´
ŤŤ

wqqq Y pµ λt.
ď

s P pu´Ppp
Ť

uq´tqq´pu´Ppp
Ť

uq´
Ť

pv´ttuqqq

t Y sq vq

For the moment, it can be noted that

d2 ppµ4pα � Î gq´1q d1 d0 gq0´1
P PpPpPpNqqq

expresses precisely the resulting partition in terms of Equation 15.28, Equation 15.29, the alphabet
ordering α, and the transducer g.

Compatible classes

Ordinarily each equivalence class in the partition obtained above corresponds to a separate comple-
tion detector in the front end stage of Figure 15.10, a parallel combination of completion detectors
with a collective input arity | Î g| issues from a listing of the classes in any fixed order, and each

524 CHAPTER 15. STATE BASED SYNTHESIS

input to each completion detector is exposed through a permutation network determined by the
order. However, nothing in the derivation up to this point would guarantee an input arity of | Î g|.
Although no input burst can appear in more than one class, nothing prevents input bursts in different
classes from intersecting. If two classes have intersecting alphabets, the only conclusion is that no
input burst in either class is unconditionally interchangeable with any other. This anomaly may be
unusual (cf. Equation 15.29), but thoroughness requires transforming any classes affected by it to a
set of unit classes of unit input bursts as explained above.

The transformation is relevant to a partition v, a class t P v, the set N´
Ť

t of inputs other than
those appearing in any member of t, the set PpN´

Ť

tq of input bursts disjoint from any member
of t, and the set PpPpN´

Ť

tqq containing all possible classes in which every input burst is disjoint
from any member of t. If the set

v ´PpPpN´
Ť

tqq

of classes in v whose alphabets are not disjoint from that of t contains anything other than t, then
every member r of

w “
ď

t P v

ttu Y
ď

s P v´PpPpN´
Ť

tqq

tsu

should be rewritten in v to the set of classes
ď

a P
ŤŤ

r

tttauuu

obtained by transforming any input a in any member of any class in r to a class ttauu containing
only the input burst tau. We can summarize this transformation as d3 v P PpPpNqq˚ with a function
d3 defined by

d3 “ λv.
`

pλw.
ď

r P w

xr,
ď

a P
ŤŤ

r

tttauuuy1´δ
|r|

1
q p

ď

t P v

ttu Y
ď

s P v´PpPpN´
Ť

tqq

tsuq
˘0´1

also taking the opportunity to list the classes in lexicographic order. Then the result

c “ d3 d2 ppµ4pα � Î gq´1q d1 d0 gq0´1
(15.32)

fully constrains both the completion detector array and the input permutation network, concluding
the derivation of the left side of the decomposition pc, g 1q “ fα

9m g sought in Equation 15.27.

Rewritten alphabet

The rest of the decomposition is about deriving a transducer g 1

with a reduced input alphabet from the transducer g consistent
with the codes 9η c by Equation 15.32 and Equation 13.16. The
simplest approach to transforming the alphabet is to seek a
non-injective map from input symbols of g to input symbols
of g 1 such that the index n in the list c of the term cn whose
union

Ť

cn contains the ordinal i “ pα � Î gq´1 a of an input
symbol a P Î g associates a with the n-th member of Î g 1. The n-th member of Î g can be made
precise by drawing Î g 1 from from the universe G Ă T of generic symbols defined in Section 8.7.1

15.4. INPUT REDUCTION 525

and relying on its usual ordering. A generic symbol G0´1 n substituted throughout g based on the
value of n obtained by

n “ c´1 pΨ
ď

k PDpcq

p
Ť

ckq ˆ tckuq i

for each ordinal i would result in a transducer with an input alphabet of |c| symbols having fused
any subsets of inputs to a common completion detector into a single input. However, to maintain
the condition that the input alphabet of a transducer should be disjoint from the output alphabet, it
would be better to offset each value of n by a value

1 ` max pt0u Y pµG
0q pGX Ô gqq

exceeding the ordinal of the maximum generic symbol in the output alphabet Ô g, if any, for a
transformed input symbol d4pc, i, Ô gq P G given by

d4 “ λpc, i, oq. G0´1`1 ` max pt0u Y pµG
0q pGX oqq ` c´1 pΨ

ď

k PDpcq

p
Ť

ckq ˆ tckuq i
˘

.

Modified transducer

This transformation applied in the context of an input burst b labeling an edge ppb, oq, nq P e in the
adjacency set e of a vertex pm, eq P g of a transducer g leads to an input burst

ď

i P pµpα� Î gq´1q b

td4pc, i, Ô gqu

resulting in a rewritten adjacency set
ď

ppb,oq,nq P e

tpp
ď

i P pµ pα� Î gq´1q b

td4pc, i, Ô gqu, oq, nqu

in every vertex of the transducer

g 1 “
ď

pm,eq P g

tpm,
ď

ppb,oq,nq P e

tpp
ď

i P pµ pα� Î gq´1q b

td4pc, i, Ô gqu, oq, nququ.

With both components derived above, we have now the complete decomposition pc, g 1q “ fα
9m g

given by

fα
9m “ λg. pλc. pc,

ď

pm,eq P g

tpm,
ď

ppb,oq,nq P e

tpp
ď

i P pµ pα� Î gq´1q b

td4pc, i, Ô gqu, oq, nququqq d3 d2 ppµ4pα � Î gq´1q d1 d0 gq0´1
.

(15.33)

15.4.2 Combining form

As noted previously, this decomposition is constructed to provide for a front end block pbRq CD› 9η c
of output arity |c| and a transducer g 1 with an input alphabet of a size to match, but an input
permutation network is needed to interface the front end with the external environment if the
original specification is to be met. To this end, we recall that each term t P Rpcq reflects a completion

526 CHAPTER 15. STATE BASED SYNTHESIS

detector connected to the externally visible terminals numbered within
Ť

t P PpRpι| Î g|q. Hence
the permutation

p “ 5 pλt. p
Ť

tq0´1
q› c P Rpι| Î g|q

˚

lists for each completion detector input terminal the ordinal of the external terminal to which it
should be wired, and does so in order of the positions of the completion detector input terminals on
the array pbRq CD› 9η c. By convention, the inverse p´1 specifies the appropriate input permutation
network in the definition of

IR “ λc. pp5 pλt. p
Ť

tq0´1
q› cqq´1 ¸ pbRq CD› 9η c.

Figure 15.10 indicates a back end of the form pΩαm f
α
mq g 1 by Equation 15.12 and Equation 15.24

in terms of the transducer g 1 from the decomposition pc, g 1q “ fα
9m g, except that an alphabet

ordering α for g may be inadequate for g 1 because their input alphabets differ. Unlike the input
alphabet of g, the input alphabet Î g 1 contains |c| generic symbols of which the lexicographically
n-th symbol is associated with the n-th completion detector output from IR c. The simplest choice of
an alphabet ordering for g 1 would be

a “ p Î g 1q0´1 q α

based on the alphabet ordering α of g, because then the back end pΩa
m f

a
mq g 1 would be synthesized

with input terminals ordered to match the outputs from the front end, and the two could be
connected in a cascade

F|c|xIR c, pΩa
m f

a
mq g 1y

with no permutation network needed between them. The outputs from the cascade would also be
ordered the same as those of g would be under α. A combining form following directly as

Ωα
9m “ λpc, g 1q. pλa. F|c|xIR c, pΩa

m f
a
mq g 1yq pp Î g 1q0´1 q αq (15.34)

enables the complete expression of the circuit shown in Figure 15.10 as Ωα
9m f

α
9m g in terms of a given

transducer g and alphabet ordering α.
Whereas Ωα

9m f
α
9m g is always a compatible replacement for pΩαm f

α
mq g, it entails the same

limitations noted in Section 15.3.4 if the transducer g “ FAT X does not fully capture the process
semantics X P D because of unused inputs and outputs or because of feedback signals created
to cope with non-deterministic concurrency. Fortunately there is no need to retrace the ensuing
line of reasoning, but simply to define the transformation SBS1 : pT˚ ˆ Dq Ñ H analogously to
Equation 15.26.

SBS1 “ λpα, X q. pλpa, gq. pM9 M8pX , gq αq Z|pF̂ X q0|Ωa
9m f

a
9m gq pM7pα, X q,FAT X q (15.35)

15.5 State reduction

A simple ad hoc optimization to the implementation is possible when the transducer model of a
process specification has only a single state and its input bursts form an antichain. Despite the
restriction to a single transducer state, this class of processes is fairly broad, encompassing all
decision waits and sparse decision waits of any dimensions or coordinates, as well as all encoders,
decoders, transcoders, majority gates, and completion detectors for any delay insensitive code. In

15.6. SEPARATION 527

this case, the serializer, input reducer, transition table, and controller blocks needed for multi-state
transducers as shown in Figure 15.10 can all be eliminated in favor of a single transcoder. The
transcoder is likely to be a more efficient implementation, especially if the relevant code is factorable
or separable (Section 13.3.3 and Section 13.3.4) and well optimized decision wait decomposition
strategies are available.

15.5.1 Decomposition

If we assume for the moment that a transducer g is of the form described above, then the adjacency
set e of its single state given by

e “
Ť

Rpgq

determines a set of i/o bursts pi, oq P Dpeq from which the set of input and output code words

ppµ pα � Î gq´1q i, pµ pα � Ô gq´1q oq P PpNq ˆPpNq

according to an alphabet ordering α suffices to specify a transcoder by Equation 13.22 to implement
the specification. Let this set be denoted fα

:m g P PpPpNq ˆPpNqq in terms of the decomposition
function

fα
:m “ λg. pµ λpi, oq. ppµ pα � Î gq´1q i, pµ pα � Ô gq´1q oqq Dp

Ť

Rpgqq. (15.36)

15.5.2 Combining form

To confirm that this decomposition is applicable to a given transducer g, we need to verify that no
member of the set

s “
ď

i P b

Ppiq ´ tiu

containing all proper subsets of input bursts i in the set b “ DpDp
Ť

Rpgqqq of all input bursts
associated with g is itself an input burst. This condition is equivalent to

s X b “ H.

We also need to confirm that there is only one state by |g| “ 1. If these conditions hold, then
the implementation is given by TC fα

:m g based on Equation 13.22 and Equation 15.36, but can
otherwise revert to the input reduced form Ωα

9m f
α
9m g based on Equation 15.33 and Equation 15.34.

In either case, we have
pλk. xΩα

9m f
α
9m g, TC fα

:m gykq δ
|g|

1 δ
sXb
H

or more precisely pΩα
:m f

α
:mq g in terms of the combining form

Ωα
:m “ λd. λg. pλb. pλs. pλk. xΩα

9m f
α
9m g, TC d gykq δ

|g|

1 δ
sXb
H

q
ď

i P b

Ppiq ´ tiuq DpDp
Ť

Rpgqqq.

The analog to Equation 15.26 and Equation 15.35 for transforming a specification in terms of a
process X P D to a member of H with provisions for any misplaced alphabet symbols or feedback
signals would be the following.

SBS2 “ λpα, X q. pλpa, gq. pM9 M8pX , gq αq Z|pF̂ X q0| pΩa
:m f

a
:mq gq pM7pα, X q,FAT X q (15.37)

528 CHAPTER 15. STATE BASED SYNTHESIS

X Y X Y

Figure 15.11: Two processes X and Y making up par pX , Y q can be synthesized separately if their
alphabets are disjoint and their Petri net models are either disconnected or have only a dead-end
place in common.

15.6 Separation

One further optimization to conclude this chapter on state based synthesis is well worth using on
the rare occasions when it applies. If a process is of the form par pX , Y q, then building the result
from separate circuits synthesized for X and Y is preferable, and it can be done if their alphabets are
disjoint. Not only does the result benefit from smaller decision waits and other building blocks for X
and Y than for the combination, but the computational cost of synthesizing it is drastically reduced
because the transducers are smaller. As a rough guide, the number |T par pX , Y q| of transducer
states tends to vary in proportion to the product of |T X | and |T Y |. The technique also extends to
more than two processes with commensurate advantages.

The method involves separating a given process pI , O, Nq P D into multiple smaller processes
by treating its Petri net model N as a graph. Each connected component of the graph N and the
observable transitions among its vertices determine the Petri net model and the alphabets of a
process to be synthesized separately as a circuit. A parallel combination of the circuits obtained in
this way along with input and output permutation networks to maintain a given alphabet ordering
implements the overall specification.

A minor exception to the requirement for disjoint components makes the technique a bit more
generally applicable. If the Petri net has components that are disjoint except for sharing a common
marked or unmarked place with no outgoing arcs, it is valid to regard each component as having its
own copy of the shared place as shown in Figure 15.11. This provision does not extend to shared
transitions.

Details of this optimization in the rest of this section lead to a state based synthesis method
building on the previous ones.

15.6.1 Decomposition

Treating a well formed Petri net N “ pP, T, A, M, Fq P P as an undirected graph, we refer to the
adjacency set f v P PpP Y Tq of a vertex v P P Y T as the union of its postset and preset according
to a function

f “ Ψ Π pA Y pµ λpi, jq. p j, iqq Aq

and denote by l “ T YDpAq the set containing all transitions and all non-terminal places. A partition

p “ pπ ρ λv. l X f vq l P PpPplqq

15.6. SEPARATION 529

associates any two vertices in l connected by an undirected path not passing through a terminal
place, and any class c P p extended to

c Y
ď

t P c

f t

includes any terminal places immediately adjacent to its members. The set s “ d5pT, Aq given by

d5 “ λpT, Aq.
`

λp f , lq.
ď

c P pπ ρ λv. lX f vq l

c Y
ď

t P c

f t
(˘ `

Ψ Π pA Y pµ λpi, jq. p j, iqq Aq, T YDpAq
˘

therefore contains connected sets of vertices that are either mutually disjoint or intersect only at
terminal places. This set in turn associates a set pd6 X q d5pT, Aq P PpDq of processes with a process
X P D according to

d6 “ λpI , O, pP, T, A, M, Fqq. µ λc. pI X c, O X c, pP X c, T X c, A X pc ˆ cq, M X c, F X cqq

in effect by letting each member c P d5pT, Aq determine a process x “ pi, o, nq P pd6 X q d5pT, Aq

whose alphabets and Petri net vertices are drawn from X but restricted to c.
If a process X “ pI , O, Nq is implemented as an array of blocks each implementing a process

x “ pi, o, nq, then an alphabet ordering α on X determines a subset pµ pα � Iq´1q i of input terminal
indices associated with x and a subset pµ pα�Oq´1q o of output terminal indices. Representing each
block temporarily in the more awkward form of a triple

xppµ pα � Iq´1q iq0´1
, ppµ pα � Oq´1q oq0´1

, xxyy

of two lists of terminal indices and the unit list xxy in a set q “ d7pα, I , Oq pd6 X q d5pT, Aq given by

d7 “ λpα, I , Oq. µ λx . pλpi, o, nq. xppµ pα � Iq´1q iq0´1
, ppµ pα � Oq´1q oq0´1

, xxyyq x

fixes an ordered sequence q0´1 and hence a triple

t “ 5› pq0´1
qᵀ “ 5›

`

pd7pα, I , Oq pd6 X q d5pT, Aqq0´1˘ᵀ

such that t0, t1 P N
˚ are input and output permutations respectively, and t2 P D

˚ is a list of processes
extracted from X and ordered consistently with the permutations. This triple fully determines the
decomposition fα

;m X unless there are members of the alphabets I and O in the process pI , O, Nq “ X
that do not appear as transitions in its Petri net model N and hence not in the alphabets of any
process x P pd6 X q d5pT, Aq.

Although a mismatch between the alphabets and the Petri net transitions is never desirable in a
specification, an implementation that neglects the extra symbols would violate the specification and
might allow design errors to escape notice. Whereas the alphabets of processes x “ pi, o, nq P Rpt2q

are inferred entirely from N , we can correct for this effect by restoring the omitted symbols to the
alphabets of the first term of t2 by rewriting it to d8pI , Oq t with

d8 “ λpI , Oq. λxp, r, pi, o, nq : sy. xp, r, pi Y pI ´ Tq, o Y pO ´ Tq, nq : sy

in a decomposition defined as follows.

fα
;m “ λX .

`

λpI , O, pP, T, A, M, Fqq. d8pI , Oq 5›
`

pd7pα, I , Oq pd6 X q d5pT, Aqq0´1˘ᵀ˘ X

530 CHAPTER 15. STATE BASED SYNTHESIS

a

b

c

d

e

g

f

X

Y

SBS2pα, X q

SBS2pα, Y q

e

g

a

b

c

d

f

Figure 15.12: A process whose Petri net model consists of multiple disjoint components or of
components joined only by way of open output transitions and dead-end places can be synthesized
as separate blocks with synchronized outputs.

ptau, txuq pta, bu, tyuq

Figure 15.13: the simplest transducer with non-deterministic concurrency

15.6.2 Combining form

Because an alphabet ordering α for a process X P D is necessarily also an alphabet ordering for
each process x P Rppfα

;m X q2q, the latter could be implemented independently as SBS2pα, xq P H by
Equation 15.37 without further concern for its transducer level representations or other details,
even when various optimizations are applicable. Hence it is feasible to bypass the construction of a
combining form as such in favor of a generalized state based synthesis function SBS : T˚ ˆD Ñ H

defined as
SBS “ λpα, X q. pλt. t´1

0 ¸ pbRq pλx . SBS2pα, xqq› t2 ˙ t´1
1 q fα

;m X (15.38)

based on t “ fα
;m X consisting of two permutations and a list of processes x as explained above.

If state based synthesis were the only way of doing circuit synthesis, then the task to derive the
transformation Tα

DH
: D Ñ H proposed at the beginning of this chapter could now be concluded by

identifying it as
Tα
DH

pX q “ SBSpα, X q. (15.39)

However, the next chapter explores further possibilities with a view to overcoming some limitations
of state based synthesis, so it is prudent to be more tentative about this definition pending further
investigation.

15.6. SEPARATION 531

Statecraft

1. What is an example of a process X P D whose im-
plementation SBSpα, X q refines X under α but is not
equivalent to it?

2. What would be the implications of cutting costs on the
synthesis of a non-deterministic process by substituting
a TOGGLE for each randomizer (Figure 13.14) in the
controller block?

3. Suppose a user interacts with the transducer shown in Figure 15.13.

a) What acknowledgment should the user expect in response to inputs of a alone,
b alone, or a and b concurrently?

b) Suppose concurrent inputs of a and b yield an acknowledgment of x . How
should the user interact with the transducer subsequently?

c) Give a complete verbal account of the protocol, tabulate its anti-refined trans-
ducer model as in Table 15.1, and sketch the result as in Figure 15.5.

4. What is the triple pm, i, f q for each state of the intermediate representation of the
feedback anti-refined transducer shown in Figure 15.5?

5. If two inputs to the circuit in Figure 15.6 are nearly simultaneous, the choice between
concurrent and sequential acknowledgments is non-deterministic.

a) What is an example of an application for which a bias toward concurrency
might benefit performance? (hint: [202])

b) The front end sequencer depends on an arbiter decomposition (Section 12.2)
for its internal arbiter (Figure 13.12). What arbiter decomposition would favor
concurrency and why? (hint: page 383)

6. Figure 15.12 shows a more general form of separable synthesis than the one derived
in Section 15.6 in that it allows not just shared dead-end places between components
but synchronized outputs.

a) How could the definition of fα
;m be upgraded and a combining form Ωα

;m intro-
duced to provide for this method of synthesis?

b) When would it be correct to combine common outputs by a MERGE instead of
a JOIN, and how could the method be generalized further to cover this case?
(hint: Figure 3.11)

c) A MERGE and a JOIN are both special cases of a completion detector. What
would it take to cover all cases of outputs combined by unrestricted completion
detectors?

I will not deny . . . that some Parts of
it might be contracted . . . But to
confess the Truth, I am now too lazy,
or too busy to make it shorter.

John Locke

C
H

A
P

T
E

R 16
DIRECT MAPPING SYNTHESIS

To those readers disinclined to leave well enough alone and unfazed by further mathematical
monkey business, there is still more to say about DI circuit synthesis. The method of direct mapping
synthesis proposed in this chapter is relevant when a specification is computationally infeasible for
state based synthesis as proposed in Chapter 15 but is either too complicated or too unimportant
to implement manually. The core idea of direct mapping synthesis is to transform a specification
from a Petri net representation, typically generated by process combinators, directly to a netlist
without using the reachability graph or transducer as intermediate representations. Although the
resulting circuit may be larger, direct mapping synthesis can be computationally more efficient than
state based synthesis because it avoids the burden of enumerating the process states entailed by
these intermediate representations (the so called “state space explosion” problem [47]). Nestled
inconspicuously in Figure 3.1, this transformation deployed effectively leads to automated synthesis
with unlimited scalability. On that note, this investigation concludes our treatment of the subject.

16.1 Overview

Direct mapping synthesis would seem to be a simple matter of inverting TLD, which transforms
a netlist to a Petri net by Equation 8.32, and indeed TBL ˝ Tα

B
expresses a transformation of this

type by Equation 8.20 and Equation 9.8. The resulting netlist always has the form xpI , O, Bqy P L

containing exactly one block B P B, but if B just happens to be refined by a primitive component
(Section 9.3.4), then the job is done.

When beginners’ luck runs out, a different approach is needed. The second most obvious idea is
to project the Petri net onto a whiteboard and look for patterns. By circling any primitive component
Petri net shown in Figure 9.7 or Figure 9.8 appearing as a subgraph of the specification, we arrive
at an implementation provided there is an exact cover (cf. Figure 3.9). The main drawback of this
approach is that Petri nets generated by process combinators are not guaranteed to have an exact

533

534 CHAPTER 16. DIRECT MAPPING SYNTHESIS

...
...

...

...

p0 p1

t0

t1

Figure 16.1: If p0 grants a token transfer to t0 and denies it to t1 while p1 grants it to t1 and denies
it to t0, both transitions have to rescind their requests and try another round.

cover by those of the primitives, and anecdotally the vast majority do not. Attempts to compensate
by detecting more general patterns with known implementations and doing so automatically would
depend on solving the subgraph isomorphism problem, a serious job in itself [152, 289]. Though
maybe not impossible, this idea would probably limit scalability even if successful.

Closer to the right track, another idea for direct mapping synthesis is to have the circuit phys-
ically simulate the token flow through the Petri net with a block for each place and transition,
a channel for each arc, and a protocol for all of them to follow. What protocol might that be?
Places could notify their postset transitions when they hold a token, and a transition having re-
ceived such a notification from all of its preset places could request the transfer of their tokens. A
place subject to multiple concurrent requests for token transfers would need to arbitrate among
them, and therefore would need to be able to deny a request.
To avoid deadlock, a transition for which some but not all of
its requests are denied would need to rescind the requests that
have been granted (cf. “dining philosophers” [23, 112, 237]).
A place having granted a rescinded request should send a new
batch of notifications. The new notifications must not be sent
to transitions that have not yet acknowledged their previous
ones, because the previous notification could still be in transit on the wire. Who said anything about
acknowledging the notifications? Maybe the protocol needs that condition too: a transition must
acknowledge every notification even if it is not ready to request a transfer. For the same reason, the
signal to rescind a request requires some acknowledgment from the place that granted it, and so on
for every other exigency that comes to mind.

There is no need to ask whether all of the edge cases can be ironed out because this protocol
already suffers from a fatal flaw. As Figure 16.1 shows, it could happen that two transitions with
intersecting presets request token transfers concurrently, and if neither succeeds then both must
try again. With only two transitions and two places, each round is like a coin toss, so the impasse
is unlikely to persist. However, if there are ten transitions with ten places common to all of their

16.2. MUTUAL RECURRENCES 535

presets, then progress happens only in the one-in-a-billion chance of all ten places choosing to grant
a request to the same transition.

One way forward would be to complicate the protocol by requiring the places in this situation to
reach a consensus among themselves on the unique choice of a grant recipient. Distributed consensus
algorithms in software have been well studied [29, 116, 153], but porting them to hardware would
pose a formidable challenge. In the current setting, it would also require places to interact directly
with other places and not just with transitions via the arcs. However, if other interactions than those
mediated through the arcs are acceptable, then there is no need to take the trouble of implementing
a distributed consensus algorithm because a simpler solution is possible.

The revised solution provides for any two or more transitions competing for the final token
they need before firing to resolve the conflict through arbitration administered by a separate entity,
which for the sake of this discussion is called a monitor. The
monitor grants one transition’s request, denies the other(s), and
informs any other transition in receipt of the same token that it is
no longer available. As explained in Section 16.6, the implemen-
tations of transition and monitor blocks observing this protocol
are somewhat involved, but they have the advantage of allowing
every arc to be implemented as just a wire and every place as
not much more than a MERGE and a FORK. This solution is not
ideally “distributed” insofar as multiple transitions may need to
share a monitor, but a given Petri net typically can benefit from
multiple independent monitors. If the transitions are partitioned into classes by transitive closure
of preset intersection, then no transition competes with any from another class, so there can be a
separate monitor for each class.

This solution permits a minor optimization. Each class of transitions related as above, their
collective preset places, and the arcs connecting them can be designated as a community for lack of
a better term. A large Petri net might have multiple communities of varying sizes. If any community
is feasibly small, its share of the Petri net treated in isolation can be implemented by state based
synthesis. If every community can be implemented by state based synthesis, the result generalizes
the separation method described in Section 15.6. In any case, hereafter we may call them state
based synthetic communities as opposed to direct mapped synthetic communities.

A limitation of this method is that it does not admit of a hard upper bound on spatial complexity
of the synthesized circuit. The transition and monitor blocks are not of constant sizes but must be
synthesized according to relationships specific to their communities, and their state spaces can vary
considerably. In the extreme, even an individual monitor or transition could be too large for state
based synthesis subject to constrained computational resources, requiring a recursive application
of direct mapping synthesis as detailed in Section 16.7. Convergence in obstinate instances may
demand a minimum fixed resource budget. Nevertheless, direct mapping synthesis offers a way to
subdue state space explosion by an otherwise unavailable tradeoff between the complexity of the
result and the cost of synthesizing it.

16.2 Mutual recurrences

Theoretically there is no need for any new math to express the algorithm for direct mapping synthesis
sketched above, but we can make shorter work of it by a technique described in this section that is
especially suited to process specifications given by systems of mutual recurrences as in Section 16.6.

536 CHAPTER 16. DIRECT MAPPING SYNTHESIS

MSS
j

h
q

t

a

Figure 16.2: A mad scientist simulator can be in either Jekyll mode or Hyde mode. A toggle t
changes the mode, a acknowledges a toggle, and j or h reports the mode in response to a query q.

For a running example, we have the mad scientist simulator shown in Figure 16.2. The scientist,
known as Jeckyll, is initially sane, but can be triggered by some event to become his insane alter-ego
Hyde. A repetition of the same trigger restores his sanity, but he continues to change from Jeckyll to
Hyde or back again every time there is a trigger thereafter. The purpose of the simulator is to let
the user ascertain the scientist’s state of mind without having to approach him. Applying a toggle
input labeled t whenever the scientist experiences a trigger ensures that an output of either j or h
in response to a query q always tracks the scientist’s current state of mind. As an extra feature, the
simulator acknowledges every toggle input with the acknowledgment labeled a.

16.2.1 Ad hoc solution

This circuit may be simple enough to design manually, but as a warmup
for others in this chapter that are not, let us proceed as if the only option
is state based synthesis from a process style description. Decomposing
the specification into small digestible sips, we might start by writing

S ” alt ppb seqq xget q,put j, Sy, pb seqq xget t,put a, Myq (16.1)

to define the simulator’s behavior when modeling the sanely disposed scientist. That is, the simulator
accepts an input of q, responds with an output of j for Jeckyll, and resumes acting like S, or accepts
a toggle input t, acknowledges with a and then acts like a process M not written yet but soon to
describe the scientist when mad. Although this definition technically is circular, the fix combinator
should fix that shortly. First we finish up by writing the mad part.

M ” alt ppb seqq xget q,put h, My, pb seqq xget t,put a, Syq (16.2)

That is, when the scientist is mad, the simulator should accept an input of q, respond with h for
Hyde, and keep acting like M , or should accept a toggle t, acknowledge with a, and start acting
like S again. It is not completely straightforward to solve for S using the fix combinator as planned
because the definition of M is also circular and also depends on S, but by a manipulation familiar to
readers who have solved item 2 on page 120, we have

S “ fix λs. alt p

pb seqq xget q,put j, sy,
pb seqq xget t,put a,fix λm. alt ppb seqq xget q,put h, my, pb seqq xget t,put a, syqyq

16.2. MUTUAL RECURRENCES 537

from which an implementation of the mad scientist simulator MSS P H follows directly as

MSS “ SBSpxt, q, j, h, ay, Sq

by Equation 15.38 with the arbitrarily selected alphabet ordering α“ xt, q, j, h, ay shown.

16.2.2 Solution by lists of functions

Whereas an ad hoc solution such as that of Section 16.2.1 is adequate for a pair of mutually dependent
hand written recurrences, it is best to seek a generalized fixed point combinator for solving problems
with large numbers of equations and unrestricted dependences among them. To say that a process
p P D satisfies a recurrence means there is some non-trivial function e : D Ñ D for which p ” e p
holds. The analogous concept of a solution to a system of n mutual recurrences is captured by a list
P P D

n of n processes and a list H P pDn Ñ Dqn of n functions such that

Pi ” Hi P

holds for all 0 ď i ă n. For the current example, the list H P pD2 Ñ Dq2 consists of two functions

H “ x

λxs, my. alt ppb seqq xget q,put j, sy, pb seqq xget t,put a, myq,
λxs, my. alt ppb seqq xget q,put h, my, pb seqq xget t,put a, syqy

each taking two processes, and the solution P “ xS, My P D
2 is the list of two processes S and M

satisfying S ” H0xS, My and M ” H1xS, My with S as obtained above and M similar. Just as the
usual fixed point combinator yields the solution p “ fix e in the simple case, the solution P “ F H
in the general case should be given by a fixed point combinator F : pDn Ñ Dqn Ñ D

n. However, we
are usually interested in only one process from among those constituting the solution to the system,
such as S but not M in the current example, and it simplifies the derivation to seek a fixed point
combinator limited to

9Υ : pD˚ Ñ Dq˚ Ñ D

taking a list of functions H and yielding only the first process P0 “ 9Υ H from the list called P above.
The generalized fixed point combinator is denoted by the Greek letter upsilon with a dot over it
because a better alternative without the dot is coming up in Section 16.2.3.

To derive the fixed point combinator 9Υ , we may reason as follows. If H were a list of only one
function H0, then H0 would take a list xpy of only one process as an argument, and we could use
the usual fixed point combinator to obtain the solution

P0 “ 9Υ pHq “ fix λp. H0xpy.

If H were to contain some number n ą 1 of functions but somehow we already knew the rest of
the processes P1, P2 . . . Pn´1 satisfying Pi ” Hi P, we could treat them as constants and still use the
usual fixed point combinator to obtain P0 as the fixed point of a function parameterized by a single
unknown process p.

P0 “ fix λp. H0xp, P1, P2 . . . Pn´1y (16.3)

In the mad scientist simulator example, this solution would be like writing

S “ fix λp. pλxs, my. alt ppb seqq xget q,put j, sy, pb seqq xget t,put a, myqq xp, My

538 CHAPTER 16. DIRECT MAPPING SYNTHESIS

as if some constant process M representing Hyde mode were already known. If P0 and P1 were both
unknown but P2 . . . Pn´1 were known and 9Υ were computable for lists of fewer than n functions, we
could solve Equation 16.3 for P0 by eliminating P1 from it with the substitution

P1 “ 9Υ pλh. h ˝ λq. p : qq› pH « 1q

which can be evaluated with 9Υ because each of the n ´ 1 functions h P RpH « 1q determines a
function h ˝ λq. p : q taking a list q of length n ´ 1 as an argument.

A generalization of this substitution can be used to eliminate each of P2 through Pn´1 from
Equation 16.3, making 9Υ expressible as a recurrence. We note first that the i-th fixed point
determined by a list x P pD|x| Ñ Dq˚ of functions is given by the application of 9Υ to a list r i x
derived from x by rolling it left i times, with

r “ λl. pl « 1q q xl0y

temporarily denoting the function that rolls a list once to the left, and having each term h P Rpxq

compensate by rolling its argument i times to the right before operating on it.

9Υ pλh. h ˝ r |x|´iq›r i x

Specifically with respect to Equation 16.3, we would substitute

Pi “ 9Υ pλh. h ˝ r |H|´iq›r i´1ppλh. h ˝ pλq. p : qqq›pH « 1qq

with i ranging from 1 to n ´ 1, or more succinctly

Pi “ 9Υ r i´1pλh. h ˝ pλq. p : qq ˝ r |H|´iq›pH « 1q.

These observations suggest the recursive definition for the fixed point combinator

9Υ pHq “ pλr.fix λp. H0pp : pλi. 9Υ r i´1pλh. h ˝ pλq. p : qq ˝ r |H|´iq›pH « 1qq›ι1
|H « 1|

qqλl. pl « 1q q xl0y

whereby a precise expression of the solution to our running example would be

S “ 9Υ x

λxs, my. alt ppb seqq xget q,put j, sy, pb seqq xget t,put a, myq,
λxs, my. alt ppb seqq xget q,put h, my, pb seqq xget t,put a, syqy.

16.2.3 Solution by dependence graphs

The generalized fixed point combinator derived in Section 16.2.2 implies an algorithmic solution
to any system of recurrences that relieves some of the manual effort, but still requires explicitly
transcribing each equation in the system. Under certain reasonable conditions, we can specify the
system in more flexible and intuitive terms without needless repetition.

Dependence graphs

A notable feature of Equation 16.1 and Equation 16.2 is that both equations have the form of a
choice between sequential compositions, each sequential composition concludes with a “mode”,
and each equation is said to depend on the other. Taking these notions literally evokes the image

16.2. MUTUAL RECURRENCES 539

jeckyll hyde

xget t,put ay

xget t,put ay

xget q,put jy xget q,put hy

Figure 16.3: A dependence graph with edges labeled by lists of processes and vertices of any type
represents a system of recurrences.

of a dependence graph as shown in Figure 16.3, with edges labeled by lists of processes meant to
execute in sequence en route between vertices of some abstract type representing the modes. If this
graph is formalized as a member g of a set

PpV ˆPpD˚ ˆ V qq

following the usual adjacency set convention, we can almost envision transforming it automatically
to a system of recurrences solvable by 9Υ . Moreover, the graph representation might be easier to
construct because it would enable a choice of vertices with more meaningful interpretations than
mere indices into a list. For the current running example, we could choose a set V “ tjeckyll, hydeu

without demanding any concrete model for it, but more generally a vertex could be structured to
keep track of any relevant semantic information.

Restrictions on dependence graphs

Two conditions make this idea workable, neither of which impedes its subsequent use in this
chapter. One condition is that the set V of vertices must be totally ordered with the minimum value
conforming to the desired solution. Stipulating jeckyll ă hyde by definition would suffice for the
example. The other is a technical condition enabling any adjacency set to determine a list: the
processes used in the edge labels must also be totally ordered, even though D generally is not. This
condition is satisfied by a restriction to the set

DX pPpGq ˆPpGq ˆPq

of processes in D whose alphabets contain only generic symbols (Section 8.7.1) and hence a graph
restricted to g P PpV ˆPppDX pPpGq ˆPpGq ˆPqq˚ ˆ V qq, for example

g “ t

pjeckyll, tpxget q,put jy, jeckyllq, pxget t,put ay, hydequq,
phyde, tpxget q,put hy, hydeq, pxget t,put ay, jeckyllququ

where q, j,t,a, and h are chosen to be members of G.

Solution

The first step to solving a system of recurrences expressed as a graph g is to transform it to a list
H : pDn Ñ Dqn of n “ |g| functions solvable by 9Υ . Each vertex pm, eq P g with adjacency set e

540 CHAPTER 16. DIRECT MAPPING SYNTHESIS

induces a term Hi : Dn Ñ D with index i “ Dpgq0 m that should be something of the form

Hi “ λP. pb altq xpb seqq p. . . q, . . . y (16.4)

in terms of a formal parameter P P D
n with details dependent on e “ pΨ gq m. In particular, each

edge pp, qq P e labeled by a list p P D
˚ of processes and terminating at a vertex q P Dpgq accounts

for a term
pb seqq pp q xPjyq

in Equation 16.4 with the index j “ Dpgq0 q referring to the process in the formal parameter P that
corresponds to the lexicographically j-th vertex in the graph, which is the terminus q. Hence the
full set of sequential composition terms would be

ď

pp,qq P pΨ gq m

tpλ j. pb seqq pp q xPjyqq Dpgq0 qu

from which the list of processes appearing in Equation 16.4 follows as

`

ď

pp,qq P pΨ gq m

tpλ j. pb seqq pp q xPjyqq Dpgq0 qu
˘0´1

and hence the whole function Hi as

Hi “ λP. pb altq
`

ď

pp,qq P pΨ gq m

tpλ j. pb seqq pp q xPjyqq Dpgq0 qu
˘0´1

or the whole list of functions as

H “

ˆ

λm. λP. pb altq
`

ď

pp,qq P pΨ gq m

tpλ j. pb seqq pp q xPjyqq Dpgq0 qu
˘0´1

˙›

Dpgq0´1.

