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To my family and friends



Preface 

Machine Learning for the Earth Sciences provides Earth Scientists with a progres-
sive partway from zero to machine learning, with examples in Python aimed at the 
solution of geological problems. This book is devoted to Earth Scientists, at any 
level, from students to academics and professionals who would like to be introduced 
to machine learning. Basic knowledge of Python programming is necessary to fully 
benefit from this book. If you are a complete novice to Python, I suggest you start 
with Python introductory books such as Introduction to Python in Earth Science 
Data Analysis.1 Machine Learning for the Earth Sciences is divided into five 
parts and attempts to be geologist-friendly. Machine learning mathematics is gently 
provided and technical parts are limited to the essentials. Part I introduces the basics 
of machine learning with a geologist-friendly language. It starts by introducing 
definitions, terminology, and fundamental concepts (e.g., the types of learning 
paradigms). It then shows how to set up a Python environment for machine learning 
applications and finally describes the typical machine learning workflow. Parts II 
and III are about unsupervised and supervised learning, respectively. They start by 
describing some widely used algorithms and then provide examples of applications 
to Earth Sciences such as the clustering and dimensionality reduction in petro-
volcanological applications, the clustering of multi-spectral data, classification of 
well-log data facies, and machine learning regression in petrology. Part IV deals 
with the scaling of machine learning models. When your PC starts suffering from 
the dimension of the data set or the complexity of the model, you need scaling! 
Finally, Part V introduces deep learning. It starts by describing the PyTorch library 
and provides an example application for Earth Sciences. If you are working in Earth 
Science and would like to start exploiting the power of machine learning in your 
projects, this is the right place for you. 

Assisi, Italy Maurizio Petrelli 
28 July, 2023

1 https://bit.ly/python-mp. 
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Overview 

Let Me Introduce Myself 

Hi and welcome, my name is Maurizio Petrelli and I currently work at the 
Department of Physics and Geology, University of Perugia (UniPg) in Italy. My 
research focuses on the petrological characterization of volcanoes with an emphasis 
on the dynamics and timescales of pre-eruptive events. For this work, I combine 
classical and unconventional techniques. Since 2002, I’ve worked intensely in the 
laboratory, mainly focusing on the development of UniPg’s facility for Laser Abla-
tion Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). In February 
2006, I obtained my Ph.D. degree with a thesis entitled “Nonlinear Dynamics in 
Magma Interaction Processes and Their Implications on Magma Hybridization.” 
In September 2021, I authored the book titled Introduction to Python in Earth 
Science Data Analysis: From Descriptive Statistics to Machine Learning published 
by Springer Nature. Since December 2021, I have been an Associate Professor at 
the Department of Physics and Geology at UniPg, and I am now developing a new 
line of research for applying machine learning techniques in Geology. 

Styling Conventions 

I use conventions throughout this book to identify different types of information. For 
example, Python statements, commands, and variables used within the main body 
of the text are set in italics. A block of Python code is highlighted as follows: 

1 import numpy as np 
2 
3 def sum(a,b): 
4 return a + b 
5 
6 c = sum(3,4)
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xii Overview

Shared Code 

All code presented in this book is tested on the Anaconda Individual Edition 
ver. 2023.03 (Python 3.10.9) and is available at my GitHub repository (. � petrelli-
m): 

. � http://bit.ly/ml_earth_sciences 

Involvement and Collaborations 

I am always open to new collaborations worldwide. Feel free to contact me by email 
to discuss new ideas or propose a collaboration. You can also reach me through 
my personal website or by Twitter. I love sharing the content of this book in short 
courses everywhere. If you are interested, please contact me to organize a visit to 
your institution.
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Part I 
Basic Concepts of Machine Learning for 

Earth Scientists



Chapter 1 
Introduction to Machine Learning 

1.1 Machine Learning: Definitions and Terminology 

Shai and Shai (2014) define machine learning (ML) as “the automated detection of 
meaningful patterns in data.” Since this is a broad definition, I am going to narrow it 
down by providing additional definitions from various authors (e.g., Samuel, 1959; 
Jordan & Mitchell, 2015; Géron, 2017; Murphy, 2012). 

As example, Murphy (2012) defines ML as “the application of algorithms and 
methods to detect patterns in large data sets and the use of these patterns to predict 
future trends, to classify, or to make other types of strategic decisions.” 

In one of the earliest attempts to define ML, Samuel (1959) outlined one of 
the primary goals as “a computer that can learn how to solve a specific task, 
without being explicitly programmed.” We can also take advantage of a more formal 
definition by Mitchell (1997): “A computer program is said to learn from experience 
E with respect to some task T and some performance measure P if its performance 
on T, as measured by P, improves with experience E.” But what is “experience” for 
a computer program? In the physical sciences, experience for a computer program 
almost always coincides with data, so we can reword the definition by Mitchell 
(1997) to “A computer program is said to learn from data D with respect to some 
task T and some performance measure P if its performance on T, as measured by P, 
improves with the analysis of D.” 

One shared feature of ML methods is that they attempt to solve problems without 
requiring a detailed specification of the tasks to execute (Shai & Shai, 2014). 
Especiallyv when a human programmer cannot provide an explicit pathway to 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Fig. 1.1 Artificial 
intelligence, machine 
learning, and deep learning 

Deep Learning 

Machine Learning 

Artificial Intelligence 

achieve the solution to the problem, these methods can often unravel the complexity 
of hidden patterns in the investigated data set and solve it. 

By using set theory, we can define ML as a subset of artificial intelligence 
(AI), which is the effort to automate intellectual tasks normally performed by 
humans (Chollet, 2021) (Fig. 1.1). Note that AI covers a broad domain involving 
both ML and deep learning (DL). However, the AI set also includes numerous other 
approaches and techniques, some of which do not involve learning. 

To summarize, the following are the key features of ML algorithms: 

• ML methods try to extract meaningful patterns from a data set; 
• ML algorithms are not explicitly programmed to solve a specific task; 
• The learning process is a fundamental task in ML; 
• ML methods learn from data; 
• ML is a subset of AI; 
• DL is a subset of ML. 

When we start a new discipline, the first task is to learn the basic concepts 
and terminology. Table 1.1 gives a basic glossary to familiarize the geoscientist 
with the “language” used by data scientists, which is often difficult and sometimes 
misleading for a novice. 

1.2 The Learning Process 

As stated above, ML algorithms are not programmed to process a conceptual model 
defined a priori but instead attempt to uncover the complexities of large data sets 
through a so-called learning process (Bishop, 2007; Shai & Shai, 2014). In other 
words, the main goal of ML algorithms is to transform experience (i.e., data) into 
“knowledge” (Shai & Shai, 2014). 

To better understand, we can compare the learning process of ML algorithms 
to that of humans. For example, humans begin learning to use the alphabet by
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observing the world around them where they find sounds, written letters, words, or 
phrases. Then, at school, they understand the significance of the alphabet and how to 
combine the different letters. Similarly, ML algorithms use the training data to learn 
significant patterns and then use the learned expertise to provide an output (Shai & 
Shai, 2014). One way to classify ML algorithms is by their degree of “supervision” 
(i.e., supervised, unsupervised, or semisupervised; Shai & Shai, 2014). 

1.3 Supervised Learning 

The training of supervised ML methods always provides both the input data and the 
desired solutions (i.e., the labels) to the algorithm. As an example, regression and 
classification tasks are suitable problems for supervised learning methods. 

In classification tasks (Figs. 1.2a and b), ML algorithms try to assign a new 
observation to a specific class (i.e., a set of instances characterized by the same 
label) (Lee, 2019). If you do not understand some terms, please refer to Table 1.1. 
In regression problems (Fig. 1.2c and d), ML algorithms try, in response to an 
observation, to guess the value for one or more dependent variables. 

Later in the book, we discuss extensively the application of regression and 
classification tasks in earth science problems (cf. Part III). However, Fig. 1.2 outlines 
two geological examples of supervised learning in the field of classification and 

Table 1.1 Basic ML terminology. For a detailed glossary, please refer to the online ML course by 
Google™: https://bit.ly/mlglossary 

Term Description 

Tensor In ML, the word tensor typically describes a multidimensional array 

Feature An input variable used by ML algorithms 

Attribute Often used as a synonym feature 

Label Consists of the correct “answer” or “result” for a specific input tensor 

Observation A synonym for instance and example; a row of the data set, 
characterized by one or more features. In labeled data sets, 
observations also contain a label. In a geochemical data set, 
observations consist of one sample 

Class A set of observations characterized by the same label 

Prediction The output of a ML algorithm for a specific input observation 

Model What a ML algorithm has learned after training 

Training a model Process of determining the best model. Is is synonymous with the 
learning process 

Training data set The subset of the investigated data set used to train the model in the 
learning process 

Validation data set The subset of the investigated data set used to validate the model in 
the learning process 

Test data set An independent data set used to test the model after the validation 
process

https://bit.ly/mlglossary
https://bit.ly/mlglossary
https://bit.ly/mlglossary
https://bit.ly/mlglossary
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Fig. 1.2 Supervised learning: (a, b) classification and (c, d) regression 

regression: (1) the identification of the volcanic source using glass shard composi-
tions, which is a typical problem in tephrostratigraphy and tephrochronology (Lowe, 
2011), and (2) the retrieval of magma storage temperatures based on clinopyroxene 
chemistry (Petrelli et al., 2020). 

1.4 Unsupervised Learning 

Unsupervised learning acts on unlabeled training data. In other words, the ML 
algorithm tries to identify significant patterns from the investigated data set without 
the benefit of being fed external solutions. Fields that apply unsupervised learning
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Fig. 1.3 Unsupervised learning: (a, b) clustering and (c, d) dimensionality reduction 

include clustering, dimensionality reduction, and the detection of outliers or novelty 
observations. 

Clustering consists of grouping “similar” observations into “homogeneous” 
groups (see Fig. 1.3a and b), which helps in discovering unknown patterns in 
unlabeled data sets. In the Earth Sciences, clustering has widespread applications 
in seismology (e.g., Trugman and Shearer, 2017), remote sensing (e.g., Wang et al., 
2018), volcanology (e.g., Caricchi et al., 2020), and geochemistry (e.g., Boujibar 
et al., 2021) to cite a few.  

The reduction of the dimensionality (Fig. 1.3c and d) of a problem reduces the 
number of features to treat, allowing the visualization of high-dimensional data 
sets (e.g., Morrison et al., 2017) or increasing the efficiency of a ML workflow.
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Fig. 1.4 Unsupervised learning: (a, b) outlier and (c, d) novelty detection 

Tenenbaum et al. (2000) provide a concise but effective definition of dimensionality 
reduction: “finding meaningful low-dimensional structures hidden in their high-
dimensional observations.” 

Finally, the detection of outlier or novelty observations (Fig. 1.4) deals with 
deciding whether a new observation belongs to a single set (i.e., an inlier) or should 
be considered different (i.e., an outlier or a novelty). The main difference between 
outlier and novelty detection lies in the learning process. In outlier detection 
(Fig. 1.4a and b), training data contain both inliers and potential outliers. Therefore, 
the algorithm tries to define which observation deviates from the others. In novelty 
detection (Fig. 1.4c and d), the training data set contains inliers only, and the 
algorithm tries to determine if a new observation is an outlier (i.e., a novelty).
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Fig. 1.5 (a) A supervised classification model using two labeled observations as the training data 
set. (b) A semisupervised classification model using the same two labeled observations from panel 
(a) plus many unlabeled instances 

1.5 Semisupervised Learning 

As you may argue, semisupervised learning falls somehow between supervised 
and unsupervised training methods. Typically, semisupervised algorithms learn 
from a small portion of labeled data and a large portion of unlabeled data (Zhu 
& Goldberg, 2009). More specifically, semisupervised learning algorithms use 
unlabeled data to improve supervised learning tasks when the labeled data are scarce 
or expensive (Zhu & Goldberg, 2009). To better understand, please see Fig. 1.5. In  
detail, Fig. 1.5a reports the results of a supervised classification model that uses two 
labeled observations as the training data set. Also, Fig. 1.5b displays a classification 
model resulting from semisupervised learning from the same two labeled data sets 
of Fig. 1.5a, plus several unlabeled observations. 
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Chapter 2 
Setting Up Your Python Environments 
for Machine Learning 

2.1 Python Modules for Machine Learning 

The development of A ML model in Python uses both general-purpose scientific 
libraries (e.g., NumPy, ScyPy, and pandas) and specialized modules (e.g., scikit-
learn,1 PyTorch,2 and TensorFlow3 ). 

Scikit-Learn Scikit-learn is a Python module that solves small- to medium-scale 
ML problems (Pedregosa et al., 2011). It implements a wide range of state-of-the-art 
ML algorithms, making it one of the best options to start learning ML (Pedregosa 
et al., 2011). 

PyTorch PyTorch is a Python package that combines high-level features for 
tensor management, neural network development, autograd computation, and 
back-propagation (Paszke et al., 2019). The PyTorch library grows within 
Meta’s AI4 (formerly Facebook AI) research team. In addition, it benefits from 
a strong ecosystem and a large user community that supports its development 
(Papa, 2021). 

TensorFlow TensorFlow began at Google, and it was open-sourced in 2015. It 
combines tools, libraries, and community resources to develop and deploy DL 
models in Python (Bharath & Reza Bosagh, 2018). 

1 https://scikit-learn.org. 
2 https://pytorch.org. 
3 https://www.tensorflow.org. 
4 https://ai.facebook.com. 
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2.2 A Local Python Environment for Machine Learning 

The Individual Edition of the Anaconda Python Distribution5 provides an example 
of a “ready-to-use” scientific Python environment to perform basic ML tasks with 
the scikit-learn module. It also allows advanced tasks such as installing libraries 
that are specifically developed for DL (e.g., PyTorch and TensorFlow). To install 
the Individual Edition of the Anaconda Python distribution, I suggest following the 
directives given in the official documentation.6 

First, download and run the most recent stable installer for your operating system 
(i.e., Windows, Mac, or Linux). For Windows or Mac users, a graphical installer 
is also available. The installation procedure using the graphical installer is the 
same as for any other software application. The Anaconda installer automatically 
installs the Python core and Anaconda Navigator, plus about 250 packages defining 
a complete environment for scientific visualization, analysis, and modeling. Over 
7500 additional packages, including PyTorch and TensorFlow, can be installed 
individually as needed from the Anaconda repository with the “conda”7 package-
management system. The basic tools to start learning and developing small- to 
medium-scale ML projects are the same as those used for any scientific Python 
Scientific project. Consequently, I suggest using Spyder and JupyterLab. 

Spyder8 is an integrated development environment that combines a text editor to 
write code, inspection tools for debugging, and interactive Python consoles for code 
execution (Fig. 2.1). 

JupyterLab9 is a web-based development environment to manage Jupyter Note-
books (i.e., web applications for creating and sharing computational documents, see 
Fig. 2.2) 

2.3 ML Python Environments on Remote Linux Machines 

Accessing and working on remote computational infrastructure is mandatory for 
large-scale and data-intensive ML workflows. However, the scope of the present 
book does not include providing a detailed description of how to develop high-
performance computational infrastructure. Suffice it to say that such infrastructure 
often constitutes a cluster of Linux instances (i.e., virtual computing environments 
based on the Linux operating system), so we limit ourselves to describing how to 
connect to and work with a remote Linux instance. The present section shows how

5 https://www.anaconda.com. 
6 https://www.anaconda.com/products/individual/. 
7 https://docs.conda.io/. 
8 https://www.spyder-ide.org. 
9 https://jupyter.org. 
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Fig. 2.1 Screenshot of Spyder integrated development environment. The text editor for writing 
code is on the left. The bottom-right panel is the IPython interactive console, and the top-right 
panel is the variable explorer 

to set up a Debian instance on the Amazon Web Services™ (AWS) facilities. Next, 
it shows how to set up the Anaconda Individual Edition Python environment on your 
AWS Debian instance. 

Figure 2.3 shows the Amazon management console of the “Elastic Compute 
Cloud” (EC2).10 From the EC2 management console, a new computational instance 
can be launched by clicking the “Launch new instance” button. A guided step-by-
step procedure follows. The user defines each detail of their computational instance 
[i.e., (1) chose the Amazon Machine Image; (2) choose the instance type, (3) define 
the key pair; further configure the instance, add storage, add tags, configure security 
group, and (4) launch the instance]. In steps (1–4) (see Fig. 2.4), I selected the 
Debian 10 64-bit (x86) Amazon Machine Image. Also, I selected the t2.micro 
instance type because it is eligible as a “free tier.” Note that other options could 
be available as a “free tiers” and massive instance types could also be selected. 
As an example, the g5.48xlarge instance type consists of 192 virtual CPUs, 768 
GiB of memory, and a network performance of 100 Gigabit. The total amount of 
computational power is only a matter of the budget at your disposal. The step 3 (see 
Fig. 2.5) consists of selecting an existing key pair or creating a new one. A “key pair” 
gives the security credentials to prove your identity when connecting to a remote 
instance. It consists of a “public key,” which is stored in the remote instance, and a 
“private key,” which is hosted in your machine. Anyone who possesses the private

10 https://aws.amazon.com/ec2/. 
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Fig. 2.2 Screenshot of Jupyter Notebook combining narrative text, code, and visualizations 

Fig. 2.3 Screenshot of the Elastic Compute Cloud (EC2) management console. The “Launch 
instance” button allows the user to start a new instance (April, 2023) 

key of a specific key pair can connect to the instance that stores the associated public 
key. From your Linux and Unix OS (including the Mac OS), you can create a key 
pair by using the ssh-keygen command. However, the EC2 management console 
allows you to create and manage key pairs with a single click (Fig. 2.5). We can
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Fig. 2.4 Launch an instance: (1) The first step consists of selecting the Amazon Machine Image 
(AMI); (2) The second step consists of selecting the “Instance Type.”; (3) Before launching a new 
instance you must select a “key pair;” (4) Finally, launch the instance (April, 2023) 

safely set all the other instance parameters to their default values and click on the 
“Launch Instance” button. 

The final step consists of launching the instance that, after initialization, appears 
in the EC2 management console (Fig. 2.6). To access an instance, select it in the EC2 
management console and click on the “Connect” button (Fig. 2.6), which opens the



16 2 Setting Up Your Python Environments for Machine Learning

Fig. 2.5 How to create a “key pair” (April, 2023) 

“Connect to instance” window, showing all available options to access the instance 
(Fig. 2.7). Our choice is to access the instance by using the Secure Shell (SSH) 
protocol (Fig. 2.7). The SSH Protocol is a cryptographic communication system for 
secure remote login and network services over an insecure network. It allows you to
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Fig. 2.6 Connecting to an instance (April, 2023) 

“safely” connect and work on a remote instance from your desk or sofa. To connect 
to the remote instance, we need a SSH client (e.g., a Mac OS Terminal or PuTTY11 ) 
and into which we enter the following command: 

ssh -i local_path/aws.pem user@user_name@host 

where the ssh command initializes the SSH connection from the user account to the 
host (i.e., an IP or a domain name) remote instance. The -i option selects a specific 
private key (i.e., aws.pem) to pair with the public key in the host instance. 

For the specific case shown in Fig. 2.7, I enter: 

ssh -i /Users/maurizio/.ssh/aws.pem admin@ec2-52-91-26-146. 
compute-1.amazonaws.com 

We are now connected to the remote instance in one AWS computing facility 
(Fig. 2.8) and we are ready to install the Anaconda Python Individual Edition from 
the command line. 

Before starting the install procedure for the Anaconda Python Individual edition, 
I suggest upgrading the Debian packages as follows: 

$ sudo apt-get update 
$ sudo apt-get dist-upgrade

11 https://www.putty.org. 

https://www.putty.org
https://www.putty.org
https://www.putty.org
https://www.putty.org
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Fig. 2.7 Accessing by a SSH client (April, 2023) 

The sudo apt-get update command gets you an updated list of packages. Then 
the sudo apt-get dist-upgrade will “intelligently” upgrade these packages, without 
upgrading the current Debian release. Now download the latest Anaconda Python 
distribution12 for Linux-x86_64 using curl: 

$ curl -O https://repo.anaconda.com/archive/Anaconda3-2023.03-
Linux-x86_64.sh 

if curl does not work, install it as follows: 

$ sudo apt-get install curl 

At this point, we need to verify the data integrity of the installer with cryptographic 
hash verification through the SHA-256 checksum. We use the sha256sum command 
along with the filename of the script: 

$ sha256sum Anaconda3-2023.03-Linux-x86_64.sh

12 https://repo.anaconda.com/archive/. 

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
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Fig. 2.8 Well done! You are connected to your remote instance 

The result is 

19737d5c27b23a1d8740c5cb2414bf6253184ce745d0a912bb235a212a15e075 

and must match the cryptographic hash verification code in the Anaconda reposi-
tory.13 As a final step, we run the installation script: 

$ bash Anaconda3-2023.03-Linux-x86_64.sh 

It starts a step-by-step guided procedure starting with 

Welcome to Anaconda3 py310_2023.03-0 

In order to continue the installation process, please review the 
license 

agreement. 
Please, press ENTER to continue 

Press “ENTER” to access the license information and continue clicking “ENTER” 
until you get the following question: 

Do you approve the license terms? [yes|no]

13 https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/. 

https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/
https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/


20 2 Setting Up Your Python Environments for Machine Learning

Type “yes” to get to the next step, which is the selection of the location for the 
installation: 

Anaconda3 will now be installed into this location: 
/home/admin/anaconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below 

I suggest pressing “ENTER” to retain the default location. At the end of the 
installation, you receive the following output: 

... 
installation finished. 
Do you wish the installer to initialize Anaconda3 
by running conda init? [yes|no] 
[no] >>> 

Type “yes”. For changes to take effect, close and re-open the shell. Now, the base 
conda environment, highlighted by (base) at the beginning of the prompt command, 
should be active: 

(base) [ec2-user@ip-172-31-35-226 ~]$ 

The base environment for ML in Python is now ready for use in your remote 
instance. 

2.4 Working with Your Remote Instance 

Once you are connected to your remote instance, for example, by 

$ ssh -i local_path/aws.pem user@user_name@host 

knowledge of the basic Linux OS commands is mandatory. However, a detailed 
explanation of the architecture, commands, and operations of the Linux OS is 
again beyond the scope of this book. Consequently, I suggest reading specialized 
books (Ward, 2021; Negus, 2015) to acquire the requisite skills. Table 2.1 lists 
common commands that allow you to transfer files between a local machine and 
remote instances. In addition, it provides basic tools for file management in a Linux 
environment. 

To copy a file from your local machine to the remote instance and vice versa I 
suggest using the scp command, which is based on the SSH protocol. Specifically, 
the command is 

$ scp -i local_path/aws.pem filename user@host:/home/user/ 
filename
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Table 2.1 Basic Linux commands 

Command Description 

ls View the contents of a directory 

cd.. Move one directory up 

cd folder_name Go to the folder named folder_name 

cp myfile.jpg /new_folder Copy myfile.jpg to the new_folder path 

mv Use mv to move files, the syntax is similar to cp 

mkdir my_folder Create a new folder named my_folder 

rm Delete directories and the contents within them (take care with 
rm!) 

tar Archive multiple files into a compressed file 

chmod Change the read, write, and execute permissions of files and 
directories 

top Display a list of running processes, CPU usage, and memory 
usage 

pwd Print the current working directory (i.e., the directory in which 
you are working) 

sudo Ii is the abbreviation of “SuperUser Do.” It enables you to run 
tasks requiring administrative permissions. Take great care with 
sudo! 

This command copies the file named “filename” from the local machine to the folder 
/home/user/ of the remote instance host. As explained in Sect. 2.3), the aws.pem 
private key stores the credentials to securely login to the host instance. To copy a 
file from your remote instance to the local machine use 

$ scp -i local_path/aws.pem user@host:/home/user/filename / 
localfolder/filename 

Finally, to launch a Python script we use the python command: 

$ python myfile.py 

To run multiple Python files you could use a bash script, which is a text file named 
my_bash_script.sh, and then run it as follows: 

$ bash my_bash_script.sh 

Here are two examples: 

#!/bin/bash 
/home/path_to_script/script1.py 
/home/path_to_script/script2.py 
/home/path_to_script/script3.py 
/home/path_to_script/script4.py
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and 

#!/bin/bash 
/home/path_to_script/script1.py & 
/home/path_to_script/script2.py & 
/home/path_to_script/script3.py & 
/home/path_to_script/script4.py & 

to run them sequentially and in parallel, respectively. 
Note that the Anaconda Individual Edition comes with scikit-learn as a default 

package. DL packages such as Tensorflow and PyTorch must be installed separately. 
To avoid conflicts, I suggest creating isolated Python environments to work 
separately with PyTorch and TensorFlow. 

2.5 Preparing Isolated Deep Learning Environments 

Conda is an open-source package-management system and environment-
management system developed by Anaconda14 and that serves to install and update 
Python packages and dependencies. It also serves to manage isolated Python 
environments to avoid conflicts. As an example, consider the following statement: 

conda create --name env_ml python=3.9 spyder scikit-learn 

This statement creates a new Python 3.9 environment named env_ml with spyder, 
scikit-learn, and related dependencies installed. To activate the env_ml environment: 

conda activate env_ml 

to deactivate the current environment, use 

conda deactivate 

To list the available environments, use 

conda info --envs 

In the resulting list, the active environment is highlighted by *. Also, the active 
environment is usually given at the beginning of the command prompt [e.g., (base)]: 

(base) admin@ip-172-31-59-186:~$ 

To remove an environment, use 

conda remove --name env_ml --all 

The following statement 

conda env export > env_ml.yml

14 https://www.anaconda.com/. 
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exports all information about the active environment to a file named env_ml.yml, 
which can then be used to share the environment to allow others to install it by 
using the following command: 

conda env create -f env_ml.yml 

More details on environment management are available in the conda official 
documentation.15 The following listing resumes all the steps involved in creating 
a ML environment with DL functionalities based on PyTorch: 

$ conda create --name env_pt python=3.9 spyder scikit-learn 
$ conda activate env_pt 
(env_pt)$ conda install pytorch torchvision torchaudio -c pytorch 

The last command installs PyTorch, working on the CPU only, on my Mac. To 
find the right command for your hardware and operating system, please refer to the 
PyTorch website.16 

Similarly, to create a ML environment based on scikit-learn with Tensorflow DL 
functionalities, use the following command: 

$ conda create --name env_tf --channel=conda-forge tensorflow 

As you can see, I used a specific channel (i.e., conda-forge17 ) to download 
tensorflow and spyder. Listing my conda environment now gives 

$ conda info --envs 
Output: 
# conda environments: 
# 
base * /opt/anaconda3 
env_ml /opt/anaconda3/envs/env_ml 
env_pt /opt/anaconda3/envs/env_pt 
env_tf /opt/anaconda3/envs/env_tf 

2.6 Cloud-Based Machine Learning Environments 

With cloud-based ML environments, I refer to Jupyter Notebook-based services, 
which are hosted in the cloud. Examples are Google™ Colaboratory, Kaggle, and 
Saturn Cloud. The first two services, Google™ Colaboratory and Kaggle, are both 
managed by Google™ and offer a free plan with limited computational resources. 
Finally, Saturn Cloud offers a free plan with 30 hours of computation. All services 
allow the online use of Jupyter Notebooks.

15 https://docs.conda.io/. 
16 https://pytorch.org/get-started/locally/. 
17 https://conda-forge.org. 
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Fig. 2.9 Google™ Colaboratory (April, 2023) 

Figures 2.9 and 2.10 provide a quick look at the entry-level notebooks for 
Google™ Colaboratory and Kaggle, respectively. Also, Figs. 2.9 and 2.10 show 
that both Google™ Colaboratory and Kaggle all come with scikit-learn, Tensorflow, 
and PyTorch installed and ready to use. Using Saturn Cloud™, a new Python 
Server can be launched by clicking the “New Python Server” server button (see 
Fig. 2.11), which opens a new window where you can personalize the instance. 
Note that the default configuration does not include either PyTorch or Tensorflow, 
although they can be added quickly in the “Extra Packages” section (Fig. 2.12). As 
an example, Fig. 2.12 shows how to add PyTorch. Finally, Fig. 2.13 demonstrates 
that the resulting environment comes with both scikit-learn and PyTorch. 

Although all the reported cloud-based ML Jupyter environments are robust and 
flexible solutions, I suggest using Google™ Colaboratory or Saturn Cloud™ for 
novices.
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Fig. 2.10 Kaggle (April, 2023) 

Fig. 2.11 Saturn Cloud™ (April, 2023)
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Fig. 2.12 Starting a Jupyter Server, i.e., a machine to run Jupyter Notebooks, in Saturn Cloud™ 
(April, 2023) 

Fig. 2.13 Running a Jupyter Notebook in Saturn Cloud™ (April, 2023)



2.7 Speed Up Your ML Python Environment 27

2.7 Speed Up Your ML Python Environment 

A common argument by Python detractors is that Python is slow when compared 
with other established programming languages such as C or FORTRAN. We all 
agree with this argument but, in my opinion, this is not the point. In scientific 
computations, Python relies on libraries developed in higher-performing languages, 
mainly C and C++, and on parallel computing platforms such as CUDA.18 For 
example, NumPy, the core Python library for scientific computing, is based on an 
optimized C code.19 For ML purposes, all scikit-learn, PyTorch, and Tensorflow 
provide a base version of the library that can be safely installed in any local machine 
for rapid prototyping and small- to mid-scale problems. In addition, optimized 
versions for intensive computing applications are also available. For example, the 
Intel™ extension for scikit-learn accelerates ML applications in Python for Intel-
based hardware by a factor 10–100. ×.20 The Intel™ extension for scikit-learn is 
easily installed by using conda. To prevent conflicts, I strongly recommend creating 
a new conda environment such as env_ml_intel: 

$ conda create -n env_ml_intel -c conda-forge python=3.9 scikit-
learn-intelex scikit-learn rasterio matplotlib pandas spyder 
scikit-image seaborn 

Listing my local environments now gives 

$ conda info --envs 
Output: 
# conda environments: 
# 
base * /opt/anaconda3 
env_ml /opt/anaconda3/envs/env_ml 
env_pt /opt/anaconda3/envs/env_pt 
env_tf /opt/anaconda3/envs/env_tf 
env_ml_intel /opt/anaconda3/envs/env_ml_intel 

I left the base environment untouched. Then I created two general-purpose ML 
environments, env_ml and env_ml_intel, with the latter optimized by Intel. Finally, 
I created two DL environments env_pt and env_tf, which are based on PyTorch and 
Tensorflow, respectively. 

Note that DL libraries such as PyTorch and Tensorflow are highly optimized 
to support GPU computing (e.g., CUDA21 and ROCm22 ). For example, a Pytorch 
CUDA-optimized version for the Linux OS can be easily installed by conda as 
follows (April, 2023):

18 https://developer.nvidia.com/cuda-zone. 
19 https://numpy.org. 
20 https://github.com/intel/scikit-learn-intelex. 
21 https://developer.nvidia.com/cuda-zone. 
22 https://rocmdocs.amd.com/en/latest/. 
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$ conda install pytorch torchvision torchaudio pytorch-cuda=11.8
-c pytorch -c nvidia 

As already stated, providing a complete description of how to implement high-
performance computing ML applications in Python is beyond the scope of this 
book. Therefore, please refer to the official documentation of each tool to get further 
details. 
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Chapter 3 
Machine Learning Workflow 

3.1 Machine Learning Step-by-Step 

Figure 3.1 shows a generalized workflow that is common to most ML projects. 
The first step is obtaining the data. In Earth Sciences, data can come from large-
scale geological or geochemical samplings, remote-sensing platforms, well log 
analyses, or petrological experiments, to cite a few sources. The second step is pre-
processing, which consists of all the operations required to prepare your data set for 
the successive steps of training and validation. Training the model involves running 
ML algorithms, which is the core business of a ML workflow. The validation step 
checks the quality of the training and ensures that the model is generalizable. Steps 
3 and 4 are often closely connected and iterated many times to improve the quality 
of the results. Finally, the last step consists of deploying and securing your model. 

We shall now evaluate each step and provide insights into how to successfully 
run a ML model in the field of Earth Sciences. 

3.2 Get Your Data 

Your data set repository may have many different formats. The easiest data sets 
consist of tabular data stored in text (e.g., .csv) or Excel™ files. Sometimes, a 
Structured Query Language (SQL) database hosts your data. Larger data sets may 
be stored in the Hierarchical Data Format (HDF5),1 Optimized Row Columnar 
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GET DATA 
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PRE-PROCESSING 
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TRAIN MODEL 

3 
VALIDATE 

4 
DEPLOY 

5 

Fig. 3.1 Workflow of a ML model 

Table 3.1 Pandas methods to import standard and state-of-the-art file formats for ML applica-
tions 

Method Description Comment 

read_table() Read general delimited file Slow, not for large data sets 

read_csv() Read comma-separated values (csv) files Slow, not for large data sets 

read_excel() Read Excel files Slow, not for large data sets 

read_sql() Read sql files Slow, not for large data sets 

read_pickle() Read pickled objects Fast, not for large data sets 

read_hdf() Read Hierarchical Data Format (HDF) 
files 

Fast, good for large data sets 

read_feather() Read feather files Fast, good for large data sets 

read_parquet() Read parquet files Fast, good for large data sets 

read_orc() Read Optimized Row Columnar files Fast, good for large data sets 

(ORC),2 Feather (i.e., Arrow IPC columnar format),3 or Parquet Format,4 to cite 
a few.  

For data that fit into your random access memory (RAM), pandas is probably 
the best choice for data import and manipulation (e.g., slicing, filtering) through 
DataFrames. Table 3.1 describes the potential of pandas methods for input and 
output (I\O). 

If the data set starts filling your RAM entirely, Dask5 is the probably the library 
of choice to manage your data and scale your Python code to parallel environments. 
Dask is a library designed to deal with “Big Data” through parallel computing in 
Python. Dask extends the concept of DataFrames to Dask DataFrames, which 
are large parallel DataFrames composed of many smaller pandas DataFrames. 
We introduce Dask and parallel computing later in Part IV of the book Before that, 
however, we must import our data sets for Earth Sciences ML applications using

1 https://www.hdfgroup.org/solutions/hdf5/.
2 https://orc.apache.org. 
3 https://arrow.apache.org/docs/python/feather.html. 
4 https://parquet.apache.org. 
5 https://dask.org. 
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pandas (see code listing 3.1). The investigated data set is available for download 
from the website6 of the Laboratory for Space Sciences, Physics Department, 
Washington University in St. Louis. It deals with presolar SiC grains, extracted from 
meteorites (Stephan et al., 2021). 

1 import pandas as pd 
2 
3 my_data = pd.read_excel("PGD_SiC_2021-01-10.xlsx", sheet_name=’ 

PGD-SIC’) 
4 print(my_data.info(memory_usage="deep")) 
5 
6 ’’’ 
7 Output: 
8 <class ’pandas.core.frame.DataFrame’> 
9 RangeIndex: 19978 entries, 0 to 19977 
10 Columns: 123 entries, PGD ID to err[d(138Ba/136Ba)] 
11 dtypes: float64(112), object(11) 
12 memory usage: 29.4 MB 
13 ’’’ 

Listing 3.1 Importing an Excel data set in Python 

I assume that you are familiar with the read_excel statement in pandas. If not, I 
strongly suggest that you start with an introductory book such as “Introduction to 
Python in Earth Science Data Analysis” (Petrelli, 2021). The statement at line 4 of 
code listing 3.1 tells you how much memory is required to store our data set. In 
this case, the imported data set, consisting of approximately 20 000 rows and 123 
columns, requires 24.4 MB, which is far less than the 32 GB of my MacBook™ 
Pro. 

