
Maurizio Petrelli

Using Python to Solve
Geological Problems

Machine
Learning for
Earth Sciences

Springer Textbooks in Earth Sciences,
Geography and Environment

The Springer Textbooks series publishes a broad portfolio of textbooks on Earth
Sciences, Geography and Environmental Science. Springer textbooks provide com-
prehensive introductions as well as in-depth knowledge for advanced studies. A
clear, reader-friendly layout and features such as end-of-chapter summaries, work
examples, exercises, and glossaries help the reader to access the subject. Springer
textbooks are essential for students, researchers and applied scientists.

Maurizio Petrelli

Machine Learning for Earth
Sciences
Using Python to Solve Geological Problems

Maurizio Petrelli
Department of Physics and Geology
University of Perugia
Perugia, Italy

ISSN 2510-1307 ISSN 2510-1315 (electronic)
Springer Textbooks in Earth Sciences, Geography and Environment
ISBN 978-3-031-35113-6 ISBN 978-3-031-35114-3 (eBook)
https://doi.org/10.1007/978-3-031-35114-3

This work was supported by University of Perugia

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover illustration: ipopba / stock.adobe.com

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3
https://doi.org/10.1007/978-3-031-35114-3

To my family and friends

Preface

Machine Learning for the Earth Sciences provides Earth Scientists with a progres-
sive partway from zero to machine learning, with examples in Python aimed at the
solution of geological problems. This book is devoted to Earth Scientists, at any
level, from students to academics and professionals who would like to be introduced
to machine learning. Basic knowledge of Python programming is necessary to fully
benefit from this book. If you are a complete novice to Python, I suggest you start
with Python introductory books such as Introduction to Python in Earth Science
Data Analysis.1 Machine Learning for the Earth Sciences is divided into five
parts and attempts to be geologist-friendly. Machine learning mathematics is gently
provided and technical parts are limited to the essentials. Part I introduces the basics
of machine learning with a geologist-friendly language. It starts by introducing
definitions, terminology, and fundamental concepts (e.g., the types of learning
paradigms). It then shows how to set up a Python environment for machine learning
applications and finally describes the typical machine learning workflow. Parts II
and III are about unsupervised and supervised learning, respectively. They start by
describing some widely used algorithms and then provide examples of applications
to Earth Sciences such as the clustering and dimensionality reduction in petro-
volcanological applications, the clustering of multi-spectral data, classification of
well-log data facies, and machine learning regression in petrology. Part IV deals
with the scaling of machine learning models. When your PC starts suffering from
the dimension of the data set or the complexity of the model, you need scaling!
Finally, Part V introduces deep learning. It starts by describing the PyTorch library
and provides an example application for Earth Sciences. If you are working in Earth
Science and would like to start exploiting the power of machine learning in your
projects, this is the right place for you.

Assisi, Italy Maurizio Petrelli
28 July, 2023

1 https://bit.ly/python-mp.

vii

https://bit.ly/python-mp
https://bit.ly/python-mp
https://bit.ly/python-mp
https://bit.ly/python-mp
https://bit.ly/python-mp

Acknowledgments

I would like to acknowledge all the people who encouraged me when I decided to
begin this new challenging adventure, arriving just after the satisfying but extremely
strenuous challenge that was the book Introduction to Python in Earth Science Data
Analysis: From Descriptive Statistics to Machine Learning. First, I would like to
thank my colleagues in the Department of Physics and Geology at the University of
Perugia. I would also like to thank the Erasmus Plus (E+) program that supported
my new foreign teaching excursions in Hungary, Azores, and Germany. Namely,
Professor Francois Holtz (Leibniz Universität Hannover), José Manuel Pacheco
(Universidade dos Açores), and Professor Szabolcs Harangi (Eötvös University
Budapest) are also kindly acknowledged for allowing me to teach the “Introduction
to Machine Learning” courses at their institutions. In addition, I thank J. ZhangZhou
(Zhejiang University) and Kunfeng Qiu (China University of Geosciences) who
invited me to give lectures and short courses on topics related to the application
of machine learning to Earth Sciences. I would like to acknowledge the “Piano delle
azioni collaborative e trasversali” at the University of Perugia with emphasis on the
working packages “3.1 - Disastri e crisi complesse”, “4.1 - IA Data management e
Data Science”, and “4.4 - Scienza dell’Informazione e Calcolo ad alta prestazione.”
Professor Giampiero Poli is kindly acknowledged, thanks for being a great mentor
during my early career. Finally, I give my heartfelt thanks to my family, who, once
more, put up with me as I completed this book.

ix

Overview

Let Me Introduce Myself

Hi and welcome, my name is Maurizio Petrelli and I currently work at the
Department of Physics and Geology, University of Perugia (UniPg) in Italy. My
research focuses on the petrological characterization of volcanoes with an emphasis
on the dynamics and timescales of pre-eruptive events. For this work, I combine
classical and unconventional techniques. Since 2002, I’ve worked intensely in the
laboratory, mainly focusing on the development of UniPg’s facility for Laser Abla-
tion Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). In February
2006, I obtained my Ph.D. degree with a thesis entitled “Nonlinear Dynamics in
Magma Interaction Processes and Their Implications on Magma Hybridization.”
In September 2021, I authored the book titled Introduction to Python in Earth
Science Data Analysis: From Descriptive Statistics to Machine Learning published
by Springer Nature. Since December 2021, I have been an Associate Professor at
the Department of Physics and Geology at UniPg, and I am now developing a new
line of research for applying machine learning techniques in Geology.

Styling Conventions

I use conventions throughout this book to identify different types of information. For
example, Python statements, commands, and variables used within the main body
of the text are set in italics. A block of Python code is highlighted as follows:

1 import numpy as np
2
3 def sum(a,b):
4 return a + b
5
6 c = sum(3,4)

xi

xii Overview

Shared Code

All code presented in this book is tested on the Anaconda Individual Edition
ver. 2023.03 (Python 3.10.9) and is available at my GitHub repository (. � petrelli-
m):

. � http://bit.ly/ml_earth_sciences

Involvement and Collaborations

I am always open to new collaborations worldwide. Feel free to contact me by email
to discuss new ideas or propose a collaboration. You can also reach me through
my personal website or by Twitter. I love sharing the content of this book in short
courses everywhere. If you are interested, please contact me to organize a visit to
your institution.

http://bit.ly/ml_earth_sciences
http://bit.ly/ml_earth_sciences
http://bit.ly/ml_earth_sciences
http://bit.ly/ml_earth_sciences
http://bit.ly/ml_earth_sciences
http://bit.ly/ml_earth_sciences

Contents

Part I Basic Concepts of Machine Learning for Earth Scientists

1 Introduction to Machine Learning . 3
1.1 Machine Learning: Definitions and Terminology. 3
1.2 The Learning Process . 4
1.3 Supervised Learning . 5
1.4 Unsupervised Learning . 6
1.5 Semisupervised Learning . 9
References . 9

2 Setting Up Your Python Environments for Machine Learning 11
2.1 Python Modules for Machine Learning . 11
2.2 A Local Python Environment for Machine Learning 12
2.3 ML Python Environments on Remote Linux Machines 12
2.4 Working with Your Remote Instance . 20
2.5 Preparing Isolated Deep Learning Environments 22
2.6 Cloud-Based Machine Learning Environments . 23
2.7 Speed Up Your ML Python Environment . 27
References . 28

3 Machine Learning Workflow . 29
3.1 Machine Learning Step-by-Step . 29
3.2 Get Your Data . 29
3.3 Data Pre-processing . 33

3.3.1 Data Inspection . 34
3.3.2 Data Cleaning and Imputation . 35
3.3.3 Encoding Categorical Features. 36
3.3.4 Data Augmentation . 37
3.3.5 Data Scaling and Transformation . 37
3.3.6 Compositional Data Analysis (CoDA) . 40
3.3.7 A Working Example of Data Pre-processing 42

3.4 Training a Model . 46

xiii

xiv Contents

3.5 Model Validation and Testing. 48
3.5.1 Splitting the Investigated Data Set into Three Parts 48
3.5.2 Cross-Validation . 49
3.5.3 Leave-One-Out Cross-Validation . 52
3.5.4 Metrics . 53
3.5.5 Overfitting and Underfitting. 54

3.6 Model Deployment and Persistence . 55
References . 58

Part II Unsupervised Learning

4 Unsupervised Machine Learning Methods . 61
4.1 Unsupervised Algorithms . 61
4.2 Principal Component Analysis . 61
4.3 Manifold Learning . 62

4.3.1 Isometric Feature Mapping. 63
4.3.2 Locally Linear Embedding . 63
4.3.3 Laplacian Eigenmaps . 64
4.3.4 Hessian Eigenmaps . 64

4.4 Hierarchical Clustering . 64
4.5 Density-Based Spatial Clustering of Applications with Noise 65
4.6 Mean Shift . 66
4.7 K-Means . 66
4.8 Spectral Clustering . 67
4.9 Gaussian Mixture Models. 68
References . 69

5 Clustering and Dimensionality Reduction in Petrology 71
5.1 Unveil the Chemical Record of a Volcanic Eruption 71
5.2 Geological Setting . 73
5.3 The Investigated Data Set . 74
5.4 Data Pre-processing . 74

5.4.1 Data Cleaning . 74
5.4.2 Compositional Data Analysis (CoDA) . 76

5.5 Clustering Analyses . 78
5.6 Dimensionality Reduction . 81
References . 83

6 Clustering of Multi-Spectral Data . 85
6.1 Spectral Data from Earth-Observing Satellites . 85
6.2 Import Multi-Spectral Data to Python . 86
6.3 Descriptive Statistics . 90
6.4 Pre-processing and Clustering . 93
References . 95

Contents xv

Part III Supervised Learning

7 Supervised Machine Learning Methods . 99
7.1 Supervised Algorithms . 99
7.2 Naive Bayes . 99
7.3 Quadratic and Linear Discriminant Analysis . 102
7.4 Linear and Nonlinear Models . 102
7.5 Loss Functions, Cost Functions, and Gradient Descent 105
7.6 Ridge Regression . 109
7.7 Least Absolute Shrinkage and Selection Operator. 109
7.8 Elastic Net . 110
7.9 Support Vector Machines . 110
7.10 Supervised Nearest Neighbors . 112
7.11 Trees-Based Methods . 114
References . 115

8 Classification of Well Log Data Facies by Machine Learning 117
8.1 Motivation . 117
8.2 Inspection of the Data Sets and Pre-processing . 118
8.3 Model Selection and Training . 129
8.4 Final Evaluation . 135
References . 140

9 Machine Learning Regression in Petrology. 141
9.1 Motivation . 141
9.2 LEPR Data Set and Data Pre-processing . 142
9.3 Compositional Data Analysis . 149
9.4 Model Training and Error Assessment . 153
9.5 Evaluation of Results. 154
References . 157

Part IV Scaling Machine Learning Models

10 Parallel Computing and Scaling with Dask . 161
10.1 Warming Up: Basic Definitions . 161
10.2 Basics of Dask . 162
10.3 Eager Computation Versus Lazy Evaluation . 168
10.4 Diagnostic and Feedback . 173
References . 175

11 Scale Your Models in the Cloud . 177
11.1 Scaling Your Environment in the Cloud. 177
11.2 Scaling in the Cloud: The Hard Way . 178
11.3 Scaling in the Cloud: The Easy Way . 180
Reference . 189

xvi Contents

Part V Next Step: Deep Learning

12 Introduction to Deep Learning . 193
12.1 What Does Deep Learning Mean?. 193
12.2 PyTorch . 195
12.3 PyTorch Tensors . 195
12.4 Structuring a Feedforward Network in PyTorch . 197
12.5 How to Train a Feedforward Network . 198

12.5.1 The Universal Approximation Theorem. 198
12.5.2 Loss Functions in PyTorch . 199
12.5.3 The Back-Propagation and its Implementation in

PyTorch . 199
12.5.4 Optimization . 201
12.5.5 Network Architectures . 201

12.6 Example Application . 204
References . 209

Part I
Basic Concepts of Machine Learning for

Earth Scientists

Chapter 1
Introduction to Machine Learning

1.1 Machine Learning: Definitions and Terminology

Shai and Shai (2014) define machine learning (ML) as “the automated detection of
meaningful patterns in data.” Since this is a broad definition, I am going to narrow it
down by providing additional definitions from various authors (e.g., Samuel, 1959;
Jordan & Mitchell, 2015; Géron, 2017; Murphy, 2012).

As example, Murphy (2012) defines ML as “the application of algorithms and
methods to detect patterns in large data sets and the use of these patterns to predict
future trends, to classify, or to make other types of strategic decisions.”

In one of the earliest attempts to define ML, Samuel (1959) outlined one of
the primary goals as “a computer that can learn how to solve a specific task,
without being explicitly programmed.” We can also take advantage of a more formal
definition by Mitchell (1997): “A computer program is said to learn from experience
E with respect to some task T and some performance measure P if its performance
on T, as measured by P, improves with experience E.” But what is “experience” for
a computer program? In the physical sciences, experience for a computer program
almost always coincides with data, so we can reword the definition by Mitchell
(1997) to “A computer program is said to learn from data D with respect to some
task T and some performance measure P if its performance on T, as measured by P,
improves with the analysis of D.”

One shared feature of ML methods is that they attempt to solve problems without
requiring a detailed specification of the tasks to execute (Shai & Shai, 2014).
Especiallyv when a human programmer cannot provide an explicit pathway to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1
https://doi.org/10.1007/978-3-031-35114-3_1

4 1 Introduction to Machine Learning

Fig. 1.1 Artificial
intelligence, machine
learning, and deep learning

Deep Learning

Machine Learning

Artificial Intelligence

achieve the solution to the problem, these methods can often unravel the complexity
of hidden patterns in the investigated data set and solve it.

By using set theory, we can define ML as a subset of artificial intelligence
(AI), which is the effort to automate intellectual tasks normally performed by
humans (Chollet, 2021) (Fig. 1.1). Note that AI covers a broad domain involving
both ML and deep learning (DL). However, the AI set also includes numerous other
approaches and techniques, some of which do not involve learning.

To summarize, the following are the key features of ML algorithms:

• ML methods try to extract meaningful patterns from a data set;
• ML algorithms are not explicitly programmed to solve a specific task;
• The learning process is a fundamental task in ML;
• ML methods learn from data;
• ML is a subset of AI;
• DL is a subset of ML.

When we start a new discipline, the first task is to learn the basic concepts
and terminology. Table 1.1 gives a basic glossary to familiarize the geoscientist
with the “language” used by data scientists, which is often difficult and sometimes
misleading for a novice.

1.2 The Learning Process

As stated above, ML algorithms are not programmed to process a conceptual model
defined a priori but instead attempt to uncover the complexities of large data sets
through a so-called learning process (Bishop, 2007; Shai & Shai, 2014). In other
words, the main goal of ML algorithms is to transform experience (i.e., data) into
“knowledge” (Shai & Shai, 2014).

To better understand, we can compare the learning process of ML algorithms
to that of humans. For example, humans begin learning to use the alphabet by

1.3 Supervised Learning 5

observing the world around them where they find sounds, written letters, words, or
phrases. Then, at school, they understand the significance of the alphabet and how to
combine the different letters. Similarly, ML algorithms use the training data to learn
significant patterns and then use the learned expertise to provide an output (Shai &
Shai, 2014). One way to classify ML algorithms is by their degree of “supervision”
(i.e., supervised, unsupervised, or semisupervised; Shai & Shai, 2014).

1.3 Supervised Learning

The training of supervised ML methods always provides both the input data and the
desired solutions (i.e., the labels) to the algorithm. As an example, regression and
classification tasks are suitable problems for supervised learning methods.

In classification tasks (Figs. 1.2a and b), ML algorithms try to assign a new
observation to a specific class (i.e., a set of instances characterized by the same
label) (Lee, 2019). If you do not understand some terms, please refer to Table 1.1.
In regression problems (Fig. 1.2c and d), ML algorithms try, in response to an
observation, to guess the value for one or more dependent variables.

Later in the book, we discuss extensively the application of regression and
classification tasks in earth science problems (cf. Part III). However, Fig. 1.2 outlines
two geological examples of supervised learning in the field of classification and

Table 1.1 Basic ML terminology. For a detailed glossary, please refer to the online ML course by
Google™: https://bit.ly/mlglossary

Term Description

Tensor In ML, the word tensor typically describes a multidimensional array

Feature An input variable used by ML algorithms

Attribute Often used as a synonym feature

Label Consists of the correct “answer” or “result” for a specific input tensor

Observation A synonym for instance and example; a row of the data set,
characterized by one or more features. In labeled data sets,
observations also contain a label. In a geochemical data set,
observations consist of one sample

Class A set of observations characterized by the same label

Prediction The output of a ML algorithm for a specific input observation

Model What a ML algorithm has learned after training

Training a model Process of determining the best model. Is is synonymous with the
learning process

Training data set The subset of the investigated data set used to train the model in the
learning process

Validation data set The subset of the investigated data set used to validate the model in
the learning process

Test data set An independent data set used to test the model after the validation
process

https://bit.ly/mlglossary
https://bit.ly/mlglossary
https://bit.ly/mlglossary
https://bit.ly/mlglossary

6 1 Introduction to Machine Learning

Feature 1

F
ea

tu
re

 2

Volcanic Source 1

Volcanic Source 3

Volcanic Source 2

Feature 1
F

ea
tu

re
 2

Unknown
samples

Feature 1

T
em

pe
ra

tu
re

Regression Model

Training
data

Classification
model

Training
data

Unknown
sample

Estimated
storage

temperature

Feature 1

T
em

pe
ra

tu
re

T3

T2

T1

T3 T2 T1

zoned
crystal

(a) (b)

(c) (d)

Regression

Classification

Fig. 1.2 Supervised learning: (a, b) classification and (c, d) regression

regression: (1) the identification of the volcanic source using glass shard composi-
tions, which is a typical problem in tephrostratigraphy and tephrochronology (Lowe,
2011), and (2) the retrieval of magma storage temperatures based on clinopyroxene
chemistry (Petrelli et al., 2020).

1.4 Unsupervised Learning

Unsupervised learning acts on unlabeled training data. In other words, the ML
algorithm tries to identify significant patterns from the investigated data set without
the benefit of being fed external solutions. Fields that apply unsupervised learning

1.4 Unsupervised Learning 7

Feature 1

(c)

Dimensionality Reduction

Feature 1

F
ea

tu
re

 2

(a)

Clustering

Feature 1
F

ea
tu

re
 2

(b)
Cluster 1

Cluster 2

Cluster 3

F
ea

tu
re

 2

Feature 3

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Training data set

(d)

Fig. 1.3 Unsupervised learning: (a, b) clustering and (c, d) dimensionality reduction

include clustering, dimensionality reduction, and the detection of outliers or novelty
observations.

Clustering consists of grouping “similar” observations into “homogeneous”
groups (see Fig. 1.3a and b), which helps in discovering unknown patterns in
unlabeled data sets. In the Earth Sciences, clustering has widespread applications
in seismology (e.g., Trugman and Shearer, 2017), remote sensing (e.g., Wang et al.,
2018), volcanology (e.g., Caricchi et al., 2020), and geochemistry (e.g., Boujibar
et al., 2021) to cite a few.

The reduction of the dimensionality (Fig. 1.3c and d) of a problem reduces the
number of features to treat, allowing the visualization of high-dimensional data
sets (e.g., Morrison et al., 2017) or increasing the efficiency of a ML workflow.

8 1 Introduction to Machine Learning

Feature 1

F
ea

tu
re

 2

(a)

Outlier Detection

Feature 1
F

ea
tu

re
 2

(b)

OutlierTraining data set

Feature 1

F
ea

tu
re

 2

(c)

Novelty Detection

Feature 1

F
ea

tu
re

 2

(d)

Anomaly

Training data set

Not an anomaly

Fig. 1.4 Unsupervised learning: (a, b) outlier and (c, d) novelty detection

Tenenbaum et al. (2000) provide a concise but effective definition of dimensionality
reduction: “finding meaningful low-dimensional structures hidden in their high-
dimensional observations.”

Finally, the detection of outlier or novelty observations (Fig. 1.4) deals with
deciding whether a new observation belongs to a single set (i.e., an inlier) or should
be considered different (i.e., an outlier or a novelty). The main difference between
outlier and novelty detection lies in the learning process. In outlier detection
(Fig. 1.4a and b), training data contain both inliers and potential outliers. Therefore,
the algorithm tries to define which observation deviates from the others. In novelty
detection (Fig. 1.4c and d), the training data set contains inliers only, and the
algorithm tries to determine if a new observation is an outlier (i.e., a novelty).

References 9

Feature 1

F
ea

tu
re

 2

(a)

Semi-supervised learning

F
ea

tu
re

 2

(b)
classification model using
the supervised learning

Class 1

Class 2

Feature 1

classification model using
the semi-supervised learning

Labeled training observations: Class 1 - Class 2 | Unlabeled training observations:

Class 1

Class 2

Fig. 1.5 (a) A supervised classification model using two labeled observations as the training data
set. (b) A semisupervised classification model using the same two labeled observations from panel
(a) plus many unlabeled instances

1.5 Semisupervised Learning

As you may argue, semisupervised learning falls somehow between supervised
and unsupervised training methods. Typically, semisupervised algorithms learn
from a small portion of labeled data and a large portion of unlabeled data (Zhu
& Goldberg, 2009). More specifically, semisupervised learning algorithms use
unlabeled data to improve supervised learning tasks when the labeled data are scarce
or expensive (Zhu & Goldberg, 2009). To better understand, please see Fig. 1.5. In
detail, Fig. 1.5a reports the results of a supervised classification model that uses two
labeled observations as the training data set. Also, Fig. 1.5b displays a classification
model resulting from semisupervised learning from the same two labeled data sets
of Fig. 1.5a, plus several unlabeled observations.

References

Bishop, C. (2007). Pattern recognition and machine learning. Springer Verlag.
Boujibar, A., Howell, S., Zhang, S., Hystad, G., Prabhu, A., Liu, N., Stephan, T., Narkar, S., Eleish,

A., Morrison, S. M., Hazen, R. M., & Nittler, L. R. (2021). Cluster analysis of presolar
silicon carbide grains: Evaluation of their classification and astrophysical implications. The
Astrophysical Journal. Letters, 907(2), L39. https://doi.org/10.3847/2041-8213/ABD102

https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102

10 1 Introduction to Machine Learning

Caricchi, L., Petrelli, M., Bali, E., Sheldrake, T., Pioli, L., & Simpson, G. (2020). A data
driven approach to investigate the chemical variability of clinopyroxenes from the 2014–2015
Holuhraun–Bárdarbunga eruption (Iceland). Frontiers in Earth Science, 8. https://doi.org/10.
3389/feart.2020.00018

Chollet, F. (2021). Deep learning with Python. (2nd ed.). Manning.
Geéron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts,

tools, and techniques to build intelligent systems. O’Reilly Media, Inc.
Jordan, M., & Mitchell, T. (2015). Machine learning: Trends, perspectives, and prospects. Science,

349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Lee, W.-M. (2019). Phyton machine learning. John Wiley & Sons Inc.
Lowe, D. J. (2011). Tephrochronology and its application: A review. Quaternary Geochronology,

6(2), 107–153. https://doi.org/10.1016/j.quageo.2010.08.003
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
Morrison, S., Liu, C., Eleish, A., Prabhu, A., Li, C., Ralph, J., Downs, R., Golden, J., Fox, P., Hum-

mer, D., Meyer, M., & Hazen, R. (2017). Network analysis of mineralogical systems. American
Mineralogist, 102(8), 1588–1596. https://doi.org/10.2138/am-2017-6104CCBYNCND

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. The MIT Press.
Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine learning thermo-barometry: Application

to clinopyroxene-bearing magmas. Journal of Geophysical Research: Solid Earth, 125(9).
https://doi.org/10.1029/2020JB020130

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3, 210–229.

Shai, S.-S., & Shai, B.-D. (2014). Understanding machine learning: From theory to algorithms.
Cambridge University Press.

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. https://doi.org/10.1126/
SCIENCE.290.5500.2319

Trugman, D., & Shearer, P. (2017). GrowClust: A hierarchical clustering algorithm for relative
earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earth-
quake sequences. Seismological Research Letters, 88(2), 379–391. https://doi.org/10.1785/
0220160188

Wang, Q., Zhang, F., & Li, X. (2018). Optimal clustering framework for hyperspectral band
selection. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 5910–5922. https://
doi.org/10.1109/TGRS.2018.2828161

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Morgan; Claypool
Publishers.

https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.3389/feart.2020.00018
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.1016/j.quageo.2010.08.003
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.2138/am-2017-6104CCBYNCND
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1785/0220160188
https://doi.org/10.1785/0220160188
https://doi.org/10.1785/0220160188
https://doi.org/10.1785/0220160188
https://doi.org/10.1785/0220160188
https://doi.org/10.1785/0220160188
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161
https://doi.org/10.1109/TGRS.2018.2828161

Chapter 2
Setting Up Your Python Environments
for Machine Learning

2.1 Python Modules for Machine Learning

The development of A ML model in Python uses both general-purpose scientific
libraries (e.g., NumPy, ScyPy, and pandas) and specialized modules (e.g., scikit-
learn,1 PyTorch,2 and TensorFlow3).

Scikit-Learn Scikit-learn is a Python module that solves small- to medium-scale
ML problems (Pedregosa et al., 2011). It implements a wide range of state-of-the-art
ML algorithms, making it one of the best options to start learning ML (Pedregosa
et al., 2011).

PyTorch PyTorch is a Python package that combines high-level features for
tensor management, neural network development, autograd computation, and
back-propagation (Paszke et al., 2019). The PyTorch library grows within
Meta’s AI4 (formerly Facebook AI) research team. In addition, it benefits from
a strong ecosystem and a large user community that supports its development
(Papa, 2021).

TensorFlow TensorFlow began at Google, and it was open-sourced in 2015. It
combines tools, libraries, and community resources to develop and deploy DL
models in Python (Bharath & Reza Bosagh, 2018).

1 https://scikit-learn.org.
2 https://pytorch.org.
3 https://www.tensorflow.org.
4 https://ai.facebook.com.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 2&domain=pdf
https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://pytorch.org
https://pytorch.org
https://pytorch.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://ai.facebook.com
https://ai.facebook.com
https://ai.facebook.com
https://ai.facebook.com
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2
https://doi.org/10.1007/978-3-031-35114-3_2

12 2 Setting Up Your Python Environments for Machine Learning

2.2 A Local Python Environment for Machine Learning

The Individual Edition of the Anaconda Python Distribution5 provides an example
of a “ready-to-use” scientific Python environment to perform basic ML tasks with
the scikit-learn module. It also allows advanced tasks such as installing libraries
that are specifically developed for DL (e.g., PyTorch and TensorFlow). To install
the Individual Edition of the Anaconda Python distribution, I suggest following the
directives given in the official documentation.6

First, download and run the most recent stable installer for your operating system
(i.e., Windows, Mac, or Linux). For Windows or Mac users, a graphical installer
is also available. The installation procedure using the graphical installer is the
same as for any other software application. The Anaconda installer automatically
installs the Python core and Anaconda Navigator, plus about 250 packages defining
a complete environment for scientific visualization, analysis, and modeling. Over
7500 additional packages, including PyTorch and TensorFlow, can be installed
individually as needed from the Anaconda repository with the “conda”7 package-
management system. The basic tools to start learning and developing small- to
medium-scale ML projects are the same as those used for any scientific Python
Scientific project. Consequently, I suggest using Spyder and JupyterLab.

Spyder8 is an integrated development environment that combines a text editor to
write code, inspection tools for debugging, and interactive Python consoles for code
execution (Fig. 2.1).

JupyterLab9 is a web-based development environment to manage Jupyter Note-
books (i.e., web applications for creating and sharing computational documents, see
Fig. 2.2)

2.3 ML Python Environments on Remote Linux Machines

Accessing and working on remote computational infrastructure is mandatory for
large-scale and data-intensive ML workflows. However, the scope of the present
book does not include providing a detailed description of how to develop high-
performance computational infrastructure. Suffice it to say that such infrastructure
often constitutes a cluster of Linux instances (i.e., virtual computing environments
based on the Linux operating system), so we limit ourselves to describing how to
connect to and work with a remote Linux instance. The present section shows how

5 https://www.anaconda.com.
6 https://www.anaconda.com/products/individual/.
7 https://docs.conda.io/.
8 https://www.spyder-ide.org.
9 https://jupyter.org.

https://www.anaconda.com
https://www.anaconda.com
https://www.anaconda.com
https://www.anaconda.com
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://www.spyder-ide.org
https://www.spyder-ide.org
https://www.spyder-ide.org
https://www.spyder-ide.org
https://www.spyder-ide.org
https://jupyter.org
https://jupyter.org
https://jupyter.org

2.3 ML Python Environments on Remote Linux Machines 13

Fig. 2.1 Screenshot of Spyder integrated development environment. The text editor for writing
code is on the left. The bottom-right panel is the IPython interactive console, and the top-right
panel is the variable explorer

to set up a Debian instance on the Amazon Web Services™ (AWS) facilities. Next,
it shows how to set up the Anaconda Individual Edition Python environment on your
AWS Debian instance.

Figure 2.3 shows the Amazon management console of the “Elastic Compute
Cloud” (EC2).10 From the EC2 management console, a new computational instance
can be launched by clicking the “Launch new instance” button. A guided step-by-
step procedure follows. The user defines each detail of their computational instance
[i.e., (1) chose the Amazon Machine Image; (2) choose the instance type, (3) define
the key pair; further configure the instance, add storage, add tags, configure security
group, and (4) launch the instance]. In steps (1–4) (see Fig. 2.4), I selected the
Debian 10 64-bit (x86) Amazon Machine Image. Also, I selected the t2.micro
instance type because it is eligible as a “free tier.” Note that other options could
be available as a “free tiers” and massive instance types could also be selected.
As an example, the g5.48xlarge instance type consists of 192 virtual CPUs, 768
GiB of memory, and a network performance of 100 Gigabit. The total amount of
computational power is only a matter of the budget at your disposal. The step 3 (see
Fig. 2.5) consists of selecting an existing key pair or creating a new one. A “key pair”
gives the security credentials to prove your identity when connecting to a remote
instance. It consists of a “public key,” which is stored in the remote instance, and a
“private key,” which is hosted in your machine. Anyone who possesses the private

10 https://aws.amazon.com/ec2/.

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

14 2 Setting Up Your Python Environments for Machine Learning

Fig. 2.2 Screenshot of Jupyter Notebook combining narrative text, code, and visualizations

Fig. 2.3 Screenshot of the Elastic Compute Cloud (EC2) management console. The “Launch
instance” button allows the user to start a new instance (April, 2023)

key of a specific key pair can connect to the instance that stores the associated public
key. From your Linux and Unix OS (including the Mac OS), you can create a key
pair by using the ssh-keygen command. However, the EC2 management console
allows you to create and manage key pairs with a single click (Fig. 2.5). We can

2.3 ML Python Environments on Remote Linux Machines 15

Fig. 2.4 Launch an instance: (1) The first step consists of selecting the Amazon Machine Image
(AMI); (2) The second step consists of selecting the “Instance Type.”; (3) Before launching a new
instance you must select a “key pair;” (4) Finally, launch the instance (April, 2023)

safely set all the other instance parameters to their default values and click on the
“Launch Instance” button.

The final step consists of launching the instance that, after initialization, appears
in the EC2 management console (Fig. 2.6). To access an instance, select it in the EC2
management console and click on the “Connect” button (Fig. 2.6), which opens the

16 2 Setting Up Your Python Environments for Machine Learning

Fig. 2.5 How to create a “key pair” (April, 2023)

“Connect to instance” window, showing all available options to access the instance
(Fig. 2.7). Our choice is to access the instance by using the Secure Shell (SSH)
protocol (Fig. 2.7). The SSH Protocol is a cryptographic communication system for
secure remote login and network services over an insecure network. It allows you to

2.3 ML Python Environments on Remote Linux Machines 17

Fig. 2.6 Connecting to an instance (April, 2023)

“safely” connect and work on a remote instance from your desk or sofa. To connect
to the remote instance, we need a SSH client (e.g., a Mac OS Terminal or PuTTY11)
and into which we enter the following command:

ssh -i local_path/aws.pem user@user_name@host

where the ssh command initializes the SSH connection from the user account to the
host (i.e., an IP or a domain name) remote instance. The -i option selects a specific
private key (i.e., aws.pem) to pair with the public key in the host instance.

For the specific case shown in Fig. 2.7, I enter:

ssh -i /Users/maurizio/.ssh/aws.pem admin@ec2-52-91-26-146.
compute-1.amazonaws.com

We are now connected to the remote instance in one AWS computing facility
(Fig. 2.8) and we are ready to install the Anaconda Python Individual Edition from
the command line.

Before starting the install procedure for the Anaconda Python Individual edition,
I suggest upgrading the Debian packages as follows:

$ sudo apt-get update
$ sudo apt-get dist-upgrade

11 https://www.putty.org.

https://www.putty.org
https://www.putty.org
https://www.putty.org
https://www.putty.org

18 2 Setting Up Your Python Environments for Machine Learning

Fig. 2.7 Accessing by a SSH client (April, 2023)

The sudo apt-get update command gets you an updated list of packages. Then
the sudo apt-get dist-upgrade will “intelligently” upgrade these packages, without
upgrading the current Debian release. Now download the latest Anaconda Python
distribution12 for Linux-x86_64 using curl:

$ curl -O https://repo.anaconda.com/archive/Anaconda3-2023.03-
Linux-x86_64.sh

if curl does not work, install it as follows:

$ sudo apt-get install curl

At this point, we need to verify the data integrity of the installer with cryptographic
hash verification through the SHA-256 checksum. We use the sha256sum command
along with the filename of the script:

$ sha256sum Anaconda3-2023.03-Linux-x86_64.sh

12 https://repo.anaconda.com/archive/.

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/

2.3 ML Python Environments on Remote Linux Machines 19

Fig. 2.8 Well done! You are connected to your remote instance

The result is

19737d5c27b23a1d8740c5cb2414bf6253184ce745d0a912bb235a212a15e075

and must match the cryptographic hash verification code in the Anaconda reposi-
tory.13 As a final step, we run the installation script:

$ bash Anaconda3-2023.03-Linux-x86_64.sh

It starts a step-by-step guided procedure starting with

Welcome to Anaconda3 py310_2023.03-0

In order to continue the installation process, please review the
license

agreement.
Please, press ENTER to continue

Press “ENTER” to access the license information and continue clicking “ENTER”
until you get the following question:

Do you approve the license terms? [yes|no]

13 https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/.

https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/

20 2 Setting Up Your Python Environments for Machine Learning

Type “yes” to get to the next step, which is the selection of the location for the
installation:

Anaconda3 will now be installed into this location:
/home/admin/anaconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below

I suggest pressing “ENTER” to retain the default location. At the end of the
installation, you receive the following output:

...
installation finished.
Do you wish the installer to initialize Anaconda3
by running conda init? [yes|no]
[no] >>>

Type “yes”. For changes to take effect, close and re-open the shell. Now, the base
conda environment, highlighted by (base) at the beginning of the prompt command,
should be active:

(base) [ec2-user@ip-172-31-35-226 ~]$

The base environment for ML in Python is now ready for use in your remote
instance.

2.4 Working with Your Remote Instance

Once you are connected to your remote instance, for example, by

$ ssh -i local_path/aws.pem user@user_name@host

knowledge of the basic Linux OS commands is mandatory. However, a detailed
explanation of the architecture, commands, and operations of the Linux OS is
again beyond the scope of this book. Consequently, I suggest reading specialized
books (Ward, 2021; Negus, 2015) to acquire the requisite skills. Table 2.1 lists
common commands that allow you to transfer files between a local machine and
remote instances. In addition, it provides basic tools for file management in a Linux
environment.

To copy a file from your local machine to the remote instance and vice versa I
suggest using the scp command, which is based on the SSH protocol. Specifically,
the command is

$ scp -i local_path/aws.pem filename user@host:/home/user/
filename

2.4 Working with Your Remote Instance 21

Table 2.1 Basic Linux commands

Command Description

ls View the contents of a directory

cd.. Move one directory up

cd folder_name Go to the folder named folder_name

cp myfile.jpg /new_folder Copy myfile.jpg to the new_folder path

mv Use mv to move files, the syntax is similar to cp

mkdir my_folder Create a new folder named my_folder

rm Delete directories and the contents within them (take care with
rm!)

tar Archive multiple files into a compressed file

chmod Change the read, write, and execute permissions of files and
directories

top Display a list of running processes, CPU usage, and memory
usage

pwd Print the current working directory (i.e., the directory in which
you are working)

sudo Ii is the abbreviation of “SuperUser Do.” It enables you to run
tasks requiring administrative permissions. Take great care with
sudo!

This command copies the file named “filename” from the local machine to the folder
/home/user/ of the remote instance host. As explained in Sect. 2.3), the aws.pem
private key stores the credentials to securely login to the host instance. To copy a
file from your remote instance to the local machine use

$ scp -i local_path/aws.pem user@host:/home/user/filename /
localfolder/filename

Finally, to launch a Python script we use the python command:

$ python myfile.py

To run multiple Python files you could use a bash script, which is a text file named
my_bash_script.sh, and then run it as follows:

$ bash my_bash_script.sh

Here are two examples:

#!/bin/bash
/home/path_to_script/script1.py
/home/path_to_script/script2.py
/home/path_to_script/script3.py
/home/path_to_script/script4.py

22 2 Setting Up Your Python Environments for Machine Learning

and

#!/bin/bash
/home/path_to_script/script1.py &
/home/path_to_script/script2.py &
/home/path_to_script/script3.py &
/home/path_to_script/script4.py &

to run them sequentially and in parallel, respectively.
Note that the Anaconda Individual Edition comes with scikit-learn as a default

package. DL packages such as Tensorflow and PyTorch must be installed separately.
To avoid conflicts, I suggest creating isolated Python environments to work
separately with PyTorch and TensorFlow.

2.5 Preparing Isolated Deep Learning Environments

Conda is an open-source package-management system and environment-
management system developed by Anaconda14 and that serves to install and update
Python packages and dependencies. It also serves to manage isolated Python
environments to avoid conflicts. As an example, consider the following statement:

conda create --name env_ml python=3.9 spyder scikit-learn

This statement creates a new Python 3.9 environment named env_ml with spyder,
scikit-learn, and related dependencies installed. To activate the env_ml environment:

conda activate env_ml

to deactivate the current environment, use

conda deactivate

To list the available environments, use

conda info --envs

In the resulting list, the active environment is highlighted by *. Also, the active
environment is usually given at the beginning of the command prompt [e.g., (base)]:

(base) admin@ip-172-31-59-186:~$

To remove an environment, use

conda remove --name env_ml --all

The following statement

conda env export > env_ml.yml

14 https://www.anaconda.com/.

https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/

2.6 Cloud-Based Machine Learning Environments 23

exports all information about the active environment to a file named env_ml.yml,
which can then be used to share the environment to allow others to install it by
using the following command:

conda env create -f env_ml.yml

More details on environment management are available in the conda official
documentation.15 The following listing resumes all the steps involved in creating
a ML environment with DL functionalities based on PyTorch:

$ conda create --name env_pt python=3.9 spyder scikit-learn
$ conda activate env_pt
(env_pt)$ conda install pytorch torchvision torchaudio -c pytorch

The last command installs PyTorch, working on the CPU only, on my Mac. To
find the right command for your hardware and operating system, please refer to the
PyTorch website.16

Similarly, to create a ML environment based on scikit-learn with Tensorflow DL
functionalities, use the following command:

$ conda create --name env_tf --channel=conda-forge tensorflow

As you can see, I used a specific channel (i.e., conda-forge17) to download
tensorflow and spyder. Listing my conda environment now gives

$ conda info --envs
Output:
conda environments:

base * /opt/anaconda3
env_ml /opt/anaconda3/envs/env_ml
env_pt /opt/anaconda3/envs/env_pt
env_tf /opt/anaconda3/envs/env_tf

2.6 Cloud-Based Machine Learning Environments

With cloud-based ML environments, I refer to Jupyter Notebook-based services,
which are hosted in the cloud. Examples are Google™ Colaboratory, Kaggle, and
Saturn Cloud. The first two services, Google™ Colaboratory and Kaggle, are both
managed by Google™ and offer a free plan with limited computational resources.
Finally, Saturn Cloud offers a free plan with 30 hours of computation. All services
allow the online use of Jupyter Notebooks.

15 https://docs.conda.io/.
16 https://pytorch.org/get-started/locally/.
17 https://conda-forge.org.

https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://docs.conda.io/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://conda-forge.org
https://conda-forge.org
https://conda-forge.org
https://conda-forge.org

24 2 Setting Up Your Python Environments for Machine Learning

Fig. 2.9 Google™ Colaboratory (April, 2023)

Figures 2.9 and 2.10 provide a quick look at the entry-level notebooks for
Google™ Colaboratory and Kaggle, respectively. Also, Figs. 2.9 and 2.10 show
that both Google™ Colaboratory and Kaggle all come with scikit-learn, Tensorflow,
and PyTorch installed and ready to use. Using Saturn Cloud™, a new Python
Server can be launched by clicking the “New Python Server” server button (see
Fig. 2.11), which opens a new window where you can personalize the instance.
Note that the default configuration does not include either PyTorch or Tensorflow,
although they can be added quickly in the “Extra Packages” section (Fig. 2.12). As
an example, Fig. 2.12 shows how to add PyTorch. Finally, Fig. 2.13 demonstrates
that the resulting environment comes with both scikit-learn and PyTorch.