The only other step is to solve the system of recurrences H for a fixed point. It is worthwhile to
encapsulate both steps by an alternative generalized fixed point combinator Υ defined as follows.

Υ pgq “ 9Υ

ˆ

λm. λP. pb altq
`

ď

pp,qq P pΨ gq m

tpλ j. pb seqq pp q xPjyqq Dpgq0 qu
˘0´1

˙›

Dpgq0´1 (16.5)

16.3 Refined canonical forms

Before proceeding with more of the details of direct mapping synthesis, we need to be explicit about
a couple of conditions. The first condition is that the method to be proposed requires an open Petri
net modeled DI process

X P DX pPpTq ˆPpTq ˆ P̂q

by Equation 5.7, meaning that input transitions have empty presets and output transitions have
empty postsets. This set includes but is not limited to rD by Equation 5.8 because it does not require
Petri nets in rP with mutually disjoint presets or postsets among observable transitions as specified
in Equation 5.9. By way of a rationale, each input transition is to be implemented by a block with
a single input terminal and each output transition by a block with a single output terminal, all

16.3. REFINED CANONICAL FORMS 541

r0

d1

r1

d0

c0

Ď

r0

d1

r1

d0

c0

Figure 16.4: Deleting terminal places refines the specification.

exposed to the environment. An input transition controlled by the environment can not be enabled
or inhibited from firing by anything within the circuit, so there would be nothing for its preset
places to do if it had any. Whereas a closed Petri net constrains the specified environment, an
implementation can do no such thing to the actual environment, so it would be meaningless to
attempt direct mapping in this style starting from a closed Petri net specification.

This condition turns out to have certain implications. Theoretically the requirement for an open
Petri net model imposes no restriction on the class of specifications that can be implemented, because
any member of D can be converted to a behaviorally equivalent member
of rD by Equation 7.36. In practice this conversion is never appropriate
for direct mapping synthesis because it requires enumerating the state
space. If enumerating the state space were feasible, then state based
synthesis would be the better option. If the specification is given by a
closed Petri net whose state space enumeration is infeasible, then the
outlook is indeed grim, but this eventuality is always preventable for
specifications expressed in terms of process combinators by banishing the env combinator from the
expression, which guarantees a result in rD. For example, instead of writing Equation 9.16 for a
2-by-1 decision wait specification, we could write

X “ loop alt pseq ppar pget r0,get c0q,put d00q, seq ppar pget r1,get c0q,put d10qq

and ignore the environment. The result after local optimization is shown at the right of Figure 16.4,
with Equation 9.16 transformed to an open Petri net and optimized for convenient comparison at
the left. As this example illustrates, omitting the environment is easy and results in a refinement
but still meets the specification. The downside is that the implementation may be more costly than
necessary. Unlike a decision wait, the refinement in this example needs an arbiter in it somewhere
because it arbitrates between concurrent row inputs. This cost is the price of avoiding state space
enumeration.

This example raises the question of whether it would be possible to avoid this cost by specifying
a process like the one on the left of Figure 16.4 as

X “ loop pbaltq seq› x

ppar pget r0,get c0q,put d00q,
ppar pget r1,get c0q,put d10q,
ppar pget r0,get r1q, Kqy

(16.6)

542 CHAPTER 16. DIRECT MAPPING SYNTHESIS

for a suitably defined divergent process K, which yields an open Petri net with no need for a
conversion involving state space enumeration from a closed Petri net. Although the marked place
and the anonymous transition express the constraint that the row inputs must not be concurrent,
physically emulating them in hardware accomplishes nothing. If the transition were ever to fire,
then the environment would have already violated the specification, so the transition might as well
not be there.

This observation leads to the second condition about process specifications required for the
proposed method of direct mapping synthesis: there can be no terminal places in the Petri net model.
Fortunately, transforming a Petri net to meet this condition is no more difficult than any of the Petri
net optimizations described in Section 9.1, although technically not an optimization because it yields
a refinement rather than a behaviorally equivalent result. For a Petri net N “ pP, T, A, M, Fq P P, the
terminal places are precisely the set r “ P ´DpAq, and are removed by rewriting N to

N ´ pr, H, H, H, Hq

by Equation 5.18. However, removing a terminal place by itself could leave open an anonymous
transition, contrary to the assumptions of well formed Petri nets stipulated in Section 5.2.1. Rewriting
N further to

N ´ pH, r 1, H, H, Hq

with r 1 “ pT XVq ´DpAq would remove this transition as well, but might expose more terminal
places formerly belonging to its preset. To ensure a clean sweep, we should iterate both steps
exhaustively by rewriting N to χ8 N with

χ8 “ pλN . N ´ pλr. pr, r, H, H, Hqq pλpP, T, A, M, Fq. pP Y T XVq ´DpAqq Nq
∞

denoting one last Petri net transformation to follow those given in Section 9.1. An unrestricted
process X “ pI , O, Nq P D with its Petri net model N P P refined accordingly and optimized by
Equation 9.7 for good measure is denoted RPpX q hereafter with RP : D Ñ D given by

RPpX q “ pλpI , O, Nq. pλpi, o, nq. pi, o,χ8 χP nqq pλk. xP X , X y
δ

H

k
q ptNu ´ P̂qq X (16.7)

and is called the refined canonical form of X , although the result does not depend on the canonical
form P X given by Equation 7.36 unless the Petri net N is closed.

16.4 Decomposition

Following the algorithm sketched in Section 16.1, the first step toward direct mapping synthesis is to
find the partition of greatest cardinality on the transitions in a Petri net whereby any two transitions
whose presets intersect belong to the same class. For a Petri net N “ pP, T, A, M, Fq P P with arcs A
appearing in a candidate process RPpX q “ pI , O, Nq P D to be synthesized, a function

p “ Ψ Π pµ λpi, jq. p j, iqq A (16.8)

takes any place or transition v P P Y T to its preset ‚v “ p v by Equation 6.1 and Equation 6.7.
It will be necessary to list the classes lexicographically according to an alphabet ordering α P T

›

presumably specified along with the process to be synthesized, which is convenient to extend to a
list a P pT YVq˚ given by

a “ 5 xα � T XDpAq,α � T ´DpAq, pT ´Rpαqq0´1
y (16.9)

16.5. INTERACTING STATE BASED SYNTHETIC COMMUNITIES 543

in terms of the transitions T to include in its range any unobservable transitions in T following the
inputs and outputs. Hereafter an auxiliary decomposition function

9fαz “ λpT, Aq. p5 xα � T XDpAq,α � T ´DpAq, pT ´Rpαqq0´1
y,Ψ Π pµ λpi, jq. p j, iqq Aq (16.10)

is used to denote the pair pa, pq of these two functions by 9fαz pT, Aq in terms of the transitions and
the arcs of the relevant Petri net.

Building the partition is now straightforward. Any transition t P T whose preset p t by Equa-
tion 16.8 contains a place i P p t necessarily belongs to the same class as every member of the postset
of i given by pΨ Π Aq i. Any member j P T of a class in the partition therefore determines the whole
class by the percolation

pρ λt.
ď

i P p t

pΨ Π Aq iq t ju

by Equation 6.4 with the whole partition following as

pµ ρ λt.
ď

i P p t

pΨ Π Aq iq
ď

j P T

tt juu P PpPpT YVqq.

To make a list of the classes, we map each transition temporarily to its ordinal with respect to a by
Equation 16.9

pµ2 a´1q pµ ρ λt.
ď

i P p t

pΨ Π Aq iq
ď

j P T

tt juu P PpPpNqq

so that the classes can be listed lexicographically

`

pµ2 a´1q pµ ρ λt.
ď

i P p t

pΨ Π Aq iq
ď

j P T

tt juu
˘0´1

P PpNq˚

and then converted back to a list of sets of transitions

pµ aq›
`

pµ2 a´1q pµ ρ λt.
ď

i P p t

pΨ Π Aq iq
ď

j P T

tt juu
˘0´1

P PpT YVq˚

which we identify as the decomposition fαz pT, Aq according to the decomposition function

fαz “ λpT, Aq.

ˆ

λpa, pq. pµ aq›
`

pµ2 a´1q pµ ρ λt.
ď

i P p t

pΨ Π Aq iq
ď

j P T

tt juu
˘0´1

˙

9fαz pT, Aq. (16.11)

16.5 Interacting state based synthetic communities

If an optimistic method of direct mapping synthesis described
in this section succeeds in practice, there may be no need to
look further. Under favorable conditions, the decomposition
fαz pT, Aq takes a large Petri net to a large number of very small
classes of transitions, so small that each class by itself induces
a feasible candidate for state based synthesis. Then direct

544 CHAPTER 16. DIRECT MAPPING SYNTHESIS

mapping synthesis reduces to combining a list y P H
˚ of state based synthetic blocks into a block

Ωαz ppT, Aq, yq P H by a combining form

Ωαz : pPpT YVq ˆPppT YVq ˆ pT YVqqq ˆH
˚ Ñ H

derived in Section 16.5.4. Before that, Section 16.5.1 discusses the front end of each block, corre-
sponding roughly to the places in each community, Section 16.5.2 describes the back end pertaining
to the transitions, and Section 16.5.3 briefly puts them together. However, if the assumption of
small classes proves overly optimistic, the combining form and the front ends are of further use in
Section 16.6.

16.5.1 Places

Given the plan for each arc in a Petri net to be implemented as a wire and each transition to broadcast
a signal on the wires implementing its outgoing arcs when it fires, we must envision each place
having a MERGE network to gather the signals from the transitions in its preset. A MERGE network is
appropriate because a place changes from unmarked to marked whenever any one transition in its
preset fires. A MERGE network may diverge if multiple transitions in the preset fire concurrently, but
then so too does the process we intend to implement because the environment has caused a safety
violation to its Petri net model, leaving the implementation under no further obligation.

Whereas the MERGE network clearly accounts for the front end of the block implementing a place,
the back end may be less intuitive. If a place simulates transferring its token by sending a signal,
then it should send the signal through only one of its outgoing arcs because only one transition
in its postset can fire. However, as noted in Section 16.1, the attempt to develop a protocol along
these lines ends badly. If instead we envision a place transmitting a signal only to announce the
availability of its token, then it makes sense for the place to broadcast the signal to every transition
in its postset by way of a FORK network. This protocol presupposes the postset transitions electing
the token beneficiary among themselves, with no need to inform the place of the outcome.

Deferring consideration of the back end FORK network for the moment, we might write

MERGE |p i|

to express the front end MERGE network of a place i with preset p i and p defined by Equation 16.8
relative to the Petri net being implemented were it not for a couple of edge cases. Although
Equation 16.7 rules out places with empty postsets, there could still be places i with presets p i “ H.
A MERGE with no inputs is undefined, but an alternative block

Z FORK

with no input terminals and an output that never transmits a signal serves a similar purpose,
suggesting the more general expression

xMERGE |p i|,Z FORKyδp i
H

.

Usually a place with an empty preset would be written out of the Petri net by dead code elimination
(Section 9.1.7) unless it is initially marked. An initially marked place i P M indicated as such
by its membership in the set M of initially marked places associated with the Petri net can be

16.5. INTERACTING STATE BASED SYNTHETIC COMMUNITIES 545

made to transmit an initial notification of its token if it is put in series with a PUSH. An expression
encompassing marked or unmarked places with empty or non-empty presets would be

FxxMERGE |p i|,Z FORKyδp i
H

, xI, PUSHy
δ

tiu´M
H

y

and an expression for a list of blocks ordered lexicographically by the places they represent with
one for each place in the Petri net would be

pλi. FxxMERGE |p i|,Z FORKyδp i
H

, xI, PUSHy
δ

tiu´M
H

yq› v0´1

in terms of the set v “
Ť

Rpp› aq of places inferred from the alphabet ordering a defined by
Equation 16.9.

To restrict the places to those associated with a particular class of transitions u P fαz pT, Aq, we
need only use values of

pa, pq “ 9fαz pu, Aq (16.12)

local to u in these expressions instead of those that pertain to the whole Petri net, but this restriction
leads to another edge case. If a class u contains an input transition, then the input transition has an
empty preset according to Equation 16.7, which can intersect no other presets, so there can be no
other transitions in the class by Equation 16.11 and the union v of presets over the class can only be
empty. Whereas we might normally write

pbRq pλi. FxxMERGE |p i|,Z FORKyδp i
H

, xI, PUSHy
δ

tiu´M
H

yq› v0´1

for the combined array of blocks implementing the front ends of the places, this expression is
undefined for a vanishing v. In anticipation of the array being cascaded with something that
implements the transition, and of there being only one input terminal on whatever that is, a wire
can stand in for the the array in that case and then be denoted PLpM, a, pq in terms of the following
function.

PL “ λpM, a, pq. pλv. xpbRq pλi. FxxMERGE |p i|,Z FORKyδp i
H

, xI, PUSHy
δ

tiu´M
H

yq› v0´1, Iy
δ

H
v

q
Ť

Rpp›aq

(16.13)

16.5.2 State based transition arrays

The next step to implementing a process X by state based synthetic communities is to build a block
TRA0pv, a, pq P H (mnemonic for “transition array”) implementing by state based synthesis the
transitions associated with a class u, an alphabet ordering a, and a preset function p as above, and
with

v “
Ť

Rpp›aq (16.14)

containing all places in the presets of members of u, so that an array of blocks each of the form

C|v|`δv
H

xPLpM, a, pq, TRA0pv, a, pqy

implementing a single community can be combined to implement the process X as developed
shortly in Section 16.5.4. The mnemonic is subscripted TRA0 to indicate a restriction of the more
general alternative developed in Section 16.6.2 to arrays of transitions whose state based synthesis is
computationally feasible. Here again we must make explicit provision for the case of a class u whose

546 CHAPTER 16. DIRECT MAPPING SYNTHESIS

i0

. . .

i1

. . .

i2

. . .

i3

. . .

i4

. . .

o0

. . .

o1

. . .

o2

. . .

o3

. . .

ď

k PRpaq

pp kq ˆ tku

Figure 16.5: Arcs from places v to transitions Rpaq isolated from a larger Petri net temporarily
determine a localized Petri net for state based synthesis with fabricated alphabets i and o.

presets v are empty because it contains only an open input transition. The circuit corresponding
to the set of a single transition reduces to a wire connected by δv

H
“ 1 line to the array of places,

which also reduces to a wire as noted above.
Drawing a boundary in effect separating the places on the front end from the transitions on

the back end, this organization in the non-degenerate case narrows the responsibility of the state
based synthesis algorithm to a block with exactly one input terminal for each place and one output
for each transition as shown in Figure 16.5. The MERGE networks and PUSH primitives needed for
places with multiple predecessors or with initial markings are delegated to the block PLpM , a, pq.

To synthesize the back end not from a process in D nor even from a Petri net but from only
a fragment of a Petri net, we need something like a wrapper around the fragment. Intuitively
the wrapper would be a process whose Petri net model has transitions u “ Rpaq, places v by
Equation 16.14 and arcs

ď

k PRpaq

pp kq ˆ tku

copied from the original Petri net model of X , which would fix the output
alphabet of the process asRpaq as well. The input transitions (labeled i in
Figure 16.5) might not map bijectively to any particular set of transitions
from the original, but could be an improvised list of |v| generic terminals
such as G0´1›

ι|v|.
A few technicalities prevent the construction from being quite so

simple. The transitions in a are not necessarily observable in X even
though the wrapper needs an observable output transition for each term of a. Hence we have to
substitute generic terminals for the terms of a and rewrite the arcs accordingly. Some transitions
in a might be observable with no need for substitution, and some of those may be generic, but it
simplifies matters to avoid clashes with them in the improvised alphabets by defining a pair

pi, oq “ p f0 vq a P G
|v| ˆG

|a|

16.5. INTERACTING STATE BASED SYNTHETIC COMMUNITIES 547

with all terms of a substituted regardless according to

f0 “ λv. λa. pλs. ps ∣ |v|, s « |v|qq pλk. G0´1›
ιk`1
|v|`|a|

q max pt0u Y pµG
0q pGXRpaqqq

so that the wrapper process can have input and output alphabets Rpiq and Rpoq respectively, and
can be synthesized with an alphabet ordering i q o. In addition to the arcs noted above, there needs
to be an incident arc on each place j P v from the pv0 jq-th term of i as shown in Figure 16.5. Putting
both sets of arcs together, we would have

ď

j P v

tpi v0 j, jqu Y
ď

k PRpaq

pp kq ˆ tku

were it not for the need to rewrite those terminating on transitions l P Rpaq to the corresponding
generic terminal o a´1 l. Incorporating these arcs into a Petri net with places v and transitions
Rpi q aq permits an overall rewrite to

pλl. xl, o a´1 ly
δ

tlu´Rpaq

H

q˛ pv,Rpi q aq,
ď

j P v

tpi v0 j, jqu Y
ď

k PRpaq

pp kq ˆ tku, H, Hq P P

by Equation 5.10, which can be abbreviated as pp f1 pq aq pi, o, vq according to

f1 “ λp. λa. λpi, o, vq. pλl. xl, o a´1 ly
δ

tlu´Rpaq

H

q˛ pv,Rpi q aq,
ď

j P v

tpi v0 j, jqu Y
ď

k PRpaq

pp kq ˆ tku, H, Hq

(16.15)
enabling a state based synthetic block (by Equation 12.3)

pλxpi, oq, ny. SBS pi q o, pRpiq,Rpoq, npi, o, vqqqq px f0 v, f1 py Ÿ a 2q P H

to meet the requirements for the back end when v is non-empty. When v is empty, the input alphabet
i as given by p f0 vq a is empty, the Petri net pp f1 pq aq pi, o, vq is not well formed, and the block is
undefined unless we generalize it to TRA0pv, a, pq by

TRA0 “ λpv, a, pq.
@

pλxpi, oq, ny. SBS pi q o, pRpiq,Rpoq, npi, o, vqqqq px f0 v, f1 pyŸ a 2q, ID
δ

H
v

(16.16)

for reasons noted above.

16.5.3 Communities

With these minor issues resolved, an implementation for a community including the front and back
ends by state based synthesis and covering the degenerate case follows as a block

COM0pα, A, Mq u P H

in terms of an alphabet ordering α and a class u P fαz pT, Aq of transitions from a Petri net with
transitions T , arcs A, and initial marking M based on COM0pα, A, Mq : PpT YVq Ñ H defined as

COM0pα, A, Mq “ λu. pλpa, pq. pλv. C|v|`δv
H

xPLpM, a, pq, TRA0pv, a, pqyq
Ť

Rpp›aqq 9fαz pu, Aq.

When state based synthesis is feasible, a block COM0pα, A, Mq u, mnemonic for “community”, can
serve as a plug-compatible replacement for the more general alternative COMpα, A, Mq u to be
developed in Section 16.6.6.

548 CHAPTER 16. DIRECT MAPPING SYNTHESIS

16.5.4 Combining form

A combining form capturing the notion of assembling an arbitrary Petri net from its constituent
communities is a tall order due to the lack of any repetitive or recurrent structure in general. Starting
from an array of blocks with each one corresponding to a community, we proceed in this section
over several steps involving permutation networks, feedback paths and other miscellany to derive a
direct mapping synthesis function DMS0 : T˚ ˆD Ñ H by the end.

Community array

The step from describing an individual community to describing the ensemble of interacting com-
munities implementing a specification X P D modeled as above is largely achieved by making a
list

y “ COM0pα, A, Mq› c P H
˚

of blocks determined by a decomposition

c “ fαz pT, Aq P PpT YVq˚ (16.17)

into an array pbRq y P H. This array would have one output terminal for each transition in the Petri
net, with the first |c0| output terminals being those of the transitions in c0, the next |c1| in c1, and so
on.

Output permutation network

The first step toward transforming this array into an implementation of the process X is to find an
output permutation network rearranging these out-of-order terminals consistently with the alphabet
ordering a by Equation 16.9. A list

pµ a´1q› c P PpNq|c|

of sets of numbers expresses the alphabet ordinals of each class of transitions in order of the class’s
position in c, and a flatter list

85 pµ a´1q› c P N
|a|

gives the ordinals of the transitions in the order they would appear on the back of the array without
the benefit of any output permutation network.

Because not all of the terminals on the array are meant to be exposed to the environment, a
permutation network that puts the exposed terminals on a separate bus from the rest would be
useful. To draw this distinction, we convert the above map relating terminal addresses with alphabet
ordinals to a map

r “ a› 85 pµ a´1q› c P pT YVq|a|

taking terminal addresses to transitions, and then divide r into two lists

xr �DpAq, r �T ´DpAqy P pT YVq˚2

where the first list r �DpAq contains transitions that are the origin of at least one member of the set
A of arcs in the Petri net, and the second list r �T ´DpAq contains the rest. Terminals associated
with transitions in the first list need to be connected to something else in the circuit, whereas the

16.5. INTERACTING STATE BASED SYNTHETIC COMMUNITIES 549

rest correspond to exposed outputs. With the distinction thus drawn, we can convert each list of
transitions back to a list of terminal addresses by writing

r´1›› xr �DpAq, r �T ´DpAqy P N
˚2.

A permutation network based on the concatenation of these two lists certainly could route the
exposed outputs to a separate bus from the rest, but the lines within each bus would still be out of
order with respect to the alphabet. Whereas r �T ´DpAq lists the exposed output transitions in an
order affected by their class membership, a list of these same transitions rearranged to

a �Rpr �T ´DpAqq

enumerates them in the order they appear in a. However, because r and a have the same ranges,
this list might as well be expressed as

a �T ´DpAq

and similarly for the other list, we have
a �DpAq

suggesting a more useful choice of lists l “ pm0 cq pa, Aq P PpNq˚2 for a permutation network by

m0 “ λc. λpa, Aq. pλr. r´1›› xa �DpAq, a �T ´DpAqyq a› 85 pµ a´1q› c (16.18)

so that the first |l0| output terminals from the block pbRq y ˙ 5 l are associated with the input or
internal transitions in the Petri net, the remaining |l1| terminals are associated with the externally
visible output transitions, and within each group they are ordered consistently with the alphabet
ordering a.

Feedback FORK network

Getting from this point to the whole implementation of X is a matter
of constructing some sort of a feedback path from the transitions
implemented in pbRq y ˙5 l to the inputs associated with the places.
As well as a permutation network, a FORK network neglected until
now is needed along the path. Any transition t “ ak for any alphabet
index k P Dpaq has a postset q t P PpVq by

q “ Ψ Π A (16.19)

containing |q ak| places. To broadcast a signal to every place in its postset concurrently, the transition
needs a back end block FORK f k for f “ m1pa, Aq : Dpaq Ñ N given by

m1 “ λpa, Aq. pλq. λk. |q ak|q Ψ Π A (16.20)

with each of its |q ak| output terminals connected to an input terminal of one of the places in the
postset. Incorporating the FORK networks leads to an adjustment along the lines of

pbRq y
p5 lq´1

ÝÝÝÑ RppbRq FORK› f › l0 ˙ i, I|l1|q

subject to a permutation i P N
˚ yet to be determined in preparation for a feedback bus I|i| whereby

we aim to write the whole solution as

Z|i|
`Z|i|pRppbRq y

p5 lq´1

ÝÝÝÑ RppbRq FORK› f › l0 ˙ i, I|l1|q, I|i|q ç |i|q
˘

.

550 CHAPTER 16. DIRECT MAPPING SYNTHESIS

pbRq y
p5 lq´1

ÝÝÝÑ RppbRq FORK› f › l0, I|l1|q

ä

f l0 0

...

ä

f l0 p|l0| ´ 1q

ä

|l1|
exposed
outputs

ä
exposed
inputs

ä

|p v0|

ä

|p v|v|´1|

...
|i|

$

’

’

&

’

’

%

,

/

/

.

/

/

-

|i|

Figure 16.6: For the block to implement a Petri net with communities y, a permutation network
with |i| lines specified by a permutation i needs to interface the outputs from the transitions with
the inputs to the places.

Feedback permutation network

To approach the permutation i, we envision the combined presets p t by Equation 16.8 of all
transitions t P u in each class u P Rpcq by Equation 16.17 listed in order of classes by

pλu.
Ť

pµ pq uq› c P PpVq˚

giving rise to a flattened list of places

v “ 85 pλu.
Ť

pµ pq uq› c P V
˚.

Each place s P Rpvq is implemented by a block internal to pbRq y with one of |p s| consecutive input
terminals for each transition t in its preset p s. The places are grouped by classes and ordered
lexicographically within each class by Equation 16.15. Their input terminals come last after the
exposed input terminals as mandated by Equation 16.9, and the output terminals from the transitions
as they appear prior to the incorporation of the feedback path are illustrated in Figure 16.6.

The output terminal connected to the input associated with a transition t P p s can be localized to
the range connected to the output bus labeled f l0 a´1 t in Figure 16.6 because all lines emanating
from the transition t are on this bus. Because there is one output bus for each transition, each bus’s
width is the cardinality of the corresponding transition’s postset, and the bus’s position relative to
the other buses is the transition’s position in a, the index of the terminal in question is at least the
number

|85 q›pa ∣ a´1 tq|

of bus lines due to all transitions preceding t in a by Equation 16.19. Furthermore, because the
transition t may have other places than s in its postset, it reserves the ppq tq0 sq-th line on the bus
for communication with s, implying the specific terminal index of

|85 q›pa ∣ a´1 tq| ` pq tq0 s.

The set of source terminal indices for all transitions t P p s is therefore the set

pµ λt. |85 q›pa ∣ a´1 tq| ` pq tq0 sq p s

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 551

leading to the list of these sets over all places s P Rpvq by

pλs. pµ λt. |85 q›pa ∣ a´1 tq| ` pq tq0 sq p sq› v P PpNq˚

and the desired permutation i “ m2pc, pq pa, Aq P N
˚ as given by

m2 “ λpc, pq. λpa, Aq. pλq. 85 pλs. pµ λt. |85 q›pa ∣ a´1 tq| ` pq tq0 sq p sq› pλu.
Ť

pµ pq uq› cq Ψ Π A.

This result can be incorporated as planned into a result m3py, xm0 c, m1, m2pc, pqy Ÿ pa, Aq
3
q P H by

m3 “ λpy, xl, f , iyq. Z|i|
`Z|i|pRppbRq y

p5 lq´1

ÝÝÝÑ RppbRq FORK› f › l0 ˙ i, I|l1|q, I|i|q ç |i|q
˘

along with Equation 16.18 and Equation 16.20, or more explicitly into the combining form

Ωαz ppT, Aq, yq “
`

λxc, pa, pqy. m3py, xm0 c, m1, m2pc, pqy Ÿ pa, Aq
3
q
˘

pxfαz , 9fαz y Ÿ pT, Aq
2
q.

Mismatched alphabets

Before using the combining form Ωαz derived above to define the circuit DMS0pα, X q P H in terms of
a process X “ pI , O, Nq P D, we have to consider the issue of members of the alphabets I and O not
appearing in the transitions T of the Petri net N “ pP, T, A, M, Fq. This issue is similar to one noted
in Section 15.3.4, and much of the same discussion applies. The upshot is that a correct algorithm
must add any input and output terminals to the circuit inferred from the Petri net as needed to
match the nominal alphabets.

To distinguish between inputs I X T present in T from inputs I ´ T that are absent along with
outputs O X T and O ´ T , we can make a list

pλs. xs X T, s ´ Tyq› xI , Oy P pPpTq2q2

determining a record of their ordinals

pµ pα � pI Y Oqq´1q›› pλs. xs X T, s ´ Tyq› xI , Oy P pPpNq2q2

sufficient for a function m4pα, I , Oq : H Ñ H to effect the required adjustment to the circuit by

m4 “ λpα, I , Oq. M9 pµ pα � pI Y Oqq´1q›› pλs. xs X T, s ´ Tyq› xI , Oy

for M9 given by Equation 15.25. With that, we have a specification for a function

DMS0 : T˚ ˆD Ñ H

defining direct mapping synthesis by interacting state based synthetic communities as follows.

DMS0pα, X q “ pλpI , O, pP, T, A, M, Fqq. m4pα, I , Oq Ωαz ppT, Aq, COM0pα, A, Mq› fαz pT, Aqqq RP X

(16.21)

16.6 Interacting direct mapped synthetic communities

When a process specification stubbornly resists decomposition into communities that can be imple-
mented feasibly by state based synthesis, there is recourse to more drastic measures. Instead of

552 CHAPTER 16. DIRECT MAPPING SYNTHESIS

MON

TR

. . .

LK

ä 3

TR

. . .

LK

ä 3

TR

. . .

LK

ä 3

TR

. . .

LK

ä 3

ä
3

ä 3 ä
3

ä
3

ä

ä ä

ä

Figure 16.7: Transitions and a monitor in a direct mapped community interact via lock negotiation
channels of three lines each and input revocation channels of various widths.

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 553

attempting to treat the whole community as a unit, we can treat each transition in it as a separate
entity interacting independently with its environment. Synthesizing a circuit to behave as just one
transition in a community is easier than synthesizing the whole community because the state space
of an individual transition is smaller. Above a tipping point, it is easier to synthesize any number of
transitions in a community separately than to synthesize them en masse because the work of syn-
thesizing them separately increases only additively rather than multiplicatively with their number.
Developing this idea informally at first and then making it more precise occupies the rest of this
section.

16.6.1 Overview

Although each transition is to be implemented as a separate block according to this plan, some
coordination among them is necessary to procure a faithful rendition of the process specification. If
a transition receives a notification from every place in its preset indicating that the place holds a
token, then that transition is ready to fire, but if any of those places belongs to the preset of another
transition that is also ready to fire, then according to the specification at most one of the transitions
is allowed to fire. The competition between the transitions has to be resolved somehow.

The monitor block shown at the center of Figure 16.7 addresses this need. When a transition
is ready to fire, it requests a lock from the monitor. If the monitor grants the lock, the transition
fires, clears its record of available tokens, and releases the lock. The monitor keeps the system to its
specification by never granting simultaneous locks to competing transitions.

Certain other aspects of the protocol between transitions and
monitors necessarily ensue, which are worth sketching informally
before getting down to business. If we envision the tokens being
absorbed by the transition that fires, then the monitor must send a
message to every other transition in receipt of the same notifications
to inform them that the tokens are no longer available to be absorbed. For this discussion, these
messages are called revocation requests because it is as if they revoke the notifications of token
availability to the transitions.

• The monitor starts sending revocation requests the moment it decides to grant a lock but
before granting it.

• Every revocation request from a monitor to a transition must be acknowledged by a revocation
acknowledgment from the transition to the monitor.

• The monitor grants the lock only after receiving a revocation acknowledgment from every
competing transition.

Due to unpredictable wire delays, a revocation request could reach a transition in advance of the
notifications it revokes. The transition must be prepared for this possibility and block until the
relevant notifications arrive if necessary.

What should happen if a transition sends a lock request to a monitor at the same time the monitor
sends a revocation request to that transition? If the monitor is sending a revocation request, then
some competing transition has already requested and been chosen to receive the lock, so the monitor
certainly can not grant another lock. Nor can the monitor ignore the lock request because doing so
allows the requesting transition to block, preventing it from acknowledging the pending revocation
request and thereby deadlocking the system. A workable lock negotiation protocol therefore needs

554 CHAPTER 16. DIRECT MAPPING SYNTHESIS

grant out

request in

grant in

request out

deny out deny in

fire

LKä ä “

Figure 16.8: Locks are negotiated with a 2Φ request/deny handshake when requests are denied but
with a 4Φ cycle for grants including an explicit release phase. The fire output is emitted concurrently
with the release acknowledgment to signal that a transition fires when it releases a lock.

lock requests to be deniable explicitly, so that a transition having requested a lock blocks only until
the request is either granted or denied.

• A monitor receiving a lock request from a transition to which it has sent a revocation request
denies the lock request and continues waiting for the revocation acknowledgment.

• A transition whose lock request is denied can rely on a revocation request arriving shortly,
so the transition waits for the next revocation request, acts on it accordingly, and does not
request another lock until further notifications indicate a replenished supply of tokens.

In an obscure edge case, a speedy transition having been denied a lock waits for more notifications
from its preset places, receives them, and requests another lock, all according to protocol and all
before the competitor responsible for the denial has a chance to fire. Possibly the competitor has
been selected to fire but not yet granted the lock owing to delayed revocation acknowledgments
from other competitors. Granting the speedy transition’s lock request would commit the monitor to
initiating another round of revocation handshakes although the current round is still in progress.
Denying it would condemn the speedy transition to wait forever for a revocation request that never
comes. In this case the monitor takes the easy way out by postponing any grant or denial decision
until the pending cycle concludes with a lock release. The speedy transition is temporarily blocked,
but there is no danger of deadlock. The monitor can always distinguish between deniable and
blockable lock requests because the latter occur only during the interval between a revocation
acknowledgment from the requesting transition and a lock release from its competitor. Notably this
solution depends on locks being released explicitly, mandating a 4Φ handshake for successful lock
negotiation as implied above, even if a 2Φ handshake suffices for denials.

16.6.2 Transitions

Designing transition and monitor blocks down to the level of individual primitive components that
execute this protocol may seem like a daunting prospect, but will yield in due course to an approach

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 555

following the example of a certain mad scientist mentioned in Section 16.2. In this section we focus
on the transition block, which is the easier of the two, and make it slightly easier by delegating a
small part of its functionality to the manually designed block shown in Figure 16.8.

Bus interfaces

The transition block is best viewed as interfacing with its environment by way of three buses operating
concurrently. One of the buses carries token availability notifications from the preset places, and
has one input for each member of the transition’s preset. Another bus carries the lock negotiation
channel over three lines. One line of the lock negotiation channel is an output from the transition
to request or release a lock, and the other two are inputs whereby the transition is either granted
or denied a lock. The remaining bus communicates revocation requests and acknowledgments.
The same output from the transition is used to acknowledge any revocation request, but there are
multiple inputs, each corresponding to a specific set of token notifications to be revoked. There is
no dedicated output to signal that the transition fires. Instead we envision the LK block shown in
Figure 16.8 wire tapping the lock negotiation channel to emit a firing signal whenever the transition
releases a lock.

A more precise account of this interface requires further details about the revocation channel,
specifically as to the number of inputs and the set of notifications associated with each. A transition
t P u in a class u P 9fαz pT, Aq of the partition 9fαz pT, Aq derived from some process whose Petri net
model has transitions T and arcs A has a preset ‚t “ p t by Equation 16.8, so it has |Ppp tq| subsets
of notification inputs, but fortunately never needs more than the greater of |u| ´ 1 or 2|p t| ´ 1
revocation inputs, and often needs fewer. The exact number | j| is determined by the set j of non-
empty intersections between p t and p w over all other transitions w P u ´ ttu.

j “
ď

w P u´ttu

tpp tq X p wu ´ tHu P PpPpVqq (16.22)

When a transition w other than t is granted a lock, the monitor calls for t to revoke exactly the
notifications from places in pp tq X p w, and these sets of notifications are the only possibilities. As
for the correspondence between revocation bus inputs and sets of preset places, we can identify the
n-th bus line with the lexicographically n-th term p j0´1

qn for 0 ď n ă | j| based on the implicit total
ordering of V.