Large data sets [i.e., approaching or exceeding tera (.1012) or peta (.1015) bytes] 
cannot be efficiently stored in text files such as .csv files or in Excel files. Standard 
relational databases such as PostgreSQL, MySQL, and MS-SQL can store large 
quantities of information but are inefficient (i.e., too slow) compared with state-
of-the-art high-performance data software libraries and file formats for managing, 
processing, and storing huge amounts of data. The formal definition of Big Data 
proposed by De Mauro et al. (2016) covers the three concepts of volume, velocity, 
and variety: “Big Data is the Information asset characterized by such a High Volume, 
Velocity and Variety to require specific Technology and Analytical Methods for 
its transformation into Value.” A detailed description of data storage and analysis 
frameworks for Big Data is beyond the scope of this book, so I suggest that those 
interested consult specialized texts (Pietsch, 2021; Panda et al., 2022). Herein, we 
simply compare the performances of pandas for writing and reading GB-scale .csv 
and .hdf files on a MacBook pro (2.3 GHz Quad-Core Intel Core i7, 32 GB RAM). 
For example, code listing 3.2 generates a pandas DataFrame of . ≈10 GB named

6 https://presolar.physics.wustl.edu/presolar-grain-database/. 
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my_data and composed of random numbers hosted in 26 columns and .5×107 rows. 
I used  my_data.info(memory_usage =“deep”), code listing 3.3, to check the real 
memory use of my_data, which is 9.7 GB. 

Code listing 3.4 shows the execution time required to write (In [1], In [2], and 
In [3]) and read (In [4], In [5], and In [6]) from text (.csv), parquet, and hdf5 files, 
respectively. The results show that saving a .csv file takes about 25 minutes, which 
is quite a long time! In contrast, saving the parquet and hdf5 files take 7 and 12 s, 
respectively. Reading times are of the same order of magnitude: about 5 minutes for 
.csv and 30 s for parquet and hdf5 files. 

1 import pandas as pd 
2 import numpy as np 
3 import string 
4 
5 my_data = pd.DataFrame(np.random.normal(size=(50000000, 26)), 
6 columns=list(string.ascii_lowercase)) 

Listing 3.2 Generating a mid-size data set of about 10 GB 

1 In [1]: my_data.info(memory_usage="deep") 
2 <class ’pandas.core.frame.DataFrame’> 
3 RangeIndex: 50000000 entries, 0 to 49999999 
4 Data columns (total 26 columns): 
5 # Column Dtype 
6 --- ------ -----
7 0 a float64 
8 1 b float64 
9 2 c float64 
10 3 d float64 
11 4 e float64 
12 5 f float64 
13 6 g float64 
14 7 h float64 
15 8 i float64 
16 9 j float64 
17 10 k float64 
18 11 l float64 
19 12 m float64 
20 13 n float64 
21 14 o float64 
22 15 p float64 
23 16 q float64 
24 17 r float64 
25 18 s float64 
26 19 t float64 
27 20 u float64 
28 21 v float64



3.3 Data Pre-processing 33

29 22 w float64 
30 23 x float64 
31 24 y float64 
32 25 z float64 
33 dtypes: float64(26) 
34 memory usage: 9.7 GB 

Listing 3.3 Checking the memory usage of our DataFrame 

In light of the evidence given by code listing 3.4, I would suggest discontinuing 
the use of text files to store and retrieve your data sets at GB or larger scales in favor 
of binary files such as hdf5 or parquet. The case for this becomes particularly strong 
once the data dimensions grow significantly. 

1 In [1]: %time my_data.to_csv(’out.csv’) 
2 CPU times: user 22min 48s, sys: 55.8 s, total: 23min 44s 
3 Wall time: 24min 16s 
4 
5 In [2]: %time my_data.to_parquet(’out.parquet’) 
6 CPU times: user 13.1 s, sys: 2.71 s, total: 15.8 s 
7 Wall time: 11.8 s 
8 
9 In [3]: %time my_data.to_hdf(’out.h5’, key="my_data", mode="w") 
10 %time my_data.to_hdf(’out.h5’, key="my_data1", mode="w") 
11 CPU times: user 39.2 ms, sys: 4.33 s, total: 4.37 s 
12 Wall time: 6.59 s 
13 
14 In [4]: %time my_data_1 = pd.read_csv(’out.csv’) 
15 CPU times: user 3min 28s, sys: 37.7 s, total: 4min 5s 
16 Wall time: 4min 45s 
17 
18 In [5]: %time my_data1 = pd.read_parquet(’out.parquet’) 
19 CPU times: user 12.7 s, sys: 26.3 s, total: 39 s 
20 Wall time: 31 s 
21 
22 In [6]: %time my_data1 = pd.read_hdf(’out.h5’, key=’my_data’) 
23 CPU times: user 10.2 s, sys: 12.7 s, total: 23 s 
24 Wall time: 28.8 s 

Listing 3.4 Performances of the pandas library in writing and loading .cvs, .parquet and .h5 files 

3.3 Data Pre-processing 

Pre-processing consists of all operations required to prepare your data set for the 
next steps (e.g., training and validation; Maharana et al., 2022). This step is crucial 
because it converts raw data into a form suitable to build a ML model. While 
developing a ML project, you will likely spend most of your time preparing your
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data for the training. In detail, pre-processing refers to preparing (e.g., cleaning, 
organizing, normalizing) the raw data before moving to the training. In addition, 
pre-processing includes the preliminary steps to allow validation (e.g., train-test 
splitting). 

3.3.1 Data Inspection 

Data inspection is the qualitative investigation of a data set and allows one to become 
familiarized with the data set. A fundamental task of data inspection is descriptive 
statistics, which provides a clear understanding of the “shape” and structure of the 
data. To see how descriptive statistics can help, consider the following example: By 
looking at the histogram distributions, you can start arguing whether methods that 
require specific assumptions (e.g., a Gaussian structure) are well suited to analyze 
your data. 

Code listing 3.5 shows how to undertake a preliminary determination of the main 
descriptive indexes of location, such as the mean and the median (e.g., .p50 or the 
50% percentile), and dispersion, such as the standard deviation and range (e.g., 
.range = max − min) or the interquartile range (e.g., .iqr = p75 − p25). 

1 In [1]: sub_data = my_data[[’12C/13C’, ’14N/15N’]] 
2 
3 In [2]: sub_data.describe().applymap("{0:.0f}".format) 
4 
5 Out[2]: 
6 12C/13C 14N/15N 
7 count 19581 2544 
8 mean 66 1496 
9 std 207 1901 
10 min 1 4  
11 25% 44 336 
12 50% 55 833 
13 75% 69 2006 
14 max 21400 19023 

Listing 3.5 Determining descriptive statistics in Python 

Figure 3.2 and code listing 3.6 show how Python can be used to statistically 
visualize a data set. In more detail, Fig. 3.2 shows the distribution of data in the 
.
14N/15N versus .12C/13C projection (left panel) and the histogram distribution of 
.
12C/13C (right panel).
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Fig. 3.2 Descriptive statistics (code listing 3.6) 

1 import matplotlib.pyplot as plt 
2 
3 fig = plt.figure(figsize=(9,4)) 
4 ax1 = fig.add_subplot(1,2,1) 
5 ax1.plot(my_data[’12C/13C’], my_data[’14N/15N’], 
6 marker=’o’, markeredgecolor=’k’, 
7 markerfacecolor=’#BFD7EA’, linestyle=’’, 
8 color=’#7d7d7d’, 
9 markersize=6) 
10 ax1.set_yscale(’log’) 
11 ax1.set_xscale(’log’) 
12 ax1.set_xlabel(r’$^{12}C/^{13}C$’) 
13 ax1.set_ylabel(r’$^{14}N/^{15}N$’) 
14 
15 ax2 = fig.add_subplot(1,2,2) 
16 ax2.hist(my_data[’12C/13C’], density=True, bins=’auto’, 
17 histtype=’stepfilled’, color=’#BFD7EA’, edgecolor=’ 

black’,) 
18 ax2.set_xlim(-1,250) 
19 ax2.set_xlabel(r’$^{12}C/^{13}C$’) 
20 ax2.set_ylabel(’Probability Density’) 
21 
22 fig.set_tight_layout(True) 

Listing 3.6 Obtaining descriptive statistics in Python 

3.3.2 Data Cleaning and Imputation 

In real-world data sets such as geological data sets, “unwanted” entries are 
ubiquitous (Zhang, 2016). Examples include voids (i.e., missing data), “Not a 
Number” (NaN) entries, and large outliers. Cleaning a data set mainly consists of 
removing such unwanted entries. For example, the methods .dropna() and .fillna()
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help when working with missing data; these are imported by pandas as NaN (see 
code listing 3.7). 

1 import pandas as pd 
2 
3 cleaned_data = my_data.dropna( 
4 subset=[’d(135Ba/136Ba)’, ’d(138Ba/136Ba)’]) 
5 
6 print("Before cleaning: {} cols".format(my_data.shape[0])) 
7 print("After cleaning: {} cols".format(cleaned_data.shape[0])) 
8 
9 ’’’ 
10 Output: 
11 Before cleaning: 19978 cols 
12 After cleaning: 206 cols 
13 ’’’ 

Listing 3.7 Removing NaN values 

In detail, the .dropna() at line 3 removes all the rows where the isotopic value of 
.δ135Ba136 [�] or .δ138Ba136 [�] are missing. 

Although appealing for its simplicity, removing entries containing missing values 
has some drawbacks, the most significant of which is the loss of information (Zhang, 
2016). In particular, when dealing with a large number of features, a substantial 
number of observations may be removed because a single feature is missing, 
potentially introducing large biases (Zhang, 2016). A possible solution is data 
imputation, which is the replacement of missing values with imputed values. Several 
methods have been developed for data imputation, the easiest of which consists of 
replacing missing values with the mean, median, or mode of the investigated feature 
(Zhang, 2016). In pandas, .fillna() replaces NaN entries with text or a specific value. 
Also, the SimpleImputer() in scikit-learn imputes missing values with the mean, 
median, or mode. 

A more evolved strategy consists of data imputation with regression (Zhang, 
2016). In this case, you first fit a regression model (e.g., linear or polynomial) 
and then use the model to impute missing values (Zhang, 2016). In scikit-learn, 
the function IterativeImputer() develops an imputation strategy based on multiple 
regressions. 

3.3.3 Encoding Categorical Features 

Most available machine learning algorithms do not support the use of categorical 
(i.e., nominal) features. Therefore, categorical data must be encoded (i.e., converted 
to a sequence of numbers). In scikit-learn, OrdinalEncoder() encodes categorical 
features such as integers (i.e., 0 to .ncategories − 1).
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3.3.4 Data Augmentation 

Data augmentation aims to increase the generalizability of ML models by increasing 
the amount of information in our data sets (Maharana et al., 2022), which consists 
of either adding modified copies of the available data (e.g., flipped or rotated 
images in the case of image classification) or combining existing features to 
generate new features. For example, Maharana et al. (2022) describe six data 
augmentation techniques for image analysis: (1) symbolic augmentation, (2) rule-
based augmentation, (3) graph-structured augmentation, (4) mixup augmentation, 
(5) feature-space augmentation, and (6) neural augmentation (Maharana et al., 
2022). Although the details of feature augmentation are far beyond the scope of 
this book, we will exploit data augmentation in Chap. 8 by following the strategy 
proposed by Bestagini et al. (2017). 

3.3.5 Data Scaling and Transformation 

The scaling and transformation of a data set is often a crucial step in ML workflows. 
Many ML algorithms strongly benefit from a preliminary “standardization” of the 
investigated data set. For example, all algorithms that use the Euclidean distance 
(and there are many of them!) as fundamental metrics may be significantly biased 
upon introducing features that differ significantly in magnitude. 

Definition In a standardized data set, all features are centered on zero and their 
variance is of the same order of magnitude. 

If a feature variance is orders of magnitude greater than the other feature 
variances, it might play a dominant role and prevent the algorithm from correctly 
learning the other features. The easiest way to standardize a data set is to subtract 
the mean and scale to unit variance: 

.x̃i
e = xi

e − μe

σ e
s

. (3.1) 

In Eq. (3.1), . x̃i
e and . xi

e are the transformed and original components, respectively. 
For example, they could belong to the sample distribution of a chemical element e 
such as SiO. 2 or TiO. 2 characterized by a mean . μe and a standard deviation . σe

s . 
Scikit-learn implements Eq. (3.1) in the  sklearn.preprocessing.StandardScaler() 

method. 
In addition, scikit-learn implements additional scalers and transformers, which 

perform linear and nonlinear transformations, respectively. For example, MinMaxS-
caler() scales each feature belonging to a data set to a given range (e.g., between 0 
and 1).
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QuantileTransformer() provides nonlinear transformations that shrinks distances 
between marginal outliers and inliers, and PowerTransformer() provides nonlinear 
transformations in which data are mapped to a normal distribution to stabilize 
variance and minimize skewness. 

The presence of outliers may affect the outputs of the model. If the data 
set has outliers, robust scalers or transformers are more appropriate. By default, 
RobustScaler() removes the median and scales the data according to the interquartile 
range. Note that RobustScaler() does not remove any of the outliers. Table 3.2 
summarizes the main scalers and the transformers available in scikit-learn. 

When the estimation uncertainties are quantified (e.g., by one sigma or one 
standard error), the data set could be cleaned to remove all data where the error 
exceeds a threshold of your choosing. 

1 import matplotlib.pyplot as plt 
2 from sklearn.preprocessing import MinMaxScaler 
3 from sklearn.preprocessing import StandardScaler 
4 from sklearn.preprocessing import RobustScaler 
5 
6 X = my_data[[’d(30Si/28Si)’,’d(29Si/28Si)’]].to_numpy() 
7 
8 scalers = [("Unscaled", X),  
9 ("Standard Scaler", StandardScaler().fit_transform(X)), 
10 ("Min. Max. Scaler", MinMaxScaler().fit_transform(X)), 
11 ("Robust Scaler", RobustScaler().fit_transform(X))] 
12 
13 fig = plt.figure(figsize=(10,7)) 
14 
15 for ix, my_scaler in enumerate(scalers): 
16 ax = fig.add_subplot(2,2,ix+1) 
17 scaled_X = my_scaler[1] 
18 ax.set_title(my_scaler[0]) 
19 ax.scatter(scaled_X[:,0], scaled_X[:,1], 
20 marker=’o’, edgecolor=’k’, color=’#db0f00’, 
21 alpha=0.6, s=40) 
22 ax.set_xlabel(r’${\delta}^{30}Si_{28} [\perthousand]$’) 
23 ax.set_ylabel(r’${\delta}^{29}Si_{28} [\perthousand]$’) 
24 
25 fig.set_tight_layout(True) 

Listing 3.8 Scalers and transformers 

Finally, taking the logarithm of the data sometimes helps to reduce the skewness 
of the sample, assuming the data set follows a log-normal distribution (Limpert 
et al., 2001; Corlett et al., 1957). Code listing 3.8 shows how to apply various scalers 
and transformers to the log-transformed .12C/13C SiC data, and Fig. 3.3 shows the 
results.
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Table 3.2 Scalers and transformers in scikit-learn. Descriptions are taken from the official 
documentation of scikit-learn 

Description 

Scaler 
sklearn.preprocessing.StandardScaler() Standardize features by removing the mean 

and scaling to unit variance [Eq. (3.1)] 

sklearn.preprocessing.MinMaxScaler() Transform features by scaling each feature to 
a given range. The default range is [0,1] 

sklearn.preprocessing.RobustScaler() Scale features using statistics that are robust 
against outliers. This scaler removes the 
median and scales the data according to the 
quantile range. The default quantile range is 
the interquartile range 

Transformer 
sklearn.preprocessing.PowerTransformer() Apply a power transform feature-wise to 

make data more Gaussian-like 

sklearn.preprocessing.QuantileTransformer() Transform features using quantile 
information. This method transforms features 
to follow a uniform or normal distribution. 
Therefore, for a given feature, this 
transformation tends to spread the most 
frequent values 

Fig. 3.3 Data sets scaled and transformed by code listing 3.8
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3.3.6 Compositional Data Analysis (CoDA) 

Before applying any statistical method, including ML algorithms, the underlying 
assumptions must be verified. An example is the assumption of normality, which is 
behind many methods. Other assumptions may regard the topology of the sample 
space. Geochemical determinations are an example of so-called compositional data 
(Aitchison, 1982; Aitchison & Egozcue, 2005; Razum et al., 2023), which are 
samples of non-negative multivariate data that are expressed relative to a fixed total 
(typically unity or percentages summing to 100%). The analysis of compositional 
data is called “compositional data analysis” (CoDA; Aitchison, 1984). 

In compositional data, the sample space is represented by the Aitchison simplex 
. sD: 

. sD =
{
x = [x1, x2, xi, . . . , xD]| xi > 0, i = 1, 2, . . . , D;

D∑
i=1

xi = C

}
,

(3.2) 

where C is a constant, typically 1 or 100. Compositional data typically share two 
characteristics: (1) the data are always positive and (2) the data sum to a constant 
(i.e., they are not independent). These characteristics hinder the application of 
many statistical methods because they often assume independent input samples in 
the interval .[−∞,∞]. From the topological point of view, the simplex (i.e., the 
sample space for compositional vectors) differs radically from the Euclidean space 
associated with unconstrained data (Aitchison, 1982; Aitchison & Egozcue, 2005; 
Razum et al., 2023). Therefore, any method relying on the Euclidean distance should 
not be used directly with compositional data. Four established transformations are 
available that attempt to map the Aitchison simplex to Euclidean space. 

Pairwise Log Ratio Transformation (pwlr) (Aitchison, 1982; Aitchison & 
Egozcue, 2005; Razum et al., 2023) The  pwlr transformation maps a compo-
sition isometrically from a D-dimensional Aitchison simplex to a .D(D − 1)/2-
dimensional space. In detail, it computes each possible log ratio but accounts for 
the fact that .log(A/B) = − log(B/A), so only one of them is needed. On data 
transformed by the pairwise log ratio, we can apply multivariate methods that do 
not rely on the invertibility of the covariance function. The interpretation of pwlr-
transformed data is quite simple because each component results from a simple 
operation of division and is then transformed by a logarithm to reduce the skew of 
the resulting features. 

The pwlr transformation is given by 

.pwlr(x) = [
ξij | i < j = 1, 2, . . . , D

]
, (3.3) 

where .ξij = ln(xi/xj ). Note that the redundancy of pwlr generates . D(D − 1)/2
features, which corresponds to an extremely-high-dimensional space.



3.3 Data Pre-processing 41

Additive Log Ratio Transformation (alr) (Aitchison, 1982; Aitchison & 
Egozcue, 2005; Razum et al., 2023) The  alr transformation is given by 

.alr(x) =
[
ln

x1

xD

, ln
x2

xD

, . . . , ln
xD−1

xD

]
. (3.4) 

The alr transformation nonisometrically maps vectors from the D-dimensional 
Aitchison simplex to a .(D − 1)-dimensional space. 

As in the case of pwlr , the interpretation of alr data is quite simple because they 
also derive from a simple operation of division followed by a logarithm to reduce 
the skew of the resulting features. 

Centered Log Ratio Transformation (clr) This transformation is given by 

.clr(x) =
[
ln

x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD

g(x)

]
, (3.5) 

where .gm(x) is the geometric mean of the parts of . x. The  clr transformation 
isometrically maps the vectors from the D-dimensional Aitchison simplex to a D-
dimensional Euclidean space. The clr-transformed data can then be analyzed by all 
multivariate tools that do not rely on a full rank of the covariance (Aitchison, 1982; 
Aitchison & Egozcue, 2005; Razum et al., 2023). 

Orthonormal Log Ratio Transformation (olr) This transformation is also known 
as the isometric log ratio transformation (ilr). The olr coordinates of . x with respect 
to the basis elements .el , l = 1, 2, . . . , n−1, are defined as (Egozcue & Pawlowsky-
Glahn, 2005) 

.x∗
l =

√
rs

r + s
ln

[
g(xk+1, . . . , xk+r )

g(xk+r+1, . . . , xk+r+s)

]
, (3.6) 

where . x∗
l is the balance between the groups of parts .xk+1, . . . , xk+r and 

.g(xk+r+1, . . . , xk+r+s) and . el is the balancing element for the two sets of parts 
(Egozcue & Pawlowsky-Glahn, 2005). 

Note that “with defined balances, which are directly associated with an orthog-
onal coordinate system in the simplex, every multivariate statistical technique is 
available without any restriction and data can be properly statistically evaluated” 
(Razum et al., 2023). Each of the above-mentioned transformations is endowed 
with unique properties that can be used for compositional data analysis. The clr 
transformation is often used to construct compositional biplots and for cluster 
analysis (van den Boogaart & Tolosana-Delgado, 2013). Although alr-transformed 
data can be analyzed by using multivariate statistical tools, the alr transformation 
defines “coordinates in an oblique basis, something that affects distances if the 
usual Euclidean distance is computed from the alr coordinate” (van den Boogaart 
& Tolosana-Delgado, 2013). Consequently, the alr transformation “should not be
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used in cases [in which] distances, angles, and shapes are involved, as it deforms 
them” (Pawlowsky-Glahn & Buccianti, 2011). Any multivariate technique can be 
applied safely to olr-transformed data because it is related to the orthonormal basis 
of the simplex (Razum et al., 2023). 

In Python, both scikit-bio7 and pytolite8 provide us with methods in the 
framework of CoDA. 

3.3.7 A Working Example of Data Pre-processing 

The code listings 3.9 and 3.10 show a step-by-step reproduction of data pre-
processing by Boujibar et al. (2021) for a study of the clustering of pre-solar 
silicon carbide (SiC) grains. Do not worry if you cannot follow the specific cosmo-
chemical problem investigated by Boujibar et al. (2021). The aim of the example is 
to highlight how to prepare a data set for ML investigations. 

1 import pandas as pd 
2 import matplotlib.pyplot as plt 
3 import numpy as np 
4 from sklearn.preprocessing import StandardScaler 
5 from sklearn.preprocessing import RobustScaler 
6 
7 # Import Data 
8 my_data = pd.read_excel("PGD_SiC_2021-01-10.xlsx", 
9 sheet_name=’PGD-SIC’) 
10 
11 # limit to features of interest 
12 my_data = my_data[[’PGD ID’, ’PGD Type’, ’Meteorite’, ’12C/13C’, 
13 ’err+[12C/13C]’, ’err-[12C/13C]’, ’14N/15N’, 
14 ’err+[14N/15N]’, ’err-[14N/15N]’, 
15 ’d(29Si/28Si)’, ’err[d(29Si/28Si)]’, 
16 ’d(30Si/28Si)’, ’err[d(30Si/28Si)]’]] 
17 
18 # Drop NaN 
19 my_data = my_data.dropna() 
20 
21 # Removing M grains with large Si errors 
22 my_data = my_data[~((my_data[’err[d(30Si/28Si)]’]>10) & 
23 (my_data[’err[d(29Si/28Si)]’]>10) & 
24 (my_data[’PGD Type’]== ’M’))] 
25 
26 # Excluding C and U grains 
27 my_data = my_data[(my_data[’PGD Type’]==’X’) |  
28 (my_data[’PGD Type’]==’N’) |

7 http://scikit-bio.org. 
8 https://pyrolite.readthedocs.io. 

http://scikit-bio.org
http://scikit-bio.org
http://scikit-bio.org
http://scikit-bio.org
https://pyrolite.readthedocs.io
https://pyrolite.readthedocs.io
https://pyrolite.readthedocs.io
https://pyrolite.readthedocs.io
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29 (my_data[’PGD Type’]==’AB’)| 
30 (my_data[’PGD Type’]==’M’) |  
31 (my_data[’PGD Type’]==’Y’) |  
32 (my_data[’PGD Type’]==’Z’)] 
33 
34 # Excluding contaminated grains 
35 my_data = my_data[~(((my_data[’12C/13C’]<93.56) & 
36 (my_data[’12C/13C’]>88.87)) & 
37 ((my_data[’14N/15N’]<339.94) & 
38 (my_data[’14N/15N’]>248)) & 
39 ((my_data[’d(30Si/28Si)’]<50)& 
40 (my_data[’d(30Si/28Si)’]>-50)) & 
41 ((my_data[’d(29Si/28Si)’]<50)& 
42 (my_data[’d(29Si/28Si)’]>-50)) 
43 )] 

Listing 3.9 Working example of data pre-processing (part 1) 

1 # Trasform silica isotopic delta to isotopic ratios 
2 Si29_28_0 = 0.0506331 
3 Si30_28_0 = 0.0334744 
4 my_data[’30Si/28Si’] = ((my_data[’d(30Si/28Si)’]/1000)+1) * 

Si30_28_0 
5 my_data[’29Si/28Si’] = ((my_data[’d(29Si/28Si)’]/1000)+1) * 

Si29_28_0 
6 
7 my_data[’log_12C/13C’] = np.log10(my_data[’12C/13C’]) 
8 my_data[’log_14N/15N’] = np.log10(my_data[’14N/15N’]) 
9 my_data[’log_30Si/28Si’] = np.log10(my_data[’30Si/28Si’]) 
10 my_data[’log_29Si/28Si’] = np.log10(my_data[’29Si/28Si’]) 
11 
12 # Save to Excel 
13 my_data.to_excel("sic_filtered_data.xlsx") 
14 
15 # Scvaling using StandardScaler() and RobustScaler() 
16 X = my_data[[’log_12C/13C’,’log_14N/15N’,’log_30Si/28Si’,’ 

log_29Si/28Si’]].values 
17 
18 scalers =[("Unscaled", X),  
19 ("Standard Scaler",StandardScaler().fit_transform(X)), 
20 ("Robust Scaler",RobustScaler().fit_transform(X)) 
21 ] 
22 
23 # Make pictures 
24 fig = plt.figure(figsize=(15,8)) 
25 
26 for ix, my_scaler in enumerate(scalers): 
27 scaled_X = my_scaler[1] 
28 ax = fig.add_subplot(2,3,ix+1) 
29 ax.set_title(my_scaler[0]) 
30 ax.scatter(scaled_X[:,0], scaled_X[:,1], 
31 marker=’o’, edgecolor=’k’, color=’#db0f00’,



44 3 Machine Learning Workflow

32 alpha=0.6, s=40) 
33 ax.set_xlabel(r’$log_{10}[^{12}C/^{13}C]$’) 
34 ax.set_ylabel(r’$log_{10}[^{14}N/^{15}N]$’) 
35 
36 ax1 = fig.add_subplot(2,3,ix+4) 
37 ax1.set_title(my_scaler[0]) 
38 ax1.scatter(scaled_X[:,2], scaled_X[:,3], 
39 marker=’o’, edgecolor=’k’, color=’#db0f00’, 
40 alpha=0.6, s=40) 
41 ax1.set_xlabel(r’$log_{10}[^{30}Si/^{28}Si]$’) 
42 ax1.set_ylabel(r’$log_{10}[^{29}Si/^{28}Si]$’) 
43 
44 fig.set_tight_layout(True) 

Listing 3.10 Working example of data pre-processing (part 2) 

Code listing 3.9 starts by importing all of the requisite libraries and methods 
(i.e., pandas, matplotlib, numpy, plus StandardScaler and RobustScaler from scikit-
learn). The workflow starts at line 8, where we create a pandas DataFrame named 
my_data, importing the data set of SiC analyses from Excel™. All subsequent steps 
prepare .my_data for processing by a ML algorithm. 

Note that, in code listing 3.9, 

Line 12 Limits the features to those of interest. 
Line 19 Removes non-numerical data (i.e., Not a Number, or NaN). 
Line 22 Removes all the rows labeled by “M” in the “PGD Type” column and 

characterized by large errors. 
Line 27 Limits the data set to specific labels in the PGD-Type column (i.e., 

specific SiC classes such as X, N, AB, M, Y, and Z, in agreement with the current 
classification) (Stephan et al., 2021). 

Line 35 Removes contaminated grains, that is, those characterized by an isotopic 
signature too similar to that of the Earth. 

Then, in code listing 3.10, 

Lines 2–5 Convert silica values from . δ notation to isotopic ratios. 
Lines 7–10 Apply a log transformation, consistent with the alr CoDA transfor-

mation. 
Line 13 Save my_data to Excel™ to record the results of pre-processing 

before scaling. 
Line 16 Define X, a four-feature numpy array in the shape accepted by most 

scikit-learn ML algorithms. 
Line 18 Defines three scenarios: (1) unscaled data, (2) scaling with Standard-

Scaler(), and (3) scaling with RobustScaler(). 
Lines 24–42 Perform the scaling (line 27) and show the diagrams in Fig. 3.4.
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Fig. 3.4 Scaling SiC data with scikit-learn 

Figure 3.4 shows the results of code listings 3.9 and 3.10. As expected, the 
application of various scalers and transformers does not change the data structure. 
However, it strongly affects the position and the spread of the features investigated. 
For example, the logarithm of .12C/13C ranges from 0 to 4 when unscaled, with 
a mean at about 1.7 (see also Fig. 3.3). Both the standard and the robust scalers 
center the data set on zero by using the mean and the median, respectively, but they 
produce different spreads because the robust scaler also accounts for the presence 
of outliers. For symmetric distributions in the absence of outliers, we expect similar 
results from the standard and robust scalers.
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1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 from sklearn.preprocessing import StandardScaler 
4 from sklearn.mixture import GaussianMixture as GMM 
5 
6 my_colors = [’#AF41A5’,’#0A3A54’,’#0F7F8B’,’#BFD7EA’,’#F15C61’, 
7 ’#C82127’,’#ADADAD’,’#FFFFFF’, ’#EABD00’] 
8 
9 scaler = StandardScaler().fit(X) 
10 scaled_X = scaler.transform(X) 
11 
12 my_model = GMM(n_components = 9, random_state=(42)).fit(scaled_X) 
13 
14 Y = my_model.predict(scaled_X) 
15 
16 fig, ax = plt.subplots() 
17 
18 for my_group in np.unique(Y): 
19 i = np.where(Y == my_group) 
20 ax.scatter(scaled_X[i,0], scaled_X[i,1], 
21 color=my_colors[my_group], 
22 label=my_group + 1 , edgecolor=’k’, alpha=0.8) 
23 
24 ax.legend(title=’Cluster’) 
25 
26 ax.set_xlabel(r’$log_{10}[^{12}C/^{13}C]$’) 
27 ax.set_ylabel(r’$log_{10}[^{14}N/^{15}N]$’) 
28 
29 fig.tight_layout() 

Listing 3.11 Application of the GaussianMixture() algorithm to SiC data 

3.4 Training a Model 

Figure 3.5 shows a cheat sheet that guides us in selecting a model for the scikit-learn 
library.9 

Scikit-learn works in the fields of both unsupervised learning (i.e., clustering and 
dimensionality reduction) and supervised learning (i.e., regression and classifica-
tion). In supervised learning, examples of classification algorithms are the support 
vector classifier (see Sect. 7.9) and the K-nearest neighbors (see Sect. 7.10). In 
the field of regression, examples are the stochastic gradient descent (SGD), support 
vector (SVR), and ensemble regressors. Examples of unsupervised learning, if we 
consider dimensionality reduction, are locally linear embedding (LLE, see Sect. 4.3) 
and principal component analysis (PCA, see Sect. 4.2). For clustering, examples are 
K means, Gaussian mixture models (GMM, see Sect. 4.9), and spectral clustering.

9 https://scikit-learn.org/stable/tutorial/machine_learning_map/. 

https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
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Fig. 3.5 Scikit-learn algorithm cheat sheet. Modified from the official documentation of scikit-
learn 

We discuss in detail the most popular ML algorithms in Chaps. 4 and 7, which deal 
with unsupervised and supervised learning, respectively. 

I now present a simple example of training an unsupervised algorithm for SiC 
analyses that we use as a proxy for a scientific data set in the field of geochemistry 
and cosmochemistry science. Code listing 3.11 shows how to cluster SiC data by 
Gaussian mixtures (see Sect. 4.9) with the data previously pre-processed by code 
listings 3.9 and 3.10. The core of the training is at line 12, where I parameterized the
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Fig. 3.6 Clustering produced by applying the GaussianMixture() algorithm to the SiC data (code 
listing 3.11) 

GaussianMixture() algorithm (i.e., defining nine clusters and fixing the random state 
of the pseudo-random number generator to allow the reader to exactly reproduce my 
results). 

Generally speaking, the .fit() method in scikit-learn launches the training of ML 
algorithms. Then, using the .predict() method, we get the results or we transfer the 
knowledge obtained to unknown data. Figure 3.6 shows the result of clustering by 
GaussianMixture() (see lines 16–29 of code listing 3.11). 

3.5 Model Validation and Testing 

The validation and testing of a model is the third fundamental step in ML, after 
pre-processing and training. They allow us to evaluate the “goodness” of a model. 

3.5.1 Splitting the Investigated Data Set into Three Parts 

The approach of model validation and testing by splitting the investigated data 
set into three parts is clearly described by Hastie et al. (2017) (Fig. 3.7): the best 
approach for model assessment in ML “is to randomly divide the data set into three 
parts: a training set, a validation set, and a test set. The training set is used to fit the
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Original Data Set 

TestTrain Validation 

Fig. 3.7 Splitting the investigated data set into three parts 

models; the validation set is used to estimate prediction error for model selection; 
the test set is used for assessment of the generalization error of the final chosen 
model.” 

1 from sklearn import preprocessing 
2 from sklearn.model_selection import train_test_split 
3 
4 le = preprocessing.LabelEncoder() 
5 le.fit(my_data[’PGD Type’]) 
6 y = le.transform(my_data[’PGD Type’]) 
7 
8 X_train_valid, X_test, y_train_valid, y_test = train_test_split( 
9 X, y, test_size=0.20) 
10 
11 X_train, X_valid, y_train, y_valid = train_test_split( 
12 X, y, test_size=0.25) 

Listing 3.12 Splitting the investigated data set into three parts in scikit-learn 

Typically, we use the training data set to train a selection of candidate models, 
which could be different algorithms, a single algorithm tuned with different hyper-
parameters (i.e., one or more variables that affect the behavior of an algorithm), or 
a combination of both. We then use the validation data set to evaluate candidate 
models and, based on the results, choose the best model. Finally, we check the 
selected model using the test data set. As an example, the train_test_split() method 
in scikit-learn randomly splits a data set into two parts (e.g., training plus validation 
and test sets). Again applying the train_test_split() method to the training plus 
validation set further divides it into the training and validation sets. 

Note that the statements on lines 4–6 of code listing 3.12 simply convert the 
labels referring to a specific SiC Class (i.e., M, Y, Z, X, AB, and N) to an integer 
value ranging from 0 to 5. This approach facilitates the management of labels during 
the execution of supervised methods in the fields of regressions and classification. 

3.5.2 Cross-Validation 

The cross-validation (CV) procedure may be seen as an evolution of the static 
division of the investigated data set into three parts.
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Fig. 3.8 Example of k-fold cross-validation 

In the cross-validation procedure, the initial data set is split into two parts: the 
test set and the training plus validation sets. Then, in the most basic strategy of 
cross-validation (called k-fold CV), the joint training and validation set is split into 
k smaller batches (Fig. 3.8). The following steps consist of repeating the training 
and the validation for the candidate model as follows: (1) we use .k − 1 folds as the 
training set; (2) the result of the training is validated against the remaining fold of 
the data; and (3) we repeat the procedure for the next split. 