Although all the reported cloud-based ML Jupyter environments are robust and
flexible solutions, I suggest using Google™ Colaboratory or Saturn Cloud™ for
novices.

2.6 Cloud-Based Machine Learning Environments 25

Fig. 2.10 Kaggle (April, 2023)

Fig. 2.11 Saturn Cloud™ (April, 2023)

26 2 Setting Up Your Python Environments for Machine Learning

Fig. 2.12 Starting a Jupyter Server, i.e., a machine to run Jupyter Notebooks, in Saturn Cloud™
(April, 2023)

Fig. 2.13 Running a Jupyter Notebook in Saturn Cloud™ (April, 2023)

2.7 Speed Up Your ML Python Environment 27

2.7 Speed Up Your ML Python Environment

A common argument by Python detractors is that Python is slow when compared
with other established programming languages such as C or FORTRAN. We all
agree with this argument but, in my opinion, this is not the point. In scientific
computations, Python relies on libraries developed in higher-performing languages,
mainly C and C++, and on parallel computing platforms such as CUDA.18 For
example, NumPy, the core Python library for scientific computing, is based on an
optimized C code.19 For ML purposes, all scikit-learn, PyTorch, and Tensorflow
provide a base version of the library that can be safely installed in any local machine
for rapid prototyping and small- to mid-scale problems. In addition, optimized
versions for intensive computing applications are also available. For example, the
Intel™ extension for scikit-learn accelerates ML applications in Python for Intel-
based hardware by a factor 10–100. ×.20 The Intel™ extension for scikit-learn is
easily installed by using conda. To prevent conflicts, I strongly recommend creating
a new conda environment such as env_ml_intel:

$ conda create -n env_ml_intel -c conda-forge python=3.9 scikit-
learn-intelex scikit-learn rasterio matplotlib pandas spyder
scikit-image seaborn

Listing my local environments now gives

$ conda info --envs
Output:
conda environments:

base * /opt/anaconda3
env_ml /opt/anaconda3/envs/env_ml
env_pt /opt/anaconda3/envs/env_pt
env_tf /opt/anaconda3/envs/env_tf
env_ml_intel /opt/anaconda3/envs/env_ml_intel

I left the base environment untouched. Then I created two general-purpose ML
environments, env_ml and env_ml_intel, with the latter optimized by Intel. Finally,
I created two DL environments env_pt and env_tf, which are based on PyTorch and
Tensorflow, respectively.

Note that DL libraries such as PyTorch and Tensorflow are highly optimized
to support GPU computing (e.g., CUDA21 and ROCm22). For example, a Pytorch
CUDA-optimized version for the Linux OS can be easily installed by conda as
follows (April, 2023):

18 https://developer.nvidia.com/cuda-zone.
19 https://numpy.org.
20 https://github.com/intel/scikit-learn-intelex.
21 https://developer.nvidia.com/cuda-zone.
22 https://rocmdocs.amd.com/en/latest/.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://numpy.org
https://numpy.org
https://numpy.org
https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
https://github.com/intel/scikit-learn-intelex
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/

28 2 Setting Up Your Python Environments for Machine Learning

$ conda install pytorch torchvision torchaudio pytorch-cuda=11.8
-c pytorch -c nvidia

As already stated, providing a complete description of how to implement high-
performance computing ML applications in Python is beyond the scope of this
book. Therefore, please refer to the official documentation of each tool to get further
details.

References

Bharath, R., & Reza Bosagh, Z. (2018). TensorFlow for deep learning. O’Reilly.
Negus, C. (2015). Linux Bible (9th ed., Vol. 112). John Wiley & Sons, Inc.
Papa, J. (2021). PyTorch pocket reference. O’Reilly Media, Inc.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., et al. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, 32.

Pedregosa, F., Varoquaux, G. G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

Ward, B. (2021). How Linux works, 3rd Edition: What every superuser should know. No Starch
Press, Inc.

Chapter 3
Machine Learning Workflow

3.1 Machine Learning Step-by-Step

Figure 3.1 shows a generalized workflow that is common to most ML projects.
The first step is obtaining the data. In Earth Sciences, data can come from large-
scale geological or geochemical samplings, remote-sensing platforms, well log
analyses, or petrological experiments, to cite a few sources. The second step is pre-
processing, which consists of all the operations required to prepare your data set for
the successive steps of training and validation. Training the model involves running
ML algorithms, which is the core business of a ML workflow. The validation step
checks the quality of the training and ensures that the model is generalizable. Steps
3 and 4 are often closely connected and iterated many times to improve the quality
of the results. Finally, the last step consists of deploying and securing your model.

We shall now evaluate each step and provide insights into how to successfully
run a ML model in the field of Earth Sciences.

3.2 Get Your Data

Your data set repository may have many different formats. The easiest data sets
consist of tabular data stored in text (e.g., .csv) or Excel™ files. Sometimes, a
Structured Query Language (SQL) database hosts your data. Larger data sets may
be stored in the Hierarchical Data Format (HDF5),1 Optimized Row Columnar

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3
https://doi.org/10.1007/978-3-031-35114-3_3

30 3 Machine Learning Workflow

GET DATA

1
PRE-PROCESSING

2
TRAIN MODEL

3
VALIDATE

4
DEPLOY

5

Fig. 3.1 Workflow of a ML model

Table 3.1 Pandas methods to import standard and state-of-the-art file formats for ML applica-
tions

Method Description Comment

read_table() Read general delimited file Slow, not for large data sets

read_csv() Read comma-separated values (csv) files Slow, not for large data sets

read_excel() Read Excel files Slow, not for large data sets

read_sql() Read sql files Slow, not for large data sets

read_pickle() Read pickled objects Fast, not for large data sets

read_hdf() Read Hierarchical Data Format (HDF)
files

Fast, good for large data sets

read_feather() Read feather files Fast, good for large data sets

read_parquet() Read parquet files Fast, good for large data sets

read_orc() Read Optimized Row Columnar files Fast, good for large data sets

(ORC),2 Feather (i.e., Arrow IPC columnar format),3 or Parquet Format,4 to cite
a few.

For data that fit into your random access memory (RAM), pandas is probably
the best choice for data import and manipulation (e.g., slicing, filtering) through
DataFrames. Table 3.1 describes the potential of pandas methods for input and
output (I\O).

If the data set starts filling your RAM entirely, Dask5 is the probably the library
of choice to manage your data and scale your Python code to parallel environments.
Dask is a library designed to deal with “Big Data” through parallel computing in
Python. Dask extends the concept of DataFrames to Dask DataFrames, which
are large parallel DataFrames composed of many smaller pandas DataFrames.
We introduce Dask and parallel computing later in Part IV of the book Before that,
however, we must import our data sets for Earth Sciences ML applications using

1 https://www.hdfgroup.org/solutions/hdf5/.
2 https://orc.apache.org.
3 https://arrow.apache.org/docs/python/feather.html.
4 https://parquet.apache.org.
5 https://dask.org.

https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://orc.apache.org
https://orc.apache.org
https://orc.apache.org
https://orc.apache.org
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://parquet.apache.org
https://parquet.apache.org
https://parquet.apache.org
https://parquet.apache.org
https://dask.org
https://dask.org
https://dask.org

3.2 Get Your Data 31

pandas (see code listing 3.1). The investigated data set is available for download
from the website6 of the Laboratory for Space Sciences, Physics Department,
Washington University in St. Louis. It deals with presolar SiC grains, extracted from
meteorites (Stephan et al., 2021).

1 import pandas as pd
2
3 my_data = pd.read_excel("PGD_SiC_2021-01-10.xlsx", sheet_name=’

PGD-SIC’)
4 print(my_data.info(memory_usage="deep"))
5
6 ’’’
7 Output:
8 <class ’pandas.core.frame.DataFrame’>
9 RangeIndex: 19978 entries, 0 to 19977
10 Columns: 123 entries, PGD ID to err[d(138Ba/136Ba)]
11 dtypes: float64(112), object(11)
12 memory usage: 29.4 MB
13 ’’’

Listing 3.1 Importing an Excel data set in Python

I assume that you are familiar with the read_excel statement in pandas. If not, I
strongly suggest that you start with an introductory book such as “Introduction to
Python in Earth Science Data Analysis” (Petrelli, 2021). The statement at line 4 of
code listing 3.1 tells you how much memory is required to store our data set. In
this case, the imported data set, consisting of approximately 20 000 rows and 123
columns, requires 24.4 MB, which is far less than the 32 GB of my MacBook™
Pro.

Large data sets [i.e., approaching or exceeding tera (.1012) or peta (.1015) bytes]
cannot be efficiently stored in text files such as .csv files or in Excel files. Standard
relational databases such as PostgreSQL, MySQL, and MS-SQL can store large
quantities of information but are inefficient (i.e., too slow) compared with state-
of-the-art high-performance data software libraries and file formats for managing,
processing, and storing huge amounts of data. The formal definition of Big Data
proposed by De Mauro et al. (2016) covers the three concepts of volume, velocity,
and variety: “Big Data is the Information asset characterized by such a High Volume,
Velocity and Variety to require specific Technology and Analytical Methods for
its transformation into Value.” A detailed description of data storage and analysis
frameworks for Big Data is beyond the scope of this book, so I suggest that those
interested consult specialized texts (Pietsch, 2021; Panda et al., 2022). Herein, we
simply compare the performances of pandas for writing and reading GB-scale .csv
and .hdf files on a MacBook pro (2.3 GHz Quad-Core Intel Core i7, 32 GB RAM).
For example, code listing 3.2 generates a pandas DataFrame of . ≈10 GB named

6 https://presolar.physics.wustl.edu/presolar-grain-database/.

https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/

32 3 Machine Learning Workflow

my_data and composed of random numbers hosted in 26 columns and .5×107 rows.
I used my_data.info(memory_usage =“deep”), code listing 3.3, to check the real
memory use of my_data, which is 9.7 GB.

Code listing 3.4 shows the execution time required to write (In [1], In [2], and
In [3]) and read (In [4], In [5], and In [6]) from text (.csv), parquet, and hdf5 files,
respectively. The results show that saving a .csv file takes about 25 minutes, which
is quite a long time! In contrast, saving the parquet and hdf5 files take 7 and 12 s,
respectively. Reading times are of the same order of magnitude: about 5 minutes for
.csv and 30 s for parquet and hdf5 files.

1 import pandas as pd
2 import numpy as np
3 import string
4
5 my_data = pd.DataFrame(np.random.normal(size=(50000000, 26)),
6 columns=list(string.ascii_lowercase))

Listing 3.2 Generating a mid-size data set of about 10 GB

1 In [1]: my_data.info(memory_usage="deep")
2 <class ’pandas.core.frame.DataFrame’>
3 RangeIndex: 50000000 entries, 0 to 49999999
4 Data columns (total 26 columns):
5 # Column Dtype
6 --- ------ -----
7 0 a float64
8 1 b float64
9 2 c float64
10 3 d float64
11 4 e float64
12 5 f float64
13 6 g float64
14 7 h float64
15 8 i float64
16 9 j float64
17 10 k float64
18 11 l float64
19 12 m float64
20 13 n float64
21 14 o float64
22 15 p float64
23 16 q float64
24 17 r float64
25 18 s float64
26 19 t float64
27 20 u float64
28 21 v float64

3.3 Data Pre-processing 33

29 22 w float64
30 23 x float64
31 24 y float64
32 25 z float64
33 dtypes: float64(26)
34 memory usage: 9.7 GB

Listing 3.3 Checking the memory usage of our DataFrame

In light of the evidence given by code listing 3.4, I would suggest discontinuing
the use of text files to store and retrieve your data sets at GB or larger scales in favor
of binary files such as hdf5 or parquet. The case for this becomes particularly strong
once the data dimensions grow significantly.

1 In [1]: %time my_data.to_csv(’out.csv’)
2 CPU times: user 22min 48s, sys: 55.8 s, total: 23min 44s
3 Wall time: 24min 16s
4
5 In [2]: %time my_data.to_parquet(’out.parquet’)
6 CPU times: user 13.1 s, sys: 2.71 s, total: 15.8 s
7 Wall time: 11.8 s
8
9 In [3]: %time my_data.to_hdf(’out.h5’, key="my_data", mode="w")
10 %time my_data.to_hdf(’out.h5’, key="my_data1", mode="w")
11 CPU times: user 39.2 ms, sys: 4.33 s, total: 4.37 s
12 Wall time: 6.59 s
13
14 In [4]: %time my_data_1 = pd.read_csv(’out.csv’)
15 CPU times: user 3min 28s, sys: 37.7 s, total: 4min 5s
16 Wall time: 4min 45s
17
18 In [5]: %time my_data1 = pd.read_parquet(’out.parquet’)
19 CPU times: user 12.7 s, sys: 26.3 s, total: 39 s
20 Wall time: 31 s
21
22 In [6]: %time my_data1 = pd.read_hdf(’out.h5’, key=’my_data’)
23 CPU times: user 10.2 s, sys: 12.7 s, total: 23 s
24 Wall time: 28.8 s

Listing 3.4 Performances of the pandas library in writing and loading .cvs, .parquet and .h5 files

3.3 Data Pre-processing

Pre-processing consists of all operations required to prepare your data set for the
next steps (e.g., training and validation; Maharana et al., 2022). This step is crucial
because it converts raw data into a form suitable to build a ML model. While
developing a ML project, you will likely spend most of your time preparing your

34 3 Machine Learning Workflow

data for the training. In detail, pre-processing refers to preparing (e.g., cleaning,
organizing, normalizing) the raw data before moving to the training. In addition,
pre-processing includes the preliminary steps to allow validation (e.g., train-test
splitting).

3.3.1 Data Inspection

Data inspection is the qualitative investigation of a data set and allows one to become
familiarized with the data set. A fundamental task of data inspection is descriptive
statistics, which provides a clear understanding of the “shape” and structure of the
data. To see how descriptive statistics can help, consider the following example: By
looking at the histogram distributions, you can start arguing whether methods that
require specific assumptions (e.g., a Gaussian structure) are well suited to analyze
your data.

Code listing 3.5 shows how to undertake a preliminary determination of the main
descriptive indexes of location, such as the mean and the median (e.g., .p50 or the
50% percentile), and dispersion, such as the standard deviation and range (e.g.,
.range = max − min) or the interquartile range (e.g., .iqr = p75 − p25).

1 In [1]: sub_data = my_data[[’12C/13C’, ’14N/15N’]]
2
3 In [2]: sub_data.describe().applymap("{0:.0f}".format)
4
5 Out[2]:
6 12C/13C 14N/15N
7 count 19581 2544
8 mean 66 1496
9 std 207 1901
10 min 1 4
11 25% 44 336
12 50% 55 833
13 75% 69 2006
14 max 21400 19023

Listing 3.5 Determining descriptive statistics in Python

Figure 3.2 and code listing 3.6 show how Python can be used to statistically
visualize a data set. In more detail, Fig. 3.2 shows the distribution of data in the
.
14N/15N versus .12C/13C projection (left panel) and the histogram distribution of
.
12C/13C (right panel).

3.3 Data Pre-processing 35

Fig. 3.2 Descriptive statistics (code listing 3.6)

1 import matplotlib.pyplot as plt
2
3 fig = plt.figure(figsize=(9,4))
4 ax1 = fig.add_subplot(1,2,1)
5 ax1.plot(my_data[’12C/13C’], my_data[’14N/15N’],
6 marker=’o’, markeredgecolor=’k’,
7 markerfacecolor=’#BFD7EA’, linestyle=’’,
8 color=’#7d7d7d’,
9 markersize=6)
10 ax1.set_yscale(’log’)
11 ax1.set_xscale(’log’)
12 ax1.set_xlabel(r’$^{12}C/^{13}C$’)
13 ax1.set_ylabel(r’$^{14}N/^{15}N$’)
14
15 ax2 = fig.add_subplot(1,2,2)
16 ax2.hist(my_data[’12C/13C’], density=True, bins=’auto’,
17 histtype=’stepfilled’, color=’#BFD7EA’, edgecolor=’

black’,)
18 ax2.set_xlim(-1,250)
19 ax2.set_xlabel(r’$^{12}C/^{13}C$’)
20 ax2.set_ylabel(’Probability Density’)
21
22 fig.set_tight_layout(True)

Listing 3.6 Obtaining descriptive statistics in Python

3.3.2 Data Cleaning and Imputation

In real-world data sets such as geological data sets, “unwanted” entries are
ubiquitous (Zhang, 2016). Examples include voids (i.e., missing data), “Not a
Number” (NaN) entries, and large outliers. Cleaning a data set mainly consists of
removing such unwanted entries. For example, the methods .dropna() and .fillna()

36 3 Machine Learning Workflow

help when working with missing data; these are imported by pandas as NaN (see
code listing 3.7).

1 import pandas as pd
2
3 cleaned_data = my_data.dropna(
4 subset=[’d(135Ba/136Ba)’, ’d(138Ba/136Ba)’])
5
6 print("Before cleaning: {} cols".format(my_data.shape[0]))
7 print("After cleaning: {} cols".format(cleaned_data.shape[0]))
8
9 ’’’
10 Output:
11 Before cleaning: 19978 cols
12 After cleaning: 206 cols
13 ’’’

Listing 3.7 Removing NaN values

In detail, the .dropna() at line 3 removes all the rows where the isotopic value of
.δ135Ba136 [�] or .δ138Ba136 [�] are missing.

Although appealing for its simplicity, removing entries containing missing values
has some drawbacks, the most significant of which is the loss of information (Zhang,
2016). In particular, when dealing with a large number of features, a substantial
number of observations may be removed because a single feature is missing,
potentially introducing large biases (Zhang, 2016). A possible solution is data
imputation, which is the replacement of missing values with imputed values. Several
methods have been developed for data imputation, the easiest of which consists of
replacing missing values with the mean, median, or mode of the investigated feature
(Zhang, 2016). In pandas, .fillna() replaces NaN entries with text or a specific value.
Also, the SimpleImputer() in scikit-learn imputes missing values with the mean,
median, or mode.

A more evolved strategy consists of data imputation with regression (Zhang,
2016). In this case, you first fit a regression model (e.g., linear or polynomial)
and then use the model to impute missing values (Zhang, 2016). In scikit-learn,
the function IterativeImputer() develops an imputation strategy based on multiple
regressions.

3.3.3 Encoding Categorical Features

Most available machine learning algorithms do not support the use of categorical
(i.e., nominal) features. Therefore, categorical data must be encoded (i.e., converted
to a sequence of numbers). In scikit-learn, OrdinalEncoder() encodes categorical
features such as integers (i.e., 0 to .ncategories − 1).

3.3 Data Pre-processing 37

3.3.4 Data Augmentation

Data augmentation aims to increase the generalizability of ML models by increasing
the amount of information in our data sets (Maharana et al., 2022), which consists
of either adding modified copies of the available data (e.g., flipped or rotated
images in the case of image classification) or combining existing features to
generate new features. For example, Maharana et al. (2022) describe six data
augmentation techniques for image analysis: (1) symbolic augmentation, (2) rule-
based augmentation, (3) graph-structured augmentation, (4) mixup augmentation,
(5) feature-space augmentation, and (6) neural augmentation (Maharana et al.,
2022). Although the details of feature augmentation are far beyond the scope of
this book, we will exploit data augmentation in Chap. 8 by following the strategy
proposed by Bestagini et al. (2017).

3.3.5 Data Scaling and Transformation

The scaling and transformation of a data set is often a crucial step in ML workflows.
Many ML algorithms strongly benefit from a preliminary “standardization” of the
investigated data set. For example, all algorithms that use the Euclidean distance
(and there are many of them!) as fundamental metrics may be significantly biased
upon introducing features that differ significantly in magnitude.

Definition In a standardized data set, all features are centered on zero and their
variance is of the same order of magnitude.

If a feature variance is orders of magnitude greater than the other feature
variances, it might play a dominant role and prevent the algorithm from correctly
learning the other features. The easiest way to standardize a data set is to subtract
the mean and scale to unit variance:

.x̃i
e = xi

e − μe

σ e
s

. (3.1)

In Eq. (3.1), . x̃i
e and . xi

e are the transformed and original components, respectively.
For example, they could belong to the sample distribution of a chemical element e
such as SiO. 2 or TiO. 2 characterized by a mean . μe and a standard deviation . σe

s .
Scikit-learn implements Eq. (3.1) in the sklearn.preprocessing.StandardScaler()

method.
In addition, scikit-learn implements additional scalers and transformers, which

perform linear and nonlinear transformations, respectively. For example, MinMaxS-
caler() scales each feature belonging to a data set to a given range (e.g., between 0
and 1).

38 3 Machine Learning Workflow

QuantileTransformer() provides nonlinear transformations that shrinks distances
between marginal outliers and inliers, and PowerTransformer() provides nonlinear
transformations in which data are mapped to a normal distribution to stabilize
variance and minimize skewness.

The presence of outliers may affect the outputs of the model. If the data
set has outliers, robust scalers or transformers are more appropriate. By default,
RobustScaler() removes the median and scales the data according to the interquartile
range. Note that RobustScaler() does not remove any of the outliers. Table 3.2
summarizes the main scalers and the transformers available in scikit-learn.

When the estimation uncertainties are quantified (e.g., by one sigma or one
standard error), the data set could be cleaned to remove all data where the error
exceeds a threshold of your choosing.

1 import matplotlib.pyplot as plt
2 from sklearn.preprocessing import MinMaxScaler
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.preprocessing import RobustScaler
5
6 X = my_data[[’d(30Si/28Si)’,’d(29Si/28Si)’]].to_numpy()
7
8 scalers = [("Unscaled", X),
9 ("Standard Scaler", StandardScaler().fit_transform(X)),
10 ("Min. Max. Scaler", MinMaxScaler().fit_transform(X)),
11 ("Robust Scaler", RobustScaler().fit_transform(X))]
12
13 fig = plt.figure(figsize=(10,7))
14
15 for ix, my_scaler in enumerate(scalers):
16 ax = fig.add_subplot(2,2,ix+1)
17 scaled_X = my_scaler[1]
18 ax.set_title(my_scaler[0])
19 ax.scatter(scaled_X[:,0], scaled_X[:,1],
20 marker=’o’, edgecolor=’k’, color=’#db0f00’,
21 alpha=0.6, s=40)
22 ax.set_xlabel(r’${\delta}^{30}Si_{28} [\perthousand]$’)
23 ax.set_ylabel(r’${\delta}^{29}Si_{28} [\perthousand]$’)
24
25 fig.set_tight_layout(True)

Listing 3.8 Scalers and transformers

Finally, taking the logarithm of the data sometimes helps to reduce the skewness
of the sample, assuming the data set follows a log-normal distribution (Limpert
et al., 2001; Corlett et al., 1957). Code listing 3.8 shows how to apply various scalers
and transformers to the log-transformed .12C/13C SiC data, and Fig. 3.3 shows the
results.

3.3 Data Pre-processing 39

Table 3.2 Scalers and transformers in scikit-learn. Descriptions are taken from the official
documentation of scikit-learn

Description

Scaler
sklearn.preprocessing.StandardScaler() Standardize features by removing the mean

and scaling to unit variance [Eq. (3.1)]

sklearn.preprocessing.MinMaxScaler() Transform features by scaling each feature to
a given range. The default range is [0,1]

sklearn.preprocessing.RobustScaler() Scale features using statistics that are robust
against outliers. This scaler removes the
median and scales the data according to the
quantile range. The default quantile range is
the interquartile range

Transformer
sklearn.preprocessing.PowerTransformer() Apply a power transform feature-wise to

make data more Gaussian-like

sklearn.preprocessing.QuantileTransformer() Transform features using quantile
information. This method transforms features
to follow a uniform or normal distribution.
Therefore, for a given feature, this
transformation tends to spread the most
frequent values

Fig. 3.3 Data sets scaled and transformed by code listing 3.8

40 3 Machine Learning Workflow

3.3.6 Compositional Data Analysis (CoDA)

Before applying any statistical method, including ML algorithms, the underlying
assumptions must be verified. An example is the assumption of normality, which is
behind many methods. Other assumptions may regard the topology of the sample
space. Geochemical determinations are an example of so-called compositional data
(Aitchison, 1982; Aitchison & Egozcue, 2005; Razum et al., 2023), which are
samples of non-negative multivariate data that are expressed relative to a fixed total
(typically unity or percentages summing to 100%). The analysis of compositional
data is called “compositional data analysis” (CoDA; Aitchison, 1984).

In compositional data, the sample space is represented by the Aitchison simplex
. sD:

. sD =
{
x = [x1, x2, xi, . . . , xD]| xi > 0, i = 1, 2, . . . , D;

D∑
i=1

xi = C

}
,

(3.2)

where C is a constant, typically 1 or 100. Compositional data typically share two
characteristics: (1) the data are always positive and (2) the data sum to a constant
(i.e., they are not independent). These characteristics hinder the application of
many statistical methods because they often assume independent input samples in
the interval .[−∞,∞]. From the topological point of view, the simplex (i.e., the
sample space for compositional vectors) differs radically from the Euclidean space
associated with unconstrained data (Aitchison, 1982; Aitchison & Egozcue, 2005;
Razum et al., 2023). Therefore, any method relying on the Euclidean distance should
not be used directly with compositional data. Four established transformations are
available that attempt to map the Aitchison simplex to Euclidean space.

Pairwise Log Ratio Transformation (pwlr) (Aitchison, 1982; Aitchison &
Egozcue, 2005; Razum et al., 2023) The pwlr transformation maps a compo-
sition isometrically from a D-dimensional Aitchison simplex to a .D(D − 1)/2-
dimensional space. In detail, it computes each possible log ratio but accounts for
the fact that .log(A/B) = − log(B/A), so only one of them is needed. On data
transformed by the pairwise log ratio, we can apply multivariate methods that do
not rely on the invertibility of the covariance function. The interpretation of pwlr-
transformed data is quite simple because each component results from a simple
operation of division and is then transformed by a logarithm to reduce the skew of
the resulting features.

The pwlr transformation is given by

.pwlr(x) = [
ξij | i < j = 1, 2, . . . , D

]
, (3.3)

where .ξij = ln(xi/xj). Note that the redundancy of pwlr generates . D(D − 1)/2
features, which corresponds to an extremely-high-dimensional space.

3.3 Data Pre-processing 41

Additive Log Ratio Transformation (alr) (Aitchison, 1982; Aitchison &
Egozcue, 2005; Razum et al., 2023) The alr transformation is given by

.alr(x) =
[
ln

x1

xD

, ln
x2

xD

, . . . , ln
xD−1

xD

]
. (3.4)

The alr transformation nonisometrically maps vectors from the D-dimensional
Aitchison simplex to a .(D − 1)-dimensional space.

As in the case of pwlr , the interpretation of alr data is quite simple because they
also derive from a simple operation of division followed by a logarithm to reduce
the skew of the resulting features.

Centered Log Ratio Transformation (clr) This transformation is given by

.clr(x) =
[
ln

x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD

g(x)

]
, (3.5)

where .gm(x) is the geometric mean of the parts of . x. The clr transformation
isometrically maps the vectors from the D-dimensional Aitchison simplex to a D-
dimensional Euclidean space. The clr-transformed data can then be analyzed by all
multivariate tools that do not rely on a full rank of the covariance (Aitchison, 1982;
Aitchison & Egozcue, 2005; Razum et al., 2023).

Orthonormal Log Ratio Transformation (olr) This transformation is also known
as the isometric log ratio transformation (ilr). The olr coordinates of . x with respect
to the basis elements .el , l = 1, 2, . . . , n−1, are defined as (Egozcue & Pawlowsky-
Glahn, 2005)

.x∗
l =

√
rs

r + s
ln

[
g(xk+1, . . . , xk+r)

g(xk+r+1, . . . , xk+r+s)

]
, (3.6)

where . x∗
l is the balance between the groups of parts .xk+1, . . . , xk+r and

.g(xk+r+1, . . . , xk+r+s) and . el is the balancing element for the two sets of parts
(Egozcue & Pawlowsky-Glahn, 2005).

Note that “with defined balances, which are directly associated with an orthog-
onal coordinate system in the simplex, every multivariate statistical technique is
available without any restriction and data can be properly statistically evaluated”
(Razum et al., 2023). Each of the above-mentioned transformations is endowed
with unique properties that can be used for compositional data analysis. The clr
transformation is often used to construct compositional biplots and for cluster
analysis (van den Boogaart & Tolosana-Delgado, 2013). Although alr-transformed
data can be analyzed by using multivariate statistical tools, the alr transformation
defines “coordinates in an oblique basis, something that affects distances if the
usual Euclidean distance is computed from the alr coordinate” (van den Boogaart
& Tolosana-Delgado, 2013). Consequently, the alr transformation “should not be

42 3 Machine Learning Workflow

used in cases [in which] distances, angles, and shapes are involved, as it deforms
them” (Pawlowsky-Glahn & Buccianti, 2011). Any multivariate technique can be
applied safely to olr-transformed data because it is related to the orthonormal basis
of the simplex (Razum et al., 2023).

In Python, both scikit-bio7 and pytolite8 provide us with methods in the
framework of CoDA.

3.3.7 A Working Example of Data Pre-processing

The code listings 3.9 and 3.10 show a step-by-step reproduction of data pre-
processing by Boujibar et al. (2021) for a study of the clustering of pre-solar
silicon carbide (SiC) grains. Do not worry if you cannot follow the specific cosmo-
chemical problem investigated by Boujibar et al. (2021). The aim of the example is
to highlight how to prepare a data set for ML investigations.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from sklearn.preprocessing import StandardScaler
5 from sklearn.preprocessing import RobustScaler
6
7 # Import Data
8 my_data = pd.read_excel("PGD_SiC_2021-01-10.xlsx",
9 sheet_name=’PGD-SIC’)
10
11 # limit to features of interest
12 my_data = my_data[[’PGD ID’, ’PGD Type’, ’Meteorite’, ’12C/13C’,
13 ’err+[12C/13C]’, ’err-[12C/13C]’, ’14N/15N’,
14 ’err+[14N/15N]’, ’err-[14N/15N]’,
15 ’d(29Si/28Si)’, ’err[d(29Si/28Si)]’,
16 ’d(30Si/28Si)’, ’err[d(30Si/28Si)]’]]
17
18 # Drop NaN
19 my_data = my_data.dropna()
20
21 # Removing M grains with large Si errors
22 my_data = my_data[~((my_data[’err[d(30Si/28Si)]’]>10) &
23 (my_data[’err[d(29Si/28Si)]’]>10) &
24 (my_data[’PGD Type’]== ’M’))]
25
26 # Excluding C and U grains
27 my_data = my_data[(my_data[’PGD Type’]==’X’) |
28 (my_data[’PGD Type’]==’N’) |

7 http://scikit-bio.org.
8 https://pyrolite.readthedocs.io.

http://scikit-bio.org
http://scikit-bio.org
http://scikit-bio.org
http://scikit-bio.org
https://pyrolite.readthedocs.io
https://pyrolite.readthedocs.io
https://pyrolite.readthedocs.io
https://pyrolite.readthedocs.io

3.3 Data Pre-processing 43

29 (my_data[’PGD Type’]==’AB’)|
30 (my_data[’PGD Type’]==’M’) |
31 (my_data[’PGD Type’]==’Y’) |
32 (my_data[’PGD Type’]==’Z’)]
33
34 # Excluding contaminated grains
35 my_data = my_data[~(((my_data[’12C/13C’]<93.56) &
36 (my_data[’12C/13C’]>88.87)) &
37 ((my_data[’14N/15N’]<339.94) &
38 (my_data[’14N/15N’]>248)) &
39 ((my_data[’d(30Si/28Si)’]<50)&
40 (my_data[’d(30Si/28Si)’]>-50)) &
41 ((my_data[’d(29Si/28Si)’]<50)&
42 (my_data[’d(29Si/28Si)’]>-50))
43)]

Listing 3.9 Working example of data pre-processing (part 1)

1 # Trasform silica isotopic delta to isotopic ratios
2 Si29_28_0 = 0.0506331
3 Si30_28_0 = 0.0334744
4 my_data[’30Si/28Si’] = ((my_data[’d(30Si/28Si)’]/1000)+1) *

Si30_28_0
5 my_data[’29Si/28Si’] = ((my_data[’d(29Si/28Si)’]/1000)+1) *

Si29_28_0
6
7 my_data[’log_12C/13C’] = np.log10(my_data[’12C/13C’])
8 my_data[’log_14N/15N’] = np.log10(my_data[’14N/15N’])
9 my_data[’log_30Si/28Si’] = np.log10(my_data[’30Si/28Si’])
10 my_data[’log_29Si/28Si’] = np.log10(my_data[’29Si/28Si’])
11
12 # Save to Excel
13 my_data.to_excel("sic_filtered_data.xlsx")
14
15 # Scvaling using StandardScaler() and RobustScaler()
16 X = my_data[[’log_12C/13C’,’log_14N/15N’,’log_30Si/28Si’,’

log_29Si/28Si’]].values
17
18 scalers =[("Unscaled", X),
19 ("Standard Scaler",StandardScaler().fit_transform(X)),
20 ("Robust Scaler",RobustScaler().fit_transform(X))
21]
22
23 # Make pictures
24 fig = plt.figure(figsize=(15,8))
25
26 for ix, my_scaler in enumerate(scalers):
27 scaled_X = my_scaler[1]
28 ax = fig.add_subplot(2,3,ix+1)
29 ax.set_title(my_scaler[0])
30 ax.scatter(scaled_X[:,0], scaled_X[:,1],
31 marker=’o’, edgecolor=’k’, color=’#db0f00’,

44 3 Machine Learning Workflow

32 alpha=0.6, s=40)
33 ax.set_xlabel(r’$log_{10}[^{12}C/^{13}C]$’)
34 ax.set_ylabel(r’$log_{10}[^{14}N/^{15}N]$’)
35
36 ax1 = fig.add_subplot(2,3,ix+4)
37 ax1.set_title(my_scaler[0])
38 ax1.scatter(scaled_X[:,2], scaled_X[:,3],
39 marker=’o’, edgecolor=’k’, color=’#db0f00’,
40 alpha=0.6, s=40)
41 ax1.set_xlabel(r’$log_{10}[^{30}Si/^{28}Si]$’)
42 ax1.set_ylabel(r’$log_{10}[^{29}Si/^{28}Si]$’)
43
44 fig.set_tight_layout(True)

Listing 3.10 Working example of data pre-processing (part 2)

Code listing 3.9 starts by importing all of the requisite libraries and methods
(i.e., pandas, matplotlib, numpy, plus StandardScaler and RobustScaler from scikit-
learn). The workflow starts at line 8, where we create a pandas DataFrame named
my_data, importing the data set of SiC analyses from Excel™. All subsequent steps
prepare .my_data for processing by a ML algorithm.

Note that, in code listing 3.9,

Line 12 Limits the features to those of interest.
Line 19 Removes non-numerical data (i.e., Not a Number, or NaN).
Line 22 Removes all the rows labeled by “M” in the “PGD Type” column and

characterized by large errors.
Line 27 Limits the data set to specific labels in the PGD-Type column (i.e.,

specific SiC classes such as X, N, AB, M, Y, and Z, in agreement with the current
classification) (Stephan et al., 2021).

Line 35 Removes contaminated grains, that is, those characterized by an isotopic
signature too similar to that of the Earth.

Then, in code listing 3.10,

Lines 2–5 Convert silica values from . δ notation to isotopic ratios.
Lines 7–10 Apply a log transformation, consistent with the alr CoDA transfor-

mation.
Line 13 Save my_data to Excel™ to record the results of pre-processing

before scaling.
Line 16 Define X, a four-feature numpy array in the shape accepted by most

scikit-learn ML algorithms.
Line 18 Defines three scenarios: (1) unscaled data, (2) scaling with Standard-

Scaler(), and (3) scaling with RobustScaler().
Lines 24–42 Perform the scaling (line 27) and show the diagrams in Fig. 3.4.

3.3 Data Pre-processing 45

Fig. 3.4 Scaling SiC data with scikit-learn

Figure 3.4 shows the results of code listings 3.9 and 3.10. As expected, the
application of various scalers and transformers does not change the data structure.
However, it strongly affects the position and the spread of the features investigated.
For example, the logarithm of .12C/13C ranges from 0 to 4 when unscaled, with
a mean at about 1.7 (see also Fig. 3.3). Both the standard and the robust scalers
center the data set on zero by using the mean and the median, respectively, but they
produce different spreads because the robust scaler also accounts for the presence
of outliers. For symmetric distributions in the absence of outliers, we expect similar
results from the standard and robust scalers.

46 3 Machine Learning Workflow

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.mixture import GaussianMixture as GMM
5
6 my_colors = [’#AF41A5’,’#0A3A54’,’#0F7F8B’,’#BFD7EA’,’#F15C61’,
7 ’#C82127’,’#ADADAD’,’#FFFFFF’, ’#EABD00’]
8
9 scaler = StandardScaler().fit(X)
10 scaled_X = scaler.transform(X)
11
12 my_model = GMM(n_components = 9, random_state=(42)).fit(scaled_X)
13
14 Y = my_model.predict(scaled_X)
15
16 fig, ax = plt.subplots()
17
18 for my_group in np.unique(Y):
19 i = np.where(Y == my_group)
20 ax.scatter(scaled_X[i,0], scaled_X[i,1],
21 color=my_colors[my_group],
22 label=my_group + 1 , edgecolor=’k’, alpha=0.8)
23
24 ax.legend(title=’Cluster’)
25
26 ax.set_xlabel(r’$log_{10}[^{12}C/^{13}C]$’)
27 ax.set_ylabel(r’$log_{10}[^{14}N/^{15}N]$’)
28
29 fig.tight_layout()

Listing 3.11 Application of the GaussianMixture() algorithm to SiC data

3.4 Training a Model

Figure 3.5 shows a cheat sheet that guides us in selecting a model for the scikit-learn
library.9

Scikit-learn works in the fields of both unsupervised learning (i.e., clustering and
dimensionality reduction) and supervised learning (i.e., regression and classifica-
tion). In supervised learning, examples of classification algorithms are the support
vector classifier (see Sect. 7.9) and the K-nearest neighbors (see Sect. 7.10). In
the field of regression, examples are the stochastic gradient descent (SGD), support
vector (SVR), and ensemble regressors. Examples of unsupervised learning, if we
consider dimensionality reduction, are locally linear embedding (LLE, see Sect. 4.3)
and principal component analysis (PCA, see Sect. 4.2). For clustering, examples are
K means, Gaussian mixture models (GMM, see Sect. 4.9), and spectral clustering.

9 https://scikit-learn.org/stable/tutorial/machine_learning_map/.

https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/

3.4 Training a Model 47

START
HERE

> 50
SAMPLES

GET MORE
DATA

NO

PREDDICTING
A CATEGORY

PREDICTING
A QUANTITY

LABELED
DATA

JUST
LOOKING

PREDICTING
STRUCTURE

TOUGH
LUCK

YES

NO

CLASSIFICATION

CLUSTERING

REGRESSION

DIMENSIONALITY REDUCTION

<100K
SAMPLES

SGD
CLASSIFIER

LINEAR
SVC

TEXT
DATA

NAIVE
BAYES

KNEIGHBORS
CLASSIFIER

SVC or
ENSEMBLE

CLASSIFIERS

RIDGE REGR.
LINEAR SVR

FEW
FEATURES
SHOULD BE
IMPORTANT

RBF SVR or
ENSEMBLE

REGRESSORS
SGD

REGRESSOR

<100K
SAMPLES

LASSO or
ELASTIC NET

NUMBER OF
CLUSTERS

KNOWN (Yes/No)
or HIERARCHICAL

STRUCTURE

SPECTRAL
CLUSTERING
or GAUSSIAN

MIXTURES

<10K
SAMPLES

KMEANS

MINIBATCH
KMEANS

OTHER
MANIFOLD
METHODS

RANDOMIZED
PCA

YES

NO

YES

NO

NO

YES

NOT
WORKING

NO

YES

YES

NO

NOT
WORKING

NO

YES

NOT
WORKING

NO

YES

NOT
WORKING

NO

YES

NO

YES

NOT
WORKING

MEAN SHIFT
or

DBSCAN

YES

LLE
ISOMAP or
SPECTRAL

EMBEDDING

NOT
WORKING

NOT
WORKING

HIERARCHICAL
CLUSTERING

HIERARCHICAL

Fig. 3.5 Scikit-learn algorithm cheat sheet. Modified from the official documentation of scikit-
learn

We discuss in detail the most popular ML algorithms in Chaps. 4 and 7, which deal
with unsupervised and supervised learning, respectively.

I now present a simple example of training an unsupervised algorithm for SiC
analyses that we use as a proxy for a scientific data set in the field of geochemistry
and cosmochemistry science. Code listing 3.11 shows how to cluster SiC data by
Gaussian mixtures (see Sect. 4.9) with the data previously pre-processed by code
listings 3.9 and 3.10. The core of the training is at line 12, where I parameterized the

48 3 Machine Learning Workflow

Fig. 3.6 Clustering produced by applying the GaussianMixture() algorithm to the SiC data (code
listing 3.11)

GaussianMixture() algorithm (i.e., defining nine clusters and fixing the random state
of the pseudo-random number generator to allow the reader to exactly reproduce my
results).