Parameterized processes

This description of the interface along with that of the protocol in Section 16.6.1 is enough to get
started with constructing the circuit to implement a transition by state based synthesis as planned.
Although a manual design for an individual transition might be contemplated, there is no one size
that fits all combinations of presets and competitors, leaving little alternative but to derive a circuit
algorithmically from a process parameterized by them. Assuming an input alphabet using the first
| j| generic terminal symbols by Equation 16.22 to represent the revocation inputs and the next |p t|

generic terminal symbols to represent the token notification inputs, we can write

i “ f2pp, u, tq P PpPpGqq (16.23)

temporarily for a set of sets of token notification symbols wherein each set represents the inputs
revoked by some particular revocation symbol in terms of the preset function p, the class of transitions

556 CHAPTER 16. DIRECT MAPPING SYNTHESIS

TRpp, u, tq

ä

|Dprq|

revocation requests

ä

|v|

token notifications

lock grant l1

lock denial l2

revocation acknowledgment h

lock request l0

Figure 16.9: transition process interface for parameters pv, h, l, rq “ f3pp, u, tq f2pp, u, tq with
terminals shown in lexicographic order of their associated alphabet symbols

u, the transition t P u whose implementation is sought, and the function

f2 “ λpp, u, tq.
`

λ j. pµ2 pλk. G0´1
| j| ` pp tq0 kqq j

˘

ď

w P u´ttu

tpp tq X p wu ´ tHu. (16.24)

Then we can write
v “ RpG0´1›

ι
|i|
|d|

q P PpGq

explicitly for the subset of input alphabet symbols corresponding to token notifications in terms of
the preset d “ p t, take the next unused generic symbol

h “ G
0´1

|i| ` |d|

for the revocation acknowledgment output, and reserve a list of three more distinct alphabet symbols

l “ G
0´1›

ι
|i|`|d|`1
3 P G

3

for the lock channel. To associate a set s P Ppvq of token notification input symbols with its
revocation input, a function

r “ G
0´1

˝ i0 : Ppvq Ñ G

makes it easy to write rpsq P G provided s is a member of i by Equation 16.23, meaning the inputs
in s are revocable as a unit. Henceforth we identify the domain Dprq with the set i rather than
referring to i explicitly. A tuple

pv, h, l, rq “ f3pp, u, tq f2pp, u, tq (16.25)

summarizes this information for any transition t with p and u as above in terms of a function

f3 “ λpp, u, tq. λi.
`

λd.
`

RpG0´1›
ι

|i|
|d|

q,G0´1
|i| ` |d|,G0´1›

ι
|i|`|d|`1
3 ,G0´1

˝ i0
˘˘

p t. (16.26)

This summary of the transition process alphabets facilitates an expression of the process by a
dependence graph representing a system of recurrences as in Figure 16.3, which is then solvable
for a single process by the generalized fixed point combinator Υ defined in Equation 16.5. This
process is then transformable by state based synthesis to the block shown in Figure 16.9 with the
lexicographic alphabet ordering f4pp, u, tq f2pp, u, tq P G

˚ by

f4 “ λpp, u, tq. λi. pλk. G0´1›
ιkq |i| ` |p t| ` 4. (16.27)

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 557

Dependence graphs

While the generalized fixed point combinator requires the edges in the dependence graph to be
labeled by lists of processes, the vertices as noted previously can be drawn from any totally ordered
set, so we are free to choose the vertices in a way that makes the adjacency relation obvious. A
good choice for the current setting would be a graph of sets of token notification input symbols,
with each vertex in the graph corresponding to one of an ensemble of processes such that a vertex s
corresponds to the process that has already received all token notifications in s. Then for example
we would know that any vertex s Ă v must have an outgoing edge labeled xget iy for any token
notification input symbol i P v ´ s, and the edge leads obviously to the vertex s Y tiu. The intuition
is that the process corresponding to the vertex s Y tiu behaves slightly differently from the one
corresponding to s in a way that reflects having received the input i.

It is tempting to continue immediately in this vein to build the whole dependence graph, which
involves only three other kinds of edges than the one in the example above, but there is a small
issue. The solution obtained from the dependence graph by the generalized fixed point combinator
is invariably an open Petri net modeled process. Building the reachability graph of an open Petri
net in the course of state based synthesis can be considerably more costly than building one for the
equivalent closed Petri net, and even prohibitive. Typically this cost is mitigated by specifying an
environment in combination with the process to obtain a closed Petri net. Whereas the environment
is usually simple enough to be an afterthought, specifying a suitable environment to interact with
the transition process is comparable to specifying the transition process itself. In anticipation of
this issue, we can construct an environment of the same form as the process by reflecting the get
operations in each of them as put operations in the other in terms of a function

~ı : pPpGq ˆGˆG
3 ˆ pPpGq Ñ Gqq ˆ pT Ñ Dq2 Ñ pPpGq Ñ PpD˚ ˆPpGqqq

parameterized by the tuple

pv, h, l, rq P PpGq ˆGˆG
3 ˆ pPpGq Ñ Gq

describing the alphabets by Equation 16.25, and by either of the lists

xget ,puty, xput ,gety P pT Ñ Dq2

so that ~ıppv, h, l, rq, xget ,putyq s defines an adjacency set in PpD˚ ˆ Ppvqq of a vertex s P Ppvq

in the dependence graph of the transition process, but ~ıppv, h, l, rq, xput ,getyq s1 uses the same
function ~ı to define the adjacency set of a vertex s1 in the dependence graph of the environment of
the transition. We can interpret s1 as the vertex corresponding to the one of an ensemble of mutually
dependent processes making up the environment that has already sent all token notifications in s1

to the transition.
An adjacency set p~ı zq s for z “ ppv, h, l, rq, xg, pyq associated with a vertex s in a dependence

graph is convenient to express as the union of four sets p~ık zq s of edges in terms of functions ~ı0
through ~ı3 according to these definitions.

• Any vertex s Ă v that does not contain the complete set v of token notifications has an
adjacency set containing at least the members of p~ı0 zq s as noted previously for ~ı0 defined as
follows.

~ı0 “ λppv, h, l, rq, xg, pyq. λs.
ď

i P v´s

tpxg iy, s Y tiuqu

558 CHAPTER 16. DIRECT MAPPING SYNTHESIS

• Any vertex s Ă v corresponding to a process having received (or an environment having
sent) some revocable set b P Dprq of token notifications, but not the complete set v, can
participate in a revocation handshake leading to a vertex s ´ b. This handshake is initiated
by the revocation request r b P G and completed by the revocation acknowledgment h P G

according to ~ı1 defined as follows.

~ı1 “ λppv, h, l, rq, xg, pyq. λs.
ď

b P pµ rq pDprqXPpsqq

xtpxg r b, p hy, s ´ bqu, Hyδv
s

• A vertex s “ v corresponding to the process having received (or sent) every token notification
in v can participate in a successful 4Φ lock negotiation and clear its record of notifications
using l0 as the lock request signal and l1 as the grant by this definition of ~ı2.

~ı2 “ λppv, h, l, rq, xg, pyq. λs. xH, tpxp l0, g l1, p l0, g l1y, Hquyδv
s

• A vertex s “ v also has outgoing edges in p~ı3 zq s representing participation in an unsuccessful
2Φ lock negotiation followed by a revocation handshake for any set of notifications b P Dprq,
leading to a vertex s ´ b by this definition of ~ı3.

~ı3 “ λppv, h, l, rq, xg, pyq. λs.
ď

b PDprq

xH, tpxp l0, g l2, g r b, p hy, s ´ bquyδv
s

Transition block synthesis

These definitions for ~ı0 through ~ı3 enable an expression qpsq for the pair of a vertex s and its
associated adjacency set in the transition process dependence graph by

qpsq “

ps,
3
ď

k“0

~ıkpw, xget ,putyq sq
(

and the whole process by the generalized fixed point combinator and a percolation of q from the
empty vertex.

Υ pρ λpm, eq.
ď

n PRpeq

q nq q H

However, to express either the process or its reflecting environment with equal ease, we can have a
direction d P t0, 1u induce either the process by d “ 0 or the environment by d “ 1 in an expression

Υ pλq. pρ λpm, eq.
ď

n PRpeq

q nq q Hq λs.

ps,
3
ď

k“0

~ıkpw, xget ,puty ˝ xδd
1 ,δd

0yq sq
(

or express both at once as f5 w P D
2 by

f5 “ λw.
`

λd. Υ pλq. pρ λpm, eq.
ď

n PRpeq

q nq q Hq λs.

ps,
3
ď

k“0

~ıkpw, xget ,puty ˝ xδd
1 ,δd

0yq sq
(˘›
ι2

which along with Equation 16.24, Equation 16.26, and Equation 16.27 leads to a complete description
of the block shown in Figure 16.9 by state based synthesis.

TRpp, u, tq “ pλxi, g, f y. SBSpg i, pbenvq f iqq px f2, f4, f5 ˝ f3y Ÿ pp, u, tq
3
q (16.28)

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 559

LTRpa, pq

ä

2|a|

lock responses

ä

e0first transition’s
revocation requests ...

ä

e|a|´1last transition’s
revocation requests

ä

|
Ť

Rpp›aq|token notifications
by place

ä

|a|

firing outputs

ä

|a|

lock requests

ä

|a|

revocation acknowledgments

Figure 16.10: A lockable transition array parameterized by pa, pq “ 9fαz pu, Aq for a set u P fαz pT, Aq

of transitions determined by a Petri net with transitions T and arcs A combines |a| “ |u| transition
blocks, where en is the number of revocation requests for the n-th transition in the array.

16.6.3 Lockable transitions

Combining the transition blocks defined in Section 16.6.2 with a monitor block foreshadowed in
Section 16.6.1 and soon to be defined in Section 16.6.4 benefits from an intermediate step in this
section to construct the block shown in Figure 16.10, mnemonic for “lockable transition array”.
Parameterized by a preset function and alphabet ordering pa, pq “ 9fαz pu, Aq by Equation 16.10, this
block hides an array of transition blocks behind a FORK network having a single input for each place
in their collective presets

Ť

Rpp›aq. The FORK network carries a token notification signal from each
place to all of the transitions in the place’s postset. Each transition is also connected to an instance
of the block LK shown in Figure 16.8. Finally, permutation networks on the front and back organize
the rest of the signals into separate buses for simpler coordination.

Lock blocks

To work from the inside out, we can start with a block combinator expression

LK “ RpZ3ppZ2RpF2xTOGGLE2 æ 1, MERGE2y,RpSHUNT, FORKq ç 1qq å 1 æ 2q, Iq

for LK derived as shown in Figure 16.11. Consequently, the first input is a lock request from the
transition, the next input is a grant from the monitor, and the next input is a denial from the monitor.
The output side starts with a firing output, followed by a lock grant output destined for the transition,
then a lock request output destined for the monitor, and then a lock denial output for the transition.
Based on this ordering and the one shown in Figure 16.9, the three connections between the LK and
a block derived from a transition t P u are effected by

ZpL2xLKé1
2, TRpp,Rpaq, tqy ê 1q

with the range Rpaq “ u being the set of transitions in the community. The combined block has two
lock acknowledgment inputs followed by a revocation request bus followed by a token notification
bus as inputs, with a firing output, lock request, and revocation acknowledgment as outputs.

560 CHAPTER 16. DIRECT MAPPING SYNTHESIS

Z3ppZ2RpF2xTOGGLE2 æ 1, MERGE2y,RpSHUNT, FORKq ç 1qq å 1 æ 2q

pZ2RpF2xTOGGLE2 æ 1, MERGE2y,RpSHUNT, FORKq ç 1qq å 1 æ 2

F2xTOGGLE2 æ 1, MERGE2y

RpSHUNT, FORKq ç 1

TOGGLE2 æ 1

MERGE2

Figure 16.11: A block RpZ3ppZ2RpF2xTOGGLE2 æ 1, MERGE2y,RpSHUNT, FORKq ç 1qq å 1 æ 2q, Iq to
express the circuit in Figure 16.8 has inputs in order of request, grant and deny signals, and has
outputs ordered as fire, grant, request, and deny.

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 561

Parallel transitions

The input and output ordering on a single transition block combined with LK would be consistent
with Figure 16.10 if they were the only ones, but further effort would be needed if there were blocks
of this form for multiple transitions in parallel. A partial solution is to combine the blocks in a fold

pbλpt, zq.RpZpL2xLKé1
2, TRpp,Rpaq, tqy ê 1q å |p t|, zq ä |p t|q a

so that the token notification bus inputs come last in reverse order by transitions but still in the
original order of preset places on the bus for each transition. We can at least also finish with the
output buses by writing

ppbλpt, zq.RpZpL2xLKé1
2, TRpp,Rpaq, tqy ê 1q å |p t|, zq ä |p t|q aq ˙ ι3|a| � |a|

to route the firing outputs, lock requests, and revocation acknowledgments onto three separate buses
as shown in Figure 16.10 (by Equation 8.12), and abbreviate this expression as f6pa, pq pTR, LKq for

f6 “ λpa, pq. pλpi, lq. pbλpt, zq.RpZpL2xlé1
2, ipp,Rpaq, tqy ê 1q å |p t|, zq ä |p t|q aq ˙ ι3|a| � |a|.

(16.29)

Input permutation network

This array leaves the lock response inputs interspersed with the revocation request inputs unlike
Figure 16.10 unless a permutation network untangles them, but a permutation given similarly to
the output permutation by Equation 8.12 is inadequate because the revocation request bus widths
vary with the transition. In particular, a block derived from a transition t P Rpaq has

ˇ

ˇ

ď

v P pµ pq pRpaq´ttuq

tv X p tu ´ tHu
ˇ

ˇ

revocation inputs, one for each non-empty intersection v X p t of the preset p t with the preset v of
some other transition in Rpaq, and generally the n-th transition block in the array has en revocation
request inputs for 0 ď n ă |a| and

e “
`

λt.
ˇ

ˇ

ď

v P pµ pq pRpaq´ttuq

tv X p tu ´ tHu
ˇ

ˇ

˘›
a

(cf. Equation 16.22). Because the n-th transition block accounts for two lock response inputs
followed by en revocation request inputs, the two lock response inputs for the n-th transition block
appear at positions

ι
2n`

ř

pe∣nq

2

on the array, and the en revocation request inputs at positions

ι2`2n`
ř

pe∣nq
en

.

A list of the lock response input terminal positions followed by a list of the revocation request input
terminal positions therefore could be expressed

d “ 5 5› ppλn. xι
2n`

ř

pe∣nq

2 , ι2`2n`
ř

pe∣nq
en

yq› ι|e|q
ᵀ (16.30)

562 CHAPTER 16. DIRECT MAPPING SYNTHESIS

using the transpose notation defined in Section 11.1.2, and is useful enough for specifying a front
end permutation network to be worth abbreviating as d “ f7pa, pq by

f7 “ λpa, pq.
`

λe. 5 5› ppλn. xι
2n`

ř

pe∣nq

2 , ι2`2n`
ř

pe∣nq
en

yq› ι|e|q
ᵀ˘ `λt.

ˇ

ˇ

ď

v P pµ pq pRpaq´ttuq

tv X p tu ´ tHu
ˇ

ˇ

˘›
a.

FORK network

For the rest of the inputs to the array, which correspond to the token notification inputs on the
transition blocks, we have to ensure the notification from each place v P

Ť

Rpp›aq in the collective
preset reaches every transition in the postset q “ ti P Rpaq | v P p iu of v through a FORK with |q|

outputs. Each output from the FORK associated with the place v is destined for a token notification
input on a transition block corresponding to a transition t P q, specifically the token notification
input in the position

pp tq0 v

relative to others connected to the same transition block, because locally they are lexicographically
ordered by the places sending them. The position relative to token notification inputs on all blocks
woud be offset to

|85 p›pa « pa´1 tq ` 1q| ` pp tq0 v

because the blocks following that of t in the array have their notification inputs preceding it for
reasons noted in connection with Equation 16.29. Furthermore, an offset of |d| by Equation 16.30
applies to all of them because they come after the lock response and input revocation buses as shown
in Figure 16.10. Hence for a given preset place v, the set of input terminal positions connected to
its FORK outputs is

ď

t P ti PRpaq | v P p iu

|d| ` |85 p›pa « pa´1 tq ` 1q| ` pp tq0 v
(

and a list f8pa, pq d P PpNq˚ of these sets of input terminal positions in order of their associated
places is given by

f8 “ λpa, pq. λd.
`

λv.
ď

t P ti PRpaq | v P p iu

|d| ` |85 p›pa « pa´1 tq ` 1q| ` pp tq0 v
(˘›

p
Ť

Rpp›aqq0´1.

Interface

This list determines a permutation d q 85 f8pa, pq d and a network of blocks FORK |p f8pa, pq dqi | for
each preset place numbered 0 ď i ă | f8pa, pq d| to interface with the array of transition blocks in a
definition of the lockable transition array given by

LTRplq “ pλxh, d, f y. pbRq pI|d| : pλi. FORK |p f dqi |q
› ι| f d|q

d q 85 f d
ÝÝÝÑ hpTR, LKqq px f6, f7, f8y Ÿ l 3

q.

(16.31)

16.6.4 Monitors

The purpose of the monitor block shown in Figure 16.12 is to arbitrate among the transitions in the
lockable transition array shown in Figure 16.10 to ensure that it faithfully simulates the flow of
tokens through the Petri net model of a process. The inputs and outputs on these blocks complement

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 563

MONpa, pq

ä

2|a|

lock responses

ä

|s0| first transition’s
revocation requests

ä

|s|a|´1|
last transition’s

revocation requests

...

ä

|a|

lock requests

ä

|a|

revocation acknowledgments

Figure 16.12: A monitor parameterized by pa, pq as in Figure 16.10 is designed to interface with a
lockable transition array partly by |a| buses of widths |sn| “ en, where sn P PpPpVqq specifies a set
of sets of places the preset of the n-th transition in the array has in common with those of others.

one another to the extent that the monitor becomes hidden from the environment with only the
token notification inputs and firing outputs left exposed on the lockable transition array when they
are combined as in Section 16.6.5.

Whereas a community u P fαz pT, Aq in a decomposition fαz pT, Aq derived from a process specifi-
cation contains |u| transitions, there is at most one monitor for the whole community. Nevertheless,
monitor blocks can vary depending on the size and organization of the community in a way that
compels an algorithmic approach to their synthesis from adjustable parameters, similarly to the
synthesis of transition blocks in Section 16.6.2.

Competitors

Starting from a pair of parameters pa, pq “ 9fαz pu, Aq with a list a of |u| transitions ordered by α and
a function p mapping each Petri net vertex to its preset by Equation 16.10, we seek a description of
a monitor block parameterized in part by a list c P PpNq|a| with

c “ pλt. pµ a´1q
ď

v P p t

tl P Rpaq ´ ttu | v P p luq› a (16.32)

denoting a list of sets of transition indices relative to a such that cn is the set of indices of transitions
that compete with the n-th in the sense that their presets intersect. If the monitor is to grant a lock
to the n-th transition, then it must deny lock requests from transitions numbered among cn.

Revocation channels

The description of the monitor also depends more visibly on a list s P PpPpVqq|a| associating a
transition k “ an with the set sn P PpPpVqq of subsets of its preset p k P PpVq that it has in common
with other transitions by

s “ pλk.
ď

j PRpaq´tku

tpp kq X p juq› a.

The utility of this list is in identifying which of the |sn| revocation inputs to the n-th transition should
be signaled when a lock is to be granted to the t-th transition. If the intersection sn X st contains

564 CHAPTER 16. DIRECT MAPPING SYNTHESIS

only one member x P sn X st , then the ppsnq0 xq-th revocation input is the only choice, but more
generally, the presets of both the n-th and the t-th transition could have the same intersection y
with that of a third transition, and therefore have both of x , y P sn X st in common with each other.
However, if x and y are not equal, then one must be a proper subset of the other and only the larger
of the two can contain all places common to the presets of both the n-th and the t-th transition.
Because the n-th transition must revoke all notifications from places common to its preset and that
of the t-th, the appropriate revocation signal is given by

psnq0 pmax pµλx . x|x |, xyq psn X stqq1

which is the one corresponding to the intersection of maximum cardinality. To summarize up to this
point, we have a list xc, sy “ g0pa, pq of two lists by

g0 “ λpa, pq.
@

pλt. pµ a´1q
ď

v P p t

tl P Rpaq ´ ttu | v P p luq›, pλk.
ď

j PRpaq´tku

tpp kq X p juq›
D

Ÿ a 2 (16.33)

with the list c P PpNq|a| of competitor sets to be of further interest shortly, and the list s whereby
we can identify precisely the revocation request required of the n-th transition indexed relative to a
when a lock is awarded to any other.

Alphabet assignments

As a step further toward describing the monitor block, the revocation request buses regarded
collectively as a single bus ordered as shown in Figure 16.12 imply a revocation output position

|85 ps ∣ nq| ` psnq0 pmax pµ λx . x|x |, xyq psn X stqq1

relative to the collective bus, which incorporates the offset |85 ps ∣ nq| due to buses prior to the n-th,
with s, n, and t interpreted as above. Moreover, if the monitor block is obtained by state based
synthesis from the alphabet ordering g1 g0pa, pq P G

˚ by

g1 “ λxc, sy. pλi. G0´1›
ιiq 4|c| ` |85 s| (16.34)

containing the first 4|c| ` | 85 s| generic symbols as needed to accommodate the buses in Figure 16.12,
and the symbols are assigned to the buses consistently with the order illustrated, then a list

r “ g2 s P PpGq|a| (16.35)

can be made to enumerate the set rt P PpGq of revocation request output alphabet symbols to be
emitted when the transition at is granted a lock by

g2 “ λs.
`

λt.
ď

n P ti PDpsq´ttu | siXst ‰Hu

G
0´1 3|s| ` |85 ps ∣ nq| ` psnq0 pmax pµ λx . x|x |, xyq psn X stqq1

(˘›
ι|s|. (16.36)

The offset 3|s| “ 3|a| to each symbol ordinal in r is to avoid clashing with generic symbols

l “ G
0´1››

pλi. ι3i
3 q› ι|r|

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 565

representing the lock channels at the beginning of the range as a list of |r| “ |s| “ |a| lists of three
symbols each, which leaves only the list

h “ G
0´1›

ι
3|r|`|85 r|

|r|

of alphabet symbols at the end of the range for the revocation acknowledgments. Together with the
list c from Equation 16.32, the list of parameters

xc, r, l, hy “ c : g3 r (16.37)

by a definition of

g3 “ λr. r :
@

G
0´1››

`

λi. ι3i
3

˘›
ι|r|,G

0´1›
ι

3|r|`| 85 r|

|r|

D

(16.38)

enables a simpler description of the monitor as a process than one expressed directly in terms of the
original parameters pa, pq.

Dependence graphs

Similarly to the transition process specification in Section 16.6.2, a monitor process fit for state
based synthesis is manageable as a dependence graph with vertices chosen to elucidate the adjacency
relation. As in previous examples, the dependence graph induces a system of recurrences solvable for
the desired process by the generalized fixed point combinator Υ defined
in Equation 16.5. Whereas a set of received input symbols is the right
choice of vertices for the transition process dependence graph, capturing
the adjacency relation of the monitor dependence graph is most straight-
forward when each vertex is chosen to be a list of the form

xd, b, w, gy P PpNq4.

Each term is a set of indices of transitions relative to the ordering a with
its own particular interpretation.

• d contains the indices of the transitions from which lock requests
are deniable because a lock is going to be granted to one of their competitors.

• b contains the indices of the transitions from which lock requests are blockable because a
lock request from them has already been denied since their most recent revocation handshake
acknowledgment and a grant to a competitor of theirs is still pending. (See page 554.)

• w contains the indices of the transitions from which revocation acknowledgments are awaited.

• g contains the indices of the transitions to which a lock will be granted when all revocation
handshakes on their competitors complete.

Building the dependence graph amounts to obtaining the vertices m P PpNq4 and corresponding
adjacency sets e P PpD˚ ˆPpNq4q in pairs pm, eq as usual, which is solved for the most part by a
method of obtaining e from m. For this purpose, the list xc, r, l, hy of parameters in Equation 16.37
determines a second order function

~xc, r, l, hy : PpNq4 Ñ PpD˚ ˆPpNq4q

566 CHAPTER 16. DIRECT MAPPING SYNTHESIS

such that ~xc, r, l, hy m “ e yields the desired adjacency set as a union of four subsets

~xc, r, l, hy m “

3
ď

k“0

~kxc, r, l, hy m

when functions ~0 through ~3 are defined as the foregoing preparation inevitably obliges. Any process
in the ensemble of mutually dependent processes collectively defining the monitor can accept a
lock request signal li0 from the i-th transition provided this transition is not deniable, blockable,
grantable, or charged with acknowledging a revocation request. In that event, the process outputs
all revocation request signals in ri by Equation 16.35 and amends its subsequent behavior to deny
lock requests from transitions identified in ci . It also waits for revocation acknowledgments from
those transitions and commits to granting a lock to the i-th thereafter.

~0 “ λxc, r, l, hy. λxd, b, w, gy.
ď

i PDprq´pd Y b Y w Ygq

tpxget li0, pbparqput›priq
0´1

y, xd Y ci , b, w Y ci , g Y tiuyqu

Any process receiving a lock request li0 from a deniable transition numbered i denies the request by
transmitting li2 and behaves similarly thereafter except to the extent of treating lock requests from
the i-th transition as blockable rather than deniable.

~1 “ λxc, r, l, hy. λxd, b, w, gy.
ď

i P d

tpxget li0,put li2y, xd ´ tiu, b Y tiu, w, gyqu

A process may also accept a revocation acknowledgment signal hi from the i-th transition provided
it has been waiting for such a signal, after which it treats lock requests from the i-th transition as
blockable in this case as well and treats the revocation handshake as having concluded.

~2 “ λxc, r, l, hy. λxd, b, w, gy.
ď

i P w

tpxget hiy, xd ´ tiu, b Y tiu, w ´ tiu, gyqu

Additionally, a process can grant a lock to i-th transition by concluding a 4Φ handshake over the
i-th lock channel provided this transition is grantable and no revocation acknowledgments are
awaited from any of its competitors. Thereafter, the process can treat the i-th transition as no longer
grantable and its competitors as neither deniable nor blockable.

~3 “ λxc, r, l, hy. λxd, b, w, gy.
ď

i P gXpµ c´1q pRpcqXPpw´
Ť

Rpcqqq

tpxput li1,get li0,put li1y, xd ´ ci , b ´ ci , w, g ´ tiuyqu

Consequently, we have the whole dependence graph in the percolation

pλq. pρ λpm, eq.
ď

n PRpeq

q nq q H 4q λv. tpv,
3
ď

k“0

~kxc, r, l, hy vqu

to vertices reachable from the vertex H 4 “ xH, H, H, Hy corresponding to the process with d, b,
w, and g identically empty.

16.6. INTERACTING DIRECT MAPPED SYNTHETIC COMMUNITIES 567

Environment

A parsimonious description of the monitor process pg4 cq g3 g2 s P D as a fixed point of the system
induced by the dependence graph is obtained by Equation 16.36, Equation 16.38, and g4 defined as

g4 “ λc. λ f . Υ pλq. pρ λpm, eq.
ď

n PRpeq

q nq q H 4q λv. tpv,
3
ď

k“0

~kpc : f q vqu

but this result is only an open Petri net modeled process by Equation 16.5. As noted on page 557,
a closed Petri net modeled process would be more efficient for state based synthesis, and can be
obtained by combining this process with a compatible environment.

Fortunately, a compatible environment for the monitor process is much simpler to describe
than the monitor process itself. In terms of some of the same parameters xr, l, hy “ g3 g2 s used to
specify the monitor process, one aspect of the environment is an incessant clamor of concurrent
lock requests on every lock negotiation channel

pbparq pλi. loop seq pput li0
,alt pget li1,get li2qqq› ι|l|

and the other is an echo chamber of acknowledgments to any revocation request

pbparq pλ j. loop seq ppbaltq pλk. get r jkq› ι|r j |
,put h jqq› ι|h|

which take place concurrently with each other and can be summarized as g5xr, l, hy by

g5 “ λxr, l, hy. par p

pbparq pλi. loop seq pput li0
,alt pget li1,get li2qqq› ι|l|,

pbparq pλ j. loop seq ppbaltq pλk. get r jkq› ι|r j |
,put h jqq› ι|h|q

enabling a behaviorally equivalent closed Petri net modeled monitor process as

pbenvq pxg4 c, g5y Ÿ pg3 g2 sq 2
q.

It is only a short step further to the monitor block construction MONpa, pq P H by state based
synthesis in terms of the originally stipulated parameters pa, pq “ 9fαz pu, Aq, Equation 16.33, and
Equation 16.34.

MON “ pλxc, sy. SBSpg1xc, sy, pbenvq pxg4 c, g5y Ÿ pg3 g2 sq 2
qqq ˝ g0 (16.39)

16.6.5 Direct mapped transition arrays

The payoff for developing the lockable transition array in Section 16.6.3 and the monitor block in
Section 16.6.4 is that a transition array TRApv, a, pq P H made from their combination in this section
may be a feasible alternative to TRA0pv, a, pq as developed in Section 16.5.2 when state explosion
precludes the latter. With the heavy lifting completed above, we can dispense briefly with the rest
as follows.

568 CHAPTER 16. DIRECT MAPPING SYNTHESIS

Monitored transitions

A lockable transition array and a monitor both parameterized by the same terms pa, pq

xLTR,MONy Ÿ pa, pq
2

are combined partly by having the |a| lock request outputs and |a| revocation acknowledgment
outputs from the former connected to the 2|a| inputs similarly designated on the latter in a block

L2|a|pxLTR,MONy Ÿ pa, pq
2
q.

The remaining exposed 2|a| lock responses and | 85 s| “ | 85 g0pa, pq1| revocation requests by Equa-
tion 16.33 can be connected from the outputs to the inputs through a feedback bus of total width

b “ 2|a| ` | 85 g0pa, pq1|

by rolling down the |v| token notification inputs and rolling up the |a| firing outputs on a block

ZbpZbRpL2|a|pxLTR,MONy Ÿ pa, pq
2
q å |v| æ |a|, Ibq ç bq

for v “
Ť

Rpp›aq denoting collective preset places as in Equation 16.14 but treated here as an
independent parameter in an expression

ppg6 g0q xLTR,MONyq pv, a, pq

for the whole block based on

g6 “ λ f . λl. λpv, a, pq. pλb. ZbpZbRpL2|a|pl Ÿ pa, pq
2
q å |v| æ |a|, Ibq ç bqq 2|a| ` | 85 p f pa, pqq1|.

Isolated transitions

A couple of edge cases affect this result. If there is only one transition in the community, then the
monitor is unnecessary and technically undefined, but the transition is adequately simulated by a
JOIN network connecting |v| token notification inputs to the single firing output.

xppg6 g0q xLTR,MONyq pv, a, pq, JOIN |v|y
δ

|a|

1

If there is a lack of preset places, which would imply a community of just one transition, which is an
open input, then even the JOIN network is undefined, but the result devolves to a wire following the
discussion on page 546.

xxppg6 g0q xLTR,MONyq pv, a, pq, JOIN |v|y
δ

|a|

1
, Iy
δ

H
v

Best efforts

A definition for a transition array favoring the state based synthetic form where feasible can be
given in terms of a freely chosen metric } ¨ } and constant Kr determined by the available computing
resource budget. The general transition array TRApv, a, pq P H by a function

TRA : PpVq ˆ pT YVq˚ ˆ ppT YVq Ñ PpT YVqq Ñ H

reverts to the state based transition array for values of }pa, pq} less than Kr and the direct mapped
transition array otherwise.

TRApv, a, pq “

"

TRA0pv, a, pq if }pa, pq} ď Kr
xxppg6 g0q xLTR,MONyq pv, a, pq, JOIN |v|y

δ
|a|

1
, Iy
δ

H
v

otherwise (16.40)

16.7. STATE IMPLOSION 569

16.6.6 Communities

As a happy consequence of behavioral equivalence between the state based and direct mapped
transition arrays, a definition of direct mapped synthetic communities

COMpα, A, Mq “ λu. pλpa, pq. pλv. C|v|`δv
H

xPLpM , a, pq, TRApv, a, pqyq
Ť

Rpp›aqq 9fαz pu, Aq (16.41)

can be boringly similar to that of state based synthetic communities by COM0
in Section 16.5.3. Only the substitution of TRA by Equation 16.40 for TRA0 by
Equation 16.16 distinguishes them. In addition, the same combining form Ωαz
defined in Section 16.5.4 is useful for direct mapped synthetic communities and
enables a more general definition

DMS1pα, X q “ pλpI , O, pP, T, A, M, Fqq. m4pα, I , Oq Ωαz ppT, Aq, COMpα, A, Mq› fαz pT, Aqqq RP X

for direct mapping synthesis analogous to DMS0 by Equation 16.21. If direct mapping synthesis by
this method is effective in practice, then maybe at long last there is no need to read further.

16.7 State implosion

On the other hand, while some progress toward mitigating the cost of state enumeration during
direct mapping synthesis is achieved by synthesizing each transition separately, the cost is not
eliminated. Each transition block according to Section 16.6.2 is obtained by state based synthesis
from a process whose state space increases with the transition’s preset cardinality and number of
competitors. This state space may be small compared to that of the overall specification, but to
no avail if it is still infeasibly large. Similar issues could affect the monitor block construction in
Section 16.6.4. The rest of this section investigates a solution.

16.7.1 A naive solution

An obvious idea is to deflate the transition and monitor state spaces by direct mapping synthesis of
the transition blocks and monitors themselves. For a first attempt, instead of obtaining a state based
synthetic transition block TRpnq as

pλxi, g, f y. SBSpg i, pbenvq f iqq px f2, f4, f5 ˝ f3y Ÿ n 3q

by Equation 16.28, we could use

pλxi, g, f y.DMS1pg i, pbenvq f iqq px f2, f4, f5 ˝ f3y Ÿ n 3q

for a direct mapped synthetic transition block by using DMS1 in place of SBS as the synthesis method.
However, because the current motivation is to avoid enumerating the state space, it would be better
to make that

pλxi, g, f y. DMS1pg i, p f iq0qq px f2, f4, f5 ˝ f3y Ÿ n 3q

using only the open Petri net modeled process p f iq0 “ pp f5 f3 nq f2 nq0 and omitting the environment,
which would otherwise result in a costly conversion to an open Petri net by Equation 16.7. A
comparable replacement for the block MONpnq would be

pλxc, sy. DMS1pg1xc, sy, pg4 cq pg3 g2 sqqq g0 n

by an adaptation of Equation 16.39.

570 CHAPTER 16. DIRECT MAPPING SYNTHESIS

16.7.2 A better solution

The solution in Section 16.7.1 might not be completely satisfactory because it still entails state based
synthetic transitions and monitor blocks in a less obvious way. The definition of DMS1 depends
indirectly on Equation 16.28 and Equation 16.39 so it inherits their vulnerability to state explosion.
A revised attempt calls for a more sophisticated direct mapping synthesis function

DMS : T˚ ˆD Ñ H

that does not depend on them.

Recurrence

How should this function be defined? This trouble all started with the observation that not only
might the transitions and monitors be too big for state based synthesis, but if their direct mapping
synthesis is attempted, then even the transitions and monitors within them might be too big. With no
end in sight, the situation appears to call for a recurrence whose base case pertains to specifications
that are small enough for state based synthesis, as in

DMSpα, X q “

"

SBSpα, X q if }X } ď Ks
FpDMS,α, X q otherwise (16.42)

for a cost measure }X } of the candidate process X P D, an implementation dependent constant Ks
marking the threshold of feasibility for state based synthesis, and an inductive case of a form F yet
to be established.

Variably synthesized blocks

On another front, if the function DMS envisioned above is not to depend on the forms of transition
blocks and monitors defined by Equation 16.28 and Equation 16.39, then what is the alternative?
The problem with these methods is that they invoke state based synthesis unconditionally, and
modifying them as in Section 16.7.1 for direct mapping synthesis by DMS1 is not much of an
improvement. However, a recursive definition of DMS might allow it to depend on a transition block

xTRpDMSq n P H

instead of TRpnq in terms of a higher order function

xTR : ppT˚ ˆDq Ñ Hq Ñ pppT YVq Ñ PpT YVqq ˆPpT YVq ˆ pT YVq Ñ Hq

defined by
xTRpSq “ λn. pλxi, g, f y. Spg i, p f iq0qq px f2, f4, f5 ˝ f3y Ÿ n 3q

parameterized by a synthesis method S : T˚ ˆD Ñ H, or the minor improvement

xTRpSq “ λn.

"

TR n if }n} ď Kt
pλxi, g, f y. Spg i, p f iq0qq px f2, f4, f5 ˝ f3y Ÿ n 3q otherwise (16.43)

that generates a more efficient version by not neglecting the environment in the limiting case of
measurably low costs }n} ď Kt . The analogous remedy for monitor blocks would be

zMONpSq “ λn.

"

MON n if }n} ă Km
pλxc, sy. Spg1xc, sy, pg4 cq pg3 g2 sqqq g0 n otherwise.