1 from sklearn import svm 
2 from sklearn import preprocessing 
3 from sklearn.model_selection import cross_validate 
4 
5 le = preprocessing.LabelEncoder() 
6 le.fit(my_data[’PGD Type’]) 
7 y = le.transform(my_data[’PGD Type’]) 
8 
9 my_model = svm.SVC(kernel=’linear’, C=1, random_state=42) 
10 
11 cv_results = cross_validate(my_model, scaled_X, y, cv=5, 
12 scoring=’accuracy’) 
13 
14 print(cv_results[’test_score’]) 
15 
16 ’’’ 
17 Output: 
18 [0.98529412 0.97785978 0.9704797 0.98154982 0.95940959] 
19 ’’’ 

Listing 3.13 Application of a linear support vector classifier to SiC data
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1 from sklearn import svm 
2 from sklearn import preprocessing 
3 from sklearn.model_selection import GridSearchCV 
4 
5 le = preprocessing.LabelEncoder() 
6 le.fit(my_data[’PGD Type’]) 
7 y = le.transform(my_data[’PGD Type’]) 
8 
9 parameters = {’kernel’:(’linear’, ’rbf’), ’C’:[0.1, 1, 10]} 
10 my_model = svm.SVC() 
11 
12 my_grid_search = GridSearchCV(my_model, parameters, 
13 cv = 4, scoring=’accuracy’) 
14 
15 my_grid_search.fit(scaled_X, y) 

Listing 3.14 Model evaluation and selection by k-fold CV 

The performance of the candidate model can be estimated by using the selected 
metrics and averaging the k results obtained. As an example, code listing 3.13 shows 
how to perform k-fold CV in scikit-learn using the cross_validate() method. After 
converting the five labels in the “PGD Type” columns (i.e., M, Y, Z, X, AB, N to 
a numeric index ranging from 0 to 5; see lines 5 to 7), we define a linear support 
vector classifier (see Sect. 7.9) characterized by a .C = 1 hyperparameter (line 9). 
Finally, we perform the k-fold CV by dividing the data set into fivefold and using 
accuracy as a metric. As expected, we obtain five estimates for the accuracy, one for 
each split. 

1 In [01]: my_grid_search.best_estimator_ 
2 Out[01]: SVC(C=10, kernel=’linear’) 
3 
4 In [02]: my_grid_search.best_score_ 
5 Out[02]: 0.9778761061946903 
6 
7 In [03]: my_grid_search.cv_results_ 
8 Out[03]: 
9 {’mean_fit_time’: array([0.00605977, 0.02105349, 0.00482285, 
10 0.01113951, 0.00554657, 0.00662667]), 
11 ’std_fit_time’: array([3.7539e-04, 6.0314e-04, 2.1346e-04, 
12 7.0395e-04, 5.5384e-04, 3.1989e-05]), 
13 ’mean_score_time’: array([0.00242817, 0.01987976, 0.00181627, 
14 0.00979179, 0.00133586,0.00618142]), 
15 ’std_score_time’: array([7.4277e-05, 1.6316e-03, 1.6929e-04, 
16 2.7074e-04, 2.2063e-04, 6.4881e-04]), 
17 ’param_C’: masked_array(data=[0.1, 0.1, 1, 1, 10, 10], 
18 mask=[False, False, False, False, False, False], 
19 fill_value=’?’, dtype=object), 
20 ’param_kernel’: masked_array(data=[’linear’, ’rbf’, ’linear’, 
21 ’rbf’, ’linear’, ’rbf’], 
22 mask=[False, False, False, False, False, False], 
23 fill_value=’?’, dtype=object),
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24 ’params’: [{’C’: 0.1, ’kernel’: ’linear’}, 
25 {’C’: 0.1, ’kernel’: ’rbf’}, 
26 {’C’: 1,  ’kernel’: ’linear’}, 
27 {’C’: 1,  ’kernel’: ’rbf’}, 
28 {’C’: 10, ’kernel’: ’linear’}, 
29 {’C’: 10, ’kernel’: ’rbf’}], 
30 ’split0_test_score’: array([0.92330383, 0.8879056 , 0.98230088, 
31 0.91150442, 0.97935103, 0.97050147]), 
32 ’split1_test_score’: array([0.9380531 , 0.88495575, 0.97935103, 
33 0.92625369, 0.98525074, 0.97935103]), 
34 ’split2_test_score’: array([0.92330383, 0.89380531, 0.97345133, 
35 0.91740413, 0.97640118, 0.96460177]), 
36 ’split3_test_score’: array([0.91740413, 0.88495575, 0.96755162, 
37 0.90560472, 0.97050147, 0.96460177]), 
38 ’mean_test_score’: array([0.92551622, 0.8879056 , 0.97566372, 
39 0.91519174, 0.97787611, 0.96976401]), 
40 ’std_test_score’: array([0.00762838, 0.00361282, 0.00566456, 
41 0.00762838, 0.00531792, 0.0060364 ]), 
42 ’rank_test_score’: array([4, 6, 2, 5, 1, 3], dtype=int32)} 

Listing 3.15 How to get the results of GridSearchCV() 

Using the k-fold cross-validation, n different candidate models can be evaluated 
by repeating n times the k-fold CV. As an example, the GridSearchCV() method 
in scikit-learn performs an exhaustive search (i.e., it evaluates all possible combi-
nations of the proposed parameters) over a range of parameter values for a specific 
estimator (i.e., a ML algorithm). As an example, the method GridSearchCV() can 
be used to determine the best choice for the hyperparameters of a ML algorithm, 
such as the C parameter and the “kernel function” of a support vector machine 
(see Sect. 7.9). The code listing 3.14 shows in detail how to define the grid for the 
selected hyperparameters (line 9). On line 10, we define the model (i.e., a support 
vector classifier). On line 12, we define the grid search for our support vector 
classifier model, using the parameters defined on line 9, a fourfold cross-validation, 
and accuracy as a metric. Finally, on line 15 we physically perform the grid search 
for all combinations among the defined parameters. In detail, line 9 defines two 
kernel functions and three values for C. Therefore, the grid search performs six 
cross-validations and splits the scaled_X data set into four folds. 

Code listing 3.15 shows how to get the results of a GridSearchCV(). More 
specifically, the best_estimator_, best_score_, and cv_results_ attributes provide us 
with the optimal combination of hyperparameters, the best score, and a dictionary 
containing all the results, respectively. 

3.5.3 Leave-One-Out Cross-Validation 

The Leave-one-out (or LOO) cross-validation is a limiting case of the k-fold CV. 
When using the LOO approach, each training set is created by taking all the samples 
except one. The test set is then created by using the sample left out.
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1 import numpy as np 
2 from sklearn import svm 
3 from sklearn.model_selection import LeaveOneOut 
4 from sklearn.model_selection import cross_validate 
5 import matplotlib.pyplot as plt 
6 
7 loo = LeaveOneOut() 
8 
9 my_model = svm.SVC(kernel=’linear’, C=1, random_state=42) 
10 
11 cv_results = cross_validate(my_model, scaled_X, y, cv=loo, 
12 scoring=’accuracy’) 
13 
14 fig, ax = plt.subplots() 
15 my_x = [0,1] 
16 my_height = [np.count_nonzero(cv_results[’test_score’] == 0), 
17 np.count_nonzero(cv_results[’test_score’] == 1)] 
18 my_bar = ax.bar(x = my_x, height=my_height, width=1, 
19 color=[’#F15C61’, ’#BFD7EA’], 
20 tick_label=[’wrongly classified’, ’correcty 

classified’], 
21 edgecolor=’k’) 
22 ax.set_ylabel(’occurrences’) 
23 ax.set_title(’LOO cross validation n = {}’.format(len(scaled_X))) 
24 ax.bar_label(my_bar) 
25 ax.set_ylim(0,1600) 

Listing 3.16 Leave-one-out cross-validation 

In the LOO approach, the cross-validation typically covers all potential training 
sets (i.e., each sample of the investigated data set). Code listing 3.16 highlights how 
to perform a LOO cross-validation on the same study case used in code listing 3.13. 
Figure 3.9 shows the results of the LOO cross-validation of code listing 3.16. In  
the specific case under study, code listing 3.13 cross-validates 1356 models, each of 
which considers one of the investigated samples as the test data set, with all other 
samples serving for training. 

3.5.4 Metrics 

As you have probably noticed, the validation process is based on a metric. As 
an example, code listings 3.13, 3.13, and 3.16 specify scoring=‘accuracy’, which 
means that all examples given to this point use accuracy as a metric to quantify the 
“goodness” of a model. Note that a plethora of metrics exist that can potentially 
be used to validate a model. For example, Tables 3.3, 3.4, and 3.5 list the 
metrics that are available in scikit-learn for classification, regression, and clustering,
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Fig. 3.9 Result of the LOO cross-validation (code listing 3.16) 

respectively.10 All the metrics reported in these tables follow the same convention: 
the goodness of the model increases as the value returned by the selected metric 
increases. In other words, higher values for a specific metric are better than lower 
values. 

3.5.5 Overfitting and Underfitting 

Over- and under-fitting should definitively be avoided when training a ML model. 
Over-fitting is when the trained models work suspiciously well in fitting the training 
set, whereas the performance with real-world data is poor (Shai & Shai, 2014). In 
other words, over-fitting occurs “when our hypothesis fits the training data too well 
(Shai & Shai, 2014).” Conversely, when our hypothesis is too simplistic (e.g., we try 
training a linear model to fit a nonlinear pattern; see Fig. 3.10) we have under-fitting, 
meaning a large approximation error (Shai & Shai, 2014).

10 https://scikit-learn.org/stable/modules/model_evaluation.html. 
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Table 3.3 Metrics and scoring for the classification in scikit-learn 

Method in metrics Keywords Description 

.accuracy_score ‘accuracy’ Accuracy classification score 

.balanced_accuracy_score ‘balanced_accuracy’ Compute the balanced accuracy 

.top_k_accuracy_score ‘top_k_accuracy’ Top-k Accuracy classification 

.average_precision_score ‘average_precision’ Compute the average precision 

.brier_score_loss ‘neg_brier_score’ Compute the Brier score loss 

.precision_score ‘precision’ Compute the precision 

‘precision_micro’ 

‘precision_macro’ 

‘precision_weighted’ 

‘precision_samples’ 

.f1_score ‘f1’ Compute the F1 score 

‘f1_micro’ 

‘f1_macro’ 

‘f1_weighted’ 

‘f1_samples’ 

.recall_score ‘recall’ Compute the recall 

‘recall_micro’ 

‘recall_macro’ 

‘recall_weighted’ 

‘recall_samples’ 

.jaccard_score ‘jaccard’ Jaccard similarity coefficient 

‘jaccard_micro’ 

‘jaccard_macro’ 

‘jaccard_weighted’ 

‘jaccard_samples’ 

.roc_auc_score ‘roc_auc’ Area Under the Receiver 

‘roc_auc_ovr’ Operating Characteristic 

‘roc_auc_ovo’ Curve (ROC AUC) 

‘roc_auc_ovr_weighted’ 

‘roc_auc_ovo_weighted’ 

3.6 Model Deployment and Persistence 

The deployment and persistence of a ML model is the last step of our workflow. 
Many options exist to ensure the persistence of a model, such as the use of pickles, 
joblib’s pipelines, the Open Neural Network Exchange Format,11 and the Predictive 
Model Markup Language12 format.

11 https://onnx.ai. 
12 https://dmg.org. 

https://onnx.ai
https://onnx.ai
https://onnx.ai
https://dmg.org
https://dmg.org
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Table 3.4 Metrics and scoring for the regression in scikit-learn 

Method in metrics Keywords Description 

.explained_variance_score ‘explained_variance’ Explained variance 

regression score 

.max_error ‘max_error’ Calculates the maximum 

residual error 

.mean_absolute_error ‘neg_mean_absolute_error’ Mean absolute error 

regression loss 

.mean_squared_error ‘neg_mean_squared_error’ Mean squared error 

regression loss 

‘neg_root_mean_squared_error’ Root mean squared error 

regression loss 

.mean_squared_log_error ‘neg_mean_squared_log_error’ Mean squared 
logarithmic 

error regression loss 

.median_absolute_error ‘neg_median_absolute_error’ Median absolute error 

regression loss 

.r2_score ‘r2’ .R2-coefficient of 

determination score 

.mean_poisson_deviance ‘neg_mean_poisson_deviance’ Mean Poisson deviance 

regression loss 

.mean_gamma_deviance ‘neg_mean_gamma_deviance’ Mean Gamma deviance 

regression loss 

.mean_absolute_percentage_error ‘neg_mean_absolute_ Mean absolute 
percentage 

percentage_error’ error regression loss 

As reported in the scikit-learn official documentation,13 joblib’s pipelines share 
some maintenance and security issues. For example, they assume the deployment 
of models in the same environment (i.e., the same library versions and Python 
core). Due to the above-mentioned issues, I suggest using the Open Neural Network 
Exchange Format or the Predictive Model Markup Language format to ensure the 
persistence of your ML model. These formats aim to improve model portability on 
different computing architectures and long-term archiving.

13 https://scikit-learn.org/stable/model_persistence.html. 

https://scikit-learn.org/stable/model_persistence.html
https://scikit-learn.org/stable/model_persistence.html
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Table 3.5 Metrics and scoring for the clustering in scikit-learn 

Method in metrics Keywords Description 

.adjusted_mutual_info_score ‘adjusted_mutual_info_score’ Adjusted mutual information 

between two clusterings 

.adjusted_rand_score ‘adjusted_rand_score’ Rand index adjusted for chance 

.completeness_score ‘completeness_score’ Completeness metric of a cluster 

labeling given a ground truth 

.fowlkes_mallows_score ‘fowlkes_mallows_score’ Measure the similarity of two 

clusterings of a set of points 

.homogeneity_score ‘homogeneity_score’ Homogeneity metric of a cluster 

labeling given a ground truth 

.mutual_info_score ‘mutual_info_score’ Mutual Information 

between two clusterings 

.normalized_mutual ‘normalized_mutual Normalized Mutual Information 

_info_score _info_score’ between two clusterings 

.rand_score ‘rand_score’ Rand index 

.v_measure_score ‘v_measure_score’ V-measure cluster labeling 

given a ground truth 

Underfitting 

Overfitting 

Good Model 

Model 
Error on the test data set 

Training data set 
Test data set 

Fig. 3.10 Overfitting and underfitting
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Part II 
Unsupervised Learning



Chapter 4 
Unsupervised Machine Learning 
Methods 

4.1 Unsupervised Algorithms 

As introduced in Chap. 1, the unsupervised learning process acts on unlabeled data 
and attempts to extract significant patterns from the investigated data set. In the 
present chapter, I gently introduce the unsupervised algorithms for dimensionality 
reduction and clustering reported in Fig. 3.5. Finally, I provide some specific 
references to allow readers to delve deeper into the mathematics that governs these 
ML methods. In detail, I start by describing the algorithms for dimensionality 
reduction, which include the principal component analysis and methods based 
on manifold learning. I then describe clustering methods, such as hierarchical 
clustering, DBSCAN, mean shift, K means, spectral clustering, and Gaussian 
mixtures models. 

4.2 Principal Component Analysis 

Principal component analysis (PCA) is a multivariate statistical method that extracts 
relevant information from a data set and represents it in a lower-dimensional 
space (Jollife & Cadima, 2016). It strives to increase the interpretability of a 
data set by reducing the dimensionality of the problem while at the same time 
minimizing information loss (Jollife & Cadima, 2016). In detail, it creates new 
uncorrelated variables (i.e., through a linear combination of the original variables), 
called “principal components,” that maximize variance (Jollife & Cadima, 2016). 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Mathematically, PCA is an eigenvalue-eigenvector problem (Jollife & Cadima, 
2016). Consider a d-dimensional sample set .X = {x1, x2, xj , . . . , xp} made of n 
observations on p numerical variables. The sample set X is equivalent to an . n × p

data matrix . X, whose j th column is the vector . xj of observations on the j th variable 
(Jollife & Cadima, 2016). We look for a linear combination of the columns of matrix 
. X with maximum variance (Jollife & Cadima, 2016). Such linear combinations are 
given by 

.

p∑

j=1

ajxj = Xa, (4.1) 

where .a = {a1, a2, . . . , ap} is a vector of constants (Jollife & Cadima, 2016). The 
variance of any linear combination defined by Eq. (4.1) is given by Jollife and 
Cadima (2016) 

.var(Xa) = aT Sa, (4.2) 

where . S is the sample covariance matrix associated with the data set (Jollife & 
Cadima, 2016). 

The solution to the problem (i.e., identifying the linear combination with 
maximum variance) consists of finding a d-dimensional vector . a that maximizes 
the quadratic form .aT Sa (Jollife & Cadima, 2016). To obtain a defined solution, the 
most common restriction assumes working with unit-norm vectors (i.e., requiring 
.aT a = 1). Now the problem is equivalent to maximizing the relation (Jollife & 
Cadima, 2016) 

.aT Sa − λ
(
aT a − 1

)
. (4.3) 

After differentiating with respect to the vector . a and equating to the null vector, we 
have (Jollife & Cadima, 2016) 

.Sa = λa. (4.4) 

In Eq. (4.4), . a is a unit-norm eigenvector and . λ is the corresponding eigenvalue of 
. S (Jollife & Cadima, 2016). The full set of eigenvectors of . S are the solutions to 
the problem of obtaining up to d new linear combinations .Xak = ∑d

j=1 ajkxj , 
which successively maximize variance subject to noncorrelation with previous 
linear combinations (Jolliffe, 2002; Jollife & Cadima, 2016). 

4.3 Manifold Learning 

The main idea behind manifold learning methods is that, although natural data sets 
are often depicted in very-high-dimensional spaces, they can be described in lower
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dimensions because the processes generating the data are often characterized by 
few degrees of freedom (Zheng & Xue, 2009). From the mathematical point of 
view, manifold learning methods try to model the data as “lying on or near a low-
dimensional manifold embedded in a higher-dimensional space” (Zheng & Xue, 
2009). In the following, I introduce the basic concepts of manifold learning, but 
I strongly encourage you to go deeper into the details if you plan to use these 
techniques in your research (Zheng & Xue, 2009). 

Manifold A d-dimensional manifold . M is a topological space that is locally 
homeomorphic with respect to . Rd . 

Homomorphism A map from one algebraic structure to another of the same type 
that preserves all the relevant structures. 

Embedding An embedding of a manifold . M into . Rd is a smooth homeomorphism 
from . M to a subset of . Rd . 

4.3.1 Isometric Feature Mapping 

The Isometric feature mapping (Isomap) is an ML algorithm that is “capable 
of discovering the nonlinear degrees of freedom that underlie complex natural 
observations” (Tenenbaum et al., 2000). It consists of three main steps: (1) construct 
a neighborhood graph, (2) compute the shortest paths, and (3) construct a d-
dimensional embedding (Tenenbaum et al., 2000). In practice, Isomap searches for 
a lower-dimensional embedding while maintaining geodesic distances between all 
points. In scikit-learn, the method Isomap() performs the Isometric feature mapping. 

4.3.2 Locally Linear Embedding 

Locally linear embedding (LLE) (Roweis & Saul, 2000) is a ML algorithm 
that “computes low-dimensional, neighborhood-preserving embeddings of high-
dimensional inputs” (Roweis & Saul, 2000). In practice, LLE maps the inputs onto 
a single global coordinate system of lower dimensionality (Roweis & Saul, 2000). 
Also, its optimizations do not involve local minima (Roweis & Saul, 2000). In other 
words, LLE searches for a lower-dimensional projection of the data while preserving 
distances within local neighborhoods. In scikit-learn, LLE is implemented in the 
method LocallyLinearEmbedding().
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4.3.3 Laplacian Eigenmaps 

A Laplacian eigenmap (Belkin & Niyogi, 2003) first develops a graph incorporating 
neighborhood information starting from a data set in . Rd and then uses the Laplacian 
to compute a low-dimensional representation. Practically, Laplacian eigenmaps 
consist of three main steps: (1) constructing the adjacency graph, (2) choosing the 
weights, and (3) computing the eigenmaps. 

4.3.4 Hessian Eigenmaps 

Hessian eigenmaps (Donoho & Grimes, 2003) are similar to Laplacian eigenmaps 
but replace the Laplacian operator with the Hessian operator. The main difference 
between Laplacian and Hessian eigenmaps relies on the capability of Hessian 
eigenmaps to overcome the ‘convexity limitation’ of Laplacian eigenmaps (Zheng 
& Xue, 2009). In scikit-learn, Hessian eigenmaps can be performed with the 
LocallyLinearEmbedding(), i.e., the same that we use for the LLE, but specifying 
method = ‘hessian’. 

4.4 Hierarchical Clustering 

Hierarchical clustering algorithms (Johnson, 1967) build a hierarchical represen-
tation of the data set structure where clusters at each level of the hierarchy 
are assembled by merging or splitting clusters at the next lower or upper level, 
respectively (Johnson, 1967; Hastie et al., 2017). Two main paradigms of hierar-
chical clustering exist: agglomerative (i.e., bottom-up) and divisive (i.e., top-down). 
Agglomerative strategies start from the bottom where every observation forms a 
cluster (Johnson, 1967; Hastie et al., 2017). Next, at each successive level, the 
algorithm recursively merges a selected pair of clusters into a single cluster. The 
criterion for merging (i.e., linkage) is based on specific metrics (Johnson, 1967; 
Hastie et al., 2017). 

In contrast, the divisive approach starts from a single cluster containing all 
observations and, at each subsequent level, recursively splits one of the existent 
clusters into two new clusters using a dissimilarity metric (Johnson, 1967; Hastie 
et al., 2017). In scikit-learn, the method AgglomerativeClustering() performs the 
agglomerative hierarchical clustering using a bottom-up approach. The linkage 
criterion is based on the concept of dissimilarity. To understand this concept, 
consider two sets of observations; clusters G and H . Hierarchical clustering 
estimates the dissimilarity .d(G,H) between G and H on the set of pairwise-
observation dissimilarities . dij , where member i of the pair is in G and member j
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Table 4.1 Linkage options in AgglomerativeClustering() 

Parameter Equation Note 

linkage=‘single’ .dsl(G,H) = min
i∈G
j∈H

dij Uses the minimum of the distances 
between all observations of the two sets 

linkage=‘complete’ .dcl(G,H) = max
i∈G
j∈H

dij Uses the maximum distance between 
all observations of the two sets 

linkage=‘average’ .dga(G,H) = 1

ngnh

∑

i∈G

∑

j∈H

dij Uses the average of the distances of 
each observation of the two sets 

is in H (Hastie et al., 2017). Using AgglomerativeClustering(), the linkage criterion 
could be single, complete, group average, or Ward (Table 4.1). 

Finally, Ward’s linkage criterion (the default in scikit-learn) states that the 
distance between two clusters G and H is how much the sum of squares increases 
when they are merged: 

.�(G,H) = |G| |H |
|G| + |H | ‖mG + mH ‖2 , (4.5) 

where . � is the “merging cost” of combining clusters G and H . Also,  . m, .|G| and 
.|H | are the center of clusters and the cardinal of G and H , respectively. 

The dissimilarities .dij can be estimated by using different metrics. Using 
the method AgglomerativeClustering(), they can be “Euclidean” or “Manhattan,” 
among others. For Ward linkage, the only metric accepted is “Euclidean” [see 
Eq. (4.5)]. 

4.5 Density-Based Spatial Clustering of Applications with 
Noise 

The algorithm density-based spatial clustering of applications with noise 
(DBSCAN) relies on a “density-based notion of clusters which is designed to 
discover clusters of arbitrary shape” (Ester et al., 1996). Topologically, DBSCAN 
identifies a core sample if there exists a pre-defined minimum number of other (i.e., 
neighbors of the core sample) within a distance of . ε (Ester et al., 1996). A cluster is 
a set of core samples plus their neighbors. Any sample that is neither a core sample 
nor a neighbor (i.e., it is at least a distance . ε from any core sample) is marked as 
an outlier (Ester et al., 1996). Note that DBSCAN does not require the number of 
clusters to be specified.
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4.6 Mean Shift 

The mean shift algorithm is a nonparametric technique for clustering analysis 
(Comaniciu & Meer, 2002); it estimates the kernel density in the investigated 
d-dimensional feature space (Derpanis, 2005). As a result, the kernel density 
estimation defines an empirical probability density function where “dense regions” 
identify local maxima (i.e., modes) of the underlying distribution (Derpanis, 2005). 
Finally, the mean shift algorithm performs a gradient ascent (i.e., it searches 
until convergence for these maxima in the empirical probability density function) 
(Derpanis, 2005). In detail, the mean shift procedure for a given observation . xi is as 
follows (Derpanis, 2005; Comaniciu & Meer, 2002): 

1. Compute the mean shift vector .m(xt
i ) at the step t ; 

2. Translate the density-estimation window: .xt+1
i = xt

i + m(xt
i ); 

3. Iterate steps 1 and 2 until convergence. 

The mean shift vector is defined as follows [Eq. (17) in Comaniciu and Meer 
(2002)]: 

.m(xi ) =
⎡

⎣
∑n

i=1 xig
(∥∥ x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥ x−xi

h

∥∥2
) − x

⎤

⎦ , (4.6) 

where the function .g(x) is the derivative of the selected kernel estimator and h 
(i.e., the bandwidth parameter) defines the radius of the kernel (Comaniciu & Meer, 
2002). 

In scikit-learn, the MeanShift() method uses a flat kernel to perform mean 
shift clustering. Note that the default scikit-learn parametrization of the mean 
shift algorithm automatically sets the number of clusters and the optimal h (i.e., 
the bandwidth). However, h can be manually adjusted by using the bandwidth 
parameter. 

4.7 K-Means 

The K-means is a clustering technique that seeks to minimize the average squared 
distance between points in the same cluster (Arthur & Vassilvitskii, 2007). Note 
that the K-means algorithm requires the number of clusters to be specified. 
Mathematically, the K-means algorithm can be expressed as follows: given an 
integer k and a set of n data points in . Rd , the goal is to choose k centers to minimize
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the total squared distance between each point and its closest center (i.e., the inertia 
. φ) (Arthur & Vassilvitskii, 2007): 

.φ =
∑

x∈X

min
c∈C

‖x − c‖2 . (4.7) 

Usually, the K-means implementation (e.g., in scikit-learn) refers to the solution 
of the problem proposed by Lloyd (1982). In detail, the algorithm proposed by 
Arthur and Vassilvitskii (2007) consists of four steps: 

1. Arbitrarily choose an initial k centers .C = {c1, c2, . . . , ck, }; 
2. For each .i ∈ {1, . . . , k}, set the cluster . Yi to be the set of points in X that are 

closer to . ci ; 
3. Define new centroids . ci by averaging all the samples assigned to each previous 

centroid; 
4. Repeat steps 2 and 3 until C no longer changes significantly. 

In scikit-learn, the method KMeans() implements K-means clustering. Also, 
MiniBatchKMeans() modifies the K-means algorithm by using minibatches to save 
computation time. 

4.8 Spectral Clustering 

Spectral clustering (Von Luxburg, 2007) is a ML technique that combines clustering 
with dimensionality reduction (Sugiyama, 2015). In detail, spectral clustering uses 
a kernel function to transform samples into a feature space and then applies a 
locality-preserving projection to reduce the dimensionality (see Fig. 4.1). Note that 
a locality-preserving projection in the feature space is equivalent to the Laplacian 
eigenmap manifold method described in Sect. 4.3.3 (Sugiyama, 2015). In practice, 
spectral clustering performs a low-dimensional embedding low-dimensional embed-
ding of the similarity (or affinity) matrix between samples (Von Luxburg, 2007). 
Finally, spectral clustering uses a clustering method (e.g., K means) to obtain cluster 
labels (Sugiyama, 2015; Von Luxburg, 2007). 

In scikit-learn the method SpectralClustering() applies spectral clustering. Note 
that SpectralClustering() requires the number of clusters to be specified in advance.
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Fig. 4.1 Locality-preserving 
projection. The projection 
tries to maintain the cluster 
structure when reducing the 
dimensionality of the 
problem. Modified from 
Sugiyama (2015) 

4.9 Gaussian Mixture Models 

Gaussian mixture models (GMMs) try to reconstruct the probability density function 
that underlies the investigated data set as generated by a mixture of a finite number 
of Gaussian distributions with unknown parameters (McLachlan & Peel, 2000). 

To understand how GMMs work, consider a d-dimensional (i.e., characterized 
by d variables or features) sample set .X = {x1, x2, . . . , xn} of independent and 
identically distributed observations (McLachlan & Peel, 2000). Finite mixtures 
models (FMMs) assume that the observations .x ∈ X derive from a probability 
density function described by a mixture of g components (McLachlan & Peel, 2000; 
Scrucca et al., 2016): 

.f (x, ψ) =
g∑

i=1

πifi(x, θ i ), (4.8) 

where g and .ψ = {π1, . . . , πg−1, θ1, . . . , θg} are the number of mixture com-
ponents and the parameters of the model, respectively (Scrucca et al., 2016). 
Also, .fi(x, θ i ) is the ith component density for the sample observation . x and 
is parametrized by the vector . θ i . Finally, .{π1, . . . , πg−1} are the mixing weights 
(Scrucca et al., 2016). 

In many applications, the component densities .fi(x, θ i ) are assumed to belong 
to the same parametric family (McLachlan & Peel, 2000). In some applications, 
the component densities are taken to be different. The implementation of a finite 
Gaussian mixtures model assumes .fi(x, θ i ) as a multivariate normal, a fixed G, and 
consists of estimating the model parameters . ψ (McLachlan & Peel, 2000). 

In scikit-learn, the methods GaussianMixture() and BayesianGaussianMixture() 
implement the finite Gaussian mixture model based on expectation-maximization 
(EM) (Dempster et al., 1977) and variational Bayesian inference (Hastie et al., 
2017; Blei & Jordan, 2006), respectively. Variational Bayesian inference is similar
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to expectation maximization, although the former adds a regularization step by inte-
grating information from integrating information from prior distributions (Hastie 
et al., 2017; Blei & Jordan, 2006). The aim is to avoid pathological special cases, 
which often appear in expectation-maximization solutions (Blei & Jordan, 2006). 
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Chapter 5 
Clustering and Dimensionality Reduction 
in Petrology 

5.1 Unveil the Chemical Record of a Volcanic Eruption 

Unsupervised machine learning methods can help us decode the chemical record 
stored in the crystal cargo of a single eruption or multiple volcanic events (Caricchi 
et al., 2020b; Boschetty et al., 2022; Musu et al.,  2023). This record often includes 
the major element’s chemical composition (i.e., multivariate compositional data) of 
different crystal phases such as olivine, clinopyroxene, orthopyroxene, amphibole, 
plagioclase, garnet, and quartz (Boschetty et al., 2022; Aitchison & Egozcue, 2005; 
Aitchison, 1982, 1984). Each of these phases provides clues to unravel the complex 
dynamics of a volcanic plumbing system (Ubide et al., 2021) and its evolution 
(Costa et al., 2020; Petrelli & Zellmer, 2020). 

During the crystallization process (Fig. 5.1), minerals grow and adapt their 
textural aspect and chemistry to the melt compositions and the thermodynamic 
conditions of the magmatic system (Ubide et al., 2021). For example, concentric 
chemical zones from the core to the rim of a crystal reflect the sequential changes 
over time imposed by the magmatic system (Fig. 5.1). Moderate-to-rapid growths at 
intermediate-to-high degrees of undercooling (.�T = Tliquidus − Tcrystallisation) may  
result in sector zoning in euhedral crystals or skeletal to dendritic textures (Fig. 5.1). 
In addition, diffusive re-equilibration of compositional gradients can further modify 
chemical patterns in crystals (Costa et al., 2020; Petrelli & Zellmer, 2020). 

At shallow crustal levels (Fig. 5.1), pre- and syn-eruptive dynamics include 
a complex range of processes, including magma fractionation, recharge, mixing, 
assimilation, and degassing (Ubide et al., 2021). Interrogating the crystal cargo 
of an eruption provides us with the requisite information to unravel the complex 
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Fig. 5.1 Architecture of a volcanic plumbing system and related pre- and syn-eruptive dynamics. 
Modified from Petrelli and Zellmer (2020) and Ubide et al. (2021)
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dynamics of a volcanic plumbing system before and during eruption (Ubide et al., 
2021). 

In this chapter, I focus on the data set reported by Musu et al. (2023), which 
consists of clinopyroxene analyses (cpx) erupted by the South-East Crater of Mt. 
Etna during the sequence of lava fountains that occurred between February and 
April of 2021 (Musu et al., 2023). 

Musu et al. (2023) focused on cpx analyses because (1) cpx is typically 
found in mafic to intermediate magmas, (2) cpx crystallizes over a wide range 
of temperatures T and pressures P , and (3) cpx chemistry depends on magma 
composition, water content, pressure, and temperature (Musu et al., 2023), which 
make cpx a robust thermobarometer (Putirka, 2008; Petrelli et al., 2020; Jorgenson 
et al., 2022; Higgins et al., 2021) and a fine recorder of the chemical evolution of 
magmatic systems (Ubide & Kamber, 2018; Caricchi et al., 2020b; Boschetty et al., 
2022). 

5.2 Geological Setting 

Mt. Etna is in eastern Sicily on the southern tip of the Italian peninsula (Fig. 5.2) 
and is the largest active volcano in Europe (Branca & Del Carlo, 2004) and one of 
the most active volcanoes in the world (Cappello et al., 2013; Corsaro & Miraglia, 
2022). 
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Fig. 5.2 Mt. Etna volcano. Modified from Musu et al. (2023)
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The Mt. Etna volcano exhibits different eruptive behaviors, from effusive to 
explosive, including strombolian and violent lava-fountaining occurrences (Branca 
& Del Carlo, 2004; Ferlito et al., 2014; Corsaro & Miraglia, 2022). Eruptions 
come from summit craters and fissure vents along its flanks (Musu et al., 2023; 
Branca & Del Carlo, 2004; Di Renzo et al., 2019). The summit area consists of four 
active vents: Voragine (VOR), Bocca Nuova (BN), North-East Crater (NEC), and 
South-East Crater (SEC). Of these, the SEC is the youngest and most active vent 
(Andronico & Corsaro, 2011; Di Renzo et al., 2019; Corsaro & Miraglia, 2022). 

A cyclical eruptive sequence started at the SEC on December 13, 2020 and 
generated over 60 paroxysms; in other words, “particularly violent eruptions of the 
volcano, which is the most dangerous and tense stage of this eruptive cycle, at which 
the whole cavity of the crater is opened” (Paffengoltz, 1978). 

5.3 The Investigated Data Set 

The data set contains major-element chemical analyses collected along rim-to-core 
transects on clinopyroxenes with a point spacing of 2 . μm (Musu et al., 2023). A 
total of 1250 analyses were acquired (Musu et al., 2023) by using a JEOL 8200 
Superprobe at the University of Geneva and a JEOL JXA-8530F at the University 
of Lausanne (Musu et al., 2023). Clinopyroxene samples belong to lapilli collected 
from the lava-fountain deposits of February 16, 19, and 28 and March 2 and 10, 
2021. 

5.4 Data Pre-processing 

Code listings 5.1 and 5.2 reveal our data pre-processing strategy, including the 
final step of data visualization. The strategy consists of first cleaning the data and 
then transforming it for compositional data analysis (CoDA; cf. Sect. 3.3.6) and 
“robust” normalization. Finally, the resulting CoDA-transformed and -scaled data 
are visualized. 