Generally speaking, the .fit() method in scikit-learn launches the training of ML
algorithms. Then, using the .predict() method, we get the results or we transfer the
knowledge obtained to unknown data. Figure 3.6 shows the result of clustering by
GaussianMixture() (see lines 16–29 of code listing 3.11).

3.5 Model Validation and Testing

The validation and testing of a model is the third fundamental step in ML, after
pre-processing and training. They allow us to evaluate the “goodness” of a model.

3.5.1 Splitting the Investigated Data Set into Three Parts

The approach of model validation and testing by splitting the investigated data
set into three parts is clearly described by Hastie et al. (2017) (Fig. 3.7): the best
approach for model assessment in ML “is to randomly divide the data set into three
parts: a training set, a validation set, and a test set. The training set is used to fit the

3.5 Model Validation and Testing 49

Original Data Set

TestTrain Validation

Fig. 3.7 Splitting the investigated data set into three parts

models; the validation set is used to estimate prediction error for model selection;
the test set is used for assessment of the generalization error of the final chosen
model.”

1 from sklearn import preprocessing
2 from sklearn.model_selection import train_test_split
3
4 le = preprocessing.LabelEncoder()
5 le.fit(my_data[’PGD Type’])
6 y = le.transform(my_data[’PGD Type’])
7
8 X_train_valid, X_test, y_train_valid, y_test = train_test_split(
9 X, y, test_size=0.20)
10
11 X_train, X_valid, y_train, y_valid = train_test_split(
12 X, y, test_size=0.25)

Listing 3.12 Splitting the investigated data set into three parts in scikit-learn

Typically, we use the training data set to train a selection of candidate models,
which could be different algorithms, a single algorithm tuned with different hyper-
parameters (i.e., one or more variables that affect the behavior of an algorithm), or
a combination of both. We then use the validation data set to evaluate candidate
models and, based on the results, choose the best model. Finally, we check the
selected model using the test data set. As an example, the train_test_split() method
in scikit-learn randomly splits a data set into two parts (e.g., training plus validation
and test sets). Again applying the train_test_split() method to the training plus
validation set further divides it into the training and validation sets.

Note that the statements on lines 4–6 of code listing 3.12 simply convert the
labels referring to a specific SiC Class (i.e., M, Y, Z, X, AB, and N) to an integer
value ranging from 0 to 5. This approach facilitates the management of labels during
the execution of supervised methods in the fields of regressions and classification.

3.5.2 Cross-Validation

The cross-validation (CV) procedure may be seen as an evolution of the static
division of the investigated data set into three parts.

50 3 Machine Learning Workflow

Original Data Set

Test

Validation Train Train Train

Train Train Train

Validation

Validation

Validation

Train Train

Train Train

Train

Train

Test

Train and Validation

Validation process

Final Evaluation

Split 1

Split 3

Split 2

Split 4

Fig. 3.8 Example of k-fold cross-validation

In the cross-validation procedure, the initial data set is split into two parts: the
test set and the training plus validation sets. Then, in the most basic strategy of
cross-validation (called k-fold CV), the joint training and validation set is split into
k smaller batches (Fig. 3.8). The following steps consist of repeating the training
and the validation for the candidate model as follows: (1) we use .k − 1 folds as the
training set; (2) the result of the training is validated against the remaining fold of
the data; and (3) we repeat the procedure for the next split.

1 from sklearn import svm
2 from sklearn import preprocessing
3 from sklearn.model_selection import cross_validate
4
5 le = preprocessing.LabelEncoder()
6 le.fit(my_data[’PGD Type’])
7 y = le.transform(my_data[’PGD Type’])
8
9 my_model = svm.SVC(kernel=’linear’, C=1, random_state=42)
10
11 cv_results = cross_validate(my_model, scaled_X, y, cv=5,
12 scoring=’accuracy’)
13
14 print(cv_results[’test_score’])
15
16 ’’’
17 Output:
18 [0.98529412 0.97785978 0.9704797 0.98154982 0.95940959]
19 ’’’

Listing 3.13 Application of a linear support vector classifier to SiC data

3.5 Model Validation and Testing 51

1 from sklearn import svm
2 from sklearn import preprocessing
3 from sklearn.model_selection import GridSearchCV
4
5 le = preprocessing.LabelEncoder()
6 le.fit(my_data[’PGD Type’])
7 y = le.transform(my_data[’PGD Type’])
8
9 parameters = {’kernel’:(’linear’, ’rbf’), ’C’:[0.1, 1, 10]}
10 my_model = svm.SVC()
11
12 my_grid_search = GridSearchCV(my_model, parameters,
13 cv = 4, scoring=’accuracy’)
14
15 my_grid_search.fit(scaled_X, y)

Listing 3.14 Model evaluation and selection by k-fold CV

The performance of the candidate model can be estimated by using the selected
metrics and averaging the k results obtained. As an example, code listing 3.13 shows
how to perform k-fold CV in scikit-learn using the cross_validate() method. After
converting the five labels in the “PGD Type” columns (i.e., M, Y, Z, X, AB, N to
a numeric index ranging from 0 to 5; see lines 5 to 7), we define a linear support
vector classifier (see Sect. 7.9) characterized by a .C = 1 hyperparameter (line 9).
Finally, we perform the k-fold CV by dividing the data set into fivefold and using
accuracy as a metric. As expected, we obtain five estimates for the accuracy, one for
each split.

1 In [01]: my_grid_search.best_estimator_
2 Out[01]: SVC(C=10, kernel=’linear’)
3
4 In [02]: my_grid_search.best_score_
5 Out[02]: 0.9778761061946903
6
7 In [03]: my_grid_search.cv_results_
8 Out[03]:
9 {’mean_fit_time’: array([0.00605977, 0.02105349, 0.00482285,
10 0.01113951, 0.00554657, 0.00662667]),
11 ’std_fit_time’: array([3.7539e-04, 6.0314e-04, 2.1346e-04,
12 7.0395e-04, 5.5384e-04, 3.1989e-05]),
13 ’mean_score_time’: array([0.00242817, 0.01987976, 0.00181627,
14 0.00979179, 0.00133586,0.00618142]),
15 ’std_score_time’: array([7.4277e-05, 1.6316e-03, 1.6929e-04,
16 2.7074e-04, 2.2063e-04, 6.4881e-04]),
17 ’param_C’: masked_array(data=[0.1, 0.1, 1, 1, 10, 10],
18 mask=[False, False, False, False, False, False],
19 fill_value=’?’, dtype=object),
20 ’param_kernel’: masked_array(data=[’linear’, ’rbf’, ’linear’,
21 ’rbf’, ’linear’, ’rbf’],
22 mask=[False, False, False, False, False, False],
23 fill_value=’?’, dtype=object),

52 3 Machine Learning Workflow

24 ’params’: [{’C’: 0.1, ’kernel’: ’linear’},
25 {’C’: 0.1, ’kernel’: ’rbf’},
26 {’C’: 1, ’kernel’: ’linear’},
27 {’C’: 1, ’kernel’: ’rbf’},
28 {’C’: 10, ’kernel’: ’linear’},
29 {’C’: 10, ’kernel’: ’rbf’}],
30 ’split0_test_score’: array([0.92330383, 0.8879056 , 0.98230088,
31 0.91150442, 0.97935103, 0.97050147]),
32 ’split1_test_score’: array([0.9380531 , 0.88495575, 0.97935103,
33 0.92625369, 0.98525074, 0.97935103]),
34 ’split2_test_score’: array([0.92330383, 0.89380531, 0.97345133,
35 0.91740413, 0.97640118, 0.96460177]),
36 ’split3_test_score’: array([0.91740413, 0.88495575, 0.96755162,
37 0.90560472, 0.97050147, 0.96460177]),
38 ’mean_test_score’: array([0.92551622, 0.8879056 , 0.97566372,
39 0.91519174, 0.97787611, 0.96976401]),
40 ’std_test_score’: array([0.00762838, 0.00361282, 0.00566456,
41 0.00762838, 0.00531792, 0.0060364]),
42 ’rank_test_score’: array([4, 6, 2, 5, 1, 3], dtype=int32)}

Listing 3.15 How to get the results of GridSearchCV()

Using the k-fold cross-validation, n different candidate models can be evaluated
by repeating n times the k-fold CV. As an example, the GridSearchCV() method
in scikit-learn performs an exhaustive search (i.e., it evaluates all possible combi-
nations of the proposed parameters) over a range of parameter values for a specific
estimator (i.e., a ML algorithm). As an example, the method GridSearchCV() can
be used to determine the best choice for the hyperparameters of a ML algorithm,
such as the C parameter and the “kernel function” of a support vector machine
(see Sect. 7.9). The code listing 3.14 shows in detail how to define the grid for the
selected hyperparameters (line 9). On line 10, we define the model (i.e., a support
vector classifier). On line 12, we define the grid search for our support vector
classifier model, using the parameters defined on line 9, a fourfold cross-validation,
and accuracy as a metric. Finally, on line 15 we physically perform the grid search
for all combinations among the defined parameters. In detail, line 9 defines two
kernel functions and three values for C. Therefore, the grid search performs six
cross-validations and splits the scaled_X data set into four folds.

Code listing 3.15 shows how to get the results of a GridSearchCV(). More
specifically, the best_estimator_, best_score_, and cv_results_ attributes provide us
with the optimal combination of hyperparameters, the best score, and a dictionary
containing all the results, respectively.

3.5.3 Leave-One-Out Cross-Validation

The Leave-one-out (or LOO) cross-validation is a limiting case of the k-fold CV.
When using the LOO approach, each training set is created by taking all the samples
except one. The test set is then created by using the sample left out.

3.5 Model Validation and Testing 53

1 import numpy as np
2 from sklearn import svm
3 from sklearn.model_selection import LeaveOneOut
4 from sklearn.model_selection import cross_validate
5 import matplotlib.pyplot as plt
6
7 loo = LeaveOneOut()
8
9 my_model = svm.SVC(kernel=’linear’, C=1, random_state=42)
10
11 cv_results = cross_validate(my_model, scaled_X, y, cv=loo,
12 scoring=’accuracy’)
13
14 fig, ax = plt.subplots()
15 my_x = [0,1]
16 my_height = [np.count_nonzero(cv_results[’test_score’] == 0),
17 np.count_nonzero(cv_results[’test_score’] == 1)]
18 my_bar = ax.bar(x = my_x, height=my_height, width=1,
19 color=[’#F15C61’, ’#BFD7EA’],
20 tick_label=[’wrongly classified’, ’correcty

classified’],
21 edgecolor=’k’)
22 ax.set_ylabel(’occurrences’)
23 ax.set_title(’LOO cross validation n = {}’.format(len(scaled_X)))
24 ax.bar_label(my_bar)
25 ax.set_ylim(0,1600)

Listing 3.16 Leave-one-out cross-validation

In the LOO approach, the cross-validation typically covers all potential training
sets (i.e., each sample of the investigated data set). Code listing 3.16 highlights how
to perform a LOO cross-validation on the same study case used in code listing 3.13.
Figure 3.9 shows the results of the LOO cross-validation of code listing 3.16. In
the specific case under study, code listing 3.13 cross-validates 1356 models, each of
which considers one of the investigated samples as the test data set, with all other
samples serving for training.

3.5.4 Metrics

As you have probably noticed, the validation process is based on a metric. As
an example, code listings 3.13, 3.13, and 3.16 specify scoring=‘accuracy’, which
means that all examples given to this point use accuracy as a metric to quantify the
“goodness” of a model. Note that a plethora of metrics exist that can potentially
be used to validate a model. For example, Tables 3.3, 3.4, and 3.5 list the
metrics that are available in scikit-learn for classification, regression, and clustering,

54 3 Machine Learning Workflow

Fig. 3.9 Result of the LOO cross-validation (code listing 3.16)

respectively.10 All the metrics reported in these tables follow the same convention:
the goodness of the model increases as the value returned by the selected metric
increases. In other words, higher values for a specific metric are better than lower
values.

3.5.5 Overfitting and Underfitting

Over- and under-fitting should definitively be avoided when training a ML model.
Over-fitting is when the trained models work suspiciously well in fitting the training
set, whereas the performance with real-world data is poor (Shai & Shai, 2014). In
other words, over-fitting occurs “when our hypothesis fits the training data too well
(Shai & Shai, 2014).” Conversely, when our hypothesis is too simplistic (e.g., we try
training a linear model to fit a nonlinear pattern; see Fig. 3.10) we have under-fitting,
meaning a large approximation error (Shai & Shai, 2014).

10 https://scikit-learn.org/stable/modules/model_evaluation.html.

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html

3.6 Model Deployment and Persistence 55

Table 3.3 Metrics and scoring for the classification in scikit-learn

Method in metrics Keywords Description

.accuracy_score ‘accuracy’ Accuracy classification score

.balanced_accuracy_score ‘balanced_accuracy’ Compute the balanced accuracy

.top_k_accuracy_score ‘top_k_accuracy’ Top-k Accuracy classification

.average_precision_score ‘average_precision’ Compute the average precision

.brier_score_loss ‘neg_brier_score’ Compute the Brier score loss

.precision_score ‘precision’ Compute the precision

‘precision_micro’

‘precision_macro’

‘precision_weighted’

‘precision_samples’

.f1_score ‘f1’ Compute the F1 score

‘f1_micro’

‘f1_macro’

‘f1_weighted’

‘f1_samples’

.recall_score ‘recall’ Compute the recall

‘recall_micro’

‘recall_macro’

‘recall_weighted’

‘recall_samples’

.jaccard_score ‘jaccard’ Jaccard similarity coefficient

‘jaccard_micro’

‘jaccard_macro’

‘jaccard_weighted’

‘jaccard_samples’

.roc_auc_score ‘roc_auc’ Area Under the Receiver

‘roc_auc_ovr’ Operating Characteristic

‘roc_auc_ovo’ Curve (ROC AUC)

‘roc_auc_ovr_weighted’

‘roc_auc_ovo_weighted’

3.6 Model Deployment and Persistence

The deployment and persistence of a ML model is the last step of our workflow.
Many options exist to ensure the persistence of a model, such as the use of pickles,
joblib’s pipelines, the Open Neural Network Exchange Format,11 and the Predictive
Model Markup Language12 format.

11 https://onnx.ai.
12 https://dmg.org.

https://onnx.ai
https://onnx.ai
https://onnx.ai
https://dmg.org
https://dmg.org
https://dmg.org

56 3 Machine Learning Workflow

Table 3.4 Metrics and scoring for the regression in scikit-learn

Method in metrics Keywords Description

.explained_variance_score ‘explained_variance’ Explained variance

regression score

.max_error ‘max_error’ Calculates the maximum

residual error

.mean_absolute_error ‘neg_mean_absolute_error’ Mean absolute error

regression loss

.mean_squared_error ‘neg_mean_squared_error’ Mean squared error

regression loss

‘neg_root_mean_squared_error’ Root mean squared error

regression loss

.mean_squared_log_error ‘neg_mean_squared_log_error’ Mean squared
logarithmic

error regression loss

.median_absolute_error ‘neg_median_absolute_error’ Median absolute error

regression loss

.r2_score ‘r2’ .R2-coefficient of

determination score

.mean_poisson_deviance ‘neg_mean_poisson_deviance’ Mean Poisson deviance

regression loss

.mean_gamma_deviance ‘neg_mean_gamma_deviance’ Mean Gamma deviance

regression loss

.mean_absolute_percentage_error ‘neg_mean_absolute_ Mean absolute
percentage

percentage_error’ error regression loss

As reported in the scikit-learn official documentation,13 joblib’s pipelines share
some maintenance and security issues. For example, they assume the deployment
of models in the same environment (i.e., the same library versions and Python
core). Due to the above-mentioned issues, I suggest using the Open Neural Network
Exchange Format or the Predictive Model Markup Language format to ensure the
persistence of your ML model. These formats aim to improve model portability on
different computing architectures and long-term archiving.

13 https://scikit-learn.org/stable/model_persistence.html.

https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html

3.6 Model Deployment and Persistence 57

Table 3.5 Metrics and scoring for the clustering in scikit-learn

Method in metrics Keywords Description

.adjusted_mutual_info_score ‘adjusted_mutual_info_score’ Adjusted mutual information

between two clusterings

.adjusted_rand_score ‘adjusted_rand_score’ Rand index adjusted for chance

.completeness_score ‘completeness_score’ Completeness metric of a cluster

labeling given a ground truth

.fowlkes_mallows_score ‘fowlkes_mallows_score’ Measure the similarity of two

clusterings of a set of points

.homogeneity_score ‘homogeneity_score’ Homogeneity metric of a cluster

labeling given a ground truth

.mutual_info_score ‘mutual_info_score’ Mutual Information

between two clusterings

.normalized_mutual ‘normalized_mutual Normalized Mutual Information

_info_score _info_score’ between two clusterings

.rand_score ‘rand_score’ Rand index

.v_measure_score ‘v_measure_score’ V-measure cluster labeling

given a ground truth

Underfitting

Overfitting

Good Model

Model
Error on the test data set

Training data set
Test data set

Fig. 3.10 Overfitting and underfitting

58 3 Machine Learning Workflow

References

Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical
Society. Series B (Methodological), 44(2), 139–177.

Aitchison, J. (1984). The statistical analysis of geochemical compositions. Journal of the
International Association for Mathematical Geology, 16(6), 531–564.

Aitchison, J., & Egozcue, J. J. (2005). Compositional data analysis: Where are we and where
should we be heading? Mathematical Geology, 37(7), 829–850. https://doi.org/10.1007/
S11004-005-7383-7

Bestagini, P., Lipari, V., & Tubaro, S. (2017). A machine learning approach to facies classification
using well logs. In SEG Technical Program Expanded Abstracts (pp. 2137–2142). https://doi.
org/10.1190/SEGAM2017-17729805.1

Boujibar, A., Howell, S., Zhang, S., Hystad, G., Prabhu, A., Liu, N., Stephan, T., Narkar, S., Eleish,
A., Morrison, S. M., Hazen, R. M., & Nittler, L. R. (2021). Cluster analysis of presolar
silicon carbide grains: Evaluation of their classification and astrophysical implications. The
Astrophysical Journal. Letters, 907(2), L39. https://doi.org/10.3847/2041-8213/ABD102

Corlett, W. J., Aitchison, J., & Brown, J. A. C. (1957). The lognormal distribution, with special
reference to its uses in economics. Applied Statistics, 6(3), 228. https://doi.org/10.2307/
2985613

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its
essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061/
FULL/XML

Egozcue, J. J., & Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional
data analysis. Mathematical Geology, 37(7), 795–828. https://doi.org/10.1007/S11004-005-
7381-9

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning (2nd ed.).
Springer.

Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys
and clues. https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2

Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data
augmentation techniques. In Global Transitions Proceedings. https://doi.org/10.1016/J.GLTP.
2022.04.020

Panda, D. K., Lu, X., & Shankar, D. (2022). High-performance big data computing. MIT Press.
Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis. Wiley Online Library.
Petrelli, M. (2021). Introduction to Python in earth science data analysis. Springer International

Publishing. https://doi.org/10.1007/978-3-030-78055-5
Pietsch, W. (2021). Big Data. Cambridge University Press. https://doi.org/10.1017/

9781108588676
Razum, I., Ilijanić, N., Petrelli, M., Pawlowsky-Glahn, V., Miko, S., Moska, P., & Giaccio, B.

(2023). Statistically coherent approach involving log-ratio transformation of geochemical data
enabled tephra correlations of two late Pleistocene tephra from the eastern Adriatic shelf.
Quaternary Geochronology, 74, 101416. https://doi.org/10.1016/J.QUAGEO.2022.101416

Shai, S.-S., & Shai, B.-D. (2014). Understanding machine learning: From theory to algorithms.
Cambridge University Press.

Stephan, T., Bose, M., Boujibar, A., Davis, A. M., Gyngard, F., Hoppe, P., Hynes, K. M., Liu, N.,
Nittler, L. R., Ogliore, R. C., & Trappitsch, R. (2021). The Presolar Grain Database for silicon
carbide—grain type assignments (abstract). In Lunar Planetary Science (vol. 52, p. 2358).

van den Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional data with R.
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36809-7/COVER

Zhang, Z. (2016). Missing data imputation: focusing on single imputation. Annals of Translational
Medicine, 4(1), 9. https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38

https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.3847/2041-8213/ABD102
https://doi.org/10.2307/2985613
https://doi.org/10.2307/2985613
https://doi.org/10.2307/2985613
https://doi.org/10.2307/2985613
https://doi.org/10.2307/2985613
https://doi.org/10.2307/2985613
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1108/LR-06-2015-0061/FULL/XML
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1007/S11004-005-7381-9
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1016/J.GLTP.2022.04.020
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1017/9781108588676
https://doi.org/10.1017/9781108588676
https://doi.org/10.1017/9781108588676
https://doi.org/10.1017/9781108588676
https://doi.org/10.1017/9781108588676
https://doi.org/10.1017/9781108588676
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1016/J.QUAGEO.2022.101416
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.1007/978-3-642-36809-7/COVER
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38
https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.38

Part II
Unsupervised Learning

Chapter 4
Unsupervised Machine Learning
Methods

4.1 Unsupervised Algorithms

As introduced in Chap. 1, the unsupervised learning process acts on unlabeled data
and attempts to extract significant patterns from the investigated data set. In the
present chapter, I gently introduce the unsupervised algorithms for dimensionality
reduction and clustering reported in Fig. 3.5. Finally, I provide some specific
references to allow readers to delve deeper into the mathematics that governs these
ML methods. In detail, I start by describing the algorithms for dimensionality
reduction, which include the principal component analysis and methods based
on manifold learning. I then describe clustering methods, such as hierarchical
clustering, DBSCAN, mean shift, K means, spectral clustering, and Gaussian
mixtures models.

4.2 Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical method that extracts
relevant information from a data set and represents it in a lower-dimensional
space (Jollife & Cadima, 2016). It strives to increase the interpretability of a
data set by reducing the dimensionality of the problem while at the same time
minimizing information loss (Jollife & Cadima, 2016). In detail, it creates new
uncorrelated variables (i.e., through a linear combination of the original variables),
called “principal components,” that maximize variance (Jollife & Cadima, 2016).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4
https://doi.org/10.1007/978-3-031-35114-3_4

62 4 Unsupervised Machine Learning Methods

Mathematically, PCA is an eigenvalue-eigenvector problem (Jollife & Cadima,
2016). Consider a d-dimensional sample set .X = {x1, x2, xj , . . . , xp} made of n
observations on p numerical variables. The sample set X is equivalent to an . n × p

data matrix . X, whose j th column is the vector . xj of observations on the j th variable
(Jollife & Cadima, 2016). We look for a linear combination of the columns of matrix
. X with maximum variance (Jollife & Cadima, 2016). Such linear combinations are
given by

.

p∑

j=1

ajxj = Xa, (4.1)

where .a = {a1, a2, . . . , ap} is a vector of constants (Jollife & Cadima, 2016). The
variance of any linear combination defined by Eq. (4.1) is given by Jollife and
Cadima (2016)

.var(Xa) = aT Sa, (4.2)

where . S is the sample covariance matrix associated with the data set (Jollife &
Cadima, 2016).

The solution to the problem (i.e., identifying the linear combination with
maximum variance) consists of finding a d-dimensional vector . a that maximizes
the quadratic form .aT Sa (Jollife & Cadima, 2016). To obtain a defined solution, the
most common restriction assumes working with unit-norm vectors (i.e., requiring
.aT a = 1). Now the problem is equivalent to maximizing the relation (Jollife &
Cadima, 2016)

.aT Sa − λ
(
aT a − 1

)
. (4.3)

After differentiating with respect to the vector . a and equating to the null vector, we
have (Jollife & Cadima, 2016)

.Sa = λa. (4.4)

In Eq. (4.4), . a is a unit-norm eigenvector and . λ is the corresponding eigenvalue of
. S (Jollife & Cadima, 2016). The full set of eigenvectors of . S are the solutions to
the problem of obtaining up to d new linear combinations .Xak = ∑d

j=1 ajkxj ,
which successively maximize variance subject to noncorrelation with previous
linear combinations (Jolliffe, 2002; Jollife & Cadima, 2016).

4.3 Manifold Learning

The main idea behind manifold learning methods is that, although natural data sets
are often depicted in very-high-dimensional spaces, they can be described in lower

4.3 Manifold Learning 63

dimensions because the processes generating the data are often characterized by
few degrees of freedom (Zheng & Xue, 2009). From the mathematical point of
view, manifold learning methods try to model the data as “lying on or near a low-
dimensional manifold embedded in a higher-dimensional space” (Zheng & Xue,
2009). In the following, I introduce the basic concepts of manifold learning, but
I strongly encourage you to go deeper into the details if you plan to use these
techniques in your research (Zheng & Xue, 2009).

Manifold A d-dimensional manifold . M is a topological space that is locally
homeomorphic with respect to . Rd .

Homomorphism A map from one algebraic structure to another of the same type
that preserves all the relevant structures.

Embedding An embedding of a manifold . M into . Rd is a smooth homeomorphism
from . M to a subset of . Rd .

4.3.1 Isometric Feature Mapping

The Isometric feature mapping (Isomap) is an ML algorithm that is “capable
of discovering the nonlinear degrees of freedom that underlie complex natural
observations” (Tenenbaum et al., 2000). It consists of three main steps: (1) construct
a neighborhood graph, (2) compute the shortest paths, and (3) construct a d-
dimensional embedding (Tenenbaum et al., 2000). In practice, Isomap searches for
a lower-dimensional embedding while maintaining geodesic distances between all
points. In scikit-learn, the method Isomap() performs the Isometric feature mapping.

4.3.2 Locally Linear Embedding

Locally linear embedding (LLE) (Roweis & Saul, 2000) is a ML algorithm
that “computes low-dimensional, neighborhood-preserving embeddings of high-
dimensional inputs” (Roweis & Saul, 2000). In practice, LLE maps the inputs onto
a single global coordinate system of lower dimensionality (Roweis & Saul, 2000).
Also, its optimizations do not involve local minima (Roweis & Saul, 2000). In other
words, LLE searches for a lower-dimensional projection of the data while preserving
distances within local neighborhoods. In scikit-learn, LLE is implemented in the
method LocallyLinearEmbedding().

64 4 Unsupervised Machine Learning Methods

4.3.3 Laplacian Eigenmaps

A Laplacian eigenmap (Belkin & Niyogi, 2003) first develops a graph incorporating
neighborhood information starting from a data set in . Rd and then uses the Laplacian
to compute a low-dimensional representation. Practically, Laplacian eigenmaps
consist of three main steps: (1) constructing the adjacency graph, (2) choosing the
weights, and (3) computing the eigenmaps.

4.3.4 Hessian Eigenmaps

Hessian eigenmaps (Donoho & Grimes, 2003) are similar to Laplacian eigenmaps
but replace the Laplacian operator with the Hessian operator. The main difference
between Laplacian and Hessian eigenmaps relies on the capability of Hessian
eigenmaps to overcome the ‘convexity limitation’ of Laplacian eigenmaps (Zheng
& Xue, 2009). In scikit-learn, Hessian eigenmaps can be performed with the
LocallyLinearEmbedding(), i.e., the same that we use for the LLE, but specifying
method = ‘hessian’.

4.4 Hierarchical Clustering

Hierarchical clustering algorithms (Johnson, 1967) build a hierarchical represen-
tation of the data set structure where clusters at each level of the hierarchy
are assembled by merging or splitting clusters at the next lower or upper level,
respectively (Johnson, 1967; Hastie et al., 2017). Two main paradigms of hierar-
chical clustering exist: agglomerative (i.e., bottom-up) and divisive (i.e., top-down).
Agglomerative strategies start from the bottom where every observation forms a
cluster (Johnson, 1967; Hastie et al., 2017). Next, at each successive level, the
algorithm recursively merges a selected pair of clusters into a single cluster. The
criterion for merging (i.e., linkage) is based on specific metrics (Johnson, 1967;
Hastie et al., 2017).

In contrast, the divisive approach starts from a single cluster containing all
observations and, at each subsequent level, recursively splits one of the existent
clusters into two new clusters using a dissimilarity metric (Johnson, 1967; Hastie
et al., 2017). In scikit-learn, the method AgglomerativeClustering() performs the
agglomerative hierarchical clustering using a bottom-up approach. The linkage
criterion is based on the concept of dissimilarity. To understand this concept,
consider two sets of observations; clusters G and H . Hierarchical clustering
estimates the dissimilarity .d(G,H) between G and H on the set of pairwise-
observation dissimilarities . dij , where member i of the pair is in G and member j

4.5 Density-Based Spatial Clustering of Applications with Noise 65

Table 4.1 Linkage options in AgglomerativeClustering()

Parameter Equation Note

linkage=‘single’ .dsl(G,H) = min
i∈G
j∈H

dij Uses the minimum of the distances
between all observations of the two sets

linkage=‘complete’ .dcl(G,H) = max
i∈G
j∈H

dij Uses the maximum distance between
all observations of the two sets

linkage=‘average’ .dga(G,H) = 1

ngnh

∑

i∈G

∑

j∈H

dij Uses the average of the distances of
each observation of the two sets

is in H (Hastie et al., 2017). Using AgglomerativeClustering(), the linkage criterion
could be single, complete, group average, or Ward (Table 4.1).

Finally, Ward’s linkage criterion (the default in scikit-learn) states that the
distance between two clusters G and H is how much the sum of squares increases
when they are merged:

.�(G,H) = |G| |H |
|G| + |H | ‖mG + mH ‖2 , (4.5)

where . � is the “merging cost” of combining clusters G and H . Also, . m, .|G| and
.|H | are the center of clusters and the cardinal of G and H , respectively.

The dissimilarities .dij can be estimated by using different metrics. Using
the method AgglomerativeClustering(), they can be “Euclidean” or “Manhattan,”
among others. For Ward linkage, the only metric accepted is “Euclidean” [see
Eq. (4.5)].

4.5 Density-Based Spatial Clustering of Applications with
Noise

The algorithm density-based spatial clustering of applications with noise
(DBSCAN) relies on a “density-based notion of clusters which is designed to
discover clusters of arbitrary shape” (Ester et al., 1996). Topologically, DBSCAN
identifies a core sample if there exists a pre-defined minimum number of other (i.e.,
neighbors of the core sample) within a distance of . ε (Ester et al., 1996). A cluster is
a set of core samples plus their neighbors. Any sample that is neither a core sample
nor a neighbor (i.e., it is at least a distance . ε from any core sample) is marked as
an outlier (Ester et al., 1996). Note that DBSCAN does not require the number of
clusters to be specified.

66 4 Unsupervised Machine Learning Methods

4.6 Mean Shift

The mean shift algorithm is a nonparametric technique for clustering analysis
(Comaniciu & Meer, 2002); it estimates the kernel density in the investigated
d-dimensional feature space (Derpanis, 2005). As a result, the kernel density
estimation defines an empirical probability density function where “dense regions”
identify local maxima (i.e., modes) of the underlying distribution (Derpanis, 2005).
Finally, the mean shift algorithm performs a gradient ascent (i.e., it searches
until convergence for these maxima in the empirical probability density function)
(Derpanis, 2005). In detail, the mean shift procedure for a given observation . xi is as
follows (Derpanis, 2005; Comaniciu & Meer, 2002):

1. Compute the mean shift vector .m(xt
i) at the step t ;

2. Translate the density-estimation window: .xt+1
i = xt

i + m(xt
i);

3. Iterate steps 1 and 2 until convergence.

The mean shift vector is defined as follows [Eq. (17) in Comaniciu and Meer
(2002)]:

.m(xi) =
⎡

⎣
∑n

i=1 xig
(∥∥ x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥ x−xi

h

∥∥2
) − x

⎤

⎦ , (4.6)

where the function .g(x) is the derivative of the selected kernel estimator and h
(i.e., the bandwidth parameter) defines the radius of the kernel (Comaniciu & Meer,
2002).

In scikit-learn, the MeanShift() method uses a flat kernel to perform mean
shift clustering. Note that the default scikit-learn parametrization of the mean
shift algorithm automatically sets the number of clusters and the optimal h (i.e.,
the bandwidth). However, h can be manually adjusted by using the bandwidth
parameter.

4.7 K-Means

The K-means is a clustering technique that seeks to minimize the average squared
distance between points in the same cluster (Arthur & Vassilvitskii, 2007). Note
that the K-means algorithm requires the number of clusters to be specified.
Mathematically, the K-means algorithm can be expressed as follows: given an
integer k and a set of n data points in . Rd , the goal is to choose k centers to minimize

4.8 Spectral Clustering 67

the total squared distance between each point and its closest center (i.e., the inertia
. φ) (Arthur & Vassilvitskii, 2007):

.φ =
∑

x∈X

min
c∈C

‖x − c‖2 . (4.7)

Usually, the K-means implementation (e.g., in scikit-learn) refers to the solution
of the problem proposed by Lloyd (1982). In detail, the algorithm proposed by
Arthur and Vassilvitskii (2007) consists of four steps:

1. Arbitrarily choose an initial k centers .C = {c1, c2, . . . , ck, };
2. For each .i ∈ {1, . . . , k}, set the cluster . Yi to be the set of points in X that are

closer to . ci ;
3. Define new centroids . ci by averaging all the samples assigned to each previous

centroid;
4. Repeat steps 2 and 3 until C no longer changes significantly.

In scikit-learn, the method KMeans() implements K-means clustering. Also,
MiniBatchKMeans() modifies the K-means algorithm by using minibatches to save
computation time.

4.8 Spectral Clustering

Spectral clustering (Von Luxburg, 2007) is a ML technique that combines clustering
with dimensionality reduction (Sugiyama, 2015). In detail, spectral clustering uses
a kernel function to transform samples into a feature space and then applies a
locality-preserving projection to reduce the dimensionality (see Fig. 4.1). Note that
a locality-preserving projection in the feature space is equivalent to the Laplacian
eigenmap manifold method described in Sect. 4.3.3 (Sugiyama, 2015). In practice,
spectral clustering performs a low-dimensional embedding low-dimensional embed-
ding of the similarity (or affinity) matrix between samples (Von Luxburg, 2007).
Finally, spectral clustering uses a clustering method (e.g., K means) to obtain cluster
labels (Sugiyama, 2015; Von Luxburg, 2007).

In scikit-learn the method SpectralClustering() applies spectral clustering. Note
that SpectralClustering() requires the number of clusters to be specified in advance.

68 4 Unsupervised Machine Learning Methods

Fig. 4.1 Locality-preserving
projection. The projection
tries to maintain the cluster
structure when reducing the
dimensionality of the
problem. Modified from
Sugiyama (2015)

4.9 Gaussian Mixture Models

Gaussian mixture models (GMMs) try to reconstruct the probability density function
that underlies the investigated data set as generated by a mixture of a finite number
of Gaussian distributions with unknown parameters (McLachlan & Peel, 2000).

To understand how GMMs work, consider a d-dimensional (i.e., characterized
by d variables or features) sample set .X = {x1, x2, . . . , xn} of independent and
identically distributed observations (McLachlan & Peel, 2000). Finite mixtures
models (FMMs) assume that the observations .x ∈ X derive from a probability
density function described by a mixture of g components (McLachlan & Peel, 2000;
Scrucca et al., 2016):

.f (x, ψ) =
g∑

i=1

πifi(x, θ i), (4.8)

where g and .ψ = {π1, . . . , πg−1, θ1, . . . , θg} are the number of mixture com-
ponents and the parameters of the model, respectively (Scrucca et al., 2016).
Also, .fi(x, θ i) is the ith component density for the sample observation . x and
is parametrized by the vector . θ i . Finally, .{π1, . . . , πg−1} are the mixing weights
(Scrucca et al., 2016).

In many applications, the component densities .fi(x, θ i) are assumed to belong
to the same parametric family (McLachlan & Peel, 2000). In some applications,
the component densities are taken to be different. The implementation of a finite
Gaussian mixtures model assumes .fi(x, θ i) as a multivariate normal, a fixed G, and
consists of estimating the model parameters . ψ (McLachlan & Peel, 2000).

In scikit-learn, the methods GaussianMixture() and BayesianGaussianMixture()
implement the finite Gaussian mixture model based on expectation-maximization
(EM) (Dempster et al., 1977) and variational Bayesian inference (Hastie et al.,
2017; Blei & Jordan, 2006), respectively. Variational Bayesian inference is similar

References 69

to expectation maximization, although the former adds a regularization step by inte-
grating information from integrating information from prior distributions (Hastie
et al., 2017; Blei & Jordan, 2006). The aim is to avoid pathological special cases,
which often appear in expectation-maximization solutions (Blei & Jordan, 2006).

References

Arthur, D., & Vassilvitskii, S. (2007). K-Means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp.
1027–1035).

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6), 1373–1396.

Blei, D. M., & Jordan, M. I. (2006). Variational inference for Dirichlet process mixtures. Bayesian
Analysis, 1(1), 121–143. https://doi.org/10.1214/06-BA104

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1), 1–22. https://doi.org/10.1111/J.2517-6161.1977.TB01600.X

Derpanis, K. G. (2005). Mean shift clustering. In Lecture Notes (vol. 32).
Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for

high-dimensional data. Proceedings of the National Academy of Sciences, 100(10), 5591–5596.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering

clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226–231).
Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning (2nd ed.).

Springer.
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.
Jolliffe, I. T. (2002). Principal component analysis. Springer-Verlag. https://doi.org/10.1007/

B98835
Jollife, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 374(2065). https://doi.org/10.1098/RSTA.2015.0202

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489

McLachlan, G. J., & Peel, D. (2000). Finite mixture models. Wiley.
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500), 2323–2326. https://doi.org/10.1126/SCIENCE.290.5500.
2323

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification
and density estimation using gaussian finite mixture models. The R Journal, 8(1), 289–317.
https://doi.org/10.32614/RJ-2016-021

Sugiyama, M. (2015). Introduction to statistical machine learning. Elsevier Inc. https://doi.org/
10.1016/C2014-0-01992-2

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. https://doi.org/10.1126/
SCIENCE.290.5500.2319

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–
416.

Zheng, N., & Xue, J. (2009). Manifold Learning. In Statistical learning and pattern analysis
for image and video processing (pp. 87–119). London: Springer. https://doi.org/10.1007/978-
1-84882-312-94

https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1111/J.2517-6161.1977.TB01600.X
https://doi.org/10.1007/B98835
https://doi.org/10.1007/B98835
https://doi.org/10.1007/B98835
https://doi.org/10.1007/B98835
https://doi.org/10.1007/B98835
https://doi.org/10.1007/B98835
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1098/RSTA.2015.0202
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.1126/SCIENCE.290.5500.2323
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.32614/RJ-2016-021
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1126/SCIENCE.290.5500.2319
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4
https://doi.org/10.1007/978-1-84882-312-9 4

Chapter 5
Clustering and Dimensionality Reduction
in Petrology

5.1 Unveil the Chemical Record of a Volcanic Eruption

Unsupervised machine learning methods can help us decode the chemical record
stored in the crystal cargo of a single eruption or multiple volcanic events (Caricchi
et al., 2020b; Boschetty et al., 2022; Musu et al., 2023). This record often includes
the major element’s chemical composition (i.e., multivariate compositional data) of
different crystal phases such as olivine, clinopyroxene, orthopyroxene, amphibole,
plagioclase, garnet, and quartz (Boschetty et al., 2022; Aitchison & Egozcue, 2005;
Aitchison, 1982, 1984). Each of these phases provides clues to unravel the complex
dynamics of a volcanic plumbing system (Ubide et al., 2021) and its evolution
(Costa et al., 2020; Petrelli & Zellmer, 2020).

During the crystallization process (Fig. 5.1), minerals grow and adapt their
textural aspect and chemistry to the melt compositions and the thermodynamic
conditions of the magmatic system (Ubide et al., 2021). For example, concentric
chemical zones from the core to the rim of a crystal reflect the sequential changes
over time imposed by the magmatic system (Fig. 5.1). Moderate-to-rapid growths at
intermediate-to-high degrees of undercooling (.�T = Tliquidus − Tcrystallisation) may
result in sector zoning in euhedral crystals or skeletal to dendritic textures (Fig. 5.1).
In addition, diffusive re-equilibration of compositional gradients can further modify
chemical patterns in crystals (Costa et al., 2020; Petrelli & Zellmer, 2020).