16.7. STATE IMPLOSION 571

The flexibility inherent in Equation 16.43 is no impediment to a similarly parameterized lockable
transition array yLTRpSq l P H of a form

yLTRpSq “ λl. pλxh, d, f y. pbRq pI|d| : pλi. FORK |p f dqi |q
› ι| f d|q

d q 85 f d
ÝÝÝÑ hpxTR S, LKqq px f6, f7, f8y Ÿ l 3

q

inspired by Equation 16.31, leading next to a variably constructed transition array

yTRApSq “ λpv, a, pq.

#

TRA0pv, a, pq if }pa, pq} ă Kr

xxppg6 g0q pxyLTR, zMONy Ÿ S 2qq pv, a, pq, JOIN |v|y
δ

|a|

1
, Iy
δ

H
v

otherwise

similar to Equation 16.40, and finally a community thereof by

zCOMpSq “ λpα, A, Mq. λu. pλpa, pq. pλv. C|v|`δv
H

xPLpM , a, pq, pyTRA Sq pv, a, pqyq
Ť

Rpp›aqq 9fαz pu, Aq

following Equation 16.41.

Inductive case

We are now well situated to supply the inductive case of the recurrence in Equation 16.42 based on
the intervening observations. Taking another cue from Equation 16.21, we can expect something of
the form

m4pα, I , Oq Ωαz ppT, Aq, ppzCOM DMSq pα, A, Mqq› fαz pT, Aqq

where pI , O, pP, T, A, M, Fqq P D is the refined canonical form RP X of the synthesis candidate X by
Equation 16.7. However, for a less cluttered recurrence, the use of

m5 “ λ f . λc. λS. λpα, pI , O, pP, T, A, M, Fqqq. f pα, I , Oq Ωαz ppT, Aq, ppc Sq pα, A, Mqq› fαz pT, Aqq

enables a more succinct expression.

DMSpα, X q “

"

SBSpα, X q if }X } ď Ks

pppm5 m4q zCOMq DMSq pα,RP X q otherwise
(16.44)

16.7.3 Concluding remarks

On a final note, we might now supplement the concluding remarks in Section 15.6.2 regarding the
transformation Tα

DH
: D Ñ H. Because direct mapping synthesis by Equation 16.44 subsumes state

based synthesis, a definition of the transformation by

Tα
DH

pX q “ DMSpα, X q

is never worse and sometimes better than a definition by Equation 15.39, and so perhaps on that
basis should be preferred.

572 CHAPTER 16. DIRECT MAPPING SYNTHESIS

Reflection hypothesis

1. What happens to the mad scientist simulator if toggle and
query inputs are applied concurrently? (hint: It either
diverges or arbitrates between them and the answer is not
a matter of opinion.)

2. Terminal marked places as in Figure 16.4 convey mean-
ingful information about prohibited input combinations
that is lost from the refined canonical form. How could
this information be used to enable more efficient monitor
blocks in Section 16.6.4 if it were retained?

3. Sending more token notifications to a transition that has not fired since receiving
the previous batch smells like a safety violation. How could the edge case discussed
on page 554 ever happen without violating the specification (and therefore being
fair game for an implementation to ignore)?

4. When, if ever, does the protocol between monitors and transitions allow a monitor
to grant two locks concurrently? (hint: Figure 7.8)

5. How hard would it be to use Sperner coded revocation channels between monitors
and transition blocks instead of 1-hot channels? (See Chapter 13 and Chapter 14.)
What would be the advantages and disadvantages?

6. Draw a more detailed version of Figure 16.11 with every layer of nested parentheses
depicted explicitly, and draw similar diagrams for any other block combinator
expressions throughout the book whose derivations are not obvious by inspection.

7. A monitor without revocation channels would be called a nacking arbiter [133].

a) Design a family of nacking arbiters parameterized by the number n of lock
negotiation channels in whatever way is easiest.

b) Is there any worthwhile way of making a monitor out of a nacking arbiter by
glomming something onto it?

8. The reflection of a process X P D can be defined as the minimum process E in the
refinement ordering for which env pX , Eq does not diverge [129, 172].

a) Is there an efficient algorithm for computing a function f : D Ñ D taking a
process X to its reflection f X? (N.B., given X only as a tuple pI , O, Nq P D)

b) How could this function be used to solve the so called “design equation”
X “ par pp, Y q for an unknown process p given X , Y P D?

c) What implications would an algorithmic solution to the design equation have
for the previous question and more generally?

Part V
Appendices

573

Discretion is knowing how to hide
that which we can not remedy.

Spanish proverb

A
P

P
E

N
D

I
X A

SUPPLEMENTARY REMARKS ON QUASI-DELAY

INSENSITIVITY

The QDI research community can lay claim to a long record of formidable accomplishments, including
the world’s first fully asynchronous microprocessor [183, 184, 186], and to a scrupulously professed
disaffection with delay insensitive design. By way of a recurring theme, DI garners a gracious but firm
boilerplate dismissal in the literature as a historical footnote dating from an era before its limitations
were understood (as in [16, 34, 64, 75, 131, 176, 203, 230, 231, 233, 267, 268, 279, 281] and
countless others). If the much lamented compromise incurred by isochronic forks is the nearest
realistic alternative to DI, new initiates can be grateful at least that it is such a small price to pay.
Invariably off-message is the idea that a suitably chosen set of primitive components, including
some with multiple output terminals, has always enabled general purpose delay insensitive design
without further need of isochronic forks [81, 136, 221, 223, 294].

Apologia for this tradition might seek to prevail on a point of principle: most DI primitives
amount to no less of a compromise insofar as they conceal internal isochronic forks, these being
at least as undesirable. Presumably there is no inherent issue with multiple-output devices per se,
because it is standard practice in QDI design to use arbitration devices having two outputs [185].
The crux of this position would seem to be that isochronic forks should always be laid bare, even
at the cost of additional timing analysis or analog simulation [24], simply as a rejection of undue
contrivance and an honest recognition of the hard physical realities of circuit design.

A.1 CMOS inverters

In this case, as noted in [294], the matter illustrated in Figure A.1 poses a dilemma. An inverter
is a standard logic gate with a single input and a single output, whose output logic level is the
negation or complement of its input. That is, a true input implies a false output and a false input
implies a true output, making an inverter just about the simplest logic gate there is. Inverters are

575

576 APPENDIX A. SUPPLEMENTARY REMARKS ON QUASI-DELAY INSENSITIVITY

always true

always false

a b

ap

an

a b «

Figure A.1: CMOS transistor-level implementation of an inverter, showing an input a forked to a
P-type transistor via branch ap and to an N-type transistor via branch an

ubiquitous in QDI design and have the schematic symbol shown at the left of Figure A.1 (not to be
confused with the MERGE symbol used in this book). An implementation of an inverter using CMOS
technology consists of two complementary transistors connected as shown.

• The transistors act as switches responding in opposite ways (either on or off) to the logic level
applied to them by the input a via the fork.

– A true input on a turns on the lower transistor and turns off the upper one.

– A false input on a turns on the upper transistor and turns off the lower one.

• The output b sits between two nodes permanently maintained at opposite alternatives (true
and false), separated from each of them by one of these switchable transistors, so that the
output conveyed to the environment at any given time depends on the states of the transistors
as shown in Figure A.2.

– When the top transistor is on and the bottom is off, the true level at the uppermost node
is connected to the output via the top transistor (and the false cut off from it).

– Alternatively, a false level is communicated to the output through the bottom transistor
when that one is on and the top one is off.

A.2 Unexposed delays

The problem with this implementation of an inverter is that the output becomes indeterminate
when both transistors are simultaneously off or simultaneously on, even if only for a short time
[89]. One word for a transient period of undefined output behavior is “hazard”. The simultaneous

A.3. CONCLUSIONS 577

always true

always false

always true

always false

true false false true

Figure A.2: In the two valid states of a CMOS inverter, the transistors act as switches, with one on
and the other off at all times, simultaneously controlled by the input through an isochronic fork.

application of the same input logic level to complementary transistors is meant to prevent hazards
by ensuring that the transistors can never be in the same state, but this condition is violated if a
change in the level of the input node a propagates at a different rate through the upper branch of
the fork ap than through the lower branch an, thereby reaching the transistors at different times, or
if one transistor takes longer to switch states than the other.

This problem has a solution. The physical placement and dimensions of the transistors and
connecting wires can be chosen to match the delays along each branch of the fork, thus ensuring
simultaneous switching between states. In other words, an isochronic fork is needed within the
inverter.

A.3 Conclusions

Given that unexposed isochronic forks and multiple-output devices are neither excluded from QDI
design in practice nor especially topical in the literature of the subject, a more thorough account of
its principles and rationale than what can be surmised from published sources would be preferable
for understanding the community’s apparent disinterest in DI.

Short of that, some insight is possible by observing the selection of components typically used
in QDI design. Traditional logic gates with synchronizing elements and an arbitration device as
a concession to asynchrony suggest more of an evolutionary progression from earlier schools of
thought than a clear cut paradigm shift [150]. The comfortable familiarity of most of these devices
would also be a more plausible explanation for the historical ascendancy of QDI over DI design than
the customary citation of [182]. Without the requisite cultural frame of reference and pedagogical
commentary, there would be nothing to stop an impartial investigator from interpreting [182] simply
as a statement of the limitations of circuits made from forks and logic gates.

578 APPENDIX A. SUPPLEMENTARY REMARKS ON QUASI-DELAY INSENSITIVITY

In reality, unless some physical law precludes the use of transistors in anything other than flip
flops and Boolean combinatorial networks, only the force of habit restricts anyone to them as a basic
abstraction layer for asynchronous system development, and the proper setting for a discussion of
genuine engineering compromises is among the possible alternatives. Like any other design decision,
this choice confers advantages when made objectively and judiciously, but uncertain returns when
misapprehended.

Treasure hunt

Spot the hidden isochronic forks in these popular QDI
logic gates. (hint: Which forks could cause hazards if
both transistors controlled by them were to conduct
simultaneously?)

NAND NOR

“

In making theories, always keep a
window open so that you can throw
one out if necessary.

Bela Lugosi

A
P

P
E

N
D

I
X B

COMPLETE PARTIAL ORDERINGS AND FIXED POINTS

The pseudo-fixed point combinator described in Section 5.4.6 is informed by a well known body of
theory originating from the study of programming languages. In particular, the concept of recursively
defined processes as minimal solutions to functional equations descends directly from the ideas
of denotational semantics [242]. As compelling and profound as these ideas may be, they are not
always as amenable to a treatment of DI processes as one might like. Settling for a pseudo-fixed
point rather than actually a fixed point has been only the most noticeable of several expedients.

Perhaps a mathematically talented reader will surpass the author’s limited attempt hitherto at a
smooth synthesis of formal pedigree and convenience. The purpose of this appendix is to commend
to the attention of anyone so inclined a few general points of common ground and of disparity
between the classical development of recursion via fixed points and the way it is handled in this
book. We start with a brief overview of the basic standard concepts and proceed from there.

B.1 Theoretical primer

The standard approach to establishing the existence of a fixed point starts by supposing that
functions whose fixed points are of interest operate on data values in a complete partial ordering
[102, 240, 270].1 A complete partial ordering, or CPO, is defined as a set D with these additional
features.

• a transitive, reflexive, antisymmetric (i.e., partial order) relational operator denoted Ď

• a unique minimum element K P D (read “bottom”), which is to say @x P D. K Ď x

• a least upper bound in D, denoted
Ů

S, for any directed set S Ď D

1Lattices rather than CPOs are used in [270], but much of the same discussion applies. See [2] for a broader view.

579

580 APPENDIX B. COMPLETE PARTIAL ORDERINGS AND FIXED POINTS

The least upper bound of a set S Ď D is the minimum x P D satisfying @a P S. a Ď x , which is
the minimum member of D that dominates every member of the set S. A directed set S satisfies
@a, b P S. Dc P S. a Ď c ^ b Ď c, which means any two members of the set have a common member
above both of them.

Finite directed sets always have a least upper bound (namely their maximum element), but
“completeness” of a CPO demands the same of infinite directed sets, which is no small distinction.
By way of analogy, the set of rational numbers less than

?
2 under the usual ordering has a least

upper bound (namely
?

2) but the least upper bound is not a rational number. Nor is any rational
x ă

?
2 an adequate substitute, because there is always another one greater than x but less than?

2. The completeness condition helps to formalize a notion of continuity.

B.1.1 Standard fixed point construction

For a complete partial ordering D, the usual way of defining a fixed point of a function f : D Ñ D is
as the least upper bound of a series of increasingly well defined approximations of it,

fixp f q “
Ů

f ipKq | i P N
(

(B.1)

where exponentiation of a function with a natural number represents iterated composition as
explained in reference to Equation 6.2. The fix function in Equation B.1 is the generic fixed point
function for a CPO, not necessarily related to the fix combinator defined in Equation 5.31 except
insofar as the current line of inquiry might yet establish.

B.1.2 Continuity

If fixp f q is to exist as a member of D, then according to Equation B.1 the least upper bound of the
infinite set tK, f pKq, f p f pKqq . . . u must exist in D, which is guaranteed only if this set is directed. If
the function f is monotonic, which is to say

@x , y P D. x Ď y ñ f pxq Ď f pyq

then clearly the set is directed and the least upper bound exists. For the least upper bound to be
a fixed point of f (i.e., a solution to X “ f pX q) requires in addition that f be continuous, which
means

f p
Ů

Sq “
Ů

t f pxq | x P Su (B.2)

for any directed S Ď D.2 It can be shown that if a continuous function f has more than one fixed
point, then the one obtained from Equation B.1 is the least fixed point with respect to this ordering.

A first encounter with the standard fixed point construction may give the impression that it can
be of only limited use because of its restriction to continuous functions, especially to a reader versed
in an applied subject where discontinuous functions are commonplace. However, this concept of
continuity differs from the interpretation of the term familiar from textbooks. Continuity in the
present sense (which implies monotonicity) is a reasonable condition for functions to meet if the Ď

relation represents some kind of information ordering, with K being the least informative value.
For a toy example where continuity is a natural and appropriate condition, suppose functions

f : D Ñ D represent programs, K represents the perpetually postponed result of a non-terminating

2A definition of continuity restricted to chains can also work, where a chain S satisfies @a, b P S. a Ď b _ b Ď a.

B.1. THEORETICAL PRIMER 581

program, and D is a flat CPO of all possible program inputs and outputs, meaning that all members of
D other than K are mutually unrelated by Ď with only K below them. In this model, a discontinuous
function would represent a program that fails to terminate for at least one input in D other than K,
but terminates when the input is K. While the former property is meaningful if undesirable, the latter
would be unrealistic if running a program were understood to entail waiting for its input to become
available. In other settings, continuity can be made to coincide more or less with conventional
notions of computability.

B.1.3 Ordering of functions

The Ď relation associated with any CPO of a set D extends pointwise to functions operating on it.
For functions g, h : D Ñ D, we write g Ď h to express the condition gpxq Ď hpxq for all x P D. We
restrict attention technically to total functions of D, but the entrenched convention is to describe a
function h informally as “undefined” for values of x P D where hpxq is defined as K. This usage can
be blamed on the custom of K representing undefined behavior of the program, process, circuit, or
other entity modeled by the function h in typical applications of this theory.

Although it may seem an abuse of notation to overload the relational operator by writing g Ď h
in reference to functions operating on D, it is actually quite apropos because this relationship meets
all of the conditions for a CPO itself, albeit one distinct from D.

• The Ď relation on functions of D is reflexive, transitive, and antisymmetric. Check.

• The K element of the CPO of functions of D is the function that is undefined (wink, wink) for
all x P D.

• A least upper bound f “
Ů

S exists for any directed set of functions S Ă D Ñ D. The value of
f pxq for any x P D is as follows.

– If hpxq is undefined for all h P S, then f pxq is undefined.

– If hipxq is defined for only a single hi P S, then f pxq is the value of hipxq for the hi that
is defined at x .

– If multiple members h P S are defined at x , then f pxq is the least upper bound of their
values with respect to the ordering on D, which exists because S is directed.

The last condition, which subsumes the other two, can be stated more formally as

Ů

S “ λx .
Ů

pµ λh. h xq S

where the
Ů

operator pertains to the CPO of total functions D Ñ D on the left but to the original
CPO of data values, D, on the right, and the set mapping operator µ is defined by Equation 5.1.

An intuitive concept of the relational operator Ď on functions of a CPO is that it orders them by
information content. That is, functions higher up in the ordering either define meaningful results
for a larger set of inputs than those below them, or yield more informative results for the same
inputs, or both.

582 APPENDIX B. COMPLETE PARTIAL ORDERINGS AND FIXED POINTS

B.2 Relevance to DI processes

The theory sketched above appears to call for a CPO of DI processes ordered by refinement as defined
in Equation 7.18 with the initially divergent process depicted in Figure 7.13 as the K element. In this
way, the limit construction in Equation B.1 would imply an elegant alternative analytical form of the
fix combinator defined by Equation 5.31 and impart to functions f expressed by first order process
combinators like seq , par , etc. a refinement ordering of their own. Verification by formal proof
techniques such as fixed point induction might then complement known methods of model checking
based on trace set containment. Whether this way of thinking would be viable and advantageous
depends on how capably the following issues might be resolved.

B.2.1 CPO Structure

Two technical obstacles to the construction of a CPO ordered by refinement from the set of DI
processes D are the antisymmetry condition and the uniqueness of a minimum element. Possible
workarounds are discussed below.

Antisymmetry

While relational trace set containment certainly is a partial order relation, refinement as currently
defined is not, because the antisymmetry condition fails. Based on Section 7.4.3, refinement between
a pair of DI processes X “ pIX , OX , NX q and Y “ pIY , OY , NY q is defined by

X Ď Y ô IX “ IY ^ OX “ OY ^ ¹XºĚ ¹Yº. (B.3)

Antisymmetry would require X Ď Y ^ Y Ď X ñ X “ Y to hold, but two processes X and Y could
easily refine each other without being equal to each other by having different Petri net models NX
and NY that give rise to the same relational trace set ¹Xº“ ¹Yº.

As noted in [2], dropping the antisymmetry requirement makes the structure a preorder rather
than a CPO, but the current situation could be be salvaged partly by recasting refinement in terms of
a CPO populated by equivalence classes of processes. In this context, it would not be valid to think
of one process refining another, but instead to define a refinement relation only on their respective
behavioral equivalence classes

rX s Ď rY s (B.4)

using the conventional equivalence class notation rX s for the set of DI processes

rX s “

Y P D
ˇ

ˇ IX “ IY ^ OX “ OY ^ ¹Xº“ ¹Yº
(

behaviorally equivalent to a process X . The condition expressed by Equation B.4 could then be
defined to mean Equation B.3 holds for all pX 1, Y 1q P rX s ˆ rY s.

Unique minima

Use of equivalence classes does not suffice to make the set of DI processes conform to a CPO structure
under the refinement ordering because the requirement of a unique K element is still unmet. No
class rpI , O, Nqs with ¹pI , O, Nqº“ pI Y Oq˚ can have any proper predecessors under the ordering
of Equation B.4, and there is a distinct class of processes having this property for every union of
non-intersecting alphabets I , O P PpTq.

B.2. RELEVANCE TO DI PROCESSES 583

• One way of resolving this matter is to restrict attention to a CPO of classes of processes having
alphabets I and O in common.

• Another is to think big by having the universal CPO of all equivalence classes in PpDq ordered
with respect to alphabet containment as a priority and relational trace set containment only
among classes with compatible alphabets.

The latter remedy implies the universal minimum element
“

pH, H, ptp, qu, tru, tpp, rq, pr, qqu, tp, qu, Hqq
‰

for arbitrary distinct p, q, r P V. (See Figure 7.13 and the related discussion.)

B.2.2 Least upper bounds

Because the motivation for this exercise is an alternative route to a fixed point combinator for DI
processes by way of Equation B.1, and because Equation B.1 defines a fixed point as the least upper
bound of an infinite series of approximations, some consideration of the meaning of least upper
bounds in this context is necessary.

The least upper bound of a set of equivalence classes S Ď PppI ˆ O ˆPq XDq with alphabets I
and O in common follows naturally from a refinement relation on equivalence classes as considered
in Section B.2.1. The alphabets of any member of

Ů

S are the same I and O as any member of a
class in S. The relational trace set common to the members of

Ů

S is the cumulative intersection of
the relational trace sets of the members of the classes in S.

Ů

S “

Z P pI ˆ O ˆPq XD
ˇ

ˇ

¹Zº“
č

rX sPS

¹Xº
(

(B.5)

The least upper bound is always defined for finite or infinite sets, hence satisfying the completeness
condition for a CPO by construction.

Although the concept of least upper bounds proposed in Equation B.5 leads generally to infinite
sets and is of no help computationally, it may nevertheless allow some sense to be made of an
expression such as the following,

rX s “
ğ

pµ λx . seq pseq pget a,put bq, xqqi K | i P N
(

(B.6)

which is none other than the least fixed point fixp f q of a function

f “ µ λx . seq pseq pget a,put bq, xq (B.7)

by Equation B.1, where the µ operator is necessary to map the process combinators over an
equivalence class of processes. (See Equation 5.1.) In particular, technical difficulties pertaining to
infinite Petri nets are avoided because every member of every class f ipKq is finite even if the class
itself is infinite. Equation B.5 insists only that the limit of this sequence refine all of them, not that
it involve any manner of impossible concrete representation.

More good news is that there may be reasons to think the least fixed point rX s specified in
Equation B.6 is something we already know how to compute by other means. For the function f
in Equation B.7 and n P N, the class of processes f npKq contains those that engage in exactly n
two-phase handshakes with their environment (assuming the environment co-operates) and then

584 APPENDIX B. COMPLETE PARTIAL ORDERINGS AND FIXED POINTS

diverge. A process class that refines f npKq for any n would have to contain processes capable of
infinitely many handshakes without ever diverging. Such a thing can be built to order by the fix
combinator.

rX s “ fix µ λx . seq pseq pget a,put bq, xq

“ rfix λx . seq pseq pget a,put bq, xqs

The validity of this claim would depend on continuity conditions to be explored briefly in Sec-
tion B.2.3. If justified, then it enables some new flexibility in reasoning about the pseudo-fixed point
combinator within the framework of a CPO, such as manipulations based on the following.

fix µ h “ rfix hs

“ pλx . rxsq fix h

fix ˝µ “ pλx . rxsq ˝ fix

B.2.3 Continuity of process combinators

One is entitled to infer rX s “ f rX s from rX s “
Ů

t f ipKq | i P Nu only if f is a continuous function of
process equivalence classes. If a function f such as that of Equation B.7 does not satisfy Equation B.2,
then this theory as it stands is not useful for reasoning about DI processes. Some provision should
be made therefore to establish that functions of interest are continuous.

To assess what continuity might mean in the current setting, a specific example of an infinite
directed set may be helpful. A hierarchy of process classes induced by the function f defined in
Equation B.7

rX is “ f ipKq

forms an ascending chain under the refinement ordering based on the idea that each member of
rX is participates in one more handshake with its environment than any member of rX i´1s, but one
less than any member of rX i`1s before diverging. Its least upper bound can be denoted

rXωs “
Ů

rX is | i P N
(

.

Because trX is | i P Nu is a directed set with a least upper bound of rXωs, any continuous function g
must satisfy

grXωs “
ğ

grX is | i P Nu. (B.8)

A couple of routes toward establishing continuity of process combinators are sketched below using
this example.

The low road

There is at least one process-combinator expressible function for which an intuitive argument can
be made in favor of satisfying Equation B.8, namely f itself. Preceding each rX is with an additional
handshake, as f does, transforms the set of trX is | i P Nu to trX i`1s | i P Nu, which should not affect
its least upper bound. Preceding an infinite sequence of handshakes with another one produces the
same infinite sequence, so f rXωs “ rXωs holds as it should if the class of rXωs is a fixed point of f .

To take another example, let g be defined as µ λx . par pK , xq for some constant process K . Then
Equation B.8 becomes

rpar pK , Xωqs “
Ů

rpar pK , X iqs | i P N
(

(B.9)

B.3. FURTHER WORK 585

at least if it is safe to assume x ” y ñ par pK , xq ” par pK , yq. It is not impossible to believe that
putting K in parallel with each X i in the set would manifest itself as if K were in parallel with their
least upper bound. For any non-quiescent or divergent K with an output alphabet tbu, both sides
devolve to K. In the alternative of a deadlocked K sharing the input a with X i or Xω, both sides
inherit the misfeature of being able to deadlock non-deterministically. In the case of a deadlocked K
with no input (i.e., a “do nothing” process), g has no effect on the behavior of either side of the
equation, and so on for other conceivable cases of K .

Would this lucky streak hold out for all functions of interest and all directed sets? The answer
depends partly on what functions are of interest. Barring any unforeseen difficulties, a good choice
would be the set of all functions expressible by process combinators. It would be straightforward
to give an inductive definition of this set. For a sufficiently skilled and motivated reader, a formal
proof of continuity by structural induction on this definition might be forthcoming.

The high road

A more ambitious but less certain course is to seek the “book proof” [114] of continuity of process
combinators, which might take the form of a contradiction following from the hypothesis of a
discontinuous function expressed thereby, or perhaps a subtle countability argument. A discontinuous
function g would have to violate Equation B.8 or something similar to it by mapping rXωs to a result
that is either unrelated or below grX is in the refinement ordering for some i P N.

The qualitative difference between something like rXωs, the limit of an infinite ascending chain,
and rX is, a member of the chain, is captured formally by describing the latter as compact. Following
[102], a member x of a CPO is compact if any directed set M with x Ď

Ů

M contains a member y
such that x Ď y holds. The concept of compactness is relevant to any CPO, and can often serve as a
proxy for the intuitive idea of being finitely describable. For example, rational numbers are compact
members of the CPO of real numbers under the usual ordering.

To construct a discontinuous function g so as not to satisfy Equation B.8, this definition would
do the trick.

gpxq “

"

x if x is compact
K otherwise (B.10)

We would like to be able to claim that this function is so pathological that nothing like it could ever
crop up in practice, so there is no need to worry about discontinuous functions coming from process
combinators.

One route to this result would be to establish that a function like Equation B.10 is not computable,
whereas anything of practical interest obviously is. The computability of this function depends on the
existence of a decision procedure to recognize compact classes of DI processes. Unfortunately, this
possibility can not be ruled out immediately. Perhaps detecting cycles in their Petri net models, which
could have been put there only by the fix combinator, would be effective. However, establishing the
inexpressibility of any such algorithm by process combinators is a lower standard to meet.

B.3 Further work

Despite the possibilities mentioned at the end of Section B.2.2, it is still far from clear that the classical
treatment of fixed points has anything more to offer the DI circuit designer than a Procrustean bed.
Although this thesis or its refutation woud be de rigueur in an academic publication, a conclusive
ruling on the issue is not essential to the current text, nor properly within the author’s areas of

586 APPENDIX B. COMPLETE PARTIAL ORDERINGS AND FIXED POINTS

interest or expertise. Moreover, it is hoped that by leaving something on the table, this brief
introduction to fixed points and complete partial orderings may inspire some industrious reader to
do something original with them.

Fixer uppers

1. Let pD Ă D represent the set of DI processes expressible in terms of
process combinators.

a) Give a formal inductive definition of pD.

b) Assuming the universe T of symbols in the alphabets of mem-
bers of pD is countable, prove that pD is countable by construct-
ing a bijective function f : pD Ñ N.

2. Call a function f : D Ñ D “equivalence preserving” if x ” y implies f pxq ” f pyq

for all x , y P D. Which of these functions are not equivalence preserving, and why
not?

a) λx . par pK , xq

b) λx . alt pK , xq

c) λx . seq pK , xq

d) λx . seq px , Kq

3. Would it make any difference in the previous question to restrict the definition of
equivalence preservation to expressible processes x , y P pD as defined in the first
question?

4. What implication would a lack of equivalence preservation have for continuity of
process combinators on a CPO whose members are behavioral equivalence classes
of processes?

5. If equivalence preservation is not enforced, what slightly stronger equivalence
relation than behavioral equivalence can be defined as a workaround that would be
preserved by all functions in Question 2? (hint: Review the discussion leading up to
the fix combinator in Section 5.4.6.) What is the corresponding refinement relation?

6. Would it be possible to dispense with equivalence classes by restricting attention to
processes in canonical form per Section 7.5.3? If so, would there be any downside?

The deepest sin against the human
mind is to believe things without
evidence.

Thomas H. Huxley

A
P

P
E

N
D

I
X C

DECISION WAIT METRICS

Chapter 10 alludes to the optimization of decision wait decomposition strategies with respect to
arbitrarily chosen cost or performance metrics but is short on specifics. The only example given
is the metric }z} “ |THL z|, the total number of primitive components in a decision wait z P H as
determined by the length of the netlist THL z P L in terms of Equation 8.23. This example is not
especially interesting in itself because it is intuitively clear that the lowest component count for a
planar decision wait is always procured by the cascading decomposition, and for multidimensional
decision waits, a straightforward analysis confirms that the crossbar can always beat the dendriform
decomposition on component count, even if only by a constant factor. A more realistic requirement
is to find the best performance subject to a fixed maximum cost constraint, or to find the lowest
cost for a minimum performance constraint, or to optimize a weighted combination of cost and
performance.

Another issue is the difficulty of searching an astronomically large design space efficiently or
even selecting a representative sample. General purpose techniques for combinatorial optimization
are beyond the scope of this book1, but narrowing the search within the space of decompositions
t P S as far as possible before generating the decision waits Ω̂g t P H on which to evaluate the
metric

}Ω̂g t} P R

can only be helpful. The component count metric is a prime example of one suitable to infer directly
from the decomposition t by simple arithmetic, as is the critical path length, a rough proxy for
latency that ignores wire propagation delays and technology dependent factors in exchange for
being possible to calculate without running a routing algorithm or solving physics problems.

This appendix focuses on the computation of the two metrics noted above directly from the
decompositions, and even then in a somewhat idealized form. It is intended nevertheless to suggest

1See [301] for a thorough introduction and reference.

587

588 APPENDIX C. DECISION WAIT METRICS

a starting point to practitioners interested in deriving more sophisticated cost and performance
criteria suitable for their requirements.

C.1 Component count

The total number of primitive components needed for a decision wait is a measure of its cost that
could be made more informative by assessing a specific cost to each type of primitive. Maybe a
MERGE takes more area on a chip than a FORK, but not as much as a JOIN, and their costs measured
in square nanometers should be tallied accordingly. This cost estimate would still neglect that of the
interconnecting network, but would be not much more difficult to compute than the component
count alone. This point is noted only in passing because taking it into account would complicate the
presentation to follow without offering any further insight about the basic methodology.

C.1.1 Multidimensional

The component count metric follows from assessing a dimensionless unit cost to every component.
For a decomposition t P S giving rise to a decision wait with dimensions s “ pψ ∆gq t P N

˚ by
Equation 10.25 and Equation 10.35, the component count Mg t P N is obtained by a function
Mg : S Ñ N defined in three cases as follows.

Mg “ Λ λppp, dq, mq.

$

&

%

ř

m if |m| “ |d| ` 1
p|d1| ´ 1qp

ř

d0q `
ř

m if |m| “ |d1| `
ś

d0
xMqpd, mq, Mpxd00, d10yyδm

ε
otherwise

(C.1)

Because Mg is defined as a fold over its argument, the term pp, dq P N
˚˚ ˆN

˚˚ can be viewed
as a node in a decomposition t “ ppp, dq, vq P S, while the term m P N

˚ is viewed as the list of the
costs of the subtrees already visited (Section 10.1). The permutations p do not appear anywhere
else because they do not affect the cost of the components.

The type of decomposition can be inferred from the number of subtrees and hence from the
length of m in Equation C.1. The first case pertains to a dendriform decomposition, whose cost is
only the sum of ths costs of the subtrees because according to Figure 10.16 and Equation 10.20,
combining them requires no additional components. The second case pertains to the crossbar
decomposition, whose cost is the sum of the costs due to the subtrees in addition to that of the FORK

network shown in Figure 10.17 and Equation 10.22. Each network FORK |d1| requires |d1| ´ 1 FORK

primitives (cf. Figure 9.16), and there are
ř

d0 of them. The last case covers planar decision waits,
which could be either quadrangular or cascading. Their costs are measured respectively by functions
Mq : N˚2 ˆN

˚ Ñ N and Mp : N2 Ñ N, the latter being relevant to terminal decompositions.

C.1.2 Quadrangular

A cost metric for quadrangular decision waits with dimensions d P N
˚2 and building blocks with

costs m P N
˚ is given by Mqpd, mq as defined below.

Mqpd, mq “

$

’

’

&

’

’

%

m2 if |d0||d1| “ 1
m1 `

ř

pλi. p1 ´ δ
d0i
1 qp2d0i ` mi`2 ´ 1qq› ι|d0| if |d0| ‰ 1 ^ |d1| “ 1

m0 `
ř

pλi. p1 ´ δ
d1i
1 qp2d1i ` mi`2 ´ 1qq› ι|d1| if |d0| “ 1 ^ |d1| ‰ 1

p2
ř

5 dq ´ |5 d| `
ř

m otherwise

(C.2)

C.1. COMPONENT COUNT 589

This definition adheres closely to Equation 10.18, which specifies a quadrangular decision wait
Ωqpd, x , yq P H in terms of building blocks x P H

2 and y P H
|d0||d1|, such that m0 is the cost of x0,

m1 is the cost of x1, and mi`2 is the cost of yi for 0 ď i ă |y|. These conditions follow naturally in
the context of Equation C.1.

• The degenerate case of |d0||d1| “ 1 corresponds to the whole decision wait reducing to y0
with a cost of m2.

• The case of |d0| and |d1| both greater than 1 assesses a cost equal to that of the building blocks
in addition to that of the completion detecting buses shown in Figure 10.9. A typical completion
detecting bus corresponding to a dimension b P Rp5 dq consists of b FORK primitives and b ´1
MERGE primitives, hence 2b ´ 1 primitives of either type and a total of p2

ř

5 dq ´ |5 d| over
all dimensions.

• The other two cases pertain to vertical or horizontal quadrangular decision waits. The vertical
quadrangular decision wait cost due to the building blocks includes only the cost m1 of the
column input routing stage x1 and the cost mi`2 for blocks yi having d0i rows with d0i ą 1.
The cost due to the completion detecting buses is 2d0i ´ 1 also limited to dimensions d0i
greater than 1. The cost of a horizontal quadrangular decision wait is obtained similarly.

C.1.3 Cascading

An expression for the cost Mppsq P N of a cascading decision wait with dimensions s P N
2 is

straightforward to build from expressions Mlpnq and Mbpnq for the respective costs of lateral and
bilateral decision waits with n columns.

Lateral decision wait costs

By inspection of Figure 10.1, there is a SHUNT and TOGGLE combination for each of n ´ 1 columns
of the lateral decision wait, a MERGE network with n inputs implying n ´ 1 MERGE primitives, and a
JOIN, for a total of 2pn ´ 1q ` pn ´ 1q ` 1 or

Mlpnq “ 3n ´ 2

primitives of any type.

Bilateral decision wait costs

To follow the pattern of Figure 10.3, the cascading bilateral decision wait contains 2pn ´ 1q bilateral
decision wait cells of 5 components each based on Figure 10.4, a MERGE network also with n ´ 1
primitives, and a lateral decision wait with Mlp2q “ 4 primitives, for a total of 10pn´1q`pn´1q`4,
simplified to

Mbpnq “ 11n ´ 7 (C.3)

primitives. This result holds even if the number of columns n is equal to 1, when Equation 10.7
simplifies the implementation to that of a rotated lateral decision wait with two columns and a cost
of only Mlp2q “ 4 primitives.

590 APPENDIX C. DECISION WAIT METRICS

T0 T1

T0

T1

T0 ` T1

TF ` maxtT0, T1u ` TJ

Figure C.1: The critical path length through two blocks in series is the sum of their respective critical
path lengths (above), whereas the critical path length through two synchronized blocks in parallel
is the maximum thereof (below).

Planar decision wait costs

To follow the pattern of Figure 10.6 a cascading decision wait with s0 rows and s1 columns requires
s0ps1 ´ 1q planar decision wait cells of 8 primitives each based on Figure 10.7, a MERGE network
of s1 ´ 1 primitives, and a columnar decision wait of Mlps0q “ 3s0 ´ 2 primitives, for a total of
8s0ps1 ´ 1q ` ps1 ´ 1q ` 3s0 ´ 2 or more simply

8s0s1 ´ 5s0 ` s1 ´ 3.