5.4.1 Data Cleaning 

Code listing 5.1 is mainly a preliminary data-cleaning procedure. In detail, the 
function calc_cations_on_oxygen_basis() (lines 4–29) calculates the number of 
cations deriving from a specific chemical analysis based on a fixed number of 
oxygens in the chemical formula of a specific crystal phase. We are dealing with 
clinopyroxene analyses, so the base chemical formula contains six oxygens and four 
cations (line 36). Also, we define a tolerance of 0.06, which means that we discard 
all analyses that return less than 3.94 or more than 4.06 cations in the formula. We 
are mainly discarding bad chemical analyses (e.g., those affected by contamination,
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melt contamination, or additional issues). If you do not understand this step, please 
refer to an introductory text on mineralogy for further details (Okrusch & Frimmel, 
2020). Another test for anhydrous crystal phases is to check for closure (i.e., verify 
that the sum of the oxides is close to 100 wt. %; lines 32 and 33). 

1 import numpy as np 
2 import pandas as pd 
3 
4 def calc_cations_on_oxygen_basis(myData0, my_ph, my_el, n_ox): 
5 Weights = { 
6 ’SiO2’: [60.0843,1.0,2.0], ’TiO2’:[79.8788,1.0,2.0], 
7 ’Al2O3’: [101.961,2.0,3.0],’FeO’:[71.8464,1.0,1.0], 
8 ’MgO’:[40.3044,1.0,1.0], ’MnO’:[70.9375,1.0,1.0], 
9 ’CaO’:[56.0774,1.0,1.0], ’Na2O’:[61.9789,2.0,1.0], 

10 ’K2O’:[94.196,2.0,1.0], ’Cr2O3’:[151.9982,2.0,3.0], 
11 ’P2O5’:[141.937,2.0,5.0], ’H2O’:[18.01388,2.0,1.0]} 
12 myData = myData0.copy() 
13 myData = myData.add_prefix(my_ph + ’_’) 
14 for el in my_el: # Cation mole proportions 
15 myData[el + ’_cat_mol_prop’] = myData[my_ph + 
16 ’_’ + el] * Weights[el][1] / Weights[el][0] 
17 for el in my_el: # Oxygen mole proportions 
18 myData[el + ’_oxy_mol_prop’] = myData[my_ph + 
19 ’_’ + el] * Weights[el][2] / Weights[el][0] 
20 totals = np.zeros(len(myData.index)) # Ox mole prop tot 
21 for el in my_el: 
22 totals += myData[el + ’_oxy_mol_prop’] 
23 myData[’tot_oxy_prop’] = totals 
24 totals = np.zeros(len(myData.index)) # totcations 
25 for el in my_el: 
26 myData[el + ’_num_cat’] = n_ox * myData[el + 
27 ’_cat_mol_prop’] / myData[’tot_oxy_prop’] 
28 totals += myData[el + ’_num_cat’] 
29 return totals 
30 
31 my_dataset = pd.read_table(’ETN21_cpx_all.txt’) 
32 my_dataset = my_dataset[(my_dataset.Total>98) & 
33 (my_dataset.Total<102)] 
34 Elements = {’cpx’: [’SiO2’, ’TiO2’, ’Al2O3’, 
35 ’FeO’, ’MgO’, ’MnO’, ’CaO’, ’Na2O’,’Cr2O3’]} 
36 Cat_Ox_Tolerance = {’cpx’: [4,6,0.06]} 
37 my_dataset[’Tot_cations’] = calc_cations_on_oxygen_basis( 
38 myData0 = my_dataset, 
39 my_ph = ’cpx’, 
40 my_el = Elements[’cpx’], 
41 n_ox = Cat_Ox_Tolerance[’cpx’][1]) 
42 
43 my_dataset = my_dataset[( 
44 my_dataset[’Tot_cations’] < Cat_Ox_Tolerance[’cpx’][0] + 
45 Cat_Ox_Tolerance[’cpx’][2])&( 
46 my_dataset[’Tot_cations’] > Cat_Ox_Tolerance[’cpx’][0] -
47 Cat_Ox_Tolerance[’cpx’][2])] 

Listing 5.1 Initial step of data pre-processing
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Moving on in code listing 5.2, we notice that it starts by isolating from the data 
set the chemical elements in which we are interested (i.e., SiO. 2, TiO. 2, Al. 2O. 3, 
FeO, MgO, CaO, and Na. 2O; lines 6–9). The last step of data cleaning consists 
of removing all rows containing data that are below or exceed the 0.1 and 99.9 
percentiles, respectively (lines 11–13). 

5.4.2 Compositional Data Analysis (CoDA) 

The study of a geochemical data set falls in the field of Compositional Data Analysis 
(CoDA). In this context, oxides are expressed as a percentage, so their nominal 
sum is 100%, which defines a “closed” or “compositional” data set (Aitchison, 
1982, 1984; Aitchison & Egozcue, 2005). Conducting statistical analysis directly 
on closed data sets can lead to problems (Aitchison, 1982, 1984; Aitchison & 
Egozcue, 2005) because some statistical approaches require that the data be 
normally distributed and not constrained to a constant total value (Boschetty et al., 
2022). 

1 from skbio.stats.composition import ilr 
2 from sklearn.preprocessing import RobustScaler 
3 import matplotlib.pyplot as plt 
4 import seaborn as sns 
5 
6 elms_for_clustering = {’cpx’: [’SiO2’, ’TiO2’, 
7 ’Al2O3’, ’FeO’, ’MgO’, ’CaO’, ’Na2O’]} 
8 
9 my_dataset = my_dataset[elms_for_clustering[’cpx’]] 

10 
11 my_dataset = my_dataset[~(( 
12 my_dataset < my_dataset.quantile(0.001)) | 
13 (my_dataset > my_dataset.quantile(0.999))).any(axis=1)] 
14 
15 my_dataset_ilr = ilr(my_dataset) 
16 
17 transformer = RobustScaler( 
18 quantile_range=(25.0, 75.0)).fit(my_dataset_ilr) 
19 
20 my_dataset_ilr_scaled = transformer.transform(my_dataset_ilr) 
21 
22 fig = plt.figure(figsize=(8,8)) 
23 
24 for i in range(0,6): 
25 ax1 = fig.add_subplot(3, 2, i+1) 
26 sns.kdeplot(my_dataset_ilr_scaled[:, i],fill=True, 
27 color=’k’, facecolor=’#c7ddf4’, ax = ax1)  
28 ax1.set_xlabel(’scaled ilr_’ + str(i+1)) 
29 fig.align_ylabels() 
30 fig.tight_layout() 

Listing 5.2 Compositional data analysis (CoDA)
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As we know from Sect. 3.3.6, performing multivariate statistical analysis directly 
on compositional data sets is not formally correct and can bias the results or cause 
other problems (Aitchison, 1982; Aitchison & Egozcue, 2005; Aitchison, 1984). 
Different data transformations have been proposed to apply standard and advanced 
statistical methods to compositional data sets. Examples are the additive log-ratio 
(alr), the centered log-ratio (clr), and the isometric log-ratio (ilr) transformations 
(Aitchison, 1982; Aitchison & Egozcue, 2005; Aitchison, 1984). I briefly introduced 
CoDA analysis in Sect. 3.3.6, where I also presented the equations to perform the 
alr , clr , and ilr transformations. 

At line 15 of code listing 5.2, we apply the ilr transformation to our data, then 
scale in agreement with the median and the inter-quartile range (lines 17–20); that 
is, we apply RobustScaler(). We then visualize the resulting features (Fig. 5.3). 

Fig. 5.3 Inspecting ilr-transformed data
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5.5 Clustering Analyses 

Code listing 5.3 shows how to develop a hierarchical clustering dendrogram in 
Python (Fig. 5.4). A dendrogram is a tree diagram used to report the result of a 
hierarchical clustering estimation (see Sect. 4.4). 

1 import numpy as np 
2 from sklearn.cluster import AgglomerativeClustering 
3 from scipy.cluster.hierarchy import dendrogram, 

set_link_color_palette 
4 
5 def plot_dendrogram(model, **kwargs): 
6 
7 counts = np.zeros(model.children_.shape[0]) 
8 n_samples = len(model.labels_) 
9 for i, merge in enumerate(model.children_): 

10 current_count = 0 
11 for child_idx in merge: 
12 if child_idx < n_samples: 
13 current_count +=1 
14 else: 
15 current_count += counts[child_idx-n_samples] 
16 counts[i] = current_count 
17 
18 linkage_matrix = np.column_stack([model.children_, 
19 model.distances_, 
20 counts]).astype(float) 
21 
22 dendrogram(linkage_matrix, **kwargs) 
23 
24 model = AgglomerativeClustering(linkage=’ward’, 
25 affinity=’euclidean’, 
26 distance_threshold = 0, 
27 n_clusters=None) 
28 
29 model.fit(my_dataset_ilr_scaled) 
30 
31 fig, ax = plt.subplots(figsize = (10,6)) 
32 ax.set_title(’Hierarchical clustering dendrogram’) 
33 
34 plot_dendrogram(model, truncate_mode=’level’, p=5, 
35 color_threshold=0, 
36 above_threshold_color=’black’) 
37 
38 ax.set_xlabel(’Number of points in node’) 
39 ax.set_ylabel(’Height’) 

Listing 5.3 Developing a hierarchical clustering dendrogram in Python
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Fig. 5.4 Dendrogram resulting from code listing 5.3 

A dendrogram can be oriented either vertically (Fig. 5.4) or horizontally. The 
orientation can be easily changed in the dendrogram() method by using the 
orientation parameter, which takes the values of “top,” “bottom,” “left,” or “right”. 

1 th = 16.5 
2 fig, ax = plt.subplots(figsize = (10,6)) 
3 ax.set_title("Hierarchical clustering dendrogram") 
4 set_link_color_palette([’#000000’,’#C82127’, ’#0A3A54’, 
5 ’#0F7F8B’, ’#BFD7EA’, ’#F15C61’, ’#E8BFE7’]) 
6 
7 plot_dendrogram(model, truncate_mode=’level’, p=5, 
8 color_threshold=th, 
9 above_threshold_color=’grey’) 

10 
11 plt.axhline(y = th, color = "k", linestyle = "--", lw=1) 
12 ax.set_xlabel("Number of points in node") 
13 
14 fig, ax = plt.subplots(figsize = (10,6)) 
15 ax.set_title("Hierarchical clustering dendrogram") 
16 ax.set_ylabel(’Height’) 
17 
18 plot_dendrogram(model, truncate_mode=’lastp’, p=6, 
19 color_threshold=0, 
20 above_threshold_color=’k’) 
21 
22 ax.set_xlabel("Number of points in node") 

Listing 5.4 Refining the dendrogram
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Fig. 5.5 Dendrogram resulting from code listing 5.4 

When oriented vertically, the vertical scale gives the distance or similarity 
between clusters. If we draw a horizontal line, the number of leaves intercepted 
(see, e.g., Fig. 5.5) defines the number of clusters at that specific height. Increasing 
the height reduces the number of clusters. In our specific case, fixing a threshold at 
16.5 defines six clusters (see code listing 5.4 and Fig. 5.5). 

1 from sklearn.cluster import AgglomerativeClustering 
2 from sklearn.decomposition import PCA 
3 import numpy as np 
4 import matplotlib.pyplot as plt 
5 
6 my_colors = {0:’#0A3A54’, 
7 1:’#E08B48’, 
8 2:’#BFBFBF’, 
9 3:’#BD22C6’, 

10 4:’#FD787B’, 
11 5:’#67CF62’ } 
12 #PCA 
13 model_PCA = PCA() 
14 model_PCA.fit(my_dataset_ilr_scaled) 
15 my_PCA = model_PCA.transform(my_dataset_ilr_scaled) 
16 
17 fig, ax = plt.subplots() 
18
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19 ax.scatter(my_PCA[:,0], my_PCA[:,1], 
20 alpha=0.6, 
21 edgecolors=’k’) 
22 
23 ax.set_title(’Principal Component Analysys’) 
24 ax.set_xlabel(’PC_1’) 
25 ax.set_ylabel(’PC_2’) 

Listing 5.5 Plotting the first two principal components 

5.6 Dimensionality Reduction 

The ilr-transformed data set consists of six features (Fig. 5.3). To visualize the 
structure of our data, I performed a Principal Component Analysis (PCA; see 
Sect. 4.2), which consists of a linear dimensionality reduction that uses a singular 
value decomposition of the data set to project it onto a lower-dimensional space. 

Code listing 5.5 shows how to apply a PCA to our data set. In addition, it provides 
us with a binary diagram (Fig. 5.6) the shows the two first principal components. 

Fig. 5.6 Scatter diagram of the first two principal components
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Fig. 5.7 Combining principal component analysis with hierarchical clustering 

Visualizing the six clusters highlighted in Fig. 5.5 could be a benefit; code 
listing 5.6 shows how to do that (Fig. 5.7). Also, code listing 5.6 shows how to 
apply and visualize (Fig. 5.8) K-means clustering (Sect. 4.7). 

1 #AgglomerativeClustering 
2 model_AC = AgglomerativeClustering(linkage=’ward’, 
3 affinity=’euclidean’, 
4 n_clusters=6) 
5 my_AC = model_AC.fit(my_dataset_ilr_scaled) 
6 
7 fig, ax = plt.subplots() 
8 label_to_color = [my_colors[i] for i in my_AC.labels_] 
9 ax.scatter(my_PCA[:,0], my_PCA[:,1], 

10 c=label_to_color, alpha=0.6, 
11 edgecolors=’k’) 
12 ax.set_title(’Hierarchical Clustering’) 
13 ax.set_xlabel(’PC_1’) 
14 ax.set_ylabel(’PC_2’) 
15 my_dataset[’cluster_HC’] = my_AC.labels_ 
16 
17 #KMeans 
18 from sklearn.cluster import KMeans 
19 myKM = KMeans(n_clusters=6).fit(my_dataset_ilr_scaled) 
20 
21 fig, ax = plt.subplots() 
22 label_to_color = [my_colors[i] for i in myKM.labels_]



References 83

23 ax.scatter(my_PCA[:,0], my_PCA[:,1], 
24 c=label_to_color, alpha=0.6, 
25 edgecolors=’k’) 
26 ax.set_title(’KMeans’) 
27 ax.set_xlabel(’PC_1’) 
28 ax.set_ylabel(’PC_2’) 
29 my_dataset[’cluster_KM’] = myKM.labels_ 

Listing 5.6 Combining principal component analysis with hierarchical and K-means clustering 
methods 

Fig. 5.8 Combining principal component analysis with K-means clustering 
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Chapter 6 
Clustering of Multi-Spectral Data 

6.1 Spectral Data from Earth-Observing Satellites 

Earth-observing satellite missions such as Sentinel1 and Landsat2 provide us with 
multispectral, hyperspectral, and panchromatic data. The Sentinel earth-observing 
satellite missions are part of the Copernicus program, developed by the European 
Space Agency,3 whereas the Landsat Program is jointly managed by NASA and the 
U.S. Geological Survey (see footnote 2). 

Spectral images are two-dimensional representations of surface reflectance or 
radiation in different bands of the electromagnetic spectrum. Multi-spectral and 
hyper-spectral data are acquired by multiple sensors operating over wide and 
narrow (sometimes quasi-continuous) wavelength ranges, respectively. In contrast, 
panchromatic images are acquired by detectors covering the entire visible range. 

Multi-spectral, hyper-spectral, and panchromatic data can be combined and mod-
ulated to produce new indexes4 (e.g., the Generalized Difference Vegetation Index 
or the Normalized Difference Snow Index), which highlight specific phenomena and 
facilitate data interpretation. 

For example, the Sentinal-2 Multi-spectral Instrument operates over 13 spectral 
bands. Four bands labeled B2, B3, B4, and B8 provide a spatial resolution of 10 m, 
six bands labeled B5, B6, B7, B8a, B11, and B12 provide a spatial resolution of 

1 https://sentinels.copernicus.eu. 
2 https://landsat.gsfc.nasa.gov. 
3 https://www.esa.int. 
4 https://www.usgs.gov/landsat-missions/landsat-surface-reflectance-derived-spectral-indices. 
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Fig. 6.1 Spectral bands of Sentinel2 satellites. Modified from Majidi Nezhad et al. (2021) 

20 m, and three bands labeled B1, B9, and B10 provide a spatial resolution of 60 m 
(Fig. 6.1). 

6.2 Import Multi-Spectral Data to Python 

Multi-spectral data can be downloaded from numerous access points, such as the 
USGS Earth Explorer,5 the Copernicus Open Access Hub,6 and Theia.7 

As an example, consider Fig. 6.2, which represents the recombination of the B4, 
B3, and B2 bands to form a RGB (i.e., red, green, blue) image from a Sentinel2 
acquisition downloaded from the Theia portal. The image location is southern New 
South Wales (Australia).8 Each side of the square image measures about 110 km. 

Figure 6.3 shows the data structure of a Sentinel2 repository downloaded 
from Theia. The repository follows the MUSCATE9 nomenclature and contains 
a metadata file, a quick-look file, numerous Geo-Tiff image files, and two sub-
repositories MASKS and DATA, which contain supplementary data. The naming 
enables us to uniquely identify each product and consists of many tags, starting with 
a platform identification (i.e., Sentinel2B) followed by the date of acquisition in the 
format YYYYMMDD-HHmmSS-sss (e.g., 20210621-001635-722), with YYYY 
being the year, MM the month, DD the day, HH the hour in 24 hour format, mm 
the minutes, SS the seconds, and sss the milliseconds. The subsequent tags refer 
to product level (e.g., L2A), geographical zone (e.g., T55HDB_C), and product 
version (e.g., V2-2). The letter L, a number, and another letter characterize different 
product levels with the exception of level L0, which is compressed raw data and is 
not followed by any letter. Levels L1A, L1B, and L2A correspond to uncompressed

5 https://earthexplorer.usgs.gov. 
6 https://scihub.copernicus.eu. 
7 https://catalogue.theia-land.fr. 
8 https://bit.ly/ml_geart. 
9 https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/. 
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Fig. 6.2 RGB composite image where the B4, B3, and B2 bands regulate the intensities of the 
red, green, and blue channels, respectively 

raw data, radiometrically corrected radiance data, and orthorectified bottom-of-
atmosphere reflectance, respectively.10 Spectral Geo-Tiff files also use an additional 
tag, namely, SRE and FRE, which correspond respectively to images taken in 
ground reflectance without correcting for slope effects and images taken in ground 
reflectance with slope effects corrected. We shall work on FRE data. 

To import Sentinel2 multi-spectral data, I used Rasterio,11 which is a Python 
API based on Numpy and GeoJSON (i.e., an open standard format designed for 
representing geographical features, along with their non-spatial attributes) to read, 
write, and manage Geo-Tiff data.

10 https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi. 
11 https://rasterio.readthedocs.io/. 
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Fig. 6.3 Sentinel2 data structure 

If you followed the instructions in Chap. 2, your Python machine learning 
environments named env_ml and env_ml_intel already contain Rasterio. With 
Rasterio, opening Geo-Tiff files is straightforward (see code listing 6.1). 

1 import rasterio 
2 import numpy as np 
3 
4 imagePath = ’SENTINEL2B_20210621-001635-722_L2A_T55HDB_C_V2-2/ 

SENTINEL2B_20210621-001635-722_L2A_T55HDB_C_V2-2_FRE_’ 
5 
6 bands_to_be_inported = [’B2’, ’B3’, ’B4’, ’B8’] 
7 
8 bands_dict = {} 
9 for band in bands_to_be_inported: 
10 with rasterio.open(imagePath+ band +’.tif’, ’r’, 
11 driver=’GTiff’) as my_band: 
12 bands_dict[band] = my_band.read(1) 

Listing 6.1 Using Rasterio to import Sentinel2 data in Python 

Code listing 6.1 creates a dictionary of NumPy arrays (i.e., bands_dict) contain-
ing spectral information from B2, B3, B4, and B8 corresponding to the blue, green, 
red, and near-infrared bands, respectively. In code listing 6.1, we limit the import to 
four bands, all acquired at the same spatial resolution of 10 m. However, the script 
can be easily extended to import more bands.
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Combining the data from the bands_dict dictionary allows many different 
representations to be achieved. For example, Sovdat et al. (2019) explain how to 
obtain the “natural color” representation of Sentinel-2 data. 

Explaining how to obtain a perfectly balanced image with natural colors is 
beyond the scope of this book, so we limit ourselves to combining bands B2, B3, 
and B4, which roughly correspond to blue, green, and red as perceived by our eyes. 

In detail, a bright, possibly overly saturated (Sovdat et al., 2019) image (i.e., 
r_g_b) can be easily derived and plotted (see code listing 6.2 and Fig. 6.2). We 
start from the bands_dict dictionary after contrast stretching (lines 11–17) and scale 
the values in the interval [0,1]. This is the so-called “true color” representation. 
Sometimes, bands B3 (red) and B4 (green) are combined with B8 (near-infrared) to 
achieve a “false color”’ representation. False color composite images are often used 
to highlight plant density and health (see, e.g., Fig. 6.4). Code listing 6.3 shows how 
to construct a false-color representation (i.e., nir_r_g) of Sentinel2 data. 

1 import numpy as np 
2 from skimage import exposure, io 
3 from skimage.transform import resize 
4 import matplotlib.pyplot as plt 
5 
6 r_g_b = np.dstack([bands_dict[’B4’], 
7 bands_dict[’B3’], 
8 bands_dict[’B2’]]) 
9 
10 # contrast stretching and rescaling between [0,1] 
11 p2, p98 = np.percentile(r_g_b, (2,98)) 
12 r_g_b = exposure.rescale_intensity(r_g_b, in_range=(p2, p98)) 
13 r_g_b = r_g_b / r_g_b.max() 
14 
15 fig, ax = plt.subplots(figsize=(8, 8)) 
16 ax.imshow(r_g_b) 
17 ax.axis(’off’) 

Listing 6.2 Plotting a RGB image using bands B4, B3, and B2 

1 import numpy as np 
2 from skimage import exposure, io 
3 from skimage.transform import resize 
4 import matplotlib.pyplot as plt 
5 
6 nir_r_g = np.dstack([bands_dict[’B8’], 
7 bands_dict[’B4’], 
8 bands_dict[’B3’]]) 
9 
10 # contrast stretching and rescaling between [0,1] 
11 p2, p98 = np.percentile(nir_r_g, (2,98))
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12 nir_r_g = exposure.rescale_intensity(nir_r_g, in_range=(p2, p98)) 
13 
14 fig, ax = plt.subplots(figsize=(8, 8)) 
15 ax.imshow(nir_r_g) 
16 ax.axis(’off’) 

Listing 6.3 Plotting a false-color RGB composite image using bands B8, B4, and B3 

6.3 Descriptive Statistics 

One of the first steps of any ML workflow deals with descriptive statistics. For our 
Sentinel2 data set, code listing 6.4 shows how to obtain descriptive statistics via 
the visualization of a four-band (i.e., B2, B3, B4, and B5) array derived from Geo-

Fig. 6.4 Image resulting from code listing 6.3
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Tiff data. On line 5, we create a (10 980, 10 980, 4) array (i.e., the my_array_2d 
characterized by a width, height, and depth of 10 980, 10 980, and 4, respectively) 
from the dictionary created in code listing 6.1. In the next step (line 10), we create 
a new  array (my_array_1d) that reshapes my_array_2d from (10 980, 10 980, 4) to 
(120 560 400, 4). This is the typical dimensions of an array that is ready for ML 
processing in scikit-learn. Converting my_array_1d to a pandas DataFrame (i.e., 
my_array_1d_pandas) facilitates the visualization (see lines 18–46) and produces 
the most basic descriptive statistics (i.e., listing 6.5). Code listing 6.5 reveals basic 
information about the central tendency, dispersion, and shape of our input features. 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 import pandas as pd 
4 
5 my_array_2d = np.dstack([bands_dict[’B2’], 
6 bands_dict[’B3’], 
7 bands_dict[’B4’], 
8 bands_dict[’B8’]]) 
9 
10 my_array_1d =my_array_2d[:,:,:4].reshape( 
11 (my_array_2d.shape[0] * my_array_2d.shape[1], 
12 my_array_2d.shape[2])) 
13 
14 my_array_1d_pandas = pd.DataFrame(my_array_1d, 
15 columns=[’B2’, ’B3’, ’B4’, ’B8’]) 
16 
17 
18 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7,3)) 
19 my_medianprops = dict(color=’#C82127’, linewidth = 1) 
20 my_boxprops = dict(facecolor=’#BFD7EA’, edgecolor=’#000000’) 
21 ax1.boxplot(my_array_1d_pandas, vert=False, whis=(0.5, 99.5), 
22 showfliers=False, labels=my_array_1d_pandas.columns, 
23 patch_artist=True, showcaps=False, 
24 medianprops=my_medianprops, boxprops=my_boxprops) 
25 ax1.set_xlim(-0.1,0.5) 
26 ax1.set_xlabel(’Surface reflectance Value’) 
27 ax1.set_ylabel(’Band Name’) 
28 ax1.grid() 
29 ax1.set_facecolor((0.94, 0.94, 0.94)) 
30 
31 colors=[’#BFD7EA’,’#0F7F8B’,’#C82127’,’#F15C61’] 
32 for band, color in zip(my_array_1d_pandas.columns, colors): 
33 ax2.hist(my_array_1d_pandas[band], density=True, 
34 bins=’doane’, range=(0,0.5), histtype=’step’, 
35 linewidth=1, fill=True, color=color, alpha=0.6, 
36 label=band) 
37 ax2.hist(my_array_1d_pandas[band], density=True, 
38 bins=’doane’, range=(0,0.5), histtype=’step’, 
39 linewidth=0.5, fill=False, color=’k’) 
40 ax2.legend(title=’Band Name’) 
41 ax2.set_xlabel(’Surface Reflectance Value’)
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42 ax2.set_ylabel(’Probability Density’) 
43 ax2.xaxis.grid() 
44 ax2.set_facecolor((0.94, 0.94, 0.94)) 
45 plt.tight_layout() 
46 plt.savefig(’descr_stat_sat.pdf’) 

Listing 6.4 Descriptive statistics and data visualization 

For example, Fig. 6.5 shows that 99% of the reflectance data for B2, B3, B4, and 
B8 fall in the range 0.015–0.420. However, maximum values are always greater than 
unity (i.e., the upper theoretical bound for reflectance data). Outliers with reflectance 
values greater than unity could be the result of specular effects due to surfaces or 
clouds (Schaepman-Strub et al., 2006). 

In [1]: my_array_1d_pandas.describe().applymap("{0:.3f}".format) 
Out[1]: 

B2 B3 B4 B8 
count 120560400.000 120560400.000 120560400.000 120560400.000 
mean 0.042 0.062 0.076 0.186 
std 0.013 0.016 0.026 0.056 
min 0.000 0.000 0.000 0.000 
25% 0.035 0.053 0.061 0.151 
50% 0.042 0.062 0.076 0.177 
75% 0.049 0.070 0.091 0.210 
max 1.443 1.304 1.277 1.201 

Listing 6.5 Descriptive statistics using pandas describe() 

If not addressed correctly, large outliers could affect the results of your ML 
model. Consequently, I suggest implementing a strategy to remove the outliers 
based on robust statistics (see, e.g., Petrelli, 2021) or applying a robust scaler (cf. 
paragraph 3.3.5). 

Fig. 6.5 Descriptive statistics resulting from code listing 6.4
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6.4 Pre-processing and Clustering 

This section presents a simplified workflow to cluster our Sentinel2 data. As input 
features, I used my_array_1d, which contains reflectance data from B2, B3, B4, and 
B8. Note that many different strategies are reported in the literature for selecting 
input features, such as using band ratios, specific indexes, or combinations of bands, 
band ratios, and indexes (e.g., Ge et al., 2020). Due to the presence of large outliers, 
I opted for the RobustScaler() algorithm (line 6 of code listings 6.6 and 6.7) in  
scikit-learn. 

1 from sklearn.preprocessing import RobustScaler 
2 from sklearn import cluster 
3 import matplotlib.colors as mc 
4 import matplotlib.pyplot as plt 
5 
6 X = RobustScaler().fit_transform(my_array_1d) 
7 my_ml_model = cluster.KMeans(n_clusters=5) 
8 learning = my_ml_model.fit(X) 
9 labels_1d = learning.labels_ 
10 
11 labels_1d = my_ml_model.predict(X) 
12 labels_2d = labels_1d.reshape(my_array_2d[:,:,0].shape) 
13 
14 cmap = mc.LinearSegmentedColormap.from_list("", ["black","red"," 

yellow", "green", "blue"]) 
15 fig, ax = plt.subplots(figsize=[18,18]) 
16 ax.imshow(labels_2d, cmap=cmap) 
17 ax.axis(’off’) 

Listing 6.6 Implementing K-means clustering 

1 from sklearn.preprocessing import RobustScaler 
2 from sklearn import mixture 
3 import matplotlib.colors as mc 
4 import matplotlib.pyplot as plt 
5 
6 X = RobustScaler().fit_transform(my_array_1d) 
7 my_ml_model = mixture.GaussianMixture(n_components=5, 

covariance_type="full") 
8 labels_1d = my_ml_model.predict(X) 
9 
10 labels_2d = labels_1d.reshape(my_array_2d[:,:,0].shape) 
11 
12 cmap = mc.LinearSegmentedColormap.from_list("", ["black","red"," 

yellow", "green","blue"]) 
13 fig, ax = plt.subplots(figsize=[18,18]) 
14 ax.imshow(labels_2d, cmap=cmap) 
15 ax.axis(’off’) 

Listing 6.7 Implementing Gaussian mixture clustering
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Fig. 6.6 K-means clustering. Image resulting from code listing 6.6 

For the first attempt at clustering (code listing 6.6), I selected the K-means algo-
rithm, fixing the number of clusters to five (line 7). I then started the unsupervised 
learning at line 8. Lines 11 and 12 collect the labels (i.e., a number from 0 to 4) 
assigned by the K-means algorithm to each element (i.e., to each pixel of the image) 
of my_array_1d and I reported the elements in the same two-dimensional geometry 
of the original image (Fig. 6.2). Finally, the different clusters using different colors 
(i.e. lines 14–17) are plotted in Fig. 6.6. 

For the second attempt at clustering (code listing 6.7), I selected the Gaussian 
mixtures algorithm, again fixing the number of clusters to five (line 7). Figure 6.7 
shows the clustering result obtained by the Gaussian mixture algorithm.
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Fig. 6.7 Gaussian mixture model. Image resulting from code listing 6.7 
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Part III 
Supervised Learning



Chapter 7 
Supervised Machine Learning Methods 

7.1 Supervised Algorithms 

To learn, supervised algorithms use the labels (i.e., the solutions) that appear 
in the training data set. This chapter introduces the supervised ML algorithms 
for regression and classification that are shown in Fig. 3.5. In addition, specific 
references are given for those who wish to go deeper into the mathematics behind 
these ML methods. 

7.2 Naive Bayes 

Since Bayesian statistics is rarely introduced to geology students, I introduce Bayes 
theorem here before describing how it is applied in ML (e.g., naive Bayes). 

Probabilities Figure 7.1 describes a simplified set of rock textures containing 
.ntot = 10 elements. The set comes from six porphyritic, one holocrystalline, and 
three aphyric igneous rocks. The probability .P(ol) of randomly picking a rock 
containing olivines is thus 3/10. In Bayesian statistical inference, the probability 
.P(ol) is called the “prior probability,” which is the probability of an event before 
new data are collected. 

Conditional Probabilities Assume now that we want to know the probability of 
picking a rock containing olivines if we pick a rock characterized by a dark matrix. 
In this case, the conditional probability .P(ol|dark) = 1/3. 
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light gray matrix 

intermediate gray matrix 

dark matrix 

holocrystalline texture 

white crystal (e.g., leucite) 

Olivine 

Clinopyroxene 

P(dark)P(ol) P(ol|dark) 

Fig. 7.1 Understanding conditional probabilities and Bayes formulation 

Joint Probabilities Please keep in mind that the term “conditional probability” is 
not a synonym of “joint probability” and these two concepts should not be confused. 
Also, be sure to use the correct notation: for joint probability, the terms are separated 
by commas [e.g., .P(ol, dark)], whereas for conditional probability, the terms are 
separated by a vertical bar [e.g., .P(ol|dark)]. Note that .P(ol, dark) is the probability 
of randomly picking a rock that contains olivines and is characterized by a dark 
matrix [i.e., .P(ol, dark) = 1/10]. In contrast, .P(ol|dark) is the probability of a rock 
containing olivines from among those that have a dark matrix, .P(ol|dark) = 1/3. 
Joint probabilities and conditional probabilities are related as follows: 

.P(ol, dark) = P(ol|dark)P (dark). (7.1) 

Deriving the Bayes Formulation As in Eq. (7.1), we could write 

.P(dark, ol) = P(dark|ol)P (ol). (7.2)
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Since .P(dark, ol) = P(ol, dark), the right-hand terms of Eqs. (7.1) and (7.2) must  
be equal: 

.P(dark|ol)P (ol) = P(ol|dark)P (dark). (7.3) 

Dividing both sides of Eq. (7.3) by  .P(ol), we get Bayes formula for our specific 
case: 

.P(dark|ol) = P(ol|dark)P (dark)

P (ol)
. (7.4) 

Generalizing Eq. (7.4), we get the well-known Bayes equation: 

.P(A|B) = P(B|A)P (A)

P (B)
. (7.5) 

Naive Bayes for Classification To understand the naive Bayes ML algorithm, I 
propose the same workflow as described by Zhang (2004). Assume that you want 
to classify a set .X = (x1, x2, x3, . . . , xn) and that c is the label of your class. For 
simplicity, assume that c is strictly positive (+) or negative (. −); in other words, we 
have only two classes. In this case, the Bayes formula takes the form 

.P(c|X) = P(X|c)P (c)

P (X)
. (7.6) 

X is classified as being in class .c = + if and only if 

.fb(X) = P(c = +|X)

P (c = −|X)
≥ 1, (7.7) 

where .fb(X) is the Bayesian classifier. 

Now assume that all the features are independent (i.e., the naive assumption). We 
can write 

.P(X|c) = P(x1, x2, x3, . . . , xn|c) =
n∏

i=1

P(xi |c). (7.8) 

The resulting naive Bayesian classifier .fnb(X), or simply “naive Bayes” classifier, 
can be written as 

.fnb(X) = P(c = +)

P (c = −)

n∏

i=1

P(xi |c = +)

P (xi |c = −)
. (7.9) 

Note that the naive assumption is a strong constraint that, in Earth Sciences, is 
often violated. If feature independence is violated, we have two options: The first 
is to estimate .P(X|c) without using the naive assumption (Kubat, 2017). However,



102 7 Supervised Machine Learning Methods

using this option inevitably increases the complexity of the problem (Kubat, 2017). 
The second option is more pragmatic: we reduce the feature dependence by 
appropriate data pre-processing. As suggested by Kubat (2017), a starting point is 
to avoid using redundant features. 

In scikit-learn the GaussianNB() method implements the Gaussian naive Bayes 
algorithm for classification with .P(X|c) assumed to be multivariate normal dis-
tributed. 

7.3 Quadratic and Linear Discriminant Analysis 

Like naive Bayes, quadratic and linear discriminant analyses (QDA and LDA, 
respectively) rely on the Bayes theorem. Assume that .fc(x) is the class-conditional 
density of X in class c, and let . πc be the prior probability of class c, with . 