At shallow crustal levels (Fig. 5.1), pre- and syn-eruptive dynamics include
a complex range of processes, including magma fractionation, recharge, mixing,
assimilation, and degassing (Ubide et al., 2021). Interrogating the crystal cargo
of an eruption provides us with the requisite information to unravel the complex

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_5

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5
https://doi.org/10.1007/978-3-031-35114-3_5

72 5 Clustering and Dimensionality Reduction in Petrology

MID to DEEP
CRUSTAL LEVELS

SHALLOW to MID
CRUSTAL LEVELS

DEEP
CRUSTAL LEVELS

SHALLOW
CRUSTAL LEVELS

eruption

0.7

0.5

1.0

0.2

~20

~15

~30

~7

Depth
km

Pressure
GPa

shallow

intermediate

deep

crystal

bubble

reservoirs

A

recharge crystals

resident crystals
eruption

melt and crystal cargo

Storage conditions:
- thermobarometry
- rock textures

Crystal timescales:

- dissolution
- growth

Crystal ages:
-radiometric dating

Increasing Magma Undercooling (ΔT)

Deviation from equilibrium

liquidus T

system T

solidus T

liquid

liquid +
crystals

crystallyne rockTe
m

p
er

at
ur

e
In

cr
ea

se

ΔT

A - Making crystal archives

B & C - Dynamics of pre- and syn-eruptive events

B

C

Fig. 5.1 Architecture of a volcanic plumbing system and related pre- and syn-eruptive dynamics.
Modified from Petrelli and Zellmer (2020) and Ubide et al. (2021)

5.2 Geological Setting 73

dynamics of a volcanic plumbing system before and during eruption (Ubide et al.,
2021).

In this chapter, I focus on the data set reported by Musu et al. (2023), which
consists of clinopyroxene analyses (cpx) erupted by the South-East Crater of Mt.
Etna during the sequence of lava fountains that occurred between February and
April of 2021 (Musu et al., 2023).

Musu et al. (2023) focused on cpx analyses because (1) cpx is typically
found in mafic to intermediate magmas, (2) cpx crystallizes over a wide range
of temperatures T and pressures P , and (3) cpx chemistry depends on magma
composition, water content, pressure, and temperature (Musu et al., 2023), which
make cpx a robust thermobarometer (Putirka, 2008; Petrelli et al., 2020; Jorgenson
et al., 2022; Higgins et al., 2021) and a fine recorder of the chemical evolution of
magmatic systems (Ubide & Kamber, 2018; Caricchi et al., 2020b; Boschetty et al.,
2022).

5.2 Geological Setting

Mt. Etna is in eastern Sicily on the southern tip of the Italian peninsula (Fig. 5.2)
and is the largest active volcano in Europe (Branca & Del Carlo, 2004) and one of
the most active volcanoes in the world (Cappello et al., 2013; Corsaro & Miraglia,
2022).

Mt. Etna

Sicily

41
79

00
0

500000

41
78

00
0

41
77

00
0

Italy

Fig. 5.2 Mt. Etna volcano. Modified from Musu et al. (2023)

74 5 Clustering and Dimensionality Reduction in Petrology

The Mt. Etna volcano exhibits different eruptive behaviors, from effusive to
explosive, including strombolian and violent lava-fountaining occurrences (Branca
& Del Carlo, 2004; Ferlito et al., 2014; Corsaro & Miraglia, 2022). Eruptions
come from summit craters and fissure vents along its flanks (Musu et al., 2023;
Branca & Del Carlo, 2004; Di Renzo et al., 2019). The summit area consists of four
active vents: Voragine (VOR), Bocca Nuova (BN), North-East Crater (NEC), and
South-East Crater (SEC). Of these, the SEC is the youngest and most active vent
(Andronico & Corsaro, 2011; Di Renzo et al., 2019; Corsaro & Miraglia, 2022).

A cyclical eruptive sequence started at the SEC on December 13, 2020 and
generated over 60 paroxysms; in other words, “particularly violent eruptions of the
volcano, which is the most dangerous and tense stage of this eruptive cycle, at which
the whole cavity of the crater is opened” (Paffengoltz, 1978).

5.3 The Investigated Data Set

The data set contains major-element chemical analyses collected along rim-to-core
transects on clinopyroxenes with a point spacing of 2 . μm (Musu et al., 2023). A
total of 1250 analyses were acquired (Musu et al., 2023) by using a JEOL 8200
Superprobe at the University of Geneva and a JEOL JXA-8530F at the University
of Lausanne (Musu et al., 2023). Clinopyroxene samples belong to lapilli collected
from the lava-fountain deposits of February 16, 19, and 28 and March 2 and 10,
2021.

5.4 Data Pre-processing

Code listings 5.1 and 5.2 reveal our data pre-processing strategy, including the
final step of data visualization. The strategy consists of first cleaning the data and
then transforming it for compositional data analysis (CoDA; cf. Sect. 3.3.6) and
“robust” normalization. Finally, the resulting CoDA-transformed and -scaled data
are visualized.

5.4.1 Data Cleaning

Code listing 5.1 is mainly a preliminary data-cleaning procedure. In detail, the
function calc_cations_on_oxygen_basis() (lines 4–29) calculates the number of
cations deriving from a specific chemical analysis based on a fixed number of
oxygens in the chemical formula of a specific crystal phase. We are dealing with
clinopyroxene analyses, so the base chemical formula contains six oxygens and four
cations (line 36). Also, we define a tolerance of 0.06, which means that we discard
all analyses that return less than 3.94 or more than 4.06 cations in the formula. We
are mainly discarding bad chemical analyses (e.g., those affected by contamination,

5.4 Data Pre-processing 75

melt contamination, or additional issues). If you do not understand this step, please
refer to an introductory text on mineralogy for further details (Okrusch & Frimmel,
2020). Another test for anhydrous crystal phases is to check for closure (i.e., verify
that the sum of the oxides is close to 100 wt. %; lines 32 and 33).

1 import numpy as np
2 import pandas as pd
3
4 def calc_cations_on_oxygen_basis(myData0, my_ph, my_el, n_ox):
5 Weights = {
6 ’SiO2’: [60.0843,1.0,2.0], ’TiO2’:[79.8788,1.0,2.0],
7 ’Al2O3’: [101.961,2.0,3.0],’FeO’:[71.8464,1.0,1.0],
8 ’MgO’:[40.3044,1.0,1.0], ’MnO’:[70.9375,1.0,1.0],
9 ’CaO’:[56.0774,1.0,1.0], ’Na2O’:[61.9789,2.0,1.0],

10 ’K2O’:[94.196,2.0,1.0], ’Cr2O3’:[151.9982,2.0,3.0],
11 ’P2O5’:[141.937,2.0,5.0], ’H2O’:[18.01388,2.0,1.0]}
12 myData = myData0.copy()
13 myData = myData.add_prefix(my_ph + ’_’)
14 for el in my_el: # Cation mole proportions
15 myData[el + ’_cat_mol_prop’] = myData[my_ph +
16 ’_’ + el] * Weights[el][1] / Weights[el][0]
17 for el in my_el: # Oxygen mole proportions
18 myData[el + ’_oxy_mol_prop’] = myData[my_ph +
19 ’_’ + el] * Weights[el][2] / Weights[el][0]
20 totals = np.zeros(len(myData.index)) # Ox mole prop tot
21 for el in my_el:
22 totals += myData[el + ’_oxy_mol_prop’]
23 myData[’tot_oxy_prop’] = totals
24 totals = np.zeros(len(myData.index)) # totcations
25 for el in my_el:
26 myData[el + ’_num_cat’] = n_ox * myData[el +
27 ’_cat_mol_prop’] / myData[’tot_oxy_prop’]
28 totals += myData[el + ’_num_cat’]
29 return totals
30
31 my_dataset = pd.read_table(’ETN21_cpx_all.txt’)
32 my_dataset = my_dataset[(my_dataset.Total>98) &
33 (my_dataset.Total<102)]
34 Elements = {’cpx’: [’SiO2’, ’TiO2’, ’Al2O3’,
35 ’FeO’, ’MgO’, ’MnO’, ’CaO’, ’Na2O’,’Cr2O3’]}
36 Cat_Ox_Tolerance = {’cpx’: [4,6,0.06]}
37 my_dataset[’Tot_cations’] = calc_cations_on_oxygen_basis(
38 myData0 = my_dataset,
39 my_ph = ’cpx’,
40 my_el = Elements[’cpx’],
41 n_ox = Cat_Ox_Tolerance[’cpx’][1])
42
43 my_dataset = my_dataset[(
44 my_dataset[’Tot_cations’] < Cat_Ox_Tolerance[’cpx’][0] +
45 Cat_Ox_Tolerance[’cpx’][2])&(
46 my_dataset[’Tot_cations’] > Cat_Ox_Tolerance[’cpx’][0] -
47 Cat_Ox_Tolerance[’cpx’][2])]

Listing 5.1 Initial step of data pre-processing

76 5 Clustering and Dimensionality Reduction in Petrology

Moving on in code listing 5.2, we notice that it starts by isolating from the data
set the chemical elements in which we are interested (i.e., SiO. 2, TiO. 2, Al. 2O. 3,
FeO, MgO, CaO, and Na. 2O; lines 6–9). The last step of data cleaning consists
of removing all rows containing data that are below or exceed the 0.1 and 99.9
percentiles, respectively (lines 11–13).

5.4.2 Compositional Data Analysis (CoDA)

The study of a geochemical data set falls in the field of Compositional Data Analysis
(CoDA). In this context, oxides are expressed as a percentage, so their nominal
sum is 100%, which defines a “closed” or “compositional” data set (Aitchison,
1982, 1984; Aitchison & Egozcue, 2005). Conducting statistical analysis directly
on closed data sets can lead to problems (Aitchison, 1982, 1984; Aitchison &
Egozcue, 2005) because some statistical approaches require that the data be
normally distributed and not constrained to a constant total value (Boschetty et al.,
2022).

1 from skbio.stats.composition import ilr
2 from sklearn.preprocessing import RobustScaler
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5
6 elms_for_clustering = {’cpx’: [’SiO2’, ’TiO2’,
7 ’Al2O3’, ’FeO’, ’MgO’, ’CaO’, ’Na2O’]}
8
9 my_dataset = my_dataset[elms_for_clustering[’cpx’]]

10
11 my_dataset = my_dataset[~((
12 my_dataset < my_dataset.quantile(0.001)) |
13 (my_dataset > my_dataset.quantile(0.999))).any(axis=1)]
14
15 my_dataset_ilr = ilr(my_dataset)
16
17 transformer = RobustScaler(
18 quantile_range=(25.0, 75.0)).fit(my_dataset_ilr)
19
20 my_dataset_ilr_scaled = transformer.transform(my_dataset_ilr)
21
22 fig = plt.figure(figsize=(8,8))
23
24 for i in range(0,6):
25 ax1 = fig.add_subplot(3, 2, i+1)
26 sns.kdeplot(my_dataset_ilr_scaled[:, i],fill=True,
27 color=’k’, facecolor=’#c7ddf4’, ax = ax1)
28 ax1.set_xlabel(’scaled ilr_’ + str(i+1))
29 fig.align_ylabels()
30 fig.tight_layout()

Listing 5.2 Compositional data analysis (CoDA)

5.4 Data Pre-processing 77

As we know from Sect. 3.3.6, performing multivariate statistical analysis directly
on compositional data sets is not formally correct and can bias the results or cause
other problems (Aitchison, 1982; Aitchison & Egozcue, 2005; Aitchison, 1984).
Different data transformations have been proposed to apply standard and advanced
statistical methods to compositional data sets. Examples are the additive log-ratio
(alr), the centered log-ratio (clr), and the isometric log-ratio (ilr) transformations
(Aitchison, 1982; Aitchison & Egozcue, 2005; Aitchison, 1984). I briefly introduced
CoDA analysis in Sect. 3.3.6, where I also presented the equations to perform the
alr , clr , and ilr transformations.

At line 15 of code listing 5.2, we apply the ilr transformation to our data, then
scale in agreement with the median and the inter-quartile range (lines 17–20); that
is, we apply RobustScaler(). We then visualize the resulting features (Fig. 5.3).

Fig. 5.3 Inspecting ilr-transformed data

78 5 Clustering and Dimensionality Reduction in Petrology

5.5 Clustering Analyses

Code listing 5.3 shows how to develop a hierarchical clustering dendrogram in
Python (Fig. 5.4). A dendrogram is a tree diagram used to report the result of a
hierarchical clustering estimation (see Sect. 4.4).

1 import numpy as np
2 from sklearn.cluster import AgglomerativeClustering
3 from scipy.cluster.hierarchy import dendrogram,

set_link_color_palette
4
5 def plot_dendrogram(model, **kwargs):
6
7 counts = np.zeros(model.children_.shape[0])
8 n_samples = len(model.labels_)
9 for i, merge in enumerate(model.children_):

10 current_count = 0
11 for child_idx in merge:
12 if child_idx < n_samples:
13 current_count +=1
14 else:
15 current_count += counts[child_idx-n_samples]
16 counts[i] = current_count
17
18 linkage_matrix = np.column_stack([model.children_,
19 model.distances_,
20 counts]).astype(float)
21
22 dendrogram(linkage_matrix, **kwargs)
23
24 model = AgglomerativeClustering(linkage=’ward’,
25 affinity=’euclidean’,
26 distance_threshold = 0,
27 n_clusters=None)
28
29 model.fit(my_dataset_ilr_scaled)
30
31 fig, ax = plt.subplots(figsize = (10,6))
32 ax.set_title(’Hierarchical clustering dendrogram’)
33
34 plot_dendrogram(model, truncate_mode=’level’, p=5,
35 color_threshold=0,
36 above_threshold_color=’black’)
37
38 ax.set_xlabel(’Number of points in node’)
39 ax.set_ylabel(’Height’)

Listing 5.3 Developing a hierarchical clustering dendrogram in Python

5.5 Clustering Analyses 79

Fig. 5.4 Dendrogram resulting from code listing 5.3

A dendrogram can be oriented either vertically (Fig. 5.4) or horizontally. The
orientation can be easily changed in the dendrogram() method by using the
orientation parameter, which takes the values of “top,” “bottom,” “left,” or “right”.

1 th = 16.5
2 fig, ax = plt.subplots(figsize = (10,6))
3 ax.set_title("Hierarchical clustering dendrogram")
4 set_link_color_palette([’#000000’,’#C82127’, ’#0A3A54’,
5 ’#0F7F8B’, ’#BFD7EA’, ’#F15C61’, ’#E8BFE7’])
6
7 plot_dendrogram(model, truncate_mode=’level’, p=5,
8 color_threshold=th,
9 above_threshold_color=’grey’)

10
11 plt.axhline(y = th, color = "k", linestyle = "--", lw=1)
12 ax.set_xlabel("Number of points in node")
13
14 fig, ax = plt.subplots(figsize = (10,6))
15 ax.set_title("Hierarchical clustering dendrogram")
16 ax.set_ylabel(’Height’)
17
18 plot_dendrogram(model, truncate_mode=’lastp’, p=6,
19 color_threshold=0,
20 above_threshold_color=’k’)
21
22 ax.set_xlabel("Number of points in node")

Listing 5.4 Refining the dendrogram

80 5 Clustering and Dimensionality Reduction in Petrology

Fig. 5.5 Dendrogram resulting from code listing 5.4

When oriented vertically, the vertical scale gives the distance or similarity
between clusters. If we draw a horizontal line, the number of leaves intercepted
(see, e.g., Fig. 5.5) defines the number of clusters at that specific height. Increasing
the height reduces the number of clusters. In our specific case, fixing a threshold at
16.5 defines six clusters (see code listing 5.4 and Fig. 5.5).

1 from sklearn.cluster import AgglomerativeClustering
2 from sklearn.decomposition import PCA
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 my_colors = {0:’#0A3A54’,
7 1:’#E08B48’,
8 2:’#BFBFBF’,
9 3:’#BD22C6’,

10 4:’#FD787B’,
11 5:’#67CF62’ }
12 #PCA
13 model_PCA = PCA()
14 model_PCA.fit(my_dataset_ilr_scaled)
15 my_PCA = model_PCA.transform(my_dataset_ilr_scaled)
16
17 fig, ax = plt.subplots()
18

5.6 Dimensionality Reduction 81

19 ax.scatter(my_PCA[:,0], my_PCA[:,1],
20 alpha=0.6,
21 edgecolors=’k’)
22
23 ax.set_title(’Principal Component Analysys’)
24 ax.set_xlabel(’PC_1’)
25 ax.set_ylabel(’PC_2’)

Listing 5.5 Plotting the first two principal components

5.6 Dimensionality Reduction

The ilr-transformed data set consists of six features (Fig. 5.3). To visualize the
structure of our data, I performed a Principal Component Analysis (PCA; see
Sect. 4.2), which consists of a linear dimensionality reduction that uses a singular
value decomposition of the data set to project it onto a lower-dimensional space.

Code listing 5.5 shows how to apply a PCA to our data set. In addition, it provides
us with a binary diagram (Fig. 5.6) the shows the two first principal components.

Fig. 5.6 Scatter diagram of the first two principal components

82 5 Clustering and Dimensionality Reduction in Petrology

Fig. 5.7 Combining principal component analysis with hierarchical clustering

Visualizing the six clusters highlighted in Fig. 5.5 could be a benefit; code
listing 5.6 shows how to do that (Fig. 5.7). Also, code listing 5.6 shows how to
apply and visualize (Fig. 5.8) K-means clustering (Sect. 4.7).

1 #AgglomerativeClustering
2 model_AC = AgglomerativeClustering(linkage=’ward’,
3 affinity=’euclidean’,
4 n_clusters=6)
5 my_AC = model_AC.fit(my_dataset_ilr_scaled)
6
7 fig, ax = plt.subplots()
8 label_to_color = [my_colors[i] for i in my_AC.labels_]
9 ax.scatter(my_PCA[:,0], my_PCA[:,1],

10 c=label_to_color, alpha=0.6,
11 edgecolors=’k’)
12 ax.set_title(’Hierarchical Clustering’)
13 ax.set_xlabel(’PC_1’)
14 ax.set_ylabel(’PC_2’)
15 my_dataset[’cluster_HC’] = my_AC.labels_
16
17 #KMeans
18 from sklearn.cluster import KMeans
19 myKM = KMeans(n_clusters=6).fit(my_dataset_ilr_scaled)
20
21 fig, ax = plt.subplots()
22 label_to_color = [my_colors[i] for i in myKM.labels_]

References 83

23 ax.scatter(my_PCA[:,0], my_PCA[:,1],
24 c=label_to_color, alpha=0.6,
25 edgecolors=’k’)
26 ax.set_title(’KMeans’)
27 ax.set_xlabel(’PC_1’)
28 ax.set_ylabel(’PC_2’)
29 my_dataset[’cluster_KM’] = myKM.labels_

Listing 5.6 Combining principal component analysis with hierarchical and K-means clustering
methods

Fig. 5.8 Combining principal component analysis with K-means clustering

References

Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical
Society. Series B (Methodological), 44(2), 139–177.

Aitchison, J. (1984). The statistical analysis of geochemical compositions. Journal of the
International Association for Mathematical Geology, 16(6), 531–564.

Aitchison, J., & Egozcue, J. J. (2005). Compositional data analysis: Where are we and where
should we be heading? Mathematical Geology, 37(7), 829–850. https://doi.org/10.1007/
S11004-005-7383-7

Andronico, D., & Corsaro, R. A. (2011). Lava fountains during the episodic eruption of South-
East Crater (Mt. Etna), 2000: Insights into magma-gas dynamics within the shallow volcano

https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7
https://doi.org/10.1007/S11004-005-7383-7

84 5 Clustering and Dimensionality Reduction in Petrology

plumbing system. Bulletin of Volcanology, 73(9), 1165–1178. https://doi.org/10.1007/S00445-
011-0467-Y/FIGURES/8

Boschetty, F. O., Ferguson, D. J., Cortés, J. A., Morgado, E., Ebmeier, S. K., Morgan, D. J.,
Romero, J. E., & Silva Parejas, C. (2022). Insights into magma storage beneath a frequently
erupting Arc Volcano (Villarrica, Chile) from unsupervised machine learning analysis of
mineral compositions. Geochemistry, Geophysics, Geosystems, 23(4), e2022GC010333.
https://doi.org/10.1029/2022GC010333

Branca, S., & Del Carlo, P. (2004). Eruptions of Mt. Etna during the past 3,200 years: A revised
compilation integrating the historical and stratigraphic records. Geophysical Monograph
Series, 143, 1–27. https://doi.org/10.1029/143GM02

Cappello, A., Bilotta, G., Neri, M., & Negro, C. D. (2013). Probabilistic modeling of future
volcanic eruptions at Mount Etna. Journal of Geophysical Research: Solid Earth, 118(5),
1925–1935. https://doi.org/10.1002/JGRB.50190

Caricchi, L., Petrelli, M., Bali, E., Sheldrake, T., Pioli, L., & Simpson, G. (2020b). A data
driven approach to investigate the chemical variability of clinopyroxenes from the 2014–2015
Holuhraun–Bárdarbunga eruption (Iceland). Frontiers in Earth Science, 8.

Corsaro, R. A., & Miraglia, L. (2022). Near real-time petrologic monitoring on volcanic glass
to infer magmatic processes during the February–April 2021 paroxysms of the South-East
Crater, Etna. Frontiers in Earth Science, 10, 222. https://doi.org/10.3389/FEART.2022.828026/
BIBTEX

Costa, F., Shea, T., & Ubide, T. (2020). Diffusion chronometry and the timescales of magmatic
processes. Nature Reviews Earth and Environment, 1(4), 201–214. https://doi.org/10.1038/
s43017-020-0038-x

Di Renzo, V., Corsaro, R. A., Miraglia, L., Pompilio, M., & Civetta, L. (2019). Long and short-
term magma differentiation at Mt. Etna as revealed by Sr-Nd isotopes and geochemical data.
Earth-Science Reviews, 190, 112–130. https://doi.org/10.1016/J.EARSCIREV.2018.12.008

Ferlito, C., Coltorti, M., Lanzafame, G., & Giacomoni, P. P. (2014). The volatile flushing triggers
eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos, 184–
187, 447–455. https://doi.org/10.1016/J.LITHOS.2013.10.030

Higgins, O., Sheldrake, T., & Caricchi, L. (2021). Machine learning thermobarometry and
chemometry using amphibole and clinopyroxene: a window into the roots of an arc volcano
(Mount Liamuiga, Saint Kitts). Contributions to Mineralogy and Petrology, 177(1), 1–22.
https://doi.org/10.1007/S00410-021-01874-6

Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F., & Caricchi, L. (2022). A machine learning-
based approach to clinopyroxene thermobarometry: Model optimization and distribution for
use in Earth Sciences. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB022904.
https://doi.org/10.1029/2021JB022904

Musu, A., Corsaro, R. A., Higgins, O., Jorgenson, C., Petrelli, M., & Caricchi, L. (2023). The
magmatic evolution of South-East Crater (Mt. Etna) during the February-April 2021 sequence
of lava fountains from a mineral chemistry perspective. Bulletin of Volcanology, 85, 33.

Okrusch, M., & Frimmel, H. E. (2020). Mineralogy. Springer Berlin Heidelberg. https://doi.org/
10.1007/978-3-662-57316-7

Paffengoltz, K. N. (1978). Geological dictionary. Nedra Publishing.
Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine learning thermo-barometry: Application

to clinopyroxene-bearing magmas. Journal of Geophysical Research: Solid Earth, 125(9).
https://doi.org/10.1029/2020JB020130

Petrelli, M., & Zellmer, G. (2020). Rates and timescales of magma transfer, storage, emplacement,
and eruption. https://doi.org/10.1002/9781119521143.ch1

Putirka, K. (2008). Thermometers and barometers for volcanic systems. https://doi.org/10.2138/
rmg.2008.69.3

Ubide, T., & Kamber, B. (2018). Volcanic crystals as time capsules of eruption history. Nature
Communications, 9(1). https://doi.org/10.1038/s41467-017-02274-w

Ubide, T., Neave, D., Petrelli, M., & Longpré, M.-A. (2021). Editorial: Crystal archives of
magmatic processes. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.749100

https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1007/S00445-011-0467-Y/FIGURES/8
https://doi.org/10.1029/2022GC010333
https://doi.org/10.1029/2022GC010333
https://doi.org/10.1029/2022GC010333
https://doi.org/10.1029/2022GC010333
https://doi.org/10.1029/2022GC010333
https://doi.org/10.1029/2022GC010333
https://doi.org/10.1029/143GM02
https://doi.org/10.1029/143GM02
https://doi.org/10.1029/143GM02
https://doi.org/10.1029/143GM02
https://doi.org/10.1029/143GM02
https://doi.org/10.1029/143GM02
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.1002/JGRB.50190
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.3389/FEART.2022.828026/BIBTEX
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.EARSCIREV.2018.12.008
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1016/J.LITHOS.2013.10.030
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1007/S00410-021-01874-6
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1007/978-3-662-57316-7
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.1002/9781119521143.ch1
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100

Chapter 6
Clustering of Multi-Spectral Data

6.1 Spectral Data from Earth-Observing Satellites

Earth-observing satellite missions such as Sentinel1 and Landsat2 provide us with
multispectral, hyperspectral, and panchromatic data. The Sentinel earth-observing
satellite missions are part of the Copernicus program, developed by the European
Space Agency,3 whereas the Landsat Program is jointly managed by NASA and the
U.S. Geological Survey (see footnote 2).

Spectral images are two-dimensional representations of surface reflectance or
radiation in different bands of the electromagnetic spectrum. Multi-spectral and
hyper-spectral data are acquired by multiple sensors operating over wide and
narrow (sometimes quasi-continuous) wavelength ranges, respectively. In contrast,
panchromatic images are acquired by detectors covering the entire visible range.

Multi-spectral, hyper-spectral, and panchromatic data can be combined and mod-
ulated to produce new indexes4 (e.g., the Generalized Difference Vegetation Index
or the Normalized Difference Snow Index), which highlight specific phenomena and
facilitate data interpretation.

For example, the Sentinal-2 Multi-spectral Instrument operates over 13 spectral
bands. Four bands labeled B2, B3, B4, and B8 provide a spatial resolution of 10 m,
six bands labeled B5, B6, B7, B8a, B11, and B12 provide a spatial resolution of

1 https://sentinels.copernicus.eu.
2 https://landsat.gsfc.nasa.gov.
3 https://www.esa.int.
4 https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_6

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 6&domain=pdf
https://sentinels.copernicus.eu
https://sentinels.copernicus.eu
https://sentinels.copernicus.eu
https://sentinels.copernicus.eu
https://landsat.gsfc.nasa.gov
https://landsat.gsfc.nasa.gov
https://landsat.gsfc.nasa.gov
https://landsat.gsfc.nasa.gov
https://landsat.gsfc.nasa.gov
https://www.esa.int
https://www.esa.int
https://www.esa.int
https://www.esa.int
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6
https://doi.org/10.1007/978-3-031-35114-3_6

86 6 Clustering of Multi-Spectral Data

400

Sp
at

ia
l R

es
ol

ut
io

n
[m

]
Wavelength [nm]

1000 1600 2200

10

20

60

Visible NIR SWIR

B2 B3 B4 B8

B6

B5 B7 B8a

B9B1 B10

B11 B12

Fig. 6.1 Spectral bands of Sentinel2 satellites. Modified from Majidi Nezhad et al. (2021)

20 m, and three bands labeled B1, B9, and B10 provide a spatial resolution of 60 m
(Fig. 6.1).

6.2 Import Multi-Spectral Data to Python

Multi-spectral data can be downloaded from numerous access points, such as the
USGS Earth Explorer,5 the Copernicus Open Access Hub,6 and Theia.7

As an example, consider Fig. 6.2, which represents the recombination of the B4,
B3, and B2 bands to form a RGB (i.e., red, green, blue) image from a Sentinel2
acquisition downloaded from the Theia portal. The image location is southern New
South Wales (Australia).8 Each side of the square image measures about 110 km.

Figure 6.3 shows the data structure of a Sentinel2 repository downloaded
from Theia. The repository follows the MUSCATE9 nomenclature and contains
a metadata file, a quick-look file, numerous Geo-Tiff image files, and two sub-
repositories MASKS and DATA, which contain supplementary data. The naming
enables us to uniquely identify each product and consists of many tags, starting with
a platform identification (i.e., Sentinel2B) followed by the date of acquisition in the
format YYYYMMDD-HHmmSS-sss (e.g., 20210621-001635-722), with YYYY
being the year, MM the month, DD the day, HH the hour in 24 hour format, mm
the minutes, SS the seconds, and sss the milliseconds. The subsequent tags refer
to product level (e.g., L2A), geographical zone (e.g., T55HDB_C), and product
version (e.g., V2-2). The letter L, a number, and another letter characterize different
product levels with the exception of level L0, which is compressed raw data and is
not followed by any letter. Levels L1A, L1B, and L2A correspond to uncompressed

5 https://earthexplorer.usgs.gov.
6 https://scihub.copernicus.eu.
7 https://catalogue.theia-land.fr.
8 https://bit.ly/ml_geart.
9 https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://scihub.copernicus.eu
https://catalogue.theia-land.fr
https://catalogue.theia-land.fr
https://catalogue.theia-land.fr
https://catalogue.theia-land.fr
https://catalogue.theia-land.fr
https://bit.ly/ml_geart
https://bit.ly/ml_geart
https://bit.ly/ml_geart
https://bit.ly/ml_geart
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/

6.2 Import Multi-Spectral Data to Python 87

Fig. 6.2 RGB composite image where the B4, B3, and B2 bands regulate the intensities of the
red, green, and blue channels, respectively

raw data, radiometrically corrected radiance data, and orthorectified bottom-of-
atmosphere reflectance, respectively.10 Spectral Geo-Tiff files also use an additional
tag, namely, SRE and FRE, which correspond respectively to images taken in
ground reflectance without correcting for slope effects and images taken in ground
reflectance with slope effects corrected. We shall work on FRE data.

To import Sentinel2 multi-spectral data, I used Rasterio,11 which is a Python
API based on Numpy and GeoJSON (i.e., an open standard format designed for
representing geographical features, along with their non-spatial attributes) to read,
write, and manage Geo-Tiff data.

10 https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi.
11 https://rasterio.readthedocs.io/.

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
https://rasterio.readthedocs.io/
https://rasterio.readthedocs.io/
https://rasterio.readthedocs.io/
https://rasterio.readthedocs.io/

88 6 Clustering of Multi-Spectral Data

Fig. 6.3 Sentinel2 data structure

If you followed the instructions in Chap. 2, your Python machine learning
environments named env_ml and env_ml_intel already contain Rasterio. With
Rasterio, opening Geo-Tiff files is straightforward (see code listing 6.1).

1 import rasterio
2 import numpy as np
3
4 imagePath = ’SENTINEL2B_20210621-001635-722_L2A_T55HDB_C_V2-2/

SENTINEL2B_20210621-001635-722_L2A_T55HDB_C_V2-2_FRE_’
5
6 bands_to_be_inported = [’B2’, ’B3’, ’B4’, ’B8’]
7
8 bands_dict = {}
9 for band in bands_to_be_inported:
10 with rasterio.open(imagePath+ band +’.tif’, ’r’,
11 driver=’GTiff’) as my_band:
12 bands_dict[band] = my_band.read(1)

Listing 6.1 Using Rasterio to import Sentinel2 data in Python

Code listing 6.1 creates a dictionary of NumPy arrays (i.e., bands_dict) contain-
ing spectral information from B2, B3, B4, and B8 corresponding to the blue, green,
red, and near-infrared bands, respectively. In code listing 6.1, we limit the import to
four bands, all acquired at the same spatial resolution of 10 m. However, the script
can be easily extended to import more bands.

6.2 Import Multi-Spectral Data to Python 89

Combining the data from the bands_dict dictionary allows many different
representations to be achieved. For example, Sovdat et al. (2019) explain how to
obtain the “natural color” representation of Sentinel-2 data.

Explaining how to obtain a perfectly balanced image with natural colors is
beyond the scope of this book, so we limit ourselves to combining bands B2, B3,
and B4, which roughly correspond to blue, green, and red as perceived by our eyes.

In detail, a bright, possibly overly saturated (Sovdat et al., 2019) image (i.e.,
r_g_b) can be easily derived and plotted (see code listing 6.2 and Fig. 6.2). We
start from the bands_dict dictionary after contrast stretching (lines 11–17) and scale
the values in the interval [0,1]. This is the so-called “true color” representation.
Sometimes, bands B3 (red) and B4 (green) are combined with B8 (near-infrared) to
achieve a “false color”’ representation. False color composite images are often used
to highlight plant density and health (see, e.g., Fig. 6.4). Code listing 6.3 shows how
to construct a false-color representation (i.e., nir_r_g) of Sentinel2 data.

1 import numpy as np
2 from skimage import exposure, io
3 from skimage.transform import resize
4 import matplotlib.pyplot as plt
5
6 r_g_b = np.dstack([bands_dict[’B4’],
7 bands_dict[’B3’],
8 bands_dict[’B2’]])
9
10 # contrast stretching and rescaling between [0,1]
11 p2, p98 = np.percentile(r_g_b, (2,98))
12 r_g_b = exposure.rescale_intensity(r_g_b, in_range=(p2, p98))
13 r_g_b = r_g_b / r_g_b.max()
14
15 fig, ax = plt.subplots(figsize=(8, 8))
16 ax.imshow(r_g_b)
17 ax.axis(’off’)

Listing 6.2 Plotting a RGB image using bands B4, B3, and B2

1 import numpy as np
2 from skimage import exposure, io
3 from skimage.transform import resize
4 import matplotlib.pyplot as plt
5
6 nir_r_g = np.dstack([bands_dict[’B8’],
7 bands_dict[’B4’],
8 bands_dict[’B3’]])
9
10 # contrast stretching and rescaling between [0,1]
11 p2, p98 = np.percentile(nir_r_g, (2,98))

90 6 Clustering of Multi-Spectral Data

12 nir_r_g = exposure.rescale_intensity(nir_r_g, in_range=(p2, p98))
13
14 fig, ax = plt.subplots(figsize=(8, 8))
15 ax.imshow(nir_r_g)
16 ax.axis(’off’)

Listing 6.3 Plotting a false-color RGB composite image using bands B8, B4, and B3

6.3 Descriptive Statistics

One of the first steps of any ML workflow deals with descriptive statistics. For our
Sentinel2 data set, code listing 6.4 shows how to obtain descriptive statistics via
the visualization of a four-band (i.e., B2, B3, B4, and B5) array derived from Geo-

Fig. 6.4 Image resulting from code listing 6.3

6.3 Descriptive Statistics 91

Tiff data. On line 5, we create a (10 980, 10 980, 4) array (i.e., the my_array_2d
characterized by a width, height, and depth of 10 980, 10 980, and 4, respectively)
from the dictionary created in code listing 6.1. In the next step (line 10), we create
a new array (my_array_1d) that reshapes my_array_2d from (10 980, 10 980, 4) to
(120 560 400, 4). This is the typical dimensions of an array that is ready for ML
processing in scikit-learn. Converting my_array_1d to a pandas DataFrame (i.e.,
my_array_1d_pandas) facilitates the visualization (see lines 18–46) and produces
the most basic descriptive statistics (i.e., listing 6.5). Code listing 6.5 reveals basic
information about the central tendency, dispersion, and shape of our input features.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4
5 my_array_2d = np.dstack([bands_dict[’B2’],
6 bands_dict[’B3’],
7 bands_dict[’B4’],
8 bands_dict[’B8’]])
9
10 my_array_1d =my_array_2d[:,:,:4].reshape(
11 (my_array_2d.shape[0] * my_array_2d.shape[1],
12 my_array_2d.shape[2]))
13
14 my_array_1d_pandas = pd.DataFrame(my_array_1d,
15 columns=[’B2’, ’B3’, ’B4’, ’B8’])
16
17
18 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7,3))
19 my_medianprops = dict(color=’#C82127’, linewidth = 1)
20 my_boxprops = dict(facecolor=’#BFD7EA’, edgecolor=’#000000’)
21 ax1.boxplot(my_array_1d_pandas, vert=False, whis=(0.5, 99.5),
22 showfliers=False, labels=my_array_1d_pandas.columns,
23 patch_artist=True, showcaps=False,
24 medianprops=my_medianprops, boxprops=my_boxprops)
25 ax1.set_xlim(-0.1,0.5)
26 ax1.set_xlabel(’Surface reflectance Value’)
27 ax1.set_ylabel(’Band Name’)
28 ax1.grid()
29 ax1.set_facecolor((0.94, 0.94, 0.94))
30
31 colors=[’#BFD7EA’,’#0F7F8B’,’#C82127’,’#F15C61’]
32 for band, color in zip(my_array_1d_pandas.columns, colors):
33 ax2.hist(my_array_1d_pandas[band], density=True,
34 bins=’doane’, range=(0,0.5), histtype=’step’,
35 linewidth=1, fill=True, color=color, alpha=0.6,
36 label=band)
37 ax2.hist(my_array_1d_pandas[band], density=True,
38 bins=’doane’, range=(0,0.5), histtype=’step’,
39 linewidth=0.5, fill=False, color=’k’)
40 ax2.legend(title=’Band Name’)
41 ax2.set_xlabel(’Surface Reflectance Value’)

92 6 Clustering of Multi-Spectral Data

42 ax2.set_ylabel(’Probability Density’)
43 ax2.xaxis.grid()
44 ax2.set_facecolor((0.94, 0.94, 0.94))
45 plt.tight_layout()
46 plt.savefig(’descr_stat_sat.pdf’)

Listing 6.4 Descriptive statistics and data visualization

For example, Fig. 6.5 shows that 99% of the reflectance data for B2, B3, B4, and
B8 fall in the range 0.015–0.420. However, maximum values are always greater than
unity (i.e., the upper theoretical bound for reflectance data). Outliers with reflectance
values greater than unity could be the result of specular effects due to surfaces or
clouds (Schaepman-Strub et al., 2006).

In [1]: my_array_1d_pandas.describe().applymap("{0:.3f}".format)
Out[1]:

B2 B3 B4 B8
count 120560400.000 120560400.000 120560400.000 120560400.000
mean 0.042 0.062 0.076 0.186
std 0.013 0.016 0.026 0.056
min 0.000 0.000 0.000 0.000
25% 0.035 0.053 0.061 0.151
50% 0.042 0.062 0.076 0.177
75% 0.049 0.070 0.091 0.210
max 1.443 1.304 1.277 1.201

Listing 6.5 Descriptive statistics using pandas describe()

If not addressed correctly, large outliers could affect the results of your ML
model. Consequently, I suggest implementing a strategy to remove the outliers
based on robust statistics (see, e.g., Petrelli, 2021) or applying a robust scaler (cf.
paragraph 3.3.5).

Fig. 6.5 Descriptive statistics resulting from code listing 6.4

6.4 Pre-processing and Clustering 93

6.4 Pre-processing and Clustering

This section presents a simplified workflow to cluster our Sentinel2 data. As input
features, I used my_array_1d, which contains reflectance data from B2, B3, B4, and
B8. Note that many different strategies are reported in the literature for selecting
input features, such as using band ratios, specific indexes, or combinations of bands,
band ratios, and indexes (e.g., Ge et al., 2020). Due to the presence of large outliers,
I opted for the RobustScaler() algorithm (line 6 of code listings 6.6 and 6.7) in
scikit-learn.

1 from sklearn.preprocessing import RobustScaler
2 from sklearn import cluster
3 import matplotlib.colors as mc
4 import matplotlib.pyplot as plt
5
6 X = RobustScaler().fit_transform(my_array_1d)
7 my_ml_model = cluster.KMeans(n_clusters=5)
8 learning = my_ml_model.fit(X)
9 labels_1d = learning.labels_
10
11 labels_1d = my_ml_model.predict(X)
12 labels_2d = labels_1d.reshape(my_array_2d[:,:,0].shape)
13
14 cmap = mc.LinearSegmentedColormap.from_list("", ["black","red","

yellow", "green", "blue"])
15 fig, ax = plt.subplots(figsize=[18,18])
16 ax.imshow(labels_2d, cmap=cmap)
17 ax.axis(’off’)

Listing 6.6 Implementing K-means clustering

1 from sklearn.preprocessing import RobustScaler
2 from sklearn import mixture
3 import matplotlib.colors as mc
4 import matplotlib.pyplot as plt
5
6 X = RobustScaler().fit_transform(my_array_1d)
7 my_ml_model = mixture.GaussianMixture(n_components=5,

covariance_type="full")
8 labels_1d = my_ml_model.predict(X)
9
10 labels_2d = labels_1d.reshape(my_array_2d[:,:,0].shape)
11
12 cmap = mc.LinearSegmentedColormap.from_list("", ["black","red","

yellow", "green","blue"])
13 fig, ax = plt.subplots(figsize=[18,18])
14 ax.imshow(labels_2d, cmap=cmap)
15 ax.axis(’off’)

Listing 6.7 Implementing Gaussian mixture clustering

94 6 Clustering of Multi-Spectral Data

Fig. 6.6 K-means clustering. Image resulting from code listing 6.6

For the first attempt at clustering (code listing 6.6), I selected the K-means algo-
rithm, fixing the number of clusters to five (line 7). I then started the unsupervised
learning at line 8. Lines 11 and 12 collect the labels (i.e., a number from 0 to 4)
assigned by the K-means algorithm to each element (i.e., to each pixel of the image)
of my_array_1d and I reported the elements in the same two-dimensional geometry
of the original image (Fig. 6.2). Finally, the different clusters using different colors
(i.e. lines 14–17) are plotted in Fig. 6.6.

For the second attempt at clustering (code listing 6.7), I selected the Gaussian
mixtures algorithm, again fixing the number of clusters to five (line 7). Figure 6.7
shows the clustering result obtained by the Gaussian mixture algorithm.