This result holds even if both dimensions are unity, in which case by Equation 10.11 the cascade
reduces to a lateral decision wait reducing to a single JOIN with a cost Mlp1q “ 1. However,
Equation 10.11 also makes special provisions for dimensions equal to 2 by simplifying the result to
a bilateral form. These cases incur a cost of either Mbps0q for s1 “ 2 or Mbps1q for s0 “ 2, suggesting
a combined result of

Mppsq “ xx8s0s1 ´ 5s0 ` s1 ´ 3,11s1 ´ 7yδs0
2

, 11s0 ´ 7yδs1
2

by Equation C.3. This result along with Equation C.2 completes the construction of the cost metric
Mg defined in Equation C.1.

C.2 Critical path length

Next on the agenda is the formulation of a performance metric for decision waits based on critical
paths. A path can be defined somewhat informally for our purposes as a sequence of components
through which a signal propagates to get from an input terminal to a visible output. If there is
more than one path for the signal to take concurrently, with a conclusion implied only when all of
them have been traversed, then the critical path is the longest one (by some definition of “longest”).
Concurrent paths exist whenever a signal passes a FORK. Other things being equal, a circuit that
does the same job as another but has shorter critical paths should be faster, so critical path lengths
are a reasonably plausible performance metric for rough comparisons. For the rest of this discussion,
critical path lengths may sometimes be designated more briefly just as critical paths.

A physically realistic approach would identify a specific constant critical path length with each
type of component, such as TF P R for a FORK, TJ P R for a JOIN, and so on, or even different

C.2. CRITICAL PATH LENGTH 591

p f xr, cyq0

p f xr, cyq1

0

0

s0 ´ 1

r

s1 ´ 1c

¨ ¨ ¨

¨ ¨ ¨

...
...

Figure C.2: A planar decision wait with dimensions s0-by-s1 described by a function f : N2 Ñ R
2

has critical paths from row input r and from column input c to the output in row r and column c
listed respectively in the first and second terms of f xr, cy.

constants for different paths through the same component such as a SHUNT, and then determine
the critical paths for their combinations as shown in Figure C.1. However, taking all components
to have dimensionless unit critical paths is adequate to demonstrate the method, similarly to the
assumption of unit costs in Section C.1.

Less quickly dispatched is the question of how to associate critical paths with circuits having
multiple inputs and outputs such as decision waits. A complete description of the critical paths in a
decision wait is not just a single number, nor even an assignment of numbers to input terminals,
because the critical path from a particular terminal to the output depends on which output it is,
which depends on the selection of other inputs. An ad hoc solution is to summarize the critical paths
in a decision wait with dimensions s P N

˚ by a function

f : N|s| Ñ R
|s|

such that a list of input terminal numbers a P N
|s| with 0 ď ai ă si determines a list of critical path

lengths f a P R
|s|. The value of p f aqi is interpreted as the critical path from the ai-th terminal along

the i-th axis to the unique output terminal that emits a signal when the a j-th input on the j-th axis
is signaled for all 0 ď j ă |s| including i. For example, a row number r and a column number c in
a planar decision wait described by a function f : N2 Ñ R

2 would determine a list of two critical
paths f xr, cy P R

2 with p f xr, cyq0 being from the r-th row input to the output terminal in row r and
column c, and p f xr, cyq1 being from the c-th column input the same output terminal as illustrated
in Figure C.2.

As a final step, a statistic describing the critical path lengths of a decision wait can be boiled
down to a single number for the sake of comparison by averaging or maximizing with respect to f as
desired. However, writing a recurrence that expresses the critical paths for a decision wait in terms
of those of its building blocks, as we undertake presently, requires access to the full description f
pertaining to each building block, so we have to fight the urge to simplify this description prematurely.

One further question to settle before proceeding is that of critical paths through networks of the
form FORK n or MERGE n as defined by Equation 9.19 and Equation 9.20. The path is approximately
logarithmic in n, but may differ depending on the terminal if n is not a power of two. An exact

592 APPENDIX C. DECISION WAIT METRICS

result τpn, iq P R for the i-th terminal is obtained by this recurrence.

τpn, iq “

$

’

&

’

%

0 if n “ 1

1 ` τptn{2u, iq if i ă tn{2u

1 ` τprn{2s, i ´ tn{2uq otherwise

(C.4)

The rest of this section is devoted to accounting for all critical paths in decision waits starting
with cascading forms in Section C.2.1, followed by quadrangular decompositions in Section C.2.2,
and finally with multidimensional decompositions in Section C.2.3 through Section C.2.5.

C.2.1 Cascading

The simple case of a lateral decision wait is a good way to start the analysis of cascading decision
wait critical paths before progressing to the bilateral and general cases. These critical paths can be
reduced to two phases: an absorption phase from the input terminal up to the JOIN in Figure 10.1,
and an emission phase including the JOIN and whatever follows. The total critical path is the sum of
these two phases.

Lateral

The absorption phase in a lateral decision wait with n columns is modeled by a function Al n with
the function Al : N Ñ pN2 Ñ R

2q chosen such that Alpnq : N2 Ñ R
2 takes row and column numbers

a “ xa0, a1y P N
2 to a list of two absorption phase critical paths pAl nq a P R

2. Because a lateral
decision wait can have only one row, Al n is defined only for row numbers a0 “ 0, but the column
number a1 can range from 0 to n ´ 1.

By inspection of Figure 10.1, an input signal to column number a1 propagates through a SHUNT

and a TOGGLE if a1 is less than n ´ 1, and through a MERGE network regardless before reaching the
JOIN. The row input reaches the JOIN immediately and therefore has a zero length absorption phase
critical path. These observations translate to

Alpnq “ λa. x0,2p1 ´ δ
a1
n´1q ` τpn, a1qy

by Equation C.4. The emission phase is the same for row and column inputs, passing through the
JOIN, then through a SHUNT in each of the a1 columns preceding the input, and then through the
SHUNT and the TOGGLE in the input column if it is not the last (i.e., if a1 is less than n ´ 1), implying
an emission phase Elpnq : N2 Ñ R given by

Elpnq “ λa. 1 ` a1 ` 2p1 ´ δ
a1
n´1q

and a total critical path Tlpnq : N2 Ñ R
2 equal to their sum as noted previously.

Tlpnq “ λa. pλi. ppAl nq aqi ` pEl nq aq› ι2 (C.5)

Bilateral

Building on this result to that of a bilateral decision wait in a similar style, we seek an absorption
phase described by a function Abpnq : N2 Ñ R

2 first, with the absorption phase critical paths chosen
arbitrarily in this case to include everything from the input terminals through the columnar decision

C.2. CRITICAL PATH LENGTH 593

wait visible in Figure 10.3. The row absorption phase critical path due to a row input a0 P t0, 1u is
already available as t1 P R regardless of the column input, where

t “ pTl 2q x0, a0y P R
2

is the total critical path associated with column a0 on a (rotated) two-column lateral decision wait
by Equation C.5. In the column absorption phase critical path, there are two bicolumnar decision
wait cells in any column but the last, interposing two components each to judge by Figure 10.4,
or 4p1 ´ δ

a1
n´1q, followed by a MERGE network with a path of length τpn, n ´ 1 ´ a1q borne out by

careful reading of Equation 10.7 indicating a reversal of the columns, and then finally t0 due to the
columnar decision wait with t as above, for an overall result

Abpnq “ λa. pλt. xt1, 4p1 ´ δ
a1
n´1q ` τpn, n ´ 1 ´ a1q ` t0yq pTl 2q x0, a0y.

The bilateral emission phase critical path, which is common to both row and column inputs,
includes the rest of the way through the bicolumnar decision wait cells. Each of the a1 columns
preceding the input column interposes a MERGE and a SHUNT according to Figure 10.4, for a
cumulative length of 2a1 up to the input column. Subsequently, any column but the last interposes
four components from ri to bo for the signal to traverse in one cell, followed by another seven along
the path from bi to d in the other, or 11p1 ´ δ

a1
n´1q all together, for an emission phase pEb nq a P R

overall given by
Ebpnq “ λa. 2a1 ` 11p1 ´ δ

a1
n´1q.

Special provision for the bilateral decision wait with a single column reducing to a rotated lateral
decision wait as prescribed by Equation 10.7 leads to

Tbpnq “ xλa. pλi. ppAb nq aqi ` pEb nq aq› ι2,λa. pTl 2q x0, a0yyδn
1

as a total critical path specification. For n “ 1, it devolves to a rotation of Equation C.5, but otherwise
is given by the sums of the absorption and emission phases.

General

A derivation of the critical paths in a general cascading decision wait proceeds similarly to the
bilateral case subject only to a variable number of rows and to differences between the bicolumnar
and planar decision wait cells (Figure 10.4 and Figure 10.7). An absorption phase critical path
specification Appsq : N2 Ñ R

2 in terms of a function Ap : N2 Ñ pN2 Ñ R
2q parameterized by

dimensions s P N
2 takes row and column indices a “ xa0, a1y P N

2 to a list of absorption phase
critical paths pAp sq a P R

2. The row absorption phase critical path is given by t1 P R where

t “ pTl s0q x0, a0y P R
2

is the total latency associated with column number a0 on the rotated lateral decision wait visible in
Figure 10.6, whose number of columns matches the number of rows s0. To the column absorption
phase critical path, the s1 cells in any column but the last contribute two components each (a SHUNT

and a TOGGLE) based on Figure 10.7, or 2s1p1 ´ δ
a1
s1´1q. The MERGE network path τps1, s1 ´ 1 ´ a1q

is analogous to the bilateral case, and the remaining segment through the lateral decision wait is
covered by t0 P R with t as above.

Appsq “ λa. pλt. xt1, 2s1p1 ´ δ
a1
s1´1q ` τps1, s1 ´ 1 ´ a1q ` t0yq pTl s0q x0, a0y

594 APPENDIX C. DECISION WAIT METRICS

To the emission phase critical path, the cells along row a0 in each of the a1 columns preceding
the input column contribute two components each according to Figure 10.7 as in the bilateral case.
When the signal first reaches the cell in row number a0 and column number a1 during the emission
phase (where a1 is less than s1 ´ 1), it traverses seven components in that cell on the path from ri
to po, and then nine components from pi to po in each of the other a0 ´ 1 cells that column, and
then finally two more on the path from pi to d on row a0 again, resulting in 9s0p1 ´ δ

a1
s1´1q for a

total emission phase pEp sq a P R given by

Eppsq “ λa. 2a1 ` 9s0p1 ´ δ
a1
s1´1q

suggesting an overall critical path specification

λa. pλi. ppAp sq aqi ` pEp sq aq› ι2

except that the critical paths should reduce to those of a bilateral or lateral decision wait when the
dimensions permit for consistency with Equation 10.11.

Tppsq “

$

’

’

&

’

’

%

λa. pλi. ppAp sq aqi ` pEp sq aq› ι2 if s0 ą 2 ^ s1 ą 2
λa. pTb s0q xa1, a0y if s0 ą 2 ^ s1 “ 2
λa. pTl s0q xa1, a0y if s0 ą 2 ^ s1 “ 1
xTl s, Tb syδs0

2
otherwise

(C.6)

C.2.2 Quadrangular

The critical paths in a quadrangular decision wait depend on the particular decomposition t P S, so
their specification 9Tqptq : N˚ Ñ R

˚ must be parameterized by it, with 9Tq : S Ñ pN˚ Ñ R
˚q having

to be defined as a fold

9Tq “ Λ λppp, dq, f q. p 9φ pq xTqpd, f q, Tp
ř›dy

δ
f
ε

(C.7)

in terms of some function

9φ : N˚˚ Ñ ppN˚ Ñ R
˚q Ñ pN˚ Ñ R

˚qq

yet to be determined that compensates for the effect of the permutations p P N
˚˚ on the critical

paths, some other function

Tq : N˚2 ˆ pN2 Ñ R
2q˚ Ñ pN2 Ñ R

2q

also yet to be determined that takes the critical paths of the building blocks to the critical paths
overall, and the function Tp defined by Equation C.6 to handle terminal decompositions, which
reduce to cascading forms by Equation 10.30 assuming t satisfies s “ pψ ∆qq t by Equation 10.26
and Equation 10.27 for some non-empty list of dimensions s P N

2.

Permutations

The function 9φ is the easier part. Parameterized by a list of permutations p P N
˚˚, it yields a

function 9φ p : pN˚ Ñ R
˚q Ñ pN˚ Ñ R

˚q that transforms a function f : N˚ Ñ R
˚ describing the

critical paths in a decision wait prior to being permuted or rotated to a function

p 9φ pq f : N˚ Ñ R
˚

C.2. CRITICAL PATH LENGTH 595

describing the critical paths in a decision wait having the desired dimensions s afterward. It may be
helpful to think of 9φ as a function that performs the same operation as the function φ defined by
Equation 10.25 in some sense, but operates on a more abstract representation of the circuit.

Part of this operation is to permute the inputs along the j-th axis of the decision wait according
to the permutation p j`1 of the parameter p, and part of it is to rotate the decision wait by permuting
the axes according to p0. Were it not for the latter rotation, a critical path starting from a j-th input
terminal along the j-th axis outside the input permutation network would pass through the terminal
numbered pp j`1qa j

along that axis on the inside, so the function describing the critical paths of the
result could be expressed as a composition

f ˝ pλa. pλ j. pp j`1qa j
q› ι|a|q

of the original function f with one that maps each term a j of its argument a to its image with
respect to p j`1. On the other hand, if there were a rotation but no permutations, a critical path
starting from the ai-th terminal along the i-th axis on the outside would pass through the ai-th
terminal along the p0i-th axis on the inside, so using the original f to get the right answer would
require passing it an argument with ai in the p0i-th position and hence ap1

i
in the i-th position,

where p1 is the inverse of p0 (Section 8.1.5). A function capturing this effect could be expressed by
a composition

f ˝ ppλp1. λa. pλi. ap1
i
q› ι|p1|q p´1

0 q

of the original function f with one that does not alter any of the terms in its argument a but adjusts
their order. Putting both of these effects together suggests the following definition.

9φ “ λp. λ f . f ˝ ppλp1. λa1. pλi. a1

p1
i
q› ι|p1|q p´1

0 q ˝ λa. pλ j. pp j`1qa j
q› ι|a| (C.8)

Paths

Having compartmentalized the effects of any possible permutations and rotations as above, we
can now focus on finding the critical paths through a quadrangular decision wait as if all inputs
and outputs were ordered sequentially, but there is still a wealth of detail involved. As shown in
Figure 10.9, any row input signal passes through a FORK, then through a row input on the routing
stage x1, and then through a row input on one of the blocks in y, but the row input signal also
passes concurrently through a MERGE network, a row input on x1, and a column input on the same
inner block in y . Column input signals are analogous in the basic decomposition, but as explained in
Section 10.3.2, x0 disappears if the decomposition is vertical, and row input paths omit everything
but x1 if additionally the building block in y is lateral. A similar horizontal decomposition is a
further possibility, as is a degenerate case noted in connection with Equation 10.18.

To calculate the critical paths starting from two inputs a “ xa0, a1y P N
2, we can think of each

input terminal ai as being connected to the k0i-th line of the k1i-th bus along the i-th axis, with
this bus having a width of k2i lines. Then for example it would be possible to write τpk2i , k0iq by
Equation C.4 for the segment of the path starting from the ai-th terminal on the i-th axis due to the
MERGE network. We can express

k0i “ p5 pλ j. ι jq
› diqai

in terms of the parameter d P N
˚2 describing the decomposition, with

k1i “ ppλ j. j di j
q› ι|di |

qai

k2i “ ppλ j. di j
di j

q› ι|di |
qai

596 APPENDIX C. DECISION WAIT METRICS

and an additional parameter k3i “ δ
|di |

1 P t0,1u indicating when the decomposition is vertical or
horizontal. That is, k30 is non-zero when the decomposition is horizontal, and k31 is non-zero when
the decomposition is vertical. Expressing all of them at once

xxk00, k10, k20, k30y, xk01, k11, k21, k31yy “ pλi. p5 pλ j. ι jq
› diqai

: p5 pλ j. x j, di j ,δ
|di |

1 y
di j

q› ι|di |
qai

q› ι2

would be more convenient as
k “ e0pd, aq P pN2q4

with e0 : N˚2 ˆN
2 Ñ pN2q4 defined by

e0 “ λpd, aq. ppλi. p5 pλ j. ι jq
› diqai

: p5 pλ j. x j, di j ,δ
|di |

1 y
di j

q› ι|di |
qai

q› ι2qᵀ.

To work back from the end, each critical path concludes at one of the internal blocks y in
Figure 10.9 (assuming a decomposition that is neither vertical nor horizontal), whose specification
is implicit in the parameter f P pN2 Ñ R

2q˚ in the context of Equation C.7. Because f0 refers to the
routing stage x0 and f1 refers to x1 in the figure, the item of f relevant to the terminals a would be
one of the rest, or specifically fn : N2 Ñ R

2 with

n “ k10|d1| ` k11 ` 2

being simply its row major ordinal offset by two. Furthermore, the particular critical paths b P R
2

of interest would follow as
b “ fn k0 P R

2

because k0 P N
2 refers to the terminals in a numbered locally with respect to their buses as proposed

above.
Just prior to the paths covered by b would be those segments passing through the routing stages

labeled x0 and x1 in Figure 10.9 (assuming a basic decomposition). The former receives a signal
on the a0-th row and the k11-st column because the column input a1 belongs to the k11-st bus. For
analogous reasons, x1 receives signals on row k10 and column a1, so the critical paths associated
with them can be summarized as

r “ x f0xa0, k11y, f1xk10, a1yy P pR2q2.

Because the paths b through the inner building block are in series with the paths r through the
routing stages, the next step should be to add them. A signal starting from a0-th row input in a
basic decomposition reaches a FORK first, and then propagates in parallel through two branches.
One branch takes a path r00 ` b0 through the row input on the routing stage and the row input on
the inner block, and the other branch takes a path τpk20, k00q ` r10 ` b1 through a MERGE network,
a row input on the other routing stage, and a column input on the inner block. Its overall critical
path is therefore

1 ` maxtr00 ` b0,τpk20, k00q ` r10 ` b1u.

The critical path for a signal starting from the a1-st column input is analogous,

1 ` maxtr11 ` b1,τpk21, k01q ` r01 ` b0u

so the list of both of them would be

pλi. 1 ` maxtrii ` bi ,τpk2i , k0iq ` pr1´iqi ` b1´iuq› ι2 P R
2

C.2. CRITICAL PATH LENGTH 597

and the problem would be solved if the basic decomposition were the only possibility.
However, it is also necessary to consider the edge cases of vertical and horizontal decompositions.

In a vertical decomposition, an input signal to the a0-th row could start with a FORK and then
propagate in parallel through two paths as above, but because the routing stage x0 would be
absent, one of the paths would pass directly to the inner block and therefore reduce to b0 while the
other would remain τpk20, k00q ` r10 ` b1 as above. The column input is not analogous in this case.
Lacking a FORK or MERGE network, it would take only the path r11 ` b1 through the column inputs
of the routing stage and the inner block, so the list of both paths would be

x1 ` maxtb0,τpk20, k00q ` r10 ` b1u, r11 ` b1y P R
2

if only it were that simple. There is also the possibility of the inner building block having only a
single row as indicated by the condition k20 “ 1, implying its absence from the construction. In this
case the row and column paths start and end with the routing stage x1 and thus reduce to r1 P R

2.
The correct result is therefore

xx1 ` maxtb0,τpk20, k00q ` r10 ` b1u, r11 ` b1y, r1y
δ

k20
1

P R
2

for a vertical decomposition, but at least the same reasoning yields the horizontal decomposition
result for free.

xxr00 ` b0, 1 ` maxtb1,τpk21, k01q ` r01 ` b0uy, r0y
δ

k21
1

P R
2

The three different types of decompositions considered above are distinguishable by the param-
eter k3 P t0,1u2 as noted previously, with k30 “ 1 for horizontal decompositions and k31 “ 1 for
vertical decompositions, so it is a short step to an expression e1pk, r, bq P R

2 that covers all cases
in terms of a function e1 : pN2q4 ˆ pR2q2 ˆ R

2 Ñ R
2. Following Equation 10.18, we allow for a

degenerate case devoid of routing stages as shown.

e1 “ λpk, r, bq.

$

’

’

’

&

’

’

’

%

b if k3 “ x1,1y

xx1 ` maxtb0,τpk20, k00q ` r10 ` b1u, r11 ` b1y, r1y
δ

k20
1

if k3 “ x0,1y

xxr00 ` b0, 1 ` maxtb1,τpk21, k01q ` r01 ` b0uy, r0y
δ

k21
1

if k3 “ x1,0y

pλi. 1 ` maxtrii ` bi ,τpk2i , k0iq ` pr1´iqi ` b1´iuq› ι2 if k3 “ x0,0y

This expression enables a definition of Tq in the obvious way to meet the requirements of Equation C.7
and thereby account completely for critical paths in quadrangular decision waits.

Tq “ λpd, f q. λa. pλk. e1pk, x f0xa0, k11y, f1xk10, a1yy, pλn. fn k0q k10|d1| ` k11 ` 2qq e0pd, aq

C.2.3 Dendriform

Moving on to dendriform decision waits, we seek a description of the critical paths in terms of a
function 9Td : S Ñ pN˚ Ñ R

˚q defined similarly to Equation C.7 as a fold

9Td “ Λ λppp, dq, f q. p 9φ pq xTdpd, f q, Tp
ř›dy

δ
f
ε

(C.9)

operating on a decomposition t P S satisfying s “ ψ ∆d t for some non-empty list of positive
dimensions s P N

˚ by Equation 10.26 and Equation 10.31 (the defining property of a dendriform

598 APPENDIX C. DECISION WAIT METRICS

decomposition). The functions 9φ defined by Equation C.8 and Tp defined by Equation C.6 serve the
same purpose in Equation C.9 as in Equation C.7, and a function

Td : N˚˚ ˆ pN˚ Ñ R
˚q˚ Ñ pN˚ Ñ R

˚q

transforming the critical path specifications of the building blocks to that of the result is yet to
be determined. 9Td could be useful by itself for calculating the critical paths in multidimensional
decision waits restricted either to dendriform and cascading decompositions, or otherwise as an
intermediate step toward the analysis of more general forms considered in Section C.2.5.

Critical paths in a dendriform decision wait are a more straightforward proposition than those
of quadrangular decision waits because there are no exposed concurrent paths and no edge cases.
As shown in Figure 10.16, there is a front end consisting of any number multidimensional decision
wait building blocks each connected directly to a back end consisting of just one. Each path starts
through one of the front end blocks and finishes through the only back end block. In the context of
Equation C.9, fi describes the i-th front end block for 0 ď i ă |d|, and f|d| describes the back end
block, where t “ ppp, dq, vq P S is the decomposition, all of which are known already by hypothesis
if f is non-empty. To find a whole critical path starting from any particular terminal, we have to
calculate the segment of the path through the relevant front end block using fi for the appropriate i,
and then add the rest of the path as given by f|d| to that result.

The problem now reduces to finding the right arguments to plug into fi and f|d| to obtain the
list of critical path lengths

Tdpd, f q a P R
|5 d|

associated with a list of input terminal addresses

a P N
|5 d|

whose length |5 d| presumably matches the number of dimensions perceived externally, whereas each
function fi : N|di | Ñ R

|di | pertains to a decision wait having only |di | of the total | 5 d| dimensions.
Each dimension corresponds to an external input bus such that the first front end block is connected
to the first |d0| buses, the next front end block to the next |d1| buses, and so on. The appropriate
argument ci P N

|di | to fi determining its effect on Tdpd, f q a is therefore given by

c “ pλi. pa « | 5 pd ∣ iq|q∣ |di |q
› ι|d| P N

˚|d|

which is just an unflattened form of a satisfying a “ 5 c and |ci | “ |di |.
Finding the right argument to plug into f|d| is a bit more complicated. The back end decision

wait has |d| dimensions with
ś

dn inputs in the n-th dimension for 0 ď n ă |d|. The inputs to the
n-th dimension come by a bus of width

ś

dn from the outputs of the n-th front end block. If the
n-th front end block receives input signals on terminals numbered cn, it emits a signal on an output
terminal numbered

pῑdn
q´1 cn P N

where ῑdn
P pN|dn|q

ś

dn is a list of lists of coordinates by Equation 10.3, pῑdn
qv P N

|dn| is the list of
coordinates of the lexicographically v-th point in a |dn|-dimensional lattice, and for each 0 ď m ă |dn|,
the value of the coordinate pῑdn

qvm ranges from 0 to dnm ´ 1. Evaluating the list of critical paths
through the back end obtained when the inputs to the front end are determined by c

f|d| pλn. pῑdn
q´1 cnq› ι|d| P R

|d|

C.2. CRITICAL PATH LENGTH 599

yields among others the particular critical path p f|d| pλn. pῑdn
q´1 cnq› ι|d|qi originating from some

terminal along the i-th axis of the back end block. This path necessarily forms the latter segment of
any path passing through the i-th front end block, because all outputs from the i-th front end block
ride the same bus.

Carrying this insight to its conclusion, we can have a list of critical paths associated with the i-th
front end block

fi ci P R
|di |

with each path to be extended by a common back end segment

pλ j. p fi ciq j ` p f|d| pλn. pῑdn
q´1 cnq› ι|d|qiq

› ι|di |

for any front end block numbered 0 ď i ă |d|

pλi. pλ j. p fi ciq j ` p f|d| pλn. pῑdn
q´1 cnq› ι|d|qiq

› ιdi
q› ι|d|

combined into a list e2pd, f q c P R
|5 d| with the function

e2 : pN˚˚ ˆ pN˚ Ñ R
˚q˚q Ñ pN˚˚ Ñ R

˚q

defined as

e2 “ λpd, f q. λc. 5 pλi. pλ j. p fi ciq j ` p f|d| pλn. pῑdn
q´1 cnq› ι|d|qiq

› ιdi
q› ι|d|

suggesting the following definition for Td to complete Equation C.9.

Td “ λpd, f q. e2pd, f q ˝ λa. pλi. pa « | 5 pd ∣ iq|q∣ |di |q
› ι|d|

C.2.4 Crossbar

Analyzing the critical paths for a crossbar decision wait is only moderately more complicated than
for a dendriform decision wait. A function 9Tc : S Ñ pN˚ Ñ R

˚q given by

9Tc “ Λ λppp, dq, f q. p 9φ pq xTcpd, f q, Tp
ř› dyδv

ε
(C.10)

is defined similarly to the function 9Td (Equation C.9) in terms of 9φ, Tp, and a function

Tc : N˚˚ ˆ pN˚ Ñ R
˚q˚ Ñ pN˚ Ñ R

˚q

to be derived presently, but operates on decompositions t P S satisfying s “ψ ∆c t for some non-
empty s P N

˚ by Equation 10.33.
As a reminder, Figure 10.17 shows that a crossbar decision wait with a decomposition t P S

having a root pp, dq P N
˚˚ ˆN

˚2 has |d1| front end building blocks and
ś

d0 back end building
blocks, as well as a FORK network in front of the front end. Each front end block has |d0| ` 1
dimensions, each back end block has |d1| dimensions, and the combination is equivalent to a
decision wait with |d0| ` |d1| dimensions, but only the signals in the first |d0| dimensions pass
through the FORK network. In the context of Equation C.10, the first |d1| terms of f are the functions
describing the critical paths in the front end, and the remaining

ś

d0 terms describe the critical
paths in the back end blocks.

600 APPENDIX C. DECISION WAIT METRICS

A selection of input terminals numbered a P N
|5 d| with each a j being the number of the terminal

in the j-th dimension to receive an input signal would mean each front end block receives all of
the first |d0| signals specified by a via the FORK network, and exactly one of the latter |d1|. This
condition implies that a path of length puiq j P R through the i-th front end block given by

u “ λi. fippa ∣ |d0|q q xa|d0|`iyq› ι|d1|

must be traversed concurrently through every front end block by the j-th signal for any j among the
first |d1| specified by a, but only the single path pu jq|d0| through the j-th front end block is traversed
by signals in dimensions j ě |d1|.

On the other hand, only the n-th of the
ś

d0 back end blocks receives any signals at all, with n
given by

n “ pῑd0
q´1 pa ∣ |d0|q

according to Equation 10.3. Each front end block has the same number
ś

d0 of output buses, each
of the

ś

d0 back end blocks is connected to exactly one bus from each of the front end blocks, and
the front end inputs in the first |d0| dimensions suffice to narrow the output down to the same
output bus on all of the front end blocks. The position of this bus relative to the others from the
same front end block would be the lexicographic ordinal of a ∣ |d0| relative to the range of ῑd0

, the
set of possibilities within the given dimensions.

Having identified the back end block relevant to the input list a as the n-th, we have also fully
determined the relevant list of critical paths

v “ f|d1|`npa « |d0|q P R
|d1|

through the back end block in terms of the function f|d1|`n specifying them in the context of
Equation C.10.

With the front end and the back end covered, there is only the FORK network left. Every input in
each of the first |d0| input buses passes through a FORK with one output for each of the |d1| front end
blocks. Equation C.4 is just as applicable to FORK networks as to MERGE networks, so it is reasonable
to write τp|d1|, a jq as a component of the path followed by the signal to the a j-th terminal in the
j-th dimension for values of j less than |d0|.

Obtaining the list of combined critical paths Tcpd, f q a P R
|a| is now a matter of adding the

segments together appropriately. After going through the path τp|d1|, a jq due to the FORK network,
a signal originating from the a j-th terminal in the j-th dimension with j ă |d0| takes the j-th path
through the i-th front end block followed by the i-th path through the back end block

puiq j ` vi

concurrently for all |d1| front end blocks, implying a critical path

max Rppλi. puiq j ` viq
› ι|d1|q

along the segment through the front and back ends, or a critical path of

τp|d1|, a jq ` max Rppλi. puiq j ` viq
› ι|d1|q

overall. Signals originating on the a j-th terminal in the j-th dimension for j ě |d0| bypass the FORK

network and take the last path through the j-th front end block followed by the j-th path through
the back end block.

pu jq|d0| ` v j

C.2. CRITICAL PATH LENGTH 601

An expression for the list critical paths taken by all |d0| ` |d1| signals would be

pλ j. τp|d1|, a jq ` max Rppλi. puiq j ` viq
› ι|d1|qq› ι|d0|q q pλ j. pu jq|d0| ` v jq

› ι|d1|

which is easier to abbreviate as e3pu, v, d, aq in terms of a function e3 : R˚˚ ˆR
˚ ˆN

˚2 ˆN
˚ Ñ R

˚

defined by

e3 “ λpu, v, d, aq. ppλ j. τp|d1|, a jq ` max Rppλi. puiq j ` viq
› ι|d1|qq› ι|d0|q q pλ j. pu jq|d0| ` v jq

› ι|d1|

so that the desired result Tcpd, f q : N˚ Ñ R
˚ to complete Equation C.10 follows from a function

Tc : N˚2 ˆ pN˚ Ñ R
˚q˚ Ñ pN˚ Ñ R

˚q

defined as

Tc “ λpd, f q. λa. e3pλi. fippa ∣ |d0|q q xa|d0|`iyq› ι|d1|, pλn. f|d1|`npa « |d0|qq pῑd0
q´1 pa ∣ |d0|q, d, aq.

C.2.5 General

A critical path analysis of any combination of the decompositions investigated in previous sections
is possible without much further effort. Any decomposition t P S satisfying s “ pψ ∆gq t ‰ ε by
Equation 10.35 determines a decision wait by Equation 10.36 with |s| input buses. For any list
of terminal numbers a P Rpῑsq, transmitting |a| signals concurrently such that the i-th input bus
receives a signal on its ai-th terminal for all 0 ď i ă |a| implies that the signal on the i-th bus takes
a critical path of length ppTg tq aqi P R to the terminal that emits an output signal as given by a
function

Tg : S Ñ pN˚ Ñ R
˚q

defined by the recurrence

Tg “ Λ λppp, dq, f q. p 9φ pq

$

’

’

’

&

’

’

’

%

x0, Tp
ř› dy

δ
|d|

2
if | f | “ 0

Tdpd, f q if | f | “ |d| ` 1

Tcpd, f q if | f | “ |d1| `
ś

d0

Tqpd, f q if | f | “ p
ř

d0qp
ř

d1q ` 2

(C.11)

in terms of functions 9φ, Tp, Td , Tc , and Tq defined previously. Each case in this definition pertains
to a particular type of decomposition distinguishable from the others by its dimensions and number
of subtrees.

As noted at the beginning of Section C.2, a function like Tg t : N˚ Ñ R
˚ representing every

possible combination of critical paths pertaining to just one individual decomposition t might be too
detailed for the final analysis. Although a description in this form has been necessary as a stepping
stone, there are countless ways to reduce it subsequently to a point estimate. For example, a metric
rT : S Ñ R useful for comparing the worst case critical paths between two decompositions is easy to
define in terms of Tg as follows

rT “ λt. max Rp5 pTg tq› ῑpψ∆g q tq

assuming no path is any more important than another. A simple variation T : S Ñ R facilitates
comparison of average critical paths assuming all combinations of inputs are equally probable.

T “ λt.
ˆ

λm.

ř

m
|m|

˙

5 pTg tq› ῑpψ∆g q t (C.12)

602 APPENDIX C. DECISION WAIT METRICS

Multidimensional anxiety theory

1. Trace the paths taken by all signals through the bilateral and
planar decision wait cells (Figure 10.4 and Figure 10.7) during
the absorption and emission phases using highlighter pens or
similar technology. Where do the numbers nine, seven, and
two mentioned on page 594 come from?

2. What small changes to the definitions of the critical path metrics
would make them more like a measure of power consumption?

3. Define a metric T : S Ñ R in terms of Tg to minimize the standard deviation of the
critical path. Would it ever be useful for anything?

4. Define a metric in terms of Mg and Tg suitable for optimizing the average critical
path subject to a fixed maximum cost K P R. (hint: Treat infinity as a number.)

5. Generalize T from Equation C.12 to non-uniform distributions and adjust the previ-
ous two solutions similarly.

6. Confirm or refute the claim in the first paragraph on page 587 that crossbar decision
waits always have a lower component count than dendriform decision waits of
similar dimensions.

7. Solve item 5, page 313 and incorporate the results into the component count and
critical paths metrics Mg and Tg .

8. Extend these results to sparse decision waits as defined in Chapter 11.

9. Rework everything with arbitrary fixed costs and critical path lengths depending on
the type of primitive component as in Figure C.1.

Glance into the world just as though
time were gone, and everything
crooked will become straight to you.

Friedrich Nietzsche

A
P

P
E

N
D

I
X D

LATENCY ARITHMETIC

There is an important distinction to be made between critical paths as considered in Appendix C
and the more practical metric of latency. A critical path is defined for our purposes as the number of
components, or at best a weighted sum of the number of components, traversed by a signal from an
input to an output terminal, whereas the latency is the elapsed time between a signal being received
on the input terminal and a signal appearing on the output. Critical paths are easy to work out by
doing arithmetic. Latencies are difficult because they depend on wire propagation delays, which
depend on environmental conditions, technological process variations, placement, and routing.
Latencies are the real performance data, and critical path lengths are just a substitute.

In addition to those difficulties, there are philosophical or at least methodological problems with
the concept of latency. For example, signals transmitted simultaneously to multiple terminals on a
decision wait result in only a single output signal, so should all of the terminals be judged to have
identical latencies? If not, should we envision a laboratory test of latency whereby every terminal
other than the one being tested has received its signal in the distant past? Would such a test be
relevant to actual operating conditions or be of any help in deriving more general results?

Because it is unsatisfying to retreat from these questions completely, this appendix delves briefly1

into a speculative concept of critical path length calculations based on an attempt to model the
technological substrate and routing algorithm characteristics statistically in aggregate.

D.1 Latencies as a vector space

Latencies can be modeled by a pair of non-negative real numbers pt, wq P R ˆR. The right side w
models the portion of the latency attributable to the distance traversed by the signals along the
internal or external wires en route between the terminals, and the left side models the portion of
the latency due to whatever else takes any time in addition to that. In principle, these parameters
could be empirically determined for a pair of terminals as follows.