∑K
c=1 πc =

1, where K is the number of classes. The Bayes theorem states (Kubat, 2017) 

.P(c|X) = fc(x)πc∑K
l=1 fl(x)πl

. (7.10) 

Now, modeling each class density as multivariate Gaussian, 

.fc(x) = 1

(2π)p/2
∣∣∑

c

∣∣1/2 e− 1
2 (x−μc)T

∑−1
c (x−μc)

, (7.11) 

we define the QDA. The LDA constitutes a special case of the QDA if the classes 
have a common covariance matrix (i.e., .

∑
c = ∑ ∀ c). The main difference 

between LDA and QDA depends on the resulting decision boundaries being linear 
or quadratic functions, respectively. 

The algorithms for LDA and QDA are similar, except that separate covariance 
matrices must be estimated for each class in QDA. Given a large number of features, 
this implies a dramatic increase in the computed parameters. For K classes and p 
features, LDA and QDA compute .(K − 1)x(p + 1) and . (K − 1)x[p(p + 3)/2+ 1]
parameters, respectively. In scikit-learn, the methods LinearDiscriminantAnalysis() 
and QuadraticDiscriminantAnalysis() perform LDA and QDA, respectively. 

7.4 Linear and Nonlinear Models 

Sugiyama (2015) defines d-dimensional linear-in-parameter models as 

.fθ (x) =
b∑

j=i

θjφj (x) = θT φ(x), (7.12)
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where x, φ, and θ are a d-dimensional input vector, a basis function, and the 
parameters of the basis function, respectively, and b is the number of basis functions. 
As an example, given a one-dimensional input, Eq.(7.12) reduces to (Sugiyama, 
2015) 

.fθ (x) =
b∑

j=i

θjφj (x) = θT φ(x), (7.13) 

where 

.φ(x) = (φ1(x), . . . , φb(x))T , (7.14) 

and 

.θ = (θ1, . . . , θb)
T . (7.15) 

Note that linear-in-parameter models are linear in θ and can handle straight lines 
(i.e., linear-in-input models such as code listing 7.1 and Fig. 7.2): 

.φ(x) = (1, x)T , (7.16) 

.θ = (θ1, θ2)
T . (7.17) 

Linear-in-parameter models can also manage nonlinear functions such as polyno-
mials (e.g., code listing 7.1 and Fig. 7.2): 

.φ(x) = (1, x, x2, . . . , xb−1)T , (7.18) 

.θ = (θ1, θ2, . . . , θb)
T . (7.19) 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 
4 x = np.arange(1,6) 
5 y = np.array([0,1,2,9,9]) 
6 
7 fig, ax = plt.subplots() 
8 ax.scatter(x, y, marker = ’o’, s = 100, color = ’#c7ddf4’, 

edgecolor = ’k’) 
9 
10 orders = np.array([1,2,4]) 
11 colors =[’#ff464a’,’#342a77’,’#4881e9’] 
12 linestiles = [’-’,’--’,’-.’] 
13 
14 for order, color, linestile in zip(orders, colors, linestiles):
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15 betas = np.polyfit(x, y, order) 
16 func = np.poly1d(betas) 
17 x1 = np.linspace(0.5,5.5, 1000) 
18 y1 = func(x1) 
19 ax.plot(x1, y1, color=color, linestyle=linestile, label=" 

Linear-in-parameters model of order " + str(order)) 
20 
21 ax.legend() 
22 ax.set_xlabel(’A quantity relevant in geology\n(e.g., time)’) 
23 ax.set_ylabel(’A quantity relevant in geology\n(e.g., spring flow 

rate)’) 
24 fig.tight_layout() 

Listing 7.1 Polynomial regression as example of linear-in-parameter modeling 

Fig. 7.2 Result of code listing 7.1 

Given an input vector x of p values, linear-in-parameter models can still manage 
linear-in-input problems, such as managing hyper-planes: 

.φ(x) = (1, x1, x2, . . . , xp)T , (7.20) 

.θ = (θ1, θ2, . . . , θb)
T . (7.21) 

In this case, the number of basis functions corresponds to the dimension of the 
input vector plus one (i.e., b = p+1). Some authors prefer to report the first term of
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θ separately, calling it the “bias” (i.e., θ0), and reformulating the problem as follows: 

.φ(x) = (x1, x2, . . . , xb=p)T , (7.22) 

.θ = (β0,β), (7.23) 

with 

.β = (β1, β2, . . . , βb=p, )T . (7.24) 

All fθ (x) models that cannot be expressed as linear in their parameters fall in the 
field of nonlinear modeling (Sugiyama, 2015). 

7.5 Loss Functions, Cost Functions, and Gradient Descent 

Most ML algorithms involve model optimization [e.g., .fθ (x) in Eq. (7.13)]. For the 
purposes of this book, the term “optimization” shall refer to adjusting the model 
parameters . θ to minimize or maximize a function that measures the consistency 
between model predictions and training data. 

In general, the function we want to minimize or maximize is called the objective 
function (Goodfellow et al., 2016). In the case of minimization, the objective 
function takes names such as cost function, loss function, and error function. These 
terms are often interchangeable Goodfellow et al. (2016), but sometimes a specific 
term is used such as loss or cost function to describe a specific task. 

As an example, some authors use the term loss function to measure how well a 
model agrees with a single label in the training data set (Goodfellow et al., 2016). 
The square loss is an example of a loss function: 

.L(θ) = [yi − fθ (xi )]2, (7.25) 

where . yi and .fθ (xi ) are the labeled (i.e., true or measured) values and those 
predicted by our model, respectively. Also, . x and . θ are the inputs and the parameters 
governing the model, respectively. 

Similarly, the cost function evaluates the loss function over the entire data set and 
helps to evaluate the overall performance of the model (Goodfellow et al., 2016). 
The mean squared error is an example of a cost function: 

.C(θ) = 1

n

n∑

i=1

[yi − fθ (xi )]2, (7.26) 

where n is the number of elements in the training data set.
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Typically, our aim is to minimize the cost function .C(θ), and the gradient descent 
(GD) is an appropriate method to do this. GD works by updating the parameters (in 
our case . θ ) governing our model [i.e., .fθ (x)], in the direction opposite that of the 
cost-function gradient .∇C(θ) (Sugiyama, 2015): 

.θ t+1 = θ t − γ∇C(θ t ). (7.27) 

In the simplest example of linear regression with .x ∈ R, 

.fθ (x) = θ1 + θ2x, (7.28) 

the mean squared-error cost function is 

.C(θ) = 1

n

n∑

i=1

[yi − (θ1 + θ2xi)]2. (7.29) 

Note that the simple linear example in . R can be easily generalized to . Rd . Also,  
note that the example of linear regression proposed here has a well-known and easy-
to-apply least squares analytical solution in the case of linearity (i.e., . x is linear in 
the mean of . y), independence (i.e., the observations are independent of each other), 
and normality [i.e., for any fixed value of . x, . y is normally distributed (Maronna 
et al., 2006)]. However, this self-explanatory example shows how GD works. 

To develop a GD, the first step is to compute the partial derivative of .C(θ) with 
respect to . θ1 and . θ2. Therefore, we write 

.Dθ1 = −2

n

n∑

i=1

[yi − (θ1 + θ2xi)], (7.30) 

.Dθ2 = −2

n

n∑

i=1

[yi − (θ1 + θ2xi)]xi. (7.31) 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 line_colors = [’#F15C61’,’#0F7F8B’,’#0A3A54’,’#C82127’] 
4 
5 # linear data set with noise 
6 n = 100 
7 theta_1, theta_2 = 3, 1 # target value for theta_1 & theta_2 
8 x = np.linspace(-10, 10, n) 
9 np.random.seed(40) 
10 noise = np.random.normal(loc=0.0, scale=1.0, size=n) 
11 y = theta_1 + theta_2 * x + noise 
12 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 12)) 
13 ax1.scatter(x, y, c=’#BFD7EA’, edgecolor=’k’) 
14
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15 my_theta_1, my_theta_2 = 0, 0 # arbitrary initial values 
16 gamma = 0.0005 # learning rate 
17 t_final = 10001 # umber of itrations 
18 n =  len(x) 
19 to_plot, cost_function = [1, 25, 500, 10000], [] 
20 # Gradient Descent 
21 for i in range(t_final): 
22 #Eq. 4.30 
23 D_theta_1 = (-2/n)*np.sum(y-(my_theta_1 + my_theta_2*x)) 
24 #Eq. 4.31 
25 D_theta_2 = (-2/n)*np.sum(x*(y-(my_theta_1+my_theta_2*x))) 
26 
27 my_theta_1 = my_theta_1 - gamma * D_theta_1 #Eq. 4.32 
28 my_theta_2 = my_theta_2 - gamma * D_theta_2 #Eq. 4.33 
29 cost_function.append((1/n) * np.sum(y - (my_theta_1 + 

my_theta_2 * x))**2) 
30 
31 if i in to_plot: 
32 color_index = to_plot.index(i) 
33 my_y = my_theta_1 + my_theta_2 * x 
34 ax1.plot(x,my_y, color=line_colors[color_index], 
35 label=’iter: {:.0f}’.format(i) + ’ - ’  + 
36 r’$\theta_1 = $’ + ’{:.2f}’.format(my_theta_1) + 
37 ’ - ’  + 
38 r’$\theta_2 = $’ + ’{:.2f}’.format(my_theta_2)) 
39 ax1.set_xlabel(’x’) 
40 ax1.set_ylabel(’y’) 
41 ax1.legend() 
42 cost_function = np.array(cost_function) 
43 iterations = range(t_final) 
44 ax2.plot(iterations,cost_function, color=’#C82127’, 
45 label=’mean squared-error cost function Eq.4.29’) 
46 ax2.set_xlabel(’Iteration’) 
47 ax2.set_ylabel(’Cost Function Value’) 
48 ax2.legend() 
49 fig.tight_layout() 

Listing 7.2 A simple example of gradient descent in Python 

The GD then optimizes the parameters of our model through an iterative 
approach: 

.θ t+1
1 = θ t

1 − γDθ1, (7.32) 

.θ t+1
2 = θ t

2 − γDθ2, (7.33) 

where . γ is an appropriate learning rate. Code listing 7.2 and Fig. 7.3 show how to 
develop the GD optimization described by Eqs. (7.28)–(7.32). 

The stochastic gradient descent (SGD) algorithm (Bottou, 2012) simplifies the 
GD algorithm by estimating the gradient of .C(θ) on the basis of a single, randomly
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Fig. 7.3 Linear fitting estimates and cost function evolution resulting from code listing 7.2 

picked example .f̂θt
(xt ): 

.θ t+1 = θ t − γ∇C[y, f̂θt
(xt )]. (7.34) 

The SGDClassifier() and SGDRegressor() in sklearn.linear_model implement a 
SGD in the field of classification and regression, respectively. Often, we use an 
approach that falls between GD and SGD by estimating the gradient using a small 
random portion of the training data set. This approach is called “mini-batch GD.” 

To summarize, GD always uses the entire learning data set. As opposed to GD, 
SGD and mini-batch GD compute the gradient from a single sample and a small 
portion of the training data set, respectively.
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SGD and mini-batch GD work better than GD when numerous local maxima and 
minima occur. In this case, GD will probably stop at the first local minimum whereas 
SGD and mini-batch GD, being much noisier than GD, tend to explore neighboring 
areas of the gradient. Note that a pure SGD is significantly noisy, whereas mini-
batch GD tends to average the computed gradient, resulting in more stable results 
than SGD. In ML, SGD and mini-batch GD see much more use than GD because 
the latter is too expensive computationally while providing only a minimum gain 
in accuracy for convex problems. For many local maxima and minima, SGD and 
mini-batch GD are also more accurate than GD because they can “jump” over local 
minima and hopefully find better solutions. 

7.6 Ridge Regression 

Ridge regression is a least squares method that shrinks the regression coefficients via 
a penalty on their size (Hastie et al., 2017). The regression starts with a labeled data 
set .(xi , yi), where . yi are the labels and .xi = (xi1, xi2, . . . , xip)T are the predictor 
variables (i.e., the inputs) (Hastie et al., 2017; Tibshirani, 1996). 

The cost function in ridge regression can be expressed as (Hastie et al., 2017; 
Tibshirani, 1996) 

.C(θ0, θ) = 1

2n

n∑

i=1

⎛

⎝yi − θ0 −
p∑

j=1

xij θj

⎞

⎠
2

+ λ

p∑

j=1

θ2j , (7.35) 

where the parameter . λ is called the “regularization penalty.” The ridge regression 
performs the so-called L2-norm regularization by adding a penalty equivalent to the 
square of the magnitude of coefficients [i.e., the second term of Eq. (7.35)]. 

In the limiting case of .λ = 0, the ridge regression reduces to an ordinary least 
squares regression. A correct choice of . λ helps avoid overfitting issues. In contrast, 
underfitting becomes a problem for large . λ. 

7.7 Least Absolute Shrinkage and Selection Operator 

The “least absolute shrinkage and selection operator,” also known as the LASSO, 
is a method to solve linear problems by minimizing the residual sum of squares 
subject to the constraint that the sum of the absolute value of the coefficients must 
be less than a given constant (Tibshirani, 1996). The main characteristic of LASSO 
is its tendency to prefer solutions with fewer nonzero coefficients, thus reducing the 
number of parameters governing the predictor. The LASSO cost function can be
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expressed as (Tibshirani, 1996) 

.C(θ0, θ) = 1

2n

n∑

i=1

⎛

⎝yi − θ0 −
p∑

j=1

xij θj

⎞

⎠
2

+ λ

p∑

j=1

∣∣θj

∣∣. (7.36) 

In contrast with ridge regression, the LASSO algorithm performs the so-called 
L1-norm regularization by adding a penalty equivalent to the sum of the absolute 
values of the coefficients [i.e., the second term of Eq. (7.36)]. 

Note that the LASSO reduces shrinkage and the dimensionality; in other words, 
it reduces the number of features of the solution, whereas ridge regression only 
shrinks (Hastie et al., 2017; Tibshirani, 1996). 

7.8 Elastic Net 

Elastic net (Zou & Hastie, 2005) is a linear regression model that performs both L1-
and L2-norm regularization (Friedman et al., 2010): 

. C(θ0, θ) = 1

2n

n∑

i=1

⎛

⎝yi − θ0 −
p∑

j=1

xij θj

⎞

⎠
2

+ λ

p∑

j=1

[
1 − α

2
θ2j + α

∣∣θj

∣∣
]
.

(7.37) 

For .α = 1, elastic net is the same as the LASSO, whereas for .α = 0, elastic net 
approaches ridge regression. For .0 < α < 1, the penalty term [i.e., the second term 
of Eq. (7.37)] is between the L1- and L2-norm regularization. 

7.9 Support Vector Machines 

Support vector machines (SVMs) are a set of supervised ML algorithms that work 
remarkably well for classification (Cortes & Vapnik, 1995). The strength of SVMs 
relies on three features: (1) SVMs are efficient in high-dimensional spaces, (2) 
SVMs effectively model real-world problems, (3) SVMs perform well on data sets 
with many attributes, even if few cases are available to train the model (Cortes 
& Vapnik, 1995). SVMs numerically implement the following idea: inputs are 
nonlinearly mapped to a high-dimension feature space F (Cortes & Vapnik, 1995), 
and a linear decision surface is constructed in the space F (Cortes & Vapnik, 1995). 

To start, consider a labeled training data set .(yi, xi), where . xi is p-dimensional 
[i.e., .xi = (x1i , x2i , . . . , xpi)], with .i = 1, 2, . . . , n, where n is the number of
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samples. Also, assume that the label .yi = 1 for the first class and .yi = −1 for the 
second class, defining a two-class classification problem (i.e., .yi ∈ {−1, 1}). 

Now define a linear classifier based on the following linear-in-inputs discriminant 
function: 

.f (x) = wT · x + b. (7.38) 

The decision boundary between the two classes (i.e., the regions classified as 
positive or negative) defined by Eq. (7.38) is a hyperplane. 

The two classes are linearly separable if there exists a vector . w and a scalar b 
such that 

.(wT xi + b)yi ≥ 1, ∀ i = 1, 2, . . . , n. (7.39) 

This means that we can correctly classify all samples. The definition of the optimal 
hyperplane follows as that which separates the training data set with a maximal 
margin 

.m(w) = 1

‖w‖ . (7.40) 

Finally, the maximum-margin classifier (i.e., the hard margin SVM) is the discrimi-
nant function that maximizes .m(w), which is equivalent to minimizing .‖w‖2: 

.min
w,b

1

2
‖w‖2 (7.41) 

subject to 

.(wT xi + b)yi ≥ 1, ∀ i = 1, 2, . . . , n. (7.42) 

The hard margin SVM requires the strong assumption of the linear separability 
of classes, which can be considered as an exception, not the rule. To allow errors 
[i.e., .ξ = (ξ1, ξ2, . . . , ξn)], we can introduce the concept of soft margin SVM: 

. min
w,b,ξ

[
1

2
‖w‖2 + C

n∑

i=1

ξi

]
(7.43) 

subject to 

.(wT xi + b)yi ≥ 1 − ξi, ξi � 0, ∀i = 1, 2, . . . , n, (7.44) 

where .C > 0 is a tunable parameter that controls the margin errors. The linear 
classifier defined by Eq. (7.38) can be generalized to nonlinear inputs by defining



112 7 Supervised Machine Learning Methods

the discriminant function (Cortes & Vapnik, 1995) 

.f (x) = wT · φ(x) + b, (7.45) 

where .φ(x) is a function that maps nonlinearly separable inputs . x to a feature space 
F of higher dimension. If we express the weight vector . w as a linear combination 
of the training examples (i.e., .w = ∑n

i=1 αixi), it follows that, in feature space F , 
we have 

.f (x) =
n∑

i=1

αiφ(xi)T φ(x) + b. (7.46) 

The idea behind Eqs. (7.45) and (7.46) is to map a nonlinear classification 
function to a feature space F of higher dimensions, where the classification function 
is linear (Fig. 7.4). Defining a kernel function .K(xi, x) as 

.K(xi, x) = φ(xi)T φ(x), (7.47) 

we have 

.f (x) =
n∑

i=1

αiK(xi, x) + b. (7.48) 

When using the kernel function, we do not need to know or compute . φ(), which 
allows us to apply a linear transformation to the problem at higher dimensions. 
The scikit-learn implementation of SVMs [e.g., SVC() and SVR()] allows the use of 
linear, polynomial, sigmoid, and radial basis kernel functions [.K(xi, x), Table 7.1]. 

7.10 Supervised Nearest Neighbors 

Supervised k-nearest neighbors is a ML algorithm that uses similarities such as 
distance functions (Bentley, 1975) to regress and classify. In detail, the k-nearest-
neighbors method predicts numerical targets by using a metric that is typically 
the inverse-distance-weighted average of the k-nearest neighbors (Bentley, 1975). 
The weights can be uniform or calculated by a kernel function. The Euclidean 
distance metric is commonly used to measure the distance between two instances, 
although other metrics are available (see Table 7.2). Note that the Minkowski 
distance reduces to the Manhattan and Euclidean distances when .p = 1 and 2, 
respectively. Bentley (1975) gives an extensive and detailed description of the k-
nearest neighbors algorithm. 

In scikit-learn, the KNeighborsClassifier() and KNeighborsRegressor() methods 
perform classification and regression, respectively, based on the k-nearest neighbors.
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Fig. 7.4 Support vector 
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Table 7.1 Kernel functions in scikit-learn for the SVC() and SVR() methods 

Kernel function Equation Identifier 

Linear .K(xi, x) = (xi · x′) kernel=‘linear’ 

Polynomial .K(xi, x) = (xi · x′ + r)d kernel=‘poly’ 

Sigmoid .K(xi, x) = tanh(xi · x′ + r) kernel=‘sigmoid’ 

Radial basis function .K(xi, x) = exp(−λ
∥∥xi − x′∥∥2) kernel=‘rbf’



114 7 Supervised Machine Learning Methods

Table 7.2 Selected distance metrics that can be used in supervised nearest neighbors and other 
ML algorithms 

Distance Identifier Arguments Equation 

Euclidean ‘euclidean’ None
√∑D 

j=1

∣∣xj − yj

∣∣2 

Manhattan ‘manhattan’ None
∑D 

j=1

∣∣xj − yj

∣∣

Chebyshev ‘chebyshev’ None max
∣∣xj − yj

∣∣

Minkowski ‘minkowski’ p, (w = 1)
(∑D 

j=1 w
∣∣xj − yj

∣∣p
)1/p 

7.11 Trees-Based Methods 

Decision Trees Before describing how decision trees work, let me introduce a few 
definitions highlighted in Fig. 7.5. A  root node is the starting node of a decision tree 
and contains the entire data set involved in the process. A parent node is a node that 
is split into sub-nodes. A child node is a sub-node of a parent node. Finally, a leaf 
or terminal node are nodes that terminate the tree and that are not split to generate 
additional child nodes. 

The decision tree algorithm (Breiman et al., 1984) and its modifications such as 
random forests and extra trees split the input space into sub-regions, which allow 
for regression and classification tasks (see Fig. 7.5) (Kubat, 2017). In detail, each 
node maps a region in the input space, which is further divided within the node 
into sub-regions by using splitting criteria. Therefore, the workflow of a decision 

SiO2 

SiO2 > 50 wt%SiO2 ≤ 50 wt% 

TiO2 

TiO2 ≤ 0.5 wt% TiO2 > 0.5 wt% Al2O3 ≤ 16 wt% Al2O3 > 16 wt% 

Al2O3 

Root node 
Branch 

Child node 

(...) (...) (...) (...) 

Fig. 7.5 The decision tree algorithm
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tree consists of progressively splitting the input space by a sequence of decisions 
(i.e., splittings) into non-overlapping regions, with a one-to-one correspondence 
between leaf nodes and input regions (Kubat, 2017). Unfortunately, the decision 
tree algorithm, despite the appeal of the simplicity of its formulation, is often prone 
to overfitting and underfitting (cf. Sect. 3.5.5), making it less accurate than other 
predictors (Song & Lu, 2015). 

To avoid overfitting and underfitting, more robust algorithms called ensemble 
predictors have been developed. Examples are random forest, gradient boosting, 
and extremely randomized tree methods. More details on the decision tree model 
are available from Breiman et al. (1984). 

Random Forest The random forest algorithm (Breiman, 2001) is based on the 
“bagging” technique, which is a bootstrap aggregation technique that averages the 
prediction over a collection of bootstrap samples, thereby reducing the variance 
(Hastie et al., 2017). In detail, the random forest algorithm uses bagging to create 
multiple versions of a predictor (i.e., multiples trees), then evaluates the predictors 
to obtain an aggregated predictor (Hastie et al., 2017). Specifically, for a given 
training data set with sample size n, bagging produces k new training sets by 
uniformly sampling from the original training data set with replacement (i.e., by 
bootstrapping) (Hastie et al., 2017). Next, k decision trees are trained by using the k 
newly created training sets and are typically coupled by averaging for regression or 
majority voting for classification (Hastie et al., 2017). A detailed description of the 
random forest algorithm is available from Breiman (2001) and Hastie et al. (2017). 

Extremely Randomized Trees The extremely randomized trees algorithm (Geurts 
et al., 2006) is similar to the random forest algorithm with two main differences: (i) 
it splits nodes by choosing fully random cut points and (ii) it uses the entire training 
sample rather than a bootstrapped replica to grow the trees (Geurts et al., 2006). 
The predictions of the trees are typically aggregated to yield the final prediction 
by majority vote in the classification and by arithmetic averaging in the regression 
(Geurts et al., 2006). A complete description of the extremely randomized trees 
algorithm is given by Geurts et al. (2006). 
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Chapter 8 
Classification of Well Log Data Facies by 
Machine Learning 

8.1 Motivation 

Recognizing facies in wells through well-log data analysis is a common task in many 
geological fields such as trap reservoir characterization, sedimentology analysis, and 
depositional-environment interpretation (Hernandez-Martinez et al., 2013; Wood, 
2021). I started conceiving this chapter when I discovered the FORCE 20201 ML 
competition (Bormann et al., 2020) and the SEG 20162 ML contest (M. Hall & 
Hall, 2017). In these two contests, students and early-career researchers attempt to 
identify lithofacies in a blind data set of well-log data (i.e., gamma-ray, resistivity, 
photoelectric effect, etc. . . . )  by  using  a  ML  algorithm  of  their  selection  to  be  trained  
on a labeled data set made available to all competitors. The competitors of the 2016 
edition were supported by a tutorial by Brendon Hall (B. Hall, 2016) and Hall and 
Hall (M. Hall & Hall, 2017). Also, Bestagini et al. (2017) described a strategy to 
achieve the final goal for the 2016 edition. Note that the starter notebook3 of the 
FORCE 2020 ML competition contains all you need to begin: it shows how to 
import the training data set, inspect the imported data set, and start developing a 
model based on the random forest algorithm. 

This chapter focuses on the FORCE 2020 Machine Learning competition by 
progressively developing a ML workflow (i.e., descriptive statistics, algorithm 
selection, model optimization, model training, and application of the model to the 
blind data set) and discussing each step to make everything as simple as possible. 

1 https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition. 
2 https://github.com/seg/2016-ml-contest. 
3 https://bit.ly/force2020_ml_start. 
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8.2 Inspection of the Data Sets and Pre-processing 

For the FORCE 2020 Machine Learning competition,4 a starter Jupyter Notebook 
has been made available on GitHub together with a labeled training dataset (i.e., 
the compressed train.zip file containing the single file train.csv) and two tests 
(i.e., leaderboard_test_features.csv and hidden_test.csv).5 Nowadays, all three files 
are labeled, which means that they also contain the correct solution either in a 
column named FORCE_2020_LITHOFACIES_LITHOLOGY or in a separate file 
(Bormann et al., 2020). The above data set is provided by a NOLD 2.06 license and 
contains well-log data for more than 90 wells offshore of Norway (B. Hall, 2016; 
Bormann et al., 2020). 

We start by importing the three data sets using pandas and looking at the spatial 
distribution of the wells under investigation (code listing 8.1; Fig. 8.1). 

1 import pandas as pd 
2 import matplotlib.pyplot as plt 
3 
4 data_sets = [’train.csv’, ’hidden_test.csv’, ’ 

leaderboard_test_features.csv’] 
5 labels = [’Train data’, ’Hidden test data’, ’Leaderboard test 

data’] 
6 colors = [’#BFD7EA’,’#0A3A54’,’#C82127’] 
7 
8 fig, ax = plt.subplots() 
9 
10 for my_data_set, my_color, my_label in zip(data_sets, colors, 

labels): 
11 
12 my_data = pd.read_csv(my_data_set, sep=’;’) 
13 my_Weels = my_data.drop_duplicates(subset=[’WELL’]) 
14 my_Weels = my_Weels[[’X_LOC’, ’Y_LOC’]].dropna() / 100000 
15 
16 ax.scatter(my_Weels[’X_LOC’], my_Weels[’Y_LOC’], 
17 label=my_label, s=80, color=my_color, 
18 edgecolor=’k’, alpha=0.8) 
19 
20 ax.set_xlabel(’X_LOC’) 
21 ax.set_ylabel(’Y_LOC’) 
22 ax.set_xlim(4,6) 
23 ax.set_ylim(63,70) 
24 ax.legend(ncol=3) 
25 plt.tight_layout() 

Listing 8.1 Spatial distribution of wells under investigation

4 https://xeek.ai/challenges/force-well-logs/overview. 
5 https://bit.ly/force2020_ml_data. 
6 https://data.norge.no/nlod/en/2.0. 
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Fig. 8.1 Result of code listing 8.1. Spatial distribution of investigated wells 

Figure 8.1 shows that the wells are distributed in three main clusters. As geolo-
gists, we would expect wells that are close together to have similar distributions of 
lithofacies. Therefore, well position could significantly impact the training of our 
ML model. Many strategies are available to include the spatial distribution of wells 
in a ML model; including X_LOC and Y_LOC as model features is the easiest 
strategy. More refined strategies may include a preliminary clustering of the spatial 
distribution of wells and a learning approach based on the result of the clustering. 
To develop a smart and simple workflow, we select the first option (i.e., simply 
including X_LOC and Y_LOC as model features). 

Figure 8.2 shows the results of code listing 8.2, which reveal two main char-
acteristics of the investigated data sets. The first characteristic relates to feature 
persistence. Many features such as Spectral Gamma Ray (SGR), Shear wave 
sonic log (DTS), Micro Resisitivity measurement (RMIC), and Average Rate of 
Penetration (ROPA) contain more than 60% missing values (see the upper panel 
of Fig. 8.2). Consequently, a strategy to deal with missing values is mandatory. 
Given our desire to maintain the simplicity of the ML workflow presented in the 
present chapter, only features containing less than 40% missing values are used. 
In addition, all missing values are replaced with the average of each feature. 
In statistics, the procedure of substituting missing values with other values is 
called “feature imputation” (Zou et al., 2015). In scikit-learn, SimpleImputer() and 
IterativeImputer() are useful for feature imputation (cf. Sect. 3.3.2).
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Fig. 8.2 Result of code listing 8.2. Inspect feature persistence and class balancing 

1 import pandas as pd 
2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 
5 lithology_keys = {30000: ’Sandstone’, 
6 65030: ’Sandstone/Shale’, 
7 65000: ’Shale’, 
8 80000: ’Marl’, 
9 74000: ’Dolomite’,
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10 70000: ’Limestone’, 
11 70032: ’Chalk’, 
12 88000: ’Halite’, 
13 86000: ’Anhydrite’, 
14 99000: ’Tuff’, 
15 90000: ’Coal’, 
16 93000: ’Basement’} 
17 
18 train_data = pd.read_csv(’train.csv’, sep=’;’) 
19 
20 class_abundance = np.vectorize(lithology_keys.get)( 
21 train_data[’FORCE_2020_LITHOFACIES_LITHOLOGY’].values) 
22 unique, counts = np.unique(class_abundance, return_counts=True) 
23 
24 my_colors = [’#0F7F8B’] * len(unique) 
25 my_colors[np.argmax(counts)] = ’#C82127’ 
26 my_colors[np.argmin(counts)] = ’#0A3A54’ 
27 
28 fig, (ax1, ax2) = plt.subplots(2,1, figsize=(7,14)) 
29 
30 ax2.barh(unique,counts, color=my_colors) 
31 ax2.set_xscale("log") 
32 ax2.set_xlim(1e1,1e6) 
33 ax2.set_xlabel(’Number of Occurrences’) 
34 ax2.set_title(’Class Inspection’) 
35 
36 Feature_presence = train_data.isna().sum()/train_data.shape 

[0]*100 
37 
38 Feature_presence =Feature_presence.drop( 
39 labels=[’FORCE_2020_LITHOFACIES_LITHOLOGY’, 
40 ’FORCE_2020_LITHOFACIES_CONFIDENCE’, ’WELL 

’]) 
41 
42 Feature_presence.sort_values().plot.barh(color=’#0F7F8B’,ax=ax1) 
43 ax1.axvline(40, color=’#C82127’, linestyle=’--’) 
44 ax1.set_xlabel(’Percentage of Missing Values’) 
45 ax1.set_title(’Feature Inspection’) 
46 
47 plt.tight_layout() 

Listing 8.2 Inspect feature persistence and class balancing 

The second key characteristic of the investigated data set appears clearly upon 
observing the class distribution (see lower panel of Fig. 8.2): the training data set is 
highly imbalanced, with some classes exceeding . 105 occurrences and others such as 
Anhydrite and Basement occurring only .103 or .102 times, respectively. A strategy 
to account for the imbalance of training data set is thus also mandatory. 

Some ML algorithms, such as those discussed in the present chapter, try to 
account for imbalance in their training data set by tuning their hyperparameters. 
More refined strategies may involve (1) under-sampling majority classes, (2) over-
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sampling minority classes, (3) combining over- and under-sampling methods, and 
(4) creating ensemble balanced sets (Lemaître et al., 2017). 

1 import numpy as np 
2 
3 fig = plt.figure(figsize=(8,4)) 
4 
5 train_data[’log_RDEP’] = np.log10(train_data[’RDEP’]) 
6 
7 to_be_plotted = [’RDEP’, ’log_RDEP’] 
8 
9 for index, my_feature in enumerate(to_be_plotted): 
10 ax = fig.add_subplot(1,2,index+1) 
11 min_val = np.nanpercentile(train_data[my_feature],1) 
12 max_val = np.nanpercentile(train_data[my_feature],99) 
13 my_bins = np.linspace(min_val,max_val,30) 
14 ax.hist(train_data[my_feature], bins=my_bins, 
15 density = True, color=’#BFD7EA’, 
16 edgecolor=’k’) 
17 ax.set_ylabel(’Probability Density’) 
18 ax.set_xlabel(my_feature) 
19 
20 plt.tight_layout() 

Listing 8.3 Log-transformation of selected features 

The histogram distribution of some features (code listing 8.3 and Fig. 8.3) 
shows that they are highly skewed, which could be a problem for some ML 
algorithms (e.g., those assuming a normal distribution for the investigated features). 
Consequently, we apply a log-transformation to selected features to reduce the 
skewness (see Fig. 8.3, right panel). 

Fig. 8.3 Result of code listing 8.3. Log-transformation of selected features
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As discussed in Chap. 3.3, the goal of data augmentation is to improve the 
generalizability of ML models by increasing the amount of information in their 
data sets. This approach consists of adding modified copies (e.g., flipper or rotated 
images in the case of image classification) of the available data or combining the 
existing features to generate new features. For example, Bestagini et al. (2017) 
suggest three approaches for data augmentation: quadratically expanding the feature 
vector, considering second-order interaction terms, and defining an augmented 
gradient feature vector. In an attempt to partially mimic the data augmentation 
strategy proposed by Bestagini et al. (2017), we report a code listing to calculate 
the augmented gradient feature vector (code listing 8.4). 