References 95

Fig. 6.7 Gaussian mixture model. Image resulting from code listing 6.7

References

Ge, W., Cheng, Q., Jing, L., Wang, F., Zhao, M., & Ding, H. (2020). Assessment of the capability of
sentinel-2 imagery for iron-bearing minerals mapping: A case study in the cuprite area, Nevada.
Remote Sensing, 12(18), 3028. https://doi.org/10.3390/RS12183028

Majidi Nezhad, M., Heydari, A., Pirshayan, E., Groppi, D., & Astiaso Garcia, D. (2021). A
novel forecasting model for wind speed assessment using sentinel family satellites images
and machine learning method. Renewable Energy, 179, 2198–2211. https://doi.org/10.1016/
J.RENENE.2021.08.013

Petrelli, M. (2021). Introduction to python in earth science data analysis. Berlin: Springer. https://
doi.org/10.1007/978-3-030-78055-5

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006).
Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sensing
of Environment, 103(1), 27–42. https://doi.org/10.1016/J.RSE.2006.03.002

Sovdat, B., Kadunc, M., Batič, M., & Milčinski, G. (2019). Natural color representation of
Sentinel-2 data. Remote Sensing of Environment, 225, 392–402. https://doi.org/10.1016/J.RSE.
2019.01.036

https://doi.org/10.3390/RS12183028
https://doi.org/10.3390/RS12183028
https://doi.org/10.3390/RS12183028
https://doi.org/10.3390/RS12183028
https://doi.org/10.3390/RS12183028
https://doi.org/10.3390/RS12183028
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1016/J.RENENE.2021.08.013
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1007/978-3-030-78055-5
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2006.03.002
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036
https://doi.org/10.1016/J.RSE.2019.01.036

Part III
Supervised Learning

Chapter 7
Supervised Machine Learning Methods

7.1 Supervised Algorithms

To learn, supervised algorithms use the labels (i.e., the solutions) that appear
in the training data set. This chapter introduces the supervised ML algorithms
for regression and classification that are shown in Fig. 3.5. In addition, specific
references are given for those who wish to go deeper into the mathematics behind
these ML methods.

7.2 Naive Bayes

Since Bayesian statistics is rarely introduced to geology students, I introduce Bayes
theorem here before describing how it is applied in ML (e.g., naive Bayes).

Probabilities Figure 7.1 describes a simplified set of rock textures containing
.ntot = 10 elements. The set comes from six porphyritic, one holocrystalline, and
three aphyric igneous rocks. The probability .P(ol) of randomly picking a rock
containing olivines is thus 3/10. In Bayesian statistical inference, the probability
.P(ol) is called the “prior probability,” which is the probability of an event before
new data are collected.

Conditional Probabilities Assume now that we want to know the probability of
picking a rock containing olivines if we pick a rock characterized by a dark matrix.
In this case, the conditional probability .P(ol|dark) = 1/3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_7

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7
https://doi.org/10.1007/978-3-031-35114-3_7

100 7 Supervised Machine Learning Methods

light gray matrix

intermediate gray matrix

dark matrix

holocrystalline texture

white crystal (e.g., leucite)

Olivine

Clinopyroxene

P(dark)P(ol) P(ol|dark)

Fig. 7.1 Understanding conditional probabilities and Bayes formulation

Joint Probabilities Please keep in mind that the term “conditional probability” is
not a synonym of “joint probability” and these two concepts should not be confused.
Also, be sure to use the correct notation: for joint probability, the terms are separated
by commas [e.g., .P(ol, dark)], whereas for conditional probability, the terms are
separated by a vertical bar [e.g., .P(ol|dark)]. Note that .P(ol, dark) is the probability
of randomly picking a rock that contains olivines and is characterized by a dark
matrix [i.e., .P(ol, dark) = 1/10]. In contrast, .P(ol|dark) is the probability of a rock
containing olivines from among those that have a dark matrix, .P(ol|dark) = 1/3.
Joint probabilities and conditional probabilities are related as follows:

.P(ol, dark) = P(ol|dark)P (dark). (7.1)

Deriving the Bayes Formulation As in Eq. (7.1), we could write

.P(dark, ol) = P(dark|ol)P (ol). (7.2)

7.2 Naive Bayes 101

Since .P(dark, ol) = P(ol, dark), the right-hand terms of Eqs. (7.1) and (7.2) must
be equal:

.P(dark|ol)P (ol) = P(ol|dark)P (dark). (7.3)

Dividing both sides of Eq. (7.3) by .P(ol), we get Bayes formula for our specific
case:

.P(dark|ol) = P(ol|dark)P (dark)

P (ol)
. (7.4)

Generalizing Eq. (7.4), we get the well-known Bayes equation:

.P(A|B) = P(B|A)P (A)

P (B)
. (7.5)

Naive Bayes for Classification To understand the naive Bayes ML algorithm, I
propose the same workflow as described by Zhang (2004). Assume that you want
to classify a set .X = (x1, x2, x3, . . . , xn) and that c is the label of your class. For
simplicity, assume that c is strictly positive (+) or negative (. −); in other words, we
have only two classes. In this case, the Bayes formula takes the form

.P(c|X) = P(X|c)P (c)

P (X)
. (7.6)

X is classified as being in class .c = + if and only if

.fb(X) = P(c = +|X)

P (c = −|X)
≥ 1, (7.7)

where .fb(X) is the Bayesian classifier.

Now assume that all the features are independent (i.e., the naive assumption). We
can write

.P(X|c) = P(x1, x2, x3, . . . , xn|c) =
n∏

i=1

P(xi |c). (7.8)

The resulting naive Bayesian classifier .fnb(X), or simply “naive Bayes” classifier,
can be written as

.fnb(X) = P(c = +)

P (c = −)

n∏

i=1

P(xi |c = +)

P (xi |c = −)
. (7.9)

Note that the naive assumption is a strong constraint that, in Earth Sciences, is
often violated. If feature independence is violated, we have two options: The first
is to estimate .P(X|c) without using the naive assumption (Kubat, 2017). However,

102 7 Supervised Machine Learning Methods

using this option inevitably increases the complexity of the problem (Kubat, 2017).
The second option is more pragmatic: we reduce the feature dependence by
appropriate data pre-processing. As suggested by Kubat (2017), a starting point is
to avoid using redundant features.

In scikit-learn the GaussianNB() method implements the Gaussian naive Bayes
algorithm for classification with .P(X|c) assumed to be multivariate normal dis-
tributed.

7.3 Quadratic and Linear Discriminant Analysis

Like naive Bayes, quadratic and linear discriminant analyses (QDA and LDA,
respectively) rely on the Bayes theorem. Assume that .fc(x) is the class-conditional
density of X in class c, and let . πc be the prior probability of class c, with .

∑K
c=1 πc =

1, where K is the number of classes. The Bayes theorem states (Kubat, 2017)

.P(c|X) = fc(x)πc∑K
l=1 fl(x)πl

. (7.10)

Now, modeling each class density as multivariate Gaussian,

.fc(x) = 1

(2π)p/2
∣∣∑

c

∣∣1/2 e− 1
2 (x−μc)T

∑−1
c (x−μc)

, (7.11)

we define the QDA. The LDA constitutes a special case of the QDA if the classes
have a common covariance matrix (i.e., .

∑
c = ∑ ∀ c). The main difference

between LDA and QDA depends on the resulting decision boundaries being linear
or quadratic functions, respectively.

The algorithms for LDA and QDA are similar, except that separate covariance
matrices must be estimated for each class in QDA. Given a large number of features,
this implies a dramatic increase in the computed parameters. For K classes and p
features, LDA and QDA compute .(K − 1)x(p + 1) and . (K − 1)x[p(p + 3)/2+ 1]
parameters, respectively. In scikit-learn, the methods LinearDiscriminantAnalysis()
and QuadraticDiscriminantAnalysis() perform LDA and QDA, respectively.

7.4 Linear and Nonlinear Models

Sugiyama (2015) defines d-dimensional linear-in-parameter models as

.fθ (x) =
b∑

j=i

θjφj (x) = θT φ(x), (7.12)

7.4 Linear and Nonlinear Models 103

where x, φ, and θ are a d-dimensional input vector, a basis function, and the
parameters of the basis function, respectively, and b is the number of basis functions.
As an example, given a one-dimensional input, Eq.(7.12) reduces to (Sugiyama,
2015)

.fθ (x) =
b∑

j=i

θjφj (x) = θT φ(x), (7.13)

where

.φ(x) = (φ1(x), . . . , φb(x))T , (7.14)

and

.θ = (θ1, . . . , θb)
T . (7.15)

Note that linear-in-parameter models are linear in θ and can handle straight lines
(i.e., linear-in-input models such as code listing 7.1 and Fig. 7.2):

.φ(x) = (1, x)T , (7.16)

.θ = (θ1, θ2)
T . (7.17)

Linear-in-parameter models can also manage nonlinear functions such as polyno-
mials (e.g., code listing 7.1 and Fig. 7.2):

.φ(x) = (1, x, x2, . . . , xb−1)T , (7.18)

.θ = (θ1, θ2, . . . , θb)
T . (7.19)

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.arange(1,6)
5 y = np.array([0,1,2,9,9])
6
7 fig, ax = plt.subplots()
8 ax.scatter(x, y, marker = ’o’, s = 100, color = ’#c7ddf4’,

edgecolor = ’k’)
9
10 orders = np.array([1,2,4])
11 colors =[’#ff464a’,’#342a77’,’#4881e9’]
12 linestiles = [’-’,’--’,’-.’]
13
14 for order, color, linestile in zip(orders, colors, linestiles):

104 7 Supervised Machine Learning Methods

15 betas = np.polyfit(x, y, order)
16 func = np.poly1d(betas)
17 x1 = np.linspace(0.5,5.5, 1000)
18 y1 = func(x1)
19 ax.plot(x1, y1, color=color, linestyle=linestile, label="

Linear-in-parameters model of order " + str(order))
20
21 ax.legend()
22 ax.set_xlabel(’A quantity relevant in geology\n(e.g., time)’)
23 ax.set_ylabel(’A quantity relevant in geology\n(e.g., spring flow

rate)’)
24 fig.tight_layout()

Listing 7.1 Polynomial regression as example of linear-in-parameter modeling

Fig. 7.2 Result of code listing 7.1

Given an input vector x of p values, linear-in-parameter models can still manage
linear-in-input problems, such as managing hyper-planes:

.φ(x) = (1, x1, x2, . . . , xp)T , (7.20)

.θ = (θ1, θ2, . . . , θb)
T . (7.21)

In this case, the number of basis functions corresponds to the dimension of the
input vector plus one (i.e., b = p+1). Some authors prefer to report the first term of

7.5 Loss Functions, Cost Functions, and Gradient Descent 105

θ separately, calling it the “bias” (i.e., θ0), and reformulating the problem as follows:

.φ(x) = (x1, x2, . . . , xb=p)T , (7.22)

.θ = (β0,β), (7.23)

with

.β = (β1, β2, . . . , βb=p,)T . (7.24)

All fθ (x) models that cannot be expressed as linear in their parameters fall in the
field of nonlinear modeling (Sugiyama, 2015).

7.5 Loss Functions, Cost Functions, and Gradient Descent

Most ML algorithms involve model optimization [e.g., .fθ (x) in Eq. (7.13)]. For the
purposes of this book, the term “optimization” shall refer to adjusting the model
parameters . θ to minimize or maximize a function that measures the consistency
between model predictions and training data.

In general, the function we want to minimize or maximize is called the objective
function (Goodfellow et al., 2016). In the case of minimization, the objective
function takes names such as cost function, loss function, and error function. These
terms are often interchangeable Goodfellow et al. (2016), but sometimes a specific
term is used such as loss or cost function to describe a specific task.

As an example, some authors use the term loss function to measure how well a
model agrees with a single label in the training data set (Goodfellow et al., 2016).
The square loss is an example of a loss function:

.L(θ) = [yi − fθ (xi)]2, (7.25)

where . yi and .fθ (xi) are the labeled (i.e., true or measured) values and those
predicted by our model, respectively. Also, . x and . θ are the inputs and the parameters
governing the model, respectively.

Similarly, the cost function evaluates the loss function over the entire data set and
helps to evaluate the overall performance of the model (Goodfellow et al., 2016).
The mean squared error is an example of a cost function:

.C(θ) = 1

n

n∑

i=1

[yi − fθ (xi)]2, (7.26)

where n is the number of elements in the training data set.

106 7 Supervised Machine Learning Methods

Typically, our aim is to minimize the cost function .C(θ), and the gradient descent
(GD) is an appropriate method to do this. GD works by updating the parameters (in
our case . θ) governing our model [i.e., .fθ (x)], in the direction opposite that of the
cost-function gradient .∇C(θ) (Sugiyama, 2015):

.θ t+1 = θ t − γ∇C(θ t). (7.27)

In the simplest example of linear regression with .x ∈ R,

.fθ (x) = θ1 + θ2x, (7.28)

the mean squared-error cost function is

.C(θ) = 1

n

n∑

i=1

[yi − (θ1 + θ2xi)]2. (7.29)

Note that the simple linear example in . R can be easily generalized to . Rd . Also,
note that the example of linear regression proposed here has a well-known and easy-
to-apply least squares analytical solution in the case of linearity (i.e., . x is linear in
the mean of . y), independence (i.e., the observations are independent of each other),
and normality [i.e., for any fixed value of . x, . y is normally distributed (Maronna
et al., 2006)]. However, this self-explanatory example shows how GD works.

To develop a GD, the first step is to compute the partial derivative of .C(θ) with
respect to . θ1 and . θ2. Therefore, we write

.Dθ1 = −2

n

n∑

i=1

[yi − (θ1 + θ2xi)], (7.30)

.Dθ2 = −2

n

n∑

i=1

[yi − (θ1 + θ2xi)]xi. (7.31)

1 import numpy as np
2 import matplotlib.pyplot as plt
3 line_colors = [’#F15C61’,’#0F7F8B’,’#0A3A54’,’#C82127’]
4
5 # linear data set with noise
6 n = 100
7 theta_1, theta_2 = 3, 1 # target value for theta_1 & theta_2
8 x = np.linspace(-10, 10, n)
9 np.random.seed(40)
10 noise = np.random.normal(loc=0.0, scale=1.0, size=n)
11 y = theta_1 + theta_2 * x + noise
12 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 12))
13 ax1.scatter(x, y, c=’#BFD7EA’, edgecolor=’k’)
14

7.5 Loss Functions, Cost Functions, and Gradient Descent 107

15 my_theta_1, my_theta_2 = 0, 0 # arbitrary initial values
16 gamma = 0.0005 # learning rate
17 t_final = 10001 # umber of itrations
18 n = len(x)
19 to_plot, cost_function = [1, 25, 500, 10000], []
20 # Gradient Descent
21 for i in range(t_final):
22 #Eq. 4.30
23 D_theta_1 = (-2/n)*np.sum(y-(my_theta_1 + my_theta_2*x))
24 #Eq. 4.31
25 D_theta_2 = (-2/n)*np.sum(x*(y-(my_theta_1+my_theta_2*x)))
26
27 my_theta_1 = my_theta_1 - gamma * D_theta_1 #Eq. 4.32
28 my_theta_2 = my_theta_2 - gamma * D_theta_2 #Eq. 4.33
29 cost_function.append((1/n) * np.sum(y - (my_theta_1 +

my_theta_2 * x))**2)
30
31 if i in to_plot:
32 color_index = to_plot.index(i)
33 my_y = my_theta_1 + my_theta_2 * x
34 ax1.plot(x,my_y, color=line_colors[color_index],
35 label=’iter: {:.0f}’.format(i) + ’ - ’ +
36 r’$\theta_1 = $’ + ’{:.2f}’.format(my_theta_1) +
37 ’ - ’ +
38 r’$\theta_2 = $’ + ’{:.2f}’.format(my_theta_2))
39 ax1.set_xlabel(’x’)
40 ax1.set_ylabel(’y’)
41 ax1.legend()
42 cost_function = np.array(cost_function)
43 iterations = range(t_final)
44 ax2.plot(iterations,cost_function, color=’#C82127’,
45 label=’mean squared-error cost function Eq.4.29’)
46 ax2.set_xlabel(’Iteration’)
47 ax2.set_ylabel(’Cost Function Value’)
48 ax2.legend()
49 fig.tight_layout()

Listing 7.2 A simple example of gradient descent in Python

The GD then optimizes the parameters of our model through an iterative
approach:

.θ t+1
1 = θ t

1 − γDθ1, (7.32)

.θ t+1
2 = θ t

2 − γDθ2, (7.33)

where . γ is an appropriate learning rate. Code listing 7.2 and Fig. 7.3 show how to
develop the GD optimization described by Eqs. (7.28)–(7.32).

The stochastic gradient descent (SGD) algorithm (Bottou, 2012) simplifies the
GD algorithm by estimating the gradient of .C(θ) on the basis of a single, randomly

108 7 Supervised Machine Learning Methods

Fig. 7.3 Linear fitting estimates and cost function evolution resulting from code listing 7.2

picked example .f̂θt
(xt):

.θ t+1 = θ t − γ∇C[y, f̂θt
(xt)]. (7.34)

The SGDClassifier() and SGDRegressor() in sklearn.linear_model implement a
SGD in the field of classification and regression, respectively. Often, we use an
approach that falls between GD and SGD by estimating the gradient using a small
random portion of the training data set. This approach is called “mini-batch GD.”

To summarize, GD always uses the entire learning data set. As opposed to GD,
SGD and mini-batch GD compute the gradient from a single sample and a small
portion of the training data set, respectively.

7.7 Least Absolute Shrinkage and Selection Operator 109

SGD and mini-batch GD work better than GD when numerous local maxima and
minima occur. In this case, GD will probably stop at the first local minimum whereas
SGD and mini-batch GD, being much noisier than GD, tend to explore neighboring
areas of the gradient. Note that a pure SGD is significantly noisy, whereas mini-
batch GD tends to average the computed gradient, resulting in more stable results
than SGD. In ML, SGD and mini-batch GD see much more use than GD because
the latter is too expensive computationally while providing only a minimum gain
in accuracy for convex problems. For many local maxima and minima, SGD and
mini-batch GD are also more accurate than GD because they can “jump” over local
minima and hopefully find better solutions.

7.6 Ridge Regression

Ridge regression is a least squares method that shrinks the regression coefficients via
a penalty on their size (Hastie et al., 2017). The regression starts with a labeled data
set .(xi , yi), where . yi are the labels and .xi = (xi1, xi2, . . . , xip)T are the predictor
variables (i.e., the inputs) (Hastie et al., 2017; Tibshirani, 1996).

The cost function in ridge regression can be expressed as (Hastie et al., 2017;
Tibshirani, 1996)

.C(θ0, θ) = 1

2n

n∑

i=1

⎛

⎝yi − θ0 −
p∑

j=1

xij θj

⎞

⎠
2

+ λ

p∑

j=1

θ2j , (7.35)

where the parameter . λ is called the “regularization penalty.” The ridge regression
performs the so-called L2-norm regularization by adding a penalty equivalent to the
square of the magnitude of coefficients [i.e., the second term of Eq. (7.35)].

In the limiting case of .λ = 0, the ridge regression reduces to an ordinary least
squares regression. A correct choice of . λ helps avoid overfitting issues. In contrast,
underfitting becomes a problem for large . λ.

7.7 Least Absolute Shrinkage and Selection Operator

The “least absolute shrinkage and selection operator,” also known as the LASSO,
is a method to solve linear problems by minimizing the residual sum of squares
subject to the constraint that the sum of the absolute value of the coefficients must
be less than a given constant (Tibshirani, 1996). The main characteristic of LASSO
is its tendency to prefer solutions with fewer nonzero coefficients, thus reducing the
number of parameters governing the predictor. The LASSO cost function can be

110 7 Supervised Machine Learning Methods

expressed as (Tibshirani, 1996)

.C(θ0, θ) = 1

2n

n∑

i=1

⎛

⎝yi − θ0 −
p∑

j=1

xij θj

⎞

⎠
2

+ λ

p∑

j=1

∣∣θj

∣∣. (7.36)

In contrast with ridge regression, the LASSO algorithm performs the so-called
L1-norm regularization by adding a penalty equivalent to the sum of the absolute
values of the coefficients [i.e., the second term of Eq. (7.36)].

Note that the LASSO reduces shrinkage and the dimensionality; in other words,
it reduces the number of features of the solution, whereas ridge regression only
shrinks (Hastie et al., 2017; Tibshirani, 1996).

7.8 Elastic Net

Elastic net (Zou & Hastie, 2005) is a linear regression model that performs both L1-
and L2-norm regularization (Friedman et al., 2010):

. C(θ0, θ) = 1

2n

n∑

i=1

⎛

⎝yi − θ0 −
p∑

j=1

xij θj

⎞

⎠
2

+ λ

p∑

j=1

[
1 − α

2
θ2j + α

∣∣θj

∣∣
]
.

(7.37)

For .α = 1, elastic net is the same as the LASSO, whereas for .α = 0, elastic net
approaches ridge regression. For .0 < α < 1, the penalty term [i.e., the second term
of Eq. (7.37)] is between the L1- and L2-norm regularization.

7.9 Support Vector Machines

Support vector machines (SVMs) are a set of supervised ML algorithms that work
remarkably well for classification (Cortes & Vapnik, 1995). The strength of SVMs
relies on three features: (1) SVMs are efficient in high-dimensional spaces, (2)
SVMs effectively model real-world problems, (3) SVMs perform well on data sets
with many attributes, even if few cases are available to train the model (Cortes
& Vapnik, 1995). SVMs numerically implement the following idea: inputs are
nonlinearly mapped to a high-dimension feature space F (Cortes & Vapnik, 1995),
and a linear decision surface is constructed in the space F (Cortes & Vapnik, 1995).

To start, consider a labeled training data set .(yi, xi), where . xi is p-dimensional
[i.e., .xi = (x1i , x2i , . . . , xpi)], with .i = 1, 2, . . . , n, where n is the number of

7.9 Support Vector Machines 111

samples. Also, assume that the label .yi = 1 for the first class and .yi = −1 for the
second class, defining a two-class classification problem (i.e., .yi ∈ {−1, 1}).

Now define a linear classifier based on the following linear-in-inputs discriminant
function:

.f (x) = wT · x + b. (7.38)

The decision boundary between the two classes (i.e., the regions classified as
positive or negative) defined by Eq. (7.38) is a hyperplane.

The two classes are linearly separable if there exists a vector . w and a scalar b
such that

.(wT xi + b)yi ≥ 1, ∀ i = 1, 2, . . . , n. (7.39)

This means that we can correctly classify all samples. The definition of the optimal
hyperplane follows as that which separates the training data set with a maximal
margin

.m(w) = 1

‖w‖ . (7.40)

Finally, the maximum-margin classifier (i.e., the hard margin SVM) is the discrimi-
nant function that maximizes .m(w), which is equivalent to minimizing .‖w‖2:

.min
w,b

1

2
‖w‖2 (7.41)

subject to

.(wT xi + b)yi ≥ 1, ∀ i = 1, 2, . . . , n. (7.42)

The hard margin SVM requires the strong assumption of the linear separability
of classes, which can be considered as an exception, not the rule. To allow errors
[i.e., .ξ = (ξ1, ξ2, . . . , ξn)], we can introduce the concept of soft margin SVM:

. min
w,b,ξ

[
1

2
‖w‖2 + C

n∑

i=1

ξi

]
(7.43)

subject to

.(wT xi + b)yi ≥ 1 − ξi, ξi � 0, ∀i = 1, 2, . . . , n, (7.44)

where .C > 0 is a tunable parameter that controls the margin errors. The linear
classifier defined by Eq. (7.38) can be generalized to nonlinear inputs by defining

112 7 Supervised Machine Learning Methods

the discriminant function (Cortes & Vapnik, 1995)

.f (x) = wT · φ(x) + b, (7.45)

where .φ(x) is a function that maps nonlinearly separable inputs . x to a feature space
F of higher dimension. If we express the weight vector . w as a linear combination
of the training examples (i.e., .w = ∑n

i=1 αixi), it follows that, in feature space F ,
we have

.f (x) =
n∑

i=1

αiφ(xi)T φ(x) + b. (7.46)

The idea behind Eqs. (7.45) and (7.46) is to map a nonlinear classification
function to a feature space F of higher dimensions, where the classification function
is linear (Fig. 7.4). Defining a kernel function .K(xi, x) as

.K(xi, x) = φ(xi)T φ(x), (7.47)

we have

.f (x) =
n∑

i=1

αiK(xi, x) + b. (7.48)

When using the kernel function, we do not need to know or compute . φ(), which
allows us to apply a linear transformation to the problem at higher dimensions.
The scikit-learn implementation of SVMs [e.g., SVC() and SVR()] allows the use of
linear, polynomial, sigmoid, and radial basis kernel functions [.K(xi, x), Table 7.1].

7.10 Supervised Nearest Neighbors

Supervised k-nearest neighbors is a ML algorithm that uses similarities such as
distance functions (Bentley, 1975) to regress and classify. In detail, the k-nearest-
neighbors method predicts numerical targets by using a metric that is typically
the inverse-distance-weighted average of the k-nearest neighbors (Bentley, 1975).
The weights can be uniform or calculated by a kernel function. The Euclidean
distance metric is commonly used to measure the distance between two instances,
although other metrics are available (see Table 7.2). Note that the Minkowski
distance reduces to the Manhattan and Euclidean distances when .p = 1 and 2,
respectively. Bentley (1975) gives an extensive and detailed description of the k-
nearest neighbors algorithm.

In scikit-learn, the KNeighborsClassifier() and KNeighborsRegressor() methods
perform classification and regression, respectively, based on the k-nearest neighbors.

7.10 Supervised Nearest Neighbors 113

Fig. 7.4 Support vector
machines redrawn from
Sugiyama (2015) A

Support Vector Machines

margin

w

b

B

C D

maximum
margin

Hard Margin Classification Soft Margin Classification

E

φ(x)
Non-linear trasform

Input space Feature space

D
ecision Function

Table 7.1 Kernel functions in scikit-learn for the SVC() and SVR() methods

Kernel function Equation Identifier

Linear .K(xi, x) = (xi · x′) kernel=‘linear’

Polynomial .K(xi, x) = (xi · x′ + r)d kernel=‘poly’

Sigmoid .K(xi, x) = tanh(xi · x′ + r) kernel=‘sigmoid’

Radial basis function .K(xi, x) = exp(−λ
∥∥xi − x′∥∥2) kernel=‘rbf’

114 7 Supervised Machine Learning Methods

Table 7.2 Selected distance metrics that can be used in supervised nearest neighbors and other
ML algorithms

Distance Identifier Arguments Equation

Euclidean ‘euclidean’ None
√∑D

j=1

∣∣xj − yj

∣∣2

Manhattan ‘manhattan’ None
∑D

j=1

∣∣xj − yj

∣∣

Chebyshev ‘chebyshev’ None max
∣∣xj − yj

∣∣

Minkowski ‘minkowski’ p, (w = 1)
(∑D

j=1 w
∣∣xj − yj

∣∣p
)1/p

7.11 Trees-Based Methods

Decision Trees Before describing how decision trees work, let me introduce a few
definitions highlighted in Fig. 7.5. A root node is the starting node of a decision tree
and contains the entire data set involved in the process. A parent node is a node that
is split into sub-nodes. A child node is a sub-node of a parent node. Finally, a leaf
or terminal node are nodes that terminate the tree and that are not split to generate
additional child nodes.

The decision tree algorithm (Breiman et al., 1984) and its modifications such as
random forests and extra trees split the input space into sub-regions, which allow
for regression and classification tasks (see Fig. 7.5) (Kubat, 2017). In detail, each
node maps a region in the input space, which is further divided within the node
into sub-regions by using splitting criteria. Therefore, the workflow of a decision

SiO2

SiO2 > 50 wt%SiO2 ≤ 50 wt%

TiO2

TiO2 ≤ 0.5 wt% TiO2 > 0.5 wt% Al2O3 ≤ 16 wt% Al2O3 > 16 wt%

Al2O3

Root node
Branch

Child node

(...) (...) (...) (...)

Fig. 7.5 The decision tree algorithm

References 115

tree consists of progressively splitting the input space by a sequence of decisions
(i.e., splittings) into non-overlapping regions, with a one-to-one correspondence
between leaf nodes and input regions (Kubat, 2017). Unfortunately, the decision
tree algorithm, despite the appeal of the simplicity of its formulation, is often prone
to overfitting and underfitting (cf. Sect. 3.5.5), making it less accurate than other
predictors (Song & Lu, 2015).

To avoid overfitting and underfitting, more robust algorithms called ensemble
predictors have been developed. Examples are random forest, gradient boosting,
and extremely randomized tree methods. More details on the decision tree model
are available from Breiman et al. (1984).

Random Forest The random forest algorithm (Breiman, 2001) is based on the
“bagging” technique, which is a bootstrap aggregation technique that averages the
prediction over a collection of bootstrap samples, thereby reducing the variance
(Hastie et al., 2017). In detail, the random forest algorithm uses bagging to create
multiple versions of a predictor (i.e., multiples trees), then evaluates the predictors
to obtain an aggregated predictor (Hastie et al., 2017). Specifically, for a given
training data set with sample size n, bagging produces k new training sets by
uniformly sampling from the original training data set with replacement (i.e., by
bootstrapping) (Hastie et al., 2017). Next, k decision trees are trained by using the k
newly created training sets and are typically coupled by averaging for regression or
majority voting for classification (Hastie et al., 2017). A detailed description of the
random forest algorithm is available from Breiman (2001) and Hastie et al. (2017).

Extremely Randomized Trees The extremely randomized trees algorithm (Geurts
et al., 2006) is similar to the random forest algorithm with two main differences: (i)
it splits nodes by choosing fully random cut points and (ii) it uses the entire training
sample rather than a bootstrapped replica to grow the trees (Geurts et al., 2006).
The predictions of the trees are typically aggregated to yield the final prediction
by majority vote in the classification and by arithmetic averaging in the regression
(Geurts et al., 2006). A complete description of the extremely randomized trees
algorithm is given by Geurts et al. (2006).

References

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509–517. https://doi.org/10.1145/361002.361007

Bottou, L. (2012). Stochastic gradient descent tricks. In G. Montavon, G. B. Orr, & K.-R. Müller
(Eds.), Neural networks: Tricks of the trade (2nd ed., pp. 421–436). Berlin: Springer. https://
doi.org/10.1007/978-3-642-35289-8_25

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:
1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. Boca Raton: Chapman and Hall/CRC.

https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

116 7 Supervised Machine Learning Methods

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
https://doi.org/10.1007/BF00994018

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1. https://doi.org/10.18637/jss.
v033.i01

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning,
63(1), 3–42. https://doi.org/10.1007/S10994-006-6226-1

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (vol. 29). Cambridge: MIT
Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning (2nd ed.).
Berlin: Springer.

Kubat, M. (2017). An introduction to machine learning. Berlin: Springer. https://doi.org/10.1007/
978-3-319-63913-0

Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics: Theory and methods.
Hoboken: Wiley. https://doi.org/10.1002/0470010940

Song, Y. Y., & Lu, Y. (2015). Decision tree methods: Applications for classification and
prediction. Shanghai Archives of Psychiatry, 27(2), 130. https://doi.org/10.11919/J.ISSN.1002-
0829.215044

Sugiyama, M. (2015). Introduction to statistical machine learning. Amsterdam: Elsevier. https://
doi.org/10.1016/C2014-0-01992-2

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/J.2517-
6161.1996.TB02080.X

Zhang, H. (2004). The optimality of Naive Bayes. The Florida AI Research Society.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. https://doi.
org/10.1111/J.1467-9868.2005.00503.X

https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1002/0470010940
https://doi.org/10.1002/0470010940
https://doi.org/10.1002/0470010940
https://doi.org/10.1002/0470010940
https://doi.org/10.1002/0470010940
https://doi.org/10.1002/0470010940
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1016/C2014-0-01992-2
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X
https://doi.org/10.1111/J.1467-9868.2005.00503.X

Chapter 8
Classification of Well Log Data Facies by
Machine Learning

8.1 Motivation

Recognizing facies in wells through well-log data analysis is a common task in many
geological fields such as trap reservoir characterization, sedimentology analysis, and
depositional-environment interpretation (Hernandez-Martinez et al., 2013; Wood,
2021). I started conceiving this chapter when I discovered the FORCE 20201 ML
competition (Bormann et al., 2020) and the SEG 20162 ML contest (M. Hall &
Hall, 2017). In these two contests, students and early-career researchers attempt to
identify lithofacies in a blind data set of well-log data (i.e., gamma-ray, resistivity,
photoelectric effect, etc. . . .) by using a ML algorithm of their selection to be trained
on a labeled data set made available to all competitors. The competitors of the 2016
edition were supported by a tutorial by Brendon Hall (B. Hall, 2016) and Hall and
Hall (M. Hall & Hall, 2017). Also, Bestagini et al. (2017) described a strategy to
achieve the final goal for the 2016 edition. Note that the starter notebook3 of the
FORCE 2020 ML competition contains all you need to begin: it shows how to
import the training data set, inspect the imported data set, and start developing a
model based on the random forest algorithm.

This chapter focuses on the FORCE 2020 Machine Learning competition by
progressively developing a ML workflow (i.e., descriptive statistics, algorithm
selection, model optimization, model training, and application of the model to the
blind data set) and discussing each step to make everything as simple as possible.

1 https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition.
2 https://github.com/seg/2016-ml-contest.
3 https://bit.ly/force2020_ml_start.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_8

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 8&domain=pdf
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://github.com/seg/2016-ml-contest
https://bit.ly/force2020_ml_start
https://bit.ly/force2020_ml_start
https://bit.ly/force2020_ml_start
https://bit.ly/force2020_ml_start
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8
https://doi.org/10.1007/978-3-031-35114-3_8

118 8 Classification of Well Log Data Facies by Machine Learning

8.2 Inspection of the Data Sets and Pre-processing

For the FORCE 2020 Machine Learning competition,4 a starter Jupyter Notebook
has been made available on GitHub together with a labeled training dataset (i.e.,
the compressed train.zip file containing the single file train.csv) and two tests
(i.e., leaderboard_test_features.csv and hidden_test.csv).5 Nowadays, all three files
are labeled, which means that they also contain the correct solution either in a
column named FORCE_2020_LITHOFACIES_LITHOLOGY or in a separate file
(Bormann et al., 2020). The above data set is provided by a NOLD 2.06 license and
contains well-log data for more than 90 wells offshore of Norway (B. Hall, 2016;
Bormann et al., 2020).

We start by importing the three data sets using pandas and looking at the spatial
distribution of the wells under investigation (code listing 8.1; Fig. 8.1).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 data_sets = [’train.csv’, ’hidden_test.csv’, ’

leaderboard_test_features.csv’]
5 labels = [’Train data’, ’Hidden test data’, ’Leaderboard test

data’]
6 colors = [’#BFD7EA’,’#0A3A54’,’#C82127’]
7
8 fig, ax = plt.subplots()
9
10 for my_data_set, my_color, my_label in zip(data_sets, colors,

labels):
11
12 my_data = pd.read_csv(my_data_set, sep=’;’)
13 my_Weels = my_data.drop_duplicates(subset=[’WELL’])
14 my_Weels = my_Weels[[’X_LOC’, ’Y_LOC’]].dropna() / 100000
15
16 ax.scatter(my_Weels[’X_LOC’], my_Weels[’Y_LOC’],
17 label=my_label, s=80, color=my_color,
18 edgecolor=’k’, alpha=0.8)
19
20 ax.set_xlabel(’X_LOC’)
21 ax.set_ylabel(’Y_LOC’)
22 ax.set_xlim(4,6)
23 ax.set_ylim(63,70)
24 ax.legend(ncol=3)
25 plt.tight_layout()

Listing 8.1 Spatial distribution of wells under investigation

4 https://xeek.ai/challenges/force-well-logs/overview.
5 https://bit.ly/force2020_ml_data.
6 https://data.norge.no/nlod/en/2.0.

https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://xeek.ai/challenges/force-well-logs/overview
https://bit.ly/force2020_ml_data
https://bit.ly/force2020_ml_data
https://bit.ly/force2020_ml_data
https://bit.ly/force2020_ml_data
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0

8.2 Inspection of the Data Sets and Pre-processing 119

Fig. 8.1 Result of code listing 8.1. Spatial distribution of investigated wells

Figure 8.1 shows that the wells are distributed in three main clusters. As geolo-
gists, we would expect wells that are close together to have similar distributions of
lithofacies. Therefore, well position could significantly impact the training of our
ML model. Many strategies are available to include the spatial distribution of wells
in a ML model; including X_LOC and Y_LOC as model features is the easiest
strategy. More refined strategies may include a preliminary clustering of the spatial
distribution of wells and a learning approach based on the result of the clustering.
To develop a smart and simple workflow, we select the first option (i.e., simply
including X_LOC and Y_LOC as model features).

Figure 8.2 shows the results of code listing 8.2, which reveal two main char-
acteristics of the investigated data sets. The first characteristic relates to feature
persistence. Many features such as Spectral Gamma Ray (SGR), Shear wave
sonic log (DTS), Micro Resisitivity measurement (RMIC), and Average Rate of
Penetration (ROPA) contain more than 60% missing values (see the upper panel
of Fig. 8.2). Consequently, a strategy to deal with missing values is mandatory.
Given our desire to maintain the simplicity of the ML workflow presented in the
present chapter, only features containing less than 40% missing values are used.
In addition, all missing values are replaced with the average of each feature.
In statistics, the procedure of substituting missing values with other values is
called “feature imputation” (Zou et al., 2015). In scikit-learn, SimpleImputer() and
IterativeImputer() are useful for feature imputation (cf. Sect. 3.3.2).

120 8 Classification of Well Log Data Facies by Machine Learning

Fig. 8.2 Result of code listing 8.2. Inspect feature persistence and class balancing

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 lithology_keys = {30000: ’Sandstone’,
6 65030: ’Sandstone/Shale’,
7 65000: ’Shale’,
8 80000: ’Marl’,
9 74000: ’Dolomite’,

8.2 Inspection of the Data Sets and Pre-processing 121

10 70000: ’Limestone’,
11 70032: ’Chalk’,
12 88000: ’Halite’,
13 86000: ’Anhydrite’,
14 99000: ’Tuff’,
15 90000: ’Coal’,
16 93000: ’Basement’}
17
18 train_data = pd.read_csv(’train.csv’, sep=’;’)
19
20 class_abundance = np.vectorize(lithology_keys.get)(
21 train_data[’FORCE_2020_LITHOFACIES_LITHOLOGY’].values)
22 unique, counts = np.unique(class_abundance, return_counts=True)
23
24 my_colors = [’#0F7F8B’] * len(unique)
25 my_colors[np.argmax(counts)] = ’#C82127’
26 my_colors[np.argmin(counts)] = ’#0A3A54’
27
28 fig, (ax1, ax2) = plt.subplots(2,1, figsize=(7,14))
29
30 ax2.barh(unique,counts, color=my_colors)
31 ax2.set_xscale("log")
32 ax2.set_xlim(1e1,1e6)
33 ax2.set_xlabel(’Number of Occurrences’)
34 ax2.set_title(’Class Inspection’)
35
36 Feature_presence = train_data.isna().sum()/train_data.shape

[0]*100
37
38 Feature_presence =Feature_presence.drop(
39 labels=[’FORCE_2020_LITHOFACIES_LITHOLOGY’,
40 ’FORCE_2020_LITHOFACIES_CONFIDENCE’, ’WELL

’])
41
42 Feature_presence.sort_values().plot.barh(color=’#0F7F8B’,ax=ax1)
43 ax1.axvline(40, color=’#C82127’, linestyle=’--’)
44 ax1.set_xlabel(’Percentage of Missing Values’)
45 ax1.set_title(’Feature Inspection’)
46
47 plt.tight_layout()

Listing 8.2 Inspect feature persistence and class balancing

The second key characteristic of the investigated data set appears clearly upon
observing the class distribution (see lower panel of Fig. 8.2): the training data set is
highly imbalanced, with some classes exceeding . 105 occurrences and others such as
Anhydrite and Basement occurring only .103 or .102 times, respectively. A strategy
to account for the imbalance of training data set is thus also mandatory.

Some ML algorithms, such as those discussed in the present chapter, try to
account for imbalance in their training data set by tuning their hyperparameters.
More refined strategies may involve (1) under-sampling majority classes, (2) over-

122 8 Classification of Well Log Data Facies by Machine Learning

sampling minority classes, (3) combining over- and under-sampling methods, and
(4) creating ensemble balanced sets (Lemaître et al., 2017).

1 import numpy as np
2
3 fig = plt.figure(figsize=(8,4))
4
5 train_data[’log_RDEP’] = np.log10(train_data[’RDEP’])
6
7 to_be_plotted = [’RDEP’, ’log_RDEP’]
8
9 for index, my_feature in enumerate(to_be_plotted):
10 ax = fig.add_subplot(1,2,index+1)
11 min_val = np.nanpercentile(train_data[my_feature],1)
12 max_val = np.nanpercentile(train_data[my_feature],99)
13 my_bins = np.linspace(min_val,max_val,30)
14 ax.hist(train_data[my_feature], bins=my_bins,
15 density = True, color=’#BFD7EA’,
16 edgecolor=’k’)
17 ax.set_ylabel(’Probability Density’)
18 ax.set_xlabel(my_feature)
19
20 plt.tight_layout()

Listing 8.3 Log-transformation of selected features

The histogram distribution of some features (code listing 8.3 and Fig. 8.3)
shows that they are highly skewed, which could be a problem for some ML
algorithms (e.g., those assuming a normal distribution for the investigated features).
Consequently, we apply a log-transformation to selected features to reduce the
skewness (see Fig. 8.3, right panel).