1especially if it turns out to be misguided

603

604 APPENDIX D. LATENCY ARITHMETIC

1. Apply a test signal to the input terminal.

2. Measure the elapsed time d taken for a signal to appear on the output terminal.

3. Measure the spatial separation x between the relevant terminals.

4. Measure the time w needed by a signal to propagate through a wire of length x .

5. Designate a latency of pd ´ w, wq for the terminal pair.

Latencies form a vector space with scalar multiplication defined in the obvious way for a scalar
k P R,

kpt, wq “ pt, wqk “ pkt, kwq

and with the magnitude of a latency pt, wq denoted |pt, wq| and defined as t ` w. Addition of
latencies is given by

pta, waq⊕ ptb, wbq “ pta ` tb, wa ` wbq.

and represents the combined latency of two circuits with latencies pta, waq and ptb, wbq respectively
connected in series.

D.2 Comparison of latency vectors

This style of maintaining latencies as two-dimensional vectors could be relevant to situations when
two signals propagate separately from a FORK and converge subsequently on a JOIN, thereby obliging
us to estimate the effective latency of the combination. If wire delays were neglected, the maximum
of the two latencies would be an adequate metric as noted in Appendix C, but in general other
considerations may apply. Based on some physical intuition and a few modest assumptions sketched
below, the effective latency of two synchronized parallel paths seems likely to exceed what their
magnitudes alone would suggest.

D.2.1 Manhattan distances

For circuits laid out on a planar surface, routing algorithms tend to use a rectangular coordinate
system and restrict the connecting wires to two orthogonal directions. A connection between points
pi, jq and ph, kq can follow the L-shaped path pi, jq – pi, kq – ph, kq, or the opposite L-shaped path via
ph, jq, or an intermediate path with multiple L-shaped turns, for a total length of |i ´ h| ` | j ´ k| in
all cases, but can never take a direct diagonal line. This quantity represents the so called Manhattan
distance between the two points, and is a more appropriate metric than the ordinary Euclidean
distance (i.e. the distance “as the crow flies”) because it indicates the actual distance a signal has to
travel to get from one point to the other by way of an optimally routed wire.

Under the Manhattan distance metric, the locus of points on a plane equidistant from an origin
forms a rhombus as shown in Figure D.1 instead of a circle. If a path has a latency of pt, wq and it is
laid out without any extra wires introduced between the components, the end point could be as far
as w{c directly above or below the starting point, or w{c to the left or to the right of it, or anywhere
within the convex hull of these extremities, where c is the rate of signal propagation through a
wire, but we assume a normalized value of c “ 1 hereafter. In practice, there may be extra wire
lengths needed between the components along a path if they can not all be placed in direct physical
proximity, so we should regard the latency estimate resulting from this analysis as a lower bound.

D.2. COMPARISON OF LATENCY VECTORS 605

w
?

2

w

Figure D.1: The locus of points at a Manhattan distance w from the origin forms a rhombus with
sides of length w

?
2.

D.2.2 Expected separations

Lacking any more specific information about the routing algorithm, suppose the end point of a
path starting at the origin can lie anywhere within this rhombic region with equal probability (i.e.,
according to a uniform distribution), and because the rate of propagation c is normalized to unity,
let wire propagation delays serve as proxies for distances. Two paths with latencies pta, waq and
ptb, wbq respectively originating at the same FORK therefore terminate within concentric rhombi
with edge lengths of wa

?
2 and wb

?
2 respectively.

All placement and routing algorithms are constrained to refrain from putting two things in the
same place, so the paths will run in different directions generally and the end point locations will
be anti-correlated (i.e., more likely to be far from each other than near). A lower bound on their
expected separation is obtained therefore by assuming uncorrelated uniformly distributed endpoints
at Manhattan distances of no more than wa and wb from the origin. We can simplify the calculations
by rotating the coordinate system so that the x and y coordinates of each end point are uniformly
distributed between plus and minus wa{

?
2 or wb{

?
2 as the case may be. This construction implies

an expected Manhattan distance of Spwa, wbq between the end points as follows.2

Spwa, wbq “

ˆ

λpa, bq.
a2 ` 3b2

3
?

2 b

˙

`

mintwa, wbu,maxtwa, wbu
˘

(D.1)

D.2.3 Expected wire delays

This separation distance must still be negotiated by the signals after they reach the ends of their
respective paths before they can synchronize at a JOIN. The routing algorithm can do no better
on average than to connect the end points by a wire of length Spwa, wbq, so if the signals were
to emerge simultaneously from the end points, they would require an additional time of at least
Spwa, wbq{2 to converge. More generally, one signal reaches its end point

ˇ

ˇ|pta, waq| ´ |ptb, wbq|
ˇ

ˇ

earlier than the other (i.e., a time interval equal to the absolute difference in latency magnitudes)
and has that much of a head start to their common destination. If this interval exceeds Spwa, wbq,

2See [193] for an algorithmic approach to manipulating probability distributions.

606 APPENDIX D. LATENCY ARITHMETIC

then it is as if the signal on the shorter path traverses the whole separation between the end points
before the signal on the longer path emerges, and the entire wire propagation delay reduces to the
greater of wa or wb. Accordingly, we can estimate the wire propagation delay as

Dppta, waq, ptb, wbqq “ maxtwa, wbu ` max

Spwa, wbq ´
ˇ

ˇ|pta, waq| ´ |ptb, wbq|
ˇ

ˇ, 0
(

{2.

D.3 Parallel combination of latency vectors

Based on the results above, it is convenient to use this notation to represent the combined latency
of two concurrent paths with latencies of pta, waq and ptb, wbq.

pta, waq ˛ ptb, wbq “
`

maxtta, tbu, Dppta, waq, ptb, wbqq
˘

(D.2)

An expression of the form x ˛ y can be read informally as the effective latency of two synchronized
parallel paths with latencies x and y plus a conservative estimate of the additional latency due to
the wire delays. Hence, it satisfies

|x ˛ y| ě max

|x |, |y|
(

and strict equality holds whenever the wire delay components of x and y are both zero.

D.3. PARALLEL COMBINATION OF LATENCY VECTORS 607

Latent labors

1. Verify Equation D.1 using whichever of the following techniques is least suspicious.

a) a formal proof

b) a Monte Carlo simulation

c) a computer algebra system

2. Do these identities hold? Should they?

a) x ˛ y “ y ˛ x

b) px ˛ yq ˛ z “ x ˛ py ˛ zq

3. Can the Manhattan distance between two points change when the coordinate system
is rotated, and if so, how is it justifiable to rotate the coordinate system when
deriving Equation D.1?

4. All the cool kids are using secret proprietary routing algorithms that allow wires to
be routed diagonally. Derive the equivalent to Equation D.1 assuming a Euclidean
distance metric by breaking it down like this:

a) A constant valued probability density function corresponding to a uniform
distribution over a disk of radius R centered at the origin and parameterized
by polar coordinates has the form

λpr,θq.

"

1{pπR2q if 0 ď r ď R
0 otherwise.

Express the probability of a random draw being a distance r from the origin
such that a ď r ď b holds for constants 0 ď a ď b ď R. Are all annuli of width
b ´ a equally probable?

b) Infer an expression for a univariate probability density function fR whose value
at r is proportional to the probability mass of an annulus of infinitesimal width
dr and radius r centered at the origin when the disk has radius R. In other
words, find a function fR to make the answer to part a) coincide with

ż b

r“a
fRprq dr.

c) Given the expected angular separation of π{2 and the Pythagorean theorem,
find the expected Euclidean distance between two rectangular coordinates
pa, 0q and p0, bq, where a is distributed according to fwa

and b is distributed
according to fwb

derived above for arbitrary wa, wb ą 0, as shown in Figure D.2.
(hint: If the expected distance does not have an analytical solution, maybe the
expected square of the distance does. Try for upper and lower bounds.)

608 APPENDIX D. LATENCY ARITHMETIC

a

wa

b

wb

Spwa, wbq

Figure D.2: Two sample points pa, 0q and p0, bq are distributed along their respective axes according
to probability density functions fwa

and fwb
. What is the expected Euclidean (not Manhattan)

distance separating them?

It is far better to foresee even
without certainty than not to foresee
at all.

Henri Poincaré

A
P

P
E

N
D

I
X E

ARBITER METRICS

This appendix is meant as a primer for readers who are serious about optimizing their arbiters. As
explained in Chapter 12, any measure pQ tq r P R of an arbiter with a decomposition t P 9A and an
arity n can be averaged over all request vectors r P t0, 1un with respect to anticipated access statistics
v as pΘ̄n vq pQ, tq P R by plugging v, Q, and t into Equation 12.47, but finding the right function Q
to capture an intended property is an art. The interesting examples normally take the form of a
recurrence over t. Two variations on this theme, possibly useful in themselves or in combination
with others of the reader’s invention, concern contention and critical path length. Starting with
the easier one, these metrics are constructed respectively in Section E.1 and Section E.2. The basic
techniques exemplified here might then serve as templates for further customization.

E.1 Contention

Contention is what happens when multiple requests arrive concurrently at the same arbiter, which
as always can grant only one. Contended requests take longer to grant than uncontended requests
due to the time needed to resolve them, with the latency attaining a (probabilistic) maximum when
requests are perfectly synchronized and decaying asymptotically to the uncontended latency as the
time between requests increases.1 However, a physically realistic model of this phenomenon would
be overkill for purposes of comparison if a more easily computed metric were found to imply the
same design choices.

A way of quantifying contention starts by envisioning each request as being subject individually
to some variable amount of it. We should expect a request propagating through an arbiter to
encounter no contention if there are no other requests concurrent with it, moderate contention in
light traffic, and significant contention in heavy traffic. A proxy for contention that fits with these
expectations is the probability of a competing request to the same arbiter as the request in question,
where a competing request with high probability raises the score more than one with low probability.

1or not, depending on who is right [191, 195]

609

610 APPENDIX E. ARBITER METRICS

r0 r1

r0

r1

r0 ` r1

max tr0, r1u

Figure E.1: Contention along the highlighted path is estimated as the sum of the competing request
probabilities encountered in series (above) or their maximum in parallel (below).

That is, if an arbiter has two ports, then the measure of contention assigned to the path through
either one of the ports is the probability of a request on the other port.

What should be the effect of multiple competitions with other requests in multiple stages?
A measure of contention commensurate with its effect on latency should follow the same rules
illustrated in Figure C.1 for critical paths, specifically pertaining to multiple sites of contention as
shown in Figure E.1. That is, parallel contended requests are only as time consuming as the more
severe of the two, whereas contended requests in series are resolved sequentially and therefore
combine additively.

Both of these rules are needed to evaluate the list of contention estimates manifested externally
by the more complex arrangement of arbiters in a mesh described by parameters

pb, mq P N
˚˚ ˆPpNq˚˚

as proposed on page 370. Given c P R
˚| 5 m| with ckl P R measuring the contention on the k-th port

of the arbiter corresponding to p 5 mql , we could split c into

c1 “
`

λi. c ˝ ι
| 5pm∣iq|

|mi |

˘›
ι|m| P R

˚˚˚ (E.1)

by stages so that pph1 c1q pm, sqq i repurposes the function h1 defined by Equation 12.30 to express
the contention faced in the i-th stage by the request externally numbered s. Collecting the list

ι
ř

pbs∣zq

bsz
P Rpι|m|q

˚

of stage numbers i within the zone numbered z of the signal numbered s allows for an expression

pph1 c1q pm, sqq› ι
ř

pbs∣zq

bsz
P R

|bsz |

listing the contention estimates through all parallel paths across z for s, and hence the estimate

max R
```

h1 c1
˘

pm, sq
˘›
ι
ř

pbs∣zq

bsz

˘

P R



E.1. CONTENTION 611

of contention contributing to the total

|bs|´1
ÿ

z“0

max R
```

h1 c1
˘

pm, sq
˘›
ι
ř

pbs∣zq

bsz

˘

encountered by the signal s sequentially over all zones. Then the list X0pc, pb, mqq P R
|b| of externally

visible contentions indexed by signal numbers s is expressible in terms of a function

X0 : R˚˚ ˆ pN˚˚ ˆPpNq˚˚q Ñ R
˚

defined as follows.

X0 “ λpc, pb, mqq.