1 def calculate_delta(dataFrame): 
2 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’, ’ 

DTC’, ’DRHO’, ’log_GR’ , ’NPHI’, ’log_PEF’, ’SP’] 
3 wells = dataFrame[’WELL’].unique() 
4 for my_feature in delta_features: 
5 values = [] 
6 for well in wells: 
7 col_values = dataFrame[dataFrame[’WELL’] == well][ 

my_feature].values 
8 col_values_ = np.array([col_values[0]]+list( 

col_values[:-1])) 
9 delta_col_values = col_values-col_values_ 
10 values = values + list(delta_col_values) 
11 dataFrame[’Delta_’ + my_feature] = values 
12 return dataFrame 

Listing 8.4 Function to calculate the augmented gradient feature vector 

To summarize, our pre-processing strategy starts with (i) selecting the features 
characterized by fewer than 40% missing values, (ii) replacing missing values with 
the average of each feature within each data set, (iii) applying a log-transformation 
of the features with highly skewed distributions, and (iv) augmenting the data. Steps 
(i)–(iv) are implemented in a series of functions (see code listing 8.5) and are 
combined in a pandas pipe() chain to automate pre-processing (code listing 8.6). 
Also, the pre_processing_pipeline() function (code listing 8.6) stores the imported 
.csv files in a single HDF5 file (hierarchical data format version 5). As introduced 
in Sect. 3.3, HDF5 is a high-performance library to manage, process, and store 
heterogeneous data. All data sets of interest are stored in HDF5 files as pandas 
DataFrames, ready for fast reading and writing. At lines 3–6, the function checks 
that the output file exists. If so, the function removes the existing file. At line 16, the 
function appends each processed data set to a newly created file.
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1 import os 
2 import pandas as pd 
3 import numpy as np 
4 
5 def replace_inf(dataFrame): 
6 to_be_replaced = [np.inf,-np.inf] 
7 for replace_me in to_be_replaced: 
8 dataFrame = dataFrame.replace(replace_me, np.nan) 
9 return dataFrame 
10 
11 def log_transform(dataFrame): 
12 log_features = [’RDEP’,’RMED’,’PEF’,’GR’] 
13 for my_feature in log_features: 
14 dataFrame.loc[dataFrame[my_feature] < 0, my_feature] = 

dataFrame[dataFrame[my_feature] > 0].RDEP.min() 
15 dataFrame[’log_’+ my_feature] = np.log10(dataFrame[ 

my_feature]) 
16 return dataFrame 
17 
18 def calculate_delta(dataFrame): 
19 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’, 
20 ’DTC’, ’DRHO’, ’log_GR’ , ’NPHI’, 
21 ’log_PEF’, ’SP’] 
22 wells = dataFrame[’WELL’].unique() 
23 for my_feature in delta_features: 
24 values = [] 
25 for well in wells: 
26 my_val = dataFrame[dataFrame[’WELL’] == well][ 

my_feature].values 
27 my_val_ = np.array([my_val[0]] + 
28 list(my_val[:-1])) 
29 delta_my_val = my_val-my_val_ 
30 values = values + list(delta_my_val) 
31 dataFrame[’Delta_’ + my_feature] = values 
32 return dataFrame 
33 
34 def feature_selection(dataFrame): 
35 features = [’CALI’, ’Delta_CALI’, ’log_RMED’, 
36 ’Delta_log_RMED’, ’log_RDEP’, 
37 ’Delta_log_RDEP’, ’RHOB’, ’Delta_RHOB’, 
38 ’SP’, ’Delta_SP’, ’DTC’, ’Delta_DTC’, 
39 ’DRHO’, ’Delta_DRHO’, ’log_GR’, ’Delta_log_GR’, 
40 ’NPHI’, ’Delta_NPHI’, ’log_PEF’, ’Delta_log_PEF’] 
41 dataFrame = dataFrame[features] 
42 return dataFrame 

Listing 8.5 Defining the pre-processing functions 

Figure 8.4 shows the results of code listing 8.7 and describes most of the 
numerical features to be used during training. These features are derived by applying 
the pre-processing strategy developed in code listings 8.5 and 8.6. All the features 
reported in Fig. 8.4 are numerically continuous. However, the investigated data sets 
also contain categorical features such as GROUP and FORMATIONS.
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Most ML algorithms support the use of categorical features only after encoding 
to their numerical counterparts. Code listing 8.8 shows the pipe() chain of code 
listing 8.6 [i.e., pre_processing_pipeline()], with the addition of a categorical 
encoder to allow FORMATIONS to be investigated by a ML algorithm. We use 
the OrdinalEncoder() method from scikit-learn. Also, code listing 8.8 presents a 
modified version of the function feature_selection() to include the encoded feature 
FORMATION. 

1 def pre_processing_pipeline(input_files, out_file): 
2 
3 try: 
4 os.remove(out_file) 
5 except OSError: 
6 pass 
7 
8 for ix, my_file in enumerate(input_files): 
9 my_dataset = pd.read_csv(my_file, sep=’;’) 
10 
11 try: 
12 my_dataset[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf 

( 
13 out_file, key=my_file[:-4] + ’_target’) 
14 except: 
15 my_target = pd.read_csv(’leaderboard_test_target.csv’ 

, sep=’;’) 
16 my_target[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf( 
17 out_file, key=my_file[:-4] + ’_target’) 
18 
19 if ix==0: 
20 # Fitting the categorical encoders 
21 my_encoder = OrdinalEncoder() 
22 my_encoder.set_params(handle_unknown=’ 

use_encoded_value’, 
23 unknown_value=-1, 
24 encoded_missing_value=-1).fit( 
25 my_dataset[[’FORMATION’]]) 
26 
27 my_dataset = (my_dataset. 
28 pipe(replace_inf). 
29 pipe(log_transform). 
30 pipe(calculate_delta). 
31 pipe(feature_selection)) 
32 my_dataset.to_hdf(out_file, key=my_file[:-4]) 
33 
34 my_dataset.to_hdf(out_file, key= my_file[:-4])
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35 
36 my_files = [’train.csv’, ’leaderboard_test_features.csv’, ’ 

hidden_test.csv’] 
37 
38 pre_processing_pipeline(input_files=my_files, out_file=’ml_data. 

h5’) 

Listing 8.6 Combining the pre-processing functions in a pandas pipe() 

1 import pandas as pd 
2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 
5 train_data = pd.read_hdf(’ml_data.h5’, ’train’) 
6 test_data = pd.read_hdf(’ml_data.h5’, ’leaderboard_test_features’ 

) 
7 
8 show_axes = [1,5,9,13,17] 
9 fig = plt.figure(figsize=(9, 15)) 
10 
11 for i, my_feature in enumerate(train_data.columns[0:20], start=1) 

: 
12 ax = fig.add_subplot(5,4,i) 
13 min_val = np.nanpercentile(train_data[my_feature],1) 
14 max_val = np.nanpercentile(train_data[my_feature],99) 
15 my_bins = np.linspace(min_val,max_val,30) 
16 ax.hist(train_data[my_feature], bins=my_bins, density = True, 
17 histtype=’step’, color=’#0A3A54’) 
18 ax.hist(test_data[my_feature], bins=my_bins, density = True, 
19 histtype=’step’, color=’#C82127’, linestyle=’--’) 
20 ax.set_xlabel(my_feature) 
21 ymin, ymax = ax.get_ylim() 
22 if ymax >=10: 
23 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 0)) 
24 elif ((ymax<10)&(ymax>1)): 
25 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 1)) 
26 else: 
27 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 2)) 
28 
29 if i in show_axes: 
30 ax.set_ylabel(’Probability Density’) 
31 
32 plt.tight_layout() 
33 fig.align_ylabels() 

Listing 8.7 Descriptive statistics
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Fig. 8.4 Result of code listing 8.7. Log-transformation of selected features 

1 import os 
2 import pandas as pd 
3 import numpy as np 
4 from sklearn.preprocessing import OrdinalEncoder 
5 from sklearn.impute import SimpleImputer 
6 
7 def replace_inf(dataFrame): 
8 to_be_replaced = [np.inf,-np.inf] 
9 for replace_me in to_be_replaced: 
10 dataFrame = dataFrame.replace(replace_me, np.nan) 
11 return dataFrame 
12 
13 def log_transform(dataFrame):
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14 log_features = [’RDEP’,’RMED’,’PEF’,’GR’] 
15 for my_feature in log_features: 
16 dataFrame.loc[dataFrame[my_feature] < 0, my_feature] = 

dataFrame[ 
17 dataFrame[my_feature] > 0].RDEP.min() 
18 dataFrame[’log_’+ my_feature] = np.log10(dataFrame[ 

my_feature]) 
19 return dataFrame 
20 
21 def calculate_delta(dataFrame): 
22 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’, 
23 ’DTC’, ’DRHO’, ’log_GR’ , ’NPHI’, 
24 ’log_PEF’, ’SP’, ’BS’] 
25 wells = dataFrame[’WELL’].unique() 
26 for my_feature in delta_features: 
27 values = [] 
28 for well in wells: 
29 my_val = dataFrame[dataFrame[’WELL’] == well][ 

my_feature].values 
30 my_val_ = np.array([my_val[0]] + 
31 list(my_val[:-1])) 
32 delta_my_val = my_val-my_val_ 
33 values = values + list(delta_my_val) 
34 dataFrame[’Delta_’ + my_feature] = values 
35 return dataFrame 
36 
37 def categorical_encoder(dataFrame, my_encoder, cols): 
38 dataFrame[cols] = my_encoder.transform(dataFrame[cols]) 
39 return dataFrame 
40 
41 def feature_selection(dataFrame): 
42 features = [’CALI’, ’Delta_CALI’, ’log_RMED’, ’ 

Delta_log_RMED’, 
43 ’log_RDEP’,’Delta_log_RDEP’, ’RHOB’, ’Delta_RHOB’ 

, 
44 ’SP’, ’Delta_SP’, ’DTC’, ’Delta_DTC’, ’DRHO’, ’ 

Delta_DRHO’, 
45 ’log_GR’, ’Delta_log_GR’, ’NPHI’, ’Delta_NPHI’, 
46 ’log_PEF’, ’Delta_log_PEF’, ’BS’, ’Delta_BS’, 
47 ’FORMATION’, ’X_LOC’,’Y_LOC’, ’DEPTH_MD’] 
48 dataFrame = dataFrame[features] 
49 return dataFrame 
50 
51 def pre_processing_pipeline(input_files, out_file): 
52 
53 try: 
54 os.remove(out_file) 
55 except OSError: 
56 pass 
57 
58 for ix, my_file in enumerate(input_files): 
59 my_dataset = pd.read_csv(my_file, sep=’;’) 
60 
61 try:
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62 my_dataset[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf 
( 

63 out_file, key=my_file[:-4] + ’_target’) 
64 except: 
65 my_target = pd.read_csv(’leaderboard_test_target.csv’ 

, sep=’;’) 
66 my_target[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf( 
67 out_file, key=my_file[:-4] + ’_target’) 
68 
69 if ix==0: 
70 # Fitting the categorical encoders 
71 my_encoder = OrdinalEncoder() 
72 my_encoder.set_params(handle_unknown=’ 

use_encoded_value’, 
73 unknown_value=-1, 
74 encoded_missing_value=-1).fit( 
75 my_dataset[[’FORMATION’]]) 
76 
77 my_dataset = (my_dataset. 
78 pipe(replace_inf). 
79 pipe(log_transform). 
80 pipe(calculate_delta). 
81 pipe(categorical_encoder, 
82 my_encoder=my_encoder, cols=[’ 

FORMATION’]). 
83 pipe(feature_selection)) 
84 my_dataset.to_hdf(out_file, key=my_file[:-4]) 
85 
86 imputer = SimpleImputer(missing_values=np.nan, strategy=’ 

mean’) 
87 imputer = imputer.fit(my_dataset[my_dataset.columns]) 
88 my_dataset[my_dataset.columns] = imputer.transform( 
89 my_dataset[my_dataset.columns]) 
90 my_dataset.to_hdf(out_file, key= my_file[:-4]) 
91 
92 my_files = [’train.csv’, ’leaderboard_test_features.csv’, ’ 

hidden_test.csv’] 
93 
94 pre_processing_pipeline(input_files=my_files, out_file=’ml_data. 

h5’) 

Listing 8.8 Pre-processing pipe() chain, including the categorical features 

8.3 Model Selection and Training 

After data pre-processing, the next fundamental steps are model selection, optimiza-
tion, and training. Recall that we are dealing with a classification problem, so we 
select from among supervised algorithms. In the following, we test the extremely 
randomized trees algorithm [i.e., ExtraTreesClassifier()] in scikit-learn. Selecting 
ExtraTreesClassifier() is an arbitrary choice and the reader is invited to explore 
different ML methods, such as support vector machines.
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In our specific case, the ExtraTreesClassifier() depends on many hyperparame-
ters such as the number of trees, the number of investigated features, and the splitting 
criterion. 

1 import pandas as pd 
2 from sklearn.ensemble import ExtraTreesClassifier 
3 from sklearn.model_selection import train_test_split 
4 from sklearn.model_selection import GridSearchCV 
5 import joblib as jb 
6 from sklearn.preprocessing import StandardScaler 
7 
8 X = pd.read_hdf(’ml_data.h5’, ’train’).values 
9 y = pd.read_hdf(’ml_data.h5’, ’train_target’).values 
10 
11 X_train, X_test, y_train, y_test = train_test_split( 
12 X, y, test_size=0.2, random_state=10, stratify=y) 
13 
14 scaler = StandardScaler() 
15 X_train = scaler.fit_transform(X_train) 
16 
17 param_grid = { 
18 ’criterion’: [’entropy’, ’gini’], 
19 ’min_samples_split’: [2, 5, 8, 10], 
20 ’max_features’: [’sqrt’, ’log2’, None], 
21 ’class_weight’: [’balanced’, None] 
22 } 
23 
24 classifier = ExtraTreesClassifier(n_estimators=250, 
25 n_jobs=-1) 
26 
27 CV_rfc = GridSearchCV(estimator=classifier, param_grid=param_grid 

, cv= 3, verbose=10) 
28 CV_rfc.fit(X_train, y_train) 
29 
30 jb.dump(CV_rfc, ’ETC_grid_search_results_rev_2.pkl’) 

Listing 8.9 Grid search using GridSearchCV() 

All these hyperparameters may assume different values, which may positively 
or negatively affect the classification capability of the model. The easiest way to 
find the best combination of the investigated hyperparameters is to do a grid search, 
which consists of defining the most relevant values for each hyperparameter and 
then training and evaluating a model for each possible combination. Table 8.1 lists 
the hyperparameters selected for the grid search. The GridSearchCV() method in 
scikit-learn is used to do a grid search in Python (code listing 8.9). After importing 
all required libraries (lines 1–6), the pre-processed training data set is imported (line 
8) with labels (line 9). Next, the training data set is split into two, with one part 
(i.e., X_train) for the training and validation within the grid search, and another 
part (i.e., X_test), never involved in the training, to test the results obtained during
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Table 8.1 Hyperparameters used in the grid search to optimize the ExtraTreesClassifier() 
algorithm. Descriptions are from the scikit-learn documentation 

Parameter Descriptiona Values 

Criterion The function to measure the quality of a 
split. 

[‘entropy’, ’gini’] 

min_samples_split The minimum number of samples required 
to split an internal node 

[2, 5, 8, 10] 

max_features The number of features to consider when 
looking for the best split 

[‘sqrt’, ‘log2’, 
None] 

class_weight Weights associated with classes [‘balanced’, None] 

. a https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html 

Fig. 8.5 Result of code listing 8.10 

the grid search and for further testing against potential issues such as overfitting. 
The next step (lines 14 and 15) consists of scaling the data set involved in the grid 
search to zero mean and unit variance (cf. paragraph 3.3.5). Lines 17–22 define 
the set of parameters involved in the grid search. The combination of the selected 
hyperparameters results in a grid of 48 models, each repeated three times (.cv = 3 at 
line 27) through cross validation (see Sect. 3.5.2) for a total of 144 attempts. 

Running the code listing 8.9 on my MacBook pro, equipped wit a 2.3 GHz 
Quad-Core Intel™ Core i7 and 32 GB of RAM, takes about 8 hours. The top 
panel of Fig. 8.5 displays the accuracy scores of all 48 models, ordered by their 
ranking (code listing 8.10), and highlights that the best-performing models produce 
accuracy scores greater than 0.95. Such a strong performance may suggest that 
we are overfitting the training data set, so, as a first step, we use the three best-

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
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performing models (code listing 8.10) on the test data set (i.e., X_test). The bottom 
panel of Fig. 8.5 shows that the accuracy scores for X_test are of the same order 
of magnitude as those resulting from the grid search cross validation (i.e., .≈0.96), 
which does not support the idea of strong overfitting. 

1 from joblib import load 
2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 import pandas as pd 
5 from sklearn.ensemble import ExtraTreesClassifier 
6 from sklearn.model_selection import train_test_split 
7 from sklearn.preprocessing import StandardScaler 
8 
9 CV_rfc = load(’ETC_grid_search_results_rev_2.pkl’) 
10 
11 my_results = pd.DataFrame.from_dict(CV_rfc.cv_results_) 
12 my_results = my_results.sort_values(by=[’rank_test_score’]) 
13 
14 # Plot the results of the GridSearch 
15 fig = plt.figure() 
16 ax1 = fig.add_subplot(2,1,1) 
17 ax1.plot(my_results[’rank_test_score’], my_results[’ 

mean_test_score’], marker=’o’, 
18 markeredgecolor=’#0A3A54’, markerfacecolor=’#C82127’, 

color=’#0A3A54’, 
19 label=’Grid Search Results’) 
20 ax1.set_xticks(np.arange(1,50,4)) 
21 ax1.invert_xaxis() 
22 ax1.set_xlabel(’Model ranking’) 
23 ax1.set_ylabel(’Accuracy scores’) 
24 ax1.legend() 
25 
26 # Selecting the best three performing models 
27 my_results = my_results[my_results[’mean_test_score’]>0.956] 
28 
29 # Load and scaling 
30 X = pd.read_hdf(’ml_data.h5’, ’train’).values 
31 y = pd.read_hdf(’ml_data.h5’, ’train_target’).values 
32 
33 X_train, X_test, y_train, y_test = train_test_split( 
34 X, y, test_size=0.2, random_state=10, stratify=y) 
35 
36 scaler = StandardScaler() 
37 X_train = scaler.fit_transform(X_train) 
38 X_test = scaler.transform(X_test) 
39 
40 leaderboard_test_features = pd.read_hdf(’ml_data.h5’, ’ 

leaderboard_test_features’).values 
41 hidden_test = pd.read_hdf(’ml_data.h5’, ’hidden_test’).values 
42 
43 leaderboard_test_features_scaled = scaler.transform( 

leaderboard_test_features)
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44 hidden_test_scaled = scaler.transform(hidden_test) 
45 
46 # Apply the three best performing model on the test dataset and 

on the unknowns 
47 leaderboard_test_res = {} 
48 hidden_test_res = {} 
49 test_score = [] 
50 rank_model = [] 
51 for index, row in my_results.iterrows(): 
52 classifier = ExtraTreesClassifier(n_estimators=250, n_jobs=8, 

random_state=64, **row[’params’]) 
53 classifier.fit(X_train, y_train) 
54 my_score = classifier.score(X_test,y_test) 
55 test_score.append(my_score) 
56 rank_model.append(row[’rank_test_score’]) 
57 
58 my_leaderboard_test_res = classifier.predict( 

leaderboard_test_features_scaled) 
59 my_hidden_test_res = classifier.predict(hidden_test_scaled) 
60 leaderboard_test_res[’model_ranked_’ + str(row[’ 

rank_test_score’])] = my_leaderboard_test_res 
61 hidden_test_res[’model_ranked_’ + str(row[’rank_test_score’]) 

] = my_hidden_test_res 
62 
63 leaderboard_test_res_pd = pd.DataFrame.from_dict( 

leaderboard_test_res) 
64 hidden_test_res_pd = pd.DataFrame.from_dict(hidden_test_res) 
65 leaderboard_test_res_pd.to_hdf(’ml_data.h5’, key= ’ 

leaderboard_test_res’) 
66 hidden_test_res_pd.to_hdf(’ml_data.h5’, key= ’hidden_test_res’) 
67 
68 # plot the resultson the test dataset 
69 ax2 = fig.add_subplot(2,1,2) 
70 labels = my_results[’rank_test_score’] 
71 validation_res = np.around(my_results[’mean_test_score’], 2) 
72 test_res = np.around(np.array(test_score),2) 
73 x = np.arange(len(labels)) 
74 width = 0.35 
75 rects1 = ax2.bar(x - width/2, validation_res, width, label=’ 

Validation data set’, color=’#C82127’) 
76 rects2 = ax2.bar(x + width/2, test_res, width, label=’Test data 

set’, color=’#0A3A54’) 
77 ax2.set_ylabel(’Accuracy scores’) 
78 ax2.set_xlabel(’Model ranking’) 
79 ax2.set_ylim(0,1.7) 
80 ax2.set_xticks(x, labels) 
81 ax2.legend() 
82 ax2.bar_label(rects1, padding=3) 
83 ax2.bar_label(rects2, padding=3) 
84 fig.align_ylabels() 
85 fig.tight_layout() 

Listing 8.10 Applying the three best-performing models on the test data set and on unknown 
samples 
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1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 from sklearn.metrics import accuracy_score 
4 import pandas as pd 
5 
6 leaderboard_test_res= pd.read_hdf(’ml_data.h5’, ’ 

leaderboard_test_res’) 
7 hidden_test_res = pd.read_hdf(’ml_data.h5’, ’hidden_test_res’) 
8 
9 leaderboard_test_target = pd.read_hdf(’ml_data.h5’, ’ 

leaderboard_test_features_target’).values 
10 hidden_test_target = pd.read_hdf(’ml_data.h5’, ’ 

hidden_test_target’).values 
11 
12 leaderboard_accuracy_scores = [] 
13 hidden_accuracy_scores = [] 
14 
15 for (leaderboard_column, leaderboard_data), (hidden_column, 

hidden_data) in zip(leaderboard_test_res.iteritems(), 
hidden_test_res.iteritems()): 

16 
17 leaderboard_accuracy_scores.append(np.around(accuracy_score( 

leaderboard_data, leaderboard_test_target),2)) 
18 hidden_accuracy_scores.append(np.around(accuracy_score( 

hidden_data, hidden_test_target),2)) 
19 
20 
21 # plot the resultson the test dataset 
22 plt, ax1 = plt.subplots() 
23 labels = leaderboard_test_res.columns 
24 x = np.arange(len(labels)) 
25 width = 0.35 
26 rects1 = ax1.bar(x - width/2, leaderboard_accuracy_scores, width, 

label=’Leaderboard test data set’, color=’#C82127’) 
27 rects2 = ax1.bar(x + width/2, hidden_accuracy_scores, width, 

label=’Hidden test est data set’, color=’#0A3A54’) 
28 ax1.set_ylabel(’Accuracy scores’) 
29 #ax1.set_xlabel(’Model ranking’) 
30 ax1.set_ylim(0,1.1) 
31 ax1.set_xticks(x, labels) 
32 ax1.legend() 
33 ax1.bar_label(rects1, padding=3) 
34 ax1.bar_label(rects2, padding=3) 

Listing 8.11 Plotting the results obtained from the Leaderboard and the hidden test data sets 

The three best-performing models were also run to predict the unknown samples 
(i.e., the leaderboard and the hidden test data sets). The accuracy scores (Fig. 8.6) 
for the leaderboard and the hidden test data sets (i.e., from 0.79 to 0.81) highlight 
that our ML models still perform with satisfaction on independent test data sets, 
so we move to the next section where we check the models against the evaluation 
criteria of the FORCE2020 challenge.
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Fig. 8.6 Result of code listing 8.11 

8.4 Final Evaluation 

To evaluate the goodness of each model, the FORCE2020 challenge used a custom 
scoring strategy based on a penalty matrix (code listing 8.12). 

1 import numpy as np 
2 
3 A = np.load(’penalty_matrix.npy’) 
4 def score(y_true, y_pred): 
5 S = 0.0 
6 y_true = y_true.astype(int) 
7 y_pred = y_pred.astype(int) 
8 for i in range(0, y_true.shape[0]): 
9 S -= A[y_true[i], y_pred[i]] 
10 return S/y_true.shape[0] 

Listing 8.12 Custom scoring function 

In code listing 8.12, y_true and y_pred are the expected (i.e., correct) and 
predicted values, respectively, converted into integer indexes ranging from 0 to 11, 
as reported in Table 8.2. 

The main objective of the FORCE2020 scoring strategy is to penalize errors 
made on easy-to-recognize lithologies more strongly than those made on difficult-
to-recognize lithologies. To achieve this goal, the score() function weights each
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Table 8.2 Connecting the 
labeling in the target files 
with lithofacie names and the 
indexing of the score function 

Label Lithofacie Index 

30000 ‘Sandstone’ 0 

65030 ‘Sandstone/Shale’ 1 

65000 ‘Shale’ 2 

80000 ‘Marl’ 3 

74000 ‘Dolomite’ 4 

70000 ‘Limestone’ 5 

70032 ‘Chalk’ 6 

88000 ‘Halite’ 7 

86000 ‘Anhydrite’ 8 

99000 ‘Tuff’ 9 

90000 ‘Coal’ 10 

93000 ‘Basement’ 11 

true-value–predicted-value pair by using the penalty matrix (code listing 8.13) 
reported in Fig. 8.7. More specifically, the score() function returns the value of 
the penalty matrix corresponding to each true-value–predicted-value pair (e.g., 4 
if you confuse a Halite for a Sandstone; see Fig. 8.7). Next, the function sums all 
the scoring values and then calculates an “average” score by dividing the resulting 
value by the number of predictions. 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 import seaborn as sns 
4 
5 A = np.load(’penalty_matrix.npy’) 
6 
7 my_labels = [’Sandstone’,’Sandstone/Shale’,’Shale’,’Marl’, ’ 

Dolomite’, 
8 ’Limestone’,’Chalk’,’Halite’,’Anhydrite’,’Tuff’,’ 

Coal’,’Basement’] 
9 
10 fig, ax = plt.subplots(figsize=(15, 12)) 
11 ax.imshow(A) 
12 ax = sns.heatmap(A, annot=True, xticklabels = my_labels, 

yticklabels = my_labels) 
13 fig.tight_layout() 

Listing 8.13 Penalty matrix
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Fig. 8.7 Result of code listing 8.13 

1 import numpy as np 
2 import pandas as pd 
3 
4 A = np.load(’penalty_matrix.npy’) 
5 def score(y_true, y_pred): 
6 S = 0.0 
7 y_true = y_true.astype(int) 
8 y_pred = y_pred.astype(int) 
9 for i in range(0, y_true.shape[0]): 
10 S -= A[y_true[i], y_pred[i]] 
11 return S/y_true.shape[0] 
12 
13 target = np.full(1000, 5) # Limestone 
14 predicted = np.full(1000, 5) # Limestone 
15 print("Case 1: " + str(score(target, predicted))) 
16 
17 predicted = np.full(1000, 6) # Chalk 
18 print("Case 2: " + str(score(target, predicted))) 
19 
20 predicted = np.full(1000, 7) # Halite 
21 print("Case 3: " + str(score(target, predicted))) 
22 
23 hidden_test_target = pd.read_hdf(’ml_data.h5’, 
24 ’hidden_test_target’).values 
25 predicted = np.random.randint(0, high=12,
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26 size=1000) # Random predictions 
27 print("Case 4: " + str(score(target, predicted))) 
28 
29 ’’’ Output: 
30 
31 Case 1: 0.0 
32 Case 2: -1.375 
33 Case 3: -4.0 
34 Case 4: -3.04625 
35 
36 ’’’ 

Listing 8.14 Custom scoring function 

Based on Fig. 8.7 and code listing 8.12, we can argue that a correct prediction 
contributes zero to the score. 

Therefore, if you correctly guess all the predictions, the score function returns 
zero (see code listing 8.14, Case 1). In contrast, systematically predicting chalk 
on a data set of limestone samples returns .−1.375 (code listing 8.14, Case 2).  
Systematically predicting halite on a data set of limestone samples returns . −4.0
(code listing 8.14, Case 3), which is much more penalized than Case 2. Finally, 
considering the hidden test data set, a dummy model providing random predictions 
produces a score close to . −3 (code listing 8.14, Case 4).  

Figure 8.8 shows the result of applying the scoring strategy described above 
to the leaderboard and hidden test data sets. Despite their simplicity, the two 

Fig. 8.8 Result of code listing 8.15
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best-performing models produced by the grid search implemented in code list-
ing 8.9, shows similar performances (i.e., .> − 0.50) of top-ranked models in the 
FORCE2020 challenge.7 

1 import matplotlib.pyplot as plt 
2 import pandas as pd 
3 import numpy as np 
4 
5 A = np.load(’penalty_matrix.npy’) 
6 def score(y_true, y_pred): 
7 S = 0.0 
8 y_true = y_true.astype(int) 
9 y_pred = y_pred.astype(int) 
10 for i in range(0, y_true.shape[0]): 
11 S -= A[y_true[i], y_pred[i]] 
12 return S/y_true.shape[0] 
13 
14 lithology_numbers = {30000: 0, 65030: 1, 65000: 2, 80000: 3, 

74000: 4, 70000: 5, 
15 70032: 6, 88000: 7, 86000: 8, 99000: 9, 

90000: 10, 93000: 11} 
16 
17 # Load test data 
18 leaderboard_test_res = pd.read_hdf(’ml_data.h5’, ’ 

leaderboard_test_res’) 
19 hidden_test_res = pd.read_hdf(’ml_data.h5’, ’hidden_test_res’) 
20 
21 leaderboard_test_target = pd.read_hdf(’ml_data.h5’, ’ 

leaderboard_test_features_target’).values 
22 leaderboard_test_target = np.vectorize(lithology_numbers.get)( 

leaderboard_test_target) 
23 hidden_test_target = pd.read_hdf(’ml_data.h5’, ’ 

hidden_test_target’).values 
24 hidden_test_target = np.vectorize(lithology_numbers.get)( 

hidden_test_target) 
25 
26 leaderboard_accuracy_scores = [] 
27 hidden_accuracy_scores = [] 
28 for (leaderboard_column, leaderboard_data), (hidden_column, 

hidden_data) in zip(leaderboard_test_res.iteritems(), 
hidden_test_res.iteritems()): 

29 
30 leaderboard_data = np.vectorize(lithology_numbers.get)( 

leaderboard_data) 
31 leaderboard_accuracy_scores.append(np.around(score( 

leaderboard_data, leaderboard_test_target),4)) 
32 hidden_data = np.vectorize(lithology_numbers.get)( 

hidden_data)

7 https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition. 

https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
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33 hidden_accuracy_scores.append(np.around(score(hidden_data, 
hidden_test_target),4)) 

34 
35 # plot the results 
36 plt, ax1 = plt.subplots() 
37 labels = leaderboard_test_res.columns 
38 x = np.arange(len(labels)) 
39 width = 0.35 
40 rects1 = ax1.bar(x - width/2, leaderboard_accuracy_scores, width, 

label=’Leaderboard test data set’, color=’#C82127’) 
41 rects2 = ax1.bar(x + width/2, hidden_accuracy_scores, width, 

label=’Hidden test est data set’, color=’#0A3A54’) 
42 ax1.set_ylabel(’Accuracy scores’) 
43 ax1.set_ylim(0,-0.7) 
44 ax1.set_xticks(x, labels) 
45 ax1.legend() 
46 ax1.bar_label(rects1, padding=-12) 
47 ax1.bar_label(rects2, padding=-12) 

Listing 8.15 Final scoring on the leaderbord and hidden test data set 
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Chapter 9 
Machine Learning Regression 
in Petrology 

9.1 Motivation 

Deciphering magma storage depths and temperatures in the feeding systems of 
active volcanoes is a central issue in volcanology and petrology (see, e.g., Putirka, 
2008). For example, magma storage depths help to characterize volcanic plumbing 
systems (see, e.g., Petrelli et al., 2018; Ubide and Kamber, 2018; Ubide et al., 
2021). Also, the magma temperature must be estimated in order to use diffusion-
based geo-chronometers (see, e.g., Costa et al., 2020). To date, a robust and widely 
applied strategy to design geo-barometers or geo-thermometers is mainly based on 
changes in entropy and volume during equilibrium reactions between melts and 
crystals (see Putirka, 2008 and Putirka, 2008, and references therein). For example, 
the calibration of a mineral-melt or mineral-only thermometer or of a barometer 
consists of five main steps: (1) determine the chemical equilibria associated with 
significant changes in entropy and volume (Putirka, 2008); (2) procure a suitable 
experimental data set for which temperature and pressure are known (e.g., the data 
set of the Library of Experimental Phase Relations; Hirschmann et al., 2008); (3) 
compute the components of the crystal phase from chemical analyses; (4) choose the 
regression strategy; and (5) validate the model (Putirka, 2008). Recently, numerous 
authors have demonstrated the potential of thermo-barometry based on ML (see, 
e.g., Petrelli et al., 2020; Jorgenson et al., 2022). This chapter discusses how to 
calibrate ML thermo-barometers based on ortopyroxenes in equilibrium with the 
melt phase and with orthopyroxenes alone. 
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9.2 LEPR Data Set and Data Pre-processing 

The Library of Experimental Phase Relations (LEPR) (Hirschmann et al., 2008) 
includes . >5000 petrological experiments simulating igneous systems at tempera-
tures between 500 and 2500 . ◦C and pressures up to 25 GPa or more. The LEPR 
data set can be downloaded from a dedicated portal.1 In the LEPR data set, the 
entries corresponding to each experiment include both experimental data (i.e., the 
composition of starting materials, the experimental temperature and pressure, the 
phases at the end of the experiments and related compositions) and metadata (e.g., 
author, laboratory, device, oxygen fugacity). For this chapter, I downloaded an 
ExcelTM file and I named it LEPR_download.xls. In the ExcelTM file, the sheet 
named “Experiments” contains all the meta data and relevant information such as 
the composition of starting materials, the experimental temperature and pressure, 
and the phases present at the end of the experiment. The sheets named with a phase 
name (e.g., Liquid, Clinopyroxene, Olivine) contain the chemical compositions for 
that specific phase in each experiment. An index characterizes each experiment, 
linking the information in the different sheets. 

As a pre-processing strategy (see code listing 9.1), we define the function 
data_pre_processing(), which (1) imports the LEPR data set from ExcelTM (lines 
103 and 104), (2) creates a pandas pipe() for basic operations such as adjusting 
column names, converting all Fe data such as .FeOtot, filtering the features, and 
imputing NaN to zero (lines from 115 to 120); (3) start storing phase information 
in a .hd5 file (lines 123, 153, and 154); (4) combine all relevant data in a single 
pandas DataFrame (lines 128–130); (5) filter based on .SiO2, pressure P (GPa), 
and temperature T (. ◦C) (lines 132–141); (6) remove the entries characterized by 
chemical analysis that do not fit the chemical formula of the orthopyroxene (lines 
143–145); (7) shuffle the data set (lines 147 and 148); (8) separate the labels from 
the input features (lines 150 and 151); and (9) store everything in a .hd5 file (lines 
153 and 154). 

The statement at line 157 triggers the data pre-processing. The result is a hdf5 
file named ml_data.h5 that contains a DataFrame named “Liquid_Orthopyroxene” 
hosting the pre-processed experimental data from the LEPR data set. In addition, it 
stores the labels T and P in a DataFrame named “labels.” Finally, it contains all the 
original data of interest in three DataFrames named “Liquid,” “Orthopyroxene,” and 
“starting_material.” 

Figures 9.1 and 9.2 show the probability densities for the different chemical 
elements in the melt and orthopyroxene phases, respectively (code listing 9.2). 
Code listing 9.2 imports the Liquid_Orthopyroxene DataFrame from the hdf5 file 
ml_data.h5 (line 5).