Fig. 8.3 Result of code listing 8.3. Log-transformation of selected features

8.2 Inspection of the Data Sets and Pre-processing 123

As discussed in Chap. 3.3, the goal of data augmentation is to improve the
generalizability of ML models by increasing the amount of information in their
data sets. This approach consists of adding modified copies (e.g., flipper or rotated
images in the case of image classification) of the available data or combining the
existing features to generate new features. For example, Bestagini et al. (2017)
suggest three approaches for data augmentation: quadratically expanding the feature
vector, considering second-order interaction terms, and defining an augmented
gradient feature vector. In an attempt to partially mimic the data augmentation
strategy proposed by Bestagini et al. (2017), we report a code listing to calculate
the augmented gradient feature vector (code listing 8.4).

1 def calculate_delta(dataFrame):
2 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’, ’

DTC’, ’DRHO’, ’log_GR’ , ’NPHI’, ’log_PEF’, ’SP’]
3 wells = dataFrame[’WELL’].unique()
4 for my_feature in delta_features:
5 values = []
6 for well in wells:
7 col_values = dataFrame[dataFrame[’WELL’] == well][

my_feature].values
8 col_values_ = np.array([col_values[0]]+list(

col_values[:-1]))
9 delta_col_values = col_values-col_values_
10 values = values + list(delta_col_values)
11 dataFrame[’Delta_’ + my_feature] = values
12 return dataFrame

Listing 8.4 Function to calculate the augmented gradient feature vector

To summarize, our pre-processing strategy starts with (i) selecting the features
characterized by fewer than 40% missing values, (ii) replacing missing values with
the average of each feature within each data set, (iii) applying a log-transformation
of the features with highly skewed distributions, and (iv) augmenting the data. Steps
(i)–(iv) are implemented in a series of functions (see code listing 8.5) and are
combined in a pandas pipe() chain to automate pre-processing (code listing 8.6).
Also, the pre_processing_pipeline() function (code listing 8.6) stores the imported
.csv files in a single HDF5 file (hierarchical data format version 5). As introduced
in Sect. 3.3, HDF5 is a high-performance library to manage, process, and store
heterogeneous data. All data sets of interest are stored in HDF5 files as pandas
DataFrames, ready for fast reading and writing. At lines 3–6, the function checks
that the output file exists. If so, the function removes the existing file. At line 16, the
function appends each processed data set to a newly created file.

124 8 Classification of Well Log Data Facies by Machine Learning

1 import os
2 import pandas as pd
3 import numpy as np
4
5 def replace_inf(dataFrame):
6 to_be_replaced = [np.inf,-np.inf]
7 for replace_me in to_be_replaced:
8 dataFrame = dataFrame.replace(replace_me, np.nan)
9 return dataFrame
10
11 def log_transform(dataFrame):
12 log_features = [’RDEP’,’RMED’,’PEF’,’GR’]
13 for my_feature in log_features:
14 dataFrame.loc[dataFrame[my_feature] < 0, my_feature] =

dataFrame[dataFrame[my_feature] > 0].RDEP.min()
15 dataFrame[’log_’+ my_feature] = np.log10(dataFrame[

my_feature])
16 return dataFrame
17
18 def calculate_delta(dataFrame):
19 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’,
20 ’DTC’, ’DRHO’, ’log_GR’ , ’NPHI’,
21 ’log_PEF’, ’SP’]
22 wells = dataFrame[’WELL’].unique()
23 for my_feature in delta_features:
24 values = []
25 for well in wells:
26 my_val = dataFrame[dataFrame[’WELL’] == well][

my_feature].values
27 my_val_ = np.array([my_val[0]] +
28 list(my_val[:-1]))
29 delta_my_val = my_val-my_val_
30 values = values + list(delta_my_val)
31 dataFrame[’Delta_’ + my_feature] = values
32 return dataFrame
33
34 def feature_selection(dataFrame):
35 features = [’CALI’, ’Delta_CALI’, ’log_RMED’,
36 ’Delta_log_RMED’, ’log_RDEP’,
37 ’Delta_log_RDEP’, ’RHOB’, ’Delta_RHOB’,
38 ’SP’, ’Delta_SP’, ’DTC’, ’Delta_DTC’,
39 ’DRHO’, ’Delta_DRHO’, ’log_GR’, ’Delta_log_GR’,
40 ’NPHI’, ’Delta_NPHI’, ’log_PEF’, ’Delta_log_PEF’]
41 dataFrame = dataFrame[features]
42 return dataFrame

Listing 8.5 Defining the pre-processing functions

Figure 8.4 shows the results of code listing 8.7 and describes most of the
numerical features to be used during training. These features are derived by applying
the pre-processing strategy developed in code listings 8.5 and 8.6. All the features
reported in Fig. 8.4 are numerically continuous. However, the investigated data sets
also contain categorical features such as GROUP and FORMATIONS.

8.2 Inspection of the Data Sets and Pre-processing 125

Most ML algorithms support the use of categorical features only after encoding
to their numerical counterparts. Code listing 8.8 shows the pipe() chain of code
listing 8.6 [i.e., pre_processing_pipeline()], with the addition of a categorical
encoder to allow FORMATIONS to be investigated by a ML algorithm. We use
the OrdinalEncoder() method from scikit-learn. Also, code listing 8.8 presents a
modified version of the function feature_selection() to include the encoded feature
FORMATION.

1 def pre_processing_pipeline(input_files, out_file):
2
3 try:
4 os.remove(out_file)
5 except OSError:
6 pass
7
8 for ix, my_file in enumerate(input_files):
9 my_dataset = pd.read_csv(my_file, sep=’;’)
10
11 try:
12 my_dataset[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf

(
13 out_file, key=my_file[:-4] + ’_target’)
14 except:
15 my_target = pd.read_csv(’leaderboard_test_target.csv’

, sep=’;’)
16 my_target[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf(
17 out_file, key=my_file[:-4] + ’_target’)
18
19 if ix==0:
20 # Fitting the categorical encoders
21 my_encoder = OrdinalEncoder()
22 my_encoder.set_params(handle_unknown=’

use_encoded_value’,
23 unknown_value=-1,
24 encoded_missing_value=-1).fit(
25 my_dataset[[’FORMATION’]])
26
27 my_dataset = (my_dataset.
28 pipe(replace_inf).
29 pipe(log_transform).
30 pipe(calculate_delta).
31 pipe(feature_selection))
32 my_dataset.to_hdf(out_file, key=my_file[:-4])
33
34 my_dataset.to_hdf(out_file, key= my_file[:-4])

126 8 Classification of Well Log Data Facies by Machine Learning

35
36 my_files = [’train.csv’, ’leaderboard_test_features.csv’, ’

hidden_test.csv’]
37
38 pre_processing_pipeline(input_files=my_files, out_file=’ml_data.

h5’)

Listing 8.6 Combining the pre-processing functions in a pandas pipe()

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 train_data = pd.read_hdf(’ml_data.h5’, ’train’)
6 test_data = pd.read_hdf(’ml_data.h5’, ’leaderboard_test_features’

)
7
8 show_axes = [1,5,9,13,17]
9 fig = plt.figure(figsize=(9, 15))
10
11 for i, my_feature in enumerate(train_data.columns[0:20], start=1)

:
12 ax = fig.add_subplot(5,4,i)
13 min_val = np.nanpercentile(train_data[my_feature],1)
14 max_val = np.nanpercentile(train_data[my_feature],99)
15 my_bins = np.linspace(min_val,max_val,30)
16 ax.hist(train_data[my_feature], bins=my_bins, density = True,
17 histtype=’step’, color=’#0A3A54’)
18 ax.hist(test_data[my_feature], bins=my_bins, density = True,
19 histtype=’step’, color=’#C82127’, linestyle=’--’)
20 ax.set_xlabel(my_feature)
21 ymin, ymax = ax.get_ylim()
22 if ymax >=10:
23 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 0))
24 elif ((ymax<10)&(ymax>1)):
25 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 1))
26 else:
27 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 2))
28
29 if i in show_axes:
30 ax.set_ylabel(’Probability Density’)
31
32 plt.tight_layout()
33 fig.align_ylabels()

Listing 8.7 Descriptive statistics

8.2 Inspection of the Data Sets and Pre-processing 127

Fig. 8.4 Result of code listing 8.7. Log-transformation of selected features

1 import os
2 import pandas as pd
3 import numpy as np
4 from sklearn.preprocessing import OrdinalEncoder
5 from sklearn.impute import SimpleImputer
6
7 def replace_inf(dataFrame):
8 to_be_replaced = [np.inf,-np.inf]
9 for replace_me in to_be_replaced:
10 dataFrame = dataFrame.replace(replace_me, np.nan)
11 return dataFrame
12
13 def log_transform(dataFrame):

128 8 Classification of Well Log Data Facies by Machine Learning

14 log_features = [’RDEP’,’RMED’,’PEF’,’GR’]
15 for my_feature in log_features:
16 dataFrame.loc[dataFrame[my_feature] < 0, my_feature] =

dataFrame[
17 dataFrame[my_feature] > 0].RDEP.min()
18 dataFrame[’log_’+ my_feature] = np.log10(dataFrame[

my_feature])
19 return dataFrame
20
21 def calculate_delta(dataFrame):
22 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’,
23 ’DTC’, ’DRHO’, ’log_GR’ , ’NPHI’,
24 ’log_PEF’, ’SP’, ’BS’]
25 wells = dataFrame[’WELL’].unique()
26 for my_feature in delta_features:
27 values = []
28 for well in wells:
29 my_val = dataFrame[dataFrame[’WELL’] == well][

my_feature].values
30 my_val_ = np.array([my_val[0]] +
31 list(my_val[:-1]))
32 delta_my_val = my_val-my_val_
33 values = values + list(delta_my_val)
34 dataFrame[’Delta_’ + my_feature] = values
35 return dataFrame
36
37 def categorical_encoder(dataFrame, my_encoder, cols):
38 dataFrame[cols] = my_encoder.transform(dataFrame[cols])
39 return dataFrame
40
41 def feature_selection(dataFrame):
42 features = [’CALI’, ’Delta_CALI’, ’log_RMED’, ’

Delta_log_RMED’,
43 ’log_RDEP’,’Delta_log_RDEP’, ’RHOB’, ’Delta_RHOB’

,
44 ’SP’, ’Delta_SP’, ’DTC’, ’Delta_DTC’, ’DRHO’, ’

Delta_DRHO’,
45 ’log_GR’, ’Delta_log_GR’, ’NPHI’, ’Delta_NPHI’,
46 ’log_PEF’, ’Delta_log_PEF’, ’BS’, ’Delta_BS’,
47 ’FORMATION’, ’X_LOC’,’Y_LOC’, ’DEPTH_MD’]
48 dataFrame = dataFrame[features]
49 return dataFrame
50
51 def pre_processing_pipeline(input_files, out_file):
52
53 try:
54 os.remove(out_file)
55 except OSError:
56 pass
57
58 for ix, my_file in enumerate(input_files):
59 my_dataset = pd.read_csv(my_file, sep=’;’)
60
61 try:

8.3 Model Selection and Training 129

62 my_dataset[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf
(

63 out_file, key=my_file[:-4] + ’_target’)
64 except:
65 my_target = pd.read_csv(’leaderboard_test_target.csv’

, sep=’;’)
66 my_target[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf(
67 out_file, key=my_file[:-4] + ’_target’)
68
69 if ix==0:
70 # Fitting the categorical encoders
71 my_encoder = OrdinalEncoder()
72 my_encoder.set_params(handle_unknown=’

use_encoded_value’,
73 unknown_value=-1,
74 encoded_missing_value=-1).fit(
75 my_dataset[[’FORMATION’]])
76
77 my_dataset = (my_dataset.
78 pipe(replace_inf).
79 pipe(log_transform).
80 pipe(calculate_delta).
81 pipe(categorical_encoder,
82 my_encoder=my_encoder, cols=[’

FORMATION’]).
83 pipe(feature_selection))
84 my_dataset.to_hdf(out_file, key=my_file[:-4])
85
86 imputer = SimpleImputer(missing_values=np.nan, strategy=’

mean’)
87 imputer = imputer.fit(my_dataset[my_dataset.columns])
88 my_dataset[my_dataset.columns] = imputer.transform(
89 my_dataset[my_dataset.columns])
90 my_dataset.to_hdf(out_file, key= my_file[:-4])
91
92 my_files = [’train.csv’, ’leaderboard_test_features.csv’, ’

hidden_test.csv’]
93
94 pre_processing_pipeline(input_files=my_files, out_file=’ml_data.

h5’)

Listing 8.8 Pre-processing pipe() chain, including the categorical features

8.3 Model Selection and Training

After data pre-processing, the next fundamental steps are model selection, optimiza-
tion, and training. Recall that we are dealing with a classification problem, so we
select from among supervised algorithms. In the following, we test the extremely
randomized trees algorithm [i.e., ExtraTreesClassifier()] in scikit-learn. Selecting
ExtraTreesClassifier() is an arbitrary choice and the reader is invited to explore
different ML methods, such as support vector machines.

130 8 Classification of Well Log Data Facies by Machine Learning

In our specific case, the ExtraTreesClassifier() depends on many hyperparame-
ters such as the number of trees, the number of investigated features, and the splitting
criterion.

1 import pandas as pd
2 from sklearn.ensemble import ExtraTreesClassifier
3 from sklearn.model_selection import train_test_split
4 from sklearn.model_selection import GridSearchCV
5 import joblib as jb
6 from sklearn.preprocessing import StandardScaler
7
8 X = pd.read_hdf(’ml_data.h5’, ’train’).values
9 y = pd.read_hdf(’ml_data.h5’, ’train_target’).values
10
11 X_train, X_test, y_train, y_test = train_test_split(
12 X, y, test_size=0.2, random_state=10, stratify=y)
13
14 scaler = StandardScaler()
15 X_train = scaler.fit_transform(X_train)
16
17 param_grid = {
18 ’criterion’: [’entropy’, ’gini’],
19 ’min_samples_split’: [2, 5, 8, 10],
20 ’max_features’: [’sqrt’, ’log2’, None],
21 ’class_weight’: [’balanced’, None]
22 }
23
24 classifier = ExtraTreesClassifier(n_estimators=250,
25 n_jobs=-1)
26
27 CV_rfc = GridSearchCV(estimator=classifier, param_grid=param_grid

, cv= 3, verbose=10)
28 CV_rfc.fit(X_train, y_train)
29
30 jb.dump(CV_rfc, ’ETC_grid_search_results_rev_2.pkl’)

Listing 8.9 Grid search using GridSearchCV()

All these hyperparameters may assume different values, which may positively
or negatively affect the classification capability of the model. The easiest way to
find the best combination of the investigated hyperparameters is to do a grid search,
which consists of defining the most relevant values for each hyperparameter and
then training and evaluating a model for each possible combination. Table 8.1 lists
the hyperparameters selected for the grid search. The GridSearchCV() method in
scikit-learn is used to do a grid search in Python (code listing 8.9). After importing
all required libraries (lines 1–6), the pre-processed training data set is imported (line
8) with labels (line 9). Next, the training data set is split into two, with one part
(i.e., X_train) for the training and validation within the grid search, and another
part (i.e., X_test), never involved in the training, to test the results obtained during

8.3 Model Selection and Training 131

Table 8.1 Hyperparameters used in the grid search to optimize the ExtraTreesClassifier()
algorithm. Descriptions are from the scikit-learn documentation

Parameter Descriptiona Values

Criterion The function to measure the quality of a
split.

[‘entropy’, ’gini’]

min_samples_split The minimum number of samples required
to split an internal node

[2, 5, 8, 10]

max_features The number of features to consider when
looking for the best split

[‘sqrt’, ‘log2’,
None]

class_weight Weights associated with classes [‘balanced’, None]

. a https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

Fig. 8.5 Result of code listing 8.10

the grid search and for further testing against potential issues such as overfitting.
The next step (lines 14 and 15) consists of scaling the data set involved in the grid
search to zero mean and unit variance (cf. paragraph 3.3.5). Lines 17–22 define
the set of parameters involved in the grid search. The combination of the selected
hyperparameters results in a grid of 48 models, each repeated three times (.cv = 3 at
line 27) through cross validation (see Sect. 3.5.2) for a total of 144 attempts.

Running the code listing 8.9 on my MacBook pro, equipped wit a 2.3 GHz
Quad-Core Intel™ Core i7 and 32 GB of RAM, takes about 8 hours. The top
panel of Fig. 8.5 displays the accuracy scores of all 48 models, ordered by their
ranking (code listing 8.10), and highlights that the best-performing models produce
accuracy scores greater than 0.95. Such a strong performance may suggest that
we are overfitting the training data set, so, as a first step, we use the three best-

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

132 8 Classification of Well Log Data Facies by Machine Learning

performing models (code listing 8.10) on the test data set (i.e., X_test). The bottom
panel of Fig. 8.5 shows that the accuracy scores for X_test are of the same order
of magnitude as those resulting from the grid search cross validation (i.e., .≈0.96),
which does not support the idea of strong overfitting.

1 from joblib import load
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
5 from sklearn.ensemble import ExtraTreesClassifier
6 from sklearn.model_selection import train_test_split
7 from sklearn.preprocessing import StandardScaler
8
9 CV_rfc = load(’ETC_grid_search_results_rev_2.pkl’)
10
11 my_results = pd.DataFrame.from_dict(CV_rfc.cv_results_)
12 my_results = my_results.sort_values(by=[’rank_test_score’])
13
14 # Plot the results of the GridSearch
15 fig = plt.figure()
16 ax1 = fig.add_subplot(2,1,1)
17 ax1.plot(my_results[’rank_test_score’], my_results[’

mean_test_score’], marker=’o’,
18 markeredgecolor=’#0A3A54’, markerfacecolor=’#C82127’,

color=’#0A3A54’,
19 label=’Grid Search Results’)
20 ax1.set_xticks(np.arange(1,50,4))
21 ax1.invert_xaxis()
22 ax1.set_xlabel(’Model ranking’)
23 ax1.set_ylabel(’Accuracy scores’)
24 ax1.legend()
25
26 # Selecting the best three performing models
27 my_results = my_results[my_results[’mean_test_score’]>0.956]
28
29 # Load and scaling
30 X = pd.read_hdf(’ml_data.h5’, ’train’).values
31 y = pd.read_hdf(’ml_data.h5’, ’train_target’).values
32
33 X_train, X_test, y_train, y_test = train_test_split(
34 X, y, test_size=0.2, random_state=10, stratify=y)
35
36 scaler = StandardScaler()
37 X_train = scaler.fit_transform(X_train)
38 X_test = scaler.transform(X_test)
39
40 leaderboard_test_features = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_features’).values
41 hidden_test = pd.read_hdf(’ml_data.h5’, ’hidden_test’).values
42
43 leaderboard_test_features_scaled = scaler.transform(

leaderboard_test_features)

8.3 Model Selection and Training 133

44 hidden_test_scaled = scaler.transform(hidden_test)
45
46 # Apply the three best performing model on the test dataset and

on the unknowns
47 leaderboard_test_res = {}
48 hidden_test_res = {}
49 test_score = []
50 rank_model = []
51 for index, row in my_results.iterrows():
52 classifier = ExtraTreesClassifier(n_estimators=250, n_jobs=8,

random_state=64, **row[’params’])
53 classifier.fit(X_train, y_train)
54 my_score = classifier.score(X_test,y_test)
55 test_score.append(my_score)
56 rank_model.append(row[’rank_test_score’])
57
58 my_leaderboard_test_res = classifier.predict(

leaderboard_test_features_scaled)
59 my_hidden_test_res = classifier.predict(hidden_test_scaled)
60 leaderboard_test_res[’model_ranked_’ + str(row[’

rank_test_score’])] = my_leaderboard_test_res
61 hidden_test_res[’model_ranked_’ + str(row[’rank_test_score’])

] = my_hidden_test_res
62
63 leaderboard_test_res_pd = pd.DataFrame.from_dict(

leaderboard_test_res)
64 hidden_test_res_pd = pd.DataFrame.from_dict(hidden_test_res)
65 leaderboard_test_res_pd.to_hdf(’ml_data.h5’, key= ’

leaderboard_test_res’)
66 hidden_test_res_pd.to_hdf(’ml_data.h5’, key= ’hidden_test_res’)
67
68 # plot the resultson the test dataset
69 ax2 = fig.add_subplot(2,1,2)
70 labels = my_results[’rank_test_score’]
71 validation_res = np.around(my_results[’mean_test_score’], 2)
72 test_res = np.around(np.array(test_score),2)
73 x = np.arange(len(labels))
74 width = 0.35
75 rects1 = ax2.bar(x - width/2, validation_res, width, label=’

Validation data set’, color=’#C82127’)
76 rects2 = ax2.bar(x + width/2, test_res, width, label=’Test data

set’, color=’#0A3A54’)
77 ax2.set_ylabel(’Accuracy scores’)
78 ax2.set_xlabel(’Model ranking’)
79 ax2.set_ylim(0,1.7)
80 ax2.set_xticks(x, labels)
81 ax2.legend()
82 ax2.bar_label(rects1, padding=3)
83 ax2.bar_label(rects2, padding=3)
84 fig.align_ylabels()
85 fig.tight_layout()

Listing 8.10 Applying the three best-performing models on the test data set and on unknown
samples

134 8 Classification of Well Log Data Facies by Machine Learning

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.metrics import accuracy_score
4 import pandas as pd
5
6 leaderboard_test_res= pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_res’)
7 hidden_test_res = pd.read_hdf(’ml_data.h5’, ’hidden_test_res’)
8
9 leaderboard_test_target = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_features_target’).values
10 hidden_test_target = pd.read_hdf(’ml_data.h5’, ’

hidden_test_target’).values
11
12 leaderboard_accuracy_scores = []
13 hidden_accuracy_scores = []
14
15 for (leaderboard_column, leaderboard_data), (hidden_column,

hidden_data) in zip(leaderboard_test_res.iteritems(),
hidden_test_res.iteritems()):

16
17 leaderboard_accuracy_scores.append(np.around(accuracy_score(

leaderboard_data, leaderboard_test_target),2))
18 hidden_accuracy_scores.append(np.around(accuracy_score(

hidden_data, hidden_test_target),2))
19
20
21 # plot the resultson the test dataset
22 plt, ax1 = plt.subplots()
23 labels = leaderboard_test_res.columns
24 x = np.arange(len(labels))
25 width = 0.35
26 rects1 = ax1.bar(x - width/2, leaderboard_accuracy_scores, width,

label=’Leaderboard test data set’, color=’#C82127’)
27 rects2 = ax1.bar(x + width/2, hidden_accuracy_scores, width,

label=’Hidden test est data set’, color=’#0A3A54’)
28 ax1.set_ylabel(’Accuracy scores’)
29 #ax1.set_xlabel(’Model ranking’)
30 ax1.set_ylim(0,1.1)
31 ax1.set_xticks(x, labels)
32 ax1.legend()
33 ax1.bar_label(rects1, padding=3)
34 ax1.bar_label(rects2, padding=3)

Listing 8.11 Plotting the results obtained from the Leaderboard and the hidden test data sets

The three best-performing models were also run to predict the unknown samples
(i.e., the leaderboard and the hidden test data sets). The accuracy scores (Fig. 8.6)
for the leaderboard and the hidden test data sets (i.e., from 0.79 to 0.81) highlight
that our ML models still perform with satisfaction on independent test data sets,
so we move to the next section where we check the models against the evaluation
criteria of the FORCE2020 challenge.

8.4 Final Evaluation 135

Fig. 8.6 Result of code listing 8.11

8.4 Final Evaluation

To evaluate the goodness of each model, the FORCE2020 challenge used a custom
scoring strategy based on a penalty matrix (code listing 8.12).

1 import numpy as np
2
3 A = np.load(’penalty_matrix.npy’)
4 def score(y_true, y_pred):
5 S = 0.0
6 y_true = y_true.astype(int)
7 y_pred = y_pred.astype(int)
8 for i in range(0, y_true.shape[0]):
9 S -= A[y_true[i], y_pred[i]]
10 return S/y_true.shape[0]

Listing 8.12 Custom scoring function

In code listing 8.12, y_true and y_pred are the expected (i.e., correct) and
predicted values, respectively, converted into integer indexes ranging from 0 to 11,
as reported in Table 8.2.

The main objective of the FORCE2020 scoring strategy is to penalize errors
made on easy-to-recognize lithologies more strongly than those made on difficult-
to-recognize lithologies. To achieve this goal, the score() function weights each

136 8 Classification of Well Log Data Facies by Machine Learning

Table 8.2 Connecting the
labeling in the target files
with lithofacie names and the
indexing of the score function

Label Lithofacie Index

30000 ‘Sandstone’ 0

65030 ‘Sandstone/Shale’ 1

65000 ‘Shale’ 2

80000 ‘Marl’ 3

74000 ‘Dolomite’ 4

70000 ‘Limestone’ 5

70032 ‘Chalk’ 6

88000 ‘Halite’ 7

86000 ‘Anhydrite’ 8

99000 ‘Tuff’ 9

90000 ‘Coal’ 10

93000 ‘Basement’ 11

true-value–predicted-value pair by using the penalty matrix (code listing 8.13)
reported in Fig. 8.7. More specifically, the score() function returns the value of
the penalty matrix corresponding to each true-value–predicted-value pair (e.g., 4
if you confuse a Halite for a Sandstone; see Fig. 8.7). Next, the function sums all
the scoring values and then calculates an “average” score by dividing the resulting
value by the number of predictions.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 A = np.load(’penalty_matrix.npy’)
6
7 my_labels = [’Sandstone’,’Sandstone/Shale’,’Shale’,’Marl’, ’

Dolomite’,
8 ’Limestone’,’Chalk’,’Halite’,’Anhydrite’,’Tuff’,’

Coal’,’Basement’]
9
10 fig, ax = plt.subplots(figsize=(15, 12))
11 ax.imshow(A)
12 ax = sns.heatmap(A, annot=True, xticklabels = my_labels,

yticklabels = my_labels)
13 fig.tight_layout()

Listing 8.13 Penalty matrix

8.4 Final Evaluation 137

Fig. 8.7 Result of code listing 8.13

1 import numpy as np
2 import pandas as pd
3
4 A = np.load(’penalty_matrix.npy’)
5 def score(y_true, y_pred):
6 S = 0.0
7 y_true = y_true.astype(int)
8 y_pred = y_pred.astype(int)
9 for i in range(0, y_true.shape[0]):
10 S -= A[y_true[i], y_pred[i]]
11 return S/y_true.shape[0]
12
13 target = np.full(1000, 5) # Limestone
14 predicted = np.full(1000, 5) # Limestone
15 print("Case 1: " + str(score(target, predicted)))
16
17 predicted = np.full(1000, 6) # Chalk
18 print("Case 2: " + str(score(target, predicted)))
19
20 predicted = np.full(1000, 7) # Halite
21 print("Case 3: " + str(score(target, predicted)))
22
23 hidden_test_target = pd.read_hdf(’ml_data.h5’,
24 ’hidden_test_target’).values
25 predicted = np.random.randint(0, high=12,

138 8 Classification of Well Log Data Facies by Machine Learning

26 size=1000) # Random predictions
27 print("Case 4: " + str(score(target, predicted)))
28
29 ’’’ Output:
30
31 Case 1: 0.0
32 Case 2: -1.375
33 Case 3: -4.0
34 Case 4: -3.04625
35
36 ’’’

Listing 8.14 Custom scoring function

Based on Fig. 8.7 and code listing 8.12, we can argue that a correct prediction
contributes zero to the score.

Therefore, if you correctly guess all the predictions, the score function returns
zero (see code listing 8.14, Case 1). In contrast, systematically predicting chalk
on a data set of limestone samples returns .−1.375 (code listing 8.14, Case 2).
Systematically predicting halite on a data set of limestone samples returns . −4.0
(code listing 8.14, Case 3), which is much more penalized than Case 2. Finally,
considering the hidden test data set, a dummy model providing random predictions
produces a score close to . −3 (code listing 8.14, Case 4).

Figure 8.8 shows the result of applying the scoring strategy described above
to the leaderboard and hidden test data sets. Despite their simplicity, the two

Fig. 8.8 Result of code listing 8.15

8.4 Final Evaluation 139

best-performing models produced by the grid search implemented in code list-
ing 8.9, shows similar performances (i.e., .> − 0.50) of top-ranked models in the
FORCE2020 challenge.7

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import numpy as np
4
5 A = np.load(’penalty_matrix.npy’)
6 def score(y_true, y_pred):
7 S = 0.0
8 y_true = y_true.astype(int)
9 y_pred = y_pred.astype(int)
10 for i in range(0, y_true.shape[0]):
11 S -= A[y_true[i], y_pred[i]]
12 return S/y_true.shape[0]
13
14 lithology_numbers = {30000: 0, 65030: 1, 65000: 2, 80000: 3,

74000: 4, 70000: 5,
15 70032: 6, 88000: 7, 86000: 8, 99000: 9,

90000: 10, 93000: 11}
16
17 # Load test data
18 leaderboard_test_res = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_res’)
19 hidden_test_res = pd.read_hdf(’ml_data.h5’, ’hidden_test_res’)
20
21 leaderboard_test_target = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_features_target’).values
22 leaderboard_test_target = np.vectorize(lithology_numbers.get)(

leaderboard_test_target)
23 hidden_test_target = pd.read_hdf(’ml_data.h5’, ’

hidden_test_target’).values
24 hidden_test_target = np.vectorize(lithology_numbers.get)(

hidden_test_target)
25
26 leaderboard_accuracy_scores = []
27 hidden_accuracy_scores = []
28 for (leaderboard_column, leaderboard_data), (hidden_column,

hidden_data) in zip(leaderboard_test_res.iteritems(),
hidden_test_res.iteritems()):

29
30 leaderboard_data = np.vectorize(lithology_numbers.get)(

leaderboard_data)
31 leaderboard_accuracy_scores.append(np.around(score(

leaderboard_data, leaderboard_test_target),4))
32 hidden_data = np.vectorize(lithology_numbers.get)(

hidden_data)

7 https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition.

https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition

140 8 Classification of Well Log Data Facies by Machine Learning

33 hidden_accuracy_scores.append(np.around(score(hidden_data,
hidden_test_target),4))

34
35 # plot the results
36 plt, ax1 = plt.subplots()
37 labels = leaderboard_test_res.columns
38 x = np.arange(len(labels))
39 width = 0.35
40 rects1 = ax1.bar(x - width/2, leaderboard_accuracy_scores, width,

label=’Leaderboard test data set’, color=’#C82127’)
41 rects2 = ax1.bar(x + width/2, hidden_accuracy_scores, width,

label=’Hidden test est data set’, color=’#0A3A54’)
42 ax1.set_ylabel(’Accuracy scores’)
43 ax1.set_ylim(0,-0.7)
44 ax1.set_xticks(x, labels)
45 ax1.legend()
46 ax1.bar_label(rects1, padding=-12)
47 ax1.bar_label(rects2, padding=-12)

Listing 8.15 Final scoring on the leaderbord and hidden test data set

References

Bestagini, P., Lipari, V., & Tubaro, S. (2017). A machine learning approach to facies classification
using well logs. SEG Technical Program Expanded Abstracts, pp. 2137–2142. https://doi.org/
10.1190/SEGAM2017-17729805.1

Bormann, P., Aursand, P., Dilib, F., Manral, S., & Dischington, P. (2020). FORCE 2020 Well well
log and lithofacies dataset for machine learning competition. Dataset on Zenodo. https://doi.
org/10.5281/ZENODO.4351156

Hall, B. (2016). Facies classification using machine learning. Leading Edge, 35(10),
906–909. https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.
1FIG2.JPEG

Hall, M., & Hall, B. (2017). Distributed collaborative prediction: Results of the machine learning
contest. The Leading Edge, 36(3), 267–269. https://doi.org/10.1190/TLE36030267.1

Hernandez-Martinez, E., Perez-Muñoz, T., Velasco-Hernandez, J. X., Altamira-Areyan, A., &
Velasquillo-Martinez, L. (2013). Facies recognition using multifractal hurst analysis: Appli-
cations to well-log data. Mathematical Geosciences, 45(4), 471–486. https://doi.org/10.1007/
S11004-013-9445-6/FIGURES/9

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle
the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research,
18(17), 1–5.

Wood, D. A. (2021). Enhancing lithofacies machine learning predictions with gamma-ray attributes
for boreholes with limited diversity of recorded well logs. Artificial Intelligence in Geosciences,
2, 148–164. https://doi.org/10.1016/J.AIIG.2022.02.007

Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep learning based feature selection for remote
sensing scene classification. IEEE Geoscience and Remote Sensing Letters, 12(11), 2321–2325.
https://doi.org/10.1109/LGRS.2015.2475299

https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.1190/SEGAM2017-17729805.1
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.5281/ZENODO.4351156
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE35100906.1/ASSET/IMAGES/LARGE/TLE35100906.1 FIG2.JPEG
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1190/TLE36030267.1
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1007/S11004-013-9445-6/FIGURES/9
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1016/J.AIIG.2022.02.007
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1109/LGRS.2015.2475299

Chapter 9
Machine Learning Regression
in Petrology

9.1 Motivation

Deciphering magma storage depths and temperatures in the feeding systems of
active volcanoes is a central issue in volcanology and petrology (see, e.g., Putirka,
2008). For example, magma storage depths help to characterize volcanic plumbing
systems (see, e.g., Petrelli et al., 2018; Ubide and Kamber, 2018; Ubide et al.,
2021). Also, the magma temperature must be estimated in order to use diffusion-
based geo-chronometers (see, e.g., Costa et al., 2020). To date, a robust and widely
applied strategy to design geo-barometers or geo-thermometers is mainly based on
changes in entropy and volume during equilibrium reactions between melts and
crystals (see Putirka, 2008 and Putirka, 2008, and references therein). For example,
the calibration of a mineral-melt or mineral-only thermometer or of a barometer
consists of five main steps: (1) determine the chemical equilibria associated with
significant changes in entropy and volume (Putirka, 2008); (2) procure a suitable
experimental data set for which temperature and pressure are known (e.g., the data
set of the Library of Experimental Phase Relations; Hirschmann et al., 2008); (3)
compute the components of the crystal phase from chemical analyses; (4) choose the
regression strategy; and (5) validate the model (Putirka, 2008). Recently, numerous
authors have demonstrated the potential of thermo-barometry based on ML (see,
e.g., Petrelli et al., 2020; Jorgenson et al., 2022). This chapter discusses how to
calibrate ML thermo-barometers based on ortopyroxenes in equilibrium with the
melt phase and with orthopyroxenes alone.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_9

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9
https://doi.org/10.1007/978-3-031-35114-3_9

142 9 Machine Learning Regression in Petrology

9.2 LEPR Data Set and Data Pre-processing

The Library of Experimental Phase Relations (LEPR) (Hirschmann et al., 2008)
includes . >5000 petrological experiments simulating igneous systems at tempera-
tures between 500 and 2500 . ◦C and pressures up to 25 GPa or more. The LEPR
data set can be downloaded from a dedicated portal.1 In the LEPR data set, the
entries corresponding to each experiment include both experimental data (i.e., the
composition of starting materials, the experimental temperature and pressure, the
phases at the end of the experiments and related compositions) and metadata (e.g.,
author, laboratory, device, oxygen fugacity). For this chapter, I downloaded an
ExcelTM file and I named it LEPR_download.xls. In the ExcelTM file, the sheet
named “Experiments” contains all the meta data and relevant information such as
the composition of starting materials, the experimental temperature and pressure,
and the phases present at the end of the experiment. The sheets named with a phase
name (e.g., Liquid, Clinopyroxene, Olivine) contain the chemical compositions for
that specific phase in each experiment. An index characterizes each experiment,
linking the information in the different sheets.

As a pre-processing strategy (see code listing 9.1), we define the function
data_pre_processing(), which (1) imports the LEPR data set from ExcelTM (lines
103 and 104), (2) creates a pandas pipe() for basic operations such as adjusting
column names, converting all Fe data such as .FeOtot, filtering the features, and
imputing NaN to zero (lines from 115 to 120); (3) start storing phase information
in a .hd5 file (lines 123, 153, and 154); (4) combine all relevant data in a single
pandas DataFrame (lines 128–130); (5) filter based on .SiO2, pressure P (GPa),
and temperature T (. ◦C) (lines 132–141); (6) remove the entries characterized by
chemical analysis that do not fit the chemical formula of the orthopyroxene (lines
143–145); (7) shuffle the data set (lines 147 and 148); (8) separate the labels from
the input features (lines 150 and 151); and (9) store everything in a .hd5 file (lines
153 and 154).

The statement at line 157 triggers the data pre-processing. The result is a hdf5
file named ml_data.h5 that contains a DataFrame named “Liquid_Orthopyroxene”
hosting the pre-processed experimental data from the LEPR data set. In addition, it
stores the labels T and P in a DataFrame named “labels.” Finally, it contains all the
original data of interest in three DataFrames named “Liquid,” “Orthopyroxene,” and
“starting_material.”

Figures 9.1 and 9.2 show the probability densities for the different chemical
elements in the melt and orthopyroxene phases, respectively (code listing 9.2).
Code listing 9.2 imports the Liquid_Orthopyroxene DataFrame from the hdf5 file
ml_data.h5 (line 5).