ˆ

λs.
|bs|´1
ÿ

z“0

max R
```

h1

`

λi. c ˝ ι
| 5pm∣iq|

|mi |

˘›
ι|m|

˘

pm, sq
˘›
ι
ř

pbs∣zq

bsz

˘

˙›

ι|b|

Compared to the mesh arbiter, evaluating the contention of other forms is easy. A dendriform
arbiter with arity n and decomposition d P ∇:d n according to Equation 12.19 has the combined
contention metric

ř›
x5 pc ∣ |d0|q, c|d0|y

ᵀ P R
n

implied by the straightforward series combination of the leaves with the root and c P pR˚q
|d0|`1 as

their contention metrics. The token ring is also easy, with its combined contention

5 pλi. ci « 1q› ι|c| P R
n

obtained from that of its constituent arbiters c P pR˚q|d0| for a decomposition d P∇o n according to
Equation 12.23 by taking all but the first term of each term of c. (The first terms correspond to the
internal 2Φ handshaking ports between cells shown in Figure 12.9 that are not visible externally.)
For a wire or primitive arbiter there would be no relevant value of c, but the contention metric is
known directly from the request probability vector r P r0,1s˚ as x0y or xr1, r0y respectively (that
is, with no contention through a wire, and the opposite request probabilities through a primitive
arbiter). An expression X1pc, d, rq P R

˚ for the resulting contention from any compatible values of
c, d, and r could be given in terms of a function

X1 : R˚ ˆ pS˚ Y pN˚˚ ˆPpNq˚˚qq ˆ r0,1s˚ Ñ R
˚

defined as follows.

X1 “ λpc, d, rq.

"

x
ř›

x5 pc ∣ |d0|q, c|d0|y
ᵀ, 5 pλi. ci « 1q› ι|c|y|d|´1 if d P S

˚˚

xX0pc, dq, xx0y, xr1, r0yy|r|´1yδc
ε

otherwise

The contention metric for a decomposition t “ ppp, d, kq, vq P 9A and a corresponding request
probability vector r P r0, 1s|p| is obtained as X1pc, d, r ˝ pq with c P R

˚|v| being the result recursively
obtained for the subtrees v with request probability vectors

R̂pd, k, 9H›
1 vq pr ˝ pq P r0,1s˚|v|



612 APPENDIX E. ARBITER METRICS

in terms of the incremental transfer function 9H1 defined on page 397 and the request propagation
function R̂ explained on page 399. To express the recurrence precisely, let X2 : 9A Ñ pr0, 1s˚ Ñ R

˚q

defined as

X2ptq “ λr. pλppp, d, kq, vq. X1ppX ›
2 vq Ÿ pR̂pd, k, 9H›

1 vq pr ˝ pqq, d, r ˝ pqq t

denote the function that takes a decomposition t P 9A to a function X2 t : r0,1s˚ Ñ R
˚ taking a

request probability vector r P r0, 1s˚ to a list pX2 tq r P R
˚ of contention metrics through each port

of the arbiter represented by t given requests r (cf. Equation 12.39 and Equation 12.40).
A metric of the type Qc : 9A Ñ pt0,1u˚ Ñ Rq reducing the measure of contention to a point

estimate as required by Equation 12.47 is derivable from X2 by summing over the ports.

Qc “ λt. λr.
ř

pX2 tq r

E.2 Critical path length

A complementary time complexity metric to that of contention discussed in Section E.1 would
estimate the latency of a request in the uncontended case by treating all primitive arbiters along a
path as equal in cost. Such a metric would be made more descriptive by taking other primitives
into account as well, with costs assessed either uniformly or based on the type primitive as a matter
of discretion. Settling for unit costs on all components as in Section C.2 makes this problem a
generalization of item 6c on page 409, although when not restricted to balanced crossbar arbiters it
lacks a similarly appealing closed form and is solvable only up to a recurrence.

More complications follow from the dependence of the critical path in a token ring arbiter on
the location of the token. A request to a port on a cell that does not hold the token entails a chain
of events leading to the token-holding cell and back again before it can be granted. Because the
token location is not known with certainty, the best we can hope to obtain is an average or expected
critical path length rather than an exact figure, except for arbiters consisting exclusively of meshes
and trees.

An exception to this exception pertains to the release acknowledgment phase in a token ring.
Following the initial grant, there is no longer any uncertainty about the token location. The critical
path during the release acknowledgment involves only the cell that issues the grant, and is fully
determined by the components in it. Although helpfully informative, this effect nevertheless implies
a requirement to keep track of a separate critical path for each phase.

E.2.1 Tree

Postponing these considerations for the moment, we can start with the easier case of a dendriform
arbiter having |u| ´ 1 leaves such that the i-th leaf contains an arbiter with a critical path ui j P R

through its j-th port for j ranging from 0 to |ui |´1, and u|u|´1 similarly lists the critical paths through
the root. The i-th leaf also contains a columnar decision wait of |ui | rows with the decomposition
di P S and critical paths specified by a function Tg di : N2 Ñ R

2 according to Equation C.11 as
derived in Section C.2, or specifically the critical paths

l “ pTg diq x j, 0y P R
2 (E.2)

for the j-th row output. Furthermore, the output MERGE network visible in Figure 12.4 has |ui |

inputs, and hence a critical path of
τ
`

|ui |, j
˘

P R



E.2. CRITICAL PATH LENGTH 613

for the j-th input by Equation C.4, so there is a combined critical path of

max
 

l0,τ
`

|ui |, j
˘

` pu|d|qi ` l1
(

covering the region from the FORK to the synchronization point implicit in the decision wait (ex-
cluding the FORK but including the decision wait) indicated in Figure 12.6. Note that l0 is the path
from the row input on the decision wait to the output, and l1 is the path from the column input
by Equation E.2 and Equation C.11 as illustrated in Figure C.2. The rest of the path highlighted
in Figure 12.6 covers seven primitives including the FORK in addition to the path ui j through the
arbiter, for a total of

ui j ` 7 ` max
 

l0,τ
`

|ui |, j
˘

` pu|d|qi ` l1
(

P R

through the j-th path of the i-th leaf,
`

λ j.
`

λl. ui j ` 7 ` max
 

l0,τ
`

|ui |, j
˘

` pu|d|qi ` l1
(˘

pTg diq x j, 0y
˘›
ι|ui |

P R
|ui |

for all paths through the i-th leaf, and pQ0 dq u P R
n for all paths through all leaves, with

Q0 : S˚ Ñ pR˚˚ Ñ R
˚q

defined by

Q0 “ λd. λu. 5
`

λi.
`

λ j.
`

λl. ui j ` 7 ` max
 

l0,τ
`

|ui |, j
˘

` pu|d|qi ` l1
(˘

pTg diq x j, 0y
˘›
ι|ui |

˘›
ι|d|.

As noted above, the critical path length could differ between the initial request and the release
acknowlegment phases. Although retracing these steps with respect to Figure 12.7 to find the latter
phase critical path suggests an identical result, it may differ nevertheless to the extent ui j varies
between phases, for example due to the arbiter within the tree node being a token ring rather than
a primitive. To allow for this possibility would require separate lists u P R

˚˚ for each phase, or
more succinctly a single list v P R

˚2˚ with vi0 P R
˚ referring to the request phase and vi1 P R

˚ to
the release phase, so that pQ0 dq› xvᵀ0 , vᵀ1 y P R

˚2 expresses the result for each phase separately.

E.2.2 Mesh

Continuing under the assumption of a list u P R
˚˚ specifying the critical path lengths ul j P R through

the j-th port of the k-th arbiter, let a mesh be described by parameters pb, mq P N
˚˚ ˆPpNq˚˚ as

proposed on page 370. We can group the lists of critical paths into stages by writing

u1 “ u ˝
``

λi. ι| 5 pm∣iq|

|mi |

˘›
ι|m|

(cf. Equation E.1) so that the critical path of the signal numbered s through the arbiter it traverses
in i-th stage is

`

ph1 u1q pm, sq
˘

i P R

by Equation 12.30, the list of critical paths through the arbiters in all |m| stages for the signal
numbered s is

`

ph1 u1q pm, sq
˘›
ι|m| P R

|m|

and the list of all n such lists indexed by signal numbers is

q “
`

λs.
`

ph1 u1q pm, sq
˘›
ι|m|

˘›
ι
|85 m0|

P pR|m|qn



614 APPENDIX E. ARBITER METRICS

where n “ | 85 m0| is the number of ports. (See Equation 11.2 for a reminder about this notation.)
In the base case of |m| “ 1 indicating a single stage, the mesh is restricted to either a wire or a
primitive arbiter depending on whether |m00| is 1 or 2 respectively, with corresponding critical paths
q “ xx0yy or q “ xx1y, x1yy. In either case we may write q “ pQ1 mq u for

Q1 : PpNq˚˚ Ñ pR˚˚ Ñ R
˚˚q

defined by

Q1 “ λm. λu.
@`

λs.
`

h1

`

u ˝
``

λi. ι| 5 pm∣iq|

|mi |

˘›
ι|m|

˘˘˘

pm, sq
˘›
ι|m|

˘›
ι
|85 m0|

, xδ
|m00|

2 y
|m00|D

δ
|m|

1
. (E.3)

The mesh arbiter also incurs additional costs due to the paths through the broadcast network.
Specifically the z-th zone for the s-th signal, which covers stages l “

ř

pbs ∣ zq through l ` bsz ´ 1,
includes a FORK network with bs outputs and a JOIN network with bs inputs. The total critical path
for the s-th signal through i-th stage including the broadcast network is therefore

qsi ` 2τpbsz , i ´ lq

by Equation C.4 with q “ pQ1 mq u by Equation E.3. Because the s-th signal traverses all bsz paths
through the z-th zone concurrently, the aggregate cost is

max R
`

pλl. pλi. qsi ` 2τpbsz , i ´ lqq› ι lbsz
q
ř

pbs ∣ zq
˘

for that zone, and the cost of traversing all zones in sequence is

|bs|´1
ÿ

z“0

max R
`

pλl. pλi. qsi ` 2τpbsz , i ´ lqq› ι lbsz
q
ř

pbs ∣ zq
˘

.

A list of all n “ |b| critical paths indexed by signal numbers follows as pQ2 bq q for

Q2 : N˚˚ Ñ pR˚˚ Ñ R
˚˚q

defined by

Q2 “ λb. λq.

ˆ

λs.
|bs|´1
ÿ

z“0

max R
`

pλl. pλi. qsi ` 2τpbsz , i ´ lqq› ι lbsz
q
ř

pbs ∣ zq
˘

˙›

ι|b|

or more explicitly pQ2 bq pQ1 mq u.
However, for a list v P R

˚2˚ with vk0 P R
˚ describing the request phase critical paths of the k-th

arbiter in the mesh, and vk1 describing the release phase critical paths, we would write

pQ2 bq› pQ1 mq› xxvᵀ0 , vᵀ1 y, xε,εyyδv
ε

P R
˚2

for the corresponding list of two lists of critical paths through the mesh arbiter each indexed by
signal numbers. Because vᵀ0 and vᵀ1 are undefined if v is empty, the empty lists are noted explicitly
as the arguments to Q1 m in this case, which coincides with the base case |m| “ 1 for any valid
mesh arbiter decomposition ppp, pb, mqq, vq P Rp∇aq by Equation 12.24.



E.2. CRITICAL PATH LENGTH 615

E.2.3 Token ring

For the token ring arbiter, we assume a list w “ xvᵀ0 , vᵀ1 y P R
˚˚2 specifying the critical path w0i j P R

during the request phase through the j-th of |w0i | ports on the arbiter in the i-th of |w0| cells both
numbered from zero as usual, and an analogous interpretation for w1i j P R with respect to the
release phase. We also take the list of functions

b P pt0,1u2 Ñ Rq|w0|

to specify the vertical critical paths through the 2-by-2 decision waits in the cells, with bi pertaining
to the i-th cell and bixo0, o1y P R being the critical path from the input in column o1 to the output
in row o0 and column o1 (where column 0 is on the left as usual in Figure 12.9).

The analysis proceeds at first under the assumption of the highest numbered cell holding the
token, and extends subsequently to unrestricted token distributions. Working somewhat backwards
and from the inside out, we can identify a segment

bix1,1y ` 2

in Figure 12.9 as part of the critical path from any request input on the cell numbered i “ |w0| ´ 1
to the corresponding grant output. This segment extends from the right column input on the 2-by-2
decision wait to the lower right output, then through a MERGE, a FORK and finally to the column
input on the columnar decision wait. The part through bix1,1y is traversed only in the last cell
because only that cell holds the token and therefore has the lower row of its 2-by-2 decision wait
enabled.

The alternative path from the right column input on the 2-by-2 decision wait in all other cells
begins with bix0, 1y, then goes through the SHUNT, the dotted output on TOGGLE below it, and the
MERGE below that, out to the higher numbered cells toward the right, then back from the higher
numbered cells through the SHUNT and the TOGGLE again, this time through the undotted output en
route through the MERGE above the columnar decision wait and the FORK between them for a total
of seven primitive component delays within the i-th cell. The path through the higher numbered
cells is as follows.

• For each cell numbered l between the i-th cell and the last one, none of which holds the token,
a signal arriving from the left traverses a MERGE, an arbiter, a TOGGLE, a 2-by-2 decision wait,
and another MERGE to exit on the right. It then re-enters at the SHUNT, crosses another MERGE,
then a FORK, and then repeats initial MERGE, arbiter, and TOGGLE sequence before exiting on
the left. This path covers eight primitive component delays in addition to blx0, 0y through the
decision wait and two trips through port 0 on the arbiter.

• For the last cell l “ |w0| ´ 1 only, the signal arriving from the left passes through the MERGE,
arbiter, and TOGGLE, then through the 2-by-2 decision wait via blx1, 0y, and then the MERGE,
FORK, MERGE, arbiter, and TOGGLE sequence out to the left again, for a total of two trips
through the arbiter, one through the decision wait, and six primitive component delays.

The two trips through the l-th arbiter incur a cost of w0l0 ` w1l0, the first term being its request
phase critical path and the second its release phase on port 0. The total path length from the column
input on the 2-by-2 decision wait to the column input on the columnar decision wait, including the
seven primitives within the i-th cell and the rest in subsequent cells, therefore simplifies to

bix0,1y ` 5 `

|w0|´1
ÿ

l“i`1

w0l0 ` bl

@

δl`1
|w0|

, 0
D

` w1l0 ` 8



616 APPENDIX E. ARBITER METRICS

for 0 ď i ă |w0| ´ 1, or to

@

bix0,1y ` 5 `

|w0|´1
ÿ

l“i`1

w0l0 ` bl

@

δl`1
|w0|

, 0
D

` w1l0 ` 8, bix1,1y ` 2
D

δ
i`1
|w0|

for 0 ď i ă |w0| in general, which might be expressed more succinctly as Q3pb, wqi in terms of a
function

Q3 : ppt0,1u2 Ñ Rq˚ ˆR
˚˚2q Ñ R

˚

defined by

Q3 “ λpb, wq.

ˆ

λi.
@

bix0,1y ` 5 `

|w0|´1
ÿ

l“i`1

w0l0 ` bl

@

δl`1
|w0|

, 0
D

` w1l0 ` 8, bix1,1y ` 2
D

δ
i`1
|w0|

˙›

ι|w0|.

The segment qi “ Q3pb, wqi is not the whole critical path through the i-th cell during the request
phase. Along the rest, an external request first passes through the arbiter, a TOGGLE, and a FORK.
One path beyond the FORK goes through a row input on the columnar decision wait, while the
other passes through the multi-way MERGE, the segment qi , and the column input on the columnar
decision wait. Following the synchronization point between these two paths, there is one more
MERGE to be traversed.

Before trying to express this idea formally, note that port 0 on each arbiter is not visible externally,
so the j-th externally visible port on the i-th cell is associated with port j `1 on the arbiter. Similarly,
the multi-way MERGE has |w0i |´1 inputs rather than |w0i | for the arbiter, and the columnar decision
wait has |w0i | ´ 1 rows. To avoid any confusion, let ui “ w0i « 1 P R

|w0i |´1 denote the list of exposed
critical paths through the i-th arbiter during the request phase, with

ui j “ pw0iq j`1 P R

referring internally to port j ` 1. We also take the list

l P R
2˚|u|

to describe the critical paths through the columnar decision waits such that li j0 P R is the path from
the j-th row input on the columnar decision wait in the i-th cell to the j-th output on it, and li j1 is
from the column input. In these terms, the informal account above becomes

ui j ` 3 ` max
 

τ
`

|ui |, j
˘

` qi ` li j1, li j0

(

P R

for the j-th path through the i-th cell,
`

λ j. ui j ` 3 ` max
 

τ
`

|ui |, j
˘

` qi ` li j1, li j0

(˘›
ι|ui |

P R
|u|

for the list of all |ui | paths through the i-th cell, and ppQ4 Q3pb, wqq lq u P R
˚|u| for the list of lists of

paths through all |u| cells, with

Q4 : R˚ Ñ pR2˚˚ Ñ pR˚˚ Ñ R
˚˚qq

defined by

Q4 “ λq. λl. λu.
`

λi.
`

λ j. ui j ` 3 ` max
 

τ
`

|ui |, j
˘

` qi ` li j1, li j0

(˘›
ι|ui |

˘›
ι|u|. (E.4)



E.2. CRITICAL PATH LENGTH 617

Accounting for the release phase critical paths is somewhat simpler because they do not pass
through any decision waits or neighboring cells. After the i-th cell grants a request, the corresponding
release signal to that cell takes a path that passes only through the arbiter, a TOGGLE, and a MERGE,
for a result equal to the path through the arbiter plus two, with the arbiter critical paths given in this
case by w1i P R

˚ according to the current convention. It is still necessary to note that the exposed
ports exclude the first on each arbiter, but the expression

5 pλa. a ` 2q›› pλc. c « 1q› w1 P R
˚

suffices for the list of all release phase critical paths, and it is not much more of an effort to express
the critical paths for both phases as

5› xpQ4 Q3pb, wqq l, pλa. a ` 2q››y Ÿ pλc. c « 1q›› w P R
˚2

or more succinctly as Q5xQ3,Q4y pl, b, wq with Q5 defined by

Q5 “ λq. λpl, b, wq. 5›xpq1 q0pb, wqq l, pλa. a ` 2q››y Ÿ pλc. c « 1q›› w. (E.5)

To express this result in terms of the decision wait decompositions d P S
˚2 describing the

token ring arbiter consistently with Equation 12.25, recall that d0 P S
˚ lists the columnar decision

wait decompositions and d1 P S
|d0| lists the 2-by-2 decision wait decompositions for all cells. By

Equation C.11, the function Tg d0i : N2 Ñ R
2 specifies the critical paths for the columnar decision

wait in the i-th cell, so the expression pTg d0iq x j, 0y P R
2 coincides with the interpretation of li j in

Equation E.4, or more formally

l “ pλi. pλ j. pTg d0iq x j, 0yq› ι|w0i |
q› ι|d0|.

Similarly the function Tg d1i : t0,1u2 Ñ R
2 specifies the critical paths on the 2-by-2 decision wait

in the i-th cell, with pTg d1iq o P R
2 being the paths to a given output at coordinates o P t0,1u2,

and specifically the path ppTg d1iq oq1 P R being from the relevant column input to that output. A
function

λo. ppTg d1iq oq1 : t0,1u2 Ñ R

would map a given list o P t0, 1u2 to the columnar critical path through the 2-by-2 decision wait in
the i-th cell, and the list of functions

b “ pλi. λo. ppTg d1iq oq1q› ι|d1|

would match the intended interpretation of the formal parameter b used in Equation E.5. Another
way of writing the list of two lists of critical paths is then pQ6 Q5xQ3,Q4yq pd, wq with Q6 defined by

Q6 “ λq. λpd, wq. qppλi. pλ j. pTg d0iq x j, 0yq› ι|w0i |
q› ι|d0|, pλi. λo. ppTg d1iq oq1q› ι|d1|, wq.

The last step in the derivation of token ring arbiter critical paths is to provide for general token
distributions instead of assuming the token is held only in the highest numbered cell. If the token
were in the i-th of |k| “ |d0| “ |w0| cells instead (numbered from zero), and s P N

|k| were a
permutation that rotates a list of length |k| by i ` 1 positions to the left,

s “ ιi`1
|k|´i´1 q ιi`1



618 APPENDIX E. ARBITER METRICS

then the critical path lengths would be obtained by rolling the ring until the i-th cell is in the last
position, proceeding as above, and then rolling it back again

pqppdᵀ ˝ sqᵀ, pwᵀ ˝ sqᵀqᵀ ˝ s´1qᵀ P R
˚2

given the same interpretations of d and w as above and q “ Q6 Q5xQ3,Q4y (cf. Equation 12.37). If
the token were only suspected of being in the i-th cell with probability ki , then the expected critical
path lengths would be the probability weigted sum

pλe.
ř› eᵀq› ppλi. ki ¨ pqppdᵀ ˝ sqᵀ, pwᵀ ˝ sqᵀqᵀ ˝ s´1qᵀq› ι|k|q

ᵀ P R
˚2

which simplifies to

pλe.
ř› eᵀq› pλi. ki ¨ qppdᵀ ˝ sqᵀ, pwᵀ ˝ sqᵀqᵀ ˝ s´1q› ι|k|

and is expressible more succinctly as pQ7 qq pd, k, wq with Q7 defined by

Q7 “ λq. λpd, k, wq. pλe.
ř› eᵀq›

`

λi. ki ¨ pλs. qppdᵀ ˝ sqᵀ, pwᵀ ˝ sqᵀqᵀ ˝ s´1q pιi`1
|k|´i´1 q ιi`1q

˘›
ι|k|.

E.2.4 General

A function Q8 : 9A Ñ R
˚2 taking any annotated decomposition t “ ppp, d, kq, vq P 9A describing

an arbiter to a list Q8 t P R
˚2 of lists of critical paths for each port during each of two phases

follows mostly as a recurrence in terms of the functions Q0 through Q7 defined above subject to an
additional provision for the permutation p.

Q8 “ Λ λppp, d, kq, vq. pλl. plᵀ ˝ pqᵀq

$

’

&

’

%

pQ0 d0q› xvᵀ0 , vᵀ1 y if d P S
˚1

pQ7 Q6 Q5xQ3,Q4yq pd, k, xvᵀ0 , vᵀ1 yq if d P S
˚2

`

λpb, mq. pQ2 bq› pQ1 mq› xxvᵀ0 , vᵀ1 y,ε 2yδv
ε

˘

d otherwise

It might then be worthwhile to simplify this result to a single list
ř›

pQ8 tqᵀ P R
˚ by adding the paths

along both phases for each port, which could be interpreted as the path through a complete cycle
from an initial request to the final release acknowledgment. For a known request vector r P t0, 1u˚,
the projection

h “ pxr,
ř›

pQ8 tqᵀyᵀ � x1y q R1q
ᵀ
1 P R

˚

lists only the critical paths for the ports i on which requests are actually made (indicated by ri “ 1),
and implies an “average” critical path length of

1
|h|

ř

h

provided there is at least one request. A more meaningful average informed by known load and
locality conditions would be obtained by plugging the related metric

Qpa “ λt. λr.
ˆ

λh.

ř

h

δ
|h|

0 ` |h|

˙

pxr,
ř›

pQ8 tqᵀyᵀ � x1y q R1q
ᵀ
1

into Equation 12.47. Alternatively, sometimes the worst case critical path is more important than
the average, which would be more like

Qpw “ λt. λr. max R
`

pxr,
ř›

pQ8 tqᵀyᵀ � x1y q R1q
ᵀ
1

˘

(E.6)

although plugging Qpw into Equation 12.47 would still yield only the worst case on average.



E.2. CRITICAL PATH LENGTH 619

Arbitrary exigencies

1. A crude estimate of latency is the square root of the
number of components in a circuit based on the idea of
a signal having to propagate a proportionate distance
in a planar layout. What recurrence analogous to Equa-
tion C.1 expresses the total number of components in
an arbiter with a given decomposition? What shorter
answer is there in terms of THL (Equation 8.23)?

2. Define a measure of overall latency as a weighted sum of the contention and critical
path length. How might this definition be modified to account for wire delays as
well? (hint: Appendix D) How important would that be? (hint: [111, 274])

3. Generalize the contention metric to allow a non-linear dependence on competing
request probabilities in terms of tunable parameters that would be possible in
principle to calibrate experimentally.

4. Is there anything fishy about ignoring the PUSH and the horizontal critical paths
through the 2-by-2 decision waits in the token ring arbiter, and if so, what should
be done about it?

5. What alternative to Equation 12.47 in combination with Equation E.6 could be used
to estimate the worst of the worst case critical path lengths? What would it take to
derive a distribution of critical path lengths and contention effects useful enough
for a credible risk assessment?

6. Solve item 8 on page 409 and generalize the definitions of the contention and critical
path metrics accordingly.





I never deny. I never contradict.
Sometimes I forget.

Benjamin Disraeli

A
P

P
E

N
D

I
X F

DUAL RAIL BUFFER CELL THEORY OF OPERATION

Everything about the design of the buffer cell derived in Section 14.1.3 flows from the idea of
maintaining an invariant whereby the next output to come from the decision wait should originate
from the left column whenever the cell stores a zero value, and from the right column otherwise.
The PUSH to the left column input therefore starts the cell in a clear state. From there, the circuit is
best understood by tracing each possible interaction with highlighter pens if necessary, starting with
those that do not cause any change of state.

• If a read request arrives on r when the buffer holds zero (Figure F.5), it goes straight through
a MERGE and a SHUNT to the zero output data line o.

• If a zero data input i arrives when the cell already stores a zero (Figure F.1), the upper left
decision wait output sends a signal through the top MERGE and its output FORK, which signals
the external acknowledgment a through one MERGE and maintains the zero state through the
other MERGE and the PUSH.

• If a data input of one arrives via i when the buffer stores a value of one (Figure F.3), the lower
right output from the decision wait maintains the state by sending a signal through the MERGE

below it and its output FORK back to the right column input, and emits an acknowledgment
on a via the other output from the FORK and the MERGE in its path.

Otherwise we have three possible interactions that cause a change of state.

• If the buffer stores a value of zero and value of one is written to it via i (Figure F.2), the lower
left output from the decision wait sends a signal to the control input on the SHUNT below
it, which passes through the dotted output from the TOGGLE below that and then back up
through the MERGE and the FORK below the right column. The update of the state to one and
the acknowledgment on a follow similarly from the FORK outputs to the case above.

621



622 APPENDIX F. DUAL RAIL BUFFER CELL THEORY OF OPERATION

• If a read request arrives on r when the buffer stores a value of one (Figure F.6), the following
chain of events happens.

– The signal from r goes through the MERGE and is shunted downward by the SHUNT to
the TOGGLE directly below it, where it emerges this time through the undotted output.

– The signal from the first TOGGLE goes through the data line of the next SHUNT in its path,
then upward to the control line on the SHUNT above that one, and then down through
the dotted output of the TOGGLE below it.

– The signal from this TOGGLE goes through the MERGE connected to the top row of the
decision wait, which generates a signal from the upper right output because the buffer
stores a value of one.

– The signal from the upper right output of the decision wait goes through the SHUNT

again to be shunted downward through the TOGGLE below it, and to emerge this time
from its undotted output.

– The FORK following along this path sends an external output data signal of one via o,
and also resets the state to zero by sending a signal through the MERGE and the PUSH

connected to the left column input of the decision wait.

• If a signal to write zero arrives on i when the buffer stores a value of one (Figure F.4), it has
to clear the state and also reset the SHUNT near the r input, which entails the following chain
of events.

– The upper right output from the decision wait sends a signal through the data line on
the SHUNT next to it, which proceeds through the control input on the SHUNT below it,
and then through the dotted output of the TOGGLE below that.

– The signal sent from this TOGGLE goes through the MERGE whose other input is r to the
adjacent SHUNT, to be shunted downward through the undotted output of the TOGGLE

below it. At this point the SHUNT and its adjacent TOGGLE have both been reset.

– The output signal from this latter TOGGLE goes back through the previous SHUNT to be
shunted downward and emerge from the undotted output of the TOGGLE below it.

– The signal from this TOGGLE propagates all the way up to the top MERGE, and then down
through the FORK below it.

– This FORK sends one signal through a MERGE to the acknowledgment a, and another
through the other adjacent MERGE through the PUSH to the left column input of the
decision wait, thereby changing the state back to zero.



623

o

o

a

r

i

i

Figure F.1: Overwriting zero with zero maintains the left column of the decision wait as the next
one to output.



624 APPENDIX F. DUAL RAIL BUFFER CELL THEORY OF OPERATION

o

o

a

r

i

i

Figure F.2: Overwriting zero with one uses the output from the left column of the decision wait to
enable the right, and also prepares an alternative path for the read input through the SHUNT.



625

o

o

a

r

i

i

Figure F.3: Overwriting one with one maintains the right column of the decision wait as the next
one to output.



626 APPENDIX F. DUAL RAIL BUFFER CELL THEORY OF OPERATION

o

o

a

r

i

i

Figure F.4: Overwriting one with zero uses the output from the right column of the decision wait to
enable the left after undoing the effect of preparing an alternative path for the read input through
the SHUNT.



627

o

o

a

r

i

i

Figure F.5: Reading zero is easy.



628 APPENDIX F. DUAL RAIL BUFFER CELL THEORY OF OPERATION

o

o

a

r

i

i

Figure F.6: Reading one involves the alternative path previously prepared through the SHUNT to
clear the contents by using the output from the right column of the decision wait to enable the left.



629

Buffer bother

1. What process combinator expression could be used to check whether
the dual rail buffer cell design is correct according to Equation 8.34?

2. How should a FORK with a single exposed output be handled with
regard to a critical path analysis?

3. How long is the critical path for each of the six interactions with

a) the paths internal to the decision wait neglected?

b) all relevant internal decision wait paths by Equation 12.22 and Equation C.11
considered?

4. Which of the eight possible decision wait decompositions minimizes the variation in
critical path length?

5. What would it take to make the buffer cell store data persistently across multiple
reads?

6. Design the persistent dual rail buffer cell proposed in the previous question and
write its specification as a process combinator expression.





BIBLIOGRAPHY

[1] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, and Tomáš Vojnar. When
simulation meets antichains. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 158–174. Springer, 2010. [cited on page 78, 80, 177]

[2] Samson Abramsky and Achim Jung. Domain theory. Handbook of logic in computer science,
3:1–168, 1994. [cited on page 579, 582]

[3] Samson Abramsky and C-H Luke Ong. Full abstraction in the lazy lambda calculus. Information
and Computation, 105(2):159–267, 1993. [cited on page 58]

[4] Susumu Adachi. Inner-independent radius-dependent totalistic rule of universal asynchronous
cellular automaton. In International Conference on Cellular Automata, pages 546–555.
Springer, 2014. [cited on page 252]

[5] Susumu Adachi, Jia Lee, Ferdinand Peper, and Hiroshi Umeo. Universality of 2-state asyn-
chronous cellular automaton with inner-independent totalistic transitions. In 16th Interna-
tional Workshop on Cellular Automata and Discrete Complex Systems, pages 153–172, 2010.
[cited on page 252]

[6] Dharma P. Agrawal. Graph theoretical analysis and design of multistage interconnection
networks. Computers, IEEE Transactions on, 100(7):637–648, 1983. [cited on page 222]

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles,
Techniques, & Tools. Addison-Wesley, 2006. [cited on page 55, 247, 270]

[8] Matthew An, J. Gregory Steffan, and Vaughn Betz. Speeding up FPGA placement: Parallel
algorithms and methods. In Field-Programmable Custom Computing Machines (FCCM), 2014
IEEE 22nd Annual International Symposium on, pages 178–185. IEEE, 2014. [cited on page 21]

[9] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. Fast local search for the
maximum independent set problem. Journal of Heuristics, 18.4:525–547, 2012. [cited on
page 368]

[10] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao,
Stephanie Weirich, and Steve Zdancewic. Position paper: the science of deep specifica-
tion. Phil. Trans. R. Soc. A, 375(2104), 2017. [cited on page 213]

[11] Markus Aronsson and Mary Sheeran. Hardware software co-design in Haskell. In Proceedings
of the 10th ACM SIGPLAN International Symposium on Haskell, pages 162–173. ACM, 2017.
[cited on page 20]

631



632 BIBLIOGRAPHY

[12] Algirdas Avizienis. The N-version approach to fault-tolerant software. IEEE Transactions on
software engineering, (12):1491–1501, 1985. [cited on page 213]

[13] David F. Bacon, Rodric Rabbah, and Sunil Shukla. FPGA programming for the masses.
Communications of the ACM, 56(4):56–63, 2013. [cited on page 21]

[14] W. J. Bainbridge, William B. Toms, David A. Edwards, and Stephen B. Furber. Delay-insensitive,
point-to-point interconnect using m-of-n codes. In Asynchronous Circuits and Systems, 2003.
Proceedings. Ninth International Symposium on, pages 132–140. IEEE, 2003. [cited on page 45]

[15] Zeineb Baklouti, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba, and Nicolas Belanger.
Real-Time Simulator supporting Heterogeneous CPU/FPGA Architecture. In International
Conference on Industrial Engineering and Systems Management, Rabat, Maroc, October 2013.
[cited on page 21]

[16] Padmanabhan Balasubraminian and Nikos E. Mastorakis. Timing analysis of quasi-delay-
insensitive ripple carry adders–a mathematical study. In Proc. 3rd European Conference of
Circuits Technology and Devices, pages 233–240, 2012. [cited on page 575]

[17] A. Bardsley. Implementing Balsa Handshake Circuits. PhD thesis, Department of Computer
Science, University of Manchester, 2000. [cited on page 253]

[18] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland Amsterdam,
1984. [cited on page 58]

[19] Michael Barr and Charles Wells. Category theory for computing science, volume 1. Prentice
Hall New York, 1990. [cited on page 123]

[20] J. Beaumont. Variation tolerant asynchronous FPGA. Technical Report NCL-EEE-MICRO-TR-
2018-208, Newcastle University, March 2018. [cited on page 18]

[21] Peter A. Beerel, Georgios D. Dimou, and Andrew M. Lines. Proteus: An ASIC flow for GHz
asynchronous designs. IEEE Design & Test of Computers, 28(5):36–51, 2011. [cited on page 18]

[22] Václad E Beneš. Optimal rearrangeable multistage connecting networks. Bell System Technical
Journal, 43(4):1641–1656, 1964. [cited on page 222]

[23] Igor Benko and Jo Ebergen. Composing snippets. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 23–33, April 2000. [cited on
page 534]

[24] Kees van Berkel. Beware the isochronic fork. Integration, the VLSI journal, 13(2):103–128,
June 1992. [cited on page 32, 39, 575]

[25] Eike Best, Raymond Devillers, and Maciej Koutny. The box algebra “ Petri nets ` process
expressions. Information and Computation, 178(1):44 – 100, 2002. [cited on page 90]

[26] Eike Best and Hans-Günther Linde-Göers. Compositional process semantics of Petri boxes. In
Mathematical Foundations of Programming Semantics, pages 250–270. Springer, 1994. [cited
on page 90]



BIBLIOGRAPHY 633

[27] Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability. Texts in statistical science.
CRC Press, 2014. [cited on page 363]

[28] Gregor V. Bochmann. Hardware specification with temporal logic: An example. Computers,
IEEE Transactions on, 100(3):223–231, 1982. [cited on page 258]

[29] Romain Boichat, Partha Dutta, Svend Frølund, and Rachid Guerraoui. Deconstructing Paxos.
SIGACT News, 34(1):47–67, March 2003. [cited on page 535]

[30] Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo. The maximum
clique problem. In Handbook of combinatorial optimization, pages 1–74. Springer, 1999.
[cited on page 360]

[31] Gaetano Borriello, Carl Ebeling, Scott A. Hauck, and Steven Burns. The triptych FPGA
architecture. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 3(4):491–501,
1995. [cited on page 21]

[32] Dominique Borrione, Menouer Boubekeur, Laurent Mounier, Marc Renaudin, and Antoine
Sirianni. Validation of asynchronous circuit specifications using IF/CADP. In IFIP International
Conference on VLSI SoC, December 2003. [cited on page 41]

[33] Gerald J. Brady, Austin J. Way, Nathaniel S. Safron, Harold T. Evensen, Padma Gopalan, and
Michael S. Arnold. Quasi-ballistic carbon nanotube array transistors with current density
exceeding Si and GaAs. Science Advances, 2(9), 2016. [cited on page 19]

[34] C. Brej and Jim D. Garside. A quasi-delay-insensitive method to overcome transistor variation.
In VLSI Design, 2005. 18th International Conference on, pages 368–373. IEEE, 2005. [cited
on page 575]

[35] Claude Brezinski and Michela Redivo Zaglia. Extrapolation Methods Theory and Practice,
volume 2 of Studies in Computational Mathematics. North-Holland, 1991. [cited on page 400]

[36] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the Association for Computing Machinery, 31(3):560–599, 1984. [cited
on page 21]

[37] Frederick P. Brooks. The Mythical Man-Month. Addison Wesley Longman, Inc., 1995. [cited
on page 20]

[38] Stephen D. Brown and Zvonko G. Vranesic. Fundamentals of digital logic with VHDL design,
volume 70125910. McGraw-Hill New York, 2000. [cited on page 18, 33, 36, 61, 450]

[39] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, 2012. [cited on page 306]

[40] Eric Brunvand. A community of asynchronauts: 20+ years of the ASYNC conference. In This
Asynchronous World, Essays dedicated to Alex Yakovlev on the occasion of his 60th birthday,
pages 22–58. Newcastle University, 2016. [cited on page 17]



634 BIBLIOGRAPHY

[41] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys (CSUR), 24(3):293–318, 1992. [cited on page 70]

[42] J. A. Brzozowski. Delay-insensitivity and ternary simulation. Theoretical Computer Science,
2000. [cited on page 28, 36]

[43] J. A. Brzozowski and H. Zhang. Delay-insensitivity and semi-modularity. Technical Report
CS-97-11, Dept. of Comp. Science, Univ. of Waterloo, March 1997. [cited on page 36]

[44] Janusz A. Brzozowski and Jo C. Ebergen. On the delay-sensitivity of gate networks. IEEE
Transactions on Computers, 41(11):1349–1360, November 1992. [cited on page 32]

[45] Peter Buchholz and Peter Kemper. Hierarchical reachability graph generation for Petri nets.
Formal Methods in System Design, 21(3):281–315, 2002. [cited on page 70]

[46] Luca Cardelli, Marta Kwiatkowska, and Max Whitby. Chemical reaction network designs
for asynchronous logic circuits. In International Conference on DNA-Based Computers, pages
67–81. Springer, 2016. [cited on page 20]

[47] Josep Carmona, Jordi Cortadella, Victor Khomenko, and Alexandre Yakovlev. Synthesis of
asynchronous hardware from Petri nets. In Lectures on Concurrency and Petri Nets, pages
345–401. Springer-Verlag, 2003. [cited on page 533]

[48] Teena Carroll, David Galvin, and Prasad Tetali. Matchings and independent sets of a fixed
size in regular graphs. arXiv preprint arXiv:1206.3211v1, November 2009. [cited on page 368]

[49] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter circuits. IEEE
Transactions on Computers, C-22(4):421–422, April 1973. [cited on page 37, 407]

[50] Thomas J. Chaney. My work on all things metastable OR me and my glitch. (self-published)
last available at https://arl.wustl.edu/~jst/cse/260/glitchChaney.pdf. [cited on page 17,
37]

[51] Thomas J. Chaney. Comments on “A note on synchronizer or interlock maloperation”. IEEE
Transactions on Computers, (10):802–804, 1979. [cited on page 407]

[52] Chihming Chang and Rami Melhem. Arbitrary size Benes networks. Parallel Processing Letters,
7(03):279–284, 1997. [cited on page 222]

[53] Kai-Hui Chang, Valeria Bertacco, Igor L. Markov, and Alan Mishchenko. Logic synthesis
and circuit customization using extensive external don’t-cares. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 15(3):26, 2010. [cited on page 61]

[54] Peter Y. K. Cheung. Are asynchronous ideas useful in FPGAs? In This Asynchronous World,
Essays dedicated to Alex Yakovlev on the occasion of his 60th birthday, pages 87–95. Newcastle
University, 2016. [cited on page 21]

[55] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. An algebraic theory of interface
automata. Technical Report CS-RR-13-02, Department of Computer Science, University of
Oxford, 2013. [cited on page 47, 75]

https://arl.wustl.edu/~jst/cse/260/glitchChaney.pdf


BIBLIOGRAPHY 635

[56] Gianfranco Ciardo. Reachability set generation for Petri nets: Can brute force be smart? In
Applications and Theory of Petri Nets 2004, pages 17–34. Springer, 2004. [cited on page 70]

[57] Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verification of a sorter
core. In Correct Hardware Design and Verification Methods, pages 355–368. Springer, 2001.
[cited on page 204]

[58] Wesley A. Clark, Mishell J. Stucki, Severo M. Ornstein, and Charles E. Molnar. Macromod-
ular computer design, part 1, volume 1, overview of macromodules. Technical Report 44,
Computer Systems Laboratory, Washington University, February 1974. [cited on page 252]

[59] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State space reduction
using partial order techniques. International Journal on Software Tools for Technology Transfer,
2(3):279–287, 1999. [cited on page 68]

[60] Paulo Coelho. The alchemist. Harper Collins, 2007. [cited on page 41]

[61] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of systems and
software. ACM Computing Surveys, 34:171–210, 2002. [cited on page 20]

[62] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H. Madden. Performance optimization of
VLSI interconnect layout. Integration, the VLSI journal, 21(1):1–94, 1996. [cited on page 21]

[63] Unicode Consortium. The unicode standard version 9.0.0. http://www.unicode.org/versions/
Unicode9.0.0/, 2016. [cited on page 412]

[64] James N. Cook. Production rule verification for quasi-delay-insensitive circuits. PhD thesis,
California Institute of Technology, 1993. [cited on page 575]

[65] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms - Third Edition. MIT Press, 2009. [cited on page 324]

[66] Krzysztof Czarnecki, John T. O´Donnell, Jörg Striegnitz, and Walid Taha. DSL implementation
in MetaOCaml, Template Haskell, and C++. In Domain-Specific Program Generation, pages
51–72. Springer, 2004. [cited on page 55]

[67] S. Dasgupta, D. Potop-Butucaru, B. Caillaud, and A. Yakovlev. Moving from weakly en-
dochronous systems to delay-insensitive circuits. Electronic Notes in Theoretical Computer
Science, 146, 2006. [cited on page 17]

[68] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit design. In A. Kent
and J. G. Williams, editors, The Encyclopedia of Computer Science and Technology, volume 38.
Marcel Dekker, New York, February 1998. [cited on page 17, 32]

[69] Nicolaas Govert de Bruijn. Pólya’s theory of counting. Applied combinatorial mathematics,
pages 144–184, 1964. [cited on page 356]

[70] A. Prasanna de Silva and Nathan D. McClenaghan. Molecular-scale logic gates. Chemistry-A
European Journal, 10(3):574–586, 2004. [cited on page 20]

[71] Peter J. Denning. The locality principle. Communications of the ACM, 48(7):19–24, 2005.
[cited on page 383]

http://www.unicode.org/versions/Unicode9.0.0/
http://www.unicode.org/versions/Unicode9.0.0/


636 BIBLIOGRAPHY

[72] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
ACM Distinguished Dissertations. MIT Press, 1989. [cited on page 41, 47, 75, 77, 84, 100,
204, 258]

[73] David L Dill and Edmund M Clarke. Automatic verification of asynchronous circuits using
temporal logic. IEE Proceedings E (Computers and Digital Techniques), 133(5):276–282, 1986.
[cited on page 258]

[74] Charles Donnelly and Richard Stallman. Bison: The YACC-compatible parser generator. Free
Software Foundation Cambridge (MA) 02139, 1992. [cited on page 55]

[75] Luis Tarazona Duarte. Performance-oriented syntax-directed synthesis of asynchronous circuits.
PhD thesis, University of Manchester, 2010. [cited on page 575]

[76] Chris Dwyer, Moky Cheung, and Daniel J. Sorin. Semi-empirical SPICE models for carbon
nanotube FET logic. In In Proceedings of the Fourth IEEE Conference on Nanotechnology, pages
35–39, 2004. [cited on page 19]

[77] Matthew B Dwyer, Lori Clarke, et al. A compact Petri net representation and its implications
for analysis. Software Engineering, IEEE Transactions on, 22(11):794–811, 1996. [cited on
page 238]

[78] Jo Ebergen and Robert Berks. VERDECT: A verifier for asynchronous circuits. IEEE Technical
Committee on Computer Architecture Newsletter, October 1995. [cited on page 28]

[79] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD thesis, Dept. of Math.
and C.S., Eindhoven Univ. of Technology, 1987. [cited on page 30, 32, 496]

[80] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, volume 56 of CWI Tract.
Centre for Mathematics and Computer Science, 1989. [cited on page 47]

[81] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed Comput-
ing, 5(3):107–119, 1991. [cited on page 19, 575]

[82] Jo C. Ebergen, John Segers, and Igor Benko. Parallel program and asynchronous circuit
design. In Graham Birtwistle and Al Davis, editors, Asynchronous Digital Circuit Design,
Workshops in Computing, pages 51–103. Springer-Verlag, 1995. [cited on page 252, 270]

[83] Albert Einstein. Relativity: The special and the general theory. Princeton University Press,
2015. [cited on page 19]

[84] Gavril F. Algorithms for a maximum clique and a maximum independent set of a circle graph.
Networks, 3(3):261–73, 1973. [cited on page 368]

[85] Karl M. Fant. Logically Determined Design. Wiley-Interscience. John Wiley & Sons, Inc., 2005.
[cited on page 27]

[86] Karl M. Fant and Scott A. Brandt. NULL conventional logic: A complete and consistent logic
for asynchronous digital circuit synthesis. In International Conference on Application-specific
Systems, Architectures, and Processors, pages 261–273, 1996. [cited on page 27, 253]



BIBLIOGRAPHY 637

[87] Stefan Felsner, Rudolf Miiller, and Lorenz Wernisch. Trapezoid graphs and generalizations,
geometry and algorithms. Discrete Applied Mathematics, 74:13–32, 1997. [cited on page 368]

[88] Thomas A. Feo, Mauricio G. C. Resende, and Stuart H. Smith. A greedy randomized adaptive
search procedure for maximum independent set. Operations Research, 42:860–878, 1994.
[cited on page 368]

[89] M. Ferretti, R. Ozdag, and P. Beerel. High performance asynchronous ASIC back-end design
flow using single-track full-buffer standard cells. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 95–105. IEEE Computer Society Press,
April 2004. [cited on page 576]

[90] Laurent Fesquet, Jerome Quartana, Marc Renaudin, et al. Asynchronous systems on pro-
grammable logic. In ReCoSoC, pages 105–112, 2005. [cited on page 21]

[91] Mike Field. FPGA Webserver. https://github.com/hamsternz/FPGA_Webserver. [cited on
page 20]

[92] A. Flocke and T. G. Noll. Fundamental analysis of resistive nano-crossbars for the use in
hybrid Nano/CMOS-memory. In Proc. European Solid-State Circuits Conference (ESSCIRC),
pages 328–331, September 2007. [cited on page 19]

[93] Brendan Fong. The algebra of open and interconnected systems. PhD thesis, University of
Oxford, 2016. [cited on page 205]

[94] Dennis Furey. Efficient lattices for market calibrated derivatives valuation. Master’s thesis,
Cass Business School, 2004. [cited on page 403]

[95] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman, 1979.
[cited on page 360]

[96] Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal of Computing,
1(2):180–187, June 1972. [cited on page 368]

[97] James Gleick. Chaos: Making a new science. Random House, 1997. [cited on page 21]

[98] Patrice Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and Pierre Wolper. Partial-order
methods for the verification of concurrent systems: an approach to the state-explosion problem,
volume 1032. Springer Heidelberg, 1996. [cited on page 68]

[99] C. D. Godsil and M. W. Newman. Eigenvalue bounds for independent sets. arXiv preprint
arXiv:math/0508081v1, 2005. [cited on page 368]

[100] Alexander A. Green, Jongmin Kim, Duo Ma, Pamela A. Silver, James J. Collins, and Peng Yin.
Complex cellular logic computation using ribocomputing devices. Nature, 2017. [cited on
page 20]

[101] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American Mathematical
Society, 2009. [cited on page 363]

https://github.com/hamsternz/FPGA_Webserver


638 BIBLIOGRAPHY

[102] Carl A. Gunter, Peter D. Mosses, and Dana S. Scott. Semantic domains and denotational
semantics. Technical Report MS-CIS-89-16, University of Pennsylvania, February 1989. [cited
on page 579, 585]