1 https://lepr.earthchem.org/. 

https://lepr.earthchem.org/
https://lepr.earthchem.org/
https://lepr.earthchem.org/
https://lepr.earthchem.org/
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1 import os 
2 import pandas as pd 
3 import numpy as np 
4 
5 Elements = { 
6 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’, 
7 ’MnO’, ’CaO’, ’Na2O’, ’K2O’], 
8 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, 
9 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’Cr2O3’]} 
10 
11 def calculate_cations_on_oxygen_basis( 
12 myData0, myphase, myElements, n_oxygens): 
13 
14 Weights = {’SiO2’: [60.0843,1.0,2.0], 
15 ’TiO2’:[79.8788,1.0,2.0], 
16 ’Al2O3’: [101.961,2.0,3.0], 
17 ’FeOtot’:[71.8464,1.0,1.0], 
18 ’MgO’:[40.3044,1.0,1.0], 
19 ’MnO’:[70.9375,1.0,1.0], 
20 ’CaO’:[56.0774,1.0,1.0], 
21 ’Na2O’:[61.9789,2.0,1.0], 
22 ’K2O’:[94.196,2.0,1.0], 
23 ’Cr2O3’:[151.9982,2.0,3.0], 
24 ’P2O5’:[141.937,2.0,5.0], 
25 ’H2O’:[18.01388,2.0,1.0]} 
26 
27 myData = myData0.copy() 
28 # Cation mole proportions 
29 for el in myElements: 
30 myData[el + ’_cat_mol_prop’] = myData[myphase + 
31 ’_’ + el]  * Weights[el][1] / Weights[el][0] 
32 # Oxygen mole proportions 
33 for el in myElements: 
34 myData[el + ’_oxy_mol_prop’] = myData[myphase + 
35 ’_’ + el]  * Weights[el][2] / Weights[el][0] 
36 # Oxigen mole proportions totals 
37 totals = np.zeros(len(myData.index)) 
38 for el in myElements: 
39 totals += myData[el + ’_oxy_mol_prop’] 
40 myData[’tot_oxy_prop’] = totals 
41 # totcations 
42 totals = np.zeros(len(myData.index)) 
43 for el in myElements: 
44 myData[el + ’_num_cat’] = n_oxygens * myData[el + 
45 ’_cat_mol_prop’] / myData[’tot_oxy_prop’] 
46 totals += myData[el + ’_num_cat’] 
47 return totals 
48 
49 def filter_by_cryst_formula(dataFrame, myphase, myElements): 
50 
51 c_o_Tolerance = {’Orthopyroxene’: [4,6,0.025]} 
52 
53 dataFrame[’Tot_cations’] = calculate_cations_on_oxygen_basis( 
54 myData0 = dataFrame, myphase = myphase,
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55 myElements = myElements, 
56 n_oxygens = c_o_Tolerance[myphase][1]) 
57 
58 dataFrame = dataFrame[ 
59 (dataFrame[’Tot_cations’] < c_o_Tolerance[myphase][0] 
60 + c_o_Tolerance[myphase][2]) & 
61 (dataFrame[’Tot_cations’] > c_o_Tolerance[myphase][0] 
62 - c_o_Tolerance[myphase][2])] 
63 
64 dataFrame = dataFrame.drop(columns=[’Tot_cations’]) 
65 return dataFrame 
66 
67 def adjustFeOtot(dataFrame): 
68 for i in range(len(dataFrame.index)): 
69 try: 
70 if pd.to_numeric(dataFrame.Fe2O3[i])>0: 
71 dataFrame.loc[i,’FeOtot’] = (  
72 pd.to_numeric(dataFrame.FeO[i]) + 0.8998 * 
73 pd.to_numeric(dataFrame.Fe2O3[i])) 
74 else: 
75 dataFrame.loc[i, 
76 ’FeOtot’] = pd.to_numeric(dataFrame.FeO[i]) 
77 except: 
78 dataFrame.loc[i,’FeOtot’] = 0  
79 return dataFrame 
80 
81 def adjust_column_names(dataFrame): 
82 dataFrame.columns = [c.replace(’Wt: ’, ’’) 
83 for c in dataFrame.columns] 
84 dataFrame.columns = [c.replace(’ ’, ’’) 
85 for c in dataFrame.columns] 
86 return dataFrame 
87 
88 def select_base_features(dataFrame, my_elements): 
89 dataFrame = dataFrame[my_elements] 
90 return dataFrame 
91 
92 def data_imputation(dataFrame): 
93 dataFrame = dataFrame.fillna(0) 
94 return dataFrame 
95 
96 def data_pre_processing(phase_1, phase_2, out_file): 
97 
98 try: 
99 os.remove(out_file) 

100 except OSError: 
101 pass 
102 
103 starting = pd.read_excel(’LEPR_download.xls’, 
104 sheet_name=’Experiment’) 
105 starting= adjust_column_names(starting) 
106 starting.name = ’’ 
107 starting = starting[[’Index’, ’T(C)’,’P(GPa)’]] 
108 starting.to_hdf(out_file, key=’starting_material’)
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109 
110 phases = [phase_1, phase_2] 
111 
112 for ix, my_phase in enumerate(phases): 
113 my_dataset = pd.read_excel(’LEPR_download.xls’, 
114 sheet_name = my_phase) 
115 my_dataset = (my_dataset. 
116 pipe(adjust_column_names). 
117 pipe(adjustFeOtot). 
118 pipe(select_base_features, 
119 my_elements= Elements[my_phase]). 
120 pipe(data_imputation)) 
121 
122 my_dataset = my_dataset.add_prefix(my_phase + ’_’) 
123 my_dataset.to_hdf(out_file, key=my_phase) 
124 
125 my_phase_1 = pd.read_hdf(out_file, phase_1) 
126 my_phase_2 = pd.read_hdf(out_file, phase_2) 
127 
128 my_dataset = pd.concat([starting, 
129 my_phase_1, 
130 my_phase_2], axis=1) 
131 
132 my_dataset = my_dataset[(my_dataset[’Liquid_SiO2’] > 35)& 
133 (my_dataset[’Liquid_SiO2’] < 80)] 
134 
135 my_dataset = my_dataset[( 
136 my_dataset[’Orthopyroxene_SiO2’] > 0)]  
137 
138 my_dataset = my_dataset[(my_dataset[’P(GPa)’] <= 2)]  
139 
140 my_dataset = my_dataset[(my_dataset[’T(C)’] >= 650)& 
141 (my_dataset[’T(C)’] <= 1800)] 
142 
143 my_dataset = filter_by_cryst_formula(dataFrame = my_dataset, 
144 myphase = phase_2, 
145 myElements = Elements[phase_2]) 
146 
147 my_dataset = my_dataset.sample(frac=1, 
148 random_state=50).reset_index(drop=True) 
149 
150 my_labels = my_dataset[[’Index’, ’T(C)’, ’P(GPa)’]] 
151 my_dataset = my_dataset.drop(columns=[’T(C)’,’P(GPa)’]) 
152 
153 my_labels.to_hdf(out_file, key=’labels’) 
154 my_dataset.to_hdf(out_file, 
155 key= phase_1 + ’_’ + phase_2) 
156 
157 data_pre_processing(phase_1=’Liquid’ , 
158 phase_2=’Orthopyroxene’, 
159 out_file=’ml_data.h5’) 

Listing 9.1 Implementation of pre-processing strategy
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Fig. 9.1 Result of code listing 9.2. Descriptive statistics of the melt phase
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Fig. 9.2 Result of code listing 9.2. Descriptive statistics of the orthopyroxene phase
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1 import pandas as pd 
2 import matplotlib.pyplot as plt 
3 import seaborn as sns 
4 
5 my_dataset = pd.read_hdf(’ml_data.h5’, ’Liquid_Orthopyroxene’) 
6 
7 Elements = { 
8 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’, 
9 ’MnO’, ’CaO’, ’Na2O’, ’K2O’, ’H2O’], 
10 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, 
11 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’K2O’, ’Cr2O3’]} 
12 
13 fig = plt.figure(figsize=(7,9)) 
14 x_labels_melt = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’, 
15 r’FeO$_t$’, r’MnO’, r’MgO’, r’CaO’, 
16 r’Na$_2O$’, r’K$_2$O’, r’H$_2$O’] 
17 for i, col in enumerate(Elements[’Liquid’]): 
18 ax1 = fig.add_subplot(5, 2, i+1) 
19 sns.kdeplot(my_dataset[’Liquid_’ + col], fill=True, 
20 color=’k’, facecolor=’#BFD7EA’, ax = ax1)  
21 ax1.set_xlabel(x_labels_melt[i] + ’ [wt. %] the melt’) 
22 if i in [0,2,4,6,8]: 
23 ax1.set_ylabel(’Prob. Density’) 
24 else: 
25 ax1.set(ylabel=None) 
26 
27 fig.align_ylabels() 
28 fig.tight_layout() 
29 
30 fig1 = plt.figure(figsize=(7,9)) 
31 x_labels_cpx = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’, 
32 r’FeO$_t$’, r’MnO’, r’MgO’, r’CaO’, 
33 r’Na$_2O$’, r’K$_2$O’, r’Cr$_2$O$_3$’] 
34 for i, col in enumerate(Elements[’Orthopyroxene’]): 
35 ax2 = fig1.add_subplot(5, 2, i+1) 
36 sns.kdeplot(my_dataset[’Orthopyroxene_’ + col], fill=True, 
37 color=’k’, facecolor=’#BFD7EA’, ax = ax2)  
38 ax2.set_xlabel(x_labels_cpx[i] + ’ [wt. %] in opx’) 
39 if i in [0,2,4,6,8]: 
40 ax2.set_ylabel(’Prob. Density’) 
41 else: 
42 ax2.set(ylabel=None) 
43 
44 fig1.align_ylabels() 
45 fig1.tight_layout() 

Listing 9.2 Descriptive statistics applied to orthopyroxenes
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9.3 Compositional Data Analysis 

In Sect. 3.3.6, we introduced the basic concept of compositional data analysis 
and discussed why most of the advanced statistical techniques cannot be applied 
to compositional data without a proper transformation. In fact, many statistical 
methods assume independent data in the range .−∞ to .+∞. Intrinsically, com-
positional features range from 0 to 100 (or from 0 to 1) and are not independent 
because changing the value of one element automatically affects the abundance of 
the other components (Aitchison, 1982). Decision-tree ensembles such as random 
forest (Song & Lu, 2015) and extremely randomized trees (Geurts et al., 2006) 
make no specific assumption about the data structure. Therefore, they can be 
applied to un-transformed data (Aitchison, 1982). However, recent studies report 
that tree ensembles perform better when applied to log-ratio pairwise-transformed 
data (Tolosana-Delgado et al., 2019). Although tree-based ensembles do not strictly 
require a CoDA transformation, they benefit from the introduction of new features 
(i.e., pairwise log-ratios) derived from existing features such as the augmentation 
of the feature input space. The result is reduced overfitting, which improves 
generalization. This chapter compares the results of the extremely randomized 
trees algorithm applied to both un-transformed and un-transformed plus log-ratio 
pairwise transformed data, as suggested by Tolosana-Delgado et al. (2019). To add 
the log-ratio pairwise transformation to our pre-processing strategy, we simply add 
a new function to code listing 9.1. Code listing 9.3 shows the final version of our 
pre-processing strategy, which now includes the log-ratio pairwise transformation. 

1 import os 
2 import pandas as pd 
3 import numpy as np 
4 
5 Elements = { 
6 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’, 
7 ’MnO’, ’CaO’, ’Na2O’, ’K2O’], 
8 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, 
9 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’Cr2O3’]} 
10 
11 def calculate_cations_on_oxygen_basis( 
12 myData0, myphase, myElements, n_oxygens): 
13 
14 Weights = {’SiO2’: [60.0843,1.0,2.0], 
15 ’TiO2’:[79.8788,1.0,2.0], 
16 ’Al2O3’: [101.961,2.0,3.0], 
17 ’FeOtot’:[71.8464,1.0,1.0], 
18 ’MgO’:[40.3044,1.0,1.0], 
19 ’MnO’:[70.9375,1.0,1.0], 
20 ’CaO’:[56.0774,1.0,1.0], 
21 ’Na2O’:[61.9789,2.0,1.0], 
22 ’K2O’:[94.196,2.0,1.0], 
23 ’Cr2O3’:[151.9982,2.0,3.0],
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24 ’P2O5’:[141.937,2.0,5.0], 
25 ’H2O’:[18.01388,2.0,1.0]} 
26 
27 myData = myData0.copy() 
28 # Cation mole proportions 
29 for el in myElements: 
30 myData[el + ’_cat_mol_prop’] = myData[myphase + 
31 ’_’ + el]  * Weights[el][1] / Weights[el][0] 
32 # Oxygen mole proportions 
33 for el in myElements: 
34 myData[el + ’_oxy_mol_prop’] = myData[myphase + 
35 ’_’ + el]  * Weights[el][2] / Weights[el][0] 
36 # Oxigen mole proportions totals 
37 totals = np.zeros(len(myData.index)) 
38 for el in myElements: 
39 totals += myData[el + ’_oxy_mol_prop’] 
40 myData[’tot_oxy_prop’] = totals 
41 # totcations 
42 totals = np.zeros(len(myData.index)) 
43 for el in myElements: 
44 myData[el + ’_num_cat’] = n_oxygens * myData[el + 
45 ’_cat_mol_prop’] / myData[’tot_oxy_prop’] 
46 totals += myData[el + ’_num_cat’] 
47 return totals 
48 
49 def filter_by_cryst_formula(dataFrame, myphase, myElements): 
50 
51 c_o_Tolerance = {’Orthopyroxene’: [4,6,0.025]} 
52 
53 dataFrame[’Tot_cations’] = calculate_cations_on_oxygen_basis( 
54 myData0 = dataFrame, myphase = myphase, 
55 myElements = myElements, 
56 n_oxygens = c_o_Tolerance[myphase][1]) 
57 
58 dataFrame = dataFrame[ 
59 (dataFrame[’Tot_cations’] < c_o_Tolerance[myphase][0] 
60 + c_o_Tolerance[myphase][2]) & 
61 (dataFrame[’Tot_cations’] > c_o_Tolerance[myphase][0] 
62 - c_o_Tolerance[myphase][2])] 
63 
64 dataFrame = dataFrame.drop(columns=[’Tot_cations’]) 
65 return dataFrame 
66 
67 def adjustFeOtot(dataFrame): 
68 for i in range(len(dataFrame.index)): 
69 try: 
70 if pd.to_numeric(dataFrame.Fe2O3[i])>0: 
71 dataFrame.loc[i,’FeOtot’] = (  
72 pd.to_numeric(dataFrame.FeO[i]) + 0.8998 * 
73 pd.to_numeric(dataFrame.Fe2O3[i])) 
74 else: 
75 dataFrame.loc[i, 
76 ’FeOtot’] = pd.to_numeric(dataFrame.FeO[i]) 
77 except:
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78 dataFrame.loc[i,’FeOtot’] = 0  
79 return dataFrame 
80 
81 def adjust_column_names(dataFrame): 
82 dataFrame.columns = [c.replace(’Wt: ’, ’’) 
83 for c in dataFrame.columns] 
84 dataFrame.columns = [c.replace(’ ’, ’’) 
85 for c in dataFrame.columns] 
86 return dataFrame 
87 
88 def select_base_features(dataFrame, my_elements): 
89 dataFrame = dataFrame[my_elements] 
90 return dataFrame 
91 
92 def data_imputation(dataFrame): 
93 dataFrame = dataFrame.fillna(0) 
94 return dataFrame 
95 
96 def pwlr(dataFrame, my_phases): 
97 
98 for my_pahase in my_phases: 
99 my_indexes = [] 

100 column_list = Elements[my_pahase] 
101 
102 for col in column_list: 
103 col = my_pahase + ’_’ + col 
104 my_indexes.append(dataFrame.columns.get_loc(col)) 
105 my_min = dataFrame[col][dataFrame[col] > 0].min() 
106 dataFrame.loc[dataFrame[col] == 0, 
107 col] = dataFrame[col].apply( 
108 lambda x: np.random.uniform( 
109 np.nextafter(0.0, 1.0),my_min)) 
110 
111 for ix in range(len(column_list)): 
112 for jx in range(ix+1, len(column_list)): 
113 col_name = ’log_’ + dataFrame.columns[ 
114 my_indexes[jx]] + ’_’ + dataFrame.columns[ 
115 my_indexes[ix]] 
116 dataFrame.loc[:,col_name] = np.log( 
117 dataFrame[dataFrame.columns[my_indexes[jx]]]/ \ 
118 dataFrame[dataFrame.columns[my_indexes[ix]]]) 
119 return dataFrame 
120 
121 def data_pre_processing(phase_1, phase_2, out_file): 
122 
123 try: 
124 os.remove(out_file) 
125 except OSError: 
126 pass 
127 
128 starting = pd.read_excel(’LEPR_download.xls’, 
129 sheet_name=’Experiment’) 
130 starting= adjust_column_names(starting) 
131 starting.name = ’’
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132 starting = starting[[’Index’, ’T(C)’,’P(GPa)’]] 
133 starting.to_hdf(out_file, key=’starting_material’) 
134 
135 phases = [phase_1, phase_2] 
136 
137 for ix, my_phase in enumerate(phases): 
138 my_dataset = pd.read_excel(’LEPR_download.xls’, 
139 sheet_name = my_phase) 
140 
141 my_dataset = (my_dataset. 
142 pipe(adjust_column_names). 
143 pipe(adjustFeOtot). 
144 pipe(select_base_features, 
145 my_elements= Elements[my_phase]). 
146 pipe(data_imputation)) 
147 
148 my_dataset = my_dataset.add_prefix(my_phase + ’_’) 
149 my_dataset.to_hdf(out_file, key=my_phase) 
150 
151 my_phase_1 = pd.read_hdf(out_file, phase_1) 
152 my_phase_2 = pd.read_hdf(out_file, phase_2) 
153 
154 my_dataset = pd.concat([starting, 
155 my_phase_1, 
156 my_phase_2], axis=1) 
157 
158 my_dataset = my_dataset[(my_dataset[’Liquid_SiO2’] > 35)& 
159 (my_dataset[’Liquid_SiO2’] < 80)] 
160 
161 my_dataset = my_dataset[( 
162 my_dataset[’Orthopyroxene_SiO2’] > 0)]  
163 
164 my_dataset = my_dataset[(my_dataset[’P(GPa)’] <= 2)]  
165 
166 my_dataset = my_dataset[(my_dataset[’T(C)’] >= 650)& 
167 (my_dataset[’T(C)’] <= 1800)] 
168 
169 my_dataset = filter_by_cryst_formula(dataFrame = my_dataset, 
170 myphase = phase_2, 
171 myElements = Elements[phase_2]) 
172 
173 my_dataset = my_dataset.sample(frac=1, 
174 random_state=50).reset_index(drop=True) 
175 
176 my_labels = my_dataset[[’Index’, ’T(C)’, ’P(GPa)’]] 
177 my_dataset = my_dataset.drop(columns=[’T(C)’,’P(GPa)’]) 
178 
179 my_labels.to_hdf(out_file, key=’labels’) 
180 my_dataset.to_hdf(out_file, key= phase_1 + ’_’ + phase_2) 
181 
182 my_dataset = pwlr(my_dataset, 
183 my_phases= [phase_1, phase_2]) 
184 my_dataset.to_hdf(out_file, 
185 key= phase_1 + ’_’ + phase_2 + ’_lrpwt’)
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186 
187 data_pre_processing(phase_1=’Liquid’ , 
188 phase_2=’Orthopyroxene’, 
189 out_file=’ml_data.h5’) 

Listing 9.3 Final implementation of our pre-processing strategy 

9.4 Model Training and Error Assessment 

In agreement with Petrelli et al. (2020), we train the extremely randomized 
trees algorithm on the pre-processed data set. Also, we use a Monte Carlo 
simulation to propagate the errors and assess the goodness of the model. The 
Monte Carlo approach consists of repeating many times (i) the random splitting 
of the data set, and (ii) the training of the algorithm starting from a different 
random seeding (code listing 9.4). To achieve our goal, we define a function 
named monte_carlo_simulation() (line 9). Within this function, we repeat the train-
validation splitting n times (lines 16–18), normalization to zero mean and unit 
variance (lines 20–22), training (lines 24–26), prediction (line 27), error assessment 
(lines 29–35), and the storing of the results (lines 36–42). 

1 import pandas as pd 
2 import numpy as np 
3 from sklearn.preprocessing import StandardScaler 
4 from sklearn.ensemble import ExtraTreesRegressor 
5 from sklearn.model_selection import train_test_split 
6 from sklearn.metrics import r2_score 
7 from sklearn.metrics import mean_squared_error 
8 
9 def monte_carlo_simulation(X, y, indexes, n, key_res): 
10 
11 r2 = []  
12 RMSE = [] 
13 
14 for i in range(n): 
15 my_res = {} 
16 X_train, X_valid, y_train, y_valid, \ 
17 indexes_train, indexes_valid = train_test_split( 
18 X, y.ravel(), indexes, test_size=0.2) 
19 
20 scaler = StandardScaler().fit(X_train) 
21 X_train = scaler.transform(X_train) 
22 X_valid = scaler.transform(X_valid) 
23 
24 regressor = ExtraTreesRegressor(n_estimators=450, 
25 max_features=1).fit( 
26 X_train, y_train)
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27 my_prediction = regressor.predict(X_valid) 
28 
29 my_res = {’indexes_valid’: indexes_valid, 
30 ’prediction’: my_prediction} 
31 
32 my_res_pd = pd.DataFrame.from_dict(my_res) 
33 r2.append(r2_score(y_valid, my_prediction)) 
34 RMSE.append(np.sqrt(mean_squared_error(y_valid, 
35 my_prediction))) 
36 my_res_pd.to_hdf(’ml_data.h5’, 
37 key= key_res + ’_res_’ + str(i)) 
38 
39 my_scores = {’r2_score’: r2,  
40 ’root_mean_squared_error’: RMSE} 
41 my_scores_pd = pd.DataFrame.from_dict(my_scores) 
42 my_scores_pd.to_hdf(’ml_data.h5’, key = key_res + ’_scores’) 
43 
44 
45 my_keys = [’Liquid_Orthopyroxene’, ’Liquid_Orthopyroxene_lrpwt’] 
46 
47 for my_key in my_keys: 
48 
49 # Liquid plus opx calibration 
50 liquid_opx = pd.read_hdf(’ml_data.h5’, my_key) 
51 print(liquid_opx.columns) 
52 X_liquid_opx = liquid_opx.values 
53 my_labels = pd.read_hdf(’ml_data.h5’, ’labels’) 
54 my_y = my_labels[’T(C)’].values 
55 my_indexes = my_labels[’Index’].values 
56 monte_carlo_simulation(X = X_liquid_opx, y = my_y, 
57 indexes = my_indexes, 
58 n =1000, key_res = my_key) 
59 
60 # opx only calibration 
61 opx = liquid_opx.loc[:, 
62 ~liquid_opx.columns.str.startswith(’Liquid’)] 
63 X_opx = opx.values 
64 my_key = my_key.replace("Liquid_", "") 
65 monte_carlo_simulation(X = X_opx, 
66 y = my_y, indexes = my_indexes, 
67 n =1000, key_res = my_key) 

Listing 9.4 Training of the model in a Monte Carlo simulation 

9.5 Evaluation of Results 

Figures 9.3 and 9.4 show the results of the Monte Carlo simulations (derived from 
code listing 9.5); the upper panels refer to raw data, whereas the lower panels
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Fig. 9.3 Result of code listing 9.5 (i.e., the Monte Carlo simulation of the orthopyroxene-only 
system) 

display the results on raw data plus the features deriving from the log-ratio pairwise 
transformation. 

Note that adding the features deriving from the log-ratio pairwise transformation 
seems improving the performance of the orthopyroxene-only calibration of the 
thermometer (Fig. 9.3). In this case, the root mean squared error and . r2 improve 
by 14 . ◦C and 0.4, respectively. 

In contrast with the orthopyroxene-only calibration, the liquid plus orthopyrox-
ene system does not benefit from the addition of features deriving from the log-ratio 
pairwise transformation (Fig. 9.4). In this case, the root mean squared error only 
differs by 4 . ◦C and . r2 is stable at 0.95.
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Fig. 9.4 Result of code listing 9.5 (i.e., the Monte Carlo simulation for the liquid-orthopyroxene 
system) 

1 import pandas as pd 
2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 
5 for my_key in [’Orthopyroxene’, ’Liquid_Orthopyroxene’]: 
6 
7 fig = plt.figure(figsize=(8,8),constrained_layout=True) 
8 subfigs = fig.subfigures(nrows=2, ncols=1) 
9 for j, (trans, my_title) in enumerate(zip([’’, ’_lrpwt’], 
10 [my_key, my_key+’ log-ratio pairwise transformation’])): 
11 my_scores = pd.read_hdf(’ml_data.h5’, 
12 my_key + trans + ’_scores’) 
13 
14 RMSE_ML_valid_median_T = np.median( 
15 my_scores[’root_mean_squared_error’]) 
16 R2_valid_median_T = np.median(my_scores[’r2_score’])
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17 
18 subfigs[j].suptitle(my_title.replace(’_’, ’-’)) 
19 
20 # left panel 
21 ax = subfigs[j].add_subplot(1, 2,1) 
22 bins = np.arange(30, 70, 2) 
23 ax.hist(my_scores[’root_mean_squared_error’], bins=bins, 
24 density = True, color = ’#BFD7EA’, 
25 edgecolor = ’k’, 
26 label=’Hist. distribution’) 
27 ax.axvline(RMSE_ML_valid_median_T, 
28 color=’#C82127’, 
29 label=’Median: {:.0f} C’.format( 
30 RMSE_ML_valid_median_T)) 
31 ax.set_xlabel(’Root Mean Squared Error’) 
32 ax.set_ylabel(’Prob. Density’) 
33 ax.legend() 
34 
35 # right panel 
36 ax = subfigs[j].add_subplot(1, 2, 2) 
37 bins = np.arange(0.875, 1, 0.005) 
38 ax.hist(my_scores[’r2_score’], bins = bins, 
39 density = True, color = ’#BFD7EA’, 
40 edgecolor=’k’, 
41 label=’Hist. distribution’) 
42 ax.axvline(R2_valid_median_T, color=’#C82127’, 
43 label=’Median: {:.2f}’.format( 
44 R2_valid_median_T)) 
45 ax.set_xlabel(r’r$^2$ score’) 
46 ax.set_ylabel(’Prob. Density’) 
47 ax.legend() 

Listing 9.5 Plots the results of the Monte Carlo simulation 
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Part IV 
Scaling Machine Learning Models



Chapter 10 
Parallel Computing and Scaling with 
Dask 

10.1 Warming Up: Basic Definitions 

Processor, CPU, Core The traditional definition of “processor” and “central 
processing unit” (CPU) is “a microprocessor chip that sequentially (i.e., one by one) 
executes a series of basic processing tasks based on an input” (Caesar Wu, 2015). 
However, modern CPUs largely exceed this traditional definition by integrating 
many components and hosting a cache memory. Modern CPUs duplicate and 
execute the most basic processing tasks by applying self-contained execution blocks 
that fit the traditional definition of a processor (Caesar Wu, 2015). These self-
contained execution blocks are typically called “cores” (Caesar Wu, 2015). 

Multi-Core Processor and Parallel Hardware Multi-core processors, chip 
multi-processors (CMPs), and parallel hardware are often used as synonyms 
(Peter Pacheco, 2020). A CMP incorporates many processors and cache memory on 
a chip. Parallel hardware is ubiquitous now—it is almost impossible to find a modern 
laptop, desktop, or server that does not use a multi-core processor (Peter Pacheco, 
2020). 

Graphics Processing Unit (GPU) “GPUs are multi-core processing units made of 
massively parallel, smaller, and more specialized cores than those generally found 
in high-performance CPUs. GPU architecture efficiently processes vector data (an 
array of numbers) and is often referred to as vector architecture.”1 

Field Programmable Gate Array (FPGA) “FPGAs are integrated circuits with 
a programmable hardware fabric. Unlike CPUs and GPUs, which are software-

1 https://intel.ly/39XimzH. 
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programmable fixed architectures, FPGAs are reconfigurable. When writing soft-
ware for a FPGA, compiled instructions become hardware components that are 
spatially laid out on the FPGA fabric, and those components can all execute in 
parallel.” (see footnote 1). 

Distributed Computing Distributed computing is “[a] computer system consisting 
of a multiplicity of processors, each with its own local memory, connected via a 
network. Loading or store instructions issued by a processor can only address the 
local memory and different mechanisms are provided for global communication” 
(David, 2011). 

Serial Codes Serial codes are codes that were conceived and written for a single 
processor (Peter Pacheco, 2020). If you run a serial code on multiple processors or 
a distributed architecture, the performance does not magically improve because the 
instructions are executed sequentially by one of the available cores. 

Parallel Computing Parallel computing is a computation strategy whereby many 
calculations or processes are executed simultaneously (Peter Pacheco, 2020). 
Parallel computing exploits multiple processors (i.e., CMP, GPU, and FPGA) or 
a distributed architecture (Peter Pacheco, 2020). 

10.2 Basics of Dask 

The goal of Dask2 is to overcome single-machine restrictions by adding object 
scalability to Python scientific libraries such as pandas, NumPy, and scikit-learn 
(Daniel, 2019). Dask consists of three main layers: (1) scheduler, (2) low-level 
application programming interfaces (APIs), and (3) high-level APIs (Fig. 10.1). 
This chapter discusses mainly the high-level APIs that govern Dask arrays, Dask 
DataFrames, and Dask ML, which allow us to scale NumPy, pandas, and scikit-
learn objects, respectively. In using Dask, our main goal is to extend the capabilities 
of single machines so that they can work with data sets that exceed their native 
RAM capabilities and deploy clusters to exploit big data sets or extremely complex 
models. 

Dask Array 
Dask arrays combine many NumPy arrays arranged into chunks (i.e., a single 
NumPy array) within a grid (Fig. 10.2). They are the parallel-friendly version of 
NumPy arrays. Defining a Dask array is as simple as defining a NumPy array; 
the only difference being that you need to import dask.array instead of NumPy 
(Fig. 10.3). For example, Fig. 10.3 shows how to create a .105 × 105 Dask array 
containing random numbers. In Jupyter Notebooks, you can easily retrieve copious 
information on the Dask array you created (Fig. 10.3).

2 https://www.dask.org. 
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High-level APIs 

Low-level APIs 

Dask subsystem 

Dask Array 
Parallel NumPy 

Dask Bag 
Parallel lists 

Dask DataFrame 
Parallel Pandas 

Dask ML 
Parallel scikit-learn 

Dask Delayed 
Lazy parallel objects 

Dask Futures 
Eager parallel objects 

Scheduler 
Creates and manages DAGs 
Distributes tasks to workers 

Fig. 10.1 Dask fundamentals, modified from (Daniel, 2019) 

NumPy 
Array 

Dask 
Array 

Fig. 10.2 Dask arrays, modified from https://examples.dask.org/array.html 

Fig. 10.3 Defining a Dask array

https://examples.dask.org/array.html
https://examples.dask.org/array.html
https://examples.dask.org/array.html
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pandas 
DataFrame 

Dask 
DataFrameindex 

Fig. 10.4 Dask arrays, modified from https://examples.dask.org/dataframe.html 

For example, Fig. 10.3 shows that the total size of x is 74.51 GiB (i.e., Gibibytes, 
GiB, with .1 GiB ≈ 1.074 GB). Also, the size of a single chunk is 7.63 MiB. 

Dask Data Frame 
A Dask DataFrame is the parallel counterpart of a pandas Dataframe (Fig. 10.4). 
They are composed of many smaller pandas DataFrames split along an index (Table 
10.1). 

To see how to use Dask DataFrames, let us import the data set that we developed 
in Chap. 8 and that we saved as HDF5. Figure 10.5 shows a portion of a Jupyter 
Notebook and highlights how to import a Dask DataFrame from the file ml_data.h5. 
Note that the procedure is similar to that in pandas. The only difference consists of 
importing a dask.DataFrame instead of a pandas.DataFrame. Note also that Dask 
splits the DataFrame into two parts and that, instead of the real values, all rows are 
filled with ellipses (. . . ).  This  is  because the data set is subject to “lazy” evaluation 
(see Sect. 10.3 for further details). To physically import train_dataset, Dask requires 
the additional step of using the compute() method (Fig. 10.6). 

Dask ML 
Model scaling can solve two common issues related to (1) data size and (2) model 
size (Table 10.2, Fig. 10.7). Pandas, NumPy, and scikit-learn are the libraries of 
choice to develop a ML strategy when your data set comfortably fits the free RAM 
of your computing environment (i.e., you are working with a small data set; see 
Table 10.2). In this case, scaling along the x dimension of Fig. 10.7 is not required 
and not recommended. 

As an example, code listing in Fig. 10.8 shows how to use Numpy to define (line 
2) a small data set my_data composed of .108 normally distributed pseudo-random 
numbers characterized by a mean value and standard deviation of one and two, 
respectively. Lines 3 and 4 simply check that the mean and the standard deviation

https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
https://examples.dask.org/dataframe.html
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Table 10.1 Dask methods to import and create a Dask DataFrame. Please note that most of them 
are equivalent to pandas methods, i.e., Table 3.1 (modified from https://docs.dask.org/en/stable/ 
dataframe-api.html) 

Method Description 

read_table() Read general delimited file 

read_csv() Read comma-separated values (csv) files 

read_fwf() Read fixed-width files 

read_parquet() Read parquet files 

read_hdf() Read Hierarchical Data Format (HDF) files 

read_json() Create a Dask DataFrame from a set of JSON files 

read_orc() Create a Dask DataFrame from ORC file(s) 

read_sql_table() Read SQL database table 

read_sql_query() Read SQL query 

read_sql() Read SQL query or database table 

from_array() Read any sliceable array 

from_bcolz() Read BColz CTable 

from_dask_array() Create a Dask DataFrame from a Dask Array 

from_delayed() Create a Dask DataFrame from many Dask Delayed objects 

from_map() Create a Dask DataFrame collection from a custom function map 

from_pandas() Construct a Dask DataFrame from a Pandas DataFrame 

from_dict() Construct a Dask DataFrame from a Python Dictionary 

Bag_to_dataframe() Create Dask Dataframe from a Dask Bag 

Fig. 10.5 Importing a pandas DataFrame stored in an HDF5 files as a Dask DataFrame 

of my_data are one and two, respectively. Finally, line 5 estimated the memory 
required by my_data, which is approximately 0.745 GiB. 

However, when the size of the data set reaches the upper bound of the RAM 
(including any virtual memory generated by using the hard disk), memory errors 
start occurring (see code listing in Fig. 10.9). For example, increasing the size of 
my_data to .2.5 × 109 in a Linux system with 16 GB of free memory produces a 
“Memory error” because the operating system is “Unable to allocate 18.6 GiB for

https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
https://docs.dask.org/en/stable/dataframe-api.html
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Fig. 10.6 Physically importing a pandas DataFrame stored in an HDF5 files as Dask DataFrame 

Table 10.2 Data set classification as a function of data size. Modified from Daniel (2019) 

Data set size Approximate size range Fits in RAM? Fits on local disk? 

Small data set Less than the free RAM on 
your system (e.g., 16 GB) 

Yes Yes 

Medium data set Larger than the free RAM on 
your system and less than 
capacity of the local disk 
(e.g., 2 TB) 

No Yes 

Large data set Larger than the capacity of 
the local disk 

No No 

an array with shape (2 500 000 000) and data type float64’. This is clearly a data size 
issue because I generated a “medium data set” (see Table 10.2). 

The use of Dask arrays allows you to overcome the problem with minimal 
changes in the code. For example, code listing in Fig. 10.10 uses Dask arrays (i.e., 
the parallel mimic of NumPy arrays) on a Lunix OS with 16 GB of free ram to 
complete the simple operations that were previously impossible using NumPy (i.e., 
code listing 10.9). 

When model size is the problem (e.g, the model is growing too much or becoming 
too complex), all computations take extremely long. For example, the grid search 
done in Chap. 8 took several hours to complete. While waiting a few hours may 
not a be a big problem, the execution time will drastically increase up to days 
or even weeks upon simply increasing the dimension of the grid search (e.g.,
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Dimension of Scale 

Data Size 

M
od

el
 S

iz
e 

Hard Computation 
(compute and memery bounds) 

Compute Bound 
(too long computation times) 

Memory Bound 
(out of memory issues) 

Fits in RAM 

Fig. 10.7 Dimension of scale, modified from https://ml.dask.org 

Fig. 10.8 Working with a small data set (i.e., well-fitting your RAM budget) 

increasing the number of investigated hyper-parameters and densifying the grid) 
or the complexity of the decision tree ensemble (e.g., increasing the number of 
estimators). To optimize several ML models, the total time required can easily be 
on the order of months or even years. 