1 https://lepr.earthchem.org/.

https://lepr.earthchem.org/
https://lepr.earthchem.org/
https://lepr.earthchem.org/
https://lepr.earthchem.org/

9.2 LEPR Data Set and Data Pre-processing 143

1 import os
2 import pandas as pd
3 import numpy as np
4
5 Elements = {
6 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’,
7 ’MnO’, ’CaO’, ’Na2O’, ’K2O’],
8 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’,
9 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’Cr2O3’]}
10
11 def calculate_cations_on_oxygen_basis(
12 myData0, myphase, myElements, n_oxygens):
13
14 Weights = {’SiO2’: [60.0843,1.0,2.0],
15 ’TiO2’:[79.8788,1.0,2.0],
16 ’Al2O3’: [101.961,2.0,3.0],
17 ’FeOtot’:[71.8464,1.0,1.0],
18 ’MgO’:[40.3044,1.0,1.0],
19 ’MnO’:[70.9375,1.0,1.0],
20 ’CaO’:[56.0774,1.0,1.0],
21 ’Na2O’:[61.9789,2.0,1.0],
22 ’K2O’:[94.196,2.0,1.0],
23 ’Cr2O3’:[151.9982,2.0,3.0],
24 ’P2O5’:[141.937,2.0,5.0],
25 ’H2O’:[18.01388,2.0,1.0]}
26
27 myData = myData0.copy()
28 # Cation mole proportions
29 for el in myElements:
30 myData[el + ’_cat_mol_prop’] = myData[myphase +
31 ’_’ + el] * Weights[el][1] / Weights[el][0]
32 # Oxygen mole proportions
33 for el in myElements:
34 myData[el + ’_oxy_mol_prop’] = myData[myphase +
35 ’_’ + el] * Weights[el][2] / Weights[el][0]
36 # Oxigen mole proportions totals
37 totals = np.zeros(len(myData.index))
38 for el in myElements:
39 totals += myData[el + ’_oxy_mol_prop’]
40 myData[’tot_oxy_prop’] = totals
41 # totcations
42 totals = np.zeros(len(myData.index))
43 for el in myElements:
44 myData[el + ’_num_cat’] = n_oxygens * myData[el +
45 ’_cat_mol_prop’] / myData[’tot_oxy_prop’]
46 totals += myData[el + ’_num_cat’]
47 return totals
48
49 def filter_by_cryst_formula(dataFrame, myphase, myElements):
50
51 c_o_Tolerance = {’Orthopyroxene’: [4,6,0.025]}
52
53 dataFrame[’Tot_cations’] = calculate_cations_on_oxygen_basis(
54 myData0 = dataFrame, myphase = myphase,

144 9 Machine Learning Regression in Petrology

55 myElements = myElements,
56 n_oxygens = c_o_Tolerance[myphase][1])
57
58 dataFrame = dataFrame[
59 (dataFrame[’Tot_cations’] < c_o_Tolerance[myphase][0]
60 + c_o_Tolerance[myphase][2]) &
61 (dataFrame[’Tot_cations’] > c_o_Tolerance[myphase][0]
62 - c_o_Tolerance[myphase][2])]
63
64 dataFrame = dataFrame.drop(columns=[’Tot_cations’])
65 return dataFrame
66
67 def adjustFeOtot(dataFrame):
68 for i in range(len(dataFrame.index)):
69 try:
70 if pd.to_numeric(dataFrame.Fe2O3[i])>0:
71 dataFrame.loc[i,’FeOtot’] = (
72 pd.to_numeric(dataFrame.FeO[i]) + 0.8998 *
73 pd.to_numeric(dataFrame.Fe2O3[i]))
74 else:
75 dataFrame.loc[i,
76 ’FeOtot’] = pd.to_numeric(dataFrame.FeO[i])
77 except:
78 dataFrame.loc[i,’FeOtot’] = 0
79 return dataFrame
80
81 def adjust_column_names(dataFrame):
82 dataFrame.columns = [c.replace(’Wt: ’, ’’)
83 for c in dataFrame.columns]
84 dataFrame.columns = [c.replace(’ ’, ’’)
85 for c in dataFrame.columns]
86 return dataFrame
87
88 def select_base_features(dataFrame, my_elements):
89 dataFrame = dataFrame[my_elements]
90 return dataFrame
91
92 def data_imputation(dataFrame):
93 dataFrame = dataFrame.fillna(0)
94 return dataFrame
95
96 def data_pre_processing(phase_1, phase_2, out_file):
97
98 try:
99 os.remove(out_file)

100 except OSError:
101 pass
102
103 starting = pd.read_excel(’LEPR_download.xls’,
104 sheet_name=’Experiment’)
105 starting= adjust_column_names(starting)
106 starting.name = ’’
107 starting = starting[[’Index’, ’T(C)’,’P(GPa)’]]
108 starting.to_hdf(out_file, key=’starting_material’)

9.2 LEPR Data Set and Data Pre-processing 145

109
110 phases = [phase_1, phase_2]
111
112 for ix, my_phase in enumerate(phases):
113 my_dataset = pd.read_excel(’LEPR_download.xls’,
114 sheet_name = my_phase)
115 my_dataset = (my_dataset.
116 pipe(adjust_column_names).
117 pipe(adjustFeOtot).
118 pipe(select_base_features,
119 my_elements= Elements[my_phase]).
120 pipe(data_imputation))
121
122 my_dataset = my_dataset.add_prefix(my_phase + ’_’)
123 my_dataset.to_hdf(out_file, key=my_phase)
124
125 my_phase_1 = pd.read_hdf(out_file, phase_1)
126 my_phase_2 = pd.read_hdf(out_file, phase_2)
127
128 my_dataset = pd.concat([starting,
129 my_phase_1,
130 my_phase_2], axis=1)
131
132 my_dataset = my_dataset[(my_dataset[’Liquid_SiO2’] > 35)&
133 (my_dataset[’Liquid_SiO2’] < 80)]
134
135 my_dataset = my_dataset[(
136 my_dataset[’Orthopyroxene_SiO2’] > 0)]
137
138 my_dataset = my_dataset[(my_dataset[’P(GPa)’] <= 2)]
139
140 my_dataset = my_dataset[(my_dataset[’T(C)’] >= 650)&
141 (my_dataset[’T(C)’] <= 1800)]
142
143 my_dataset = filter_by_cryst_formula(dataFrame = my_dataset,
144 myphase = phase_2,
145 myElements = Elements[phase_2])
146
147 my_dataset = my_dataset.sample(frac=1,
148 random_state=50).reset_index(drop=True)
149
150 my_labels = my_dataset[[’Index’, ’T(C)’, ’P(GPa)’]]
151 my_dataset = my_dataset.drop(columns=[’T(C)’,’P(GPa)’])
152
153 my_labels.to_hdf(out_file, key=’labels’)
154 my_dataset.to_hdf(out_file,
155 key= phase_1 + ’_’ + phase_2)
156
157 data_pre_processing(phase_1=’Liquid’ ,
158 phase_2=’Orthopyroxene’,
159 out_file=’ml_data.h5’)

Listing 9.1 Implementation of pre-processing strategy

146 9 Machine Learning Regression in Petrology

Fig. 9.1 Result of code listing 9.2. Descriptive statistics of the melt phase

9.2 LEPR Data Set and Data Pre-processing 147

Fig. 9.2 Result of code listing 9.2. Descriptive statistics of the orthopyroxene phase

148 9 Machine Learning Regression in Petrology

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 my_dataset = pd.read_hdf(’ml_data.h5’, ’Liquid_Orthopyroxene’)
6
7 Elements = {
8 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’,
9 ’MnO’, ’CaO’, ’Na2O’, ’K2O’, ’H2O’],
10 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’,
11 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’K2O’, ’Cr2O3’]}
12
13 fig = plt.figure(figsize=(7,9))
14 x_labels_melt = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’,
15 r’FeO$_t$’, r’MnO’, r’MgO’, r’CaO’,
16 r’Na$_2O$’, r’K$_2$O’, r’H$_2$O’]
17 for i, col in enumerate(Elements[’Liquid’]):
18 ax1 = fig.add_subplot(5, 2, i+1)
19 sns.kdeplot(my_dataset[’Liquid_’ + col], fill=True,
20 color=’k’, facecolor=’#BFD7EA’, ax = ax1)
21 ax1.set_xlabel(x_labels_melt[i] + ’ [wt. %] the melt’)
22 if i in [0,2,4,6,8]:
23 ax1.set_ylabel(’Prob. Density’)
24 else:
25 ax1.set(ylabel=None)
26
27 fig.align_ylabels()
28 fig.tight_layout()
29
30 fig1 = plt.figure(figsize=(7,9))
31 x_labels_cpx = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’,
32 r’FeO$_t$’, r’MnO’, r’MgO’, r’CaO’,
33 r’Na$_2O$’, r’K$_2$O’, r’Cr$_2$O$_3$’]
34 for i, col in enumerate(Elements[’Orthopyroxene’]):
35 ax2 = fig1.add_subplot(5, 2, i+1)
36 sns.kdeplot(my_dataset[’Orthopyroxene_’ + col], fill=True,
37 color=’k’, facecolor=’#BFD7EA’, ax = ax2)
38 ax2.set_xlabel(x_labels_cpx[i] + ’ [wt. %] in opx’)
39 if i in [0,2,4,6,8]:
40 ax2.set_ylabel(’Prob. Density’)
41 else:
42 ax2.set(ylabel=None)
43
44 fig1.align_ylabels()
45 fig1.tight_layout()

Listing 9.2 Descriptive statistics applied to orthopyroxenes

9.3 Compositional Data Analysis 149

9.3 Compositional Data Analysis

In Sect. 3.3.6, we introduced the basic concept of compositional data analysis
and discussed why most of the advanced statistical techniques cannot be applied
to compositional data without a proper transformation. In fact, many statistical
methods assume independent data in the range .−∞ to .+∞. Intrinsically, com-
positional features range from 0 to 100 (or from 0 to 1) and are not independent
because changing the value of one element automatically affects the abundance of
the other components (Aitchison, 1982). Decision-tree ensembles such as random
forest (Song & Lu, 2015) and extremely randomized trees (Geurts et al., 2006)
make no specific assumption about the data structure. Therefore, they can be
applied to un-transformed data (Aitchison, 1982). However, recent studies report
that tree ensembles perform better when applied to log-ratio pairwise-transformed
data (Tolosana-Delgado et al., 2019). Although tree-based ensembles do not strictly
require a CoDA transformation, they benefit from the introduction of new features
(i.e., pairwise log-ratios) derived from existing features such as the augmentation
of the feature input space. The result is reduced overfitting, which improves
generalization. This chapter compares the results of the extremely randomized
trees algorithm applied to both un-transformed and un-transformed plus log-ratio
pairwise transformed data, as suggested by Tolosana-Delgado et al. (2019). To add
the log-ratio pairwise transformation to our pre-processing strategy, we simply add
a new function to code listing 9.1. Code listing 9.3 shows the final version of our
pre-processing strategy, which now includes the log-ratio pairwise transformation.

1 import os
2 import pandas as pd
3 import numpy as np
4
5 Elements = {
6 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’,
7 ’MnO’, ’CaO’, ’Na2O’, ’K2O’],
8 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’,
9 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’Cr2O3’]}
10
11 def calculate_cations_on_oxygen_basis(
12 myData0, myphase, myElements, n_oxygens):
13
14 Weights = {’SiO2’: [60.0843,1.0,2.0],
15 ’TiO2’:[79.8788,1.0,2.0],
16 ’Al2O3’: [101.961,2.0,3.0],
17 ’FeOtot’:[71.8464,1.0,1.0],
18 ’MgO’:[40.3044,1.0,1.0],
19 ’MnO’:[70.9375,1.0,1.0],
20 ’CaO’:[56.0774,1.0,1.0],
21 ’Na2O’:[61.9789,2.0,1.0],
22 ’K2O’:[94.196,2.0,1.0],
23 ’Cr2O3’:[151.9982,2.0,3.0],

150 9 Machine Learning Regression in Petrology

24 ’P2O5’:[141.937,2.0,5.0],
25 ’H2O’:[18.01388,2.0,1.0]}
26
27 myData = myData0.copy()
28 # Cation mole proportions
29 for el in myElements:
30 myData[el + ’_cat_mol_prop’] = myData[myphase +
31 ’_’ + el] * Weights[el][1] / Weights[el][0]
32 # Oxygen mole proportions
33 for el in myElements:
34 myData[el + ’_oxy_mol_prop’] = myData[myphase +
35 ’_’ + el] * Weights[el][2] / Weights[el][0]
36 # Oxigen mole proportions totals
37 totals = np.zeros(len(myData.index))
38 for el in myElements:
39 totals += myData[el + ’_oxy_mol_prop’]
40 myData[’tot_oxy_prop’] = totals
41 # totcations
42 totals = np.zeros(len(myData.index))
43 for el in myElements:
44 myData[el + ’_num_cat’] = n_oxygens * myData[el +
45 ’_cat_mol_prop’] / myData[’tot_oxy_prop’]
46 totals += myData[el + ’_num_cat’]
47 return totals
48
49 def filter_by_cryst_formula(dataFrame, myphase, myElements):
50
51 c_o_Tolerance = {’Orthopyroxene’: [4,6,0.025]}
52
53 dataFrame[’Tot_cations’] = calculate_cations_on_oxygen_basis(
54 myData0 = dataFrame, myphase = myphase,
55 myElements = myElements,
56 n_oxygens = c_o_Tolerance[myphase][1])
57
58 dataFrame = dataFrame[
59 (dataFrame[’Tot_cations’] < c_o_Tolerance[myphase][0]
60 + c_o_Tolerance[myphase][2]) &
61 (dataFrame[’Tot_cations’] > c_o_Tolerance[myphase][0]
62 - c_o_Tolerance[myphase][2])]
63
64 dataFrame = dataFrame.drop(columns=[’Tot_cations’])
65 return dataFrame
66
67 def adjustFeOtot(dataFrame):
68 for i in range(len(dataFrame.index)):
69 try:
70 if pd.to_numeric(dataFrame.Fe2O3[i])>0:
71 dataFrame.loc[i,’FeOtot’] = (
72 pd.to_numeric(dataFrame.FeO[i]) + 0.8998 *
73 pd.to_numeric(dataFrame.Fe2O3[i]))
74 else:
75 dataFrame.loc[i,
76 ’FeOtot’] = pd.to_numeric(dataFrame.FeO[i])
77 except:

9.3 Compositional Data Analysis 151

78 dataFrame.loc[i,’FeOtot’] = 0
79 return dataFrame
80
81 def adjust_column_names(dataFrame):
82 dataFrame.columns = [c.replace(’Wt: ’, ’’)
83 for c in dataFrame.columns]
84 dataFrame.columns = [c.replace(’ ’, ’’)
85 for c in dataFrame.columns]
86 return dataFrame
87
88 def select_base_features(dataFrame, my_elements):
89 dataFrame = dataFrame[my_elements]
90 return dataFrame
91
92 def data_imputation(dataFrame):
93 dataFrame = dataFrame.fillna(0)
94 return dataFrame
95
96 def pwlr(dataFrame, my_phases):
97
98 for my_pahase in my_phases:
99 my_indexes = []

100 column_list = Elements[my_pahase]
101
102 for col in column_list:
103 col = my_pahase + ’_’ + col
104 my_indexes.append(dataFrame.columns.get_loc(col))
105 my_min = dataFrame[col][dataFrame[col] > 0].min()
106 dataFrame.loc[dataFrame[col] == 0,
107 col] = dataFrame[col].apply(
108 lambda x: np.random.uniform(
109 np.nextafter(0.0, 1.0),my_min))
110
111 for ix in range(len(column_list)):
112 for jx in range(ix+1, len(column_list)):
113 col_name = ’log_’ + dataFrame.columns[
114 my_indexes[jx]] + ’_’ + dataFrame.columns[
115 my_indexes[ix]]
116 dataFrame.loc[:,col_name] = np.log(
117 dataFrame[dataFrame.columns[my_indexes[jx]]]/ \
118 dataFrame[dataFrame.columns[my_indexes[ix]]])
119 return dataFrame
120
121 def data_pre_processing(phase_1, phase_2, out_file):
122
123 try:
124 os.remove(out_file)
125 except OSError:
126 pass
127
128 starting = pd.read_excel(’LEPR_download.xls’,
129 sheet_name=’Experiment’)
130 starting= adjust_column_names(starting)
131 starting.name = ’’

152 9 Machine Learning Regression in Petrology

132 starting = starting[[’Index’, ’T(C)’,’P(GPa)’]]
133 starting.to_hdf(out_file, key=’starting_material’)
134
135 phases = [phase_1, phase_2]
136
137 for ix, my_phase in enumerate(phases):
138 my_dataset = pd.read_excel(’LEPR_download.xls’,
139 sheet_name = my_phase)
140
141 my_dataset = (my_dataset.
142 pipe(adjust_column_names).
143 pipe(adjustFeOtot).
144 pipe(select_base_features,
145 my_elements= Elements[my_phase]).
146 pipe(data_imputation))
147
148 my_dataset = my_dataset.add_prefix(my_phase + ’_’)
149 my_dataset.to_hdf(out_file, key=my_phase)
150
151 my_phase_1 = pd.read_hdf(out_file, phase_1)
152 my_phase_2 = pd.read_hdf(out_file, phase_2)
153
154 my_dataset = pd.concat([starting,
155 my_phase_1,
156 my_phase_2], axis=1)
157
158 my_dataset = my_dataset[(my_dataset[’Liquid_SiO2’] > 35)&
159 (my_dataset[’Liquid_SiO2’] < 80)]
160
161 my_dataset = my_dataset[(
162 my_dataset[’Orthopyroxene_SiO2’] > 0)]
163
164 my_dataset = my_dataset[(my_dataset[’P(GPa)’] <= 2)]
165
166 my_dataset = my_dataset[(my_dataset[’T(C)’] >= 650)&
167 (my_dataset[’T(C)’] <= 1800)]
168
169 my_dataset = filter_by_cryst_formula(dataFrame = my_dataset,
170 myphase = phase_2,
171 myElements = Elements[phase_2])
172
173 my_dataset = my_dataset.sample(frac=1,
174 random_state=50).reset_index(drop=True)
175
176 my_labels = my_dataset[[’Index’, ’T(C)’, ’P(GPa)’]]
177 my_dataset = my_dataset.drop(columns=[’T(C)’,’P(GPa)’])
178
179 my_labels.to_hdf(out_file, key=’labels’)
180 my_dataset.to_hdf(out_file, key= phase_1 + ’_’ + phase_2)
181
182 my_dataset = pwlr(my_dataset,
183 my_phases= [phase_1, phase_2])
184 my_dataset.to_hdf(out_file,
185 key= phase_1 + ’_’ + phase_2 + ’_lrpwt’)

9.4 Model Training and Error Assessment 153

186
187 data_pre_processing(phase_1=’Liquid’ ,
188 phase_2=’Orthopyroxene’,
189 out_file=’ml_data.h5’)

Listing 9.3 Final implementation of our pre-processing strategy

9.4 Model Training and Error Assessment

In agreement with Petrelli et al. (2020), we train the extremely randomized
trees algorithm on the pre-processed data set. Also, we use a Monte Carlo
simulation to propagate the errors and assess the goodness of the model. The
Monte Carlo approach consists of repeating many times (i) the random splitting
of the data set, and (ii) the training of the algorithm starting from a different
random seeding (code listing 9.4). To achieve our goal, we define a function
named monte_carlo_simulation() (line 9). Within this function, we repeat the train-
validation splitting n times (lines 16–18), normalization to zero mean and unit
variance (lines 20–22), training (lines 24–26), prediction (line 27), error assessment
(lines 29–35), and the storing of the results (lines 36–42).

1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.ensemble import ExtraTreesRegressor
5 from sklearn.model_selection import train_test_split
6 from sklearn.metrics import r2_score
7 from sklearn.metrics import mean_squared_error
8
9 def monte_carlo_simulation(X, y, indexes, n, key_res):
10
11 r2 = []
12 RMSE = []
13
14 for i in range(n):
15 my_res = {}
16 X_train, X_valid, y_train, y_valid, \
17 indexes_train, indexes_valid = train_test_split(
18 X, y.ravel(), indexes, test_size=0.2)
19
20 scaler = StandardScaler().fit(X_train)
21 X_train = scaler.transform(X_train)
22 X_valid = scaler.transform(X_valid)
23
24 regressor = ExtraTreesRegressor(n_estimators=450,
25 max_features=1).fit(
26 X_train, y_train)

154 9 Machine Learning Regression in Petrology

27 my_prediction = regressor.predict(X_valid)
28
29 my_res = {’indexes_valid’: indexes_valid,
30 ’prediction’: my_prediction}
31
32 my_res_pd = pd.DataFrame.from_dict(my_res)
33 r2.append(r2_score(y_valid, my_prediction))
34 RMSE.append(np.sqrt(mean_squared_error(y_valid,
35 my_prediction)))
36 my_res_pd.to_hdf(’ml_data.h5’,
37 key= key_res + ’_res_’ + str(i))
38
39 my_scores = {’r2_score’: r2,
40 ’root_mean_squared_error’: RMSE}
41 my_scores_pd = pd.DataFrame.from_dict(my_scores)
42 my_scores_pd.to_hdf(’ml_data.h5’, key = key_res + ’_scores’)
43
44
45 my_keys = [’Liquid_Orthopyroxene’, ’Liquid_Orthopyroxene_lrpwt’]
46
47 for my_key in my_keys:
48
49 # Liquid plus opx calibration
50 liquid_opx = pd.read_hdf(’ml_data.h5’, my_key)
51 print(liquid_opx.columns)
52 X_liquid_opx = liquid_opx.values
53 my_labels = pd.read_hdf(’ml_data.h5’, ’labels’)
54 my_y = my_labels[’T(C)’].values
55 my_indexes = my_labels[’Index’].values
56 monte_carlo_simulation(X = X_liquid_opx, y = my_y,
57 indexes = my_indexes,
58 n =1000, key_res = my_key)
59
60 # opx only calibration
61 opx = liquid_opx.loc[:,
62 ~liquid_opx.columns.str.startswith(’Liquid’)]
63 X_opx = opx.values
64 my_key = my_key.replace("Liquid_", "")
65 monte_carlo_simulation(X = X_opx,
66 y = my_y, indexes = my_indexes,
67 n =1000, key_res = my_key)

Listing 9.4 Training of the model in a Monte Carlo simulation

9.5 Evaluation of Results

Figures 9.3 and 9.4 show the results of the Monte Carlo simulations (derived from
code listing 9.5); the upper panels refer to raw data, whereas the lower panels

9.5 Evaluation of Results 155

Fig. 9.3 Result of code listing 9.5 (i.e., the Monte Carlo simulation of the orthopyroxene-only
system)

display the results on raw data plus the features deriving from the log-ratio pairwise
transformation.

Note that adding the features deriving from the log-ratio pairwise transformation
seems improving the performance of the orthopyroxene-only calibration of the
thermometer (Fig. 9.3). In this case, the root mean squared error and . r2 improve
by 14 . ◦C and 0.4, respectively.

In contrast with the orthopyroxene-only calibration, the liquid plus orthopyrox-
ene system does not benefit from the addition of features deriving from the log-ratio
pairwise transformation (Fig. 9.4). In this case, the root mean squared error only
differs by 4 . ◦C and . r2 is stable at 0.95.

156 9 Machine Learning Regression in Petrology

Fig. 9.4 Result of code listing 9.5 (i.e., the Monte Carlo simulation for the liquid-orthopyroxene
system)

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 for my_key in [’Orthopyroxene’, ’Liquid_Orthopyroxene’]:
6
7 fig = plt.figure(figsize=(8,8),constrained_layout=True)
8 subfigs = fig.subfigures(nrows=2, ncols=1)
9 for j, (trans, my_title) in enumerate(zip([’’, ’_lrpwt’],
10 [my_key, my_key+’ log-ratio pairwise transformation’])):
11 my_scores = pd.read_hdf(’ml_data.h5’,
12 my_key + trans + ’_scores’)
13
14 RMSE_ML_valid_median_T = np.median(
15 my_scores[’root_mean_squared_error’])
16 R2_valid_median_T = np.median(my_scores[’r2_score’])

References 157

17
18 subfigs[j].suptitle(my_title.replace(’_’, ’-’))
19
20 # left panel
21 ax = subfigs[j].add_subplot(1, 2,1)
22 bins = np.arange(30, 70, 2)
23 ax.hist(my_scores[’root_mean_squared_error’], bins=bins,
24 density = True, color = ’#BFD7EA’,
25 edgecolor = ’k’,
26 label=’Hist. distribution’)
27 ax.axvline(RMSE_ML_valid_median_T,
28 color=’#C82127’,
29 label=’Median: {:.0f} C’.format(
30 RMSE_ML_valid_median_T))
31 ax.set_xlabel(’Root Mean Squared Error’)
32 ax.set_ylabel(’Prob. Density’)
33 ax.legend()
34
35 # right panel
36 ax = subfigs[j].add_subplot(1, 2, 2)
37 bins = np.arange(0.875, 1, 0.005)
38 ax.hist(my_scores[’r2_score’], bins = bins,
39 density = True, color = ’#BFD7EA’,
40 edgecolor=’k’,
41 label=’Hist. distribution’)
42 ax.axvline(R2_valid_median_T, color=’#C82127’,
43 label=’Median: {:.2f}’.format(
44 R2_valid_median_T))
45 ax.set_xlabel(r’r2 score’)
46 ax.set_ylabel(’Prob. Density’)
47 ax.legend()

Listing 9.5 Plots the results of the Monte Carlo simulation

References

Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical
Society. Series B (Methodological), 44(2), 139–177.

Costa, F., Shea, T., & Ubide, T. (2020). Diffusion chronometry and the timescales of magmatic
processes. Nature Reviews Earth and Environment, 1(4), 201–214. https://doi.org/10.1038/
s43017-020-0038-x

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning,
63(1), 3–42. https://doi.org/10.1007/S10994-006-6226-1

Hirschmann, M., Ghiorso, M., Davis, F., Gordon, S., Mukherjee, S., Grove, T., Krawczynski, M.,
Medard, E., & Till, C. (2008). Library of experimental phase relations (LEPR): A database
andWeb portal for experimental magmatic phase equilibria data. Geochemistry, Geophysics,
Geosystems, 9(3). https://doi.org/10.1029/2007GC001894

https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1038/s43017-020-0038-x
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1007/S10994-006-6226-1
https://doi.org/10.1029/2007GC001894
https://doi.org/10.1029/2007GC001894
https://doi.org/10.1029/2007GC001894
https://doi.org/10.1029/2007GC001894
https://doi.org/10.1029/2007GC001894
https://doi.org/10.1029/2007GC001894

158 9 Machine Learning Regression in Petrology

Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F., & Caricchi, L. (2022). A machine learning-
based approach to clinopyroxene thermobarometry: Model optimization and distribution for
use in earth sciences. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB022904.
https://doi.org/10.1029/2021JB022904

Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine learning thermo-barometry: Application
to clinopyroxene-bearing magmas. Journal of Geophysical Research: Solid Earth, 125(9).
https://doi.org/10.1029/2020JB020130

Petrelli, M., El Omari, K., Spina, L., Le Guer, Y., La Spina, G., & Perugini, D. (2018). Timescales
of water accumulation in magmas and implications for short warning times of explosive
eruptions. Nature Communications, 9(1), 770. https://doi.org/10.1038/s41467-018-02987-6

Putirka, K. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy
and Geochemistry, 69(1), 61–120. https://doi.org/10.2138/rmg.2008.69.3

Song, Y. Y., & Lu, Y. (2015). Decision tree methods: Applications for classification and
prediction. Shanghai Archives of Psychiatry, 27(2), 130. https://doi.org/10.11919/J.ISSN.1002-
0829.215044

Tolosana-Delgado, R., Talebi, H., Khodadadzadeh, M., & Boogaart, K. G. (2019). On machine
learning algorithms and compositional data. In Proceedings of the 8th International Workshop
on Compositional Data Analysis (CoDaWork2019) (pp. 172–175).

Ubide, T., & Kamber, B. (2018). Volcanic crystals as time capsules of eruption history. Nature
Communications, 9(1), 326. https://doi.org/10.1038/s41467-017-02274-w

Ubide, T., Neave, D., Petrelli, M., & Longpré, M.-A. (2021). Editorial: Crystal archives of
magmatic processes. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.749100

https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2021JB022904
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1029/2020JB020130
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.1038/s41467-018-02987-6
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.2138/rmg.2008.69.3
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.11919/J.ISSN.1002-0829.215044
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.1038/s41467-017-02274-w
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100
https://doi.org/10.3389/feart.2021.749100

Part IV
Scaling Machine Learning Models

Chapter 10
Parallel Computing and Scaling with
Dask

10.1 Warming Up: Basic Definitions

Processor, CPU, Core The traditional definition of “processor” and “central
processing unit” (CPU) is “a microprocessor chip that sequentially (i.e., one by one)
executes a series of basic processing tasks based on an input” (Caesar Wu, 2015).
However, modern CPUs largely exceed this traditional definition by integrating
many components and hosting a cache memory. Modern CPUs duplicate and
execute the most basic processing tasks by applying self-contained execution blocks
that fit the traditional definition of a processor (Caesar Wu, 2015). These self-
contained execution blocks are typically called “cores” (Caesar Wu, 2015).

Multi-Core Processor and Parallel Hardware Multi-core processors, chip
multi-processors (CMPs), and parallel hardware are often used as synonyms
(Peter Pacheco, 2020). A CMP incorporates many processors and cache memory on
a chip. Parallel hardware is ubiquitous now—it is almost impossible to find a modern
laptop, desktop, or server that does not use a multi-core processor (Peter Pacheco,
2020).

Graphics Processing Unit (GPU) “GPUs are multi-core processing units made of
massively parallel, smaller, and more specialized cores than those generally found
in high-performance CPUs. GPU architecture efficiently processes vector data (an
array of numbers) and is often referred to as vector architecture.”1

Field Programmable Gate Array (FPGA) “FPGAs are integrated circuits with
a programmable hardware fabric. Unlike CPUs and GPUs, which are software-

1 https://intel.ly/39XimzH.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_10

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 10&domain=pdf
https://intel.ly/39XimzH
https://intel.ly/39XimzH
https://intel.ly/39XimzH
https://intel.ly/39XimzH
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10
https://doi.org/10.1007/978-3-031-35114-3_10

162 10 Parallel Computing and Scaling with Dask

programmable fixed architectures, FPGAs are reconfigurable. When writing soft-
ware for a FPGA, compiled instructions become hardware components that are
spatially laid out on the FPGA fabric, and those components can all execute in
parallel.” (see footnote 1).

Distributed Computing Distributed computing is “[a] computer system consisting
of a multiplicity of processors, each with its own local memory, connected via a
network. Loading or store instructions issued by a processor can only address the
local memory and different mechanisms are provided for global communication”
(David, 2011).

Serial Codes Serial codes are codes that were conceived and written for a single
processor (Peter Pacheco, 2020). If you run a serial code on multiple processors or
a distributed architecture, the performance does not magically improve because the
instructions are executed sequentially by one of the available cores.

Parallel Computing Parallel computing is a computation strategy whereby many
calculations or processes are executed simultaneously (Peter Pacheco, 2020).
Parallel computing exploits multiple processors (i.e., CMP, GPU, and FPGA) or
a distributed architecture (Peter Pacheco, 2020).

10.2 Basics of Dask

The goal of Dask2 is to overcome single-machine restrictions by adding object
scalability to Python scientific libraries such as pandas, NumPy, and scikit-learn
(Daniel, 2019). Dask consists of three main layers: (1) scheduler, (2) low-level
application programming interfaces (APIs), and (3) high-level APIs (Fig. 10.1).
This chapter discusses mainly the high-level APIs that govern Dask arrays, Dask
DataFrames, and Dask ML, which allow us to scale NumPy, pandas, and scikit-
learn objects, respectively. In using Dask, our main goal is to extend the capabilities
of single machines so that they can work with data sets that exceed their native
RAM capabilities and deploy clusters to exploit big data sets or extremely complex
models.

Dask Array
Dask arrays combine many NumPy arrays arranged into chunks (i.e., a single
NumPy array) within a grid (Fig. 10.2). They are the parallel-friendly version of
NumPy arrays. Defining a Dask array is as simple as defining a NumPy array;
the only difference being that you need to import dask.array instead of NumPy
(Fig. 10.3). For example, Fig. 10.3 shows how to create a .105 × 105 Dask array
containing random numbers. In Jupyter Notebooks, you can easily retrieve copious
information on the Dask array you created (Fig. 10.3).

2 https://www.dask.org.

https://www.dask.org
https://www.dask.org
https://www.dask.org
https://www.dask.org

10.2 Basics of Dask 163

High-level APIs

Low-level APIs

Dask subsystem

Dask Array
Parallel NumPy

Dask Bag
Parallel lists

Dask DataFrame
Parallel Pandas

Dask ML
Parallel scikit-learn

Dask Delayed
Lazy parallel objects

Dask Futures
Eager parallel objects

Scheduler
Creates and manages DAGs
Distributes tasks to workers

Fig. 10.1 Dask fundamentals, modified from (Daniel, 2019)

NumPy
Array

Dask
Array

Fig. 10.2 Dask arrays, modified from https://examples.dask.org/array.html

Fig. 10.3 Defining a Dask array

https://examples.dask.org/array.html
https://examples.dask.org/array.html
https://examples.dask.org/array.html
https://examples.dask.org/array.html
https://examples.dask.org/array.html
https://examples.dask.org/array.html

164 10 Parallel Computing and Scaling with Dask

pandas
DataFrame

Dask
DataFrameindex

Fig. 10.4 Dask arrays, modified from https://examples.dask.org/dataframe.html

For example, Fig. 10.3 shows that the total size of x is 74.51 GiB (i.e., Gibibytes,
GiB, with .1 GiB ≈ 1.074 GB). Also, the size of a single chunk is 7.63 MiB.

Dask Data Frame
A Dask DataFrame is the parallel counterpart of a pandas Dataframe (Fig. 10.4).
They are composed of many smaller pandas DataFrames split along an index (Table
10.1).

To see how to use Dask DataFrames, let us import the data set that we developed
in Chap. 8 and that we saved as HDF5. Figure 10.5 shows a portion of a Jupyter
Notebook and highlights how to import a Dask DataFrame from the file ml_data.h5.
Note that the procedure is similar to that in pandas. The only difference consists of
importing a dask.DataFrame instead of a pandas.DataFrame. Note also that Dask
splits the DataFrame into two parts and that, instead of the real values, all rows are
filled with ellipses (. . .). This is because the data set is subject to “lazy” evaluation
(see Sect. 10.3 for further details). To physically import train_dataset, Dask requires
the additional step of using the compute() method (Fig. 10.6).

Dask ML
Model scaling can solve two common issues related to (1) data size and (2) model
size (Table 10.2, Fig. 10.7). Pandas, NumPy, and scikit-learn are the libraries of
choice to develop a ML strategy when your data set comfortably fits the free RAM
of your computing environment (i.e., you are working with a small data set; see
Table 10.2). In this case, scaling along the x dimension of Fig. 10.7 is not required
and not recommended.

As an example, code listing in Fig. 10.8 shows how to use Numpy to define (line
2) a small data set my_data composed of .108 normally distributed pseudo-random
numbers characterized by a mean value and standard deviation of one and two,
respectively. Lines 3 and 4 simply check that the mean and the standard deviation

https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html

10.2 Basics of Dask 165

Table 10.1 Dask methods to import and create a Dask DataFrame. Please note that most of them
are equivalent to pandas methods, i.e., Table 3.1 (modified from https://docs.dask.org/en/stable/
dataframe-api.html)

Method Description

read_table() Read general delimited file

read_csv() Read comma-separated values (csv) files

read_fwf() Read fixed-width files

read_parquet() Read parquet files

read_hdf() Read Hierarchical Data Format (HDF) files

read_json() Create a Dask DataFrame from a set of JSON files

read_orc() Create a Dask DataFrame from ORC file(s)

read_sql_table() Read SQL database table

read_sql_query() Read SQL query

read_sql() Read SQL query or database table

from_array() Read any sliceable array

from_bcolz() Read BColz CTable

from_dask_array() Create a Dask DataFrame from a Dask Array

from_delayed() Create a Dask DataFrame from many Dask Delayed objects

from_map() Create a Dask DataFrame collection from a custom function map

from_pandas() Construct a Dask DataFrame from a Pandas DataFrame

from_dict() Construct a Dask DataFrame from a Python Dictionary

Bag_to_dataframe() Create Dask Dataframe from a Dask Bag

Fig. 10.5 Importing a pandas DataFrame stored in an HDF5 files as a Dask DataFrame

of my_data are one and two, respectively. Finally, line 5 estimated the memory
required by my_data, which is approximately 0.745 GiB.

However, when the size of the data set reaches the upper bound of the RAM
(including any virtual memory generated by using the hard disk), memory errors
start occurring (see code listing in Fig. 10.9). For example, increasing the size of
my_data to .2.5 × 109 in a Linux system with 16 GB of free memory produces a
“Memory error” because the operating system is “Unable to allocate 18.6 GiB for

https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html

166 10 Parallel Computing and Scaling with Dask

Fig. 10.6 Physically importing a pandas DataFrame stored in an HDF5 files as Dask DataFrame

Table 10.2 Data set classification as a function of data size. Modified from Daniel (2019)

Data set size Approximate size range Fits in RAM? Fits on local disk?

Small data set Less than the free RAM on
your system (e.g., 16 GB)

Yes Yes

Medium data set Larger than the free RAM on
your system and less than
capacity of the local disk
(e.g., 2 TB)

No Yes

Large data set Larger than the capacity of
the local disk

No No

an array with shape (2 500 000 000) and data type float64’. This is clearly a data size
issue because I generated a “medium data set” (see Table 10.2).

The use of Dask arrays allows you to overcome the problem with minimal
changes in the code. For example, code listing in Fig. 10.10 uses Dask arrays (i.e.,
the parallel mimic of NumPy arrays) on a Lunix OS with 16 GB of free ram to
complete the simple operations that were previously impossible using NumPy (i.e.,
code listing 10.9).

When model size is the problem (e.g, the model is growing too much or becoming
too complex), all computations take extremely long. For example, the grid search
done in Chap. 8 took several hours to complete. While waiting a few hours may
not a be a big problem, the execution time will drastically increase up to days
or even weeks upon simply increasing the dimension of the grid search (e.g.,

10.2 Basics of Dask 167

Dimension of Scale

Data Size

M
od

el
 S

iz
e

Hard Computation
(compute and memery bounds)

Compute Bound
(too long computation times)

Memory Bound
(out of memory issues)

Fits in RAM

Fig. 10.7 Dimension of scale, modified from https://ml.dask.org

Fig. 10.8 Working with a small data set (i.e., well-fitting your RAM budget)

increasing the number of investigated hyper-parameters and densifying the grid)
or the complexity of the decision tree ensemble (e.g., increasing the number of
estimators). To optimize several ML models, the total time required can easily be
on the order of months or even years.

The main aim of Dask ML is thus to provide scalable ML in Python for popular
ML libraries such as scikit-Learn (Pedregosa et al., 2011), XGBoost, and others.

https://ml.dask.org
https://ml.dask.org
https://ml.dask.org
https://ml.dask.org

168 10 Parallel Computing and Scaling with Dask

Fig. 10.9 When you exceed the free memory, you get a “Memory error”

Fig. 10.10 Using Dask to work with a medium size data set

10.3 Eager Computation Versus Lazy Evaluation

Python usually uses the so-called “eager” computation, which simply means
that Python immediately performs each operation such as transformations and
calculations. For example, Fig. 10.11 shows the definition of the eager function
simple_lithopress() (line 2) that estimates the lithostatic pressure assuming both the
density and acceleration due to gravity are constants. We disclose the eager nature
of the function at lines 3 and 4, since simple_lithopress() returns a computed value
as soon as we call it in the code workflow; in other words, the calculations is done
immediately.

Fig. 10.11 Defining the eager function simple_lithopress()

10.3 Eager Computation Versus Lazy Evaluation 169

Fig. 10.12 Performing a Monte Carlo error propagation using the ‘Eager’ simple_lithopress()

Fig. 10.13 Result of code listing 10.1

Similarly, if we perform a Monte Carlo error propagation (Fig. 10.12) combining
NumPy arrays and the simple_lithopress() function, we get an immediate execution
lasting less than one second and that generates an array of . 107 elements (.≈76 MB).

To be aware of what we are doing, Fig. 10.13 shows the distribution of the
computed pressures resulting from estimates of depth, density, and acceleration due
to gravity and also accounting for the error estimates.

170 10 Parallel Computing and Scaling with Dask

1 import matplotlib.pyplot as plt
2
3 my_pressure_mean = np.mean(my_pressure_dist)
4 my_pressure_std = np.std(my_pressure_dist)
5
6 fig, ax = plt.subplots()
7 ax.hist(my_pressure_dist, density=True, bins=’auto’,
8 color=’#0F7F8B’, label=’Pressure estimates’)
9 ax.axvline(my_pressure_mean, color=’#C82127’, label=’mean value’)
10 ax.axvspan(my_pressure_mean - my_pressure_std,
11 my_pressure_mean + my_pressure_std,
12 color=’#F15C61’, alpha=0.4,
13 label=r’1σ estimate’)
14 ax.set_xlabel(’Pressure [MPa]’)
15 ax.set_ylabel(’Probability Density’)
16 ax.legend()
17 plt.show()

Listing 10.1 Plotting the results of the Monte Carlo error propagation.

Lazy evaluation differs from eager computation. Under lazy evaluation, Dask
prepares a directed acyclic graph (DAG) for the functions, operations, and transfor-
mations involved. But it does not perform any computation. DAGs are mathematical
objects deriving from graph theory. The theory behind DAGs and graph theory is
outside the scope of this book, so please refer to specialized references to go learn
the details of DAGs (Xu, 2003; Fiore & Campos, 2013; Maurer, 2013).

This section focuses mainly on learning the main benefits of using DAGs for
our computations. One of the most important benefits is that the structure and the
complexity of your computations can be evaluated and visualized before running
them, which brings many advantages. For example, it allows you to decide whether
to run your code on a single machine, a small cluster, or a high-performance
computing facility. Figure 10.14 shows how to perform a lazy evaluation of the

Fig. 10.14 How to visualize a DAG in Dask

10.3 Eager Computation Versus Lazy Evaluation 171

Fig. 10.15 A simple DAG
resulting from the code listing
reported above

simple_lithopress

normal

0

nalize

normal

0

nalize

normal

0

nalize

Monte Carlo error propagation performed in Fig. 10.12, and the resulting DAG is
shown in Fig. 10.15. It is a simple structure showing that, after generating three
normal distributions for the depth, density, and acceleration due to gravity, the
simple_litohpress() function uses them as input and generates an output. If we
increase the size of the three input arrays from .107 to . 108, the structure of the
DAG changes (Fig. 10.16). In detail, we defined a so-called “embarassingly parallel”
workload (Fig. 10.17).

172 10 Parallel Computing and Scaling with Dask

si
m

pl
e_

lit
ho

pr
es

s

0

0
0

0

si
m

pl
e_

lit
ho

pr
es

s

1

1
1

1

si
m

pl
e_

lit
ho

pr
es

s

2

2
2

2

si
m

pl
e_

lit
ho

pr
es

s

3

3
3

3

si
m

pl
e_

lit
ho

pr
es

s

4

4
4

4

si
m

pl
e_

lit
ho

pr
es

s

5

5
5

5

si
m

pl
e_

lit
ho

pr
es

s

6

6
6

6

si
m

pl
e_

lit
ho

pr
es

s

7

7
7

7

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

no
rm

al
no

rm
al

F
ig
. 1

0.
16

T
he
 D
A
G
 th

at
 I
 o
bt
ai
n
in
 m

y
M
ac
B
oo
k
Pr
o
if
 I
 in

cr
ea
se
 th

e
di
m
en
si
on
 o
f
th
e
in
pu
t a
rr
ay
s
fr
om

.1
07

to
.1
08

10.4 Diagnostic and Feedback 173

Fig. 10.17 “Embarassingly
parallel” workload

10.4 Diagnostic and Feedback

The Dask distributed scheduler provides an effective interactive dashboard that
consists of a rich ecosystem of monitoring and profiling tools that can be accessed by
a web browser (Fig. 10.18). The left and right panels of Fig. 10.18 display a Jupyter
Notebook and the Dask interactive dashboard, respectively. The Jupyter Notebook
starts the Dask client and its interactive dashboard at line 2 and then defines (lines
3 and 4), evaluates (line 5), and finally triggers (line 6, in progress and therefore
displayed as *) the computations. The right portion of the monitor shows the Dask
interactive dashboard during the ongoing process triggered by the Jupyter Notebook
at line 6.