[103] John Michael Harris, Jeffry L Hirst, and Michael J Mossinghoff. Combinatorics and graph
theory, volume 2. Springer, 2008. [cited on page 356]

[104] Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69–93, January 1995. [cited on page 19, 32]

[105] Scott Hauck, Steven Burns, Geatano Borriello, and Carl Ebeling. An FPGA for implementing
asynchronous circuits. IEEE Design & Test of Computers, 11(3):60–69, 1994. [cited on page 21]

[106] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computing Machinery, 32(1):137–161, 1985. [cited on page 21]

[107] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991. [cited on page 21]

[108] A. Hertz and V. V. Lozin. The maximum independent set problem and augmenting graphs. In
Avis D., Hertz A., and Marcotte O., editors, Graph Theory and Combinatorial Optimization.
Springer, Boston, MA, USA, 2005. [cited on page 368]

[109] Carl H. Heymann, Hendrik C. Ferreira, and Jos H. Weber. A Knuth-based RDS-minimizing
multi-mode code. In Information Theory Workshop (ITW), 2011 IEEE, pages 508–512. IEEE,
2011. [cited on page 413]

[110] J. Roger Hindley and Jonathan P. Seldin. Lambda-calculus and combinators: an introduction,
volume 13. Cambridge University Press Cambridge, 2008. [cited on page 58]

[111] Ron Ho, Kenneth W. Mai, and Mark Horowitz. The future of wires. Proceedings of the IEEE,
89(4):490–504, 2001. [cited on page 32, 619]

[112] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International Series in
Computer Science. Prentice/Hall International, 1985. [cited on page 534]

[113] Tony Hoare, Stephan van Staden, Bernhard Möller, Georg Struth, Jules Villard, Huibiao Zhu,
and Peter OHearn. Developments in concurrent Kleene algebra. In International Conference
on Relational and Algebraic Methods in Computer Science, pages 1–18. Springer, 2014. [cited
on page 21]

[114] Paul Hoffman. The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for
Mathematical Truth. London: Fourth Estate, 1998. [cited on page 585]

[115] John E. Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2001. [cited on page 21, 42, 70, 76, 78, 80,
149, 160, 178]

[116] Heidi Howard and Richard Mortier. A generalised solution to distributed consensus. arXiv
preprint arXiv:1902.06776, 2019. [cited on page 535]



BIBLIOGRAPHY 639

[117] Jiang Hu and Sachin S. Sapatnekar. A survey on multi-net global routing for integrated
circuits. Integration, the VLSI Journal, 31(1):1–49, 2001. [cited on page 21]

[118] David A. Huffman. The design and use of hazard-free switching networks. J. ACM, 4(1):47–62,
January 1957. [cited on page 23]

[119] N. Huot, H. Dubreuil, Laurent Fesquet, and Marc Renaudin. FPGA Architecture for Multi-
Style Asynchronous Logic. In Design, Automation, and Test in Europe, pages 32–33, 2005.
[cited on page 21]

[120] Masashi Imai, Tomohiro Yoneda, and Takashi Nanya. N-way ring and square arbiters. In
Computer Design, 2009. ICCD 2009. IEEE International Conference on, pages 125–130. IEEE,
2009. [cited on page 361, 364]

[121] Nabil Imam and Rajit Manohar. Address-event communication using token-ring mutual
exclusion. In Asynchronous Circuits and Systems (ASYNC), 2011 17th IEEE International
Symposium on, pages 99–108. IEEE, 2011. [cited on page 383]

[122] Kees A. Schouhamer Immink. Codes for mass data storage systems. Shannon Foundation
Publisher, 2004. [cited on page 413]

[123] Lubomir Ivanov and Ramakrishna Nunna. Modeling and verification of cache coherence
protocols. In IEEE International Symposium on Circuits and Systems, pages 129–132, 2001.
[cited on page 21]

[124] K. W. James and K. Y. Yun. Average-case optimized transistor-level technology mapping of
extended burst-mode circuits. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 70–79, 1998. [cited on page 36]

[125] Steven Dexter Johnson and Bhaskar Bose. DDD: A system for mechanized digital design
derivation. Technical Report 323, Computer Science Department, Indiana University, 1990.
[cited on page 204]

[126] Geraint Jones. Designing circuits by calculation. Technical Report PRG TR-10-90, Program-
ming Research Group, Oxford University Computing Laboratory, 1990. [cited on page 204]

[127] Geraint Jones and Mary Sheeran. Relations and refinement in circuit design. In 3rd Refinement
Workshop, volume 90, pages 133–152, 1990. [cited on page 204]

[128] Mark B. Josephs. Receptive process theory. Acta Informatica, 29(1):17–31, 1992. [cited on
page 47, 77, 100]

[129] Mark B. Josephs and Hemangee K. Kapoor. Controllable delay-insensitive processes. Funda-
menta Informaticae, 78(1):101–130, 2007. [cited on page 572]

[130] Stasys Jukna. Extremal Combinatorics With Applications in Computer Science. Texts in
Theoretical Computer Science. Springer-Verlag, 2nd edition, 2011. [cited on page 413, 414]

[131] Hiroto Kagotani and Takashi Nanya. Synthesis of two-phase quasi-delay-insensitive circuits
from dependency graphs. Systems and computers in Japan, 26(4):11–19, 1995. [cited on
page 575]



640 BIBLIOGRAPHY

[132] Rajgopal Kannan. The KR-Benes network: a control-optimal rearrangeable permutation
network. Computers, IEEE Transactions on, 54(5):534–544, 2005. [cited on page 222]

[133] Hemangee K. Kapoor, Mark B. Josephs, and Dennis Furey. Verification and implementa-
tion of delay-insensitive processes in restrictive environments. Fundamenta Informaticae,
70(1):21–48, 2006. [cited on page 61, 572]

[134] R. Karmazin, C.T. Ortega Otero, and R. Manohar. CellTK: Automated layout for asynchronous
circuits with nonstandard cells. In The 19th International Symposium on Asynchronous Circuits
and Systems. IEEE, 2013. [cited on page 18]

[135] Randy H. Katz and Gaetano Borriello. Contemporary Logic Design. Pearson Prentice Hall,
2005. [cited on page 450]

[136] Robert M. Keller. Towards a theory of universal speed-independent modules. IEEE Transactions
on Computers, C-23(1):21–33, January 1974. [cited on page 19, 28, 252, 260, 575]

[137] Robert M. Keller. Computer science: Abstraction to implementation. (self-published) last
available at https://www.cs.hmc.edu/~keller/cs60book/%20%20%20All.pdf, 2001. [cited
on page 19]

[138] Sean Keller, Michael Katelman, and Alain J. Martin. A necessary and sufficient timing
assumption for speed-independent circuits. In Asynchronous Circuits and Systems, 2009.
ASYNC’09. 15th IEEE Symposium on, pages 65–76. IEEE, 2009. [cited on page 32]

[139] Jeremy Kepner and John Gilbert (eds.). Graph Algorithms in the Language of Linear Algebra.
Software, Environments, and Tools. SIAM, 2011. [cited on page 324]

[140] David J. Kinniment. He who hesitates is lost. (self-published) last available at http://
www.async.org.uk/David.Kinniment/DJKinniment-He-Who-Hesitates-is-Lost.pdf. [cited on
page 17]

[141] John C. Knight and Nancy G. Leveson. An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Transactions on software engineering,
(1):96–109, 1986. [cited on page 213]

[142] John C. Knight and Nancy G. Leveson. A reply to the criticisms of the Knight & Leveson
experiment. ACM SIGSOFT Software Engineering Notes, 15(1):24–35, 1990. [cited on
page 213]

[143] Donald E. Knuth. The Art of Computer Programming, Volume 3 / Sorting and Searching.
Addison-Wesley, 1973. [cited on page 18]

[144] Donald E. Knuth. Notes on the van Emde Boas construction of priority deques: An instructive
use of recursion. https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf, March 1977.
[cited on page 213]

[145] Donald E. Knuth. Efficient balanced codes. IEEE Transactions on Information Theory,
32(1):51–53, 1986. [cited on page 413]

[146] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley Professional, 2005. [cited on page 367]

https://www.cs.hmc.edu/~keller/cs60book/%20%20%20All.pdf
http://www.async.org.uk/David.Kinniment/DJKinniment-He-Who-Hesitates-is-Lost.pdf
http://www.async.org.uk/David.Kinniment/DJKinniment-He-Who-Hesitates-is-Lost.pdf
https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf


BIBLIOGRAPHY 641

[147] Cheng-Kok Koh and Patrick H. Madden. Manhattan or non-Manhattan?: a study of alternative
VLSI routing architectures. In Proceedings of the 10th Great Lakes symposium on VLSI, pages
47–52. ACM, 2000. [cited on page 21]

[148] Alex Kondratyev, Michael Kishinevsky, Bill Lin, Peter Vanbekbergen, and Alex Yakovlev. Basic
gate implementation of speed-independendent circuits. In Design Automation, 1994. 31st
Conference on, pages 56–62. IEEE, 1994. [cited on page 32]

[149] Alex Kondratyev, Michael Kishinevsky, and Alexandre Yakovlev. Hazard-free implementation
of speed-independent circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 17(9):749–771, 1998. [cited on page 32]

[150] Thomas S. Kuhn. The structure of scientific revolutions. University of Chicago press, 2012.
[cited on page 577]

[151] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA architecture: Survey and challenges.
Foundations and Trends in Electronic Design Automation, 2(2):135–253, 2008. [cited on
page 20]

[152] Michihiro Kuramochi and George Karypis. In Proceedings 2001 IEEE International Conference
on Data Mining, pages 313–320. IEEE, November 2001. [cited on page 534]

[153] Leslie Lamport. Generalized consensus and Paxos. Technical Report MSR-TR-2005-33,
Microsoft Research, 2005. [cited on page 535]

[154] Joseph Lauer and Nicholas Wormald. Large independent sets in regular graphs of large girth.
Journal of Combinatorial Theory, Series B, 97:999=1009, 2007. [cited on page 368]

[155] Jakob Lechner, Andreas Steininger, and Florian Huemer. Methods for analysing and improving
the fault resilience of delay-insensitive codes. In Computer Design (ICCD), 2015 33rd IEEE
International Conference on, pages 519–526. IEEE, 2015. [cited on page 415]

[156] Edward A. Lee and Thomas Parks. Dataflow process networks. In Proceedings of the IEEE,
pages 773–799, 1995. [cited on page 21]

[157] Jae W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten Van Dijk, and Srinivas
Devadas. A technique to build a secret key in integrated circuits for identification and
authentication applications. In VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium
on, pages 176–179. IEEE, 2004. [cited on page 441]

[158] Hyung Lee-Kwang, Joël Favrel, and Pierre Baptiste. Generalized Petri net reduction method.
Systems, Man and Cybernetics, IEEE Transactions on, 17(2):297–303, 1987. [cited on page 68,
238]

[159] Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Mathematics for computer science.
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf, 2018. [cited on page 18, 363]

[160] Guy G. Lemieux and Stephen D. Brown. A detailed routing algorithm for allocating wire
segments in field-programmable gate arrays. In ACM-SIGDA Physical Design Workshop, 1993.
[cited on page 21]

https://courses.csail.mit.edu/6.042/spring18/mcs.pdf


642 BIBLIOGRAPHY

[161] Jacques Lenfant. Parallel permutations of data: A Benes network control algorithm for
frequently used permutations. Computers, IEEE Transactions on, 100(7):637–647, 1978.
[cited on page 222]

[162] Gavriela Freund Lev, Nicholas Pippenger, and Leslie G Valiant. A fast parallel algorithm for
routing in permutation networks. Computers, IEEE Transactions on, 100(2):93–100, 1981.
[cited on page 222]

[163] Oscar Levin. Discrete mathematics, an open introduction. http://discretetext.oscarlevin.
com/pdfs/dmoi-tablet.pdf, 2016. [cited on page 18, 88, 123]

[164] Jens Lienig. A parallel genetic algorithm for performance-driven VLSI routing. Evolutionary
Computation, IEEE Transactions on, 1(1):29–39, 1997. [cited on page 21]

[165] Jens Lienig and Krishnaiyan Thulasiraman. A genetic algorithm for channel routing in VLSI
circuits. Evolutionary Computation, 1(4):293–311, 1993. [cited on page 21]

[166] Francisco S. N. Lobo. Exotic solutions in general relativity: Traversable wormholes and “warp
drive” spacetimes. arXiv preprint arXiv:0710.4474, 2007. [cited on page 32]

[167] Hock Soon Low, Delong Shang, Fei Xia, and Alex Yakovlev. Variation tolerant asynchronous
FPGA. Technical Report NCL-EECE-MSD-TR-2010-163, Newcastle University, December 2010.
[cited on page 21]

[168] Mei Lu, Huiqing Liu, and Feng Tian. Laplacian spectral bounds for clique and independence
numbers of graphs. Journal of Combinatorial Theory, Series B, 97:726–732, 2007. [cited on
page 368]

[169] Wayne Luk, Geraint Jones, and Mary Sheeran. Computer-based tools for regular array design.
Systolic array processors, pages 589–598, 1989. [cited on page 204]

[170] Carlos J. Luz. An upper bound on the independence number of a graph computable in
polynomial-time. Operations Research Letters, 18:139–145, 1995. [cited on page 368]

[171] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
Technical Report MIT/LCS/TR-387, Massachusetts Institute of Technology, 1987. [cited on
page 47]

[172] W. C. Mallon, J. T. Udding, and T. Verhoeff. Analysis and applications of the XDI model. In
Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 231–242, April 1999. [cited on page 36, 572]

[173] B. B. Mandelbrot. The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and
Company, 1983. [cited on page 21]

[174] Reinhard Männer. Metastable states in asynchronous digital systems: Avoidable or unavoid-
able? Microelectronics Reliability, 28(2):295–307, 1988. [cited on page 407]

[175] M. Morris Mano, Charles R. Kime, and Tom Martin. Logic and Computer Design Fundamentals.
Pearson Higher Education, Inc., 2015. [cited on page 361, 450]

http://discretetext.oscarlevin.com/pdfs/dmoi-tablet.pdf
http://discretetext.oscarlevin.com/pdfs/dmoi-tablet.pdf


BIBLIOGRAPHY 643

[176] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are Turing complete. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, March 1996. [cited on page 575]

[177] Rajit Manohar. Reconfigurable asynchronous logic. In IEEE Custom Integrated Circuits
Conference, pages 13–20, 2006. [cited on page 21]

[178] Rajit Manohar and Yoram Moses. Analyzing isochronic forks with potential causality. In
International Symposium on Asynchronous Circuits and Systems (ASYNC). IEEE, May 2015.
[cited on page 32]

[179] Alain J. Martin. A delay-insensitive fair arbiter. Technical Report 5193:TR:85, California
Institute of Technology, 1985. [cited on page 361]

[180] Alain J. Martin. The design of a self-timed circuit for distributed mutual exclusion. In
Henry Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on VLSI, pages 245–260.
Computer Science Press, 1985. [cited on page 361]

[181] Alain J. Martin. On Seitz’s arbiter. Technical Report 5212:TR:86, California Institute of
Technology, March 1985. [cited on page 258]

[182] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In William J.
Dally, editor, Advanced Research in VLSI, pages 263–278. MIT Press, 1990. [cited on page 32,
577]

[183] Alain J. Martin. 25 years ago: The first asynchronous microprocessor. Technical Report
CS-TR-1-2014, California Institute of Technology, January 2014. [cited on page 575]

[184] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J. Hazewindus. The
design of an asynchronous microprocessor. In Charles L. Seitz, editor, Advanced Research in
VLSI, pages 351–373. MIT Press, 1989. [cited on page 575]

[185] Alain J. Martin and Mika Nystrom. Asynchronous techniques for system-on-chip design.
Proceedings of the IEEE, 94(6):1089–1120, 2006. [cited on page 575]

[186] Alain J. Martin, Mika Nystrom, and Catherine G. Wong. Three generations of asynchronous
microprocessors. IEEE Design & Test of Computers, 20(6):9–17, 2003. [cited on page 575]

[187] Pavlos M. Mattheakis and Christos P. Sotiriou. Polynomial complexity asynchronous control
circuit synthesis of concurrent specifications based on burst-mode FSM decomposition. In
2013 26th International Conference on VLSI Design and 2013 12th International Conference on
Embedded Systems, pages 251–256, 2013. [cited on page 18]

[188] Arya Mazumdar, Ron M. Roth, and Pascal O. Vontobel. On linear balancing sets. In Information
Theory, 2009. ISIT 2009. IEEE International Symposium on, pages 2699–2703. IEEE, 2009.
[cited on page 415]

[189] Gordon McComb et al. Electronics for dummies. John Wiley & Sons, 2011. [cited on page 219]

[190] Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR parser generator. In
Compiler Construction, pages 73–88. Springer, 2004. [cited on page 55]



644 BIBLIOGRAPHY

[191] Michael Mendler and Terry Stroup. Newtonian arbiters cannot be proven correct. Formal
Methods in System Design, 3(3), December 1993. [cited on page 258, 407, 609]

[192] Chris Meyers. Asynchronous design and beyond. In This Asynchronous World, Essays dedicated
to Alex Yakovlev on the occasion of his 60th birthday, pages 236–240. Newcastle University,
2016. [cited on page 18]

[193] Dimitrios Milios. Probability distributions as program variables. Master’s thesis, School of
Informatics, University of Edinburgh, 2009. [cited on page 605]

[194] Gabriele Miorandi, Davide Bertozzi, and Steven M. Nowick. Increasing impartiality and
robustness in high-performance n-way asynchronous arbiters. In Asynchronous Circuits and
Systems (ASYNC), 2015 21st IEEE International Symposium on, pages 108–115. IEEE, 2015.
[cited on page 361, 365]

[195] Ian Mitchell. Proving Newtonian arbiters correct, almost surely. Master’s thesis, The University
of British Columbia, October 1994. [cited on page 609]

[196] Isi Mitrani and Alex Yakovlev. Tree arbiter with nearest-neighbour scheduling. In Advances in
Computer and Information Sciences. ISCIS, 1998. [cited on page 409]

[197] Ethan Mollick. Establishing Moore’s law. Annals of the History of Computing, IEEE,
28(3):62–75, 2006. [cited on page 19]

[198] Eric Monmasson and Marciam N. Cirstea. FPGA design methodology for industrial control
systems – A review. IEEE Transactions on Industrial Electronics, 54(4), 2007. [cited on page 21]

[199] Michael S. Morris, Kip S. Thorne, and Ulvi Yurtsever. Wormholes, time machines, and the
weak energy condition. Physical Review Letters, 61(13):1446, 1988. [cited on page 32]

[200] Daniel Morrison and Irek Ulidowski. Arbitration and reversibility of parallel delay-insensitive
modules. In International Conference on Reversible Computation, pages 67–81. Springer, 2014.
[cited on page 253]

[201] Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77:541–580, 1989. [cited on page 21, 49]

[202] John Nagle. Congestion control in IP/TCP internetworks. SIGCOMM Comput. Commun. Rev.,
14(4):11–17, October 1984. [cited on page 531]

[203] Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masashi Kuwako, and Akihiro Takamura.
TITAC: Design of a quasi-delay-insensitive microprocessor. IEEE Design & Test of Computers,
11(2):50–63, 1994. [cited on page 575]

[204] Syed Rameez Naqvi and Andreas Steininger. A tree arbiter cell for high speed resource
sharing in asynchronous environments. In Proceedings of the conference on Design, Automation
& Test in Europe, page 295. European Design and Automation Association, 2014. [cited on
page 361]

[205] Nam-phuong D. Nguyen, Hiroyuki Kuwahara, Chris J. Myers, and James P. Keener. The design
of a genetic Muller C-element. In The 13th IEEE International Symposium on Asynchronous
Circuits and Systems, 2007. [cited on page 20]



BIBLIOGRAPHY 645

[206] Jean P. Nicolle. Where FPGAs are fun. http://www.fpga4fun.com/. [cited on page 20]

[207] Rishiyur S. Nikhil. Bluespec: A General-Purpose Approach to High-Level Synthesis Based on
Parallel Atomic Transactions, pages 129–146. Springer Netherlands, Dordrecht, 2008. [cited
on page 23]

[208] S. Nikoletseas, C. Raptopoulos, and P. Spirakis. Large independent sets in general random
intersection graphs. Theoretical Computer Science, 406(3):215–224, October 2008. [cited on
page 368]

[209] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Wyvern: A simple, typed, and pure object-oriented language. In Proceedings of the
5th Workshop on MechAnisms for SPEcialization, Generalization and inHerItance, pages 9–16.
ACM, 2013. [cited on page 55]

[210] Steven M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhD thesis,
Stanford University, Department of Computer Science, 1993. [cited on page 32, 36]

[211] Richard K. Obousy and Eric W. Davis. Warp drive, dark energy, and the manipulation of extra
dimensions. Technical Report DIA-08-1004-001, Defense Intelligence Agency, December
2009. [cited on page 32]

[212] John o’Donnell. Teaching functional circuit specification in hydra. In Funtional Programming
Languages in Education, pages 195–214. Springer, 1995. [cited on page 204]

[213] Severo M. Ornstein, Mishell J. Stucki, and Wesley A. Clark. A functional description of
macromodules. In AFIPS Conference Proceedings: 1967 Spring Joint Computer Conference,
volume 30, pages 337–355, Atlantic City, NJ, 1967. Academic Press. [cited on page 252]

[214] Samir Palnitkar. Verilog HDL: a guide to digital design and synthesis, volume 1. Prentice Hall
Professional, 2003. [cited on page 23]

[215] André Pang, Don Stewart, Sean Seefried, and Manuel MT Chakravarty. Plugging Haskell
in. In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages 10–21. ACM, 2004.
[cited on page 55]

[216] Hongsik Park, Ali Afzali, Shu-Jen Han, George S Tulevski, Aaron D Franklin, Jerry Tersoff,
James B Hannon, and Wilfried Haensch. High-density integration of carbon nanotubes via
chemical self-assembly. Nature nanotechnology, 7(12):787–791, 2012. [cited on page 19]

[217] Terence Parr et al. Antlr parser generator. Online Stand Dezember, 2009. [cited on page 55]

[218] Enric Pastor, Jordi Cortadella, Alex Kondratyev, and Oriol Roig. Structural methods for
the synthesis of speed-independent circuits. IEEE Transactions on Computer-Aided Design,
17(11):1108–1129, November 1998. [cited on page 32]

[219] Enric Pastor, Oriol Roig, Jordi Cortadella, and Rosa M. Badia. Petri net analysis using boolean
manipulation. In 15th International Conference on Application and Theory of Petri Nets, June
1994. [cited on page 68, 238]

[220] Priyadarsan Patra. Approaches to Design of Circuits for Low-Power Computation. PhD thesis,
The University of Texas at Austin, 1995. [cited on page 285]

http://www.fpga4fun.com/


646 BIBLIOGRAPHY

[221] Priyadarsan Patra and Donald Fussel. Efficient building blocks for delay insensitive circuits.
In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 196–205, November 1994. [cited on page 74, 575]

[222] Priyadarsan Patra and Donald S. Fussell. Building-blocks for designing DI circuits. Technical
report tr93-23, Dept. of Computer Sciences, The University of Texas at Austin, November
1993. [cited on page 252, 253, 254, 260, 263, 277, 278, 421]

[223] Priyadarsan Patra and Donald S. Fussell. Fully asynchronous, robust, high-throughput arith-
metic structures. In Proc. of Eighth International Conference on VLSI Design. IEEE Computer
Society Press, January 1995. [cited on page 19, 412, 575]

[224] Priyadarsan Patra, Donald S. Fussell, and Stanislav Polonsky. Delay insensitive logic for
RSFQ superconductor technology. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 42–53. IEEE Computer Society Press, April 1997.
[cited on page 20]

[225] Volnei A. Pedroni. Circuit design with VHDL. MIT press, 2004. [cited on page 23]

[226] Ad Peeters and Kees van Berkel. Single-rail handshake circuits. In Asynchronous Design
Methodologies, pages 53–62. IEEE Computer Society Press, May 1995. [cited on page 253]

[227] Doron Peled. All from one, one for all: on model checking using representatives. In Computer
Aided Verification, pages 409–423. Springer, 1993. [cited on page 68]

[228] Song Peng, David Fang, John Teifel, and Rajit Manohar. Automated synthesis for asynchronous
FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 163–173. ACM, 2005. [cited on page 21]

[229] Ferdinand Peper, Jia Lee, Susumu Adachi, and Shinro Mashiko. Laying out circuits on
asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology,
14:469–485, 2003. [cited on page 19]

[230] Stanislaw J. Piestrak and Takashi Nanya. Towards totally self-checking delay-insensitive
systems. In Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth Interna-
tional Symposium on, pages 228–237. IEEE, 1995. [cited on page 575]

[231] Juha Plosila, R. Rukšenas, and Kaisa Sere. Delay-insensitive circuits and action systems.
Technical Report 60, Turku Centre for Computer Science, November 1996. [cited on page 575]

[232] Ivan Poliakov. Interpreted Graph Models. PhD thesis, Schoole of EECE, Newcastle University,
2011. [cited on page 41]

[233] Juan Pontes, Ney Calazans, and Pascal Vivet. H2A: A hardened asynchronous network on
chip. In Integrated Circuits and Systems Design (SBCCI), 2013 26th Symposium on, pages 1–6.
IEEE, 2013. [cited on page 575]

[234] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jordan Gray, et al. A
reconfigurable fabric for accelerating large-scale datacenter services. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 13–24. IEEE, 2014. [cited
on page 21]



BIBLIOGRAPHY 647

[235] Julian Rathke, Paweł Sobociński, and Owen Stephens. Compositional reachability in Petri
nets. In Reachability Problems, pages 230–243. Springer, 2014. [cited on page 90]

[236] Raúl Rojas. A tutorial introduction to the lambda calculus. arXiv preprint arXiv:1503.09060,
2015. [cited on page 58]

[237] A. W. Roscoe. Theory and Practice of Concurrency. Prentice-Hall (Pearson), 2005. [cited on
page 534]

[238] Saleh Safiruddin. Single electron tunneling based building blocks for delay insensitive circuits.
Master’s thesis, Delft University of Technology, 2008. [cited on page 20]

[239] Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap Van Den Herik, Guillaume M. J-B.
Chaslot, and Jos W. H. M. Uiterwijk. Single-player monte-carlo tree search. In International
Conference on Computers and Games, pages 1–12. Springer, 2008. [cited on page 306]

[240] David A. Schmidt. Denotational semantics: A methodology for language development. (self-
published) last available at http://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf,
1997. [cited on page 579]

[241] Karsteb Schmidt. Stubborn sets for standard properties. In Application and Theory of Petri
Nets 1999, pages 46–65. Springer, 1999. [cited on page 68]

[242] Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer
languages. Technical Report PR6-6, Oxford University Computing Laboratory, August 1971.
[cited on page 579]

[243] Roberto Segala. Quiescence, fairness, testing, and the notion of implementation. In CON-
CUR’93, pages 324–338. Springer, 1993. [cited on page 75]

[244] J. P. L. Segers. The design and analysis of asynchronous up-down counters. Master’s thesis,
Dept. of Math. and C.S., Eindhoven Univ. of Technology, June 1993. [cited on page 252, 270]

[245] Charles L. Seitz. Ideas about arbiters. Lambda, 1(1, First Quarter):10–14, 1980. [cited on
page 361]

[246] Charles L. Seitz. System timing. In Carver A. Mead and Lynn A. Conway, editors, Introduction
to VLSI Systems, chapter 7. Addison-Wesley, 1980. [cited on page 361]

[247] Jakov N Seizovic. Pipeline synchronization. In Advanced Research in Asynchronous Circuits
and Systems, 1994., Proceedings of the International Symposium on, pages 87–96. IEEE, 1994.
[cited on page 258]

[248] John M. Shalf and Robert Leland. Computing beyond moore’s law. Computer, 48(12):14–23,
2015. [cited on page 19]

[249] Maitham Shams. Modeling and Optimization of CMOS Logic Circuits with Application to
Asynchronous Design. PhD thesis, Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, Canada, May 1999. [cited on page 252]

[250] Maitham Shams, Jo C. Ebergen, and Mohamed I. Elmasry. Modeling and comparing CMOS
implementations of the C-element. IEEE Transactions on VLSI Systems, 6(4):563–567, Decem-
ber 1998. [cited on page 29]

http://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf


648 BIBLIOGRAPHY

[251] Naresh R Shanbhag, Subhasish Mitra, Gustavode de Veciana, Michael Orshansky, Radu
Marculescu, Jaijeet Roychowdhury, Douglas Jones, and Jan M Rabaey. The search for
alternative computational paradigms. IEEE Design & Test of Computers, (4):334–343, 2008.
[cited on page 19]

[252] Robin Sharp and Ole Rasmussen. Using a language of functions and relations for VLSI
specification. In Proceedings of the seventh international conference on Functional programming
languages and computer architecture, pages 45–54. ACM, 1995. [cited on page 204]

[253] Sol M. Shatz, Shengru Tu, Tadao Murata, and Sastry Duri. An application of Petri net reduction
for Ada tasking deadlock analysis. Parallel and Distributed Systems, IEEE Transactions on,
7(12):1307–1322, 1996. [cited on page 68, 238]

[254] Mary Sheeran. muFP, a language for VLSI design. In Proceedings of the 1984 ACM Symposium
on LISP and functional programming, pages 104–112. ACM, 1984. [cited on page 204]

[255] Mary Sheeran. Hardware design and functional programming: a perfect match. J. UCS,
11(7):1135–1158, 2005. [cited on page 204]

[256] Yebin Shi, Steve B. Furber, Jim Garside, and Luis A. Plana. Fault tolerant delay insensitive
inter-chip communication. In The 15th IEEE International Symposium on Asynchronous Circuits
and Systems, pages 77–84. IEEE, 2009. [cited on page 415]

[257] Klaus Simon. A note on lexicographic breadth first search for chordal graphs. Information
Processing Letters, 54:249–251, 1995. [cited on page 368]

[258] T. Singh and A. Taubin. A highly scalable GALS crossbar using token ring arbitration. IEEE
Design & Test of Computers, 24:464–472, September 2007. [cited on page 383]

[259] Kostas Siozios, George Koutroumpezis, Konstantinos Tatas, Dimitrios Soudris, and Adonios
Thanailakis. DAGGER: A novel generic methodology for FPGA bitstream generation and
its software tool implementation. In Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, pages 4–pp. IEEE, 2005. [cited on page 21]

[260] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012. [cited
on page 160, 360]

[261] Scott C. Smith, Ronald F. DeMara, Jiann S. Yuan, D. Ferguson, and D. Lamb. Optimization of
null convention self-timed circuits. INTEGRATION, the VLSI journal, 37(3):135–165, 2004.
[cited on page 253]

[262] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of Lecture Notes in
Computer Science. Springer-Verlag, 1985. [cited on page 47]

[263] Ali Asgar Sohanghpurwala, Peter Athanas, Tannous Frangieh, and Aaron Wood. OpenPR:
An open-source partial-reconfiguration toolkit for Xilinx FPGAs. In Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages
228–235. IEEE, 2011. [cited on page 21]

[264] Danil Sokolov, Victor Khomenko, and Andrey Mokhov. Workcraft: ten years later. In This
Asynchronous World, Essays dedicated to Alex Yakovlev on the occasion of his 60th birthday,
pages 269–293. Newcastle University, 2016. [cited on page 18]



BIBLIOGRAPHY 649

[265] Ritesh K. Soni. Open-Source Bitstream Generation for FPGAs. PhD thesis, Virginia Tech, 2013.
[cited on page 21]

[266] Ritesh Kumar Soni, Neil Steiner, and Matthew French. Open-source bitstream generation. In
21st Annual International Symposium on Field-Programmable Custom Computing Machines.
IEEE, 2013. [cited on page 21]

[267] J. Sparsø and S. Furber (eds.). Principles of Asynchronous Circuit Design. Springer, 2002.
[cited on page 18, 32, 575]

[268] Nattha Sretasereekul and Takashi Nanya. Eliminating isochronic-fork constraints in quasi-
delay-insensitive circuits. IEICE TRANSACTIONS on Fundamentals of Electronics, Communica-
tions and Computer Sciences, 86(4):900–907, 2003. [cited on page 575]

[269] Neil Steiner, Aaron Wood, Hamid Shojaei, Jacob Couch, Peter Athanas, and Matthew French.
Torc: towards an open-source tool flow. In Proceedings of the 19th ACM/SIGDA international
symposium on field programmable gate arrays, pages 41–44. ACM, 2011. [cited on page 21]

[270] Joseph E. Stoy. Denotational semantics: the Scott-Strachey approach to programming language
theory. MIT press, 1977. [cited on page 579]

[271] Ted Sundstrom. Mathematical reasoning: Writing and proof. https://www.tedsundstrom.
com/mathreasoning, 2018. [cited on page 88, 123]

[272] Gerry Sussman, Harold Abelson, and Julie Sussman. Structure and interpretation of computer
programs. MIT Press, Cambridge, Mass, 1983. [cited on page 18]

[273] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, June 1989.
[cited on page 27, 252, 485, 488]

[274] Ivan E. Sutherland. The tyranny of the clock. Communications of the ACM, 55(10):35–36,
October 2012. [cited on page 619]

[275] Ivan E. Sutherland and Jo Ebergen. Computers without clocks. Scientific American, 287(2),
August 2002. [cited on page 17]

[276] Zoltán Gendler Szabó. Compositionality. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, 2017. [cited on page 54]

[277] Luca Tallini. Design of some new efficient balanced codes. Master’s thesis, Oregon State
University, 1994. [cited on page 413]

[278] Lev Vasilevich Tarasov. The world is built on probability. Mir, 1988. [cited on page 363]

[279] Luis A. Tarazona, Doug A. Edwards, and Luis A. Plana. A synthesisable quasi-delay insensitive
result forwarding unit for an asynchronous processor. In Digital System Design, Architectures,
Methods and Tools, 2009. DSD’09. 12th Euromicro Conference on, pages 627–634. IEEE, 2009.
[cited on page 575]

[280] R. Tarjan and M. Yannakakis. Simple linear-time algorithm to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of
Computing, 13:566–579, 1984. [cited on page 368]

https://www.tedsundstrom.com/mathreasoning
https://www.tedsundstrom.com/mathreasoning


650 BIBLIOGRAPHY

[281] Alexander Taubin, Jordi Cortadella, Luciano Lavagno, Alex Kondratyev, and Ad Peeters.
Design automation of real-life asynchronous devices and systems. Foundations and Trends in
Electronic Design Automation, 2(1):1–133, 2007. [cited on page 17, 575]

[282] P. Teehan, M. Greenstreet, and G. Lemieux. A survey and taxonomy of GALS design styles.
IEEE Design & Test of Computers, 24(5):418–428, 2007. [cited on page 17]

[283] John Teifel and Rajit Manohar. An asynchronous dataflow FPGA architecture. Computers,
IEEE Transactions on, 53(11):1376–1392, 2004. [cited on page 21]

[284] Richard F. Tinder. Asynchronous sequential machine design and analysis: A comprehensive
development of the design and analysis of clock-independent state machines and systems.
Synthesis Lectures on Digital Circuits and Systems, 4(1):1–236, 2009. [cited on page 36]

[285] William Benjamin Toms. Synthesis of quasi-delay-insensitive datapath circuits. PhD thesis,
University of Manchester, 2006. [cited on page 253]

[286] Stephen Trimberger. Effects of FPGA architecture on FPGA routing. In Proceedings of the
32nd annual ACM/IEEE Design Automation Conference, pages 574–578. ACM, 1995. [cited
on page 21]

[287] Alan Tucker. Polya’s enumeration formula by example. Mathematics magazine, 47(5):248–256,
1974. [cited on page 356]

[288] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits.
Distributed Computing, 1(4):197–204, 1986. [cited on page 30, 35, 38, 47, 73, 137]

[289] Julian R. Ullmann. Bit-vector algorithms for binary constraint satisfaction and subgraph
isomorphism. J. Exp. Algorithmics, 15:1.6:1.1–1.6:1.64, February 2011. [cited on page 534]

[290] Antti Valmari. Stubborn sets for reduced state space generation. In Advances in Petri Nets
1990, pages 491–515. Springer, 1991. [cited on page 68]

[291] Antti Valmari. State of the art report: Stubborn sets. Petri Net Newsletter, 46:6–14, 1994.
[cited on page 68]

[292] Antti Valmari and Henri Hansen. Can stubborn sets be optimal? Fundamenta Informaticae,
113(3):377–397, 2011. [cited on page 68]

[293] Tom Verhoeff. Delay-insensitive codes—an overview. Distributed Computing, 3(1):1–8, 1988.
[cited on page 45, 185]

[294] Tom Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of Math. and C.S.,
Eindhoven Univ. of Technology, May 1994. [cited on page 19, 33, 47, 258, 298, 575]

[295] Thomas Villiger. Multi-point Interconnects for Globally-Asynchronous Locally-Synchronous
Systems. PhD thesis, ETH, Federal Institute of Technology Zurich, 2005. [cited on page 17,
258]

[296] Eelco Visser. WebDSL: A case study in domain-specific language engineering. In Generative
and Transformational Techniques in Software Engineering II, pages 291–373. Springer, 2008.
[cited on page 55]



BIBLIOGRAPHY 651

[297] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart CL Kats, Eelco Visser, and Guido Wachsmuth. DSL engineering: Designing, im-
plementing and using domain-specific languages. dslbook.org, 2013. [cited on page 55]

[298] Abraham Waksman. A permutation network. Journal of the ACM (JACM), 15(1):159–163,
1968. [cited on page 222]

[299] Jos H. Weber, Kees A. Schouhamer, Immink Hendrik, and C Ferreira. Extension of Knuth’s
balancing algorithm with error correction. 2012. [cited on page 415]

[300] Stephen Weston, Jean-Tristan Marin, James Spooner, Oliver Pell, and Oskar Mencer. Accel-
erating the computation of portfolios of tranched credit derivatives. In Workshop on High
Performance Computational Finance, 2010. [cited on page 21]

[301] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011. [cited on page 587]

[302] Skyler Windh, Xiaoyin Ma, Robert J. Halstead, Prerna Budhkar, Zabdiel Luna, Omar Hussaini,
and Walid A Najjar. High-level language tools for reconfigurable computing. Proceedings of
the IEEE, 103(3):390–408, 2015. [cited on page 20]

[303] Clifford Wolf and Mathias Lasser. Project IceStorm. http://www.clifford.at/icestorm/. [cited
on page 20]

[304] Catherine G. Wong, Alain J. Martin, and Peter Thomas. An architecture for asynchronous
FPGAs. In In Proceedings of International Conference on Field Programmable Technology, pages
170–177, 2003. [cited on page 21]

[305] Moe Thandar Wynn. Semantics, verification, and implementation of workflows with cancellation
regions and OR-joins. PhD thesis, Queensland University of Technology, 2006. [cited on
page 238]

[306] Moe Thandar Wynn, H. M. W. Verbeek, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and
David Edmond. Reduction rules for YAWL workflows with cancellation regions and OR-joins.
Information and Software Technology, 51(6):1010–1020, 2009. [cited on page 238]

[307] Liming Xiu. Clock technology: The next frontier. IEEE Circuits and Systems Magazine,
17(2):27–46, 2017. [cited on page 21]

[308] Alex Yakovlev, Pascal Vivet, and Marc Renaudin. Advances in asynchronous logic: From
principles to GALS & NoC, recent industry applications, and commercial CAD tools. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages 1715–1724.
EDA Consortium, 2013. [cited on page 18]

[309] Alexandre Yakovlev, Alexei Petrov, and Luciano Lavagno. A low latency arbitration circuit.
IEEE Transactions on VLSI Systems, pages 372–377, 1994. [cited on page 258]

[310] Alexandre Yakovlev, Alexei Petrov, and Luciano Lavagno. A low latency asynchronous
arbitration circuit. IEEE Transactions on VLSI Systems, 2(3):372–377, September 1994. [cited
on page 361]

http://www.clifford.at/icestorm/


652 BIBLIOGRAPHY

[311] Kenneth Y. Yun and David L. Dill. Automatic synthesis of extended burst-mode circuits: Part I
(specification and hazard-free implementation). IEEE Transactions on Computer-Aided Design,
18(2):101–117, February 1999. [cited on page 36]

[312] Fabio Zanasi. Interacting Hopf Algebras - the Theory of Linear Systems. PhD thesis, Ecole
Normale Supérieure de Lyon, 2015. [cited on page 205]


	Contents
	Background and Motivation
	Why to Study Delay Insensitive Circuits
	Audience
	Motivation
	Technological neutrality
	Configurable devices
	Concurrency theory

	Random tips on reading this book

	Why Delay Insensitive Design is Challenging
	How not to do it with logic gates
	Towards a reusable implementation
	A concept of signaling protocols

	How not to do it with DI primitives
	Better building blocks
	Implications of the current solution
	Ways forward from the current solution

	How not to compromise
	A two-output primitive
	DI versus QDI
	Yet another majority gate
	Back to the drawing board

	Judgment day
	What a sequencer does
	How a sequencer enables a majority gate
	Implications of this solution


	The Lay of the Land
	Overview
	The process model
	Process concepts
	Generality
	Environments

	Block diagrams
	Notation
	Methodology
	Flattening

	Towards a process semantics
	Trace structural composition
	Deficiencies of a naive trace structural composition

	Petri nets
	Notation and conventions of Petri nets
	Expressiveness of Petri nets
	Compositionality of Petri nets
	Limitations of Petri nets

	Procedural description
	Combinator examples
	Repetition
	Conditional execution
	Adaptation to an environment


	Success
	Reachability graphs
	Example of a reachability graph
	Reachability graph algorithms

	The transducer model
	Operation
	Limitations
	Utility

	Traces revisited
	Progress obligations
	Quiescent traces
	Refinement
	Trace analysis

	From transducers to trace recognizers
	A preliminary subgraph
	The complete graph
	Edge cases
	Other trace recognizers

	Interim remarks


	Formal Models
	Petri Net Plumbing
	Mathematical conventions
	Mapping
	Domains and ranges
	Cases
	Ordinals

	From Petri nets to processes
	A concrete model
	Presets and postsets
	Hacking the universe
	Open Petri nets
	Process models

	Editing operations
	Rewriting
	Sums
	Differences
	Completion

	Process combinators
	Communication
	Parallel composition
	Environmental restriction
	Sequential composition
	Choice
	Recursion


	Reachability Graph Wrangling
	Math usage
	Graphs
	Partitions
	Ordinals

	Initial reachability graph
	Overview
	Derivation

	Divergence propagation
	Divergent vertices
	Disabled inputs
	Numbered vertices

	Anonymous edge reduction
	Overview
	Derivation

	Redundant path elimination
	Overview
	Derivation

	Partition fusion
	Overview
	Derivation


	Transducer Tuning
	Finite automata
	Sequences
	Bracket notation
	State graphs
	Deterministic finite automata
	Non-deterministic finite automata

	The transducer
	Overview
	Derivation

	Serial transducers
	Overview
	Derivation

	Trace recognizers
	Non-deterministic relational trace recognizer
	Deterministic relational trace recognizer
	Behavioral equivalence
	Alternative extensional descriptions

	A canonical form for Petri nets
	Overview
	Preparation
	Specification

	Process combinators revisited

	Block Building
	On lists
	Creating a list
	Deleting from a list
	Folding over a list
	Mapping over a list
	Inverse of a list
	Flattening a list
	Transposing a list

	Primitive blocks
	Hierarchical blocks
	Block combinators
	Block algebra

	Netlists
	Conventions about schematics
	Specifying a schematic by a netlist

	From hierarchical blocks to netlists
	Primitive blocks
	Non-unit lists
	Unit lists
	The transformation

	From hierarchical blocks to primitive blocks
	Non-unit lists
	Unit lists
	The transformation

	From blocks and netlists to processes
	Alphabet soup
	More transformations
	Generalized refinement

	Connection patterns
	Schematic capture
	Permutations
	Generalized terminal rotations

	Repetitive structures
	Arrays
	Cascades



	Module Families
	As Primitive as Can Be
	Petri net optimizations
	Parallel fusion
	Serial transition fusion
	Serial place fusion
	Self-loop place removal
	Self-loop transition removal
	Redundant cycle removal
	Miscellaneous static optimizations
	The whole mix

	Block optimizations
	Overview
	Specifications

	DI primitives
	The continuing saga
	Universality
	Cardinality and modularity
	Specifications
	Implications

	Generalized DI primitives
	Three-terminal primitive generalizations
	Arbiter generalizations


	Decisions, Decisions
	Ordered trees
	Definition
	Terminology
	Computation
	Notation

	Cascading planar decision waits
	Lateral
	Bilateral
	General

	Quadrangular decision waits
	Basic
	Vertical
	General
	A revised planar decision wait generating function

	Multidimensional decision waits
	Dendriform
	Crossbar

	Decision wait transformations
	Permuting along the axes
	Permuting the axes
	Permuting and rotating

	Optimized decision waits
	Global decompositions
	Quadrangular
	Dendriform
	Crossbar
	General


	Thin on the Ground
	Notation
	Ordinals
	Transposing
	Flattening
	Coordinates

	Sparse decision wait transformations
	Coordinate transformations
	Permuting along the axes
	Permuting the axes

	Fallback position
	Degenerate
	Separable

	Planar sparse decision waits
	Spanning
	Enmeshed

	Multidimensional sparse decision waits
	Dendriform
	Crossbar

	Optimization
	Sparse global decompositions
	General combining form
	Decomposition strategies

	Verification
	Alphabet ordering
	Input symbol assignment
	Output symbol assignment
	Process specification
	Correctness


	All About Arbiters
	Notation
	Scalar multiplication
	Permutations
	Zipped function application
	Probability theory

	Arbiter decompositions
	Mesh
	Dendriform
	Token ring
	General

	Transfer functions
	Probability vectors and distributions
	Incremental transfer function
	Incremental token distribution
	Cumulative transfer function

	Access patterns
	Spatial locality
	Temporal locality

	Metrics
	Expectation
	Optimization


	Putting the Word Out
	Pep talk
	A two-wire protocol
	1-hot codes
	Dual rail codes
	Constant weight codes
	General delay insensitive codes
	Terminology

	Encoders
	Basic
	Front optimized
	Back optimized

	Decoders
	Basic
	Joinable
	Factorable
	Partitionable
	General

	Completion detectors
	Sequencers
	Majority gates
	Recurrence

	Transcoders
	Basic
	Partitionable
	General


	Working on the Railroad
	Arithmetic units
	Adders
	Subtracters
	Buffers

	Dual rail to Sperner code conversion
	Transcoding algorithm
	Circuit derivation

	Sperner to dual rail conversion
	Preparation
	Derivation

	Parallelism
	Dual rail toggles
	Channel demultiplexers
	Channel multiplexers
	Micropipeline controllers
	A parallel transcoder



	Synthesis
	State Based Synthesis
	Overview
	The uncomplicated case
	Complications
	Non-quiescent processes
	Non-deterministically concurrent processes

	Transducer types
	Anti-refined transducers
	Feedback anti-refined transducers

	Basic synthesis
	Decomposition
	Building blocks
	Combining form
	Loose ends

	Input reduction
	Decomposition
	Combining form

	State reduction
	Decomposition
	Combining form

	Separation
	Decomposition
	Combining form


	Direct Mapping Synthesis
	Overview
	Mutual recurrences
	Ad hoc solution
	Solution by lists of functions
	Solution by dependence graphs

	Refined canonical forms
	Decomposition
	Interacting state based synthetic communities
	Places
	State based transition arrays
	Communities
	Combining form

	Interacting direct mapped synthetic communities
	Overview
	Transitions
	Lockable transitions
	Monitors
	Direct mapped transition arrays
	Communities

	State implosion
	A naive solution
	A better solution
	Concluding remarks



	Appendices
	Supplementary Remarks on Quasi-Delay Insensitivity
	CMOS inverters
	Unexposed delays
	Conclusions

	Complete Partial Orderings and Fixed Points
	Theoretical primer
	Standard fixed point construction
	Continuity
	Ordering of functions

	Relevance to DI processes
	CPO Structure
	Least upper bounds
	Continuity of process combinators

	Further work

	Decision Wait Metrics
	Component count
	Multidimensional
	Quadrangular
	Cascading

	Critical path length
	Cascading
	Quadrangular
	Dendriform
	Crossbar
	General


	Latency Arithmetic
	Latencies as a vector space
	Comparison of latency vectors
	Manhattan distances
	Expected separations
	Expected wire delays

	Parallel combination of latency vectors

	Arbiter Metrics
	Contention
	Critical path length
	Tree
	Mesh
	Token ring
	General


	Dual Rail Buffer Cell Theory of Operation
	Bibliography