The main aim of Dask ML is thus to provide scalable ML in Python for popular 
ML libraries such as scikit-Learn (Pedregosa et al., 2011), XGBoost, and others.

https://ml.dask.org
https://ml.dask.org
https://ml.dask.org
https://ml.dask.org
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Fig. 10.9 When you exceed the free memory, you get a “Memory error” 

Fig. 10.10 Using Dask to work with a medium size data set 

10.3 Eager Computation Versus Lazy Evaluation 

Python usually uses the so-called “eager” computation, which simply means 
that Python immediately performs each operation such as transformations and 
calculations. For example, Fig. 10.11 shows the definition of the eager function 
simple_lithopress() (line 2) that estimates the lithostatic pressure assuming both the 
density and acceleration due to gravity are constants. We disclose the eager nature 
of the function at lines 3 and 4, since simple_lithopress() returns a computed value 
as soon as we call it in the code workflow; in other words, the calculations is done 
immediately. 

Fig. 10.11 Defining the eager function simple_lithopress()
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Fig. 10.12 Performing a Monte Carlo error propagation using the ‘Eager’ simple_lithopress() 

Fig. 10.13 Result of code listing 10.1 

Similarly, if we perform a Monte Carlo error propagation (Fig. 10.12) combining 
NumPy arrays and the simple_lithopress() function, we get an immediate execution 
lasting less than one second and that generates an array of . 107 elements (.≈76 MB). 

To be aware of what we are doing, Fig. 10.13 shows the distribution of the 
computed pressures resulting from estimates of depth, density, and acceleration due 
to gravity and also accounting for the error estimates.
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1 import matplotlib.pyplot as plt 
2 
3 my_pressure_mean = np.mean(my_pressure_dist) 
4 my_pressure_std = np.std(my_pressure_dist) 
5 
6 fig, ax = plt.subplots() 
7 ax.hist(my_pressure_dist, density=True, bins=’auto’, 
8 color=’#0F7F8B’, label=’Pressure estimates’) 
9 ax.axvline(my_pressure_mean, color=’#C82127’, label=’mean value’) 
10 ax.axvspan(my_pressure_mean - my_pressure_std, 
11 my_pressure_mean + my_pressure_std, 
12 color=’#F15C61’, alpha=0.4, 
13 label=r’1$\sigma$ estimate’) 
14 ax.set_xlabel(’Pressure [MPa]’) 
15 ax.set_ylabel(’Probability Density’) 
16 ax.legend() 
17 plt.show() 

Listing 10.1 Plotting the results of the Monte Carlo error propagation. 

Lazy evaluation differs from eager computation. Under lazy evaluation, Dask 
prepares a directed acyclic graph (DAG) for the functions, operations, and transfor-
mations involved. But it does not perform any computation. DAGs are mathematical 
objects deriving from graph theory. The theory behind DAGs and graph theory is 
outside the scope of this book, so please refer to specialized references to go learn 
the details of DAGs (Xu, 2003; Fiore & Campos, 2013; Maurer, 2013). 

This section focuses mainly on learning the main benefits of using DAGs for 
our computations. One of the most important benefits is that the structure and the 
complexity of your computations can be evaluated and visualized before running 
them, which brings many advantages. For example, it allows you to decide whether 
to run your code on a single machine, a small cluster, or a high-performance 
computing facility. Figure 10.14 shows how to perform a lazy evaluation of the 

Fig. 10.14 How to visualize a DAG in Dask
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Fig. 10.15 A simple DAG 
resulting from the code listing 
reported above 

simple_lithopress 

normal 

0 

nalize 

normal 

0 

nalize 

normal 

0 

nalize 

Monte Carlo error propagation performed in Fig. 10.12, and the resulting DAG is 
shown in Fig. 10.15. It is a simple structure showing that, after generating three 
normal distributions for the depth, density, and acceleration due to gravity, the 
simple_litohpress() function uses them as input and generates an output. If we 
increase the size of the three input arrays from .107 to . 108, the structure of the 
DAG changes (Fig. 10.16). In detail, we defined a so-called “embarassingly parallel” 
workload (Fig. 10.17).
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Fig. 10.17 “Embarassingly 
parallel” workload 

10.4 Diagnostic and Feedback 

The Dask distributed scheduler provides an effective interactive dashboard that 
consists of a rich ecosystem of monitoring and profiling tools that can be accessed by 
a web browser (Fig. 10.18). The left and right panels of Fig. 10.18 display a Jupyter 
Notebook and the Dask interactive dashboard, respectively. The Jupyter Notebook 
starts the Dask client and its interactive dashboard at line 2 and then defines (lines 
3 and 4), evaluates (line 5), and finally triggers (line 6, in progress and therefore 
displayed as *) the computations. The right portion of the monitor shows the Dask 
interactive dashboard during the ongoing process triggered by the Jupyter Notebook 
at line 6.
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Chapter 11 
Scale Your Models in the Cloud 

11.1 Scaling Your Environment in the Cloud 

The term “scalability” refers to the ability of a system to manage a growing amount 
of work. As stated in the previous chapter, compute or memory bounds must be 
scaled to handle ML models. In the context of a cloud computing facility, the term 
scaling refers to the ability to quickly and efficiently increase (or decrease) the 
capability of a computational resource to handle a model that no longer fits the 
current resources (i.e., RAM, CPUs, and storage capabilities). Two main strategies 
exist for scaling computational infrastructure: scale up or scale out (Bekkerman 
et al., 2012). 

Scale Up 
Scaling up, or vertical scaling, consists of replacing the current computational 
instance with something more powerful (Fig. 11.1). For example, we could increase 
the number of cores, the amount of memory, and/or the capability of the storage 
(Fig. 11.2). 

Scale Out 
Scaling out, or horizontal scaling, consists of increasing the computational capabil-
ity by replicating the instances and running them in parallel (Fig. 11.3). 
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Scale Up 

Fig. 11.1 Scaling up and scaling down 

Scale Up 

Scale Down 

Compute Optimized Instances by Amazon Web Services 

Fig. 11.2 Scaling up and down 

11.2 Scaling in the Cloud: The Hard Way 

The “hard way” of scaling consists of managing all configurations and taking all 
the technical steps in either Amazon Web Services (AWS), the Google Compute 
Engine, Microsoft Azure, or other providers. 

Scaling up is quite easy with cloud providers. It consists simply of selecting 
larger or smaller instances to scale up and down, respectively (Fig. 11.2). Also, some 
providers offer specific services for auto-scaling; for example, Amazon claims that 
“AWS Auto Scaling monitors your applications and automatically adjusts capacity
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Scale Out 

Fig. 11.3 Scaling out 

to maintain steady, predictable performance at the lowest possible cost. Using AWS 
Auto Scaling, it’s easy to set up application scaling for multiple resources across 
multiple services in minutes. The service provides a simple, powerful user interface 
that lets you build scaling plans for resources including Amazon EC2 instances. . . .”1 

In contrast, scaling out is not as straightforward as scaling up. The Dask 
documentation suggests the use of Kubernetes and Helm solutions. Kubernetes is 
“a portable, extensible, open source platform for managing containerized workloads 
and services that facilitates both declarative configuration and automation.”2 Helm 
is “an open source package manager for Kubernetes. It provides the ability to 
provide, share, and use software built for Kubernetes.”3 The Dask documentation 
claims that “it is easy to launch a Dask cluster and a Jupyter notebook server on 
cloud resources using Kubernetes and Helm.”4 However, the instructions given in 
the Dask documentation assume that a Kubernetes cluster and Helm are already 
installed and ready for use. Unfortunately, setting up a Kubernetes cluster and Helm

1 https://aws.amazon.com/autoscaling/. 
2 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. 
3 https://helm.sh/docs/. 
4 https://docs.dask.org/en/stable/deploying-kubernetes-helm.html. 
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is not straightforward for a novice. Detailed instructions for many cloud providers 
are available in the guide “Zero to JupyterHub.”5 

11.3 Scaling in the Cloud: The Easy Way 

Saturn Cloud 
Saturn Cloud6 is a cloud-based platform designed to support data scientists working 
with Python,7 R,8 Julia,9 and other programming languages. Resources, such as 
those shown in Fig. 11.4, are the building blocks of the Saturn Cloud platform. The 
term “resource” refers to a complete computational and coding environment. Each 
resource is independent, so you can split out your different activities. Saturn Cloud-
hosted solutions10 are a “pay as you go” service, which means that you pay per hour 
for computational resources. For example, during the writing of the present book, 
the Medium (2 vCPU and 4 GB of RAM) and V100-16×Large (64 vCPU, 8 vGPU, 
and 488 GB of RAM) resources cost $0.06 and $34.24 per hour, respectively. A 
free hosted plan also exists with limited resources. The next sections exploit the free 
hosted plan for the first step of scaling up, following which results obtained on a 
Hosted Pro Plan are shown. Details about the costs are also provided, in case you 
intend to reproduce these results. 

Speed Up GridSearchCV on Saturn Cloud 
In Sect. 8.3, we performed a GridSearchCV, which is an extensive search within the 
hyper-parameters governing the extremely randomized trees algorithm (see code 
listing 8.9 and Table 8.1). The aim was to find the combination of hyper-parameters 
that provide the highest degree of accuracy. This combination of hyper-parameters 
resulted in a grid of 48 models, each repeated three times through cross validation, 
for a total of 144 attempts. As reported in Chap. 8, running the code listing 8.9 
required about 8 hours on my MacBook pro equipped with a 2.3 GHz Quad-Core 
Intel™ i7 CPU and 32 GB of RAM.

5 https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/. 
6 https://saturncloud.io. 
7 https://www.python.org. 
8 https://www.r-project.org. 
9 https://julialang.org. 
10 https://saturncloud.io/plans/hosted/. 
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Fig. 11.4 Saturn cloud computing templates 

In Saturn Cloud, the free hosted plan allows a slight scaling up of the hardware 
that supports my MacBook Pro using the 2× Large instance (i.e., eight cores and 64 
GB of RAM), so we scale up to a 2× Large instance and run the code listing 8.9. To  
start, we register with Saturn Cloud and click on the “New Python Server” button 
(Fig. 11.5), which starts a guided procedure that allows the configuration of a new 
instance, ready for basic Python data analysis, machine learning, and, possibly, 
parallel processing with Dask. 

Figures 11.6 and 11.7 show all the steps to configure the new instance. It is 
recommended to use a self-explanatory name, such as scale_GridSearchCV_Joblib, 
100 Gi of disk space, and the 2×large instance. Also, remember to add ytables as 
an extra package; this is installed using Conda Install. The PyTables library allows 
HDF5 files to be read and saved. Leave all the other options untouched, and click 
Create. 

The instance is now ready (Fig. 11.8). The next steps consist of starting the 
instance, creating a new Jupyter Notebook, and uploading the HDF5 file ml_data.h5 
(Fig. 11.9). Finally, we are ready to replicate code listing 8.9 in a 2×large instance 
(Fig. 11.10). Note that the second block of code in (Fig. 11.10) simply reports the 
outputs in a log file named data.log. The fitting (i.e., block number five) lasted 5 
hours and 15 minutes, which is significantly faster than the 8 hours of my MacBook 
Pro.
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Fig. 11.5 Starting a new python server 

Next, we activate a Hosted Pro Plan11 and progressively scale up the code in 
Fig. 11.10 to 8×Large instances (i.e., 32 Cores and 256 GB of RAM at the cost 
of $3.30/hour) and 16×Large instances (i.e., 64 Cores and 512 GB of RAM at the 
cost of $6.59/hour), improving the computation time to about 2 hours and 1 hour, 
respectively. 

As a final step, I scaled out the code reported in Fig. 11.10. To do this, I created 
a Dask cluster by clicking New Dask Cluster (Fig. 11.8), which opens the Cluster 
configuration window (Fig. 11.11). Also, I opted for a 16×Large scheduler (i.e., 
64 Cores and 512 GB of RAM) and four 8×Large workers (i.e., 32 Cores and 
256 GB of RAM). To run GridSearchCV in the newly created Dask Cluster, the 
code reported in Fig. 11.10 requires only minimal changes, which are all reported in 
Fig. 11.12. I imported SaturnCluster from dask_saturn (block 1), used n_jobs = −1 
(i.e., nested parallelism) for both ExtraTreesClassifier and GridSearchCV (Block 4), 
defined the SaturnCluster client (Block 5), and ran Joblib with dask as the fitting 
engine (Block 6). In this final case, fitting GridSearchCV required less than 25 
minutes!

11 https://saturncloud.io/plans/hosted/. 
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Fig. 11.6 Setting up the python server parameters
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Fig. 11.7 Setting up the python server parameters
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Fig. 11.8 Starting the python server 

Fig. 11.9 Uploading a hdf5 file
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Fig. 11.10 Scaling Up the GridSearchCV
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Fig. 11.11 Setting up a new dask cluster
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Fig. 11.12 Scaling out GridSearchCV
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Part V 
Next Step: Deep Learning



Chapter 12 
Introduction to Deep Learning 

12.1 What Does Deep Learning Mean? 

As introduced in Chap. 1, ML algorithms gather knowledge by extracting patterns 
from data. 

In other words, they try to map the representation provided by the investigated 
features to produce an output (Goodfellow et al., 2016). Therefore, features are 
central in ML because they provide the information to build a representation. 
However, simply mapping a representation to deliver an output is often insufficient. 
Therefore, we must train ML systems to discover not only the mapping from 
representation to output but also the representation itself (Goodfellow et al., 2016). 
This approach is known as representation learning. In complex problems (e.g., 
problems characterized by many features or extremely large data sets), learning the 
representation is not straightforward. 

“Deep learning solves this central problem in representation learning by intro-
ducing representations that are expressed in terms of other, simpler representations. 
Deep learning enables the computer to build complex concepts out of simpler 
concepts” (Goodfellow et al., 2016). 

A typical example of deep learning is the multilayer perceptron, which is a 
mathematical function that maps a set of inputs to output values (Goodfellow et al., 
2016). The function is formed by combining many simpler functions (Fig. 12.1). To 
better understand, Fig. 12.1 shows how a deep learning method can represent the 
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Fig. 12.1 Illustration of a deep learning, multilayer perceptron model. Modified from Goodfellow 
et al. (2016). The image comes from Copernicus Sentinel-1 mission and shows the meandering 
Amazon River (https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River) 

concept of an image by combining simpler notions, such as corners and contours, 
which are in turn defined in terms of edges (Goodfellow et al., 2016). In Fig. 12.1, 
the input feeds the visible layer and then a series of hidden layers progressively 
extracts and elaborates abstract features from the initial inputs. The final layer 
provides the output (e.g., the result of mapping the representation developed during 
the learning process) (Goodfellow et al., 2016). 

From the mathematical point of view, a deep feedforward network (or multilayer 
perceptron) aims to approximate some function . f ∗ (Goodfellow et al., 2016). In 
detail, it defines a mapping .y = f (x; θ) and learns the value of the parameters . θ that 
result in the most accurate approximation of the function (Goodfellow et al., 2016) 
(Fig. 12.2). Why feedforward? Because data flow through the function from the 
input . x, through the intermediate computations used to define f , and finally to the 
output . y. Why networks? Because networks are typically expressed by combining 
many different functions. For example, we might combine three functions .f (1), .f (2), 
and .f (3) in a chain to define .f (x) = f (3)(f (2)(f (1)(x))) (Goodfellow et al., 2016). 
In detail, .f (1) is the first layer of the network, .f (2) is the second layer, and so on 
(Goodfellow et al., 2016). The overall length of the chain defines the depth of the 
model. That’s why they are deep. The final layer of a feedforward network provides 
the output. During the training process, we adjust . θ parameters in .f (x; θ) to match 
.f ∗(x) (Goodfellow et al., 2016).

https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
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Fig. 12.2 Example of 
three-layer feedforward 
network or multilayer 
perceptron 

Fig. 12.3 Vectors, matrices, 
tensors 
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12.2 PyTorch 

“PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.”1 

Tensors (i.e., multidimensional arrays) are at the base of PyTorch. Also, PyTorch 
hosts the autograd engine (see torch.autograd), which can compute derivatives, 
even providing complex data structures. The other PyTorch modules are mainly 
based on tensors and on the autograd engine. For example, the torch.nn module 
provides common neural network layers and other architectural components. The 
torch.optim implements state-of-the-art optimization strategies for the learning 
process (Imambi et al., 2021). 

12.3 PyTorch Tensors 

PyTorch tensors are multidimensional arrays (Fig. 12.3), similar to those in NumPy. 
However, in contrast with NumPy arrays, PyTorch tensors can (1) perform accel-
erated operations on graphical processing units (GPUs), (2) natively work on 
distributed environments, and (3) keep track of a graph of operations when necessary 
(Imambi et al., 2021). The initialization of PyTorch tensors mimics what is done 
with NumPy arrays. Finally, Numpy arrays can be easily imported as PyTorch 
tensors (Fig. 12.4).

1 https://pytorch.org/docs/stable/index.html. 

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
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Fig. 12.4 Vectors, matrices, tensors
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Fig. 12.5 Vectors, matrices, tensors 

By default, PyTorch tensors live on the CPU. However, they can be easily defined 
on the GPU, if available (see block 2 of Fig. 12.5), by using the device parameter 
(i.e., device=‘cuda’, block 3 of Fig. 12.5). Blocks 3–6 in Fig. 12.5 simply highlight 
that the power operation performed on the ‘cuda’ device (i.e., the GPU) lasts only 
7 ms, which is much faster than the . ≈3 s required to execute the same operation on 
the CPU. 

12.4 Structuring a Feedforward Network in PyTorch 

Figure 12.6 shows how to develop in PyTorch the feedforward neural network (i.e., 
a multilayer perceptron) shown in Fig. 12.2. 

The feedforward neural network consists of an input layer (layer 1) that accepts 
input vectors with four features. ReLu functions process the input features and 
forward the results to a hidden layer (layer 2), which is characterized by four neurons 
and a ReLu activation function (i.e., the ReLu function). Finally, the output layer 
returns a scalar as output. 

In PyTorch, a neural network is a module with a nested structure. In other words, 
a neural network consists of a module that contains other modules (i.e., layers). The
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Fig. 12.6 Developing a multilayer perceptron in PyTorch 

model can live either in the CPU or in the GPU (Blocks 3 and 4 in Fig. 12.6), if 
available. 

12.5 How to Train a Feedforward Network 

12.5.1 The Universal Approximation Theorem 

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states 
that feedforward networks with a linear output layer and at least one hidden layer
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can approximate any continuous function on a closed and bounded subset of . Rn

(Goodfellow et al., 2016), which means that feedforward networks with hidden 
layers are universal approximators (Goodfellow et al., 2016). In other words, “the 
universal approximation theorem means that regardless of what function we are 
trying to learn, we know that a large [multilayer perceptron] will be able to represent 
this function” (Goodfellow et al., 2016). However, despite what is affirmed by the 
universal approximation theorem, there is no guarantee that the training process 
will correctly learn the target function (Goodfellow et al., 2016). For example, the 
optimization algorithm used for training may not be able to find the correct values 
for the theta parameters that describe the desired function. Also, the training process 
might choose the wrong function because of overfitting (Goodfellow et al., 2016). To 
avoid these issues, we want to find (1) a robust loss function .L(θ), (2) a strategy to 
compute the gradient with respect to model parameters [i.e., .�θL(θ) of .L(θ)], and 
(3) an efficient optimization algorithm to descend .�θL(θ) and find the minimum of 
.L(θ). 

12.5.2 Loss Functions in PyTorch 

A loss function (or cost function) computes a numerical value that the learning 
process will attempt to minimize (cf. Sect. 7.5). Typically, a loss function compares 
(e.g., by subtraction) the desired outputs (i.e., the labels) and the current outputs of 
our model (Stevens et al., 2020). Table 12.1 reports the loss functions available in 
PyTorch. 

12.5.3 The Back-Propagation and its Implementation in 
PyTorch 

In feedforward neural networks, the information starts from the input . x, flows  
through the hidden layers, and finally produces an output . y (Goodfellow et al., 
2016). The name of this process is forward propagation. At the beginning of 
training, forward propagation produces an output . y and an associated cost function 
.J (θ) that relies on the non-optimized . θ parameters (Goodfellow et al., 2016). 

The back-propagation algorithm computes the gradient of .L(θ) by propagating 
the information from the output (i.e., the cost function), backward through the 
network (Goodfellow et al., 2016). Note that back-propagation only allows us 
to define the gradient of .L(θ). We then need an optimization algorithm such as 
the stochastic gradient descent algorithm (Sect. 7.5) to learn along this gradient 
(Goodfellow et al., 2016). Describing in detail the back-propagation algorithm is 
beyond the scope of the present book, so please refer to Goodfellow et al. (2016) or  
other specialized books for further details.



200 12 Introduction to Deep Learning

Table 12.1 Loss functions in PyTorch: https://bit.ly/pyt-loss-functions 

Loss function Description 

nn.L1Loss Loss function based on mean absolute error (MAE) 

nn.MSELoss Loss function based on mean squared error (squared L2 
norm) 

nn.CrossEntropyLoss Computes cross entropy loss between input and target 

nn.CTCLoss Connectionist temporal classification loss 

nn.NLLLoss Negative log likelihood loss 

nn.PoissonNLLLoss Negative log likelihood loss with Poisson distribution of 
target 

nn.GaussianNLLLoss Gaussian negative log likelihood loss 

nn.KLDivLoss Kullback–Leibler divergence loss 

nn.BCELoss Binary cross entropy between target and input 
probabilities 

nn.BCEWithLogitsLoss Combines Sigmoid layer and BCELoss in one single 
class 

nn.MarginRankingLoss Measures the loss given inputs . x1, . x2, two  
one-dimensional mini-batch or zero-dimensional tensors, 
and a label one-dimensional mini-batch or 
zero-dimensional tensor y (containing 1 or . −1) 

nn.HingeEmbeddingLoss Masures loss given an input tensor x and a labels tensor y 
(containing 1 or . −1) 

nn.MultiLabelMarginLoss Optimizes a multi-class multi-classification hinge loss 
(margin-based loss) 

nn.HuberLoss Creates a criterion that uses a squared term if the 
absolute element-wise error falls below delta and a 
delta-scaled L1 term otherwise (Huber loss). 

nn.SmoothL1Loss Creates a criterion that uses a squared term if the 
absolute element-wise error falls below beta and an L1 
term otherwise 

nn.SoftMarginLoss Creates a criterion that optimizes a two-class 
classification logistic loss between input tensor x and 
target tensor y (containing 1 or . −1) 

nn.MultiLabelSoftMarginLoss Optimizes a multi-label one-versus-all loss based on 
max-entropy, between input x and target y of size (.N,C). 

nn.CosineEmbeddingLoss Measures the loss given input tensors . x1, . x2 and a tensor 
label y with values 1 or . −1. 

nn.MultiMarginLoss Creates and optimizes a multi-class classification hinge 
loss (margin-based loss) 

nn.TripletMarginLoss Measures the triplet loss given input tensors . x1, . x2, . x3
and a margin with a value greater than zero 

nn.TripletMarginWithDistanceLoss Measures triplet loss given input tensors a, p, and  n 
(representing anchor, positive, and negative examples, 
respectively), and a nonnegative, real-valued function 
(“distance function”) used to compute the relationship 
between the anchor and a positive example (“positive 
distance”) and between the anchor and a negative 
example (“negative distance”)

https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
https://bit.ly/pyt-loss-functions
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Table 12.2 Optimization algorithms in PyTorch: https://bit.ly/pytorch-optim 

Optimization algorithm Description 

Adadelta Implements Adadelta algorithm 

Adagrad Implements Adagrad algorithm 

Adam Implements Adam algorithm 

AdamW Implements AdamW algorithm 

SparseAdam Implements lazy version of Adam algorithm suitable for sparse 
tensors 

Adamax Implements Adamax algorithm (a variant of Adam based on 
infinity norm) 

ASGD Implements averaged stochastic gradient descent 

LBFGS Implements L-BFGS algorithm, heavily inspired by minFunc 

NAdam Implements NAdam algorithm 

RAdam Implements RAdam algorithm 

RMSprop Implements RMSprop algorithm 

Rprop Implements the resilient backpropagation algorithm 

SGD Implements stochastic gradient descent (optionally with 
momentum) 

The engine torch.autograd is PyTorch’s automatic differentiation engine. It 
defines a directed acyclic graph whose leaves are the input tensors and whose roots 
are the output tensors. In this way, it computes gradients via the chain rule. 

12.5.4 Optimization 

Once defined, the optim submodule of torch (i.e. torch.optim) stores the optimiza-
tion algorithms (Table 12.2). 

12.5.5 Network Architectures 

This section provides a quick overview of some popular neural network architec-
tures. 

Multilayer Perceptron 
A multilayer perceptron is the neural network structure depicted in Fig. 12.2. It  
consists of fully connected layers of perceptrons (i.e., artificial neurons). Selecting 
the optimal number of hidden layers is not always straightforward and is commonly 
driven by background knowledge and experimentation (Hastie et al., 2017). With 
too few hidden units, the model might not have enough flexibility to capture the 
nonlinearities in the data; with too many hidden units, the extra weights can be

https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
https://bit.ly/pytorch-optim
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shrunk toward zero if appropriate regularization is used.” Common applications 
typically use 5–100 hidden layers (Hastie et al., 2017). Most ML models described 
in Chap. 7 (e.g., support vector machines or logistic regression) can be simulated by 
multilayer perceptrons containing only one or two layers (Aggarwal, 2018). 

Radial Basis Function Networks 
Radial basis function networks consist of shallow (i.e., only two layers) neural 
networks where the first and the second layers are unsupervised and supervised, 
respectively (Aggarwal, 2018). Radial basis function networks are based on Cover’s 
theorem on the separability of patterns (Cover, 1965), stating that pattern clas-
sification problems are more likely to be linearly separable when cast into a 
high-dimensional space with a nonlinear transformation. The idea behind radial 
basis function networks is close to that of nearest-neighbor classifiers with the 
addition of a supervised step in the second layer (Aggarwal, 2018). Also, they are 
similar to support vector machines trained with radial basis functions as the kernel. 
However, radial basis function networks are more general than kernel support vector 
machines (Aggarwal, 2018). 

Restricted Boltzmann Machines 
Restricted Boltzmann machines (RBMs) are unsupervised neural network archi-
tectures that rely on energy minimization (Fischer & Igel, 2012). Although RBMs 
were introduced in the 1980s (Aggarwal, 2018), the increase in computational power 
and the development of new learning strategies has made RBMs significantly more 
appealing in recent years (Fischer & Igel, 2012). RBMs are useful for creating 
generative models (Fischer & Igel, 2012) and are closely related to probabilistic 
graphical models (Koller & Friedman, 2009). Also, RBMs have been proposed as 
building blocks for so-called “deep belief networks” ((Hinton et al., 2006). Training 
a RBM is rather different from training a feedforward network because it cannot 
use backpropagation (Fischer & Igel, 2012). On the contrary, RBMs rely on Monte 
Carlo sampling for the training (Fischer & Igel, 2012). 

Recurrent Neural Networks 
Recurrent neural networks (RNNs) are designed to investigate sequential data such 
as text sentences, time series, and other discrete sequences (Abraham and Tyagi, 
2022). An important point about RNNs is that they account for the potential 
dependence of subsequent inputs on previous inputs, making them well suited, for 
example, for time series forecasting or speech recognition (Kumar & Abraham, 
2022; Aggarwal, 2018). RNNs use a specific backpropagation algorithm called 
“backpropagation through time” (Aggarwal, 2018), which accounts for the sequen-
tial nature of the inputs during the learning process. A drawback of RNNs is 
their complex optimization and training processes, making them difficult to access, 
especially for novices (Kumar & Abraham, 2022; Aggarwal, 2018). Specialized 
variants of the recurrent neural network architecture have also been proposed to
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solve specific problems, such as handling long-term dependencies using long short-
term memory networks (Hochreiter & Schmidhuber, 1997) 

Convolutional Neural Networks 
Convolutional neural networks (CNNs) are biologically inspired networks that find 
applications in video and speech recognition, recommendation systems, image clas-
sification and segmentation, natural language processing, and time series forecasting 
(see, e.g., Yamashita et al., 2018). CNNs mimic the visual cortex functionalities of 
animals (Fukushima, 1980) and aim to “automatically and adaptively learn spatial 
hierarchies of features through backpropagation by using multiple building blocks, 
such as convolution layers, pooling layers, and fully connected layers” (Fukushima, 
1980). 

CNNs are well suited to process grid-shaped data such as RGB images or spectral 
maps by using three main types of layers: convolution, pooling, and fully connected 
(Fukushima, 1980). The first two layer types extract features and the third layer 
maps the extracted features to the final output. 

Convolution layers play a fundamental role in CNNs (Yamashita et al., 2018). 
They typically consist of three components: input data, a filter (or kernel), and a 
feature map (Yamashita et al., 2018). To better understand, consider the example 
shown in Fig. 12.7, where the input and the kernel are .6 × 6 and .3 × 3 arrays, 
respectively. The output is a .4 × 4 array named “feature map,” “activation map,” or 
“convolved feature” and derives from the systematic application of the filter (i.e., 
a dot product) to different portions of the input. After each convolution, the CNN 
applies an activation function such as a rectified linear unit (ReLU) to the output 
and then moves to the next layer (Yamashita et al., 2018). 

Pooling layers reduce the dimensionality (or downsample), which reduces the 
number of parameters in the input. They typically consist of a filter that applies an 
aggregation function such as the max or average pooling (Fukushima, 1980). Max 
pooling selects the pixel with the maximum output of the filter and sends it to the 
output array. Similarly, average pooling calculates the average value within the filter 
and sends it to the output array. If you complain that a huge amount of information 
is lost in the pooling layers, you would be right. However, pooling layers reduce 
the complexity of the model, improve its efficiency, and limit the risk of overfitting 
(Fukushima, 1980). Finally, fully connected layers mimic a multilayer perceptron. 
For example, CNNs are widely used in semantic image segmentation (see, e.g., 
Badrinarayanan et al., 2017; Long et al., 2015; Milletari et al., 2016). Semantic 
image segmentation consists of identifying the areas (i.e., the pixels) of the image 
occupied by a specific subject, such as a person, as in the case of Fig. 12.8.
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Fig. 12.7 Convolution example 

12.6 Example Application 

The Problem 
As an example application of deep learning potentials in the Earth Sciences, we 
now discuss the training and validation of a CNN to identify building footprints 
from satellite records. 

The problem falls in the ML classification sub-field called “semantic image 
segmentation” (see Fig. 12.8). In this specific case, we want to identify the areas 
or the pixels of an image occupied by buildings in the aerial image labeling data 
set (Maggiori et al., 2017) (see, e.g., Fig. 12.9). The right panel of Fig. 12.9 shows 
the solution to the problem in the form of a mask where white and black define
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Fig. 12.8 Convolutional neural networks for image segmentation. Modified from Long et al., 2015 

Fig. 12.9 The aerial image labeling data set (Maggiori et al., 2017) 

building and non-building areas, respectively. We want to know whether we can 
train a CNN to produce the solution reported in Fig. 12.9. To attempt a simplified 
solution, I trained the U-Net CNN (Ronneberger et al., 2015) using PyTorch. 

Data Set and Pre-processing 
As a starting point, I downloaded the aerial image labeling data set (Maggiori et al., 
2017), which consists of 360 orthorectified RGB (Red, Green, Blue) images linked 
to official cadastral records (Maggiori et al., 2017). The entire data set covers several 
areas, such as Austin (USA), Chicago (USA), Vienna (Austria), East and West Tyrol 
(Austria), San Francisco (USA), and Innsbruck (Austria). The lateral resolution is 
0.3 m, and each tile is 5000 × 5000 pixels (Maggiori et al., 2017). For 180 tiles, a 
mask containing two semantic classes, building and non-building, is also provided 
(Maggiori et al., 2017). For the case study provided herein, I selected 10 tiles from
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Fig. 12.10 Architecture of a U-net convolutional neural network (modified from Ronneberger 
et al., 2015) 

Austin. For each tile, I also collected the associated masks to train and validate the 
model. From each tile, I extracted 25 images of 1000 × 1000 pixels each by using 
a 5 × 5 grid (the same operation was done for each mask). The resulting data set 
consisted of 245 images and 245 masks. I then split the data set into two parts for 
use in training (220) and validation (25). 

The U-Net Architecture 
The U-Net is a “fully convolutional network” (Long et al., 2015). The main concept 
behind fully convolutional networks is to take an input of arbitrary size and produce 
a correspondingly sized output with efficient inference and learning (Long et al., 
2015). 

Figure 12.10 shows the U-Net architecture. It consists of a contracting network 
(left side) followed by an expansive path (right side; Ronneberger et al., 2015). The 
contracting path applies a sequence of two 3 × 3 convolutions, each followed by a 
ReLU and 2 × 2 max pooling (Ronneberger et al., 2015). Next, in the expansive 
path, the U-net architecture upsamples the feature map, followed by a 2 × 2 
convolution (“up-convolution”), and two 3 × 3 convolutions, each followed by a 
ReLU (Ronneberger et al., 2015). The final layer applies a 1×1 convolution to map



12.6 Example Application 207

each 64-component feature vector to the desired number of classes (Ronneberger 
et al., 2015). The code listing 12.1 shows a PyTorch implementation of the U-net.2 

1 """ Full assembly of the parts to form the complete network """ 
2 
3 from .unet_parts import * 
4 
5 
6 class UNet(nn.Module): 
7 def __init__(self, n_channels, n_classes, bilinear=False): 
8 super(UNet, self).__init__() 
9 self.n_channels = n_channels 
10 self.n_classes = n_classes 
11 self.bilinear = bilinear 
12 
13 self.inc = DoubleConv(n_channels, 64) 
14 self.down1 = Down(64, 128) 
15 self.down2 = Down(128, 256) 
16 self.down3 = Down(256, 512) 
17 factor = 2 if bilinear else 1 
18 self.down4 = Down(512, 1024 // factor) 
19 self.up1 = Up(1024, 512 // factor, bilinear) 
20 self.up2 = Up(512, 256 // factor, bilinear) 
21 self.up3 = Up(256, 128 // factor, bilinear) 
22 self.up4 = Up(128, 64, bilinear) 
23 self.outc = OutConv(64, n_classes) 
24 
25 def forward(self, x): 
26 x1 = self.inc(x) 
27 x2 = self.down1(x1) 
28 x3 = self.down2(x2) 
29 x4 = self.down3(x3) 
30 x5 = self.down4(x4) 
31 x = self.up1(x5, x4) 
32 x = self.up2(x, x3) 
33 x = self.up3(x, x2) 
34 x = self.up4(x, x1) 
35 logits = self.outc(x) 
36 return logits 

Listing 12.1 U-Net implementation in PyTorch 

Results 
Figure 12.11 shows the result of applying the trained model (1260 epochs) to one 
of the 25 validation images extracted from the original data set. The top-right panel 
shows the original image (i.e., the input RGB matrix), and the top-left panel shows 
the building–non-building mask. Keep in mind that we used building–non-building

2 https://github.com/milesial/Pytorch-UNet. 

https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
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Original Image Building/ non-building mask 

predicted mask Original image + predicted mask 

Fig. 12.11 Semantic image segmentation using U-net (Ronneberger et al., 2015) 

masks to train the model and as quality control during validation. The bottom-
right panel of Fig. 12.11 shows the predicted mask. Finally, the bottom-left panel 
compares the predicted mask with the original image to highlight the quality of the 
results. 

Going into more detail on the application of semantic image segmentation to 
Earth Sciences is beyond the scope of this book. For those interested, I strongly 
recommend to see the TorchGeo library3 (Stewart et al., 2021).

3 https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/. 

https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
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https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/
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