174 10 Parallel Computing and Scaling with Dask

F
ig
. 1

0.
18

D
as
k
In
te
ra
ct
iv
e
da
sh
bo
ar
d

References 175

References

Caesar Wu, R. B. (2015). Cloud data centers and cost modeling: A complete guide to planning,
designing and building a cloud data center, (1st ed.). Burlington: Morgan Kaufmann.

Daniel, J. C. (2019). Data science with python DASK. New York: Manning Publications.
David, P. (2011). Encyclopedia of parallel computing. New York: Springer. https://doi.org/10.

1007/978-0-387-09766-4
Fiore, M., & Devesas Campos, M. (2013). The algebra of directed acyclic graphs. In B. Coecke, L.

Ong, & P. Panangaden (Eds.), Computation, logic, games, and quantum foundations. The many
facets of Samson Abramsky. Lecture notes in computer science (Vol. 7860). Berlin, Heidelberg:
Springer. https://doi.org/10.1007/978-3-642-38164-5_4

Maurer, S. B. (2013). Directed acyclic graphs. Routledge Handbooks Online. Milton Park:
Routledge. https://doi.org/10.1201/B16132-10

Pedregosa, F., Varoquaux, G. G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of
Machine Learning Research, 12, 2825–2830.

Peter Pacheco, M. M. (2020). An introduction to parallel programming (2nd ed.). Burlington:
Morgan Kaufmann.

Xu, J. (2003). Theory and application of graphs (vol. 10). New York: Springer. https://doi.org/10.
1007/978-1-4419-8698-6

https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1007/978-3-642-38164-5_4
https://doi.org/10.1201/B16132-10
https://doi.org/10.1201/B16132-10
https://doi.org/10.1201/B16132-10
https://doi.org/10.1201/B16132-10
https://doi.org/10.1201/B16132-10
https://doi.org/10.1201/B16132-10
https://doi.org/10.1201/B16132-10
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6
https://doi.org/10.1007/978-1-4419-8698-6

Chapter 11
Scale Your Models in the Cloud

11.1 Scaling Your Environment in the Cloud

The term “scalability” refers to the ability of a system to manage a growing amount
of work. As stated in the previous chapter, compute or memory bounds must be
scaled to handle ML models. In the context of a cloud computing facility, the term
scaling refers to the ability to quickly and efficiently increase (or decrease) the
capability of a computational resource to handle a model that no longer fits the
current resources (i.e., RAM, CPUs, and storage capabilities). Two main strategies
exist for scaling computational infrastructure: scale up or scale out (Bekkerman
et al., 2012).

Scale Up
Scaling up, or vertical scaling, consists of replacing the current computational
instance with something more powerful (Fig. 11.1). For example, we could increase
the number of cores, the amount of memory, and/or the capability of the storage
(Fig. 11.2).

Scale Out
Scaling out, or horizontal scaling, consists of increasing the computational capabil-
ity by replicating the instances and running them in parallel (Fig. 11.3).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_11

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11
https://doi.org/10.1007/978-3-031-35114-3_11

178 11 Scale Your Models in the Cloud

Scale Up

Fig. 11.1 Scaling up and scaling down

Scale Up

Scale Down

Compute Optimized Instances by Amazon Web Services

Fig. 11.2 Scaling up and down

11.2 Scaling in the Cloud: The Hard Way

The “hard way” of scaling consists of managing all configurations and taking all
the technical steps in either Amazon Web Services (AWS), the Google Compute
Engine, Microsoft Azure, or other providers.

Scaling up is quite easy with cloud providers. It consists simply of selecting
larger or smaller instances to scale up and down, respectively (Fig. 11.2). Also, some
providers offer specific services for auto-scaling; for example, Amazon claims that
“AWS Auto Scaling monitors your applications and automatically adjusts capacity

11.2 Scaling in the Cloud: The Hard Way 179

Scale Out

Fig. 11.3 Scaling out

to maintain steady, predictable performance at the lowest possible cost. Using AWS
Auto Scaling, it’s easy to set up application scaling for multiple resources across
multiple services in minutes. The service provides a simple, powerful user interface
that lets you build scaling plans for resources including Amazon EC2 instances. . . .”1

In contrast, scaling out is not as straightforward as scaling up. The Dask
documentation suggests the use of Kubernetes and Helm solutions. Kubernetes is
“a portable, extensible, open source platform for managing containerized workloads
and services that facilitates both declarative configuration and automation.”2 Helm
is “an open source package manager for Kubernetes. It provides the ability to
provide, share, and use software built for Kubernetes.”3 The Dask documentation
claims that “it is easy to launch a Dask cluster and a Jupyter notebook server on
cloud resources using Kubernetes and Helm.”4 However, the instructions given in
the Dask documentation assume that a Kubernetes cluster and Helm are already
installed and ready for use. Unfortunately, setting up a Kubernetes cluster and Helm

1 https://aws.amazon.com/autoscaling/.
2 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.
3 https://helm.sh/docs/.
4 https://docs.dask.org/en/stable/deploying-kubernetes-helm.html.

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://helm.sh/docs/
https://helm.sh/docs/
https://helm.sh/docs/
https://helm.sh/docs/
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html
https://docs.dask.org/en/stable/deploying-kubernetes-helm.html

180 11 Scale Your Models in the Cloud

is not straightforward for a novice. Detailed instructions for many cloud providers
are available in the guide “Zero to JupyterHub.”5

11.3 Scaling in the Cloud: The Easy Way

Saturn Cloud
Saturn Cloud6 is a cloud-based platform designed to support data scientists working
with Python,7 R,8 Julia,9 and other programming languages. Resources, such as
those shown in Fig. 11.4, are the building blocks of the Saturn Cloud platform. The
term “resource” refers to a complete computational and coding environment. Each
resource is independent, so you can split out your different activities. Saturn Cloud-
hosted solutions10 are a “pay as you go” service, which means that you pay per hour
for computational resources. For example, during the writing of the present book,
the Medium (2 vCPU and 4 GB of RAM) and V100-16×Large (64 vCPU, 8 vGPU,
and 488 GB of RAM) resources cost $0.06 and $34.24 per hour, respectively. A
free hosted plan also exists with limited resources. The next sections exploit the free
hosted plan for the first step of scaling up, following which results obtained on a
Hosted Pro Plan are shown. Details about the costs are also provided, in case you
intend to reproduce these results.

Speed Up GridSearchCV on Saturn Cloud
In Sect. 8.3, we performed a GridSearchCV, which is an extensive search within the
hyper-parameters governing the extremely randomized trees algorithm (see code
listing 8.9 and Table 8.1). The aim was to find the combination of hyper-parameters
that provide the highest degree of accuracy. This combination of hyper-parameters
resulted in a grid of 48 models, each repeated three times through cross validation,
for a total of 144 attempts. As reported in Chap. 8, running the code listing 8.9
required about 8 hours on my MacBook pro equipped with a 2.3 GHz Quad-Core
Intel™ i7 CPU and 32 GB of RAM.

5 https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/.
6 https://saturncloud.io.
7 https://www.python.org.
8 https://www.r-project.org.
9 https://julialang.org.
10 https://saturncloud.io/plans/hosted/.

https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
https://saturncloud.io
https://saturncloud.io
https://saturncloud.io
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://julialang.org
https://julialang.org
https://julialang.org
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/

11.3 Scaling in the Cloud: The Easy Way 181

Fig. 11.4 Saturn cloud computing templates

In Saturn Cloud, the free hosted plan allows a slight scaling up of the hardware
that supports my MacBook Pro using the 2× Large instance (i.e., eight cores and 64
GB of RAM), so we scale up to a 2× Large instance and run the code listing 8.9. To
start, we register with Saturn Cloud and click on the “New Python Server” button
(Fig. 11.5), which starts a guided procedure that allows the configuration of a new
instance, ready for basic Python data analysis, machine learning, and, possibly,
parallel processing with Dask.

Figures 11.6 and 11.7 show all the steps to configure the new instance. It is
recommended to use a self-explanatory name, such as scale_GridSearchCV_Joblib,
100 Gi of disk space, and the 2×large instance. Also, remember to add ytables as
an extra package; this is installed using Conda Install. The PyTables library allows
HDF5 files to be read and saved. Leave all the other options untouched, and click
Create.

The instance is now ready (Fig. 11.8). The next steps consist of starting the
instance, creating a new Jupyter Notebook, and uploading the HDF5 file ml_data.h5
(Fig. 11.9). Finally, we are ready to replicate code listing 8.9 in a 2×large instance
(Fig. 11.10). Note that the second block of code in (Fig. 11.10) simply reports the
outputs in a log file named data.log. The fitting (i.e., block number five) lasted 5
hours and 15 minutes, which is significantly faster than the 8 hours of my MacBook
Pro.

182 11 Scale Your Models in the Cloud

Fig. 11.5 Starting a new python server

Next, we activate a Hosted Pro Plan11 and progressively scale up the code in
Fig. 11.10 to 8×Large instances (i.e., 32 Cores and 256 GB of RAM at the cost
of $3.30/hour) and 16×Large instances (i.e., 64 Cores and 512 GB of RAM at the
cost of $6.59/hour), improving the computation time to about 2 hours and 1 hour,
respectively.

As a final step, I scaled out the code reported in Fig. 11.10. To do this, I created
a Dask cluster by clicking New Dask Cluster (Fig. 11.8), which opens the Cluster
configuration window (Fig. 11.11). Also, I opted for a 16×Large scheduler (i.e.,
64 Cores and 512 GB of RAM) and four 8×Large workers (i.e., 32 Cores and
256 GB of RAM). To run GridSearchCV in the newly created Dask Cluster, the
code reported in Fig. 11.10 requires only minimal changes, which are all reported in
Fig. 11.12. I imported SaturnCluster from dask_saturn (block 1), used n_jobs = −1
(i.e., nested parallelism) for both ExtraTreesClassifier and GridSearchCV (Block 4),
defined the SaturnCluster client (Block 5), and ran Joblib with dask as the fitting
engine (Block 6). In this final case, fitting GridSearchCV required less than 25
minutes!

11 https://saturncloud.io/plans/hosted/.

https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/
https://saturncloud.io/plans/hosted/

11.3 Scaling in the Cloud: The Easy Way 183

Fig. 11.6 Setting up the python server parameters

184 11 Scale Your Models in the Cloud

Fig. 11.7 Setting up the python server parameters

11.3 Scaling in the Cloud: The Easy Way 185

Fig. 11.8 Starting the python server

Fig. 11.9 Uploading a hdf5 file

186 11 Scale Your Models in the Cloud

Fig. 11.10 Scaling Up the GridSearchCV

11.3 Scaling in the Cloud: The Easy Way 187

Fig. 11.11 Setting up a new dask cluster

188 11 Scale Your Models in the Cloud

Fig. 11.12 Scaling out GridSearchCV

Reference 189

Reference

Bekkerman, R., Bilenko, M., & Langford, J. (2012). Scaling up machine learning: Parallel and
distributed approaches. Cambridge: Cambridge University Press.

Part V
Next Step: Deep Learning

Chapter 12
Introduction to Deep Learning

12.1 What Does Deep Learning Mean?

As introduced in Chap. 1, ML algorithms gather knowledge by extracting patterns
from data.

In other words, they try to map the representation provided by the investigated
features to produce an output (Goodfellow et al., 2016). Therefore, features are
central in ML because they provide the information to build a representation.
However, simply mapping a representation to deliver an output is often insufficient.
Therefore, we must train ML systems to discover not only the mapping from
representation to output but also the representation itself (Goodfellow et al., 2016).
This approach is known as representation learning. In complex problems (e.g.,
problems characterized by many features or extremely large data sets), learning the
representation is not straightforward.

“Deep learning solves this central problem in representation learning by intro-
ducing representations that are expressed in terms of other, simpler representations.
Deep learning enables the computer to build complex concepts out of simpler
concepts” (Goodfellow et al., 2016).

A typical example of deep learning is the multilayer perceptron, which is a
mathematical function that maps a set of inputs to output values (Goodfellow et al.,
2016). The function is formed by combining many simpler functions (Fig. 12.1). To
better understand, Fig. 12.1 shows how a deep learning method can represent the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Petrelli, Machine Learning for Earth Sciences, Springer Textbooks
in Earth Sciences, Geography and Environment,
https://doi.org/10.1007/978-3-031-35114-3_12

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35114-3protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12
https://doi.org/10.1007/978-3-031-35114-3_12

194 12 Introduction to Deep Learning

Fig. 12.1 Illustration of a deep learning, multilayer perceptron model. Modified from Goodfellow
et al. (2016). The image comes from Copernicus Sentinel-1 mission and shows the meandering
Amazon River (https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River)

concept of an image by combining simpler notions, such as corners and contours,
which are in turn defined in terms of edges (Goodfellow et al., 2016). In Fig. 12.1,
the input feeds the visible layer and then a series of hidden layers progressively
extracts and elaborates abstract features from the initial inputs. The final layer
provides the output (e.g., the result of mapping the representation developed during
the learning process) (Goodfellow et al., 2016).

From the mathematical point of view, a deep feedforward network (or multilayer
perceptron) aims to approximate some function . f ∗ (Goodfellow et al., 2016). In
detail, it defines a mapping .y = f (x; θ) and learns the value of the parameters . θ that
result in the most accurate approximation of the function (Goodfellow et al., 2016)
(Fig. 12.2). Why feedforward? Because data flow through the function from the
input . x, through the intermediate computations used to define f , and finally to the
output . y. Why networks? Because networks are typically expressed by combining
many different functions. For example, we might combine three functions .f (1), .f (2),
and .f (3) in a chain to define .f (x) = f (3)(f (2)(f (1)(x))) (Goodfellow et al., 2016).
In detail, .f (1) is the first layer of the network, .f (2) is the second layer, and so on
(Goodfellow et al., 2016). The overall length of the chain defines the depth of the
model. That’s why they are deep. The final layer of a feedforward network provides
the output. During the training process, we adjust . θ parameters in .f (x; θ) to match
.f ∗(x) (Goodfellow et al., 2016).

https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River

12.3 PyTorch Tensors 195

Fig. 12.2 Example of
three-layer feedforward
network or multilayer
perceptron

Fig. 12.3 Vectors, matrices,
tensors

4
4
2
1

4
2
1

9
6
0

5
8
3

4
2
1

9
6
0

5
8
3

0 D 1 D 2 D 3 D

scalar vector matrix 3 D tensor

12.2 PyTorch

“PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.”1

Tensors (i.e., multidimensional arrays) are at the base of PyTorch. Also, PyTorch
hosts the autograd engine (see torch.autograd), which can compute derivatives,
even providing complex data structures. The other PyTorch modules are mainly
based on tensors and on the autograd engine. For example, the torch.nn module
provides common neural network layers and other architectural components. The
torch.optim implements state-of-the-art optimization strategies for the learning
process (Imambi et al., 2021).

12.3 PyTorch Tensors

PyTorch tensors are multidimensional arrays (Fig. 12.3), similar to those in NumPy.
However, in contrast with NumPy arrays, PyTorch tensors can (1) perform accel-
erated operations on graphical processing units (GPUs), (2) natively work on
distributed environments, and (3) keep track of a graph of operations when necessary
(Imambi et al., 2021). The initialization of PyTorch tensors mimics what is done
with NumPy arrays. Finally, Numpy arrays can be easily imported as PyTorch
tensors (Fig. 12.4).

1 https://pytorch.org/docs/stable/index.html.

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

196 12 Introduction to Deep Learning

Fig. 12.4 Vectors, matrices, tensors

12.4 Structuring a Feedforward Network in PyTorch 197

Fig. 12.5 Vectors, matrices, tensors

By default, PyTorch tensors live on the CPU. However, they can be easily defined
on the GPU, if available (see block 2 of Fig. 12.5), by using the device parameter
(i.e., device=‘cuda’, block 3 of Fig. 12.5). Blocks 3–6 in Fig. 12.5 simply highlight
that the power operation performed on the ‘cuda’ device (i.e., the GPU) lasts only
7 ms, which is much faster than the . ≈3 s required to execute the same operation on
the CPU.

12.4 Structuring a Feedforward Network in PyTorch

Figure 12.6 shows how to develop in PyTorch the feedforward neural network (i.e.,
a multilayer perceptron) shown in Fig. 12.2.

The feedforward neural network consists of an input layer (layer 1) that accepts
input vectors with four features. ReLu functions process the input features and
forward the results to a hidden layer (layer 2), which is characterized by four neurons
and a ReLu activation function (i.e., the ReLu function). Finally, the output layer
returns a scalar as output.

In PyTorch, a neural network is a module with a nested structure. In other words,
a neural network consists of a module that contains other modules (i.e., layers). The

198 12 Introduction to Deep Learning

Fig. 12.6 Developing a multilayer perceptron in PyTorch

model can live either in the CPU or in the GPU (Blocks 3 and 4 in Fig. 12.6), if
available.

12.5 How to Train a Feedforward Network

12.5.1 The Universal Approximation Theorem

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states
that feedforward networks with a linear output layer and at least one hidden layer

12.5 How to Train a Feedforward Network 199

can approximate any continuous function on a closed and bounded subset of . Rn

(Goodfellow et al., 2016), which means that feedforward networks with hidden
layers are universal approximators (Goodfellow et al., 2016). In other words, “the
universal approximation theorem means that regardless of what function we are
trying to learn, we know that a large [multilayer perceptron] will be able to represent
this function” (Goodfellow et al., 2016). However, despite what is affirmed by the
universal approximation theorem, there is no guarantee that the training process
will correctly learn the target function (Goodfellow et al., 2016). For example, the
optimization algorithm used for training may not be able to find the correct values
for the theta parameters that describe the desired function. Also, the training process
might choose the wrong function because of overfitting (Goodfellow et al., 2016). To
avoid these issues, we want to find (1) a robust loss function .L(θ), (2) a strategy to
compute the gradient with respect to model parameters [i.e., .�θL(θ) of .L(θ)], and
(3) an efficient optimization algorithm to descend .�θL(θ) and find the minimum of
.L(θ).

12.5.2 Loss Functions in PyTorch

A loss function (or cost function) computes a numerical value that the learning
process will attempt to minimize (cf. Sect. 7.5). Typically, a loss function compares
(e.g., by subtraction) the desired outputs (i.e., the labels) and the current outputs of
our model (Stevens et al., 2020). Table 12.1 reports the loss functions available in
PyTorch.

12.5.3 The Back-Propagation and its Implementation in
PyTorch

In feedforward neural networks, the information starts from the input . x, flows
through the hidden layers, and finally produces an output . y (Goodfellow et al.,
2016). The name of this process is forward propagation. At the beginning of
training, forward propagation produces an output . y and an associated cost function
.J (θ) that relies on the non-optimized . θ parameters (Goodfellow et al., 2016).

The back-propagation algorithm computes the gradient of .L(θ) by propagating
the information from the output (i.e., the cost function), backward through the
network (Goodfellow et al., 2016). Note that back-propagation only allows us
to define the gradient of .L(θ). We then need an optimization algorithm such as
the stochastic gradient descent algorithm (Sect. 7.5) to learn along this gradient
(Goodfellow et al., 2016). Describing in detail the back-propagation algorithm is
beyond the scope of the present book, so please refer to Goodfellow et al. (2016) or
other specialized books for further details.

200 12 Introduction to Deep Learning

Table 12.1 Loss functions in PyTorch: https://bit.ly/pyt-loss-functions

Loss function Description

nn.L1Loss Loss function based on mean absolute error (MAE)

nn.MSELoss Loss function based on mean squared error (squared L2
norm)

nn.CrossEntropyLoss Computes cross entropy loss between input and target

nn.CTCLoss Connectionist temporal classification loss

nn.NLLLoss Negative log likelihood loss

nn.PoissonNLLLoss Negative log likelihood loss with Poisson distribution of
target

nn.GaussianNLLLoss Gaussian negative log likelihood loss

nn.KLDivLoss Kullback–Leibler divergence loss

nn.BCELoss Binary cross entropy between target and input
probabilities

nn.BCEWithLogitsLoss Combines Sigmoid layer and BCELoss in one single
class

nn.MarginRankingLoss Measures the loss given inputs . x1, . x2, two
one-dimensional mini-batch or zero-dimensional tensors,
and a label one-dimensional mini-batch or
zero-dimensional tensor y (containing 1 or . −1)

nn.HingeEmbeddingLoss Masures loss given an input tensor x and a labels tensor y
(containing 1 or . −1)

nn.MultiLabelMarginLoss Optimizes a multi-class multi-classification hinge loss
(margin-based loss)

nn.HuberLoss Creates a criterion that uses a squared term if the
absolute element-wise error falls below delta and a
delta-scaled L1 term otherwise (Huber loss).

nn.SmoothL1Loss Creates a criterion that uses a squared term if the
absolute element-wise error falls below beta and an L1
term otherwise

nn.SoftMarginLoss Creates a criterion that optimizes a two-class
classification logistic loss between input tensor x and
target tensor y (containing 1 or . −1)

nn.MultiLabelSoftMarginLoss Optimizes a multi-label one-versus-all loss based on
max-entropy, between input x and target y of size (.N,C).

nn.CosineEmbeddingLoss Measures the loss given input tensors . x1, . x2 and a tensor
label y with values 1 or . −1.

nn.MultiMarginLoss Creates and optimizes a multi-class classification hinge
loss (margin-based loss)

nn.TripletMarginLoss Measures the triplet loss given input tensors . x1, . x2, . x3
and a margin with a value greater than zero

nn.TripletMarginWithDistanceLoss Measures triplet loss given input tensors a, p, and n
(representing anchor, positive, and negative examples,
respectively), and a nonnegative, real-valued function
(“distance function”) used to compute the relationship
between the anchor and a positive example (“positive
distance”) and between the anchor and a negative
example (“negative distance”)

https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions

12.5 How to Train a Feedforward Network 201

Table 12.2 Optimization algorithms in PyTorch: https://bit.ly/pytorch-optim

Optimization algorithm Description

Adadelta Implements Adadelta algorithm

Adagrad Implements Adagrad algorithm

Adam Implements Adam algorithm

AdamW Implements AdamW algorithm

SparseAdam Implements lazy version of Adam algorithm suitable for sparse
tensors

Adamax Implements Adamax algorithm (a variant of Adam based on
infinity norm)

ASGD Implements averaged stochastic gradient descent

LBFGS Implements L-BFGS algorithm, heavily inspired by minFunc

NAdam Implements NAdam algorithm

RAdam Implements RAdam algorithm

RMSprop Implements RMSprop algorithm

Rprop Implements the resilient backpropagation algorithm

SGD Implements stochastic gradient descent (optionally with
momentum)

The engine torch.autograd is PyTorch’s automatic differentiation engine. It
defines a directed acyclic graph whose leaves are the input tensors and whose roots
are the output tensors. In this way, it computes gradients via the chain rule.

12.5.4 Optimization

Once defined, the optim submodule of torch (i.e. torch.optim) stores the optimiza-
tion algorithms (Table 12.2).

12.5.5 Network Architectures

This section provides a quick overview of some popular neural network architec-
tures.

Multilayer Perceptron
A multilayer perceptron is the neural network structure depicted in Fig. 12.2. It
consists of fully connected layers of perceptrons (i.e., artificial neurons). Selecting
the optimal number of hidden layers is not always straightforward and is commonly
driven by background knowledge and experimentation (Hastie et al., 2017). With
too few hidden units, the model might not have enough flexibility to capture the
nonlinearities in the data; with too many hidden units, the extra weights can be

https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim

202 12 Introduction to Deep Learning

shrunk toward zero if appropriate regularization is used.” Common applications
typically use 5–100 hidden layers (Hastie et al., 2017). Most ML models described
in Chap. 7 (e.g., support vector machines or logistic regression) can be simulated by
multilayer perceptrons containing only one or two layers (Aggarwal, 2018).

Radial Basis Function Networks
Radial basis function networks consist of shallow (i.e., only two layers) neural
networks where the first and the second layers are unsupervised and supervised,
respectively (Aggarwal, 2018). Radial basis function networks are based on Cover’s
theorem on the separability of patterns (Cover, 1965), stating that pattern clas-
sification problems are more likely to be linearly separable when cast into a
high-dimensional space with a nonlinear transformation. The idea behind radial
basis function networks is close to that of nearest-neighbor classifiers with the
addition of a supervised step in the second layer (Aggarwal, 2018). Also, they are
similar to support vector machines trained with radial basis functions as the kernel.
However, radial basis function networks are more general than kernel support vector
machines (Aggarwal, 2018).

Restricted Boltzmann Machines
Restricted Boltzmann machines (RBMs) are unsupervised neural network archi-
tectures that rely on energy minimization (Fischer & Igel, 2012). Although RBMs
were introduced in the 1980s (Aggarwal, 2018), the increase in computational power
and the development of new learning strategies has made RBMs significantly more
appealing in recent years (Fischer & Igel, 2012). RBMs are useful for creating
generative models (Fischer & Igel, 2012) and are closely related to probabilistic
graphical models (Koller & Friedman, 2009). Also, RBMs have been proposed as
building blocks for so-called “deep belief networks” ((Hinton et al., 2006). Training
a RBM is rather different from training a feedforward network because it cannot
use backpropagation (Fischer & Igel, 2012). On the contrary, RBMs rely on Monte
Carlo sampling for the training (Fischer & Igel, 2012).

Recurrent Neural Networks
Recurrent neural networks (RNNs) are designed to investigate sequential data such
as text sentences, time series, and other discrete sequences (Abraham and Tyagi,
2022). An important point about RNNs is that they account for the potential
dependence of subsequent inputs on previous inputs, making them well suited, for
example, for time series forecasting or speech recognition (Kumar & Abraham,
2022; Aggarwal, 2018). RNNs use a specific backpropagation algorithm called
“backpropagation through time” (Aggarwal, 2018), which accounts for the sequen-
tial nature of the inputs during the learning process. A drawback of RNNs is
their complex optimization and training processes, making them difficult to access,
especially for novices (Kumar & Abraham, 2022; Aggarwal, 2018). Specialized
variants of the recurrent neural network architecture have also been proposed to

12.5 How to Train a Feedforward Network 203

solve specific problems, such as handling long-term dependencies using long short-
term memory networks (Hochreiter & Schmidhuber, 1997)

Convolutional Neural Networks
Convolutional neural networks (CNNs) are biologically inspired networks that find
applications in video and speech recognition, recommendation systems, image clas-
sification and segmentation, natural language processing, and time series forecasting
(see, e.g., Yamashita et al., 2018). CNNs mimic the visual cortex functionalities of
animals (Fukushima, 1980) and aim to “automatically and adaptively learn spatial
hierarchies of features through backpropagation by using multiple building blocks,
such as convolution layers, pooling layers, and fully connected layers” (Fukushima,
1980).

CNNs are well suited to process grid-shaped data such as RGB images or spectral
maps by using three main types of layers: convolution, pooling, and fully connected
(Fukushima, 1980). The first two layer types extract features and the third layer
maps the extracted features to the final output.

Convolution layers play a fundamental role in CNNs (Yamashita et al., 2018).
They typically consist of three components: input data, a filter (or kernel), and a
feature map (Yamashita et al., 2018). To better understand, consider the example
shown in Fig. 12.7, where the input and the kernel are .6 × 6 and .3 × 3 arrays,
respectively. The output is a .4 × 4 array named “feature map,” “activation map,” or
“convolved feature” and derives from the systematic application of the filter (i.e.,
a dot product) to different portions of the input. After each convolution, the CNN
applies an activation function such as a rectified linear unit (ReLU) to the output
and then moves to the next layer (Yamashita et al., 2018).

Pooling layers reduce the dimensionality (or downsample), which reduces the
number of parameters in the input. They typically consist of a filter that applies an
aggregation function such as the max or average pooling (Fukushima, 1980). Max
pooling selects the pixel with the maximum output of the filter and sends it to the
output array. Similarly, average pooling calculates the average value within the filter
and sends it to the output array. If you complain that a huge amount of information
is lost in the pooling layers, you would be right. However, pooling layers reduce
the complexity of the model, improve its efficiency, and limit the risk of overfitting
(Fukushima, 1980). Finally, fully connected layers mimic a multilayer perceptron.
For example, CNNs are widely used in semantic image segmentation (see, e.g.,
Badrinarayanan et al., 2017; Long et al., 2015; Milletari et al., 2016). Semantic
image segmentation consists of identifying the areas (i.e., the pixels) of the image
occupied by a specific subject, such as a person, as in the case of Fig. 12.8.

204 12 Introduction to Deep Learning

Fig. 12.7 Convolution example

12.6 Example Application

The Problem
As an example application of deep learning potentials in the Earth Sciences, we
now discuss the training and validation of a CNN to identify building footprints
from satellite records.

The problem falls in the ML classification sub-field called “semantic image
segmentation” (see Fig. 12.8). In this specific case, we want to identify the areas
or the pixels of an image occupied by buildings in the aerial image labeling data
set (Maggiori et al., 2017) (see, e.g., Fig. 12.9). The right panel of Fig. 12.9 shows
the solution to the problem in the form of a mask where white and black define

12.6 Example Application 205

Fig. 12.8 Convolutional neural networks for image segmentation. Modified from Long et al., 2015

Fig. 12.9 The aerial image labeling data set (Maggiori et al., 2017)

building and non-building areas, respectively. We want to know whether we can
train a CNN to produce the solution reported in Fig. 12.9. To attempt a simplified
solution, I trained the U-Net CNN (Ronneberger et al., 2015) using PyTorch.

Data Set and Pre-processing
As a starting point, I downloaded the aerial image labeling data set (Maggiori et al.,
2017), which consists of 360 orthorectified RGB (Red, Green, Blue) images linked
to official cadastral records (Maggiori et al., 2017). The entire data set covers several
areas, such as Austin (USA), Chicago (USA), Vienna (Austria), East and West Tyrol
(Austria), San Francisco (USA), and Innsbruck (Austria). The lateral resolution is
0.3 m, and each tile is 5000 × 5000 pixels (Maggiori et al., 2017). For 180 tiles, a
mask containing two semantic classes, building and non-building, is also provided
(Maggiori et al., 2017). For the case study provided herein, I selected 10 tiles from

206 12 Introduction to Deep Learning

input
image

tile

output
segmentation
map

conv 3x3, ReLU
copy and crop

max pool 2x2

up-conv 2x2
conv 1x1

Fig. 12.10 Architecture of a U-net convolutional neural network (modified from Ronneberger
et al., 2015)

Austin. For each tile, I also collected the associated masks to train and validate the
model. From each tile, I extracted 25 images of 1000 × 1000 pixels each by using
a 5 × 5 grid (the same operation was done for each mask). The resulting data set
consisted of 245 images and 245 masks. I then split the data set into two parts for
use in training (220) and validation (25).

The U-Net Architecture
The U-Net is a “fully convolutional network” (Long et al., 2015). The main concept
behind fully convolutional networks is to take an input of arbitrary size and produce
a correspondingly sized output with efficient inference and learning (Long et al.,
2015).

Figure 12.10 shows the U-Net architecture. It consists of a contracting network
(left side) followed by an expansive path (right side; Ronneberger et al., 2015). The
contracting path applies a sequence of two 3 × 3 convolutions, each followed by a
ReLU and 2 × 2 max pooling (Ronneberger et al., 2015). Next, in the expansive
path, the U-net architecture upsamples the feature map, followed by a 2 × 2
convolution (“up-convolution”), and two 3 × 3 convolutions, each followed by a
ReLU (Ronneberger et al., 2015). The final layer applies a 1×1 convolution to map

12.6 Example Application 207

each 64-component feature vector to the desired number of classes (Ronneberger
et al., 2015). The code listing 12.1 shows a PyTorch implementation of the U-net.2

1 """ Full assembly of the parts to form the complete network """
2
3 from .unet_parts import *
4
5
6 class UNet(nn.Module):
7 def __init__(self, n_channels, n_classes, bilinear=False):
8 super(UNet, self).__init__()
9 self.n_channels = n_channels
10 self.n_classes = n_classes
11 self.bilinear = bilinear
12
13 self.inc = DoubleConv(n_channels, 64)
14 self.down1 = Down(64, 128)
15 self.down2 = Down(128, 256)
16 self.down3 = Down(256, 512)
17 factor = 2 if bilinear else 1
18 self.down4 = Down(512, 1024 // factor)
19 self.up1 = Up(1024, 512 // factor, bilinear)
20 self.up2 = Up(512, 256 // factor, bilinear)
21 self.up3 = Up(256, 128 // factor, bilinear)
22 self.up4 = Up(128, 64, bilinear)
23 self.outc = OutConv(64, n_classes)
24
25 def forward(self, x):
26 x1 = self.inc(x)
27 x2 = self.down1(x1)
28 x3 = self.down2(x2)
29 x4 = self.down3(x3)
30 x5 = self.down4(x4)
31 x = self.up1(x5, x4)
32 x = self.up2(x, x3)
33 x = self.up3(x, x2)
34 x = self.up4(x, x1)
35 logits = self.outc(x)
36 return logits

Listing 12.1 U-Net implementation in PyTorch

Results
Figure 12.11 shows the result of applying the trained model (1260 epochs) to one
of the 25 validation images extracted from the original data set. The top-right panel
shows the original image (i.e., the input RGB matrix), and the top-left panel shows
the building–non-building mask. Keep in mind that we used building–non-building

2 https://github.com/milesial/Pytorch-UNet.

https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet

208 12 Introduction to Deep Learning

Original Image Building/ non-building mask

predicted mask Original image + predicted mask

Fig. 12.11 Semantic image segmentation using U-net (Ronneberger et al., 2015)

masks to train the model and as quality control during validation. The bottom-
right panel of Fig. 12.11 shows the predicted mask. Finally, the bottom-left panel
compares the predicted mask with the original image to highlight the quality of the
results.

Going into more detail on the application of semantic image segmentation to
Earth Sciences is beyond the scope of this book. For those interested, I strongly
recommend to see the TorchGeo library3 (Stewart et al., 2021).

3 https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/.

https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/

References 209

References

Aggarwal, C. C. (2018). Neural networks and deep learning. New York: Springer. https://doi.org/
10.1007/978-3-319-94463-0

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE Transactions on Electronic Computers, EC-14(3),
326–334. https://doi.org/10.1109/PGEC.1965.264137

Fischer, A., & Igel, C. (2012). An introduction to restricted Boltzmann machines. In Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (vol. 7441, pp. 14–36). https://doi.org/10.1007/978-3-642-33275-3_
2/COVER

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.
https://doi.org/10.1007/BF00344251

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (vol. 29). Cambridge: MIT
Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning (2nd ed.).
Berlin: Springer.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18(7), 1527–1554. https://doi.org/10.1162/NECO.2006.18.7.1527

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735–1780. https://doi.org/10.1162/NECO.1997.9.8.1735

Imambi, S., Prakash, K. B., & Kanagachidambaresan, G. R. (2021). Deep leanring with PyTorch.
New York: Manning.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Cambridge: MIT Press.
Kumar, T. A., & Abraham, A. (2022). Recurrent neural networks: Concepts and applications. Boca

Raton: CRC Press.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic

segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 3431–3440). https://doi.org/10.1109/CVPR.2015.7298965

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic labeling methods
generalize to any city? The inria aerial image labeling benchmark. In International Geoscience
and Remote Sensing Symposium (IGARSS) (pp. 3226–3229). https://doi.org/10.1109/IGARSS.
2017.8127684

Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully convolutional neural networks for
volumetric medical image segmentation. In Proceedings - 2016 4th International Conference
on 3D Vision, 3DV 2016 (pp. 565–571). https://doi.org/10.1109/3DV.2016.79

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (vol. 9351, pp. 234–241). https://
doi.org/10.1007/978-3-319-24574-4_28/COVER

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep leanring with PyTorch. New York: Manning.
Stewart, A. J., Robinson, C., Corley, I. A., Ortiz, A., Ferres, J. M. L., & Banerjee, A. (2021).

TorchGeo: Deep learning with geospatial data. https://doi.org/10.48550/arxiv.2111.08872
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An

overview and application in radiology. Insights Into Imaging, 9(4), 611–629. https://doi.org/10.
1007/S13244-018-0639-9/FIGURES/15

https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/978-3-642-33275-3_2/COVER
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.2006.18.7.1527
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.1007/978-3-319-24574-4_28/COVER
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.48550/arxiv.2111.08872
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15
https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15

	Preface
	Acknowledgments
	Overview
	Let Me Introduce Myself
	Styling Conventions
	Shared Code
	Involvement and Collaborations

	Contents
	Part I Basic Concepts of Machine Learning for Earth Scientists
	1 Introduction to Machine Learning
	1.1 Machine Learning: Definitions and Terminology
	1.2 The Learning Process
	1.3 Supervised Learning
	1.4 Unsupervised Learning
	1.5 Semisupervised Learning
	References

	2 Setting Up Your Python Environments for Machine Learning
	2.1 Python Modules for Machine Learning
	2.2 A Local Python Environment for Machine Learning
	2.3 ML Python Environments on Remote Linux Machines
	2.4 Working with Your Remote Instance
	2.5 Preparing Isolated Deep Learning Environments
	2.6 Cloud-Based Machine Learning Environments
	2.7 Speed Up Your ML Python Environment
	References

	3 Machine Learning Workflow
	3.1 Machine Learning Step-by-Step
	3.2 Get Your Data
	3.3 Data Pre-processing
	3.3.1 Data Inspection
	3.3.2 Data Cleaning and Imputation
	3.3.3 Encoding Categorical Features
	3.3.4 Data Augmentation
	3.3.5 Data Scaling and Transformation
	3.3.6 Compositional Data Analysis (CoDA)
	3.3.7 A Working Example of Data Pre-processing

	3.4 Training a Model
	3.5 Model Validation and Testing
	3.5.1 Splitting the Investigated Data Set into Three Parts
	3.5.2 Cross-Validation
	3.5.3 Leave-One-Out Cross-Validation
	3.5.4 Metrics
	3.5.5 Overfitting and Underfitting

	3.6 Model Deployment and Persistence
	References

	Part II Unsupervised Learning
	4 Unsupervised Machine Learning Methods
	4.1 Unsupervised Algorithms
	4.2 Principal Component Analysis
	4.3 Manifold Learning
	4.3.1 Isometric Feature Mapping
	4.3.2 Locally Linear Embedding
	4.3.3 Laplacian Eigenmaps
	4.3.4 Hessian Eigenmaps

	4.4 Hierarchical Clustering
	4.5 Density-Based Spatial Clustering of Applications with Noise
	4.6 Mean Shift
	4.7 K-Means
	4.8 Spectral Clustering
	4.9 Gaussian Mixture Models
	References

	5 Clustering and Dimensionality Reduction in Petrology
	5.1 Unveil the Chemical Record of a Volcanic Eruption
	5.2 Geological Setting
	5.3 The Investigated Data Set
	5.4 Data Pre-processing
	5.4.1 Data Cleaning
	5.4.2 Compositional Data Analysis (CoDA)

	5.5 Clustering Analyses
	5.6 Dimensionality Reduction
	References

	6 Clustering of Multi-Spectral Data
	6.1 Spectral Data from Earth-Observing Satellites
	6.2 Import Multi-Spectral Data to Python
	6.3 Descriptive Statistics
	6.4 Pre-processing and Clustering
	References

	Part III Supervised Learning
	7 Supervised Machine Learning Methods
	7.1 Supervised Algorithms
	7.2 Naive Bayes
	7.3 Quadratic and Linear Discriminant Analysis
	7.4 Linear and Nonlinear Models
	7.5 Loss Functions, Cost Functions, and Gradient Descent
	7.6 Ridge Regression
	7.7 Least Absolute Shrinkage and Selection Operator
	7.8 Elastic Net
	7.9 Support Vector Machines
	7.10 Supervised Nearest Neighbors
	7.11 Trees-Based Methods
	References

	8 Classification of Well Log Data Facies by Machine Learning
	8.1 Motivation
	8.2 Inspection of the Data Sets and Pre-processing
	8.3 Model Selection and Training
	8.4 Final Evaluation
	References

	9 Machine Learning Regression in Petrology
	9.1 Motivation
	9.2 LEPR Data Set and Data Pre-processing
	9.3 Compositional Data Analysis
	9.4 Model Training and Error Assessment
	9.5 Evaluation of Results
	References

	Part IV Scaling Machine Learning Models
	10 Parallel Computing and Scaling with Dask
	10.1 Warming Up: Basic Definitions
	10.2 Basics of Dask
	10.3 Eager Computation Versus Lazy Evaluation
	10.4 Diagnostic and Feedback
	References

	11 Scale Your Models in the Cloud
	11.1 Scaling Your Environment in the Cloud
	11.2 Scaling in the Cloud: The Hard Way
	11.3 Scaling in the Cloud: The Easy Way
	Reference

	Part V Next Step: Deep Learning
	12 Introduction to Deep Learning
	12.1 What Does Deep Learning Mean?
	12.2 PyTorch
	12.3 PyTorch Tensors
	12.4 Structuring a Feedforward Network in PyTorch
	12.5 How to Train a Feedforward Network
	12.5.1 The Universal Approximation Theorem
	12.5.2 Loss Functions in PyTorch
	12.5.3 The Back-Propagation and its Implementation in PyTorch
	12.5.4 Optimization
	12.5.5 Network Architectures

	12.6 Example Application
	References

